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This dissertation comprises three essays in macroeconomic forecasting. The first essay

discusses model selection and predictive accuracy tests in the context of parameter and

model uncertainty under recursive and rolling estimation schemes. Particular emphasis

is placed on the construction of valid bootstrap procedures for calculating the impact of

parameter estimation error on the class of test statistics with limiting distributions that

are functionals of Gaussian processes. Results of an empirical investigation of the marginal

predictive content of money for income are also presented.

The second essay outlines a number of approaches to the selection of factor proxies (ob-

served variables that proxy unobserved estimated factors) using statistics based on large

sample datasets. This approach to factor proxy selection is examined via a small Monte

Carlo experiment and a set of prediction experiments, where evidence supporting our pro-

posed methodology is presented.

The third essay compares the predictive content of a set of macroeconomic indicators

with that of various other observable variables that act as proxies to factors constructed

using diffusion index methodology. The analysis suggests that certain spreads constructed

as the difference between short or long term debt instruments and the federal funds rate

are found to be useful indicators. Surprisingly, traditional spreads, such as the yield curve

slope and the reverse yield gap are not found to provide additional predictive power.
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Chapter 1

Introduction

This dissertation considers the forecasting performance of various macroeconomic time se-

ries models. The second chapter discusses model selection and predictive accuracy tests

in the context of parameter and model uncertainty under recursive and rolling estimation

schemes. The chapter begins by summarizing some recent theoretical findings, with partic-

ular emphasis on the construction of valid bootstrap procedures for calculating the impact

of parameter estimation error on the class of test statistics with limiting distributions that

are functionals of Gaussian processes with covarinace kernels that are dependent upon pa-

rameter and model uncertainty. An example of a particular test which falls in this class is

given by outlining the so-called Corradi and Swanson (CS: 2002) test of (non)linear out-

of-sample Granger causality. Thereafter, a series of Monte Carlo experiments examining

the properties of the CS and a variety of other related predictive accuracy and model se-

lection type tests is given. Finally, the results of an empirical investigation of the marginal

predictive content of money for income, in the spirit of Stock and Watson (1989), Swanson

(1998), Amato and Swanson (2001), and the references cited therein are presented. There

is evidence of predictive causation when in-sample estimation periods are ended any time

during the 1980s, but less evidence during the 1970s. Furthermore, recursive estimation

windows yield better prediction models when prediction periods begin in the 1980s, while

rolling estimation windows yield better models when prediction periods begin during the

1970s and 1990s. Interestingly, these two results can be combined into a coherent picture

of what is driving the empirical results. Namely, when recursive estimation windows yield

lower overall predictive MSEs, then bigger prediction models that include money are pre-

ferred, while smaller models without money are preferred when rolling window models yield

the lowest MSE predictors.
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In the third chapter, common factors are often assumed to underlie the co-movements of

a set of macroeconomic variables. For this reason, many authors have used estimated fac-

tors in the construction of prediction models. This chapter outlines a number of approaches

to the selection of factor proxies (observed variables that proxy unobserved estimated fac-

tors) using statistics developed in Stock and Watson (2002a,b) and Bai and Ng (2006a,b).

This approach to factor proxy selection is examined via a small Monte Carlo experiment,

where evidence supporting the proposed methodology is presented, and via a large set of

prediction experiments using the panel dataset of Stock and Watson (2005). One of the

main empirical findings is that the ”smoothed” approaches to factor proxy selection appear

to yield predictions that are often superior not only to a benchmark factor model, but

also to simple linear time series models which are generally difficult to beat in forecasting

competitions. In some sense, by using the proposed approach to predictive factor proxy

selection, one is able to open up the ”black box” often associated with factor analysis,

and to identify actual variables that can serve as primitive building blocks for (prediction)

models of macroeconomic variables, and can also serve as policy instruments, for example.

With regard to forecasting price variables such as CPI and PPI, autoregressive models with

exogenous variables (ARX), where the exogenous variables are based on smoothed versions

of the A(j) and M(j) tests, often outperform all other considered models at the 1, 3 and 12

month ahead horizons. However, the basic factor model outperforms all other alternative

models at the 24-month ahead horizon. These findings suggest that important observable

variables include various SP500 stock price indices and dividend series; a 1-year Treasury

bond rate; housing activity variables; industrial production; and exchange rates.

In the fourth chapter, the Federal Reserve regularly monitors select financial and macroe-

conomic variables in order to obtain early indication of the impact of current monetary pol-

icy. This practice is discussed on the Federal Reserve Bank of New York website, where one

particular set of macroeconomic indicators is given. As a measure of the ”adequacy” of these

particular ”macroeconomic indicators”, the chapter compares their predictive content with

that of various other observable variables that act as proxies to factors constructed using

the Stock and Watson (2002a,b) diffusion index methodology. More specifically, observable

proxies for factors obtained from ”diffusion index” analysis of a large scale macroeconomic
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and financial dataset are constructed via application of the methodology recently introduced

in Bai and Ng (2006a,b) and further developed by Armah and Swanson. Interestingly, the

”macroeconomic indicators” are very similar to the observable variables that proxy the

factors. The findings, thus, lend credence to the macroeconomic indicators used to mon-

itor monetary policy. In addition, the analysis suggests that certain ”spreads” are useful

indicators. The particular spreads found to be useful are the difference between short or

long term debt instruments and the federal funds rate. Surprisingly, traditional spreads,

such as the yield curve slope and the reverse yield gap are not found to provide additional

predictive power. More specifically, ”spread augmented” models, which are by construction

less parsimonious than those not containing spreads, yield improved inflation and output

growth predictions for a variety of models and forecast horizons, based on mean square

forecast error comparisons; and in particular, the macroeconomic indicators perform best

when forecasting inflation in non-volatile time periods. On the contrary, the forecast per-

formance of the indicators can be improved by including spreads when forecasting inflation

in times of high volatility.
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Chapter 2

Predictive Inference Under Model Misspecification with an

Application to Assessing the Marginal Predictive Content of

Money for Output

2.1 Introduction

In a series of recent papers, Chao et al (2001) and Corradi and Swanson (2002, 2004, 2006a,

2007) discuss model selection and predictive accuracy tests in the context of parameter and

model uncertainty under recursive and rolling estimation schemes. In this chapter, we begin

by summarizing some of the theoretical findings of these papers, with particular emphasis

on the construction of valid bootstrap procedures for calculating the impact of parameter

estimation error on the class of test statistics with limiting distributions that are functionals

of Gaussian processes with covariance kernels that are dependent upon parameter and model

uncertainty. We then provide an example of a particular test which falls in this class.

Namely, we outline the so-called Corradi and Swanson (CS: 2002) test of (non)linear out-

of-sample Granger causality. Thereafter, we carry out a series of Monte Carlo experiments

examining the properties of the CS and a variety of other related predictive accuracy and

model selection type tests, including the Deibold and Mariano (DM: 1995) and West (1996)

predictive accuracy test as well as the encompassing test of Clark and McCracken (CM:

2004). This is done for both recursive and rolling window estimators, hence shedding

light on the finite sample impact of using shorter rolling windows rather than recursive

windows. Finally, we present the results of an empirical investigation of the marginal

predictive content of money for income, in the spirit of Stock and Watson (1989), Swanson

(1998), Amato and Swanson (2001), and the references cited therein. The empirical results

shed new light on the importance of sample periods and estimation schemes when carrying

out empirical investigations.
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The main link between this chapter and the overall theme of the book is that we ad-

dress the issue of model uncertainty. In particular, the tests discussed herein do not assume

correct specification under either the null or the alternative hypothesis being tested. This

is a crucial assumption to have if one believes that all models are approximations of some

underlying true DGP. Of course, if one does not believe that all models should be viewed as

approximations, then there is perhaps really no obvious need to carry out ex ante inference

using forecasts (assuming no structural breaks). After all, under the assumption of correct

specification under the null, why not simply carry out in-sample inference, for the sake of

efficiency? Our approach differs from approaches used in many (perhaps most) currently

popular prediction tests, where correct specification is assumed under the null. As a case in

point, consider the predictive density testing framework discussed by the important paper

of Diebold, Gunther and Tay (DGT: 1998) and in Corradi and Swanson (2006a,b,c). In

their paper, DGT use the probability integral transform (see e.g. Rosenblatt (1952)) to

show that Ft(yt|=t−1, θ0), is identically and independently distributed as a uniform random

variable on [0, 1], where Ft(·|=t−1, θ0) is a parametric distribution with underlying param-

eter θ0, yt is the random variable of interest, and =t−1 is the information set containing

all “relevant” past information (see below for further discussion). They thus suggest using

the difference between the empirical distribution of Ft(yt|=t−1, θ̂T ) and the 45◦−degree line

as a measure of “goodness of fit”, where θ̂T is some estimator of θ0. This approach has

been shown to be very useful for financial risk management (see e.g. Diebold, Hahn and

Tay (1998)), as well as for macroeconomic forecasting (see e.g. Diebold, Tay and Wallis

(1998) and Clements and Smith (2000, 2002)). Likewise, Bai (2003) proposes a Kolmogorov

type test of Ft(u|=t−1, θ0) based on the comparison of Ft(yt|=t−1, θ̂T ) with the CDF of a

uniform on [0, 1]. As a consequence of using estimated parameters, the limiting distribu-

tion of his test reflects the contribution of parameter estimation error and is not nuisance

parameter free. To overcome this problem, Bai (2003) uses a novel approach based on a

martingalization argument to construct a modified Kolmogorov test which has a nuisance

parameter free limiting distribution. This test has power against violations of uniformity

but not against violations of independence. Now, Corradi and Swanson (2006b), allow for

(dynamic) misspecification under the null hypothesis, while the others mentioned above
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do not. This feature allows them to obtain asymptotically valid critical values even when

the conditioning information set does not contain all of the relevant past history. More

precisely, if one is interested in testing for correct specification, given a particular infor-

mation set which may or may not contain all of the relevant past information, then the

Corradi-Swanson approach is preferrable. This is relevant when a Kolmogorov test is con-

structed, for example, as one is generally faced with the problem of defining =t−1. If enough

history is not included, then there may be dynamic misspecification. Additionally, finding

out how much information (e.g. how many lags) to include may involve pre-testing, hence

leading to a form of sequential test bias. By allowing for dynamic misspecification, one

does not require such pre-testing. Another key feature of the Corradi-Swanson approach

concerns the fact that the limiting distribution of Kolmogorov type tests is affected by dy-

namic misspecification. Critical values derived under correct specification given =t−1 are

not in general valid in the case of correct specification given a subset of =t−1. Consider

the following example. Assume that we are interested in testing whether the conditional

distribution of yt|yt−1 is N(α†1yt−1, σ1). Suppose also that in actual fact the “relevant”

information set has =t−1 including both yt−1 and yt−2, so that the true conditional model

is yt|=t−1 = yt|yt−1, yt−2 = N(α1yt−1 + α2yt−2, σ2), where α†1 differs from α1. In this case,

we have correct specification with respect to the information contained in yt−1; but we have

dynamic misspecification with respect to yt−1, yt−2. Even without taking account of param-

eter estimation error, the critical values obtained assuming correct dynamic specification

are invalid, thus leading to invalid inference. Stated differently, tests that are designed to

have power against both uniformity and independence violations (i.e. tests that assume

correct dynamic specification under H0) will reject; an inference which is incorrect, at least

in the sense that the “normality” assumption is not false. In summary, if one is interested in

the particular problem of testing for correct specification for a given information set, then

the Corradi-Swanson approach is appropriate. In general, these sorts of arguments apply

to all varieties of prediction based testing, such as that discussed in this chapter.1

Parameter estimation error is a crucial component of model selection and predictive

1Note that we do not address structural breaks directly, although lack of knowledge of structural breaks
when specifying a model can clearly lead to misspecification under both hypotheses. This is one reason why
rolling windows are sometimes used in predictive contexts.
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accuracy tests that is often overlooked, or more precisely is often assumed away by making

the assumption that the in-sample estimation period grows more quickly than the out-

of-sample predictive evaluation period. However, in some circumstances, such as when

constructing DM tests for equal (pointwise) predictive accuracy of two models, limiting

distributions are normal random variables, and parameter estimation error can be accounted

for using the framework of West (1996). In other circumstances, such as when constructing

tests which have power against generic alternatives (e.g. the CS test), statistics have limiting

distributions that can be shown to be functionals of Gaussian processes with covariance

kernels that reflect both (dynamic) misspecification as well as the contribution of parameter

estimation error. Such limiting distributions are not nuisance parameter free, and critical

values cannot be tabulated. Nevertheless, valid asymptotic critical values can be obtained

via use of a bootstrap procedure that allows for the formulation of statistics which properly

mimic the contribution of parameter estimation error. In the first part of the chapter we

summarize block bootstrap procedures which are valid for recursive and rolling m-estimators

(see e.g. Corradi and Swanson (2006a, 2007)).

In the second part of the chapter we review the so-called CS test, which is an out-of-

sample version of the integrated conditional moment (ICM) test of Bierens (1982, 1990)

and Bierens and Ploberger (1997), and which yields out-of-sample tests that are consistent

against generic (nonlinear) alternatives (see Corradi and Swanson (2002, 2007) and Swanson

and White (1997)). The CS test can alternatively be viewed as a consistent specification

test, in the spirit of Bierens, or as a nonlinear Granger causality test, as discussed in Chao et

al. (2001). Note, however, that the CS test differs from the ICM test developed by Bierens

(1982, 1990) and Bierens and Ploberger (1997) because parameters are estimated in either

recursive or rolling fashion, the test is of the out-of-sample variety, and the null hypothesis

is that the reference model delivers the best “loss function specific” predictor, for a given

information set. Furthermore, the CS test allows for model misspecification under both

hypotheses (see Corradi and Swanson (2006b)).

In order to provide evidence on the usefulness of the bootstrap methods discussed above,

and in particular in order to compare bootstraps based on recursive and rolling estimators,

we carry out a Monte Carlo investigation that compares the finite sample properties of
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our block bootstrap procedures with two alternative naive block bootstraps, all within the

context of the CS test and a simpler non-generic version of the CS test due to Chao, Corradi

and Swanson (CCS: 2001). In addition, various other related tests, including the standard

F-test, the DM test and the CM test are included in the experiments. Results support

the finding of Corradi and Swanson (2007) that the recursive block bootstrap outperforms

alternative naive nonparametric block bootstraps. Additionally, we find that the rolling

version of the bootstrap also outperforms the naive alternatives, Finally, we find that the

finite sample properties of the other tests vary to some degree. Of note is that the Kilian

(1999) bootstrap is a viable alternative to ours, although theoretical assessment thereof

remains to be done (see Corradi and Swanson (2007) for further discussion).

In the last part of the chapter, an empirical illustration is presented, in which it is found

that results concerning the (non)linear marginal predictive content for money for output are

not only sample dependent, but also vary to some limited degree depending upon whether

recursive or rolling estimation windows are used. In particular, there is evidence of predictive

causation when in-sample estimation periods are ended any time during the 1980s, but little

evidence of causality otherwise. Furthermore, recursive estimation windows yield better

models when prediction periods begin in the 1980s, while rolling estimation windows yield

better models when prediction periods begin during the 1970s and 1990s. Interestingly, these

two results can be combined into a coherent picture of what is driving our empirical results.

Namely, when recursive estimation windows yield lower overall predictive MSEs, then bigger

prediction models that include money are preferred, while smaller models without money

are preferred when rolling models yield the lowest MSE predictors.

Hereafter, P ∗ denotes the probability law governing the resampled series, conditional on

the sample, E∗ and V ar∗ are the mean and variance operators associated with P ∗, o∗P (1)

Pr−P denotes a term converging to zero in P ∗−probability, conditional on the sample, and

for all samples except a subset with probability measure approaching zero, and O∗
P (1) Pr−P

denotes a term which is bounded in P ∗−probability, conditional on the sample, and for all

samples except a subset with probability measure approaching zero. Analogously, Oa.s.∗(1)

and oa.s.∗(1) denote terms that are almost surely bounded and terms that approach zero

almost surely, according the the probability law P ∗ and conditional on the sample. Note
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that P is also used to denote the length of the prediction period, and unless otherwise

obvious from the context in which it is used, clarification of the meaning is given.

2.2 Block Bootstraps for Recursive and Rolling m−Estimators

In this section, we draw largely from Corradi and Swanson (2006a, 2007).

2.2.1 Recursive Estimation Window:

Define the block bootstrap estimator that captures the effect of parameter estimation error

in the context of recursive m-estimators, as follows. Let Zt = (yt, ..., yt−s1+1, Xt, ..., Xt−s2+1),

t = 1, ..., T, and let s = max{s1, s2}. Additionally, assume that i = 1, ..., n models are esti-

mated (thus allowing us to establish notation that will be useful in the applications presented

in subsequent sections). Now, define the recursive m-estimator for the parameter vector

associated with model i as:2

θ̂i,t = arg min
θi∈Θi

1
t

t∑

j=s

qi(yj , Z
j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n (2.1)

Further, define

θ†i = arg min
θi∈Θi

E(qi(yj , Z
j−1, θi)), (2.2)

where qi denotes the objective function for model i. As the discussion below does not depend

on any specific model, we drop the subscript i. Following standard practice (such as in the

real-time forecasting literature), this estimator is first computed using R observations. In

our applications we focus on 1-step ahead prediction (although results can be extended quite

easily to multiple step ahead prediction), so that recursive estimators are thus subsequently

computed using R + 1 observations, and then R + 2 observations, and so on, until the last

estimator is constructed using T − 1 observations. This results in a sequence of P = T −R

estimators. These estimators can then be used to construct sequences of P 1-step ahead

forecasts and associated forecast errors, for example.

The overlapping block resampling scheme of Künsch (1989) involves drawing b blocks

(with replacement) of length l from the sample Wt = (yt, Z
t−1), where bl = T − s, at each

2Within the context of full sample estimation, the first order validity of the block bootstrap for
m−estimators has been shown by Goncalves and White (2004) for dependent and heterogeneous series.
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replication. Thus, the first block is equal to Wi+1, ..., Wi+l, for some i = s− 1, ..., T − l + 1,

with probability 1/(T − s − l + 1), the second block is equal to Wi+1, ..., Wi+l, again for

some i = s − 1, ..., T − l + 1, with probability 1/(T − s − l + 1), and so on, for all blocks,

where the block length grows with the sample size at an appropriate rate. More formally,

let Ik, k = 1, ..., b be iid discrete uniform random variables on [s − 1, s, ..., T − l + 1].

Then, the resampled series, W ∗
t = (y∗t , Z∗,t−1), is such that W ∗

1 ,W ∗
2 , ..., W ∗

l ,W ∗
l+1, ..., W

∗
T =

WI1+1,WI1+2, ..., WI1+l,WI2+1, ..., WIb+l, and so a resampled series consists of b blocks that

are discrete iid uniform random variables, conditional on the sample.

Suppose we define the bootstrap estimator, θ̂∗t , to be the direct analog of θ̂t. Namely,

θ̂∗t = arg min
θ∈Θ

1
t

t∑

j=s

q(y∗j , Z
∗,j−1, θ), R ≤ t ≤ T − 1. (2.3)

By first order conditions, 1
t

∑t
j=s∇θq(y∗j , Z

∗,j−1, θ̂∗t ) = 0, where ∇θ denotes the denotes

the derivative with respect to θ. Via a mean value expansion of 1
t

∑t
j=s∇θq(y∗j , Z

∗,j−1, θ̂∗t )

around θ̂t, after a few simple manipulations, we have that

1√
P

T−1∑

t=R

(
θ̂∗t − θ̂t

)

= B†aR,0√
P

R∑

j=s

∇θq(y∗j , Z
∗,j−1, θ̂R) + B† 1√

P

P−1∑

j=1

aR,j∇θq(y∗R+j , Z
∗,R+j−1, θ̂R+j)

+oP ∗(1) Pr−P, (2.4)

where B† = E
(
−∇2

θq(yj , Z
j−1, θ†)

)−1
, aR,j = 1

R+j + 1
R+j+1 + ...+ 1

R+P−1 , j = 0, 1, ..., P−1,

and where the last equality on the right hand side of (2.4) follows immediately, using the

same arguments as those used in Lemma A5 of West (1996). Analogously,

1√
P

T−1∑

t=R

(
θ̂t − θ†

)

= B†aR,0√
P

R∑

j=s

∇θq(yj , Z
j−1, θ†) + B† 1√

P

P−1∑

j=1

aR,j∇θq(yR+j , Z
R+j−1, θ†) + oP (1).(2.5)

Now, given (2.2), E
(
∇θq(yj , Z

j−1, θ†)
)

= 0 for all j, and 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
has a zero

mean normal limiting distribution (see Theorem 4.1 in West (1996)). On the other hand,

as any block of observations has the same chance of being drawn,

E∗
(
∇θq(y∗j , Z

∗,j−1, θ̂t)
)

=
1

T − s

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t) + O

(
l

T

)
Pr−P, (2.6)
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where the O
(

l
T

)
term arises because the first and last l observations have a lesser chance

of being drawn (see e.g. Fitzenberger (1997)). Now, 1
T−s

∑T−1
k=s ∇θq(yk, Z

k−1, θ̂t) 6= 0,

and is instead of order OP

(
T−1/2

)
. Thus, 1√

P

∑T−1
t=R

1
T−s

∑T−1
k=s ∇θq(yk, Z

k−1, θ̂t) = OP (1),

and does not vanish in probability. This clearly contrasts with the full sample case,

in which 1
T−s

∑T−1
k=s ∇θq(yk, Z

k−1, θ̂T ) = 0, because of the first order conditions. Thus,

1√
P

∑T−1
t=R

(
θ̂∗t − θ̂t

)
cannot have a zero mean normal limiting distribution, but is instead

characterized by a location bias that can be either positive or negative depending on the

sample.

Given (2.6), our objective is thus to have the bootstrap score centered around

1
T−s

∑T−1
k=s ∇θq(yk, Z

k−1, θ̂t). Hence, define a new bootstrap estimator, θ̃∗t , as:

θ̃∗t = arg min
θ∈Θ

1
t

t∑

j=s

(
q(y∗j , Z

∗,j−1, θ)− θ′
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t)

))
, (2.7)

R ≤ t ≤ T − 1.3

Now, note that first order conditions are

1
t

∑t
j=s

(
∇θq(y∗j , Z

∗,j−1, θ̃∗t )−
(

1
T

∑T−1
k=s ∇θq(yk, Z

k−1, θ̂t)
))

= 0; and via a mean value ex-

pansion of 1
t

∑t
j=s∇θq(y∗j , Z

∗,j−1, θ̃∗t ) around θ̂t, after a few simple manipulations, we have

that:

1√
P

T−1∑

t=R

(
θ̃∗t − θ̂t

)

= B† 1√
P

T∑

t=R


1

t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ̂t)−
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t)

))


+oP ∗(1), Pr−P.

Thus, given (2.6), it is immediate to see that the bias associated with 1√
P

∑T−1
t=R

(
θ̃∗t − θ̂t

)

is of order O
(
lT−1/2

)
, conditional on the sample, and so it is negligible for first order

asymptotics, as l = o(T 1/2).

Theorem 1, which summarizes these results, requires the following assumptions.

Assumption A1: (yt, Xt), with yt scalar and Xt an <ζ−valued (0 < ζ < ∞) vector, is a

strictly stationary and absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

3More precisely, we should use 1
t−s

and 1
T−s

to scale the summand in (7). For notational simplicity, 1
t−s

and 1
T−s

are approximated with 1
t

and 1
T

.
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Assumption A2: (i) θ† is uniquely identified (i.e. E(q(yt, Z
t−1, θ)) > E(q(yt, Z

t−1, θ†))

for any θ 6= θ†); (ii) q is twice continuously differentiable on the interior of Θ, and for Θ

a compact subset of <%; (iii) the elements of ∇θq and ∇2
θq are p−dominated on Θ, with

p > 2(2 + ψ), where ψ is the same positive constant as defined in Assumption A1; and (iv)

E
(−∇2

θq(θ)
)

is negative definite uniformly on Θ.4

Assumption A3: T = R + P, and as T →∞, P/R → π, with 0 < π < ∞.

Assumptions A1 and A2 are standard memory, moment, smoothness and identifiabil-

ity conditions. A1 requires (yt, Xt) to be strictly stationary and absolutely regular. The

memory condition is stronger than α−mixing, but weaker than (uniform) φ−mixing. As-

sumption A3 requires that R and P grow at the same rate. In fact, if P grows at a slower

rate than R, i.e. P/R → 0, then 1√
P

∑T
t=R

(
θ̂t − θ†

)
= oP (1) and so there were no need to

capture the contribution of parameter estimation error.

Theorem 1 (Corradi and Swanson (2007)): Under recursive estimation, let A1-A3

hold. Also, assume that as T →∞, l →∞, and that l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

v∈<%

∣∣∣∣∣P
∗
T

(
1√
P

T∑

t=R

(
θ̃∗t − θ̂t

)
≤ v

)
− P

(
1√
P

T∑

t=R

(
θ̂t − θ†

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

where P ∗
T denotes the probability law of the resampled series, conditional on the (entire)

sample.

Theorem 1 states that 1√
P

∑T−1
t=R

(
θ̃∗t − θ̂t

)
has the same limiting distribution as

1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, conditional on sample, and for all samples except a set with probabil-

ity measure approaching zero. Of note is that if Assumption 3 is violated and P/R → 0,

then the statement in the theorem above is trivially satisfied, in the sense that both

1√
P

∑T
t=R

(
θ̃∗t − θ̂t

)
and 1√

P

∑T
t=R

(
θ̂t − θ†

)
have a limiting distribution degenerate on zero.

Hence, the crucial impact of allowing for non-vanishing parameter estimation error is quite

apparent.

4We say that ∇θq(yt, Z
t−1, θ) is 2r−dominated on Θ if its j − th element, j = 1, ..., %, is such that∣∣∇θq(yt, Z

t−1, θ)
∣∣
j
≤ Dt, and E(|Dt|2r) < ∞. For more details on domination conditions, see Gallant and

White (1988, pp. 33).
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2.2.2 Rolling Estimation Window:

In the rolling estimation scheme, one constructs a sequence of P estimators using a rolling

window of R observations. The first estimator is constructed using the first R observations,

the second using observations from 2 to R + 1, and so on, with the last estimator being

constructed using observations from T − R to T − 1, so that we have a sequence of P

estimators, (θ̂R,R, θ̂R+1,R, . . . , θ̂R+P−1,R). In general, it is common to assume that P and

R grow as T grows. Giacomini and White (2003) propose using a rolling scheme with a

fixed window that does not increase with the sample size, so that estimated parameters are

treated as mixing variables. Pesaran and Timmerman (2004a,b) suggest rules for choosing

the window of observations in order to take into account possible structure breaks.

Using the same notation as in the recursive case, but noting that we are now constructing

a rolling estimator, define

θ̂i,t = arg min
θi∈Θi

1
R

t∑

j=t−R+1

qi(yj , Z
j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n

In the case of in-sample model evaluation, the contribution of parameter estimation error is

summarized by the limiting distribution of
√

T (θ̂T − θ†), where θ† is the probability limit of

θ̂T . In the case of rolling estimation schemes, the contribution of parameter estimation error

is summarized by the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
. Under mild conditions,

because of the central limit theorem,
(
θ̂t − θ†

)
is OP (R−1/2). Thus, if P grows at a slower

rate than R (i.e. if P/R → 0, as T → ∞), then 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
is asymptotically

negligible. In other words, if the in-sample portion of the data used for estimation is “much

larger” than the out-of-sample portion of the data to be used for predictive accuracy testing

and generally for model evaluation, then the contribution of parameter estimation error is

asymptotically negligible.

In the rolling estimation scheme, observations in the middle are used more frequently

than observations at either the beginning or the end of the sample. As in the recursive case,

this introduces a location bias to the usual block bootstrap, as under standard resampling

with replacement, any block from the original sample has the same probability of being

selected. Also, the bias term varies across samples and can be either positive or negative,

depending on the specific sample. Our objective is thus to properly recenter the objective
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function in order to obtain a bootstrap rolling estimator, say θ̃∗t , such that 1√
P

∑T−1
t=R (θ̃∗t −θ̂t)

has the same limiting distribution as 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, conditionally on the sample. The

approach and result are largely as outlined above. Namely, resample b overlapping blocks

of length l from Wt = (yt, Z
t−1), and form a bootstrap sample, as in the recursive case.

Then, define the rolling bootstrap estimator as

θ̃∗t = arg min
θ∈Θ

1
R

t∑

j=t−R+1

(
q(y∗j , Z

∗,j−1, θ)− θ′
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t)

))
.

As in the recursive case, the following theorem can be stated.

Theorem 2 (Corradi and Swanson (2006a)): Under rolling estimation, let As-

sumptions A1-A3 and A5 hold. Also, assume that as T → ∞, l → ∞, and that l
T 1/4 → 0.

Then, as T, P and R →∞,

P

(
ω : sup

v∈<%

∣∣∣∣∣P
∗
T

(
1√
P

T∑

t=R

(
θ̃∗t − θ̂t,rol

)
≤ v

)
− P

(
1√
P

T∑

t=R

(
θ̂t − θ†

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0.

2.3 The CS Test

As an example of the implementation of the recursive and rolling bootstrap discussed above,

we summarize the CS test discussed in different forms in Chao et al (2001) as well as in

Corradi and Swanson (2002, 2007). The test is presented in a framework that is directly

applicable to the empirical investigation discussed in a subsequent section of the chapter.

As discussed in the introduction, the test draws on both the consistent specification and

predictive ability testing literatures in order to propose a test for predictive accuracy which

is consistent against generic nonlinear alternatives, which is designed for comparing nested

models, and which allows for dynamic misspecification of all models being evaluated. The

CS test is an out-of-sample version of the ICM test, as discussed in the introduction of this

paper. Alternative (non DM) tests for comparing the predictive ability of a fixed number

of nested models have previously also been suggested. For example, Clark and McCracken

(2001, 2004) propose encompassing tests for comparing two nested models for one-step

and multi-step ahead prediction, respectively. Giacomini and White (2003) introduce a

test for conditional predictive ability that is valid for both nested and nonnested models.

