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Though many prototypes of hydrodynamic separators have been developed to 

remove solids from wastewater and stormwater, to date, not much fundamental 

development on unit performance evaluation exists due to the complexity of the problem.  

Design specifications of commercial separators are derived from empirical or semi-

empirical equations that are unique and proprietary to each manufacturer.  In this 

research, experimental and theoretical investigations were conducted to examine the 

mechanisms of solid-liquid separation for a general vortex separator, thereby providing a 

fundamental approach for unit performance evaluation.  The main achievements and 

findings obtained through the experimental investigation and theoretical study are as 

follows. 

Experimental investigation with four physical vortex models, three with varying 

inlet pipe elevations and one with a lower chamber height, reveal that the impact of a 

changing inlet pipe elevation on particle removal efficiency is insignificant; while the 

effect of a changing chamber height on removal efficiency is significant and measurable.   

In the theoretical development, three topics, namely, flow pattern, particle 

trajectory, and unit performance evaluation, were researched.  Based on the Rankine 

combined vortex model, the law of conservation of momentum, and the boundary 

conditions for a confined vortex chamber, a simple formula for angular velocity was 

 ii



derived.  By applying the Navier-Stokes governing equation coupled with the angular 

velocity derived in this study, a vortex flow pattern model was developed. 

Based on the balance of forces acting on a particle, a new particle settling formula 

for natural sediment particles was proposed.  Additionally, using the particle settling 

velocity and the flow pattern derived for the confined vortex chamber, the particle 

trajectory equations were derived in this study. 

A new sizing equation for the confined vortex chamber was developed from the 

newly-derived particle trajectory.  The new sizing equation was validated by laboratory 

measured particle removal efficiencies.  The results generated from this dissertation 

research will help design, performance evaluation, as well as improvement of the 

hydrodynamic separators. 
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Chapter 1 

Introduction 

 

Water is one of the most valuable substances on earth.  Stormwater runoff from 

human activity is the major source of water pollution.  Water quality management is 

concerned with the control of this pollution from human activity; its main goal is to stop 

the degradation before it is no longer suitable for intended uses (Peavy, et al, 1985).  

However, with the growth of population, more and more rural areas are experiencing 

increased commercial, industrial, and residential development.  This change in land-use 

has negatively impact on earth’s hydrological cycle by increasing the area of 

impermeable surfaces (such as parking lots, paved roads, roofs, driveway, and sidewalks, 

etc.), and thereby increasing the loading of pollutants.  Pollutants and other threats are 

becoming increasing prevalent nowadays.  Therefore, stormwater runoff must be treated 

under sticker policy before entering the receiving water system so that it can better serve 

our society.  Water quality management is one of most important issues of the 21st 

century. 

  

1.1 Impacts of Land Use Behavior on Runoff Yield 

Field monitoring and theoretical studies have shown that land use behavior, 

particularly urbanization, has significant impact on hydrological response (Bhaduri, et al, 

2001; Roesner, et al, 2001; Sharma, et al., 2001; Stork, et al., 1998; and Wong and Li, 

1997 & 1999).  Urbanization can significantly impact hydrology and increase runoff 

volume and peak discharge.  It can also reduce the time of concentration, and thereby 
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increase the flooding frequency, compared to an undeveloped area.  In general, for a 

given rainstorm event, a developed area will yield significantly more runoff volume than 

prior to development; the increase in peak discharge can range from 2 to 10 times more 

(Roesner, et al., 2001).  To assess the effect of urbanization on annual average runoff, 

Bhaduri, et al. (2001) developed a Long-term Hydrological Assessment model to predict 

the annual runoff volume, which was tested against the well known U.S. Storm Water 

Management Model (SWMM).  By applying Bhaduri’s model to two small watersheds 

near O’Hare International Airport, it was found that for a 10% increase in impervious 

area, the predicted average increase in annual runoff volume was between 6.6% and 

7.3%.  In a second study, Wong and Li (1997 & 1999) examined the effect of 

urbanization on the maximum peak discharge for an overland plane.  The research 

showed that for a fully urbanized impermeable basin, the increase in flood peak ranged 

from 4 to 34 times than prior to development.  The above two studies indicated that the 

urban land-use could significantly increase runoff volume and peak discharge. 

Further, Stork, et al. (1998) examined the impacts of forest harvest and forest 

roads on peak stream flows in the Pacific Northwest.  Stork’s research showed that the 

peak runoff rate could increase up to 30% due to complete forest harvesting that reduces 

the time of concentration.  However, the average increase in peak flow was 17.41% 

owing to forest road networks only.  On the other hand, Sharma, et al (2001) conducted 

research to prioritize watersheds on the basis of runoff yield due to existing land 

condition in India.  The impact of soil and water conservation measures on runoff was 

evaluated.  This research showed that the runoff yield after conservation with planting 

decreased 42% of the value at pre-conservation.  These two studies indicated that the 
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cultivated activities would decrease runoff, whereas the removing timber would increase 

the runoff.  However, the studies by Bhaduri, et al. (2001) and Wong and Li (19997 & 

1999) showed that the urban land-use would increase runoff volume and peak discharge.  

These four studies indicated that the land-use behavior has significant impact on 

hydrological response.   

 

1.2 Impacts of Land Use on Water Quality 

Research has shown that the land-use, especially urbanization, has significant 

impact on water quality (Avco, 1970; Roesner et al., 2001).  Sources of pollution can be 

grouped into two categories: point source pollution, and non-point source (NPS) 

pollution.  Point source pollution comes from an identifiable location and can be 

measured as discharge from industrial activities into a river through a pipe of ditch.  In 

practice, this type of pollution can be easily controlled at the identifiable source locations 

before it is discharged into receiving waters.  No-point source pollution occurs when 

stormwater runs over impermeable surfaces (such as roads and parking lots) or permeable 

surface (such as lawns), picking up oil, grease, heavy metals, airborne fallout, assorted 

chemicals, nutrients, and fertilizers, pesticides, bacteria, sediments, debris, and other 

contaminants.  The later results are the pollution of natural resources such as receiving 

water that is no longer suitable for aquatic life or intended uses  

To evaluate if the quality of water is good for the intended purpose such as 

drinking, recreation, or aquatic life, the water quality parameters are used to describe the 

quality of the water.  Water quality parameters can provide useful information about the 

health of a water body.  Water quality parameters of concern in storm water runoff 
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include total suspended solids (TSSs), Biochemical Oxygen Demand (BOD), Chemical 

Oxygen Demand (COD), heavy metals (Cu, Pb, and Zn), nutrients (P and N), and fecal 

bacteria (E. coli) (EPA, 1983; Roesner et al., 2001; NJDEP, 2004).  Land surface 

characteristics not only influence the drainage of a watershed, but also affect the amount 

of pollution produced per unit area.  Field investigations of pollution loads from storm 

water runoff in urban areas indicated that there is a strong relationship among the land 

surface characteristics, the degree of development, and storm water pollutant 

concentrations (Avco, 1970; EPA, 1983; Osborne, et al, 1998; and NACRF & FWQA, 

1970).  Avco (1970) conducted an investigation of the pollution concentrations and loads 

from storm water runoff in an urban area in Tulsa, Oklahoma.  An assessment of 

pollution parameters measured on 15 urban watersheds by Avco (1970) indicated that the 

magnitudes of total suspended solids, Biochemical Oxygen Demand, Chemical Oxygen 

Demand, heavy metals (Cu, Pb, and Zn), nutrients (P and N), and fecal bacteria (E. coli), 

etc. are much higher than the common values found in stormwater runoff (NJDEP, 2004).  

Therefore the urban, commercial and industrial land-use has a great impact on 

stormwater quality.  As this change in land-use increases, so does the threat of potential 

problems that could be caused by this activity.  

 

1.3 Management of Water Quality  

In the last few decades, the United States Environmental Protection Agency 

(EPA) has taken measures to curb water contamination.  Great effort has been made to 

improve the overall water quality in lakes, rivers and streams by the control of point 

source and non-point sources pollutants before entering a waterway.  However, among 
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these crucial water quality parameters in storm water runoff, the removal of total 

suspended solids (TSS) is one of the most important concerns for storm water treatment.  

To achieve the goal of TSS removal, many stormwater structural Best Management 

Practices (BMPs) have been designed and installed to remove pollutants from stormwater 

runoff before entering receiving water systems.  A structural BMP is a physical device 

that is designed and constructed to trap pollutants from runoff.  BMPs are techniques 

used to control stormwater runoff, sediment control, and soil stabilization; they also 

consist of management decisions to reduce non-point source pollution.  The EPA defines 

a BMP as a "technique, measure or structural control that is used for a given set of 

conditions to manage the quantity and improve the quality of stormwater runoff in the 

most cost-effective manner."  The major types of structural BMPs, which are 

recommended by New Jersey Stormwater Best Management Practices Manual (2004), 

are: 

 

• Bioretention Systems 

• Constructed Stormwater Wetlands  

• Dry Well 

• Extended Detention Basins 

• Infiltration Structure 

• Wet Pond 

• Manufactured Treatment 

Devices 

• Pervious Paving System  

• Sand Filter 

• Vegetative Filter 

 

In general, the Manufactured Treatment Devices (MTDs) can be classified into two 

categories: hydrodynamic devices and filtration devices (NJDEP, 2004).  As MTDs may 
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provide the desired performance for solid removal in less space and therefore in less cost 

compared to the traditional wet or dry basins, and furthermore, the mosquito control may 

be less of an issue than with traditional wet basins, the MTDs have been widely installed 

for storm water runoff treatment. 

 

1.4 Types of Hydrodynamic Vortex Devices 

The concept of hydrodynamic vortex separation was first developed and tested by 

Bernard Smisson at Bristol in the U.K. to treat combined sewer overflows (CSOs) in the 

early 1960s.  Based on Smisson’s pioneering work, a series of prototypes of 

hydrodynamic vortex separators, such as Swirl Concentrator, Storm King® Overflow, 

Downstream Defender®, and VortechsTM Stormwater Treatment System, etc., have been 

developed, tested, and installed for wastewater and stormwater treatment over the last 40 

years.  

 

1.5 Objectives of the Current Study 

Many prototypes of hydrodynamics separators have been developed for 

wastewater and stormwater treatment.  Additionally, multiple laboratory studies and field 

tests have been performed.  However, with these advances, so far not much fundamental 

development has been found in the current literature search due to the complexity of the 

problem.  Design specifications of commercial separators are derived from empirical 

equations that unique and proprietary to each manufacturer.  For a given design flow rate 

and the desired particle removal efficiency, the equations that could provide a direct 

determination of removal efficiency as a function of design flow rate, fluid and solid 
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properties and unit dimensions are what we are looking for.  The overall objective of the 

study is to theoretically establish some design basis for a selected type of vortex 

separator.  The specific goals of this investigation are: 

 

• To experimentally investigate the effects of the chamber height and the inlet pipe 

elevation on the particle removal efficiency of selected vortex chambers. 

• To theoretically determine the angular velocity for turbulent vortex chamber flow. 

• To theoretically determine the flow pattern in the confined vortex chamber. 

• To investigate the dynamic response of a single particle in an upward uniform 

steady flowfield. 

• To determine the particle trajectories in a confined vortex chamber flow.  

• To develop a general formula, based on the selected vortex separator, for unit 

performance evaluation and sizing.  

 

1.6 Organization of the Dissertation  

In this chapter, the impacts of land use behavior on runoff yield and stormwater 

quality are briefly discussed.  Some of the major types of structural stormwater best 

management practices (BMPs) for stormwater treatment are presented.  

Chapter 2 provides an overview about the development and evolution of 

hydrodynamic devices over the past 40 years.  The developed unit sizing approaches by 

previous investigators for these devices are summarized and discussed based on current 

literature review.  Equations characterizing particle settling velocity are also reviewed 
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and discussed in this chapter.  Finally, based on the literature review, the gaps in the 

selected study area are identified.  

In Chapter 3, an experimental study on the particle removal efficiency in the 

confined vortex chamber has been conducted.  The impacts of chamber height and the 

elevation of the tangential inlet pipe on the removal efficiencies were examined by 

changing the chamber height and the inlet pipe elevation, respectively. 

In Chapter 4, based on the law of conservation of angular momentum and the 

boundary conditions, a simple formula has been derived to determine the angular velocity 

for turbulent vortex chamber flows.  It is possible to predict the angular velocity for the 

confined turbulent vortex chamber flows. 

In Chapter 5, a vortex model, based on Navier-Stokes governing equations and 

boundary conditions, for simulating the flow pattern in a confined vortex chamber with 

the tangential inflow has been developed. 

In Chapter 6, the characteristics of particle motion in a one-dimensional upward 

uniform steady fluid flow are investigated.  The analytical solutions for particle motion in 

a one-dimensional upward uniform steady fluid flow are obtained.  The derived formulas 

were compared with previous studies such as Cheng’s formula and a good agreement was 

observed. 

In Chapter 7, the characteristics of particle motion in a confined vortex chamber 

were investigated.  The analytical solutions of particle trajectories in the confined vortex 

chamber, based on the vortex models developed in Chapters 6 and the governing equation 

of particle motion, have been derived. 
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In Chapter 8, a unit sizing formula, based on the particle trajectory equation 

derived in Chapter 7, has been developed.  The predicted results for particle removal 

efficiency with this formula were compared with the experimental results and a good 

agreement was obtained.   

In Chapter 9, a summary of main achievements and findings obtained through this 

study is presented.   The recommendations for future work are also provided. 
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 Chapter 2  

Review of Literature 

  

Vortex separators are manufactured solid-liquid separation devices that use the 

vortex principles to remove suspended pollutants from stormwater runoff in highly 

developed areas where the available land space is limited.  These devices were primarily 

designed to remove suspended particles from stormwater runoff, but some of them were 

also designed with the features to remove floatable pollutants (Andon & Smisson, 1994; 

Fenner and Tyack, 1998).  The following literature review provides an overview about 

the development and evolution of hydrodynamic devices, the reported performances, and 

the development of sizing approaches.  

 

2.1 The Key Developmental Stages of Hydrodynamic Separators  

The history of dynamic separation can be dated back to the early of 1960s, when 

Mr. Bernard Smisson developed the first full-size cylindrical vortex chamber to treat the 

combined sewer overflow (CSO) at Bristol in the U.K. (Smission, 1967; Andoh & 

Smission, 1994).  Measured results indicated that this first generation vortex separator 

could effectively remove about 70% of the pollutant loadings (Smisson, 1967).  Since 

then, a family of hydrodynamic vortex separators has evolved from Smisson’s original 

model.  

In the 1970s, based on Smisson’s initial work and with his help as a consultant, a 

second generation of hydrodynamic vortex separator (HDVS) – USEPA Swirl 

Concentrator and Swirl Primary Separator were developed to remove the settleable solids 
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from combined sewer overflows by the American Public Works Associations and EPA 

(Field, 1972; Sullivan, et. al., 1978; Andoh & Smission, 1994).  Based on his initiative, 

Mr. Smisson received “an APWA award of merit in recognition of the excellence of his 

work, ingenuity, resourcefulness, and grasp of hydraulic engineering principles” (Andoh 

and Smisson, 1994). 

In 1980s, further research work continued in the United Kingdom.  In order to 

overcome some disadvantages of the EPA Swirl Concentrator, such as “shoaling of solids 

on the base, reduction of head loss at high flows and to further improve the performance” 

(Andoh and Saul, 2003), a much improved third generation of HDVS – Storm King® 

Overflow with specially designed internal components and high separation efficiencies 

was developed and subsequently commercialized in the UK.  

During the 1990s and early of 2000s, the swirl concentrator was further advanced 

in the USA.  This led to the development of fourth generation HDVS – Downstream 

Defender® and Vortechs  Stormwater Treatment System for stormwater treatment. 

These new developed devices in configuration differ from the CSO treatment devices.  

Unlike the CSO operations, solids removed from stormwater are trapped in the bottom of 

the chamber that could be stored for several months before periodical removal (H.I.L. 

Technology, 2005; Vortechnics , 2004). 

TM

TM

 

2.2 Reported Performance of Hydrodynamic Devices 

The solids removal performance of hydrodynamic vortex separators depends on 

the settling characteristics of the suspended solids, operating conditions, evaluation (lab 

and field) techniques, and the fraction of dissolved solids in the wastewater or stormwater 

 



 12

(Andoh and Smisson, 1994 and 1996; Field and O’Connor, 1996; Guo, 2005).  Reported 

test results show that removal efficiencies decrease with decreasing particle size in 

hydrodynamic separators (Sullivan et al., 1972; Deamer et. al., 1994; Brueske, 2000; 

H.I.L Technology, 2005).  The vortex separation technology could not remove non-

settleable solids.  In general, non-settleable solids are defined as those that remain in 

suspension after a specified settling period of 1 hour (APHA, 1987).  According to this 

definition, these non-settleable solids are generally less than 10 mμ  in diameter (Andoh 

& Smisson, 1994).  The limit of suspended particles that may be removed in a vortex 

separator is with a settling velocity of 0.1 – 0.14 cm/sec; while particles tested at a 

settling velocity lower than this range may not be effectively removed in a hydrodynamic 

separator (Field and O’connor, 1996; Brueske, 2000).  According to Stokes particle 

settling law, this limit of settling velocity is associated with a spherical particle diameter 

of approximate 68 mμ  based on a specific gravity of 2.65 at 20oC  

Sullivan, et al. (1972) stated that the swirl concentrator is very efficient in 

separating both grit and settleable solids in their middle (>0.2 mm) and larger grain size 

ranges, while for the smaller grain sizes the separation was less efficient.  Based on a 

large pilot testing, Sullivan et al. (1978) reported that a 12-ft diameter swirl concentrator 

achieved 60% and 42% removal efficiencies of settleable solids for the hydraulic 

application rate (HAR) of 1.8 gpm/ft  and 2.8 gpm/ft for untreated sewage in Toronto, 

Canada. 

2 2

Laboratory test results from a Vortecs TM unit and a Downstream defender  unit 

indicated that solids removal efficiency decreases with decreasing particle size and 

increasing flow rate.  Based on the test results, the Downstream defender TM performance 

TM
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could achieve a 70% solids mass removal efficiency, sized at a hydraulic loading rate of 

20  for F-95 sand with an average influent concentration of 240 mg/l, an average 

d50 particles size of 120 

2ft/gpm

mμ  (H.I.L Technology, 2005).  The laboratory test results for 

Vortechnics TM unit, with particle size ranging from 38 mμ  to 500 mμ , showed that for 

particles greater than 63 mμ , removal efficiencies were greater than 80% when the 

hydraulic loading rates were less than 10 - 20  of grit chamber area (Vortechnics, 

2004; Winkler and Guswa, 2002).   

2ft/gpm

 

2.3 Review of Sizing Approaches 

Since Mr. Bernard Smisson first built and tested a full-scale cylindrical vortex 

unit to treat the combined sewer overflow (CSO) at Bristol in the U.K., different types of 

vortex technologies have been developed to treat wastewater and stormwater during the 

last forty years.  At the same time, many researchers have been investigating the sizing 

approaches for these hydrodynamic devices.  Some studies have attempted to investigate 

the relationship between the performances of model and prototype separators with semi-

empirical equations, or using the scaling laws such as Froude scale and Hazen scale 

(Sullivan et al, 1972 & 1978; Deamer, et al, 1994; Andoh and Smisson, 1994; Fenner and 

Track, 1997 &1998; Luyckx and Berlamont, 2004).  However, not much published work, 

which could provide a straightforward method to size the device units, was found in the 

current literature search.  A brief review of the sizing approaches in the current practice is 

summarized in the following paragraphs. 
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2.3.1. EPA Swirl Concentrator / Swirl Primary Separator 

Based on Smisson’s original work, a device, called a swirl concentrator was 

developed by the American Public Works Association Research Foundation (Sullivan, et 

al, 1972).  To further investigate its application as a combined sewer overflow regulator 

and as a grit chamber, a series of intensive studies were performed by USEPA to 

determine the configurations of the swirl concentrator, flow patterns, and settleable solid 

removal efficiency by means of the hydraulic test models and mathematical models in 

1970s and 1980s (Sullivan, et al., 1974; Sullivan, et al., 1978; Sullivan, et al., 1982; and 

Pisano, et al., 1984).  The comparison of their numerical solutions from the mathematical 

model against the laboratory results indicated that the velocity profile from the 

mathematical model basically match with the physical model (Sullivan, et al, 1972, and 

Sullivan, et al., 1978).  The mathematical model correctly predicted the trends of removal 

efficiency due to the variations in flow rate, size, settling velocity, and geometric 

changes.  Sullivan’s analysis also showed that the predicted separation efficiencies are 

very close to the measured values for very slow and very fast settling particles, while for 

the intermediate settling rates and higher flows the mathematical model will over-predict 

the concentrator performance.   

Based on the study of the hydraulic models, and the mathematical model that was 

developed to predict the performance of the swirl concentrator with variable design 

criteria, Sullivan, et al (1972 and 1978) recommended that scaling for the liquid flow 

pattern and particle flow pattern for a swirl concentrator of size S1 (model), could be 
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scaled to represent the liquid and particle flows in a geometrically similar concentrator of 

size S2 (prototype) using Froude number (Fr) scaling factor: 

 

 
gS
VFr =          (2.1) 

 

where S is the reference length, V is the reference velocity (e.g. flow velocities and 

particle settling velocities), and g is the acceleration due to gravity.   

Sullivan et al. (1972) also stated that the performance of prototype scale device 

could be accurately predicted from the laboratory tests.  By maintaining the same Froude 

number between the model and the prototype, the flow velocities, particle settling 

velocities, and design flow rate from the model for a swirl concentrator of size Smodel can 

be scaled to represent the flow in a geometrically similar concentrator of size Sprototype.  

