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ABSTRACT OF THE DISSERTATION

Admissible, consistent multiple testing with applications

by Chuanwen Chen

Dissertation Director: Arthur Cohen, Harold B. Sackrowitz

For multivariate normal models and exponential family models a multiple testing step-

wise method is offered that is both admissible and consistent. The method is readily

adaptable to selecting variables in linear regression models where it is akin to the for-

ward selection method plus a screening stage plus a sign compatibility stage. The

method is also adaptable to testing the local odds ratios in contingency tables in which

the categories are ordered. Examples and simulations are included.
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Chapter 1

Introduction

Multiple testing in general linear models is a long standing statistical practice. The

subject has been given great impetus over the last two decades with applications aris-

ing in fields where the numbers of hypotheses to be tested can be extremely large

(namely thousands). Such applications are needed in microarrays, astronomy, mutual

fund evaluations, proteomics, disclosure risk, cytometry, imaging and others. Tradi-

tional methods, usually classified as single step methods, are deemed too conservative,

particularly when the number of hypotheses to be tested is very large. To compensate,

stepwise procedures were introduced, which enable more rejection of hypotheses. See,

for example, Dudoit and Van Der Laan (2008) and Lehmann and Romano (2005) for

description and some properties of single step and stepwise procedures. Many stepwise

procedures are based on P-values derived from the marginal distributions of relevant

test statistics that test an individual hypothesis. Oftentimes, these and other multiple

testing procedures (MTPs) are focused on controlling some type of error rate, namely,

the familywise error rate (FWER), weak or strong, or the false discovery rate (FDR).

Oftentimes the error rate controlling procedures seek to have good average power.

While focusing on error rate control of the overall procedure, sometimes the prop-

erties of the ensuing tests of each individual hypothesis is not given enough attention.

The resulting test for an individual hypothesis resulting from an MTP (especially a

stepwise MTP) can be complicated. Nevertheless, examining the properties of the indi-

vidual tests can be important. In fact, a decision theory approach to multiple testing,

focusing on individual tests, can suggest procedures that do well when evaluated by

the expected number of type I errors and expected numbers of type II errors. This

represents another way to evaluate MTPs. See Dudoit and Van Der Laan (2008) where
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attention is given to type I and type II errors as well as to error rate controlling proce-

dures.

Before going further, a few examples are helpful.

Example 1 (multivariate normal): given X ∼ N(µ, σ2Σ), where µ is unknown n×1

vector, Σ is a known positive definite matrix, σ2 is either known or can be estimated

by s2. We intend to test hypothesis Hi : µi = 0 vs Ki : µi 6= 0, i = 1, . . . , n. Here the

total number of hypotheses is n.

If the matrix Σ is diagonal, then test statistics ( Xi ) for individual hypothesis are

independent. Otherwise these test statistics are dependent.

Example 2 (independent binomial models): given a 2 × C contingency table X

from independent binomial model, where the C categories are ordered in some sense,

we intend to test whether the adjacent binomial parameters are equal or not, i.e.,

Xi ∼ Binomial(ni, pi), i = 1, . . . , C; we want to test Hi : pi = p(i+1) vs Ki : pi 6= p(i+1),

i = 1, . . . , (C − 1). Here the total number of hypotheses is (C − 1).

In example 2, the test statistics for individual hypothesis are most likely dependent.

Example 3 ( pairwise comparison ) : Instead of comparing adjacent binomial param-

eters, in the situation that the C categories are not ordered, it might be of interest to

compare any two of the categories. So now there are a total of C(C − 1)/2 hypotheses.

And there are logical constraints on the true hypotheses. Decision results of testing for

this case might or might not need to observe those logical constraints.

In general, we have m hypotheses to be tested of which m0 hypotheses are true. Let

R be the number of hypotheses rejected, following table summarizes the testing result.
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Declared Declared Total
non-significant significant

true null hypotheses U V m0

non-true null hypotheses T S m−m0

Total m−R R m

The family-wise error rate(FWER) is the probability of rejecting at least one null

hypothesis that is true null, i.e., FWER is P (V ≥ 1), and false discovery rate (FDR) is

E[V/max(R, 1)].

A MTP which controls FWER at level α when m0 = m is said to control weak

FWER. If FWER is controlled at level α regardless of m0, it is called strong FWER

control. Weak FWER control is not very appealing. When we say FWER control, we

implicitly mean strong FWER control.

Most popular stepwise methods often intend to achieve more power while controlling

FWER(weak or strong) or FDR at predefined level.

A multiple testing procedure is a closure testing procedure (Marcus et al., 1976) if

it works in following way:

Start with a family of hypotheses F0 = {H1, . . . ,Hm}, let Im = {1, . . . ,m} be the

index of hypotheses. First construct a set of hypotheses through intersection of set F0,

i.e., F1 =
{⋂

k∈I Hk : I ⊆ Im
}

. Let F1i =
{⋂

k∈I Hk : {i} ⊆ I ⊆ Im
}

. Clearly F1i is a

subset of F1. The testing has two steps. Step 1, for each intersection hypothesis in F1,

perform an individual test at level α. Step 2, for each hypothesis Hi in F0, reject it if

at step 1 all hypotheses in F1i are rejected. The decision made at step 2 is the final

decision for each hypothesis in F0.

It turns out that all testing procedures that control FWER are either closure testing

procedures, or shortcuts to closure testing procedures.

Note that the tests at step 2 of a closure testing are induced from testing at step 1.
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Although the individual testing at step 1 can be simple, the test at step 2 can get quite

complicated, i.e., the individual test induced from a MTP procedure could be complex.

In a series of papers, Cohen and Sackrowitz (2005a), (2005b), (2007), (2008) and

Cohen, Kolassa, and Sackrowitz (2007) have shown that many of the standard stepwise

procedures under a wide variety of assumptions, often turn out to be inadmissible for a

variety of risk functions that involve both expected type I and expected type II errors.

Specifically, for popular step-down MTPs, in multivariate normal model, under typical

conditions, it is shown that there exists other MTP whose individual test has smaller

type I and type II error.

For exponential family models the inadmissibility is often shown to follow because

in testing an individual hypothesis, relevant acceptance sections are not intervals. This

represents a disturbing practical shortcoming of many of the usual procedures.

In response to the inadmissibility property and the fact that many stepwise pro-

cedures are based on the marginal distributions of test statistics, even when they are

statistically dependent, Cohen, Sackrowitz and Xu (CSX) (2009) recommend a new

MTP method called maximum residual down (MRD). MRD takes correlation into ac-

count and is admissible ( in exponential family models ) for a risk function that focuses

on expected type I and type II errors.

However, for some models the MRD method is not consistent. See Chapter 2 for

a formal definition of consistency. Informally, consistent means that the probability of

correctly testing each hypothesis tends to 1 as the sample size tends to infinity and as

critical values tend to infinity at a certain rate.

In this thesis we introduce a modification of MRD which offers a procedure that is

admissible and consistent. The modification, discussed in Chapter 3, adds a screening
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stage and sign stage to MRD. Call the new procedure MRDSS. The method is appli-

cable to exponential family models, and to other models as well, if sample sizes are large.

Variable selection in the linear regression context is a special multiple testing prob-

lem. We will apply the method to selection of variable models in regression. MRD is

shown to be equivalent to a forward method in this context. Modification to MRD will

be accordingly a modification of forward method.

In another problem we also apply the method to testing all local odds ratios in an

R× C contingency table.

For the selection of variables model, the MRD method is shown to be equivalent to

some forward method of selecting variables. See Miller (2002) for a discussion of forward

methods. Both MRD and the forward method are stepwise methods based on what we

define as residuals. Forward methods and hence MRD are typically not consistent. See,

for example, An and Gu (1985). We show that MRDSS, and thus a modification of the

forward methods, is admissible and consistent under modest and typical conditions on

the critical values and design matrix. The computational feasibility of MRDSS in the

selection of variables model is the same as forward selection, i.e, it is feasible for very

large problem.

MRDSS can be extended to other exponential family models. In this thesis, we

extend MRDSS to multiple testing of odds ratios in 2× 2 subtables of R×C tables, in

which the categories are ordered in some sense. Following table is an example.

Worse Same Slight Better Better Cured

Dose 1 x11 x12 x13 x14 x15

Dose 2 x21 x22 x23 x24 x25

. . .

Dose r xr1 xr2 xr3 xr4 xr5
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This problem was discussed in Shaffer (1986). The accept region of usual step-

wise procedures are not convex, which render them inadmissible. See Chen, Cohen,

and Sackrowitz (2009b) for examples. A new methodology, which is an application of

MRDSS, is given for this problem.

In the next Chapter we state the problem for multivariate normal model, including

definitions and other preliminaries. Stepwise methods, including step-down, step-up

and MRD, are described in this chapter. Extension of MRD to MRDSS is given in

Chapter 3 for the multivariate normal model, and the connection between MRD and

forward selection is described. Admissibility and consistency of usual step-down, step-

up, MRD and MRDSS are investigated. In Chapter 4, MRDSS is applied to test of

local odds ratios in contingency table with ordered categories. We use either a Poisson

model or multinomial model, conditioned on row and column sums. The new method-

ology is demonstrated with two examples, one for the simple 2 × C case, one for the

more general R × C case. Chapter 5 discuss computational related issues, mainly the

MRDSS method in testing of local odds ratios and the choosing of critical values. In

Chapter 6, a simulation study to compare MRDSS versus step-down method is given

for testing of local odds ratios.
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Chapter 2

Models, definitions and preliminaries

We start with a very general multiple testing problem. Let X be a random vector that

is distributed as f(X|θ), where θ is unknown M × 1 vector parameters. We intend

to test Hi : θi = 0 vs Ki : θi 6= 0, i = 1, . . . ,m, where m ≤ M . The distribution

function f usually belongs to a family of distribution, and indexed by θ. In this thesis,

we assume the family (of distributions) is one class of exponential family, and θ are

natural parameters of the exponential family.

2.1 Models and definitions

The first model posed has a random sample of M × 1 vectors, Xα, α = 1, ..., n, from a

multivariate normal distribution whose mean vector is µ and whose covariance matrix is

Γ. Sometimes Γ is known and sometimes Γ = σ2Σ where Σ is known and σ2 is unknown.

In the later case, s2 =
∑n

α=1(Xα−X̄)′Σ−1(Xα−X̄)/M(n−1) is an unbiased estimator

of σ2, which is independent of X̄ =
∑n

α=1 Xα/n. For the first model the density of X̄

is

fX̄(x̄ | µ,Σ) =
(
n1/2/(2π)M/2 | Γ |1/2

)
exp

{
−n/2(x̄− µ)′Γ−1(x̄− µ)

}
= β(µ,Γ)h(x̄) expnx̄′Γ−1µ

(2.1.1)

We wish to test Hi : µi = 0 vs Ki : µi 6= 0, i = 1, 2, ...,M .

The general linear model has Y = Aβ + ε where Y is an n × 1 vector which is

multivariate normal with mean vector Aβ and covariance matrix σ2I. A = (a1, ...,aM )

is an n ×M fixed design matrix and β is an M × 1 vector of parameters. If A has

rank M , then β̂ = (A′A)−1A′Y ∼ N(β, σ2S−1) where S−1 = (A′A)−1. An unbiased
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estimator of σ2 is s2 = MSE = SSE/(n −M), and s2 is independent of β̂. Thus this

general linear model reduces to our multivariate normal model with Γ = σ2S−1. We

wish to test Hi : βi = 0 vs Ki : βi 6= 0, i = 1, 2, ...,M .

Another model considered is an exponential family model. Suppose Zi, i = 1, 2, ..., Q

are independent and have a one dimensional exponential family distribution with nat-

ural parameter ωi, i.e., the joint density of Z = (Z1, ..., ZQ)′ is

fZ(z | ω) = β(ω)h(z)ez
′ω

where ω = (ω1, ..., ωQ)′. Let G be a full rank M ×Q matrix of constants, M < Q, and

let B =
(
G
F

)
, where the rows of F are orthogonal to the rows of G and B has rank Q.

Now let θ = Bω and note

z′ω = z′(B′B′−1)B−1θ = z′B′(BB′)−1θ

If we let X = BZ, we find the density of X is

fX(x | θ) = β∗(θ)h∗(x)ex
′Σ−1θ (2.1.2)

where Σ = BB′. Further note that Σ =

 GG′ 0

0 FF ′

 and

Σ−1 =

 (GG′)−1 0

0 (FF ′)−1

.