The key ingredient of their test is the fact that parameters are estimated using a fixed
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rolling window. Finally, Inoue and Rossi (2004) suggest a recursive test, where not only the

parameters, but the statistic itself, are computed in a recursive manner. One of the main

differences between these tests and the CS test is that the CS test is consistent against

generic (non)linear alternatives and not only against a fixed alternative.

The CS testing approach that will be used in the Monte Carlo and empirical sections

of the chapter, assumes that the objective is to test whether there exists any unknown

alternative model that has better predictive accuracy than a given benchmark model, for a

given loss function. The benchmark model is:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3zt−1 + u1,t, (2.8)

where θ†1 = (θ†1,1, θ
†
1,2, θ

†
1,3)

′ = arg minθ1∈Θ1 E(q1(yt − θ1,1 − θ1,2yt−1 − θ1,3zt−1)), θ1 =

(θ1,1, θ1,2, θ1,3)′, yt is a scalar, and q1 = g, as the same loss function is used both for in-

sample estimation and out-of-sample predictive evaluation.5 The generic alternative model

is:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)zt−1 + θ†2,4(γ)w(Zt−1, γ) + u2,t(γ), (2.9)

where θ†2(γ) = (θ†2,1(γ), θ†2,2(γ), θ†2,3(γ), θ†2,4(γ))′ = arg minθ2∈Θ2 E(q1(yt − θ2,1 − θ2,2yt−1 −
θ2,3zt−1−θ2,4w(Zt−1, γ))), θ2(γ) = (θ2,1(γ), θ2,2(γ), θ2,3(γ), θ2,4(γ))′, θ2 ∈ Θ2, Γ is a compact

subset of <d, for some finite d. The alternative model is called “generic” because of the

presence of w(Zt−1, γ), which is a generically comprehensive function, such as Bierens’

exponential, a logistic, or a cumulative distribution function (see e.g. Stinchcombe and

White (1998) for a detailed explanation of generic comprehensiveness). One example has

w(Zt−1, γ) = exp(
∑s2

i=1 γiΦ(Xt−i)), where Φ is a measurable one to one mapping from <
to a bounded subset of <, so that here Zt = (Xt, ..., Xt−s2+1), and we are thus testing for

nonlinear Granger causality. In fact, the above setup can be described within the context

of our empirical example in Section 2.5. Namely, in Section 2.5 we set Xt is equal to a

vector of two variables including money supply growth and a cointegration term connecting

output, money and prices; yt is set equal to output growth; and zt is an interest rate spread.

5Note that zt−1 as used in (2.8) differs from Zt−1 used elsewhere in the chapter (see Section 5 for an
empirical illustration where zt−1 is defined.
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Turning back to our current discussion, note that the hypotheses of interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0versusHA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (2.10)

Clearly, the reference model is nested within the alternative model, and given the definitions

of θ†1 and θ†2(γ), the null model can never outperform the alternative.6 For this reason,

H0 corresponds to equal predictive accuracy, while HA corresponds to the case where the

alternative model outperforms the reference model, as long as the errors above are loss

function specific forecast errors. As discussed in Corradi and Swanson (2002), we can

restate H0 and HA as:

H0 : E(g′(u1,t+1)w(Zt, γ)) = 0versusHA : E(g′(u1,t+1)w(Zt, γ)) 6= 0, (2.11)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Finally, define the forecast

error as û1,t+1 = yt+1 −
(

1 yt zt

)
θ̂1,t. The relevant test statistic is:

MP =
∫

Γ
mP (γ)2φ(γ)dγ, (2.12)

where

mP (γ) =
1

P 1/2

T−1∑

t=R

g′(û1,t+1)w(Zt, γ), (2.13)

and where
∫
Γ φ(γ)dγ = 1, φ(γ) ≥ 0, with φ(γ) absolutely continuous with respect to

Lebesgue measure. Note also that “ ′ ” denotes derivative with respect to the argument of

the function. Elsewhere, we use “∇x” to denote derivative with respect to x. In the sequel,

we require the following assumptions.

Assumption A4: (i) w is a bounded, twice continuously differentiable function on the

interior of Γ and ∇γw(Zt, γ) is bounded uniformly in Γ; and (ii) ∇γ∇θ1q
′
1,t(θ1)w(Zt−1, γ)

is continuous on Θ1 × Γ, where q′1,t(θ1) = q′1(yt − θ1,1 − θ1,2yt−1 − θ1,3zt−1), Γ a compact

subset of <d, and is 2r−dominated uniformly in Θ1 × Γ, with r ≥ 2(2 + ψ), where ψ is the

same positive constant as that defined in Assumption A1.

Assumption A5 requires the function w to be bounded and twice continuously differen-

tiable; such a requirement is satisfied by logistic or exponential functions, for example.

6Needless to say, in finite samples the forecasting mean square prediction error from the small model can
be lower than that associated with the larger model.
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Theorem 3 (Corradi and Swanson (2007)): Under either recursive or rolling estima-

tion, let Assumptions A1-A4 hold. Then, the following results hold: (i) Under H0,

MP =
∫

Γ
mP (γ)2φ(γ)dγd→

∫

Γ
Z(γ)2φ(γ)dγ,

where mP (γ) is defined in equation (2.13) and Z is a Gaussian process with covariance

kernel given by:

K(γ1, γ2) = Sgg(γ1, γ2) + 2Πµ′γ1
B†ShhB†µγ2 + Πµ′γ1

B†Sgh(γ2)

+Πµ′γ2
B†Sgh(γ1),

with µγ1 = E(∇θ1(g
′
t+1(u1,t+1)w(Zt, γ1))), B† = (E(∇2

θ1
q1(u1,t)))−1,

Sgg(γ1, γ2) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)g′(u1,s+j+1)w(Zs+j , γ2)),

Shh =
∑∞

j=−∞E(∇θ1q1(u1,s)∇θ1q1(u1,s+j)′),

Sgh(γ1) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)∇θ1q1(u1,s+j)′), and γ, γ1, and γ2 are generic ele-

ments of Γ.

(ii) Under HA, for ε > 0, limP→∞ Pr
(

1
P

∫
Γ mP (γ)2φ(γ)dγ > ε

)
= 1.

Clearly, the form of the covariance kernel depends upon whether recursive or rolling

estimation is used (for further detailed discussion of these covariance kernels, the reader is

referred to the appendices in Corradi and Swanson (2006a, 2007)). It is also clear that the

limiting distribution under H0 is a Gaussian process with a covariance kernel that reflects

both the dependence structure of the data and the effect of parameter estimation error.

Hence, critical values are data dependent and cannot be tabulated.

In order to implement this statistic using the block bootstrap for recursive or rolling

m-estimators discussed above, we define:

θ̃∗1,t = (θ̃∗1,1,t, θ̃
∗
1,2,t, θ̃

∗
1,3,t)

′ = arg min
θ1∈Θ1

1
t

t∑

j=2

[q1(y∗j − θ1,1 − θ1,2y
∗
j−1 − θ1,3z

∗
j−1)

−θ′1
1
T

T−1∑

i=2

∇θq1(yi − θ̂1,1,t − θ̂1,2,tyi−1 − θ̂1,3,tzi−1)] (2.14)

Also, define ũ∗1,t+1 = y∗t+1 −
(

1 y∗t z∗t

)
θ̃∗1,t. The bootstrap test statistic is:

M∗
P =

∫

Γ
m∗

P (γ)2φ(γ)dγ,
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where, recalling that g = q1,

m∗
P (γ)

=
1

P 1/2

T−1∑

t=R

(
g′

(
y∗t+1 −

(
1 y∗t z∗t

)
θ̃∗1,t

)
w(Z∗,t, γ)

)

− 1
P 1/2

T−1∑

t=R

(
1
T

T−1∑

i=2

g′
(

yi −
(

1 yi−1 zi−1

)
θ̂1,t

)
w(Zi−1, γ)

)
(2.15)

The bootstrap statistic in (2.15) is characterized by the fact that the bootstrap (re-

sampled) component is constructed only over the last P observations, while the sample

component is constructed over all T observations. This differs from the usual approach

that would involve calculating:

m∗∗
P (γ) =

1
P 1/2

T−1∑

t=R

(
g′

(
y∗t+1 −

(
1 y∗t z∗t

)
θ̃∗1,t

)
w(Z∗,t, γ)

)

− 1
P 1/2

T−1∑

t=R

(
g′

(
yt+1 −

(
1 yt zt

)
θ̂1,t

)
w(Zt, γ)

)
(2.16)

However, the recursive (rolling) feature of the parameter estimation error in the CS test

in the current context ensures that for all samples except a set with probability measure

approaching zero, m∗∗
P (γ) does not have the same limiting distribution as mP (γ) (see Corradi

and Swanson (2007) for further details).

Theorem 4 (Corradi and Swanson (2007)): Under either recursive or rolling estima-

tion, let Assumptions A1-A3 and A5 hold. Also, assume that as T →∞, l →∞, and that

l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
T

(∫

Γ
m∗

P (γ)2φ(γ)dγ ≤ v

)
− P

(∫

Γ
mµ

P (γ)2φ(γ)dγ ≤ v

)∣∣∣∣ > ε

)
→ 0,

where mµ
P (γ) = mP (γ)−√PE

(
g′(u1,t+1)w(Zt, γ)

)
.

The above result suggests proceeding in the following manner. For any bootstrap repli-

cation, compute the bootstrap statistic, m∗
P (γ). Perform B bootstrap replications (B large)

and compute the quantiles of the empirical distribution of the B bootstrap statistics. Reject

H0, if mP (γ) is greater than the (1− α)th-percentile. Otherwise, do not reject.
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2.4 Monte Carlo Experiments

In this section we carry out a series of Monte Carlo experiments comparing the recursive

and rolling block bootstrap with a variety of other bootstraps, and comparing the finite

sample performance of the test discussed above with a variety of other tests. In addition to

the fact that rolling as well as recursive estimators are used, the experiments in this section

differ from those discussed in Corradi and Swanson because they estimate an AR(1) model

as their benchmark model (i.e. the model used in size experiments), while our benchmark

model includes an additional explanatory variable, zt, which corresponds to the interest

rate spread in our empirical implementation. Furthermore, they include in all models an

omitted variable, which we do not use in our specifications. As shall be discussed below,

it is in fact this omitted variable that drives much of the size distortion in Corradi and

Swanson (2007) when comparing the F-test with various other tests.

With regard to the bootstrap, we consider 4 alternatives. Namely: (i) the “Recur Block

Bootstrap”, which is the block bootstrap for recursive m-estimators discussed above; (ii) the

“Roll Block Bootstrap”, which is also discussed above, (iii) the “Block Bootstrap, no PEE,

no adjust”, which is a strawman block bootstrap used for comparison purposes, where it is

assumed that there is no parameter estimation error (PEE), so that θ̂1,t is used in place of θ̃∗1,t

in the construction of M∗
P , and the term 1

T

∑T−1
i=1 g′

(
yi+1 −

(
1 yi zi

)
θ̂1,t

)
w(Zi, γ)

in m∗
P is replaced with g′

(
yt+1 −

(
1 yt zt

)
θ̂1,t

)
w(Zt, γ) (i.e. there is no bootstrap

statistic adjustment, thus conforming with the usual case when the standard block bootstrap

is used) and (iv) the “Standard Block Bootstrap”, which is the standard block bootstrap

(i.e. this bootstrap is the same as that outlined in (iii), except that θ̂1,t is replaced with

θ̂∗1,t.

As discussed in Section 2.3, the hypotheses of interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0versusHA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (2.17)

where u1,t and u2,t are out-of-sample 1-step ahead prediction errors of the following models:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3zt−1 + u1,t, (2.18)

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)zt−1 + θ†2,4(γ)w(Zt−1, γ) + u2,t(γ), (2.19)
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where θ†1 = (θ†1,1, θ
†
1,2, θ

†
1,3)

′, and θ†2 = (θ†2,1, θ
†
2,2, θ

†
3,3, θ

†
3,4)

′ are parameter vectors, where

zt−1is an additional explanatory variable in the “small” model, and where Zt−1 in the

“big” model includes the variable which is being tested for inclusion in the small model

(denoted xt in Table 2.1).

The test statistics examined in our experiments include: (i) the standard in-sample F-

test; (ii) the encompassing test due to Clark and McCracken (CM: 2004) and Harvey et al

(1997); (iii) the Diebold and Mariano (DM: 1995) test; (iv) the CS test; and (v) the CCS

test.7 Of note in this context is that in the CS test we are implicitly testing whether any

(non)linear function of Zt−1 would be useful for constructing a better prediction model of

yt. Alternatively, the other tests only consider inclusion of a linear function of Zt−1, so that

they are essentially setting w to be an affine function.

To be more specific, note that the CM test is an out-of-sample encompassing test, and

is defined as follows:

CM = (P − h + 1)1/2
1

P−h+1

∑T−h
t=R ĉt+h√

1
P−h+1

∑j

j=−j

∑T−h
t=R+j K

(
j
M

)
(ĉt+h − c) (ĉt+h−j − c)

,

where ĉt+h = û1,t+h (û1,t+h − û2,t+h) , c = 1
P−h+1

∑T−h
t=R ĉt+h, K (·) is a kernel (such as the

Bartlett kernel), and 0 ≤ K
(

j
M

)
≤ 1, with K(0) = 1, and M = o(P 1/2). Additionally, h is

the forecast horizon (set equal to unity in our experiments), P is as defined above, and û1,t+1

and û2,t+1 are the out-of-sample forecast errors associated with least squares estimation of

“smaller” and “bigger” linear models, respectively (see below for further details). Note that

j does not grow with the sample size. Therefore, the denominator in CM is a consistent

estimator of the long-run variance only when E
(
ctct+|k|

)
= 0 for all |k| > h (see Assumption

A3 in Clark and McCracken (2004)). Thus, the statistic takes into account the moving

average structure of the multistep prediction errors, but still does not allow for dynamic

7The CCS statistic is essentially the same as the CS test, but uses Zt instead of a generically comprehen-
sive function thereof (recall that Zt contains the additional variables included in the “big” model defined
below). Thus, this test can be seen as a special case of the CS test that is designed to have power against
linear alternatives, and it is not explicitely designed to have power against generic nonlinear alternatives as
is the CS test. The theory in Section 3 of this paper thus applies to both the CS and CCS tests. Addi-
tionally, the CM test is included in our study because it is an encompassing test which is designed to have
power against linear alternatives, and so it is directly comparable with the CCS test. Finally, the F and
DM tests are included in our analysis because they are the most commonly applied and examined in- and
out-of-sample tests used for model selection. They thus serve as a kind of benchmark against which the
performance of the other tests can be measured.
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misspecification under the null. This is one of the main differences between the CM and

CS (CCS) tests.

Note also that the DM test is the mean square error version of the Diebold and Mariano

(1995) test for predictive accuracy, and is defined as follows:

DM = (P − h + 1)1/2
1

P−h+1

∑T−h
t=R d̂t+h√

1
P−h+1

∑j

j=−j

∑T−h
t=R+j K

(
j
M

) (
d̂t+h − d

) (
d̂t+h−j − d

) ,

where d̂t+h = û2
1,t+h − û2

2,t+h, and d = 1
P−h+1

∑T−h
t=R d̂t+h. The limiting distributions of

the CM and DM statistics are given in Theorems 3.1 and 3.2 in Clark and McCracken

(2004), and for h > 1 contain nuisance parameters so that critical values cannot be directly

tabulated, and hence Clark and McCracken (2004) use the Kilian parametric bootstrap to

obtain critical values. In this case, as discussed above, it is not clear that the parametric

bootstrap is asymptotically valid. However, again as alluded to above, the parametric

bootstrap approach taken by Clark and McCracken is clearly a good approximation, at

least for the DGPs and horizon considered in our experiments, given that these tests have

very good finite sample properties (see discussion of results below).

Data are generated according to the DGPs summarized in Table 2.1 as : Size1-Size2

and Power1-Power12.

In our setup, the benchmark model (denoted by Size1 in Table 2.1) is an ARX(1).

(The benchmark model is also called the “small” model.) The null hypothesis is that

no competing model outperforms the benchmark model. Twelve of our DGPs (denoted

by Power1-Power12) include (non)linear functions of xt−1. In this sense, our focus is on

(non)linear out-of-sample Granger causality testing. Some regression models estimated

in these experiments are misspecified not just because of neglected nonlinearity, but also

because fitted regression functions ignore the MA error component that appears in some

DGPs. Recall also, as discussed above, that CS and CCS tests only require estimation of

the benchmark models. The CM, F, and DM tests require estimation of the benchmark

models as well as the alternative models. In our context, the alternative model estimated

is simply the benchmark model with xt−1 added as an additional regressor, regardless of

which DGP is used to generate the data. The alternative is also sometimes called the “big”

model.
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The functional forms that are specified under the alternative include: (i) exponen-

tial (Power1, Power7); (ii) linear (Power2); (iii) self exciting threshold (Power3), squared

(Power8) and absolute value (Power9). In addition, Power4-Power6 and Power10-Power12

are the same as the others, except that an MA(1) term is added. Notice that Power1 in-

cludes a nonlinear term that is similar in form to the test function, w(·), which is defined

below. Also, Power2 serves as a linear causality benchmark. Test statistics are constructed

by fitting what is referred to in the next section as a “small model” in order to construct the

CS and CCS test statistics. Note that the “big model” (which is a linear ARX(1) model in

yt−1, and zt−1 with xt−1 added as an additional regressor) is only fitted in order to construct

the F, CM, and DM test statistics. It is not necessary to fit this model when constructing

the CS and CCS statistics. All test statistics are formed using one-step ahead predictions

(and corresponding prediction errors) from recursive and rolling window estimated models.

In all experiments, we set w(zt−1, γ) = exp(
∑3

i=1(γi tan−1((zi,t−1 − zi)/2σ̂zi))), with

z1,t−1 = xt−1, z2,t−1 = yt−1, z3,t−1 = wt−1 and γ1, γ2, γ3 scalars. Additionally, define Γ =

[0.0, 5.0] × [0.0, 5.0] × [0.0, 5.0]. We consider a grid that is delineated by increments of size

0.5. All results are based on 500 Monte Carlo replications, and a sample of T=540 is used.

All tests are empirical rejection frequencies. The following parameterizations are used:

a1 = 1.0, a2 = {0.3, 0.6, 0.9}, and a3 = 0.3. Additionally, bootstrap critical values are

constructed using 100 simulated statistics, the block length, l, is set equal to {2, 5, 10},
{4, 10, 20}, or {10, 20, 50}, depending upon the degree of DGP persistence, as given by the

value of a2. Finally, all results are based on P = (1/2)T recursive and rolling window formed

predictions.

We summarize our findings from the Monte Carlo simulations in Tables 2.2-2.3 for the

CS test and Tables 2.4-2.5 for the F, DM, CM and CCS tests. In addition, Tables 2.2 and

2.4 consider results under recursive estimation, while Tables 2.3 and 2.5 consider results

under rolling window estimation. The first column in the mentioned tables states the DGP

used to generate the data. The names are further defined in Table 2.1. Size1-Size2 refer to

empirical size experiments and Power1-Power12 refer to empirical power experiments. All

numerical entries are test rejection frequencies. Details of the mnemonics used to describe

the columns in the tables and the different approaches used for critical value construction
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are contained in the footnotes to Table 2.2 and 2.4.

In the following discussion, we consider two broad issues. First, is the recursive/rolling

bootstrap useful, or could one simply use more naive bootstraps such as the standard block

bootstrap? Second, what can we say about the use of recursive as opposed to rolling

window estimation schemes for estimating model parameters and in particular with respect

to inference. As an ancilliary issue, we also consider the issue of in-sample versus out-of-

sample testing since we include the in-sample F-test as an alternative test.

A first look at Tables 2.2 and 2.3, where the CS test is examined under the “Re-

cur/Rolling Block Bootstrap” indicates that in general, empirical levels are larger and closer

to the 10% nominal level under recursive estimation (Table 2.2) than under rolling window

estimation (Table 2.3). For example, in Panel A of Tables 2.2 and 2.3, empirical rejection

levels for l = 2, 5, 10 are 0.07, 0.07, 0.08 (Table 2.2) and 0.05, 0.06, 0.07 (Table 2.3) for Size1.

However, empirical power is in general closer to 1 under rolling window estimation (Table

2.3) than under recursive estimation (Table 2.2). For example, in Panel A of Tables 2.2

and 2.3 empirical power for l = 2, 5, 10 is 0.53, 0.73,and 0.80 (Table 2.2) and 0.62, 0.87, and

0.90 (Table 2.3) for Power1. This observation about empirical power also holds for the

other bootstrap techniques considered. These findings are not surprising, given the that

the rolling windows are fixed in length, while the recursive windows increase in length. Fur-

thermore, it is worth stressing that both window types appear to be yield quite reasonable

finite sample properties, overall, when the nonparametric bootstrap is used. Finally, notice

also that in all panels of Tables 2.2 and 2.3, CS tests constructed using data generated

according to Size2 yield poorer empirical level performance than under Size1. This is as

expected, given that Size2 DGPs include unmodelled serial error dependence.

A closer look at Table 2.2 reveals that regardless of the level of dependence in the lagged

endogenous variable as determined by the value of a2, the nonparametric block bootstrap

developed in this paper consistently has the empirical level closest to the nominal level.

For example in Table 2.2, the closest empirical level to the nominal level is 0.08 and it

occurs in Panel A when under “Recur Block Bootstrap” and Size1 when l = 10. This

same observation can be made in Table 2.3. However, such a blanket conclusion cannot be

drawn when comparing empirical power. In Panels A and B of Table 2.2, for the smallest
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block lengths of 2 and 4 respectively, the “Block Bootstrap” in general has the highest

power levels. For the medium block lengths of 5 and 10 of Panels A and B respectively, the

“BB, no PEE, no adj” nonparametric bootstrap has higher power. Finally, for the highest

block length, “Recur Block Bootstrap” has the highest empirical power. When there is too

much persistence in the model as in Panel C, these conclusions no longer hold. The same

conclusions can generally be drawn under the rolling window estimation in Table 2.3.

We now turn to a discussion of Tables 2.4 and 2.5, where results for the rest of the test

statistics examined in the Monte Carlo experiments are reported. Relative to the Monte

Carlo results in CS (2007), the F-test is not nearly as severely oversized. Indeed, judging

from its empirical level and power figures, the F-test seems to have good size and power

properties. The main reason for this is that the F-test is in-sample, and is carried out with

a correctly specified model in the current analysis. Of course, an in-sample analysis of a

correctly specified model for any test will generally yield superior performance. However, as

shown in CS (2007), where there is model misspecification in the form of an omitted variable,

the in-sample F-test is highly oversized. It is in such cases (i.e. model misspecification)

that the argument can be made for considering alternative tests of model performance, even

under an assumption of linearity, and particularly when nonlinearities may be present in

the true underlying DGPs.

In addition to this, in both Tables 2.4 and 2.5, there is a dramatic improvement in the

empirical size of the DM test depending upon which critical values are used (i.e. whether

we assume that π = 0 or π > 0 - see footnote to Table 2.4 for further explanation of π). The

empirical size under π > 0 is much closer to the nominal size of 10%. This suggests that

parameter estimation error is relevant in our setup, as standard normal critical values (under

π = 0) are simply too big. For the CM test in both Tables 2.4 and 2.5, the assumption that

π > 0 still generates some improvement in empirical size values albeit marginal. Empirical

power is very high for the F, CM and DM tests under either assumption on π; and unlike

the CS test in Tables 2.2 and 2.3, power is not compromised by high persistence levels. This

is however not the case for the CCS test. In Panel A and B of Table 2.4, the CCS test is

grossly oversized regardless of block length. However, for both Tables 2.4 and 2.5, as the

model becomes more persistent, there is an improvement in size and a reduction in power.
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The fact that this sort of result arises for the CS and CCS tests and not for the F, DM or CM

tests indicates that the power loss is due to the use of a block length dependent bootstrap

for calculating critical values. Indeed, it is worth noting that the power reduction is also

characteristic of the other naive bootstrap techniques in Tables 2.2 and 2.3. Furthermore,

it is worth noting that under model misspecification of the variety looked at in CS (2007),

the F, CM and DM tests are no longer dominant in the above respect. In the next section,

we estimate models that are clearly approximations to the true underlying DGP and hence

are probably misspecified. We use the CS test which is robust to model misspecification

under both hypotheses, as well as the other tests examined above, to assess the models.

2.5 Empirical Illustration: The Marginal Predictive Content of Money

for Output

In this section we implement the F, CM, DM, CS and CCS tests that are described in Table

2.1, and examined in the previous Monte Carlo section. In particular, we use these tests

together with recursive and rolling window estimation schemes to assess the marginal pre-

dictive content of money for real income. Recent contributions to this important literature

include the papers of Swanson (1998), Amato and Swanson (2001), and the papers cited

therein.

The variables used are the same as those examined by Christiano and Ljungqvist (1988),

Stock and Watson (1989), Friedman and Kuttner (1993) and Thoma (1994). In particular,

the variables used are monthly observations of industrial production (IP ), the wholesale

price index (P ), the secondary market rate on 90-day U.S. Treasury bills (R), the interest

rate on three-month prime commercial paper (C) and Divisia monetary aggregates of money

supply (M2). The sample period is 1959:01 to 2003:12. Seasonally adjusted nominal mea-

sures of M2 exhibit erratic behavior after 1985, which can be accounted for by documented

shifts in the public’s demand for money balances. This might explain why the relationship

between nominal M2, IP and P has been unstable in recent years. Our approach in dealing

with shifting money demand is to consider the Divisia monetary aggregates of M2. Other

approaches, such as including structural breaks and explicit nonlinearities in the models are
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left to future research. All data with the exception of the three-month prime commercial

paper (C) were obtained from the St. Louis Federal Reserve Bank. The data on C were

obtained from Stock and Watson (2005).

We define the small model as a vector error correction model with:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3z1,t−1 + u1,t

where

θ†1 = (θ†1,1, θ
†
1,2, θ

†
1,3)

′ = arg min
θ1∈Θ1

E(q1(yt−θ1,1−θ1,2yt−1−θ1,3z1,t−1))isdefinedconformably,

yt = (∆ log IPt, ∆log Pt,∆Rt)′

and

z1,t−1 = Ct−1 −Rt−1.

We further define the generic alternative (big) model as:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)z1,t−1 + θ†2,4(γ)w(Zt−1, γ) + u2,t(γ)

where

θ†2(γ) = (θ†2,1(γ), θ†2,2(γ), θ†2,3(γ), θ†2,4(γ))′

= arg min
θ2∈Θ2

E(q1(yt − θ2,1 − θ2,2yt−1 − θ2,3z1,t−1 − θ2,4w(Zt−1, γ)))

and

yt = (∆ log IPt, ∆log Pt, ∆log M2t, ∆Rt)

z1,t−1 = Ct−1 −Rt−1

z2,t−1 = log M2t−1 − log IPt−1 − log Pt−1.

Finally, Zt−1 = (z2,t−1, ∆log M2t−1). Notice that z1,t−1 and z2,t−1 can be interpreted as

vector error correction terms, and are consistent with evidence presented in Swanson (1998)

and Amato and Swanson (2001). Since we are interested in examining the (non)linear

marginal predictive content of money for income, our forecasting analysis and test statistics

are constructed based on estimates of the first equation in the vector error correction model

specified above (i.e. the equation with ∆ log IPt as dependent variable).
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Of note is that standard F-tests or Wald-tests for Granger causality are prone to severe

upward size distortions when vector error correction (VEC) models are estimated using

only differenced data, without accounting for cointegrating restrictions (see e.g. Swanson

(1998) and Swanson, Ozyildirim and Pisu (2003)). One of the reasons why this problem

arises is that the moving average representation for a model with cointegrated regressors

will not yield a finite order VAR representation. In Swanson (1998) it is noted that at a

1% significance level, trace test statistics support the presence of one cointegrating (CI)

vector when the data are linearly detrended, and when an intercept or an intercept and

a trend are included in the cointegrating relation. One of the two cointegrating vectors

is z1,t−1, based on a likelihood ratio test (see Johansen (1988,1991)). Of further note is

that the null hypothesis that the other CI vector is z2,t−1 almost always fails to reject,

although confidence intervals are quite wide relative to those for the interest rate spread

CI vector. Finally, it should be recalled (see the discussion in Section 2.4) that in the DM,

CM, CCS, and F tests, unlike the CS test, the alternative model is explicitly estimated. In

such cases, linearity is assumed, so that the bigger model includes linear functions of z2,t−1

and ∆ log M2t−1. This is one of the main reasons why it should not be expected that the

results of the different empirical tests “agree”. Indeed, if the CS test rejects while all others

fail to reject, we have direct evidence of nonlinear Granger causality coupled with evidence

of an absence of linear causality, for example.8

We construct tests statistics using 1-steap ahead forecasts formed via recursive and

rolling window estimated models. Thus, models are re-estimated (using least squares) at

each point in time, before each new prediction is constructed. The beginning date for

the in-sample period is 1959:1 when constructing the CS, CCS, DM, CM, and F tests,

the prediction periods reported on are 1978:1-2003:12 (π = 1.4), 1981:1-2003:12 (π = 1.0)

and 1987:1-2003:12 (π = 0.6), so that initial estimation samples for both the recursive

and rolling window schemes include data for the periods 1959:1-1977:12, 1959:1-1980:12

and 1959:1-1986:12, respectively. The block length is set equal to 6 in application of the

8Here, we are using the notion of “causality” interchangeably with the notion of prediction, in the spirit
of what Granger originally had in mind when he introduced causality to the time series profesion (see the
discussion in Chao, Corradi and Swanson (2001) for further details).
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recursive block bootstrap.9 In all cases, the dependent variable in regressions and the target

variable in forecasts is the first log difference of industrial production (output). As discussed

above, all estimated models are linear, and explanatory variables include lags of the first

log difference of industrial production, prices, lag first difference of interest rates as well

as the CI term Ct−1 − Rt−1 (in the benchmark or “small” model). Lags of the first log

difference of M2 and the CI term z2,t−1 are added for the alternative (“big”) model. Lags

are selected via use of the Schwarz information criterion. Again as discussed above, and

given this setup, our tests can be viewed as tests of (non) linear Granger causality.10

Results are gathered in Tables 2.6-2.7. In Table 2.6, point mean square forecast errors

(MSEs) are tabulated for the “small model” and the “big model” under rolling window

and recursive window estimation schemes respectively. Results are given not only for the

three prediction periods outlined above, but also for all prediction periods beginning with

1974:1, 1975:1, ..., 1993:1. In Tables 2.7, CS, CCS, F, DM and CM test results for the three

prediction periods outlined above are reported.