The relationships for flow velocities, particles settling velocities, and flow rates between 

these two concentrators can be written as: 
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More recently, Luyckx and Berlamont (2004) conducted research to investigate 

the removal efficiency of vortex separators with a simple vortex test model made of a 
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steel plate in the hydraulic laboratory of the University of Ghent in Belgium.  The steel 

model was constructed with an overflow crest and a base flow pipe at the center of the 

bottom (same as the combined sewer over flows).  The diameter of the overflow chamber 

was 1.2 m, and the inlet pipe had changeable sizes of 25 cm, 30 cm and 35 cm located at 

the bottom of the chamber.  This device works when the inflow enters the chamber 

tangentially.  Based on 462 experimental results obtained from the literature search, and 

their own model test results, as well as with the help of regression analysis, a removal 

efficiency formula was derived: 
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where η  is removal efficiency, q is base flow rate ( ), Q is inflow ( ), sm /3 sm /3
sv  is 

settling velocity of the sediments (m/s),  is mean velocity in the inlet pipe (m/s), h is 

height of the overflow crest (m), D is diameter of the overflow chamber (m), d is 

diameter of the inlet pipe (m), and Re is Reynolds number in the inlet pipe.   

iv

This equation indicates that the removal efficiency is a function of the 5 

dimensionless numbers of , , , ,s
e

i

vq h D and R
Q v D d

.  Though this is a reliable equation for 

device sizing, the derivation of this equation is based on different particle size 

distributions and different unit internal components.  The predicted results from this 

equation greatly deviate from the experimental data collected.  For a given separator, the 

removal efficiency generally varies with different particle size distributions.  Therefore 

the validation of this equation for different particle size needs to be further investigated.  

 

2.3.2 Storm King TM  Overflow 

The Storm KingTM Overflow units, which are a precursor to H.I.L Technology’s 

Downstream Defender TM , are hydrodynamic separators operating with underflows.  

Andoh and Smisson (1994) developed a semi-empirical mathematical equation for the 

Storm King TM device.  The general form of the equation is as follows: 
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where D is the diameter of separator; is the settling velocity of particle in fluid; Q is 

the flow rate, N is the ratio between solids concentration in the underflow to that in the 

overflow; R is the ratio of overflow to underflow; P is underflow proportion; Ka and Kb 

are empirical coefficients, which were derived from several tank arrangements and 

geometries based on the calibration of separator units (Andoh and Smisson, 1994).  This 

design equation can be applied to predict the removal efficiency for the separators with 

underflow at differing settling velocities. 

vS

Moreover, based on the analysis of laboratory results of removal efficiencies from 

a series of geometrically similar hydrodynamic separators operating without baseflow, 

Fenner and Tyack (1997) concluded that the use of single dimensionless groups such as 

Froude number or Hazen number has limited applicability to predict the full-scale 

separator performance.  By scaling the flow rates for a series of geometrically similar 

models to a 1,600-mm diameter prototype separator with different scaling protocols, 

Fenner and Tyack found that Froude scaling of the model flows produces the best fit to 

the observed performance of the prototype over the high flows; while for the low flow 

ranges, a better fit to the observed prototype data were obtained with Hazen scaling law 

(which is defined as the ratio of the chamber flow rate to the particle settling velocity).  

Fenner and Tyack (1997) pointed out that Froude scaling law is applicable to systems 

with a significant free surface where the gravitational forces dominate.  Fenner and Tyack 

found that the use of a hybrid protocol incorporating the more dominant Hazen scaling 

over the low flow ranges could successfully predict the efficiency of solids removal from 

full-scale hydrodynamic separators over a wide range of flow conditions.  Based on the 

 



 19

data from the 300-mm model and associated prototype tests, Fenner and Track (1997) 

proposed a hybrid equation: 

 

 ( ) ( ) ( ) ⎥⎦
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mod 1
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where mη is the model efficiency (%)/100 at corresponding  flow;  is the 

inflow to prototype separator (L/s); is the length ratio for geometric similarity (usually 

inlet pipe or chamber diameters); and B is the average particle diameter (mm).   

modelQ prototypeQ

rL

Furthermore, by comparing the performances of a 300-mm diameter model with a 

full-scale prototype separator with an underflow condition, Fenner and Tyack (1998) 

extended their earlier study to examine whether the developed hybrid equation could be 

applied to this kind of device.  Based on the model studies using Hazen and Froude 

scaling, Fenner and Tyack (1998) concluded that no single dimensionless group could be 

used for scaling over the whole flow range for separators operating with an underflow.  

This conclusion is consistent with that obtained by Fenner and Tyack (1997) for 

separators without underflow.  Their analysis showed that Eq.(2.6) could not predict the 

observed efficiency of the 1,600-mm diameter prototype when operating with an 

underflow.  Based on the results from the 300-mm diameter model and the 1,600-mm 

diameter prototype, a simplified hybrid equation for separators operating with an 

underflow was proposed by Fenner and Tyack (1998): 
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This study showed that this equation provides a good fit to all the observed data of 

prototype separator with an underflow.  However, Fenner and Tyack’s early study (1997) 

showed that scaling for devices without underflow conditions partially depended upon 

particle size, while the modified but similar hybrid equation indicated that scaling is 

independent of particle size for separators operating with an underflow.  This may be due 

to the effect of the different flow pattern in the core zone of the chamber. 

 

2.3.3 Downstream Defender® and Vortechs  System  TM

For the design of Downstream Defender and Vortechs  system, though some 

numerical research has been conducted to simulate the flow patterns and estimate the 

solids removal efficiency (such as Faram and Harwood, 2003), so far there are no 

empirical or theoretical equations that could provide a straightforward determination of 

the efficiency as a function of unit configuration sizes and design flow rate.  The unit 

sizing approach is still based on the scaling methods at the current practice.   

TM

 

2.4 Review of Particle Settling Velocity 

2.4.1 Stokes’ Law 

The settling velocity of sediment particles is defined as the rate at which the 

sediment settles in fluids.  When we talk about the settling velocity or terminal velocity 

of sediment particles, it is inevitable to recall George Gabriel Stokes and his Law.  

George Gabriel Stokes was an Irish-born mathematician who had spent much of his life 

to work with fluid properties.  He is most famous due to his work describing the motion 
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of a sphere through viscous fluids.  This leads to the development of his famous settling 

law, Stokes’ Law, in 1851.  By equating the drag resistance sVdπμ3  to the net weight of 

a spherical particle, the equation of particle settling velocity in the present notations is as 

follows: 

 

 
( )

μ
ρρ

18

2gd
V fp

s

−
=         (2.8) 

 

where is the terminal settling velocity of particle; d is the diameter of sphere; sV pρ  is the 

density of particle; fρ  density of fluid; g is the gravitational acceleration; and μ  is the 

viscosity of fluid.  This law indicates that for a given fluid and temperature, the particle 

settling velocity depends upon both of its size and density.  Though Stoke’s Law can 

provide a representative indication of orders of magnitude of terminal settling velocities, 

it cannot accurately predict the real life settling phenomena due to the combined effects 

of flocculation, adsorption, re-suspension, and turbulence (Simons & Senturk, 1992; 

Andoh & Smisson, 1994; Cheng, 1997; and Nikora, et al, 2004). 

 

2.4.2 Limitations of Stokes’ Law 

Flow Conditions: Stokes’ law pertains to the terminal settling velocity of a sphere in 

a fluid.  It has been widely applied to water and wastewater treatment design since its 

development.  However, this relationship only holds for laminar flow (i.e. the fluid 

moves around the object in an orderly, non-turbulent way), while for turbulent settler, this 

equation is not valid.  Therefore, Stokes’ law only holds for low Reynolds numbers 
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( ) ), but, in practice, many investigators usually apply Stokes law to Reynolds 

number up to the limit of 

1.0≤eR

0.1=eR .  Reynolds Number eR  is used to describe whether 

flow conditions around a sphere are laminar, transition or turbulent: 

 

 
μ

ρ dV
R sf

e =          (2.9) 

 

Flow conditions are (Sincero & Sincero1996): 

Laminar flow for  1.0eR ≤  

Transitional flow for    41.0 10eRp p

Turbulent flow for   410eR f

 

Range of Particle Size: Stokes’ law cannot be applied to all the particles settling in 

a fluid.  Research shows that to keep particles falling in a straight line, particles sizes 

must be greater than 0.5 micron in diameter (Carver, 1971).  This is because Brownian 

movement of fluid molecules will affect the movement of very fine particles.  In term of 

that Stokes’ law being a function of Reynolds number, temperature, and the particles 

density, particles of quartz spheres should not be greater than the theoretically determined 

size of 50 micron in diameter ( )1.0≈eR  (Oseen, 1913; Carver, 1971; Clif, et al, 1978; 

Sincero & Sincero, 1996).  If particles are larger than this limit, the turbulence condition 

will occur during settling of particles.  However, in practice, many investigators apply 

Stokes’ Law to particles up to the size limit of sand 100 micron ( .  Rubey 

(1933) found that the observed settling velocity, for particles with sizes up to 140 micron, 

)0.1≈eR
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differs little from the theoretically determined Stokes’ values.  This indicated that the 

settling velocities for clay and silt particles might be approximately estimated from 

Stokes’ law, while for grains with diameters greater than 140 micron (such as sand, 

pebbles, and boulders), Stokes’ law no longer holds.   

Shape of Particles: The derivation of Stokes’ law was based on the assumption that the 

particles are spheres in shape.  But most particles of practical interest are irregular in 

shape.  In nature, no particles are perfect spheres, and many naturally occurring solid 

particles possess an oblate or lenticular form.  For natural particles, the shape effect on 

settling velocity for large particles is bigger than that for smaller particles (Van Rijin, 

1993).  The shape of particles can generally be defined by the Corey shape factor (Graf, 

1971): 

 

cSF
ab

=          (2.10) 

 

where a is the length along longest axis perpendicular to other two axes, b is the length 

along intermediate axis perpendicular to other two axes, and c is the length along short 

axis perpendicular to other two axes.  The average SF-factor is approximately 0.7 for 

natural sand (Graf, 1971; Van Rijin, 1993; Cheng, 1997; Jimenez and Madsen, 2003).  

The effect of particle shape on settling velocities was not considered in Stokes law. 

 

2.4.3 Particles above the Range of Stokes’ Law 

As stated in the above, Stokes’ law is restricted to 1.0eR ≤ and spherical particles 

with an upper limit of 50 – 100 micron, to overcome this shortcoming, many equations, 
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which can be applied to a wider range of Reynolds numbers, have been proposed by 

numerous investigators from the early of the last century (Rubey, 1933; Albertson, 1953; 

Graf, 1971; Clift, et. Al., 1978; Hallermeier, 1981; Dietrich, 1982; Van Rijn, 1993; 

Cheng, 1997; Ahrens, 2000; Aimerez, et. Al., 2003; Jimenez and Madsen, 2003; Brown 

and Lawler, 2003; Nikora, et. Al., 2004); a few of them are summarized as follows.  

 

2.4.3.1 Rubey’s Formula 

By considering the viscous resistance and impact of the fluid, Rubey (1933) 

developed a general equation to estimate the settling velocities for sphere particles within 

the size range of Stokes’ law as well as to coarser particles (such as sand and gravel): 
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=      (2.11) 

  

where particle settling velocity (Vs) and radii (r) are measured in centimeters.  Rubey 

compared the predicted results from this general equation with the observed data for 

quartz grains and a good agreement was obtained.  However, Rubey’s formula can not be 

directly applied to the natural sediment particles as it does not consider the shape effect 

of particles in the formula. 

  

2.4.3.2 Van Rijn’s Formula 

Van Rijin (1993) pointed out that “the shape effect is largest for relatively large 

particles (>300 mμ ) which deviate more from a sphere than a small particle”.  The 
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equations derived for spherical particles could not be directly applied to the natural 

sediment particles due to the differences in shape. Therefore, to solve this problem, Van 

Rijn (1993), based on his study, proposed the following equations to determine the 

terminal fall velocity of non-spherical particles: 
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where d is the sieve diameter, which is defined as the diameter of a sphere equal to the 

length of the side of a square sieve opening through which the given particle will just 

pass, S is the specific gravity ( fp ρρ ), and ν  is the kinematic viscosity coefficient.  

 

2.4.3.3 Cheng’s Formula 

Cheng (1997) proposed a simple formula to predict the settling velocities for the 

natural sediment particles in the present notation: 
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where sV  is the settling velocity, ν  is the kinematic viscosity coefficient, and  is the 

dimensionless particle parameter which is defined as: 

*d

 

 ( ) 1 3

* 2

1s g
d

ν
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d         (2.13a) 

 

in which S is the specific gravity of the sediment given by fp ρρ , and g is the 

gravitational acceleration.  This equation can be applied to a wide range of Reynolds 

number ranging from the Stokes flow to the turbulent flow.  However, this equation does 

not explicitly account for shape of particle. 

 

2.4.3.4 Jimenez and Madsen’ s Formula 

More recently, and based on the previous work of Dietrich and the assumption 

that the sediment shape factor and roundness are known, Jimenez and Madsen (2003) 

presented another formula to estimate the terminal settling velocity of natural sediment 

particles in a quiescent fluid for grain sizes between 63 mμ  and 1000 mμ : 
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where  is the dimensionless settling velocity;  is the fluid-sediment parameter; s is 

the specific gravity; g is the gravitational acceleration; 

*V *S

ν  is the kinematic viscosity 

coefficient; d is the sediment diameter, is the drag coefficient, A and B are constants 

to be determined by fitting equation (2.16a) to the experimental data.   

DC

 

2.5 Review of Types of Developed Vortex Models 

Historically, the study of vortex phenomena can be traced to the 1930s when 

Rosenhead evaluated the two-dimensional flow with a point vortex method (See Lamb, 

1945; Lugt, 1983; Ying and Zhang, 1997; Cottet and Koumoutsakos, 2000).  However, 

the development of vortex methods was limited due to the lack of computational tools 

until 1970s (see Ying and Zhang, 1997).  After that, the vortex method was rapidly 

developed with the increasing power of computational tools.  A lot of numerical 

calculations were performed to simulate the vortex phenomena (Chorin, 1973, 1978, 

1980, 1990 and 1993; Leonard 1975, 1980, and 1985).  At the same time, many 

mathematicians (such as Batchelor, 1967; Greenspan, 1980; Saffman, 1992; Ying and 

Zhang, 1997; Cottet and Koumoutsakos, 2000; etc.) were attracted by these numerical 

works, and joined this research field.  Thereafter the principles of vortex methods have 

also been applied to many fields such as the design of vortex nuclear reactors, and 

centrifugal settlers or cyclones as well as the simulation of meteorology (Lugt, 1983; 

Ogawa, 1992).  The vortex method has become one of the most important methods to 

simulate the incompressible flows.  

In general, there are two types of vortex.  One is called the free (irrotational) 

vortex, and the other is the forced (rotational) vortex.  The rotational flow regimes are 

 



 28

generally described as irrotational (free vortex) or rotational (forced vortex) flow that 

possesses vorticity, which is defined as the circulation per unit area at a point in the flow 

field.  When the external force applied to the fluid is only the gravitational force and the 

fluid is rotating around a common axis, the free vortex is created.  However, when we 

consider the motion of a viscous fluid, since the viscosity gives the resistance force 

(frictional force) to the motion of fluid, the forced (rotational) vortex is formed.  The 

vortex flows are normally turbulent flows.  Subsequently, due to its practical applications 

in technology and nature, several vortex models, such as the Rankine combined vortex, 

the Burgers vortex, and the Sullivan vortex models, etc., have been developed to simulate 

the practical problems such as tornado, hurricanes, ocean circulations, tidal vortices, etc.  

Several of the typical vortex models are described as follows. 

 

2.5.1 Free Vortex (Irrotational Vortex) 

For free vortex, the tangential velocity ( ) along any streamline is inversely 

proportional to the radius (r) of the streamline (Lamb, 1945; Shapiro, 1959; Lugt, 1983; 

Ogawa, 1993): 

θU
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π
Γ

=θ 2
         (2.15) 

 

where  is the circulation for any closed circuit enclosing the origin.  It is defined as the 

line integral of the velocity around any closed curve (C): 

Γ
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 ∫ ∫ ⋅≡≡Γ
C C

rdUdlU vv
αcos        (2.16) 

 

where U  denotes the vector velocity and 
v

rr  the vector radius from any fixed origin.  The 

vorticity of the free vortex is zero everywhere, except for a singularity at the center-line.  

The circulation of any closed circuit enclosing the origin has the same value for each 

closed circuit.  The free vortex demands that the tangential velocity at the axis of rotation 

to be infinite.  This kind of flow patterns does not occur in real fluids.  In real fluids, the 

existence of viscosity will result in the velocity gradients and vorticity to occur.  

Moreover, the boundary layer effects will cause the creation of a secondary flow 

superimposed on the primary flow (Greenspan, 1980; Andoh and Smisson, 1994). 

 

2.5.2 Forced Vortex (Rotational Vortex) 

The forced vortex flow regime corresponds to a solid body type of angular motion 

about an axis.  Since in this case, the individual fluid particles maintain their relative 

positions as in the case of a rigid solid, the tangential velocity along a streamline can be 

expressed as (Lamb, 1945; Shapiro, 1959; Greenspan, 1980; Ogawa, 1993): 

 

rU ω=θ          (2.17) 

 

where ω is the angular velocity; and r is the radius. 

 

2.5.3 Rankine Combined Vortex Model 
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Fluid motion consisted of a potential vortex (free vortex) and a solid-body 

rotation (forced vortex) is called a Rankine Vortex (Lugt, 1983).  For a rational flow that 

is composed of a forced vortex in the core, and a free vortex in the outer, the Rankine 

Vortex model may best describe this phenomenon (see Figure 2.1).  

The Rankine combined vortex is a simple model that has two separate flow fields 

only with the tangential velocities.  The tangential velocity in the interior flow field 

(core) that rotates like a solid body increases linearly with the radius from zero along the 

central axis to a maximum value at a radius (a).  The exterior flow field (tail) is also 

tangential with a maximum velocity at radius (a).  The velocity decreases inversely with 

radius from this point outward.  The mathematical model for the tangential velocity in 

Rankine combined vortex model can be expressed as (Lugt, 1983; Saffman, 1992; and 

Ogawa, 1993): 
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where ω is the angular velocity; a is the radius of the vortex core; r is the radial 

coordinate; and  is the circulation for any closed circuit enclosing the origin.  The 

Rankine combined vortex model is useful to define the diameter of a vortex.  This vortex 

model is occasionally used to predict the wind distribution in hurricanes and tornadoes. 
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Figure 2.1   Schematic Illustration of the Rankine Combined Vortex Model 

 

 

 

 

 

 

 

 

 

 

 



 32

2.5.4 Burgers Vortex Model 

Burgers vortex model is an exact solution of the Navier-Stokes equation for three-

dimensional vortex flow (Burgers, 1948).  The assumptions for Burgers vortex model are 

that the fluid flow is the steady state; the fluid flow is axis-symmetry; the axial gradient 

(d/dz) of the physical quantities is small; the radial velocity only depends on the radius r, 

the axial velocity is a linear function of z.  Mathematic expressions for the tangential, 

radial, and axial velocity components as well as the vorticity components in the present 

notations are as follows: 
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where the parameter a is a measure of the radial influx.   is independent of z, but 

depends on the influx parameter a.  At the center r = 0, 

θU

zΩ  has the maximum value of 

νπ2aΓ , which is twice the angular velocity of the solid-body rotation of the core: 
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The pressure field is given by the following equations: 

 

 ( ) ( ) ( 222
2

0

2

2

2

4
2

1
16

0,0,

2

zradx
x
eapzrp

ar
x

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Γ
+= ∫

− ρ
νπ

ρ
ν

)  (2.20d) 

Burgers vortex model is also occasionally used to predict the wind distribution in 

hurricanes. 

 

2.5.5 Sullivan Vortex Model 

The Sullivan vortex is a closed solution to Navier-Stokes Equation (Ogawa, 

1993).  For a stead two-celled vortex, which is characterized by a reversal axial flow near 

the axis compared to the outer flow, Sullivan derived the following solution in the present 

notions (Lugt, 1983; and Ogawa, 1993): 

 

 ( )
( )∞

Γ
=

H
arH

r
U ν

πθ
2

2

2

       (2.21a) 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

−
νν 2

2

16 ar

r e
r

arU        (2.21b) 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
ν2

2

312
ar

z eazU         (2.21c) 

where  

( ) dxdssexarH
ar x

s∫ ∫ ⎥
⎦

⎤
⎢
⎣

⎡
−+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
ν

ν

2

0 0

1
2 2

13exp
2

     (3.22a) 

 



 

 

34

         (3.22b) ( ) 905.37=∞H

 

The distribution of the static pressure can be written as: 

 

 ( ) ( ) [ ] dr
r

V
e

r
razazPzrP

r
ar ∫+

⎭
⎬
⎫

⎩
⎨
⎧

−++−= −

0

222
2

2
2222 2

1364
2

,0, θν ρνρ   (3.23) 

 

Sullivan vortex model is also occasionally used to predict the wind distribution in 

tornadoes.  All of the vortex models that are solutions of the Navier-Stokes equation are 

steady state.  That is, any term involving t∂∂  is not present in the equation.  

 

2.6 Gaps in This Area 

Though many types of hydrodynamic separators have been developed for 

wastewater and stormwater treatment, to date minimal fundamental study exists on this 

topic.  Design specifications of commercial devices are based on the semi-empirical 

equations that are suitable only for the specific manufacturer.  No unifying scenarios 

exist.  The fundamental investigation about the mechanisms of solid-liquid separation in 

a confined vortex chamber is necessary for the achievement of the optimum design. 
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Chapter 3 

Experimental Study on Particle Removal Efficiencies  

in Confined Vortex Chamber 

 

In this chapter, the particle removal efficiencies in the confined vortex chambers 

operating with a tangential inlet pipe and without underflow were experimentally 

examined.  The effects of the chamber heights and the inlet pipe elevations on the particle 

removal efficiencies were investigated by changing the heights of the chamber and the 

inlet pipe, respectively.  Four physical test models were considered: three with different 

inlet pipe elevations and one with a lower chamber height.  The measured results indicate 

that for a given chamber height and chamber diameter the changing of inlet pipe height 

has no significant impact on the particle removal efficiency.  However for a given 

chamber diameter and a given inlet pipe height the particle removal efficiency has a 

significant increase with increasing the chamber height. 