We wish to test Hi : θi = 0 vs Ki : θi 6= 0, i = 1, ...,M .

2.2 Risk function

Multiple testing procedures are evaluated by considering expected type I error and ex-

pected type II error for each individual hypothesis. Let X represent all the data. An

MTP Φ(x) = (φ1(x), ..., φM (x))′ where φi(x) is a test function for testing Hi vs Ki,

i = 1, ...,M is inadmissible, if there exists another MTP such that for each testing
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problem, the expected type I and type II errors are less than or equal to those of Φ(x)

and for at least one type of error and some parameter points strictly less.

Such an evaluation is based on an M × 1 vector risk function where the ith compo-

nent is the typical risk function for testing an individual hypothesis. This vector risk

function is least stringent in the sense that if a procedure is inadmissible for the vector

risk function it would be inadmissible for any risk that is a monotone function of the

expected number of type I and expected number of type II errors.

2.3 Consistency

Consistency is defined in An and Gu (1985) and in Bunea, Wegkamp, and Auguste

(2006). Let I0 ⊆ {1, ...,M}
def
= IM , be the non-zero components of µ. An estimator Î

of I0 is called consistent if limn→∞ P{Î = I0} = 1. If M0 ≤M is the number of indices

in I0 then Î is consistent if and only if the MTP leads to M0 rejections, none of which

are erroneous.

If the critical values are to be compared to test statistics as opposed to the P-value

determined by the statistics, then consistency is possible only if certain critical values

tend to infinity at a certain rate.

2.4 Stepwise procedures for multiple testing

Most popular MTPs that control FWER or FDR are stepwise procedures. Those MTPs

are defined in terms of a set of critical values which determine acceptances or rejections

at various steps. Stepwise MTPs are more powerful than one-step MTPs in most

situations. For the purpose of illustration, we use the problem of testing Hi : µi = 0 vs

Ki : µi 6= 0, i = 1, . . . ,M .
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2.4.1 Standard step-down or step-up

Let p1, . . . , pM denote the P-value of the individual test of hypothesis H1, . . . ,HM ,

respectively. Let p(1), . . . , p(M) denote the ordered P-values, and H(1), . . . ,H(M) the

corresponding hypotheses. Given a sequence of critical P-values α1 < α2 < · · · < αM ,

a step-down procedure is defined as follows:

(1) If p(1) < α1, reject H(1) and continue to next step, otherwise stop and accept all

hypotheses.

(2) If P(2) < α2, reject H(2) and continue to next step, otherwise stop and accept

all remaining hypotheses.

(3) In general, at step k, if p(k) < αk, reject H(k) and continue to next step, otherwise

stop and accept all remaining hypotheses.

(4) at last step, step M , if p(M) < αM , reject H(M), otherwise accept H(M).

Let i0 = min{i : 1 ≤ i ≤ M,p(i) ≥ αi}, then the step-down method rejects

H(1), . . . ,H(i0−1).

Note that one can define the step-down method equivalently through a sequence of

critical values for test statistics, instead of critical P-values.

If the sequence of critical P-values is chosen to be αi = α/(M − i+ 1) (Holm, 1979),

then FWER is strongly controlled at α.

While step-down procedures start with the individual most significant hypothesis,

i.e, hypothesis with the smallest P-value, the step-up procedures work the opposite way,

i.e., start with the invidual least significant hypothesis ( the hypothesis with maximal

P-values).

Given a sequence of critical P-values α1 < α2 < · · · < αM , step-up method perform

testing in following way:

(1) If p(M) ≥ αM , accept H(M) and continue to next step, otherwise stop and reject

all hypotheses.

(2) If P(M−1) ≥ α(M−1), accept H(M−1) and continue to next step, otherwise stop
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and reject all remaining hypotheses.

(3) In general, at step k, if p(M−k+1) ≥ α(M−k+1), accept H(M−k+1) and continue to

next step, otherwise stop and reject all remaining hypotheses.

(4) at last step, step M , if p(1) ≥ α1, accept H(1), otherwise reject H(1).

Let i1 = max{i : 1 ≤ i ≤M,p(i) < αi}, then the step-up method rejectsH(1), . . . ,H(i).

If the sequence of critical P-values is chosen to be αi = α/(M − i + 1) (Hochberg,

1988), then under assumption of independent or positive regression dependence on the

set (Sarkar and Chang, 1997), FWER is strongly controlled at α for step-up procedures.

If the sequence of critical P-values is chosen to be αi = iα/M (Benjamini and

Hochberg, 1995), then under assumption of independent or positive regression depen-

dent on the set, step-up procedure controls FDR at α.

Except through the change of critical values, the stepwise procedures in above do not

take dependence into consideration at all steps. For example, suppose all hypotheses

are dependent. Suppose at step 1, hypothesis H1 is rejected ( or accepted), this should

affect the significance level of remain hypotheses, or their P-values. But in the above

step-down/up procedures, the same set of P-values are used throughout all the steps.

The standard stepwise methods described above only need the P-value of individual

hypothesis to perform multiple testing, which means they can be easily applied in a wide

range of situations. The computation effort usually is small. However, the other side

of this advantage is that because standard stepwise methods only utilize the P-values

determined from marginal distribution of individual test statistics, intuitively, they will

be less powerful than stepwise methods that take dependence into consideration in every

steps.

2.4.2 MRD for multivariate normal model

Cohen, Sackrowitz, and Xu (2009) proposed a new stepdown procedure, called maxi-

mum residual down (MRD). MRD takes dependent into consideration in every step.

We start with the multivariate normal model with Γ = Σ = (σij) known and
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nonsingular.

Let X = (X1, ..., XM )′, X(i1,...,ir) be a subvector of X consisting of all components

except Xi1 , ..., Xir . Σ(i1,..,ir) is the (M − r) × (M − r) covariance matrix of X(i1,...,ir),

for any j 6= i1, . . . , ir, σ
(i1,..,ir)
(j) is the (M − r− 1)× 1 vector of covariances between Xj

and all variables except Xi1 , .., Xir and Xj .

σ2
(j·i1,..,ir) = σjj − σ(i1,..,ir)

j

′
Σ−1

(i1,..,ir,j)
σ

(i1,..,ir)
j (2.4.1)

is the conditional variance of Xj , given all variables except Xi1 , ..., Xir , Xj .

Now define the jth normalized residual at step m to be

Umj(X(i1,...,im−1)) =
Xj − σ(i1,..,im−1)

j

′
Σ−1

(i1,..,im−1,j)
X(i1,..,im−1,j)

[σ2
(j·i1,..,im−1)]

1/2
(2.4.2)

m = 1, ...,M . At step m, we let Um be the (M −m + 1) × 1 vector of Umj ’s. We

note that if Dm is the diagonal matrix of the terms in (2.4.1), then

Um = D1/2
m Σ−1

(i1,..,im−1)X
(i1,..,im−1)

Let C1 > C2 > · · · > CM > 0 be a given set of constants. Then MRD is determined

as follows:

At step 1, consider U1j(X), j ∈ 1, ...,M . Let j1 = j1(X) be such that |U1j1(X)| =

maxj |U1j(X)|. If |U1j1(X)| < C1, stop and accept all Hi. Otherwise reject H1j1 and

continue to step 2.

At step 2, consider the (M − 1) functions U2j(X(j1)), j ∈ {1, ...,M}\{j1}. Let

j2 = j2(X(j1)) be such that |U2j2(X(j1))| = max
{
|U2j(X(j1))| : j ∈ 1, . . . ,M\{j1}

}
. If

|Uj2 | < C2 stop and accept all remaining null hypotheses. Otherwise reject Hj2 and

continue to step 3.

In general, at step m, m = 1, ...,M , consider M−m+1 functions Umj(X(j1,..,jm−1)),

j ∈ {1, ...,M}\{j1, ..., jm−1}. Let jm = jm(X(j1,..,jm−1)) be such that

|Umjm | = max
{
|Umj(X(j1,..,jm−1))| : j ∈ 1, ...,M\{j1, ..., jm−1}

}
.
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If |Umjm | < Cm, stop and accept all remaining null hypotheses. Otherwise reject Hjm

and continue to step m+ 1 ( unless m = M , in which case, stop).

For the multivariate normal model where Γ = σ2Σ and σ2 is unknown, a modi-

fication of Umj is called for. The denominator of Umj would be multiplied by some

estimator of σ2. It could be s =
√
s2, mentioned in Section 2 or it could be another

estimator of σ2, say V which would be an unbiased estimator of σ2 when µ = 0. This

latter estimation was used by CSX(2009).

The general linear model discussed in detail in Section 2 is a special case of the

the multivariate normal model with Γ = σ2Σ. The matchups are familiar, i.e., X is

replaced by β̂, µ is replaced by β, σ2Σ is replaced by σ2S−1 and σ2 would be estimated

by MSE or simply by y′y/n.

In the event Σ is unknown but enough replications on X are avaliable, Σ could be

estimated by a maximum likelihood estimator, say Σ̂, and Σ̂ would replace Σ in the

definition of Umj . Should the number of replications, i.e. , sample size, be large, the

optimality properties of MRDSS should be asymptotically true.

It has been shown that MRD is admissible. For the problem of test treatment

vs control, MRD performs favorably to step-up/step-down methods in simulations in

terms of total number of errors.
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Chapter 3

Extension of MRD to MRDSS

The MTP for the multivariate normal model, called maximum residual down (MRD),

has many desirable properties including admissibility. However, on some occasions, the

test result of MRD can be counterintuitive. For example, in the multivariate normal

model, X ∼ N(µ,Σ) with Σ known, we intend to test Hi : µi = 0 vs Ki : µi 6= 0,

i = 1, . . . ,M . One could construct a special Σ, such that even if X1 = 0, MRD will still

reject H1. Also, one could construct another special Σ, such that even if |X1|/
√
σ11

is very large, for typical constant critical values, MRD will accept H1. This calls for

some modifications or extensions of MRD. Here we give one such extension of MRD.

The new MTP includes three stages, MRD stage, screen and sign stages. The MRD

procedure followed by a screening stage and a sign stage is called MRDSS.

3.1 MRDSS in multivariate normal model

MRDSS starts with MRD stage, which is described in Chapter 2.

To add a screening stage to MRD, let CU > CL > 0 be two additional constants.

Typically CL ≤ CM < CU . Note that C1 > C2 > · · · > CM are the set of critical values

used in MRD stage. After MRD is done, each hypothesis is temporarily accepted or

rejected.

Let Hj1 , ...,Hjp be those hypotheses that are rejected. Should any

|Xji |/
√
σjiji < CL ,

i = 1, ..., p, then reverse the reject decision to an accept decision.
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For those hypotheses that MRD accepted, say, Hjp+1 , ...,HjM , reject any for which

|Xji |/
√
σjiji > CU ,

i = p+ 1, ...,M .

Note that the screen stage eliminates the counterintuitive situation that is discussed

in the begin of this chapter. However, when MRD rejects a hypothesis, say Hj at step

m∗, which means |Um∗j | is maximum among all remaining residuals, and |Um∗j | > Cm∗ ,

the sign of Um∗j could be positive or negative, which is not necessarily the same as the

sign of Xj . This is counterintuitive in some sense. When MRD rejects Hj , roughly

saying, under some assumptions, we have evidence that µj is nonzero with the same

sign of Um∗j . However, when the two signs are not the same, the direct evidence ( Xi

) does not agree with the one from MRD. Sign stage will handle this situation.

To add a sign stage, we need to slightly modify the MRD stage : record the sign of

Umjm whenever it rejects Hjm . Hence each hypothesis that is rejected by MRD stage

will have a sign : + or −. The sign stage considers only those hypotheses rejected

by MRD, i.e., Hj1 , ...,Hjp , and such that CL < |Xji |/
√
σjiji < CU , i = 1, ..., p. Then

switch those to accept whenever the sign of Xji is different from the sign of Um∗ji where

m∗ is the step when Hji was rejected by MRD.

Remark : The screen stage following MRD involves |Xi|, i = 1, ...,M . The sign

stage involves the sign of Um∗i and the sign of Xi.

Remark: Sign stage only makes sense in the two-side hypothesis testing. It is related

to the direction of rejection. Later on, we will give a general definition of sign.

