NEW ALGORITHMS FOR QUADRATIC
UNCONSTRAINED BINARY OPTIMIZATION
(QUBO) WITH APPLICATIONS IN ENGINEERING
AND SOCIAL SCIENCES

BY GABRIEL TAVARES

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

Graduate Program in Operations Research

Written under the direction of

DR. PETER L. HAMMER and DR. ENDRE BOROS

and approved by

New Brunswick, New Jersey

May, 2008

(© 2008
Gabriel Tavares

ALL RIGHTS RESERVED

ABSTRACT OF THE DISSERTATION

New algorithms for Quadratic Unconstrained Binary
Optimization (QUBO) with applications in engineering

and social sciences

by Gabriel Tavares
Dissertation Director:

DR. PETER L. HAMMER and DR. ENDRE BOROS

This dissertation investigates the Quadratic Unconstrained Binary Optimization (QUBO)
problem, i.e. the problem of minimizing a quadratic function in binary variables. QUBO
is studied at two complementary levels. First, there is an algorithmic aspect that tells
how to preprocess the problem, how to find heuristics, how to get improved bounds
and how to solve the problem with all the above ingredients. Second, there is a prac-
tical aspect that uses QUBO to solve various applications from the engineering and
social sciences fields including: via minimization, 2D/3D Ising models, 1D Ising chain
models, image binarization, hierarchical clustering, greedy graph coloring/partitioning,
MAX-2-SAT, MIN-VC, MAX-CLIQUE, MAX-CUT, graph stability and minimum
k—partition.

Several families of fast heuristics for QUBO are analyzed, which include a novel
probabilistic based class of methods.

It is shown that there is a unique maximal set of persistencies for the linearization
model for QUBO. This set is determined in polynomial time by a maximum flow followed

by the computation of the strong components of a network that has 2n+ 2 nodes, where

ii

n is the number of variables. The identification of the above persistencies leads to a
unique decomposition of the function, such that each component can be optimized
separately. To find further persistencies, two additional techniques are proposed: one
is based on the second order derivatives of Hammer et al. [121]; the other technique is
a probing procedure on the two possible values of the variables. These preprocessing
tools work remarkably well for certain classes of problems.

We improved the Iterated Roof-Dual bound (IRD) of [51] by proposing two com-
binatorial methods: one was named the squeezed IRD; and the second was called the
project—and-lift IRD method.

The cubic-dual bound can be found by means of linear programming by adding a
set of triangle inequalities to the standard linearization, whose number is cubic in the
number of variables. We show that this set can be reduced depending on the coefficients
of the terms of the function. This leads to the possibility of computing the cubic—duals
of larger QUBOs.

il

Acknowledgements

I would like to begin by mentioning how fortunate I was to have Peter L. Hammer
as a co-advisor. I will not forget his advice and exceptional wisdom to solve real life
problems. He was truly a role model in many aspects of teaching and research excellence,
humility, kindness, and sympathy. I learned so much from working with him and from
observing the way he lived his life.

I wish to extend my deepest thanks to my co-advisor Dr. Endre Boros for all of
the help, motivation, support and guidance that he has provided to me over all these
years. He allowed me to have great freedom in exploring different methods and ideas,
but was always there to provide top-notch insight and advice.

Many other people at Rutgers have also been generous in helping me throughout all
these years. I would especially like to thank the RUTCOR Faculty and in particular
Dr. Andrés Prékopa, Dr. Jonathan Eckstein and Dr. Vladimir Gurvich, for their
teachings and for their help. I would like to thank my fellow Graduate class mates who
enriched my graduate school experience. I am especially thankful to Tibérius Bonates
and Cem lyigun. I am very thankful to Clare Smietana, Terry Hart, Lynn Agre and
Katie D’Agosta for assisting me so efficiently in any administrative related requests,
but more importantly because of their constant presence and advice.

I would like to thank many other people that I have been fortunate to collaborate
in several fronts related to the topic of this dissertation. In particular I would like to
thank to Dr. Bruno Simeone, Dr. Ramin Zabih and Dr. Bela Vizvari.

I would like to thank Alkis Vazacopoulos that gave me a chance to apply my knowl-
edge in the industry during this work, and was always supportive of this work.

I would like to acknowledge and thank the financial support I was awarded by the

Portuguese FCT through the FSE in the context of the III Quadro Comunitario de

iv

Apoio.

I would like to thank all the members of my family who have been so supportive
of all my efforts. I would like to thank my father Lino Tavares, my mother Maria
Tavares, and my sister and bother—in—law Mariline and Lino Tavares, for their support
and lodging when I started my studies at Rutgers. I would like to especially thank my
mother—in—law Mariline Pinto who was so supportive and helpful all along these years.

Finally, I would like to thank my wife Lisa and my children David and Sara the
most, for their endless support and belief in me, and more especially for the time they
have sacrificed without me, and that I hope to recover as soon as possible.

Thank you to all.

Dedication

To my dear wife, Lisa, and children, David and Sara, for all their love and support.
In Memory of my grand-father José Proenca.
In Memory of my father-in-law Anténio Pinto.

In Memory of my mentor Peter L. Hammer.

vi

Table of Contents

Abstract ii
Acknowledgements Lo iv
Dedication vi
List of Tables o xiv
List of Figures e xxi
1. Introduction 1
1.1. Definitions and notation L. 5
1.1.1. Pseudo—Boolean functions 6

1.1.2. Quadratic pseudo—Boolean functions 8

1.2. A generic illustrative example 9

2. Classic Combinatorial Optimization Models 10
2.1. Pseudo—Boolean optimization 10
2.2. Graphtheory 11
2.2.1. Maximum clique 11

2.2.2. Minimum vertex cover 13

2.2.3. Maximum cut 14

2.3. Maximum satisfiabilityo oo 15

3. Test Beds e 17
3.1. Benchmarks with prescribed density 19
3.1.1. Benchmark families 21

3.1.2. Randomly generated test problems 24

vii

3.2. Graphs for maximum clique 28

3.3. Planar graphs for minimum vertex cover 36
3.4. Graphs for MAX-CUT 37
3.4.1. Benchmark families 38
3.4.2. Graphs with m-Hamiltonian random cycles 43

3.5. Maximum 2-satisfiability test problems 45
3.5.1. Benchmark families 45
3.5.2. Randomly generated MAX—2-SAT formulas 47

. Basic Tools and Concepts 50
4.1. Persistency 51
4.2. First order partial derivatives oL 51
4.3. Second order derivatives L 54
4.4. Locotope e 57
4.5. Implication graph 61
4.6. Posiform minimizationo oo 64
4.6.1. Standard quadratic posiforms, 65

4.7. Rounding procedures and derandomization 66
4.8. Best linear Euclidean approximations 70
. Roof-Duality and New Persistency Results 81
5.1. Minorization Lo 82
5.2. Linearization 85
5.2.1. Persistency of linearizations 86

5.3. Implication networks 92
5.4. Computational results, 104
5.4.1. Network flow model versus linear programming 106
5.4.2. Application of roof-duality to VLSI design 108
5.4.2.1. Via minimization 109

5.4.2.2. Cell flipping in standard cell technology 110

viii

6. Heuristics 116

6.1. One—pass heuristics 117
6.1.1. DDT methods, 117
6.1.2. Greedy heuristics oo 120

6.1.2.1. Best linear approximation methods 121
6.1.2.2. Probabilistic methods 126
6.1.2.3. Rounding methods 131
6.1.3. Measuring heuristics performance 139
6.1.4. Computational results 141
6.1.4.1. Computing time 144
6.1.4.2. Quality of solutions 146
6.1.5. Comparing proposed methods to other results from the literature 148

6.2. Local-search heuristics L. 151

6.2.1. Methods L 152
6.2.1.1. Basic concepts and notations 152
6.2.1.2. Algorithms 155
6.2.1.3. Implementation details 157

6.2.2. Algorithm selection o L 159

6.2.3. Parametric analysis of heuristic ACSIOM 166
6.2.3.1. Quality of solutions 167
6.2.3.2. Computational efficiency 171

6.2.4. Comparing ACSIOM to other results from the literature 173

6.2.5. Conclusions e 173

6.3. One—pass heuristics enhancement by local-search 174
6.3.1. Computing time 176
6.3.2. Quality of solutions 177
6.3.3. Concluding remarks 177

7. Preprocessing 180

ix

7.1. Basic preprocessing tools Lo 182
7.1.1. First order derivatives 182
7.1.2. Second order derivatives and co—derivatives 182

7.2. Roof-duality 183
7.2.1. Strong persistency e 184
7.2.2. Weak persistency oo 185
7.2.3. Decompositiono 188

7.3. Combining basictools 190
7.3.1. Enhancing roof—duality by probing 190
7.3.2. COnSensus i e 194

7.4. Algorithm and implementation 194

7.5. Test problems 198
7.5.1. Benchmarks with prescribed density 199
7.5.2. Maximum cliques of graphs 199
7.5.3. Minimum vertex cover problems of planar graphs 199
7.5.4. Graphs for MAX-CUT 200
7.5.5. MAX-2-SAT formulas 200

7.6. Computational experiments 200
7.6.1. Test environment oL 200
7.6.2. Results 201

7.7. Optimal vertex covers of planar graphs 206
7.7.1. Deriving minimum vertex cover from QUBO’s optimum 206
7.7.2. Preprocessing 207
7.7.3. Optimization 208
7.7.4. Minimum vertex covers of very large planar graphs 209

7.8. Final remarks 211

. Lower Bounds to the Minimum 214

8.1. Bi—forms and packing of cycles, 219

8.2. Optimal rooted noose packings relationship to the network model 229
8.3. Rooted noose packing structure and decomposition 235
8.4. Iterated roof—duality 237
8.4.1. Computational results, 238
8.4.1.1. MAX-CUT 242

8.4.1.2. Randomly generated quadratic binary optimization prob-
lems 244
8.5. Squeezed iterated roof-duality L. 248
8.5.1. Computational results, 252
8.6. Project—and-lift iterated roof-duality 256
8.6.1. Computational results, 263
8.7. Linearization models for sparse QUBOs 265
8.7.1. Computational results, 270
88. Acloserlook at Cyo 275
8.8.1. Computational results, 283
. Exact Methods 287
9.1. Background 293
9.2. Enumerative approaches 0. 295
9.2.1. Computational results 0L 300
9.3. Branch-and-bound with network flows 302
9.3.1. Computational results 0 L. 305
9.3.1.1. MIN-VC of planar graphs 305
9.3.1.2. Benchmarks with prescribed density 306
9.3.1.3. MAX-2-SAT 309
9.3.1.4. MAX-CUT i, 314
9.3.1.5. One dimensional Ising chains 314
9.4. Linearization enhanced with logical cuts 317
9.4.1. Computational results, 319

X1

9.4.1.1. Benchmarks with prescribed density 319

9.4.1.2. MAX-2-SAT 321

9.4.1.3. MAX-CUT 321

9.4.1.4. Minimum 3-partition 325
10.Applications 327
10.1. Minimum vertex cover problem 327
10.1.1. Solving MIN-WVC using QUBO 331
10.1.2. Structiono 336
10.1.3. Simplified reduction techniques for MIN-VC 338
10.1.4. Implementation algorithms 341
10.1.5. QUBO solvers considered for testing 344
10.1.6. Minimum vertex cover of planar graphs 345
10.1.6.1. Randomly generated planar graphs 346

10.1.6.2. Two dimensional grid graphs 350

10.1.6.3. Regular graphs consisting of hexagons 353

10.1.6.4. Regular graphs consisting of triangles 355

10.1.6.5. A family of planar graphs with small diameter 356

10.1.6.6. Planar graphs with Delaunay triangulations 358

10.1.7. Preventing Internet DDoS attacks 363
10.1.7.1. Route-based distributed packet filtering 363

10.1.8. Maximum independent set of real world graphs 365
10.2. Clustering o e 368
10.2.1. A QUBO model to 2-partitioning 369
10.2.1.1. Hierarchical clustering 370

10.2.2. Greedy graph coloring and partitioning 372

10.2.2.1. The protein—protein interaction map of Helicobacter Py-

xii

10.3.1. Computational results 380

11.Conclusions e 385
Appendix A. Test Problems Characteristics 387
Appendix B. Heuristics Statistics 402
Appendix C. Preprocessing Statistics 405
Appendix D. Iterated Roof-Duality Experiments 413
References 419
Vita e 436

xiii

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.

3.11.
3.12.
3.13.
3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.

3.21.

3.22.

List of Tables

Statistics of the QUBO problems used for testing the proposed algorithms. 18

QUBO benchmarks with prescribed density. 22
Characteristics of QUBO problems in the Small family. 25
Characteristics of QUBO problems in the Medium family. 26
Characteristics of QUBO problems in the Large family. 27
Characteristics of QUBO problems in the Massive family. 28
DIMACS graphs for the maximum clique problem (Part I). 29
DIMACS graphs for the maximum clique problem (Part IT). 30
Additional graphs ([79, 196, 237]) for the maximum clique problem. . . 35
Graphs of Pardalos and Desai [192] for the weighted maximum clique

problem.o 36
Comparative statistical numbers about the LEDA benchmarks. 37
G-graphs of Helmberg and Rendl [140] for MAX-CUT.. 39
Gi1—graphs of Helmberg and Rendl [140] for MAX-CUT. 40
Cubic lattice graphs of Burer et al. [74] for MAX-CUT. 41
DIMACS torus graphs for MAX-CUT. 42
Graphs of Homer and Peinado [145] for MAX-CUT. 43
Graphs of Kim, Kim and Moon [157] for MAX-CUT. 44

Graphs with m-Hamiltonian randomly generated cycles for MAX-CUT. 44

MAX-2-SAT instances of Borchers and Furman [47]. 46
Weighted MAX-2-SAT instances of Borchers and Furman [47]. 46
Profiles of probabilities for a clause to belong to a (weighted) MAX-2-

SAT formula. 48
Randomly generated (weighted) MAX-2-SAT formulas. 49

Xiv

5.1.

5.2.

5.3.

5.4.

5.5.

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

Network flow model versus LP to find the roof-duals of the G; problems
proposed by Glover et al. [109]. 107
Average relative gap (g) to the best known lower bound (z) and aver-
age computing times of the roof-duals of 10% dense QUBO problems
(Beasley [37]). . . .« o o 108
Via minimization problems of Homer and Peinado [145]. 110
Impact of roof-duality on large 2-pin cell flipping randomly generated
problems having 1000000 nets each. 113
Average relative gap of roof-duality on randomly generated 2-pin cell
flipping problems having 10000 nets. 114
Probability distributions of random variables used to characterize the
probability distribution of partial derivatives of quadratic pseudo—Boolean
functions. 129
Starting points considered in the computational experiments. 134

One—pass heuristics for QUBO considered in the computational experi-

Families of QUBO problems used to evaluate the proposed one—pass
heuristics. e 144
Computing time of the one—pass heuristics across several families of

QUBO problems. 145

Quality of the one—pass heuristics across several families of QUBO prob-

One—pass heuristics that minimize the approximate errors of several fam-
ilies of QUBO problems. oo 148
Quality of solutions comparison between the proposed methods and the
one—pass heuristics from the literature. 150

List of target sets considered in the computational experiments. 157

6.10. Criteria list of pivot selection considered in the computational experiments.157

6.11. Performance ratio sets R; j .7 for algorithms A;pc. 162

XV

6.12. Computing times T; p, .. for algorithms A; pc (I = {1,2,3,4,6}, P =
{1,2},and C ={1,--- ,4}).o 164
6.13. Correlations between quality of solutions (711, ¢ = 2,3,4), computing
times (t; 11, ¢ = 2,3,4) and input parameters (n, d, p and p) of the test
problemsin S. 165
6.14. Algorithms returning on average the highest value for the test problems,
according to the p parameter. oL 166
6.15. Correlations between quality of solutions (racsronr), computing times
(tacsronm) and input parameters (n, d, p and p) of the test problems in 7.168
6.16. Number of variables (n) versus density (d) analysis on the heuristic com-
putation times (tacsroar) for the large family of test problems. 172
6.17. Average relative error of local maximization heuristics within several
benchmark sub-families. oL 174

6.18. Performance gain by locally improving the solutions of one—pass heuristics.177

6.19. Percentage number of tests where the STEEPESTfASCENT(%7 R %) heuris-
tic gives better solution values than STEEPEST—-ASCENT (Bernoulli (%) , -+, Bernoulli (%)),
for the G; QUBO problems ([109]). 179

7.1. Average QUBO simplifications and decomposition after preprocessing. . 203
7.2. Preprocessing strategies recommended for the benchmarks. 204
7.3. Comparative preprocessing results for minimum vertex cover problems

in planar graphs. 208

7.4. Average computing times of optimal vertex covers for graphs belonging

to the LEDA benchmarks. 209

7.5. Average computing times over 3 experiments of optimal vertex covers for

graphs belonging to the PVC RUDY benchmark. 210
8.1. Characteristics of computer systems used for testing the algorithms. . . 242
8.2. Bounding MAX-CUT. 245

8.3. Tterated roof—duals of QUBO problems with 100 variables (Glover et al.

xvi

8.4.

8.5.

8.6.

8.7.

8.8.

8.9.

8.10.

8.11.

9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

Iterated roof-duals of 10% dense quadratic unconstrained binary opti-
mization problems (Beasley [37]). 248
Squeezed iterated roof-duals of QUBO problems with 100 variables (Glover
etal. [108]). 254
Squeezed iterated roof-duals of 10% dense quadratic unconstrained bi-

nary optimization problems (Beasley [37]). 255
Project—and-lift and squeezed iterated roof-duals of QUBO problems

with 100 variables (Glover et al. [108]). 266
Project—and-lift and squeezed iterated roof-duals of MAX-2-SAT (Bonami
and Minoux [46]). L 267
Linear programming bounds of MAX—-2-SAT (Bonami and Minoux [46]). 272
Upper bounds based on linear programming for MAX—-CUT graphs from

the Hamilton family. 274
Lower bounds for M3P problems proposed by Anjos et al. [20]. 286

Exact solutions of some quadratic pseudo—Boolean functions from family

Statistics of DEPTH-FIRST to find optimal solutions of some F5 and Go
problems of Kochenberger et al. [158]. 301
Optimal solutions of the family C problems proposed by Pardalos and
Rodgers [195]. o o 302
Using B&B to find minimum vertex covers of planar graphs. 306
Proving optimality to Beasley [37] QUBO problems with 250 variables. . 307
Proving optimality to Beasley [37] QUBO problems with 250 variables. . 310
Proving optimality to the Borchers and Furman [47] MAX-2-SAT in-
Stances. 312
Proving optimality to the Ibaraki et al. [148] break minimization (MAX-
2-SAT) problems. 313

Xvil

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

10.9.

Proving optimality to some Resende [209] MAX-CUT problems. 314
Computing times to find the minimum energy state of the one-dimensional
Ising chains proposed by Rendl et al. [206, 208]. 316
Average computing times to find the minimum energy state of larger
one-dimensional Ising chains. 317
Maximum of QUBO problems with 250 variables and 10% density (Beasley
B7]). o o o 320
Optimal solutions for the Bonami and Minoux [46] MAX-2-SAT formulas. 322
MAX-CUT of 5 x 5 x 5 spin glass Ising models (Burer et al. [74]). . . . 324
Finding the MAX-CUT for the DIMACS torus graphs. 325
MAX-CUT of the toroidal G1j—graphs of Helmberg and Rendl [140]. . 325
Optimal solutions for the M3P problems proposed by Anjos et al. [20]. . 326
Average computing times of MIN-VC-USING-ROOF-DUALITY applied to

the PVC RUDY benchmark. 347
Average number of variables of QUBOs solved by PREPRO* within MIN-
VC-USING-ROOF-DUALITY, when applied to the PVC RUDY benchmark.348
Minimum vertex covers of planar graphs randomly generated by LEDA. 349
Minimum vertex covers of 2 dimensional grid graphs. 352
MIN-VC-USING-ROOF-DUALITY computing times of minimum vertex
covers of some Gy, , graphs.o 352
Minimum vertex covers of regular planar graphs consisting of hexagons
(generated by GenGraph). o o Lo 354
MIN-VC-USING-ROOF-DUALITY computating times of minimum vertex
covers of some H,, , graphs. 0L 355
Minimum vertex covers of regular planar graphs consisting of triangles
(generated by GenGraph). o 000000 356
Minimum vertex covers of regular dense planar graphs with low diameter

(generated by GenGraph).o oo o000 359

xviil

10.10Minimum vertex covers of planar graphs with Delaunay triangulations
(generated by GenGraph). o 0oL 361

10.11Minimum vertex covers of planar graphs with Delaunay triangulations

(generated by GenGraph). oo oo Lo 361
10.12Minimum ASes covers of NLANR routing data ([10]). 364
10.13Real world graphs. 367
10.14Combinatorics of real world graphs. 368
10.15Combinatorics of the H. Pylorimap. 374
10.16Large stable sets of the H. Pylori map. 374
10.17Large 2—distance cliques of the H. Pylori map. 375
10.18Large 3—distance cliques of the H. Pylori map. 375
10.19Large 4—-distance cliques of the H. Pylori map. 376
A.1. QUBO problems of Beasley [37]. 387
A.2. QUBO problems of Glover, Kochenberger and Alidaee [108]. 389
A.3. QUBO problems of Glover, Kochenberger, Alidace and Amini [109]. . . 390

A.4. QUBO submodular problems of Glover, Alidaee, Rego and Kochenberger

[107]. .« oo 390
A.5. QUBO problems of Palubeckis and Tomkevieius [189]. 391
A.6. Minimum values of the Small family QUBO problems. 392
A.7. Best known values of the Large family QUBO problems. 393
A.8. Best known cuts of the Hamilton graphs. 396

A.9. Best known values of the randomly generated MAX—2-SAT problems. . 398
B.1. Least squares fitting of performance ratios (racsron) in the medium
test problems with p <0.525. 402
B.2. Number of variables (n) versus density (d) analysis on the performance
ratios values (racsroar) for the medium problems. 403
B.3. Number of variables (n) versus density (d) analysis of number of round-

ings per variable necessary by Aacsroar in the problems of the medium

XIX

C.1.

C.2.
C.3.
C4.

C.5.
C.6.

D.1.
D.2.
D.3.
D.4.
D.5.

PREPRO statistical report on the QUBO problems of Glover, Kochen-

berger and Alidaee [108].. L 407
PREPRO statistical report on the QUBO problems of Beasley [37]. . . . 408
PREPRO statistical report on the c—fat and Hamming graphs. 409

PREPRO statistical report on the minimum vertex cover of the RUDY
planar graphs.o 410
PREPRO statistical report on the MAX-CUT graphs. 411

PREPRO statistical report on the MAX-2-SAT formulas of Borchers and

Furman [47]. 412
MAX-CUT (Kim et al. [157]). .« o o oo ooe oo oo e 414
MAX-CUT (Homer and Peinado [145]). 415
MAX-CUT on cubic lattice graphs (Burer et al. [74]). 416

MAX-CUT for torus graphs (7th DIMACS Implementation Challenge). 417

Upper bounds of 10% dense QUBO maximization problems (Beasley [37]).418

XX

4.1.
4.2.
5.1.
5.2.
9.3.
6.1.
6.2.
6.3.

6.4.
6.5.

6.6.
6.7.

7.1.

7.2.

7.3.
7.4.
8.1.

List of Figures

Locotope Tightening Algorithm (LTA).
Standard posiform algorithm.
The network G, corresponding to the posiform ¢4 of Example 5.2. . . .
The network G, corresponding to the posiform %, of Example 5.3.

Capacitated networks of Example 5.4.
The DDT heuristics. e
Algorithm description of one—pass heuristics.
Average computing time of the (fastest, slowest, average case) one-pass
QUBO heuristics according to the number of variables (n).
Description of the details shown in a cell of a cross-analysis table.
Exp(rii1], i € {2,3,4}, values as a function of p in the random test
problems. e
Distribution of problems according to racsrom. -« - « « « o o o
Average computing times of one—pass heuristics and of their local im-
provement by steepest ascent.
The network G4 corresponding to the posiform ¢ of Example 7.1. We
indicate only those arcs which have positive capacities.
The network G4 corresponding to the posiform ¢ of Example 7.2. We
disregarded the values of the capacities, and indicated only those arcs
which have positive capacities. The dashed arcs represent arcs connecting
the strong components of Gg. oL
PREPRO algorithm.
Planar graph for which PREPRO does not find any persistent result.

The graph Gy of the bi-form given in Example 8.1.

xxi

67

8.2.
8.3.
8.4.
8.5.
9.1.
9.2.
9.3.
9.4.
10.1.

10.2.

10.3.

10.4.

10.5.

10.6.

10.7.

10.8.

10.9.

The residual graph G; of the bi-form given in Example 8.1. 226

ITERATED-ROOF-DUAL algorithm. 239
SQUEEZED-ITERATED-ROOF-DUAL algorithm. 253
PROJECT& LIFT-ITERATED-ROOF-DUAL algorithm. 264
DEPTH-FIRST algorithm. 297
FIND-PERSISTENCIES algorithm. 298
UPDATE-BOUND& VECTORS algorithm. 299
XPRESS-QUBO algorithm. 318

Representing a MIN-WVC problem using the implication network model. 333

Residual network of the implication network model of a MIN-WVC prob-

lem. 335
On iteration of struction of a graph. 338
Data reduction algorithm for MIN-VC. 342

Exact method for MIN-VC using data reduction techniques and roof-
duality. e 343
Exact method for MIN-VC using data reduction techniques and struction.344
Planar graph with 50 vertices and 140 edges, generated by Gengraph us-
ing LEDA. The MIN-VC size is 34. A minimum vertex cover is indicated
by the set of nodes with white color. 347
Graph G9,10. The MIN-VC size is 100. A minimum vertex cover is
indicated by the set of nodes with white (black) color. 351
Graph His 10, generated by Gengraph. The MIN-VC size is 175. A

minimum vertex cover is indicated by the set of nodes with white color. 353

10.10Family of regular graphs T (s = 2,---,7) consisting of triangles gener-

ated by Gengraph. A minimum vertex cover is indicated by the set of

nodes with white color. 355

10.11Regular graph Ty consisting of triangles with 990 vertices and 2838

edges, generated by Gengraph. The MIN-VC size is 660. A minimum

vertex cover is indicated by the set of nodes with white color. 357

xxii

10.12Family of regular graphs D, (s = 1,--- ,5) with small diameter generated
by Gengraph. A minimum vertex cover is indicated by the set of nodes
with white color.
10.13Planar graph with Delaunay triangulations having 100 vertices and 285
edges, generated by Gengraph. The MIN-VC size is 68. A minimum
vertex cover is indicated by the set of nodes with white color.
10.14Planar graph with Delaunay triangulations having 1000 vertices and
2979 edges, generated by Gengraph. The MIN-VC size is 686. A mini-
mum vertex cover is indicated by the set of nodes with white color. . . .
10.15Minimum ASes cover for 15 months of daily NLANR routing data. . . .
10.16QUBO hierarchical clustering in the Euclidean space of 6 000 objects.
10.17The protein—protein interaction map of the H. Pylori produced by Bal-
asundaram et al. [28]. oL
10.18Image binarization weights used to define the neighborhood average as-
signment. . . . o. Lo e e e e e
10.19Image binarizations found by the one-pass heuristic applied to fq g
Original image is a 24-bit bitmap 254 x 300 image of a child with a dark
background.
10.20Image binarizations found by the one-pass heuristic applied to fq g
Original image is a 24-bit 1280 x 755 bitmap image of a project design
ofahouse..
10.21Image binarizations found by the one-pass heuristic applied to fq g

Original image is a 24-bit 200 x 199 bitmap image of an x-ray.

xxiil

362
364

. 371

Chapter 1

Introduction

Quadratic Unconstrained Binary Optimization (or QUBO in short) is a mathematical
programming problem, whose objective is to find the minimum (or the maximum) value
of a quadratic function with a finite number of binary variables.

Numerous hard combinatorial optimization problems arise naturally or can easily
be reformulated as QUBO problems, including VLSI design (e.g., [32, 52, 55, 76, 152,
161, 217]), statistical mechanics (e.g., [32, 223, 198]), reliability theory and statistics
(e.g., [190, 204, 205]), economics and finance (e.g., [132, 144, 166, 167, 175]), operations
research and management science (e.g., [103, 118, 201, 232, 234, e.g.,], manufacturing
(e.g., [15, 25, 26, 91, 162]), data mining (e.g., [231]), vision (e.g. [69, 70, 159, 160, 203]),
as well as numerous algorithmic problems of discrete mathematics (e.g., [101, 119, 131,
196, 200, 197, 222]).

This dissertation covers a wide range of problems related to QUBO, both from
theoretical and practical perspectives. The various chapters of this work were written
on a natural sequence in terms of how a person should study this problem.

The following three chapters introduce basic materials for the subsequent more elab-
orated topics related to QUBO. Chapter 2 presents various classic models that can be
solved by QUBO. Chapter 3 describes a long list of QUBO problems used for testing
the proposed algorithms. Chapter 4 introduces several definitions and basic concepts,
including: persistency, first and second order derivatives, the concept of locotope, the
implication graph, basic concepts about posiform minimization, rounding and deran-
domization, and best linear approximations to pseudo—Boolean functions.

The roof—duality approach of Hammer et al. [123] is an essential tool embedded

in many of the algorithms that we propose. Chapter 5 reviews the roof-duality, and

presents new persistency results, by using linear algebra and network flows arguments.

Chapter 6 describes in detail how to find heuristic solutions to QUBO. The heuristic
approaches suggested are one—pass or local optimization procedures. An innovative
probabilistic approach based on continuous extensions of pseudo—Boolean functions is
proposed and related to a more traditional approach based on rounding or switching
steps.

Chapter 7 describes a preprocessing routine for QUBO. It involves various compo-
nents, namely roof-duality persistency, decomposition and probing. The results ob-
tained with this preprocessing method are impressive for several applications, resulting
in the complete solution of many cases, such as vertex cover minimization of sparse or
real world graphs, via minimization problems in VLSI or the 1-dimensional Ising chain
models.

Chapter 8 describes several innovative ways to improve the roof-dual bound and its
iterated version proposed by Boros and Hammer [51, 52]. The new approach is based
on network flows and combinatorics and leads to substantially improved bounds for
many benchmarks. Linear programming enhanced with certain specific families of cuts
is also a very promising way to improve bounds and get a closer characterization of the
integer polytope, which is especially fast for sparse QUBOs.

After having all the components (roof-duality, preprocessing, heuristics and bounds)
then the next natural step is to use all of them to attempt to prove optimality for
those more difficult QUBOs. Chapter 9 covers three exact approaches to solve QUBO
problems: the first one is based on enumerative approaches, the second is a branch—
and—bound solver based on the network flows model, and the third approach is based
on Mixed Integer Programming (MIP). We shall demonstrate that in practice each one
of the approaches has its own advantages compared to the others.

The final chapter covers three applications of QUBO in more detail. It starts by
looking at the minimum vertex cover problem, extends to it the persistency and de-
composition results for QUBO. A special preprocessing routine is proposed and tested
among various classes of graphs. The combination of these data reduction techniques

with those implemented for QUBO leads to a very efficient solver for many instances.