 

3.1 INTRODUCTION 

 A vortex is defined as the rotational motion of fluid around a common center 

(Lugt, 1883).  Vortex separators are manufactured hydrodynamic devices that utilize the 

vortex principle to remove suspended solids from inflow.  Unlike the conventional 

treatment technology that rely only on gravity settling, solids in a confined vortex 

separator are removed by both gravity settling and secondary flows which transport 

settling solids to the center of vortex chamber to settle (Andoh and Smisson, 1994; 
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Wong, 1997; Minton, 2005).  This is the primary mechanism for heavy solids removal in 

the swirl/vortex separators. 

 Since Smisson (1967) developed the very first full-scale cylindrical vortex 

separator to treat the combined sewer overflow at Bristol., this treatment technology has 

been unmatched in treating wastewater and/or stormwater in the past 40 years.  A family 

of hydrodynamic vortex separators, such as USEPA Swirl Concentrator, Storm King, 

etc., has been evolved from Smisson’s original design model.  At the same time, many 

scientists are investigating the sizing approaches for these hydrodynamic devices.  Some 

studies have attempted to investigate the relationship between the performances of test 

models and prototype separators with semi-empirical equations, or using the scaling laws 

such as Froude scale and Hazen scale (Sullivan et al, 1972 & 1978; Deamer, et al, 1994; 

Andoh and Smisson, 1994; Weiβ and Michelbach, 1996; Weiβ, 1997; Fenner and Track, 

1997 & 1998; Luyckx and Berlamont, 2004).   

 The accurate prediction of particle removal efficiency in a swirl/vortex separator 

is of considerable concern for the purpose of design and improved operation.  Multiple 

factors may affect the motion of particles in the rotational fluid flow, and thereby in some 

cases prevent any reasonable theoretical approach.  Therefore, the overall objective of the 

study was to experimentally investigate the particle removal efficiencies in confined 

vortex chambers, and thereby contributing some experimental data for the theoretical 

study in the future.  The effects of the chamber height and the relative position of inlet 

pipe on particle removal efficiencies were examined by changing the height of the 

chamber and inlet pipe, respectively. 
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3.2 EXPERIMENTAL SETUP AND PROCEDURE 

3.2.1 Experimental Apparatus 

The experimental apparatus used for this study is schematically illustrated in Fig. 

3.1.  The system consists of an inflow pipe which is connected to a drinkable tap water 

supply (the inflow for the system), an overflow tank which provides a constant water 

pressure head for the system, an inlet pipe which is connected to the overflow tank and 

the vortex chamber, a sand feed funnel which is connected to the inlet pipe with a 

transparency pipe, a scale which is used to measure the hydrostatic pressure head, a 

vortex chamber without underflow exit, and two drain tanks.  The rotational flow field in 

the chamber is generated by the momentum transfer from the tangential inflow.  The 

outflow flows out along the top edge of the chamber. 

The vortex chambers were made of wood with a tangential PVC inlet pipe as 

shown in Fig.3.2.  The diameter and height of the chamber are D1 ( ) and Ho 

respectively; while the inlet pipe diameter is DIN (

1R2=

INR2= ).  In this study four vortex 

chamber models were tested: three of them have a fixed chamber height of Ho = 175mm 

and a fixed inlet pipe diameter of DIN = 12.7mm, but with varied inlet pipe elevations of 

HIN = 23mm, 77mm, and 121mm (the inlet pipe elevation HIN is measured from the 

chamber bottom to the inlet pipe invert level), respectively. One of chambers is fixed 

with a chamber diameter of D1 = 127mm and inlet pipe diameter DIN = 12.7mm, but with 

a reduced chamber height Ho = 120mm. 
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Fig. 3.1   Schematic Outline of Experimental Apparatus 
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Fig. 3.2   Schematic Illustration of the Vortex chamber 
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3.2.2 Experimental Materials  

The solid particles used in this study were manufactured by Power Technology, 

Inc. (PTI), Burnsville, Minnesota.  The substance was made of quartz with a density of 

2650 .  The particle size ranged from 0 to 1000 microns.  The particle size 

distribution of the manufactured solid particles was determined by the sieve method 

(Guo, 2006).  The sieve analysis results, based on three samples (each sample was 100 

grams) are reproduced in Table 3.1.  The particle size distribution curve is shown in Fig. 

3.3 that was based on the percent coarser by weight. 

3/ mkg

 

 

 

 

Table 3.1   Sieve Analysis Results for Manufactured Material 

Screen On Screen Material 

Weight (grams) Mesh Micron 
(1) (2) (3) Ave 

% 

18 1000 0.0 0.0 0.0 0.0 0.0 
35 500 5.5 5.3 5.6 5.5 5.5 
60 250 5.4 5.6 5.1 5.4 5.4 

140 106 30.2 30.1 30.4 30.2 30.2 
270 53 21.9 22.2 21.7 21.9 21.9 
Pan -53 37.0 36.8 37.2 37.0 37.0 

 

(Source: Guo, 2006) 
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Fig. 3.3  Particle Size Distribution of Manufactured Blend Material (0 to 1000 microns)
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3.2.3 Experimental Procedures 

In this study the drinkable water is used as the fluid medium.  Experiments were 

conducted with water temperature around T = .  For a typical trial, the following 

operational procedures were followed. 

Co9

First, the apparatus was connected and leveled as shown in Fig.3.1.  The water 

from drinking tap water is discharged into the overflow tank, then into the vortex 

chamber through the inlet pipe, and finally flows out along the top edge of the chamber 

and into the drain tank underneath the vortex chamber.  When the overflow tank is full, 

the overflow occurs, and a constant water pressure head for the system is maintained.  

Waiting for a while, a steady fluid flow is obtained. 

After that, the measurements of the flow rate (Q) with a graduated cylinder and a 

stopwatch, water levels at the sand feed pipe that represents the hydrostatic pressure head 

in front of the vortex chamber, and the fluid temperature are performed and recorded. 

Next, a certain quantity of sand material is measured with a precise balance 

( g ).  The quantity of sand material used in this experiment ranged from 50 to 100 

grams for each sample.  The sand materials were slowly fed into the vortex chamber 

(with an average influence concentration of about 700 mg/l) through the sand feed funnel 

located in front of the vortex chamber as shown in Fig.3.1.   

01.0±

Then, the drinkable tap water was turned off after about 10 residence times.  The 

maximum residence time was about 85 seconds.  The whole liquid with solids captured in 

the chamber was poured into a big container.  The chamber was washed several times 

with drinking water to ensure that all of the captured solids were collected for each 

sample.  Finally, the collected sample was heated in an oven to promote evaporation with 
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particle retention.  The mass of the dried sand particles captured in the chamber was 

measured with a precise balance and recorded. 

 

3.3 RESULTS AND DISCUSSIONS 

3.3.1 Definition of Removal Efficiency 

The performance of any commercial solid-liquid separators can be characterized 

by the separation efficiency.  For solid-liquid separator if M is the total fed mass; Mc is 

the mass separated from the feed; and Me is the mass escaped from the separator; the total 

mass of the feed must be equal to the sum of the total masses of the products, i.e.: 

 

         (3.1) ec MMM +=

 

 In general the total efficiency of separation ET is simply defined as the ratio of mass Mc 

of all particles separated from the mass M of all solids fed into the unit: 

 

 
M
M

E c
T =          (3.2) 

 

or it can be written as: 

 

 
M
M

E e
T −= 1          (3.3) 

 

 

 



 43

3.3.2 Experimental Results 

The experimental data and measured results based on the four vortex chamber 

models are summarized in Tables 3.2, 3.3, 3.4 and 3.5.   The first row in the tables is the 

measured inflow rate Q; the second row is the measured hydrostatic pressure head above 

the top of the chamber; the third and forth rows are the added sand material mass and the 

captured sand material mass by the vortex chamber; and the last row is the calculated 

removal efficiency based on each inflow rate. 

Figures 3.4, 3.5, 3.6, and 3.7 show the relationship between the measured removal 

efficiencies and the measured inflow rates obtained from the four test models.  The 

horizontal axis represents the measured inflow rates; while the vertical axis represents the 

measured removal efficiencies.  These figures indicate that for a given vortex chamber 

the removal efficiency decreases with an increasing flow rate.  In practice, to achieve the 

goal of the high removal efficiency, a low design inflow rate is desirable.  The correlation 

analysis indicates that for a given unit configuration the removal efficiency is almost 

completely interrelated with the inflow rate, and it can be approximately expressed by the 

quadratic polynomial of the flow rate.   

 

3.3.3 Effect of Inlet Pipe Height on Removal Efficiency 

Fig. 3.8 shows the comparison of measured removal efficiencies based on three 

vortex test models with a fixed chamber diameter (D1 = 127mm), chamber height (Ho = 

175mm), and inlet pipe diameter (DIN = 12.7mm), but with the varied inlet pipe elevation 

of HIN = 23mm, 77mm and 121mm, respectively.  The values for HIN are measured from 

the chamber floor to the invert level of the inlet pipe. 
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Table 3.2   Data and Results Measured Based on D1 = 127 mm, DIN = 12.7 mm,  
       Ho = 175 mm, and HIN = 23 mm (water temperature T= ) Co9
 

Inflow Rate Q ( ml/sec ) 46.5 56.6 84.7 90.8 105.6 130.6 196.8

Pressure Head ∆H (mm) 11 12 14 19 23 29 54

Mass Added M ( g ) 62.85 55.65 64.17 79.82 83.83 106.56 87.87

Mass Captured Mc (g) 34.53 29.24 27.52 32.75 31.47 33.09 17.17

Removal Efficiency (%) 54.94 52.54 42.89 41.03 37.54 31.05 19.54
 

 

 

Table 3.3    Data and Results Measured Based on D1 = 127 mm, DIN = 12.7 mm,  
        Ho = 175 mm, and HIN = 77 mm (water temperature T= ) Co9

 

Inflow Rate Q ( ml/sec ) 26.1 41.9 86.5 101.9 115.3 211.9

Pressure Head ∆H (mm) 4 0.9 18 23 26 62

Mass Added M ( g ) 53.92 52.32 86.48 65.13 69.84 103.39

Mass Captured Mc (g) 35.44 30.01 24.78 25.94 26.47 23.32

Removal Efficiency (%) 65.73 56.98 44.81 39.83 37.90 22.56
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Table 3.4   Data and Results Based on D1 = 127 mm, DIN = 12.7 mm, Ho = 175 mm,  
       and HIN = 121 mm (water temperature T= ) Co9

 

Inflow Rate Q ( ml/sec ) 43.6 64.5 81.3 96.5 122.1 131.3

Pressure Head ∆H (mm) 7 11 13 17 26 32

Mass Added M ( g ) 49.13 58.99 56.89 53.43 55.93 57.27

Mass Captured Mc (g) 27.50 28.32 24.77 21.92 19.87 18.86

Removal Efficiency (%) 55.97 48.01 43.54 41.03 35.53 32.93
 

 

 

Table 3.5    Data and Results Measured Based on D1 = 127 mm, DIN = 12.7 mm,  
        Ho = 120 mm, and HIN = 23 mm (water temperature T= ) Co9
 

Inflow Rate Q ( ml/sec ) 42.5 82.7 95.2 122.5 129.5 

Pressure Head ∆H (mm) 6 13 18 27 29 

Mass Added M ( g ) 52.63 53.8 60.24 63.47 84.07 

Mass Captured Mc (g) 29.29 21.29 21.79 19.44 24.98 

Removal Efficiency (%) 55.65 39.57 36.17 30.62 29.71 
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Fig.3.4   Measured Removal Efficiency Based on D1 = 127 mm, Ho = 175 mm and HIN = 23 mm
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Fig. 3.5   Measured Removal Efficiency Based on D1 = 127 mm, Ho = 175 mm and HIN =77 mm 
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Fig. 3.6   Measured Removal Efficiency Based on D1 = 127 mm, Ho = 175 mm and HIN = 121 mm 
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Fig.3.7   Measured Removal Efficiency Based on D1 = 127 mm, Ho = 120 mm and HIN = 23 mm
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This figure shows that by increasing the heights of the inlet pipe from HIN = 23 

mm to HIN = 121 mm, the measured points from these three test models distributed with 

the same trend and closed together.  The average difference of the measured removal 

efficiencies among these three test models is about 2%.  This means that the removal 

efficiency can not be improved by changing the inlet pipe locations.  Therefore it can be 

concluded that the effect of inlet pipe elevation on particle removal efficiency is 

insignificant. 

 

3.3.4 Effect of Chamber Height on Removal Efficiency 

Fig. 3.9 shows the comparison of measured removal efficiencies from two vortex 

test models with the fixed chamber diameter (D1 = 127 mm), inlet pipe diameter (DIN = 

12.7 mm), and inlet pipe height (HIN = 23 mm), but with different chamber heights of Ho 

= 120 mm and Ho = 175 mm, respectively. 

Fig.3.9 indicates that the measured points from the chamber with height of Ho = 

175 mm are overall above the measured points from that with chamber height of Ho = 

120mm.  This means that for a given inflow rate the removal efficiency increases with 

increasing height of the chamber.  For flow rates within the range from Q = 80 ml/sec to 

110 ml/sec (which is equivalent to the chamber overflow rate of 2
1RQUOR π=  = 2.0 

mm/s to 2.8 mm/s), the removal efficiencies increases about 10% when the chamber 

height increases 45.8%.  The change of chamber height could cause a significant change 

in removal efficiency, because removal efficiency is sensitive to the chamber height; it 

could be improved by increasing the chamber height. 
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Fig. 3.8   Effect of Inlet Pipe Elevation on Removal Efficency Based on Ho = 175 and DIN = 12.7 mm 
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Fig. 3.9   Effect of Chamber Heigt on Removal Efficiency Based on D1 = 127 mm and HIN = 23 mm
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However, within the range of low flows, for example, referring to the first point in 

Fig. 3.9, the measured removal efficiency from a chamber with Ho = 120 mm is very 

close to that from a chamber with Ho = 175 mm.  This is probably due to the fact that at 

low flow rates the centrifugal effect is small and the gravitational separation dominates.  

Under this condition, the particle trajectory is almost along the tangential and vertical 

directions (i.e., along a cylindrical plane) in the chamber.  This motion is similar to that a 

particle moves in a one-dimensional upward fluid flow.  Therefore, the removal 

efficiency would not increase significantly with increasing water depth (chamber height).  

However, at high flow rates the centrifugal effect is larger, and the particles will move 

simultaneously forward (tangential), outward (radial), and upward or downward (vertical) 

in the chamber.  The taller the chamber, the more particles could be captured by the 

chamber due to the centrifugal effect.  The separation is the combined contribution of 

centrifugal effect and gravitational effect.   

 

3.3.5 Comparison of Predicted Results with Experimental Results 

In this section, the gravitational settling method is employed to predict the particle 

removal efficiency in a confined vortex chamber.  In general, sedimentation analysis is 

done to determine the settling velocities of particles with different size, shape, and 

density.  The particle settling velocities are normally expressed in terms of the order of 

diameters of quartz particles that settle in a fluid.  For a given overflow rate of  in a 

vortex chamber, particles with settling velocities, , greater than the overflow rate will 

settle to the bottom of the chamber; while particles with settling velocities less than the 

overflow rate will escape from the chamber.  Therefore, the critical particle settling 

ORU

sU
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diameter (dc) can be determined with equating the particle settling velocity ( ) to the 

chamber overflow rate ( ).  The chamber overflow rate can be written as: 

sU

ORU

 

 2
1D

Q
2
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4
R
QUOR ππ

==         (3.4) 

 

Cheng (1997) proposed a general formula to predict the terminal settling velocity of 

natural sediment particles in the present notation as follows: 
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where  is the particle settling velocity, d is particle diameter,sU ν  is the kinematic 

viscosity of the fluid, g is gravitational acceleration, pρ  and fρ  are particle density and 

fluid density, respectively.  Equating Eq.(3.4) to Eq.(3.5) and rearranging yields: 
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where dc is the critical particle diameter.  For a given design flow rate Q and the chamber 

Diameter D1, the critical particle settling size (dc) can be determined with Eq.(3.6).  
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Referring to the Particle Size Distribution (PSD) curve, the percent coarser particles (i.e., 

the particle removal efficiency) can be estimated. 

 Figure 3.10 shows the comparison of experimental results with predicted results 

derived from Eq.(3.6) coupled with the PSD curve (Fig.3.3).  This figure indicates that 

the predicted results (dashed line) are overall below the experimental results for both 

chamber heights of Ho = 175 mm and Ho = 120 mm.  This means that Eq.(3.6) could be 

used to predict the lower limit of removal efficiency for a vortex separator. 

 However, the experimental results with a chamber height of Ho = 120 mm are 

very close to the predicted results with Eq.(3.6), except within the low flow range.  This 

is due to the fact that the particle size distribution curve was derived from sieve analysis 

that was based on the screen mesh from 18 to 270 (1000 to 53 micron) (see Table 3.1).  

Particle size distribution for particles with a diameter less than 53 micron was not 

analyzed.  Thus, the particle size distribution with this range could not accurately predict 

the percent coarser by weight.   

 

3.3.6 Sizing Formula 

Based on the previous comparison made, it was found that the predicted results 

from Eq.(3.6) has a good agreement with the experimental data obtained from the 

chamber with a diameter of D1 = 127 mm and height of Ho = 120 mm.  However, the 

ratio of chamber height to chamber diameter is about 0.1DH 1o ≈ .  This means that for 

chambers with the ratio of 0.1DH 1o = , Eq.(3.6) might be used for unit sizing.  By 

rearranging Eq.(3.6), the following unit sizing formula is suggested: 
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Fig.3.10  Comparison of Experimental  Results with Predicted Results Derived from Eq.(3.6) 
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3.4 Conclusions 

In terms of this analysis, the following conclusions are made.  The removal 

efficiency decreases with increasing inflow rate.  The effect of inlet pipe elevation on 

particle removal efficiency is insignificant; while the chamber height has a significant 

impact on the particle removal efficiency.   

The predicted results with gravitational separation only could yield a lower limit 

of particle removal efficiency.  For chambers with a ratio of chamber height to chamber 

diameter of 0.11 =DH o , Eq.(3.7) coupled with the particle size distribution curve is 

applicable for unit sizing. 

 

 



 55

Chapter 4 

Determination of Angular Velocity for Turbulent  

Vortex Chamber Flow 
 

Understanding flow patterns in a confined vortex chamber is an important step 

when investigating the mechanisms of liquid-solid separation.  However, the angular 

velocity of fluid motion around a common axis is an important parameter to theoretically 

determine flow patterns and particle trajectories in the rotational flowfields.  In this 

chapter, a simple formula is derived, based on the law of conservation of angular 

momentum and the boundary conditions, to determine the angular velocity for turbulent 

vortex chamber flow.  It can be applied to predict the angular velocity in a confined 

vortex chamber with a tangential inlet pipe. 

 

4.1 Introduction 

Since Smisson (1967) developed the very first full-scale cylindrical vortex 

separator to treat the combined sewer overflow at Bristol in the 1960s, a family of 

hydrodynamic vortex separators, such as USEPA Swirl Concentrator, Storm King, etc., 

has since evolved from Smisson’s original design model for wastewater and stormwater 

treatment over the past 40 years (Sullivan, et. al., 1972; Sullivan, et al., 1982; Field & 

O’Connor, 1996; Luyckx & Berlamont, 2004).  At the same time, many studies have 

been conducted to investigate the mechanisms of solid-liquid separation and the sizing 

approaches for these hydrodynamic devices (Sullivan et al, 1972; Sullivan et al, 1974; 

Sullivan et al 1978; Sullivan 1982; Fenner and Track, 1997 & 1998; Deamer, et al, 1994; 
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Andoh and Smisson, 1994; Luyckx and Berlamont, 2004).  Some investigators have 

attempted to establish relationships between test models and prototype separators with 

scaling laws such as Froude scale and Hazen scale, or semi-empirical equations (Sullivan 

et al, 1972; Sullivan et al, 1974; Sullivan et al 1978; Fenner and Track, 1997 & 1998; 

Deamer, et al, 1994; Andoh and Smisson, 1994; Luyckx and Berlamont, 2004).  

However, there are too many factors (such as unit geometry and fluid flow parameters as 

well as particle properties) that might affect the motion of particles in the chamber, and 

thereby in some cases prevent scaling.  The angular velocity of fluid motion around a 

common axis is an important parameter which governs the motion of the rotational fluid 

flow and particle trajectories in the chamber.  The purpose of the chapter is to derive a 

formula, based on the law of conservation of momentum and boundary conditions, to 

estimate the angular velocity for vortex chamber flows. 

 

4.2 Physical Model and Assumptions 

In terms of the literature review conducted in Chapter 2, so far not much 

fundamental development exists for vortex separators with geometries similar to that of 

the VortechsTM system and Downstream Defender®.  Therefore, in this study a vortex 

chamber with a similar geometry of VortechsTM main chamber is selected as the study 

model as shown in Fig.4.1.  The dimensions of the chamber are also shown in Fig.4.1.  

The fluid flow enters tangent to the chamber and generates a rotational flowfield around 

the vertical axis.  It then flows out along the top edge of the chamber.  A Rankine-like 

tangential velocity profile is generated as shown in Fig.4.2 (Lugt, 1983; Ogawa, 1993; 

Escudier & Merkli, 1979; Vatistas et. al., 1986; Vatistas et. al., 1988).  The velocity in the  
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Fig. 4.1   Schematic Illustration of the Vortex Chamber  
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Fig. 4.2 Tangential Velocity Distribution of the Rankine Combined Vortex  
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chamber is conveniently resolved into three components: tangential ( ), axial (Uz), and 

radial (Ur).  However, the radial velocity is small in comparison with the tangential and 

vertical velocity components, and thus negligible (Rudinger, 1980; Svarovsky, 1981; 

Ogawa, 1993).  