We will illustrate MRDSS in the following example:

Example 3.1
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Let X = (X1, X2, X3, X4)′ be such that X ∼ N(µ,Σ) where

Σ =



2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2


.

We wish to test Hi : µi = 0 vs Ki : µi 6= 0, i = 1, ..., 4.

For the purpose of demonstrating the application of MRDSS we will let C1 =

2.3, C2 = 2.0, C3 = 1.7, C4 = 1.4, CL = .6, and CU = 3.6. Now suppose we observe

X1 = 1, X2 = 5, X3 = 4.7 and X4 = 5.3.

First we apply MRD. At step 1 the residuals are :

U11 =
[
X1 − (1, 1, 1)


2 1 1

1 2 1

1 1 2


−1

(X2, X3, X4)′
]
/

[
2− (1, 1, 1)


2 1 1

1 2 1

1 1 2


−1

1

1

1


]1/2

= [X1 − (X2 +X3 +X4)/4](4
5)1/2 = −2.46

U12 = [X2 − (X1 +X3 +X4)/4](4
5)1/2 = 2.01

U13 = [X3 − (X1 +X2 +X4)/4](4
5)1/2 = 1.68

U14 = [X4 − (X1 +X2 +X3)/4](4
5)1/2 = 2.35

(3.1.1)

Since |U11| is the largest and |U11| > 2.3 = C1, MRD rejects H1 and goes to the

next step. Now with X1 eliminated,

U22 =
[
X2 − (1, 1)

2 1

1 2

−1

(X2, X4)′
]
/

[
2− (1, 1)

2 1

1 2

−11

1

]1/2

= [X2 − (X3 +X4)/3] /(3
4)1/2 = 1.44

U23 = [X3 − (X2 +X4)/3] /(3
4)1/2 = 1.10

U24 = [X4 − (X2 +X3)/3] /(3
4)1/2 = 1.79

Since |U22|, |U23| and |U24| are all less than C2 = 2.0, MRD stops and accepts

H2, H3, and H4.
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Next we do the screen stage by comparing each |Xi/
√

2| to CL = .6 and CU = 3.6.

We see that CL < |Xi/
√

2| < CU for i = 1, 2, 3 but |X4/
√

2| = 3.75 > 3.6 = CU . Thus

the MRD decision to accept H4 is reversed to reject H4.

Lastly we perform the sign stage. This applies only to hypotheses Hi that were

rejected by MRD and for which CL < |Xi/
√

2| < CU . In this example only H1 falls

into this category. Upon examination we see that H1 was rejected at the first step of

MRD stage with U11 = −2.46 while X1/
√

2 = .707. Since these signs are opposite we

reverse the MRD decision to reject H1.

In conclusion MRDSS will accept H1, H2, H3 and reject H4.

3.2 MRDSS in exponential family models

There are many models involving distributions that belong to to the exponential family.

For example, hypothesis testing problems involving binomial parameters, Poisson pa-

rameters, parameters of exponential distributions, and odds ratios or local odds ratios

in contingency tables. Invariably the models and questions can be transformed to the

general model given in (2.1.2) in Chapter 2.

For the models dealing with M contrasts among binomial parameters or Poisson

parameters, residuals of the type Umj given in (2.4.2) can be formed with σ(j·i1,..,im−1)

replaced by some function of the remaining M −m variables in Σ−1X.

More general extensions of MRD could involve different types of residuals and differ-

ent types of tests based on the “new” type of residuals. A residual can be based on the

coefficient multiplying the parameters to be tested, in the expression in the exponent

of the multivariate exponential family density. Also the screen stage and sign stage can

be more generally defined.
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For contingency table models the role of the residuals and the entire MRDSS pro-

cedure will be discussed in next Chapter.

3.3 Properties of MRDSS

We will discuss the properties of MRDSS for the multivariate normal model. For

exponential family models, the conclusion will follow similarly.

MRDSS can be thought of a family of multiple testing procedures that are pa-

rameterized by the critical values C1, . . . , CM and CL and CU . The MRD stage of

MRDSS takes dependent into consideration in every steps. We will prove that MRDSS

is admissible, just like MRD. Due to the screen stage, MRDSS is also consistency.

3.3.1 Admissibility of MRDSS

Consider the setup where X, defined in Section 2, has density (2.1.2) and we wish

to test Hi : θi = 0 vs Ki : θi 6= 0. Let ψi(X) be a test function for Hi vs Ki. Let

W = Σ−1X. A lemma concerning admissibility of any single test, say ψi(X), is as

follows:

Lemma 3.3.1. A necessary and sufficient condition for ψi(X) = ψ∗i (W) to be admis-

sible is that for almost every fixed {Wj , j = 1, ..., Q; j 6= i}, the acceptance section of

the test is convex in Wi.

Proof. See Matthes and Truax (1967)

Next we define

PROPERTY L: A test is said to have Property L if there exists three points x,x∗ =

x + r1g,x∗∗ = x + r2g, with 0 < r1 < r2, such that x and x∗∗ are accept points and



19

x∗ is a reject point when testing H1 vs K1.

Note that a procedure has Property L (for a set of positive measure) if and only if

it is inadmissible by virtue of Lemma 3.3.1.

Theorem 3.3.2. The MTP ΦMRDSS(X) is admissible for the vector risk function.

Proof. The proof is by contrapositive. That is, we will assume that Ψ1 of the MRDSS

has Property L and then show that this impossible. That is, we assume that for ψ1

there exists 3 sample points x, x∗ and x∗∗ for which we accept, reject, accept (ARA)

in that order with x∗ = x+ r1g,x∗∗ = x+ r2g, 0 < r1 < r2, we must show this leads

to a contradiction.

We will consider every possible way that the three stages of ψ1 might yield an ARA

sequence for the points x,x∗ and x∗∗ as defined before. Note that MRD is admissible

so that the sequence ARA is impossible at stage 1. The other 7 possible(first stage)

test results for MRD are AAA, AAR, RAA, ARR, RAR, RRA and RRR. Recall that

screening(stage 2) can, potentially, reverse any stage 1 decision. However, the sign stage

(stage 3) is applicable only when the stage 1 action was to Reject and no change was

made at stage 2. As an example of the reasoning used to identify the possible paths

suppose stage 1 results in the sequence AAR. By definition stage 3 cannot impact the

first two actions. Thus the only two paths possible, begining with AAR, are AAR →

ARR → ARA and AAR → ARA → ARA. Following these rules we find that there are

18 paths ( listed in table 3.3.1 ) that must be studied. We will show that each of these

paths leads to contradiction.

Note that the fourth row in each cell of table 3.3.1 indicates how |Xi| relates to the

screen stage. This will help in showing that each of the 18 cases cannot happen.

At this point we note a fact.
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F1: Consider x,x∗ = x + r1g,x∗∗ = x + r2g, with 0 < r1 < r2. Then |x∗1| ≤

max(|x1|, |x∗∗1 |).

Now for the 18 cases listed in table 3.3.1. Cases 1, 2, 7, 9 and 15 violate F1 as seen

from the fourth row of the cells in table 3.3.1.

Case 3: From table 3.3.1 we see that a sign change occurred at x∗∗ when both x1
∗∗

and Um∗1(x∗∗) were positive. This contradicts the sign stage rule.

Case 4: Cannot occur since MRD is admissible.

Case 5: From table 3.3.1 we see that at x∗∗ the screen stage took a reject to an ac-

cept implying |x∗∗1 | < CL. But |x∗1| > CL implying x∗1 < 0. But MRD is ARR implying

Um∗1(x∗) > 0. Hence MRDSS being ARA is contradicted at x∗.

Case 6: From the first row in this cell we see that Um∗1(x∗∗) > 0 From the sign

change at x∗∗, we find x∗∗1 < 0 which implies x∗1 < 0. But this violates the sign rule.

Case 8: From the fourth row we find x∗1 < 0 which implies x1 < 0. Since MRD is

RAA, Um∗1(x) < 0. However from row 3 we have a sign change, implying a contradic-

tion.

Case 10: Again both Um∗1(x) < 0 and x1 < 0 contradicting a sign change.

Case 11: Both x∗∗1 and Um∗1(x∗∗) are positive, contradicting a sign change.

Case 12: Same reasoning as Case 11.

Case 13: From the fourth row x∗1 > 0 and between CU and CL. From the first row
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Um∗1(x) < 0. This contradicts row 3 at x∗.

Case 14: From the first row Um∗1(x∗) < 0, Um∗1(x) < 0. Since there is a sign

change at x1 that implies x1 > 0, x∗1 > 0, and x∗∗1 > 0. From row 2, x∗∗1 < CU . Hence

CL < x1 < CU and also CL < x∗1 < CU . In particular x∗1 > 0. This contradicts the sign

change rule at x∗.

Case 16: Note that a sign action took place at x and at x∗∗. Applying F1, we

have CL < |x∗1| < CU . Now if x1 < 0 that implies Um∗1(x) > 0 which in turn implies

Um∗1(x∗) > 0 and Um∗1(x∗∗) > 0. Since there is a sign change at x∗∗ then we have

x∗∗1 < 0 which means x∗1 < 0 and a sign change should have occurred at x∗. This is a

contradiction. Now if x1 > 0, similar reasoning leads to a contradiction at x∗.

Case 17: From the first two rows we conclude CL < |x∗1| and |x∗∗1 | < CL implying

x∗1 < 0 and therefore x1 < 0. The sign stage at x implies Um∗1(x) > 0 and therefore

Um∗1(x∗) > 0. But |x1| < CU and |x∗∗1 | < CL implies |x∗1| < CU . Hence we have

CL < |x∗1| < CU and x∗1 < 0 and Um∗1(x∗) > 0. This contradicts the sign stage at x∗.

Case 18: From the first two rows we have |x1| < CL and |x∗1| > CL so x∗1 > 0

implying x∗∗1 > 0. Since there is a sign action at x∗∗, |x∗∗1 | < CU and Um∗1(x∗∗) < 0

implying Um∗1(x∗) < 0. Hence x∗1 > 0, x∗∗1 > 0, CL < x∗1 < x∗∗1 < CU , implies there

should have been a sign action at x∗. This is a contradiction.

Suppose in MRDSS that the MRD portion is replaced by another admissible MTP.

Then the other admissible MTP supplemented by a screen and sign stage will retain

the admissibility property. This means that Theorem 3.3.2 can be applied to a large

class of MTPs. In fact we have corollary 3.3.3 below.

Let Σ be positive definite and let gi be the i-th column of Σ. Then define the class

of MTPs with:



22

PROPERTY N : Suppose Ψ(X) is an MTP with individual test functions Ψi(X).

Suppose Ψi(X), for every i, is such that the acceptance section along the line x + rgi

is an interval. Then the MTP is said to has Property N. It is noted in the Appendix

that Property N is necessary and sufficient for an MTP to be admissible.

Corollary 3.3.3. Any MTP with Property N, supplemented by a screen stage and sign

stage is admissible.

Proof. In the proof for Theorem 3.3.2 the value of Um∗1 was never used. That is,

only the sign of Um∗1 was used. Therefore if we take an admissible procedure with

Property N and use the definition of sign given after the corollary, the entire proof can

be replicated.

The more general version of MRDSS involves functions Wmj(X) analogous to Umj

and statistics Tj(X) analogous to |Xj |. The Wmj(X) have the properties of Umj(X)

for suitably defined gj , j = 1, . . . ,M , required for admissibility. The Wmj ’s and Tj ’s

are used as follows:

For the MRD stage we must first decide which of the M hypotheses is eligible for

rejection at the first step. Toward this end we associate each W1j , j = 1, . . . ,M with

its corresponding two sided P-value, say P (W1j). P (W1j) represents the probability,

under the global null hypothesis that all θj = 0, of observing W1j or something more

extreme than W1j . Then the hypothesis eligible to be rejected first is the hypothesis

related to min1≤j≤M P (W1j) or max1≤j≤M (1− P (W1j)). Similarly define P (Wmj) and

assume that 1−P (Wmj) is decreasing and then increasing as are the Wmj so that MRD

will be admissible.