Turning first to the MSE results in Table 2.6, note that in the case of recursive estimation,

the “big” model consistently outperforms the “small” model, for every prediction period.

However, in many instances the MSEs are very close in absolute and relative magnitude,

with differences often less than 1%. Interestingly, this pattern does not emerge when viewing

MSEs associated with models estimated using rolling windows. In particular, the bigger

model that includes money only “wins” for prediction periods beginning in 1984, 1988, 1989,

1990, and 1991. This puzzle is further confounded by noting that the lowest MSE model

across both estimation window types is sometimes associated with the recursive modelling

strategy, and sometimes with the rolling estimation strategy (note that the bold figures

denote the lowest MSE across all estimation strategies and model types for a given start

year). Thus, it appears that choice of recursive versus rolling estimation in our exercise is

quite dependent upon sample prediction period start date.

9It should be noted that we do not use real-time data in this empirical illustration, even though both
variables considered are subject to periodic revision. Extension of our results to incorporate real-time data
is left to future research. Additionally, note that various other block lengths were tried and the empirical
findings where qualitatively similar regardless of block length.

10It should be stressed that the results presented in this section are meant primarily to illustrate the uses
of the different tests, and to underscore potentially important differences between the tests.
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As mentioned above, the bigger model is always preferred for recursive estimation, while

the results are mixed for rolling estimation. In particular, for rolling estimation, the big-

ger model is preferred for only 5 start years. If the recursively estimated models always

yielded the lowest overall MSE across both estimation strategies, our results would be quite

straightforward. However, when one looks across estimation strategies, the rolling window

approach “wins” when prediction periods begin in the 1990s or from 1974-1982. The re-

cursive window approach “wins” for prediction periods beginning from 1983-1989. This

corresponds to our ranking of the models when one looks across both estimation strategies.

Namely, the lowest MSE model is essentially the bigger model during much of the 1980s (i.e.

from 1983 through 1991), while the smaller model “wins” during the rest of the years. Thus,

for prediction periods that include the more turbulent 1970s, the smaller model wins, while

for prediction periods beginning after 1983, the bigger model with money “wins”. This

corresponds loosely with the money targeting experiment of the early 1980s. Namely, after

this targeting experiment ended, one might argue that a sufficiently “stable” environment

ensued for money to become a predictor for output. This is rather interesting, given that

the stated goal of the Federal Reserve Board has indeed been stabilization at low levels of

inflation.

A further point of interest is that the rolling 10 year estimator that we used in our

analysis is indeed dominant with regard to point MSE for 13 or the 20 start years (i.e. 13 of

the 20 different prediction periods). Thus, we have some evidence that there may indeed be

instabilities resulting in the relatively poorer performance of recursive estimation strategies.

As might be expected, this points to model misspecification in the form of structural breaks,

missing variables, and omitted nonlinearity, for example.

Finally, it is worth stressing that predictions of income have clearly gotten substantially

more accurate over our sample period, as evidenced by the fact that MSFEs are much

bigger for early subsamples, and are much smaller for the later sub-samples. This result

is clearly due in part to the smooth nature of recent data relative to more distant data,

although one might also argue that the more accurate results are associated in large part

with instances where models that include money yield superior point predictions, hence

pointing to further evidence in favor of using money in output prediction models. It should



30

be stressed, however, that thus far we have only compared MSEs, and hence have focused

our attention upon the comparison of purely linear models. In order to assess the potential

impact of generic nonlinearity, for example, we need to either fit a variety of nonlinear

models (which may be a large undertaking, given the plethora of available models), or

we need to carry out tests such as the generically comprehensive nonlinear out-of-sample

Granger causality CS test. We turn to this issue next.

As mentioned above, Table 2.7 contains CS, CCS, F, DM and CM test results for

prediction periods beginning in 1978, 1981, and 1987. Three conclusions emerge based

upon inspection of the results. First, the CS test fails to reject the null of no (non)linear

predictive causation, regardless of prediction period, and regardless of whether recursive

or rolling estimation is used. On the other hand, there are many rejections of the null

hypothesis when the “linear” tests are used, particularly at the 10% level. Furthermore,

these rejections, in the case of recursive estimation, correspond to the big model winning (as

the MSE associated with the big model is always lower than that associated with the small

model). Thus, based on our recursive results, there is clearly predictive causation from

money to output, However, this causation appears to be “moderate” in magnitude, given

the fact that the non rejection using the CS test coupled with rejections using the CCS test

may be a result of low power associated with the CS test (i.e. the CS test is an omnibus

test, and hence has lower power in any given specific alternative than a test designed with

that alternative specifically in mind). Second, the number of rejections is close to twice as

many when moving from the rolling to the recursive estimation schemes, suggesting that

parameter estimation error is playing a significant role in our testing procedures. This

finding is also indicative of further evidence in favor of predictive causation, given that in

the rolling case, small model MSEs based on prediction periods beginning in 1978, 1981, and

1987 are always lower than corresponding big model MSEs. In other words, in the rolling

cases, rejection would imply that the big model is significantly “better” than the small

model; and hence fewer rejections supports the finding based on the recursive estimation

scheme that there is predictive causation. Third, when changing the significance level from

10% to 5%, some rejections in the CCS, DM and CM tests become non-rejections, which

again substantiates the claim that although there is predictive causation, it is somewhat
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“weak” in the sense that predictions do not change to a great extent when money is added

to the output equation.

In summary, power considerations are relevant, as should be expected, when using the

CS test, as evidenced by the fact that in our illustration the CS test may be good at

detecting non-linear Granger causality, but it is clearly not good at detecting moderate

levels of linear predictive causation. Additionally, our evidence is clearly leaning toward a

finding of predictive causation from money to output. However, much empirical work is

needed before a complete picture emerges concerning the prevalence of nonlinear Granger

causality in the income/money relationship. This is left to future research. It is clear,

though, that much can be learned by using all of the different tests in consort with one

another.

2.6 Concluding Remarks

We have discussed bootstrap procedures valid for construction of critical values in the case

of test statistics based on recursive and/or rolling estimation schemes that have limiting

distributions which are functionals of Gaussian processes, and which have covariance ker-

nels that reflect parameter uncertainty. In these cases, limiting distributions are thus not

nuisance parameter free, and valid critical values are often obtained via bootstrap methods.

In this paper, we first developed a bootstrap procedure that properly captures the contri-

bution of parameter estimation error in recursive estimation schemes using dependent data.

Intuitively, when parameters are estimated recursively, as is done in our framework, earlier

observations in the sample enter into test statistics more frequently than later observations.

This induces a location bias in the bootstrap distribution, which can be either positive or

negative across different samples, and hence the bootstrap modification that we discuss is

required in order to obtain first order validity of the bootstrap. Within this framework, we

discussed the Corradi and Swanson (2002: CS) model selection type test and carried out a

series of experiments evaluating the CS as well as a variety of other tests including ones due

to Diebold and Mariano (1995) and Clark and McCracken (2004). Finally, we carried out an

empirical investigation using all of the tests examined in the Monte Carlo experiments. the

investigation focused on predictive money-income causation. We found that sample size,
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prediction period, and estimator type (i.e. recursive versus rolling) play an important role

in our empirical findings, although concrete evidence supporting the existence of predictive

causation was found, particularly for prediction periods beginning during the 1980s.
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Table 2.1: Test Statistics, Sampling Scheme, and Data Generating Processes
Used in Monte Carlo Experiments

Panel A: Test Statistic Mnemonics and Definitions
F – The standard Wald version of the in-sample F-test is calculated using the entire sample of T observations. In

particular, we use: F = T
(∑T

t=1
û2
1,t −

∑T

t=1
û2
2,t)/

∑T

t=1
û2
2,t

)
, where û1,t and û2,t are the in-sample residuals

associated with least squares estimation of the small and big models, respectively, and where T denotes the sample
size.

CM – The Clark and McCracken (2004) test outlined in Section 2.4.
DM – The Diebold and Mariano (1995) test outlined in Section 2.4.

CS – The Corradi and Swanson (2002,2007) test outlined in Section 2.3.
CCS – The Chao, Corradi and Swanson (2001) test discussed in Section 2.4.

Panel B: Data Generating Processes Used in Monte Carlo Experiments
xt = a1 + a2xt−1 + u1,t, u1,t ∼ iidN(0, 1)
zt = a1 + a3zt−1 + u2,t, u2,t ∼ iidN(0, 1)

Size1: yt = a1 + a2yt−1 + a4zt−1 + u3,t, u3,t ∼ iidN(0, 1)
Size2: yt = a1 + a2yt−1 + a4zt−1 + a3u3,t−1 + u3,t

Power1 : yt = a1 + a2yt−1 + 2 exp(tan−1(xt−1/2)) + a4zt−1 + u3,t

Power2 : yt = a1 + a2yt−1 + 2xt−1 + a4wt−1 + u3,t

Power3 : yt = a1 + a2yt−1 + 2xt−11{xt−1 > a1/(1− a2)}+ a4zt−1 + u3,t

Power4 : yt = a1 + a2yt−1 + 2 exp(tan−1(xt−1/2)) + a4zt−1 + a3u3,t−1 + u3,t

Power5: yt = a1 + a2yt−1 + 2xt−1 + a4zt−1 + a3u3,t−1 + u3,t

Power6: yt = a1 + a2yt−1 + 2xt−11{xt−1 > a1/(1− a2)}+ a4zt−1 + a3u3,t−1 + u3,t.
Power7 : yt = a1 + a2yt−1 + 2 exp(xt−1) + a4zt−1 + u3,t

Power8 : yt = a1 + a2yt−1 + 2x2
t−1 + a4zt−1 + u3,t

Power9 : yt = a1 + a2yt−1 + 2|xt−1|+ a4zt−1 + u3,t

Power10 : yt = a1 + a2yt−1 + 2 exp(xt−1) + a4zt−1 + a3u3,t−1 + u3,t

Power11: yt = a1 + a2yt−1 + 2x2
t−1 + a4zt−1 + a3u3,t−1 + u3,t

Power12: yt = a1 + a2yt−1 + 2|xt−1|+ a4zt−1 + a3u3,t−1 + u3,t.

Note that the benchmark or “small” model in our test statistic calculations is always yt = α1 + α2yt−1 +
α3zt−1 + εt; and the “big” model is the same, but with xt−1 or generic functions of xt−1 added as an

additional regressor.
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Table 2.2: Recursive Estimation Scheme - Rejection Frequencies of CS Test with
T = 540, P = 0.5T

Model Recur Block Bootstrap BB, no PEE, no adj Block Bootstrap
Panel A: a2 = 0.3

l = 2 l = 5 l = 10 l = 2 l = 5 l = 10 l = 2 l = 5 l = 10
Size1 0.07 0.07 0.08 0.01 0.01 0.02 0.00 0.00 0.01
Size2 0.04 0.05 0.07 0.01 0.01 0.01 0.00 0.00 0.01

Power1 0.53 0.73 0.80 0.00 0.59 0.83 0.54 0.77 0.74
Power2 0.68 0.90 0.93 0.00 0.94 0.92 0.91 0.86 0.81
Power3 0.68 0.90 0.92 0.01 0.95 0.93 0.94 0.87 0.82
Power4 0.53 0.76 0.81 0.00 0.54 0.84 0.42 0.76 0.76
Power5 0.69 0.88 0.93 0.00 0.94 0.93 0.91 0.84 0.83
Power6 0.68 0.88 0.92 0.01 0.96 0.91 0.94 0.86 0.83
Power7 0.57 0.75 0.77 0.02 0.76 0.77 0.77 0.73 0.70
Power8 0.66 0.88 0.90 0.03 0.91 0.85 0.93 0.82 0.81
Power9 0.68 0.93 0.96 0.00 0.97 0.94 0.97 0.90 0.86
Power10 0.57 0.73 0.77 0.02 0.76 0.76 0.79 0.73 0.71
Power11 0.68 0.88 0.89 0.01 0.92 0.88 0.92 0.85 0.80
Power12 0.71 0.91 0.95 0.00 0.97 0.94 0.97 0.90 0.90

Panel B: a2 = 0.6
l = 4 l = 10 l = 20 l = 4 l = 10 l = 20 l = 4 l = 10 l = 20

Size1 0.05 0.07 0.08 0.01 0.01 0.03 0.01 0.01 0.01
Size2 0.03 0.07 0.07 0.00 0.02 0.01 0.00 0.01 0.01

Power1 0.59 0.69 0.75 0.00 0.65 0.80 0.56 0.64 0.68
Power2 0.71 0.84 0.86 0.01 0.91 0.84 0.79 0.75 0.76
Power3 0.78 0.86 0.89 0.07 0.92 0.86 0.80 0.78 0.78
Power4 0.57 0.69 0.78 0.00 0.61 0.82 0.56 0.66 0.69
Power5 0.73 0.85 0.86 0.01 0.92 0.86 0.80 0.78 0.77
Power6 0.77 0.87 0.91 0.05 0.92 0.88 0.81 0.78 0.77
Power7 0.56 0.64 0.68 0.05 0.64 0.67 0.53 0.60 0.63
Power8 0.72 0.83 0.86 0.14 0.87 0.82 0.77 0.75 0.73
Power9 0.82 0.92 0.93 0.04 0.95 0.88 0.83 0.80 0.80
Power10 0.57 0.62 0.67 0.07 0.67 0.67 0.62 0.61 0.63
Power11 0.76 0.83 0.87 0.15 0.86 0.82 0.79 0.72 0.73
Power12 0.80 0.90 0.93 0.04 0.94 0.88 0.86 0.81 0.79

Panel C: a2 = 0.9
l = 10 l = 20 l = 50 l = 10 l = 20 l = 50 l = 10 l = 20 l = 50

Size1 0.01 0.03 0.07 0.00 0.01 0.03 0.00 0.00 0.01
Size2 0.01 0.03 0.06 0.00 0.01 0.02 0.00 0.00 0.01

Power1 0.41 0.56 0.64 0.00 0.47 0.75 0.29 0.53 0.61
Power2 0.59 0.71 0.77 0.06 0.78 0.79 0.58 0.65 0.72
Power3 0.61 0.72 0.79 0.09 0.82 0.77 0.61 0.68 0.71
Power4 0.42 0.53 0.64 0.00 0.43 0.73 0.27 0.50 0.61
Power5 0.61 0.69 0.77 0.03 0.81 0.78 0.57 0.67 0.70
Power6 0.62 0.72 0.80 0.12 0.81 0.79 0.59 0.68 0.72
Power7 0.41 0.47 0.54 0.07 0.47 0.54 0.34 0.46 0.53
Power8 0.57 0.67 0.75 0.23 0.76 0.69 0.56 0.62 0.66
Power9 0.61 0.72 0.82 0.13 0.83 0.81 0.62 0.67 0.72
Power10 0.42 0.47 0.53 0.06 0.50 0.54 0.35 0.47 0.52
Power11 0.60 0.66 0.75 0.27 0.76 0.73 0.59 0.63 0.66
Power12 0.64 0.76 0.83 0.17 0.85 0.81 0.59 0.66 0.71

Notes: All entries are rejection frequencies of the null hypothesis of equal predictive accuracy based on 10%

nominal size critical values constructed using the bootstrap approaches discussed above, where l denotes

the block length, and empirical bootstrap distributions are constructed using 100 bootstrap statistics. In

particular, “Recur Block Bootstrap” is the bootstrap developed in this paper, “BB, no PEE, no adj” is a

naive block bootstrap where no parameter estimation error is assumed, and no recentering (i.e. adjustment)

is done in parameter estimation or bootstrap statistic construction, “Block Bootstrap” is the usual block

bootstrap that allows for parameter estimation error, but does not recenter parameter estimates or bootstrap

statistics. For all models denoted Poweri, i = 1, ..., 12, data are generated with (non) linear Granger causality

(see above for further discussion of DGPs. In all experiments, the ex ante forecast period is of length P ,

which is set equal to (1/2)T , where T is the sample size. All models are estimated recursively, so that

parameter estimates are updated before each new prediction is constructed. All reported results are based

on 500 Monte Carlo simulations. See Table 2.1 and Section 2.4 for further details.
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Table 2.3: Rolling Estimation Scheme - Rejection Frequencies of CS Test with
T = 540, P = 0.5T

Model Rolling Block Bootstrap BB, no PEE, no adj Block Bootstrap
Panel A: a2 = 0.3

l = 2 l = 5 l = 10 l = 2 l = 5 l = 10 l = 2 l = 5 l = 10
Size1 0.05 0.06 0.07 0.01 0.02 0.01 0.00 0.00 0.00
Size2 0.03 0.06 0.07 0.01 0.02 0.02 0.00 0.00 0.00

Power1 0.62 0.87 0.90 0.00 0.67 0.88 0.80 0.86 0.83
Power2 0.74 0.95 0.96 0.01 0.97 0.94 0.98 0.94 0.91
Power3 0.77 0.95 0.98 0.01 0.97 0.94 0.98 0.94 0.92
Power4 0.59 0.89 0.92 0.00 0.55 0.89 0.71 0.87 0.82
Power5 0.75 0.96 0.97 0.00 0.97 0.95 0.98 0.94 0.92
Power6 0.76 0.95 0.97 0.01 0.98 0.94 0.98 0.95 0.92
Power7 0.67 0.83 0.84 0.03 0.82 0.82 0.86 0.82 0.80
Power8 0.78 0.90 0.91 0.04 0.92 0.88 0.96 0.90 0.86
Power9 0.79 0.96 0.96 0.01 0.97 0.94 0.98 0.94 0.92
Power10 0.68 0.82 0.84 0.03 0.81 0.81 0.86 0.82 0.82
Power11 0.80 0.90 0.92 0.04 0.91 0.89 0.95 0.89 0.86
Power12 0.78 0.94 0.96 0.00 0.97 0.94 0.98 0.93 0.92

Panel B: a2 = 0.6
l = 4 l = 10 l = 20 l = 4 l = 10 l = 20 l = 4 l = 10 l = 20

Size1 0.03 0.04 0.05 0.01 0.00 0.01 0.00 0.00 0.01
Size2 0.03 0.03 0.06 0.01 0.01 0.01 0.00 0.00 0.00

Power1 0.68 0.81 0.85 0.01 0.69 0.85 0.74 0.75 0.75
Power2 0.82 0.91 0.94 0.04 0.94 0.90 0.90 0.84 0.84
Power3 0.88 0.96 0.95 0.08 0.97 0.91 0.90 0.84 0.85
Power4 0.65 0.84 0.88 0.01 0.67 0.85 0.69 0.77 0.78
Power5 0.84 0.93 0.94 0.02 0.95 0.91 0.88 0.84 0.83
Power6 0.89 0.96 0.95 0.09 0.96 0.92 0.93 0.88 0.86
Power7 0.65 0.70 0.72 0.07 0.67 0.68 0.68 0.67 0.68
Power8 0.83 0.89 0.89 0.17 0.89 0.85 0.85 0.82 0.81
Power9 0.90 0.94 0.94 0.12 0.94 0.92 0.92 0.89 0.88
Power10 0.63 0.70 0.73 0.05 0.69 0.69 0.65 0.68 0.67
Power11 0.82 0.88 0.90 0.14 0.89 0.86 0.85 0.85 0.82
Power12 0.90 0.93 0.94 0.08 0.94 0.92 0.92 0.89 0.89

Panel C: a2 = 0.9
l = 10 l = 20 l = 50 l = 10 l = 20 l = 50 l = 10 l = 20 l = 50

Size1 0.01 0.03 0.06 0.00 0.00 0.01 0.00 0.00 0.00
Size2 0.01 0.02 0.03 0.00 0.01 0.01 0.00 0.00 0.01

Power1 0.37 0.54 0.72 0.00 0.53 0.75 0.36 0.56 0.63
Power2 0.64 0.75 0.83 0.13 0.82 0.82 0.60 0.69 0.75
Power3 0.68 0.78 0.88 0.16 0.86 0.84 0.67 0.71 0.77
Power4 0.35 0.54 0.74 0.00 0.43 0.76 0.32 0.52 0.67
Power5 0.61 0.75 0.85 0.07 0.80 0.82 0.60 0.67 0.77
Power6 0.71 0.80 0.87 0.16 0.86 0.84 0.67 0.72 0.78
Power7 0.48 0.54 0.60 0.06 0.49 0.55 0.44 0.54 0.58
Power8 0.67 0.77 0.81 0.24 0.81 0.75 0.65 0.68 0.72
Power9 0.76 0.83 0.89 0.14 0.89 0.86 0.70 0.76 0.79
Power10 0.47 0.56 0.60 0.06 0.50 0.56 0.42 0.54 0.58
Power11 0.67 0.75 0.81 0.21 0.82 0.75 0.66 0.70 0.73
Power12 0.75 0.84 0.89 0.18 0.89 0.85 0.71 0.77 0.79

Notes: See notes to Table 2.2.
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Table 2.4: Recursive Estimation Scheme - Rejection Frequencies of Various Tests
with T = 540, P = 0.5T

Model Assume π = 0 Assume π > 0 Recur Block Bootstrap
F DM CM DM CM CCS-l1 CCS-l2 CCS-l3

Panel A: a2 = 0.3
Size1 0.11 0.01 0.06 0.10 0.10 0.20 0.21 0.20
Size2 0.11 0.01 0.07 0.11 0.11 0.17 0.17 0.17

Power1 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.94
Power2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Power3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96
Power4 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96
Power5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Power6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97
Power7 1.00 1.00 1.00 1.00 1.00 0.98 0.89 0.78
Power8 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.92
Power9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power10 1.00 1.00 1.00 1.00 1.00 0.99 0.88 0.77
Power11 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.91
Power12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

Panel B: a2 = 0.6
Size1 0.09 0.02 0.04 0.10 0.09 0.19 0.22 0.20
Size2 0.11 0.01 0.06 0.10 0.09 0.14 0.16 0.19

Power1 1.00 1.00 1.00 1.00 1.00 0.95 0.91 0.89
Power2 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.95
Power3 1.00 1.00 1.00 1.00 1.00 0.98 0.94 0.93
Power4 1.00 1.00 1.00 1.00 1.00 0.96 0.91 0.86
Power5 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.94
Power6 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.92
Power7 1.00 1.00 1.00 1.00 1.00 0.80 0.69 0.64
Power8 1.00 1.00 1.00 1.00 1.00 0.97 0.89 0.84
Power9 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.91
Power10 1.00 1.00 1.00 1.00 1.00 0.81 0.67 0.61
Power11 1.00 1.00 1.00 1.00 1.00 0.97 0.86 0.84
Power12 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.92

Panel C: a2 = 0.9
Size1 0.10 0.01 0.06 0.11 0.11 0.10 0.11 0.14
Size2 0.13 0.01 0.08 0.11 0.14 0.09 0.11 0.16

Power1 1.00 1.00 1.00 1.00 1.00 0.68 0.74 0.76
Power2 1.00 1.00 1.00 1.00 1.00 0.81 0.83 0.86
Power3 1.00 1.00 1.00 1.00 1.00 0.80 0.80 0.82
Power4 1.00 1.00 1.00 1.00 1.00 0.63 0.67 0.73
Power5 1.00 1.00 1.00 1.00 1.00 0.80 0.82 0.85
Power6 1.00 1.00 1.00 1.00 1.00 0.76 0.79 0.84
Power7 1.00 0.96 1.00 1.00 1.00 0.47 0.43 0.49
Power8 1.00 1.00 1.00 1.00 1.00 0.70 0.73 0.78
Power9 1.00 1.00 1.00 1.00 1.00 0.75 0.78 0.82
Power10 1.00 0.96 1.00 1.00 1.00 0.42 0.45 0.48
Power11 1.00 1.00 1.00 1.00 1.00 0.69 0.75 0.78
Power12 1.00 1.00 1.00 1.00 1.00 0.77 0.77 0.81

Notes: See notes to Table 2.2. Test statistics, denoted by F, DM, CM, CS, and CCS are summarized in

Table 2.1. Block lengths are denoted by l1, l2, and l3, so that CCS − l3 is the CCS test with block length

l3. Block lengths corrspond to those used in Table 2.2 and 2.3, so that for a2 = 0.3, l1, l2, l3=2,5,10. The

block lengths for a2 = 0.6 and a2 = 0.9 are l1, l2, l3=4,10,20 and l1, l2, l3=10,20,50, respectively. π = 0

corresponds to the case where standard critical values based upon the assumption that parameter estimation

error vanishes asymptotically are used (i.e. π = limT−>∞P/R = 0). π > 0 corresponds to the case where

nonstandard critical values (see McCracken (2004)) based upon the assumption that parameter estimation

error does not vanish asymptotically are used (i.e. π = limT−>∞P/R > 0). In this case, we assume that

π = 1.
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Table 2.5: Rolling Estimation Scheme - Rejection Frequencies of Various Tests
with T = 540, P = 0.5T

Model Assume π = 0 Assume π > 0 Recur Block Bootstrap
F DM CM DM CM CCS-l1 CCS-l2 CCS-l3

Panel A: a2 = 0.3
Size1 0.11 0.00 0.06 0.07 0.09 0.17 0.17 0.16
Size2 0.10 0.00 0.06 0.10 0.09 0.14 0.14 0.13

Power1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Power3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Power5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Power6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Power7 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.81
Power8 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.94
Power9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Power10 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.80
Power11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95
Power12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

Panel B: a2 = 0.6
Size1 0.10 0.01 0.05 0.08 0.08 0.13 0.14 0.16
Size2 0.13 0.01 0.06 0.10 0.10 0.11 0.13 0.15

Power1 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.93
Power2 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.96
Power3 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96
Power4 1.00 1.00 1.00 1.00 1.00 0.99 0.94 0.91
Power5 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96
Power6 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.96
Power7 1.00 0.99 1.00 1.00 1.00 0.86 0.71 0.67
Power8 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.90
Power9 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.95
Power10 1.00 0.99 1.00 1.00 1.00 0.84 0.72 0.68
Power11 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.91
Power12 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.94

Panel C: a2 = 0.9
Size1 0.11 0.02 0.04 0.08 0.10 0.07 0.12 0.13
Size2 0.13 0.02 0.06 0.12 0.13 0.06 0.07 0.13

Power1 1.00 1.00 1.00 1.00 1.00 0.72 0.72 0.80
Power2 1.00 1.00 1.00 1.00 1.00 0.85 0.83 0.86
Power3 1.00 1.00 1.00 1.00 1.00 0.80 0.82 0.82
Power4 1.00 1.00 1.00 1.00 1.00 0.70 0.71 0.78
Power5 1.00 1.00 1.00 1.00 1.00 0.83 0.82 0.87
Power6 1.00 1.00 1.00 1.00 1.00 0.81 0.80 0.85
Power7 1.00 0.97 1.00 1.00 1.00 0.46 0.44 0.49
Power8 1.00 1.00 1.00 1.00 1.00 0.80 0.78 0.82
Power9 1.00 1.00 1.00 1.00 1.00 0.87 0.83 0.87
Power10 1.00 0.97 1.00 1.00 1.00 0.48 0.48 0.53
Power11 1.00 1.00 1.00 1.00 1.00 0.80 0.81 0.82
Power12 1.00 1.00 1.00 1.00 1.00 0.83 0.84 0.87

Notes: See notes to Table 2.4.
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Table 2.6: Mean Square Forecast Errors and the Marginal Predictive Content of
M2 for Output

Recursive Rolling
Start Year small model big model small model big model

1974 0.0000398 0.0000395 0.0000393 0.0000410
1975 0.0000359 0.0000355 0.0000345 0.0000363
1976 0.0000352 0.0000349 0.0000338 0.0000352
1977 0.0000353 0.0000350 0.0000340 0.0000345
1978 0.0000350 0.0000348 0.0000337 0.0000344
1979 0.0000345 0.0000341 0.0000334 0.0000339
1980 0.0000343 0.0000338 0.0000333 0.0000336
1981 0.0000328 0.0000325 0.0000323 0.0000330
1982 0.0000321 0.0000317 0.0000317 0.0000323
1983 0.0000285 0.0000280 0.0000284 0.0000287
1984 0.0000271 0.0000261 0.0000274 0.0000271
1985 0.0000281 0.0000271 0.0000280 0.0000281
1986 0.0000284 0.0000274 0.0000281 0.0000283
1987 0.0000281 0.0000272 0.0000278 0.0000279
1988 0.0000279 0.0000266 0.0000272 0.0000270
1989 0.0000292 0.0000279 0.0000285 0.0000280
1990 0.0000281 0.0000269 0.0000275 0.0000269
1991 0.0000278 0.0000269 0.0000269 0.0000267
1992 0.0000278 0.0000271 0.0000267 0.0000270
1993 0.0000288 0.0000280 0.0000275 0.0000279

Notes: For the empirical work, the variables used are monthly observations of industrial production (IP ),
the wholesale price index (P ), the secondary market rate on 90-day U.S. Treasury bills (R), the interest rate
on three-month prime commercial paper (C) and Divisia monetary aggregates of money supply (M2). The
sample period is 1959-01 to 2003-12.
We define the small model as:

yt = θ†1,1 + θ†1,2yt−1 + θ†1,3z1,t−1 + u1,t

where

θ†1 = (θ†1,1, θ
†
1,2, θ

†
1,3)

′ = arg min
θ1∈Θ1

E(q1(yt − θ1,1 − θ1,2yt−1 − θ1,3z1,t−1))isdefinedconformably,

yt = (∆ log IPt, ∆log Pt, ∆Rt)
′

and
z1,t−1 = Ct−1 −Rt−1.