θU

It is well known from the Rankine combined vortex model (Fig.4.2) that the 

tangential velocity profile in a confined vortex chamber changes from a type of free 

vortex to a type of forced vortex when the flow approaches the central axis of rotation 

(Ogawa, 1984 and 1993; Vatistas et al, 1986; Vatistas et al, 1988).  Previous cyclone 

experimental studies have shown that for a given inflow rate (Q) the tangential velocity 

does not vary significantly along the height of the chamber (Vatistas, et al., 1986; 

Vatistas, et al., 1988).  It can be assumed that the forced vortex zone and the free vortex 

zone within the chamber are both constant along the height of the chamber.  For a given 

inflow condition, the tangential velocity is a function of the radial coordinate ( r ), rather 

than vertical coordinate (z).  Therefore, under the steady tangential inflow condition it 

can be assumed that the angular velocity is constant in the chamber.  Further assumptions 

include: the flowfield is axi-symmetrical around the vertical axis, the fluid flow is 

incompressible and steady, and the distribution of the inflow is uniform. 

 

4.3 Determination of Driving Torque and Resistance Torque  

4.3.1 The Law of Conservation of Angular Momentum 

The angular velocity can be determined by applying the law of conservation of 

angular momentum to the system.  In a steady equilibrium system the angular momentum 

(L) is constant.  The time derivative of angular momentum is called torque: 
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Fr
dt
dLT

v
×==         (4.1) 

 

where  is the external force acting on the system.  Therefore for a steady and 

equilibrium system the following relation is equivalent: 

F
v

 

  Constant=systemL 0=⇔ ∑ extT       (4.2) 

 

where Text is the external torque acting on the system, which include the tangential 

pressure force from the inlet pipe flow and the frictional force from the chamber wall and 

bottom.  

 

4.3.2 Determination of Average Boundary Shear Stress  

The complexity of the boundary conditions in the vortex chamber makes it 

difficult to determine the shear forces between the chamber surface and the fluid (i.e. the 

force per unit area exerted by the boundary surface on the fluid, and vice versa).  

However, the fluid motion in the tangential direction in the chamber is similar to that in 

an open channel.  To simplify the problem and get an analytical solution of the angular 

velocity formula, the constant boundary shear stress is assumed and the Chezy’s Formula 

is employed to estimate the boundary shear stress along the boundary (Yang, 1996; 

Street, et al., 1996): 
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 2

8
1 Uf fo ρτ =         (4.3) 

 

where oτ  is shear stress along the boundary; fρ is fluid density; U is the average fluid 

velocity; and f is Darcy-Weisbach friction factor which is a function of the relative 

roughness (e/D) and the Reynolds number ( ):  eR

 

 ⎟
⎠
⎞

⎜
⎝
⎛= eR,

D
efunctionf         (4.4) 

 

where e is the average roughness height; D is characteristic diameter, and Reynolds 

number is defined as  

 

 
ν

UDRe =          (4.5) 

 

where U is characteristic average fluid velocity; and ν  is the kinematic viscosity of the 

fluid.  For turbulent rough flow the fiction factor depends only on the relative roughness.  

The friction factor can be approximated as constant (Street et al., 1996).  In this study, 

only the turbulent vortex flow is considered. 

In terms of Rankine Combined Vortex model (Fig.4.2), the tangential velocity 

distribution ( ) in the forced vortex region (core region) and free vortex region (outer 

region) of the chamber can be expressed as: 

θU
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)0( 2RtorrU ==ωθ       (4.6) 

and 

)( 12 RtoRr
r

U ==
Γ

θ       (4.7) 

 

where ω  is the angular velocity of the core; R2 is the radius of maximum tangential 

velocity; and Γ  is a constant.  At the boundary of the free vortex and the forced vortex 

(i.e., ) the tangential velocity ( ) has the same value for the forced vortex region 

and the free vortex region.  Thus the following relationship can be obtained: 

2r R= θU

 

 
2

2, 2 R
RU R

Γωθ ==         (4.8) 

 

Therefore the constant Γ can be expressed as: 

 

2
2Rω=Γ          (4.9) 

 

Substituting Eq.(4.9) into Eq.(4.7), the tangential velocity in the free vortex region can be 

expressed as: 

 

r
RU

2
2ω

θ =          (4.10) 

 

The average tangential velocity U can be determined by 
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where A is the cross-sectional area of the fluid flow in the tangential direction, and can be 

determined by multiplying the chamber height ( ) by the chamber radius ( ).   is 

the total flow rate passing through this cross-sectional area in the tangential direction.  By 

substituting Eqs.(4.6) and (4.10) into the above equation and integrating, the average 

tangential velocity can be written as: 

0H 1R θQ

 

1

2
2

2

1ln
2
1

R
R

R
R

U
ω
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=         (4.11) 

 

Then by substituting Eq.(4.11) into Eq.(4.3) and rearranging, the average boundary shear 

stress can be expressed as: 
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4.3.3 Determination of the Driving Torque  

The driving force pushing fluid to rotate in a confined vortex chamber is the 

hydrostatic pressure force from the tangential inlet pipe flow.  The total inlet hydrostatic 

pressure force acting on the vortex chamber can be expressed as: 
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 ( )( ) HgRRHgpAF INfINfINinlettotal ΔπρπΔρ 22
, ===     (4.13) 

 

where Ftotal, inlet is the total inlet hydrostatic pressure force exerted on the rotating flow 

system; p is the net hydrostatic pressure at the center of the inlet pipe; AIN is the cross-

sectional area of inlet pipe; HΔ  is the net hydrostatic pressure head above the top of the 

chamber (also called pressure head drop);  is the radius of inlet pipe.  Then the total 

driving torque from the tangential inflow can be written as: 

INR

 

 ( ) HRRRgHRRgRFT ININfICINfICinlettotalinlettotal Δ−=Δ== 2
1

2
,, πρπρ  (4.14) 

 

where RIC is the radius from the center of the chamber to the centerline of inlet pipe (i.e. 

). INIC RRR −= 1

 

4.3.4 Determination of the Resistance Torque  

Primarily, the resistance torque comes from the boundary frictional force between 

the chamber surface and fluid.  In this study, in order to simplify the derivation and 

obtain an analytical solution of the angular velocity formula, the average boundary shear 

stress, as expressed by Eq.(4.12), is employed to determine the boundary frictional force.  

The resistance torque from the chamber wall and the chamber bottom frictions is derived 

as follows. 

 

4.3.4.1   Resistance torque from chamber wall surface friction 
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The boundary shear force from the chamber wall surface can be expressed as: 

 

 wallowall AF τ=  

 

where Fwall is the frictional force from chamber wall surface, and Awall is the surface area 

of the chamber wall.  Substituting Eq.(4.12) into the above equation and rearranging 

yields: 
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Therefore, the resistance torque due to the wall friction resistance can be written as: 
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4.3.4.2   Resistance torque from chamber bottom surface friction 

Let’s consider an infinitesimal ring strip with width of dr within the bottom of the 

chamber as shown in Fig. 4.3.  Similarly, the total resistance torque from the chamber 

bottom can be expressed as: 
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By substituting Eq.(4.12) into the above equation and integrating, the resistance torque 

due to the chamber bottom friction resistance can be written as: 
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Fig. 4.3   Schematic Illustration of Integration Area at the Chamber Bottom 

 

 

4.3.4.3   Total resistance torque 

The total resistance torque can be obtained by summing the resistance torque from 

the chamber wall friction resistance and the chamber bottom friction resistance: 
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Rearranging the above equation yields: 
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4.4 Determination of Angular Velocity Formula 

In terms of the law of conservation of momentum, the total external torque acting 

on the system must be zero, i.e., sheartotinlettot TT ,, = .  Equating Eq.(4.14) to Eq.(4.19) gives: 
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By dividing both sides of the above equation by ( fρπ ) and rearranging, a simple 

formulae of angular velocity is obtained: 
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4.4.1 Determination of Characteristic Diameter (D) and Friction Factor (f) 
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For turbulent rough flow the friction factor (f) is constant.  It can be found from 

the Moody diagram if the relative roughness (e/D) and the characteristic diameter D are 

known (Street et al., 1996).  The characteristic diameter D can be determined by 

considering the force balance in the system.  Since fluid motion in the tangential direction 

is similar to that in an open channel, the resistance force and driving force, based on the 

assumption that the energy slope ( ) in the tangential direction is constant, can be 

written as: 

eS

 

Resistance Force: ( ) ( )2
1010 2 RHRAAAA bottwallbottbottwallwall ππτττ +=+=+  

Driving Force:  ( ) ef SHRg 0
2
1πρ  

 

By equating the resistance force to the driving force, the following relationship is 

obtained: 

 

 ( ) ( ) ef SHRgRHR 0
2
1

2
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Rearranging Eq.(4.21) yields: 
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Then equating Eq.(4.3) to Eq.(4.24) gives.: 
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Rearranging the above equation yields: 
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where L is the average circumference and is defined as 1RL π= .  By comparing 

Eq.(4.24) with Darcy-Weisbach formula, the following relationship is obtained: 
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where  is the hydraulic radius.  In terms of the relative roughness (e/D) and 

characteristic diameter (D) which is determined by Eq.(4.25), the frictional factor (f) can 

be determined from Moody diagram which can be found in various textbook or 

professional engineering handbooks. 

hR

 

4.4.2 Determination of Head Loss 

In the vortex chamber system, major head loss comes from the frictional 

resistance of the chamber surface exerting on the fluid and the inlet pipe exit loss.  The 

summation of them should be equal to the pressure drop between the chamber inlet and 
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chamber outlet.  For a given unity geometry, the head loss is a function of inflow rate Q.  

For practical purpose, it is useful to represent the pressure head drop ( HΔ ) as a function 

of flow rate and unit geometry.  It is derived as follows. 

 

4.4.2.1   Head loss in the vortex chamber 

 The motion of fluid in a vortex chamber can be classified into two components: 

vertical component and tangential component.  In terms of Darcy-Weisbach equation, the 

frictional losses in the vertical direction of the chamber can be expressed as follows  
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where is the head loss in the vertical direction of the chamber;  is the Darcy-

Weisbach friction factor in the vertical direction.  The friction loss in the tangential 

direction of the chamber can be written as: 
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where is the head loss in the vertical direction of the chamber;  is the Darcy-

Weisbach friction factor in the tangential direction.   

θf
h θf

 

4.4.2.2   Head Loss in the inlet pipe exit 
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 The head loss for a sudden pipe expansion can be estimated with the following 

equation (Street, et al., 1996; Durance al., 2003): 
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where  is average inlet pipe velocity and is defined as INU 2
INRππ ;  is the average 

tangential velocity in the chamber which can be represented by Eq.(4.11); and  is 

head loss coefficient which is a function of the inlet pipe velocity.  For a sudden pipe 

expansion, the loss coefficient  is about one. 

θU
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Substituting and into Eq.(4.28) and rearranging gives: INU θU
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4.4.2.3   Total head loss: 

 Then the total head loss can be determined by summing the head losses from 

chamber and inlet pipe exit, i.e.: 
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In order to observe the contributions of the first term and the second term of 

Eq.(4.30) to the total head loss, two factors of zα  and θα  are added in the front of the 

first term and second term of Eq.(4.29), respectively.  The values of zα  and θα  are equal 

to one or zero.  If the term is considered, then the value of zα  or θα  is set to one, 

otherwise it is set to zero.  Then the above equation is rewritten as: 
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  (4.30a) 

 

4.4.3 Determination of Angular Velocity (ω ) and Pressure Head Drop ( HΔ ) 

4.4.3.1   General equations for angular velocity and pressure head drop  

By rearranging Eq.(4.20), the pressure head drop( HΔ ) can be expressed as: 
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By equating Eq.(4.30a) to Eq.(4.31) and rearranging, the angular velocity can be 

rewritten as follows: 
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in which 
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By substituting Eq.(4.32) into Eq.(4.31) and rearranging, the pressure head drop can be 

expressed as: 
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In general, the flow in the tangential direction is turbulent rough flow and the friction 

factor  is constant; while the flow in the vertical direction is laminar flow due to the θf
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low overflow rate desired for solid separation, and the fraction factor  can be 

determined in terms of the calculated Reynolds number.  The Reynolds number in the 

vertical direction can be expressed as follows: 

zf
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In terms of the calculated Reynolds number ( ) and the relative roughness (zRe De ), the 

friction factor  can be determined from Moody’s diagram (Street et al., 1996).   zf

 

4.4.3.2 Effect of head loss terms on angular velocity 

 Moreover, in order to examine the significance of each term in Eq.(4.30a), the 

following cases, based on different combination of the terms in Eq.(4.30a), are 

considered: 

 

Case 1   θα  = 1.0 and zα  = 1.0 

If all of the terms in Eq.(4.30a) are included in the calculation of pressure head 

drop, (i.e.: the values of zα  and θα  are equal to one), then from Eq.(4.32) the general 

equation for angular velocity can be expressed as: 
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in which 
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and from Eq.(4.33) the general equation for pressure drop can be expressed as: 
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Case 2   θα  = 1 and zα  = 0 

If the second term of Eq.(4.30a) is neglected (i.e.: zα = 0  but θα  = 1), then from 

Eq.(4.32) the angular velocity can be rewritten as: 
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and from Eq.(4.33) the equation for pressure head drop can be written as  
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Case 3   θα  = 0  and zα  = 1 
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If the first term of Eq.(4.30a) is neglected (i.e.: θα  = 0 but zα = 1), then from 

Eq.(4.32) the angular velocity can be rewritten as: 
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and from Eq.(4.33) the pressure drop formula can be expressed as: 
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Case 4   θα  = 0  and zα  = 0 

If the first and second terms of Eq.(4.30a) are neglected (i.e.: the values of zα  and 

θα  are equal to zero), then the angular velocity can be reduced to: 
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and from Eq.(4.33) the pressure head drop equation can be reduced to: 
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 In order to conveniently compare the difference of the predicted results for 

angular velocity with Eq.(4.35), Eq.(4.37), Eq.(4.39), and Eq.(4.41) and thereby simplify 

the angular velocity formula by eliminating the insignificant terms in Eq.(4.35), a 

confined vortex chamber with R1 = 63.5mm, RIN = 6.35mm, R2 = 50.8mm, and Ho = 

175mm is selected as the case study. 

Table 4.1 shows the calculated results with Eq.(4.35) for various measured inflow 

rates (Q) based on the selected chamber model.  The first row is the measured inflow 

rates.  The second row is the local loss coefficient.  The third row is the characteristic 

diameter for fluid motion in the tangential direction.  The fourth row is the relative 

roughness.  The fifth row is the friction factor for fluid motion in the tangential direction, 

which is determined with Moody diagram (Street et al., 1996).  The sixth row and 

seventh row are the Reynolds number and friction factor for fluid motion in the vertical 

direction, which are determined with Eq.(4.34) and Moody diagram.  The eighth row is 

the calculated angular velocity with Eq.(4.35) 

This table indicates that the calculated angular velocity (ω) increases with 

increasing the inflow rate (Q).  The fluid flow in the vertical direction is laminar flow; 

while the Reynolds numbers in the tangential direction range about from 10,000 to 

40,000 for inflow rates from 46.49 ml/s to 196.78 ml/s, which are estimated using 
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average tangential velocity (Eq.(4.11)) and the characteristic diameter D = 0.107 m.  

Thus the flow in the tangential direction is turbulent rough flow.   

 Table 4.2 shows the comparison of calculated angular velocities with Eq. (4.35), 

Eq.(4.37), Eq.(4.39) and Eq.(4.41), respectively.  The first row represents the measured 

inflow rates from the inlet pipe.  The rests of the rows are calculated angular velocities 

based on different combined contributions of head losses to the total head loss.  The 

second row is calculated angular velocities that are considering all of the head losses.  

The third and forth rows are angular velocities that are obtained by neglecting the vertical 

frictional head loss and tangential frictional head loss, respectively; while the last row is 

the angular velocities that are calculated by neglecting the both of vertical and tangential 

head losses. 

 By comparing these calculated results, it was found that the differences among 

them are within the range of 0.5%.  This means that the effect of the vertical and 

tangential frictional head losses on the angular velocity is insignificant, and thus this two 

terms can be eliminated in Eq.(4.35) for angular velocity and Eq.(4.36) for pressure head 

drop.   

 

4.4.3.3 Angular velocity and Pressure Head Drop 

In terms of the above analysis, the angular velocity formula of Eq.(4.35) can be 

further reduced to: 
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Table 4.1   Calculated Angular Velocity with Eq.(4.35) 

Q (ml/sec) 46.5 56.6 84.7 90.8 105.6 130.6 196.8 

LK  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

hRD 4= (m) 0.107 0.107 0.107 0.107 0.107 0.107 0.107 
De  0.09 0.09 0.09 0.09 0.09 0.09 0.09 

θf  0.037 0.037 0.037 0.037 0.037 0.037 0.037 

zRe  349.40 425.67 636.33 682.02 793.25 981.66 1478.88

zf  0.183 0.150 0.101 0.094 0.081 0.065 0.043 

ω (1/sec) 4.63 5.64 8.43 9.03 10.51 12.95 19.22 

 

 

 

Table 4.2   Comparison of the Calculated Angular Velocities with Eq.(4.35),  

        Eq.(4.37), Eq.(4.39), and Eq.(4.41)  

 
Q(ml/sec) 
 

46.5 56.6 84.7 90.8 105.6 130.6 196.8 

1=θα  

1=zα  
4.63 5.64 8.43 9.03 10.51 12.95 19.22 

1=θα  

0=zα  
4.63 5.64 8.43 9.03 10.51 12.95 19.22 

0=θα  

1=zα  
4.61 5.61 8.39 8.99 10.46 12.89 19.12 

0=θα  

0=zα  
4.61 5.61 8.39 8.99 10.46 12.89 19.12 
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and the pressure head drop formula of Eq.(4.36) can be further simplified to: 
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The above two equations, Eq.(4.43) and Eq.(4.44), are the equations that are suggested in 

this study for angular velocity estimation and pressure drop estimation, respectively. 

Unfortunately, there is no published formula on angular velocity for turbulent vortex 

chamber flows or measured data for the similar unit geometry that could be used to 

compare against this study.  However, the visual observation with an object in the 
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chamber found that the times for the object to rotate one revolution are about 0.5 to 1.0 

seconds (i.e., 24.62 == tπω to 12.8) for the various inflows which are basically close 

the range of the predicted angular velocities as shown in Table 4.2.   

 

4.5 Nominal Angular Velocity ( nω ) 

Furthermore, if the inlet pipe average velocity ( 2
ININ RQU π= ) is used to estimate 

the “angular velocity”, here known as the “nominal angular velocity ( nω )” to distinguish 

it with the real angular velocity (ω ), at the radius of INRRr −= 1 , then the “nominal 

angular velocity” can be written as: 

 

 ( )INININ

IN
n RRR

Q
RR

U
−

=
−

=
1

2
1 π

ω       (4.45) 

 

In general, this nominal angular velocity should be greater than the real angular velocity 

determined by Eq.(4.43) as it is directly calculated by the inlet pipe average velocity 

without considering the frictional losses in the vortex chamber system.  The ratio of the 

real angular velocity (ω ) to the nominal angular velocity ( nω ) is known as the angular 

velocity decay factor (δ ): 

 

 
nω

ωδ =          (4.46) 
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Table 4.3 shows the comparison of the calculated angular velocity of Eq.(3.35) to 

the calculated nominal angular velocity of Eq.(3.45) based on the above selected study 

case.  This table indicates that for a given vortex chamber the angular velocity decay 

factor (δ ) does not change significantly with the changing inflow rates Q, and it is close 

to a constant of 0.70.  

 

 

Table 4.3   Comparison of the Calculated Angular Velocity (ω) with Eq.(4.35) to  

       the Calculated Nominal Angular Velocity (ωn) with Eq.(4.45) 

Q (ml/sec) 46.5 56.6 84.7 90.8 105.6 130.6 196.8

ω (1/sec) 4.63 5.64 8.43 9.03 10.51 12.95 19.22

nω (1/sec) 6.42 7.82 11.70 12.54 14.58 18.04 27.18

nωωδ =  0.72 0.71 0.70 0.70 0.70 0.69 0.69
 

 

4.6 Conclusions 

For turbulent vortex chamber flow, based on the law of conservation of 

momentum and the boundary conditions, a formula of angular velocity for turbulent 

vortex chamber flows has been derived (Eq.(4.20)).  For practical purpose, this equation 

was further developed by establishing the relationship between the pressure head drop 

( HΔ ) and inflow rate (Q).  Based on the case analysis, a simple angular velocity formula 

for turbulent vortex chamber flows was proposed (Eq.(4.43)).  The case analysis indicates 

that the angular velocity increases with increasing the inflow rate.   
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Unfortunately there is not a published formula for angular velocity or 

experimental data from a similar unit configuration to compare with this study.  

However, by visual observation, it was found that the observed results were similar to the 

predicted results.  This equation (Eq.(4.43)) can be applied to predict the angular velocity 

in a confined vortex chamber with a tangential inlet pipe, but without underflow exit. 
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Chapter 5 

Determination of Flow Pattern  

in a Confined Vortex Flow 

 
The determination of flow patterns in a confined vortex chamber is an important 

step to investigate the mechanisms of solid-liquid separation.  In this chapter, based on 

the Navier-Stokes governing equations coupled with the boundary conditions in a vortex 

chamber as well as the angular velocity derived in Chapter 4, a mathematical model has 

been developed to describe the flow patterns in a confined vortex chamber operating with 

tangential inflow, but without underflow exit.  

 

5.1 Introduction 

Vortex separators are manufactured solid-liquid separation devices that use the 

vortex principle to remove suspended pollutants from wastewater or stormwater in highly 

developed areas where the available space is limited (Fenner and Tyack, 1998).  The 

main difference between wastewater treatment units and stormwater treatment units is 

that the stormwater treatment unit exists without underflow exit underneath the chambers.   

Prior knowledge of the patterns of fluid and particle motion in a confined vortex 

chamber is critical for understanding the mechanisms of the solid-liquid separation, 

thereby developing some deign basis.  Additionally, an understanding of the flow pattern 

in a vortex chamber is an important step to achieve these goals.  Unfortunately, it is very 

difficult to get the exact analytical solutions of the flow patterns due to the complexity of 

the flow patterns within a chamber unit.  For practical design purpose, one often has to be 
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with the help of computer programming (such as CFD) to simulate the flow fields, and 

thus reduce the lab works (Wong, 1997).  The purpose of this chapter, based on the 

Navier-Stokes governing equations and some assumptions, is to develop a mathematical 

model to simulate the flow patterns for the selected vortex chamber model. 