At step m, the hypothesis eligible to be rejected corresponds to the min of those

M − (m − 1) remaining P-values computed under the global null of M − (m − 1) pa-

rameters equaling 0. Now let j∗ be the index for which Wmj has the minimum P-value.
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To decide whether MRD rejects Hj∗ at a given step consider two sets of constants:

C1a < C2a < · · · < CMa < 0, and, C1b > C2b > · · · > CMb > 0

with Cja < Cjb, j = 1, ...,M . Proceed stepwise as in MRD except that at step m,

reject Hj∗ if Wmj∗ < Cja or Wmj∗ > Cjb. For the screening stage, let CUa < CLa ≤

CLb < CUb. Then if MRD accepted Hj , switch to reject if Tj < CUa or Tj > CUb.

If MRD rejected Hj , switch to accept if CLa < Tj < CLb, otherwise make no change.

Finally for the sign stage, suppose Hj is rejected at step m∗, switch the reject to a final

accept if either

(i) Wm∗j > Cm∗b, there was no change at the screen stage, and Tj < CLa or

(ii) Wm∗j < Cm∗a, there was no change at the screen stage, and Tj > CLb.

In CCS(2009) MRDSS is determined where Wmj and Tj are Fisher exact test statis-

tics for 2 × C tables and Wmj and Tj are related to Pearson Chi-square statistics for

R× C tables.

3.3.2 Consistency of MRDSS

Suppose in general we have a random sample Xα, α = 1, . . . , n, where the distribution

of Xα depends on ν and we wish to test Hi : νi = 0 vs Ki : νi 6= 0, i = 1, . . . ,M .

Assume test statistics (Tni(x)− ETni(x))/σTni converges in law to a standard normal

where ETni(x)/σTni → 0 as n → ∞ under Hi and ETni(x)/σTni = O(
√
n) under Ki.

Also assume CL and CU tend to ∞ in such a way that CL = o(
√
n) and CU = o(

√
n).

Then we have

Theorem 3.3.4. Under the above assumptions ΦMRDSS(x) is consistent.

Proof. See Chen, Cohen, and Sackrowitz (2009a).

From the proof, it should be clear that the screen stage ensures the consistency of

MRDSS.
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3.3.3 Connection between MRD/MRDSS and forward selection

For this section we assume the general linear model described in Section 2 with σ2

known. We test Hi : βi = 0 vs Ki : βi 6= 0, i = 1, ...,M . Let C1 > C2 > · · · > CM > 0

be a given set of constants.

Recall A = (a1, ...,an) and let A be partitioned as (A1, A2) where A1 is n× (m− 1)

and A2 is n× (M −m+ 1). Let V = R(A) be the linear space spanned by the columns

of A and V1 = R(A1) be the linear space spanned by the columns of A1. Furthermore,

let PV be the projection matrix for space V and let P1 be the projection matrix for

space V1. Let V2 = V ∩ V ⊥1 = R(A2·1), where A2·1 = A2 − P1A2 = (a2·1m, ...,a2·1M ).

Finally let P2 denote the projection matrix for V2 so that PV = P1 + P2.

Forward selection methods are studied in Miller (2002) and many other texts study-

ing linear regression. They are methods that select fixed variables to enter a lin-

ear regression model in steps. In the first step one considers the random variables

(a′iy)/σ ‖ai‖, i = 1, ...,M . The forward method selects the fixed variable ai1 provided

that

U1i1 = max
1≤i≤M

(|a′iy|/σ ‖ai‖) > C1 . (3.3.1)

If U1i1 ≤ C1, no variables are chosen and the procedure stops. Now assume (m− 1)

variables have been selected. Without loss of generality say they are (a1, ...,am−1) = A1.

Then at stage m, the method selects aim provided

Umim = max
m≤j≤M

(|a′2·1jy|/σ ‖a2·1j‖) > Cm . (3.3.2)

If Umim ≤ Cm, the procedure stops. Thus at step m, the forward method is tanta-

mount to rejecting Him : βim = 0 by virtue of (3.3.2).

Note that the vector of components a′2·1jy in (3.3.2) can be written as A′2·1y.
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Now recall MRD applied to β̂ ∼ N(β, σ2S−1). At step one the numerator of

the residual is proportional to Sβ̂ = A′y, which is the vector of components in the

expression in the numerator in (3.3.1). At step m, assuming Hi : βi = 0, i = 1, ...,m−1

have been rejected, MRD deletes the first m − 1 rows and first m − 1 columns of S−1

and considers β̂2 ∼ N(β2,Λ22) where β2 = (βm, ..., βM )′ and S−1 =

 Λ11 Λ12

Λ21 Λ22

,

with Λ11 (m − 1) × (m − 1) and Λ22 (M −m + 1) × (M −m + 1). The residuals Um

at this step are proportional to Λ−1
22 β̂2. That is,

Um ∝ Λ−1
22 β̂2 . (3.3.3)

However, note

A1β̂1 +A2β̂2 = Aβ̂ = PV y . (3.3.4)

Multiply both sides of (5.4) by P2 to get

A2·1β̂2 = P2PV y = P2y . (3.3.5)

Since Λ−1
22 = A′2A2 −A′2P1A2 = A′2·1A2·1, we find using (3.3.3) and (3.3.5) that

Um ∝ A′2·1P2y = A′2·1y . (3.3.6)

Note that the components of (3.3.6) are (a′2·1y), the unnormalized terms in the

expression (3.3.2). Thus we have proved

Theorem 3.3.5. For the assumption of the general linear regression model, the forward

selection method is equivalent to MRD.

REMARK : Whereas the forward method and MRD are oftentimes not consistent

procedures, MRDSS and thus the forward method plus screening, plus sign is consis-

tent. It is interesting to note that Christensen (1987) p.288, claims that the precise

screening step we recommend is an improvement on the forward method.



26

The backward method starts by assuming a linear regression model with M parame-

ters. At step 1, one can decide that βi1 = 0 if Ti1 = min1≤i≤M Ti(β̂) = min1≤i≤M (|β̂i|/σβ̂i
) ≤

Cm. Otherwise the procedure stops and no variables are eliminated.

At stage m, assuming without loss of generality that variables a1, ...,am−1 have been

eliminated, one considers residuals of the form

(β̂j − λj (1,..,m−1)Λ−1
11(m−1)(β̂1, ..., β̂m−1)′)/λ1/2

j·(1,..,m−1) . (3.3.7)

where λ(1,..,m−1)
j are the elements in the jth row of S−1 that represent the covariance

of β̂j and (β̂1, ..., β̂m−1)′ ; Λ−1
11(m−1) represents the covariance matrix of (β̂1, ..., β̂m−1)′

and λj·(1,..,m−1) is the conditional variance of β̂j given β̂1, ..., β̂m−1.

If minm≤j≤M of the terms in (3.3.7) ≤ CM−m+1, and the index is im then decide

βim = 0 and continue. Otherwise stop.

REMARK : The backward method is consistent under mild conditions (see An

and Gu, 1985). Nevertheless the backward method is akin in some sense to the step-up

method of multiple testing. They are identical at the first step. As previously mentioned

step-up methods are often inadmissible in normal and exponential family models and

it can be shown that the backward method would sometimes be inadmissible for a risk

function whose components are expected number of type I errors and expected number

of type II errors.

3.4 Discussion

The MRD procedure is admissible and takes correlation into consider in every stage.

However, it is not consistent. MRDSS retains the two favorable properties and, in

addition, it is consistent due to the screen stage. In MRDSS, the screen stage is after

the MRD stage. If we put the screen stage as the first stage, followed by MRD stage

and sign stage, we get a new procedure. It will work as follows:
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(1) screen stage : compare individual test statistics to CL and CU . Accept those

hypotheses whose test statistics are less than CL, and reject those hypotheses whose

test statistics are greater than CU . Let I0 denote the index of hypotheses that are

accepted, and I1 the index of the hypotheses that are rejected.

(2) For those hypotheses with test statistics falling between CL and CU , i.e, for all

Hi , where i /∈ I0 ∪ I1, play MRD, under the condition that Hj : j ∈ I0 are true and

H ′j : j′ ∈ I1 are not true.

(3) Play sign stage as before.

Call this procedure as screen+MRD+sign. The difference between this MTP and

MRDSS lies in the order of MRD stage and screen stage. However, this difference makes

it hard to tell whether it is admissible or not.
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Table 3.3.1: Possible paths leading to ARA of MRDSS
case 1 case 2 case 3

MRD A A A A A R A A R
MRD+Sc A R A A R A A R R
MRDSS A R A A R A A R A
|X1| < CU > CU < CU < CU > CU < CL < CU > CU > CL

case 4 case 5 case 6
MRD A R A A R R A R R
MRD+Sc Cannot occur A R A A R R
MRDSS A R A A R A
|X1| < CU > CL < CL < CU > CL > CL

case 7 case 8 case 9
MRD R A A R A A R A R
MRD+Sc A R A R R A A R A
MRDSS A R A A R A A R A
|X1| < CL > CU < CU > CL > CU < CU < CL > CU < CL

case 10 case 11 case 12
MRD R A R R A R R A R
MRD+Sc R R A R R R A R R
MRDSS A R A A R A A R A
|X1| > CL > CU < CL > CL > CU > CL < CL > CU > CU

case 13 case 14 case 15
MRD R R A R R A R R R
MRD+Sc A R A R R A A R A
MRDSS A R A A R A A R A
|X1| < CL > CL < CU > CL > CL < CU < CL > CL < CL

< CU
case 16 case 17 case 18

MRD R R R R R R R R R
MRD+Sc R R R R R A A R R
MRDSS A R A A R A A R A
|X1| > CL > CL > CL > CL > CL < CL < CL > CL > CL

< CU < CU < CU < CU < CU < CU < CU < CU < CU
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Chapter 4

MRDSS in ordered contingency table

In this Chapter we will extend the MRDSS procedure to the testing of local odds ratios

in ordered contingency table. Consider an R×C contingency table with ordered cate-

gories in both rows and columns. Let Xij be the frequency in the ijth cell, i = 1, . . . , R,

j = 1, . . . , C. Assume either the full multinomial model or the product multinomial

model with cell probabilities pij . In either case, if we condition on both the column

totals tj , j = 1, . . . , C and the row totals Ri, i = 1, . . . , R, the conditional distribution

of Xij , i = 1, . . . , R − 1, j = 1, . . . , C − 1 given Ri, tj is multivariate hypergeometric.

Let n =
∑R

i=1Ri =
∑C

j=1 tj .

The conditional distribution expressed in exponential family form is

fX(x|ν) ∝ exp

R−1∑
i=1

C−1∑
j=1

xijνij

 (4.0.1)

where νij are log odds ratios, i.e.,

νij = log
pijpRC
piCpRj

with x = (x1, . . . ,xR)′, xi = (xi1, . . . , xiC)′, ν = (ν1, . . . ,νR)′. See CS (2000). If

we let

Sij =
i∑

k=1

j∑
l=1

Xkl

and let

µij = log
pijp(i+1)(j+1)

pi(j+1)p(i+1)j

then with S = (S11, . . . , SRC)′
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fS(s|µ) ∝ exp

R−1∑
i=1

C−1∑
j=1

µijSij

 . (4.0.2)

Note (4.0.2) would also ensue for the model in which Xij are independent Poisson

variables with parameter λij . Then upon conditioning on Ri, Xi is multinomial with

parameter pij = λij/
∑C

j=1 λij . Conditioning next on tj yields the multivariate hyper-

geometric of (4.0.1).

4.1 Testing of local odds ratios in contingency table

We are interested in testing of local odds ratios for the R×C table, i.e., hypotheses of

Hij : µij = 0 vs Kij : µij 6= 0 (4.1.1)

or,

Hij : µij = 0 vs K∗ij : µij > 0 (4.1.2)

A local 2× 2 table of frequencies is

xij xi(j+1)

x(i+1)j x(i+1)(j+1)

(4.1.3)

and let Tij be a statistic to test Hij . Typical step-down and step-up procedures are

based on statistics Tij that depend only on the cell frequencies in (4.1.3). Such statistics

are often Fisher’s exact test statistics or Pearson’s chi-square statistics.

Step-down or step-up procedures for the above contingency table are straight for-

ward. However, as mentioned before, step-down or step-up methods are oftentimes

inadmissible for vector risk function. For examples in 2 × C, see Chen, Cohen, and

Sackrowitz (2009b).
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4.2 2× C tables

Our starting point is to assume the model where upon conditioning on row and column

totals we have the multivariate hypergeometric distribution given in (4.0.2). We start

with a result for R× C tables.

