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ABSTRACT OF THE DISSERTATION

Utility and Profit maximization in Dynamic Spectrum Allocation

by Joydeep Acharya

Dissertation Director: Prof. Roy D. Yates

Demand driven, short term allocation of spectrum will be important for &nvireless sys-
tems. Engineering and economics will jointly determine optimal ways to operdtesgatems.
In this thesis, we characterize two operating principles of dynamic speettuass: decentral-
ized commons and centralized property right.

In decentralized commons, co-located devices sense spectrum fat sacals to transmit.
Assuming an OFDM based physical layer, this means that a device camiranson contigu-
ous tones. We analyze how symbol timing synchronization can be achisivegayclic prefix
based algorithms. For different spectral occupancies of the transmmtidading conditions,
we identify scenarios where synchronization algorithms yield satisfactsnlts and scenarios
where they do not.

For the centralized property rights regime, we develop a two tiered speectifapation
model where spectrum is first allocated to service providers (SPs) igk&rband then to
customers by SPs.

First we assume that the users transmit to the SPs in the uplink after spettcati@n,
who maximize the sum utility of the users. We derive optimal allocation for diftesgstem
parameters. We introduce a spectrum price and use it to demonstrai@ &eyeaiesults about
spectrum allocation. The spectrum price proves to be the regulatory nmisghthat brings
about coordination amongst the SPs with minimal control messaging. Owaabhus strikes

a balance between a total and no central coordination.



Next we consider a downlink scenario where SPs sell spectrum to arsgithen transmit
data. The SPs operate to maximize their profits. Each SP transmits at a spmeédicspectral
density which is an indicator of the modulation and coding technology usedafwsrtrission.
When there is only one SP, it can act as a monopolist and when there arelenBRig, they
compete. We characterize the customer to SP interactions in monopoly anat&Pgonpeti-
tion. We derive the prices charged and profits made by the SPs and shothédy vary with
provider efficiencies and spectrum costs charged by the broker.hdwe that an SP should

invest in better technology if the broker cost of spectrum is high.
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Chapter 1

Introduction

1.1 Technology Trends: Dynamic Spectrum Access

We are witnessing a large growth in the scope of wireless communicationseseMew broad-
band technologies such as 3G (third generation) and B3G (beyond #netagion) WiMAX
and LTE and the upcoming 4G systems, as per ITU’s IMT-Advancedifsgaimons [1] are
being designed and deployed that will co-exist with traditional technolagieb as WLAN
and 2G cellular. In the future we are likely to experience a plethora of wseadevices be-
longing to different technologies in the same geographic region. Spectlocation among
different transmit-receive device pairs is thus important for ensuriingefss and efficiency for
end-to-end applications.

The traditional regulatory process for spectrum allocation has beeglylargn responsive
to the application requirements of network subscribers. Spectrum is aedtioroperators for
relatively long periods, over large regional areas, often with a mandatieploying specific
services. This has resulted in a market environment where only a hafdarge service
providers own spectrum and the smaller players face significant safoiemarket entry. An-
other consequence of this approach has been the under-utilizatioeafwsp since it is not
possible to predict the spectrum demand of user applications at the time traialids made
to the providers who serve them. This artificially restricts more users fraairobg service
and also reduces QoS to the users who are being serviced. As an exentpée1950s, the
FCC sold licenses for 330 MHz of spectrum for UHF television in USA. Thiseeiment never
succeeded leading to considerable bands of unused spectrum bsteamd UHF broadcast
channels from 54 to 865 MHz [2]. Other instances of underutilization eEspm has been
reported in [3].

This has motivated the development of dynamic spectrum allocation (DSA)igeesthat

take into account the application requirements, presence of other davites region and



link gains between the transmit-receive pairs. In this context, thedegnitive radiois often
used [4, 5, 6] for referring to devices that could enable DSA by sgrthimsurrounding region,
dynamically determining what spectrum to transmit on and adapting its modulatiimgco
strategies accordingly.

In the recent past, the Govt. and spectrum regulatory bodies have italteased cog-
nizance of the future importance of DSA and have initiated several efibusderstanding the
basics of a DSA system with the ultimate goal being a full scale practical depialy In 2003,
the US Federal Communications Commission (FCC) issued a NPRM [7] to seekeants on
ways to encourage spectrum sharing and remove regulatory impediments deptoyment
of cognitive radio technologies. The next year the FCC issued a mocdisp¢PRM [8], on
the utilization of unused spectrum in the VHF and UHF TV bands between 52 &id 862
MHz by license-exempt devices. The aim was to offer wireless broadbearvices in rural
areas that were not well served by alternatives such as cable orD®Lcellular operators
are considering to acquire spectrum for deploying in-home base statibex Eamtocells [9]
for improving coverage, which provides an opportunity for spectruamis across operators.
Each operator could potentially use spectrum licensed out to competingtorgethrough a
sub-lease arrangement. Thus some sort of coordination and dynamitysliamongst opera-
tors is assumed. However there could be other applications where theuspsbaring is not
coordinated by a common protocol. There could be a primary licensee cirgpesuch as
TV broadcasters in the 54 to 862 MHz band and secondary systems sUEER's 802.22
based cognitive radio WRANS [10, 11] could operate in the vacantsahthis spectrum to
provide broadband access in rural areas. The US Defense Aatv&&search Projects Agency
(DARPA) also joined the movement by establishing the NeXt Generation Comatiams
(XG) program [12], to develop a standard for cognitive radio with dayitespectrum access for
military communications.

The ventures mentioned [7, 8, 9, 11, 12] are at the rudimentary staglesigiing a full
fledged DSA network. The question of how best to operate such a netinar how best to
allocate spectrum to the communicating devices, is still open. This problem i3 beiinely

researched by both communication engineers and economists/policy ni¥ers [



1.1.1 Engineering Solutions

Communication engineers and information theorists have several modelsAofdD&mpar-

ing and contrasting between various models, the following features stand ou

1. The level of centralized control over the communicating devigég devices could be
fully coordinated by a central base station as in a OFDMA based cellulaorietwthe
downlink [14, 15, 16, 17], there could be partial control [18] or theides could be fully
distributed [19, 20].

2. Whether the devices are strategtrategic devices can bid for spectrum from central en-
tity [21, 22] or in a decentralized case, can greedily try to maximize their otgescfR0]
by transmitting at higher power. Non strategic devices can be simple prias {418¢ or

follow a distributed spectrum etiquette protocol [23, 24] such as 802.11.

1.1.2 Economic Policies

The DSA policies espoused by economists either belomydperty rightsor spectrum com-
monsregime. In the property rights regime [25, 26] spectrum is owned by ingalgdor com-
panies who can buy, sell and trade in spectrum just like any other commokddybelief is that
such a spectrum market will lead to an efficient allocation and evaluatiopeatraim. Oth-
ers have favored a commons regime where spectrum is unlicensed {Rig] stmared by smart
communicating devices who are able to cooperate and co-exist, without greatiessive in-
terference for each other. Though the broad principles of both tlegemes are distinct, the
lack of precise modeling and details of implementation can lead to confusior2928yhen

trying to classify a specific system as belonging to either of the two.

1.2 Broad Direction of the Thesis

As a result of the apparent dichotomy in the models and taxonomy of the coratiang
engineer and the economist, there have been several efforts [133,]30,show how they relate
to each other. As a result members of both communities now accept that teeseveral
fundamental technical and market questions that have to be resolvae itieé full potential
of DSA based networks is realized. Accordingly, in this thesis, we will $oon the interplay

between radio technology and market dynamics for DSA. We first stateegimes of DSA



that combines the work of both camps and then discuss their features mmiiglaresearch

issues. These two regimes are

1.2.1 Distributed Systems/ Spectrum Commons

In this regime there is no central control and users can either be nomgatratel follow a
spectrum etiquette protocol [23, 24] or be strategic and greedily maximizesgrectrum and
power allocations to maximize their utilities [19, 20, 32, 33]. We do not studydiradr type
of systems in this thesis.

The Nash equilibrium of the latter systems can be very inefficient [20, 32ijig to poor
resource utilization. Additionally the lack of central control can advera#ict the physical
layer timing synchronization. The de facto physical layer of future geimar wireless sys-
tems is based on OFDM which, in contrast to single-carrier systems, is partycsensitive to
synchronization errors like carrier frequency offset and symbol tiraimgrs, which leads to in-
creased inter carrier interference (ICI). Thus to ensure reliable caoneation, extensive work
has been done in designing robust algorithms that estimate the carrieerdmygand symbol
timing with high accuracy [34, 35, 36]. All these works assume that therenie gotal band-
width which is utilized by a single user. However for systems with no coordinainal strategic
users, multiple users in a geographical region will sense a common popéctrsm for the
presence of vacant frequency bands to transmit in. In the OFDM dotitexmeans that a user
may transmit in non contiguous tones (termed as Non-Contiguous OFDM @RNQM). It is
not clear how the existing synchronization algorithms will perform in this sitnatitd till date
this important problem has been largely ignored. In this thesis, we analypetformance of
existing synchronization schemes for NC-OFDM [37, 38] and propesesthemes that take

cognizance of the non contiguous nature of transmission.

1.2.2 Centralized Systems/ Property Rights

We believe that the majority of the DSA networks in the future will belong to thismegOne
reason are the problems with the alternative as mentioned in Section 1.2.th&€heeason has
to do with economic incentives. Market trends indicate that a cellular sepvaeder raises
much more revenue from monthly subscriptions fees of the customers thakea oi&/LAN

access points does by selling them. Accordingly, we examine DSA mechaniatreathbe
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Figure 1.1: The network topology

categorized into two steps as shown in Figure 1.1

S1) Spectrum is allocated between co-located Service Providers ($F3gctrum Broker.
Example of co-located SPs could be TV stations and 802.22 WRAN systehsr[10

cellular and femtocell operators [9].

S2) SPs allocate this spectrum to their customers (denoted by end usersygequently

transmit/receive over this spectrum.

In Step S1, the Broker allocates short term spectrum licenses to a SBlyfica session du-
ration after which the spectrum may be allocated to another SP. Such spedgtrushort term
ownership could correspond to the coordinated access bands (GAB)aluced in [39]. Pos-
sible strategies for Step S1 have been studied and espoused by boteengimd economists.
However, in these strategies, the details of the physical transmissiorctgrestics are broadly
abstracted into simple parameters such as width of spectrum band and traoseritwhich
define a spectrum license. However to understand how spectrum alfocatdferent from

generic resource management we need to consider Step S2, which itle#fewharacteristics



of the communication channel that influences the user demand of speciduooasequently
the amount of spectrum the SPs need from the broker.

In this thesis, we consider the joint performance of a spectrum brokd® tm8 SP to user
spectrum allocation. A logical question\ighat should be the operating principle of the SPs?
They can act as a social planner and maximize the sum utility of users. TheoBRl also
operate the network in an attempt to maximize their profits. We examine both thesaetpes

in the thesis.

1.3 Specific Contributions of the Thesis

This thesis has the following three components,

1.3.1 Timing Acquisition for enabling Distributed DSA

We study the performance of cyclic prefix correlation based symbol timiggisition algo-
rithms for NC-OFDM transmission. We first derive the ML estimator when thennbl is
frequency non-selective and show that it has high computational coitypl€onsequently
we study the performance of low complexity, sub-optimal approaches bofrefjuency non-
selective and frequency selective channels. Our simulations indicatie @ne likely situa-
tions such as the users occupying multiple non-contiguous sub-bandsand large differ-
ences in the timing offsets between their transmitters and receivers, cyadi pased timing
acquisition algorithms can perform quite poorly. This points to the need tteregorithms
of reasonable complexity, or entirely different approaches to symbol tingggisition, for

example based on the periodic transmission of known sequences.

1.3.2 User Utility Maximization for centralized DSA

We develop and analyze a model for dynamic spectrum allocation, that lisape for a
broad class of practical systems. We consider multiple service provig®s),(in the same
geographic region, that share a fixed spectrum, on a non-interéelersis. This spectrum is
allocated to their customer end users for transmission to the SPs. Assumirgubait can
obtain service from all the SPs, this work develops an efficient algoritradectrum alloca-
tion. The quality of service depends on system parameters such as nofnisers and SPs,

the channel conditions between the users and SPs and the total transeitgi@ach user.



The SPs have different efficiencies of reception. We adopt a user umiéitgmization frame-
work to analyze this system. We develop the notion of spectrum price thatesra simple
distributed spectrum allocation with minimal coordination among the SPs and Giees the
user utility functions and the system parameters, we characterize theuspguice and the
users’ optimal bandwidth allocations. Our work provides theoretical i®wm performance
limits of practical operator to user based dynamic spectrum allocation systehadsangives

insights to actual system design.

1.3.3 Service Provider Profit Maximization for centralized DSA

The user utility maximization framework provides a baseline case for unddistathe change
in spectrum price and allocation when the SPs have profit motives of their 8imce a SP
pays the Broker for obtaining spectrum licenses, it is natural to assurhé thzerates to
maximize its profits by charging users for the spectrum allocation. We appigijples of
microeconomics [40, 41] to explore SP pricing for profit maximization. We rhtfte SP
profit as a function of the cost it has to pay the Broker, the revenuestiti@s from the users
and possible price competition of other SPs in the region. An SP seeks to maisprefits
by choosing its price. The users consider the SP prices and their appigcédiaetermine
which SP to obtain service from and the amount of spectrum to obtain. In this, we
characterize the SP prices and user spectrum allocations. We showethmicihg structure
changes from a single SP network to a network with multiple SPs in price compet@ion
model also demonstrates when it is in the interest of the SP to opt for a marergfbut costly

transmission technology.

1.4 OtherlIssues

There are other important areas about a future DSA system that webewensidered in this
thesis. Sensing a common pool of spectrum, for the presence of licemdechicenses users
is an important problem which has been studied in [42, 43]. Then theimpogtant network
layer aspects related to protocol stacks and network architecture dégigminent amongst
them are WINLAB’s NSF-funded network-centric cognitive radio pebjg4]. There are RF
issues in designing tunable wideband radios for the cognitive radio émht Finally before

cognitive radio devices are produced commercially, a prototype has tevstoped. GNUs



open-source software defined radio project [45] supports a lemedplatform using the Uni-
versal Software Radio Peripheral (USRP), which is a low cost, higedsp&B 2.0 peripheral
for the construction of software radios. Vanu Inc. [46] provides tsahs for communication
between disparate wireless devices and frequencies and is the a preliv@rson of a cogni-

tive radio. For ongoing work in this area also refer to [47] and refegeitherein.

1.5 Organization of the Thesis

Chapter 1 introduces the main topics to be covered in this thesis. The timingregiazh
tion problem of non strategic and uncoordinated users has been dawe@hapter 2. The
resource allocation of non strategic users from user utility maximization rexs dmvered in
Chapter 3 and from service provider profit maximization in Chapters 4d%arspecifically
Chapter 4 establishes the notation and analytical foundations for profitnizing systems and
then Chapters 5 and 6 respectively deal with single SP monopoly and multigieceReom-
petition. The reader interested in the work about resource allocatiorefratized DSA can
skip Chapter 2 without loss of continuity. Finally Chapter 7 summarizes theugafiodings

of the thesis and looks at future extensions.



Chapter 2
Timing Acquisition for enabling Distributed DSA

2.1 Introduction

As mentioned in Section 1.2.1, when devices engage in DSA they transmit irontiguous
spectrum bands. The physical layer technology that is well suited &dr auransmission is
OFDM, where a device transmits only in the tones corresponding to thetvgmaetrum. This
allows for tighter usage of spectrum compared with traditional FDM and is eftiogent. The
spectrum corresponding to the other tones could be used by othersleSigeh a transmission
scheme is called NC-OFDM in [37, 38] and differs from conventional ®FRsystems as the
devices are uncoordinated.

For such a transmission scheme, it is important to study the symbol timing acquisition
performance at the receiver. This can be explained as follows: ashah@eNC-OFDM symbol
is N + L samples long with the first L samples, called the cyclic prefix (CP), being the sa
as the last L samples. Let the transmitted NC-OFDM sampleg/e The received samples
r(k), in presence of timing offsét between transmitter and receiver, is given by

N,

r(k) = h(l)s(k — 0 —1) + s1(k) + n(k), (2.1)
=0

whereh(l) represents &; tap frequency selective channel andk) the signals from other
users that interfere at the receiver. Timing acquisition is about estimatingEbd symbol
boundary by estimating at the receiver.

For NC-OFDM, the signals(k) ands; (k) will occupy non-overlapping set of tones. How-
ever, since the practical pulse-shaping filters are not ideally band-liniget of the symbol
energies will spill over to the adjacent bands causing interferencecd;léme performance of
acquisition algorithms will improve with wider guard bands between the signatsediffer-
ent users. For systems where the spectrum is licensed to a primary dsse@mdary users

opportunistically use it, presence of wide guard bands may be assumeatdotghe primary
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users from interference. However if the spectrum is unlicensed anolup @f uncoordinated
devices attempt to access it, then the spectrum can become tightly packed to redsingage

leading to loss in timing acquisition performance.

2.1.1 Related Work

Acquisition performance is well understood for a single user systens,/i.e) = 0in (2.1) and
when the transmitter occupies the entire spectrum [34, 35]. Even in thengeesf multiple
users, single-user algorithms are often used as acquisition is the firgtstepreceiver and
at this stage there are usually no signal processing methatistioguishthe signal from the

interferer. The single user OFDM acquisition algorithms can be broadlgifitasas,

Cyclic Prefix Correlation

The optimal ML estimator of symbol timing for a frequency non-selective ohhis derived
in [35]. The CP introduces correlations in the OFDM samples and that istageelform a

sliding window correlation between twib length sample blocks, placéd samples apatrt.

Pilot Symbol Correlation

The authors in [34, 48] postulate the transmission of two specially desigh€@iM3ymbols
to achieve symbol timing synchronization. The idea is to introduce knowmrletions in the

samples of the OFDM symbol which could be tracked by the receiver.

Joint Cyclic Prefix and Pilot Symbol Correlation

Symbol timing recovery by transmitting pilot symbols and extending the CP ctorelaased
approach of [35] is proposed in [49].

Blind acquisition Methods

Such methods do not rely on cyclic prefix or pilot symbol correlation. Bi,[& method for
achieving symbol acquisition is proposed by constructing certain autdaton matrices from
the received signal and minimizing their rank. This method is shown to pesigiireven in

frequency selective channels.
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The presence of multiple users affects the acquisition performance. Ik#rs are coor-
dinated, as in the uplink of an OFDMA system, joint timing acquisition for all usarsbe
performed [51, 52]. For suatellular basedsystems, the uplink performance is also helped by
the fact that the users are already synchronized to a common system tirmimgiditialization
using the downlink signal. This phenomenon will be discussed in Section 2.4.1.