 

5.2 Vortex Chamber Physical Model  

In this study, the selected vortex chamber model is shown in Fig.5.1.  In this 

system, the flow tangentially enters the unit to generate the rotational flow fields and then 

flows out over the top edge of the chamber.  The dimensions of the unit configuration are 

also shown in Fig. 5.1.  The fluid velocity in the chamber is resolved into three 

components: tangential ( ), axial (Uz) and radial (Ur).  The radial velocity component 

is small in comparison to both the tangential and vertical components (Rudinger, 1980; 

Svarovsky, 1981; Ogawa, 1992).  For simplification, the radial velocity is neglected in 

this study.  

θU

 

5.3 Vortex Chamber Mathematical Model 

5.3.1 Assumptions 

In order to simplify the problem at hand and deduce an analytical solution of the 

flow patterns, the following assumptions must be considered: 

• The fluid is incompressible and steady 

• The flow field is axi-symmetrical around the z-axis 

• A Rankine-like tangential velocity profile is assumed 

• The angular velocity is constant along the height of the chamber 
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Fig. 5.1   Schematic Illustration of the Vortex Chamber Model 
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• The radial velocity Ur is small and neglected compared with tangential and 

axial velocities 

• Neglecting the effects of vibration of vortex flow  

 

Furthermore, in terms of the Rankine-combined vortex model, the rotational flowfield in 

a vortex chamber is divided into two zones: a free vortex region (outer region) and a 

forced vortex region (core region), as shown in Fig.4.2.  The total inflow rate is divided 

into two portions  and :  is the portion passing through the outer upward helical 

vortex region 1; and Q2 is the portion passing through the inner upward helical vortex 

region 2 ( ). 

1Q

2Q+

2Q 1Q

1QQ =

 

5.3.2 Governing Equations for Vortex Chamber Flow 

Through the last century, vortex flows have been considered one of the most 

important subjects of fluid motion by many scientists.  To investigate the mechanisms of 

vortex motion and mathematically simulate its flow pattern, numerous experimental and 

theoretical studies have been conducted (Taylor, 1921; Rosenhead, 1932; Lin, 1943; 

Lamb, 1945; Shapiro, 1953; Rouse, 1959; Batchelor, 1967; Greenspan, 1980; Khader and 

Ayad, 1980; Escudier, et al, 1980; Shakespeare and Levy, 1980, Ogawa, 1992; Saffman, 

1992).  In terms of previously conducted studies, the general governing equations for 

vortex flows, based on cylindrical coordinates, are described as follows. 

 

5.3.2.1   Equations of continuity 
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The continuity equations can be written as (see Rouse, 1959; Whitaker, 1981; 

Schling & Gerten, 2000; Ogawa, 1992): 
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For an incompressible fluid, the above equation reduces to: 
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where fρ  is the density of fluid; Ur, Uθ and Uz are radial, tangential and axial velocities, 

respectively.  For axi-symmetrical flow around the z-axis, Eq.(5.1a) can be further 

reduced to: 
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For a confined vortex chamber flow, the radial velocity (Ur ) is small in comparison to the 

tangential velocity (Uθ) and the vertical velocity (Uz); and thus Ur is negligible (Rudinger, 

1980; Svarovsky, 1981; Ogawa, 1992).  Eq.(5.1b) is further reduced to: 
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Eq.(5.1c) indicates that the fluid motion in the vertical direction of the chamber is similar 

to that of the one-dimensional fluid flow.  The vertical velocity component (Uz) is 

constant at the location of radius of r.  

 

5.3.2.2   Navier-Stokes governing equation  

The Navier-Stokes governing equations can be written in vector notation 

(Batchelor, 1967; Ogawa, 1993): 
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where  is body force per unit volume; p is pressure; UF
r v

 is velocity vector; D/Dt is 

material derivative; fρ  is the density of fluid; and μ  is viscosity.  If the vector equation 

of Navier-Stokes is decomposed into three directions for cylindrical coordinates, the 

following equations are obtained: 
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where  denote the body forces per unit volume respectively; and  

and  are the velocity components in the radial, tangential and vertical directions, 

respectively.   
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These equations were originally derived by Navier, Cauchy, and Poisson in the 

early of last century (see, Rouse, 1959; Yih, 1977; Ogawa, 1993).  The current expression 

of the above equations is from mid-century analyses by Saint-Venant and by Stokes.  The 

nonlinear character of these equations, coupled with the complex boundary conditions, 

make it very difficult to obtain the exact analytical solutions of the fluid flows. 

 Furthermore, when fluid has a viscosity of 0=μ  (i.e.: the fluid is invicid), the 

above governing equations are reduced to the Euler Equations: 
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Euler’s equations are only valid for inviscid flows.  For a real fluid, the viscosity 

causes the presence of shear forces (or shear stresses) addition to the pressure force (or 

normal stress).  For steady fluid flow, Navier-Stokes equations reduce to: 
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Moreover, if the flow is axi-symmetrical around z-axis, then the above equations are 

reduced to: 
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For the rotational flow, the Navier-Stokes equation is key when representing the 

characteristics of rotational flow in the boundary layer in the vortex chamber (Ogawa, 

1992).  The radial velocity Ur is small in comparison with  and thus negligible 

in the aforementioned equations.  Based on the assumptions of free vortex type in the 

outer zone and forced vortex type in the core zone of the chamber along with Eq.(5.1c), 

the terms of 

zUandUθ

22 zU ∂∂ θ and 22 zU z ∂∂ can be eliminated from the governing equations.  

Then, the governing equations for vortex chamber flow can be written as: 
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5.4 Solutions to Governing Equations 

5.4.1 Tangential Velocity Component ( ) θU

When a fluid is tangentially forced into a confined vortex chamber, a Rankine-

like tangential velocity profile is generated.  The tangential velocity profile in the 

chamber changes from a type of free vortex to a type of forced vortex when the flow 

approaches the central axis of rotation.  The tangential velocity does not vary 

significantly along the height of the chamber (Vatistas et al, 1986; Vatistas et al, 1988; 
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Ogawa, 1993).  For a given inflow rate, the tangential velocity mainly depends upon the 

radial coordinate ( r ), rather than the vertical coordinate (z).   

The fluid motion in the tangential direction is governed by Eq.(5.8).  The external 

forces exerted on the rotational flow system in the tangential direction ( ) are the 

pressure force generated from the inflow and frictional resistance forces generated from 

the chamber surface.  For an equilibrium system, the resultant external force should be 

equal to zero.  Then Eq. (5.9) becomes: 
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The general solution for Eq.(5.10) is as follows: 

 

          (5.11a) rCU 1=θ

 
r

CU 2=θ          (5.11b) 

 

where  and  are constants.  This solution is exactly same as the form of Rankine’s 

combined vortex model.  By comparing Eqs.(5.11a) and (5.11b) with Rankine’s 

tangential velocity solution, i.e.: Eq.(4.6) and Eq.(4.10) discussed in Chapter 4, then 

tangential velocity distribution in the forced vortex zone and the free vortex zone can be 

expressed as follows, respectively: 

1C 2C

 

Forced Vortex Region (r = 0 to R2) 
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rU ωθ =          (5.12) 

 

Free Vortex Region (r = R2 to R1) 

 

r
RU

2
2ω

θ =          (5.13) 

 

where  is the tangential velocity at radius r in vortex chamber; R2 is the radius at the 

maximum tangential velocity (see Fig.4.2); and 

θU

ω  is the angular velocity of the core.  

The angular velocity can be determined by Eq.(4. 43) developed in Chapter 4 based on 

the law of conservation of momentum:  
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where  is the local loss coefficient at inlet pipe exit;  is the friction factor in the 

tangential direction in the chamber. 

LK θf

 

5.4.2 Vertical Velocity (Uz) 

The fluid motion in the vertical direction in the chamber is governed by Eq.(5.9).  

The right-hand side of Eq.(5.10) is the pressure gradient in the vertical direction and body 

force exerted on the fluid.  In practical operation of liquid-solid separation system, the 

vertical velocity (UZ) in a vortex chamber is very small.  To simplify the problem and 

achieve an analytical solution, the fluid viscosity (μ) is assumed to be a constant.  

Therefore, the terms in the right hand side of Eq.(5.9) are constant.  Then the general 

solution of Eq.(5.9) can be expressed as: 
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where  and  are constants.  In terms of physical conditions, the velocity at r = 0 

must be finite though the vertical velocity at the center of the chamber can not be 

determined.  Therefore, for this equation to be true, C2 = 0 (Fox and McDonald, 1985).  

Then Eq.(5.15) becomes: 
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According to the boundary condition that UZ = 0 at r = R1, the constant C1 can be 

determined by: 
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Substituting Eq.(5.16) into Eq.(5.15) and rearranging gives: 
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In terms of the law of conservation of mass, the total outflow rate must be equal to the 

inflow rate (Q).  Then the following relationship is obtained: 
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Rearranging Eq. (5.18) gives: 
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By substituting Eq.(5.19) into Eq.(5.17) and rearranging, the vertical velocity distribution 

can be expressed as: 
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This equation indicates that for a given radius of r the vertical velocity component is 

proportional to the inflow rate Q; while for a given inflow rate Q the vertical velocity 

distribution only depends upon the radius r. 

Moreover, the ratio of flow rates passing through free vortex region (Q1) and 

forced vortex region (Q2) can be determined by: 
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5.5 Case Analysis and Discussions 

5.5.1 Prediction of Tangential Velocity Distribution  

The tangential velocity distribution in a vortex chamber can be described by 

Eqs.(5.12) and (5.13): 

 

 )0( 2RtorrU == ωθ       (5.12) 
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The angular velocity can be estimated by Eq.(4.43), which is reproduced as follows: 
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For a vortex chamber with diameter of D1 = 2R1 = 127 mm, inlet pipe diameter DIN = 2 

RIN =12.7mm; and height H0 = 175 mm, the calculated angular velocities for various 

inflow rates based on the selected chamber configuration are shown in Table 5.1.  

Figure 5.2 shows the predicted tangential velocity distribution for three inflow 

rates selected from Table 5.1.  This figure indicates that for a given flow rate Q, the 

tangential velocity in the core region of the chamber (forced vortex region) increases with 

an increasing radius of r; while in the outer region of the chamber (free vortex region) the 

tangential velocity decreases with increasing the radius of r.  For a given radius of r, the 

tangential velocity increases with increasing the inflow rate.  The maximum tangential 
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velocity occurs at the boundary of forced vortex zone and free vortex zone.  The 

maximum tangential velocities for flow rates of Q = 46.5 ml/sec and 130.6 ml/sec are 

0.23 m/sec and 0.65 m/sec, respectively. 

 

 

Table 5.1   Calculated Angular Velocities for Various Inflow Rates  

  Q  
(ml/sec) 46.5 56.6 84.7 90.8 105.6 130.6 196.8

   KL 1.00 1.00 1.00 1.00 1.00 0.99 0.96

   D = 4 Rh 0.107 0.107 0.107 0.107 0.107 0.107 0.107

   e/D 0.09 0.09 0.09 0.09 0.09 0.09 0.09

   fθ 0.037 0.037 0.037 0.037 0.037 0.037 0.037

   ω (1/s) 4.61 5.61 8.39 8.99 10.46 12.89 19.15
 

 

5.5.2   Prediction of Vertical Velocity Distribution  

For a vortex chamber with diameter of D1 = 2R1 = 127 mm, inlet pipe diameter 

DIN = 2 RIN =12.7mm; and height H0 = 175 mm, the vertical velocity distribution can be 

estimated by Eq.(5.20): 
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Figure 5.3 shows the predicted vertical velocity for different inflow rates.  It shows that 

vertical velocity increases with increasing inflow rate.  The maximum vertical velocities  
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Fig. 5.2   Predicted Tangential velocity Distribution for Various Inlow Rates Q
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Fig. 5.3   Vertical Velocity Distribution for various Flow Rates 
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for Q = 46.5 ml/sec and 130.6 ml/sec are 7.4 mm/sec and 20.6 mm/sec, respectively.  

With a decreasing inflow rate, the shape of the curves become flat and lower.  For the 

purpose of solid-liquid separation, the lower maximum vertical velocity and uniform 

distribution is desired.   

 

5.6 Conclusions 

A mathematical model, based on the Navier-Stokes governing equations coupled 

with the boundary conditions in a vortex chamber as well as the angular velocity, has 

been developed to describe the flow patterns for a selected vortex chamber model.  The 

case analysis indicates that for a given location in the chamber the predicted tangential 

and vertical velocities increase with an increasing inflow rate.  The maximum tangential 

velocity occurs at the boundary between the forced vortex region and free vortex region; 

while the maximum vertical velocity occurs at the center of the chamber.   
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Chapter 6 

Dynamic Analysis of Particle Motion in a One-Dimensional 

Upward Uniform Steady Flowfield 

 

The purpose of this chapter is to examine the characteristics of particle motion in 

a one-dimensional upward uniform steady fluid flow and investigate the mechanisms of 

solid-liquid separation.  Based on the governing equation of particle motion in an upward 

uniform steady fluid flow, new particle settling velocity formulae have been derived in 

this study.  The obtained analytical results were compared with accepted literature such 

as Cheng’s formula. Good agreement was observed.  The resulting equations developed 

in this chapter are useful when illustrating the most common aspects of multiphase fluid 

dynamics for solid-liquid separation. 

 

6.1 General Equation of Particle Motion 

The prediction of particle settling velocity and trajectory in fluid flow is of a 

considerable concern in many fields, such as gas-solid and liquid-solid separation.  

However, the prediction of particle motion requires not only a detailed understanding of 

fluid motion, but also the forces acting on a particle.  A particle moving in a fluid with an 

initial velocity will be either decelerated or accelerated by the action of various forces.  

To investigate the hydrodynamic characteristics of particle motion, examine the effect of 

various forces acting on a particle, and thereby predict the trajectories of particle motion 

in a fluid flowfeild, numerous study results from previous investigators must be 

  



 105

considered and borrowed (Boothroyd, 1971; Maxey & Riley, 1983; Auton, 1987; Auton, 

et al, 1988; Sridhar & Katz, 1994; Legendre & Magnandet, 1998; Kurose & Komori; 

Coimbra, and Rangel, 1998; Coimbra and Kobayashi, 2002; Bagchi & Balachandar, 2002 

& 2003; Candelier et al, 2004; Sobral et al, 2007; Iso and Kamemoto, 2008).  

In terms of completed studies, when a solid particle is moving in fluid, the major 

forces considered on the particle include body forces, drag force, lift force, pressure 

force, inertia (added mass) force, and Bassett force.  Therefore the general fundamental 

equation of particle motion is generally written as: 

 

 BpLIDbody
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p FFFFFF
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vvvvvv
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+++++=      (6.1) 

 

Where mp is the particle mass; Up is the particle absolute velocity; Fbody is the body forces 

which are proportional to particle mass; FD is the drag force; FI is the inertia force; FL is 

the lift force; Fp is the pressure force; and FB is the Bassett force. 

Once the velocity-time relation of particle motion has been obtained, the distance 

traveled by a particle can be determined by integrating the velocity / time relationship.  It 

can be mathematically expressed as: 

 

o

t

t
xp xdtUx

o

+= ∫ ,         (6.2a) 

o

t

t
yp ydtUy

o

+= ∫ ,         (6.2b) 

  



 106

o

t

t
zp zdtUz

o

+= ∫ ,         (6.2c) 

 

where x, y and z are the distances of particle traveled in the x, y, and directions, 

respectively; and , ,  are particle velocity components in the x, y, and z 

directions, respectively. 

xpU , ypU , zpU ,

 

6.1.1 Body Forces ( bodyF
v

) 

Here the body forces are represented by the gravitational force (Fg) which acts in 

the direction of the gravity acceleration vector (g) or centrifugal force (Fc) which acts in 

the direction of centrifugal acceleration vector (ac), such that: 
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For the vertical component, the net gravitational force can be expressed as: 
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6.1.2 Drag Force ( DF ) 
v

A general expression for the drag force can be expressed as: 
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where fρ  is the fluid density; Ap is the particle projected area; Uf and Up are the fluid 

and particle velocities, respectively; CD is the drag coefficient which is related to the 

Reynolds number.  The flows around the suspended bodies are generally divided into 

three categories: laminar, transition, and turbulent.  At the region of low Reynolds 

number ( ), streamline exists around the particle.  The drag coefficient for 

spherical particles can be approximated as: 

0.1≤epR

 

ep
D R

C 24
=          (6.5) 

 

where  is the Reynolds number which is defined as: epR

 

μ

ρ dUU
R pff

ep

−
=         (6.6) 

 

where μ is dynamic viscosity of fluid.  For spherical particles with a medium to high 

range Reynolds number, experimental data must be used to obtain the drag coefficient CD 

which can be found in various references (Lapple & Shephered, 1940; Morsi & 

Alexander, 1972).  For the spherical particles with the Reynolds number of Rep = 500 to 

20000, the average value of CD is about 0.44  
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For practical purpose, it is more convenient to use an analytical expression for CD, 

many theoretical expressions and empirical curve fits have been suggested since the early 

part of last century.  Boothroyd (1971) has listed ten such analytical expressions which 

fitted for the parts or entire range of Reynolds number.  Several of them are described as 

follows. 

 

Oseen-Type Solutions 

Based on the Navier-Stokes equations, Oseen (1927) derived an equation to 

calculate the drag coefficient: 

 

 ⎟
⎠
⎞

⎜
⎝
⎛ += ep

ep
D R

R
C

16
3124        (6.7) 

 

Further, based on the Oseen’s solution, Goldstein (1929) proposed a more complete 

solution for the range of Rep<2:  
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Schiller and Nauman’s Solution 

Schiller et al. (1933) proposed a solution that shows a good agreement with the 

experimental data for Rep < 800: 
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 ( 687.0150.0124
ep

ep
D R

R
C += )       (6.9) 

 

Dallavalle’s Solution 

Dallavalle (1943) proposed a simple equation that the entire range of 

experimental data can be represented with a fair degree of accuracy as: 

 

 4.04.24
+=

ep
D R

C         (6.10) 

 

Morsi and Alexander’s Solution 

Morsi and Alexander (1972) presented a method to calculate the drag coefficient 

CD by fitting the measured CD with Reynolds number.  To obtain the accuracy the 

experimental data curve was divided into a number of regions within the error of 1-2%.  

The equation they suggested for drag coefficient approximation in that region is: 

 

 32
21 K

R
K

R
K

C
epep

D ++=         (6.11) 

 

where K1, K2, and K3 are constants which can be determined by fitting the experimental 

data at three points.  The obtained values of K1, K2, and K3 by Morris and Alexander 

(1972) are shown in Table 6.1. 
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Table 6.1 Fitting Values of K1, K2 and K3 for Drag Coefficient CD  

Rep K1 K2 K3 
        Rep < 0.1 24.0 0.0 0.0 
0.1 < Rep < 1.0 22.73 0.0903 3.69 

1.0 < Rep < 10.0 29.1667 -3.8889 1.222 
10.0 < Rep < 100.0 46.5 -116.67 0.6167 

100.0 < Rep < 1000.0 98.33 -2778.0 0.3644 
1000.0 < Rep < 5000.0 148.62 -47500.0 0.357 
5000.0 < Rep < 10000.0 -490.546 578700.0 0.46 
10000.0 < Rep < 50000.0 -1662.5 5416700.0 0.5191 

    
 

  (Source: Moris & Alexander, 1972) 

 

 

An advantage in using this equation is that the simple exponent may lead to 

integral forms of the equations to solve for the governing equations of particle motion.  

Thus, Morsi and Alexander’s solution may be a good approach to approximate the drag 

coefficient.  In this study, this equation will be used to approximate the drag coefficient. 

 

6.1.3 Inertia Force ( IF
v

) 

Added Mass Force: If the particle acceleration is different from that of the flowfield, 

then an additional relative acceleration ( dtUddtUd pf
rr

− ) arises.  Some fluid near the 

particle surface must be accelerated or decelerated from the fluid velocity to the particle 

velocity, and thus an additional force acts on the particle.  The portion of the surrounding 

fluid which is carried along with the particle due to the surface conditions should possess 

the same acceleration as that of the particle.  This “carried mass” is referred to as the 

“added mass” or “virtual mass”, and equals one-half the mass of the displaced fluid.  The 
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added mass force is normally expressed as (see Boothroyd, 1971; Maxey & Riley, 1983; 

Auton et al, 1988; Coimbra & Rangel, 1998; Bagchi & Balachandar, 2003): 
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where  is displaced fluid mass by the particle.  For a spherical particle Eq.(6.12) can 

be written as: 

fm
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6.1.4 Pressure Force ( pF
v

) 

The pressure force exerted on a spherical particle due to the pressure gradient in 

the fluid can be expressed as (see Maxey & Riley, 1983; Sridhar & Katz, 1994; Bagchi & 

Balachandar, 2003) 

 

 
Dt
UDd

F ff
p

v
v

6

3ρπ
=         (6.14) 

 

In a steady uniform fluid flowfield, the vertical component ( ) is the buoyancy force 

which has been considered in Eq.(6.2a), and is reproduced as follows: 

ZpF ,
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gdF fZp ρπ
6

3

, =         (6.14a) 

 

6.1.5 Lift Force ( LF
v

) 

In general the lift force in a shear flow is generated from the velocity gradient in 

the flow and from the rotation of particle (Magnus effect).  For a spherical particle 

moving in a viscous flow with small Reynolds number, the expression of the shear-

induced lift force derived by Saffman (1965) is: 

  

 
5.0

25.0
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⎞
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⎝

⎛
=

dz
dU

VdCF f
rfLL νρ        (6.15) 

 

where CL is lift coefficient (=1.615 for viscous flow); ν is kinematic viscosity; Vr is the 

relative velocity; and dUf /dz is the velocity gradient.  For the steady uniform flow the lift 

force is identically zero. 