Lemma 4.2.1. A necessary and sufficient condition for a test ψij(x) to be admissible

is that for all Si′j′(i′ 6= i, j′ 6= j), except Sij, fixed, the acceptance sections of the test

are convex in Sij.

Proof. See Matthes and Truax (1967)

Note that convex in the discrete case is defined for sample points whose coordinates

take on integer values. A discrete set B is convex if whenever s1 ∈ B, s2 ∈ B, all

sample points between s1 and s2 are in B. Note that when R = 2, S depends only on

S11, . . . , S1(C−1) and these depend only on X11, . . . , X1(C−1).

Furthermore when R = 2 an increase in S1j by one unit while S1j′ remain fixed j′ 6= j

is accomplished with (X11, . . . , X1j , X1(j+1), . . . , X1(C−1))′+g where g = (0, . . . , 1,−1, . . . , 0)′

where 1 is in position j.

Whereas one cannot demonstrate that step-down and step-up procedures based on

Fisher exact tests or Pearson chi-square tests are always inadmissible, we give examples

( which are more typical than not) to indicate that those procedures often are inadmis-

sible. It sufficies to work with 2×3 tables since extensions to R×C tables would easily

follow.

Example 4.2.1 : Consider a 2× 3 table as follows

109

100
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90 60 59

Test H1j : µ1j = 0 vs K1j : µ1j 6= 0, j = 1, 2. For step-down using Fisher’s P-value

( with FWER controlled at α = 0.1 ). The critical values are α1 = 0.05, α2 = 0.1. Now

suppose the frequencies are :

59 31 19

31 29 40

Then the P-values are 0.093, 0.041 which leads to rejecting both H11 and H12. How-

ever for frequencies

60 30 19

30 30 40

the P-values are 0.061, 0.063 which means both hypotheses are accepted. For a first row

of 55 35 19 , H11 would be accepted which demonstrates that the acceptance section

for H11 would not be an interval in S11 :

S11 55 59 60

Decision A R A

For the two-sided case using the same critical values of α, using Pearson’s chi-

squared statistic the following tables of frequencies also provide an example where the

acceptance section is not an interval.

65 51 38

39 49 66 P-values are 0.0973, 0.0373

66 50 38

38 50 66 P-values are 0.0523, 0.0523

Similarly, using the same critical value, for one-sided Fisher, α = .1
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65 52 26

40 48 44 P-values are 0.0983, 0.0392

66 51 26

39 49 44 P-values are 0.0577, 0.0513

4.2.1 New methodology

We start with the case R = 2 and we observe S with distribution given in (4.0.2).

The methods offered are related to the MRDSS method of CCS(2009a) which ex-

tends the MRD method of CSX(2009). The method, referred to as MRDSS, involves

using Fisher’s test statistics ( or Pearson’s Chi-square statistics) for various sometimes

collapsed tables that wind up as 2×2 tables. We give the method using Fisher’s statis-

tics P1j although Pearson’s Chi-square statistics could also be used.

Recall there are (C − 1) local log odds ratios to be tested; namely H1j : µ1j = 0 vs

K1j : µ1j 6= 0, j = 1, . . . , C − 1. The main method involves 3 stages. Stage 1 involves

a step-down testing method; stage 2 involves screening and stage 3 involves a possible

change due to sign differences. The method is as follows : Let 0 < α1 < · · · < αC−1.

At stage 1,

(i) consider the (C − 1) 2× 2 tables

S1j R1 − S1j∑j
k=1 tk − S1j R2 −

∑j
k=1 tk + S1j

(4.2.1)

Compute P
(1)
1j for Table j, j = 1, . . . , C − 1 and find P

(1)
(1) , the smallest among

P
(1)
1j . If P (1)

(1) = P
(1)
1j1

< α1, reject H(1) and continue. Otherwise stop and accept H1j ,

j = 1, . . . , C − 1.

(ii) If j1 = 1 consider the 2 × (C − 2) table with column 1 left out. Proceed as in
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step (i) . That is, form (C-2) 2× 2 tables

S1j − S11 R1 − S1j∑j
k=2 tk − S1j + S11 R2 −

∑j
k=1 tk + S1j

(4.2.2)

Compute P (2)
1j , j = 2, . . . , C − 1 and find P

(2)
1j2

= min2≤j≤C−1 P
(2)
1j . If P (2)

1j2
< α2,

reject H1j2 and continue. Otherwise stop and accept H(2), . . . ,H(C−1). If 1 < j1 < C−1,

segment the 2 × C table into 2 tables. The first table is the 2 × j1 table consisting of

the first j1 columns of the original table and the second table is 2× (C − j1) consisting

the last (C − j1) columns of the table. Now treat each table as in the 2 × C table

case and form 2 × 2 tables as in the step (i). That is, form (j1 − 1) P-values for the

2 × j1 table and C − j1 − 1 P-values for the 2 × (C − j1) table and then get P (2)
1j2

as

the minimum P-value and reject H1j2 if P (2)
1j2

< α2 and continue. Otherwise stop and

accept H(2), . . . ,H(C−1).

If j1 = C − 1 then do essentially what was done when j1 = 1.

(iii) If the process continues beyond step (ii), then continue for each table at step

(ii) by further segmentation if necessary at all future steps. Compute P-values as in

previous stages and get the min P-value and compare it with the appropriate critical

value, i.e., at step m, if P (m)
1jm

< αm, reject H1jm and continue. Otherwise stop and

accept H(m), . . . ,H(C−1).

At stage 2, screen the results of stage 1, as follows : Let αL < αU be two critical

values between 0 and 1. Typically αL < αC−1 ≤ αU . Find Fisher’s statistic for each

local 2× 2 table. If the Fisher statistic is less than αL and at stage 1 the test accepted,

switch to rejection. If the statistic exceeds αU and at stage 1 the test rejected, switch

to accept. Otherwise maintain the results of stage 1.

At stage 3, switch a reject at stage 1 to a final accept at stage 3, if when screening,

the statistic lies between αL and αU and if the Fisher statistic used in stages 1 and

2 were compiled using opposite sides of their respective 2 sided rejection regions. For

example, suppose we are testing H11 : µ11 = 0 vs K11 : µ11 6= 0. Suppose that at stage
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1, step 1 the table

S11 SiC − S11

t1 − S11 t2 − S1C + S11

yielded the minimum P-value < α1 and thus H11 was rejected at stage 1. Note that

(1 - P-value) based on Fisher’s statistic for this table as a function of S11 is decreasing

and then increasing. See Cohen (1987). Suppose further that the observed value of S11

was on the increasing part of the function. Now for the table

x11 x12

x21 x22

assume the Fisher test statistic P-value was between αL and αU . Further sup-

pose for the observed value of x11 that (1 - P-value) as a function of x11 was on the

decreasing part of the function. This would call for a switch of reject H11 to accept H11.

4.2.2 Example

We now illustrate the method with examples. The data to be used in the examples

in this section and in section 5 refers to a sample of British males cross-classified by

father’s occupational status and son’s occupational status. The data are drawn from

Glass (1954) . The occupations are ordered, in a sense, from highest (1), represent-

ing professional, administrative, executive to lowest (6), representing unskilled manual

worker. These data have been analyzed by Goodman, Andersen, Benzecri, Baccini,

Caussinus, De Falguerolles, Clogg, Rao, Cox, and Haberman (1991), Dardanoni and

Forcina (1998)and Silvapulle and Sen (2005). Table 4.2.1 provides the data. Note

Ai, i = 1, . . . , 6 stands for father’s occupational status while oj stands for son’s occupa-

tional status.
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Table 4.2.1: Father and Son Occupation Status in British Males

o1 o2 o3 o4 o5 o6

A1 125 60 26 49 14 5
A2 47 65 66 123 23 21
A3 31 58 110 223 64 32
A4 50 114 185 715 258 189
A5 6 19 40 179 143 71
A6 3 14 32 141 91 106

We first extract row one and two to form a 2× 6 table to illustrate our method as

follows:

Stage 1 - step (i): Form 2×2 tables where the entries in the first row,first column of

each table is S11, S12, S13, S14, S15 respectively. These five tables and their correspond-

ing P-values based on Fisher statistic are:

125 154 185 94 211 68 260 19 274 5

47 298 112 233 178 167 301 44 324 21

P-values 4.91× 10−18 2.80× 10−17 6.29× 10−10 0.0159 0.0081

The minimum P-value among the 5 tables occurs for the first table. Using critical

values (0.01, 0.0125, 0.0167, 0.025, 0.05) we reject H11 : µ11 = 0 and continue.

Step (ii) : Consider the 2 × 5 table formed by leaving out the first column of

the 2 × 6 table. Form four new 2 × 2 tables whose first row-first column entries are

S12 − S11, S13 − S11, S14 − S11, S15 − S11 respectively. These four tables and their cor-

responding P-values are :

60 94 86 68 135 19 149 5

65 233 131 167 254 44 277 21

P-values .0002 .0174 .5670 .1349

The minimum P-value .002 < .0125 so H12 : µ12 = 0 is rejected and continue.

Step (iii): Form the 2× 4 table with the first two columns of the original table left

out. The entries are S13−S12, S14−S12, S15−S12 respectively. These tables and their

corresponding P-values are :
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24 68 75 19 84 5

66 167 189 44 212 21

P-values 1 .7594 .3668

The minimum P-value .3668 > .0167 so that H13 : µ13 = 0, H14 : µ14 = 0 and

H15 : µ15 = 0 are all accepted.

Stage 2 (screening) and stage 3 (sign): Choose αL = 0.01 and αU = 0.05 and screen

the P-values of each of the 5 local 2× 2 tables. That is, the five tables are:

125 60 60 26 26 49 49 14 14 5

47 65 65 66 66 123 123 23 23 21

The corresponding P-values by Fisher’s exact test are .0001, .0048, 1, .3232 and .1643.

The screening stage then does not change any decision made in stage 1. Furthermore

it is easy to check that the sign stage also makes no change.

4.3 R× C tables

In a 2×C table, at MRD stage, after we reject Hi, we split the table into 2 small tables

and do testing. This essential is to do testing conditional on S1i as fixed. Now in a

R × C table, we can do essentially the same thing. We will first give the method and

then illustrate it with an example.

4.3.1 New methodology

Recall that in an R × C table we wish to test (R − 1)(C − 1) individual hypothe-

ses Hij : µij = 0 vs Kij : µij 6= 0, i = 1, . . . , R − 1; j = 1, . . . , C − 1. Let

Ω1 > Ω2 > · · · > Ω(R−1)(C−1) > 0 be a set of critical values. We will do as fol-

lows at stage 1, MRD stage :

Step 1 : Form (R− 1)(C − 1) 2× 2 tables :
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Sij SiC − Sij

SRj − Sij SRC − SiC − SRj + Sij

Find the statistics :

U
(1)
ij = (Sij − Ê(1)

ij )/
√
V̂

(1)
ij (4.3.1)

where Ê(1)
ij and V̂

(1)
ij , along with Ê

(m)
ij and V̂

(m)
ij for step m, m = 1, 2, . . . ,

(R− 1)(C − 1) will be determined below. U (1)
ij will be used to test hypothesis Hij . If

|U (1)
i1j1
| = max(i,j) |U

(1)
ij | > Ω1, reject Hi1j1 , record the sign of U (1)

i1j1
and continue. Note

that
(
U

(1)
ij

)2
is equivalent to Pearson’s chi-square statistic for the above 2× 2 table.

At step 2, find the statistics

U
(2)
ij = (Sij − Ê(2)

ij )/
√
V̂

(2)
ij (4.3.2)

If |U (2)
i2j2
| = max(i,j) |U

(2)
ij | > Ω2, reject Hi2j2 , record the sign of U (2)

i2j2
and continue.

The quantities Ê(1)
ij , V̂ (1)

ij will be estimated under two conditions:

(I) all null hypotheses are assumed true

(II) Row sums, column sums are fixed

The quantities Ê(2)
ij , V̂ (2)

ij will be estimated under two conditions:

(I) all null hypotheses except Hi1j1 are assumed true

(II) Row sums, column sums, and Si1j1 are fixed

In general, at step m, suppose Hi1j1 , . . . ,Him−1jm−1 have been rejected. Then Ê(m)
ij

and V̂
(m)
ij will be estimated under two conditions:

(I) all null hypotheses except Hi1j1 , . . . ,Him−1jm−1 are assumed true

(II) Row sums, column sums, and Si1j1 , . . . , Sim−1jm−1 are fixed
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Now we indicate exactly how Ê
(m)
ij and V̂

(m)
ij are estimated.