The next application that is considered is how to do clustering using QUBO. Two ap-
proaches are considered: one is a hierarchical clustering algorithm based on the graph
balancing problem; the other applies to graphs only and is based on the greedy coloring

(or partitioning) of the graph.
The main contributions of this dissertation are the following:

e If there are variables with integral optimal values for the relaxation of the classical
linearization model for QUBO ([123]), then it is well known that there is an
optimal solution to QUBO where these variables have the same values. This
subset of variables with known optimal values are called persistencies. We will
show that there is a unique mazimal set of persistencies for the linearization model
(see Chapter 5). This set can be determined in polynomial time by computing
a maximum flow followed by the computation of the strong components of a
capacitated network that has 2n nodes, where n is the number of variables of the
function. This procedure results in a O (n3) time algorithm to determine all the

persistencies for the linearization model.

e The identification of the above persistencies leads to a decomposition of the func-
tion (if any exists). This occurs in such a way that each component of the function
can be optimized separately from the others, since the variables of each component

do not participate in the other components (see Chapter 7).

e To find further persistencies, we propose two additional techniques: one is based
on the second order derivatives of Hammer et al. [121] and its generalization (we
called it coordination); the other one is a probing procedure on the two possible
values of the variables, which when used in combination with a Boolean consensus
algorithm, it is able to derive additional persistencies. These two preprocessing
tools run also in polynomial time, and in practice can work remarkably well
for certain classes of problems (e.g. minimum vertex cover of planar or power-
law graphs, via minimization, 1-dimensional Ising chains, problems derived from

vision) (see Chapter 7).

e We propose several families of one—pass (polynomial time) heuristics for QUBO.
One family is based on probabilistic assumptions. The second group of heuristics
is based on rounding methods and the third approach is based on best linear
approximations. We also studied several families of local (search) optimization
heuristics. The results indicate that our methods perform better than those con-

sidered in the literature (see Chapter 6).

e Roof-duality gives a very well known bound to the minimum of a quadratic
pseudo—Boolean function. Boros and Hammer [51, 52] proposed an improved
bound that they called as the iterated roof—duality bound. We improved further
this bound by proposing two methods which are entirely combinatorial: one is
called the squeezed iterated roof-duality; and the other one is called the project—

and-lift iterated roof—duality method (see Chapter 8).

e Boros et al. [49] showed a hierarchy of bounds for QUBO. One end of the hier-
archy corresponds to the roof-dual, and the other end corresponds to the actual
optimum. If the roof-dual bound is not the optimum, then the next level of the
hierarchy corresponds to the cubic—dual. The cubic—dual can be found by means
of linear programming by adding to the standard linearization a set of triangle
inequalities, whose number is cubic in the number of variables. We will show that
this set can be reduced depending on the coefficients of the terms of the func-
tion. This leads to the possibility of computing a good approximation (or even
the exact value) to the cubic—duals of larger QUBOs. This will be particularly
advantageous for sparse QUBOs, i.e. problems which have a reduced number of
quadratic terms per variable), which are common in real applications (see Chapter

8).

e After the cubic—dual, the next bound level in the hierarchy of Boros et al. [49]
is characterized for the first time here, in terms of the generators description
required to represent the function in the space of the cone of positive quadratic

pseudo-Boolean functions (see Chapter 8).

e We propose the use of three exact approaches for QUBO: the first is an enumer-
ative approach, the second is a branch—and-bound method based on roof-duality
and network flows, and the third method is based on 0-1 linear optimization (see
Chapter 9). For various applications we demonstrate that each approach has its
advantages and disadvantages depending on the type of problem that they are
trying to solve. We also compare the proposed methods to those state—of-the—art
solvers for QUBO. In certain cases, the proposed methods are able to solve prob-
lems in a few seconds that no other (known) solvers can solve in several hours
or more of computing time. The proposed methods could prove optimality for
some publicly available unsolved problems (to our best knowledge), and in some
cases they could find (substantially) better solutions than the meta-heuristics for

QUBO (using about the same or less computing time).

e Along this dissertation we will cover many applications derived from engineer-
ing and social sciences: via minimization, 2d and 3D Ising models, 1D Ising
chain models, image binarization, hierarchical clustering, greedy graph coloring,
greedy graph partitioning, weighted MAX-2-SAT, MIN-VC, MAX-CLIQUE,
MAX-CUT, weighted maximum stable set, minimum k—partition, etc. This wide
practical view in combination with the various tools proposed to solve QUBO
problems, will give a substantially better understanding about how to attack the

algorithmic solution approach to any given QUBO problem.

Some basic definitions are introduced in the following section. The last section
describes an example that is widely used in this dissertation to demonstrate the various

techniques proposed.

1.1 Definitions and notation

Let R denote the set of reals, Z the set of integers, and let B = {0,1} and U = [0, 1].

Further, let n denote a positive integer, and let V.= (1,--- ,n). For a subset S C V|,

denote by 1° € B" its characteristic vector, i.e.

s 1 ifj€8
£ 0 otherwise.
Functions in n binary variables, denoted by xz1, x9, ---, x,, are considered, and
x = (21, -+ ,x,) is used to denote a binary vector or to denote a vector of these
variables.
The complements of the binary variables are denoted by T; defy x;. A variable or
its complement is called a literal. Let L def {x1,-+ ,xn,T1, -+ ,Tp} denote the set of

literals.
In the sequel, the letters x, y and z are used to refer to variables, u, v and w are

used to refer to literals, and bold face letters x, y, p, etc., are used to denote vectors.

1.1.1 Pseudo—Boolean functions

Pseudo—Boolean functions are real valued mappings f : B" — R from the set of binary
n-vectors. It is well-known that such a mapping has a unique multi-linear polynomial

expression in terms of the variables z1,--- ,z, (see [129, 131]):

fla) => es [z (1.1)

SCV jes

By convention, its is assumed that [[._4z; = 1.

Jj€b

The size of the largest subset of variables S C V for which c¢g # 0 is called the
degree of f, and is denoted by deg(f). A pseudo—Boolean function f is called linear
(quadratic, cubic, quartic, etc.) if deg(f) <1 (2, 3, 4, etc.)

The family of pseudo—Boolean functions of degree at most k is denoted by §:
def n
S = {(f:B" = R)|deg (f) <k}.

The size of a pseudo—Boolean f function represented by (1.1) is the total number

of variable occurences in it, i.e

size (f) ot Z |S] .

S:SCV,cs#0

Pseudo—Boolean functions represented as posiforms are also considered, i.e. poly-

nomial expressions in terms of all literals, having the form

¢(x)=> ar []u (1.2)

TCL ueT

where ar > 0 whenever T # (). If {u,u} C T for some u € L,then [], . u is identically
zero over B™ and, therefore, it is customary to assume that ap = 0.

Similarly to the case of polynomial expressions, the size of the largest subset 7' C L
of literals for which a7 # 0 is called the degree of the posiform ¢, and is denoted by
deg (¢). The posiform ¢ is called linear (quadratic, cubic, quartic, etc.) if deg(¢) < 1
(2, 3, 4, etc.)

The size of a posiform is the total number of occurrences in it, i.e.

size () € Y |7

TCL:ar#0

For the purpose of analyzing algorithms, the sum of the coefficients

A(¢) = Z ar.

TH0

will also be needed.

It is simple to note that a posiform (1.2) uniquely determines a pseudo—Boolean
function. However, the reverse is not true; a pseudo—Boolean function can have several
distinct posiforms representing it. Furthermore, while it is computationally easy to
generate a posiform expression from a polynomial expression (1.1), it might be com-
putationally difficult to generate the unique polynomial expression corresponding to a
given posiform. We denote the unique multilinear polynomial associated to the posiform

¢ by fs, and the set of all posiforms of degree at most k representing a pseudo-Boolean

function f by Py (f). We also denote the constant term ay of a posiform ¢ by C (¢).

Consider the pseudo—Boolean minimization problem

vs (f) = minf (x), (1.3)

x€EeS

where f is a given pseudo—Boolean function and S C B".
The focus of this dissertation is in minimization problems. However, pseudo—
Boolean maximization problems are also considered:

7s (f) = maxf (x). (1.4)

xeS

If S = B", then the subscript S in vg (f) or 75 (f) may be disregarded in the text.
Thus, v (f) (or simply v¢) and 7 (f) (or simply 7f), respectively denote the minimum
and maximum of the pseudo—Boolean function f.

Let Argming (f) denote the subset of points belonging to S, which are minimizing
solutions of problem (1.3). Similarly, let Argmaxg (f) denote the subset of points
belonging to S, which are maximizing solutions of problem (1.4).

In the sequel, the letters f, g and h will usually denote pseudo—Boolean functions
as well as their unique multi-linear polynomial expressions, while the greek letters ¢,

and v will denote posiforms.

1.1.2 Quadratic pseudo—Boolean functions

A pseudo—Boolean function f is called quadratic if its unique multi-linear polynomial
is quadratic (i.e. deg(f) < 2.) Specializing the notations given earlier, it is assumed
that the quadratic pseudo-Boolean functions are represented either by their (unique)

multi-linear quadratic polynomial expression

n
@y, an) =c+ Zciwi + Z CijTil; (1.5)
i=1

1<i<j<n

or by a quadratic posiform

flanean) =ao+) awu+t) awur, (16)

u€L u,vEL

where as before, L denotes the set of literals, a, > 0 and a,, = 0 for all u,v € L.
It should be remarked that among the posiforms representing a quadratic pseudo—

Boolean function there may also exist some having degrees higher than two.

1.2 A generic illustrative example

During this dissertation, to illustrate certain concepts and algorithms for QUBO, we

shall use the quadratic function,

fo (w1, 72,73, 74, 75, 76)
= 2x1 +T9 — 203 — x4 + x5 — Tg
—X1T9 + 2%1%3 — 2%1%4 + 2%1%5 — T1Tg
+x2x3 — Taxy — T2x5 + T2T6
+2x314 — 2235 + T3T4
+21475 — T4T6

+2x516

of six variables.
The minimum and maximum values of fg in BY are respectively v (fg) = —4 and

7 (f¢) = 5. The corresponding minima and maxima are
Argmings (f) = {(1,0,0,1,0,1),(1,1,0,1,0,1)}
and

Argmaxgs (f) = {(1,0,0,0,1,0),(1,0,0,0,1,1),(1,1,0,0,1,1) ,(1,1,1,0,1,1)} .

10

Chapter 2

Classic Combinatorial Optimization Models

The purpose of this chapter is to present a set of combinatorial optimization problems
and show how QUBO arises to solve many of them, either naturally or by reformulation.
Throughout this dissertation we will show additional families of problems that could
be solved by QUBO. This chapter describes the most common models that appear in

the literature.

2.1 Pseudo—Boolean optimization

Rosenberg [213] shown that the optimization of a pseudo—Boolean f with deg (f) > 3
can be reduced in polynomial time to the optimization of a quadratic pseudo—Boolean
function with additional variables. The basic idea consists in replacing a product x;x;

appearing in a non—quadratic term of f, by a new binary variable y;;.

Lemma 2.1. Let z;,x;,y;; € B. Then the following equivalences hold:

Yij = TiZj iﬁ (a+b+c) Yij — (CL+C) TiYij — (b+C) TjlYij +C£Ei$j = 0,
and

Yij 75 T ’iﬁ (CL +b+ C) Yij — (CL + C) TiYij — (b + C) TYi; + criry > 0,
for any positive values a,b and c.

The above result can be used to transform a pseudo-Boolean optimization problem
into a QUBO. The transformation is polynomial time in size and time. The dimension
of the problem may increase substantially, but all the engineering tools available for
QUBO could be used to solve those general pseudo—Boolean optimization problems.

An interesting new approach, for the same purpose of the above idea, as been

11

introduced by Buchheim and Rinaldi [72]. This method also requires the introduction of
additional variables or constraints, but compared to the previous method, this approach
produces smaller optimization problems, typically making it more tractable from a

practical point of view.

2.2 Graph theory

Let G = (V,E) be an undirected graph, with vertex set V' and edge set E. The
complement G of G is the graph G = <V, (g) \E), i.e. the graph having the same vertex
set V and having as edge set the complement of the edge set E of G. Sometimes, we
associate to each edge of the graph a real weight w. € R, e € E. We may also associate

to a vertex, a real weight ¢c; € R,j € V.

2.2.1 Maximum clique

A clique of the graph G = (V, E) is a set of pairwise adjacent vertices. Naturally, a
maximum clique (or MAX—Clique in short) is a clique of maximum cardinality. The
size of a maximum clique is commonly called the cligue number of G. We shall denote
it as 0 (G).

A subset S C V is called independent (or stable), if no edge of G has both endpoints
in S. A mazimum independent set is a largest cardinality independent set; the cardi-
nality of a maximum independent set will be denoted by a (G) and called the stability
number of G.

An independent set in a graph G is a clique in the complement graph G. Thus,
a(G) =16 (@) Moreover, since the complement graph G has a polynomial size rep-
resentation of the input size of G, and since it can be obtained in a polynomial time
function of the size of GG, then there is a strong equivalence between the maximum clique
and the maximum independent set problems. If a solution to one of the problems is

available, a solution to the other problem can be obtained immediately.

Theorem 2.1. The cardinality of a maximum independent set of G = (V, E) is equal

12

to the optimum value of the QUBO

a (@) = max le - Z (1+€qj)) zizs | (2.1)
x€BV |\ “ A
eV (i,7)€EE
where € jy (= 0) are arbitrary nonnegative reals for all (i,j) € E. Furthermore, if
x* = 1% is a mazimizing binary vector of (2.1), then a mazimum cardinality set S*

(CS) of G can be obtained in O (|E|) time.

Proof. Let us associate to G the quadratic pseudo-Boolean function f (z1, - ,z,) =
diev Ti— D(ij)eE (1+ €(,j)) zizj. Let further f (a3,--- ,2}) be a maximum of f, and
let S* be the set of vertices j € V for which 27 = 1. We will show next that the size
of a maximum independent set is f (z7,---,z}), and the set S* can be reduced to a
maximum independent set § C §* in O (|E|) time.

If S* is an independent set, it is clearly maximal, and since :E:l‘; = 0 for every
(i,7) € E, the problem is solved. Let us assume that S* is not a stable set, and let
h and k be two adjacent vertices with z} = z}; = 1. Let us consider now the vector
(x7*, -+,) defined by

xp il #Ek,

=

0 ifl=k.

If N} is the neighborhood of k in the set V' \ S*, then clearly

F@f, o af)y = flal o an) =1+ Y (1+euy) .
teN}

and since h € N, the set N} is not empty, and therefore
f(m,l(*v"' 71':;*) Z f(mi 7‘T:L)
On the other hand, from the maximality of f in (x7,--- ,z}) it follows that

f(x,l(*v"' ,33;:*) < f(x,l(’ 7517;)

13

By repeating this transformation several times (at most |V \ S*| times), the set S* will
be eventually transformed to an independent set S of the graph G, which must have a

maximum size. O

From the previous proof, it can be easily seen that when all coefficients ¢, e € F,
are restricted to be positive, then a set S associated to the characteristic vector of an

optimal solution of (2.1), is a maximum cardinality independent set of G.

2.2.2 Minimum vertex cover

The complement V'\S of an independent set .S of G is called a vertex cover of the graph.
Let us denote the size of the smallest vertex cover of G as 7 (G) = |[V| — a(G). Then

using (2.1) it can be shown that

7(G) = min Z:EZ + Z (1+€qj)) TiT5 | - (2.2)
xeBY |\ “ =
% (i,5)eEE
The knowledge of any one of the three numbers 6 (G), a (G) or 7 (G) implies that
the other two values can be immediately determined. In general finding any of these
numbers is a NP-hard optimization problem ([104]). It is important to note that even
for planar graphs it is known that solving the minimum vertex cover problem is NP—

hard ([105]).

The concepts introduced above can be extended analogously to the weighted variants
of these problems. For instance, the weighted stability number of a graph G = (V, E)
with nonnegative costs c¢¥, associated to the vertices of the graph, is equal to the

optimal solution of problem

max Z CiTi — Z (max (¢, ¢j) + € j)) Tz | - (2.3)
xeBV |\ “ <
eV (i,7)EFE
In a similar way, the above formulations can also be extended to hypergraphs. For
instance, given a hypergraph H C 2V, a subset S C V is called a vertex cover of H

(known also as a hitting set) if SN H # () for all hyperedges H € H. If the size of the

14

smallest such set is denoted by 7 (H), then

T(H) —xﬂelllBI‘l/ (Z:EZ—I— Z (I+eqm) ngZ) (2.4)

eV HeH i€H

This optimization problem can also be viewed as a pseudo—Boolean formulation of the
set covering problem over the transposed hypergraph. The formulation of the hitting
set problem requires optimization of non-quadratic pseudo—Boolean functions, but in
theory, as shown in subsection 2.1, a degree reduction technique can be used to get a
quadratic problem with the same optimal solution as the original problem with a higher

degree.

2.2.3 Maximum cut

A cut of the graph G = (V, E) is defined by a partition of the vertex set V into two
subsets S and S, and consists of the set of edges with exactly one endpoint in S and
another in S. We shall denote the cut defined by S as (S, E),

The mazimum cut (or MAX-CUT in short) problem is to find a cut (S, g) with the
largest cardinality. If x = 1° is the characteristic vector representing S, then it can be

shown that

Isncax‘(S S)| = max Z (2T + Tyzj) | - (2.5)
(i,3)eE

The weighted MAX-CUT problem in a graph G = (V, E) with weights w” is to find
a cut (S, §) for which the sum of the weights of the corresponding edges is maximum.
If the total weight of a cut is denoted by W (S, §), then the weighted maximum cut

can be found by solving the problem

glca‘}/(W (5,9) = max Z wij (2,75 + Tixg) | - (2.6)
(i,9)EE
It should be remarked that any optimal solution x = (z7,--- ,x}) of problem (2.6)

has a complementary solution (T}, --- ,T}).

15

2.3 Maximum satisfiability

The mazimum satisfiability problem (or MAX-SAT in short) is a popular subject in
applied mathematics and computer science, and it has a natural pseudo—Boolean for-
mulation. The input of a MAX-SAT instance (usually called a formula) consists of
a family C of subsets C' C L of literals, called clauses. A binary assignment x € BY
satisfies a clause C, if at least one literal in C' takes value 1 (true) for this assignment.
The maximum satisfiability problem consists in finding a binary assignment satisfying
the maximum number of clauses in C. It is easy to see that a clause C' is satisfied by

x € BY if and only if [I,cc@= 0. Thus, MAX-SAT is equivalent to the problem

ma>‘§ (1 — H U) .
v€BY cee weC

In the weighted maximum satisfiability problem there is also a nonnegative weight
ac associated with each clause C' € C, and the objective is to maximize the total weight
of satisfied clauses:

;Iéﬁ)éczegzac <1 uellu) .

If the clauses C have at most k literals, then the (weighted) MAX-SAT problem

is called the MAX—k—SAT problem. In particular, the weighted MAX—2-SAT problem

can be formulated as the optimization of a special quadratic negaform?:

7 () = maxt) = max Z @{u} (1—m)+ Z A} (1—7uw)

BY BY
e e {u}eC {u,v}eC

If the previous negaform is denote by 1, then we consider the minimum of the

quadratic posiform ¢ = A (=) — 1, i.e.

T(p) = HGIIESI‘I/¢ = Z gy} U+ Z ALy} UD. (2.7)
x
{u}eC {u,v}eC
n a similar way to a posiform, a negaform of a pseudo-Boolean function f (x1,--- ,x») is defined
as a polynomial g (z1,%1,- - ,Zn,ZTn), taking the same values as f in every binary n—vector, and having

the property that all its coefficients (with the possible exception of the free term) are non—positive.

16

Since for any assignment of the formula C, 7 (¢) is the maximum number of true clauses

and v (¢) is the minimum number of false clauses, then it is simple to notice that

T () +v(¢) = A(=y) = A(9).

17

Chapter 3

Test Beds

A solution method that works for a particular class of problems, may not work for
another. This is particularly important if the problem that has to be solved is a “hard”
optimization problem, whose optimal solution is difficult to be found or certified. There-
fore, it is important to have a set of benchmarks, which would provide a way to compare
the quality of solutions and the efficiency of the proposed algorithms.

A set of QUBO benchmarks is listed and described in this chapter. Fach test
problem is described by enhancing its basic structural properties, and by showing its
origin, best known solution values, and generation parameters (when available).

Since we were dealing with the QUBO, it was natural to search for test problems,
previously studied by other researchers. Many of these publicly available problems have
heuristic solutions that are not known to be optimal. The best known solutions of the
“large” benchmarks were found using meta—heuristics. Every benchmark problem has
been investigated by several authors, and has been tested using different methods. The
high degree of sophistication put into these algorithms, gives a high degree of confidence
to the fact that these best known solutions are at least very close to the optimum.

Each benchmark with a known optimal solution was included in a particular set of
problems, which we called the optimal dataset for QUBO. The optimal dataset gives
to the researchers, a way of measuring with accuracy, the quality of solutions returned
by their proposed algorithms.

By providing information about this set and about the best known solutions, we
hope to motivate the scientific community to make contributions to enlarge the number
of benchmark problems which have provably optimal solutions, or simply to improve

the best known solutions of the problems.

Table 3.1: Statistics of the QUBO problems used for testing the proposed algorithms.

Numb. | Numb. Variables (n) Density (d) p Diag. Dom. (p)
Class Family Probl. Opt. min | avg £ stdev | max min | avg £ stdev | max min | avg £ stdev | max min | avg £ stdev | max
20 6.1% 0.2% 0.0%
Benchmark 143 69 1018.4+1461.7 38.0% + 34.9% 43.8% +17.4% 2.5% + 4.8%
6000 99.5% 58.0% 26.9%
25 18.0% 31.1% 0.9%
Small 240 225 62.5 +28.0 59.7% + 28.2% 62.0% + 16.6% 5.2% £ 5.1%
100 100.0% 89.1% 29.2%
500 19.5% 2.0% 0.0%
Fixed Degree || Medium 2900 0 1250.0 £+ 559.1 59.5% + 28.1% 30.3% 4 16.8% 0.2% + 0.2%
2000 99.8% 59.3% 1.1%
500 24.6% 0.0% 0.0%
Large 480 60 2250.0+1751.8 62.3% + 27.9% 23.5% 4+ 20.5% 0.2% £ 0.2%
5000 100.0% 50.6% 0.8%
15000 29.7% 0.0% 0.0%
Massive 108 0 22500.0 £5616.2 59.6% + 24.4% 24.9% + 20.5% 0.0% + 0.0%
30000 89.6% 50.0% 0.0%
28 0.1% 0.1% 0.1%
Non-Weighted 130 114 776.1 +668.1 30.2% + 24.1% 3.8% +6.8% 4.6% +10.2%
MAX-Clique 4000 96.4% 38.5% 62.5%
500 10.1% 0.3% 0.3%
Weighted 8 5 500.0 £ 0.0 45.0% + 24.5% 0.7% £ 0.6% 0.7% £ 0.6%
500 79.9% 2.0% 2.0%
1000 0.0% 37.5% 135.1%
MIN-VC Planar Graphs 436 436 20871.6 £79337.3 0.2% + 0.1% 42.0% + 7.4% 155.4% 4+ 20.7%
500 000 0.6% 82.0% 266.1%
250 0.1% 50.0% 100.0%
Non-Weighted 106 4 1511.3£1577.8 1.7% + 1.7% 50.0% + 0.0% 100.0% + 0.0%
MAX-Cut 8000 7.0% 50.0% 100.0%
125 0.0% 42.8% 11.0%
Weighted 269 33 1243.4+1343.9 1.7% + 1.7% 50.7% £+ 3.1% 56.6% + 34.5%
10000 6.3% 58.7% 125.2%
50 2.7% 46.6% 5.5%
Non-Weighted 177 97 177.4+£132.1 40.8% + 18.9% 49.9% + 0.6% 26.8% + 14.7%
MAX-2-SAT 400 70.9% 51.7% (61.7%
50 2.6% 47.9% 5.1% @
Weighted 497 263 183.9 £ 1334 42.7% + 17.9% 50.0% + 0.6% 26.6% + 14.0%
400 71.8% 53.1% 65.7%

19

Several QUBO applications representative of different classes of problems were in-
troduced in Chapter 2. To test the algorithm’s “sensitivity”, it is desirable to have test

cases representing different classes of problems.

3.1 Benchmarks with prescribed density

The class of benchmarks with prescribed density consists of quadratic multilinear poly-
nomials, which are randomly generated with a predetermined expected density' d, a
uniform distribution of values of the linear coefficients in an interval [c™,ct], and a
uniform distribution of values of the quadratic coefficients in an interval [¢—,¢"]. The
constant term of the function is zero. Since a quadratic term’s probability to have a
nonzero coefficient is d, the expected number of quadratic terms which include a specific
variable and have a nonzero coefficient is (n — 1) d.

When reporting computational results about QUBO, the standard practice followed
by many authors was to generate random instances with prescribed density. An incove-
nience of this approach was that the information was insufficient to allow the replication
of test problems by other researchers. In order to overcome these difficulties, Pardalos
and Rodgers (P&R) [195] have introduced a test problem generator for QUBO. In their
notation, the QUBO is formulated as max {XTQX IX € IB%“} where ¢;; = ¢;j = ¢i;/2,
i #j,1<i<j<mnandq; = c¢,1 <i<n The “standard” parameters in this
approach include: n, d, ¢, ¢, g7, ¢*, and a seed to initialize a random number gener-
ator. The P&R routine generates symmetric integer matrices Q, such that the expected
density is d, the distribution of the coefficients g;; (1 < i < n) is discrete uniform in
[c7,¢T], and the distribution of the nonzero coefficients ¢;; = ¢j; (1 < i < j < n)is
discrete uniform in [¢~,q"].

Before presenting the list of problems considered in this section, we introduce some
parameters, which are strongly related to the quality of solutions returned by the tra-

ditional algorithms proposed to solve QUBO problems.

The density d of a quadratic pseudo-Boolean function represented by the polynomial expression
(1.5) is defined as the number of nonzero coefficients ¢;; (1 <i < j < n) divided by (3).

20

Let
def def def
PECH+Qt where CtTE Y ¢; and QTS Y ¢,
jEV 1<i<j<n
c; >0 ci; >0
def ~_ _ _ def _ def
N=C+Q where C~ = Y ¢; and Q7 = > ¢y,
JEV 1<i<jsn
c;<0 ¢ij >0

i.e. P (respectively, N) is the sum of the positive (respectively, negative) coefficients of
the quadratic pseudo-Boolean function f given as (1.5)
Let p be proportion of the sum positive coefficients in the total weight associated

to the set of coefficients of f, i.e.

(3.1)

f is said to have p diagonal dominance if

def CT —C~
Q -Q
or equivalently
b= C
q(n—1)’

where ¢ is the average of the absolute values of linear coefficients, and q is the average
of the absolute values of the quadratic coefficients.

Since problems become easier with growing diagonal dominance p ([33, 44, 80]), this
parameter has been used to characterize the complexity of finding an optimal solution to
a given QUBO. It is interesting to notice that another parameter (p) is highly relevant
in the study of heuristics for the solution of QUBO. The relationship of the quality of
solutions given by several heuristics on the parameter p will be discussed on Chapter 6.

Using the above definitions, it is not difficult to prove that the following results hold

for all problems generated with P&R.

Lemma 3.1. If a QUBO is randomly generated with n variables, expected density d,

21

diagonal coefficients with discrete uniform distribution in [c™,ct], ¢~ € Z, ¢t € Z,
off-diagonal coefficients with discrete uniform distribution in [q~,q"], ¢~ € Z, ¢+ € Z,

all coefficients mutually independent, then

cﬂgﬁ, cC€ELT

Pl = { —oae ez
ct(ect+1)+ec (¢ =1 _ _

| (2(C+)_C,+(1)), ¢ €Zy,cteLS

q”2rq+_’ ¢ €7t

Elg = —#8, gt €Z™
g (¢ +1)+q (¢ —1) _ _

) ()7 ¢ ezg, ¢t e 2

E

E = =

"= BRI m-1

Lemma 3.2. If a QUBO is randomly generated with: n variables, expected density d,
diagonal coefficients with discrete uniform distribution in [¢™,ct], ¢~ € Zg, ¢t € 7,
off-diagonal coefficients with discrete uniform distribution in [¢~,q"], ¢~ € Zy, gt €
Z(J{, all coefficients mutually independent, then
i)
cHet1) o (ae)

(e @), 1ya
_ 2et—c+1) T 2(¢gT—q—+1) .
el ="—Fgvegm-1n

it) and as nd — oo,

1
a (g~ —1)
1+ qt(gt+1)

In the following subsections, 143 publicly available benchmark datasets are de-
scribed, as well as the 4900 randomly generated test problems used in evaluating the

efficiency of the different variants of the proposed algorithms.

3.1.1 Benchmark families

In the past literature about QUBO, 143 test problems (see Table 3.2) were frequently
used (see e.g., [18, 37, 107, 108, 177, 178, 189]) for testing QUBO algorithms.

The basic generation parameters of the sub—families containing these problems can

22

be seen in Table 3.2, while the individual characteristics of the problems appear in

Tables A.1 to A.5 of the Appendix.

Table 3.2: QUBO benchmarks with prescribed density.

Variables | Number Density | Linear Coef. | Quadr. Coef.
Family Sub-Family (n) Problems (d %) ()] @) @)]| p
GKA A 30 to 100 8 6.5 to 50 | —100 | 100 | —100 | 100 | 0.5
B 20 to 125 10 100 0 63 | —100 0 0
C 40 to 100 7 10 to 80 | —50 50 | —100 | 100 | 0.5
D 100 10 6.5 to 50 | —50 50 —75 75 | 0.5
E 200 5 10 to 50 | —50 50 | —100 | 100 | 0.5
F Fq 500 5 10 to 100 | —75 75 —50 50 | 0.5
Fy 500 5 10 to 100 0 100 | =50 0 0
G Gy 1000 10 10 to 100 | =75 75 —50 50 | 0.5
Go 1000 5 10 to 100 0 100 | =50 0 0
Beasley B-50 50 10 10 —100 | 100 | —100 | 100 | 0.5
B-100 100 10 10 —100 | 100 | —100 | 100 | 0.5
B-250 250 10 10 —100 | 100 | —100 | 100 | 0.5
B-500 500 10 10 —100 | 100 | —100 | 100 | 0.5
B-1000 1000 10 10 —100 | 100 | —100 | 100 | 0.5
B-2500 2500 10 10 —100 | 100 | —100 | 100 | 0.5
Palubeckis || P-3000 3000 5 50 to 100 | —100 | 100 | —100 | 100 | 0.5
P-4000 4000 5 50 to 100 | —100 | 100 | —100 | 100 | 0.5
P-5000 5000 5 50 to 100 | —100 | 100 | —100 | 100 | 0.5
P-6000 6000 3 50 to 100 | —100 | 100 | —100 | 100 | 0.5

The test problems in the families A, B, D, E and F}, were proposed by Glover et al.
[108]. They were generated using the P&R routine ([195]), with the basic parameters
shown in Table 3.2. The corresponding best known solutions, and the information on
which solutions are known to be optimal, can be seen in Table A.2 of the Appendix.

The group of problem in the B family define submodular quadratic pseudo—Boolean
functions, 100% dense problems with the number of variables ranging from 20 to 125.
The seven small sized datasets in group C' were proposed by Pardalos and Rodgers
[195], as being the most “challenging” problems that they could solve optimally with
their enumerative procedure. Later, these problems were adopted by Glover et al. [108]
and Beasley [37].

The 10 problems of the group G; were proposed by Glover et al. [109]. The P&R
routine was used to generate these problems, which have 1000 variables, and various
densities ranging from 10% to 100%. The details of the G; problems can be seen in

Table A.3 of the Appendix. Later, these test problems were used as benchmarks in

23

several studies of QUBO ([18, 177, 178]).

The datasets in the groups Fy and G5 were proposed by Kochenberger et al. [158].
They define submodular quadratic pseudo—Boolean functions, respectively having 500
and 1000 variables, and densities varying from 10% to 100%. The general characteristics
of these problems can be seen in Table A.4. These problems were downloaded from the
Hearin Center for Enterprise Science website [2].

For the benefit of those who may want to replicate the experiments, we would like to
make the following remarks. Some of the recently published papers ([37, 107, 108, 178])
report on heuristic solutions for the mazimization problem. However, it should be
kept in mind that the GK A. datasets were proposed initially by Pardalos and Rodgers
[195] as minimization problems. Subsequently, these problems were changed by Glover
et al. [108] to the maximization of the negatives of the functions minimized in [195].
Similarly, the GK Ay p 4. and Fy datasets were created by using the generator of [195],
and modified afterwards to maximization problems, as explained above. Since then,
the literature (e.g., [37, 107, 178]) reporting on these datasets, as well as the present

study, followed the format of the Glover et al. [108] problems.