 In 1917, Taylor, based on the study of motion of a solid body in a rotating flow 

system and the assumption that the flow system and the solid body have the same angular 

velocity, proposed an expression of lift force (see Rijin, 1990): 
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VCF f
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where CL is the lift coefficient (≈0.5); ∀ is the particle volume.  For a steady uniform 

flow this lift force is identically zero.   
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For the lift force arising from the rotation of particle in a viscous flow, Rubinov & 

Keller (1961) obtained the following expression: 

 

         (6.15b) ωρ rfLL VdCF 3=

 

where CL is the lift coefficient (= 0.39); ω is the angular velocity of the particle.  But for a 

viscous flow, Saffman’s theoretical analysis (1965) indicated that the lift force arising 

from the particle rotation is less by an order in magnitude than that arising from shear 

effect.  Therefore, the lift force due to particle rotation effect can be neglected. 

Auton (1987) obtained an expression to calculate the lift force on a sphere in an 

inviscid rotational flow with weak vorticity: 
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where the lift coefficient CL for spherical particle is 0.5; Ω
v

 is the ambient vorticity.  

Later Auton et al (1988) presented a general expression for the net force on a sphere in 

inviscid unsteady non-uniform rotational flow: 
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where CM and CL are the added-mass and the inviscid lift coefficients.  For a spherical 

particle, both of them are 0.5.  For steady flow the force on the sphere in the inviscid 

limit can be written as (Auton, et al, 1988; Bagchi & balachandar, 2002): 

 

( ) ( ) Ω×−+∇⋅+=
vvvvvv

pfILfffMf UUCmUUCmF 1     (6.15e) 

 

where  is the mass of fluid displaced by the sphere; and CIL is the inviscid lift 

coefficient, and for a sphere it is 0.5 provided that the vorticity is weak.   

fm

Bagchi & Balachander’s investigation (2002 and 2002a) indicated that the lift 

force acting on a rigid spherical particle in a vortex is less than that in a linear shear flow; 

the rotational contribution is only about 4 – 14% of the total lift force and it can be 

considered to be only of secondary importance.  More recently, Iso and Kamemoto 

(2008), based on the Lagrangian-Lagrangian method developed a numerical simulation 

scheme by combining a vortex method and a particle trajectory method.  Their analysis 

indicated that the total lift force of Magnus and Saffman is only 4% of the drag force, and 

is approximately a hundredth smaller than the drag force.  This is based in part that the 

surrounding flowfield gradients and particle spin are so small that particle lift can be 

neglected.  Therefore, to simplify the problem, the lift force is neglected in this research. 

 

6.1.6 Basset Force ( BF
v

) 

The Basset force is the additional force acting on the particle due to the deviation 

of the flow pattern around the particle from steady-state conditions (Boothroyd, 1971; 

Rudinger, 1980).  The Basset force is responsible for the modification of the drag force 
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due to the unsteadiness of the near flow field as the particle moves through the fluid 

(Coimbra and Rangel, 1998).  The Basset force is expressed as (Maxey & Riley, 1983): 

 

 ∫
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vv
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Unfortunately, there is no exact analytical solution for history forces due to the 

complexity of this expression.  However, many studies with numerical methods or the 

Laplace transform approach (Yang & Leal, 1991; Michaelides, 1992; Mei et al, 1994; 

Thomas, 1997; Coimbra & Rangel, 1998; Coimbra & Kobayashi, 2002; Bagchi and 

Balachandar, 2003; Candelier et al, 2004) have found that the history force is not 

sensitive to the “long-term history” as it tends to be weak, and generally insignificant if 

the particle-fluid density ratio is high ( 1/ ≥fp ρρ ), and thus negligible. 

 The study by Coimbra and Rangel (1998), based on their numerical example, 

showed that for an air bubble with a diameter of 100 μm it approximately takes 0.4 

milliseconds (ms) to reach 90% of its terminal velocity with the history contribution 

when released from rest in glycerin; while without the history contribution it is about 2.2 

microseconds (μs) to reach 90% of its terminal velocity.  Numerical calculation show that 

results with Basset force overestimate the particle motion, i.e., the Basset term 

contribution is negative to particle motion.  On the other hand, for the same particle size 

with density 20 times more than glycerin, it also takes approximately 0.4 ms to reach 

90% of its terminal velocity with the contribution of history drag; while without the 
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Basset term contribution, it takes approximately 0.1 ms.  This indicates that Basset force 

contribution is not so strong and negligible for heavy particles.   

 More recently, Candelier et al (2004) conducted a study to investigate the effect 

of Basset force on the radial migration of a Stokes particle in a solid-body rotation flow 

field.  Their study also shows that the contribution of the Basset force is always negative 

that is agreement with the statement by Coimbra and Rangel (1998).  Based on their 

analysis, they concluded that the radial component of the Basset term is more sensitive to 

the “short-term history”, and less sensitive to the “long-term history”.  Therefore, to 

simplify the problem, the Bassett force is neglected in this research due to its 

insignificant effect on the motion of heavy particles. 

 

6.2 Governing Equation of Particle Motion in a One-Dimensional 

Upward Uniform Steady Flowfield 

6.2.1 Assumptions that Simplify the Dynamics 

Though the general equations of particle motion in fluid flow are easy to 

establish, the complexity of the solid-liquid particle systems makes it difficult to obtain 

the analytical solutions for particle motion.  In order to simply the problem, the following 

assumptions are made: 

• The particles have a spherical shape 

• The particle concentration is so low that presence of particles does not affect the 

fluid flow 

• Particle-particle interactions are negligible; the behavior of each particle can be 

treated alone. 
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6.2.2 Governing Equation of Particle Motion 

To simply the problem, the secondary forces are neglected in this study.  The 

considered forces acting on a spherical particle are the net gravitational force ( ), drag 

force ( ), and inertia force (added mass) ( ) only as shown in Fig.6.1.   

gF

DF IF

 

 

   Up    FD    (+) Uf    

     ,  gF IF

 

 

 

        Uf 

Fig.6.1  Forces Acting on a Particle  

 

 

Therefore the governing equation of particle motion can be written as: 

 

 IgD
p

p FFF
dt

dU
m −−=       (6.17) 

 

The net gravitational force ( ) can be represented by Eq.(6.3a) as follows: gF
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In terms of Eq.(6.4), the drag force ( ) can be expressed as: DF

 

( 2

2
1

pffDD UUACF −= ρ )        (6.17b) 

 

According to Eq.(6.12), in a one-dimensional uniform steady fluid flow the added mass 

force ( ) can be written as follows: IF
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fI 2
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=        (6.17c) 

 

By substituting Eqs.(6.17a), (9.17b) and (6.17c) into Eq.(6.17), the governing equation of 

particle motion can be expressed as: 
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For a spherical particle, the particle mass ( ) can be determined by: pm

 

 pp dm ρπ 3

6
=          (6.19) 

  



 119

 

While the added mass ( ) can be expressed as: fm

 

ff dm ρπ 3

6
=          (6.20) 

 

The projected area (A) of a spherical particle is  

 

 2

4
dA π

=          (6.21) 

 

Substituting Eqs.(6.19), (6.20) and (6.21) into Eq.(6.18) and rearranging yields: 
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6.3 Solutions to Governing Equation  

6.3.1 Particle Motion in the Stokes’ Flow  

Particle settling velocity For low Reynolds numbers ( 0.1≤epR ), the flow is known 

as the Stokes flow.  By substituting Eqs.(6.5) and (6.6) into Eq.(6.22) and rearranging, 

the governing equation for a spherical particle becomes: 
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Integrating Eq.(6.23) and rearranging yields: 
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where vτ is called the velocity relaxation time of the motion with the dimension of time.  

It is given by (Rudinger, 1980; Svarovsky, 1981), but there is not the term of fρ5.0  in 

their expression: 
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and C0 is the integration constant.  It can be determined by the initial conditions that 

 at t = 0: pop UU =
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Therefore the general equation of particle motion can be expressed as: 
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Moreover, if we assume that fpo UU =  at t = 0, then Eq.(6.27) can be further reduced to: 
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In terms of Stokes’ particle settling formula, the terminal settling velocity of a spherical 

particle in quiescent fluid can be expressed as: 
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Substituting Eq.(6.29) into Eq.(6.28) and rearranging gives: 
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when  (actually, for sand particles with diameter of 100 micron, it takes within 

0.005 seconds to approach its terminal settling velocity), the particle will reach its 

terminal velocity ( ): 

∞→t

ptU

 

stokefpt UUU −=         (6.30a) 
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Further, if Uf = 0, (i.e. the particle settles in the quiescent fluid), then Eq.(6.30a) reduces 

to the Stokes’ terminal falling velocity of Eq.(6.29).   

 

Particle trajectory By integrating Eq.(6.30) with respect to time t from t = 0 t = t, the 

particle trajectory as a function of time can be determined by: 
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In some cases, it would be more convenient to obtain the distance (Z) as a function of 

particle velocity.  To obtain such relationship, Eq. (6.23) can be rewritten in the following 

form: 
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Substituting Eq.(5.25) into Eq.(6.32) and rearranging gives: 
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Eq.(6.33) can be further expressed as: 
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Integrating Eq.(6.34) yields: 
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If the initial condition is that Z0 = 0 and Up0 = Uf at t = 0 then the above equation 

becomes: 
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6.3.2 Particle Motion in the Transitional Flow and Turbulent Flow 

Stokes’ law is applied when viscosity is the controlling factor in the resistance of 

the fluid.  For very high Reynolds numbers, the contribution of this resistance to drag is 

only about 5% of the total drag force.  Rundinger (1980) pointed out that “the range of 

Reynolds number of interest in gas-particle flow rarely exceeds a few hundred”.  In 

general, the range of Reynolds number in liquid-solid flows could not be more than that 

of gas-particle flow.  Therefore, in this section, only the intermediate range of Reynolds 

numbers is considered.  The Morsi and Alexander’s solution is used to approximate the 
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drag coefficient CD.  For a spherical particle, the general governing equation of particle 

motion can be described by Eq.(6.22): 
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In the intermediate range of Reynolds numbers, the drag coefficient  can be estimated 

with the formula proposed by Moris & Alexander (1972): 

DC
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Substituting Eqs.(6.10) and (6.5) into Eq.(6.22) and rearranging gives: 
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This is a Riccati equation with constant coefficient.  To solve this equation, a 

mathematical method presented by Morsi and Alexander (1972) is followed.  Then 

Eq.(6.37) can be further written as the following form: 
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where 1η  and 2η  are the roots of the right hand side of Eq.(6.37) which are as follows: 
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Case I   for 21 ηη =  

Particle settling velocity If the roots of 1η  and 2η  are identical, then the general 

solution of Eq. (6.38) can be written as follows: 
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If we further assume that fpo UU =  at 0=ot , then the above equation becomes: 
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Particle trajectory The distance of particle motion as a function of time can be 

obtained by integrating Eq.(6.39a): 

 

( )[ tUA
A

tZ fI
I

11 1ln1 ηη −−−= ]      (6.40) 

 

In order to obtain the distance as a function of particle velocity, Eq.(6.38) for the case of 

21 ηη =  can be expressed as: 
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Integrating Eq.(6.41) and rearranging yields: 
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If the initial conditions are that fpo UU =  and 00 =Z  at 0=ot , then Eq.(6.42) becomes: 
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Case II for   21 ηη ≠  

Particle settling velocity If the roots of 1η  and 2η  are not identical, then the general 

form of the solution for Eq.(6.38) is as follows: 
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Moreover, if we further assume that fpo UU =  at 0=ot , then the above equation 

becomes: 
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In terms of Eq.(6.44a), when ∞→t , the particle will reach its terminal velocity ( ): ptU
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Substituting AI, BI and CI into the above equation and rearranging gives: 
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By setting  and changing the sign of Eq.(6.45a), the terminal settling velocity in 

the quiescent fluid can be expressed as: 

0=fU
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Particle trajectory The distance of particle motion as a function of time can be 

determined by integrating Eq.(6.44a) with time (t): 
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Similarly, in order to obtain the distance of particle motion as a function of particle 

velocity, Eq.(6.38) can be expressed as the following form: 

 

 ( ) ( ) dzAdU
UU

U
Ip

pp

p =
−− 21 ηη

      (6.48) 

 

Integrating Eq.(6.48) and rearranging yields: 
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Similarly, if the initial conditions are that fpo UU =  and 00 =Z  at ,  then the 

above equation reduces to: 

0=ot
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6.4 Result Analysis and Discussions 

6.4.1 Terminal Settling Velocity in Quiescent Fluids 

6.4.1.1   Particle motion in the Stokes’ flow 

For a spherical particle with a Reynolds number of 1≤epR , viscous resistance is 

the main influence on particle motion.  The particle settling velocity derived in this study 

is same as Stokes’ formula (Eq.(6.29)).  It is reproduced in the present notation as 

follows: 
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6.4.1.2   Particle motion in the transitional and turbulent Flow 

In the transitional and turbulent flow, the terminal settling velocity for a spherical 

particle can be determined with Eq.(6.46). 
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The constants of ,  and  can be determined with Table 6.2 which obtained by 

Moris and Alexander (1972) by fitting the drag coefficient curve.  In terms of the range 

of Reynolds numbers, the simple form of the terminal settling velocity formula can be 

derived by substituting the values of ,  and  into Eq.(6.46).  They are as 

follows: 

1K 2K 3K

1K 2K 3K

 

(1) For  10R1 ep ≤p

In the range of Reynolds number 101 ≤epRp , the constants of ,  and  

are 29.167, -3.889, and 1.222 respectively (see Table 6.2).  By substituting these values 

into Eq.(6.46) and rearranging,  the terminal settling velocity for spherical particles 

( ) can be expressed as: 
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(2) For 100  R10 ep ≤p
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For Reynolds number in the range of 10010 ≤epRp , the values of ,  

and  are 46.500, -116.67, and 0.617 respectively (see Table 6.2).  Substituting these 

values into Eq.(6.46) and rearranging gives: 

1K 2K

3K
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(3) For 1000     R100 ep ≤p

Similarly, in the range of Reynolds number of , the values of 

,  and  are 98.33, -2778.0, and 0.3644 respectively (see Table 6.2).  Substituting 

them into Eq.(6.46) and rearranging yields:   

1000100 ≤epRp
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As stated in Section 6.3.2, the range of Reynolds number in liquid-solid flows rarely 

exceeds a few hundred, and thus the above ranges of Reynolds number could cover the 

common applied ranges in liquid-solid separation systems.  For Reynolds numbers 

greater than 1000, the same approaches can be followed to get the solution. 

 

6.4.2 Determination of Particle Limits  

6.4.2.1   Particle size limits in an upward uniform steady fluid flow (water) 
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 As the particle terminal settling velocity formulae are derived based on the 

different ranges of Reynolds numbers; the Reynolds number must be known.  Therefore, 

for practical purpose it is necessary to show the range of the Reynolds numbers which 

correspond to the equivalent particle sizes.  As the Reynolds number is a function of the 

relative particle settling velocity, particle diameter, fluid viscosity, and fluid density, for a 

given range of Reynolds number and a given constant upward fluid velocity ( ) there 

must have a relative range of particle sizes to match it.  Assuming that the range of 

Reynolds number is , then following relationship can be obtained: 

fU

2ep1 RRR p≤

 

 21 R
dUU

R pff
p

μ

ρ −
≤        (6.54) 

 

By substituting the particle terminal settling velocity formulae of Eqs.(6.50), (6.51), 

(6.52) and (6.53) into Eq.(6.54) respectively, the corresponding ranges of particle sizes 

can be determined for each range of Reynolds number.   Tables 6.2 to 6.5 show the 

calculated particle size limits for spherical sand particles based on different ranges of 

Reynolds numbers and various fluid velocities.   

 Table 6.2 shows the calculated upper limit of spherical sand particle sizes in the 

Stokes’ flow.  The first row is the upward fluid (water) velocity (Uf).  The second row is 

the calculated particle terminal velocity in still water with Stokes formula; while the third 

row is the calculated upper limit of spherical sand particle size in the Stokes’ flow for 

various upward fluid velocities.  This table indicates that the upper limit of particle size  
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Table 6.2  Upper Limit of Spherical Sand Particles for 0.1≤epR  

Uf (mm/sec) 0.0 5.0 10.0 15.0 20.0 25.0 50.0 100.0

Usphere (mm/s)* 9.7 6.6 4.4 2.8 1.9 1.3 0.4 0.1 

dmax (μm)  104 86 70 56 46 38 20 10 
Rep  1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

 
(* Obtained by Eq.(6.50) based on ) cT o20=
 

Table 6.3   Upper Limits of Sand Spheres for 0.100.1 ≤epRp  

fU  (mm/sec) 0.0 5.0 10.0 15.0 20.0 25.0 50.0 100.0
Usphere (mm/s)* 37.5 34.7 32.1 29.6 27.3 25.0 16.2 7.6 

maxd (micron) 267 252 238 225 212 200 151 93 

epR  10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

 
(* Obtained by Eq.(6.51) based on ) cT o20=
 

Table 6.4   Upper Limits of Sand Spheres for 0.1000.10 ≤epRp  

fU  (mm/sec) 0.0 5.0 10.0 15.0 20.0 25.0 50.0 100.0
Usphere (mm/s)* 126.4 124.1 121.8 119.5 117.3 115.1 104.6 86.1

maxd (micron) 793 776 760 745 730 715 648 538

epR  100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
 
(* Obtained by Eq.(6.52) based on ) cT o20=
 

Table 6.5  Upper Limit of Sand Spheres for 0.10000.100 ≤epRp  

fU  (mm/sec) 0.0 5.0 10.0 15.0 20.0 25.0 50.0 100.0
Usphere (mm/s)* 360.9 358.9 356.9 355.0 353.0 351.1 341.5 323.4

maxd (micron) 2776 2753 2731 2708 2686 2664 2559 2367

epR  1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
 
(* Obtained by Eq.(6.53) based on ) cT o20=
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decreases with increasing upward fluid velocity (Uf).  However, for (quiescent 

water), the Stokes’ formula could be applied to the particle sizes up to 100 micron.   

0.0=fU

 Tables 6.3 to 6.5 show the calculated upper limits for spherical sand particles in 

the transitional flow.  These tables indicate that the upper limits increase with an 

increasing Reynolds number.  In the still water ( 0.0=fU ), the upper limits of particle 

sizes also increase with an increasing Reynolds number. 

 Figure 6.2, which was a plot of Eq.(6.54) coupled with Eqs.(6.50), (6.51), (6.52), 

and (6.53), shows the predicted upper and lower limits for spherical sand particles in the 

Stokes’ flow and the transitional flow.  The horizontal axis represents the upward 

constant fluid (water) velocity ( ); while the vertical axis represents the size of the 

spherical sand particle (d).  This figure indicates that in the Stokes flow (i.e., Rep < 1.0) 

the predicted particle limits decreases with increasing the fluid velocity (Uf); while over 

this range (i.e., in the ranges of 1 < Rep < 10, 10< Rep < 100, and 100 < Rep < 1000) the 

predicted particle limits for each range of Reynolds number increase with increasing the 

fluid velocity (Uf).  However, when the Reynolds number is greater than 100, the effect 

of increasing fluid velocity on the particle size limits is small. 

fU

This figure graphically shows the relationship between the upper and lower limits 

of particle sizes, ranges of Reynolds numbers, and the upward constant fluid velocity.  

For a given fluid velocity of  and a particle size, the range of Reynolds numbers under 

the given conditions can quickly be determined with this figure.  In terms of the range of 

Reynolds numbers, the particle settling velocity formula, which would be used to 

calculate the particle settling velocity, can easily be determined. 

fU
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Fig. 6.2   Predicted Limits of Sapherical Sand Particle in an Upward Uniforrm Steady Fluid Flow 
(water) 
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6.4.2.2   Particle size limits in quiescent water 

 In the second columns (with 0.0Uf = ) of Tables 6.3 to 6.6, we can find that for 

spherical sand particles settling in quiescent water, the following relationships are true: 

 

  m104d0.1R ep μ≤⇔≤       (6.54a) 

  m267d1040.10R0.1 ep μ≤⇔≤ pp     (6.54b) 

  m793d2670.100R0.10 ep μ≤⇔≤ pp     (6.54c) 

  m2780d7930.1000R0.100 ep μ≤⇔≤ pp    (6.54d) 

 

Therefore, by means of these equivalent relationships, the conditions for Eqs.(6.50), 

(6.51), (6.52), and (6.53) can be rewritten as follows: 
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If 267 ≤ d < 793 μm: ⎟
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If 793 ≤d < 2776 μm: ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎠
⎞

⎜
⎝
⎛=

d
dg

d
U

f

p
spheret

ν
ρ
ρν 92.134166.301.25827

2

 (6.53) 

 

 

 

  



 137

6.4.3 Comparison of this Study with Cheng’s Formula 

6.4.3.1   Stokes’ flow 

Cheng (1997) proposed a general formula to predict the terminal settling velocity 

of natural sediment particles in the present notation: 
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This formula can be applied to a wide range of Reynolds numbers from the Stokes flow 

to the turbulent regime.  Figure 6.3a shows the predicted terminal settling velocities for 

the spherical sand particles in a quiescent water with Stokes’s formula of Eq. (6.29) 

Cheng’s formula of Eq.(6.55).  This figure indicates that the results derived from Cheng’s 

formula are far lower (about 25-30%) than that from Stoke’ formula.  This is because, 

Cheng’s formula was developed for predicting the terminal settling velocity of natural 

sediment particles instead of the spherical particles.  Unfortunately, Cheng’s formula 

does not explicitly account for the value of shape factor.  Therefore, if Chen’s formula is 

used to predict the settling velocity of spherical particles, it should be corrected by a 

shape factor.  For natural sand particles the average shape factor is approximately 0.7 

(Graf, 1971; Van Rijin, 1993; Jimenez and Madsen, 2003).  Here a shape factor of 0.71 is 

applied to Cheng’s original formula.  By dividing Cheng’s original formula by a shape 

factor of 0.71, then Cheng’s terminal settling velocity for spherical particles can be 

expressed as follows: 
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Fig.6.3b shows the comparison of the results derived from Stokes’s formula and Cheng’s 

modified formula (i.e., Eq.(6.55a)).  This figure indicates that the predicted results from 

Cheng’s modified formula have a good agreement with that from Stokes’ formula (i.e., 

Eq. (6.50).  The maximum percent difference between them is about 5.4 %.   