At step 1 let λij denote the mean of cell(i, j). Then estimate λij by λ̂ij , where λ̂ij

is the solution to the following set of equations

∑
k,l

λkl = n (4.3.3)

R∑
k=1

λkj = tj for j = 1, . . . , C − 1 (4.3.4)

C∑
l=1

λil = Ri for i = 1, . . . , R− 1 (4.3.5)

λijλ(i+1)(j+1) = λ(i+1)jλi(j+1) for 1 ≤ i ≤ R− 1, 1 ≤ j ≤ C − 1 (4.3.6)

There are a total of 1 + (C − 1) + (R− 1) + (R− 1)(C − 1) = RC equations in RC

variables. The unique non-negative solution is λij = Ritj/n.

At step 2, suppose Hi1j1 is rejected by the end of step 1. Estimate the means of

cells again by using the same R× C equations, except now replace the equation

λi1j1λ(i1+1)(j1+1) = λ(i1+1)j1λi1(j1+1) (4.3.7)

with equation

∑
k≤i1,l≤j1

λkl = Si1j1 (4.3.8)

In general at step m, we remove (m − 1) equations of the type (4.3.6) and add

(m− 1) equations of the type (4.3.8).

To get the estimate V̂ (m)
ij we think of the cell frequencies xij as independent normal

variables with mean λij and variance λij . Recall Sij =
∑i

l=1

∑j
l=1 xij , so S = AX for

the appropriate A, It would follow that S ∼ N(Aλ, AΣA′) with Σ being a diagonal

matrix with diagonal elements equal(λ11, . . . , λRC). Note that Σ is covariance matrix

of X. Having estimated λij by λ̂ij we thus have an estimator of ΣS = AΣA′. However
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to find V̂
(m)
ij , we compute the conditional covariance matrix of S under conditions :

(i) SiC , i = 1, . . . , R− 1 are known

(ii) SRj , j = 1, . . . , C are known

(iii) Si1j1 , . . . , Sim−1jm−1 are known.

The quantity V
(m)
ij represent the conditional variance of Sij . V

(m)
ij is a function of

λij and is estimated accordingly.

We conclude this section with :

Theorem 4.3.1. For an R×C contingency table, assuming either the product multino-

mial model, full multinomial model or independent Poisson model, the MRDSS method

using Pearson’s Chi-square statistic or Fisher’s statistic in the 2×C case is admissible.

Proof. CCS(2009a) prove that if a procedure ψ = (ψ11, . . . , ψ(R−1)(C−1))′, consisting of

(R − 1)(C − 1) individual test functions is admissible, then ψ followed by a screening

stage and a sign stage is also admissible. Thus for MRDSS to be admissible it suffices

to prove that MRD is admissible. In CSX(2009) MRD was shown to be admissible in a

multivariate normal model where residuals were defined as functions of the coefficients

of the parameters to be tested. For the R × C contingency table model the Sij , i =

1, . . . , R − 1; j = 1, . . . , C − 1 are the coefficients of the parameters to be tested and

suitably centered and normalized they have the identical properties as the residuals

Umj in CSX(2009). That is, suppose we are examing the admissibility of the individual

test of Hij : µij = 0 vs Kij : µij 6= 0. Then |U (m)
ij | given in (4.3.1) and (4.3.2) and given

implicitly for m > 2 decrease and then increase as a function of Sij while all other Sij

are fixed. Also all other |U (m)
ij | do not change. These are the properties needed to prove

MRD is admissible.

4.3.2 Example

In this section we illustrate the method with an R× C table example. The data to be

used is the same as the data in table 4.2.1 . For the purpose of illustration, we only
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extract the first 3 rows of the original data for our example.

The data is :

o1 o2 o3 o4 o5 o6

A1 125 60 26 49 14 5
A2 47 65 66 123 23 21
A3 31 58 110 223 64 32

There are a total of 2× 5 = 10 local log odds ratios, i.e., a total of 10 hypotheses to

be tested.

For MRD stage, we use critical values obtained from the significance level 1 −

(1 − α)1/k, k = 1, . . . , 10 for our test statistics at step 10,9, ..., 1, respectively, where

α = 0.05. Hence the critical values are:

(Ω1, . . . ,Ω10) = (2.80, 2.77, 2.73, 2.68, 2.63, 2.57, 2.49, 2.39, 2.24, 1.96)

At stage 1 step 1, we first solve the equations (4.3.3) - (4.3.6) to get the estimated

mean of each cell given the row and column totals, under the assumption all local log

odds ratios equal to 0. The mean value of each cell is shown below in 4.3.1.

Table 4.3.1: Step 1 – Expected cell frequencies

1 2 3 4 5 6
1 49.59 44.71 49.35 96.50 24.68 14.17
2 61.33 55.28 61.02 119.33 30.51 17.52
3 92.08 83.01 91.63 179.17 45.81 26.31

After this, we can compute the conditional variance of Sij . The conditional variance

is shown below in 4.3.2.

Note the zerors in 4.3.2 reflect the fact that the corresponding Sij variables are

fixed.

Now, we can compute the test statistics U (1)
ij , shown in 4.3.3.
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Table 4.3.2: Step 1 – Conditional variances of Sij

1 2 3 4 5 6
1 30.82 47.18 52.66 25.27 10.16 0.00
2 41.37 63.33 70.70 33.92 13.64 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3.3: Step 1 – Test statistics U (1)
ij

1 2 3 4 5
1 13.58 13.20 9.28 3.95 2.88
2 9.50 10.82 8.05 4.10 1.54

The maximum of these is 13.58, which is greater than the critical value 2.80, hence

we reject the hypothesis H11 and continue to next step. We also record the sign of the

test: +.

At step 2, we estimate the mean of each cell conditioned on the row and column

summation being fixed, and conditioned on all local log odds ratios except µ11 are 0

, and also conditioned on S11 fixed. Solve the subset of equations (4.3.3) - (4.3.8) as

explained earlier to get the estimated mean of each cell : shown in 4.3.4.

Table 4.3.4: Step 2 – Expected cell frequencies
1 2 3 4 5 6

1 125.00 30.01 33.13 64.78 16.56 9.51
2 31.18 61.16 67.51 132.01 33.75 19.38
3 46.82 91.83 101.36 198.21 50.68 29.10

As in step 1, we can compute the conditional variance of Sij : conditioned on

SiC , SRj , S11 are known and fixed. The conditional variance of Sij are shown below in

4.3.5:

Now we can compute the test statistics U (2)
ij :

The maximum of these is 7.18, which is greater than 2.77, so we reject H22 and

continue to the next step. Also we record the sign of the test : +.
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Table 4.3.5: Step 2 – Conditional variances of Sij

1 2 3 4 5 6
1 0.00 20.20 31.14 18.11 7.46 0.00
2 17.02 47.87 62.71 33.51 13.67 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3.6: Step 2 – Test statistics U (2)
ij

1 2 3 4 5
1 6.67 4.10 1.66 1.65
2 3.83 7.18 5.18 2.80 0.78

Step 3 : We estimate the mean of each cell conditioned on the row and column sum

fixed, conditioned on all local log odds ratios ( except µ11 and µ22 ) are 0 , and also

conditioned on S11 and S22 are fixed. As in step 2, solve the subset set of equations

(4.3.3) - (4.3.8) to get the estimated mean of each cell.

Table 4.3.7: Step 3 – Expected cell frequencies

1 2 3 4 5 6
1 125.00 42.79 29.72 58.11 14.86 8.53
2 46.19 83.02 57.66 112.75 28.83 16.56
3 31.81 57.19 114.63 224.15 57.31 32.91

Now, we can compute the conditional variance of Sij : conditioned on SiC , i =

1, . . . , R− 1, SRj , j = 1, . . . , C, S11 and S22 are all fixed. The conditional variances of

Sij are in 4.3.8.

The test statistics U (3)
ij are in 4.3.9.

The maximum of these is 3.74, which is greater than the critical value 2.73. So we

reject H12, record the sign of the rejection : +, and continue to step 4.
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Table 4.3.8: Step 3 – Conditional variances of Sij
1 2 3 4 5 6

1 0.00 21.15 29.93 16.69 6.84 0.00
2 12.55 0.00 36.33 30.82 13.14 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.3.9: Step 3 – Test statistics U (3)
ij

1 2 3 4 5
1 3.74 2.47 1.07 1.35
2 0.23 0.77 1.04 -0.25

Step 4: Estimate the mean of each cell conditioned on the row and column summa-

tion being fixed, and conditioned on all local log odds ratios ( except µ11, µ22, and µ12

) are 0 . Also condition on S11, S22, S12. Solve a set of equations to get the estimated

mean of each cell :

Table 4.3.10: Step 4 – Expected cell frequencies

1 2 3 4 5 6
1 125.00 60.00 25.12 49.11 12.56 7.21
2 43.46 68.54 62.26 121.74 31.13 17.88
3 34.54 54.46 114.63 224.15 57.31 32.91

Now, we can compute the conditional variance of Sij : conditioned on SiC , i =

1, . . . , R−1, SRj , j = 1, . . . , C, S11 and S22, S12 are all fixed. The conditional variance

of Sij are in 4.3.11.
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Table 4.3.11: Step 4 – Conditional variances of Sij

1 2 3 4 5 6
1 0.00 0.00 16.12 13.67 5.83 0.00
2 11.78 0.00 36.33 30.82 13.14 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00

The test Statistics U (4)
ij are in 4.3.12.

Table 4.3.12: Step 4 – Test statistics U (4)
ij

1 2 3 4 5
1 NA NA 0.22 0.21 0.92
2 1.03 NA 0.77 1.04 -0.25

The maximum of these is 1.04, which is smaller than the critical value 2.68. So

MRD stops here, and all remaining hypotheses are accepted.

Now the screening stage. The Pearson’s Chi-square test statistic for the 10 local

2× 2 tables are shown below:

Table 4.3.13: Screen – local Pearson’s Chi-square P-values

1 2 3 4 5
1 2.5× 10−5 0.0052 0.9171 0.3540 0.1917
2 0.3761 0.0120 0.7323 0.1388 0.1492

If we choose αL = 0.005, αU = 0.05, then it is clear that screening stage does not

have any effect. So MRD+screening gives the same decisions as MRD.

It is clear that sign stage does not have any action either. So the decision of MRDSS

is : reject H11, H22, H12 and accept all others.
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4.4 Sign stage does not have effect in 2× C tables

In the two examples, one for 2× C, one for R× C, the sign stage of MRDSS does not

have effect. This is not by chance. We actually can show that the sign stage does not

have effect in testing equality of adjacent proportion in a 2× C table.

For a 2× c table, want to test Hj : pj = pj+1 for j = 1, ..., (c− 1).

For the hypothesis Hj , we combine the whole table to get a 2× 2 table A, with cell

aij , i, j = 1, 2, and row and colum sum of this 2 × 2 table are named as r1, r2, c1, c2,

respectively. Note that a11 =
∑j

1 x1l, a12 =
∑c

j+1 x1l, a21 =
∑j

1 x2l, and a22 =∑c
j+1 x2l.

Let p̂l = a11/c1 , p̂r = a12/c2, p̂ = r1/n and p̂j = x1j/(x1j + x2j)

First, we have lemma 4.4.1 that will be used to prove lemma 4.4.2.

Lemma 4.4.1. If 0 < p1 < x < p2, and 0 < w1, w2 < 1, then

w1p1 + (1− w1)x+ p2 > p1 + (1− w2)x+ w2p2

The proof is easy. We omit it here.

Lemma 4.4.2. For 2× c table, at stage 1, if the residual Uj has largest absolute value

and Uj < 0, then :

(1) p̂l < p̂ < p̂r ;

(2) p̂j < p̂r ;

(3) p̂j < (p̂l + p̂r)/2.

Proof. (1) is obvious. If j = 1, (2) and (3) are obvious, only need to consider j ≥ 2.

Let

tj = x1j + x2j , z = x1j/q

First, we know that the residual square for j is:

U2 =
(a11 − r1c1/n)2

r1r2c1c2/n3
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The residual square for j − 1 is:

U∗2 =
(a∗11 − r1c

∗
1/n)2

r1r2c∗1c
∗
2/n

3

where a∗11 = a11 − tjz, c∗1 = c1 − tj .