The Beasley family of test problems for QUBO consists of a set of 60 randomly
generated test problems, where the number of variables n varies from 50 to 2 500; 10
problems for each value of n. They were proposed by Beasley [37], and since then
several other studies of QUBO (e.g., [18, 107, 178]) have reported heuristic values on
the maximum value of the corresponding quadratic pseudo—Boolean functions. The
basic parameters of the Beasley problems can be seen in Table 3.2, and the information
on best known values is listed in Table A.1 of the Appendix. The Beasley datasets were
downloaded from the OR-Library website [38] (see also [36, 25])

All the Beasley test problems are reported to be 10% dense, but the definition of
expected density in this family (given there as the probability that the coefficient of
a linear or quadratic term is nonzero) differs from the definition used in this study,

making these problems somewhat more difficult.

More recently, Palubeckis [187, 189] introduced 18 new test problems generated

24

from a similar routine to the one provided by P&R. They use the same random number
generator, but they differ in the way how the seeds provided to the random number
generator, are handled. In the P&R case, two seeds are used, one for decisions on
density and the other to generate the function’s coefficients. In the Palubeckis case
only one seed is used for both cases.

The generation parameters of the Palubeckis problems can be seen in Table 3.2, and
the information on best known values is listed in Table A.5 of the Appendix. The sizes
of these problems vary from 3 000 to 6 000 in the number of variables, and from 50% to
100% in density.

Let us remark the following facts on the benchmark problems for QUBO:

e Only 69 out of the 143 problems in the benchmark families have a solution which

is provably optimal;

e All the best known solutions (including optimal ones) refer to the mazimum values

of the corresponding functions;

e Except for the submodular sub-families B, F» and Gy (with p = 0.0), all the other
sub-families have a p value of 0.5. This fact implies that the expected sum of all

coefficients of the functions in these particular datasets is zero.

3.1.2 Randomly generated test problems

In order to increase the number of test problems with prescribed fixed density, 3 728
additional datasets were created by using the P&R generator. Four groups of problems

are considered:

e Small (see Table 3.3) — This family contains 240 QUBO minimization problems,
whose number of variables ranges from 25 to 100 (in steps of 25). The expected
densities vary from 20% to 100% (in steps of 20%), and the expected values of p
vary from 0.40 to 0.85 (in steps of 0.15). There are three instances (k = 1,2,3)
for each set of parameters. The starting seed for the random number generator

is the value of the expression k + 210 x LlOOEJ +21"n. An optimal solution to the

25

minimum of the associated quadratic pseudo—Boolean function is known for 213

“small” datasets, whose values can be seen in Table A.6 of the Appendix.

Table 3.3: Characteristics of QUBO problems in the Small family.

Variables | Number Density | Linear Coef. | Quadr. Coef.

Sub-Family (n) Problems (d %) ()] () [@)] @) P

S-25-0.40 25 15 20 to 100 | —50 50 —61 50 0.40
S-50-0.40 50 15 20 to 100 | —50 50 —61 50 0.40
S-75-0.40 75 15 20 to 100 | —50 50 —61 50 0.40
S-100-0.40 100 15 20 to 100 | —50 50 —61 50 0.40
S-25-0.55 25 15 20 to 100 | —50 50 —45 50 0.55
S-50-0.55 50 15 20 to 100 | —50 50 —45 50 0.55
S-75-0.55 75 15 20 to 100 | —50 50 —45 50 0.55
S-100-0.55 100 15 20 to 100 | —50 50 —45 50 0.55
S-25-0.70 25 15 20 to 100 | —50 50 -32 50 0.70
S-50-0.70 50 15 20 to 100 | —50 50 -32 50 0.70
S-75-0.70 75 15 20 to 100 | —50 50 -32 50 0.70
S-100-0.70 100 15 20 to 100 | —50 50 -32 50 0.70
S-25-0.85 25 15 20 to 100 | —50 50 —20 50 0.85
S-50-0.85 50 15 20 to 100 | —50 50 -20 50 0.85
S-75-0.85 75 15 20 to 100 | —50 50 -20 50 0.85
S-100-0.85 100 15 20 to 100 | —50 50 -20 50 0.85

e Medium (see Table 3.4) — This family of QUBO maximization problems was intro-

duced in Boros et al. [62]. The number of variables in these problems ranges from

500 to 2000 (in steps of 500). Expected density values range from 20% to 100%

(in steps of 20%). The lower and upper bounds of the coefficients of linear terms

were fixed to —50 and +50 respectively. The upper bound g™ of the coefficients of

quadratic terms was fixed to +50, while the lower bound ¢~ of these coefficients

was left to be determined for each dataset by the values of the parameter p. In

fact, a continuous uniform distribution was assumed, and therefore the expression

(3.2) of Lemma 3.2 becomes

and thus

D

1
N\ 2’
1+ (&)

was used to determine the value of ¢~. The values of p range from 0.02 to 0.58

26

in steps of 0.02. We have generated a total of 2900 problems representing five
instances (k =1,--- ,5) for each combination of the four values of the parameter
n, five values of the parameter d and 29 values of the parameter p. The starting
seed for the random number generator is the value of the expression L%nJ +

|1225d | + |250p] + k — 1475,

Table 3.4: Characteristics of QUBO problems in the Medium family.

Variables Number Density | Linear Coef. | Quadr. Coef.
Sub-Family (n) Problems (d %) ()] () [(@)] (™) D
M-0.02 500 to 2000 100 20 to 100 | —50 50 —-350 | 50 0.02
M-0.04 500 to 2000 100 20 to 100 | —50 50 —244 | 50 0.04
M-0.06 500 to 2000 100 20 to 100 | —50 50 —197 | 50 0.06
M-0.08 500 to 2000 100 20 to 100 | —50 50 —169 50 0.08
M-0.10 500 to 2000 100 20 to 100 | —50 50 —150 | 50 0.10
M-0.12 500 to 2000 100 20 to 100 | —50 50 —135 50 0.12
M-0.14 500 to 2000 100 20 to 100 | —50 50 —123 50 0.14
M-0.16 500 to 2000 100 20 to 100 | —50 50 —114 50 0.16
M-0.18 500 to 2000 100 20 to 100 | —50 50 —106 50 0.18
M-0.20 500 to 2000 100 20 to 100 | —50 50 —100 | 50 0.20
M-0.22 500 to 2000 100 20 to 100 | —50 50 —-94 50 0.22
M-0.24 500 to 2000 100 20 to 100 | —50 50 —88 50 0.24
M-0.26 500 to 2000 100 20 to 100 | —50 50 —84 50 0.26
M-0.28 500 to 2000 100 20 to 100 | —50 50 —80 50 0.28
M-0.30 500 to 2000 100 20 to 100 | —50 50 —76 50 0.30
M-0.32 500 to 2000 100 20 to 100 | —50 50 —72 50 0.32
M-0.34 500 to 2000 100 20 to 100 | —50 50 —69 50 0.34
M-0.36 500 to 2000 100 20 to 100 | —50 50 —66 50 0.36
M-0.38 500 to 2000 100 20 to 100 | —50 50 —63 50 0.38
M-0.40 500 to 2000 100 20 to 100 | —50 50 —61 50 0.40
M-0.42 500 to 2000 100 20 to 100 | —50 50 —58 50 0.42
M-0.44 500 to 2000 100 20 to 100 | —50 50 —56 50 0.44
M-0.46 500 to 2000 100 20 to 100 | —50 50 —54 50 0.46
M-0.48 500 to 2000 100 20 to 100 | —50 50 —5H2 50 0.48
M-0.50 500 to 2000 100 20 to 100 | —50 50 —50 50 0.50
M-0.52 500 to 2000 100 20 to 100 | —50 50 —48 50 0.52
M-0.54 500 to 2000 100 20 to 100 | —50 50 —46 50 0.54
M-0.56 500 to 2000 100 20 to 100 | —50 50 —44 50 0.56
M-0.58 500 to 2000 100 20 to 100 | —50 50 —42 50 0.58

e Large (see Table 3.5) — This family of 480 QUBO maximization problems was
also introduced in Boros et al. [62]. The number of variables in these problems
ranges from 500 to 5000. Expected density values range from 25% to 100% (in
steps of 25%). The lower and upper bounds of the coefficients of the terms are

described in Table 3.5. This choice of bounds produces three types of problems:

27

160 submodular problems with p = 0.0; 160 problems with p = 0.2; and 160
problems with p = 0.5. Ten instances (k = 1,--- ,10) for each combination of the
four values of the parameter n, four values of the parameter d and three values of
the parameter p. The starting seed for the random number generator is the value

of the expression

4000, 7=0.0
EJ + [40d| +k — 110+ 3000, 7=0.2
0, 7=05

The best known values of the problems in this particular group are given in Table

A.7 of the Appendix.

Table 3.5: Characteristics of QUBO problems in the Large family.

Variables | Number Density | Linear Coef. | Quadr. Coef.

Sub-Family (n) Problems (d %) (™) | (c™) | (¢7) | (q™) D

L-500-0.00 500 40 25 to 100 1 100 | =100 | —1 | 0.00
L-1000-0.00 1000 40 25 to 100 1 100 | =100 | —1 | 0.00
L-2500-0.00 2500 40 25 to 100 1 100 | =100 | —1 | 0.00
L-5000-0.00 5000 40 25 to 100 1 100 | =100 | —1 | 0.00
L-500-0.20 500 40 25to0 100 | —50 | 100 | —100 | 50 0.20
L-1000-0.20 1000 40 25t0 100 | —50 | 100 | —100 | 50 0.20
L-2500-0.20 2500 40 25t0 100 | —50 | 100 | —100 | 50 0.20
L-5000-0.20 5000 40 25t0 100 | —50 | 100 | —100 | 50 0.20
L-500-0.50 500 40 25 to 100 | —100 | 100 | —100 | 100 | 0.50
L-1000-0.50 1000 40 25 to 100 | —100 | 100 | —100 | 100 | 0.50
L-2500-0.50 2500 40 25 to 100 | —100 | 100 | —100 | 100 | 0.50
L-5000-0.50 5000 40 25 to 100 | —100 | 100 | —100 | 100 | 0.50

e Massive (see Table 3.6) — This family contains 108 QUBO maximization problems
with the number of variables ranging from 15000 to 30000 (in steps of 5000),
expected densities varying from 30% to 90% (in steps of 30%), expected values
0.0, 0.25 and 0.5, for the p parameter, and three instances (k = 1,2, 3) for each set
of parameters. The starting seed for the random number generator is the value

of the expression k + 23" + 219 [100d | + 27 |n/10].

28

Table 3.6: Characteristics of QUBO problems in the Massive family.

Variables | Number | Density | Linear Coef. | Quadr. Coef.

Sub-Family (n) Problems (d %) (c7) | (c™) | (¢7) | (g7) D

H-15000-0.00 15000 9 30 to 90 1 50 —100 0 0.00
H-20000-0.00 20000 9 30 to 90 1 50 —100 0 0.00
H-25000-0.00 25000 9 30 to 90 1 50 —100 0 0.00
H-30000-0.00 30000 9 30 to 90 1 50 —100 0 0.00
H-15000-0.25 15000 9 30 to 90 1 50 —100 a7 0.25
H-20000-0.25 20000 9 30 to 90 1 50 —100 57 | 0.25
H-25000-0.25 25000 9 30 to 90 1 50 —100 57 | 0.25
H-30000-0.25 30000 9 30 to 90 1 50 —100 57 | 0.25
H-15000-0.50 15000 9 30 to 90 1 50 —100 100 | 0.50
H-20000-0.50 20000 9 30 to 90 1 50 —100 | 100 | 0.50
H-25000-0.50 25000 9 30 to 90 1 50 —100 | 100 | 0.50
H-30000-0.50 30000 9 30 to 90 1 50 —100 100 | 0.50

3.2 Graphs for maximum clique

A set of 138 benchmark graphs related to the maximum clique problem, introduced
earlier in Section 2.2.1, is described in this section.

In order to facilitate comparisons among different methods related to clique prob-
lems, a set of benchmark graphs arising from different fields of application has been
constructed in conjunction with the 1993 DIMACS challenge on maximum cliques, col-
oring and satisfiability [151]. These data are publicly available at a DIMACS FTP site?,
along with other useful information.

Tables 3.7 and 3.8 describe the list of 85 DIMACS graphs, including the size of the
largest clique found for each instance. The largest clique is known to be maximum in
most graphs. The information on the largest and optimal cliques was taken mostly
from the DIMACS FTP site described above. Other sources used were [75, 186].

The DIMACS graphs are categorized in 11 subfamilies:

e The Brockington graphs ([71]) are constructed to deliberately “hide” the optimal
clique in relatively unattractive regions of the solutions space. This property
makes this class of problems difficult to be solved by algorithms that use local

information (e.g., vertex degree), which is generally used to guide the search

DIMACS. (10/29/2004). The Second DIMACS Implementation Challenge: 1992-1993.
ftp://dimacs.rutgers. edu/pub/challenge/.

29

Table 3.7: DIMACS graphs for the maximum clique problem (Part I).

Problem Vertices FEdges Density Maximum
Sub-Family Name (IV]) (|E]) (d %) p% | p% Clique

Brockington || brock200_1 200 14834 25.46 3.80 | 3.95 21
brock200_2 200 9876 50.37 1.96 2.00 12
brock200_3 200 12048 39.46 2.48 2.55 15

brock200_4 200 13089 34.23 2.85 2.94 17

brock400_1 400 59723 25.16 1.95 1.99 27
brock400_2 400 59786 25.08 1.96 2.00 29
brock400_3 400 59681 25.21 1.95 1.99 31
brock400_4 400 59765 25.11 1.96 2.00 33
brock800_1 800 207 505 35.07 0.71 0.71 23
brock800_2 800 208 166 34.87 0.71 0.72 24
brock800_3 800 207 333 35.13 0.71 0.71 25
brock800_4 800 207 643 35.03 0.71 0.71 26
C-FAT c—fat200-1 200 1534 92.29 1.08 1.09 12
c—fat200-2 200 3235 83.74 1.19 1.20 24
c—fat200-5 200 8473 57.42 1.72 1.75 58
c—fatb00-1 500 4459 96.43 0.41 0.42 14
c—fat500-2 500 9139 92.67 0.43 0.43 26
c—fat500-5 500 23191 81.41 0.49 | 0.49 64

c—fat500-10 500 46 627 62.62 0.64 | 0.64 126
C C125.9 125 6963 10.15 13.71 | 15.88 34
C250.9 250 27984 10.09 7.37 | 7.96 44

C500.9 500 112332 9.95 3.87 | 4.03 >57

C1000.9 1000 450079 9.89 1.98 2.02 >68

C2000.9 2000 1799532 9.98 0.99 1.00 >T78

C2000.5 2000 999 836 49.98 0.20 | 0.20 >16

C4000.5 4000 4000268 49.98 0.10 | 0.10 >18

DSJC DSJC500.5 500 125248 49.80 0.80 | 0.80 14
DSJC1000.5 1000 499 652 49.98 0.40 | 0.40 15
Hamming hamming6-2 64 1824 9.52 25.00 | 33.33 32
hamming6-4 64 704 65.08 4.65 4.88 4

hamming8-2 256 31616 3.14 20.00 | 25.00 128
hamming8-4 256 20 864 36.08 2.13 2.17 16

hamming10-2 1024 518 656 0.98 16.67 | 20.00 512

hamming10-4 1024 434176 17.11 1.13 1.14 >40
Johnson johnson8-2-4 28 210 44.44 14.29 | 16.67 4
johnson8-4-4 70 1855 23.19 11.11 | 12.50 14
johnson16-2-4 120 5460 23.53 6.67 | 7.14 8
johnson32-2-4 496 107880 12.12 3.23 3.33 16
Keller keller4 171 9435 35.09 3.24 | 3.35 11
keller5 776 225990 24.85 1.03 1.04 27

keller6 3361 4619898 18.18 0.33 0.33 >59

30

Table 3.8: DIMACS graphs for the maximum clique problem (Part II).

Problem Vertices Edges Density Maximum
Sub-Family Name (V) (I1E)) (d %) p% | p% Clique
Mannino MANN_a9 45 918 7.27 38.46 | 62.50 16
MANN_a27 378 70551 0.99 35.00 | 53.85 126
MANN_a45 1035 533115 0.37 34.33 | 52.27 345
MANN_ag1 3321 5506 380 0.12 33.88 | 51.25 >1100
P-HAT p-hat300-1 300 10933 75.62 0.88 0.88 8
p-hat300-2 300 21928 51.11 1.29 1.31 25
p-hat300-3 300 33390 25.55 2.55 2.62 36
p-hat500-1 500 31569 74.69 0.53 0.54 9
p-hat500-2 500 62946 49.54 0.80 | 0.81 36
p-hat500-3 500 93800 24.81 1.59 1.62 >50
p-hat700-1 700 60999 75.07 0.38 0.38 11
p-hat700-2 700 121728 50.24 0.57 | 0.57 44
p-hat700-3 700 183010 25.20 1.12 1.14 >62
p-hat1000-1 1000 122253 75.52 0.26 0.27 10
p-hat1000-2 1000 244799 50.99 0.39 | 0.39 >46
p-hat1000-3 1000 371746 25.58 0.78 0.78 >68
p-hat1500-1 1500 284923 74.66 0.18 0.18 12
p-hat1500-2 1500 568 960 49.39 0.27 | 0.27 >65
p-hat1500-3 1500 847244 24.64 0.54 | 0.54 >94
R.5 r100.5 100 5016 49.33 3.93 | 4.10 9
r200.5 200 20072 49.57 1.99 | 2.03 11
r300.5 300 44722 50.14 1.32 1.33 12
r400.5 400 80122 49.80 1.00 1.01 13
r500.5 500 124322 50.17 0.79 | 0.80 13
Sanchis san200.0.7_1 200 13930 30.00 3.24 | 3.35 30
san200.0.7_2 200 13930 30.00 3.24 | 3.35 18
san200.0.9_1 200 17910 10.00 9.13 | 10.05 70
san200.0.9_2 200 17910 10.00 9.13 | 10.05 60
san200.0.9_3 200 17910 10.00 9.13 | 10.05 44
san400.0.5_1 400 39900 50.00 0.99 1.00 13
san400.0.7_1 400 55860 30.00 1.64 1.67 40
san400.0.7_2 400 55860 30.00 1.64 1.67 30
san400.0.7_3 400 55860 30.00 1.64 1.67 22
san400.0.9_1 400 71820 10.00 4.77 | 5.01 100
san1000 1000 250500 49.85 0.40 | 0.40 15
sanr200.0.7 200 13868 30.31 3.21 3.32 18
sanr200.0.9 200 17863 10.24 8.94 | 9.82 42
sanr400_0.5 400 39984 49.89 0.99 1.00 13
sanr400.0.7 400 55869 29.99 1.64 1.67 >21
gen200_p0.9_44 200 17910 10.00 9.13 | 10.05 44
gen200_p0.9_55 200 17910 10.00 9.13 | 10.05 55
gen400_p0.9_55 400 71820 10.00 4.77 | 5.01 55
gen400_p0.9_65 400 71820 10.00 4.77 | 5.01 65
2en400_p0.9_75 400 71820 10.00 4.77 | 5.01 75

31

through the solution space.

A major step in the algorithm of the fault diagnosis problem proposed by Berman
and Pelc [40] is to find the maximum clique of a special class of graphs, called c—

fat rings. In order to define a c—fat graph G = (V| E), let us consider an arbitrary

V]
clog|V|

finite set of vertices V. Let ¢ be a real parameter, k = L J , and let us consider
a partition Wy, --- , Wi_q of V, such that clog |V| < [W;| < [clog [V]] + 1 for all
i=0,--+,k—1. The edge set E is defined as the set of those edges (u,v) which
link distinct pairs of vertices u € W; and v € Wj, such that |i — j| € {0,1,k — 1}.
The DIMACS c—fat rings were created by Panos Pardalos using the c—fat rings

generator of Hasselberg, Pardalos and Vairaktarakis [136].

The C graphs G, , were randomly generated by Michael Trick using ggen, a
program by Craig Morgenstern. The parameters used to create these graphs are
the number of vertices n, and the probability p of an edge to exist between any

two vertices.

The DSJC graphs were randomly generated by Johnson et al. [150], all having

an expected density of 50%.

The Hamming graphs arise from coding theory problems ([224]). The Hamming
distance between the binary vectors u = (uq,--- ,uy) and v = (vy,--- ,v,) is the
number of indices i = 1,--- ,n where u; # v;. The Hamming graph H (n,h) of
size n and distance h is the graph whose vertex set is the set of all binary n—
vectors, and whose edges link any two n-vectors at distance h or larger. Clearly,
the graph H (n, h) has 2" vertices, 271" , (7) edges, and the degree of each
vertex is > 1 (7) A binary code consisting of a set of binary vectors, any two
of which have Hamming distance greater or equal to h, can correct L%J €rTors.
Thus, a coding theorist (see [174]) would like to find the maximum number of
binary vectors of size n with Hamming distance h, i.e. the maximum clique of

H (n,h). The DIMACS Hamming graphs were created by Panos Pardalos (for
details see [136]).

32

e The Johnson graphs also arise from coding theory problems. The Johnson graph
Jpen, w, h, with parameters n, w and h, is the graph with vertex set of binary vec-
tors of size n and weight w, where two vertices are adjacent if their Hamming dis-
tance is at least h. The graph J (n,w, h) has (Z) vertices, %(Z) zg:(%] (1]‘;) (";w)
edges and the degree of each vertex is EZ’:(L1 (V) ("%") ([136]). A binary code
consisting of vectors of size n, weight w and distance h, can correct w — % errors.
In this case, a coding theorist ([174]) would like to find a weighted binary code,
defined by the maximum number of binary vectors of size n that have precisely
w indices with value 1, and for which the Hamming distance of any two of these

vectors is h. This number is precisely the maximum clique of J (n,w,h). The

DIMACS Hamming graphs were created by Panos Pardalos (for details see [136]).

e The Keller graphs are graphs for which a maximum clique can be used to prove
or disprove the Keller’s conjecture on tilings hypercubes (see [164, 136] for more

details). The Keller graph I'y is a graph with vertex set
Vk = {(dl, 7dk) : dl € {0,1,2,3},1' = 17 7]€}

where two vertices u = (df,--- ,d}}) and v = (df,--- ,d}) in V}, are adjacent if and
only if
Ji,i=1,--- k:d} —d] =2 mod4

and

3 Ai =1,k di#d.

Corradi and Szabé [88] show that there is a counterexample to Keller’s conjecture

if and only if there is a positive integer k, such that T' has a clique of size 2F.

I';; has 4F vertices, %4’“ (4k -3k k‘) edges and the degree of each node is 4F —

3% — k. T'; is very dense, and it has at least 8¥k! different cliques.

e The Mannino graphs are a consequence of a clique formulation of the Steiner

triple problem, translated from the set covering formulation. It should be noted

33

that these graphs are extremely dense in which only a few from all possible edges

are missing.

e The P-fat graphs ([106]) are created from a generalization of the classical uniform
random graph generator. These graphs have a wider node degree spread and larger

cliques than uniform random graphs.

e The five graphs in the R.5 family were proposed in the DIMACS challenge to serve
as benchmarks for defining ratios of computing times between different computer
machines when the same source code of program dfmax is used. dfmax is a
simple-minded branch-and-bound program very similar to that of Carraghan and
Pardalos [79]. The source code of program dfmaz, written by David Applegate
and David Johnson, is available at the DIMACS FTP site. In practice it can
find a maximum clique for graph with 500 vertices, and 50% density, in a few
minutes. The R.5 graphs are random graphs, 50% dense, with the number of

vertices varying from 100 to 500.

e Sanchis [214, 215] proposed three sub-families of test problems: san, sanr and gen.
The san graphs are randomly generated problems from the complement graph
of instances of the vertex covering problem (see Section 2.2.1). The generation
parameters include the number of vertices, the number of edges, and the maximum
clique size. The sanr graphs are of similar size to the san graphs, but with different
clique characteristics. The gen graphs are artificially generated instances with
large, known embedded clique. Regarding the difficulty of the problems generated,

the reader is referred to [214].

Pardalos with Carraghan [79] and Rodgers [196] proposed a routine to generate
graphs. Using this routine Pardalos et al. [79, 196] proposed some benchmarks for
which the corresponding maximum cliques were found. We shall call this subfamily
of test problems has CPR. The list of problems and the corresponding sizes of the

maximum cliques can be seen in Table 3.9.

34

The FRB maximum clique benchmarks presented in Table 3.9 are directly trans-
formed from forced satisfiable Constraint Satisfaction Problems ([237]), with the set
of vertices and the set of edges respectively corresponding to the set of variables, and
to the set of binary clauses in the satisfiability instances. Based on this model (called

model RB) and transformation, the FRB graphs are obtained as follows:

1. Generate k disjoint cliques, each of which has k% vertices (where a > 0 is a

constant);

2. Randomly select two different cliques and then generate without repetitions pn?®

random edges between these two cliques (where 0 < p < 1 is a constant);

3. Run step 2 (with repetitions) for another rnlogn — 1 times (where r > 0 is a

constant).

The graph obtained with the previous procedure generates a graph with a maximum
independent set of size at most k. Determining if such an upper bound can be reached is
equivalent to determining the satisfiability of the corresponding constraint satisfaction
problem. Furthermore, there is a one-to-one correspondence between the solutions of
these two problems. To hide an independent set of size k in these graph instances, a
vertex is selected at random from each disjoint clique to form an independent set of
size k. Then, in the step of generating random edges, no edge is allowed to violate
this maximum independent set. The graphs of Table 3.9 are the complements of graph

instances generated in this way.

In this study, we solve the maximum clique problem by associating to it a quadratic
pseudo—Boolean function (see (2.1) in Section 2.2.1), for which the maximum value is
the maximum clique size. Otherwise stated, for every edge (i,j) € E, €) = 0 1s
assumed in (2.1) and (2.3). The parameters d, p and p shown in Tables 3.7-3.9 were

computed using this assumption.

A group of 8 graphs related to the weighted maximum clique problem (see Section

2.2.1) is listed in Table 3.10. These test problems are obtained from complemented

Table 3.9: Additional graphs ([79, 196, 237]) for the maximum clique problem.

Problem Vertices Edges Density Maximum
Sub-Family Name (V) (I1E)) (d %) p% | p% Clique
CPR 1000A 1000 50000 89.99 0.22 | 0.22 6
1000B 1000 100000 79.98 0.25 | 0.25 7
1000C 1000 150000 69.97 0.29 | 0.29 10
2000B 2000 400 347 79.97 0.12 | 0.13 8
3000B 3000 899 647 80.00 0.08 | 0.08 9
FRB frb30-15-1 450 83198 17.65 2.46 | 2.52 30
frb30-15-2 450 83151 17.69 2.46 | 2.52 30
frb30-15-3 450 83216 17.63 2.46 | 2.53 30
frb30-15-4 450 83194 17.65 2.46 | 2.52 30
frb30-15-5 450 83231 17.61 2.47 | 2.53 30
frb35-17-1 595 148 859 15.76 2.09 | 2.14 35
frb35-17-2 595 148 868 15.76 2.09 | 2.14 35
frb35-17-3 595 148784 15.81 2.09 | 2.13 35
frb35-17-4 595 148 873 15.76 2.09 | 2.14 35
frb35-17-5 595 148572 15.93 2.07 | 2.11 35
frb40-19-1 760 247106 14.32 1.81 | 1.84 40
frb40-19-2 760 247157 14.31 1.81 | 1.84 40
frb40-19-3 760 247 325 14.25 1.82 | 1.85 40
frb40-19-4 760 246 815 14.43 1.79 | 1.83 40
frb40-19-5 760 246 801 14.43 1.79 | 1.83 40
frb45-21-1 945 386 854 13.27 1.57 | 1.60 45
frb45-21-2 945 387416 13.14 1.59 | 1.61 45
frb45-21-3 945 387795 13.06 1.60 | 1.62 45
frb45-21-4 945 387491 13.13 1.59 | 1.61 45
frb45-21-5 945 387461 13.13 1.59 | 1.61 45
frb50-23-1 1150 580603 12.12 1.42 | 1.44 50
frb50-23-2 1150 579 824 12.24 1.40 | 1.42 50
frb50-23-3 1150 579607 12.27 1.40 | 1.42 50
frb50-23-4 1150 580417 12.15 1.41 | 1.43 50
frb50-23-5 1150 580640 12.11 1.42 | 1.44 50
frb53-24-1 1272 714129 11.66 1.33 | 1.35 53
frb53-24-2 1272 714067 11.66 1.33 | 1.35 53
frb53-24-3 1272 714229 11.64 1.33 | 1.35 53
frb53-24-4 1272 714048 11.67 1.33 | 1.35 53
frb53-24-5 1272 714130 11.66 1.33 | 1.35 53
frb56-25-1 1400 869 624 11.20 1.26 | 1.28 56
frb56-25-2 1400 869 899 11.17 1.26 | 1.28 56
frb56-25-3 1400 869921 11.17 1.26 | 1.28 56
frb56-25-4 1400 869 262 11.24 1.26 | 1.27 56
frb56-25-5 1400 869 699 11.19 1.26 | 1.28 56
frb59-26-1 1534 1049 256 10.76 1.20 | 1.21 59
frb59-26-2 1534 1049648 10.73 1.20 | 1.22 59
frb59-26-3 1534 1049 729 10.72 1.20 | 1.22 59
frb59-26-4 1534 1048 800 10.80 1.19 | 1.21 59
frb59-26-5 1534 1049829 10.71 1.20 | 1.22 59

35

36

graphs, randomly generated by Pardalos and Desai ([192]), for which a maximum
weighted independent set was found. The weights of the vertices are random inte-
gers between 1 and 10. Table 3.10 list the characteristics of the complements of the
original graphs, including the weight of the optimal clique. Note that [192] only reports

the size of the largest independent set, and not the corresponding weight.

Table 3.10: Graphs of Pardalos and Desai [192] for the weighted maximum clique
problem.

Problem | Vertices | Edges | Density Maximum
Sub-Family Name (V) (1E)) (d %) p % | p% | Cliqgue Weight
PD-500 PD-500.1 500 112176 10.08 1.96 | 1.99 >380
PD-500.2 500 99832 19.97 0.99 | 1.00 >222
PD-500.3 500 87445 29.90 0.67 | 0.67 >163
PD-500.4 500 74925 39.94 0.50 | 0.50 125
PD-500.5 500 62422 49.96 0.40 | 0.40 96
PD-500.6 500 49749 60.12 0.33 | 0.33 78
PD-500.7 500 37183 70.19 0.28 | 0.29 63
PD-500.8 500 25083 79.89 0.25 | 0.25 51

In this study, we solve the weighted maximum clique problem by associating to it a
quadratic pseudo-Boolean function (see (2.3) in Section 2.2.1), for which the maximum
value is the maximum weight of a clique. We used €(; ;) = ¢; +¢; in (2.3), for every

edge (i,j) € E. The values of d, p and p in Table 3.10 are a consequence of this option.

3.3 Planar graphs for minimum vertex cover

A set of planar graphs randomly generated by the LEDA software package ([176]) is
considered in this study. It is important to note that even for planar graphs it is known
that solving the minimum vertex cover problem is NP-hard ([105]).

Using the LEDA generator we tried to replicate the experiment reported in Alber,
Dorn and Niedermeier [13], although it should be noted that not having access to the
seeds used in [13], the graphs generated by us are not exactly identical to the ones used
by Alber, Dorn and Niedermeier [13]. In order to distinguish between the two planar
vertex cover benchmarks, we shall call those of [13] ADN benchmark graphs and the
new ones PVC LEDA benchmark.

37

The total number of planar graphs that we have generated with LEDA is 400, parti-
tioned into 4 sets of 100 graphs, each subset having a specific number of vertices: 1000,
2000, 3000 and 4000. The planar density of each graph G (V, E) was randomly de-
termined, i.e. |E| « discrete uniform (|V]| —1,3|V|—6). Some comparative statistical

numbers about these two benchmarks are displayed in Table 3.11.