On the contrary, if Stokes’ formula is used to predict the terminal settling velocity 

of natural sediment particles, it must be corrected with a shape factor of 0.71 as follows: 

 

 ( ) ( ) 2

18
71.0 d

g
U fp

natural μ
ρρ −

=      (6.50a) 

 

Fig.6.3c shows the comparison of the results for natural sediment particles derived from 

Stokes’ modified formula (i.e., Eq.(6.50a)) and Cheng’s original  formula (i.e., 

Eq.(6.55)).  This comparison indicates that the predicted results from Stokes’ modified 

formula agree with Cheng’s formula.  This analysis reveals that the Stokes’ formula can 

not be directly applied to predict the terminal settling velocities of natural sediment 

particles even in the range of Stokes flow. 
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Figure 6.3a    Comparison of the Predicted Results Derived from Stokes' Formula and Cheng's 
Formula for Spherical Sand particles in the Stokes Flow.
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Figure 6.3b    Comparison of the Predicted Results Derived from Stokes' Formula and Cheng's 
      Modified Formula for Spherical Sand Particles in the Stokes Flow.
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Fig.6.3c  Comparison of the Predicted Results Derived from Stokes' Modified Formua and Cheng's 
Formula for Natural Sediment Particles in the Stokes Flow
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6.4.3.2   Transitional flows 

 As the terminal settling velocity formulae derived in this study are based on the 

spherical particles, they must also be corrected by a shape factor prior to predicting the 

terminal settling velocity of natural sediment particles.  Similar to the last section, here a 

shape factor of 0.75 is applied to Eq.(6.51).  Then Eq.(6.51) becomes: 

 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟

⎠
⎞

⎜
⎝
⎛=

d
dg

d
U

f

p
natural

ν
ρ
ρν 93.11109.161.14575.0

2

  (6.51a) 

  

Fig. 6.4 shows the comparison of the predicted results obtained from Eq.(6.51a) and 

Cheng’s formula for natural sediment particles with diameters ranging from 100 micron 

to 300 micron.  This figure indicates that the predicted results from Eq.(6.51a) agree with 

that from Cheng’s formula.  The maximum percent difference between the two equations 

is about 4 %.  Therefore, Eq.(6.51a) could be used to predict the terminal settling velocity 

of natural sediment particles with a particle size in the range of d = 100 to 300 microns.  

Similarly, if Eq.(6.52) is used to predict the terminal settling velocity of natural 

sediment particles, it must be corrected by a shape factor.  By multiplying it by a shape 

factor of 0.76, Eq.(6.52) becomes: 
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Figure 6.4   Comparison of Predicted Results for Natural Sediment Particiles Ranging from 100 to 
300 micron 
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Figure 6.5   Comparison of Predicted Results for Natural Sediment Particiles with Diameters Larger 
than 300 micron
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Fig. 6.5 shows the comparison of the predicted results obtained from Eq.(6.52a) 

and Cheng’s formula for natural sediment particles with diameters larger than 300 

microns.  This figure indicates that the predicted results from Eq.(6.52a) agree with that 

from Cheng’s formula.  Comparison reveals that the maximum percent difference 

between both of them is about 5 %.  Therefore, Eq.(6.52a) could be applied to predict the 

terminal settling velocities for natural sediment particles with diameters grater than 300 

microns. 

 

6.4.3.3   Summary of terminal settling velocity formulae proposed by this study 

 In terms of the above analysis, the following equations derived in this study are 

suggested to predict the terminal settling velocity for spherical sand particles and natural 

sediment particles in the quiescent fluid. 

 

Spherical Sand Particles: 
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For mdm μμ 790270 ≤p , 
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Natural Sediment Particles: 
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For md μ300f : 
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6.4.4 Response of Particle Motion in One-Dimensional Upward Uniform Steady 

Fluid Flow 
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In this section the response of a spherical particle to a one-dimensional upward 

uniform steady fluid (water) flow is investigated.  In practice, the range of Reynolds 

numbers in liquid-solid flow rarely exceed a few hundred, the particle motion in only the 

Stokes’ and transitional flow are investigated in the present study.   

 

6.4.4.1   Particle motion in the Stokes flow  

In the Stokes’ flow, the particle velocity and trajectory in a one-dimensional 

upward uniform steady flow can be described by Eqs.(6.30) and (6.31): 
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According to Table 6.2, for a given upward uniform steady fluid flow (water) with Uf = 

5.0 mm/sec and under the condition of 0. 1≤epR , the upper size limit of sand spheres is 

86 micron.  Over this limit, the Stokes’ law no longer holds.   
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Figure 6.6a shows the variation of the predicted particle velocities with time in an 

upward steady uniform fluid flow (water) with Uf = 5.0 mm/sec.  The vertical axis 

represents the predicted velocity of particle motion in the vertical direction; while the 

horizontal axis represents the time at time t.  This figure indicates that the unsteady state 

of the particles motion is very short.  For particles with diameters ranging from d = 50 to 

85 microns, the time required to reach their terminal velocity range from 5 to 10 

milliseconds.  After this time range, particles with diameters less than 74.6 microns will 

move steadily upward in the fluid; while particles with diameters greater than that of 

74.63 microns will move steadily downwards to settle.  However, particles with the 

diameters close to 74.63 microns will be suspended in the fluid flowfield.   

Figure 6.6b shows the predicted particle trajectories in an upward uniform steady 

fluid flow (water) with Uf = 5.0 mm/sec.  The vertical axis represents the predicted 

distance (Z) of particles traveled at time (t) in the vertical direction; while the horizontal 

axis represents the time of the particles traveled in the fluid flowfield.  This figure 

indicates that particles with diameters less than the critical diameter of 74.68 microns will 

move directly upward; while particles with diameters greater than that of 74.68 microns 

will move first upward with a very short distance (within several microns, except for 

particle sizes close to the critical diameter of 74.63 microns), then move downward to the 

bottom to settle. 
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Figure 6.6a   Particle Velocity in an Upward Uniform Steady Fluid (water) Flow with Uf = 5.0 mm/sec 
Based on Rep < 1.0. 
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Figure 6.6b   Particle Trajectory in an Upward Uniform Steady Fluid (water) Flow with with Uf = 5.0 
mm/sec Based on Rep < 1.0
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6.4.4.2   Particle motion in the intermediate Reynolds number range 

In the intermediate range of Reynolds numbers, the Stokes drag law no longer 

holds.  For spherical sand particles moving in a given upward uniform steady fluid flow, 

the particle motion in the intermediate range of Reynolds number can be described by 

Eqs.(6.44a) and (6.47): 
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In the range of Reynolds number of 0.100.1 ≤epRp , the constants of ,  and  are 

29.167, -3.889, and 1.222 respectively (see Table 6.1).  In terms of Tables 6.2 and 6.3 or 

1K 2K 3K
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Fig.6.2, for a given upward uniform steady fluid (water) flow with Uf = 10.0 mm/sec and 

under the condition of 0.100.1 ≤epRp , the size limit of the sand spheres range from d = 

70 to d = 238 micron.   

Figures 6.7a and 6.7b show the variations of the predicted particle velocities and 

trajectories with time in an upward steady uniform fluid (water) flow with Uf = 10.0 

mm/sec.  This two figures indicate that the unsteady state of the particles motion in the 

transitional flow is very short (within the range of t = 10 to 20 milliseconds for particles 

sizes ranging from d = 100 to 200 microns).  After these time range, the particles with 

diameter less that of 112.5 microns will move steadily upward with the fluid; while 

particles with diameters grater than that of 112.5 microns will move steadily downwards 

to settle.  But, particles with diameters close to112.5 microns will suspend in the fluid 

flowfield.   

From the above two case analysis, it is true that the unsteady state of particle 

motion in an upward uniform steady fluid (water) flowfield is very short for heavy 

particles.  The time required by spherical sand particles, with diameters ranging from 100 

to 200 microns, to reach their terminal velocity is within 10 to 20 milliseconds.  The 

result from this case analysis agrees with that obtained by Coimbra and Rangel (1998). 
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Fig. 6.7a  Particle Velovity in an Upward Uniform Fluid (water) Flow  with Uf = 10.0 mm/sec Based on 
1.0< Rep<10.0.
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Figure 6.7b   Distance of Particle Traveled in an Upward Uniform Fluid (water) Flow  with Uf = 10.0 
mm/sec based on 1.0<Rep<10.0
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6.5 Conclusions 

6.5.1 Particle Motion in the Upward Uniform Steady Fluid Flow 

Based on the forces balance on a spherical particle, the general solution for 

particle motion in an upward uniform steady fluid flow has been developed.  The case 

analysis indicates that for heavy particles the unsteady state of particles motion in an 

upward steady uniform fluid (water) flow is very short (within 0.02 seconds for sand 

spheres with diameters up to 200 microns).  After this time range, particles with 

diameters less than the suspended critical diameter (dc) will move directly upward with 

the fluid; while particles with diameters larger than that of the suspended critical diameter 

will move downward to settle.  The magnitude of the suspended critical particle diameter 

(dc) is dependant upon the magnitude of the upward fluid velocity (Uf).   

 

6.5.2 Terminal Settling Velocity 

In this study, the new terminal settling velocity formulae for both spherical and 

natural sand particles have been derived.  The case analysis indicates that particle 

terminal settling velocity formulae developed for spherical particles can not be directly 

applied to natural sediment particles.  The equations must be corrected by a shape factor 

prior to predicting the terminal settling velocity of natural sediment particles. 

The comparison of the predicted results from Eqs.(6.50a), (6.51a), and (6.52a) 

developed in this study with Cheng’s formula showed that they have good agreement 

with Cheng’s formula.  This means that these simple equations are applicable to predict 

the terminal settling velocity of the natural sediment particles.   
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Chapter 7 

Particle Trajectories in a Vortex Chamber Flow 

 

The purpose of this chapter is to investigate the characteriscs of particle motion in 

a confined vortex chamber flowfield, and thus to examine the mechanisms of solid-liquid 

separation for the selected vortex chamber model.  Based on the governing equations of 

particle motion coupled with the vortex chamber flow patterns derived in Chapter 5, the 

analytical solutions of particle trajectory in a confined vortex chamber flowfield have 

been derived.  The resulting basic equations developed in this chapter will be useful to 

illustrate the most common aspects of solid-liquid separating mechanisms in practical 

engineering. 

 

7.1 Problem Description and Assumptions 

The knowledge of particle motion in a rotational flowfield is critical for the 

performance evaluation of particulate-involved operating systems (such as gas-solid or 

liquid-solid separators).  The understanding and ability to predict the pattern of particle 

motion is of considerable value for the purpose of design or improved operation.  

However, there are too many factors that may affect the motion of particles in the 

rotational flowfield, and thereby in some cases prevent any reasonable theoretical 

approach.  The works by previous investigators (Lapple and Shepherd, 1940; Kriebel, 

1961; Boothroyd, 1971; Morsi & Alexander, 1972; Svarovsky, 1977, 1981 & 1984; 

Rudinger, 1980) have shown that though the general governing equations of particle 

motion in a rotational flowfield are easy to formulate, the analytical solutions are very 
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difficult to obtain due to the complexity of the simultaneous non-linear equations of 

particles motion.  In a general case to obtain analytical solutions, the governing equations 

must be simplified to formulate a realistic manner based on some assumptions.   

The objective of this study, based on the governing equations of particle motion 

and some assumptions, is to derive the analytical solutions of particle motion in a 

confined rotational flowfield.  In order to obtain the analytical solutions of the governing 

equation of particle motion, the following assumptions are made: 

• The particles have a spherical shape 

• The particle concentration is so low that the presence of particles does not affect 

the fluid flow 

• Particle-particle interactions are negligible; the behavior of each particle can 

treated alone 

• The fluid is incompressible, steady and axi-symmetrical about z-axis 

• The tangential flow velocity distribution is a type of Rankine-like profile 

 

7.2 Physical Model  

Consider a cylindrical vortex chamber with a tangential inlet pipe, but without 

underflow exit (see Figure 7.1).  In this system, the flow tangentially enters the chamber 

to generate a rotational flowfield around the vertical axis (z), and then flows out along the 

top edge of the vortex chamber.  The velocity of fluid flow in this confined vortex 

chamber is resolved into three components: tangential ( ), axial ( ) and radial 

( ).  However, the radial velocity is small compared with the tangential velocity and  

θ,fU z,fU

r,fU
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         Figure 7.1   Schematic Illustration of Particle Trajectory in a Vortex Chamber 
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axial velocity, and thus negligible (Rudinger, 1980; Svarovsky, 1981; Vatistas, et al, 

1986; Vatistas, et al, 1988; Ogawa, 1992). 

Particles of low concentration are introduced into the vortex chamber with the 

tangential inflow.  The response of the particles motion depends upon not only the flow 

patterns, but also the properties of the fluid.  The particles in the confined vortex chamber 

will be either accelerated or decelerated by the influence of the external forces acting on 

them.  The particle velocity components in the tangential, radial, and vertical directions 

are denoted by  , respectively (see Figure.7.1).  In most cases, it is 

desirable to find the paths of particle motion that can be described by the individual 

components in the directions of interest.   

θ,pU , r,pU , z,pU

 

7.3 Particle Trajectories  

The principle of liquid-solid separation in a confined vortex chamber is somewhat 

different from gas-solid separation in a dust collector or a cyclone.  For gas-solid 

separation in a dust collector, the centrifugal force generated by the higher tangential gas 

inflow is the dominant force in comparison with the gravitational force; and thus the 

separation mainly depends upon the centrifugal force.  The fine particles are transported 

to the wall surface of the device to settle by the centrifugal effect.  In a dust collector, the 

major concern is over the particle trajectory in the (r,θ ) plane, rather than the (r, z) plane. 

Conversely, for liquid-solid separation, as the rotational flowfield in a confined 

vortex chamber is generated by the momentum transfer from the tangential inflow, the 

generated tangential flow velocity is low compared with that in a dust collector, and thus 

centrifugal effect is not strong.  The mechanism of particle separation depends upon the 
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combined effect of the gravitational force and centrifugal force.  For a suspended particle 

in a confined vortex chamber located at radius of r, it will move simultaneously 

downward, outward (radial), and forward (tangential) if its terminal settling velocity Up is 

greater than the vertical upward flow velocity Uz, r.  Also, there is a possibility the particle 

will move simultaneously upward, outward, and forward if its terminal settling velocity is 

less than the vertical upward flow velocity.  

For solid-liquid separation in a confined vortex chamber, the present work is 

concerned about the particle trajectories in the (z, r) plane, and not the (r, θ) plane.  

Hence, if the flow pattern in a rotational flowfield is known, the particle trajectory in the 

(z, r) plane can be predicted by considering the relationships between flowfield and 

particle motion in radial, tangential, and vertical directions.  

 

7.3.1 Particle Trajectory in the Tangential Direction 

For a spherical particle suspended in a rotational flowfield, the force acting on the 

suspended particle in the tangential direction is the drag force only, and the particle takes 

a very short time to reach its terminal velocity (within 0.002 seconds for particles with a 

diameter of 200 microns, see Chapter 6).  As a result, the particle’s tangential velocity 

component quickly approaches the tangential fluid velocity component (i.e.: θθ = ,f,p UU ).  

The particle’s tangential velocity component in the forced vortex region (core of the 

chamber) and free vortex region (outer region of the chamber) can be expressed as: 

 

( 2, 0 RtorrU p == )ωθ       (7.1a) 
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and 
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     (7.1b) 

 

where  and  are the particle and fluid velocities in the tangential direction at 

radius of r.  Then, the particle trajectories in the tangential direction can be written as: 

θ,pU θ,fU

 

 ( 20 Rtort == ωθ       (7.2a) 

and 
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2
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r
R
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ω

θ       (7.2b) 

 

where θ is the angle of particles traveled in the rotational flowfield. 

 

7.3.2 Particle Trajectory in the Radial Direction 

Since the radial fluid velocity is small compared to the tangential and vertical 

velocity (Rudinger, 1980; Svarovsky, 1981; Vatistas, et al, 1986; Vatistas, et al, 1988; 

Ogawa, 1992), it can be neglected (i.e.: 0, =rfU ).  Moreover, to further simplify the 

problem, the Stokes’ law is applied to calculate the drag force in the radial direction.  By 

considering the centrifugal force, drag force and gradient pressure force acting on a 

particle in the radial direction, the governing equation of the particle motion in the radial 

direction can be written as (Boothroyd, 1971; Maxey and Rilley, 1983): 
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where mp is the mass of particle, and mf is the mass of fluid with the same volume of 

particle.  On the right-hand side of Eq.(7.3), the first term is the centrifugal force; the 

second term is the pressure gradient force in the radial direction; the third term is the drag 

force.  For a spherical particle, if Stokes’s law applies, then the above equation can be 

further written as: 
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7.3.2.1   Particle motion in the forced vortex region 

By substituting Eq.(7.1a) into Eq.(7.3a) and rearranging, the governing equation 

of particle motion in the forced vortex region (core of the chamber) can be expressed as:  
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The general solution for Eq.(7.4) is: 
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Since the last term in the Eq.(7.5) decays very fast with time, thus it is negligible.  Then 

Eq.(7.5) reduces to: 
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In terms of the definition of velocity, Eq. (7.6) can be expressed as: 
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By integrating the above equation, the distance of particle traveled in the radial direction 

can be written as 
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where  is the initial distance of particle from origin at time .  If further assuming that 

the particle initial distance is  at  = 0, then Eq.(7.9) reduces to: 
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Moreover, for the gas-solid flow system, as the density of gas is greatly less than that of 

solid (i.e., << ), the pressure gradient force term is negligible in the governing 

equation.  then the above equation is reduced to: 

fρ pρ

 

t
dp

err μ

ωρ

18
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22

=          (7.9a) 

 

Eq.(7.9a) is similar to the result derived by Kriebel (1961) for small particles in a gas 

centrifuge.  In some cases, it is desirable to know the time required for a particle moving 

from radius of r = ro to r = r.  From Eq.(7.10), the time can be expressed as: 
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Further for the gas-solid flow system, the pressure term is negligible.  Then the above 

equation reduces to: 
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7.3.2.2   Particle motion in the free vortex region 

By substituting Eq.(7.1b) into Eq.(7.3a) and rearranging, the governing equation 

for particle motion in the free vortex region (outer region of the chamber) can be 

expressed as:  
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The general solution for Eq.(7.11) is: 
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As the last term in Eq.(7.12) decays very fast with time, and thus negligible.  Then 

Eq.(7.12) reduces to: 
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In terms of the definition of velocity, Eq. (7.13) can be expressed as: 
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By integrating the above equation, the distance of particle traveled in the radial direction 

can be expressed as: 
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where  is the initial distance of particle from origin at time .  If further assuming that 

the particle initial distance is  at  = 0, then Eq.(7.15) reduces to: 

0r 0t

0r 0t

 

( ) 414
2

22
4

0 9
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+= t

Rd
rr fp

μ
ρρω

      (7.16) 

 

For gas-solid flow system, the pressure gradient force term is negligible in the governing 

equation, then the above equation is reduced to: 
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By rearranging Eq.(7.16), the time required for a particle moving from radius of 0rr =  to 

r = r can be expressed as: 
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For the gas-solid flow system, the pressure term is negligible, then the above equation 

reduces to: 
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7.3.3 Particle Trajectories in the (z, r) Plane 

For a suspended particle distant r from the origin and moving vertically at 

velocity ( ), tangentially at velocity ( ), and radially at velocity ( ), the 

governing equation of particle motion in the vertical direction can be expressed as: 
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As the vertical velocity ( ) distribution in a vortex chamber is not uniform, but a 

function of radius r for a steady rotational flow, the equations of particle trajectory 

derived from one-dimensional upward constant flow can not be directly used to predict 

the particle trajectories in the (z, r) plane.  For a suspended particle in a confined vortex 

chamber distant r from origin, it will move simultaneously forward (tangential), outward 

(radial), and downward (or upward).   

z,fU

According to the dynamic analysis of a single particle in one-dimensional upward 

uniform flow (see Chapter 6), the unsteady state of particle motion is very short (i.e., the 

time required for a particle to reach its terminal velocity).  To simplify the problem, the 

unsteady effect on particle motion from one location to another is neglected in this study; 

and the particle terminal velocity ( ) is directly used to estimate the particle trajectory sU
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in the (z, r) plane.  Therefore, in terms of the vertical flow velocity ( ) distribution 

and the particle terminal settling velocity ( ) coupled with the particle motion in the 

radial direction, the particle trajectory can be determined.  The vertical distance of a 

particle traveled in the vortex chamber from time t0 to t can be expressed as: 

z,fU

sU

 

( dtUUZZ
t

t
sz,ftt

0

0 ∫ −=− )        (7.19) 

 

where Z0 and Zt are the vertical coordinates of particle motion at time t0 and t; Us is the 

particle terminal settling velocity in the quiescent water; and Uz,r is the vertical fluid flow 

velocity distribution in the vortex chamber, which can be determined by the vortex 

models developed in Chapter 5.  The particle trajectory in the (z, r) plane is determined as 

follows. 

 

Forced Vortex Region ( 20 Rtor = ): 

In terms of the vortex model derived in Chapter 5, the vertical fluid velocity 

distribution in a confined vortex chamber could be described by Eq.(5.20): 
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Substituting Eq.(5.20) into Eq.(7.19) gives: 
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The distance of particle traveled in the radial direction could be described by Eq.(7.9).  