Since r1r2/n
3 is the same factor for both residual squares, for now we can ignore

them.

Let

F (q, z) =
(a11− qz − r1(c1 − q)/n)2

(c1 − q)(c2 + q)

∂F

∂q
|q=0 =

1
c2

(p̂l − p̂)(p̂l + p̂r − 2z)

.

If (2) is not true, then

(∗) ∂F

∂q
|q=0 > 0

Hence F (q, z) > F (0, z) for small q > 0, and then we have a new 2 × 2 table, with

new anew11 = a11 − qz, and the new p̂l, p̂r. It is easy to see that for this new 2 × 2

table, (∗) still holds, so F (2q, z) > F (q, z), continue the process until q = tj , we get

F (tj , z) > F (0, z). But this contradicts to the condition that U2 > U∗2. So (2) is

proved.

If (3) is not true, then z > (p̂l+ p̂r)/2 and p̂l < z < p̂r, since (∗) is true, we also have

F (q, z) > F (0, z) for small q > 0. Now the new 2 × 2 table, we have anew11 = a11 − qz,

and the new p̂l + p̂r beomes

anew11

cnew1

+
a12 + qz

c2 + q

= p̂newl + (1− w2)z + (1− w2)p̂r

where w2 = c2/(c2 + q)
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the original p̂l + p̂r can be written as

anew11 + qz

cnew1 + q
+ p̂r

= w1p̂
new
l + (1− w1)z + p̂r

Remember that p̂l < z < p̂r, so we have p̂newl < p̂l, hence we have p̂newl < z < p̂r,

apply lemma 4.4.1, we see that the new p̂l + p̂r is smaller than the original p̂l + p̂r,

which means (*) is hold for the new 2× 2 table. So again we have F (2q, z) > F (q, z),

proceed until q = tj we get F (tj , z) > F (0, z). But this contradicts to the condition

that U2 > U∗2. So (3) is proved.

By symmetry, we have following Lemma.

Lemma 4.4.3. For 2× c table, at stage 1, if the residual Uj has largest absolute value

and Uj > 0, then :

(1) p̂l > p̂ > p̂r ;

(2) p̂j > p̂r ;

(3) p̂j > (p̂l + p̂r)/2.

Theorem 4.4.4. For 2 × c table, at stage 1, if the residual Uj1 has largest absolute

value then Uj1 has same sign as that of p̂j1 − p̂j1+1.

Proof. Without loss of generality, assume Uj1 < 0, then from lemma 4.4.2 we know that

p̂j1 < (p̂l+ p̂r)/2. If we do a mirror reflection of the 2×c table,i.e, if the original table is:

x11 x12 ... x1j ... x1c

x21 x22 ... x2j ... x2c

the mirror reflect table is:

x1c x1(c−1) ... x1j ... x11

x21 x2(c−1) ... x2j ... x21
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If we label the column of this mirror reflect table from right to left, then column 1

in both the original table and mirror reflect table denote the same column : (x11, x12)′.

Now from lemma 4.4.3 we know that p̂j1+1 > (p̂l + p̂r)/2. Hence p̂j1 < p̂j1+1.

It is easy to see that theorem 4.4.4 is also true at any stagem. Hence MRD+screening

is same as MRD+screening+sign, which is admissible.
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Chapter 5

Computational issues and choosing of critical values

Step-down or step-up procedures oftentimes use P-values based on the marginal distri-

bution of individual test statistics under individual null hypotheses. These procedures

in general require little computational effort. There are standard ways to choose the

critical values such that FWER or FDR is controlled at predefined levels. However,

those procedures are oftentimes inadmissible. MRDSS has the advantage of being ad-

missible and consistent. The screen stage in general is easy to perform without much

effort. However, in the MRD stage, the computation of test statistics Umj at step m

needs some computation effort, and the choice of critical values in general need to be

done by simulations.

5.1 Computation of MRDSS in multivariate normal model

For the multivariate normal model, at the MRD stage, the inverse of Σ is needed. In

some cases, the inversion can be derived theoretically. In the context of regression

model, since MRD is equivalent to a forward method, the computation of MRD can be

done for very large problems, i.e., very large number of hypotheses.

5.2 Computation of MRDSS in ordered contingency table

For MRDSS in ordered R × C tables, at the MRD stage, computation of test statis-

tics Umj at step m needs an estimation of the mean cell frequencies under following

conditions :

(1) row and column sum are fixed

(2) odds ratio θij = 1 for all (i, j) where Hij has not been rejected.
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(3) Si1j1 , . . . , Si(m−1)j(m−1)
are fixed, where Hi1j1 , . . . ,Hi(m−1)j(m−1)

are rejected at

step 1, . . . , (m− 1), respectively.

As we mentioned before, the estimation of mean cell frequencies can be achieved by

solving a set of equations. We now explicitly describe a numerical method to solve the

equations.

At step 1, the unique non-negative solution of the equations (4.3.3) - (4.3.8) is:

λ̂ij = Ritj/n, where Ri is the sum of row i, and tj is the sum of column j.

At step m, to solve the equations for estimating λij , we transform the equation-

solving problem into a minimization problem. Let,

fm(λ) = (
∑
k,l

λkl − n)2 +
C−1∑
j=1

(
R∑
k=1

λkj − tj

)2

+
R−1∑
i=1

(
C∑
l=1

λil −Ri

)2

+
R−1∑
i=1

C−1∑
j=1

d2
ij

(5.2.1)

where

dij =

 λijλ(i+1)(j+1) − λ(i+1)jλi(j+1) if Hij is not rejected before step m∑
k≤i1,l≤j1 λkl − Sij otherwise

It is clear that fm(λ) ≥ 0 for all λ.

Let λ̂ be the unique non-negative solution of equations (4.3.3) - (4.3.8). This implies

fm(λ̂) = 0. Hence λ̂ is the point that minimizes fm. So by minimizing fm, we can get

the solution of equations (4.3.3) - (4.3.8).

It is obvious that fm is a convex function for λ ≥ 0, hence the minimization of fm

can be done very easily and efficiently by existing software. In our study, we use the

nlm function in the popular R(2008) software to minimize fm.

After we solve the equations, i.e, we get λ̂, we compute the conditional variance of

Sij . This enables us to complete the computation of U (m)
ij .
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5.3 Choosing the critical values

Choosing of critical values needs to be done according to the situations. For MRDSS

this, in principle, can be done by simulating a list of settings that cover or represent most

of the interested parameter space. One can change the critical value to control FWER

or FDR or to balance the type I and type II errors . Note here that the simulation

needs to be done before we see the data. In the multivariate normal case that means,

before simulation, we only know Σ, but not X; in the ordered R×C contingency table,

that means we know the row and column sums, but not the table itself.

For an R × C ordered contingency table, the MRD statistics at step m is Umj .

For large sample size, Umj has approximately a standard normal distribution under

the global null hypothesis. For simplicity, we use critical values Cm = Φ(1 − αm/2),

where Φ is the CDF for standard normal distribution, αm = 1− (1−α)1/(M−m+1), and

M = (R− 1)(C − 1); for screen stage, we choose αU = α, αL = α1.
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Chapter 6

Simulations of MRDSS in ordered contingency tables

We did some simulations to compare our method, MRDSS, to Holm’s step down

method. FWER is control at level α = 0.05 for Holm’s step-down (SD) method for

ordered contingency table. To control FWER or FDR, for MRD, usually we need to

choose a set of critical values by simulation. In the case of R × C table, we find that

adding screen stage makes it relative easy to pick critical values.

For the MRD stage of MRDSS we use critical values obtained from the normal distri-

bution based on significance levels αi = 1−(1−α)
1

M+1−i in step i. Here α = .05, M is the

total number of hypotheses to be tested. For the screen stage we use αL = 1−(1−α)1/M ,

αU = α = .05. For a 3× 3 table, M = 4; for a 3× 4 table, M=6.

Note that if we only play MRD (instead of MRDSS) using the critical values men-

tioned above, FWER can not be controlled at many parameter points. Adding an

intuitive reasonable screen stage, we found that FWER is controlled at all the param-

eter points we explored.

6.1 Simulation for 3× 3 tables

We first list 34 sets of local odds ratios. For the 3 × 3 table, each set contains 4 local

odds ratios.

For each set, we generate N = 10,000 3× 3 tables from independent Poisson distri-

butions with parameters in a 3×3 matrix λ. The matrix λ is chosen such that the true

local odds ratios are listed in the left 4 columns of Table 6.1.1, and the row and column

sum of λij are 60. Since local odds ratios and row/col sum of λij uniquely define λ, λ
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itself is not shown in the table.

We compare the expected number of type I errors, expected number of type II errors

and FWER of MRDSS and SD. We also give the percentage power increase of MRDSS

relative to SD.

For the 3×3 table, note that both MRDSS and SD control FWER at α = .05. Also

note that in 29 out of 33 cases MRDSS had an increase in power over SD and in many

cases the increase was substantial.

The type I and type II error columns reflect the average number of type I and type

II errors respectively.

We define the power of a MTP as :

power = 1 - E { # of type II errors } / # of true non-null hypotheses.

The percentage power increase of MRDSS relative to SD is defined as :

power incr = 100×(powerMRDSS - powerSD)/powerSD

6.2 Simulation for 3× 4 tables

For 3 × 4tables, we did a simulate for total of 70 configurations of local odds ratios .

For each row, the row sum of the Poisson parameter λ is 80, and for each column, the

column sum is 60. For each configuration, the first 6 columns show the true local odds

ratios. We then choose (compute) the Poisson parameters λ ( a 3 × 4 matrix, one for

each cell) based on the row/column sum and true local odds ratios. λ is not shown

since it is uniquely determined from the configuration.

Using likewise critical values as before, i.e., for the MRD stage of MRDSS we use
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critical values obtained from the standard normal distribution based on significance

levels 1 − (1 − α)
1

M+1−i in step i; for the screen stage we use αL = 1 − (1 − α)1/M ,

αU = α = .05. Here, M=6.

For each configuration, we simulate N = 10,000 3×3 tables from independent Poisson

distributions with parameters ( a 3× 4 matrix computed as described above) λ.

We then summarize the simulation with mean number of type I error, mean number

of type II errors, mean FWER, and mean increase in power.

See table 6.2.1 and table 6.2.2 for the simulation results for 3× 4 tables.

Note that MRDSS strongly controls FWER at level α = .05 in all 70 cases, except

one ( where MRDSS has a mean FWER = 0.051 ). We also compare the percentage

power increase of MRDSS relative to stepdown method. MRDSS had an increase in

power with only one exception. The increase was substantial in most cases.
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Table 6.1.1: Comparison of MRDSS to Holm’s step down (SD) for 3× 3 tables

θ11 θ21 θ12 θ22 Type I Type II FWER % P. Inc
MRDSS SD MRDSS SD MRDSS SD

1 1.0 1.0 1.0 1.0 0.038 0.036 0.000 0.000 0.036 0.031
2 1.0 1.0 1.0 3.0 0.044 0.034 0.433 0.587 0.043 0.031 37.0
3 1.0 1.0 1.0 0.3 0.044 0.033 0.483 0.618 0.041 0.028 35.1
4 1.0 1.0 3.0 3.0 0.032 0.027 0.994 1.238 0.031 0.025 31.9
5 3.0 1.0 1.0 3.0 0.044 0.027 0.736 0.983 0.044 0.026 24.2
6 1.0 3.0 3.0 1.0 0.041 0.028 1.104 1.325 0.040 0.026 32.7
7 0.3 1.0 1.0 0.3 0.041 0.026 1.086 1.302 0.039 0.025 30.9
8 1.0 0.3 0.3 1.0 0.044 0.027 0.725 0.972 0.043 0.026 24.0
9 1.0 1.0 0.3 3.0 0.029 0.025 1.208 1.185 0.028 0.023 -2.9