Table 3.11: Comparative statistical numbers about the LEDA benchmarks.

Average Average Average
Benchmark || Vertices | Number Number | Maximum | Average Minimum
of Graphs | of Edges Degree Degree | Vertex Cover
PVC LEDA 1000 100 2037.9 73.0 4.08 460.6
2000 100 4068.6 106.7 4.07 921.1
3000 100 6204.3 132.4 4.14 1391.2
4000 100 8207.1 149.2 4.10 1848.2
ADN ([13]) 1000 100 1978.9 73.3 3.96 453.9
2000 100 3960.8 104.9 3.96 917.3
3000 100 6070.6 129.6 4.05 1373.8
4000 100 8264.5 146.6 4.13 1856.8

In addition to the PVC LEDA planar graphs we have also generated a dataset
containing larger graphs with up to 500000 vertices. These graphs were generated in
order to analyze the scalability of the routine PREPRO. Because of size limitations
associated to our trial license on LEDA, we used for this experiment Rinaldi’s ([211])
generator called RUDY. With the RUDY program, we generated a total of 36 graphs
whose sizes are of 50000, 100000, 250000 and 500 000 vertices; for each of these graph
sizes, we generated nine graphs: three instances with density of 10%, three with density
of 50% and three with density of 90%. This set of benchmark graphs is called PVC
RUDY.

3.4 Graphs for MAX-CUT

A collection of (weighted) graphs related to the (weighted) MAX-CUT problem, in-
troduced earlier in Section 2.2.3, is described in this section. A set of 135 (weighted)
graphs used previously in other studies, is described next. In addition to the public
benchmarks, we randomly generated a set of 240 graphs with m-Hamiltonian cycles,
where m is a specified parameter. The generation details of the Hamiltonian graphs

are presented at the end of this section.

38

3.4.1 Benchmark families

The MAX-CUT problem arises from different applications, such as when one needs to
find the minimum energy and particle states of a Ising model, or when the minimum
number of layers/vias has to be computed during the design process for VLSI chips or
printed circuit boards.

Most of the benchmark problems for MAX-CUT are randomly generated with dif-
ferent algorithms or settings, making it possible to analyze this problem on variety of
classes of graphs. The benchmarks for MAX-CUT include 14 2D-toroidal graphs and
34 3D-toroidal graphs. Ten graphs derived from VLSI problems are also part of this

group of problems.

Helmberg and Rendl [140] used the graph generator rudi, written by Rinaldy, to
create the G graphs. The graphs of the G family have been frequently cited in several
publications related to the MAX—-CUT problem (e.g., [74, 97, 188]). It contains a group
of random graphs with no weights associated to the edges (listed in Table 3.12), and a
group of graphs with a +1 weights associated to the edges (listed in Table 3.13). The
probability of an edge to have a negative weight is in this case 50%.

For each group of problems, Helmberg and Rendl [140] considers three classes of
graphs: random graphs with a prescribed edge density; graphs resulting from the union
of two random planar graphs; and 2D-toroidal graphs. Tables 3.12 and 3.13 contain

the graph characteristics, and also includes information about the largest known cut.

Burer et al. [74] proposed the graph instances in Table 3.14. These graphs consist
of thirty cubic lattices having randomly generated +1 interaction magnitudes. Each
graph has a side length L, has n = L3 vertices and 3n edges. There are ten graphs
for each value of the side length L, which are the values 5, 10 and 14. [74] tested a
rank-2 relaxation heuristic (called circut) for MAX-CUT on these cubic lattice graphs.
Subsequently, Festa et al. [97] and Palubeckis et al. [188] respectively used these graphs

for testing GRASP and tabu search as heuristic techniques for MAX-CUT.

The torus graphs are 3D-toroidal graphs, originated from the Ising model of spin

Table 3.12: G-graphs of Helmberg and Rendl [140] for MAX-CUT.

Problem | Vertices | FEdges | Density | MAX-CUT
Family Sub-Family | Name (V1)) (|E) (d %) 1(5,9)]

Random || GR-800 Gl 800 19176 6.00 >116247
G2 800 19176 6.00 >11620*

G3 800 19176 6.00 >11622"

G4 800 19176 6.00 >11646

G5 800 19176 6.00 >11631

GR-1000 G43 1000 9990 2.00 >6 6607

G44 1000 9990 2.00 >6650%

G45 1000 9990 2.00 >6 6541

G46 1000 9990 2.00 >6649

G47 1000 9990 2.00 26657

GR-2000 G22 2000 19990 1.00 >13358*

G23 2000 19990 1.00 >13 354

G24 2000 19990 1.00 >13335

G25 2000 19990 1.00 >13339

G26 2000 19990 1.00 >13317

GR-5000 G55 5000 12498 0.10 >10264

GR-7000 G60 7000 17148 0.07 >14149

2xPlanar || GP-800 Gl14 800 4694 1.47 >3 064
G15 800 4661 1.46 >3050%

G16 800 4672 1.46 >3052%

G17 800 4667 1.46 >3044

GP-1000 G51 1000 5909 1.18 >3 848

G52 1000 5916 1.18 >3849

G53 1000 5914 1.18 >3 848

G54 1000 5916 1.18 >3 848

GP-2000 G35 2000 11778 0.59 >7683

G36 2000 11766 0.59 >7674

G37 2000 11785 0.59 >7681%

G38 2000 11779 0.59 >7672

GP-5000 G58 5000 29570 0.24 >19246

GP-7000 G63 7000 41459 0.17 >26959

Toroidal || GT-50x60 | G48 3000 6000 0.13 6000*
GT-30x100 | G49 3000 6000 0.13 6000*
GT-25x120 | G50 3000 6000 0.13 5880

TSolution reported first by Festa et al. [97].
tSolution reported first by Palubeckis and Krivickiene [188].
*Solution reported first by Burer et al. [74].

39

Table 3.13: Gij—graphs of Helmberg and Rendl [140] for MAX-CUT.

Problem | Vertices | Edges | Density | MAX-CUT
Family Sub-Family Name (14)) (|E)) (d %) ‘W (S, §)|

Random || GR-800 G6 800 19176 6.00 >2178
G7 800 19176 6.00 >2006

G8 800 19176 6.00 >2005

G9 800 19176 6.00 >2054

G10 800 19176 6.00 >2000

GR-2000 G27 2000 19990 1.00 >3325

G28 2000 19990 1.00 >3296

G29 2000 19990 1.00 >3391

G30 2000 19990 1.00 >3408

G31 2000 19990 1.00 >3294

GR-5000 G56 5000 12498 0.10 >3994

GR-7000 G61 7000 17148 0.07 >5741

2xPlanar || GP-800 G18 800 4694 1.47 >988
G19 800 4661 1.46 >906

G20 800 4672 1.46 >941

G21 800 4667 1.46 >930

GP-2000 G39 2000 11778 0.59 >2375

G40 2000 11766 0.59 >2384

G41 2000 11785 0.59 >2380

G42 2000 11779 0.59 >2465

GP-5000 G59 5000 29570 0.24 >5971

GP-7000 G64 7000 41459 0.17 >8575*

Toroidal || GT-100x8 Gl11 800 1600 0.50 5647
GT-50x16 Gl12 800 1600 0.50 5561

GT-25%x32 G13 800 1600 0.50 582%
GT-100x20 | G32 2000 4000 0.20 >1410

GT-80x25 G33 2000 4000 0.20 >1382
GT-50x40 G34 2000 4000 0.20 >1384
GT-100x50 | G57 5000 10000 0.08 >3492
GT-100x70 | G62 7000 14000 0.06 >4 862
GT-100x80 | G65 8000 16 000 0.05 >5550
GT-90x100 | G66 9000 18000 0.04 >6352
GT-100x100 | G67 10000 | 20000 0.04 >6932

TSolution reported first by Festa et al. [97].
fSolution reported first by Palubeckis and Krivickiene [188].
*Solution reported first by Burer et al. [74].

40

Table 3.14: Cubic lattice graphs of Burer et al. [74] for MAX-CUT.

Problem Vertices | Edges | Density | MAX-CUT
Family || Sub-Family Name (VD) (|1E) (d %) |W (S, §)|
sg3dl | sg3dlo5 sg3d1051000 125 375 4.84 110
sg3d1052000 125 375 4.84 112
sg3d1053000 125 375 4.84 106
sg3d1054000 125 375 4.84 114
sg3d1055000 125 375 4.84 112
sg3d1056000 125 375 4.84 110
sg3d1057000 125 375 4.84 112
sg3d1058000 125 375 4.84 108
sg3d1059000 125 375 4.84 110
sg3d10510000 125 375 4.84 112
sg3dl10 sg3d1101000 1000 3000 0.60 >896
sg3d1102000 1000 3000 0.60 =900
sg3d1103000 1000 3000 0.60 >892
sg3d1104000 1000 3000 0.60 >898
sg3d1105000 1000 3000 0.60 >886
sg3d1106000 1000 3000 0.60 >888
sg3dl1107000 1000 3000 0.60 =900
sg3d1108000 1000 3000 0.60 >882
sg3d1109000 1000 3000 0.60 >902
sg3d11010000 1000 3000 0.60 >894
sg3dl14 sg3d1141000 2744 8232 0.22 >2446
sg3d1142000 2744 8232 0.22 >2458
sg3d1143000 2744 8232 0.22 >2442
sg3d1144000 2744 8232 0.22 >2450
sg3d1145000 2744 8232 0.22 >2446
sg3d1146000 2744 8232 0.22 >2450
sg3d1147000 2744 8232 0.22 >2444
sg3d1148000 2744 8232 0.22 >2446
sg3d1149000 2744 8232 0.22 >2424
sg3d11410000 2744 8232 0.22 >2458

41

42

glasses in physics. They were taken from the DIMACS library of mixed semidefinite-
quadratic-linear programs [1] (see also [179]). Two graphs have +1 interaction magni-
tudes, whereas the other two graphs have interactions determined by a Gaussian dis-
tribution. The general characteristics of these graphs, and the largest cut information

can be seen in Table 3.15.

Table 3.15: DIMACS torus graphs for MAX-CUT.

Problem Vertices | Edges | Density MAX-CUT
Name (vh | (B) | (d%) (W (5.9)]
pm3-8-50 512 1536 1.17 458
pm3-15-50 3375 10125 0.18 >30167
g3-8 512 1536 1.17 416848141
g3-15 3375 10125 0.18 >285790637*

TSolution reported first by Palubeckis and Krivickiene [188].
Solution reported first by Burer et al. [74].

Homer and Peinado ([145]) tested several approximation algorithms for MAX-CUT

on sparse random graphs and on graphs derived from circuit design problems:

e Sparse random graphs — These eight graphs constitute the family R of Homer and
Peinado ([145]). Each graph has an edge probability of 10/n, and the number of
vertices n varies from 1000 to 8000. These graphs belong to the random graph

class C' in Goemans and Williamson [112].

e Via graphs — Graphs provided by Homer and Peinado [145], derived from layer
assignment problems in the design process for VLSI chips. Each edge has a

coefficient associated to it, some of them being negative.

The characteristics of these graphs, and the largest cut information can be seen in Table
3.16.

Kim et al. [157] tested a hybrid genetic algorithm on both the R and the via fam-
ilies of graphs. Kim et al. [157] also includes the following classes of graphs in their

experiments:

e Gn.p graphs: Each graph has n vertices (n being 500 or 1000), and an edge is
placed between two vertices with probability p, independently of other edges. The

probability p is chosen so that the expected vertex degree is d = p(n — 1).

43

Table 3.16: Graphs of Homer and Peinado [145] for MAX-CUT.

Problem | Vertices | Edges | Density | MAX-CUT
Family Name (V) (|E]) (d %) (W (SS)]

random || R1000 1000 5033 1.01 >36877
R2000 2000 9943 0.50 >73081

R3000 3000 14965 0.33 >10997

R4000 4000 19939 0.25 >14684

R5000 5000 24794 0.20 >18225

R6000 6000 29862 0.17 >21937

R7000 7000 35110 0.14 >25763

R8000 8000 39 642 0.12 >29140f

via via.cln 828 1389 0.41 6 150
via.c2n 980 1712 0.36 7098

via.c3n 1327 2393 0.27 6898

via.c4n 1366 2539 0.27 10098

via.chn 1202 2129 0.29 7956

via.cly 829 1693 0.49 7746

via.c2y 981 2039 0.42 8226

via.c3y 1328 2757 0.31 9502

via.cdy 1367 2848 0.31 12516

via.chy 1203 2452 0.34 10248

TSolution reported first by Kim et al. [157].

e Un.p graphs: Each graph has n vertices (n being 500 or 1000) that lie in the unit
square and whose coordinates are chosen uniformly from the unit interval. There
is an edge between two vertices if their Euclidean distance is ¢, which results in

an expected vertex degree of d = nmt2.

The characteristics of these graphs, and the largest cut information can be seen in Table

3.17.

3.4.2 Graphs with m-Hamiltonian random cycles

We have randomly generated 240 graphs for MAX-CUT. Each graph has a user-
specified number of Hamiltonian cycles randomly generated. This family was named as
the Hamilton family, and has the following characteristics (see Table 3.18): number of
vertices is 250, 500, 1000 or 2000, plus one additional vertex that represents an exterior
field; number of Hamiltonian cycles varies from 2 to 8 (in steps of 2); weights of edges
are discrete uniformly distributed as [—50,100], [-50, 50], [-50, —1], or are fixed to 1;
and three instances (k = 1,2, 3) were generated for each set of parameters.

The best known solutions of the problems in the Hamilton family are given in Table

44

Table 3.17: Graphs of Kim, Kim and Moon [157] for MAX-CUT.

Problem | Vertices | Fdges | Density | MAX-CUT
Family Name (V) (|E|) (d %) W (S9)]
random || g500.2.5 500 625 0.50 574
£500.05 500 1223 0.98 >1008
£500.10 500 2355 1.89 >1735
£500.20 500 5120 4.10 >3390
£1000.2.5 1000 1272 0.25 >1173
£1000.05 1000 2496 0.50 >2053
£1000.10 1000 5064 1.01 >3 705
£1000.20 1000 10107 2.02 >6729
geometric || U500.05 500 1282 1.03 900
U500.10 500 2355 1.89 >1546
U500.20 500 4549 3.65 >2783
U500.40 500 8793 7.05 >5181
U1000.05 1000 2394 0.48 >1711
U1000.10 1000 4696 0.94 >3073
U1000.20 1000 9339 1.87 >5737
U1000.40 1000 18015 3.61 >10560

Table 3.18:

Graphs with m-Hamiltonian randomly generated cycles for MAX-CUT.

Vertices Number Number Exterior | Edge’s Weights
Family Sub-Family (IV]) Problems | Cycles (m) | Field (h) [(w™) | (w™)
Hamilton || HAM-2-1 250 to 2000 12 2 —75 50 100
HAM-2-2 250 to 2000 12 2 75 50 100
HAM-2-3 250 to 2000 12 2 0 —50 50
HAM-2-4 250 to 2000 12 2 25 —50 50
HAM-2-5 250 to 2000 12 2 0 1 1
HAM-4-1 250 to 2000 12 4 —75 50 100
HAM-4-2 250 to 2000 12 4 75 50 100
HAM-4-3 250 to 2000 12 4 0 —50 50
HAM-4-4 250 to 2000 12 4 25 —50 50
HAM-4-5 250 to 2000 12 4 0 1 1
HAM-6-1 250 to 2000 12 6 —75 50 100
HAM-6-2 250 to 2000 12 6 75 50 100
HAM-6-3 250 to 2000 12 6 0 -50 50
HAM-6-4 250 to 2000 12 6 25 —50 50
HAM-6-5 250 to 2000 12 6 0 1 1
HAM-8-1 250 to 2000 12 8 —75 50 100
HAM-8-2 250 to 2000 12 8 75 50 100
HAM-8-3 250 to 2000 12 8 0 -50 50
HAM-8-4 250 to 2000 12 8 25 —50 50
HAM-8-5 250 to 2000 12 8 0 1 1

45

A.8 of the Appendix.

3.5 Maximum 2-satisfiability test problems

A set of (weighted) satisfiability formulas related to the (weighted) MAX—2-SAT prob-
lem, introduced earlier in Section 2.3, is described in this section. A set of 34 benchmark
(weighted) formulas is described in the following subsection. In addition to the bench-
marks, a set of 640 satisfiability formulas were randomly generated by using probabilistic
parameters over the set of all possible clauses. The MAX-2-SAT generator and the

details of the parameters of these formulas are presented in the end of this section.

3.5.1 Benchmark families

Borchers and Furman [47] proposed an exact algorithm for (weighted) MAX-SAT, and
tested this solver in a set of random (weighted) MAX-2-SAT problems. Since then,
several other researchers ([16, 17, 113, 147, 219, 220, 221, 236, 241]) used this algorithm
and test problems, for comparison with their proposed algorithmic approaches. The
source code and the MAX-2-SAT instances are publicly available on the Internet ([3]).

The list of problems contains 17 standard formulas and 17 formulas with weights
(ranging from one to ten) associated to the clauses. The number of variables in the
formulas is 50, 100 and 150. The number of clauses varies from 100 to 600, depending
on the number of variables.

The details of the non-weighted formulas can be seen in Table 3.19, and the details
of the weighted formulas can be seen in Table 3.20. The optimal MAX-SAT solution is
known for all instances. In this study, we solved the (weighted) MAX—2-SAT problem
by associating a quadratic posiform ¢ (see (2.7) in Section 2.3) to it, for which the
minimum value v (¢) is the minimum weighted set of unsatisfied clauses. The values
of the parameters d, p and p are relative to the (unique) quadratic pseudo-Boolean

polynomial 1.5 associated with the posiform ¢.

Table 3.19: MAX-2-SAT instances of Borchers and Furman [47].

46

Problem (¢) | Variables | Clauses | Density Fualse Clauses
Sub-Family Name (n) (A(9)) (d %) p% | p% (v(9))
BF-50 BF-50-100 50 100 7.59 | 49.32 | 57.45 4
BF-50-150 50 150 10.86 | 49.76 | 50.74 8
BF-50-200 50 200 14.37 | 46.56 | 43.96 16
BF-50-250 50 250 17.22 | 50.79 | 40.27 22
BF-50-300 50 300 20.90 | 48.78 | 34.67 32
BF-50-350 50 350 23.10 | 49.16 | 34.74 41
BF-50-400 50 400 25.22 | 48.50 | 37.06 45
BF-50-450 50 450 29.88 | 49.60 | 28.65 63
BF-50-500 50 500 30.69 | 49.71 | 23.80 66
BF-100 BF-100-200 100 200 3.88 | 49.84 | 61.73 5
BF-100-300 100 300 5.88 | 50.69 | 45.95 15
BF-100-400 100 400 7.47 | 50.49 | 36.97 29
BF-100-500 100 500 9.56 | 48.34 | 37.34 44
BF-100-600 100 600 10.85 | 49.11 | 31.12 65
BF-150 BF-150-300 150 300 2.67 | 50.65 | 55.70 4
BF-150-450 150 450 3.94 | 49.69 | 44.14 22
BF-150-600 150 600 5.12 | 49.94 | 41.70 38

Table 3.20: Weighted MAX—-2-SAT instances of Borchers

and Furman [47].

Problem (¢) Variables | Clauses | Weight | Density False Clauses

Sub-Family Name (n) Number | (A(¢)) | (d %) p% | p% | Weight (v(¢))
BFW-50 BFW-50-100 50 100 554 7.76 | 51.31 | 57.68 16
BFW-50-150 50 150 800 11.18 | 49.91 | 50.66 34

BFW-50-200 50 200 1103 15.18 | 51.11 | 44.03 69

BFW-50-250 50 250 1361 18.94 | 50.68 | 45.52 96

BFW-50-300 50 300 1634 21.06 | 49.98 | 36.85 132

BFW-50-350 50 350 1936 24.57 | 48.80 | 38.95 211

BFW-50-400 50 400 2204 27.51 | 53.01 | 33.96 211

BFW-50-450 50 450 2519 30.53 | 52.09 | 36.18 257

BFW-50-500 50 500 2820 33.88 | 48.74 | 29.58 318

BFW-100 BFW-100-200 100 200 1103 3.94 | 48.71 | 65.70 7
BFW-100-300 100 300 1634 592 | 51.43 | 49.81 67
BFW-100-400 100 400 2204 7.90 | 52.17 | 43.89 119
BFW-100-500 100 500 2820 9.62 | 51.63 | 37.75 241
BFW-100-600 100 600 3369 11.47 | 49.17 | 39.59 266

BFW-150 BFW-150-300 150 300 1634 2.65 | 50.80 | 57.71 24
BFW-150-450 150 450 2519 3.92 | 50.88 | 51.77 79
BFW-150-600 150 600 3369 5.23 | 50.43 | 44.44 189

47

3.5.2 Randomly generated MAX—-2-SAT formulas

To increase the number of MAX—2-SAT problems, we have randomly generated 640
satisfiability formulas. The random generator of MAX-2-SAT problems can create
formulas with distinct characteristics, such as: high or low frequency of unit clauses
(i.e., clauses with one literal); high or low density (i.e., the probability of any two literals
to belong to a quadratic clause); high or low impurity (i.e., the ratio of the number
of quadratic clauses with exactly one complemented literal and all quadratic clauses);
high or low frequency of biterms (i.e., sets of two distinct quadratic clauses involving
the same two variables).

As we have mentioned in the previous subsection, a MAX—2-SAT problem can be
solved by optimizing a quadratic posiform ¢ (see (2.7) in Section 2.3), for which the
minimum value v (¢) is the minimum (weighted) size of a set with false clauses. Com-
putationally, it is simple to obtain the unique multilinear quadratic pseudo—Boolean
function f associated to a quadratic posiform ¢. A quadratic term z;z; has a nonzero
coefficient in f if and only if there is a term in ¢ containing literals involving the same
variables x; and x;, and consequently if there is a clause with literals of these two vari-
ables. Therefore, a quadratic clause involving variables z; and z;, results in one out
of the following six cases, in a nonzero term of ¢: x;x;, T;x;, ¥;T;, T;Tj, T;xj + T;T;
and Z;x; 4+ ;T;. Unit clauses involving variable x; are result of terms involving a single
literal of this variable, i.e. z; and T;.

The input parameters of the MAX-2-SAT generator are: the number of variables n;
the cumulative distribution of the linear terms (including a probability of nonexistence)
for all variables x;,7 = 1,--- ,n; the cumulative distribution of the possible cases of
quadratic terms (including a probability of nonexistence) for all pairs of variables with
indices 1 < i < j < n, the lower and upper bounds of the clause weights, and a seed to
initiate the generator of random numbers.

Table 3.21 list the eight profiles of probability parameters that were used in this
study. For instance, profiles 2, 4 and 6 generate dense formulas, whereas 7 and 8

generate sparser formulas. The number of negated literals in a formula generated with

48

profiles 5-to-8 is approximately the same number of nonnegated literals in the same
formula. Profiles 1 and 2 generate formulas with considerably more negated literals

than nonnegated ones, whereas 3 and 4 generate formulas with the reverse role.

Table 3.21: Profiles of probabilities for a clause to belong to a (weighted) MAX-2-SAT
formula

Profile Unit clauses, 1 <i<n Quadratic clauses, 1 <i<j<n
ID Inex. | X | T; Inezx. | Tk | TiT;j | TiT; | TiT; | Tixj + TiTj | TiT; + XiT;
1 0.50 | 0.25 0.25 0.60 | 0.05 | 0.10 | 0.10 | 0.05 0.02 0.08
2 0.50 | 0.25 0.25 0.40 | 0.05 | 0.10 | 0.10 | 0.05 0.10 0.20
3 0.50 | 0.25 0.25 0.60 | 0.10 | 0.05 | 0.05 | 0.10 0.08 0.02
4 0.50 | 0.25 0.25 0.40 | 0.10 | 0.05 | 0.05 | 0.10 0.10 0.20
5 0.50 | 0.25 0.25 0.60 | 0.05 | 0.05 | 0.05 | 0.05 0.10 0.10
6 0.50 | 0.25 0.25 0.30 | 0.10 | 0.10 | 0.10 | 0.10 0.15 0.15
7 0.50 | 0.25 0.25 0.80 | 0.02 | 0.02 | 0.02 | 0.02 0.06 0.06
8 0.50 | 0.25 0.25 0.80 | 0.04 | 0.04 | 0.04 | 0.04 0.02 0.02

The list of MAX—2-SAT problems that we have randomly generated include formu-
las with 50, 100, 200 and 400 variables. Each set of formulas with the same number of
variables has five instances for each one of the eight profiles of probability distributions
shown in Table 3.21. Table 3.22 displays the different sub—families that we have ran-
domly generated, and it includes some statistics about the number of clauses generated
in the different categories.

The best known solutions found by the proposed methods are given in Table A.9 of
the Appendix. Interesting to be noted that the class of harder MAX-2-SAT instances
for our methods belong to profiles 3 and 7, followed closely by profiles 4 and 8.

Recently this generator of MAX—2-SAT formulas has been used to create “very”
hard small instances, which were considerably more difficult to be solved than other

instances, similar in size, that were created by other random generators ([148]).

Table 3.22: Randomly generated (weighted) MAX-2-SAT formulas.

49

Variables Number Clause Clauses number

Family Sub-Family (n) Problems | Weights min | avg [mazx
SAT SAT-50 50 40 1 242 557.4 892
SAT-100 100 40 1 991 2214.0 3554
SAT-200 200 40 1 3986 8808.4 | 14136
SAT-400 400 40 1 16020 | 35142.8 | 56103
WSAT-[1,10] || WSAT-50-[1,10] 50 10 1,10] 251 | 5584 | 906
WSAT-100-[1,10] 100 40 1,10] 997 | 22145 | 3530
WSAT-200-[1,10] 200 40 [1,10] 3954 8800.6 | 14115
WSAT-400-[1,10] 400 40 [1,10] 16016 | 35118.8 | 56194

WSAT-[1,100] WSAT-50-[1,100] 50 40 [1,100] 254 558.7 891
WSAT-100-[1,100] 100 40 [1,100] 988 2218.5 3531
WSAT-200-[1,100] 200 40 [1,100] 3960 8810.2 | 14085
WSAT-400-[1,100] 400 40 [1,100] 15819 | 35085.9 | 56237

WSAT-[90,100] || WSAT-50-[90,100] 50 10 [90,100] 235 | 5608 | 891
WSAT-100-[90,100] 100 40 [90,100] 990 2220.2 3572
WSAT-200-[90,100] 200 40 [90,100] 4023 8798.0 | 14117
WSAT-400-[90,100] 400 40 [90,100] 15966 | 35097.6 | 56224

50

Chapter 4

Basic Tools and Concepts

This chapter describes a set of concepts, definitions and tools related to pseudo—Boolean
optimization, which will be used throughout this dissertation.

The first section introduces the definition of strong and weak persistency following
the same approach of Boros and Hammer [54]. Persistency is a property inherent to
certain variables which can be removed from the function by fixing them at a known
value, without changing the optimal value of the resulting function.

Section 4.2 introduces the first order partial derivatives of the functions and its
inherent properties, like persistency, decomposition, local optimization and minimum
and maximum values.

Section 4.3 presents the second order derivatives of Hammer and Hansen [121] and
generalizes this concept further. This new type of derivatives is able to determine
certain persistency property for a relation between two binary variables.

Section 4.4 introduces the concept of locotope, which is a polytope characterized
by first order derivatives information. This polytope is able to enforce local optimality
conditions and is useful if used in combination with linear programming techniques to
solve QUBO.

Section 5.3 introduces the implication graph, an important concept that is able to
represent order logical relations between the binary variables. This concept is extended
in Chapter 5 to the implication network model to represent quadratic pseudo—Boolean
functions.

Section 4.6 introduces some basic concepts about posiform minimization, including
how to define a canonical representation of it, called the standard form.

The last section covers certain continuous extensions and related properties for

51

pseudo—Boolean optimization.

4.1 Persistency

The concept of persistency is needed in the discussion that follows. Before defining it,
let us start by calling a partial assignment, to a binary vector y € B® corresponding
to a subset S C V. Further, for a subset S C V of indices and a vector x € B",
2 [S] € B® denotes the subvector corresponding to indices in S, i.e. x[S] = (x;]i € S).
For a partial assignment y € B® and a vector x € B", let the switch of x by y be the
binary vector z defined by

xz; ifjé¢s

zj =

y; ifjes,

and let us denote it by z = x[S «— y].

Definition 4.1 ([54]). Given a pseudo-Boolean function f and a partial assignment

y € BY, we say that:

i) Strong persistency holds for f aty, if for all x € Argmingn (f) we have z [S] =y,
i.e. if the restriction of all minimizing points of f to S coincide with the partial

assignment y.

i1) Weak persistency holds for f at'y, if x[S < y|] € Argmingn (f), i.e. if a switch

of a minimizing point of f by the partial assignment 'y is an optimal point too.

4.2 First order partial derivatives

For all indices ¢ € V, the ith partial derivative by variable z; of a pseudo—Boolean

function f is given as

= f(xlf" 7‘Ti—1717xi+17”' 7‘TTL) _f(xlu"' ,xi_170,$i+1,"' 71'71)
(4.1)

52

and its ith residual is given as

0; (x) = f(x) — x;A; (x). (4.2)

The functions A; and ©; are themselves pseudo—Boolean functions, which depend on
all variables, but x;. From (4.2), a pseudo—Boolean function f can be expressed as
f(x) = x;A; (x) + 0; (x) for any given variable x;, i € V. The following proposition
uses this expression to prove some necessary conditions of optimality for the minimizing

points of f.

Proposition 4.1 ([121, 130]). Let f be a pseudo—Boolean function. Every minimizing

point x € Argming. (f) satisfies

(2z; — 1) A; (x) <0, (4.3)

for all indices i € V.

Proof. Let us consider an arbitrary minimizer x € Argming. (f) of function f, and
consider the partial assignments (b) € B{*} and (1 — b) € B}, where b is a binary value.
First let us remark, that either x[{i} « (b)] € Argming. (f) or x[{i} «— (1 —b)] €
Argming, (f). If only one of these two cases is verified then strong persistency holds at
the corresponding partial assignment. If both cases are verified then weak persistency

holds at these two partial assignments. Using (4.2) one easily derives

[=) - fx[{i < 1@-0)]) = A (x)—(1-0)A;(x))
= (20-1)A; (x).

Without loss of generality x; = b can be assumed. This fact implies that the assertion is
true. Let us also note that if strong persistency holds at one of the partial assignments,
then the previous relation (assuming x; = b) is strictly negative. If instead weak

persitency holds, then the previous relation is zero. O

Trivial consequences of the last proposition are the following two corollaries.

53

Corollary 4.1. Let f be a pseudo—Boolean function, and let S O Argming. (f). Then,
if for some i € V, Aj(y) >0 (< 0) for ally € S, then all minimizing points x €

Argmingn (f) must have z; =0 (=1).

Corollary 4.2. Let f be a pseudo—Boolean function, and let S C B™ such that Argming (f)
N Argmingn (f) # 0. Then, if for some i € V, A;(y) >0 (< 0) for ally € S, then

there exists at least a minimizing point x € Argming. (f) with z; =0 (= 1).

The usefulness of the previous corollaries depends on the set S. Typically S = B™
is used, but the finding of more persistencies usually depends on the size of S being as

small as possible.

Specializing the notations given earlier (4.1) to the general case, the ith partial

derivative (i € V) of a quadratic pseudo—Boolean function is given by

i—1 n
A; (a;l, cee ,:En) =c¢; + Z CijT; + Z CijTj. (4.4)
j=1 j=it+1

The derivative functions A; given in (4.4) are linear pseudo—Boolean functions,

whose minimum and maximum values are denoted as

def i—1 n
Li = v (Al) =c¢ + Z Cj; + Z Cij, and
j=1 j=it1
ci; <0 cii<0
def = n (45)
Ui = T(Az) =c¢; + Z Cjz'-l- Z Cij,
j=1 j=it1
Cjz‘>0 C¢j>0

for all i € V.