By differentiating Eq.(7.9) with respect to time t and rearranging, the following 

relationship is obtained: 
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Substituting Eq.(7.21) into Eq.(7.20) and rearranging, the following integral transform is 

obtained: 
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Integrating Eq.(7.22) and rearranging gives: 
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Free Vortex Region ( ): 12 RtoRr =
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Similarly, in the free vortex region the vertical distance of particle traveled from 

time t to  can be determined by Eq.(7.20): 0t
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Differentiating Eq.(7.17) with respect to time (t) and rearranging gives: 
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By substituting Eq.(7.24) into Eq.(7.20) and rearranging, the following integral transform 

is obtained: 
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Integrating Eq.(7.25) and rearranging yields: 
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7.4 Case Analysis and Discussions 

For a confined vortex chamber with chamber diameter mm, inlet 

pipe diamete 7.12= mm, and chamber he 1750

of

r of ight of

 1271 =D

IND  =H mm, the particle 

trajectory in the (z, r) plane can be described by Eqs.(7.23) and (7.26): 

 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=−

2

1

0
2

1
2
10

2
1

22 ln218
0 R

r
R
r

R
Q

r
rU

R
Q

d
ZZ p

fp
rr ππωρρ

μ   (7.23) 

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
=−

4
2

2
1

6
0

6

2
1

4
2

4
0

4

2
1

22 34
218

0 RR
rr

R
Q

R
rr

U
R
Q

d
ZZ p

fp
rr ππωρρ

μ  (7.26) 

 

Angular Velocity (ω)   For a given flow rate Q, the angular velocity of the fluid flow 

around the z axis can be determined by the Eq.(4.43) derived in Chapter 4: 
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Terminal Settling Velocity (Us)   Cheng’s settling velocity formula derived for the 

natural sediment particles can be applied to a wide range of Reynolds numbers from the 

Stokes flow to the turbulent flow, here his formula is used to predict the sand particle 

settling velocity: 
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Figures 7.2 to 7.5 show the predicted particle trajectories in the (z, r) plane for particles 

injected from six different locations of =0r R1/100, R1/10, R1/5, R1/4, R1/3, and R1/2.  

These figures only display the trajectories for particles with diameters that could arise a 

height that is same as the chamber height.  For a given flow rate and a given injection 

location, particles with diameters less than that indicated in these figures will escape from 

the chamber; while particles with diameter greater than that indicated in these figures will 

be captured by the chamber.   

These figures indicate that for a given flow rate, the particle sizes which could be 

captured by the chamber decrease with increasing the injection locations from the core to 

the outer region of the chamber.  However, by comparing these figures, it is found that 

for the injection locations (ro) near the core of the chamber with a radius about 10% of 

the chamber radius (R1), the sizes of the particle, which could be captured by the 

chamber, increase with increasing flow rate; over this region, the particle sizes that can be 

captured by the chamber first increase and then decrease with increasing inflow rate.  
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Figure 7.2    Particle Trajectories in the plane (z, r) Based on Q = 46.5 ml/s for Particles Injected from ro = R1/100,  R1/10, R1/5, 
R1/4, R1/3, and R1/2, respectively.  
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Figure 7.3    Particle Trajectories in the plane (z, r) Based on Q = 56.6 ml/s for Particles Injected from ro = R1/100, R1/10, R1/5, R1/4, 
R1/3, R1/2, respectively.  
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Figure 7.4    Particle Trajectories in the plane (z, r) Based on Q = 84.7 ml/s for Particles Injected from ro = R1/100, 
R1/10, R1/5, R1/4, R1/3, and R1/2, respectively.  
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Figure 7.5    Particle Trajectories in the plane (z, r) Based on Q = 105.6 ml/s for Particles Injected from ro = R1/100, R1/10, R1/5, 
R1/4, R1/3, and R1/2, respectively.  
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7.5 Conclusions 

 Based on the governing equations of particle motion in a rotational flowfield 

coupled with the vortex flow pattern developed in Chapter 5, the particle trajectory in a 

confined vortex flow has been derived in this study.  Case analysis indicates that the 

particle trajectory in a confined vortex chamber is governed by the combined effect of the 

centrifugal force and the gravitational force.  The centrifugal effect becomes significant 

when magnitude of the inflow rate (Q) is increased.  The critical particle diameter which 

can be captured by the chamber increases with increasing magnitude of the inflow rate.  

This means that the removal efficiency decreases with increasing inflow rate.  
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Chapter 8 

Investigation of Unit Sizing Formula 

 

In this chapter, based on the particle trajectory equation in the (z, r) plane derived 

in Chapter 7 coupled with the angular velocity formula derived in Chapter 4, a unit sizing 

formula for a confined vortex chamber with tangential inflow, but without baseflow exit 

has been derived.  The comparison of the predicted removal efficiency from this formula 

to the experimental result indicated that the predicted result agrees with the experimental 

data.  This means that the equation derived in this study is applicable to unit performance 

evaluation and sizing for vortex separators with a similar configuration. 

 

8.1 Introduction 

 In current practice, the widely used treatment technologies for liquid-solid 

separation include the gravitational settling method and hydrodynamic separation 

method.  Gravitational separation is a conventional treatment process to remove solids 

from liquids.  In this treatment process, particles with density greater than that of water 

move downwards to settle, while particles with density less than that of water move 

upwards to float on the water surface.  This is the major mechanisms of pollutant removal 

in wastewater and stormwater treatment systems.  Sedimentation removal rate is a 

function of detention time, solid terminal settling velocity and overflow rate in the 

treatment device (Wanielista and Yousel, 1993; Andoh and Smisson, 1994; Sincero and 

Sincero, 1996). 
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Unlike the conventional treatment technology that only rely on gravity settling, 

solid removal in a confined vortex separator relies on not only gravity settling, but also 

secondary flows which transport settling solids to the center of vortex chamber to settle 

(Andoh and Smisson, 1994; Wong, 1997; Minton, 2005).  Though many types of 

hydrodynamic separators have been developed for wastewater and stormwater treatment, 

so far not much fundamental study exists due to the complexity of the problem.  Design 

specifications of commercial devices are almost based on the semi-empirical equations or 

scaling laws (such as Froude scaling and Hazen scaling) that are suitable for each 

manufacturer.   

The accurate prediction of particle removal efficiency in a hydrodynamic 

separator is critical either for the purpose of unit design or improved operation.  The 

purpose of this chapter is to develop a unit sizing formula for a selected vortex separator 

in this study (see Fig.8.1). 

 

8.2 Vortex Chamber Physical Model 

 The physical model considered in this chapter is same as that described in the 

previous chapters.  For convenient referencing, it is reproduced as follows (Fig. 8.1).  The 

main symbols for unit dimensions are also shown in Fig.8.1.  Liquid-solid flow is forced 

tangentially into the vortex chamber by a fluid pressure difference between the chamber 

inlet and outlet, and flows out along the top edge of the chamber. 
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Fig. 8.1   Schematic Illustration of the Vortex Chamber Model 
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8.3 Determination of Sizing Formula 

The particle trajectories in the (z, r) plane of a confined vortex chamber can be 

predicted by Eq.(7.23) derived in Chapter 7.  It is reproduced as follows: 
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where ro and are initial location of particles in the radial and vertical directions 

respectively in the chamber.  For a given height of vortex chamber with inflow rate Q, if 

the maximum height that a suspended particle could rise from the bottom of the chamber 

( ) is less than that of the chamber height, then this particle could be captured by 

the chamber.  To find this maximum height that a suspended particle could rise, 

differentiating Eq.(7.23) with respect to r and setting it to zero (i.e., 

orZ

0Z
or =

0drdz r = ) yields: 
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where  is the location where a particle could rise its maximum height if it is injected 

from a point at r = ro in the chamber, and it is a function of the particle diameter d and the 

flow rate Q;  is the particle terminal settling velocity; and  is the chamber 

overflow rate and is defined as follows: 

maxzr

sU ORU
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By substituting (8.2) into Eq.(7.23) and replacing r with ,  then maximum height that 

a particle could rise can be expressed as: 

maxzr
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where is the maximum height that a suspended particle could rise from the bottom 

of the chamber ( ).  Further, if we set the maximum height ( ) that a particle 

could rise to chamber height of , then the following relationship is obtained: 

maxZ
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For a given design flow rate Q and the desired removal efficiency, the unit dimensions 

can be determined with this equation coupled with the angular velocity (ω) formula, and 

particle terminal settling velocity (Us) formula.  The determination of angular velocity 

(ω), particle terminal settling velocity (Us) and the injection location are described as 

follows: 
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Angular Velocity (ω)   The angular velocity (ω) in the above equation is a function of 

flow rate Q and the unit geometrical dimensions, and it can be determined by Eq.(4.43) 

derived in Chapter 4.  It is reproduced as follows: 
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where KL is the local loss coefficient at inlet pipe exit, and is approximately equal to 1.0 

for sudden expansion in pipe flow.   is the fraction factor in the tangential direction of 

the vortex chamber, and it is constant for turbulent rough flow (Street, et al., 1996).  But 

for the unit sizing purpose, it is more convenient to express  as the following form 

(Street, et al., 1996): 

θf

θf
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where n is the Manning roughness coefficient.  Rh is the hydraulic radius for flow in the 

tangential direction, and it is defined as: 
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Substituting Eq.(8.6) into Eq.(8.5) gives: 
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By substituting Eq.(8.7) into Eq.(4.43) and replacing R2 with (R1 – 2RIN) in Eq.(4.43), the 

angular velocity can be rewritten as: 
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Particle Terminal Settling Velocity (Us)   The particle settling velocity is a function of 

particle diameter as well as fluid and particle properties.  It can be determined by Cheng’s 

formula (1997): 
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Particle Injection Location ( )   From the case analysis of particle trajectory described 

in Chapter 7, it was found that for a given flow rate Q, the critical particle sizes (dc) 

which could be captured by the chamber varies with the particle injection location of .  

In real operation, the particles enter into the vortex chamber through the inflow, then the 

secondary flow currents transport the particles to the central zone of the chamber bottom 

to settle or re-suspend.  For high inflow rates, almost all of the particles fed from the 

inflow pipe would be transported to the core region of the chamber floor by the strong 

secondary flow currents.  Typically, a cone shape of sedimentation accumulation is 

formed in the central zone, while for very low inflow rate the shape of sedimentation 

accumulation is almost flat due to the weak secondary flow currents.  Therefore, it is very 

difficult to determine the exact particle injection or re-suspended locations ( ) in the 

bottom of chamber.   

or

or

or

 However, the degree of particles migration ( or ) from the periphery of the chamber 

to the central zone relies on the strength of the secondary flow currents; while the 

strength of secondary flow currents depends on the magnitude of inflow rate (Q).  Hence, 

there must exist relationships between the inflow rate and the degree of particle migration 

(ro) from chamber periphery to central zone.  To simplify the problem, here we use the 

chamber’s Reynolds number to represent the inflow flow parameter.  It is defined as 

follows: 
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In terms of the above analysis, as the degree of particle migration (ro) should be a 

function of inflow rate and unit sizes, it can be determined inversely with the 

experimental data obtained in Chapter 3 coupled with Eq.(8.4) and particle size 

distribution (PSD).  For a given inflow rate and measured particle removal efficiency, the 

critical particle size that could be captured by the chamber can be found from PSD curve.  

By substituting it into Eq.(8.4), the corresponding average particle injection location 

( 1o Rr ) can be obtained.  By plotting the calculated chamber Reynolds number with 

Eq.(8.10) against the calculated particle injection location ( 1o Rr ) with Eq.(8.4), and 

fitting it to a logarithmic curve (see Fig.8.2), the following relationship (with a 

correlation factor of ) is obtained: 9908.02 =R
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For a given Q and chamber radius R1, if the calculated value of (ro/R1) is negative that 

means the particle is injected from the center of the chamber, then set ro to a value closing 

to zero, for example, ro = 100 micron (0.1 mm). 
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Fig.8.2   Relationship Between Particle  Injection Location (ro/R1) and Chamber Reynolds Number (Re)
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R2 = 0.9908

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800 900 1000 1100

Reynolds Number (Re)

r 0
/R

1

 

 

 

 

 

 

 

 

 

 



 182

8.4 Comparison of Predicted Results with Experimental Results 

 For a confined vortex chamber with diameter of = 127 mm, height of = 175 

mm, and inlet pipe diameter of = 12.7 mm, Figure 8.3 shows the comparison of the 

predicted removal efficiency with Eq.(8.4) to the experimental results presented in the 

Tables 3.2, 3.3, and 3.4 of Chapter 3.  This figure indicates that the predicted results of 

Eq.(8.4) coupled with the PSD curve agrees with the measured results.  The difference 

between the measured data and the predicted results ranges from 0.2% to 3.6%. 

1D oH

IND

Figure 8.4 shows the comparison of the predicted removal efficiency with 

Eq.(8.4) to the experimental results presented in the Table 3.5 of Chapter 3 based on the 

chamber height of = 120 mm.  This figure also indicates that the predicted results 

with Eq.(8.4) agree with the measured results.  The maximum difference between the 

predicted results and the experimental results is about 3.6%.  The above analysis reveals 

that Eq.(8.4) is applicable to the unit performance evaluation for types of vortex 

chambers selected in this study, and thus it can be used for unit sizing. 

oH
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Fig. 8.3 Comparison of Predicted Removal Effeciency with Experimental Data Based on Chamber 
Heigh H0 = 175 mm

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200 220

Inflow Rate Q (ml/sec)

R
em

ov
al

 E
ffi

ci
en

cy
 (%

)

Experiment
 Eq.(8.4)

 

Fig. 8.4 Comparison of Predicted Removal Effeciency with Experimental Data Based on Chamber 
Heigh H0 = 120 mm
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8.5 Sizing Example 

The unit sizing procedures using equations developed in this study is quite simple.  

For a given design fluid (water) flow rate and a desired particle removal efficiency, as 

well as the particle size distribution curve, the detailed unit sizing procedures are 

illustrated as follows. 

 

Example 1: Given: 

  - Design flow rate Q = 0.01 m3/sec (162gpm) 

  - Desired particle removal efficiency ET = 50%  ( PSD: d = 80 μm) 

  - The specific gravity of sand particle =ρρ fp  2.65 

  - The kinematic viscosity of water (@ 20oC) ν = 1.003 x 10-6 m2/sec 

  - The acceleration of gravity g = 9.81 m/sec2 

 Determine the size of the vortex chamber. 

 

Solution: 

(1) Estimation of Chamber Diameter D1 (= 2 R1) 

 From Eq.(8.1),  if the location ( ) of maximum height that a particle could rise 

exists, then the following condition must be satisfied: 

maxzr
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Rearranging the above equation yields: 
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If Cheng’s formula is used to predict the particle settling velocity, then the following 

relationship can be obtained: 
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For a given design flow rate of Q = 0.01 m3/sec and a desired removal efficiency of ET = 

50%, the critical particle size d that could be captured by the chamber can be determined 

from the particle size distribution curve (Fig. 3.3), and it is d = 80 microns.  The specific 

gravity for sand particle is fp ρρ = 2.65.  The kinematic viscosity of water at 20oC is 

1.003 x 10-6 m2/sec.  The acceleration of gravity is g = 9.81 m/sec2.  By substituting 

the values of Q, d, 

=ν

fp ρρ , g and ν  into Eq. (8.14), the calculated chamber radius R1 is 

as follows: 

 

     Try  m57.1R1 p m25.1R1 =  

 

(2) Selection of Inlet Pipe Diameter DIN (= 2 RIN) 

In terms of US EPA laboratory test results for swirl concentrator (Sullivan, et al., 

1982), the small the inlet pipe size, the high removal efficiency could be achieved.  For 
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practical operation, the reasonable ratio of chamber diameter D1 to inlet pipe diameter 

DIN is D1/DIN = 6 to 14.  In this example, the ratio of D1/DIN = 12.5 is selected to illustrate 

the sizing procedures.  Therefore, the selected inlet pipe radius is: 

 

RIN = 0.10 m 

 

(3) Calculation of UOR, US, and  
maxzr

 The chamber overflow rate, particle terminal settling velocity, and location of 

maximum height that a suspended particle could rise are determined as follows: 
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(4) Determination of Particle Injection Location (ro) 

For the given design flow rate Q = 0.01 m3/sec and the selected chamber radius R1 

= 1.25 m, the average particle injection location can be estimated by Eq.(8.8): 
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 Set  ro = 0.1 mm  

 

(5) Determination of Chamber Height (Ho) 

By substituting the following values of  

 

μ = 1.003 x 10-3 Pa.s  ρp = 2650 kg/m3   ρf  = 1000 kg/m3 

d = 80 x 10-6 m  UOR = 2.04 x 10-3 m/s  Us = 4.04 x 10-3 m/s 

R1 = 1.25 m   RIN = 0.10 m   = 0.11 m 
mamZr

ro = 0.0001 m    KL = 1.0   n = 0.01  

 Q = 0.01 m3/s 

 

into Eq.(8.4) and Eq.(8.8) and solving these two equations by trial and error gives: 

 

ω = 0.318/sec 

m30.2m29.2Ho ≈=          

  

Therefore, based on the given design flow rate Q = 0.01m3/sec and desired particle 

removal efficiency ET = 50%, the determined unit dimensions are as follows: 
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 Chamber Diameter  D1 = 2 R1 = 2.50 m 

 Chamber Height  Ho = 2.30 m 

 Inlet Pipe Diameter  DIN = 2 RIN = 0.20 m 

 

Example 2 Given 

Design flow rate Q = 0.02 m3/sec (324 gpm) 

Desired particle removal efficiency ET = 50%  ( PSD: d = 80 μm) 

The specific gravity of sand particle fp ρρ = 2.65 

The kinematic viscosity of water (@ 20oC) ν = 1.003 x 10-6 m2/sec 

The acceleration of gravity g = 9.81 m/sec2 

  Determine the size of the vortex chamber. 

 

Solution: 

Similarly, following the same procedures described in Example 1, the determined unit 

dimensions for the given design flow rate Q = 0.02m3/sec and desired particle removal 

efficiency ET = 50% (d = 80 microns) are as follows: 

 

 Chamber Diameter  D1 = 2 R1 = 2 x 1.78 m ≈ 3.60 m 

 Chamber Height  Ho = 1.44 m ≈ 1.45 m 

 Inlet Pipe Diameter  DIN = 2 RIN = 2 x 0.14 m ≈ 0.30 m 
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8.6 Conclusions 

Based on the particle trajectory equation derived Chapter 7, a unit sizing formula 

(Eq.(8.4)) for a confined vortex chamber with tangential inflow, but without baseflow 

exit has been developed.  The comparison of the predicted results with experimental data 

reveals that the predicted result has a good agreement with the experimental data.  The 

maximum difference between the predicted results and the measured results are less than 

4%.  This study shows that Eq.(8.4) coupled with PSD curve is applicable to unit 

performance evaluation and unit sizing for devices with the similar configuration of this 

study. 
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Chapter 9 

Summary and Conclusions 

 

In this research, experimental and theoretical investigation on particle removal 

efficiency was conducted to examine the mechanisms of solid - liquid separation in a 

confined vortex chamber, and thereby develop some fundamental basis for hydrodynamic 

separator sizing.  The main achievements and findings obtained from this research are 

summarized and concluded, based on the experimental investigation and theoretical 

study, as follows: 

 

Experiment Investigation 

In the experimental section, in order to investigate the effect of the unit 

configuration on particle removal efficiency in the confined vortex chambers, four 

physical vortex models, three with varying inlet pipe elevation and one with lower 

chamber height, were tested.   

The measured result analysis reveals the impact of inlet pipe elevation change on 

the particle removal efficiency is insignificant; while the change of the chamber height 

has a greater impact on particle removal efficiency. 

This finding is very helpful for theoretical study as there are a lot of variables that 

may prevent any reasonable theoretic investigation.  In terms of this finding, one variable 

(inlet pipe elevation) can be eliminated.  

 Based on gravitational separation method, a unit sizing formula for a vortex 

chamber with the ratio of chamber height to diameter equating to one was suggested.  
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The comparison of predicted results with this formula agrees with the experimental 

results.  It is applicable to evaluation of unit performance and unit sizing.  

 

Theoretical Development 

In the theoretical development section, the following three topics have been 

covered by this research: 

(1) determination of fluid flow patterns in a confined vortex chamber (Chapters 4 

& 5). 

(2) dynamic response of particle motion in a one-dimensional upward uniform 

steady fluid flow and vortex chamber flow (Chapters 6 &7). 

(3) and derivation of unit sizing formula for a confined vortex separator. 

 

The angular velocity of fluid motion around the common axis is an important 

factor to theoretically determine the flow patterns and particle trajectories in a rotational 

flowfield.  In this research, a simple formula, based on the law of conservation of 

momentum and boundary conditions, was derived to determine the angular velocity for 

turbulent vortex flows.  The visual observation with an object in the chamber found that 

the observed results were basically close to the predicted results. 

Based on the Navier-Stokes governing equation and some basic assumptions, a 

vortex model to predict the flow patterns in a confined vortex chamber was derived in 

this study.  This model can be used to describe the tangential and vertical velocity 

distributions in a confined vortex chamber with a tangential inflow pipe, but without the 

baseflow exit.  
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The dynamic response of particles in a one-dimensional upward uniform steady 

fluid flow, based on the balance of forces acting on a spherical particle, was examined.  

The case analysis showed that an unsteady state of particle motion exists for a very short 

time for sand particles (about 0.02 seconds).  For solid-liquid separation in wastewater 

and stormwater treatment system, the effect of an unsteady state on particle motion can 

be neglected.  In terms of the derived analytical solutions of particle velocity, a new 

particle terminal settling velocity formula for natural sediment particles was proposed.  

The comparison of predicted results with previous study indicated that it has a good 

agreement with that from previous study such as Cheng’s formula. 

In terms the flow pattern derived for a confined vortex chamber flow and the 

particle settling velocity, the particle trajectory equations in a confined vortex chamber 

have been derived.  Based on the particle trajectory, a unit sizing formula was obtained in 

this research.  Comparison of the predicted results with experimental data revealed that 

this formula has a good agreement with experimental data.  Therefore, the final goals of 

the study were successfully achieved. 

 

Future Work 

 This study has provided a fundamental approach for the unit performance 

evaluation.  This approach covers an array of topics, namely, flow pattern, particle 

trajectory and unit performance evaluation.  For vortex separators with different unit 

configuration or units with internal components, this fundamental approach is useful for 

the development of a unit performance formula.   
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 Prior knowledge of flow patterns in a confined vortex chamber is critical to 

understand the mechanisms of solid-liquid separation.  Therefore, experimental 

investigation on flow patterns, based on different types of vortex separators (including 

the type selected in this study) is emergent and necessary for the theoretical development 

in the future.   
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