If there is no coordination amongst the interfering users, such as inhoadetwork, then
the acquisition performance deteriorates. The interfering users coud-bBdv transmitters
themselves with different delays from the intended user. For example, rthesté) in (2.1)
could be another OFDM sample streaftic — 6') with ¢’ # 6. The receiver can incorrectly
estimated’ as the timing instead of the correct inst&ntThe presence of a narrowband inter-
ferer is studied in [53, 54] where one user occupies the entire bandwidthses a pilot based
acquisition algorithm as in [34]. Distributed timing acquisition amongst differetetfering
devices can also be realized in the MAC layer if all the devices are assurftdidtoa common

MAC protocol for example 802.11 in ad-hoc mode [55].

2.1.2 Our Contribution

In this work, we consider a different scenario where a cognitive tniitex, employing NC-
OFDM, only transmits in tones corresponding to the vacant spectrum anddbéier has to
acquire the timing of the delayed signal. In fact depending on what fraofitime spectrum
is vacant, the user could be narrowband instead of the interferer. dheniit power of the
interfering users could be higher than that of the desired user. Thelasecould be in non-
contiguous tones and it is not clear upfront as to how this would affecdbaisition perfor-
mance. Also the different devices participating in Dynamic Spectrum Aamegd come from
different networks and employing different technologies to transmit theespectrum and so
the case of their following a common MAC protocol is improbable.

As a starting point, we consider the relevance of single user OFDM acqunigijorithms
of Section 2.1.1 for NC-OFDM. For pilot based correlation approacherethas to be some
initial signaling for the receiver to know the pilot sequences or the recemd transmitter
should follow some pre-decided link level protocol. This can be ruled @ubi/namic Spec-
trum Access applications. The pilot based scheme in [34] requires aaisamsmit in all

tones in order to generate a symbol with symmetric samples after the IFFT whidlkdsout
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for NC-OFDM. Thus we focus on CP based correlation, which only ragsuthat the trans-
mission structure is OFDM based. A correlation based timing acquisition unibeaasily
implemented at a receiver. Blind acquisition methods lead to wastage of satxavhich
could have been used for data transmission, besides when the pres@re€P guarantees a
correlation in the OFDM samples, it seems natural to exploit it for purpdsagichronization.
CP correlation based acquisition algorithms have been implemented in manyarsysiems
and they yield satisfactory performance even in channels for which tieega optimal, for
example in frequency selective channels [35]. This further motivatés stsidy performances
of CP based algorithms. Thus in this chapter we try to answer the followirgfiqone

Do CP based acquisition algorithms by themselves or with realizable enhmamts, suffice
to yield satisfactory timing acquisition performance for a NC-OFDM transmigsion

To answer this question, we first derive the ML estimator for CP correl&igsed acqui-
sition for NC-OFDM transmission in a frequency non-selective chanmelslow that it has
high computational complexity. Consequently we consider the performarioev @omplex-
ity, sub-optimal approaches such as using the ML estimator of frequemcgelective OFDM
transmission [35] for NC-OFDM and also introducing a band pass filtereatetbeiver before
the acquisition phase to filter out the interference from the other usersa rAsult of our
simulations, we have been able to identify situations in the CP correlation bageiton
algorithms deliver satisfactory results and situations in which they do notréudts of this
chapter was published in [56].

The rest of the chapter is organized as follows: In Section 2.2 we studyetfi@rmance
of CP based timing acquisition in a channel impaired with Gaussian noise andeaige the
optimal ML algorithm. In Section 2.3 we introduce frequency selective fadmdjin Section
2.4 we also consider the presence of an interfering user for studyingetiiermance of CP
based acquisition algorithms. In this chapter we will not investigate other fofsquisition

such as carrier frequency offset correction or frame synchrtioiza

2.2 CP based Timing acquisition for Frequency Non-SelectevChannels

We reproduce the main result of [35] for OFDM symbol timing acquisition imaieds impaired
with Gaussian noise when one user occupies the entire bandwidthh (. = 6(k) and

s7(k) = 0in (2.1). The optimal estimate that minimizes the mean square error is the ML
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estimate when the Tx signal can be modeled as a white Gaussian sequaateaTeasonable
assumption for full spectral occupancy, since the number of guard tgpieally used is small

relative to the FFT length. It is shown in [35] that the optimal ML estimaté isfgiven by

CPCorr : By = arg max {Re(y(0)) — p®(0)} (2.2a)
m—L+1
yim)= Y r(k)r*(k+N) (2.2b)
kmmL+1
Z lr(k)|> 4 |r(k + N) %, (2.2¢)

where E[s?(k)] = o2, E[n(k)?] = o2 andp = 02/(0% + o2). Definesnr = o2/c2. The
guantityf is modeled as deterministic but unknown and thus the mean square error irtiegtima
0 is given by
A 2
mse(L,snr) = E (9 — GML> ) (2.3)

where the expectation is over the statistics of the estimate. We can intefprgts the oper-

ator which captures the correlation energy betweenfveample blocks separatéd samples

apart with the first sample of first block taken at tithe= m. We term this algorithm as
CPCorr. Note that forCPCorr to work, the receiver needs to kngwapriori before the ac-
quisition phase. Though this is not practical, we can assume that the tramsweit and the

receiver noise characteristics stay constant over the transmissioralraed/the receiver can
obtain a good estimate pfbased on past history. Also for moderate/higtr regimes,y ~ 1

irrespective of the actual value ahr.

The following situation could arise in NC-OFDM,

Scenario 1. Consider a system with available bandwidihHz and the user of interest trans-
mits in some parts of the entire band, and the remaining parts of the bambarccupied by
other users. The channel is frequency non-selective and is impaifgdprisaussian noise.

This could correspond to a channel with a strong line of sight component.

2.2.1 The Optimal ML Algorithm

For Scenario 1, we derive the optimal ML estimator. Consider that the FRjfHes /N and
the set of tones in which the desired user transmit§ beet the information symbol vector

bex = [z(1),--- ,z(N)] such thate(j) = 0if j ¢ T. The transmitted symbol vecter=
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[s(1),---,s(N)]is generated through IFFT of information vectgr

s = Qx, (2.4)

whereQ = [q1, - ,qn] is the IFFT matrix. We show that the transmitted symbols, it
two different time instantg andk are correlated even if the vecterhas uncorrelated entries.

The correlation between OFDM sampleandk is

E[s(j)s(k)] = Ela;' xx"ai] = q;' E[xx"]ay

whereW has1’s in diagonal positions given by and zeros elsewhere. Thus the correlation
is non-zero. We now use (2.5) to calculate the correlation matrix of theveztsignal vector.
The receiver collects aN + L sample blockr, as this is sure to contain a single complete
(N + L) sample OFDM symbol which starts aftésamples. For a generic user, the received
OFDM symbol is given by = s +n with s = [u|v|u]. Samplesr = [s(6),--- ,s(0 + L —1)]

are the prefix symbols and= [s(0 + L), --- ,s(f + N — 1)] are the data symbols. We define

the following matrices,
X = E[uu?), Y = Ejuv], Z = E[vv!]. (2.6)

After some algebra, it can be shown that the correlation matnix 6f = E[rr”] is given by,

021, +X Y X
C= YH o2y +Z YH . 2.7)
X Y 021, +X

Let Cy be the actual correlation matrix of the recein®d + L sample window. It is given by,
C, = diag [(P + oy, C, (P + 02)1N_9} . (2.8)
The optimal ML estimate of is thus given by
arg meinlog(]CQD + %rHce_lr. (2.9)

To compare the performance of the algorittiiRCorr and the ML algorithm, we simulate
the MSE performance when the total spectrunilisand the desired user transmits in bands

[0, fo] U [fp, W] with 0 < f, < fp < W and does not transmit in band,, f,]. We call
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FFT Size,N 256

snr (dB) 4,10, 16

[fas fb] (MHZ) [0.25W, 0.35T¥] 90% occupancy
(bands not occupied) | [0.15W,0.61W] 55% occupancy

Table 2.1: Simulation parameters for testing the performan€#abrr and ML algorithm for
a single user with partial spectral occupancy in a frequency nontiselebannel

this situation agartial spectral occupancgnd the spectral occupancylis— (f, — f.)/W.
CPCorr might not perform well in this situation as it assumes IID signal samples, ealser
partial bandwidth occupancy causes significant correlations (irngeasth the fraction of
unoccupied bandwidth). The simulation parameters are shown in Table @4 thdit CPCorr
metrics could be calculated for each of several OFDM symbols, addati@mthe sum be used
for finding the best delay. In fact the the higherr values likel6 dB can be regarded as an

approximation of what would happen if we accumulated across OFDM syrabatgentioned.

An appropriate metric for the acquisition performance is normalized meamnesquar,

mse(L, snr)

nmse(L, snr) = 2 ,

(2.10)

wheremse is defined in (2.3). This is because symbol timing errors up o not result in
intersymbol interference. Normalizing this way allows us to compare perfurenat different
values of L. Thus for frequency non-selective channels as longrase(L,snr) < 1, the
acquisition performance is satisfactory. For frequency selectivenetigrsince the CP also has
to provide immunity against the delay spread of the channel, we will considesea threshold

of nmse(L, snr) than unity.

Observation 1. The simulation results fo90% and 55% spectral occupancy are shown in

Figures 2.1 and 2.2. The following observations can be made
1. The ML algorithm yields a lowefmse(L, snr) than CPCorr for all values ofL andsnr.

2. The relative loss of performance 6PCorr over the ML algorithm is more for lower

spectral occupancies aSPCorr is optimal for full spectral occupancy.

3. With respect to the criterionmse(L, snr) < 1, CPCorr performs satisfactorily for mod-

erate/high values aofnr.



16

& 10

C

@

Q- —

S e

o 2 ==

Q 10 o=z =

° N TE ==

© AN - — = snr=Z dg; CRCarf
° N +=Q —snr=4dB, Mt - <$
Q P> -~ — - —._ = - -sn=10dB, CPCq[r
& o N — ¢ -snr=10dB, ML

o ~ N snr= 16 dB, CPCofr
S SN —&— snr=16 dB, ML
o ~

S

o

[}

£

c 10

4 5 6 7 8 9 10 11 12
Length of Cyclic Prefix L (Samples)

Figure 2.1: Performance &P Corr and ML algorithm for a single user frequency non-selective
channel with partial spectral occupancyd0fs of total bandwidthi?’, with no transmission in
[fas f5] = [0.25W,0.35W] MHz for different values oénr

Conclusion 1. Algorithm CPCorr satisfactorily acquires symbol timing for a single user trans-

mission with partial spectral occupancy in a frequency non-selectiveraia

2.2.2 A note about Sample Correlation for Partial Spectral @cupancies

The reason behind correlations in the OFDM samples when the user dicawgiyoall the
tones is that the bandwidth of the signal was less f¥abut it was being oversampled Ht.
This can be avoided by carefully sampling the analog NC-OFDM signal atdhect rate
depending on its bandwidth. However this depends on what is the specttgbancy of the
NC-OFDM signal which is a dynamic quantity. Also the transmitted signal might bauitiple
non-contiguous sub-bands (instead of one contiguous sub-baondsidered in Figures 2.1 and
2.2) and in that case, careful sampling over multiple sub-bands is ndeg@dmenting a fixed
sampling rate oV is the simplest working algorithm.

Even in OFDM, there is partial spectral occupancy (and hence ctioreda due to the
guard tones at the ends of the band, but these are usually slight, i.e etisamypling factor is

typically small to cause noticeable degradation in acquisition performance.
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Figure 2.2: Performance &P Corr and ML algorithm for a single user frequency non-selective
channel with partial spectral occupancy56f% of total bandwidthi?’, with no transmission in
[fas f5] = [0.15W,0.6W] MHz for different values oénr

Delay 0 0.31 071|109 |1.73 | 251
(13)
Power 0 -1 -9 -10 -15 -20
(dB)

Table 2.2: The power delay profile of the Vehicular A channel model

2.3 Timing acquisition for Frequency Selective Channels

Even in the case of regular OFDM, deriving the optimal ML algorithm is diffibecause of
the lack of channel statistics during the acquisition step. Also as noted intfiptimal ML
is computationally intense as the FFT si¥eggrows. Since we want low complexity acquisition

algorithms, we’ll focus only on the performance@?Corr from now on.

Example 1. To illustrate how frequency selectivity affec¥®Corr, consider a channel with
N; = 2in(2.1)ands;(k) = 0. From(2.1), we substitute for(k) in the expression fofy(m)
in (2.2b)and look at the correct timing instank = 6 to understand how it is affected in

the presence of multiple paths. Defide= k — 6, so thats(k’ 4+ i) = s(k’ +i + N) for



18

i=0,---,L— 1. The following components are presentif)
L-1
7(0) ~ RO)2 Y s(k)s* (K + N)
k'=0
81
L-1
IR sk — 1)s* (K + N - 1)
k'=0
82
L—1 (2.11)
+h0)A (1) ) s(k)s* (K + N — 1)
k'=0
%
L-1
+R()R*(0) > s(K —1)s* (K + N).
k'=0
%

The following observations can be made

a) Components; and8, capture the correlation in the received signal.Sinmall L terms
in the summation contribute toward the correct correlation bu§fdhe first term is the
product of two uncorrelated variable§—1) ands(/N —1). We'll call s(—1)s*(N—1) as
self interferenceFor N; > 2 the subsequerd; terms where < ;5 < N; have more self
interference components in them but since they are weightdfl hywhich is usually

decreasing in magnitude, their effect is less significant.

b) In the component§} andJ5, all terms act as self interference as all the products are
amongst uncorrelated variables. The quality of the estimate deterioratessadftimter-

ference increases.

Note that this method only gives an indication of the effects of frequeniectse fading;
for a complete analysis, we would have to investigate how it affects the timinghiasither
than the true value at: = 6. However for those values, most terms would be products of
uncorrelated variables with or without fading and thus looking only @) is sufficient for

gualitative purposes.

Scenario 2. For simulating a frequency selective channel, we consider the Vehiculard&lm
which is given in Table 2.2. The OFDM parameters are shown in Table 2.3e tRat the

length of the CP in samples is less th&s% of the FFT size to minimize the spectrum and
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Bandwidth,IW (MHZz) 5
FFT size,N 512
CP,L 30, 40,51, 76

Table 2.3: OFDM parameters for simulation. The CP lendthrresponds t6%, 8%, 10%
and15% of FFT lengthV

W/16 W/16 W/16 W/16

<> -+—> <> e

0 W W 3W W
4 2 4

Figure 2.3. Four sub-bandon-contiguousspectral occupancy of the first user in the band
[0, W]

power overhead. To test the robustnes<BiCorr, we chose an unfavourable (but possible)
scenario where the user haa% spectral occupancy and the vacant bands are split into four

subbands as shown in Figure 2.3.

Observation 2. Figure 2.4 shows the performance@®Corr for a frequency selective channel
characterized by a Vehicular A power delay profile. We see that ther@énalty when there
is frequency selectivity but by increasisg to snr= 16 dB, and/or L, the performance can be

made satisfactory. A threshold efise(L,snr) < 0.7 has been shown in Figure 2.4.

Conclusion 2. Algorithm CPCorr satisfactorily acquires symbol timing for a single user trans-

mission with partial spectral occupancy in a frequency selective channel.

2.4 Timing acquisition in presence of a second user

In this section we consider how the presence of a second user affecsdhisition perfor-
mance. We assume that the second user also transmits OFDM signals with theyssnoé

duration. One important observation that we will make is that, if the timing deldystbfusers



20

-~ -

- — + —snr=4 dB Fading
: — snr=4 dB, Gaussian

© - .
T - - % - = snr= 16 dB Fading
—6= snr=16-dB-Géussian

1 0_4?\6\9\0

10

nmse
[y
o
/

30 40 50 60 70 80
Length of Cyclic Prefix (Samples)

Figure 2.4: Performance &PCorr in a single user frequency selective channel with partial
spectral occupancy @5% as given in Fig 2.3 for different values sir

are similar, then the performance of the timing acquisition is enhanced as tiaésdigm the
two users reinforce each other and appear a single high power sighalteceiver. But if the
timing delays of the two users are far apart, the receiver of user one arighip acquiring the

timing of user two. We formalize this in the following example,

Example 2. Consider a two user system with the timing delays giveth laynd 0, respectively.
Thus the signal of the desired usersigk — 61) and s;(k) = sa(k — 62) in (2.1). Assume
without loss of generality tha#; < 0, and letd = 6, — 6. For simplification, consider that the
channel is impaired only with Gaussian noise. Thug) = 6(k) (N; = 1) in (2.1). From(2.1),
we substitute for (k) in the expression foy(m) in (2.2b)and look at the correct timing instant
m = #, to understand how it is affected in the presence of the second usere Pefink — 6,
such thats; (k' + i) = s1 (k' + i+ N) fori = 0,--- ,L — 1. The following components are
present iny ()

L—1 L—1
Y(O) ~ D s1(K)si(K + N)+ Y so(k +0)s5(K + 0+ N) (2.12)
k'=0 k'=0
3 JM

The following observations can be made,

1. Componens$ yield the sum of the correlation energies of the first user.
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Error in Timing Estimate
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Figure 2.5: Performance @PCorr in a two user frequency selective channel. The first user
has partial spectral occupancy2if% as given in Fig 2.3 and the second user transmits in the
remaining75% of the bands. The timing delays are chosen as per case a) of ScerfaroB)(

for different values ognr

2. If60 < L, theny(0) containsL — 0 terms of the second user’'s signal that are repeated, i.e.
the termssg (k' 4-0) = so(K'+6+N) fork’ = 0,--- , L—6—1. Thus these terms add to
the correlation energy. However, the lasterms of the second user’s signal contribute
as multiple access interference (MA#s the termssy (k' + 6) # so(k + 6 + N) for

K=L-6,---,L.
3. If§ > L, then the entire correlation energy of the second user constitutes as MAI.

Scenario 3. Consider a frequency selective channel with a Vehicular A power detdiegoas
given in Table 2.2. Let there be two users with orthogonal spectral @owies in0, W]. Let
the occupancy of the first user be given in Figure 2.3. Let the transmi¢pand thus transmit
snr and the CP lengths of the two users be same. The OFDM parameters foudmthare

given in Table 2.3. We will consider the following cases for simulation,

a) 0, = 25,0, = 51 and thusd < L for all of L. Note that the probability of < L is
roughly L/N.

b) #; = 10,6, = 150 and thusf > L for all L. Note that the probability of > L is
roughlyl — L/N. Thus this is more probable than event a).
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Figure 2.6: Performance @PCorr in a two user frequency selective channel. The first user
has partial spectral occupancy2if% as given in Fig 2.3 and the second user transmits in the
remaining75% of the bands. The timing delays are chosen as per case b) of Scenario B)(

for different values ognr

Observation 3. Figures 2.5 and 2.6 show the performance(#tCorr for cases 3a) and 3b)

respectively. It is seen that

1. In case 3a), the contribution of useful correlation dominates over afdlithus the pres-
ence of the second user helps. In case 3b), the presence of timel sess0 degrades the

performance for all values of andsnr.

2. Since in our model, the second user has the same received sigral asthe desired
user, accumulating energy from multiple symbols to increase receivatbes not help
in enhancing the performance, as the received power of the second ats® increased.