We further define the generic alternative (big) model as:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)z1,t−1 + θ†2,4(γ)w(Zt−1, γ) + u2,t(γ)

where

θ†2(γ) = (θ†2,1(γ), θ†2,2(γ), θ†2,3(γ), θ†2,4(γ))′ = arg min
θ2∈Θ2

E(q1(yt− θ2,1− θ2,2yt−1− θ2,3z1,t−1− θ2,4w(Zt−1, γ)))

and

yt = (∆ log IPt, ∆log Pt, ∆log M2t, ∆Rt)

z1,t−1 = Ct−1 −Rt−1

z2,t−1 = log M2t−1 − log IPt−1 − log Pt−1.

z1,t−1 and z2,t−1 can be interpreted as vector error correction terms. Mean square forecast errors are reported

for the small and big models as defined above. Since we are interested in examining the (non)linear marginal

predictive content of money for income, our forecasting analysis and test statistics are constructed based

on estimates of the first equation in the vector error correction model specified above. All predictions are

1-step ahead output and predictive periods begin in the year given in the first column of entries in the table.

Entries in bold represent the lowest MSFE for the corresponding year in which prediction started.
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Table 2.7: Tests for the Marginal Predictive Content of M2 for Output
Prediction Period Begins in

Test Statistic 1987(π = 0.6) 1981(π = 1.0) 1978(π = 1.4)

Panel A: Sig Level = 5%; Recursive
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) no reject reject no reject
F reject reject reject
DM (Tabulated CVs) reject no reject no reject
CM (Tabulated CVs) reject reject reject

Panel B: Sig Level = 10%; Recursive
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) reject reject no reject
F reject reject reject
DM (Tabulated CVs) reject reject reject
CM (Tabulated CVs) reject reject reject

Panel C: Sig Level = 5%; Rolling
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) no reject no reject no reject
F reject reject reject
DM (Tabulated CVs) no reject no reject no reject
CM (Tabulated CVs) reject no reject no reject

Panel D: Sig Level = 10%; Rolling
CS (Recur Block Bootstrap) no reject no reject no reject
CCS (Recur Block Bootstrap) reject reject no reject
F reject reject reject
DM (Tabulated CVs) no reject no reject no reject
CM (Tabulated CVs) reject no reject reject

Notes: Entries denote either rejection (reject) or failure to reject (no reject) the null hypothesis that M2 has

no marginal predictive content for output. Entries denote nominal 5% and 10% level test rejection based

on critical values constructed using the approach signified in brackets in the first column of the table. The

models are as described in the notes to Table 2.6. All models use monthly data and all predictions are based

on 1-step ahead recursive and rolling schemes.
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Chapter 3

Seeing Inside the Black Box: Using Diffusion Index

Methodology to Construct Factor Proxies in Largescale

Macroeconomic Time Series Environments

3.1 Introduction

The idea that individual economic variables can be forecast with some precision by refining

the information from a large panel of data into a small set of estimated factors (predictors)

is intriguing. It suggests that there is a small set of crucial latent factors which generate

the co-movements in a large set of macroeconomic variables. This idea is consistent, for

example, with the notion that a small set of underlying shocks are responsible for the dy-

namic behavior implicit in dynamic stochastic general equilibrium models. The practice

of using observable economic variables to proxy the latent factors is espoused on the Fed-

eral Reserve Bank of New York’s website: “In formulating the nation’s monetary policy,

the Federal Reserve considers a number of factors, including the economic and financial

indicators which follow, as well as the anecdotal reports compiled in the Beige Book. Real

Gross Domestic Product (GDP); Consumer Price Index (CPI); Nonfarm Payroll Employ-

ment Housing Starts; Industrial Production/Capacity Utilization; Retail Sales; Business

Sales and Inventories; Advance Durable Goods Shipments, New Orders and Unfilled Or-

ders; Lightweight Vehicle Sales; Yield on 10-year Treasury Bond; S&P 500 Stock Index;

M2” (see http://www.newyorkfed.org/education/bythe.html). The recent literature on fac-

tor (diffusion index) models is rich and diverse. A very few of the most important papers

include: Bai (2003), Bai and Ng (2002, 2005, 2006a,b,c,d), Boivin and Ng (2005), Connor

and Korajczyk (1993), Ding and Hwang (1999), Forni, Hallin, Lippi, and Reichlin (2000,

2005), Forni and Reichlin (1996, 1998), Geweke (1977), Rapach and Strauss (2007), and

Stock and Watson (1996, 1998, 1999, 2002a,b, 2004a,b, 2005).
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In this paper, our purpose is twofold: first, we provide a review of the extant literature,

with careful emphasis on the implementation of factor estimation and prediction using the

methods of Bai and Ng as well as Stock and Watson. We then outline a simple methodology

for the construction of factor proxies for use in prediction models, where our proxies are

observable economic variables. In this sense, we attempt to look inside the “black box”,

in the sense that our proxy factors are observable and hence have clear economic meaning,

while factors in general are often hard to interpret economically (see below for further

discussion). As a case in point, policy makers use individual observable variables as policy

instruments, for example. Our factor proxies might thus be used for policy, while estimated

unobserved factors are not as obviously used in policy applications. In this sense, our

main contribution is to add to the broad literature on prediction using factor models. The

methodology that we outline is very straightforward, and is based upon application of

the A(j) and M(j) statistics developed in Bai and Ng (2006a,b). An ancillary purpose

in this paper is to note that in some cases factor proxies defined as observable variables

may actually perform as well as estimates of unobserved factors based on standard factor

analysis. This is rather an interesting finding, suggesting for example that factor analysis

should be applied with caution, particularly in cases where parameter estimation error

implicit to factor construction may be great.

Following the approach of Stock and Watson (2002a,b), diffusion index forecasts involve

a two-step procedure. First, the method of principal components is used to estimate the

factors from a large panel of possible predictors, X. Second, the estimated factors are

used to forecast the variable of interest, yt+1. Stock and Watson (2002a) demonstrate that

diffusion index forecasts yield encouraging results. Bai and Ng (2006a), however, point out

that the regressors (factors) in the diffusion index model are estimated, hence substantially

increasing the forecast error variance. In a related paper, Bai and Ng (2006b) examine

whether observable economic variables can serve as proxies for the underlying unobserved

factors. In particular, they use the A(j) and M(j) statistics to determine whether a group

of observed variables yields precisely the same information as that contained in the latent

factors. Stock and Watson (2002a) have also attempted to link the factors to observed

variables. Thus, in some sense, Bai and Ng, as well as Stock and Watson, have already looked
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inside the “black box”. Our approach is to take their argument one step further, and to argue

that if observable economic variables are indeed good proxies of the unobserved factors, then

these proxies can be used in place of the factors in the diffusion index model for prediction.

Once the set of factor proxies is fixed, we effectively eliminate the incremental increase in

forecast error variance (i.e., uncertainty) associated with the use of estimated factors. Along

these lines, we consider “smoothed” versions of the A(j) and M(j) statistics that pre-select

a set of factor proxies prior to the ex-ante construction of a sequence of predictions. It is

worth noting that by replacing the estimated factors with observed variables, we are trading

off the above variety of uncertainty with “variable selection uncertainty”. Our empirical

results suggest that there are cases in macro forecasting where the trade-off is worthwhile.

In a Monte Carlo experiment, we show that the A(j) and M(j) statistics can be used to

construct prediction models that compare perform quite favorably when compared against

standard factor model predictions. We additionally carry out a large variety of prediction

experiments using the macroeconomic dataset of Stock and Watson (2005). In these exper-

iments, we predict a number of price and income variables, including industrial production,

real personal income less transfers, real manufacturing and trade sales, the number of em-

ployees on non-agricultural payrolls, the consumer price index, the personal consumption

expenditure implicit price deflator, and the producer price index for finished goods. Us-

ing recursively estimated models, we construct h = 1, 3, 12, and 24 step ahead forecasts.

We show that the A(j) and M(j) statistics appear to offer an interesting means by which

factor proxies for later use in prediction models can be chosen. Indeed, our “smoothed”

approaches to factor proxy selection appear to yield predictions that are often mean square

forecast error “superior” not only relative to a benchmark factor model, but also to sim-

ple linear time series models which are often difficult to beat in forecasting competitions.

Furthermore, our methods based on the use of the A(j) statistic appear to perform better

than those based on the M(j) statistic. Finally, we provide evidence that: (i) versions of

our factor proxy selection method that use only a single factor proxy are preferred to those

based on the use of k̂ proxies, where k̂ is a consistent estimate of the true number of factors;

and (ii) while our “smoothed” proxy selection method is clearly superior for h = 1, 3, and

12, the method breaks down at the longest forecast horizon that we consider (i.e., h = 24).
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For the longest horizons, the estimated factor approach to prediction (e.g., that used by

Stock and Watson (2002a,b)) dominates.

By using our approach to predictive factor proxy selection, we believe that we are able

to “open up” the “black box” often associated with factor analysis, at least to a certain

extent, and to identify actual variables that can serve as primitive building blocks for

(prediction) models of a host of macroeconomic variables. Our empirical analysis suggests

that important underlying observable variables, in the sense that they are good proxies for

latent factors, include: the S&P500 price index and dividend series; the 1-year Treasury

bond rate; various housing activity variables; industrial production; and an exchange rate.

The rest of the paper is organized as follows. In Section 3.2 we review the diffusion index

literature, with some focus on the methods that are used in our Monte Carlo and empirical

experiments. In Section 3.3 we discuss the use of factor proxies, including a discussion of

the Bai and Ng (2006a,b) tests, and a discussion of the methodological approach to the

construction and use of factor proxies for prediction. Section 3.4 contains a summary of

the empirical methodology used in the paper, and Section 3.5 summarizes the data used.

In Section 3.6, the results of a small Monte Carlo experiment studying the finite sample

properties of the Bai and Ng (2006a,b) tests are presented, and in Section 3.7 we summarize

our empirical findings. Finally, in Section 3.8 we briefly discuss the most recent advances

in the diffusion index methodology; and concluding remarks are gathered in Section 3.9.

3.2 Review: Diffusion Index Models and the Principle Components Ap-

proach to Estimation

3.2.1 The diffusion index model

Following Stock and Watson (2002a,b), let yt+1be the series we wish to forecast and Xt be

an N -dimensional vector of predictor variables, for t = 1, . . . , T . Assume that (yt+1, Xt)

has a dynamic factor model representation with r common dynamic factors, ft. Hence, ft

is an r × 1 vector. The dynamic factor model is written as:

yt+h = α(L)ft + β′Wt + εt+h (3.1)
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and

xit = λi(L)ft + eit, (3.2)

for i = 1, 2, . . . , N , where Wt is an l × 1 vector of other observable variables with l << N,

such as contemporaneous and lagged values of yt; h > 0 is the lead time between information

available and the dependent variable; xit is a single datum for a particular predictor variable;

eit is the idiosyncratic shock component of xit; and α(L) and λi(L) are lag polynomials

in nonnegative powers of L. In general, dynamic factor models can be transformed into

static factor models. In Stock and Watson (2002a), the lag polynomials α(L) and λi(L)

are modeled as α(L) =
∑q

j=0 αjL
j and λi(L) =

∑q
j=0 λijL

j . The finite order of the lag

polynomials allows us to rewrite (3.1) and (3.2) as:

yt+h = α′Ft + β′Wt + εt+h (3.3)

and

xit = Λ′iFt + eit, (3.4)

where Ft = (f ′t, . . . , f ′t−q)
′ is an r × 1 vector, with r = (q + 1)r and α is an r × 1 vector.

Here, r is the number of static factors (i.e., the number of elements in Ft). Additionally,

Λi = (λ′i0, . . . , λ
′
iq)
′ is a vector of factor loadings on the r static factors, where λij is an r×1

vector for j = 0, . . . , q and β = (β1, . . . , βl)′. Alternatively, from (3.2), the dynamic factor

model can be represented as:

xit = λ′i0ft + λ′i1ft−1 + . . . + λ′iqft−q + eit (3.5)

= λ′i(L)ft + eit (3.6)

and:

λi(L) = λi0 + λi1L
1 + . . . + λiqL

q.

For complete details, see Bai and Ng (2005). Now, (3.6) can be written in the static form

(3.4) where Ft and Λi are defined as above. The static factor model refers to the contempo-

raneous relationship between xit and Ft. One major advantage of the static representation

of the dynamic factor model is it enables us to use principal components to estimate the

factors. This involves estimating Ft using an eigenvalue-eigenvector decomposition of the
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sample covariance matrix of the data. It is worth noting that the use of principal compo-

nents to estimate the factors cannot be done with infinitely distributed lags of the factors

(see Stock and Watson (2002a)). Ding and Hwang (1999), Forni et al. (2000), Stock and

Watson (2002b), Bai and Ng (2002) and Bai (2003) showed that the space spanned by

both the static and dynamic factors can be consistently estimated when N and T are both

large. For forecasting purposes, little is gained from a clear distinction between the static

and the dynamic factors. However, many economic analyses hinge on the ability to isolate

the primitive shocks or the number of dynamic factors (see Bai and Ng (2007)). Boivin

and Ng (2005) also compare alternative factor based forecast methodologies, and conclude

that when the dynamic structure is unknown and the model is characterized by complex

dynamics, the approach of Stock and Watson performs favorably. If the idiosyncratic er-

rors, et = (e1t, . . . , eNt)′, are cross-sectionally independent and i.i.d. over time, then (3.4) is

the classical factor analysis model. It is important at this juncture to note that the factor

model does not generally require the idiosyncratic errors to be cross-sectionally indepen-

dent (see e.g., Bai and Ng (2002)). This is a crucial departure, as it ensures that we can

assume the existence of an “approximate” rather than “strict” factor model. (Moreover,

the idiosyncratic errors are restricted to be “weakly” correlated, roughly speaking, as the

basic structure of the factor model requires the factors to account for the “bulk” of the

co-movement across variables). Of final note, it should be mentioned that Geweke (1977)

and Sargent and Sims (1977) were among the first to extend the classical factor analysis

model to dynamic models.

Following Bai and Ng (2002), let Xi be a T × 1 vector of observations for the ith vari-

able. For a given cross-section i, we have (T × 1)Xi = (T × r)F 0(r × 1)Λi+(T × 1)ei where

Xi = (Xi1, . . . , XiT )′, F 0 = (F1, . . . , FT )′ and ei = (ei1, . . . , eiT )′. The whole panel of data

X = (X1, . . . , XN ) can consequently be represented as (T ×N)X = (T × r)F 0(r ×N)Λ′+

(T ×N)e, where Λ = (Λ1, . . . ,ΛN )′ and e = (e1, . . . , eN ). Connor and Korajczyk (1986,

1988, 1993) (1996, 1998) and Forni, Hallin, Lippi and Reichlin (2000) Stock and Watson

(2002b) We will also assume {Ft} and {eit} are two groups of mutually independent stochas-

tic variables. Furthermore, it is well known that for ΛFt = ΛQQ−1Ft , a normalization

is needed in order to uniquely define the factors, where Q is a nonsingular matrix. Now,
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assuming that (Λ′Λ/N) → Ir, we restrict Q to be orthonormal, for example. This assump-

tion, together with others noted in Stock and Watson (2002b), enables us to identify the

factors up to a change of sign and consistently estimate them up to an orthonormal trans-

formation. Forecasts of yT+h based on (3.3) and (3.4) involve a two step procedure because

both the regressors and coefficients in the forecasting equations are unknown. The data

sample {Xt}T
t=1 are first used to estimate the factors, {F̃t}T

t=1 by means of principal compo-

nents. With the estimated factors in hand, we obtain the estimators α̂ and β̂ by regressing

yt+h onto F̃t and the observable variables in Wt. Of note is that if
√

T/N → 0, then the

generated regressor problem does not arise, in the sense that least squares estimates of α̂

and β̂ are
√

T consistent and asymptotically normal (see Bai and Ng (2005)).

3.2.2 Common factor estimation using principal components

The problem of obtaining the necessary estimates in (3.4) would be simplified if we knew

F 0. Then Λi could be estimated via least squares by setting {xit}T
t=1 to be the dependent

variable and {Ft}T
t=1 to be the explanatory variable. On the other hand, if Λ were known,

Ft could be estimated by regressing {xit}N
i=1 on {Λi}N

i=1. Since the common factors are not

observed, in the regression analysis of (3.4), we replace Ft by F̃t, estimates that span the

same space as Ft when N,T → ∞. Estimation of these common factors from large panel

data sets of macroeconomic variables can be carried out using principal component analysis.

We refer the reader to Stock and Watson (1998, 2002a, 2002b, 2004a, 2004b) and Bai and

Ng (2002) for a detailed explanation of this procedure, and to Connor and Korajczyk (1986,

1988, 1993), Forni and Reichlin (1996, 1998) and Forni, Hallin, Lippi and Reichlin (2000)

for further detailed discussion of diffusion models, in general.

As noted earlier Ft and λi are not separately identified, but rather identifiable only up

to a square matrix. Stock and Watson (1998) further demonstrate that when principal

components is used, the factors remain consistent even when there is some time variation in

Λ and small amounts of data contamination, so long as the number of variables in the panel

data set or the number of predictors is very large (i.e., N >> T ). In this paper, we only

give an outline of how principal component analysis is carried out, with particular emphasis

on those features of the analysis that allow us to carry out our prediction experiments using
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the A(j) and M(j) statistics of Bai and Ng (2006b).

Let k (k < min{N, T}) be an arbitrary number of factors, Λk be the N × k matrix of

factor loadings, (Λk
1, . . . , Λ

k
N )′, and F k be a T × k matrix of factors (F k

1 , . . . , F k
T )′. From

(3.4), estimates of Λk
i and F k

t are obtained by solving the optimization problem:

V (k) = Λk, F kmin(NT )−1i = 1N
∑

Tt = 1
∑

(xit − Λk′
i F k

t )2 (3.7)

Let F̃ k and Λ̃k be the minimizers of equation (3.7). Since Λk and F k are not separately

identifiable, if N > T , a computationally expedient approach would be to concentrate out

Λ̃k and minimize (3.7) subject to the normalization F k′F k/T = Ik. Minimizing (3.7) is

equivalent to maximizing tr[F k′(XX ′)F k]. This optimization is solved by setting F̃ k to be

the matrix of the k eigenvectors of XX ′ that correspond to the k largest eigenvalues of

XX ′. Note that tr[·] represents the matrix trace. The superscript in Λk and F k signifies

the use of k factors in the estimation and the fact that the estimates will depend on k. Let

D̃ be a k×k diagonal matrix consisting of the k largest eigenvalues of XX ′. The estimated

factor matrix, denoted by F̃ k, is
√

T times the eigenvectors corresponding to the k largest

eigenvalues of the T × T matrix XX ′. Given F̃ k and the normalization F k′F k/T = Ik,

Λ̃k′ = (F̃ k′F̃ k)−1F̃ k′X = F̃ k′X/T is the corresponding factor loadings matrix.

The solution to the optimization problem in (3.7) is not unique. If N < T , it be-

comes computationally advantageous to concentrate out F
k and minimize (3.7) subject to

Λk′Λk
/N = Ik. This minimization is the same as maximizing tr[Λk′X ′XΛk], the solution

of which is to set Λk equal to the eigenvectors of the N ×N matrix X ′X that correspond

to its k largest eigenvalues. One can consequently estimate the factors as F
k = X ′Λk

/N .

F̃ k and F
k span the same column spaces, hence for forecasting purposes, they can be used

interchangeably depending on which one is more computationally efficient. Given F̃ k and

Λ̃k, let V̂ (k) = (NT )−1i = 1N
∑

Tt = 1
∑

(xit − Λ̃k′
i F̃ k

t )2 be the sum of squared residuals

from regressions of Xi on the k factors, ∀i. A penalty function for over fitting, g(N, T ), is

chosen such that the loss function

IC(k) = log(V̂ (k)) + kg(N,T ) (3.8)

can consistently estimate r. Let kmax be a bounded integer such that r ≤ k max. Bai

and Ng (2002) propose three versions of the penalty function g(N, T ). Namely g1(N, T ) =
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(
N+T
NT

)
log

(
NT

N+T

)
, g2(N, T ) =

(
N+T
NT

)
log C2

NT , and g3(N, T ) =
(

log(C2
NT )

C2
NT

)
, all of which

lead to consistent estimation of r. In our empirical and Monte Carlo experiments, we use

g2(N, T ). Of note is that we tried the other penalty functions above, and our results were

qualitatively the same. However, Bai and Ng (2002), as well as others, have shown that

in certain contexts, results are sensitive to the choice of penalty function. Hence, (3.8)

becomes:

IC(k) = log(V̂ (k)) + k(
N + T

NT
) log C2

NT

where CNT = min{√N,
√

T}. The consistent estimate of the true number of factors is then:

k̂ = arg min
0≤k≤k max

IC(k), (3.9)

and limN,T→∞Prob[k̂ = r] = 1 if g(N, T ) → 0 and C2
NT · g(N, T ) → ∞ as N,T → ∞, as

shown in Bai and Ng (2002).

3.3 Using Proxies In Place of Factors for Prediction

3.3.1 Prediction using factors

Reconsider the general equation (3.3), yt+h = α′Ft + β′Wt + εt+h. As mentioned above,

and shown in Stock and Watson (2002b) and Bai and Ng (2005), under a set of moment

conditions on (ε, e, F 0) and an asymptotic rank condition on Λ, if the space spanned by

Ft can be consistently estimated, then
√

T consistent estimates of α and β are obtainable.

Under a similar set of conditions, it is also possible to obtain min[
√

N,
√

T ] consistent

forecasts if
√

T/N → 0 as N, T → ∞. Let zt = (F ′
t ,W

′
t)
′; E(εt+h|yt, zt, yt−1, zt−1, . . .) = 0,

for any h > 0; and let zt and εt be independent of the idiosyncratic errors eis, ∀i, s. If Ft is

observable and α and β are known, based on the above assumption that the mean of εt+h

conditional on past information is zero, the conditional mean and minimum mean square

error forecast of yT+h is given by:

yT+h|T = E(yT+h|zT , zT−1, . . .) = α′FT + β′WT ≡ δ′zT

Such a prediction is not feasible, however, since α, β and Ft are all unobserved. The feasible

prediction that replaces the unknown objects by their estimates is:

ŷT+h|T = α̂′F̃T + β̂′WT = δ̂′ẑT , (3.10)
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where ẑt = (F̃ ′
t , W

′
t)
′. Here, α̂ and β̂ are the least squares estimates obtained from regressing

yt+h on F̃t and Wt, t = 1, . . . , T−h. We suppress the k superscript on F̃ k
t because we assume

we have consistently estimated the number of factors underlying the dataset. The factors,

Ft, are estimated from xit by the method of principal components, as discussed above. As

the objective is to forecast yT+h, a crucial aspect of our analysis is the distribution of the

forecast error. As explained in detail in Bai and Ng (2006a), since yT+h = yT+h|T + εT+h,

it follows that the forecast error is:

ε̂T+h ≡ ŷT+h|T − yT+h = (ŷT+h|T − yT+h|T )− εT+h

If εt ∼ N(0, σ2
ε), then:

ε̂T+h ∼ N(0, σ2
ε + var(ŷT+h|T )) (3.11)

where

var(ŷT+h|T ) =
1
T

ẑ′T Avar(δ̂)ẑT +
1
N

α̂′Avar(F̃T )α̂. (3.12)

Here, var(ŷT+h|T ) reflects both parameter uncertainty and regressor uncertainty. In large

samples, var(ε̂T+h) is dominated by σ2
ε . If we ignore var(ŷT+h|T ), σ2

ε alone will under-

estimate the true forecast uncertainty for finite T and N . Let us now assume for a moment

that Ft is observable. The feasible prediction of yT+h would then be yT+h|T = α′FT +

β
′
WT = δ

′
zT , where α and β are the least squares estimates obtained from regressing yt+h

on Ft and Wt. Once again, since yT+h = yT+h|T + εT+h, the forecast error is:

εT+h = yT+h|T − yT+h = (yT+h|T − yT+h|T )− εT+h

If εt ∼ N(0, σ2
ε), then

εT+h ∼ N(0, σ2
ε + var(yT+h|T )), (3.13)

where

var(yT+h|T ) =
1
T

z′T Avar(δ)zT . (3.14)

Thus, and as discussed by Bai and Ng (2006a), when comparing var(yT+h|T ) with var(ŷT+h|T ),

it is clear that estimating the factors increases the forecast error variance, var(ŷT+h|T ), by

1
N α̂′Avar(F̃T )α̂. Of course, if we could observe the factors instead of estimating them, we

would reduce the forecast error variance from (3.11) to (3.13). In finite samples, this may
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yield important prediction error variance reduction. It is for this reason that we consider

replacing the factors in (3.10) with observable variables that closely proxy the factors. The

approach taken in order to do this involves implementing a “first stage” factor analysis in

which proxies are formed using the A(j) and M(j) statistics of Bai and Ng (2006b). In a

“second stage”, the observable proxies are used in the construction of a prediction model.

In this way, all estimation error associated with the factor analysis and proxy selection is

essentially “hidden” in the first stage, and does not directly manifest itself in the “second

stage” prediction models and prediction errors. Put another way, we are trading-off “esti-

mated factor uncertainty” for “variable selection uncertainty” (see introduction for further

discussion). Of course, issues related to “pre-testing” and sequential testing bias still arise.

Nevertheless, in our prediction experiments we attempt to quantify through finite sample

experiments the potential gains to using the “proxy” approach.

3.3.2 Using the A(j) and M(j) tests of Bai and Ng (2006b) to uncover

factor proxies

For a detailed theoretical discussion of the results presented in this subsection, the reader

is referred to Bai and Ng (2006b). Here, we draw heavily on aspects of that paper that are

relevant to our empirical implementation. Note that while Bai and Ng (2006b) suggest using

the A(j) and M(j) statistics to assess whether key business cycle indicators approximate

the latent factors, we use the A(j) and M(j) statistics to select factor proxies for subsequent

use in prediction models. The A(j) statistic depends on the actual size of a t-test. The

M(j) test is based on a measure of the distance between observed variables and factor

estimates thereof.

Suppose we observe G′, a (T ×m) matrix of observable economic variables that could

potentially proxy the latent factors (i.e., G is an m× T matrix). At any given time t, any

of the m elements of Gt (m × 1) will be a good proxy if it is a linear combination of the

r × 1 latent factors, Ft. Let Gjt be an element of the m vector Gt. The null hypothesis is

that Gjt is an exact proxy, or more precisely, ∃ θj (r × 1) such that Gjt = θ′jFt. In order

to implement all of the methods, consider the regression Gjt = γ′jF̃t + ρt. Let γ̂j be the

least squares estimate of γj and let Ĝjt = γ̂′jF̃t. The test is carried out by constructing the
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following t-statistic:

τt(j) =
(Ĝjt −Gjt)

(v̂ar(Ĝjt))1/2
(3.15)

where

v̂ar(Ĝjt) =
1
N

γ̂′jD̃
−1

(
F̃ ′F̃
T

)
Γ̃t

(
F̃ ′F̃
T

)
D̃−1γ̂j

=
1
N

γ̂′jD̃
−1Γ̃tD̃

−1γ̂j , (3.16)

and Γ̃t is defined below. The last step above is due to the normalization that F̃ ′F̃ /T = I
k̂
.

Once again, D̃ is a k × k diagonal matrix consisting of the k largest eigenvalues of XX ′.

Given the null hypothesis that Gjt = θ′jFt and that Ĝjt converges to Gjt at rate
√

N , Bai

and Ng (2006b) show that the limiting distribution of
√

N(Ĝjt − Gjt) is asymptotically

normal and hence τt(j) has a standard normal limiting distribution. Consistent choices for

the the k̂ × k̂ matrix Γ̃t include the following:

Γ̃1
t =

1
n

i = 1n
∑

nj = 1
∑

Λ̃iΛ̃′j
1
T

t = 1T
∑

ẽitẽjt , ∀t, (3.17)

Γ̃2
t =

1
N

Ni = 1
∑

ẽ2
itΛ̃iΛ̃′i, (3.18)

and

Γ̃3 = σ̂2
e

Λ̃′Λ̃
N

, (3.19)

where σ̂2
e = 1

NT i = 1N
∑

Tt = 1
∑

ẽ2
it, ẽit = xit − Λ̃′iF̃t and n

min[N,T ] → 0 as N,T → ∞.

In our Monte Carlo simulation and our empirical analysis, we choose n = min{√N,
√

T}.
Equation (3.17) allows cross-section correlation but assumes time-series stationarity of eit.

This covariance estimator is a HAC type estimator because it is robust to cross-correlation

(see Bai and Ng (2006a) for complete details). Equation (3.18) allows for time-series het-

eroskedasticity, but assumes no cross-sectional correlation of eit. Equation (3.19) assumes

no cross-sectional correlation and constant variance, ∀i and ∀t. For small cross-sectional

correlation in eit, Bai and Ng (2006a) found that constraining the correlations to be zero

could sometimes be desirable. In this regard, they make the point that (3.18) and (3.19)

are useful even if residual cross-correlation is genuinely present.

As mentioned earlier, τt(j) in (3.15) has a standard normal limiting distribution. Let Φτ
ξ

be the ξ percentage point of the limiting distribution of τt(j). The hypothesis test based on
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the t-statistic in (3.15) enables us to determine whether an observed value of a candidate

variable is a good proxy at a specific time t. For our purposes however, given information

up to time T , whatever methods or procedures we use to select the proxies ought to select

whole time series Gj , for which Gjt satisfies the null hypothesis, ∀t. In this regard, our first

proxy selection method is based upon the following statistic:

A(j) =
1
T

t = 1T
∑

1(|τt(j)| > Φτ
ξ ). (3.20)

The A(j) statistic is the actual size of the test (i.e., the probability of Type I error given

the sample size). Since τt(j) is asymptotically standard normal and the test is a two-tailed

test, the actual size, A(j), of the t-test should converge to the nominal size (the desired

significance level is 2ξ) as T →∞. This means that if a candidate variable is a good proxy

of the underlying factors of a data set, the A(j) statistic calculated from its sample time

series should approach 2ξ as the sample size increases. This is the basis on which we use

the A(j) statistic to select proxies. It should be noted that the A(j) statistic does not

constitute a test in the strict sense since we do not compare a test statistic to a critical

value to determine whether or not to reject a null hypothesis. Rather, this procedure gives

a ranking of the proxies with the best proxy having an A(j) statistic value closest to 2ξ.

In our implementation, the candidate set of proxies, G′, is the same as the the panel data

set X from which we estimate the factors. Given the choice of the significance level 2ξ, the

A(j) statistic incorporates some degree of robustness by allowing Gjt to deviate from Ĝjt

for a specified number of time points.