It is simple to note that

(b b) - gt

for all i € V.

54

4.3 Second order derivatives

Similarly to the single variable case (4.2), one can express a quadratic pseudo—Boolean
function as

f(x) =il (x) + 245 (x) — zizjeij + @ij (%), (4.6)

for all pairs of variables (i, j) (1 < i < j < n), where y;; is the residual part of f not
containing terms involving both the i*" and j*® variables.

Let b € B, then the following relations

f(x[{i, 3} < (b,0)]) bA; (x [{7} — (B)]) + b4 (x[{i} — (B)]) + 45 (x)
fEHg = 0,0)]) = bA(x[{7} « (0)]) +bA; (x[{i} — (D)]) — beij + wij (x)

can easily be derived from (4.6), for all pairs of indices of variables (7, j) (1 < i < j < n).
The following theorem provides some necessary conditions based on quadratic rela-

tions between variables, for quadratic pseudo—Boolean minimization problems.

Theorem 4.1. Let f be a quadratic pseudo—Boolean function represented as expression

(1.5). Foralli andj (1<i<j<n):

i) If Aj (x)—cijz; <0 or A (x)—cijay <0 or Ay (x)+A; (x)+¢i5 (1 — (2 +x5)) <0

holds for all x € B", then T;T; = 0 for all x* € Argming, (f);

ii) If Aj(x) + ;T < 0 or Ay (x) — cijz; >0 or Ay (x) — Ay (x) + (x5 —) ¢ij >0

holds for all x € B", then 27T% =0 for all x* € Argming. (f);

iii} If Aj (X) — CijT; > 0 or A; (X) + Cijfj <0 orA; (X) — Aj (X) + (l‘l — :Ej) Cij < 0

holds for all x € B", then T;x% =0 for all x* € Argming. (f);

i) If Aj (x)4cijTi > 0 or Ay (x)+ci5T; > 0 or Ay (x)+A; (x)+ci5 (1 — (x5 +25)) >0

holds for all x € B", then x7x% =0 for all x* € Argming, (f)-

Proof. We shall prove the third case of (i) by using a contradiction. The other cases can
be proved in a similar way. Suppose that there is a point x € Argming. (f) satisfying

Z;T; = 1, ie. x; = x; = 0, and that A; (x) + Aj (x) + ¢ (1 — (2 + 25)) < 0. Since

55

x is a minimizer of f with z; = 0 and z; = 0, then f(x) = f(x[{i,j} < (0,0)]) <
(x[{#,7} < (1,1)]). Using the relations (4.7), a contradiction to our assumption is

obtained as follows:

fx{i g}y < (0,0)]) < f (x[{i, 5} — (1,1)])
= f(x[{ii} < QD) = f (x[{i,j} < (0,0)]) =0
= A (x[{7} = MWD +4; (x[{i} = (D)) —eij =0

= Ay (x) + A (x) + ¢y (1= (2 +25)) > 0.

O

Hammer and Hansen [121] called to the linear function A; (x) —A; (x)+(x; — ;) ¢ij
the (4, j)th second order derivative of f and denote it by A;;. Theorem 4.1 shows that
the linear function A; (x) + A; (x) + ¢;; (1 — (2; + ;) has a similarly important role

as Ayj; it will be called (i, j)th second order co-derivative and will be denoted by V;.

Example 4.1. Consider the quadratic pseudo—Boolean function fg. Since

As ($1,l’2,1’3,1’4,1’5,1’6) = 142z —x9 — 223 + 224 + 274

Ag (wl,xg,xg,u,xg,,x(;) = —1—x14+ 20+ 3 — T4 + 225,
then

V56 ($1,l’2,1’3,1’4,1’5,1’6) = 2—|—l‘1 —£E3+JE4.

From Theorem 4.1.(iv), because V¢ (x) > 0 for all x € B"™, then relation x5z = 0

follows for all minimizers of fg.

The other conclusions of Theorem 4.1, which are not related to the (i, j)th second
order derivatives, can be derived from a two—stage process involving an analysis of the
first derivatives. In the first stage a variable i is assumed to have a binary value wv.
In practice, this step results in a new function f’ with one less variable, so that in
the second stage a first derivative analysis can be made in f’. Let us assume that

variable j in this second stage is strongly persistent with value w. Then, a quadratic

56

relation satisfied by the minimizers of f is of the form z; = v = x; = v. Let us remark
the implications in Theorem 4.1 involving A;; and V;; cannot be obtained simply by
looking at first derivative conclusions, as is done in the two—stage process explained

before.
Trivial consequence of Theorem 4.1 is the following corollary presenting weaker

conditions for the existence of persistencies.

Corollary 4.3. Let f be a quadratic pseudo—Boolean function represented as expression

(1.5). Foralli andj (1<i<j<n):

i) If Aj (x)—cija; <0 or A (x)—cijzy <0 or Ay (x)+A; (x)+¢j (1 — (z; +25)) <0
holds for all x € B", then there exists a x* € Argming. (f) such that T;z; = 0

also holds;

i) If Aj (x) + ;T <0 or Ay (x) —cijx; =0 or Aj(x) — A (x) + (x; —)¢5 =0
holds for all x € B™, then there exists a x* € Argmingn (f) such that 7Ty =0

also holds;

iii} If Aj (X) — Cij %4 >0 or A (X) + Ci;T; <0 or A (X) — Aj (X) + (l‘l — :Ej) Cij <0
holds for all x € B", then there exists a x* € Argming. (f) such that 7z = 0

also holds;

i) If Aj (x)+cijTi = 0 or Ay (x)+¢;;T; = 0 or A; (x)+4A; (x)+¢i5 (1 — (23 +25)) =0
holds for all x € B", then there exists a x* € Argming. (f) such that z7z; = 0

also holds.

Example 4.2. Consider the quadratic pseudo—Boolean function fg. If x4 = 0 holds in

a minimizer of fg, then because

Ay (21, m9,23,0,25,26) = 2 — 29 + 223 + 205 — x6 = 0, for all x € BS,

the quadratic relation x1T4 = 0 must hold in at least one minimizer of fg.

o7

4.4 Locotope

Binary vectors, no single component of which can be changed so as to decrease the
value of a pseudo—Boolean function f, are called local minima of f. It should be
noted that the number of local minima can be exponentially large ([191]) and that the
computational complexity of finding a local minimum of a quadratic pseudo—Boolean

function is open (see e.g. [194]).

Proposition 4.2. Given a quadratic pseudo—Boolean function f, a binary vector x €

B"™ is a local minimum of f if and only if

(233‘2‘ - 1) Al (X) < 0,

for all indices i € V.

Proof. Expressing f as (4.2) and noticing that neither A; nor ©; depend on z;, the

statement follows readily. O

Together, Propositions 4.1 and 4.2 show that a minimizer x € Argming, (f) is also
a local minimum of f. But, the reverse is not true in general. Let us denote by M the

set of local minima of f.

Proposition 4.3. For every index ¢, i = 1,--- ,n, let U; and L; be respectively the
minimum and the maximum values of the first derivative A; function, as were defined

in (4.5). Then, the set M of local minima of a pseudo—Boolean function f is given by

M:{XEBniLixiSAi(X)SUiTi,i:1,"' ,n}.

Proof. If z; = 0 then 0 < A; (x) < U; and hence (2x; — 1) A; (x) < 0 holds. If z; = 1
then L; < A; (x) < 0 and (2z; — 1) A; (x) < 0 also holds. O

The usefullness of the last proposition comes from the fact that it characterizes all
local minima of a pseudo—Boolean function by using 2n linear inequalities. It is also

simple to verify that whenever U; < 0 (L; > 0), then z; must be one (zero) in every

58

minimizing point of f. Further, if U; < 0 (L; > 0), then there is a minimizing point of
f for which z; is one (zero).
We denote by L (2 M) the polytope defined by relaxing the integrality property of

the components of vectors in M, i.e.

LY (x cU": Lim; <Ay (x) <UTiyi=1,--- ,n}.
We shall name this very special polytope as the standard locotope. By employing
linear programming techniques, it is possible to improve the lower and upper bounds
of the first derivatives, while maintaining the property that it also contains the set of

local minima M. Let 1 and u be real n-vectors. Then

L(1u) ¥ xecU: iz <A (x) wgii=1,-- ,n}
satisfies L C L (I,u) C M.

Let us remark that getting “better” lower and upper bounds for the first derivative
functions, may lead to the finding of new logical relations, which would not be found if
these bounds were not improved.

Next, an algorithm that improves the minimum and maximum values of the first
derivative functions over the locotope, is given. We named it as the Locotope Tightening
Algorithm (or LTA in short). The LTA description is given in Figure 4.1. In this

algorithm, the following linear program is called every time an individual bound is

improved.
opt Ay (x)
subject to
x €L (l,u) (LP(opt, k,1,u))
x; =0, ie{jeV];>0}u{jeV]|;=0u;>0}
x; =1, ice{jeV]u; <0}

The objective function of this problem is the first derivative function Ay associated

59

to variable x. To get the appropriate bound, this function is either maximized to get
the upper bound (i.e. opt = mazx), or minimized to get the lower bound (i.e opt = min.)
The decision space is the intersection of the polytope L (1,u) with the current bounds 1
and u, and a set of equations (possibly empty) for each variable that has a value fixed

to 0 or 1, according to the current bounds 1 and u.

LOCOTOPE TIGHTENING ALGORITHM(S)

Input: A quadratic pseudo—Boolean function f, given by (1.5), where
all coefficients are integers.

Initialization: Let 1< 1 and u < u, where the vectors 1 and u
are given by the “standard” bounds (4.1).

Step 1: If stopping criteria S is satisfied then STOP.

Step 2: For every variable k not yet fixed (i.e. k € {i € V|l;u; <0}):
(i) Let x* be an optimal solution of LP(min, k,1, u);
(ii) Let [[Ak (X*)—‘

Step 3: For every variable k not yet fixed (i.e. k € {i € V|l;u; <0}):
(i) Let x* be an optimal solution of LP(maz, k,1,u);

(ii) Let up «— | Ak (x¥)].
Step 4: Go to step 1.

Output: Vectors 1 and u.

Figure 4.1: Locotope Tightening Algorithm (LTA).

Note that due to the way LP(min, k,1,u) is formulated, the locotope obtained in
this way may exclude some optimal solutions of the original function, but at least one
minimizer is guaranteed to belonging to it.

As soon as a linear program is solved, the corresponding bound is compared with
the old value, and updated if it is better. This last step also assumes that a quadratic
pseudo—Boolean function has integer coefficients, implying that the bounds must be
integral as well. This is not a restriction in practice since a QUBO problem can be
brought into this condition by scaling the function by a enough large factor.

The sequence of linear programs to be solved may be different than the one presented

60

in Figure 4.1. Let us note that the improvement in the LTA is first given to the
lower bounds, and only after to the upper bounds. However, an alternating sequence
between maximization and minimization programs is also possible. Let us also note
that consecutive programs have constraints almost identical, typically only different in
one coefficient corresponding to the most recent improvement found for a bound. This
characteristic may be exploited to obtain a more efficient algorithm. For instance, if a
simplex method is adopted to solve the linear program, then a basic feasible solution
in one improvement step may be used in the following simplex iteration. Another
possibility is to keep the constraints unchanged (with the new bounds found) until a
persistency is found, or until a prescribed number of simplex calls is made.

The stopping criterion S in the LTA routine, can be a condition to test if no improve-
ment is possible for each bound. To satisfy this condition, the number of times that
steps 2 and 3 are executed may be very large. Thus, a stopping criterion based on the
maximum number of calls to steps 2 and 3 can be used in addition to the improvement
condition. This maximum number of calls may also depend on the fact that a variable

was fixed to 1 or 0 in the last execution of step 2 or step 3.

Example 4.3. Consider the quadratic pseudo—Boolean function fig. A call to the LTA
routine using fig as input, produced no persistencies. All possible improvements of the
bounds were found in one execution of steps 2 and 3. The “standard bounds” of the

first derivatives of f1o are

1 = (-5, -3, -5 -8, -5 -6, —5 -5 —8, —5) and
w= (7, 8 8 6 10, 6 6 6, 6 12),

and the improved bounds returned by the output of LTA are

' = (-4, -2, -5, -7, -3, —6, —4, —4, —5 —3) and
W = (7, 6, 6 6 8 4, 5 4, 5 8).

61

4.5 Implication graph

Given a set of logical relations, it is desirable to derive all logical consequences of it.
In particular, we are interested in deriving logical conclusions from a set of quadratic
relations between two binary (Boolean) variables. In the present study, the relevance
of analyzing such a set of quadratic relations is that they may imply persistent values
for the individual variables, or to other logical quadratic relations. In practice, if all
minimizers of function f satisfy the original set of relations, then they must also satisfy
the implied conditions.

We represent a quadratic relation between two literals u,v € L by elementary
Boolean equations of the type uv = 0, which is an implication meaning that both
literals must have complemented values (e.g., if u = 1 then v = 0) if they are distinct

(quadratic), and they must have value zero if u and v refer to the same literal (linear).

Example 4.4. Knowing that the quadratic relations x775 = 0, 2575 = 0 and x377 =0
hold for all minimizers x* € Argmin (f), then x* must satisfy the conditions x7 =
x5 = x5. From these equality relations between variables, a new (quadratic) func-
tion f': BYMo#122t R with two less variables, can easily be obtained from f, such

that ' (3,24, ,xn) = f (v3,23,23, 24+ ,Ty), thus implying that a weak persistency

holds for f aty, where y € Argmingv\is; «oy (f').

A quadratic Boolean equation is a system of elementary (linear and quadratic) equa-
tions. The name “equation” for this system is related to the fact that it can be repre-
sented as the disjunction (operator V, where vV v = maz (u,v)) of a subset Q C L x L

of pairs of literals and a subset £ C L of literals, i.e.

\/u\/ \/ uv = 0. (4.8)

ueL u,WEQ

Definition 4.2. A Boolean equation is consistent (or satisfiable) if and only if there
is a (partial) assignment y € BS, S C V' (or solution) that satisfies all elementary

equations on it.

The consistency of a quadratic Boolean equation, and a solution to it (if any), can be

62

carried out by using polynomial time algorithms (see e.g. [133]). Notice that the total
number of solutions of a consistent quadratic Boolean equation may be exponentially
large. Therefore, in some situations it is useful to produce a parametric solution of it
(see e.g. [90]).

In this study we give preference to the Strong Components Algorithm (or SCA
in short) of Aspvall, Plass and Tarjan [22]. The SCA algorithm exploits a digraph
model called the implication graph. In the exposition that follows, a quadratic Boolean
equation ® = 0 expressed as (4.8) is considered, where without loss of generality, it can
be assumed that £ = {).

The implication graph associated with @ is the digraph D = (L, A), where

A ={(u,7), (@,v) |(u,v) € Q}.

The digraph D is isomorphic to the digraph D obtained from D by reversing the
orientation of every arc and complementing every literal.

The SCA is based on the following key result.

Proposition 4.4 ([22]). The equation ® = 0 is consistent if and only if in the impli-
cation graph D no literal uw € L is in the same strong component as its complement

u.

The algorithm works on D and finds the strong components of d in reverse topologi-
cal order. The isomorphism between D and D implies that for every strong component
C of D there exists a “mirror” component C of D, called the dual of C, induced by
the complements of the literals in C'. Hence, Proposition 4.4 implies that & = 0 is
satisfiable if and only if C' # C for all C of D.

The implication nature of this graph comes from the fact that for any two literals u
and v, uv = 0 if and only if u < T (or equivalently v < @.) A vertex v € L is said to be
a predecessor (sucessor) of w € L if there is a path in D from v (u) to u (v). Having

this in mind, the following facts are immediate.

Lemma 4.1. Let D = (L, A) be the implication graph of a quadratic Boolean equation

63

® =0. Then,

i) If for all literals uw € L, u is not both a predecessor and a sucessor of its comple-

ment w, then ® = 0 is consistent;
i1) If ® = 0 is consistent, and u € L is a predecessor of its complement @, then u = 0;

i) If ® = 0 is consistent, and there is a strong component C' € D involving more
than one literal, then all literals uw € C' must have the same value b, i.e. u=v=1»

for all u,v € C;

i) If ® = 0 is consistent, and there is an arc going from the strong component C,,

to the strong component C,, then v =0 for all u € Cy and v € Cy;

v) If ® = 0 is consistent in a solution x with a literal w € L having value one

(u(x) = 1), then all the successors v of u must also have value one (v(x) =1).

vi) If ® = 0 is consistent in a solution x with a literal u € L having value zero

(u(x) = 0), then all the predecessors v of u must also have value zero (v(x) =0).

Lemma 4.1 implies that ® = 0 is inconsistent if and only if there is a cycle in D
that can be used to define persistencies on single variables, either by the existence of
strong components with several literals, or simply because there is a path in D between
a literal u and its complement w.

We say that a strong component C in a digraph D is condensed if all the vertices in C'
are lumped together in a new vertex uc, such that every outgoing arc (u,v),u € C,v €
L\ C is removed and replaced by an arc (uc,v), and every incoming arc (v,u),u €
C,v € L'\ C is removed and replaced by an arc (v,uc). If |C| > 1, then this basic
operation allows us to get an implication graph with fewer vertices, whose consistency
and solutions (if any) also satisfy the initial equation ¢ = 0.

Let us call condensation to the digraph D* obtained from digraph D by condensing
all of its strong components. Notice that D* is an acyclic digraph, and consequently
it contains a vertex with no incoming arcs, and it contains a vertex with no outgoing

arcs.

64

We say that an implication graph D is in normal form if it is its condensation (i.e.
if D = D*), and if there is no path between a literal u € L and its complement u. Let
us also denote by ¢p to the left hand side of the quadratic Boolean equation associated

to the implication graph D.

4.6 Posiform minimization

Posiforms have interesting structural properties that can be explored towards finding
logical relations between the literals, which imply a set of simple conditions that a
minimizer of the associated function has to satisfy.

The most trivial result on posiforms is perhaps the fact that the minimum of a
posiform ¢ is bounded from below by its constant term C (¢) (or ag), i.e. v (fy) = C (¢).
In fact, every pseudo—Boolean function f : B — R can be represented by a posiform ¢
for which C (¢) = Qzﬁqf(z, (x) (see e.g. [54]).

Another simple result is related to the concept of pure literals (sometimes also called
monotone literals). A literal u is called pure in the posiform ¢, if it appears on it only

in the positive form, or only in the complemented form. Pure literals define weak

persistencies as follows.

Lemma 4.2. If u is a pure literal in the posiform ¢, then there is a minimizer of fg

satisfying u = 0.

Suppose that an upper bound z4 to the minimum of a posiform ¢ is known. Then

the following results follow trivially.

Lemma 4.3. Let ¢ be a posiform represented as (1.2). If v(fy) < 24 < C(¢) + ar
for a given non—empty subset of literals T C L, then the condition [],cpu = 0 must be

satisfied by all minima of fy.

Proof. Let x* be a minimizer of fy. Since z4 > v (fy), then z4 > fy (x*), or

z¢>ZaSHu*:>z¢>C’(¢)+aTHu*.

SCL u€esS ueT

65

To avoid a contradiction with the assumption z4 < C' (¢) + a7, the minimizer indeed

has to satisfy [, u* = 0. O

Example 4.5. A quadratic posiform that represents the quadratic pseudo—Boolean func-

tion fg is

Ofs = —O+Te+ 2w1x3 + 22174 + 27175 + T122 + T176
+Zox3 + Taxe + Taxq + ToTs
+x316 + 2T3T4 + 2T 325
+21475 + T4Te

+2T5T¢.

From this posiform, one gets v (fg) > —5. Since f¢(1,0,0,1,0,1) = —4, then we can set
24 = —4 and thus by Lemma 4.3 we can conclude that the following quadratic Boolean

equation must be satisfied by any minimizer of fg:

123V T1T4 V T1T5 V T3T4 V T325 V 2425 V TsT6 = 0.

Lemma 4.4. Let ¢ be a quadratic posiform represented as (1.6). If v (fy) < zp <
C (¢) + min (ayy, agz) for any two distinct literals u,v € L, then the condition u =T

must be satisfied by all minima of fy.

Proof. By Lemma 4.3 uv = 0ATT = 0, or similarly uv Va7 = 0. U

4.6.1 Standard quadratic posiforms

Through simple algebraic manipulations, any given quadratic posiform can be trans-
formed to an equivalent quadratic posiform in standard form, whose nonzero terms

satisfy some conditions as follows.

Definition 4.3. A quadratic posiform ¢ of form (1.6) is in standard form if and only

if Qupagy = 0, Gyupays = 0 and ayag = 0 for all literals u,v € L.

Next, we show that any posiform ¢ € Po (f) can be efficiently transformed into a

standard posiform ¢’ € Py (f). In Figure 4.2 the Standard Posiform Algorithm (or SPA

66

in short) to obtain a standard posiform is described. The SPA can be implemented to
run in polynomial time in the size of ¢, and produces a posiform ¢’ in the same variables,
the size of which is not larger than size (¢).

In the sequel, we shall assume that every posiform associated to a network model
is in standard form. It should be remarked that it is trivial to provide a standard
posiform corresponding to any quadratic pseudo—Boolean function expressed as the
multilinear polynomial (1.1). Furthermore, several combinatorial problems (e.g., MAX—
CUT, MAX—2-SAT) have a natural representation has an optimization problem of a

standard posiform.

4.7 Rounding procedures and derandomization

The multi-linear expression (1.1) of a pseudo—Boolean function f : B" +— R can be
used as well to characterize a function g : D" — R, whose domain D is not restricted to
the case where all variables are binary (i.e. where D = B). Obviously if B is a subset of
D then the minimum of function f can not be smaller than that of g in the respective

domalins.

Lemma 4.5. Let f : B" — R and g : D" — R be two functions. If B C D, then

v(f) > min{g(x)|x € D}.

In particular, we shall see later on this section that if D = U then the previous
result is gap free. In order to make it clear that two functions (maybe having different
domains) have a common expression (1.1) we shall represent it with the same name,

providing when necessary the domain to make this fact clear.

Lemma 4.6. Let f be a pseudo—Boolean function given by (1.1), and let v € U™. Then,

f(rla"' 7Ti—17ri7ri+17"' 7Tn) = T f(rla"' 7Ti—17lari+l7”’ 7Tn)

+(1_TZ) f(rla"' 7Ti—17ouri+l7”’ 7TTL);

for everyi=1,--- ,n.

STANDARD POSIFORM ALGORITHM

Input: A quadratic posiform ¢ € Py (f), given by (1.6).
Initialization:

Let af <« ao.
Let a, <« a, for all literals u € L.
Let al, <« ay for all literals u,v € L.

Step 1: For any two literals u,v € L,
(i) If al,,al, > 0, then let

uv uv

/ / /

Ay < Mmar (auv — Qs 0) ’
/ !/ /

al, «— mazx(ay, — al,,0) and
/ / : / /

Ay Gy tmun (auvv aﬂv) :

(i) If @/, al; > 0, then let

uv-'uv

/

/ /
Qyp < Mazr (auv = Gy 0) ’
alz «— mazx(az—a,,0) and
/ / : / /
Qy, Gy +Hman (auvv aui) :

Step 2: For all literals v € L, let

dy o ma(d, - d0)
al- — max (a; — al,,0) and

ay < ay+min(a,,ay).

~

~

Output: A standard quadratic posiform ¢’ € Py (f), given by

¢ = aj + Z a,u~+ Z Uy UV

u€L u,veEL

Figure 4.2: Standard posiform algorithm.

67

68

Proof. From (4.2),
f(r)=rlA;(r)+06;(r). (4.9)

Substituting

Ai (I') :f(r17”' 7Ti—1717ri+17"' 7TTL) _f(rlv'“ ,7"@'_1,0,7"7;4_1,"' ,Tn) and

@Z(I.) :f(rlf" ,Ti_l,O,T‘i+1,“‘ 7TTL)
in (4.9), then the claimed result follows immediately. O

Given r € U and z € B, then

T, ifx=1,

1—r, ifz=0.

Assuming that 0° = 1, then the above expression can be determined in the standard

algebraic way. This assumption is used in the following results.

Theorem 4.2. Let f be a pseudo—Boolean function given by (1.1), and let r € U™.
Then,

f(rlv"' 7TTL) = Z < rixi (1_rl)(1_xl)> f(xlv"' 7xn)'
=1

xeBn

Proof. Let us prove this fact by induction on the number of variables k. If kK = 1 the
claimed result follows immediately by Lemma 4.6. Let us now assume that the claim

is valid for 1 < k < n, i.e.

k

f(’ﬁ,"' yThy Thk+1, " 7TTL) = Z (Hrfl (1 _Ti)(l_mi)> f($17"' y Lk Th41," " 77'n)'
xeBF \i=1

From Lemma 4.6

f(xla"' s Ly Tht15 " " - 7Tn) = Tk4+1 f(xla"' ,.Z'k,l,Tk+2,"' 7Tn)

+(1_Tk+1) f(xla"' ,33'k,0,7"k+2,"' 7rn)-

69

If we substitute this expression above then we get

k+1
f(rl"" y Ty Th+1, " ,T‘n) = Z <H Tfi (1 _ri)(l_xi)) f(xlv'“ s L41, Tk+2, " ,T‘n)-

x€Bk+1 \i=1
and therefore the claim is also valid for k& 4+ 1 variables. O

Let us note that

Z <ﬁ it (1 - Ti)(l_xi)) =1,

xeB” \i=1
for any r € U”, and that 0 < [, 7" (1 — r:)17%) < 1 for every r € U" and x € B™.

This means that f(r) can be seen as a convex combination of the complete set of

n—binary vectors, whose weights are defined by r.

Proposition 4.5 ([54]). Let f be a pseudo—Boolean function given by (1.1), and let

r € U". There are binary vectors x,y € B™ for which

Proof. Existence of vectors x and y is an immediate consequence of Theorem 4.2.
Consider any x* € Argming, (f). Then,

Pl = £ (T a=m") far o)

xeB” \i=1

> 2 (e a-mt) rec)

3

So, x = x* holds for the claimed inequality. Obviously, any y € Argmaxpg. (f) will

satisfy the other inequality as well. O

Immediate consequences of the above proposition are the following two facts:

Corollary 4.4.

min f (r) = min f (x)

and

maxf (r) = maxf (x).

70

Let us recall next from [54, 64, 212] a few properties of continuous extensions of

pseudo—Boolean functions.

Proposition 4.6. Let us consider an arbitrary real vector p € U™, and assume that
the variables x;, i = 1,--- ,n are pairwise independent random variables for which

pi =Problz; =1 =1—Prob[z; =0] fori=1,--- ,n. Then,

Exp[f (x)] = f(p)-

Proof. By definition we have Exp [z;] = p; for ¢ = 1,--- ,n, and Exp [Hjes xj] =
Hje gp; for S C V by the pairwise independence assumption of z; and z; for every
1 # j. In view of the additivity of expectation, we obtain the stated equality by using
(1.5) as follows:

Exp[f(x)] = Exp [> oes [] xj]

SCv jes

= >, ¢s |1 Explz]

SCV jes

= > cs [l pj

SCV jes

=f(p)-

4.8 Best linear Euclidean approximations

Any linear pseudo—Boolean function in n variables can be optimized efficiently; if the
coefficient associated to a variable is positive then the variable has a persistent value
0, if the coefficient is negative then the corresponding variable has a persistent value 1,
and if the coefficient is zero then the optimal value of the variable can be either 0 or
1. It is natural therefore to find a “best” linear approximation of a nonlinear pseudo—
Boolean function, and use it to get a quick upper bound to the nonlinear minimization
problem.

Hammer and Holzman [125] studied the Lo—approximation of pseudo—Boolean func-
tions by linear functions, enhancing some important properties preserved in the approx-

imation, and its close relationship with the well know power indices of Banzhaf ([149])

71

and Shapley ([218]) in the presence of a simple game.
In this section, the results of [125] are extended by restricting the linear Euclidean
approximation to the homogeneous case. This leads to an explicit formula for computing

the approximation directly from (1.1).

Definition 4.4. Let F be a subfamily of pseudo—Boolean functions, and let f : B" — R
be a pseudo—Boolean function. The best Euclidean (or Lo—norm) approximation of f in

F is the function g € F that minimizes), cpn (9(x) — f (x))?. We write g = Ar (f).

In what follows, pseudo—Boolean functions are considered to be represented by their
table form, or equivalently, as vectors in R?". The vector space associated to a subfamily

F of pseudo—Boolean Functions is defined as

de
wWr e {(g:B"—R)|ge F}.

Lemma 4.7. If Wr is a linear subspace, then the best Lo—approximation in F exists
and is unique.

Proof. Since W is a linear subspace, then the existence and uniqueness of the best
Lo—approximation in F follow from the theory of orthogonal projections in Fuclidean

spaces. O

Lemma 4.8. If Wx is a linear subspace, then Ar is a linear operator, i.e.

Aj: (Z a,f,) = Z OéiA]-‘ (fz) B (4.10)
i=1 =1

for all pseudo—Boolean functions f;,i = 1,--- ,m, and all real numbers a;;,1 =1,--- ,m.

Proof. By Lemma 4.7, A is the orthogonal projection onto Wr. It follows that Ar is a

linear operator. O

The family of linear pseudo—Boolean functions is denoted as

LY 0B - R)|deg (1) <1}

72

and the family of homogeneous linear pseudo—Boolean functions is denoted as

HY (el =0}.

W, and Wy are linear subspaces in R, Indeed, a linear combination of (homogeneous)

linear functions, it is also a (homogeneous) linear function.

Proposition 4.7 ([125]). The best linear approxzimation of a monomial [[;cqx; is

_ ISI—-1 1
AE <HI’Z> = — 2\S| + 2|S‘_1 Zl’j.
JES

1€S

Proposition 4.8 ([125]). The best linear approzimation of a pseudo—Boolean function

f given as in (1.1) is

(15| —1)
ae) = - R SRS Y o) s

jev \SCv:jes
_ cs (1S —=1) 1
= R (3 3) o

Proof. Use Proposition 4.7, Lemma 4.8, and apply the linearity property (4.10) to

expression (1.1). O

Next, we show some lemmas that later on this section will be used to define the
counterparts of Propositions 4.7 and 4.8 to the homogeneous case.
Let S C V. The best homogeneous linear ly-approximation of [;. 4 #; is determined

by solving the following nonlinear optimization problem:

min h(ay, - ,an Z (Za,x, Ha:,) (4.11)

R
(@1, ,an)€ xcBn \i= i€S

Lemma 4.9. h is a strictly convex function.

73

Proof. The first partial derivatives of h are defined as
Oh(ay,--- ,ap) -
— o, 2w\ zens)
xeB” i=1 €S

forj=1,---,n.

The second order partial derivatives of h are defined as

02h(a1, " ,an .

753;6%“) — on for j=1,---,nand

9h(ar, an _ . .
fgggl'aaka) = 2" ! for]7k:17 7n7]7£k-

To show that h is a strictly convex function, we next show that the corresponding

Hessian
[2 1 11]
1 2 11
V2h(a1,--- ,ap) =271 ,
11 2 1
[11 1 2]
is positive definite.
The eigenvalues of V2h (a1, -- ,a,) are positive and given by
A= 2n1 j=1,---,n—1

(4.12)
Ap = (n+1)27 L

This result can be found by computing the eigenvalues of the matrix of dimension

n x n with all elements equal to 1 (we call it B). Clearly, the determinant of B is 0,
n — 1 of the B eigenvalues are zero and the remaining eigenvalue is n (because the sum
of the eigenvalues is equal to the sum of the elements of the main diagonal). Since the
eigenvalues of B+ 1 can be obtained by the sum of the eigenvalues of B plus 1 (i.e. the
eigenvalues of I), then (4.12) follows. O

h(ai, -+ ,a,) > 0 and Lemma 4.9 imply that the solution of (4.11) exists, is unique

74

and it is determined by the first order stationary conditions:

%(mé%(MZQZl’j <;aixi—Hazi>:0 for all jZl,---,TL. (4.13)

xeBn €S

Note that the existence and uniqueness properties of this solution, can also be derived

from Lemma 4.7.