This effect is more acute for 3b), as the entire signal of the second usgkklis

Conclusion 3. In presence of another user, with the same transmit power, algoritRGorr

satisfactorily acquires symbol timing for the desired user, with a partial tspkeaccupancy in
a frequency selective channel, only when the differential timing delay betthedwo users
is within the length of the cyclic prefix. If the differential delay is much largantthe cyclic

prefix, the performance is not satisfactory irrespectivenof
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2.4.1 A Note about Timing Acquisition in Cellular

To put our work in proper context, we examine the timing acquisition in OFDMdasllular
systems such as WIMAX where the same scenario of multiple transmissions theiagqui-
sition phase is prevalent. Based on Conclusion 3, our main claim is that algsrithsed on
CPCorr, will give satisfactory performance for cellular systems. To see this vaenae the

downlink and uplink separately,

Downlink

Here the problem is users synchronizing to the BS. When a mobile is firgdwmn, it will
receive multiple transmissions from interfering BSs and will end up assogiafih, and ac-
quiring the timing of, the strongest BS. This is different from Scenario 8retior a given
transmitter, the receiver was fixed and there was an equal power ietefifidhich can arise for
ad-hoc networks engaging in DSA). For cellular networks, the mobile tosB8cgation process
ensures that signals from interfering BSs have significantly lesseribarethe associated BS

and thusCPCorr will work.

Uplink

Here the problem is the BS synchronizing to the transmissions from differaniles, who may
be simultaneously transmitting. All those mobiles would have already beenrsyiwdd to the
timing of the BS when they had first turned on. Due to differential path lerfgbing mobiles
to the BS, there might be some difference in the timings of the signals from thdsiéesno
when they reach the BS, but they will be close. Thus this is similar to the casédeoed in

Scenario 3a) and by Conclusion 3, algorithms liBCorr will yield satisfactory performance.

2.4.2 Effect of Filtering

The reason for Conclusion 3 is thafPCorr performs energy capture from correlations and
can't distinguish between the signal of the desired user from that oftlfethe receiver of
the first user knows the spectral occupancy of the transmitted sighapasséble way is to
filter out the second user’s signal before performi@ Corr. In this section, we explore this

possibility. Let a band-pass filtel(k) be applied to filter out the second user’s signal. The
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Filter| A stop(dB) | A pass(dB) | 6(MHZ) Filter Lengths

A |15 5 0.2 [25, 15, 15, 15]
B |15 5 0.1 [49, 27, 27, 27]
C |20 1 0.1 [61, 61, 61, 61]

Table 2.4: Parameters for band pass filters used in Figure 2.7

received signals without filtering(%) and with filtering,r s (k) are respectively given by,

T(k) = hl(k) & Sl(k — 91) + hg(k) & 32(]{7 — 92) + Z(k})

Tf(k) = d(k) & hl(k) ®81(k — (91)
more correlation
+ d(k) &® hg(k) () Sg(k - 02) —i—Z(k?)

suppression of2 (k)

(2.13)

As seen in (2.13), filtering suppresses the signal of the second usenkes the desired user’s
signal pass through the effective channélk) ® hi(k) which has a longeeffective delay
spread This increases the self interference as noted in Example 1a). Thuslyammgaking,
the introduction of a filter introduces a trade-off between suppressing osdtiinterference
and suppressing self interference. It would be insightful to analyticablyacterize this trade-
off, for given channel parameters anshr. In this chapter, we however perform extensive
simulations that enables us to identify some of the trends in the trade-off aidkdkuse of

the filter makes the subsequent use@?Corr satisfactory.

Scenario 4. Consider the system mentioned in Scenario 3. Let the receiver of usémnomws
its spectral occupancy. The receiver extracts the signal of the fiestussng band-pass filters,
whose impulse responses are generated by Kaiser windowing techofigR filter genera-
tion [57, Chapter 10]. This allows to specify the stop-band attenuatidn,,, which corre-
sponds to the bands occupied by other users, maximum allowable @adgipples, A ,.ss
and the transition width between stop band and pass banthe parameters used to generate
the three such filters are shown in Table 2.4 and their magnitude resparsegven in Fig-
ure 2.7. Filter A has the least stringent specifications for MAI suppredsibalso the smallest

length filters leading to least self-interference. The opposite is true for Filter C.

Observation 4. Figures 2.8 and 2.9 compare the performance 6PCorr with and without

filtering for 8 < L andd > L respectively. In general, as the length of CP increased, there
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is a cross-over point beyond which the performance with filtering besdreger than without

filtering. Specifically whefl < L, from Figure 2.8 we see that

a) For high value ofL, the effective extra delay spread introduced due to the filter (self-

interference) is less thah and hence having a filter is better due to MAI suppression.

b) For low L, the effective extra delay spread introduced due to the filter is significant

compared tal and hence hence having a filter leads to worse performance.
Whend > L, all three filters fail to restore the performance &PCorr to acceptable levels.

As a note, we conducted simulations with a variety of other channel povey peofiles

and filters and the general trends in Observation 4 continue to hold.

2.4.3 Single Sun-band Spectral Occupancy

Filtering did not help to improve performance in the four sub-band speat@ipancy case
as suppression of narrow bands required longer filters which irexlethe self-interference.
However, if the spectral occupancies were not divided into suclowadrands as in Figure 2.3,
then MAI could be reduced with shorter filters which would cause much lésmiserference.

Intuitively, the performance ofCPCorr should improve.

Scenario 5. Consider a frequency selective channel with a Vehicular A power detdifepas
given in Table 2.2. Let there be two users with orthogonal spectral @euies in[0, W]. Let
the occupancy of the first user P&% and the occupancy be in a single contiguous subband as

shown in Figure 2.10. Léi/, = 2 MHz. The rest of the parameters are same as in Scenario 3.

For the uniform occupancy case we'll only consider the adverse situatié > L, as our
aim is to establish the shortcomings &P Corr (if any) and ford < L, CPCorr performed
satisfactorily, even for the non-contiguous spectral occupancyasmseted in Conclusion 3.
First we compare the performance &PCorr, in absence of filtering for the four sub-bands
vs the single sub-band spectral occupancy. This is shown in Figure ZHel performances
are almost same which means that the exact nature of the spectral ancigaat important
for CPCorr. Finally we consider the effects of filtering for uniform spectral ocaugya The
filters used have parameters as shown in Table 2.5 and their magnitudesespeoe plotted in

Figure 2.12. The performance d&PCorr, whend > L is shown in Figure 2.13.
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Filter| A siop(0B) | A pass(dB) | 6(MHZ) Filter Lengths
A |10 5 0.2 7

B |15 5 0.2 15

c |15 5 0.1 27

Table 2.5: Parameters for band pass filters used in Figure 2.12

Observation 5. The following observations can be made,

a) Filtering satisfactorily restores the performance of algorith&® Corr for all filters. Per-
formance of filter B is almost similar to that of filter A and is not shown in Figlife?

for purposes of clarity.

b) Since all filter lengths are less than the length of the prefix, choosing tigedo filter

(Filter C) gives best performance due to MAI suppression.

Conclusion 4. From Observations 4 and 5, we conclude that for a two user transmisgien w
the differential delay is much larger than the length of the cyclic prefix, thea fpven frac-
tion of occupied bandwidth, filtering becomes less helpful as that occbpiedwidth is split

between more and more contiguous parts.

The reason behind Conclusion 4 is that to suppress the interferera,sagsmaller length
filter is required in the case of contiguous spectrum occupancy. Thidrafdies that, even
in the case of non-contiguous occupancy, if there are guard banddviedn different users,
then the requirements on filter are relaxed leading to smaller length filters aaddbsition
performance can be improved. Presence of guard bands can beeasgithe spectrum is
licensed to a primary user and secondary users opportunistically aicloesmust leave guard

bands to minimize interference to the primary user.

2.5 Conclusion

We considered a scenario where co-located cognitive systems wouwddhibally share a given
spectrum by transmitting in non-overlapping and possibly non-contiguandsband studied
the performance of a practically implementable, cyclic prefix correlationdbakgmrithm for
OFDM symbol timing acquisition. Since the algorithm is optimal only for a single traes-

mission in a frequency non-selective channel, we developed a coateptf and multiple
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access interference to derive important insights into the working of theithligiofor multi-user
transmissions for general frequency selective channels. We foandbtha two user system,
when the differential delays of the two users are much larger than the pyefig, the perfor-
mance of the algorithm, even with filtering, deteriorates as the occupied Idthdsvsplit into
several pieces, and in some realistic cases becomes quite poor. If éheerad the desired
user is aware of the bands in which the transmitted signal lies, we showetidbaid filter its
intended signal and partially restore the performance. The singleagdtypoint to the limits
on acquisition performance imposed by occupying a small fraction of thet (@ag., cognitive
radio over 100 MHz, with each user occupying only a few MHz), espemwthe occupied

bandwidth is split into multiple pieces.
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Figure 2.8: Performance &@PCorr in a two user frequency selective channel. The first user
has partial spectral occupancy2if% as given in Fig 2.3 and the second user transmits in the
remaining75% of the bands. The timing delays are chosen as per case a) of ScerfaroB)(

for different values ofnr. Band-pass filter B shown in Figure 2.7 has been used for filtering
out the signal of user one prior t&PCorr.
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Figure 2.9: Performance @PCorr in a two user frequency selective channel. The first user
has partial spectral occupancy2if% as given in Fig 2.3 and the second user transmits in the
remaining75% of the bands. The timing delays are chosen as per case b) of ScenarioB)(

The snr is fixed at 16 dB. All three band-pass filters shown in Figure 2.7 have bsed for
filtering out the signal of user one prior taPCorr.
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spectral occupancy. The single band vs four sub-band spectigbancy has been compared.
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Figure 2.13: Performance &P Corr in a two user frequency selective channel. The first user
has partial spectral occupancy2i’ as given in Fig 2.10 and the second user transmits in the
remaining75% of the bands. The timing delays are chosen as per case b) of Scerfario B)(
Performances of two band-pass filters shown in Figure 2.12 have Bedriar filtering out the
signal of user one prior taCPCorr.
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Chapter 3

User Utility Maximization for centralized DSA

3.1 Introduction

As mentioned in Section 1.1, the IEEE had set up a working group to devetopOh.22
cognitive radio standard that would employ the unused spectrum in the VIHRJRIF TV
bands to offer wireless broadband services in areas that were Hatemged by alternatives
such as cable or DSL [11]. Inthe 802.22 draft, it has been decidefixbdivireless access will
be provided in these bands [10] by professionally installed Wireless Ralgirea Network
(WRAN) base stations to WRAN user terminals. A service provider (SP)atipg a base
station will not have to pay any licensing fees. It will share the total specith other SPs
in the region and further allocate this spectrum to users efficiently. Sincextiet band of
spectrum, within 54 to 865 MHz, where the TV broadcasters operate ibigrihe WRAN
SPs will have to sense their and each other’s presence before ddwslirig share the spectrum
among themselves. Fundamental issues about cognitive radios cannigkeirioj, 42, 58].
Motivated by the SP-user model of 802.22, in this chapter we proposaralgze a dynamic
spectrum allocation algorithm basedlonited coordination amongst devicaad the notion of

aspectrum priceThe authors in [24, 39, 59] have also espoused similar design principles

3.1.1 Our Contribution

While [24, 39, 59] have mostly focused on the network architecture aoibqwl signaling,
in this chapter we study the distributed spectrum allocation problem with limitedecatiqn
from an analytical standpoint. We consider a two tiered spectrum allocatimmse as shown
in Chapter 1, Figure 1.1. There is a total spectridmavailable in a geographic area which
is allocated to the users through the SPs. The users are permitted to obtainrageom all
the SPs. We assume that the users obtain non-overlapping chunkstrtispéom the SPs

to avoid interference. Assuming that each user application has an dedagi#ity which is
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concave and increasing as a function of spectrum obtained, we atdopitity maximization
framework [60, 61] to analyze the system. Given user utility functionshicllacoefficients
between users and SPs and user power constraints, our aim is to lu@sivauch spectrum
should a user obtain from an SP and what power should he allocatenftingehis information
to the SPs. We allow for simple SP coordination to share the speétrumhere the spectrum
utilized by a SP depends on how much spectrum it has to allocate to the usisris facilitated
by a spectrum clearing house (SCH), akin to an FCC-controlled regipeatrum broker [39].
Note that our model is not specific to 802.22 systems and is applicable farsemSP based
spectrum allocation system.

Prior work had mostly considered a single SP with fixed frequency bin®DFnes)
whereas in our work we allow for multiple SPs and treat spectrum as a consmesource.
Treating spectrum as continuous is justified for systems where the sebsmaicing is small
and the number of subcarriers is large. An example system is LTE whiclomenate with
15 KHz spacing and048 subcarriers [62]. In addition, we also allow the different SPs to
have different efficiencies which is defined as the fraction of Shapsapacity that the SP can
reliably deliver.

Based on our analysis we propose a simple spectrum allocation protseol bathe notion
of spectrum price In the first part of the protocol the SPs broadcast the spectrumtprite
users. Given the spectrum price and local parameters such as its utilitinkmgins to the
SPs, each user can decides on its own how much spectrum to use. Ircdhe part of the
protocol this value is conveyed back to the SPs who update the specingnTre SPs do not
need to know the link gains or user utilities and hence we claim that there id padrdination
in the system and not total.

Our model precludes spectrum overlap as we assume that the variosiangselose to each
other and to the SPs and thus spectral overlap would cause significafdrenee. For cen-
tralized networks if users are allowed to share spectrum, the situation is simiiladiteg the
capacity of frequency selective interference channels. But apant ¢ertain specific bounds,
the optimal signaling is unknown even for simple interference channelsg%5]. In dis-
tributed networks [20], for regimes when the cross gains between trareseeive pairs are
stronger than direct gains, only orthogonal spectrum allocation giesmmiPareto efficiency.
Because of orthogonal allocation, our model has similarities with networkdtmwrol mod-

els [61, 66]. The notion of SP efficiency and the usage of the Shant®furection (defined
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later) in the user utilities distinguishes our work. Practical transmitters might gnolriec-
tional antennae to achieve frequency reuse but in this work, we limit lsessto finding the
fundamental limits on gain possible with only bandwidth allocation. Our result® sen\a
baseline case for understanding the additional benefits if multiple anterede@oyed.

Note that our spectrum price based approach [18, 67, 68] is not thevay of dealing with
non strategic users with partial coordination. The authors in [69] condiderete frequency
bins and allow users to overlap but charge each user based in thergneddhat it creates
for others. They show that the resulting rates are higher than thoseabtanterative water-

filling.

3.2 System Model

The network topology was shown in Chapter 1, Figure 1.1. Ther&vag&®s and. end users
and a central Spectrum Broker. Based on the demand for spectrwiteSerovider: provides

X, units to theL users or a subset of them. Lef; be the amount of spectrum obtained by
userj from SPi. The users and SPs are assumed to be capable of transmitting and geceivin
over any spectrum bang; which lies within¥. This could be achieved using non-contiguous
OFDM technology [37]. Subsequently, usgtransmits his data to SPover spectrun;;

at rater;; and with powerp;;. Each user has a total transmit power constraint. The jser
to SP: link gain is h;;, which remains constant during the period of spectrum allocation and
subsequent transmission to the SP. We assume thistflat over frequency and hence is same
no matter in which band;; lies. The coefficientd;; are assumed to be known by both users
and SPs. The background additive Gaussian noise is assumed of wait gmectral density.
We first introduce some notations. A source transmitting with pgwewer a flat channel of

bandwidthz and link gaink has signal to noise ratinr(x, p, h) = hp/x and achieves the rate
r(z,p,h) = xzlog (14 snr(x,p, h)). (3.2)
In terms ofr(x, p, h) the rater;; is given by
Tij = 0 (Tij, Pij, Pij), (3.2)

wheren; is the fraction of the Shannon capacity that can be reliably guarantee® byoSa

user. A possible example would be §Rvho has invested in a better decoder (a Turbo decoder
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with more iterations or better interleaver design) has a highéran an SP with a conventional

Viterbi decoder. Thus the total rate at which ugean transmit reliably is

R - R X]apja Zrlja (33)

wherex; = [z1; - - - zn;], hj = [hyj - hyj] @andp; = [py; - - - pjl-
There is a utility functionJ;(R;) associated with usgrwhich is concave and increasing
in R;. The operating principle of the network is to maximize social welfare or theudility

of the users. The optimization problem is

L
xijZO,zEgaz}f),X,-ZO ]Zl U; (R;) (3.4a)
L
s.t. Zx] < X;, 1<i<N, (3.4b)
j=1
N
<P 1< <L, (3.4c)
=1
N
d X <W. (3.4d)

As shown in (3.4b).X; is the spectrum utilized by SPwhich is equal to the spectrum it has
to allocate to the users. Usgtransmits with powep;; to SP: and as (3.4c) shows there is a
constraintP; on the total transmit power. The total amount of available spectrui.idJser

J optimizes overr;; andp;;. In Appendix A, we show that the objective is concave in these

variables and since the constraints are linear, the problem can be sffigiehty.

3.2.1 Distributed Solution and Pricing

In this section we give a distributed implementation of the spectrum allocatiotepng3.4).
First we relax the constraints (3.4b) and (3.4d) in the objective functioono the partial

LagrangianC [70]
L N L
L(xl]7plj7X7,7A7:u' :ZUJ +ZA' Xi_zxij
7j=1 =1 j =

1 (W ZX1> (3.5)

=1
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whereX = [\1,---, An]. The stationarity conditions w.r.&; can be expressed as,
oL
=X\ —n<0, 3.6
X, p<0 (3.6)

with equality holdingff X; > 0. Interpretingu as the price the broker charges to the SPs and
A; as the price that SPcharges to its users [61] we see that each 8fat provides non-zero
spectrum &; > 0) charges the same price = . This is because the SPs have no objectives
of their own.

Thus we form the Lagrangian

N L
L(wig,pijo ) = Y Ui (Ry) = p Y Y ayj + uW (3.7)

j=1 i=1 j=1

for the new optimization problem and the dual

D _ o
() xijé%%}i(jzo L(%],ng,u)

N
st pi <P, 1<j<L (3.8)
=1
The spectrum price is set jointly by the SPs and the broker by minimizing the dual

min D(u). (3.9

n>0

From (3.7) the optimization in (3.8) decomposes into separate optimization profiethe

users [70]. The optimization subproblem for ugés

N
N
st pij <P (3.10b)
=1

QuantityU;, called theuser surplusn microeconomics [41, Chapter 14], is the residual utility
of userj after paying the spectrum cost. In the context of a spectrum price, this gagment
in terms of the utility function that has to be given to ugetlo persuade him to give up his

consumption of spectrum. The prigds set by a distributed price update for (3.9)

N L +
plt+1) = {u(t) ~ aut) (W - Zx@-m(t))) ] (3.11)

i=1 j=1
wherex;;(1(t)) is the spectrum obtained by usefrom SPi, for a given value ofu(t) and

a,(t) is a positive step size. From (3.11) we see that if the spectrum is undeujtilize-
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Distributed Spectrum Allocation Mechanism

1) Attimet, SPs broadcast priggt).