The second method for selecting the proxies considers the statistic:

M(j) = 1 ≤ t ≤ Tmax|τt(j)|, (3.21)

which is based on a measure of how far the Ĝjt curve is from Gjt. If eit is serially uncorre-

lated, then:

P (M(j) ≤ x) ≈ [2Φ(x)− 1]T , (3.22)

where Φ(x) is the cdf of a standard normal random variable. From (3.21) and (3.22), we can

perform a test to determine whether the time series of a candidate variable is a good proxy

for the latent factors. For instance, suppose we are given a significance level 2ξ and a sample
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of size T from a particular candidate variable, Gj . From the right hand side of (3.22), we

can calculate the corresponding critical value, x, for the test. For the same sample, we

calculate M(j) from (3.21) and conclude that Gj is a good proxy if M(j) ≤ x, and a bad

proxy otherwise. The test based on the M(j) statistic is thus stronger than the selection

method based on the A(j) statistic, as the M(j) test gives a sharp decision rule. However,

the M(j) test has at least one disadvantage. It requires eit to be serially uncorrelated. We

ignore this requirement in our experimental analysis. It should be noted that x increases

with the sample size, T . Depending on the nature of the observed sample, this fact could

either preserve or reduce the power of the M(j) test.1

The proxies selected depend on the structure of the k̂× k̂ matrix Γ̃t that we use in (4.8).

For a given proxy selection method, if the choice of Γ̃1
t , Γ̃

2
t , Γ̃

3 used in calculating (4.8) all

produce the same proxies, it could mean that the respective assumptions associated with

the use of Γ̃1
t , Γ̃

2
t , Γ̃

3 might not be very relevant, empirically. We found no gains, in our

experimental set-up, to using Γ̃1
t and Γ̃3, and hence all reported results are for the case

where we use Γ̃2
t

Finally, Shanken (1992) points out that it is theoretically crucial for the observed selected

proxies to span the same space as the r latent factors, as discussed above. We nevertheless

consider versions of the above methods where the number of factors is greater than the

number of proxies, given the principle of parsimony in forecasting.

3.3.3 Smoothed A(j) and M(j) tests for selecting factor proxies

The A(j) and M(j) statistics discussed above may yield a different set of proxies at each

point in time when used to construct a sequence of recursive forecasts. Namely, if the

information set used in the parameterization of a prediction model is updated prior to the

construction of each new forecast for some sequence of E ex ante predictions, then the “first

stage” factor analysis discussed above may yield a sequence of E different vectors of factor

proxies. Thus, in addition to the A(j) and M(j) proxy selection methods, we also consider

a version of these methods where the sample period in our empirical analysis is broken

1Note that we also considered the confidence interval approach of Bai and Ng (2006); but it did not
perform better than the above methods.
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into three subsamples (R1, R2, and E, such that T = R1 + R2+ E). The first subsample

is used to estimate proxies. Thereafter, one observation from R2 is added, and this new

larger sample is used to recursively select a second set of factor proxies. This is continued

until the second subsample is exhausted, yielding a sequence of R2 different vectors of factor

proxies. Individual proxies are then ranked according to their selection frequency, and those

occurring the most frequently are selected and fixed for further use in constructing E ex ante

predictions. As some of our models (such as the autoregressive model) select the number

of lags and re-estimate all parameters prior to the formation of each new prediction, this

smoothed approach is at a disadvantage, in the sense that it is static (i.e., the set of proxies

is fixed throughout the forecast experiment). However, loading parameters for the proxies

are still re-estimated prior to the formation of each new recursive prediction. Of course,

the potential advantage to this approach is that noise across the proxy selection process is

suppressed.

3.4 Empirical Methodology

In order to assess the performance of factor proxy based prediction models, we focus our

attention on direct multistep-ahead predictions. Forecasts are generated as h-step ahead

predictions of yt, say. Namely, we predict yt+h = log
(

Yt+h

Yt+h−1

)
, where Yt is the variable of

interest.2 Our approach is to compare the performance of factor based predictions with a

host of proxy based predictions as well as various “strawman” predictions. For the “straw-

man” forecast models, we use an autoregressive (AR(p)) model (with lags selected using

the Schwarz Information Criterion (SIC)) and a random walk model. The “strawman”

models are included because they serve as parsimonious benchmarks that are often difficult

to outperform. In Table 3.1, we provide the specifications and brief descriptions of all of

the forecast models examined.

We consider two classes of proxy forecasts models. The first class of models, which we

2While cummulative changes are very useful in prediction contexts, we predict the growth rate from one
period to the next, yt+h = log(Yt+h/Yt+h−1) instead of the cumulative change, yt+h = log(Yt+h/Yt). Our
approach is in accord with the Federal Reserve Economic Database (FRED), where the same period on
period growth rates are reported. We have experimented also with cummulative growth rates, with similar
empirical findings to those reported here.
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call “ordinary” proxy forecast models, include Model 4 - Model 7. With these models,

proxies are re-selected recursively, prior to the construction of each h-step ahead prediction.

Let {A(j)}m
j=1, be a set of A(j) statistics calculated for each candidate proxy variable j. As

suggested above, in this particular paper, we set m = N ; but this need not always be the

case. Define:

SA = {GA
j1 , . . . , G

A
j
k̂
} (3.23)

where k̂ ≤ m and |A (j1) − 2ξ| ≤ |A (j2) − 2ξ| ≤ . . . ≤ |A
(
j
k̂

)
− 2ξ|.Here, SA is the set of

k̂ proxy variables selected via implementation of the A(j) test. Further, define GA
j1

as the

“best” possible proxy as determined by the A(j) while GA
j2

is the next “best” proxy, and

so on. Recall that Gj is an observable time series variable, such as the CPI or the Federal

Funds Rate. Turning next to proxies selected via implementation of the M(j) test, define:

SM = {Gj ∈ G | M(j) ≤ x}, j = 1, . . . , m.

Here, SM is a set of proxies selected by the M(j) test. The number of proxy variables

selected at each recursive stage is indeterminate. Furthermore, the selected proxies are not

ranked. For Model 6, where the M(j) test is used to select a single proxy, our approach is

to select the proxy in the set SM that is associated with the smallest value of M(j).

The second class of models, which we call “smoothed” proxy forecast models, are dis-

cussed in Section 3.3, and include Model 8 - Model 15. The proxies used in these models are

still based on implementing the A(j) and M(j) statistics as discussed above. The factors

and the proxies are estimated recursively, just as in Models 1, 4-7, but this is done starting

with R1 observations and ending with R1 + R2 observations. The “smoothed” proxies are

selected as the k̂ proxies that are “most frequently” picked by the A(j) and M(j) tests.

Thereafter, all proxies are fixed, although their “weights” in the prediction models are still

re-estimated recursively, prior to the construction of each of the E ex-ante forecasts. To

differentiate between proxies picked using the “ordinary” and “smoothed” versions of the

tests, we define SA∗ and SM∗ to be the “smoothed” versions of SA and SM . The ex-ante

prediction period, E, is the same for all models in our empirical experiments.

In order to evaluate forecast performance, we compare mean squared forecast errors (MS-

FEs) defined as 1
E

∑T−h
t=R−h+1 (ŷt+h − yt+h)2, where R = R1+R2. We also carry out Diebold
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and Mariano (DM: 1995) predictive accuracy tests. Let {ŷ1,t}T−h
t=R−h+1 and {ŷ2,t}T−h

t=R−h+1

be two forecasts of the time series {yt}T−h
t=R−h+1. The “benchmark” is Model 1 (i.e., the fac-

tor model), and is used to generate {ŷ1,t}T−h
t=R−h+1, while Models 2-15 are used to generate

{ŷ2,t}T−h
t=R−h+1. Since the “benchmark” contains estimated factors and the alternative mod-

els contain no estimated factors, the “benchmark” and alternative models are non-nested.

The corresponding out-of-sample forecast errors are {ε̂1,t}T−h
t=R−h+1 and {ε̂2,t}T−h

t=R−h+1. The

null hypothesis of equal forecast accuracy for two forecasts is given by H0 : E[ε̂2
1,t] = E[ε̂2

2,t]

or H0 : E[d̂t] = 0,where d̂t = ε̂2
1,t − ε̂2

2,t is the loss differential series. The DM test statistic

is DM = E−1/2 d√
σ̂2

d

, where d = 1
E

∑T−h
t=R−h+1 d̂t, and σ̂2

d is a HAC standard error for d̂t.

Since the forecast models are non-nested, and assuming that parameter estimation error

vanishes, the DM test statistic has a N(0, 1) limiting distribution. Finally, given this setup,

a negative DM t-stat indicates that the factor model yields a lower point MSFE. For further

discussion of parameter estimation error and nestedness issues in the context of predictive

accuracy tests, the reader is referred to Corradi and Swanson (2002, 2006a, 2006b).

3.5 Data

The dataset used to estimate the factors is the same as that used in Stock and Watson

(2005), which can be obtained at http://www.princeton.edu/˜mwatson. This dataset con-

tains 132 monthly time series for the United States for the entire period from 1960:1 to

2003:12, hence N = 132 and T = 528 observations. The series were selected to represent

the following categories of macroeconomic time series: real output and income; employment,

manufacturing and trade sales; consumption; housing starts and sales; real inventories and

inventory-sales ratios; orders and unfilled orders; stock price indices; exchange rates; in-

terest rate spreads; money and credit quantity aggregates; and price indexes. Most of the

series were taken from the Global Insights Basic Economic Database or The Conference

Board’s Indicators Database (TCB). Others were calculated by Stock and Watson with

information from either Global Insights or TCB or both. The theory outlined assumes that

the panel dataset used to estimate the factors is I(0). To achieve this, some of the 132

series were subjected to transformations by taking logarithms and/or first differencing. In

general, logarithms were taken for all nonnegative series that were not already in rates or
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percentage units (see Stock and Watson (2002a,2005) for complete details). After these

transformations were carried out, all series were further standardized to have sample mean

zero and unit sample variance. Using the transformed data set, denoted above by X, the

factors are estimated by the method of principal components. As mentioned earlier, in our

implementation, the set of candidate proxies for the factors G′, will be the same as X. Al-

though this need not be the case, it is done mainly because X represents the biggest set of

(standardized and stationary) observable time series variables available to us. We perform

real-time forecasts of 7 of the 8 major monthly macroeconomic time series studied in Stock

and Watson (2002a). The four real variables we concentrate on are total industrial produc-

tion (IP), real personal income less transfers, real manufacturing and trade sales and the

number of employees on nonagricultural payrolls. The three price series considered are the

consumer price index (CPI), the personal consumption expenditure implicit price deflator

(PCED) and the producer price index for finished goods (PPI). All of these variables are

expressed in log-differences (i.e., monthly growth rates).3

3.6 Monte Carlo Experiment

Table 3.2 contains the results from a small Monte Carlo experiment used to assess the finite

sample forecast performance of the A(j) and M(j) tests. In the empirical panel dataset

spanning 1960:1 to 2003:12 discussed in Section 3.5 above, k̂ = 13 factors are consistently

estimated using the methodology of Bai and Ng (2002). For this reason, we assume there

are 13 factors underlying our simulated dataset and set r = 13. The simulated dataset also

has the same dimensions as the empirical dataset discussed in the next section. Hence, we

set N = 132 and T = 528. Each of the thirteen latent factors is generated as

Fkt = νkFkt−1 + ukt, (3.24)

where 0.6 ≤ νk ≤ 0.8, ukt ∼ N(0, 1), and ukt is uncorrelated with ujt, for k 6= j, k, j =

1, . . . , r. Ft = (F1t, . . . , Frt)′, Λik ∼ N(0, 1), and eit is uncorrelated with ejt, for i 6= j,

3Note that Stock and Watson (1999, 2002a) model some of our price variables as I(2) in logarithms.
However, they find little discrepancy in performance under I(1) and I(2) assumptions for factor forecasts of
our three target price variables. For this reason, we limit our analysis by assuming that our price variables as
well as other variables in X are I(1) in logarithms (see Section 10 for further details). In all other respects,
our dataset is the same as that used by Stock and Watson (2005).
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i, j = 1, . . . , N , t = 1, . . . , T . Following Bai and Ng (2002), the simulated panel dataset is

generated as

xit = Λ′iFt +
√

ηeit, (3.25)

for i = 1, . . . , 119, where η is a measure of the variance of the idiosyncratic errors, eit,

relative to the common component, Λ′iFt. More specifically, for i = 1, . . . , 39, we make the

idiosyncratic errors homoskedastic and set eit ∼ N(0, 1). We introduce heteroskedasticity

into the variables for which i = 40, . . . , 79 and let

eit =





e1
it iftiseven

e1
it + e2

it iftisodd
(3.26)

where e1
it and e2

it are independent N(0, 1) (see Bai and Ng (2002)). For i = 80, . . . , 119, the

idiosyncratic component of (3.25) is generated as an MA(1) process such that

eit = 0.6eit−1 + e3
it (3.27)

and e3
it ∼ N(0, 1). Define a variable to be a good proxy if it is a linear combination of

the underlying latent factors (see Bai and Ng (2006b) for complete details). Thus, for

i = 120, . . . , 132, the proxy variables are generated as

xit = Λ′iFt (3.28)

Since the generated factors in (3.24) are assumed to be latent, they are not wholly included

in the simulated panel dataset. The above setup ensures that four separate DGPs generate

a total of 132 simulated variables. Ex ante forecasts are constructed for four variables. In

Table 3.2, the target variables labelled “Homoskedastic”, “Heteroskedastic” and “MA(1)”

are all generated from (3.25). However, the corresponding idiosyncratic errors are specified

by i.i.d. N(0, 1), (3.26) and (3.27) respectively. Let xp
t = (x120t, . . . , x132t), e4

it ∼ N(0, 1)

and Ωil ∼ N(0, 1) for l = 1, . . . , 13, then the target variable labelled “Proxy (Homoskd.)”

is generated by

yp = Ω′ix
p
t + e4

it (3.29)

The difference between (3.29) and (3.25) is that in (3.29), xp
t are observed and can be

selected by the A(j) or M(j) tests as regressors in a forecast model for the respective target
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variable. Of course, there is still no guarantee that they will be selected; rather this is the

only case where the true regressor variables are actually in the panel dataset and can be

selected. This is an important case, and defines the case we are most interested in. On the

contrary in (3.25), Ft are not observed and can consequently not be selected as predictors

in a forecasting exercise. For each of the four target variables in Table 3.2 and Table

3.3, the last third of simulated values are recursively forecasted. Since there are 528 data

points across time in our setup, we effectively use observations from t = 352 to t = 528 to

evaluate forecast performance via examination of the mean squared forecast error (MSFE).

Prior observations are used to estimate the forecast models. In strict recursive fashion,

all models, factors, number of factors, k and proxies are re-estimated and re-selected for

each constructed forecast. Forecasting at time t + 1, the panel dataset from 1, . . . , t is

also standardized to have mean zero and unit variance before the factors are recursively

estimated and proxies selected. In order to make the experiment credible, the model used

for the factor forecasts is Model 1 and those used for the “A(j)” and “M(j)”proxy forecasts

are Model 5 and Model 7, respectively (see Table 3.1 for the specification of these models).

From prior work, Model 5 and Model 7 performed worst among all the alternative proxy

forecast models specified in Table 3.1, and hence our setup is as “tough as possible” on

our approach. It is left to future research to establish whether other model specifications

discussed in this paper that perform better in our empirical experiments also perform better

in Monte Carlo simulation experiments.

We perform the same forecast evaluation exercise for a subsets of N = 40 and N =132.

The 40 variable subsets are randomly selected from the original 132 simulated variables

under the constraint that at least 2 and at most 7 proxies as defined by (3.28) are selected.

Forecast horizons of h = 1, 12 are considered. The entire monte carlo experiment is con-

ducted for 250 iterations and at each iteration, for N = 40 and N = 132, we calculate the

MSFE from 176 recursive forecasts for t = 352, . . . , 528.

The numerical entries in Table 3.2 represent the fraction of times (out of 250 Monte

Carlo iterations) that the proxy forecasts have a lower MSFE than the factor forecasts.

Regardless of the number of variables in the panel dataset or the forecast horizon, the

proxy forecasts outperformed the factor forecasts about 50% of the time in almost all cases.
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This is significant as it demonstrates that the worst performing proxy forecast models

equally match the factor forecasts. Under h = 1, entries of 0.720, 0.795, 0.880 and 0.895

for “Proxy (Homoskd.)” indicate that the proxy forecasts strongly outperform the factor

forecasts. This particular outcome is as might be expected, given that this is the case where

the A(j) and M(j) test statistics are afforded the possibility of selecting the truly correct

elements of xp
t used to generate yp in (3.29) and suggests that our approach is working

as desired. However, under h = 12 for the same target variable “Proxy (Homoskd.)”, the

proxy forecasts perform just as well as the factor forecasts. One explanation for this result

might be that as the forecast horizon gets longer, the informational content in the proxies

deteriorates faster relative to that of the factors.

The entries in Table 3.3 not in parenthesis represent the mean of the various MSFEs

across Monte Carlo iterations. The standard deviations of the MSFEs are reported in

parentheses. From Table 3.3, proxy forecasts constructed from the A(j) or M(j) statistic

marginally outperform the factor forecasts most of the time in terms of the mean of the

MSFEs. However, the equal performance of the factor and proxy forecasts in Table 3.2 is

demonstrated in Table 3.3 by the fact that the mean of the proxy MSFEs is generally only

slightly less than the mean of the factor MSFEs.

Overall, these results are interesting, and suggest that our prediction/proxy approach

outperforms a standard factor approach in favorable cases, and perform equally as well in

non-favorable cases.

3.7 Empirical Findings

In this section, we discuss the results of a series of prediction experiments using the dataset

discussed above, and applying the models outlined in Table 3.1 to construct sequences

of recursive ex-ante h-step ahead predictions. The dataset consists of 132 variables (see

Section 3.5), and data are available for the period 1960:1-2003:12. Furthermore, predictions

are constructed for the period 1989:5-2003:12. Please see Section 3.4 for complete details

concerning the strategy used to specify and estimate the prediction models prior to forecast

construction. For models in which proxies were selected using the M(j) and A(j) tests,
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we set 2ξ = 0.05. Hence we carry out the tests at a 5% significance level. We include

1 autoregressive lag in most of the models because the importance of autoregressive lags

in prediction is well established. Furthermore, adding autoregressive terms of the target

variable to the basic factor model is a good way to give the factor model a fair chance to

“win” our forecasting competition.

Results of our empirical experiments are gathered in Table 3.4 (frequency of selected

factor proxies), Table 3.5 (CPI, PCED, and PPI forecasting competition results), and Table

3.6 (Industrial Production, Personal Income; Nonagricultural Employment, Manufacturing

and Trade Sales). In Table 3.4, selection frequencies are reported, while in Tables 3.5

- 3.6 MSFEs and DM test statistics are reported. The MSFE values reported for CPI,

PCED and Nonagricultural Employment are multiplied by 100,000 and those reported for

Producer Price Index, Industrial Production, Manufacturing and Trade Sales and Personal

Income are multiplied by 10,000. For the benchmark Model 1 (i.e., the factor model),

the only tabular entry for all forecast horizons is the MSFE. With all of the other models

(i.e., our alternative models), there are two entries: The top entry is the MSFE and the

bottom entry in parenthesis is the DM t-statistic. As mentioned earlier, a positive DM

statistic value indicates that the alternative model has a MSFE that is lower than the

benchmark, while a negative statistic value indicates the reverse. Entries in bold signify

instances where the alternative model outperforms the factor model as determined by a

point MSFE comparison. Boxed MSFE entries represent the lowest MSFE value among

all the models for a particular forecast horizon. DM statistic entries with a ∗ indicate

instances where the respective alternative model significantly outperforms the factor model

at a 10% significance level, whereas for entries with a † sign, the factor model significantly

outperforms the alternative model at a 10% significance level. We now provide a number

of conclusions based on the tables.

Upon inspection of Table 3.5, it is clear that the benchmark factor model (i.e., Model 1)

significantly outperforms most of the alternative models in the forecast of CPI and PCED.

This point is supported by the overwhelming number of DM test rejections in Panels A

and B of Table 3.5. While the benchmark still yields the lower MSFE in many pairwise

comparisons when examining PPI results (see Panel C of the table), the DM test null of
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equal predictive accuracy is not frequently rejected.

A key exception to the above conclusion that the benchmark model yields superior pre-

dictions is in the case of Models 12-15. From Table 3.1, recall that these are autoregressive

models with exogenous variables (ARX). The lags of the ARX models are selected by the

SIC and the exogenous variables are based on smoothed versions of the A(j) and M(j)

tests. For h = 1, 3, 12, these models not only frequently yield lower point MSFEs than the

benchmark, but the difference in performance is often significant. Across all 3 panels and 3

forecast horizons (i.e., 9 variable/horizon combinations), it is interesting to note that one or

many of Models 12-15 are “MSFE-best” 7 times. Furthermore, of these 7 “wins” it is Model

12 that yields the lowest MSFE in 4 instances. Thus, we have direct evidence that the par-

simonious single proxy smoothed A(j) model fares very well when compared not only to the

benchmark, but also to other models which yield lower MSFEs than the benchmark. This

suggests that while the factor approach is very useful, often beating the pure autoregressive

and other linear models when used for predicting price variables, a parsimonious version

of the smoothed A(j) factor proxy approach performs the best, overall. Thus, as pointed

out by Bai and Ng (2006c), parsimony is still important. This is even true in the context

of ordinary proxy models (Models 4-7), as choosing one proxy rather than k̂ proxies often

yields the lowest MSFE model.

Interestingly, in Table 3.5, the above conclusions hold for h = 1, 3, 12 and not for h = 24.

Indeed, it appears that all models perform quite poorly for h = 24, with the notable

exception of the benchmark, which clearly outperforms virtually all competitors in all price

variable cases when h = 24. Thus, at the longest forecast horizons, we have evidence that

our simple factor proxy approaches are not faring well at all.

Turning now to Table 3.6, the above conclusions still hold, with the exception that many

other alternative models, and not just Models 12-15, are point MSFE “better” than the

benchmark. Summarizing the results in Table 3.6, the benchmark model does yield the

lowest MSFE for 3 of the 4 variables when h = 1 and for 1 variable when h = 3, although

the DM test null is not rejected in any of these cases. Furthermore, for all remaining

horizon/variable combinations, the benchmark does not yield the lowest MSFE. Indeed, in

all but one of these other cases, factor proxy approaches yield the lowest MSFE (the sole
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exception is a random walk “win” for Manufacturing and Trade Sales when h = 3).

Given the above results, it is of interest to tabulate which factor proxies were used in

our prediction experiments. This is done in Table 3.4, where factor proxies that are (most

frequently) selected using the A(j) and M(j) test and the frequencies with which they are

selected are reported. The second column under “Trans” indicates the data transformation

that was performed to induce data stationarity. As is evident, S&P’s Common Stock Price

Index, Industrials; S&P’s Common Stock Price Index, Composite; Dividend Yields, a 1-

Year Bond Rate; and Housing Starts are the five most common proxies selected by both

A(j) and M(j). Structural change could account for some of the proxies being selected less

frequently than the five above proxies. Clearly, the importance of proxies may in some cases

depend on the period in history represented by the data. However, it is interesting that a

variety of factor proxies are “picked” across our entire ex-ante prediction period.

The diagrams in Panel 1- 3 of Figure 3.1 are time series plots of the first three estimated

factors (i.e., the most important factors for explaining the variability in our panel dataset).

Panels 4-6 are time series plots of the three most frequently selected proxies based on use

of the A(j) and M(j) test statistics. The S&P Common Stock Price Index does proxy the

estimated factors to some extent, although the relatively high level of noise in the S&P

variable does appear to obscure this fact to a certain degree. The Housing Starts, Nonfarm

variable (which has less noise - see Panel 6) better illustrates the close relationship between

the estimated factors and selected proxies. Results in Table 3.4 indicate that almost all three

proxies in Figure 3.1 are selected 100% of the time by both the A(j) and M(j) statistics

although the M(j) test has more power than the A(j) test. The lone exception to this is the

Housing Starts, Nonfarm variable which is selected 95% of the time by the M(j) test. This

suggests how strongly the three variables proxy the underlying factors. In addition, one

gets a “sense” of the robustness of the A(j) and M(j) test statistics in consistently selecting

good proxies, since the uderlying factors are re-estimated at each recursive iteration.

In closing, we note that factor proxies appear useful for prediction. Additionally, since

factors are unobserved, analyzing and studying them on their own can be quite difficult.

For instance, in our context is not clear how relevant it is to study the evolution of the indi-

vidual factors over time because prior to each new prediction, the factors are re-estimated.
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Creating a clearly defined historical path for a factor is consequently complicated. The

ability to proxy the unobserved factors with observed variables enables us to identify actual

variables that can serve as primitive building blocks for (prediction) models of a host of

macroeconomic variables.

3.8 Recent Advances in the Construction of Diffusion Indices

In this section, we briefly highlight some of the most recent work relating to diffusion index

(factor) models. Many of these ideas could potentially be applied to the issues discussed in

this paper, although we leave that to future research. Some of the concerns raised in this

paper such as the use of the same factors and consequently the same proxies to forecast any

variable are addressed in a number of the papers. For example, Bai and Ng (2006c) offer

two refinements to the method of factor forecasting. The current framework is confined to a

linear relation between the predictors and the forecasted series. Bai and Ng (2006c) propose

a more flexible structure. Their so-called squared principal components approach allows the

relationship between the predictors and the factors to be non-linear. They use a non-linear

“link” function that involves expanding the set of predictors to include non-linear functions

of the observed variables. In this regard, (3.4) can be modified as follows:

h(xit) = ϑ′iJt + eit,

where h(·) is a non-linear link function, Jt are the common factors, and ϑi is the vector of

factor loadings. The second order factor model is consequently:

x∗t = ΩJt + et (3.30)

where x∗t = {xit, x
2
it}∀i is an N∗ × 1 vector and N∗ = 2N . Estimation of Jt from (3.30) is

done using the usual method of principal components. The forecasting equation in (3.10)

remains linear regardless of the form of h(·). The second refinement proposed by Bai and

Ng (2006c) takes explicit account of the fact that the ultimate aim is to forecast a specific

time series variable, say yt. The authors propose using principal components analysis with

a “targeted” subset of the predictors in X, which have been tested to have predictive power

for y. This implies that the set of predictors used to extract the factors change with y, the
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targeted forecast variable. “Hard” and so-called “soft” thresholding is used to determine

which subset of X the factors are to be extracted from. Under “hard” thresholding, a

test with a sharp decision rule determines which variables are “in” or “out”. With “soft”

thresholding, the top variables are kept in the subset of predictors used to extract the

factors. The ordering of the predictors is based on the particular soft-thresholding rule.

The “soft” thresholding approach is thus related to our “smoothed” test statistic approach

to factor proxy selection.

As a reminder, the use of factor models (diffusion indices) involves a two-step approach

in which the factors are first estimated from a large panel dataset. The estimated factors are

then used as predictors in the forecast models. Although the estimated factors in the first

stage are capable of parsimoniously capturing almost all the information in a large dataset,

standard tools for specifying the forecast model in the second stage remain unsatisfactory

in certain contexts. The specified prediction models are still susceptible to overfitting or

underfitting, for example. In this light, Bai and Ng (2006d) suggest a stopping rule for

“boosting” that prevents a model from being overfitted with estimated factors or other

predictors. Boosting is a procedure that estimates the conditional mean using M stagewise

regressions (Bai and Ng (2006d)). The authors also propose two ways to handle lagged

predictors: a component-wise approach that treats each lag as a separate variable, and a

block-wise approach that treats lags of the same variable jointly. Some important papers

on boosting include Schapire (1990), Freund (1995), Friedman (2001) and Buhlmann and

Hothorn (2006).

3.9 Concluding Remarks

Using Monte Carlo and empirical analysis, we have shown that the A(j) and M(j) statistics

of Bai and Ng (2006b) appear to offer an interesting means by which factor proxies for later

use in prediction models can be chosen. Indeed, our “smoothed” approaches to factor

proxy selection appear to yield predictions that are often superior not only to a benchmark

factor model, but also to simple linear time series models which have in many practical

applications hitherto been found to be difficult to beat in forecasting competitions. More

specifically, we find that our factor proxy models (e.g., see Model 5 and Model 7 in Table
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3.1) perform (slightly) better than a standard factor model (Model 1) in our Monte Carlo

experiments. The implication is that a policymaker will be better served by using the proxy

model. At the very least, the methodology suggested in this paper should perhaps be added

to the practitioners “tool-box”, and one should examine on a case-by-case basis whether or

not proxy observable factors are more effective that standard factors. This is particularly

relevant since, unlike the factor model which has estimated regressors, the proxy model

uses observed regressors that can act as policy instruments, for example. By using our

approach to predictive factor proxy selection, one is able to open up the “black box” often

associated with factor analysis, to some extent. This is because one can identify actual

variables that can serve as “primitive” building blocks for (prediction) models of a host of

other macroeconomic variables. This approach in some cases leads to improved prediction,

and may also possibly lead to improved policy analysis if used in policy related prediction

modelling.
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Table 3.1: Prediction Models Used in Empirical Experiments
Model 1 (Factor Model): This is the standard factor forecast model: ŷT+h|T = â0 + α̂′F̃T + β̂yT

Model 2 (Autoregressive Model): This is an AR(p) forecast model, with lags selected by the SIC:
ŷT+h|T = â0 + j = 1p

∑
α̂jyT−j+1

Model 3 (Random Walk Model): This is a random walk forecast model: ŷT+h|T = yT

Model 4 (Ordinary A(j) - 1 Proxy Model): In this forecast model, the single “best” proxy selected by the
A(j) test (i.e., the proxy associated with the A(j) statistic value closest to 2ξ in absolute value) is used as

the only proxy regressor in the forecast model: ŷT+h|T = â0 + α̂GA
j1T +β̂yT

Model 5 (Ordinary A(j) - k̂ Proxies Model): The “best” k̂ factor proxies selected by the A(j) test are used:

ŷT+h|T = â0 + α̂′SA
T + β̂yT , where SA

T = {GA
j1T , . . . , GA

j
k̂

T }.
Model 6 (Ordinary M(j) - 1 Proxy Model): In this forecast model, the single “best” factor proxy selected

by the M(j) test (i.e., the proxy associated with the lowest M(j)-statistic) is used as the only proxy

regressor in the forecast model: ŷT+h|T = â0 + α̂GM
jT + β̂yT . Since it is possible for the M(j) test to select no

proxies at all, should that scenario occur, the model degenerates to: ŷT+h|T = â0 + β̂yT .