Lemma 4.10. The unique solution of (4.13) is given by

n—|S[+2

STST—17 s] S S
aj =4 2 1\(37+11) (4.14)
—m,] € V\S
Proof. Since
2l Ay sl ¢S
2 Y wixy = and 2) xz; [[x;= #
xEB” 2n, 1= x€B® ie€S 2"—\S|+17 jes

then (4.13) can be formulated in matrix terms as

n

2
n—1 _
2 (B—I-I)a—w(e—FXS),

where B is defined as before, e = (1,--- ,1) and xg is the characteristic vector repre-

senting S in {1,--- ,n}. So,

(B+Da = —o(e+xs)
—a = 2|sl\—1 B+I)"!(e+ xs)
e s 2|51\—1 <I_n—1+1B> (e+xs)
g - o +2lg|1_1—(]3)+(;+ Xs)
B 1

75

Theorem 4.3. The best homogeneous linear approzimation of a monomial [[;cqx; is

Ay (Hx>zm (n—181+2)> ;= (IS|-1) >

j€S JEVNS

Proof. Since the unique minimizer of problem (4.11) is determined by (4.10), the result

follows from Lemma 4.10. O

There is a notorious difference in the Lo—approximation of a monomial Hje gTj
between the general and the homogeneous cases, and it is the fact that the coefficient
of a variable not involved in the monomial is always zero for the first case and is possibly

nonzero, i.e.

-2, S=0

0, S| =1 (4.15)
1-|S

W‘(nlﬂ) 15| > 1,

for the homogeneous case. Furthermore, the coefficient does not depend on n for the
general case, but the coefficients (4.15) of the homogeneous case depend on the dimen-

sion of the function to be approximated.

Theorem 4.4. The best homogeneous linear approximation of a pseudo—Boolean func-

tion f given as in (1.1) is

cs (n—|S]+2) cs (|S]—1)
IS > Ly slsen]),
[S|-1 |S]—1 J
jev \scv:jes 2 (n+1) ng:jeV\S2 (n+1)
B cs 1 cs (1S|—1)
=20 X gsa- D e | K
jev \scvijes 2151 n+1sgv 215
1 1 1 Sl—1
= X (o) e e
JEV SCV

Proof. Use Theorem 4.3, Lemma 4.8, and apply the linearity property (4.10) to expres-
sion (1.1). O

A consequence of the last result is the fact that the best homogeneous linear ap-

proximation has coefficients equal to the corresponding non—homogeneous case, minus

76

a constant

1 Z CS(|S|_1).

S[—1
n+1sgv 21|

Because of this fact, the following relationship between the two linear operators Ay

and A, holds for any pseudo—Boolean function f.
Corollary 4.5.

A () =0 - A () X S gy

sCvV
The best homogeneous linear Lo—approximation is exemplified next.

Example 4.6. Let g : B° — R be defined as
g (1,29, 23,4, 25) = 8 — w1 + bwg — T125 + dx3T5 — 6T2x4X5 + 221 T2x3T 4.
This example appears in [125] and the corresponding best linear approximation is
1
Ar(g) = — — 3 (—10%1 + 30x9 + 18z3 — 1024 + Oz5) .

Using (4.10), we get a term-by—term homogeneous linear approximation of g as

follows:
— 1 1 1 1 1
1 by Ay (1) = 371+ 322+ 323+ 374+ 325,
T by Ay (1) = x4,
L2 by AH (5172) = X9,
_ 5 1 1 1 5
T by At (2125) = %1 - 1% 3%~ ¥t g,
_ 1 1 5 1 5
T3Ls by A (w325) = 1% P2t P o Pt opTs,
b A = L Lo, L 1 1 d
ToT4Ts y H (xowys) = 75T1 + gT2 — 13%3 + gT4 + §T5 an
b A Lol 1o 1o 1
T1X2T37T4 Y w (T1227324) = 1571 + 1572 + 1573 + 1gT4 — 1675

As expected, the linear part of g is its own approximation. Putting things together

7

and using linearity, we get the best homogeneous Ly—norm linear approximation of g:

11 1 11
An(g) = 8 <§w1 + gt gay gt §x5> — 71 + 522

5 1 1 L5
| =21 — =22 — —23— —14+ —x
27T 127 12 12t T et

T L5 LB
R T R TR T T T "

G 1, .1 Lot
R T T T T g™

YA D S 1
6 T16 167 T 167 T 1670

1
o1 (37z1 4+ 157x9 + 12123 + 3724 + 6725) .
The following example will provide explicit formulas of approximations of polyno-

mial expressions involving complemented variables, i.e. literals.

Example 4.7. Let PPN CV, PNN =0, and g : B" — R be defined as

g(x)= H T H zj. (4.16)

icP jeEN
The approximation coefficient I'1 corresponding to a variable x; not appearing in
product (4.16) (i.e., variables x; € V\ (P U N)) is defined firt. If T; =1—x;,j € N is
used to find the associated multilinear expression, then a polynomial with 2P monomials
(without complemented variables) is obtained. According to the number of variables on

it, the coefficient of each of the resulting monomials is either +1 or —1. So,

o (1IN i
=3 () oM -), (417)
=0 7
where A (n, |P| + [N| - j) = Q\AEWJVE{:L). Simplifying the right hand side of (4.17),

78

then we get

—~ (IN] Pl = N[+j+1

r =]z: (; > (_1)\N|+J TP T (3 T)

(DM = 1P = 1]+) Y () (2 + 2 () (-2
2IPIHINI=1 (p 4 1)

(D™= 1P = N1+ 1) (D v R (M) (<204
2IPHINIT (1)

—|P| = [N|+1=2|N|p(-1)" (-1)"™

2IPHINI=T (n 4-1)
[N|—|P|+1
2PIHINI=1 (n +1)°

The approximation coefficient I'y corresponding to a non—negated variable x; appear-

ing in product (4.16) (i.e., variables x;,i € P) is given as

||

Ta=)_ ('JJ\”) ()N A (n, | P+ N - j), (4.18)
7=0

where A (n,|P|+ |N|—j) = Q&Tlfljfrjﬁ‘ltiii) Simplifying (4.18), then the following

formula to get I'y is derived:

|P[+|N]

_ [N INl+j 7 — [Pl = [N[+j+2
Iy = Z (j (=1) IPHINI=—1 (4 1)

IN| —|P|+n+2
2PI+INI=1 (4 1)
= Ty 427 1PIEIN

J=0

The approzimation coefficient I's corresponding to a negated variable appearing in
product (4.16) (i.e., variables x; € N) is obtained through the use of the previous

approximations, I'1 and I'y. T'1 is used for a term with less one variable and coefficient

79

+1. 'y is used for a term with the same number of variables but with coefficient —1:

Iy = Di([Pl+ [N =1L [N|=1) = T2 (IN| + [N, [N| = 1)
—(PI+IN[-D+1+2(N[=1) n—[P|=|N[+24+2(N[-1)
2(PIHINT-D-T (5 1 1) 2IPIFINT=T (n + 1)
—2([P[+ [N[) + 4[N = n+ [P| + [N] = 2|N|
2PIHINI=1 (4 1)

IN| [P —n
9IPHINI=T (1 + 1)
= T, 27PNV

Example 4.8. Let g : B° — R be defined as
g (l‘l, X9, X3, T4, l‘5) =8 —T1 + dxo — x1T5 + 47375 — 6Tox4x5 + 201 Tox3T4.
This example appears in [125] and the corresponding best linear approximation is
79 1
Ap (g) = g + g (63)1 + 50x9 — 14x3 — 1424 — 24:175)

Using the results of Example 4.7, we get a term—by—term homogeneous linear ap-

proximation of g as follows:

1 by A (T1) = —Zzy+ dzo+ Las + Jua + b,
1T5 by Ay (21T5) = Lo+ 50+ 523+ 5ra — S5,
T3Ts by Ay (T3Ts5) = il’l + %332 - %963 + %u — %1'5,
ToTals by Ay (Towazs) = Oxq — 2o+ 033+ F24 + 725 and
mam W Akmem) = e et e bt e

80

Putting things together, we get

1 1 1 1 1
AH@)558<yH+?Q+§%+§M+§%>

2 1o 1o 1]
—| -1+ 220+ 23+ -8t + =2
371 T 32T g T g T ges

+5332

(S DS DR 5
R T TR T R T T T 1"

(L Lol 1
gL T T s Tyt T s

1 1 1
—6 <0x1 — ng + O0x3 + Zx4 + ng,)

+2 lx —ia: +1x —ix +ia:
4871 T 487 T g 48Tt T 48™0
1
= (971 4 22929 + 37x3 + 3724 + T25)

Corollary 4.6. The best homogeneous linear approximation of a quadratic pseudo—

Boolean function f given as in (1.5) is

7j—1 n
n Z Crj + Z Cjr | — Crs
r=1 r=j+1 1<r<s<nir#j,s#5
Zj.
2(n+1)

81

Chapter 5

Roof—Duality and New Persistency Results

Hammer, Hansen and Simeone [123] have shown how three different approaches yielded
the same upper bound to the maximum of a quadratic pseudo—Boolean function f € F>.
This bound was called the roof dual of f. Roof—duality appeared in many other studies
since [123], and its strong relation with many other basic methods was demonstrated in
several publications (e.g., [12, 123, 56]), together with numerous generalizations (e.g.,
[49, 50, 54]) and algorithmic improvements (e.g., [51, 59]).

In this study, the roof dual results of Hammer et al. [123] are translated into the
lower bound case, for which the term floor dual would probably be more appropriate.
However, we kept the name roof dual in order to emphasize that all results are perfectly
analogous for the case of upper and lower bounds.

Boros et al. [51, 59] proposed a network flow model which is able to represent a
quadratic posiform. Based on this network model, Boros et al. [51, 59] proposed a
maximum flow algorithm in a capacitated network with 2n + 2 vertices, which provides
an efficient way to compute the roof dual. A special implementation of the maximum
flow algorithm of [51, 59] to find the roof dual is described in this chapter. The prac-
tical computational efficiency of the implemented algorithm is then demonstrated and
compared with that of other alternative methods.

The quality of the roof dual bound is highly dependent on the type of problem. For
a general QUBO, the quality of this bound is not very good. However, we will see in
this and in the subsequent chapters that roof dual delivers near-optimal solutions for

QUBOs derived from various families of problems.

82

5.1 Minorization

Definition 5.1. A linear minorant (or lower plane) of a pseudo—Boolean function f
in S is any linear function | (x) = ag+ Y,y @i%; having real coefficients ag,a1,--- , an,

which satisfy | (x) < f(x) for allx € S.

If a pseudo—Boolean function f is replaced with a linear minorant [in (1.3) then a
linear relaxation

I;lelgl l(x) (5.1)

of the minimum of the function is obtained. Clearly, the optimal solution of (5.1) is a

lower bound on vg (f), the optimum value of (1.3).

Definition 5.2. Let L be a family of linear minorants of f in S. The set of linear
minorants L is said to be complete in S if f is the pointwise mazimum of these linear
functions, i.e. if

Fx) = max 1),
forallx € S.

For a complete family of minorants £ in S, the equality

min f(x) = min max [(x
xES f() xeS IGEX ()

holds.

It is desirable to find a linear minorant in £ for which the optimal value of (5.1) is

as close as possible to vg (f). This result can be obtained by solving the problem

def . .
M == < = .
s(f,£) = max min i (x) < min max I(x)=vs(f)

A linear minorant [* such that maxxeg {* (x) = Mg (f, L) is called best linear mino-
rant (or best lower plane) in L. One always has Mg (f,£) < vs (f), and the difference
vs (f) — Mg (f,L) is called the duality gap with respect to £. Note that the same

reasoning can be used to define linear majorants (or upper planes) of f in S, ie. a

83

linear function in the V variables, such that [(x) > f (x) for all x € S.

A term—by—term majorization procedure was shown by Hammer, Hansen and Sime-
one [123], which provides a well known upper bound for f € F» in B", called roof dual of
f. The method of finding a “good” linear majorant (or minorant) to a pseudo—Boolean
function appeared much earlier in the literature (e.g., [122, 127]).

The roof dual results of Hammer et al. [123] are translated next into the lower
bound case. This method considers a complete family of linear minorants, formed by
combining best Li;—norm linear minorants of the quadratic terms of the polynomial

representation (1.5) of the function.

Lemma 5.1 ([123]). All linear minorants og + oz + ayy of the product xy in Ly are

of the form —ag = oy = oy = X with A € [0,1].

Lemma 5.2 ([123]). All linear minorants By + Bz + Byy of the product —xy in Ly are
of the form By =0 and B, =1 — B, = X with XA € [0,1].

At this point, it is natural to ask about the possible existence of other linear mino-
rants found by using other norms. It turns out however that the solution sets presented
in Lemmas 5.1 and 5.2 for the L;—norm case, contain the solutions of the Lo and L,
cases. As a consequence the Li—norm provides best linear minorants which are not
“worse” than the ones corresponding to the Lo and Lo, cases ([123]).

Given a quadratic pseudo—Boolean function f € F» as in (1.1), a family R of
linear minorants of it is defined by taking the weighted sum of the best Lj—norm linear

minorants of its terms, and using as weights the coefficients of the terms, i.e.

(n
co+d cmi + Yo i (Nijmi+ (1= Nij) @)
=1 1<i<j<n
R(f) < e
+ 2 cijhij (1t)
1<i<j<n
L cij>0
(r n
— Z Cij)\ij—l-
j=it1
Cij>0
n n
= {4+ ¢+ D Cijhij
i=1 Jj=i+1
i1 i1
+ 20 cidgi+ 20 i (1= Xi)
=1 =1
L Cji>0 Cji<0

84

0< N\ <1,
1<i<j<n
0<A2]<17

R (f) is a complete family, and therefore the roof dual value of f follows ([123]):

Mr (£) S M (R (F)) = min, max 1 (x).

Let us see that Mg (f) can be found by solving a linear program. A linear pseudo—
Boolean function of family R (f) has the form I (X) = go (A) + >_,cv 9i (A) ;. For a
fixed A = A* the minimum value of [(\)* is simple determined by the sign of the linear
coefficients g; (*) for all indices i € V. If g; (*) > 0 then z} = 0, if g; (*) < 0 then
xf =1, and if g; (*) = 0 then 2] can be any binary value. Putting these facts together,
and introducing a variable t; for every negative linear coefficient g; (\), i € V, it is not

difficult to show ([123]) that Mg (f) is the optimal value of the linear program

n
max co— Y, Ciylijt+ Dot
1<i<j<n i=1
Cji>0
subject to
i—1 i—1 n
i+ Y it X ci(L=Ni)+ X cydij=ti, i€V
j=1 j=1 Jj=i+1
c;ji>0 c;i<0
0< A <1, I<i<j<sn
t; < 07 i € V’

(5.2)

85

which is characterized by n constraints and (g‘) + n variables.

5.2 Linearization

It is very common to use linear integer programming to optimize a polynomial in 0-1
variables. The first publication of this nature is perhaps due to Fortet [100], and there
were many others to follow ([27, 110, 111, 128, 210, 233)).

The basic idea of this approach is to replace a term of the polynomial by a new
variable, and use linear inequalities to enforce the new variable to take the value of the

term for all possible values of the 0—1 variables involved in the term.

Example 5.1. Let f be a pseudo—Boolean function given as a multilinear polynomial
(1.1), and let us construct a linear integer program, whose optimal value is equivalent

to the minimum value of f. Consider a term [[z; of f with a nonzero coefficient cg.

€S
The linearization procedure replaces the product [[x; by a new variable zg, such that
i€S
zs = [@i for all binary assignments of the variables in S. The inequalities
€S
Zs S i, ieS
zg = >z —|S|+1
€S
zg =20

are used to enforce this relation. It is easy to see that zg is bounded from above by
the first set of constraints, and is bounded from below by the last two constraints. One
of these two options is redundant in a minimum of f. Namely, if cs is negative (re-
spectively positive) then the last two constraints are redundant, whereas if cs is positive
(respectively negative) then the first |S| constraints are redundant in any minimum (re-

spectively mazimum) of f.

The standard linearization procedure for computing the minimum value of a quadratic

86

pseudo—Boolean function given as (1.5) is

n
min <60+26i$z‘+ > Cij%’)
i=1

1<i<j<n
subject to
Yij < T, 1<i<j<n, ¢; <0,
o (5.3)

Yij < Tj, 1<i<j<n, ¢ <0,
yijzritw;—1, 1<i<j<mn, ¢; >0,

yij>0, 1 <1< j<n,

z; € B, JEV,

whose optimal solutions x* € B™ are minimizers of f.
Replacing in the above formulation the integrality conditions on x, by the conditions
x € U, a linear programming relaxation is obtained, whose optimum value Lg (f) is a

lower bound on the minimum of f.

Proposition 5.1 ([123]).
Lz (f) = Mz (f).

Proof. The somewhat technical proof can be found in Hammer et al. [123], whose basic
step is to show that the linear program (5.3) is the dual of problem (5.2). O
5.2.1 Persistency of linearizations

Proposition 5.2 ([48]). Let Uy,Zy, (k = 1,--- ,m) be subsets of the set of variables

V, such that Uy N Zy = O (k = 1,--- ,;m). If the polyhedron P defined by the set of

inequalities
€Uy, €2y, (5.4)
0<x; <1 1€V.

s not empty, then it has an element with values x; € {0, %, 1} foralli € V.

87

Proof. To a real vector o € R™ we shall associate another vector & defined by

0 ifozi<%,
o =9 & ifa;=1, (i=1,---,n)
1 if oy > 3,

Let us prove the claim by showing that if « is an element of the polyhedron P, then
so is a. Clearly, there is at most an index for which either a; < % and i € Z; or
o > % and ¢ € Uy for a given k = 1,--- ,m. If such index 7 exists, then for all
the remaining indices j # i one must have a; < 1 for j € Uy \ {i} and o > 1 for

J € Zi \ {i}, implying thus @; = 0, and hence) a&; + > (1 —a;) < 1. If there

JjeU JE€EZy
is no such index i, then a; < «; for j € Uy and a; > «; for j € Z, implying that
oap+ > (1-a)< X oo+ > (I-ay) <1 O

JjeU JE€EZy JjeU JE€EZy
Definition 5.3 ([60]). Given a vector a € P, the set of indices i = 1,--- ,n having

o; = % is called the curse of o, and is denoted by C (cv).

Proposition 5.3 ([60]). If « € P and 8 € P, then there is a v € P such that C () =
C(a)nC(B).

Proof. 1t is easy to check that v = i& + % B satisfies the above conditions. O

Since there is only a finite number of possible curses, it follows from Proposition 5.3

that

Corollary 5.1. There is a unique maximal subset Cp C {1,--- ,n} such thatCp C C («)

for every a € P.

The next question that we address is how to find out an element of P that has a

maximal set of integral values.

Lemma 5.3. Given a polyhedron P defined as (5.4) and an index i € {1,--- ,n}, then
the lower dimension polyhedron P’ o {xePlz; =b} (b=0,1), when it is non-empty,
has a set of inequalities representation equivalent to the structure of those “packing”

inequalities of (5.4).

88

Proof. Let us assume that there is a point o € P having a; = b. Then this assignment

in (5.4) results in packing inequalities having the form z; + > (1 —x;) <1 —b.
jeu JjEZ

There are two cases to consider:

(i) If the right hand side 1 —bis 1 then the resulting inequality has the required form;

(ii) If the right hand side 1 —bis O then all the points must have value 0 for all indices

in U and must have value 1 for all indices in Z.

All the transitive assignments (ii) can be re-applied to the remaining packing inequali-
ties, either resulting again in either case (i) or (ii). Thus, in the end of the this recursive
procedure either we get an assignment of values to some indices or we get inequalities

of the type > x; + > (1 —=x;) < 1. O
jeu’ jeZ'

Theorem 5.1. If P is non-empty, then there is a vector v € P that has integral values

for all indices except for indices belonging to Cp.

Proof. Since Cp is the intersection of all curses of points in P, then for the remaining
indices j € {1,---,n} \ Cp there is a point a with integral value for «;. Using this
property and the result of Corollary 5.1 we shall construct a point - that has a maximal
set of integral values. Given an index j € {1,--- ,n} \ Cp find a point o with integral
value for aj. Fix 7; = «; and define a new polyhedron P’ = PN {x € P|z; = a;}.
From Lemma 5.3, P’ also has half integral points, and Corollary 5.1 also applies to it.
Also, note that Cpr = Cp. Thus, if there are indices not in Cp not yet fixed in v we
can apply the above procedure to fix those indices to an integral value, thus proving

the claim. O

Lemma 5.4. Let f be a pseudo—Boolean function f and let ¢y = ZTQL ar [[yeru be

a posiform representation of it. Then, the maximum of f is the optimum value of the

89

0-1 linear integer program

max ag + Z arTyr

TCL|ar>0
subject to
yr+(1—u)<1, TCL,ar>0ucT, (5.5)
u=1-u, u €L,
u e BY,

y € BHTCLlar>0}],

Proof. The result follows directly after applying the linearization procedure to each

non-trivial term of the posiform. O

If the integrality constraint of problem (5.5) is relaxed and if all the complemented
literals @ are replaced by 1—wu, then the corresponding set of feasible solutions is defined
by packing inequalities. Let us call this polyhedron as Pg. It is trivial to see that Pg
is non-empty, since point (%, S %) belongs to it. Corollary 5.1 implies that there is a
unique maximal subset Cp of indices of points of Pg having value %

The question addressed next is to show that the integral values of an optimal solution
of the relaxation are persistent in (5.5). This result allows us to simplify the problem

at hand by fixing the corresponding variables with those values.

Theorem 5.2. Let o € Pg be an optimal solution to the relazation of (5.5). Then,
ifof =1 fori e U, and of =0 fori € Z, then there is an integral optimal solution 3*

of (5.5) having BF = af forie UU Z.

Proof. To prove this result we first reduce problem (5.5) to a vertex packing problem
on a weighted graph G = (V, E). The vertex set V is defined by the set of literals plus

the set of variables used to linearize high degree terms, i.e. V' = V; U Vx5 where

Vi = {{u}|lueL}, and
V>2 = {T\TQL,aT>O,\T]>1}.

The edge set E is defined as follows:

90

e For every non-complemented vertex {u} € V; we define an edge ({u}, {u});
e For every vertex T' € Vo we define an edge (T, {u}) for every u € T

The weight of a vertex {u} € V1 is ag,y + M, where M is a sufficient large number (e.g.

M =142 > ar). The weight of a vertex T' € V>3 is simply ar. Next, we present
TCL|T#0

the standard 0-1 linear program to find a maximum vertex packing (or similarly, stable

set, independent set) to graph G (see also Section 10.1):

max ag+ i (M + ag,) =i+ i (M + ag,y) =5 + > aryr
i=1 i=1 TCLlar>0,|T|>2
subject to
yr +xf < 1, TCL,ar >0,|T| > 2,2, €T,
yr+3; < 1, TCLyar>0,|T| > 2,7 cT, (5.6)
x; +xf <1, i1=1,---,n,
x,x° € B",

y € BHTCLlar>0,T|>2}]

Let us call to the polyhedron defined by the continuous relaxation of problem (5.6) as
P’. It is well known that every extreme point of P’y is half-integral ([30]), and that if
an optimal solution of the relaxation of problem (5.6) has integral values, then there is
a persistency for each one of those indices with discrete values in a optimum of problem
(5.6) ([182]; see Section 10.1). Every optimal solution (x*,x“*,y*) of problem (5.6)
must have x* = (1,--- ,1) — x“*. Also due to our choice of value M, any such optimal
solution originates an optimal solution (x*,y*) of problem (5.5) with the same value

shifted below by M. O

We summarize next the main results presented so far in this section. First, we have
seen that posiform maximization (5.5) is equivalent to a weighted graph stability prob-
lem (5.6). From graph stability theory, we have seen that the relaxed linearized version
of the problem has half-integral values ([30]), and that the variables of the relaxation
with value 1 belong to an optimal weighted stable set ([182]). Second, Corollary 5.1

shows that the relaxation of the linearization problem associated to the maximization

91

of a posiform has a maximal set of variables with value % in all feasible solutions. This
last result gives a limit on the maximum number of variables that can be simplified by

their persistent values in the relaxed version of the linearization models.

The important question to address next is therefore how to find efficiently this
maximal set of persistencies. A possible procedure is to use linear programming to
solve the relaxation of the stability problem (5.6) of a graph G. If there are any
variables with integral values, then add all associated vertices with value 1 to a set S
and remove from G all vertices in S and all their neighbors. After this stage then a
probing procedure can be applied. For each vertex i left in G, we would force vertex i to
belong to a maximum stable set, and apply any persistent conclusions on the reduced
graph to infer if this vertex is on a maximum stable set of the original graph. For
instance, if the optimum of problem (5.6) for the reduced graph is equivalent to the
optimum of that problem associated to the original graph, then vertex ¢ must belong to
a maximum stable set of the original graph. This procedure has been initially proposed
by Nemhauser and Trotter [182].

In Section 10.1 we propose an alternative algorithm that is based on the network
flow model presented in the following section. A maximal set of persistencies for graph
stability (and consequently for posiform maximization as well) is derived through the
application of a strong components algorithm to the resulting residual network (see
Chapter 7 and Section 10.1).

It should be remarked that it is possible to translate the previous results to posiform
minimization, since given any posiform in n variables it is possible to reproduce a
negaform of it without exponentially increasing the size of the original posiform. For
instance, the term uvwz could be replaced by wvwz = 1 — WTWZ — vdw — v — u.

Clearly, a QUBO problem can be represented in either forms, and from its multilin-
ear form (1.5), a quadratic pseudo—Boolean function can be brought into any quadratic
posiform or negaform. Thus, all the results described in this section apply to the QUBO

linearization problem (5.3).

92

5.3 Implication networks

In this section, we introduce the network flow model for a given quadratic posiform ¢
in standard form (see Section 4.6.1). It will be seen that this network model can be
used to decompose the original problem in “simpler” subproblems, and to derive lower
bounds, (weak and strong) persistencies and logical relations of the minimum of the
associated posiform.

Let us associate to a standard quadratic posiform ¢, a capacitated directed network
Gy = (N, A), where the node set is defined as N = L U {x¢,Z}, with x¢ being an
additional symbol representing the constant zg = 1. To every quadratic term a,uv of
¢ we associate two arcs (u,7) and (v,u), and let the capacity of both arcs be %aw. By
writing the linear terms as a,u = a,uzg, similarly we associate two arcs (u,To) and
(o, @), and let the capacity of both arcs be %au. Let us note that the constant term
C (¢) was disregarded from this construction.

Conversely, given a directed network G, = (N, A) with N = L U {zo,To}, and with
nonnegative capacities ¢, assigned to the arcs (u,v), we can associate to it a quadratic

posiform:

It is easy to see that the above definitions imply that

Proposition 5.4 ([54]). There is a one—to—one correspondence between quadratic posi-
forms for which C' (¢) = 0, and capacitated directed networks G = (N, A) with node set
N = L U{xy,To}. Furthermore, the involution ¢G, = ¢ holds for such corresponding

pairs.

Example 5.2. Consider the quadratic pseudo—Boolean function g = fg (21, x2, 3, x4, x5,0).

93

Figure 5.1: The network G, corresponding to the posiform ¢, of Example 5.2.
A quadratic posiform that represents g is

¢y = —8+ 211+ 2T3 + 4Ty + 275
+2x1x3 4+ 22125 + T1x2 + 2T1 24
+x2x3 + Toxg + Toxs
+2x3214 + 27375

+2x4w5.
The corresponding capacitated network Gy, can be seen in Figure 5.1.
Definition 5.4. A posiform ¢ € Po (f) given as expression (1.6) is purely quadratic
if it does not contain linear terms, i.e. a,, = 0 for all u € L.

Purely quadratic posiforms can be used to detect components of the original network
that can be optimized separately, thus providing a convenient way to find the optimum

of the original problem by solving several simpler sub—problems.

94

Proposition 5.5 ([42]). Let ¢ € P2 (f) be a purely quadratic posiform, and let Gy =
(N, A) be the corresponding capacitated network. Let Cp,Cy,--- ,Ci C N be the strongly
connected components of Gy, which contains both a variable and its complement. Let
Gi = (C;,Ai),i=1,--- ,k, be the subnetworks of Gy induced by C;,i =1,--- k. Then,

k

(1) =C@)+> v (fo,) -

i=1

In Proposition 5.5, the capacities of the network are not involved. In fact, if one
disregards the capacities and the linear terms, the network is exactly the implication
graph of Aspvall et al. [22] (see Section 4.5.) The strong components of the network
G4 can be found in linear time by depth first search ([227]), or by a specialized version
that uses the symmetry property of the network construction (see e.g. [134]).

Proposition 5.5 is a consequence of the symmetry of the network construction. This
property implies that whenever two literals v and v belong to the same strong compo-
nent Cj, then the complements @ and v also belong to the same strong component C}.
Furthermore, if a literal u appears in a component C;, and if its complement u appears
in a dual component C, then every other literal v € C; has its complement also in C}.
Let us note that C; and C; could or could not refer to the same component. If the
components are distinct, then they are called dual components of each other. In this
case, there is no cycle between any literal v € C; and its complement ¥ in G.

Let v be the purely quadratic posiform containing terms of ¢, which involve variables
appearing in dual components of G4. By Proposition 5.5, terms having variables in
dual components can be disregarded from the optimization process. The reason for this
being possible is the fact that there is a solution to the expression ¢ = 0, for any given
minimizer of fs_, i.e. for any minimizer of the posiform containing all terms of ¢ with

literals belonging to non—dual components.

Example 5.3. Consider the quadratic pseudo—Boolean function g = fg (1, x2, x3, x4, x5,0)

95

of Example 5.2. A purely quadratic posiform that represents g is

¢g = 342172 + 22123 + 22174 + x125 + T1 X5
+x9T3 + T2T5 + ToTyg
427374 + 2T 375

+2x475.

The capacitated network Gy, has two strong components: Cy = {T1,T2, 3, Tg, x5}
and Cy = {x1, 22, T3, 24, T5} (see Figure 5.2). Cy and Cy are dual components. Then,
by Proposition 5.5 the minimum value of g in B® is C (¢,) (= —3), and all optimal

solutions must satisfy the quadratic Boolean equation

T1To V123V 21T4 V Z1Z5 V T1T5 V o3 V ToTs V ToTy V T3T4 V T35 V 425 = 0.

If the capacities of Gy, are disregarded, then the network given in Figure 5.2 also
represents the implication graph. From this implication graph, it is simple to verify that
every literal u € C1 must have an optimal value not smaller than the value of any literal
mv € Cy, i.e. u=>v. Thus, the solution of the previous quadratic Boolean equation is

unique, and equal to (0,0,1,0,1).
Example 5.3 suggests the following result.

Proposition 5.6 ([22]). Let ¢ € Ps (f) be a purely quadratic posiform, for a quadratic
pseudo—Boolean function f € Fo. The minimum of a f coincides with the constant part
of the posiform ¢ (i.e. v (f) = C(¢)) if and only if all the strong components in Gy

have dual components.

Proof. Sufficiency is an immediate result of Proposition 5.5. To prove necessity, we
assume that there is a strong component C' in G, without a dual component. By the
symmetry property of G, and the non-duality property of C, every literal u in the
component C' has its complement @ also in C.

Consider now the implication graph associated to the literals in C'. From the theory

of quadratic Boolean equations, since the implication graph is strongly connected (i.e.

96

KA T

Figure 5.2: The network Gy, corresponding to the posiform 1, of Example 5.3.

there is a path from any literal u € C to its complement), then the associated quadratic
Boolean equation is not consistent. This implies that the posiform ¢¢ associated to
the subnetwork of G4 induced by the nodes in C' is positive for any assignment of the
variables in C'. Consequently, we get a contradiction v (f) = C (¢) +v (fs,) > C (¢) of

our assumption. O

For any given quadratic pseudo—-Boolean function f, an efficient way to obtain a
purely quadratic posiform 1 is given next. This method uses flow techniques in a
capacitated network G, where ¢ is any posiform representing f.