2) Each useyj solves (3.10) and calculates;(;:(t)) andp;;(x(t)) for all ¢ SPs.
3) All users pass;;;(u(t)) to each SR.

4) The SPs calculate(t + 1) from (3.11).

Table 3.1: Distributed update of spectrum and power

Zf\il Zle xi;(p(t)) is positive and thus the price decreases to facilitate greater utilization of
spectrum. Similarly if spectrum is over-utilized, the price increases. Thisnsrguized in the

following theorem

Theorem 1. The global spectrum pricg charged by all the SPs is set such that the entire

spectrum is utilized.

The distributed spectrum allocation mechanism is given in Table 3.1. FrorR[@fosition

3.4], u(t) converges to the equilibrium prigefor proper choice of step size, (t).

3.3 Characterizing the Spectrum Allocation

We will denote the first and second derivatives of the utility function by

. oU; 0?U;
(R & T (R & S 3.12
U] (RJ) aR]7 ](R]) aR? ( )
The derivatives of the rate functiofiz, p, h), in (3.1), are
or hz h
T L2 7 _ = A
pl@p.h) dp x+hp 1+snr(z,p,h) (3.132)
or hp hp
r £ __=log(1+—=)—
snr(z,p, h)
=log (1 + snr(x,p, h)) (3.13b)

1+ snr(z,p, h)
It follows from (3.2) and (3.3) that the derivatives Bf wrt x;; andp;; can be expressed as,

OR;

= ’LF 'I’i'7pi'7h’i'a (314&)
Opi; milp(ij, Pij» hi)
OR;
oy = "0 (i) pig, i) (3.14b)

To arrive at the optimal solution for the user subproblem (3.10), wenfnig its Lagrangian

N N
Lj=Uj(Ry) =Y pwij +; <Pj - Zpij> ; (3.15)
i=1 i=1
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where all Lagrange multipliers are positive. The stationarity conditions &L #grangian are

oL; .

890»]‘ = mUj(Rj)Fz(xijapij» hij) < u, (3.16a)
ij

oL; .

Bpry iU (Rj)Tp(2i5, pijy hij) < 5, (3.16b)
ij

with equality holding for users with;; > 0 andp;; > 0 respectively.
Theorem 2. In the optimal solution 0{3.10)only one SP is active per user almost surely.

Proof. Consider usej and SP; and assume;; > 0 andp;; > 0. Thus (3.16a) and (3.16b) are

satisfied with equality. Dividing (3.16a) by (3.16b) and after some manipulateabtain,

hijpij hijpij hijpij
<1+ j”]>log(1—|— . J)— 22 = kjhj, (3.17)

:E” CCZ']' xij

wherex; = p/v;. Now consider the functio®(snr) = (1 + snr)log(1 + snr) — snr, which
can be shown to be one-to-one and increasingnin Substituting forsnr = h;;p;;/zi; =

U~1(k;h;;) in (3.13a) and then substituting by, (-) in (3.16b) we obtain

. hi;
n:U;(R;) [H\If—lj(ﬁ]h”)] = (3.18)

Let user; obtain spectrum from SHsandk. From (3.18)

nili; NP
= . 3.19
1+ \If_l(ﬁjhij) 1+ ‘l’_l(ﬁjhkj) ( )

Sinceh;; is a continuous random variable the probability of (3.19) is zero. This isvaaxic-

tion. Thus each user obtains spectrum from onalgtost surely O

Various flavors of Theorem 2 are also observed in [72, 73]. If inktdaa net spectrum
constraint ((3.4b) and (3.4d) together) there were individual spectanstraints at each SP
(only (3.4b)), then the problem ¢ieswould occur [14, 74].

Let the active SP of user be denoted by. Denotexi;j, hi;j and i by z7, h} and
n; respectively. The user optimization in (3.10) can be re-written by cornsglenly i =

i7. The rateR; given in (3.3) has contribution only fromz-;j and is denoted by?; =

nias log (1+ 5Py /3 ).
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3.3.1 Insights to SP User Assignment

Since userj is attached to SF;, from (3.4), it means that if it were allocated the optimum
spectrumz’; from any other SR # <7, it would have still obtained a lower utility. Since the
utility U;(R;) is an increasing function aR; this implies that usey obtains the highest rate

from SPi7, for given spectrumx;. Define the signal to noise ratinr;; = h;; P/z;. Thus

*

i; = argmax n;z; log (1 + snr;;) (3.20a)

= argmax (14 snr;;)" . (3.20b)

Actually if user j were to be associated with SP# i, the allocated spectrum would be

different fromz7, but this does not affect our result.
Observation 6. The following observations can be made
a) Low snr;; regime:Use(1 + x)" ~ 1 + nx in (3.20b)to obtaini; = arg max n;h;;.
7

b) Highsnr;; regime:Use the approximatiofil + x)" ~ z" in (3.20b) For a better insight
consider 2 SPs with SP 1 being more efficient. Tius n; /72 > 1. The condition for

which SP 1 is the active SP for usgturns out to be

hn- 1/(77_1)
Tt < P<£> . (3.21)

Thus userj attaches to the more efficient SP when the optimal bandwidth allocafion
is less than a threshold. That is, usgwill use the more efficient SP when bandwidth

becomes scarce.

Corollary 1. If all SPs have the same efficiency, then each user obtains spectrurthb@®

to which it has the highest link gain.
Proof. Follows from condition (3.20b) withy; = 7. O

Lemma 1. The following facts hold,
a) U(R) for R = r(z, P, h), as defined ir3.1), is a decreasing function of.
b) ', (z, P, h) is a strictly decreasing function aof and is positive for all values of = [z, P]

for fixedh.
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Proof. a) Sincel/(R) is concave[/(R) < 0. This meand/(R) is decreasing irR. But R
increases i from (3.1). Combining we get the desired result.

b) It can be verified that(x, P, h) is concave and increasing in = [z, P] for fixed h and
thus concave and increasing dinfor fixed P and h. From concavity ofr(z, P,h) wrt z,
I';(x, P, h) is monotonic decreasing inand sinceR(x, P, h) is increasing, we conclude that

Ty(z, P,h) > 0. 0

In the next Theorem, we verify that each user obtains a strictly positespn allocation.
Intuitively this makes sense as if a user is not allocated spectrum then tmtialdtecrease to
the sum utility due to his transmit power is wasted. The proof appearing in thersix C,
Section C.1 shows that when a new user 1 joins the system of. users, a new allocation in
which each of the original, users forfeits spectrumand usell. obtains spectrunie provides

higher sum utility for smalk.

Theorem 3. In the optimal allocation each usgrobtains spectrum? > 0.

3.3.2 Dependence on Marginal Utility and Received Power

Theorem 4. When two users have the same channel gains, transmit powers and &étiv
efficiencies, the optimal allocation of spectrum favors the user with a higlaeginal utility of

spectrum.e. whose utility function has a higher rate of increase with spectrum.

Proof. Consider userg andk with utility functions satisfyingU;(R) > Uy (R) for all R and
for whomhj = ki = h, P, = P; = P andn;, = n;. Let the allocated spectrum for users
andk bez} andzj respectively. We have to show that > x}.

Assume the contrary i.e:; > x7. Now consider (3.16a) for both users
Uj(R;)Ca(x}, P, h) = Up(Rp)Ta (@}, P, h) = p. (3.22)
Considerzy, > z}. Let R} = R;(xz}, P,h) and R}, = R;(zy, P, h). This implies
. (a) . 0 . . . .
1. Uj(R;) > Uk(R;) > Uk(Ry) where(a) is given in the statement of the problem and
(b) is true from Lemma 1(a)

2. I'y(x}, Py h) > Ty(xy, P, h) from Lemma 1(b)

ThusUj(R;f)Fm(m;‘f, P, h) > U(R:)T.(x%, P, h) from 1) and 2), which contradicts (3.22)[]
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This is because a unit of spectrufxiz yields a higher contribution to sum utility when
allocated to usey than to userk. This has also been observed in [66] for a network flow
control problem.

We can illustrate this phenomenon with the class of exponential utilities given by
U;(R;) =T (1 - e—Rﬂ‘/FJ) , (3.23)

wherel'; is thetarget rateof user;j. For examplel'; = 10° b/s might be appropriate for a
file transfer whilel'; = 10* b/s would be adequate for a voice application. SitigeR;) =
e~1i/Ti is increasing in’; for all R;, the high target rate users are allocated more spectrum
than those with low ones. AB; — oo, these utilities become flat, i.€/;(R;) — I';.

Another class of utilities used to model elastic applicationsauélities [75], given by
1
Ua(R) = ER“, 0<a<l1, Uy(R)=Ilog(R). (3.24)

a = 1 gives rate as the utility and for lower valuesa@fthe utility increases sub-linearly for

rates above a threshold. Thus higimodels applications with high rate requirements.
Lemma 2. For « utilities, U(R)T,(z, P, h) is a strictly increasing function aP for fixedz.
Proof. Refer to Appendix C, Section C.2. 0

Note thatl (R(z, P, h)) is actuallydecreasingn P while T',(z, P, ) is increasing inP.
For « utilities, we show, in Appendix C, Section C.2, that their product increa#bsRv This
need not be true for any arbitrary increasing concave function, asithe exponential utilities

in (3.23) as they flatten out &t;.

Theorem 5. If all users havex utilities and the received power of one user increases and user
to SP assignments remain the same or the user switches to a SP with salwcgfftben that

user obtains more spectrum and the spectrum price increases.

Proof. Consider usej and letk # j be any other user. Let the price peand userg andk
obtain spectrumx’ andz}. Let userj increases his power fromfi; to P; > Pj. Let the new
allocations ber} andz;, for usersj andk. The spectrum price changes frqnto /i and the

rates fromR;f andRj to R;f and}?;; for usersj andk. By Theorem 3, all spectrum allocations
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are strictly positive and relation (3.16a) holds with equality for the old andaiewations and

WU (R (@, Py hy) = iU (RDT o2, P ) = . (3.25a)

;Ui (R5To(E, Py, hy) = njUs(RE)Ca (%5, Prs bi) = fis (3.25b)

We have to show that; > z7. Assume the contrary that the eveht= 77 < z7 holds. Since
there is a sum spectrum constraiit= B, whereB = z; > x} for some usek # ;.
From (3.25a), the old allocation for usersatisfiesy; Uy (R} )T (], Py, hy) = p. From

B, 2} > xj and applying Lemma 1 we obtain,
MiUp(RE)T2(Z5, Py, hy) < . (3.26)

For userj, there are two changes: a decrease in allocated spectrum and asériorgansmit
power. Let us see their effects in isolation. First keep transmit powdranged. Fromi,

z7 < z7 and using Lemma 1 we get

oU; /0

Next we keep the spectrum fixed and consider the increase in transndt.denom Lemma 2

n;U](RJ(:‘C;aﬁbhj))rx(xjapjvh]) > [ (3.28)

oU; /OP;
Recall thatR;f = R;(77, P;, h;). SinceU;(-) is jointly concave incy and P; from Appendix A
we conclude from (3.27) and (3.28) that,
;Ui (R (8, Py, hy) > p, (3.29)
But (3.26) and (3.29) taken together contradict (3.25b). Hence d@ginalassumption, events
A andB are wrong. Thug; > z7 which impliesz}, < zj, for some usek # j. Hence,

~\2) 17 [ Dx ~ % ®)
i = npUk(Rp)Uo(Tgy Pry hi) > s (3.30)

—
=

where (a) follows from relation (3.25b) and (b) follows from Lemma 1. ¢&proved. O

Thus userj demands more spectrum as his transmit power increases. This leads tera high

price and all other users obtain less spectrum.
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Corollary 2. The user with increased power derives a higher utility and surplus andutime s

utility also increases.

Proof. Uj(Rj) increases as it is an increasing function of béthandz?. In Appendix C,
Section C.3 we show that the surpliis(z;) = U;(R;) — pa} increases with;. The increase
in sum utility can be proved indirectly as follows: consider the suboptimal ditotavhere
each usel is retained atr;. Since the power of user increases, this allocation will still

increase the utility of userand thus the sum utility. The optimal utility can not be worsel

3.3.3 Dependence on number of SPs and Users

Theorem 6. As more users are added to the system, the spectrum price increases.

Proof. Assume that the system is in equilibrium withusers who have been allocated spectrum
and usell + 1 user joins in with link gairhy | ; and transmit powePr ;. From Theorem 3, in
the new equilibrium, he is allocated non-zero spectrum. This will reduce treagdid spectrum
for all other userg, 1 < j < L. Sinceh;f and P; stay the same, this means that the price of
spectrum goes up from Lemma 1 and (3.16a) considered with equality ahprite. A new

user increases the demand for spectrum thus raising the price. O

Theorem 7. If all SPs are equally efficient and users havatilities then the addition of an SP

either increases the spectrum price or keeps it unchanged.

Proof. Assume that the system is in equilibrium and 8Pt 1 joins in the system. If it offers
no better channel to any of the users than their existing ones, kg >y 1); for all j, then
no user engages itself to the SP and the optimal solution (spectrum priceuspeallocated
etc) is the same as before.

However, if for userj, the new SP provides a better channel coefficien'hj.& h(N+1)js
then userj engages itself to SR + 1 and adjusts its engaged SP index}o= N + 1 and
channel coefficient td; = h(y,1);. Thus userj's channel condition to his active SP has

improved and as per Theorem 5, the price goes up. O

As more SPs join the system, a subset of them offer better link gains to @selting

in better access$o the spectrum. This increases demand for spectrum and hence the price
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increases. To understand this consider an analogy from beacpfopdrty: There exist beach-
houses (analogous to spectrum) and they are in demand from vacatibgewm roads are built
so that these houses become eaadygessiblganalogous to improving link gains or transmit

power) then their demand goes up and so do their prices.

3.4 Linear Utility Functions, U;(R;) = R,

This is the sum rate maximization problem and gives an indication of the capéatity oser-

SP vector channel. We present the results and the reader is refefi&{ fiar the details.

Theorem 8. For given link gainh?, power P; and efficiency;;, user; operates at a unique

signal to noise ratiosnr; which is given by the solution of

snrt
i _ P (3.31)
L+snr;  n;

®(snr;) = log (1+ snrj») -

From (3.31) we can also interpret SP efficiency as a scaling factoreotrspn priceu, i.e.

a SP with higher efficiency has a smaldfectiveprice u/7;.

Corollary 3. If all SPs are equally efficient, allocated spectrum and user surplugiaen by

thj
a:;‘ == W (3.32a)
Zk:l hkPk
* hi P
U(xj) (3.32b)

S WP W
It can be shown that (3.32b) is an increasing functiorh pthus validating Theorem 5.
From (3.32a), the spectrum allocation is directly proportional to the redesignal power and
hence can be very unfair if the users have wide variations in link gaingrangmit powers.
The use of exponential and utilities mentioned in Section 3.3 lead to more fair allocation of
spectrum as the allocation now depend on the marginal utilities which haveea \esmtion

than the link gains. We will explore this in Section 3.5 via numerical experiments.

3.5 Numerical Results

The spectrum allocation algorithm has the following basic steps

1. SP selection by user§he atomic setting is a network with one user and two SPs with

different efficiencies.
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SP1,n, SP2, n,

S b .
variable fixed
—M—
User1 User 2

500m

Figure 3.1: The linear network with two SPs and two users.

2. Spectrum allocation to user§he atomic setting is a network with one SP and two users

with different received powers.

We consider a network of two users and two SPs which incorporates tapth. SVe believe
that insights from this network will be applicable to bigger networks as wellc@vesider two
SPs in a linear cell with inter-base distancé0® meters as shown in Figure 3.1. For path loss,
we choose the COST-231 propagation model for outdoor WiMAX enviranisnfy6] at an
operating frequency df.4 GHz. Let the noise power spectral density’gf = —174 dBm/Hz.
Denote the SR to user; distance byi;; and the link gain, that incorporatég), by h;;,

hijap = Poss— No = —31.5 — 35log(d;;) — No. (3.33)

The distances are measured with SP 1 located at the origin. 2Usdixed at a distance of
doo = 100 m from the SP 2 and the location of user 1 is varied fibm= 1 mtod;; = 499 m
from SP 1 in steps of m. The total spectrum 50 KHz. The following classes of utilities are

considered based on the required rates of a user,
a) low required ratew utilities U (R) = log(R); exponential utilitied” = 1 Kbps.
b) highrequired ratew utilities U(R) = R; exponential utilitied” = 1 Mbps.

We first consider the spectrum allocation for users with exponential utilities.user 2
have ahighrequired rate. SP efficiency ratios®f/n; = 1 and10 are considered. Figure 3.2

shows the fraction of the spectrum allocated to user 1. It also indicatestiie 8P of user
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Figure 3.2: Fraction of total spectrum allocated to user 1 as a functiontahdisfor different
target rates and SP efficiencies. Both users have exponential utilitiesand is fixed at 100m
from SP 2

1. The termSP Switchat distancel = dg means that forl < dg user 1 is attached to SP 1
and ford > dg it switches to SP 2. First consider that user 1 hdsga required rate. Note
that the switch to SP 2 occurs earlier when it is more efficient. The specationis mostly
increasing in the link gain to the active SB, as the rate function in (3.1) is increasing/ih

and spectrum} and if 7 improves then the rate achieved is increased even more by allocating
more spectrum. Also an increaselirfor low/mediumR increases the utility/(R). However

x] becomes constant in the regitrdefined by /n; = 10 anddz; > 400 m. This is because

the exponential utility/; (R) flattens near the value @f; at high R. In regionV user 1 has

a very highhj (to SP 2) and SP 2 is more efficient. So user 1 achieves a high rate and his
utility is nearT';. This can be seen in Figure 3.4. Thus as user 1 gets closer to SP 2 tany ex
spectrum would increase its rate but not its utility. Another way to interpretsidislook at the
prices in Figure 3.3. For regiovl both users are close to the flat regions of utilities and hence

demand for additional spectrum is less. Consequently the prices are inibakyant and then
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Figure 3.3: The spectrum prigeas a function of user 1 distance from SP 2 for different target
rates and SP efficiencies. Both users have exponential utilities and isdére?l at 100m from
SP 2

falls slightly.

Figures 3.2-3.4 also show results when user llvasequired rate. Allocation] is much
less as per Theorem 4. Howevef is enough to satisfy user 1's utility. Sine€ is less,
user 1 always attaches to the more efficient SP as per observation&ébprices are almost
invariant to changes ids;. This is because user 2 gets majority of the spectrum and thus sets
the demand. Since it is stationary the prices change only with SP efficiencies.

The corresponding results when users hauvgtilities are shown in Figures 3.5-3.7. The
same trends of exponential utility results are observed but the disparitigsdyethe users in
terms of spectrum allocated and utilities are much more severe for dissimilar limk gzom-
paring Figures 3.2 and 3.5 we see that when user 1dwasequired rate, allocation; for «
utilities is significantly less tham] for the exponential utilities. The usgmwith a stronget:;

has a much larger impact on the prices doutilities. From Figures 3.3 and 3.6 we see that
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Figure 3.4: The utilities for both users as a function of distance for diitderget rates. Both
users have exponential utilities and user 2 is fixed at 100m from SP 2effibiency ratio is

n2/m = 10

whenhj > hj, thea prices vary much less witly; than the exponential prices. The un-
bounded nature af utilities also mean that there is always demand for spectrum. Accordingly
Figures 3.3 and 3.6 for the (high,high) case show thatices in regionV keeps on increas-
ing unlike the exponential prices. Overall exponential utilities yield more egjeitspectrum

allocation than utilities.