Model 7 (Ordinary M(j) - k̂ Proxies Model): This forecast model is the same as Model 6, but k̂ factor

proxies selected by the M(j) test are used: ŷT+h|T = â0 + α̂′SM
T + β̂yT .

Model 8 (Smoothed A(j) - 1 Proxy Model): This forecast model is the same as Model 4, except that the
smoothed version of the A(j) test is used (see Section 3.3.3 for further discussion).

Model 9 (Smoothed A(j) - k̂ Proxies Model): This forecast model is the same as Model 5, except that the
smoothed version of the A(j) test is used (see Section 3.3.3 for further discussion).

Model 10 (Smoothed M(j) - 1 Proxy Model): This forecast model is the same as Model 6, except that the
smoothed version of the M(j ) test is used (see Section 3.3.3 for further discussion).

Model 11 (Smoothed M(j) - k̂ Proxies Model): This forecast model is the same as Model 7, except that the
smoothed version of the M(j ) test is used (see Section 3.3.3 for further discussion).

Model 12 (Autoregressive plus Smoothed A(j) - 1 Proxy Model): This forecast model is the same as Model
8, except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1:

ŷT+h|T = â0 + α̂GA∗
j1T j = 1+px

∑
β̂jyT−j+1.

Model 13 (Autoregressive plus Smoothed A(j) - k̂ Proxies Model): This forecast model is the same as Model
9, except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1.

Model 14 (Autoregressive plus Smoothed M(j) - 1 Proxy Model) : This forecast model is the same as Model
10, except that the lag of the autoregressive component is selected by the SIC rather than restricted to 1.

Model 15 (Autoregressive plus Smoothed M(j) - k̂ Proxies Model): This forecast model is the same as
Model 8, except that the lag of the autoregressive component is selected by the SIC rather than restricted

to 1.

Note: See Sections 3.3.3 and 3.4 for further discussion of the factor proxy selection method-
ology used in the construction of the above models.
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Table 3.2: Monte Carlo Experiment Results
h = 1 h = 12

N Error Structure A(j) M(j) A(j) M(j)
40 Homoskedastic 0.425 0.330 0.460 0.560
40 Heteroskedastic 0.425 0.435 0.530 0.685
40 MA(1) 0.520 0.620 0.575 0.675
40 Proxy (Homoskd.) 0.720 0.795 0.390 0.450
132 Homoskedastic 0.585 0.430 0.545 0.595
132 Heteroskedastic 0.680 0.475 0.545 0.615
132 MA(1) 0.460 0.600 0.585 0.605
132 Proxy (Homoskd.) 0.880 0.895 0.585 0.620

Notes: The numeric entries under “N” indicate the number of variables in the simulated panel dataset.

Entries under “A(j)” and “M(j)” indicate the fraction of times that the alternative model (Model 5 or

Model 7, repsectively) has a lower MSFE than the benchmark (Model 1), in 250 Monte Carlo iterations.

Under “Error Structure”, we state the forecast “target” variable. “Homoskedastic”, “Heteroskedastic” and

“MA(1)” represent target variables for which the idiosyncratic error, eit, in the DGP is an i.i.d. N(0, 1),

a heteroskedastic, or a moving average process, respectively. For all three of these cases, the independent

variables in the DGP are the latent factors. For “Proxy (Homoskd.)”, the idiosyncratic error, eit, is i.i.d.

N(0, 1); and the independent variables in the DGP are potential “proxy” variables, so that the “A(j)” and

“M(j)” in this case might select the “true” proxy, if they perform as desired. See Section 3.6 for complete

details.
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Table 3.3: Monte Carlo Experiment Descriptive Statistics
h = 1 h = 12

N Error Structure Factor A(j) M(j) Factor A(j) M(j)
40 Homoskedastic 52.809 53.023 53.472 60.043 60.118 60.008

(8.882) (8.933) (9.219) (12.770) (12.826) (12.822)
40 Heteroskedastic 49.111 49.481 49.725 56.925 56.928 56.685

(8.950) (8.761) (8.783) (14.240) (14.226) (14.174)
40 MA(1) 38.829 38.812 38.736 66.851 66.649 66.468

(6.669) (6.665) (6.619) (16.385) (16.333) (16.178)
40 Proxy (Homoskd.) 25.751 25.569 25.466 56.548 56.953 56.681

(26.382) (26.695) (26.704) (59.791) (59.849) (59.543)
132 Homoskedastic 49.371 48.955 50.024 62.079 61.987 61.814

(8.567) (8.627) (8.680) (13.959) (13.609) (13.578)
132 Heteroskedastic 44.948 44.305 45.265 57.560 57.444 57.298

(7.369) (7.501) (7.834) (12.337) (12.245) (12.384)
132 MA(1) 39.227 39.234 39.054 69.809 69.586 69.236

(6.225) (6.266) (6.254) (15.916) (16.042) (16.556)
132 Proxy (Homoskd.) 28.249 27.579 27.422 60.651 60.446 60.065

(31.545) (31.141) (30.988) (71.739) (72.218) (71.744)

Notes: See notes to Table 3.2 above. The numerical entries not in parentheses under “Factor”, “A(j)” or

“M(j)” are the means of the various MSFEs calculated under the respective models, across 250 Monte Carlo

iterations. The corresponding entries in parentheses are MSFE standard deviations, again calculated across

all Monte Carlo iterations.
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Table 3.4: Frequency of Selected Factor Proxies
Selected Factor Proxy Trans A(j) M(j)
fspin: S&P’s Common Stock Price Index, Industrials ∆ log 1.000 1.000
fspcom: S&P’s Common Stock Price Index, Composite ∆ log 1.000 1.000
fsdxp: S&P’s Composite Common Stock: Dividend Yield ∆lv 1.000
fygt1: Interest Rate: U.S. Treasury Const Maturities, 1-Yr ∆lv 1.000
hsfr: Housing Starts, Nonfarm log 1.000 0.949
hsbr: Housing Authorized, Total New Private Housing Units log 0.989 0.455
ips10: Industrial Production Index, Total Index ∆ log 0.909
exrus: United States, Effective Exchange Rate ∆ log 0.835 0.370
sfygm6: 6 month Treasury Bills - Federal Funds, spread lv 0.813
sfygt5: 5 yr Treasury Bond Const. Maturities - Federal Funds, spread lv 0.750
sfygt10: 10 yr Treasury Bond Const. Maturities - Federal Funds, spread lv 0.659 0.420
fygm6: Interest Rate, U.S. Treasury Bills, Sec Mkt, 6-Mo. ∆lv 0.460
a0m077: Ratio, Mfg. and Trade Inventories to Sales ∆lv 0.341 0.261

Notes: In this table we report proxies that were frequently selected using the A(j) and M(j) tests, and

the frequencies with which they were selected, in our recursive forecasting experiments. The second column

under “Trans” indicates the data transformation that was performed to induce stationarity, lv means no

transformation; the series was left at level. ∆lv means first difference of the level. log means the natural log

function was applied to the data. ∆ log means the series was first differenced after the natural log function

was applied. Empty entries in the fourth column under M(j) indicate that the respective variables were

not selected at all by the M(j) test.
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Table 3.5: Predictive Performance of Various Models for Price Variables
Forecast Horizon (h) 1 3 12 24

Panel A: CPI

Model 1 3.496 3.464 4.299 4.089

Model 2 3.457 3.330 4.357 5.069
(0.136) (0.375) (-0.155) (-2.270)†

Model 3 4.785 5.270 6.347 6.129
(-3.788)† (-3.795)† (-3.768)† (-3.087)†

Model 4 3.809 4.075 4.792 5.305
(-1.164) (-1.873)† (-1.336) (-2.737)†

Model 5 4.079 4.592 5.255 5.337
(-1.125) (-1.775)† (-1.650)† (-1.878)†

Model 6 3.802 4.107 4.757 4.891
(-1.139) (-2.011)† (-1.347) (-1.770)†

Model 7 4.516 4.747 5.095 5.103
(-1.479) (-2.223)† (-1.480) (-1.600)

Model 8 3.810 4.111 4.759 4.960
(-1.169) (-2.048)† (-1.382) (-2.014)†

Model 9 3.677 3.921 4.472 4.665
(-0.775) (-1.798)† (-0.618) (-1.645)†

Model 10 3.819 4.101 4.769 5.208
(-1.212) (-2.040)† (-1.304) (-2.576)†

Model 11 3.720 4.050 4.563 4.740
(-0.935) (-2.022)† (-0.881) (-1.659)†

Model 12 3.340 3.158 4.020 4.448

(0.549) (0.995) (0.921) (-0.981)
Model 13 3.519 3.296 4.097 4.259

(-0.086) (0.539) (0.606) (-0.537)
Model 14 3.486 3.381 4.351 5.124

(0.035) (0.232) (-0.145) (-2.379)†
Model 15 3.351 3.331 3.999 4.297

(0.527) (0.411) (0.938) (-0.634)

Panel B: Consumption Deflator (PCE)

Model 1 2.689 2.882 3.162 2.902

Model 2 2.613 2.540 3.097 3.918

(0.245) (1.598) (0.275) (-2.985)†
Model 3 4.318 3.956 4.521 4.823

(-2.312)† (-3.275)† (-3.082)† (-3.373)†
Model 4 3.561 3.214 3.608 4.114

(-1.911)† (-1.525) (-1.983)† (-3.754)†
Model 5 2.900 3.488 3.557 3.663

(-1.106) (-2.348)† (-1.990)† (-2.308)†
Model 6 3.542 3.220 3.587 3.835

(-1.871)† (-1.593) (-2.118)† (-2.933)†
Model 7 3.123 3.386 3.501 3.648

(-1.865)† (-2.486)† (-1.834)† (-2.349)†
Model 8 3.562 3.283 3.921 4.412

(-1.910)† (-1.847)† (-3.021)† (-4.066)†
Model 9 3.375 3.233 3.491 3.826

(-1.687)† (-1.948)† (-1.729)† (-2.957)†
Model 10 3.593 3.227 3.673 4.207

(-1.887)† (-1.614) (-1.969)† (-3.925)†
Model 11 3.548 3.196 3.496 3.781

(-1.717)† (-1.504) (-1.769)† (-2.905)†
Model 12 2.619 2.485 3.118 3.846

(0.237) (2.005)* (0.191) (-2.904)†
Model 13 2.669 2.554 2.874 3.294

(0.066) (1.669)* (1.360) (-1.562)
Model 14 2.637 2.558 3.123 3.978

(0.163) (1.544) (0.160) (-3.229)†
Model 15 2.633 2.525 2.817 3.271

(0.175) (1.870)* (1.617) (-1.542)
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Table 3.5 (continued)
Forecast Horizon (h) 1 3 12 24

Panel C: Producer Price Index (PPI)

Model 1 2.142 2.152 2.351 2.198

Model 2 2.445 2.360 2.433 2.385
(-1.813)† (-1.349) (-0.660) (-1.232)

Model 3 3.140 4.070 3.625 3.737
(-3.026)† (-3.407)† (-3.214)† (-3.404)†

Model 4 2.201 2.413 2.300 2.421
(-0.387) (-1.424) (0.370) (-1.599)

Model 5 2.282 2.391 2.370 2.536
(-1.143) (-1.339) (-0.152) (-1.576)

Model 6 2.203 2.392 2.256 2.303
(-0.402) (-1.320) (0.729) (-0.743)

Model 7 2.332 2.480 2.273 2.420
(-1.205) (-1.828)† (0.632) (-1.110)

Model 8 2.206 2.397 2.257 2.332
(-0.420) (-1.351) (0.730) (-1.021)

Model 9 2.115 2.192 2.245 2.238

(0.394) (-0.769) (1.369) (-0.352)
Model 10 2.217 2.474 2.345 2.407

(-0.465) (-1.806)† (0.043) (-1.350)

Model 11 2.199 2.409 2.200 2.313

(-0.385) (-1.569) (1.449) (-0.938)
Model 12 2.396 2.299 2.356 2.332

(-1.654)† (-0.888) (-0.054) (-1.021)

Model 13 2.115 2.344 2.245 2.238

(0.394) (-1.512) (1.369) (-0.352)
Model 14 2.447 2.401 2.465 2.407

(-1.784)† (-1.558) (-0.912) (-1.350)
Model 15 2.406 2.387 2.383 2.313

(-1.650)† (-1.337) (-0.327) (-0.938)

Notes: Primary entries in this table are mean square forecast errors (MSFEs) based upon recursively con-

structed ex ante predictions for the period 1960:01-2003:12, using Models 1-15 (see Table 3.1 for an explana-

tion of the different models). Bracketed entries are MSFE type Diebold and Mariano (DM: 1995) predictive

accuracy test statistics, where Model 1 is compared with each of the other models). Entries in bold indicate

instances where the alternative model (i.e. each of Models 2-15) outperforms the factor model (i.e. Model

1), as indicated by both a lower MSFE and a positive DM test stistic. Boxed MSFE entries represent the

lowest MSFE value amongst all models, for a particular forecast horizon, h. DM statistic entries with a ∗
sign indicate instances where the respective alternative model significantly outperforms the factor model at

a 10% significance level, whereas for entries with a † sign, the factor model significantly outperforms the

alternative model at a 10% significance level, under the assumption that the DM test statistic has a standard

normal limiting distribution (see above for further discussion).
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Table 3.6: Predictive Performance of Various Models for Output, Employment
and Sales Variables

Forecast Horizon (h) 1 3 12 24

Panel A: Industrial Production

Model 1 2.226 2.459 3.114 2.871

Model 2 2.471 2.490 2.811 2.797
(-1.529) (-0.192) (1.343) (0.673)

Model 3 4.267 3.931 4.541 5.528
(-4.910)† (-3.142)† (-3.165)† (-4.884)†

Model 4 2.804 2.655 2.785 2.708
(-3.270)† (-1.093) (1.436) (1.417)

Model 5 2.284 2.478 3.100 2.747
(-0.419) (-0.147) (0.081) (0.560)

Model 6 2.682 2.623 2.795 2.688
(-2.613)† (-1.039) (1.383) (1.584)

Model 7 2.678 2.352 2.708 2.620
(-2.563)† (0.948) (1.752)* (1.853)*

Model 8 2.719 2.652 2.737 2.584

(-2.542)† (-1.210) (1.598) (2.195)*
Model 9 2.445 2.406 2.912 2.681

(-1.542) (0.447) (0.803) (1.504)
Model 10 2.666 2.164 2.758 2.846

(-2.474)† (2.155)* (1.565) (0.232)

Model 11 2.512 2.291 2.654 2.609

(-1.911)† (1.268) (1.784)* (1.852)*

Model 12 2.594 2.615 2.737 2.584

(-2.009)† (-0.976) (1.598) (2.195)*
Model 13 2.445 2.402 2.912 2.681

(-1.542) (0.490) (0.803) (1.504)

Model 14 2.453 2.123 2.758 2.846

(-1.445) (2.445)* (1.565) (0.232)

Model 15 2.502 2.240 2.654 2.609

(-1.840)† (1.608) (1.784)* (1.852)*

Panel B: Personal Income Less Transfers

Model 1 5.919 5.841 5.660 6.235

Model 2 7.167 6.811 5.576 5.994

(-1.444) (-1.522) (0.293) (1.841)*
Model 3 15.316 12.858 6.533 10.327

(-2.046)† (-1.697)† (-0.534) (-1.459)

Model 4 6.408 6.028 5.225 6.083

(-0.725) (-0.927) (1.627) (1.587)
Model 5 6.030 6.028 5.642 6.148

(-0.292) (-1.125) (0.118) (1.117)
Model 6 6.373 5.996 5.298 6.071

(-0.674) (-0.790) (1.513) (1.889)*
Model 7 6.570 6.249 5.518 6.027

(-0.941) (-1.328) (0.418) (2.272)*
Model 8 6.368 5.991 5.300 6.075

(-0.666) (-0.764) (1.505) (1.840)*
Model 9 6.334 6.147 5.690 6.132

(-0.741) (-2.102)† (-0.074) (0.969)
Model 10 6.569 6.077 5.363 6.026

(-0.734) (-0.834) (0.940) (1.581)
Model 11 6.336 6.057 5.358 6.042

(-0.610) (-0.782) (1.347) (1.887)*
Model 12 6.766 6.674 5.490 6.075

(-1.268) (-1.327) (0.767) (1.840)*
Model 13 6.659 6.791 5.920 6.150

(-1.220) (-1.589) (-0.676) (1.004)
Model 14 7.164 6.809 5.587 6.007

(-1.440) (-1.491) (0.269) (1.548)
Model 15 6.649 6.796 5.482 6.042

(-1.022) (-1.417) (0.936) (1.887)*
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Table 3.6 (continued)
Forecast Horizon (h) 1 3 12 24

Panel C: Nonagricultural Employment
Model 1 1.893 1.693 3.587 3.279
Model 2 1.135 1.471 3.446 3.626

(4.013)* (1.323) (0.561) (-1.836)†
Model 3 1.655 1.571 3.685 6.021

(0.991) (0.542) (-0.239) (-5.224)†
Model 4 2.203 2.134 3.607 3.424

(-1.460) (-2.614)† (-0.079) (-0.970)

Model 5 2.360 2.441 3.345 2.726

(-2.191)† (-3.580)† (0.977) (3.068)*
Model 6 2.102 2.032 3.566 3.408

(-0.982) (-2.115)† (0.090) (-0.866)
Model 7 2.235 2.102 3.177 2.992

(-1.323) (-2.570)† (1.569) (2.170)*
Model 8 2.090 2.024 3.547 3.426

(-0.929) (-2.073)† (0.170) (-0.986)
Model 9 2.223 2.219 3.385 2.772

(-1.635) (-3.206)† (0.786) (2.767)*
Model 10 1.772 1.632 3.311 3.657

(0.574) (0.333) (1.066) (-2.064)†
Model 11 2.084 2.009 3.029 2.784

(-0.935) (-2.081)† (2.256)* (3.210)*
Model 12 1.275 1.719 3.547 3.426

(3.526)* (-0.187) (0.170) (-0.986)
Model 13 1.327 1.744 3.385 2.772

(3.691)* (-0.428) (0.786) (2.767)*

Model 14 1.128 1.406 3.311 3.657

(4.087)* (1.546) (1.066) (-2.064)†
Model 15 1.257 1.695 3.029 2.784

(3.825)* (-0.015) (2.256)* (3.210)*

Panel D: Manufacturing and Trade Sales

Model 1 7.001 8.243 8.603 8.187

Model 2 7.294 7.729 8.075 7.920

(-0.639) (1.802)* (1.494) (0.912)
Model 3 21.172 12.915 15.844 18.207

(-5.572)† (-3.449)† (-4.636)† (-5.484)†
Model 4 7.811 8.132 8.076 7.881

(-1.696)† (0.447) (1.461) (1.073)
Model 5 7.885 7.787 8.292 8.425

(-1.239) (2.022)* (0.734) (-0.914)
Model 6 7.541 7.808 8.074 7.925

(-1.197) (1.895)* (1.451) (0.915)
Model 7 7.706 7.890 8.183 8.420

(-1.359) (1.643) (1.083) (-0.907)
Model 8 7.429 7.795 8.079 7.926

(-0.959) (1.955)* (1.447) (0.910)
Model 9 7.199 7.836 8.148 8.033

(-0.458) (1.589) (1.128) (0.602)
Model 10 7.571 7.895 8.091 7.964

(-1.109) (1.546) (1.424) (0.763)
Model 11 7.465 7.917 8.092 7.984

(-1.019) (1.585) (1.237) (0.687)
Model 12 7.429 7.795 8.079 7.926

(-0.959) (1.955)* (1.447) (0.910)

Model 13 7.199 7.836 8.013 8.033

(-0.458) (1.589) (1.422) (0.602)
Model 14 7.195 7.895 8.091 7.964

(-0.398) (1.546) (1.424) (0.763)
Model 15 7.465 7.917 8.092 7.984

(-1.019) (1.585) (1.237) (0.687)

Notes: See notes to Table 3.4.
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Figure 3.1: Estimated Factors and Most Frequently Selected Factor Proxies

Panel 1: Estimated Factor 1

Panel 2: Estimated Factor 2
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Panel 3: Estimated Factor 3

Panel 4: SP’s Common Stock Price Index, Composite
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Panel 5: SP’s CommonStock Price Index, Industrials

Panel 6: Housing Starts, Nonfarm
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Chapter 4

Which Variables Should the Federal Reserve Monitor? New

Diffusion Index Evidence

4.1 Introduction

In assessing the usefulness of macroeconomic models, two criteria are often used. The first

is the model’s performance against well established alternative models in out-of-sample fore-

casting exercises. The second is the (perceived) relevance of the model in policy formulation

and analysis. These two criteria may be exclusive, in the sense that a model might offer

nothing from a policy perspective, but be extremely useful for forecasting purposes, if it

offers superior out-of-sample forecast performance. For instance, a univariate autoregressive

(AR) model might exhibit superior forecasting performance, but might not contain relevant

regressors that can act as policy instruments for controlling a given “target” variable. On

the other hand, a model formulated solely based on economic theory could by design pro-

vide a number of instruments (regressors) enabling one to “control” the target variable, but

might be characterized by poor predictive accuracy. In this sense, an ideal model might be

one that has satisfactory out-of-sample forecast performance and includes relevant control

variables. In light of this, we assume in this paper that both policy analysis and forecast

performance are relevant, and we assess, via the use of diffusion index methodology, the

importance of a particular set of variables that are monitored by the Federal Reserve.

In order to construct a “reasonable approximation” to the set of variables that the Fed-

eral Reserve (Fed) Banks might typically be expected to monitor, note that the different

sectors of the economy can be expected to respond to changes in interest rates and other

monetary policy instruments with varying reaction times. For this reason, in formulating

the nation’s monetary policy, monetary regulators like the Fed monitor the behavior of

a diverse group of macroeconomic and financial indicators. In particular, it is stated on
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the Federal Reserve Bank of New York’s website that: “In formulating the nation’s mone-

tary policy, the Federal Reserve considers a number of factors, including the economic and

financial indicators which follow, as well as the anecdotal reports compiled in the Beige

Book. Real Gross Domestic Product (GDP); Consumer Price Index (CPI); Nonfarm Pay-

roll Employment Housing Starts; Industrial Production/Capacity Utilization; Retail Sales;

Business Sales and Inventories; Advance Durable Goods Shipments, New Orders and Un-

filled Orders; Lightweight Vehicle Sales; Yield on 10-year Treasury Bond; S&P 500 Stock

Index; M2” (see http://www.newyorkfed.org/education/bythe.html). Thus, some of the fi-

nancial and macroeconomic indicators the Federal Reserve relies on to create the country’s

monetary policy include: real gross domestic product (GDP); the consumer price index

(CPI); nonfarm payroll employment; housing starts; industrial production/capacity utiliza-

tion; retail sales; business sales and inventories; advanced durable goods shipments, new

orders and unfilled orders; lightweight vehicle sales; the yield on 10-year Treasury bonds;

the S&P 500 stock price index; and the money supply (M2). Collectively, these economic

and financial indicators will be referred to as the “macroeconomic indicators”. The aim of

this paper is to determine the “adequacy” of these particular macroeconomic indicators,

in a controlled experimental environment. Moreover, we argue that the methodology used

herein will be useful also for examining other macroeconomic indicators of interest to policy

makers and forecasters. The main tool that we use in our assessment is ex ante prediction.

In order to retain “policy relevance”, all of our experiments involve models that include

various “control” variables. Our methodology centers on the construction of out-of-sample

forecasts of CPI inflation and output growth using a variety of models including, among

others: ones that take the macroeconomic indicators as the relevant set of explanatory

variables; ones that include factors constructed from a large scale macroeconomic dataset

(that includes the macroeconomic indicators and many other variables) using the diffusion

index methodology of Stock and Watson (1998,1999,2002a,b); ones that are based on factor

proxies constructed using the methodology discussed in Bai and Ng (2006a,b) and further

developed in Armah and Swanson (2008).

The reason why we use the diffusion index methodology of Stock and Watson as a

starting point in our analysis is that their methodology has been shown to consistently
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estimate the relevant common factors that underlie the co-movements of a given set of

macroeconomic variables. We take it as given that two variables that the Fed wishes to

track are output growth and inflation, in which case our comparison of their macroeconomic

indicators with our proxies is an appropriate assessment device. Put differently, if we

discover that the factor proxies most useful for inclusion in prediction models of output and

inflation in fact correspond to the macroeconomic indicators, then we have direct evidence

of the appropriateness of the approach used by the Fed in tracking monetary policy induced

economic behavior. This is a main goal of our paper. Another goal is to uncover any

additional variables that might be of use in monitoring economic activity. Finally, our

third goal is to add to the methodological literature on the use of diffusion indices in

macroeconometric applications. This is done by positing a framework for implementation

of the tools for factor proxy selection developed in Bai and Ng (2006a,b) and Armah and

Swanson (2008).

Interestingly, examination of the macroeconomic indicators and the observable variables

selected via our methodology indicates that the two groups are largely the same; and at

the very least, individual members of the two groups belong to the same “classes” of vari-

ables. Examples of “classes” of variables include CPI variables (i.e. CPI all items, CPI

transportation, CPI apparel and upkeep, etc.) and IP variables. There is one important

exception, however. Our factor proxy analysis additionally finds evidence in favor of the

use of spreads for monitoring the effects of monetary policy. Moreover, and perhaps more

importantly, the particular spreads found to be useful are constructed as the difference

between short and long term debt instruments and the federal funds rate. Surprisingly,

traditional spreads, such as the yield curve slope and the reverse yield gap are not found

to be useful. Moreover, and with regard to our findings of the usefulness of spreads, we

find that the Fed’s macroeconomic indicators perform best when forecasting inflation in

non-volatile time periods. On the contrary, the forecast performance of the indicators can

be improved by including spreads when forecasting inflation in times of high volatility.

In a series of ex ante forecasting experiments carried out to assess the adequacy of

the variables monitored by the Federal Reserve, we consider models that do and do not

include the three spread variables. Interestingly, “spread augmented” models, which are by
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construction less parsimonious than those not containing spreads, yield improved predictions

for a variety of models and forecast horizons. In particular, for inflation, prediction models

with spreads outperform models without spreads at the 1-month ahead horizon around one

half the time, and at 3- and 12-month ahead horizons in virtually all cases, based on point

mean square forecast error (MSFE) comparison. Moreover, at the 12-month horizon, most of

the prediction models including spreads are also significantly better, based on application of

Diebold and Mariano (1995) tests (see Clark and McCracken (2005) and McCracken (2007)

for a discussion of Diebold and Mariano tests in various time series contexts). For output

growth, models with spreads outperform those without spreads around 90% of the time,

at the 1-month ahead horizon; but add little when considering longer horizons, based on

point MSFE comparison. These results suggest that certain “non-traditional” spreads (i.e.

none of the traditional spreads proposed by economic theory in the existing literature) may

be useful for monitoring economic activity. Of final note is these spreads are picked from

our huge set of observable macroeconomic and financial variables in a completely agnostic

manner, in the sense that we let the data “do the talking”. It remains to examine the

implications, for macroeconomic theory, of the relevance of these variables.

The rest of the paper is organized as follows. In Section 4.2, we summarize some useful

features of the diffusion index literature and briefly discuss the methodology associated with

forming predictions using factor proxies and using the Federal Reserve’s macroeconomic

indicators. In Section 4.3, we discuss the predictive content of spreads and review some of

the existing literature on the subject. Section 4.4 contains a brief overview of the data used

in our prediction experiments, and empirical methodology is further outlined in Section 4.5.

Section 4.6 summarizes our empirical findings, and Section 4.7 offers concluding remarks.
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4.2 Using Macroeconomic Indicators, Factors, and Factor Proxies for

Prediction

4.2.1 Prediction with Macroeconomic Indicators

To craft the nation’s monetary policy, the Federal Reserve (Fed) monitors a number of

macroeconomic and financial variables. Monetary regulators and researchers have tradi-

tionally relied on indicators such as monetary aggregates (particularly for large countries)

and the exchange rate (usually for smaller countries) for the stance of monetary policy (see

Davis and Fagan (1997)). Davis and Fagan (1997), however, point out that the distortion

of monetary aggregates in a number of countries following financial innovation, and the in-

creasing volatility of exchange rates have caused researchers and central banks to consider

alternative indicators like the ones used by the Fed. Although the macroeconomic indicators

as listed in this paper are known, functional forms or transformations of these variables used

in the specification of Fed’s models remain unknown. In the absence of this knowledge, we

begin by specifying simple prediction models for inflation and output growth. Even though

simple, the sorts of parsimonious models used in our analysis are prototypical “strawman”

models that have been found to perform well for many variables (see e.g. Swanson and

White (1995,1997)). Moreover, predictions from these models can be easily analyzed using

the forecast evaluation methodology of Clark and McCracken (2005). Our simple model is

called Model A, and is given by:

yt+h = α′aWat +
p∑

j=1

βajyt−j+1 + εat+h, (4.1)

where Wat is an la × 1 vector of observable variables (e.g. the macroeconomic indicators).

Note that this model nests random walk, random walk with drift, and AR models, which

are other commonly used “strawman” models. These other strawman models were also

evaluated, but they are excluded from further discussion because their inclusion does not

change our findings. The above linear model, where our so-called macroeconomic indicators

are contained in Wat, is a benchmark against we compare other models. Another benchmark

that we consider is the set of “Green Book” forecasts generated by the Federal Reserve Board

of Governors’ Research and Statistics Division. (Results based upon the latter benchmark
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are not yet available.)

4.2.2 Prediction with Factors

The factor model of Stock and Watson (2002a,b) is included as one of our benchmark

prediction models because such models are typically difficult to consistently outperform.

The factor model thus serves as a sort of “credibility check” against which all other models

are compared. We view this as a sensible approach, given that by design, the principal

component factors of Stock and Watson would be very good candidate variables for assessing

how the economy responds to a particular policy stance.