Let G = (LU {z,ZTo},A) be a capacitated network with source xo and sink o,
and having positive capacities ¢, for all arcs (u,v) € A. A feasible flow in G = (N, A)

is a mapping ¢ : A «— R satisfying the constraints

0 < ¢ (u,v) < ¢y for all arcs (u,v) € A,

97

Z @ (zo,v) + Z ¢ (v,To) = 0,

(zo,v)EA (v,Tg)EA
and

Z o (u,v) = Z ¢ (v,w) for all nodes v € L.
(u,v)EA (v,w)eA

Given a capacitated network G = (N, A) with positive capacities ¢, for all arcs
(u,v) € A, and a feasible flow ¢ in it, the residual network G[p] = (N, A?) is a

capacitated network with the same node set IV, arcs set given by
ASD = {(’LL,’U) € A|CUU > QD(U,U)}U {(U7u) |(U,U) € A,(,D(’LL,’U) > 0}7
and residual capacities

) Cm,—QD(’LL,’U), (U,U) GAa
P =

o (v,u), (v,u) € A,

for all arcs (u,v) € A¥.

An augmenting path of capacity w in the residual network G [¢] is a directed path
(i.e., a sequence of nodes: xy = wg,u1, -+ , U, Ugr1 = Tp) from the source node x
to the sink Ty, where w is the minimum residual capacity of any arc in the path, i.e.
w = j:gﬁ?f}ﬁl (Cijuﬂl)'

Due to the special structure of the network G, a feasible flow can always be assumed
to be symmetric, i.e. such that ¢ (u,v) = ¢ (7, %) holds for every arc (u,v) in Gy. Thus,
for symmetric feasible flows ¢, if xg,u1,- - , ug, To represents an augmenting path with
capacity w in Gy [¢], then the path To, Uy, -+ , U1, 2o is also augmenting and has the
same capacity w in Gy [¢]. This path is called the twin path. It should be remarked

that twin paths can actually share arcs.

An alternating sum is an expression of the form
Uy +urug +uguz + - - + Up—1uk + Uk (5.7)

involving the literals uy,--- ,u, € L. A quadratic posiform ¢ contains the alternating

98

sum (5.7) with maximum weight w, if for the corresponding coefficients of ¢ in (1.6) we
have w = min (aul,aglw, Qiyuzs ™" ,agkfluk,agk). It is well known that the following

identity holds for alternating sums:
Ul + Uiug + Wous + - - + Up_1up + U = 1 4+ ugus + ussg + - - - + Up_1Uk.

If a quadratic posiform ¢ contains an alternating sum (5.7) with maximum weight
w, then ¢ can be transformed into a posiform ¢’ representing the same function, but

having a larger constant term C (¢') (= C (¢) + w), as follows:

¢ = ¢
= C (qb) + au1u1 + Zfz_ll aﬂiui+1ﬂiui+1 + aﬂkﬂk‘ + ¢
= C(p)+tw+w Z?:l W41 + (g, — W) ug

+ Z?:_ll (amuwrl - w) ﬂiui—i-l + (aﬂk - w) ug + ¢7

where 1) is the remaining part of ¢, not containing the alternating sum and the constant
part ag.

From the previous observations, it is clear that there is a one-to-one correspondence
between alternating sums contained in a posiform ¢, and augmenting paths in the

corresponding network G. Thus, we have:

Proposition 5.7 ([54, 59]). Let ¢ be a quadratic posiform, and let ¢ be a feasible flow in
the corresponding capacitated network Gg. Then, xo,u1, -+ ,ug, To s an augmenting
path with capacity w in the residual network Gy [p] if and only if w1 + Wiug + -+ +

Up_1Uk + Ty, s an alternating sum of maximum weight w in the corresponding posiform

PGylel-
Also a consequence of the above is the following result.

Proposition 5.8 ([54, 59]). Let ¢ € P2 (f) for a quadratic pseudo—Boolean function
f € Fa, and let ¢ be a feasible flow in the corresponding network Gg. Let us denote
by v (p) the value of the flow (i.e. the total flow leaving the source, or the total flow

arriving to the sink), and let ¥ = ¢g ol denote the posiform corresponding to the

99

residual network. Then,

Clo)+v(p)+veP(f).

All feasible flows can be obtained from the constant zero flow by iteratively increas-
ing the flow along augmenting paths. A flow ¢ is a mazimum flow if and only if the

residual network G [¢] contains no augmenting path.

Example 5.4. Consider the quadratic pseudo—Boolean function h = fg (x1, 2, T3, T4, T5,1).

A quadratic posiform that represents h is

on = —T4+x1+22+7T3+ 574
+2x123 + 22125 + T122 + 271204
+2ox3 + Toty + Toxs (5.8)
+2x324 + 27375

+2x475.

The corresponding network Gg, can be seen in Figure 5.3.a). Checking in Figure
5.8, we can see that 0.5 units of flow can be pushed sequentially through each of the

following augmenting paths:

Tg — Tog — T4 — Tog and its twin xy — T4 — To — T,
Ty — T4 — Ty — To and its twin Ty — T3 — T4 — Tg,

Tg — T1 — T4 — To and its twin xy — T4 — L1 — Tg.

Since there is no augmenting path in the residual network G, [¢*] displayed in Figure
5.3.b), we have arrived to a mazimum flow ¢* of value 3.

The corresponding quadratic posiform of the network Gy, [¢*] is

Yn = 274
+2x173 + 1174 + 27125 + T1T2 + T174
+xox3 + x29T4 + To2T5
+x3x4 + T3T4 + 27325

+2x475.

100

Since C (¢pp) = =7, and that v (¢*) = 3, then ¢ = C (¢n) +v (¢*) + ¢, = =4+ Yy, and
hence —4 + 1y, € Pa (h).
Note that the dotted arcs appearing in Figure 5.3.b), i.e. those arcs which enter the

source or leave the sink, have positive capacity but play no role in the analysis.

A xp-Tg [S, ?]fcut in the residual network G [p| is a partition of the node set
N = LU {z9,To} into two subsets S and S = N — S, such that o € S and Ty € S.
From the theory of network flows, it is well known that finding a maximum flow in Gy
produces at least a minimum cut zg—Zg [S, g]fcut in the resulting residual network.
Note that this cut does not have forward arcs in Gg[p]. As a consequence of this
operation, the number of strong components may increase. If this is the case (i.e. if S
contains other nodes than x(), then the original posiform can be decomposed, and the
posiforms associated to the strong components can be optimized separately. In fact,
Boros and Hammer [54] proved the following result about the existence of persistent
values in every minima of fy for the literals of ¢ (if any) belonging to the source side

of the minimum cut.

Proposition 5.9 (strong persistency ([54])). Let ¢ € Po (f) for a quadratic pseudo—
Boolean function f € Fo. Let ¢* denote a symmetric mazimum flow in Gy, and let
S C L denote the set of nodes of Gy [¢*] that are reachable from xo via a path with
positive residual capacities. Then, u (x*) = 1 must be satisfied for all u € S in every

minimizer X* € Argmin (f).

Proof. By symmetry S contains a set of dual components (call it D), corresponding to
the strong components of S. Let Gg = (5, Ag), be the subnetwork of G induced by S,
and let Gp = (D, Ap) be the subnetwork of G induced by D. By duality, ¢cq = ¢q,,-
Next, we prove that there is a unique minimizer of ¢g, (or ¢¢,,) with value equal to
zero. Let us consider every arc with positive residual capacity, that was used to find

the set S. Two types of arcs were used for this purpose:

1. If the arc (with positive capacity ¢,) is of type (zg,u), where u € S, then there
exists a term with positive coefficient ¢, in ¢¢g¢. In order for the term to vanish

in any solution of ¢pgg = 0, then u = 1.

101

(b) The residual network Gy, [¢*] with a maximum flow ™.

Figure 5.3: Capacitated networks of Example 5.4.

102

2. If the arc (with positive capacity ¢y,) is of type (u,v), where u,v € S, then there
exists a term with positive coefficient c¢,,u? in ¢g,. Let us notice that this arc is
followed by a previous arc (w,u), where either w = xg or w € S. If w = xg then
apply 1) to obtain v = 1. With the additional constraint uo = 0, then v = 1.
If w € S then recursively apply 2) to the arc (w,u), which ultimately will imply

that u =v = 1.

Thus, every literal in S must have a value equal to one so that ¢G4 = 0. To prove that
this is also a necessary condition for every minimizer of f, we have to check if all terms
involved in the xg—Zg [S, g]fcut also have value zero in this solution. Indeed, every
arc in the cut is an arc from a literal v € S\ D and a literal u € S. The twin of arc

(v,u) is the arc (@,) from w € D to v € S\ D. Assuming that the capacity of each of

these two arcs is %4 (> 0), then the corresponding term is c,,v%, and because u = 1

the value of the term is also zero. O

Example 5.5. Consider the quadratic pseudo—Boolean function h = fg (x1, 2, 3, T4, T5,1)
of Example 5.4. From the residual network of Figure 5.3.b), the set S = {x4,x1,T3,T5}
of literals that are reachable from the source xg can be easily obtained. Since there is no
augmenting path in the residual network, then every minimizer x € Argmin (h) must
satisfy x1 = x4 = 1 and xz3 = x5 = 0 for all literals in S. This partial assignment
makes ¢, = —4, where ¢y, is expression (5.8). Thus, the minimum of h is —4, and the
corresponding minimizers are: (1,0,0,1,0) and (1,1,0,1,0).

Notice that x5 is a pure literal in ¢p. The pure literal rule of Lemma 4.2 could be
used to prove that there is an optimal solution with x5 = 0, but it can not be used to

assure that all solutions have this value for xs.

Let us remark that the minimum cut in G is not necessarily unique, and therefore
the original problem can be further decomposed into several sub—problems, that are

easier to be optimized.

Theorem 5.3 (weak persistency). Let ¢ € P (f) be a purely quadratic posiform, for a
quadratic pseudo—Boolean function f € Fo. Let u € L be a literal for which there is no

path with positive capacities from u to u in Gg. Let S C L denote the set of nodes of

103

Gy that are reachable from w via a path with positive residual capacities. Then, there

is a minimizer X* € Argmin (f) that satisfies u (x*) =1 and v (x*) =1 for allv € S.

Proof. Since ¢ does not contain linear terms, then the corresponding network G, does
not contain outgoing arcs from zg, and by symmetry does not contain incoming arcs
into Tg. Let € be a positive number. Let us add a linear term 2cu to ¢, and call the
resulting posiform as ¢ (= 2eu + ¢). Next, we find a symmetric maximum flow in the
network Gy. If the maximum flow is positive, then there is a (augmenting) path with
positive residual capacities from u to w. So, the maximum flow must be zero to be
in accordance with the theorem assumption. We now use the fact that ¢ can be very
small, and therefore in the limit when ¢ approaches zero, Proposition 5.9 can be applied
to the network Gy, and the corresponding (maximum) flow with value zero. The claim

follows immediately. O

Example 5.6. Consider the quadratic pseudo—Boolean function
f(z1,20,23) =14 (2+€) x1 + x3 — T129 — 22173 + Tox3.

A posiform that represents f is ¢ = 1+ ex1 + 1T + T1x3 + £1T3 + xox3. Consider the

S
0.5 0.5

E—> 6_)

.\@e o |

Since there is no augmenting path in Gy, then by Proposition 5.9 all the literals

corresponding network Gg:

reachable from xg must have value one, i.e. T1 = Ty = 1 or x1 = x3 = 0, in every

minima of f.

104

The values of the first derivatives of variables x1 and x3 are characterized as —1+¢€ <
Ay <2+4+e€eand —1+€ < Ag <2+ €. If e is chosen to be in [0,1] then the simple
knowledge of the ranges of the first derivatives cannot be used to derive the persistencies

found by roof-duality for x1 or xs3.

Through the assignment of any implied persistent results, Proposition 5.9 can be
used to obtain a purely quadratic posiform with the same minimum value of the original

posiform.

Corollary 5.2. Let ¢ € P2 (f) be a quadratic posiform, for a quadratic pseudo—Boolean
function f € Fa. Let ¢* denote a symmetric mazimum flow in Gy, and let S C L denote
the set of nodes of Gy [¢*] that are reachable from xo via a path with positive residual
capacities. Let D = {u|lue S}. Let G = (N \ (SUD),Ag) be a subnetwork of the
residual network Gy [¢*] induced by the nodes in N, not belonging to S or D. Then,
éc is a purely quadratic posiform for which v (f) = v (fg,). Further, if Vs is the set of

variables appearing in S, then a weak persistency holds for f aty € Argmingv\vy (fgs)-

The final comment of this section is to remark once again, the importance that
the employment of max—flow techniques have in the optimization of quadratic pseudo—
Boolean functions. Several persistent results can be asserted just by finding the source
side of a minimum cut. It also provides an equivalent purely quadratic posiform ¢ with a
larger constant term, and therefore, it gives better lower bounds to the minimum of the
corresponding quadratic pseudo-Boolean function f,. Interestingly, this bound called
roof-dual is equal to the bound returned by other alternative (linear programming)
techniques ([54, 123]), computationally more demanding than the network flow model

approach presented here.

5.4 Computational results

The network flow model presented in the previous section, which represents a quadratic
pseudo—Boolean function f, has been implemented as a computer program. It consists
of 2n + 2 nodes, one for each literal, and 2m arcs, two for each nonzero term of the

multilinear representation of f (see Section 5.3).

105

The data structure adopted is a special network, where each node contains of a list
of incoming arcs and a “map” of outgoing arcs.

A map is a dictionary collection that maps unique keys (i.e. literals) to values
(i.e. nodes). Once a key-value pair has been inserted into the map, then the pair can
efficiently! be retrieved or deleted using the key to access it. One can also iterate over
all the elements in the map in constant time per element.

With this structure is possible to get the list of all terms involving any literal in
O (log (n) 4+ n) time, and is possible to create, to delete or to get the coefficient of any
quadratic term in O (log (n)).

A maximum flow algorithm applied over the network just described, has been im-
plemented to compute the roof-dual value of f. The maximum flow implementation
that has been considered is based on the shortest augmenting path algorithm, yielding
a worst case time of O (n3), and is especially designed to deal with the existence of the
flow symmetry conditions ([134]).

All algorithms based on the network flow model were implemented in C++, compiled
using the Microsoft Windows 32-bit C/C++ Optimizing Compiler (version 12) for

80x86, and linked with the Microsoft Incremental Linker (version 6).

In our computational experiments of this section we present two types of results. In
subsection 5.4.1 we demonstrate both the effectiveness and efficiency of our implemen-
tation to derive roof-duality consequences, by comparing it to the one achieved through
the use of linear programming (see 5.4.1). In subsection 5.4.2 we first show that roof-
duality can deal with very large problems, which have some special characteristics, by
producing both a large number of persistencies, and near-optimal bounds.

Roof-duality is a key tool used frequently throughout this dissertation. Many other
computational results based on roof-duality algorithms, which are associated to various

types of applications, are presented in the chapters that follow.

'If the map has r entries then an element can be either found or proved not to exist in the map in
O (log, (1))

106

5.4.1 Network flow model versus linear programming

An important aspect about roof-duality is the fact that the Linear Programming (LP)
solution of problem (5.3) is half-integral ([30]). Moreover, Balinski [30] has also shown
that all basic feasible solutions are also (0, %, 1)—Valued. This information could be used
by special designed linear programming algorithms, so that the solve times of problem
(5.3) could be made more efficient. This can be particularly important for solvers based
on interior point methods, for which a reasonable good starting point can provide faster
solve times. This possibility was not tried here, since the available linear programming

solvers that we had at hand did not include this possibility.

All the experiments of this section were found using the same computer system,

which is based on a Xeon 3.06 GHz, 3.5 GB RAM and Windos XP.

We have considered two methods to solve the LPs. One is the Newton-barrier
algorithm and the other is the simplex dual algorithm. Both algorithms are part of
the mathematical programming software package Xpress—MP. The presolve and the
crossover algorithm of the Newton-barrier solver (version 2006B) were turned off in all
runs, since we noticed that they would slow down the computing times for the problems
that we have tested in this section.

For testing our implementation of the network flow model against the LP solvers,

we have considered two families of problems:

e The G; group consists of maximization QUBOs with 1000 variables and densities
varying from 10% to 100% (in steps of 10%). The best known solutions are given
in Table A.3 of the Appendix. This group of problems is used to compare the

effect played by the density (d) parameter on the outcome of the algorithms.

e The 60 Beasley maximization QUBOs, which have a 10% density each. The
number of variables n varies from 50 to 2 500; 10 problems were created for each
value of n. This group of problems is used to compare the effect played by the

number of variables (n) parameter on the outcome of the algorithms.

107

Table 5.1: Network flow model versus LP to find the roof-duals of the G problems
proposed by Glover et al. [109].

Problem || Density | Roof-Dual Roof-Dual Computing Time using

Number (d%) Value LP Newton-barrier* | LP Dual* | Network Flows
1 10 587424.0 5.3 s 70.7 s 0.2s
2 20 1186105.0 8.1s 290.9 s 0.4s
3 30 1772322.5 10.8 s 694.2 s 0.7 s
4 40 2360450.0 13.1s 1309.3 s 1.0s
) 49 2957813.0 14.4 s 22222 s 1.5s
6 60 3565800.0 16.8s | 2963.6s 2.0s
7 69 4159309.0 19.3s | 403745 2.7s
8 79 4743848.5 224s | 5388.2s 3.6s
9 89 5330495.0 26.3 s 7271.1s 4.6 s
10 99 5933962.5 27.6 s 9218.0 s 5.6 s

Table 5.1 gives the (G; roof-dual computing times of the 3 algorithms that we
have considered to find the roof-dual bound. It can be seen in this table that our
implementation of the network flow model is faster than the LP Newton-barrier solver.

Namely, it is
e 26 times faster for the instance with 10% density;
e 10 times faster for the instance with 50% density; and
e 5 times faster for the full dense instance.

This trend of results indicates that the network flow model is considerably faster than
LP Newton-barrier in computing the roof-dual bound. These facts also show that the
efficiency of the network model is more noticeable for sparser QUBOs, which appear
frequently in real world applications (see Chapter 10).

The LP simplex dual solver is somewhat slower in finding the roof-dual bound for
the G7 instances. It should be remarked the fact that we have also tried the crossover
to an optimal basic feasible solution of the LP Newton-barrier solution. The conclusion
about using this option is that it was even slower than the option of using the dual
algorithm (which always produces an optimal basis).

Table 5.2 provides the average computing times to find the roof-duals of the problems
belonging to the Beasley group of problems. The results show that the network flow

model implementation is 10 to 30 times faster than the LP Newton-barrier solver, and

108

Table 5.2: Average relative gap (g) to the best known lower bound (z) and average
computing times of the roof-duals of 10% dense QUBO problems (Beasley [37]).

Variables Roof-Dual Roof-Dual Computing Time using

Family (n) Gap (9 = £2) || LP Newton-barrier | LP Dual | Network Flows
ORL-50 50 0.1% <0.05s | <0.05s <0.05 s
ORL-100 100 15.3% <0.05s | <0.05s <0.05 s
ORL-250 250 78.1% 0.1s 0.2s <0.05 s
ORL-500 500 150.6% 0.6s 4.2's 0.05 s
ORL-1000 1000 248.8% 53s 68.4 s 0.2s
ORL-2500 2500 430.4% 43.8s | 1889.0 s 1.5s

that the speedup of the network model increases with an increase on the number of
variables. For this group of problems the LP dual solver is still the slowest option, but

the results show that the simplex algorithm is somewhat better for sparser problems.

The roof-dual values (and gaps) presented in the previous tables are also clear
indication that roof-duality is mostly effective for QUBOs with a sparse structure. We

remark once again that many QUBOs derived from practical applications are sparse.

5.4.2 Application of roof-duality to VLSI design

The purpose of this section is twofold. The first objective is to stress out the importance
of QUBO in VLSI design. The second objective is to illustrate that roof-duality can
be a powerful tool for certain structured combinatorial optimization problems.
Quadratic optimization has been used for a long time in the field of LSI and PBCs
(Printed Circuit Boards) (e.g. [32, 52, 55, 85, 114, 152]). In the sections that follow we
shall consider two problems in VLSI design. First, we investigate the impact of roof—
duality in some MAX-CUT problems derived from via minimization problems, which
are part of the layer assignment phase of channel routing. Second, we look at the so
called module flipping problem considered in the placement phase of the layout design
of circuits. We propose a random generator of a particular family of these problems,

and analyze the impact of roof-duality in various instances.

109

5.4.2.1 Via minimization

The physical layout design of integrated circuits is usually split up into the placement,
routing, layer assignment and compaction phases. We assume that modules placement
and routing has been already completed. We concentrate on QUBO problems derived
from the layer assignment phase, whose objective is to assign wire segments to layers
such that intersection segments belonging to different nets are assigned to different
layers. Wires of a net on different layers are connected by wias. Vias need additional
space and they create difficulties during the compaction phase. The via minimization
problem consists in finding a layer assignment such that the number of vias is as small
as possible.

We assume that the transient routing has been found, i.e. that all cells are placed
on the chip and that all nets have been routed, but the assignment of wire segments to
layers has not been performed yet. A net may connect two or more pins. In the later
case, the net may contain 3-way junctions and more rarely it may also contain 4-way
junctions.

From the transient routing, the via minimization problem (for two-layers) is trans-
formed into an equivalent MAX-CUT problem of the so called layout graph (see e.g.
83, 114, 202]).

If the transient routing contains no k-junctions for k& > 4, then in the two-layers case
the layout graph is planar. Consequently the MAX-CUT of this class of graphs can be
found in polynomial time ([117]), thus implying that the via minimization problem can
be efficiently found for these cases ([83, 202]).

Certain side constraints are required in practice. Frequently, one of the two layers
is preferred and pins are preassigned to a specific layer ([32, 114]). The previous MAX-
CUT reduction can be generalized to the via minimization problem subject to layer
preference and pin preassignments ([32]). In this case however the MAX-CUT that

results from this reduction is NP-hard ([32]; see also [180]).

In Table 5.3 we considered MAX-CUT instances derived from layout graphs pro-

vided by Homer and Peinado [145]. There are two groups of five graphs each:

110

e All five problems of the group wia.cy problems are solved optimally by using the
strong persistency property of roof-duality, i.e. for each problem the bound coin-
cides with the optimum and the residual problem is a small satisfiable quadratic
Boolean expression. The largest residual problem in this group has 36 binary

variables only.

e Strong persistency is not so effective on the group wvia.cn set of problems, since
only a few variables are fixed by roof-duality in the associated QUBO. The average
gap to the optimum from the roof dual bound is relatively small since it varies

between 3% and 6%.

Due to the previous results, it is not surprising that all VIA problems considered
here, could be solved efficiently by using state-of-the-art solvers to solve the standard
(roof-duality) mixed-integer program (5.3). In Chapter 7 we will demonstrate that all
of these ten problems can be entirely solved very quickly just by using preprocessing
techniques for QUBO, without the support of any type of branching or enumeration
procedure. This is particularly important for VIA minimization problems of large

dimensions.

Table 5.3: Via minimization problems of Homer and Peinado [145].

Vertices | Edges || Maximum Roof-Dual
Problem (n) (2) Persist. | Time | Value (p) | Gap (9 = =5)
via.cln 828 | 1389 6150 96 | 0.06 s 6339 3.1%
via.c2n 980 | 1712 7098 7 10.08 s 7473 5.3%
via.c3n 1327 | 2393 6 898 13 1 0.12 s 7282 5.6%
via.c4n 1366 | 2539 10098 10 | 0.09 s 10437 3.4%
via.con 1202 | 2129 7956 6 | 0.06 s 8427 5.9%
via.cly 829 | 1693 7746 814 | 0.05 s 7746 0.0%
via.c2y 981 | 2039 8226 957 | 0.06 s 8226 0.0%
via.c3y 1328 | 2757 9502 1315 | 0.09 s 9502 0.0%
via.cdy 1367 | 2848 12516 1341 | 0.09 s 12516 0.0%
via.chy 1203 | 2452 10248 1167 | 0.09 s 10248 0.0%

5.4.2.2 Cell flipping in standard cell technology

In the layout stage of VLSI and printed circuit board (PCB) design, after all circuit

modules (rectangular) are placed, it is possible to flip the modules so as to reduce the

111

total net length([55, 85]). Cheng et al. [85] formulate the orientation of modules as a
graph problem and prove it to be NP-complete. The orientation problem is shown to
be equivalent to MAX-CUT of a graph ([85]; see also [52]). Experiments with real cases
show that module orientation reduces the total net length and improves the routability
([85]).

After the routing phase in the layout design of VLSI and PBCs, the optimal wiring
has to be decided. Direct connections have to be established between certain pairs of
pins belonging to different modules. The pins have fixed locations on the rectangular
perimeter of the module. Since each module can be placed on the base plate in four
different positions occupying the same rectangular area, then the total length of the
wiring depends substantially on their positioning. The different placements of a module
can be achieved by flipping it either vertically, horizontally, or in both directions. The
problem of finding the flipping positions of the modules which minimize the total net
length is the flipping problem.

A random generator of 2-pin cell flipping problems has been created. For simplicity,
we only consider a simplified version of the rectangular modules, by allowing only
vertical flippings and assuming that the modules are simply segments of a line. The

generator has four parameters that have to be specified:

n — Number of 2-pin cells;
m — Number of nets, which connect two 2-pin cells;
H — Horizontal size of the chip;

k — A seed to feed to the pseudo-random numbers generator.

The starting horizontal location (L;) and size (S;) of the i-th cell is uniformly

determined from the interval [0, H], i.e.

A; = Uniform (0, H),
B; = Uniform (0,H),
L; = min(4;,B;),

S; = max(4;, B;) — Ly,

112

for every cell i = 1,--- ,n.

Each net (i,7) has an origin cell ¢ and a destination cell j (# ¢) randomly chosen.
The extremity of the cell (i.e., left or right) which is used by the net in both endpoints is
also randomly determined. The “origin” extremity is denoted with the binary indicator
0i; (is equal to O for left extremity, and 1 otherwise), and similarly the “destination”
extremity is denoted with the binary indicator d; ;.

Let us further define 1(7,0) = A; and I(i,1) = B; for every cell i = 1,--- ,n.

The objective is to minimize the total horizontal wiring needed to connect all the
2-pin cells by doing cell flipping, i.e.

in 13, 01,5) = 1(J, dig)| wizj + |13, 04,5) — 1(j, dij)| Tizwj+
S amen \ |10 01g) = 1(j,dig)| e + | 1(,01) = 1(5. di) | T3
where N is the set of m nets, and the binary decision z; is 0 if cell 7 has to be flipped

or 1 otherwise.

The first set of experiments is based on problems randomly created with the previous
generator. It considers instances with an horizontal size H of 1000 having 1000 000
nets each, and whose number of cells n is either 250 000, 500 000 or 750 000.

From the results of Table 5.4 it can be seen that the roof duals of the 1 million nets
problems can be computed in about 2 minutes.

The number of strong persistencies of these QUBO problems is around 675 and is
somewhat independent of the number of cells n.

Weak persistencies were found by applying the pure literal rule (see Lemma 4.2) to
the residual posiform of the QUBO problem obtained after applying strong persistency.
Interestingly, the number of weak persistencies that were found in this way is very large.
Namely, it is over 87% of the original cells for problems with 250000 cells, and it is
96% of the original cells for problems with 750 000 cells. It should be remarked that the
computing times could be improved if the pure literal rule is applied both initially and
at the end of the method. In fact, most of the pure literals can be detected initially in

this particular family of QUBO problems.

Table 5.4: Impact of roof-duality on large 2-pin cell flipping randomly generated problems having 1000 000 nets each.

Cells | Nets/Cells Roof-Dual Residual QUBO
Problem (n) () Strong Pers. (s) | Pure Lit. (p) | Time* Value (p) (n=n-s—p) (%) Quad. Terms
fliflop-250K-1M-1 691 217259 126 s | 266282720.0 32050 655312
fliflop-250K-1M-2 692 217270 130s | 266148770.5 32038 655978
fliflop-250K-1M-3 || 250000 4 614 217262 127 s | 264853 326.0 32124 12.8% 662 568
fliflop-250K-1M-4 665 217264 128 s | 265823910.5 32071 656 688
fliflop-250K-1M-5 679 217274 128 s | 266445939.0 32047 654725
fliflop-500K-1M-1 688 467262 128 s | 266350120.5 32050 654964
fliflop-500K-1M-2 658 467265 128 s | 266093176.5 32077 656 528
fliflop-500K-1M-3 || 500000 2 628 467262 130s | 264931318.0 32110 6.4% 662 248
fliflop-500K-1M-4 660 467262 128 s | 265835648.0 32078 656 960
fliflop-500K-1M-5 6836 467274 131's | 266600282.0 32040 654333
fliflop-750K-1M-1 684 717259 129 s | 266337871.5 320587 655 260
fliflop-750K-1M-2 687 717269 132 s | 266081472.0 32044 656 003
fliflop-750K-1M-3 || 750000 1.33 649 717263 126 s | 264954 628.5 32088 4.3% 662022
fliflop-750K-1M-4 675 717261 128 s | 265808816.0 32064 656 604
fliflop-750K-1M-5 710 717274 131s | 266646 530.5 32016 653744

*Obtained on an Intel Xeon 3.06GHz.

€1l

114

Also interesting, is the fact that the residual size of the QUBO problems, after
applying both weak and strong persistency, is somewhat constant, consisting of about

32000 variables and about 655000 nonzero quadratic terms.

To measure the impact of roof-duality in solving 2-pin cell problems of this nature,
a set of additional instances has been generated, each one having 10000 nets and an
horizontal size H of 1000 as before. The number of cells varies between 1000 and 7 500
in steps of 500. Five distinct instances were created for each combination of n, m and
H. When not solving completely a given 2-pin cell problem, the quality of the roof-dual
bound has been compared with that one provided by a one—pass heuristic (see Chapter
6).

Table 5.5 shows that roof-duality delivers optimal solutions for all problems having
more than 4000 nets. As soon as the density (d) starts increasing, the relative gap (g)
associated to the roof-dual increases rapidly from 0.01% to 6.5%, respectively for the
3500 and 1000 cells cases.

Table 5.5: Average relative gap of roof—duality on randomly generated 2-pin cell flipping
problems having 10 000 nets.

Cells || Nets/Cells | Density || Roof Dual | Upper bound || Rel. Gap
(n) (%) (d) (p) (2) (%)
1,000 10.0 2.00% 2,661,363 2,845,028 6.46%
1,500 6.7 0.89% 2,623,640 2,745,590 4.44%
2,000 5.0 0.50% 2,599,938 2,661,745 2.32%
2,500 4.0 0.32% 2,573,110 2,607,212 1.31%
3,000 3.3 0.22% 2,502,887 2,511,469 0.34%
3,500 2.9 0.16% 2,445,970 2,446,239 0.01%
4,000 2.5 0.13% 2,398,005 2,398,005 0.00%
4,500 2.2 0.10% 2,368,370 2,368,370 0.00%
5,000 2.0 0.08% 2,299,954 2,299,954 0.00%
5,500 1.8 0.07% 2,259,256 2,259,256 0.00%
6,000 1.7 0.06% 2,217,748 2,217,748 0.00%
6,500 1.5 0.05% 2,192,810 2,192,810 0.00%
7,000 14 0.04% 2,151,678 2,151,678 0.00%
7,500 1.3 0.04% 2,115,016 2,115,016 0.00%

This trend of results linked to QUBOs of low or high density, is typically the one

that determines if roof-duality is or not is a good tool to solve a given QUBO problem.