3.6 Discussions and Conclusion

Dynamic spectrum allocation is important both for centralized broadbaresacetworks and
decentralized cognitive radio systems. Efficient networks are oftagroes for non-strategic
behavior either by a central command and control plane or by adheremacdistributed pro-
tocol. In this chapter we have developed and analyzed a two tier allocastensyor non-

strategic users who obtain spectrum from multiple SPs. We model the systamder welfare
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Figure 3.5: Fraction of total spectrum allocated to user 1 as a functiontahdisfor different
target rates and SP efficiencies. Both users hauslities and user 2 is fixed at 200m from SP
2

maximization framework. We show that in the optimal policy each user obtaimsrapeonly

from one service provider given by a function of the link gains and igeefficiency. Based
on our analysis we develop the notion of a spectrum price to facilitate distiilalitgecation.

For two general classes of concave utility functions namely exponentlal ane analytically

characterize the spectrum allocation and price. We show that our resait®msistent with
basic economics principles. Our work provides theoretical bounds darpgnce limits of
practical operator to user based dynamic spectrum allocation systemisaugil/as insights to
actual system design.

We have assumed that;, N and L stay constant during the optimization and transmis-
sion process. Whenever they change the optimization needs to be re ke we have
not addressed such timescale issues, the proposed price based alliscaeal for static out-
door settings with a strong Line-of-Sight component between usersRsidF8r more mobile

environments the average values of link gains can be used to deriomaddes allocations.
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Figure 3.6: The spectrum prigeas a function of user 1 distance from SP 2 for different target
rates and SP efficiencies. Both users havsilities and user 2 is fixed at 100m from SP 2
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Figure 3.7: The utilities for both users as a function of distance for diffeerget rates. Both
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Chapter 4

Service Provider Profit Maximization for centralized DSA

4.1 Introduction

In Chapter 3 we considered that the SPs act as a social planner and neskiensum utility of
users. However since a SP pays the broker for obtaining spectruradigeahcan also operate
to maximize its profits by charging users for the spectrum allocation. In this,papeapply
principles of microeconomics [40, 41] to explore SP pricing for profit maxatidn. We model
the SP profit as a function of the cost it has to pay the broker, the regéhaccrues from the
users and possible price competition from other SPs in the region. An gfPteaaaximize its
profits by choosing its price. The users consider the SP prices and tlegalims to the SPs to
determine the SP to obtain service from. In this work, we characterize thei&3 pnd user
spectrum allocations. In this chapter we establish the basic terminology &attne of profit
maximizing SP networks. Specific situations such as monopolistic SPs and @mgettion

among SPs are dealt in subsequent chapters 5 and 6.

4.1.1 Related Work and Our Contribution

Pricing for profit maximization has been studied under various contextsviFeless applica-
tions [13] considers a two SP, multiple user model where the SPs offerdiiess and rates to
the users, who decide which SP to obtain service from. In [77, 78] pratimizing pricing
strategies are considered for multi-rate CDMA applications. In [79] procepetition equilib-
ria are considered for a two SP, multiple user network for simplistic demarudidms that are
linear in the SP to user distance have been considered. However ndrg @¥, 78, 79] con-
sider the full range of relationships between spectrum prices, costssandlemands are not
established. On the other hand, several works in microeconomics hasieced pricing for
profit maximization [40, 41] but for very generic user demand functiomsasts. The authors

in [80] consider various non-wireless flow control problems. Thoughesfundamental results
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stay same across models, our focus is more on capturing the problemscsjoettié wireless

model. In this work, we have applied some of these principles specifically toetess setting

and evaluated the prices and characterized the behavior of the allocdi®foclis and system
model of [81] is similar to our work but they do not include the effect of limkg and variable

spectrum usage based broker cost, in determining SP prices.

In Chapter 3 we had considered that the users were constrained bptakiransmit power.
This is a valid assumption in the uplink as mobile devices have limited battery livebisin
chapter we consider the downlink where the transmitting base station doéswet total
power constraint. Rather we assume that the transmission from the SP tcetdsuson-
strained by a total power spectral density. This is also consistent with dwtrapmask re-
quirements of the FCC. Thus total transmit power scales with bandwidth, whilunique
feature of our work. The choice of power spectral density, also lEads equivalent modula-

tion technology and is a DSA policy of the SPs.

4.1.2 Spectrum and Spectral Efficiency

Let us assume that the spectrum allocated by a SR tand it transmits at a power spec-
tral density of K, when it's appropriate the use Shannon capacity to represent thesrate,
log, (1 + snr) wheresnr is the signal to noise ratio of the received signal. The transmit rate is
thus given by,

R=KX. (4.1)

A SP who wants to increase its rate to its customers can increase KitberX as per (4.1).
However the associated costs and benefits to the SP are quite differeft.bAyS spectrum
from a spectrum broker or Govt. agency such as FCC who decide $hperunit spectrunk’.

On the other hand, the costs associated with incredsihgs to do with fixed hardware costs of
installing equipment such as base stations or encoding blocks and vaabdepcoportional

to the transmit power. The user payments are proportional to what the &@geshfor unit
spectrum and the rate that it is able to provide. Whether the SP decides to buy more spectrum
or invest in increasing its spectral efficiency should be decided basedant optimization
over the costs and benefits &f and X to the SP. Our spectrum allocation model, though

simple, captures all these essential features and proposes the optinati@tiand prices.
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4.2 System Model

Let there beV SPs andl users. SR allocates spectrum;; to userj and transmits to users
in the downlink with power spectral density of Watts/MHz. We assume that all bands of
spectrumz;; are non-overlapping. Let the link gain between:S#hd userj be given byh;;.
We assume a frequency non-selective channel andithuoes not depend on the width of the
bandz;;. The spectral efficiency in the transmission from:S®& usery is given by

I/lhl
K;j = log (1 + TO]) . (4.2)

Note that the spectral density is thus also an indicator of tHeansmission technologyf the
SPi. Increasingk;; by increasing/; implies that SE must support higher rates through more
complex modulation and coding. Thus the &&#hd user; communication is characterized by

the following rates and transmit powers
rij = 1(Vi, Tij) = Kijwg; (4.3a)
pij = p(vi, Tij) = vizs;. (4.3b)

Thus the total achieved rate by ugeR;, the total transmit power of SR P;, the total spectrum

allocated by SR, X and the total spectrum allocated to ugeX " are given by

N N
=1 =1
L L
P, = szj = Z ViTij, (4.4b)
j=1 j=1
L N
j=1 i=1

The assumption that different users are allocated different continbmuds of spectrum is
similar to OFDMA where different users are each allocated a number aktiéstones, as per
their application requirements. If the tone spacing is narrow as comparezittiahbandwidth,
we can model the frequency variable to be continuous. An example systér& iwhich can

operate withl5 KHz spacing an@048 subcarriers [62].

4.2.1 The User Cost Function

The SPs charge users for the spectrum that is allocated to them. This ocosldt®f a fixed

connection fee and/or an spectrum usage dependent cost. This mesiskés costp;(z;;) that
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userj pays to SPi. In the beginning of an allocation interval, which could correspond to
the beginning of file download sessions for all users in the system,&Rounces this cost

functionp;(-) to all users.

4.2.2 The User Optimization Problem

Given the SP cost functions and the spectral efficiencies to SPs, sactiacides what fraction
of its total spectrum requirement to obtain from each SP. Yseapplication is characterized
by a utility functionU;(R;) which is increasing and concave Ry. Let the set of user cost
functions{p1(-),- -, pn(-)} be denoted by(-). After payment of the spectrum cost to all

SPs, usey has the following residual utility

N
Si(XH p() = Uj(Ry) = pilwy). (4.5)
=1

In the microeconomic literature [41, Chapter H4]is called theuser surplusand is the amount
of money necessary to persuade ustr give up its consumption of spectrum. Given the cost

functionsp;(z;;), each usey solves the optimization problem

max  S;(X}, p(+)), (4.6)

T1j," T Nj
to choose the spectrum allocatiang to maximize its surplus. It is possible that some of the
x;; are zero implying that the user does not obtain service from certain SPs.

4.2.3 User Utility Functions

We consider the following utility functions to model user applications,

Logarithmic Utilities

This is similar to thex utilities considered in Chapter 3 that model elastic applications where

the utility is unbounded. Specifically we consider utility functions of the form,

Uj(Rj) = log(l + Rj). (47)
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Exponential Utilities

Exponential utilities were considered in Chapter 3, to model applicationsewlssr; has a

target ratd’;. We reproduce (3.23) here

Ui (Ry) =T (1 - ™/ ) (4.8)

4.2.4 The SP Cost Function

From (4.4c), SR has to provide the users a total spectrunXgfwhich it purchases from the
Spectrum Broker for duration of the communications session. The Budi@ges SR for
the spectrum purchase. Note that in Chapter 3, we had assumed thastheret spectrum
constraini? which had led to shadowcost of W for the SPs. However in this chapter we do
not assume any such fixed constraint at the brokeri 1% to pay two types aal spectrum

costs to the broker:

Spectrum Cost

The spectrum cost'(X?) is the license fees paid by SRo the Spectrum Broker for securing
the right to offer services in the spectrum bakig and collect revenues from the users. As
mentioned in [82], a reasonable cost model is linear with amount of spepuuchased, with
the constant of proportionalit¢’ depending on the geographical location, duration for which
spectrum would be used and availability of spectrum at the broker. Also[&8, 81], costC

can also be determined by a bidding process between the SPs and the Dinolse

C(X}) = COX:. (4.9)

Power Cost

The SP also incurs a cost proportional to its total transmit pdwer »; X?. A part of this

could be the electricity costs. Additionally the Broker can also chargé@eyportional toP;

as a measure of the cost due to interference. This is because transwigisiarhigher power
spectral density; could cause increased interference to other systems potentially operating in
that band. Out of band interference in adjacent bands is also an impisgae. For example,

the SP may be an 802.22 transmitter [10] operating a secondary system i thends. To
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safeguard the primary TV transmitters, the Broker may decide to chargePthmadge if it

transmits with more power. In short, the SP incurs a cost
F(vi, X7) = Tvi X7, (4.10)

whereT is the constant of proportionality. From (4.9) and (4.10) the total specteshis
(C 4 Tv;) X} and thus thepectrum pricehat SPi pays the spectrum broker is,

Cs =C+Tu,. (4.11)

4.2.5 The SP Optimization Problem

GivenC?, each SR designs a user cost functigr(-), to maximize its profit

L
II; = ZPz(ZEzg) - 7 X7 (4.12)
j=1

We assume that each 35 aware of how usef chooses:;; via the optimization (4.6). Thus
the profitll; in (4.12) is just a function op;(-) of all SPsi and can be expressed dgp(-)).
Thus each SPmaximizes its profit by solving
max IL(p(-)) (4.13)

to chose the optimad;(-) to induce a particular user behavior. Such SP-user interaction is an
instance of &tackelberg Gam@3, Ex. 97.3].

This chapter describes the basic principles and terminology for profit marmgn&Ps.
For a single SP, (4.13) describes a monopolistic pricing framework whichbeiknalyzed
in Chapter 5. For multiple SPs, solution of (4.13) involves a price competition gentiés

analyzed in Chapter 6.
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Chapter 5
A Single SP monopoly

5.1 Introduction

In this chapter we consider a centralized network consisting of a singleaserovider (SP)
that allocates orthogonal chunks of spectrum to its customers dynamicahgl lon their de-
mand. It then transmits to these users over their allocated spectrum. Thdemsand of
spectrum depend on the received rate which is different for usersadtine variations in the
link gain. The SP purchases the amount of spectrum needed by its cust@oerthe broker.
The SP has to pay the broker for the purchased spectrum and in tugesttlae users to recover
its costs. In this work we model the dynamic allocation as a SP profit maximizatidoepn

and derive the optimal values of the prices [84].

5.2 Monopolistic Two part tariff

For sake of clarity we will drop the SP indéxXrom equations and summations of Chapter 4
as there is only one SP. This SP charges a two part tariff [40] fromjusensisting of a fixed
connection price: and a priceu charged per unit of spectrum. The user does not have to pay
the connection price if he is not receiving any service from the SP. Thus the cost function
p(x;) for userj as defined in Section 4.2.1 is

pr; +r, x; >0

plz;) = (5.1)
0, T = 0.

5.2.1 Solutions to User and SP Optimizations

The SP initially announces a price pé§jr, «). Given this, the optimization problem (4.6) for
userj becomes

Si = H;Cz?l_x Uj(Rj) — pxj — K. (5.2)
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Note that if the price paify, ) is high, some of the users may refuse service and henee 0
for these users. After all users perform this optimization, they inform thal®ut how much
spectrum they desire. If usgreceives nonzero spectrum, thﬁﬁz 0. It can be easily verified
that (5.2) is concave im;. Taking derivatives

_OU(Ry)
#= 8:13j '

(5.3)

The graph of (5.3) is called triemand functiofd1] which shows how the demand for resource

x; varies with priceu.

The Marginal User Principle

Let the system requirements be such that the SP has to serve all the Tsensximize its
profit, the SP will raise its price, ) to the point that the surplus of some useis equal to

k. After paying the connection feg userm’s residual utility is zero. If the prices are raised
any further, usern will decide not to obtain service from the SP. Usemwith zero surplus is
said to bendifferentfrom obtaining the service [41]. Mathematically this can be restated from

(5.2) asS;, = 0. The SP optimization from (4.13) is given by

IT" = max puX®+ kL — C°X? (5.4)
K
The first order condition of (5.4) is

oX*
o =" (5.5)

Ok
X4+ L— - C*
Lot (1 )
Let x,,, be the spectrum allocated to the marginal user. It was shown in [82] that
0K /O = —Zp. (5.6)

The elasticity of demand, [41] is given by

COX*/X® p 0X®
o/ p X Oop

(5.7)

The elasticity gives the relationship between percentage change in deminedpercentage
change in price. Note that> 0 asdX*/0u < 0 which is to say that demand reduces with
price. Definingy = z,,/X?, the fraction of the spectrum allocated to the marginal user, we

can show that the (5.5) can be re-written to solve/f@s

(5.8)



61

5.2.2 Logarithmic User Utilities

For logarithmic utilities given in (4.7), the demand function, (5.3), for ysisrgiven by

K;

=_—-J 5.9
1+Kj:13j ( )

I

The maximum value of the RHS of (5.9)1s; (for z; = 0) and thus for a feasible allocation,
< minKj = Kmnin- (510)
J

The intuition behind (5.10) is that jf > K.,;, thenyu, which is the marginal cost of a user for
purchasing an extra unit of spectrum, always exceeds the marginal utdityhia user obtains
by purchasing that unit of spectrum and hence no transaction takes platot of the demand

function is given in Figure (5.1).
Lemma 3. For logarithmic utilities, the user with the weakest link gain is the marginal user.

Proof. Let the optimal value of the spectrum price fs& The marginal user is the user who

has the least surplus. Substituting fdrfrom (5.9) in (4.5), the surplus of usgiis given by

K; *
S; = log (—]> R (5.11)
7

Taking derivatives ob; w.r.t. K; and using relation (5.10), it can be shown thal /0K ; > 0
i.e. S;increases irk;. So the usenn with least surplusS,, is given bym = arg min; K @

arg min; h;. Relation(a) follows from (4.2). O

A graphical proof for a similar system was given in [82]. Substitutingzfpfrom (5.9) in
(5.8) and after some algebraic manipulation, we can show that the optimalofatue price

u = p* satisfies the following quadratic equation

(5.12a)

L
whereK, =) 1 (5.12b)

The optimal values of spectrum; are given by substituting for = x* in (5.9). Denote

* *
X* = 5T

Lemma 4. For users with logarithmic utilities, the spectrumaserpricedi.e. u* > C..
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Proof. Relation (5.12a) can be rewritten as
1 K 9
— —— | =pu = Ce. 5.13
( K. L ) J w—=C (5.13)
Using (5.10), we can prove thét/K,, — K;/L) > 0 and hence the LHS of (5.13) is positive.
Thus the RHS has to be positive which yields the desired result. O

An intuitive explanation is that, the logarithmic utility function is unbounded frorovab
and there is always demand even for high prices. So the SP exploits this itoigeits profits
by keepingu aboveC.. However this does not mean that the SP can arbitrarily overprice
spectrum. To understand this, we first calculate the value of the elastitifgy the given

optimal values ofX * andp*. Using the value ofX* from (5.9) in (5.7) we can show that

B L_M*Ks

*
€

1. (5.14)
Lemma 5. For logarithmic utilities, the aggregate demand function for all usemléstic
Proof. This follows from (5.14) [41, Chapter 15]. 0

For elastic demands, the percentage change in spectrum demandedeistherathat per-
centage change in price. Hence, when the optimal prids increased, percentage decrease in
spectrum demand is higher and the toéslenueof the SP given by.* X* decreases.

Now let us look at the SP profit. From Chapter 4, equation (4.12)

(v, u*) = (u* — Co) X"+ k"L . (5.15)
H*
117 c

U
Note thatll}; andII}. are the profits from the usage cost and the subscription fees reghectiv

We now want to investigate hol#*(v, *) changes as a function of spectrum price
Lemma 6. The following results hold about the SP profit functions.

a) The profit from subscriptiod];, decreases with cogt".

b) The profit from usagd];; increases with.* for C, < u* < \/C.L/Ky
Proof. Refer to Appendix D. O

The fact that there is a maximum threshold o occurs because of the elastic nature of

spectrum demand, i.e. the increasg:iris more than offset by the decreaseiri.
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Figure 5.1: Demand functions for logarithmic (top) and exponential utilitieggbg with two
users with spectral efficiencids; = 1 andK, = 2 andI” = 1 for the exponential utility target

rate
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5.2.3 Exponential User Utilities
For exponential utilities given in (4.8) the demand function, (5.3), for yisegiven by
p= Kje~Ki/lie;, (5.16)

Being of exponential dependence, the demand function decreasgdysitahigh values of
spectrum as the utility function flatten at a valuelgffor high spectrum and in that regime

there is little demand for spectrum. The inverse demand function, derived(8.16) is

T, K;
T = Fjjlog (;) . (5.17)

Substituting forz; from (5.17) in (5.8) and after some algebraic manipulation, we can show

that the optimal price.* is given by the positive solution of

C* = (1= C1)p + Caplog(p), where (5.18a)
L p T r. T
— -J J N m
¢ = ; K, ; K, log(K;) — 7=~ log(Km) (5.18b)

(5.18c)

-1
L L
B r; r; LT,
2= (Z zg) 2% Ry
Jj=1
Lemma 7. When all users have equal target rates, the user with the weakest linkathe

SP is the marginal user. When all users have same link gains, the use aldatt target rate

is the marginal user.