10 1.0 1.0 0.3 0.3 0.030 0.024 0.992 1.227 0.029 0.022 30.4
11 1.0 3.0 3.0 3.0 0.022 0.013 1.651 1.979 0.022 0.013 32.1
12 1.0 0.3 0.3 0.3 0.020 0.015 1.338 1.677 0.020 0.015 25.6
13 0.3 3.0 3.0 3.0 0.000 0.000 2.379 2.304 0.000 0.000 -4.4
14 3.0 3.0 3.0 3.0 0.000 0.000 2.075 2.437 0.000 0.000 23.2
15 3.0 0.3 0.3 0.3 0.000 0.000 2.298 2.205 0.000 0.000 -5.2
16 0.3 0.3 0.3 0.3 0.000 0.000 2.073 2.412 0.000 0.000 21.4
17 1.0 1.0 1.0 0.5 0.037 0.028 0.812 0.869 0.035 0.024 43.1
18 0.5 1.0 1.0 0.5 0.035 0.026 1.630 1.757 0.034 0.024 52.5
19 1.0 0.5 0.5 1.0 0.034 0.022 1.510 1.682 0.034 0.021 53.9
20 1.0 1.0 0.5 3.0 0.025 0.022 1.414 1.450 0.024 0.021 6.6
21 1.0 1.0 0.5 0.5 0.026 0.018 1.549 1.741 0.025 0.017 74.3
22 1.0 0.5 0.5 0.5 0.019 0.011 2.264 2.554 0.019 0.011 65.1
23 0.5 3.0 3.0 3.0 0.000 0.000 2.695 2.711 0.000 0.000 1.3
24 3.0 0.5 0.5 0.5 0.000 0.000 3.120 3.154 0.000 0.000 4.0
25 0.5 0.5 0.5 0.5 0.000 0.000 3.059 3.453 0.000 0.000 72.0
26 1.0 1.0 1.0 2.0 0.043 0.032 0.787 0.860 0.042 0.028 51.5
27 1.0 1.0 2.0 2.0 0.029 0.023 1.554 1.740 0.028 0.021 71.6
28 2.0 1.0 1.0 2.0 0.035 0.024 1.511 1.675 0.035 0.023 50.7
29 1.0 2.0 2.0 1.0 0.036 0.024 1.632 1.757 0.035 0.023 51.6
30 1.0 2.0 2.0 2.0 0.018 0.012 2.387 2.626 0.018 0.012 63.9
31 2.0 2.0 2.0 2.0 0.000 0.000 3.061 3.463 0.000 0.000 74.9
32 1.0 1.0 0.5 2.0 0.024 0.024 1.726 1.718 0.024 0.021 -2.9
33 0.5 2.0 2.0 2.0 0.000 0.000 3.369 3.451 0.000 0.000 15.0
34 2.0 0.5 0.5 0.5 0.000 0.000 3.291 3.429 0.000 0.000 24.2
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Table 6.2.1: Comparison of MRDSS (M) to Holm’s step down (SD) for 3 × 4 tables,
where % Inc denotes % Power Increase.

θ11 θ21 θ12 θ22 θ13 θ23 Type I Type II FWER % Inc
M SD M SD M SD

1 1.0 1.0 1.0 1.0 1.0 1.0 0.042 0.037 0.000 0.000 0.038 0.031
2 1.0 1.0 1.0 1.0 1.0 2.0 0.040 0.030 0.799 0.894 0.038 0.027 90.1
3 1.0 1.0 2.0 1.0 1.0 1.0 0.049 0.033 0.788 0.887 0.047 0.029 86.7
4 2.0 1.0 1.0 1.0 1.0 1.0 0.046 0.032 0.798 0.890 0.044 0.028 84.6
5 1.0 1.0 1.0 1.0 2.0 2.0 0.036 0.024 1.571 1.793 0.034 0.021 107.5
6 1.0 1.0 2.0 2.0 1.0 1.0 0.044 0.024 1.557 1.788 0.042 0.022 108.7
7 2.0 1.0 1.0 1.0 1.0 2.0 0.051 0.027 1.544 1.761 0.049 0.024 90.4
8 1.0 2.0 1.0 1.0 1.0 2.0 0.045 0.025 1.600 1.793 0.043 0.023 93.3
9 1.0 1.0 2.0 1.0 1.0 2.0 0.049 0.025 1.535 1.748 0.048 0.023 84.9

10 1.0 1.0 1.0 2.0 1.0 2.0 0.037 0.028 1.545 1.789 0.036 0.026 115.7
11 2.0 1.0 1.0 1.0 2.0 2.0 0.039 0.021 2.320 2.660 0.038 0.019 99.7
12 1.0 2.0 1.0 1.0 2.0 2.0 0.040 0.022 2.428 2.706 0.039 0.019 94.9
13 1.0 1.0 2.0 1.0 2.0 2.0 0.032 0.019 2.315 2.675 0.031 0.017 110.7
14 1.0 1.0 1.0 2.0 2.0 2.0 0.035 0.018 2.419 2.716 0.034 0.018 104.3
15 2.0 1.0 2.0 2.0 1.0 1.0 0.039 0.022 2.316 2.655 0.038 0.020 98.4
16 2.0 2.0 2.0 2.0 1.0 1.0 0.024 0.013 3.113 3.593 0.023 0.013 117.8
17 1.0 1.0 2.0 2.0 2.0 1.0 0.038 0.019 2.431 2.728 0.037 0.018 108.9
18 1.0 1.0 2.0 2.0 1.0 2.0 0.038 0.022 2.305 2.645 0.037 0.021 95.8
19 1.0 1.0 2.0 2.0 2.0 2.0 0.025 0.014 3.114 3.593 0.024 0.013 117.7
20 2.0 2.0 1.0 1.0 2.0 2.0 0.027 0.013 3.140 3.589 0.027 0.012 109.1
21 1.0 2.0 1.0 2.0 2.0 2.0 0.024 0.013 3.242 3.640 0.024 0.012 110.2
22 1.0 2.0 2.0 1.0 2.0 2.0 0.033 0.016 3.166 3.599 0.033 0.016 107.7
23 1.0 2.0 2.0 2.0 1.0 2.0 0.031 0.015 3.218 3.583 0.031 0.015 87.7
24 1.0 2.0 2.0 2.0 2.0 1.0 0.032 0.013 3.280 3.667 0.031 0.013 116.6
25 2.0 2.0 2.0 2.0 2.0 2.0 0.000 0.000 4.694 5.392 0.000 0.000 114.7
26 1.0 1.0 1.0 1.0 1.0 3.0 0.042 0.030 0.422 0.621 0.040 0.026 52.7
27 1.0 1.0 3.0 1.0 1.0 1.0 0.046 0.029 0.430 0.647 0.045 0.026 61.5
28 3.0 1.0 1.0 1.0 1.0 1.0 0.045 0.033 0.424 0.626 0.042 0.029 54.1
29 1.0 1.0 1.0 1.0 3.0 3.0 0.036 0.029 1.044 1.368 0.034 0.025 51.3
30 1.0 1.0 3.0 3.0 1.0 1.0 0.047 0.025 0.965 1.350 0.046 0.024 59.2
31 3.0 1.0 1.0 1.0 1.0 3.0 0.053 0.032 0.763 1.149 0.051 0.029 45.4
32 1.0 3.0 1.0 1.0 1.0 3.0 0.047 0.030 1.011 1.342 0.045 0.027 50.2
33 1.0 1.0 3.0 1.0 1.0 3.0 0.048 0.025 0.768 1.134 0.046 0.022 42.2
34 1.0 1.0 1.0 3.0 1.0 3.0 0.040 0.029 0.954 1.321 0.038 0.026 54.1
35 3.0 1.0 1.0 1.0 3.0 3.0 0.038 0.021 1.446 1.919 0.036 0.020 43.7
36 1.0 3.0 1.0 1.0 3.0 3.0 0.039 0.021 1.715 2.143 0.038 0.019 50.0
37 1.0 1.0 3.0 1.0 3.0 3.0 0.035 0.024 1.471 1.951 0.033 0.022 45.7
38 1.0 1.0 1.0 3.0 3.0 3.0 0.038 0.020 1.686 2.149 0.037 0.019 54.4
39 3.0 1.0 3.0 3.0 1.0 1.0 0.042 0.024 1.348 1.850 0.041 0.023 43.7
40 3.0 3.0 3.0 3.0 1.0 1.0 0.025 0.014 2.211 2.755 0.024 0.013 43.8
41 1.0 1.0 3.0 3.0 3.0 1.0 0.045 0.022 1.723 2.188 0.044 0.021 57.2
42 1.0 1.0 3.0 3.0 1.0 3.0 0.039 0.022 1.351 1.844 0.039 0.022 42.6
43 1.0 1.0 3.0 3.0 3.0 3.0 0.026 0.016 2.216 2.738 0.026 0.016 41.3
44 3.0 3.0 1.0 1.0 3.0 3.0 0.032 0.016 2.213 2.724 0.031 0.016 40.1
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Table 6.2.2: (Continue)Comparison of MRDSS (M) to Holm’s step down (SD) for 3×4
tables

θ11 θ21 θ12 θ22 θ13 θ23 Type I Type II FWER % Inc
M SD M SD M SD

45 1.0 3.0 3.0 1.0 3.0 3.0 0.036 0.020 2.252 2.793 0.036 0.019 44.8
46 1.0 3.0 3.0 3.0 1.0 3.0 0.035 0.015 2.197 2.762 0.035 0.015 45.6
47 1.0 3.0 3.0 3.0 3.0 1.0 0.036 0.015 2.519 3.091 0.036 0.015 62.9
48 3.0 3.0 3.0 3.0 3.0 3.0 0.000 0.000 3.473 4.241 0.000 0.000 43.7
49 1.0 1.0 1.0 1.0 0.5 2.0 0.033 0.029 1.781 1.784 0.032 0.026 1.6
50 1.0 1.0 1.0 2.0 0.5 1.0 0.038 0.031 1.688 1.789 0.037 0.028 47.8
51 1.0 1.0 2.0 1.0 0.5 1.0 0.034 0.028 1.789 1.782 0.032 0.025 -3.4
52 1.0 2.0 1.0 1.0 0.5 1.0 0.040 0.029 1.659 1.778 0.038 0.026 53.6
53 2.0 1.0 1.0 1.0 0.5 1.0 0.031 0.024 1.717 1.784 0.029 0.022 31.1
54 1.0 1.0 2.0 0.5 1.0 1.0 0.038 0.025 1.743 1.773 0.036 0.023 13.5
55 1.0 2.0 1.0 0.5 1.0 1.0 0.031 0.025 1.766 1.768 0.029 0.022 0.6
56 2.0 1.0 1.0 0.5 1.0 1.0 0.034 0.024 1.677 1.783 0.033 0.022 48.9
57 0.5 1.0 1.0 1.0 2.0 2.0 0.026 0.021 2.437 2.675 0.025 0.019 72.9
58 1.0 0.5 1.0 1.0 2.0 2.0 0.027 0.020 2.452 2.688 0.026 0.019 75.6
59 1.0 1.0 0.5 1.0 2.0 2.0 0.029 0.021 2.526 2.676 0.028 0.019 46.1
60 1.0 1.0 1.0 0.5 2.0 2.0 0.027 0.022 2.571 2.691 0.026 0.020 39.1
61 2.0 1.0 1.0 1.0 0.5 2.0 0.029 0.020 2.602 2.661 0.028 0.018 17.4
62 1.0 2.0 1.0 1.0 0.5 2.0 0.033 0.021 2.573 2.683 0.031 0.020 34.8
63 1.0 1.0 2.0 1.0 0.5 2.0 0.036 0.019 2.601 2.654 0.035 0.017 15.4
64 1.0 1.0 1.0 2.0 0.5 2.0 0.028 0.020 2.505 2.695 0.026 0.018 62.3
65 2.0 2.0 2.0 2.0 0.5 0.5 0.000 0.000 4.914 5.360 0.000 0.000 69.6
66 2.0 2.0 0.5 0.5 2.0 2.0 0.000 0.000 5.135 5.322 0.000 0.000 27.5
67 0.5 0.5 2.0 2.0 2.0 2.0 0.000 0.000 4.897 5.357 0.000 0.000 71.7
68 2.0 0.5 2.0 0.5 2.0 2.0 0.000 0.000 5.056 5.361 0.000 0.000 47.6
69 0.5 2.0 2.0 2.0 2.0 0.5 0.000 0.000 5.166 5.355 0.000 0.000 29.3
70 2.0 0.5 2.0 2.0 0.5 2.0 0.000 0.000 5.026 5.296 0.000 0.000 38.3
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