Following Stock and Watson (2002a,b), let yt+1be the series we wish to forecast and Xt

be an N -dimensional vector of predictor variables, for t = 1, . . . , T . Assume that (yt+1, Xt)

has a dynamic factor model representation with r common dynamic factors, ft. Hence, ft

is an r × 1 vector. The dynamic factor model is written as:

yt+h = α(L)ft +
p∑

j=1

βjyT−j+1 + εt+h (4.2)

and

xit = λi(L)ft + eit, (4.3)

for i = 1, 2, . . . , N , where h > 0 is the forecast horizon; xit is a single datum for a particular

predictor variable; eit is the idiosyncratic shock component of xit; and α(L) and λi(L) are

lag polynomials in nonnegative powers of L. The N dimensional spectral density of xit

has rank r. This implies that data generated under (4.3) would have r dynamic factors

(see Boivin and Ng (2005)). In general, dynamic factor models can be transformed into

static factor models. In Stock and Watson (2002a), the lag polynomials α(L) and λi(L)

are modeled as α(L) =
∑q

j=0 αjL
j and λi(L) =

∑q
j=0 λijL

j . The finite order of the lag

polynomials allows us to rewrite (4.2) and (4.3) as:

yt+h = α′Ft +
p∑

j=1

βjyT−j+1 + εt+h (4.4)

and

xit = Λ′iFt + eit, (4.5)
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where Ft = (f ′t, . . . , f ′t−q)
′ is an r × 1 vector, with r = (q + 1)r and α is an r × 1 vector.

Here, r is the number of static factors (i.e. the number of elements in Ft). Additionally,

Λi = (λ′i0, . . . , λ
′
iq)
′ is a vector of factor loadings on the r static factors, where λij is an r×1

vector for j = 0, . . . , q. The N dimensional population covariance matrix of xit generated

under (4.5) has r nonzero eigenvalues that diverge with N . Thus the model is said to

have r static factors (see Boivin and Ng (2005)). Some technical assumptions we make

are 1
N

N

i=1
λiλ

′
ip−→Λ as N → ∞, and 1

T

T

t=1
FtF

′
tp−→F as T → ∞, where Λ and F are r × r

positive definite matrices.

Ding and Hwang (1999), Forni and Reichlin (1996,1998), Forni et al. (2000, 2005),

Stock and Watson (2002b), Bai and Ng (2002) and Bai (2003) showed that the space

spanned by both the static and dynamic factors can be consistently estimated when N

and T are both large. For forecasting purposes, little is gained from a clear distinction

between the static and the dynamic factors. Boivin and Ng (2005) Rapach and Strauss

(2007) compare alternative factor based forecast methodologies, and conclude that when

the dynamic structure is unknown and the model is characterized by complex dynamics,

the approach of Stock and Watson performs favorably. For this reason, the diffusion index

model proposed by Stock and Watson is made one of the benchmark models.

Following Bai and Ng (2002), let Xi be a T×1 vector of observations for the ith variable.

For a given cross-section i, we have:

(T × 1)Xi = (T × r)F 0(r × 1)Λi + (T × 1)ei

where Xi = (Xi1, . . . , XiT )′, F 0 = (F1, . . . , FT )′ and ei = (ei1, . . . , eiT )′. The whole panel

of data X = (X1, . . . , XN ) can consequently be represented as:

(T ×N)X = (T × r)F 0(r ×N)Λ′ + (T ×N)e,

where Λ = (Λ1, . . . , ΛN )′ and e = (e1, . . . , eN ). X can be viewed as a representative set of

variables that characterize the whole economy. The set of macroeconomic indicators is a

subset of X.

We work with high-dimensional factor models that allow both N and T to tend to infin-

ity, and in which eit may be serially and cross-sectionally correlated so that the covariance
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matrix of et = (e1t, . . . , eNt) does not have to be a diagonal matrix. Furthermore, it is well

known that for ΛFt = ΛQQ−1Ft , a normalization is needed in order to uniquely define the

factors, where Q is a nonsingular matrix. Now, assuming that (Λ′Λ/N) → Ir, we restrict Q

to be orthonormal, for example. This assumption, together with others noted in Stock and

Watson (2002b), enables us to identify the factors up to a change of sign and consistently

estimate them up to an orthonormal transformation. Forecasts of yT+h based on (4.4) and

(4.5) involve a two step procedure because both the regressors and coefficients in the fore-

casting equations are unknown. The data sample {Xt}T
t=1 are first used to estimate the

factors, {F̃t}T
t=1 by means of principal components. With the estimated factors in hand,

we obtain the estimators α̂ and β̂ by regressing yt+1 onto F̃t and the observable variables

in Wt. Of note is that if
√

T/N → 0, then the generated regressor problem does not arise,

in the sense that least squares estimates of α̂ and β̂ are
√

T consistent and asymptotically

normal (see Bai and Ng (2006a)).

Since the common factors are not observed, in the regression analysis of (4.5), we replace

Ft by F̃t, estimates that span the same space as Ft when N,T → ∞. Estimation of

these common factors from large panel data sets of macroeconomic variables can be carried

out using principal component analysis. We refer the reader to Stock and Watson (1998,

2002a, 2002b, 2004a, 2004b) and Bai and Ng (2002, 2007) for a detailed explanation of this

procedure.

From (4.5), estimates of Λk
i and F k

t are obtained by solving the optimization problem:

V (k) = Λk, F kmin(NT )−1i = 1N
∑

Tt = 1
∑

(xit − Λk′
i F k

t )2 (4.6)

Let F̃ k and Λ̃k be the minimizers of equation (4.6). Since Λk and F k are not separately

identifiable, if N > T , a computationally expedient approach would be to concentrate out

Λ̃k and minimize (4.6) subject to the normalization F k′F k/T = Ik. Minimizing (4.6) is

equivalent to maximizing tr[F k′(XX ′)F k]. This optimization is solved by setting F̃ k to be

the matrix of the k eigenvectors of XX ′ that correspond to the k largest eigenvalues of

XX ′. Note that tr[·] represents the matrix trace. The superscript in Λk and F k signifies

the use of k factors in the estimation and the fact that the estimates will depend on k. Let

D̃ be a k×k diagonal matrix consisting of the k largest eigenvalues of XX ′. The estimated
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factor matrix, denoted by F̃ k, is
√

T times the eigenvectors corresponding to the k largest

eigenvalues of the T × T matrix XX ′. Given F̃ k and the normalization F k′F k/T = Ik,

Λ̃k′ = (F̃ k′F̃ k)−1F̃ k′X = F̃ k′X/T is the corresponding factor loadings matrix.

The solution to the optimization problem in (4.6) is not unique. If N < T , it be-

comes computationally advantageous to concentrate out F
k and minimize (4.6) subject to

Λk′Λk
/N = Ik. This minimization is the same as maximizing tr[Λk′X ′XΛ], the solution of

which is to set Λk equal to the eigenvectors of the N×N matrix X ′X that correspond to its k

largest eigenvalues. One can consequently estimate the factors as F
k = X ′Λk

/N . F̃ k and F
k

span the same column spaces, hence for forecasting purposes, they can be used interchange-

ably depending on which one is more computationally efficient. We employ the methodology

of Bai and Ng (2002) to consistently estimate the true number of a factors, r. Given F̃ k

and Λ̃k, let V̂ (k) = (NT )−1i = 1N
∑

Tt = 1
∑

(xit−Λ̃k′
i F̃ k

t )2 be the sum of squared residuals

from regressions of Xi on the k factors, ∀i and IC(k) = log(V̂ (k)) + k(N+T
NT ) log C2

NT be

the Bai and Ng (2002) information criterion where CNT = min{√N,
√

T}. The consistent

estimate of the true number of factors is then k̂ = arg min0≤k≤k max IC(k).

Stock and Watson (2002b) show that the difference between feasible (estimated model)

and unfeasible (true model) factor based forecasts converge in probability to zero as N, T →
∞.

4.2.3 Prediction With Factor Proxies

As the Stock and Watson principal components factors are not observable, the methodology

of Bai and Ng (2006b) is used to select observable macroeconomic and financial variables

that closely proxy the constructed diffusion indices. Armah and Swanson (2008) demon-

strate that the factor proxies perform just as well as and at times significantly better than

the Stock and Watson estimated factors in a number of forecasting exercises. The factor

proxies represent a set of methodically selected observable variables that can possibly indi-

cate an economy’s response to current monetary policy. We compare the macroeconomic

indicators with the selected factor proxies in order to determine whether the indicators

contain all “crucial information” that is useful for assessing the economy’s response to a

change in monetary policy.
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Recall the general equation (4.4):

yt+h = α′Ft +
p∑

j=1

βjyT−j+1 + εt+h

As mentioned above, and shown in Stock and Watson (2002b) and Bai and Ng (2006b),

under a set of moment conditions on (ε, e, F 0) and an asymptotic rank condition on Λ, if

the space spanned by Ft can be consistently estimated, then
√

T consistent estimates of

α and β are obtainable. Under a similar set of conditions, it is also possible to obtain

min[
√

N,
√

T ] consistent forecasts if
√

T/N → 0 as N, T →∞.

Suppose that we observe G′, a (T × m) matrix of observable economic variables that

could potentially proxy the latent factors. At any given time t, any of the m elements of Gt

(m× 1) will be a good proxy if it is a linear combination of the r× 1 latent factors, Ft. Let

Gjt be an element of the m vector Gt. The null hypothesis is that Gjt is an exact proxy, or

more precisely, ∃ θj (r× 1) such that Gjt = θ′jFt. In order to implement all of the methods,

consider the regression Gjt = γ′jF̃t + ρ. Let γ̂j be the least squares estimate of γj and let

Ĝjt = γ̂′jF̃t. The test is carried out by constructing the following t-statistic:

τt(j) =
(Ĝjt −Gjt)

(v̂ar(Ĝjt))1/2
(4.7)

where

v̂ar(Ĝjt) =
1
N

γ̂′jD̃
−1

(
F̃ ′F̃
T

)
Γ̃t

(
F̃ ′F̃
T

)
D̃−1γ̂j

=
1
N

γ̂′jD̃
−1Γ̃tD̃

−1γ̂j , (4.8)

and Γ̃t is defined below. The last step above is due to the normalization that F̃ ′F̃ /T = I
k̂
.

Once again, D̃ is a k×k diagonal matrix consisting of the k largest eigenvalues of XX ′.Given

the null hypothesis that Gjt = θ′jFt and that Ĝjt converges to Gjt at rate
√

N , Bai and Ng

(2006b) show that the limiting distribution of
√

N(Ĝjt−Gjt) is asymptotically normal and

hence τt(j) has a standard normal limiting distribution. The k̂× k̂ matrix Γ̃t is consistently

estimated as

Γ̃t =
1
N

Ni = 1
∑

ẽ2
itΛ̃iΛ̃′i, (4.9)

and where ẽit = xit − Λ̃′iF̃t. Equation (4.9) allows for time-series heteroskedasticity, but

assumes no cross-sectional correlation of eit. For small cross-sectional correlation in eit,
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Bai and Ng (2006a) found that constraining the correlations to be zero could sometimes

be desirable. In this regard, they make the point that (4.9) is useful even if residual cross-

correlation is genuinely present.

As mentioned earlier, τt(j) in (4.7) has a standard normal limiting distribution. Let Φτ
ξ

be the ξ percentage point of the limiting distribution of τt(j). The hypothesis test based

on the t-statistic in (4.7) enables us to determine whether an observed value of a candidate

variable is a good proxy at a specific time t. For our purposes however, given information

up to time T , whatever methods or procedures we use to select the proxies ought to select

whole time series Gj , for which Gjt satisfies the null hypothesis, ∀t. In this regard, the

proxy selection method is based upon the following statistic:

A(j) =
1
T

t = 1T
∑

1(|τt(j)| > Φτ
ξ ). (4.10)

The A(j) statistic is the actual size of the test (i.e. the probability of Type I error given

the sample size). Since τt(j) is asymptotically standard normal and the test is a two-tailed

test, the actual size, A(j), of the t-test should converge to the nominal size (the desired

significance level is 2ξ) as T →∞. This means that if a candidate variable is a good proxy

of the underlying factors of a data set, the A(j) statistic calculated from its sample time

series should approach 2ξ as the sample size increases. This is the basis on which we use

the A(j) statistic to select proxies. It should be noted that the A(j) statistic does not

constitute a test in the strict sense since we do not compare a test statistic to a critical

value to determine whether or not to reject a null hypothesis. Rather, this procedure gives

a ranking of the proxies with the best proxy having an A(j) statistic value closest to 2ξ. In

our implementation, the candidate set of proxies, G′, is the same as the the panel data set

X from which we estimate the factors.

The A(j) statistic discussed above may yield a different set of proxies at each recursive

forecast iteration. This is because the A(j) statistic is composed of some estimated values.

In view of this, Armah and Swanson (2008) develop a version of the A(j) statistic where

the sample period in an empirical analysis is broken into three subsamples (R1, R2, and

E, such that T = R1 + R2+ E). The first subsample, R1, is used to select the initial

set of factor proxies. Thereafter, one observation from R2 is added, and this new larger
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sample is used to recursively select a second set of factor proxies. This is continued until

the second subsample is exhausted, yielding a sequence of R2 different vectors of factor

proxies. Individual proxies are then ranked according to their selection frequency, and

those occurring the most frequently are selected and fixed for further use in constructing E

ex ante predictions. Loading parameters for the proxies are still re-estimated prior to the

formation of each new recursive prediction although the set of proxies is fixed throughout

the forecast experiment. The potential advantage to this approach is that noise across the

proxy selection process is potentially suppressed.

In our empirical implementation, the factor proxies selected by the smoothed A(j) statis-

tic from the panel dataset are listed in Panel C and Panel I of Table 4.1. Our so-called

macroeconomic indicators are listed in Panel A of Table 4.1. A close examination of the

two groups of observable variables indicates a strong resemblance. With the exception of

the three spread variables listed in Panel I of Table 4.1, most of the other variables from the

two groups are either identical or can be viewed as belonging to similar classes of variables.

This result is a strong testament to the usefulness of the macroeconomic indicators. It

remains to see, however, whether the three spread variables actually improve the forecast

performance of the macroeconomic indicators in out-of-sample forecasts of CPI inflation

and output growth.

4.3 Predictive Content of Spreads

The yield on a debt instrument like a government bond is the annual rate of return that

would be earned by a lender who holds the bond to maturity. For assuming more risk,

lenders (investors) would generally demand a higher annual rate of return (yield) on debt

instruments with longer maturities than those with shorter maturities. The yield curve

describes the relationship between the yields (interest rates) and maturities of a particular

debt instrument. Spreads may be defined as the difference between yields on two financial

instruments. The bigger the spread is between a long-term and short-term debt instrument,

the steeper the slope of the corresponding yield curve will be. Spreads exist because assets

and more specifically, debt instruments are imperfect substitutes of each other. Reasons for

this imperfect substitutability include differences in liquidity, currency, maturity, risk and
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levels and covariances of yields on alternative assets (see Davis and Fagan (1997)). There

is a vast literature on the predictive content of spreads for inflation and output growth and

the fundamental idea to this body of literature is that financial market participants are

forward-looking. Asset prices consequently embody useful information such as expectations

of future economic activity. Another advantageous indicator property of spreads is that they

are readily observable usually some periods ahead of currently available macroeconomic

data. Spreads are also reliable since they are not subject to revisions. The usefulness

of spreads in the forecast of output growth and inflation in the US have been studied

in Laurent (1988, 1989); Harvey (1988, 1989); Stock and Watson (1989); Mishkin (1990,

1991); Estrella and Hardouvelis (1991); Jorion and Mishkin (1991); Friedman and Kuttner

(1991). Other researchers who have also considered the predictive content of spreads in the

UK, some European countries and other OECD countries include Davis (1993); Davis and

Henry (1994); Plosser and Rouwenhorst (1994); Davis, Henry and Pesaran (1994); Bonser-

Neal and Morley (1997); Kozicki (1997); Gerlach (1997); Davis and Fagan (1997); Estrella

and Mishkin (1997).

Estrella and Hardouvelis (1991) find that spreads have predictive content for output

growth not contained in other variables like the current level of real interest rates and

advocate the sole use of spreads in predicting output growth. They argue that the spread

between the yield on the ten-year Treasury bond and the three-month Treasury bill is

useful for predicting both cumulative and marginal output growth. Estrella and Hardouvelis

(1991) further find the spread useful for predicting the likelihood of a recession. Plosser

and Rouwenhorst (1994) use discount equivalent yields and match the maturity structure

of the interest rate spread with the forecast horizon being studied to examine the predictive

content of spreads for different countries between 1973 to 1988. They also consider spreads

of long-term bonds and short-term bills and discover that the term spread’s ability to

predict economic activity at short horizons of up to two years provides some significant

in-sample predictive content for cumulative changes in output. Estrella and Mishkin (1998)

argue that the spread between ten-year Treasury bond yields and three-month Treasury

bill yields is the best out-of-sample predictor of the likelihood of a recession within a four

quarter horizon. By adding an equity price indexes, Estrella and Mishkin (1998) improve
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forecast accuracy at shorter horizons. Mishkin (1990a) and Mishkin and Jorion (1991)

employ simple bivariate analysis to determine whether the correlation between spreads

and future inflation or output growth is significant. Bernanke (1990) and Friedman and

Kuttner (1991) use bivariate Granger Causality analysis on US data to assess whether

spreads contain predictive information content beyond that contained in the lags of the

dependent variables. Finally, Garnett, Hall and Henry (1992), Davis and Henry (1992,

1993) and Davis, Henry and Pesaran (1994) among others use vector autoregressive (VAR)

analysis to examine the predictive content of spreads for output growth and inflation.

One traditional spread considered in this paper is the slope of the yield curve. This is

defined as the difference between a long-term and a short-term interest rate. Under some

restrictive assumptions such as constant real interest rates over time, perfect substitutability

between assets of different maturities and that the expectations theory of the term structure

holds, the slope of the yield curve will provide an exact measure of the market’s expected

inflation path (see Davis and Fagan (1997)). Violation of any of these strong assumptions

would make the slope of the yield curve spread less accurate in forecasting inflation. Em-

pirical evidence from work by Mishkin (1990b); Jorion and Mishkin (1991); Browne and

Manasse (1989) does suggest that although the link between the slope of the yield curve

and future inflation is not perfect, the spread has significant predictive content for inflation.

In addition to its role for forecasting future inflation, the slope of the yield curve is also

considered a useful indicator of future cyclical output movements. Laurent (1988) further

explains that a positive shift in the yield curve may induce banks to purchase long-term se-

curities and make long-term loans, which could from a monetarist perspective boost money

and hence economic activity.

Another variety of spread considered is the reverse yield gap which is defined as the

difference between yields on long-term or short-term debt instruments and the dividend

yield on domestic equity. Debt securities issued by the government are typically regarded as

risk-free assets with guaranteed coupon payments whiles equities are risky assets with non-

guaranteed dividend payments. The reverse yield gap consequently reflects the premium

that an investor is likely to demand to compensate for the extra risk (Nobili (2005)). Thus,

increases in this spread will predict downturns in economic activity. Furthermore, the
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reverse yield gap is expected to be positively related to inflation because a rising spread will

accompany a tightening of monetary policy in response to increased inflationary pressures

(Nobili (2005)).

Conclusions of empirical studies aiming to assess the predictive content of spreads for

inflation and output growth have been mixed. This is because in general, the predictive

content of a regressor for a target variable is often difficult to assess definitively, and con-

clusions drawn are only valid with respect to the model specification and the data sample

used in the analysis. Davis and Fagan (1997) point out that in bivariate analysis, the slope

of the yield curve may be found to be useful in forecasting inflation. However, if some other

variables such as short-term interest rates, money stock, other leading indicators or even

past values of inflation are included in the model specification, the ‘marginal forecasting

power’ of the yield curve slope may be crowded out although the overall forecasting per-

formance of the new model may increase (Davis and Fagan (1997)). In consequence, one

could argue that while a spread variable may contain some useful information about the

future of inflation, it may contain no information beyond that contained in other monetary

variables or lags of the target variable. Davis and Fagan (1997) further emphasize that this

line of argument leads to the conclusion that in assessing the ‘marginal predictive content’

of one variable for another, there is no definitive ‘correct answer’, rather conclusions are

heavily subject to the information set considered in the model specification and may differ

significantly as the model specification is varied. The above discussion is one reason the lag

length p in our models was determined by the SIC (we found values of p = 3 for inflation

and p = 1 for output growth). Moreover, in our empirical forecasting exercises, we examine

the marginal predictive content of spreads using various different models. The objective is

to assess whether spreads have predictive information content over and above different in-

formation sets used in specifying the relevant models. Our model that incorporates spreads

as predictors, and which corresponds to Model B is:

yt+h = α′bWbt +
p∑

j=1

βbjyt−j+1 + εbt+h (4.11)

Wbt ≡ (W ′
at, S

′
t)
′, Wat is an la × 1 vector described in (4.1), St is an l × 1 vector of spreads

and hence Wbt is an lb × 1 vector where lb = la + l.
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In past work, spreads have been included in forecasting models mainly because of eco-

nomic theory or more specifically, asset pricing theory. In this paper, however, we do not

rely on any theory to explicitly include spreads as predictors when specifying models. In-

stead, spreads are part of our huge set of observable macroeconomic and financial variables

that can potentially proxy the underlying factors in the economy. From these candidate

variables, the smoothed A(j) statistic is used to select the variables that actually proxy

the underlying factors. In this regard and independent of economic theory, we allow the

massive dataset that represents the economy to “talk” to us and to determine what possi-

ble variables should be included in the forecasting models. Of the many possibilities, some

spread variables were indeed selected by the smoothed A(j) statistic as close proxies of

the underlying factors. The interesting outcome however was that, none of the traditional

spreads proposed by economic theory in the existing literature cited here were selected.

Rather, three spreads composed of the difference in yields of long-term and short-term debt

instruments and the federal funds rate were selected. These spreads appear to have some

predictive content at least for inflation in the long run and output growth in the short run.

4.4 Data

The dataset used in this paper to represent the economy and from which the economy’s

underlying factors are estimated is derived from that used in Stock and Watson (2005). The

original Stock and Watson (2005) dataset can be found at http://www.princeton.edu/˜mwatson

and contains 132 monthly time series for the United States from 1960:1 to 2003:12 to give

N = 132 and T = 528 observations.1 Time series of the various variables were obtained

from the Global Insights Basic Economic Database or The Conference Board’s Indicators

Database (TCB). Other series were calculated by Stock and Watson with prior information

from the two databases mentioned above. The variables in the original Stock and Watson

dataset were selected from the following categories of macroeconomic time series: real out-

put and income; employment, manufacturing and trade sales; consumption; housing starts

1An updated version of the Stock and Watson dataset is available, although that dataset contains only
quarterly data, whereas our dataset consists of monthly data. Neverthless, in order to check the robustness
of our finding, all experiments were also carried out using the updated quarterly data, and results were found
to be largely unchanged from those reported here.
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and sales; real inventories and inventory-sales ratios; orders and unfilled orders; stock price

indices; exchange rates; interest rate spreads; money and credit quantity aggregates; and

price indexes. The variables that make up the macroeconomic indicators can be found at the

Federal Reserve Bank of New York’s website at http://www.ny.frb.org/education/bythe.html

and are listed as Real Gross Domestic Product (GDP); Consumer Price Index (CPI); Non-

farm Payroll Employment; Housing Starts; Industrial Production/Capacity Utilization; Re-

tail Sales, Business Sales and Inventories; Advanced Durable Goods Shipments, New Orders

and Unfilled Orders; Lightweight Vehicle Sales; Yield on 10-year Treasury Bond; S&P 500

Stock Index; M2. For Business Sales and Inventories as well as Advanced Durable Goods

Shipments, New Orders and Unfilled Orders, the available series begin in 2002. In order

to maintain the integrity of the balanced panel, we use Manufacturing and Trade Sales

in addition to Manufacturing and Trade Inventories as close substitutes for Business Sales

and Inventories. Industrial Production: Durable Goods Materials is further used as a close

substitute for Advanced Durable Goods Shipments, New Orders and Unfilled Orders. The

data on Lightweight Vehicle Sales starts from 1976 and since there were not that many

good substitutes for that variable, the initial 14 years of data from the original Stock and

Watson dataset were redacted to make the actual dataset used in this paper run from 1976

to 2003. Obviously, empirical results are heavily dependent on the panel dataset used to

represent the economy. Evidence from prior work seems to suggest that the information

content of the estimated factors and selected factor proxies improves with a higher variety

of variables as well as a higher number of subaggregates contained in the panel dataset.

The original Stock and Watson dataset includes spreads constructed as the difference

between the yields on the following debt instruments and the Federal Funds rate: commer-

cial paper; 3-month, 6-month, 1-year, 5-year, 10-year Treasury bills/bonds; moody’s AAA;

moody’s BAA corporate bonds. For the purposes of this paper, specific yield curve spreads

considered and added to the dataset include the difference between the following variables

and the 3-month Treasury bill rate: 6-month, 1-year, 5-year, 10-year Treasury bills/bonds;

moody’s AAA; moody’s BAA corporate bonds. Also, the specific reverse yield gap spread

considered is the difference between the yield on the 10-year Treasury bond and the S&P

500 common stock dividend yield. With all these modifications, the final dataset used in
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this paper runs from 1976:1 to 2003:12 with N = 139 and T = 336.

The theory underlying the factor forecast and the methodology for selecting the factor

proxies assumes that all the variables in the panel dataset are I(0). Some of the variables

in the panel dataset are made stationary by applying transformations that include taking

logarithms and/or first differencing. At each recursive iteration, all the variables in the

panel dataset are further standardized to have mean zero and unit variance before the

factors were estimated by principal components and proxies selected by the Bai and Ng

(2006b) methodology. The stationary panel dataset with variables standardized to have

zero mean and unit variance is represented in this paper by X. Real time forecasts are

performed of the growth rate in industrial production index: total index and the growth

rate in CPI: all items.

4.5 Empirical Methodology

Forecasts are generated as h-step ahead recursive predictions of yt. That is, we predict the

marginal growth rates yt+h = log( Yt+h

Yt+h−1
), where Yt is the level of the variable of interest.

The available data is split into three subsamples such that T = R1 +R2 +E. For the factor

models, at each recursive iteration, the panel dataset of stationary variables is standardized

to have zero mean and unit variance. The number of factors and the actual factors are

consistently re-estimated from this stationary panel dataset with unit variance and zero

mean. The factor forecast model is then re-estimated by OLS and the h-step ahead forecast

is constructed. This means that the specification for the factor forecast model can change

at each recursive iteration. The number of lags of the target variable, p, is set to 1 for

output growth and 3 for inflation throughout the ex-ante forecast period, based on an

initial lag selection procedure carried out using the Schwarz information criteria, using the

first subsample of data. Unlike the factors in the factor forecast model, the observable

variables in the alternative forecast models (Model 1 to Model 8) are kept the same at each

recursive iteration, although they are standardized to have zero mean and unit variance

at each recursive iteration. As a robustness check, permutations of the selected factor

proxies and the macroeconomic indicators are used as predictors in the alternative models.

All alternative models are also re-estimated by OLS at each recursive iteration before the



96

h-step ahead forecast is constructed.

Various classes of variables in the Stock and Watson dataset have aggregates as well as

subaggregates. It is consequently not a trivial task to pick a representative variable from a

particular class. For instance, included in the Fed’s list are CPI, industrial production and

Housing Starts. However, there are at least 9 CPI, 12 industrial production, 9 housing, and

8 interest rate variables in the panel dataset. Picking a representative CPI or industrial

production variable can consequently be tricky if not ad hoc. In specifying the benchmark

model with the list of variables in W1t, we subjectively pick the aggregate variable to be the

default representative of the class. So for example, CPI: all items is made the representative

CPI variable. The rationale behind this is that by construction, the aggregate variable

contains some of the information from the other subaggregates. An alternative approach

could be to use the smoothed A(j) statistic on a specific class of variables. In this regard,

let X̂ ⊂ X where X̂ contains all the relevant aggregate and subaggregate variables in

a particular class like Housing Starts or CPI. Therefore, for CPI, X̂ will contain CPI:

all items; CPI: apparel and upkeep; CPI: transportation; CPI: medical care; etc. The

first two principal components are estimated from X̂ and the smoothed A(j) statistic is

used to select variables from X that proxy these two principal components. This way, we

methodically select a representative variable from a class. The principal components factors

estimated from X̂ and the corresponding factor proxies will be called focused factors and

focused factor proxies. In the empirical implementation, although X is the candidate set of

proxies, the variable selected by the smoothed A(j) statistic to proxy the focused principal

components factors always ends up being a variable from X̂. Some of the models have

focused factor proxies as regressors and we select focused variables only from classes with

enough subaggregates. In this regard, the classes considered are CPI, Industrial Production,

Housing, Employment and Yields. The Yield class includes the various interest rates and

spreads.

Model 1 represents the linear benchmark model, where W1t contains the macroeconomic

indicators as listed in panel A of Table 4.1. Model 3 is the same model specified for Model 1

except that W3t contains the factor proxies selected by the smoothed A(j) statistic. In Model

5, W5t contains a subset of the macroeconomic indicators selected by the smoothed A(j)
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statistic i.e., macroeconomic indicators that were selected as factor proxies. W7t in Model 7

contains the same variables as W5t with the explicit addition of the Money Supply (M2) and

the Yield on the 6-month Treasury Bill. In all even numbered models, Wnt (n = 2, 4, 6, 8)

contains the variables in the corresponding previous models with the relevant ones replaced

by variables selected under focused principal components. In Model nS (n = 1, . . . , 8), the

corresponding variables in Wnt have been augmented with the spreads in Panel I of Table

4.1.