Proof. Assume that the optimal price from (5.18)4s. Substitute forz; from (5.17) in ex-

pression of user surplus in (4.5) to obtain,

M* *Fj Kj
=D (1-= ) - ZLlog | =L ). .
% ‘7< Kj) MK]‘ Og(u*> 5-19)

For the first part of the proof take; = I" for all usersj. We can show tha#S; /0K; > 0 and
the remainder follows. For the second part of the proof tAke= K and using the identity

e*~1 > z for » > 0, it can be shown thalS;/or; > 0. 0

No specific relationship exists whéty and K; are both different. Sincé; must be non-

negative, from (5.19) we infer that
N* < minKj = Kmnin, (520)
J

which turns out to be the same condition as (5.10).
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Definition 1. Thetransition prices.; and u,, are defined agy = Kmnin/e andu, = Knax/e,

whereK iy is defined in5.20)and K .x = max; K.
Lemma 8. The following facts hold fof'; = I" for all users

a) If price u* < g, a user with lower link gain obtains more spectrum.

b) If price u* > ., a user with higher link gain obtains more spectrum.

Proof. Both assertions follow from (5.17) by taking derivativesagfw.r.t. K; and showing

thatz; is decreasing itk; whenp* < uq and is increasing whem* > f,,. O

This also means that the marginal user obtains the maximum spectrum in daseityely
for low p*, enough spectrum can be bought by each yidermakeR; high enough such that
U;(R;) — I'. But marginal usem would have to purchase most spectrum to obtain gh
(@sR;, = KminTm).

To calculate the elasticity substitute tef from (5.17) in (5.7)

v
=i

€ =— . (5.21)

> o (1)
=109 A
Lemma 9. For exponential utilities, the aggregate demand function of spectrumelasti

i.e. e’ < 1whenu* < ug andelasticwheny™ > .

Proof. From (5.21) we can show that a sufficient condition for elasticity/inelasticty is
€21« log(K;/u*) =21 forall j. (5.22)

The rest follows from the definitions df i, and K .. O

Intuitively, at low prices, below:, each user has adequate spectrum to be in the flat region
of the exponential utility. Even if pricg* changes, users have little incentive to alter their

purchased spectrum. Hence the demand is inelastic.
Lemma 10. The following results hold about the SP profit functions.

a) The profit from subscriptiod]7, decreases with cogt".
b) The usage profill;; increases whepg > u* > C..

Proof. Refer to Appendix D. O
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5.2.4 Note on SP Transmit Power

In this chapter, we have fixed the SP transmit power spectral densityaaiedl the transmit
power for reasons mentioned in Chapter 4. For sake of completenehaye@lso studied the
spectrum allocation and pricing problem when the SP has a fixed transnat ponstraint [82].

The results are reproduced in Appendix B.

5.3 Numerical Results

We consider a linear network with one SP ahd= 10 users. For path loss, we choose the
COST-231 propagation model [76], at an operating frequen@y4oGHz. Let the distance of
user;j from the SP bel;. Thus the link gain is given by

hj,dB =-31.5-35 log(dj). (523)

Consider an user arrangement where the vector of user distancd§’are [d;,--- ,d] =
[10,20,---,10L]. We consider users with exponential utilities haviig = 1 Mbps be-
cause the exponential utility allocation results present more possible vasiagaeen in Sec-
tion 5.2.3. The total SP profit is given in Figure (5.2) when the power cosd iEmes the
total transmit power. We see that the profit reduces with spectruntCtoaiso when costC
increases, the SP has an incentive to switch to higher transmit poweradpierisity as the
effective costC, = C + Tv is dominated by and is invariant of/, but the user utilities and
hence payments increase with If C' is above a threshold, then the profits reduce to zero as
no spectrum is purchased. Similarly for l@Wregimes, SP cost is dominated By and the
SP has no incentive to transmit at high Though the results in Figure (5.2) are "), the
general trends hold for other user placements.

Figure (5.3) plots the SP effective cd@st and spectrum price together. We see that for
most portions the spectrum is underpriced. The effect of this is alsas&égure (5.4) which
plots the breakup of the usage and the connection profffftsandIIf, respectively. We see the
the places where spectrum is underpricg, is a loss. Another thing to note is that the SP
profit comes predominantly from the connection fee. These effectdsarelescribed in [85].
The intuition is to look at the demand function in (5.16). Since it extends to infithigre is
a demand even at large amounts of spectrum. However the demand deoaysrdially. So

the users want a large amount of spectrum but have low willingness tospaye fiees for large
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Figure 5.2: Total SP profit as function of efficiency and spectrum assts when each user is
homogeneous and has exponential utility with= 1 Mbps andl” = 10

amounts. So the SP can'’t hope to gain from the usage fees. It thuesetthecspectrum price
(underpricing it in the process) so that users purchase a lot of speeind the SP can makes
use of their increased utility by extracting their increased surplus as tmection fee.

Lastly we consider that the SP can operate /ito user outage. Fat = 10 users, let link
gains satisfyh; > --- > hjo. Thus usen0 is the marginal user. The SP can choose to s@¢rve
users by raising prices to make ugérrefuse service. Usérwould be the new marginal user.
The loss of revenue from uséb can be made up by the increased revenue from the other users.
The results are shown in Figure (5.5). For high values, tiie profits are more fab = 10. For
low v, it is slightly advantageous to ser9eisers whert' is high. Recall from Figure (5.3) that
in that regimeu ~ C, and the profits are mostly due to the connection fees. So the deciding

factor is the relative differences in the surpluses of use@nd9.

5.4 Conclusion

In this work, we have considered a network where a single servicédarmallocates spectrum
to it's customers in the downlink. We propose a dynamic allocation scheme bas# profit
maximization. The SP uses two part monopolistic pricing, consisting of a fixedection fee

and a variable usage cost. We showed that for a broad range ofveomser utilities, the user



68

3.5 T T T T T T T T T
—+&— v =30dBm/MHz, »=0.01units/Hz

—— v =30dBm/MHz, =0.04units/Hz -
— 8 — v =45dBm/MHz, H=0.31623units/Hz _ -

— ¥ — v =45dBm/MHz, 'D=1.2649unit§/Hz v

25

Spectrum Price (blue) and Effective Cost (red)

0 V 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
spectrum cost, C (units/Hz)

Figure 5.3: The effective cost. = C'+7T'v and spectrum pricg as a function of spectrum cost
C when each user is homogeneous and has exponential utilitfwitH Mbps andl” = 10

with the weakest link gain decided the connection fee. We characterizepd¢otrum alloca-
tion and derived values for various prices involved. We showed thidogarithmic utilities,
the spectrum was overpriced relative to the costs of the SP and the deraarelastic. In
contrast, for users whose applications have exponential utilities, the desoatd be inelastic.
Numerically we illustrated some key analytical ideas and also tested the penfmerothe
allocation algorithm with user outage. We conclude that the microeconomic madelus an

instructive framework to study the profit maximization problem.
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Figure 5.4: Breakup of SP profif]* as total usage cosl];; and total connection fed]¢,
as a function of efficiency and spectrum costs user when each usemisgkeneous and has
exponential utility withl' = 1 Mbps andl” = 10
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Figure 5.5: A example plot of the SP profits fbr= 10 users and with. = 9 obtained by
removing the marginal user from the original population.
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Chapter 6

Price Competition between Service Providers

6.1 Introduction

In this chapter we consider a spectrum allocation model consisting of multipieseroviders
(SP) that compete to obtain the services of end users. The result ofrtipetition is a user
base for each provider with the providers selling orthogonal chunispeétrum to its users
by setting a price per unit spectrum. Then the SPs transmit to their usertheiresllocated
spectrum. Based on their spectrum demand and spectrum price, thalesigls how much
spectrum to buy. The user demand for spectrum depends on theegbckita rate which is
different for different users due to the variations in the link gain and ri@didun technologies of
the SPs. Each SP purchases the amount of spectrum needed by its csishamea regional
spectrum broker [31]. The SP has to pay the broker for the purdhgsectrum. The SPs
choose their spectrum prices and modulation technologies to attract nsemsaaimize their

profits [86].

6.2 Features of the Spectrum Allocation

The connection fee was the key feature of a monopolistic price structure in Chapter 5 as it
was used to extract the remaining user surplus, once the user had pasdgfescost;x;. Thus
x depended upop;, x; and the user utilities. Such a usage price dependent connection fee that
extracts the entire user surplus is inadmissible due to the SP competition. TI&R fwice
competition we assume that eachS#hly charges a usage pripg per unit of spectrum. Thus
cost function for useyf to SPi is p;(zi;) = pixi;.

The spectrum allocation, to be described in detail in this chapter, has thng@ooents.

These are described qualitatively as follows
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a) Given a particular price and spectral efficiency gait K;;) for SPi, each usey calcu-

latesz;;, the spectrum to obtain from SPThis is explored in Section 6.3.

b) The SPs are assumed to be aware of the user preferences as nieintiapeSPi can
optimize its priceu; to induce a desired user allocatioy) that will maximize its profits.
The single SP profit maximization in explored in Section 6.4. We show that to maximize

profits, SP; can choose to serve a subset of the users.

c) When there are multiple SPs in the system, each SP competes to obtain thessafrvic
the users. We show in Section 6.5 that as a result of this competition eachdSRpen
with its own user base, in which it is the sole provider, free of competitionnThe SP

prices its users in the way mentioned in case b).

The spectrum allocation can be done periodically, typically at the startegsia or as chan-

nels vary with time.

6.3 User Optimization Problem for Given SP Prices

Given pricey; from SPi, userj maximizes itssurpluss; to decide how much spectrum to
purchase from SPas mentioned in (4.6),
N
$j = max U;(R;) - 21 15 (6.1)
It is possible that for userand SF;, z;; = 0, which implies that usef does not obtain service
from SPi. For finding the optimal solution of (6.1), first note that the optimization foheac
user is independent. Let us focus on ugand write the Lagrangian by introducing the slack

variableso;; to account for the constrainis; > 0,
N N
L;= Uj(Rj) - Zuia}ij + Z Qi Tij (6.2)
=1 1=1
Let us denotd/; (R;) £ 9U;/OR;. The first order conditions of the Lagrangian (6.2) are

oL; .
] = Uj(Rj)Kij — Wi + Q= 0. (6.3)

856@'
Letk andl be two SPs from which usgrobtains service with spectrum allocationg > 0

andz;; > 0. Thusay; = 0, oy; = 0 and from (6.3) we conclude that

R
Lk Pl U(R)). 6.4
Kk’] Kl_] ]( ]) ( )



72

If userj obtains service from SPbut not from SH, thenz;; > 0 andz;; = 0 and from (6.3),
we can show that

i Kk
< —. 6.5
Ky ~ Ky (6.5)

Definition 2. We define theffective spectrum pricketween SR and userj asp;; = j;/K;j.

Note that the units of;; is dollars per bits/sec. This is because of the actual prjde
measured in terms of dollars/Hz but the utillty(R;) is measured in terms of bits/sec. Thus
pi; is the translation of a price per unit of spectrum to a price per unit rates {th&) can also

be stated as,
Lemma 11. The user connects to the SP with the lowest effective price.

To attract users, SPs can lower their effective prices by either lowagtgpl prices or
by raising efficiency, to attract users. This is a part of the SP competitiex@sred this in

Section 6.5.

Definition 3. Define the set of users to whom Sprovides service as;. Define the net

spectrum that SR has to provide as\; = > xi;. Definep = [pq, po, -+ -, ). We will

JES;
sometimes denot¥; by X; () to explicitly indicate the relationship between spectrum and the

vector of prices as captured {{6.1).

For exponential utilities defined in Section 4.8, the demand function anadvieese demand

functionare given by (6.4)

i = Kije—(Kij/Fj)xij (6.6a)
T, <K2) L < 1 >

Tii = lo =—log | —|. 6.6b

7Ky 2\ Ky ¢ Pij (660)

Note that (6.6b) implies that;; < 1 and we discuss the reason in Section 6.4.1.

6.4 Analysis for Single SP Network

We first consider a network with a single SP, free of any competition. Thisdause spectrum
allocation and pricing results of this case will be needed for the genesa| wdaen a competing
SP is present. This analysis is different from the monopoalistic pricing steiciuChapter 5

because

1. The SPs do not charge an usage cost dependent subscriptian fee

2. The SPs can chose to serve a subset of the total number of usersgntzadieir profits.
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6.4.1 Calculation of Optimal Price

The SPs are assumed to be aware of (6.6b), i.e. how the users reaaide aegtor. They
make use of this information while maximizing profits by choosing the right pricésdiace

a particular spectrum demand from the users. Thus the SP to user inteiaciinstance of

a Stackelberg Gami87, Section 6.2], where one player is the leader and the other players ar
followers. First the leader makes a move which is then observed by the émldw deciding
their own action. The leader knows of this behavior and uses this to deisigmole in order

to induce a desired follower action. Let the SP index.bBhe profit maximization function is

given by
N
(i) = (i — C3) > (i), (6.7a)
j=1
T, K. +
wherex;; (i) = {—]log< ”) ,0} (6.7b)
k) Kij i

Lemma 12. SP1 buys spectrum at price’’ but sells spectrum to its users at a higher price

L > CZS
Proof. This follows from (6.7a), in order to achieve non-negative profit. O

Lemma 12 says that the SBgerpricespectrum when selling to the end users. This need
not be true for other price structures as seen for the monopoly pridingévs with exponential
utilities in Section 5.3. Also note that jf; > K;;, for some usej thenz;;(r;) = 0, meaning
that the SP does not serve these users. Thus we conclude theaBharge pricg; to serve
userj if

Kij > Uy > Cf (6.8)

The interpretation of the result is as follows: Note from (6.6a) that the maxivaioe of
Uj(Rj), the marginal utility of usey, is K;;. Thus the upper bound in (6.8) says that for
feasible allocation, the price charged should be less than the maximum vahe rofirginal
utility or else the user can never have non zero surplus. From Definitiam &ternate way of
representing (6.8) is

S

C*
1> pij L 6.9
> P> o (6.9)

Thus the minimum possible value of the effective price for ysergiven byp;?i“ = C7/Kyj.

Note that (6.7) is not a convex optimization problem as the functig(y;) is not concave.
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Figure 6.1: lllustration of how price is related to spectral efficiencies gadtsum cost of the

SP. Consider one SP afAdisers and for ease of illustration drop the SP indéXhen SP cost,

C* = C1 < K5, the SP can serve all users. Ifit séfs > pu; > Ko, it serves the first user
who is nearest to it. If it decreases price to a rahg@e> u; > Ks, it serves the first two users
and so on. When SP cost is increased'to= C2 > K5, the SP can't serve uséras doing so

would make profits negative.

We now show that (6.7) can be reduced to an equivalent optimization prolttat can be
easily solved. For simplicity in illustration consider the case shown in Figure Betenthe
users are arranged linearly with udethe closest and usdr the farthest forl, = 5. Thus

K;1 > --- > K;;. The following cases can arise

KiL > Cf

The SP can serve all thHeusers. Consider the case when the SP serves exactly the/fiest.
users. From (6.8), this will happen#f;n; > p; > K;r41)- The corresponding profit of SP

denoted b)HEM), is given by

M = max (1 — €5) Y 2 log ( ”) , (6.10a)
Hi = Kij I

St Kim > pi > K41, (6.10b)
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For the last user)/ = L, constraint (6.10b) is modified t&;;, > n; > C;. It can be verified

that (6.10) is a convex optimization problem.

CZS > K1,

Assume that;; > --- > Ky, > C7 > Ki(Mupax+1) > - > KiL. This means that SP
can serve at mosit/ . users. To servé/,,.x + 1 users, it would have to spt < C?, which is
not allowed. For serving exactly/,,,x users, constraint (6.10b) is modifiedAGy,, . > ui >
C?. To keep notations consistent, defihg,.x = L for casek;;, > C7. Thus the solution to

the SP optimization problem (6.7) is given by the integer problem

max 11, (6.11)
M<Mmax
WhereHEM) for all M can be calculated by solving a convex optimization problem. Optimiza-

tion (6.11) can be solved by exhaustive search for low to medium valuks of

6.5 Multiple SP Interaction

Assume that each SREommunicates cost? and efficiencieds;; to all users;j in the system

to the Spectrum Broker who mediates the interaction between the SPs. THaiokee has
global knowledge but an SP does not obtain the private informations of 8 Similar
assumptions have been made in [13]. The SPs engage in a game with the ainmiizentheir
profits. The SP competition can be modeled asxansive game with perfect informati@7,
Chapter 5] represented oy = [Ng, {M;},11;], whereNg is the set of theV SPs,); is the
strategy space available to tH& SP which is the number of users that it attempts to serve. The
optimization of SPi depends on the prices charged by the other SPs which determines how

many users obtain service from SRNe explore these ideas in Sections 6.5.1 and 6.5.2.

6.5.1 Single User System

Consider that initially there is one SP, serving one user by charging & pratimizing price
derived in Section 6.4.1. Let us denote the pricgby0), wherep;;(n) is the effective price of
SPi to the usey which corresponds to a prige(n) charged by SRPat time instant.. Assume

that SP 1 profit isﬂgl), as defined in (6.10a). Assume that at time instagrt 1, a second SP
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enters the network. Let the user indexjbe.et K1; andK»; be the spectral efficiencies of the

two SPs and’] andC3, their spectrum costs. SP 2 can take one of the following two actions,

1. Compete:lf SP 2 decides to compete, it broadcasts its intention of providing service to
the user. From Lemma 11, it does so by broadcasting a pri€e) which leads to a

lower effective pricepy;(1) < p1;(0).

2. Withdraw: If SP 2 decides to withdraw, it broadcasts that it would not provide seteic

the user. SP 1 can charge the same price as before when it was the amih&Bystem.

If SP 2 decides to compete at time= 1, then the user will obtain spectrum from SP 2 and
SP 1 profit will be driven to zero. Thus at time= 2, SP 1 can also compete and broadcast
a reduced pricg:; (2) which leads topy;(2) < po;(1) or it may decide to withdraw. Thus
at each time instant, the competing SP will cut prices to so that it becomes the@aliep
to the user. Assuming that each SP knows the link gains to the users ameheféis of its
own and the other SP, this can be modeled as an extensive game with jpddienation [87,
Chapter 5]. The game will continue till one of the SPs hits the lower bound opribe that
it can charge and still achieve non-negative profit. This is given by).(64& an example,
considerpff;-”1 < pg}in. If at time n, SP1 decides to compete and chooses a pricen) that
leads to an effective pricey ;(n) < pg}in, then SP 2 can not compete in timet+ 1 and he
withdraws leading to the termination of the game. Thus the profit of SP 2 is H&nce if
SP 2 decides to compete initially, SP 1 will eventually undercut him and redsigedfits to
zero. Thus SP 2 faces no loss in profit by deciding to withdraw initially. The ssibgame
perfect equilibrium [87, Section 5.4] of the extensive game. Thus in thidilequm, SP 1 will
charge an effective price;;(0), as in the single SP case. This is because the threat that SP 2
will undercut him in pricing is notredible

Note that this result could be generalized for more than two SPs. Thenrgafwt since
there is only one user, SPs must obtain its service to get nonzero profiacB&GP will reduce
the price till all but one have reached the lower bound on their prices. t&lte this in the

following theorem

Theorem 9. For a single user system, the &Rvith & = arg min; p?j?i“ obtains the services of

the userj and sets a price, assuming no competition from the other SPs.
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From Theorem 9, the user optimization problem (6.1) can be recast as

§; = mgx Uj(KkjTr;) — kg, (6.12a)
Tij
. C7
s.t.k = argmin —-. (6.12b)
A Kz‘j

Let us now reflect on the relationship between Theorem 9 and Lemma 1dh ¥dims its
basis. Lemma 11 states that SRith a lower effective price;; will attain service of usey

at the expense of the other SPs. Theorem 9 says thai@R the lowest value of minimum
effective price to usey, p;-‘;-i“ will compete and successfully attain the service of uses
per Lemma 11. But could there be situations in whichiS#th the lowest value op;’;i“,
decides against competing for attaining the services of ysmren though it would have been
successful in attaining the services of the user if it had done so? For muisieie this could

be true as shown in Section 6.5.2.

6.5.2 Multiple User System

To develop an understanding of multiuser systems, we assume for the mosyeste with
two SPs and make the simplifying assumption that the ugetsl, - - - , L are arranged such
that

h11 > h12 > e > hlL andhgl < h22 < e < th. (613)

One possible arrangement for (6.13) is shown in Fig 6.2. Though neniéglsor the algorithm

to be presented for multiuser pricing, (6.13) simplifies it.

Theorem 10. If user positions satisfy6.13) there is a user* such that all users from

1,--- ,u* obtain service from SP 1 and all users frarh+ 1, - - - , L obtain service from SP 2.

Proof. Refer to Appendix E. O

Definition 4. Consider a two SP network with users as per arrangemei(®.13) Define
the gamel';, (L1, Lo, L) as the extensive game where SP 1 can eitbempetefor the L,
users closest to it],--- , Ly (set a price to obtain the services of all of them)W/ithdraw
(decide not to serve the users) and SP 2 decides to either compete for tisers closest to it,

L—Ly+1,---, L, orwithdraw.
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Figure 6.2: The network topology for two SPs ahdisers. For a single SP, assume either SP
1 or SP 2 is present

Note that the game in Section 6.5.1 is an instance of the dgartie 1,1). If Ly + Ly < L,
then there is no conflict, i.e. there is no user whom both SPs want to sertis case each
SP sets a price as per Section 6.5.1, assuming that it is the only SP in theesubsyssisting
of the users that it wants to serve. To understand the multiuser casefilst gensider a two

user example:

Example 3. The two user extensive game is depicted in Figure 6.3. SP 1 starts the gdite an
strategy is to compete for exactly 1 user or both users. Then SP 2 acts wiartieestrategy.

L1:L2) indicate the payoffs (profits) of SP 1 and SP 2 respectively,

The notationfrng’LQ) and ﬁé
when SP 1 competes for tlig users closest to it and SP 2 competes forkheisers closest to
it. If L; = Ly = 1, then there is no conflict. In this case SP 1 sets its plige > u1 > K12 as
explained in Section 6.4.1 for which user 2 will never attach itself to SP 1. Sim8&1g sets
its price K99 > ue > Ko1. Recalling the notation of single SP profit frq@10a) the profits
in the two SP case are thus

1D _ (0] 20 ). (6.14)

If SP 1 decides to compete for the first user and SP 2 for both users, theaw an instance
of the gamd;,(1,2,2). Similarly the other two histories of the extensive game leads to the
gamed ', (2,1,2) andT',(2,2,2).

The solution to the game depend on which of the following three conditionatEstexl
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SP 1
1 2
~(1,1) ~(1,1)
(ﬂ'l » T2 ) 1 2 2 2,1,2 (27272)
~(1,2) ~(1,2 ~(2,1) ~(2, ~(2,2) ~(2,
F ) G AN (72,77

Figure 6.3: A two SP two user extensive game. Actiea {1, 2} for a SP means that the SP
decides to compete with the other one to attain the service éfubers closest to it.

SP 1 can compete and successfully attain the services of user 1 and the SP 2 can do the same

for user 2

Thusp® < p&im and pin > pBin, Now consider the gamiéy, (1,2,2). SP 2 competes for
both users but SP 1 can always undercut it in a price game to attain thecesref user 1.
So in the equilibrium each SP will end up with one user, the one closest to is. folhowing

_ ~(1 D and # ~(1 2) _ ;1,1)

the notation of Figure 6.3, we should haﬁé1’2) . However,
assume that the broker charges an SP a penalty for competing unsfudyed.e. if SPi,
decided to compete fdr; users and ended up obtainidg < L, users, then it pays a penalty
of (L; — K)A. This is because if SPbids for the extral; — K users, then there is a price
competition game as mentioned in Section 6.5.1 but the final user allocatiomst dhange.

This is because the threat that $Rvill undercut the other SP is natredible The broker
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however has to allocate resources and computing power to coordinatedirie gn behalf of

the SPs and so it charges $Rvho initiated the game. Thus we have,
#02 —n®M) & -l - Al (6.15)
Similarly we can show that for the gamEg(2, 1,2) andT',(2, 2, 2),

A0 ) A, A ) ©.16
#22 = _ A #2D =lY — A. (6.17)
It is thus easy to see that in the subgame perfect equilibrium of two usex gaolm SP will

compete for serve the user closest to it.

SP 1 can compete and successfully attain the services of both users at the expense of SP 2

This happens whepii® < pii® andpii® < plin, Now consider the gamig, (1, 2,2). In this
case, since SP 1 bids only for the first user, he obtains it and SP 2 obtaioth#rauser though
it had competed for both. The profits are samé@&45) Consider the gamés;, (2,1, 2) and
I'n(2,2,2). SP 1 competes for both users and successfully obtains them. SP 2 tobsaim

any user but has to pay the penalty of competing unsuccessfully. Thus,

222 _ @ 202 _ op (6.19)

Now if the SP 1 profit from serving two users is greater than that from sgroie, i.e. if
H§2) > Hgl), then in the subgame perfect equilibrium, SP 1 will serve both users. &ibeSP

will again serve only the user closest to it.

SP 2 can compete and successfully attain the services of both users at the expense of SP 1

This is the reverse situation to case 3. Arguing similarly we conclude that & @Bfit from
serving two users is greater than one, then in the subgame perfect emuilitBP 2 will serve

both users. Otherwise each SP will serve only the user closest to it.

Thus each SP serves the users for which it has the minimum effective pnigeif doing
so increases its profits when it sets a price assuming no competition. Ttesugitiee intuition

to design the algorithm for the multiuser case,
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1. Each SP identifies the set of usersfor whomi = argmin; p;;. Let these sets be

V=11, ,u*]andVy = [u* + 1, -+, L].
2. Foreach SP=1,2do

(@) if |V;] <1 exit

(b) elseretain alV; users and calculate the profit from (6.7). Then remove the user with
the weakest spectral efficiency (useisfor SP 1;u* + 1 for SP 2) and calculate
the profits. Keep doing this to identify the optimal set of users for which tbétpr

is maximized. Call these new setss

3. The following cases arise

(@) {V. = V; and "V, # V,} : Thus there existd/ > 0 such that SP 2 has raised
prices to exclude users* + 1,--- ,u* + M. SP 1 will include these users one
by one, starting with user* + 1 and reoptimize its price to see if including them
increases its profit.

(b) {\71 £V and Vy = Vsy} : SP 1 has raised prices to exclude some users. SP 2
will reoptimize its price to see if including some of these users increases its profi
similar to above.

(c) {V; = V; and V, = V,} : Each SP achieves maximum profit by serving all
users that they can out-bid the other SP in a price competition. Thus the anides
allocations will not change.

(d) {V; # V; andV, # V,} : Each SPi has excluded some users. 8®ould not
want to include users that the other SP has excluded as they would balarwe
link gains that the ones that he had excluded (because of assumptio)) ehd3

thus no change in prices and allocations will take place.

It is interesting to note that the exclusive attachment of each user to onadRIdo been

observed in Chapter 3, Theorem 2 for a different framework wher&#s did not have profit
motives and jointly set a single spectrum pricéo maximize the sum of user utilities in the
uplink. Under certain assumptions about SP efficiencies, it was showththaser attached
itself to the SP to which it had the best link gain. In this workyif= v for all SPs, then the SP

with the lowest effective price is the SP with the best link gain to the user a@@r Hence



82

the conclusions are along similar lines and seem to be applicable for a wid/\ardynamic
spectrum allocation systems. Also, because of this result, it seems that@Psdonomic
incentives to vary their spectral density. Section 6.6 about numerical results demonstrate

that this is indeed true.

6.5.3 Discussion about Game Formulation

In this chapter we have formulated a game where the SP strategy is to firsitbekusers that
it can serve without competition from the other SP and then decide to sembset ®f them. If
the other SP had rejected some users, it might redo the optimization. Thustha gariable
in SP optimization is the number of users that a SP decided to serve. Therédmv other
formulations where the SP control variable is price. For example the althf$] consider
a system where the SPs broadcast a price and rate pair which determsipestihbility that a
user will obtain service from it. Based on this probability the SP may alter its.pftele this
may seem a natural way to set up the price competition game, it is difficult to joiotimize
prices when the user demand functions are captured in the SP optimizatidBtaickéeberg in-
teraction. Our model, which is based on the non credible threat principtesds in capturing
this.

Setting price as a control variable is also the norm for most classical pnsldé&industrial
organization [88]. However the problems there are somewhat simplifieachsSP considers
an aggregate demand function that is often a continuous distribution defieetheir physical
separation. In this chapter we consider discrete number of users aadalysis is simplified
if the number of users to be served is the control variable.

We believe that our model is relevant in situations when a SP who wants tceemigket
first studies the user profile and presence of other SPs in the regiged Ba the prices that
the other SP is offering, it can use the credible threat analysis to deterrhatgpercentage of
customers it is likely to end up with. This could influence its decision whetheoitonenter

the market.

6.6 Numerical Results

In this section, we consider specific network topologies and evaluate tresponding spec-

trum allocation and prices. We consider a linear network with two SPslard 100 users
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Figure 6.4: Ratio of pricg:; that SP 1 charges from users@y, the price that SR pays to
the broker for different values af;. The target rate i = 1 Mbps. For SP 2, = 37.5
dBm/MHz.

arranged symmetrically between the SPs as in Fig 6.2 with inter-user digtande5 m. For
path loss, we choose the COST-231 propagation model [76], at aatigefrequency of.4
GHz. Let the distance of usgifrom the SP; bed;;. Thus the link gain is given by

hijap = —31.5 — 35log(d;;) — Xtad, (6.20)

where X;,q is a constant margin, which is a design allowance that provides for soffieys-
tem gain or sensitivity to accommodate expected fading, for the purposesofieg that the
required quality of service is maintained. For no fadikigq = 0. The minimum separation
between a SP and its nearest uset,is, = 35 m as per the COST-231 model [76]. In Fig 6.4,
we plot theresale factorfor SP1 which is defined ag, /C;: the ratio of the price at which the
SP sells spectrum to its purchase price from the broker. We see thattbesfare quite high.

This can be intuitively understood from the following relationship,
min Kq; > p1 > max CY, (6.21)
J

which is a direct consequence of (6.8). For the values consideredureFegd, (6.21) becomes
55 > p1 > 2 for vy = 30 dBm/MHz. Sincek; > C7, the value ofu; which lies in between
these two values, can be much greater than

Thus from the broker perspective it could raise the valu€ &é collect more revenue from

the SPs. Also from Figure 6.4, the price increases with increasing efficard decrease with
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Figure 6.5: Effective price of SIP to user10 as a function of spectrum coét for different
values ofr,. Other parameters are a) Target rdfe= 1 Mbps b) SP 2 psdy, = 37.5
dBm/MHz c) Fading MarginXtaq = 40 dB.

fading as the spectral efficiencies increase and decrease resfyectiv

To understand the effect of prices and spectral efficiencies, wéh@affective price of SP
1 for user10, K 1o in Figure 6.5 for different values of; andC'. The efficiency of SP 2 is
fixed atv, = 37.5 dBm/MHz. When broker spectrum castis low, the lowest effective price
is obtained by choosing a lower efficiency while the opposite holds whetebspectrum cost
is high. This effect also shows up in Figures 6.6 and 6.7 which resplile the fraction of
total users who obtain services from $Bnd the profit of SP 1.

It is seen that both the number of users attached and profits are maximizgebaising
a low value forv; whenCy is low and a high value of; whenC7 is high. Since a SP that
transmits at a high value of, has to support higher order modulation and coding, increasing
v is an indicator of the SP employing a better technology. Thus we observa 8Rtshould
invest in a better technology to transmit to its users only if it has to pay highrspecost
to the broker. Else it should purchase maximum spectrum from the brokdransmit at the
lowest possible spectrum efficiency.

In Figure 6.8, we compare the profit of SRvith and without competition. For high effi-
ciencyvy, the gap in the two profit values is more than for low This is because in absence
of competition, SR was serving all users when it had highbut only a fraction of them (who

are closer to it) for low;. Thus when a competing SP comes, the number of customers lost
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Figure 6.6: Fraction of total number of users who are customers of SPalfasction of
spectrum cost’ for different values of/;. Other parameters are a) Target réte; 1 Mbps b)
SP 2 psdy, = 37.5 dBm/MHz c¢) Fading MarginXiaq = 40 dB.

is less when SP had a lowr;. Figure 6.9 plots the fraction of users who are better off due to

competition. This is calculated as follows

1. Assume that the system has only ERCalculate the surplus as defined in (6.12) for all

L users. Call then?‘o;‘C for1 <j<L.

2. Assume that the system has both SPs. Calculate the surplus as defthé@)ridr all

users. Call thenS? fori<j<L.
3. Calculate the number of useréor whoms$ > S7°.

There are two qualitative points that explain Figure 6.9. When a second &Ri¢esd, the

following can happen
1. Some users who didn’t receive service from the first SP, now dimsothe second.

2. Some users who had received service from the first SP, may hadeieed surplus due
to competition. Due to competition, SPserves a smaller of set of users in which user
who is farthest away from the SP has a better link gain than the corresgamk in the
original set of users when there was no competition. Recall that SP pretdasmined
by the link gain to the farthest user as discussed in Section 6.4.1. Thus ifPthe S

optimization, the price:; increases and the user surpluses decrease.
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Figure 6.7: The profit of SP 1 as a function of spectrum €ofdr different values of;. Other
parameters are a) Target rafe= 1 Mbps b) SP 2 psdy, = 37.5 dBm/MHz ¢) Fading Margin,
Xtad = 40 dB.

For example consider the case when the SP transmits at low efficiency at’highere are
more users who are better off if there is competition. This is because atfiorerety and high
C, which means increased price, the users who were far from SP 1tdyeing served but they

obtained service from SP 2 when there was competition. This was also ndtgpline 6.8.

6.7 Discussion and Conclusion

In this chapter, we have considered a network where multiple servicédprexcompete with
each other in securing the service of users in the downlink. Each prosede a spectrum
price and the users decide which provider to obtain service from bas#tew price and the
link gains. We propose a dynamic allocation scheme based on SP profit maiomizé/e
developed the concept of an effective spectrum price and showedt head to equilibrium
solutions of the SP price competition game. We showed that in the optimal allocatibruser
obtained service from only one SP, each provider has its own custorserapa it can price
them assuming no competition. Further insights were obtained from the nuhrescits,

which showed that a SP should invest in better technology only if the cegeatrum is high.
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Chapter 7

Conclusion

Under current allocation principles, the broker or a Govt. agency adedang term spectrum
licenses to service providers who in turn allocate it to their customers. Vilsagievthat, in the
future, spectrum would be allocated on much shorter time scales, typicallyeatutation of
a session and would be demand driven. The user who needs moraispaatt is willing to
pay for it will receive a larger chunk. In this thesis we characterize ®gimes of dynamic
spectrum allocation: a centralized, property rights regime and a decestrabmmons.

For the decentralized commons regime, we studied the timing acquisition perfogrofin
devices that engage in distributed dynamic spectrum access. Since gieaplayer of most
upcoming standards is based on OFDM, we studied a practically implementatiie prefix
correlation based algorithms for OFDM symbol timing acquisition. Since the idigoris
optimal only for a single user transmission in a frequency non-selectareneh, we developed
a concept of self and multiple access interference to derive importanhiasigo the working
of the algorithm for multi-user transmissions for general frequency setechannels where
users might occupy discontiguous bands due to dynamic allocation. Wd tbanfor a two
user system, when the differential delays of the two users are muchthagetihe cyclic prefix,
the performance of the algorithm, even with filtering, deteriorates as thepiecthandwidth
is split into several pieces, and in some realistic cases becomes quite pssumifg that
the receiver of the desired user is aware of the bands in which the trarsigtel lies, we
showed that it could filter its intended signal and partially restore the pe#ioce. We feel that
this work provides a systematic study of non-contiguous OFDM timing acquisatimhhas
important implications in the design of future dynamic spectrum access bgsteths. There
is ample scope for future work, notably in determining acquisition algorithms e user
transmits in multiple narrow sub-bands and also in investigating practical meliyoahich

the receiver may infer the spectral occupancy of its transmitter duringcthésation phase.
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The major part of the thesis is focused on centralized, property rightxllmhgramic al-
location of spectrum as we beleive this to be predominant regime in the yeeosn@ To
understand the interplay of technology and economics that characteszegime, we de-
velop and analyze a two tiered dynamic spectrum allocation model consistemgpméctrum
broker, service providers and end users. We believe that such a maaétvant for many
upcoming wireless systems.

User utility maximization was the first operating principle that we considered. th®
we show that in the optimal policy each user obtains spectrum only fromesaes provider
given by a function of the link gains and provider efficiency. Basedwraoalysis we develop
the notion of a spectrum price to facilitate distributed allocation. For two genkrsses of
concave utility functions namely exponential amgdwe analytically characterize the spectrum
allocation and price. We show that our results are consistent with basiomacs principles.
Our work provides theoretical bounds on performance limits of practaiator to user based
dynamic spectrum allocation systems and also gives insights to actual syet&m.d

Service provider profit maximization was the next operating principle censitlin this
thesis where a network of multiple service providers compete with each otkeciming the
service of users in the downlink. Each provider sets a spectrum pridhamisers decide which
provider to obtain service from based on their price and the link gains.réfgope a dynamic
allocation scheme based on SP profit maximization. We developed the cofhegpeffective
spectrum price and showed how it lead to equilibrium solutions of the SP guitgetition
game. We showed that in the optimal allocation each user obtained serviteritg one SP,
each provider has its own customer base and it can price them assumiogpetition. The
loss in profit due to competition may drive SPs to operate in markets where rindlyeasole
provider. We analyzed this situation through a monopoly framework andeshthe difference
in the optimal pricing structure. Further insights were obtained from the noaheesults,
which showed that a SP should invest in a better modulation and coding tegirmmly if the
cost of spectrum is high. If the broker charges minimal cost for spectan SP is better off in
buying abundant spectrum and transmitting at a reduced spectralrefficie

We established the relationship between the spectrum prices that the tihakges to the
SPs and what the SPs charge to their customers. We showed this depeéhdsiser demand
functions. From a network operator standpoint, if the application requirteno¢the customers

are known, our work gives useful insights about setting the optimal palees.
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There are interesting questions that arise from our work. From equii8)) we show
that a design principle for the broker could be to choose the value ofrapepriceC close to
the spectral efficiency values of the SPs. A second interpretation isaibatg the broker cost
forces the operators to operate at higher spectral efficiency. It idewr if this is good for the
users since higher costs can preclude some types of applications sicgself we view the
broker as the FCC and the users as taxpayers, the key question is textdratdoes lowering
the broker cost increases the profitabilty of the SPs vs providing lovets tmthe users.