In evaluating forecast performance to determine the predictive content of spreads, a

parsimonious benchmark model (without spreads) in (4.1)

yt+h = α′aWa,t +
p∑

j=1

βa,jyt−j+1 + εa,t+h

is effectively compared to a larger alternative model (with spreads) in (4.11)

yt+h = α′bWb,t +
p∑

j=1

βb,jyt−j+1 + εb,t+h

Wbt ≡ (W ′
at, S

′
t)
′, Wat is an la × 1 vector described in (4.1), St is an l × 1 vector of spreads

and hence Wbt is an lb × 1 vector, where lb = la + l. The two models being compared are

thus nested in the sense that in this setup, the alternative model uses a set of predictors

Wbt to predict the target variable yt+h whereas the null or parsimonious model uses a set of

predictors Wat that is a strict subset of Wbt. The alternative model consequently contains

l excess parameters. In applications where the forecast performance of models is compared

and the benchmark model is a restricted version of the alternative model, the asymptotic

and finite-sample properties of equal forecast accuracy test statistics based on non-nested

models as described in West (1996, 2001) may not apply. West (2005) argues that the

nesting of models violates a rank condition required in the asymptotic normality results

of West (1996). However, the exercise of comparing the forecast performance of all the

alternative models to the factor model involves comparing two non-nested models. For the

non-nested cases, the asymptotic normality results of West (1996) are indeed applicable.

The test statistic used for all forecast evaluations in this paper is the t-statistic for equal

forecastibility developed by Diebold and Mariano (1995) and West (1996) under quadratic

loss. The total sample is divided into two sub-samples R and E such that T = R + E and
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R = R1+R2. The sub-sample used to initially estimate the model spans 1 to R. The number

of out-of-sample observations as well as the number of h-step ahead predictions span R+1 to

R+E−h for a total number of E−h predictions/observations. Forecasts for both null and

alternative linear models are made recursively using least squares estimated parameters. In

the context of Diebold and Mariano (1995), let ε̂a,t+h = yt+h − α̂′aWa,t +
p∑

j=1
β̂a,jyt−j+1 and

ε̂b,t+h = yt+h − α̂′bWb,t +
p∑

j=1
β̂b,jyt−j+1, then the sample MSFE = 1

E−h

T−h∑
t=R+1

ε̂2
t . The null

hypothesis of equal forecast accuracy from the two models is given by H0 : E[d̂t] = 0, where

d̂t = ε̂2
a,t − ε̂2

b,t is the loss differential and d = 1
E−h

T−h∑
t=R+1

d̂t. The DM test statistic is then

DM =
√

E − h
1

E−h

∑T−h
t=R+1 d̂t√

1
E−h

∑j

j=−j

∑T−h
t=R+1+j K( j

M )(d̂t − d)(d̂t−j − d)

where K( j
M ) is the kernel with bandwidth M .

As already stated, for non-nested models, the distribution of this statistic is standard

normal; but this is not the case for nested models. Under the null hypothesis, population

forecast errors of the restricted and alternative models are identical, implying dt+h = 0, ∀t,
in population. This means that the population variance of dt+h is equal to 0 and hence

standard inference a la Diebold and Mariano (1995) or West (1996) does not apply, and one

must use the results of Clark and McCracken (2005). Indeed, McCracken (2007) proves that

for nested models, the DM t-statistic converges in distribution to a functional of stochastic

integrals of quadratics of Brownian motion, with a limiting distribution that depends on

the sample split, π = limR,E→∞ E
R , and the number of exclusion restrictions, l, but does not

depend on any other nuisance parameters. Appropriate limiting distributions together with

the critical values can be found in Clark and McCracken (2005) and McCracken (2007).

Of final note is that we carry out our forecasting experiments for 1, 3 and 12 step ahead

forecast horizons.

4.6 Empirical Results

Tables 4.4 and 4.5 contain the results of various out-of-sample prediction experiments where

the target variables are both inflation and output growth. The first column in both tables
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contains the names of the models considered. For a complete explanation of the models

considered, refer to Table 4.3 and the above discussion. Numerical entries in the second

column are mean squared forecast errors (MSFEs). Those in bold correspond to models

with lower MSFEs, relative to Model 1. Boxed MSFEs represent the lowest MSFE amongst

all models considered.

Our other “benchmark” model against which the out-of-sample forecast performance of

all alternative models is compared is the Stock and Watson (SW) diffusion index model.

The SW model is a useful benchmark because of its well established superior out-of-sample

forecast performance as well as its flexibility and efficiency at distilling useful information

from large macroeconomic datasets. Numerical entries in the third column of the tables

report the DM test statistic where the benchmark model is the Stock and Watson factor

model. Since the factor model and all the alternative models are non-nested, these DM test

statistics have a standard normal limiting distribution (see Corradi and Swanson (2006b)).

Negative entries show instances where the benchmark SW factor model has a lower point

MSFE than the respective alternative model and positive entries show the converse. DM

statistics with ∗,∗∗,∗∗∗ signs denote models where the null of equal predictive accuracy is

rejected at 20%(∗), 10%(∗∗) and 5%(∗∗∗) significance levels, respectively. Numerical entries

in the remaining two columns of the tables report DM test results for different benchmark

models.

In Table 4.4, where the target variable is CPI inflation, the SW factor model significantly

outperforms all alternative models at the 3 step horizon. On the other hand, the evidence

is more mixed at other forecast horizons, as the null hypothesis of equal predictive accuracy

between the factor model and the alternative models is never rejected. Moreover, at the 1

and 12 month forecast horizon, the point MSFE of SW model is higher than that associated

with a variety of alternative models. Most of the alternative models do indeed provide

reduced MSFEs, relative to the factor model. However, this reduction is generally not

enough to cause a rejection of the null hypothesis of equal predictive accuracy. Turning to

Table 4.5, where results from our output growth prediction experiments are summarized,

note that the factor model is often “worse” than various competitor models, when comparing

point MSFEs, at all horizons; and is in various cases significantly “worse”. Moreover, results
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increasingly favor our alternative models as the forecast horizon is increased. Summarizing

the above results, we have evidence suggesting that many of our alternative models are

“MSFE-better” than our benchmark factor model, in 5 of 6 variable/horizon combinations.

Moreover, the lowest MSFE model is a model with our new spread variables in 4 of 6

combinations. Given that one of the remaining 2 combinations is one for which the factor

model is MSFE-best, we have rather surprising evidence of the usefulness of our three

spread variables; particularly when one considers the fact that some of the alternative

models are quite parsimonious, and the inclusion of three new spread variables to them adds

substantially to the parameter estimation error associated with estimation of the models.

Finally, the specification of models that provide superior predictions and the specification of

models that are useful for policy monitoring are usually one and the same. Namely, models

that use actual observable variables corresponding to those the Fed is interested in (as well

as our additional spread variables), and that are hence useful for policy monitoring, are

also the models yielding the best predictions. Thus, the fusion of the latest diffusion index

methodology with the monitoring objectives of monetary regulators yields models that use

variables relevant for both prediction and policy analysis.

Note that DM test statistics calculated under “No Spread” report on predictive accuracy

tests, where the benchmark model is simply the model listed in the row in which the statistic

is reported, minus spread variables. Negative entries thus indicate instances where the

benchmark no spread model outperforms the alternative model, whereas positive entries

indicate the converse. Note that the models in these comparisons are nested, and hence

the DM test limiting distribution is no longer standard normal, as discussed in Clark and

McCracken (2005) and McCracken (2007), and hence we use critical values tabulated by

these authors. Moreover, Clark and West (2006, 2007) observed that the parsimonious

model in such cases has a smaller MSFE because it gains efficiency by setting to zero

parameters that are zero in the population. The alternative model on the other hand, in

finite samples, inflates its MSFE by virtue of parameter estimation error introduced into the

forecasting process. Thus, under the null hypothesis, the extra variables in the alternative

model impair prediction, and the MSFE of the parsimonious model should effectively be

smaller than that of the alternative model in finite samples, under equality (see Clark and
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West (2007)). Interestingly, our larger models that include spreads actually yield smaller

MSFEs in many cases, and all cases where there is a significant difference in MSFEs favor

the spread-augmented models, yielding further evidence as to the usefulness of the spread

variables. However, it should be noted that evidence in favor of the spread-augmented

models is weakest at our shorter forecast horizons when considering inflation. This could

be because at the shorter horizons, the macroeconomic indicators encapsulate much of the

information contained in spreads. For longer horizons , inflation prediction is improved by

including spreads, though. In particular, Model 1S strongly and significantly outperforms

Model 1 at the 12-month ahead horizon (the DM test statistic is 2.02) to suggest that

spreads have marginal predictive content for inflation at longer horizons. It is consequently

conclusive from Table 4.4 that spreads generally have strong marginal predictive content for

CPI inflation at the 12 step horizon but are not too helpful at the shorter horizons. At the

12 step horizon, models with spreads significantly outperform the corresponding restricted

models without spreads for almost all model specifications. The story is somewhat similar

when considering output growth - spread-augmented models are “MSFE-best” at a 10%

significance level in many cases; and in cases where the point MSFEs associated with spread

augmented models are larger, there is usually nothing to choose between the models, as the

null hypothesis of equal predictive accuracy fails to reject.

Recall our earlier discussion of the work of Clark and West, where we commented that

parameter estimation error must be carefully assessed when comparing forecast perfor-

mance. Parsimonious models may outperform larger models simply because parsimonious

models set to zero coefficients that are truly zero (or close to zero) in the population. By

setting these coefficients to zero instead of estimating them, the parsimonious models gain

efficiency. Evidence in support of this point is provided in Table 4.4, where Models 5 and

7, which are restricted versions of Model 1, both have lower MSFEs, relative to Model 1,

at all forecast horizons. Also, in Table 4.5, Models 5 and 7 outperform Model 1 half the

time, with the more parsimonious models outperforming Model 1 at longer horizons. On

the other hand, setting the coefficients of variables with “strong” predictive content for the

target variable to zero simply to deliver parsimony can clearly be costly. Tables 4.4 and

4.5 illustrate this point. The “spread augmented” models, which are by construction less
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parsimonious than their counterparts not containing spreads, yield improved predictions

for a variety of models and forecast horizons. In particular, for inflation, prediction models

with spreads outperform models without spreads at the 1-month ahead horizon around half

the time, and at 3- and 12-month ahead horizons in virtually all cases, based on point

MSFE comparisons. Moreover, at the 12-month horizon, most of the predictions models

including spreads are also significantly better. For output growth, models with spreads out-

perform those without spreads around 90% of the time at the 1-month ahead horizon, but

add little when considering longer horizons, based on point MSFE comparison. One of the

main driving arguments behind the principle of parsimony certainly involves efficiency gains

associated with parameter estimation error reduction. This principle is valid so long as the

extra variables are redundant and do not contain too “much predictive” content for the

target variable. The above analysis suggests that the trade-off between predictive content

and parameter estimation error is tipped in favor of predictive content when considering

the spreads discussed in this paper.

In Panel 1 of Figure 4.1, note that observed CPI inflation is very volatile between

September 1999 and September 2002, but relatively calmer in years prior to September

1999. Interestingly, the MSFEs of Models 1 and 1S are also almost identical in the relatively

calmer period prior to September 1999. However, as illustrated in Panel 2 of Figure 4.1, the

MSFE of Model 1S is substantially lower than that for Model 1 during the high volatility

period between September 1999 and September 2002. These observations suggest that

the macroeconomic indicators perform best when forecasting inflation in non-volatile time

periods. On the contrary, the forecast performance of the indicators can be improved

by including spreads when forecasting inflation in times of high volatility. Although the

addition of spreads significantly improves the forecast performance of the macroeconomic

indicators in this case, there is not much of a discrepancy between the MSFEs of Models 1

and 1S when forecasting output growth (see Panel 2 of Figure 4.2).

Finally, notice that for both inflation and output, the lowest MSFE occurs for one of our

even numbered models, at all forecast horizons. As specified in Tables 4.2 and 4.3, all even

numbered models have variables selected from their respective classes using the smoothed

A(j) statistic. One interpretation of this result is that although aggregate variables such as
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those used in our benchmark Model 1 by design contain some information from all of the

members in a class, they might not necessarily be “optimally” representative of that class,

at least when it comes to prediction. Rather, we find that a variety of subaggregates chosen

using the smoothed A(j) statistic have “better” predictive content. This in turn suggests

that one direction for future research is the inclusion of multiple members of particular

classes in our prediction models.

4.7 Concluding Remarks

In order to obtain early indication of the impact of current monetary policy, the Federal

Reserve monitors select financial and macroeconomic variables. This practice is discussed

on the Federal Reserve Bank of New York website. We lend credence to the set of “macroe-

conomic indicators” by establishing that they are largely the same as those variables that

proxy diffusion indices (factors) constructed via analysis of a largescale macroeconomic

dataset. Out-of-sample forecast exercises further suggest that augmenting the macroeco-

nomic indicators with certain spreads is in some cases useful when forecasting inflation or

output growth. The particular spreads found to be valuable are constructed as the differ-

ence between short or long term debt instruments and the federal funds rate. Interestingly,

spreads constructed as yield curve slopes and reverse yield gaps were not found to provide

additional predictive content. Moreover, we find that the macroeconomic indicators perform

best when forecasting inflation in non-volatile time periods, while the forecast performance

of the indicators is most clearly improved by including spreads when forecasting inflation

in times of high volatility.
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Table 4.1: Predictors Used in Empirical Experiments
Regressors Stationarity Transformtion

Panel A: Model 1 (W1t)
Consumer Price Index: all items ∆ log
Nonfarm Payroll Employment: total private ∆ log
Housing Starts: total farm and nonfarm log
Industrial Production Index: total index ∆ log
Capacity Utilization ∆levels
Retail Sales of Stores ∆ log
Manufacturing and Trade Sales ∆ log
Manufacturing and Trade Inventories ∆ log
Industrial Production Index: durable goods materials ∆ log
Lightweight Vehicle Sales ∆ log
Yield on 10-year Treasury Bond ∆levels
S&P 500 Stock Price Index: Composite ∆ log
Money Supply - M2 ∆ log

Panel B: Model 2 (W2t)
Consumer Price Index: apparel and upkeep ∆ log
Nonfarm Payroll Employment: goods producing ∆ log
Housing Starts: northeast log
Industrial Production Index: manufacturing ∆ log
Capacity Utilization ∆levels
Retail Sales of Stores ∆ log
Manufacturing and Trade Sales ∆ log
Manufacturing and Trade Inventories ∆ log
Industrial Production Index: durable goods materials ∆ log
Lightweight Vehicle Sales ∆ log
Yield on 6-month Treasury Bill ∆levels
S&P 500 Stock Price Index: Composite ∆ log
Money Supply - M2 ∆ log

Panel C: Model 3 (W3t)
Housing Starts: total farm and nonfarm log
Housing Authorized: total new private housing units log
Industrial Production Index: total index ∆ log
Industrial Production Index: products, total ∆ log
Capacity Utilization ∆levels
Yield on 6-month Treasury Bill ∆levels
Yield on 1-year Treasury Bond ∆levels
S&P 500 Stock Price Index: Composite ∆ log
S&P 500 Stock Price Index: Industrials ∆ log
S&P 500 Stock Price Index: Dividend Yield ∆levels
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Table 4.1 (continued)
Regressors Stationarity Transformtion

Panel D: Model 4 (W4t)
Housing Starts: northeast log
Housing Authorized by Building Permits: northeast log
Industrial Production Index: manufacturing ∆ log
Industrial Production Index: nondurable consumer goods ∆ log
Capacity Utilization ∆levels
Yield on 3-month Treasury Bill ∆levels
Yield on 6-month Treasury Bill ∆levels
Yield on 10-year Treasury Bond ∆levels
S&P 500 Stock Price Index: Composite ∆ log
S&P 500 Stock Price Index: Industrials ∆ log

Panel E: Model 5 (W5t)
Housing Starts: total farm and nonfarm log
Industrial Production Index: total index ∆ log
Capacity Utilization ∆levels
S&P 500 Stock Price Index: Composite ∆ log

Panel F: Model 6 (W6t)
Housing Starts: northeast log
Industrial Production Index: manufacturing ∆ log
Capacity Utilization ∆levels
S&P 500 Stock Price Index: Composite ∆ log

Panel G: Model 7 (W7t)
Housing Starts: total farm and nonfarm log
Industrial Production Index: total index ∆ log
Capacity Utilization ∆levels
Yield on 6-month Treasury Bill ∆levels
S&P 500 Stock Price Index: Composite ∆ log
Money Supply - M2 ∆ log

Panel H: Model 8 (W8t)
Housing Starts: northeast log
Industrial Production Index: manufacturing ∆ log
Capacity Utilization ∆levels
Yield on 6-month Treasury Bill ∆levels
S&P 500 Stock Price Index: Composite ∆ log
Money Supply - M2 ∆ log

Panel I: Spreads
Yield on 5-year Treasury Bond − Federal Funds Rate levels
Yield on 10-year Treasury Bond − Federal Funds Rate levels
Yield on Moody’s AAA Corporate Bonds − Federal Funds Rate levels

Panel J: Class Representatives Selected by the Smoothed A(j) Statistic
Housing Starts: Northeast (Housing Class) log
CPI: Apparel and Upkeep (CPI Class) ∆ log
Industrial Production: Manufacturing (Industrial Production Class) ∆ log
Yield on 6-month Treasury Bill (Yield Class) ∆levels
Nonfarm Payroll Employment: goods producing (Employment Class) ∆ log

Notes: The second column under “Stationarity Transformation” indicates the data transformation that was

performed to induce stationarity, levels means no transformation; ∆levels denotes first difference of the

levels; log denotes the natural log function; and ∆ log denotes first log differences.
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Table 4.2: Prediction Models
Model Specification

Factor ŷt+h = ĉ + α̂′F̃t +
∑p

j=1
β̂jyt−j+1

Model 1 ŷt+h = ĉ + α̂′W1t +
∑p

j=1
β̂jyt−j+1

Model 2 ŷt+h = ĉ + α̂′W2t +
∑p

j=1
β̂jyt−j+1

Model 3 ŷt+h = ĉ + α̂′W3t +
∑p

j=1
β̂jyt−j+1

Model 4 ŷt+h = ĉ + α̂′W4t +
∑p

j=1
β̂jyt−j+1

Model 5 ŷt+h = ĉ + α̂′W5t +
∑p

j=1
β̂jyt−j+1

Model 6 ŷt+h = ĉ + α̂′W6t +
∑p

j=1
β̂jyt−j+1

Model 7 ŷt+h = ĉ + α̂′W7t +
∑p

j=1
β̂jyt−j+1

Model 8 ŷt+h = ĉ + α̂′W8t +
∑p

j=1
β̂jyt−j+1
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Table 4.3: Description of Prediction Models Used in Empirical Experiments
Factor: ŷt+h = ĉ + α̂′F̃t +

∑p

j=1
β̂jyt−j+1: F̃t contains the estimated Stock and Watson diffusion indices.

Model 1: ŷt+h = ĉ + α̂′W1t +
∑p

j=1
β̂jyt−j+1: W1t contains the variables that make up the

“macroeconomic indicators”.
Model 2: ŷt+h = ĉ + α̂′W2t +

∑p

j=1
β̂jyt−j+1: Consider the model X̂i = F̂iΩ

′ + e where X̂i ⊂ X is a specific
class of variables. F̂i is made up of the first two principal component factors that underlie X̂i alone.

The classes considered for X̂i are X̂1: CPI; X̂2: Industrial Production; X̂3: Housing; X̂4:
Employment; X̂5: Yields. Each of these five classes contains one of the “macroeconomic

indicators”. The smoothed A(j) statistic is then used to select one observable variable from X that
proxies F̂i ∀i. W2t contains these five factor proxies in conjunction with the remaining

macroeconomic indicators that are not included in the above classes. Only five classes are
considered for X̂i because the other macroeconomic indicators are members of classes that are too

small to meaningfully apply our factor analysis.

Model 3: ŷt+h = ĉ + α̂′W3t +
∑p

j=1
β̂jyt−j+1: W3t contains the variables selelcted by the smoothed A(j)

statistic without spreads
Model 4: ŷt+h = ĉ + α̂′W4t +

∑p

j=1
β̂jyt−j+1: Consider the model X̂i = F̂iΩ

′ + e where X̂i ⊂ X is a
specific class of variables. F̂i is made up of the first two principal component factors that underlie

X̂i alone. The classes considered for X̂i are X̂1: Housing; X̂2: Industrial Production; X̂3: Yields.
Each of these three classes contains one of the “macroeconomic indicators”. The smoothed A(j)

statistic is then used to select two observable variable from X that proxy F̂i ∀i. W4t contains these
six factor proxies in conjunction with the remaining observable variables that are included in W3t

but not in the above classes. Only three classes are considered for X̂i because the other variables
are members of classes that are too small to meaningfully apply our factor analysis.
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Table 4.3 (continued)
Model 5: ŷt+h = ĉ + α̂′W5t +

∑p

j=1
β̂jyt−j+1: W5t contains a subset of the “macroeconomic indicators”

selected by the smoothed A(j) statistic
Model 6: ŷt+h = ĉ + α̂′W6t +

∑p

j=1
β̂jyt−j+1: Consider the model X̂i = F̂iΩ

′ + e where X̂i ⊂ X is a
specific class of variables. F̂i is made up of the first two principal component factors that underlie
X̂i alone. The classes considered for X̂i are X̂1: Housing Starts; X̂2: Industrial Production. Each of

these two classes contains one of the Fed’s “macroeconomic indicators”. The smoothed A(j)

statistic is then used to select one observable variable from X that proxies F̂i ∀i. W6t contains these
two factor proxies in conjunction with the remaining observable variables that are not included in
W5t. Only five classes are considered for X̂i because the other variables are members of classes that

are too small to meaningfully apply our factor analysis.

Model 7: ŷt+h = ĉ + α̂′W7t +
∑p

j=1
β̂jyt−j+1: W7t contains a subset of the “macroeconomic indicators”

selected by the smoothed A(j) statistic in addition to Money Supply and the 6-month Treasury Bill
Yield.

Model 8: ŷt+h = ĉ + α̂′W8t +
∑p

j=1
β̂jyt−j+1: W8t contains the variables in W6t plus Money Supply and
the 6-month Treasury Bill Yield.

For Model nS ( n = 1, . . . , 8), the forecast model is specified as

ŷt+h = ĉ + α̂′W S
nt +

∑p

j=1
β̂jyt−j+1

where W S
nt = (W ′

nt, S
′
t)
′ and St is a vector of spreads listed in Panel I of Table 1.

Notes: In Model n (n = 2, 4, 6, 8), variables selected by the methodology discussed in Table 4.2 above were

used where possible to represent some classes. The specific variables and their corresponding classes are

listed in Panel J of Table 4.1. With Model n (n = 1, 3, 5, 7), aggregate variables are used by default as class

representatives. All variables contained in Wnt are listed in Table 4.1. The SIC is used to select a value of

p = 1 for ouput growth forecasting and p = 3 for inflation forecasting.
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Table 4.4: Forecast of CPI Inflation
Model MSFE DM-Test Benchmark

Factor Model 1 No Spread

Panel A: One-Month Ahead Forecast
Factor 3.66
Model 1 3.93 -0.98
Model 1S 3.96 -0.81 -0.08 -0.08
Model 2 3.96 -0.96 -0.21
Model 2S 3.88 -0.59 0.18 0.26
Model 3 3.51 0.53 2.39
Model 3S 3.60 0.17 1.06 -0.32
Model 4 3.60 0.23 2.23

Model 4S 3.49 0.51 1.44 0.36

Model 5 3.61 0.20 2.28
Model 5S 3.68 -0.06 0.76 -0.20
Model 6 3.71 -0.18 1.59
Model 6S 3.63 0.10 0.91 0.23
Model 7 3.61 0.19 2.27
Model 7S 3.62 0.12 1.00 -0.05
Model 8 3.66 0.01 1.92
Model 8S 3.55 0.34 1.33 0.34

Panel B: Three-Month Ahead Forecast

Factor 3.16

Model 1 4.15 -2.79∗∗∗
Model 1S 4.20 -3.39∗∗∗ -0.21 -0.21
Model 2 4.34 -3.35∗∗∗ -0.85
Model 2S 4.30 -3.40∗∗∗ -0.44 0.21
Model 3 3.81 -2.53∗∗∗ 1.46
Model 3S 3.85 -3.19∗∗∗ 0.90 -0.21
Model 4 4.54 -4.28∗∗∗ -1.21
Model 4S 4.45 -4.15∗∗∗ -0.72 0.39
Model 5 3.77 -2.30∗∗∗ 2.07
Model 5S 3.76 -2.77∗∗∗ 1.11 0.02
Model 6 4.35 -3.95∗∗∗ -0.67
Model 6S 4.31 -3.77∗∗∗ -0.36 0.16
Model 7 4.02 -2.53∗∗∗ 0.91
Model 7S 3.99 -3.08∗∗∗ 0.57 0.14
Model 8 4.41 -3.70∗∗∗ -1.17
Model 8S 4.30 -3.54∗∗∗ -0.41 0.49
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Table 4.4 (continued)
Model MSFE DM-Test Benchmark

Factor Model 1 No Spread

Panel C: Twelve-Month Ahead Forecast
Factor 4.57
Model 1 4.71 -0.24
Model 1S 3.93 1.18 2.02 2.02∗∗
Model 2 4.26 0.57 1.81
Model 2S 4.03 1.00 1.38 0.70∗∗
Model 3 4.24 0.58 2.48
Model 3S 3.75 1.51∗ 2.36 1.59∗∗
Model 4 4.00 1.07 2.62
Model 4S 3.78 1.49∗ 1.77 0.67∗∗
Model 5 4.56 0.01 1.12
Model 5S 3.79 1.52∗ 2.29 1.95∗∗
Model 6 3.96 1.15 3.10
Model 6S 3.73 1.55∗ 1.82 0.64∗∗
Model 7 4.60 -0.06 0.82
Model 7S 3.82 1.40 2.15 1.95∗∗
Model 8 3.96 1.11 3.39

Model 8S 3.69 1.56∗ 1.97 0.79∗∗

Notes: Numerical entries in the second column represent the mean squared forecast errors (MSFEs) of

recursively constructed ex ante predictions for the period 1994:09-2003:12, using the models listed in the

first column (see Table 4.2 for an explanation of the different models). Entries in bold font represent

lower MSFEs relative to the assumed Fed model (Model 1). Boxed MSFE entries represent the lowest

MSFE value amongst all considered models. All numerical entries in the last three columns are MSFE

Diebold and Mariano (DM) predictive accuracy test statistics. Negative DM statistics represent instances

where the benchmark model (noted at the top of the table) has a lower MSFE relative to the respective

model. Positive entries indicate the opposite scenario. Models with DM statistics that have ∗,∗∗,∗∗∗ signs

significantly outperform the respective benchmark model at the 20%(∗), 10%(∗∗) and 5%(∗∗∗) significance

levels. In calculating the DM statistic under “No Spread”, the benchmark model is the respective model

restricted to exclude spreads. This DM statistic consequently reflects the marginal predictive content of

spreads for that particular model specification.
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Table 4.5: Forecast of Output Growth
Model MSFE DM-Test Benchmark

Factor Model 1 No Spread

Panel A: One-Month Ahead Forecast
Factor 2.29
Model 1 2.31 -0.07
Model 1S 2.19 0.38 1.49 1.49∗∗
Model 2 2.31 -0.08 0.00

Model 2S 2.09 1.06 1.02 2.62∗∗

Model 3 2.54 -1.21 -1.24
Model 3S 2.41 -0.58 -0.54 1.92∗∗
Model 4 2.63 -1.66∗∗ -1.40
Model 4S 2.33 -0.17 -0.08 3.04∗∗
Model 5 2.73 -1.89∗∗ -2.04
Model 5S 2.50 -0.98 -1.01 3.86∗∗
Model 6 2.74 -2.21∗∗∗ -1.70
Model 6S 2.58 -1.66∗∗ -0.98 2.11∗∗
Model 7 2.63 -1.55∗ -1.93
Model 7S 2.67 -1.41∗ -2.16 -0.47
Model 8 2.56 -1.49∗ -1.22
Model 8S 2.41 -0.82 -0.46 1.81∗∗

Panel B: Three-Month Ahead Forecast
Factor 2.45
Model 1 2.40 0.27
Model 1S 2.43 0.16 -0.21 -0.21
Model 2 2.36 0.63 0.45
Model 2S 2.45 -0.02 -0.36 -0.99
Model 3 2.44 0.05 -0.24
Model 3S 2.52 -0.33 -0.58 -0.68
Model 4 2.26 1.07 0.77

Model 4S 2.15 1.81∗∗ 1.39 0.87∗∗

Model 5 2.37 0.90 0.24
Model 5S 2.72 -1.43∗ -1.75 -2.32
Model 6 2.31 1.49∗ 0.48
Model 6S 2.50 -0.43 -0.55 -1.45
Model 7 2.56 -0.77 -1.61
Model 7S 2.67 -1.28 -1.87 -0.94
Model 8 2.45 0.04 -0.36
Model 8S 2.50 -0.41 -0.67 -0.58
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Table 4.5 (continued)
Model MSFE DM-Test Benchmark

Factor Model 1 No Spread

Panel C: Twelve-Month Ahead Forecast
Factor 3.44
Model 1 3.07 2.36∗∗∗
Model 1S 3.02 2.52∗∗∗ 0.43 0.43
Model 2 3.07 1.59∗ -0.01
Model 2S 3.06 1.80∗∗ 0.06 0.10
Model 3 2.73 2.36∗∗∗ 1.31
Model 3S 3.17 1.09 -0.45 -2.39
Model 4 2.94 1.58∗ 0.48
Model 4S 3.02 1.70∗∗ 0.23 -0.48
Model 5 2.71 2.47∗∗∗ 1.53
Model 5S 3.03 1.78∗∗ 0.22 -1.74

Model 6 2.70 2.59∗∗∗ 1.65

Model 6S 3.00 1.93∗∗ 0.35 -1.73
Model 7 2.73 2.52∗∗∗ 1.80
Model 7S 2.87 2.45∗∗∗ 1.15 -0.93
Model 8 2.72 2.71∗∗∗ 2.04
Model 8S 2.87 2.53∗∗∗ 1.17 -1.10

Notes: See notes to Table 4.4.
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Figure 4.1: Forecast of CPI Inflation by Benchmark Model 1 at the 12 Step
Horizon

Panel 1: Observed and Forecast Values of CPI Inflation

Panel 2: Forecast Squared Errors of CPI Inflation
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Figure 4.2: Forecast of Output Growth by Benchmark Model 1 at the 1 Step
Horizon

Panel 1: Observed and Forecast Values of Output Growth

Panel 2: Forecast Squared Errors of Output Growth
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