The issue of timescale has not been dealt rigorously in this thesis. We$ssréeal that our
allocations are valid for duration of a communication session in which the sysiemmeters
such as number of users and SPs and link gains stay constant. A sesdibearrespond to
the time taken to download a file and could be of the order of seconds of miniefave
not analyzed the dynamics of price change and the convergence ateugddorithms such as
(3.11) in this thesis, chosing instead to focus on given snapshots ofgtesyThe dynamics
of distributed update algorithm is an important issue but we take encouragéorm the fact
that many update algorithms designed for system snapshots seem to waaktingd dynamic
environments. An example is the convergence of power control in cellDMAC[89, 90].

We believe that our work is the first attempt to jointly understand the brokePtarfi
SP to user spectrum allocation from a joint SP cost and user utility framewldriugh our
model is simple, it reveals interesting trends about the interactions betweetnusp alloca-
tion and pricing to end users, choice of technology by a SP and spectisiaharged by a
broker. There is ample scope for future work. In particular, the lineatahior spectrum and
power costs can be replaced by more realistic models that are closertiogirsgstems. Also
consideration of two dimensional and random network topologies will yield @ rmomplete
understanding of the properties of spectrum allocation and pricing thdiméae arrangement

of users and SPs considered in this chapter.
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Appendix A

Properties of the Utility Function

In this section we establish various properties of the utility function congidartnis paper.

Lemma 13. If U(R) is an increasing and concave functionfiithenU (nx log(1 + hP/x)) is

an increasing concave function of the vectoe [z, P]

Proof: Lets first prove thafk(x, P) = nxlog(1l + hP/x) is a concave function of the.
The direct way is to evaluate the Hessian and prove that it is negativételefrshorter proof
is given in [72] where the authors show that it is sufficient to test focaeity along any line
which lies in the domain of the function, i.e a line of the foftn= ax + b, thus restricting
our attention to a single variable Here we present an even shorter proof which uses the idea
perspective of a function [70]. We state the following lemma and refer theested reader to

Section 3.2.6 of [70] for the proof.

Lemma 14. If f : R® — R, then theperspectiveof f is the functiory : R**! — R defined
by,

g(x,t) =tf(x/t),
with domaindom g = {(x, t)|x/t € domf,¢ > 0}. The perspective function preserves convex-

ity. If f(x) is concave ilR" theng(x, t) is concave iRR"*!,

Now consider the functioi(P) = nlog(1 + hP) which is concave itP. We see that the
function R(z, P) = nzlog(1 + hP/x) is the perspective aR(P) w.r.t. variablex and is thus
concave inv = [z, P].

ThusR(z, P) is a concave function of andU (-) is an increasing concave function. Thus

from [70], U(R(z, P)) is an increasing concave functionof

Lemma 15. If U;(R;) is an increasing concave function Ry then the following is an increas-

ing concave function of the vectof™N) = [vq,--- , vn]| wherev; = [z;5, pij],

N
Uj (Z nixijlog(1 + hijpij/ 5%'))

i=1
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Proof. Consider the functiom?; (viN)) = S| r;(v;) where each;;(v;) = mix;; log(1 +
hijpij/xi;) depends only om;; andp;; it can be shown that the Hessian Bf has a block
diagonal structure. Henc‘@sz = diagD1, -, Dy] where from Lemma 13, each x 2
matrix D; is negative definite. Now consider any vectoe R?*V. From the block diagonal
structure ofV2R; it can be shown that” (V2R;)z = SN | 2,7 D;z; wherez; = [z, 1, 22i].

Since eaclD; is negative definite, the sum is also negative for any vector O
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Appendix B

Monopoly Pricing under Downlink Transmit Power Constraint

B.1 System Model

We consider that the SP has a total power constraiand allocates powe?; to the transmis-
sion of userj. The SP is thus performing a joint power and spectrum allocation. Thérapec
efficiency obtained by usef is now given by,v(z;) = log(1l + h;P;/x;), where we have
assumed unit power spectral density of background AWGN. We assuate; tis flat over fre-
quencies and thus no matter between what bandes, h; is same. We consider linear user
utilities, i.e.U;(R;) = R;. The SP cost function is assumed to®eX ) = C X.

We consider two different types power allocations,

1. The SP serves all thie users with equal power allocation. Thus # 0 andP; = P/L

forall j.

2. The SP optimized’; to maximize his profit. Thus some users not accept service i.e.
xzj; = 0, P; = 0 because of price§:, x). The loss of revenue from these users can be

made up by increased revenue from other users.

Usually the demand function of a user does not depend on number sflusdowever in our

case the demand function of spectrum as per Chapter 5, equation (5.3) is,

h;P; nh;P;
=nlo 1+“) o B.1
p=n g( . P ) (B.1)

which depends ot’;. Since there is a total transmit power constrdtmthe demand functions

of the users are in fact dependent on each other.

SP serves all users

From (5.8) the elasticity of demandgquation is given by

czu<1—1L5>. (B.2)

€
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wheres = z,,,/ X ande is the elasticity of demand.

Lemma 16. The function

1 1
= =1 1+-)— B.
n=f(z) 0g<+z> T2 (B.3)
is decreasing and convex for positive

Proof: Forz > 0, f'(z) < 0andf”(z) > 0.

Lemma 17. The user with the weakest channel to the SP is the marginal user.

Proof. The demand function of usgris obtained by substituting; = P/L in (B.1),

th> h;P (B.4)

n=log <1 + Lz; B Lxj+ h; P’
Assume WLOG thaty > hy > --- > hy. Consider userd. andk, wherek < L. Fix
xr, = xp = x. Interms ofz, = Lx/hy P andz, = Lx/h; P, (B.4) reduces to (B.3). Now
hi > hr = z < zr, and hence by Lemma 16(zx) > f(zr). Thisisillustrated in Figure B.1
which shows that the graph for udeties to the right of the graph for usérfor all k.

Let us recollect equation (5.6) from Chapter 5 which stated #hg®y = —z,,. This
implies that

-~ " () (B.5)
I

Let the optimal price be*. The surplus of usek is the area of the region DAC while that of
userL is the area of region DBC as these are the values of the integral in (BlGae@forzy,
andzy. Since area of DAC> area of DBC usel. has the least surplus amongst all users and

is thus the marginal user. O
Recall that the same result was observed in Chapter 5, Lemma 3 and 7.

Lemma 18. At the optimal solution spectrum prigeis more than the marginal cost of pro-
ductionC’(X).

Proof: Let the solution of (B.3) be = f~1(u). Sincef(z) is decreasing and convex, it
is one-to-one and thug~!(u) is also one-to-one. Let the optimal price pe= p*. Since

2 = Lxy /hi P, we obtain,
P

7). (B.6)

L
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Figure B.1: The demand function for two users

Thus in (B.2) we can evaluate,

Loy _ Lhy(P/L)f'(w") _  Lhyg _
X S P/ () S e

ashy = min(hy, he,--- , hy). Substituting for this in (B.2), we obtain the desired resHlt.

Ls = 1, (B.7)

The relationshig: > C’(X) means that the spectrum cost charged by spectrum regulatory
body of a country like FCC to the SP is increased and passed on directly tcagtemers by
the SP.
Substituting forz, from (B.6) in (B.2) and after some algebraic manipulations we obtain,
1“LhL/§:£=1hk
(L4 w)?

Thus given a set of. users (B.8) can be solved and the optimal valug: afetermined. In

C=up+

(B.8)

practice we can assume that before the actual spectrum allocation tadesgaleh user sends
beacon packets to the SP and thus the SP is aware of number ofluseisd the channel
coefficientshy - - - . The SP can then solve (B.8).

From (B.5) and (B.6) we can show that

. hpP [ ,_
e R (8.9)
/J/*

Observe from (B.8) and (B.9) that far(X) = C X, u* does not depend on transmit power
while x* does. In fact (B.9) shows that increases linearly wittP. Thus it is profitable for

the SP to increase his transmit power. Of course we haven't factored goth incurred by the
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SP for increasing his transmit power (for e.g. batteries draining outfagtech might have

given the optimal value oP.

SP optimizes the transmit powers

In this section we return to the general demand function as given in (Bdlasinthe following
guestion:if there areL users and the SP has a total transmit power constraint how should he
optimally allocate power to their transmissions so as to maximize his profitsnention at
this juncture that power allocation has traditionally been used for objediwds as user sum
capacity maximization but to the best of our knowledge has never beenredgtr the SP
profit maximization.

First assume that in the optimal solution the SP serves only thé\iatt of L users. Then
the userN is the marginal user. Then (B.6) is modifiedtp = h, P, f~'(u*) and (B.9) is
modified tox* = hnPy [,7 f~'(n)du. Recall that SP profit(N) = (u* — C)X + Nx*.

Hence the power allocation problem for profit maximization can be exptesse

N
Y g U= O ) 3 P N
1 NhyP,
(L4 f=1 () > k=1 TP

K= hNPN/ F N (w)dp

w*
P+.---+Py=P
P,---, Py >0.

This is a complicated non-convex problem. However we can arrive atgtimal solution
indirectly. Let us first consider 2 users with > ho and derive the optimal power allocation.
The result can be generalized to the case when more users are presendefinition ofp(x;),

the SP revenue from usgi(see (5.1)) we can write the SP objective function is,

7(2) = p(z1) + p(x2) — C(21 + 72) (B.10)
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Recall from the definition of the marginal user in Section 5.2.1, the entirdusuppthe second
user is extracted by the SP. Thus utility(z2) = p(z2). This is true even if no spectrum is
allocated to user 2 as théf(x2) = 0 andp(z2) = 0 by definition. However the first user still

has some surplus left and heriégz1) > p(x1). Thus for allzq, 2

m(2) < Vi(z1) 4+ Va(z2) — C(z1 + z2). (B.11)
Thus,
mg&i}gzo m(2) < x1£%%c)2(>0 ZVk (zg) — Cxy. (B.12)
P >0,P,>0 P1>0,P,>0 k=1
P1+P,=P Pi+P,=P

But the optimization problem in the RHS of (B.12) is similar to the sum utility maximization
problem considered in Chapter 3 with the shadow price being replacedgpdttrum cost
C. It has been shown in Chapter 3, Corollary 1 that the solution of the optinmzatablem is
achieved by allocating all power to the user with the best channel. Ginceh,, the optimal
power vector igP, 0]. But for this power vector both the LHS and RHS optimization problems
in (B.12) become the same problem. This is a optimizingor P, = P. Thus for [P, 0]
the optimization ofr(2) touches the maximum value of its upper bound and hence this is the
optimal power allocation strategy.

Thus to maximize profits the SP maximizes the sum utility of the system as he can then

extract dollar revenues proportional to the sum utility.

B.1.1 Numerical Results

We now numerically evaluate how the SP profit varies with the number of usersdsunder
a uniform power allocation policy. Let the SP setWeusers with the largest value of channel
gains. The users are indexed frdnto V and each transmission takes place at polRéw.
Cases considered in Sections B.1 and B.1 correspond4ol and N = 1 respectively.

We assumd. = 15 users are distributed in a cellular area &im. The channel coefficients
originate from a distance based path loss model. We also assume that daedw $ading
the received SNR is reduced by a constant fading margin. As mentiorient gz the channel
coefficients are flat over frequencies and depend only upon théagsgions. The values of
andk are calculated from (B.8) and (B.9) respectively. The simulation paraseteexplained
in Table B.1. The SP profit depends on how the functigN) = Nhy/ Zszl hy, varies with
N. Now g(1) = 1 and forNy, Ny > 1, g(N1),g(N2) < 1, but their relative order depends
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SP Profit

5 1‘0 15
No. of Users Served

Figure B.2: The SP profit as the number of served users varies

No. of Users,L 15
Path Loss Coeff 3.7
Reference Distance | 100m

Cell Radius 1km
Transmit Power 5 Watt
Efficiency,n 0.08
Fading Margin 44 dB

Table B.1: Parameters for Spectrum Allocation

on the values of the coefficients,. Thus for eachV > 1, we generate 10000 instances of
channel vectofhy, - - - , hy] and calculate the average value of SP profit. The result is shown
in Figure B.2. We see that the SP profit decreases as the number ofnesesse. It is most
profitable for the SP to serve only one user as was proved in Section B.1.

Figure B.3 plots the breakup of the SP revenue from subscriptionscarstl usage cogiz
for the marginal user and the user with the best channel to the SP éckferas the best user),
for C = 0.5. The majority of the revenue comes from the usage cost of the bestlLesest
revenue comes from the subscription cost. The demand function grajgingea in Figure B.1
give us the intuition that for lower values 6f, the spectrum purchased and the surplus
more. This is observed in Figure B.4 where the valu€' @ lowered td).05. Lastly Figure B.5
shows that the SP profit reduces exponentially with production@ost

Note that the absolute values of the various parameters shown in the fghoelsi not
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5 1‘0 15
No of Users Served

Figure B.3: The SP revenue from different usersdoe 0.5

10 1 —o— Marginal User, usage cost 3
—&— Best User, usage cost
—— Subscription Cost

User Payments

5 10 15
No of Users Served

Figure B.4: The SP revenue from different users@o« 0.05

be interpreted literally. For e.g. we ha¢é = 0.5,0.05 but profit values which are bigger
by several orders of magnitude. This is because for simulation purpbgegarious systems
equations likeu = V'(z) = C’(x) haven’t been normalized. Omwllar, the unit ofC’(x) is
not equivalent to onbps the unit ofVV/(z). The results in this paper are true within bounds of
proper scaling.

In passing we note that the role of the marginal user in profit maximizing pritiagegies
have also been studied in [91] for a communications system with only fixestspbon costs

x and where the SP allocates power to a group of downlink nodes. Thisrasai slightly
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Figure B.5: The SP profit as spectrum production ¢osaries

different due to the non inclusion of usage based cost in the problenufation.
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Appendix C

Miscellaneous Proofs of Chapter 3

C.1 Proof of Theorem(3)

DefineVU;(z}) = 0U;/0x} = U;j(R;)I'z(x}, P,h) and M = max; VU;(z] — €) for some

e > 0. From Lemma 1VU;(z}) is decreasing. The decrease in sum utility is

L T* L
MUae =Y [ U ) do <375 - e < MLe 1)
j=1"%; ¢ j=1

However the utility of usel. + 1 is

Le
AUpe = | VUL 1(2)dz > VUL (Le)Le. (C.2)
0

From (C.1) and (C.2), we have to show existence of 0 such thatvUy ;1 (Le) > M. Now
M is increasing ire while VU1 (Le) is decreasing in. Ase — 0, VU41(Le) — oo due to
I'; while M — max; VU;(z}). Thus ate = 0, the decreasing function is above the increasing
function and so they are sure to intersect at same z,. So for0 < e < xs sum utility

increases by allocating spectrum to usef+ 1.

C.2 Proof of Lemma 2

We have to show thdiz’(R(x,p, h))I'z(x,p, h) is a strictly increasing function of for fixed
whenU(R) = R*/a for 0 < a < 1. Alternatively substitutingg = hp/x we have to show

that the following is strictly increasing in,

(zlog (14 2))*~" [log (14+2) -+ i Z}

—o (o 1+ 2)° 1 - L0 ©3)

Since(log (1 + 2))“ is strictly increasing irz, a sufficient condition is to show thdtz) =
(1 + 2)log(1 + z)/z is strictly increasing ir, which is proved by evaluating(z) and using

the fact that: — log(1 4 z) > O for all z > 0.
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C.3 User Surplus in Corollary 2

We have to show that = U(R(z, p, h)) — ux for u = U(R(z, p, h))Tx(x, p, h) is increasing
in p. A sufficient condition is to show that(z, p, h) is increasing in both: andp for fixed A,
since Theorem 5 proved that increasjnigcreases:. DefineR,.(z, p, h) = 0T',,/0x. We can

show
a_u
oz

SinceU (R) is increasing and concavé(R) > 0 andU(R) < 0. SinceR(z, p, h) is concave

— ~2 [U(R)Rya(z,p, h) + U;(R)T (2, p, )| (C.4)

inz, Ryz(z,p, h) < 0. Using all these we can show thaltl/0x > 0. Differentiating

ou . or, .
— = r,— — J I
ap U(R)[ p— X ap] zU(R)T)
It can be shown that,
or, ha?
T, — = . C5
P Op (x + hP)? >0 (C.5)

With this information we can also show thaitl /Jp is positive.
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Appendix D

Miscellaneous Proofs of Chapter 5

D.1 Proof of Lemma 6

a) From (5.6) we havell},/ou* = —Lax;, < 0.

b) Taking derivatives

ang o)X @ [1_6* (@)] , (D.1)
op op I

where equality(a) follows from (5.7). From (D.1), it can be showil;; /0p* > 0 holds

when
€* <L*Ce> <1 (D.2)
Iz
Substitute fore* from (5.14) in (D.2) and after some manipulations we obtain<

D.2 Proof of Lemma 10

a) Proof is same as proof of Lemma 6a)

b) Similar to the proof of Lemma 6b), we have to show that the elasticity satisfiestiom
(D.2). Now (pu* — C¢)/u* < 1. And it was proved in Lemma 9 that for* < uy,

elasticity,e* < 1.
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Appendix E

Miscellaneous Proofs of Chapter 6

E.1 Proof of Theorem 10

We have to show that if users positions satisfy (6.13) and jisdatains service from SP 1,
so does usej — 1. Since user; is attached to SP 1, the user optimization (6.12) yields,

max, U;(Kijx)— iz > max, U;j(Kzjx)— pex. Now since the user locations satisfy (6.13)

Ujfl(Kljfll') > Uj(KljZU) for all (E.l)

Uj_l(ng_la:) < Uj(KQjJ}) for all = (E2)

From (E.1), we obtair/;_;(Kq—1z) — mz > Uj(Kyjz) — wme forall z. Leta* =
argmax, U;(Kijx) — pix. ThusU;j_i(Kij—12*) — pia* > max, Uj(Kyjx) — e, But
max, Uj_1(Kyj—12) — iz > Uj_1(Kijo12%) — e > max, Uj(Kqj2) — pyo. Similarly
we can prove thahax, U;_i(Kaj_12) — pex < max, U;(Ko;x) — pex. Combining we get

the desired result.
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