115

This particular family of QUBO problems is also interesting by the fact that roof-
duality impacts differently for flipping problems of 10 000 nets and for flipping problems
of 1000000 nets. In the smaller instances, after applying roof-duality, the residual
problems are minuscule, whereas for the large instances the number of quadratic terms

in the residual problems is about % of the number of nets.

116

Chapter 6

Heuristics

Several exact methods have been developed and tested for QUBO in the literature (see
Chapter 9). Since however QUBO is known to be NP-hard (see [104]) many of the
large problems arising from practical applications proved to be not tractable for these
exact approaches. Several heuristic algorithms, based on different ideas, were proposed
recently in the literature to find acceptable solutions for such large problems.

The heuristics proposed in the past for QUBO can be broadly classified in three

groups:

e The one—pass heuristics (see e.g. [58, 107, 178]) are based on polynomial time
algorithms, which assure solutions with “reasonable” quality in “very good” com-

puting times, for “very large” problems (up to tens of thousands of variables).

e The local-search heuristics (see e.g. [62, 178]; sometimes called 1-opt heuristics)
are based on the exploration of directions of improvement, within a simple and
well defined neighborhood of solutions. This class of heuristics provides a solution
with “good” quality in a typically “good” computing time for “large” problems (up
to several thousands of variables), but it does not provide a provably polynomial

running time.

e The meta—heuristics are based on the search of a well defined neighborhood of
other solutions, providing a solution with “very good” quality in a usual “rea-
sonable” amount of computing time for “reasonable” sized problems (up to a few
thousands of variables). In many cases, the local-search methods are used as

subroutines in this class.

In this chapter we consider the pseudo-Boolean minimization problem (1.4) in B",

117

that is the problem of minimizing a pseudo—Boolean function f over the set B™ of binary

n—vectors.

6.1 One—pass heuristics

One drawback of local search based approaches (see Section 6.3) is that they do not
provide guarantees — neither for running times, nor for solution quality. While we
can have little hopes for the second type of guarantees with a quick, local search type
approach, running time guarantees can easily be achieved by simply terminating earlier
the search process. Such approaches appear in the literature and are called sometimes

one—pass or greedy procedures (see e.g. [107, 178]).

6.1.1 DDT methods

We start by presenting the family of DDT heuristics introduced by Boros, Hammer and
Sun [58], which is one of the earliest one—pass approaches presented for QUBO. DDT
consists of three stages: Devour, Digest and Tidy—up. In the “devour” stage, a linear or
quadratic logical relation is produced. In the “digest” stage all the logical consequences
of the previous step are derived. In the “tidy—up” step the new logical conclusions are
enforced by transforming the function being optimized accordingly.

The DDT framework can be described in a more general way, which includes not
only the original methods, but it also covers a family of recently proposed one—pass
procedures (see Section 6.1.2). The general idea of the DDT algorithm is described in
Figure 6.1.

At each iteration of the DDT algorithm, a 0-1 value is assigned to a certain “ele-
mentar’ quadratic expression ¥ defined by method X. ¥ has to be chosen in such a
way that the resulting set of logical relations is satisfiable (i.e. @V ¥ = 0 is consistent),
and such that the size of the set of solutions of the equation of ® V W = 0 is strictly

smaller than that of the equation ® = 0, i.e.

{x e BY\UYZ) [(§ 1) (x) = o} c {x e BY\UY2) | (x) = o} .

118

DDT(X,Y)
Input: A pseudo—Boolean function f.

Initialization: Let U and Z be subsets of variables with assigned values
1 and 0, respectively. Initially, U = () and Z = ().

Let ® be a satisfiable quadratic Boolean expression. Initially, ® = 0.
Step 1: If V\ (UUZ) = () then STOP.

Step 2: Using method X, choose a logical expression uvV wz, involving
literals u,v,w,z, associated to variables with indices in V' \ (U U Z).

Step 3: According to method Y, set the value of expression uv V wz:

e fuvVwz=1thenlet ®«— dVuwVuzVvViwVTZ

o If uvVwz =0 thenlet ® «— &V uv Vwz.

Step 4: Draw all logical conclusions C of the quadratic Boolean equa-
tion ® = 0. Update U, Z, ® and f according to the new derived
conclusions C. Goto step 1.

Output: Vector x*, in which 3:; =1 if and only if j € U.

Figure 6.1: The DDT heuristics.

Boros et al. [58] applied the DDT method to quadratic pseudo—Boolean functions

represented by a posiform (1.6). They proposed two variants of method X:

(i) Select a term ab with the largest weight of a given posiform ¢¢. In this case

uv = ab and wz = ab in step 2 of DDT.

(ii) Select a bi-term ab+ @b with largest weight in the bi-form of f (see Section 8.1).

In this case uv = ab and wz = @b in step 2 of DDT.

The value assigned to expression ¥, which was determined by method X, is defined
by method Y. For the Boros et al. [58] DDT methods, ¥ is always assumed to be equal
to zero. Let us note that in case (ii) above, this choice leads to an assignment of the
type a = b for literals a and b (because a = b <> ab + @b = 0). This choice implies in
this case that the next iteration of DDT has one less variable, and thus that DDT ends

after n iterations.

119

Step 4 of DDT correspond to the “digest” and “tidy—up” phases. The complexity
of doing these operations is basically associated to the complexity of finding all strong
persistencies for quadratic Boolean equations. There are several ways to accomplish
this task efficiently (see e.g. [133]). We have adopted in this study the implication
graph algorithm of Aspvall et al. [22] (see Section 4.5 for details) in our implementation

of case (i) above of the DDT method.

Proposition 6.1 ([58]). The DDT method (i) of Boros, Hammer and Sun [58] gener-
ates a heuristic solution to the minimum of a quadratic pseudo—Boolean function f given
as quadratic posiform ¢y (1.6) in O (mz) time, where m is the number of (nonzero)

terms of ¢y.

Proof. Since the total number of terms of ¢ is m, then the DDT method runs in m
iterations. Let us now see how much time DDT takes in each iteration. In step 2 the
search for the largest coefficient of a nonzero term of ¢, takes at most O (m) steps.
By using the set of rules of Lemma 4.1, Step 4 uses at most O (n) steps to derive the
consequences of assigning a term to zero. To update both ¢ and the implication graph
data structures we need at most O (n) steps for each variable fixed. Putting these

results together we obtain the claimed O (m2) time. O

Proposition 6.2 ([58]). The DDT method (ii) of Boros, Hammer and Sun [58] gen-
erates a heuristic solution to the minimum of a quadratic pseudo—Boolean function f

gwen as a bi-form Bf in O (nm) time, where m is the number of (nonzero) terms of

Bf-

Proof. We have already seen that this method takes at most O (n) iterations. As in
the previous case the amount of time needed for each iteration is at most O (m), thus

generating the claimed O (nm) time. O

The DDT methods can be implemented in such a way that the average computing
time is reduced considerably. The bottleneck of DDT occurs during the search of a
large coefficient term in step 2. To improve the time of this operation we used a data

structure which includes for each non-fixed variable x;, the largest coefficient of a term

120

where x; appears. Clearly, the search for a large coefficient term is now O (n) instead
of O (m). The time needed to update the structure for each variable fixed is O (n) on
average, and for each quadratic term fixed is O (1). Adding these times, it can be seen
that the DDT method could be implemented to run in O (nm) average time for case
(i), and in O (n?) average time for case (ii).

As a final remark of this section, it is important to note that the heuristic value of
case (i) of Boros et al. [58] is highly dependent on the posiform selected as input to the
algorithm, whereas case (ii) is invariant with respect to the input, since the bi—form is

uniquely defined for each quadratic pseudo—Boolean function (see Section 8.1).

6.1.2 Greedy heuristics

In the family of one—pass algorithms proposed in this section, the variables get binary
assignments one by one, until a binary value is assigned to every variable, at which time
the procedure stops. The algorithm invokes two methods: method X is used to choose
the index of the next variable to which a binary value will be assigned, while method
Y decides which of the two possible assignments is more advantageous.

This type of algorithms can be seen as special cases of the DDT method introduced
in the previous section, but since the assignment of 0-1 values to quadratic expressions
is not considered in this family of heuristics, we provide the general approach of the
considered algorithms in Figure 6.2.

At a given iteration of ONE—PASS, with given methods X and Y, we shall frequently
use the partial assignment y-Z defined by

Uz 1 ifjelU

Y, =
0 ifjeZ,

which denotes a binary vector containing the partial assignment induced by the sets U

and Z.

In the following sections we consider three particular methods X and Y. The first

choice is based on best linear approximation methods. The second choice is based on

121

ONE-Pass(X,Y)
Input: A pseudo—Boolean function f, given by (1.1).

Initialization: Let U and Z be subsets of variables with assigned values
1 and 0, respectively. Initially, U = () and Z = ().

Step 1: If V\ (UUZ) = () then STOP.
Step 2: Choose an index i € V' \ (U U Z) by method X.

Step 3: According to method Y the chosen index ¢ is added to either
U or Z. Goto step 1.

Output: Vector x*, in which 2% =1 if and only if j € U.

Figure 6.2: Algorithm description of one—pass heuristics.

probabilistic assumptions on the partial derivatives of the function. The last choice is

based on rounding methods.

6.1.2.1 Best linear approximation methods

The first greedy heuristic that we present is based on finding a “best” linear approxima-
tion (see Section 4.8) to a pseudo-Boolean function f, and using then the coefficients
of the linear terms of this function to infer a measure of the variables’ contribution to
the optimal value of the original function f. The basic idea is that a variable whose
linear coefficient is large in absolute value has a potentially larger impact on the value
of f, and therefore fixing this variable (to 1 if the coefficient is positive, and to 0 if it
is negative) may have a high impact on the value to the function.

For the purpose of describing the one—pass methods X and Y of this subsection, we

shall assume that the best linear approximation is given as

A(f(x[UUZ —y"])) =ag?+ > a7
JEV\(UUZ)

Let

Su.z 4t arg max {‘aéjz‘}
JEV\(UUZ)

122

denote the set of variables whose coefficients are largest in absolute value.

The ONE-PASS(X,Y) heuristic method of this subsection can be described as fol-

lows:

1 < min {SU’Z})

=R
Il

ifa?’Z<0thenU<—UU{i} else Z «— Z U{i}.

Method X selects from the set of variables in {V \ (U U Z)} which have the largest
coefficients in absolute value ‘aéj’z‘, the one which has the smallest index j. Since we
are considering minimization problems, the value of x; determined by subroutine Y is

1if a?’Z < 0, and 0 otherwise.
Best linear Ly—approximation

The best Euclidean linear approximation of a pseudo—Boolean function was derived
by Hammer and Holzman [125] (see Proposition 4.8 of Section 4.8). The linear coeffi-
cients of the best Euclidean linear approximation are simply the values associated to

(1)V\(UUZ)

the corresponding first derivatives in the point (3 , associated to the variables

which were not yet fixed by ONE—PASS, i.e.

1 1
a;g,z N <<§,... ’§> vuz <_yU,Z]> 7 (6.1)

forall j e V\ (UUZ).

Example 6.1. Let us consider the application of ONE—PASS based on the best Fuclid-
ean linear approrimation to the hitting set problem (2.4), and demonstrate that the
classical greedy algorithm for this problem is equivalent to this one—pass heuristic.
Let us denote by dy (v) the degree of vertex v in the hypergraph H, i.e. dy (v) =
{H € H|H > v}|, and let Dy = max,ey dy (v). In the pseudo—Boolean formulation

(2.4) we shall consider ey = —1 + 2H1=1 for every subset H € H. In this case

U,Z .
a;?=1- > 1:1—ng,2(]),
HeH#

123

where H;]’Z is the subset of hyperedges of H containing vertex j, but which do not contain
any verter in U UV. Recalling that the greedy algorithm for the hitting set problem
selects at every iteration the verter with largest degree of the remaining hyperedges, one
trivially can see that both the greedy procedure and this ONE—PASS heuristic will return

the same solution.

Two interesting facts arise from Example 6.1. First, it can be seen that ONE—PASS
depends on the way the hitting set problem was formulated — since ey (H € H) can be
any nonnegative number. Second, due to the equivalence shown before, Example 6.1
demonstrates that the value returned by ONE—PASS based on the best Euclidean lin-
ear approximation is a polynomial time (1 + log (D7))—factor approximation algorithm

([173]) for the hitting set (and thus for the set covering) problem.

Formula (6.1) can be specialized for the quadratic case using (4.4) to get

ag’Z =c¢j —i—% Z Ckj + Z Cjk | + Z Ckj + Z cik |
keEV\(UUZ):k<j kEV\(UUZ):k>j keU:k<j keU:k>j
(6.2)
forall j e V\ (UUZ).

It is interesting to notice that the best linear coefficients (6.1) coincide in absolute
value with the coefficients of the linear terms of the bi—form associated to the quadratic
function (see Section 8.1). This situation implies that there is a close relationship
between the DDT method (ii) introduced in the previous subsection and the one—pass
approach based on best linear approximations. The big difference between these two
methods is that DDT also considers equality relations between literals at each iteration

of the method, and the one—pass method of this section does not.

From formula (6.2), it is simple to verify that

a;]u{i},Z _ a;g,z + %czj, if j > 1,

a;JU{i},Z - a;],z + %Cju it j <1, (6.3)
ag_J,ZU{i} — a;f’Z - %cij, if j >4, |
a;],ZU{i} _ a;J,Z — tej, i j <,

124

forall jand i € V\ (UUZ), j #1i.

Theorem 6.1. Using best linear Lo—approximations, a heuristic solution to the mini-
mazation of a quadratic pseudo—Boolean function f is provided by ONE—PASS in O (n2)

time.

Proof. To get the claimed complexity, the computations need to be organized carefully.

First, we can build a variable-term data structure, and pre-compute the starting a?’@
values in O (size (f)) time. After this, each of the n iterations can be executed in at
most O (n) steps (to select the appropriate coefficient), and using (6.3) the evaluation
of each a?’Z, j € V\ (UUZ) can be executed in time proportional to the number

of occurrences of z; in (1.5). Hence the total time of the algorithm after the pre—

computations is O (nz), thus proving our claim. O

Best homogeneous linear Lo—approximation

When optimizing a pseudo—Boolean function given as multi-linear polynomial (1.1),
the constant ¢y value does not affect the optimal 0-1 vector solution. For the same
reason, the constant part of the best linear approximation does not have an impact in
its optimization. Therefore, we considered next the use of the best homogeneous linear
approximation (see Theorem 4.4 in Section 4.8) in the framework of ONE-PASS.

In what follows we consider the application of this heuristic to quadratic pseudo—
Boolean functions only, in spite of the fact that these ideas would also work in the
general case. We recall Corollary 4.5 that basically states that the linear coefficients
between the homogeneous and the non-homogeneous case differ by a constant Q. In

the quadratic pseudo—Boolean case this constant is

Z Crs

20(] 1<r<s<n

Q:_n+1 2(n+1)

(6.4)

We shall disregard the constant part (cg) of the function at every iteration of ONE—-

Pass. In this case, @ is equal to the sum of all quadratic coefficients divided by 2 (n + 1).

125

The linear coefficients of the best homogeneous Euclidean linear approximation are

therefore

1 1

forall j € V\ (UU Z), where

> Crs

QUZ B r,seV\(UUZ):r<s
2(VNUUZ) 1)

It is simple to verify that

otz 7 . e
a U = U7 L 4 QU2 - QUUNE | if >

aUU{i}’Z _ CL;LZ + %Cji + QU’Z o QUU{i},Z’ if j < i,

iJZU ' U,z i (6
o)W = U7 L 4 QU7 - QUAVEY if >

U7Z . , > . . .
a; Dl = a?z N %Cji +QUE —QUAVE it j <,

forall jand i € V\ (UU %), j # i, and where

QU,Z _ QUU{Z’},Z — QU,Z _ QU,ZU{Z'}

Crs Z Crs
r,s€V\(UUZ):r<s _ r,s€V\(UUZU{i}):r<s
2([V\(UUZ2)|+1) 2[V\(UUZ)]

—2QYV:2 + > Crit > Cik
kEV\(UUZ):k<i kEV\(UUZ):k>i
- 2IV\(UUZ)]

Theorem 6.2. Using best homogeneous linear Lo—approrimations, a heuristic solution
to the minimization of a quadratic pseudo—Boolean function f is provided by ONE—PASS

m O (n2) time.

Proof. Clearly, Q" and the initial agm values can be computed in O (size (f)) time.
If a variable-term data structure is used to handle the coefficients in (1.5), then the
intermediate a?’Z and QY"? values can be computed in at most 2n steps from (6.5).
Since a single variable is fixed at each iteration, then the algorithm has n iterations

which with the pre-computations will take a total time of O (n2), thus proving our

claim. O

126

6.1.2.2 Probabilistic methods

Let f be a quadratic pseudo—Boolean function represented by a multi-linear polynomial
(1.5). For every index j € V, let us associate to the partial derivative A; of f, a

stochastic function

7j—1 n
G (&, &n) & ¢+ chjik + Z ks
=1

k=j+1

where §,k € V are random variables. (; can be seen as a random variable that
simulates the distribution of the values associated with the jth partial derivative of
f. Consider now some results that will be helpful in justifying the proposed heuristic

methods of this subsection.

Lemma 6.1.

Exp (G (€1, ,&n)] = & (BExp[&], -+ Exp[6]), jeV.

Proof. Using (4.4), the equation stated above follows immediately from the additivity

of the expected value. O
Lemma 6.2. If &, .-+ ,&, are independent random variables then
Jj—1 n
Var ¢ (€1, &) = D e Var (&) + D G Var[g], jeV.
k=1 k=j+1

Proof. The statement follow by using (4.4) and the independence property combined

with the fact that if o € R, then Var [a&;] = o Var [¢]. O
Lemma 6.3. If &,--- ,&, is a sequence of independent random variables defined on
the same probability space, having finite expected values i1, - - , i, variances a%, N

and third central moments 7"5-’ = Exp [|£j — ,uj|3], j €V, and if

. Tn
lim
n—oo n 2
Zj:l g

=0,

127

then
Cj(glv 7£n)_A(M17 7lu’n)

)
2 52
\/Zk 1ijak+2k =j+1 KTk

converges to the standard normal distribution.

JeVv,

Proof. This is a restatement of a generalization of the central limit theorem under the

Lyapunov conditions. O

Remark 6.1. The practical implication of Lemma 6.3 is that a large linear combina-
tion of independent random variables has values normally distributed. Therefore, if a
traditional (e.g., uniform, Bernoulli, etc.) probability distribution is considered for &,

k €V, then

Normal [Aj (g1, , ftn) ch]a] + Z c]ka (6.6)
k=j+1

is a good approzimation of (j (&1,--+ ,&n), j € V.

According to the necessary conditions of optimality stated in Proposition 4.1, every

*

minimizing point («7,--- , ;) of f must satisfy the following two conditions for every

index j € V:
L If 27 =1 then A; (x*) <0;
2. If 27 = 0 then A; (x*) > 0.

Proposition 4.1 suggests that a potentially good strategy for selecting the next
variable to be fixed by subroutine X in ONE—PASS, is to give priority to those variables
whose partial derivatives have constant signs with large probability.

This selection process and subsequent fixation at every iteration of ONE—PASS create
a new function, where the new derivative functions of the remaining variables (depend-
ing on the selected variable) also change.

The ONE—PASS procedure creates a sequence of actions that depend on the decisions
made previously, each one being based on how the values of the resulting derivative
functions are distributed. A key issue is therefore to know what probability distribution

to assume for the partial derivative values. We consider two basic approaches:

128

e Uniform — The range of values of the first derivative function A; (j € V) is uni-

formly distributed between its minimum and maximum values (i.e., Uniform (L;, U;));

e Normal — The range of values of the first derivative function A; (j € V) is

normally distributed, as defined in (6.6).

Let us introduce further notation to indicate the fact that some of the variables
have already been assigned a 0-1 value. The function f under the partial assignment
yYZ will be denoted as fU-%, and similarly the first derivatives, the associated stochas-
tic functions, and the corresponding minimum and maximum values will be denoted
respectively as A}J’Z, CJU’Z, UJ-U’Z and L}J’Z, forall j € V\ (UUZ).

Let us denote the subset of (random) variables for which the probabilities of the
corresponding partial derivatives to have constant signs are highest by

U2 def argje\}_l\l(aguz) (Prob [CJU’Z > 0] , Prob [CJU’Z < 0]) .

The ONE-PASS(X,Y) sub—family of heuristic methods that we shall study in this

subsection is characterized as follows:

= ot o 67| (e D
Y = if (Exp [giUvZ} < 0) then U « U U {i} else Z «— Z U {i}.

This algorithm depends on the way in which the probability distributions of the first
derivative values are defined. In our computational experiments we only considered
cases which use the same probability distribution for all non-fixed variables (i.e. for z;,
j€V\(UUZ)). In addition, we assumed that the expected value of each non—fixed
variable is 0.5. These choices were made with the intuitive idea of giving equal chances
to every non—fixed variable to be selected.

The stochastic variants of the partial derivative functions that we have tested are
described in Table 6.1. For simplicity, this table only considers the cases analyzed in the

first iteration of ONE-PAss (i.e. if U = Z = (). It should be noted here that a partial

129

Table 6.1: Probability distributions of random variables used to characterize the prob-
ability distribution of partial derivatives of quadratic pseudo—Boolean functions.

| G, JeEV | &,jEV |

discrete Uniform (L, Uj) -

Normal Lj;rU 1 (Zk 1 ckj + ket c?k)) Bernoulli (3)

Normal (£t L ($~771 i+ Dk c?k Uniform (0, 1)
Normal (Z2% 4—18 - 11%3 + 3 ki Jk Uniform (0.25,0.75)
Normal (252, o5 (120 e + Xhejin Uniform (0.40, 0.60)
Normal (LU L (Zk 1ck7 Y jk)) Uniform (0.4, 0.55)
Normal LJ;FUJ 35655 (T 1 i+ D n —i i Uniform (0.49,0.51)

assignment essentially results in a new quadratic pseudo—Boolean function to which
the options listed in this table are applied again. We also remark that variables fixed
during the process can be seen as constants, i.e. random variables with no variance.

The first option in Table 6.1 considers that the values of the partial derivatives
are integers between their minimum and maximum values. This choice was motivated
by the fact that the test problems have integer coefficients. The second and following
variants consider the variate (6.6), and assume that all variables have an independent
and identical distribution. All options in Table 6.1 have the same expectation. In these
cases, the expected value of the j-th partial derivative in a given iteration of ONE—PASS
is

U2 4 guz

Exp [CUZ} _ % = A, <<%7 7%) [UUzHyUZ]),

130

where
L% = min Aj (x[UUZ «—yY7])
J xeV\(UUZ)
n n
=Lj— > oy~ X cGrt Y gt Y G
keZ:k<j keZ:k>j keU:k<j keU:k>j
ij<0 Cjk<0 ij>0 Cjk>0
n
=+ > Chj + > Gkt > oyt) ¢rand
kEV\(UUZ):k<j kEV\(UUZ):k>j keUk<j keUk>j
¢k <0 cjk<0
Z
U%? = max Aj (X [UUZ<—vaZ])
J xeV\(UUZ)
n n
=Uj— > oy~ > Grt X gt D G
keZ:k<j keZ:k>j keU:k<j keU:k>j
ij>0 Cjk>0 ij<0 Cjk<0
n
=cj+ Z Ckj + Z Cjk + Z Ckj + Z Ciks
keV\(UUZ):k<j keV\(UUZ):k>j keU:k<j keU:k>j
ckj>0 Cjk>0

forall j e V\ (UUZ).

The expected values Exp {C JU ’Z} , 7 € V\(U U Z), are coincident with the coefficients
(6.1) of the best linear approximation of the function, which is defined by a partial
assignment corresponding to the subset of variables (U U Z) with value fixed. As

a consequence of this relation, Exp [CU’Z

J } can be computed efficiently between two

consecutive iterations of ONE-PASS, as it was shown in (6.3) for the ONE-PASS case
based on the best linear approximation.

In the normal distribution cases, it can be seen that the impact of the distribu-
tion assumed for the set of non—fixed variables is basically in the “multiplier” term
associated with the variance component. Therefore, the key player to be analyzed in
the computational analysis is in fact which multiplier is more suitable to obtain better
quality solutions for QUBO.

For the options listed in Table 6.1, the variance of the partial derivatives j, j €

V\ (UUZ) in a given iteration of ONE-PASS is

Var [gjﬁz} —a DR E D D (6.7)

keV\(UUZ):k<j keV\(UUZ):k>j

where « is the variance of the individual variables. In the cases listed in Table 6.1 the

131

variances of the variables were chosen to be all equal.

When using

Var _CUU{i}’Z] = Var

| [gU’Z] o, ifj >4,
Var _CUU{i}’Z] = Var [

CU’Z] —ac?, ifj<i,

Var igf’ZU{”] — Var [QU’Z] —ad, ifj>i,
Var :gf’ZU{”] — Var [gf’z] —ac, ifj<i,

forall j and i € V\ (U U Z), j # i, then the variance of the partial derivatives (6.7) can
be computed efficiently between two consecutive iterations of ONE—PASS. These values
also show that the variance of the partial derivatives are non—increasing functions at

every iteration of One—Pass, which at the end of the procedure will have value zero.

Theorem 6.3. Using the probability distributions of partial derivatives, a heuristic
solution to the minimization of a quadratic pseudo—Boolean function f is provided by

ONE—PASS in O (n2) time.

Proof. Using the relations (6.8) and using the fact mentioned above about calculating
the expected values of the partial derivatives between two consecutive iterations, we

can use the same arguments used in Theorem 6.1 to prove our claim. U

6.1.2.3 Rounding methods

The minimum of a polynomial function f in 0—1 variables coincides with the minimum
of the same polynomial defined when the variables are continuous, taking values in
the interval [0, 1] (see Section 4.7). Furthermore, the value of f at any point p € U"
can be seen as being the expected value of the pseudo—Boolean function f, whose 0-1
variables have independent probabilities given as Prob[z; = 1] =p; foralli=1,--- ,n
(see Proposition 4.6), i.e. f(p)=Explf (x)].

The heuristic method presented in this subsection finds a finite sequence of points

p@, ... p(™ belonging to U” such that the following four conditions are met:

132

i) The expected value of f does not increase along the sequence, i.e.
f <p(k)> > f (p(k+1)) forallk=0,--- ,n—1;
it) Two consecutive points differ in at most a single coordinate, i.e.

PP = for all k= 0,--- ,n— 1, and i € V\ {igs1};

iii) The set of indices {iy |k = 1,--- ,n} selected along the sequence, defines the com-

plete set of variables, i.e.

V={iplk=1,.n};

iv) The last point of the sequence is a binary vector, i.e. p(™ e B".

These conditions together imply that the value of each variable is rounded (if frac-
tional) or switched (if binary) to a 0-1 value, thus justifying the name given to the
“rounding” heuristics considered in this section.

The value decrease of f between two consecutive points of the sequence is

f (p(k)) _ f (p(k—i-l))
= p(k) Aik+1 (p(k)) + @ikJrl (p(k)) _pz(,]:i_ll)AikH (p(k+1)) - @ik+1 (p(k+1)) (6'9)

Tg+1

_ (k) (k+1) k
- (pikJrl ~ Piyyy) Aik+1 (p()))
for all k =0,--- ,n — 1. Thus, from our choices (i-iv) given above we get

Aik+1 (p(k)) >0 = p(kH) =0 and

Tgt1
(k+1) 1
g1

Aik+1 (p(k)) <0 =

The heuristic value returned by these rounding procedures is therefore

f (p(”)> =f (p(o)) — ((pgfil - pgffll)) Dip s (p(k))) .

0

i
L

e
Il

133

Because both the speed and the quality of solutions are important factors to consider
in the design of algorithms for one—pass heuristics, we shall adopt a greedy variant of

each step of the method. Therefore:
1. The initial value of f (p(o)) should be chosen as small as possible;

2. The “transition index” i), defining point p*) from point p*=1 should be selected

so as to minimize the value of f (p(k)).

In order to make the choice of the initial point both effective and efficient, we have
studied several alternative ways of computing a low valued point in O (size (f)) time.
The various starting points considered in this study are listed in Table 6.2.

The description of the starting points considered in this study is listed in Table 6.2.

The selection method I is self-explanatory. Methods I» and I3 are two slightly
different attempts to decrease Exp [f] (see Proposition 4.6 and Corollary 4.4). Finally,
methods I4 and I5 try to estimate the probability of each variable x; to take the value
0 at a local minimum. They both use the characterization of local minima (see Propo-
sition 4.1). I, uses the available bounds for the derivatives, and assumes for simplicity
that the (integer) values of the derivatives are uniformly distributed between their
upper and lower bounds. I5 assumes that the values of the derivatives are normally

distributed, having means and standard deviations defined as in Lemma 6.3.

We have successfully experimented with a more sophisticated type procedure for
identifying the starting point p(®). The procedure consists in choosing one coordinate
at a time, identifying an “ideal” value of it, substituting this value into the function,
repeating the above steps on the above function, etc., until p©@ is found.

Using the previous idea, we have considered four additional starting points based on
the same basic constructs used by methods I, s = 2,--- ,5. The idea is to reapply the
principle associated to starting point Iy, s = 2,--- 5, to every component 5 =1,--- ,n.
For instance, if the optimal choice of method I3 is used for the first component, then
1 = « (see definition of « in Table 6.2), zo would get the optimal choice s applied

to the “new” function f(x[{1} < («)]), and in general z;, j = 3,--- ,n, would get

Table 6.2: Starting points considered in the computational experiments.

I; (Center): p(© = (,...3)

I» (Pos/Neg): p® = (1 —p,---,1—p), where p is the proportion of terms
having positive coefficients, i.e.

> G+ > Cij

1€V:c; >0 1<i<j<nic; >0
p g
Z il + 2 eyl
1<i<j<n
I3 (Best): p® = (a,--- ,) assumes that all variables take the same

value, and « is the optimal choice for that value, i.e.

a—arg mln)\ 2014—/\ Z

l<z<]<n

I4 (Delta): p©® = (Y1, ,Yn), where for i = 1,--- ;n we have

0, Li >0,
vi=1{ w2, Li<0and U; >0,
1, otherwise.
Is (Normal): p© = (v, -+ ,1,), where fori=1,--- ,n we have
1, Lz 2 07
vi=4{ 1-® LU . Li<0and U; >0,
\/(Zk 1ck]+2k—3+1]k)

0, otherwise.

134

135

the optimal choice «; applied to the function f (x[{1,---,j — 1} < (a, 2, - ,0;—1)]).
This method results in the starting point (o, g, , ay).

These improved starting point methods will be denoted I}, s = 2,---,5; each of
them is based on the underlying ideas associated to the corresponding methods I,
s=2,---,5, described in Table 6.2, enhanced by there iterative application illustrated
above.

It should be remarked that all methods I}, s =2,--- 5, run also in O (size (f)), but
do obviously require somewhat larger computing times than the corresponding methods

I, s=2,--,5.

In order to decrease the value of the function f by changing the value of a variable,
the selection of that variable has to balance computational time and loss in function
value. To be able to describe the proposed method, we need a few more notations.

Given a quadratic pseudo-Boolean function f and a vector p*) € U™, let us intro-

duce for every j € V \ (U U Z) the quantities
a; = d; (p®) = 1 (p™) = 1 (p**1), (6.10)

which measure the size of local improvement when changing only the component j

(optimally).

Lemma 6.4. For any vector p*) € U™ and index j € V \ (U U Z) we have

dj (p(k)> = max {p§k)Aj (P(k))) <p§k) - 1) A (p(k)) } '

If the values of the derivatives A; (p(k)) (j e V\ (UUZ)), are available, then the quan-

tities d; (j € V\(UU Z2)), can be computed in O (n) extra time.

Proof. Immediate by (6.9) and the definitions. O

A ONE-PAss(X)Y) family of rounding heuristics that we shall study is characterized

as follows:

136

X = i:ik:min{r d, = max (dj)},
JjeEV\(UUZ) (6.11)
Y = if (A?Z<0> then U « U U {i} else Z — Z U {i}.

Theorem 6.4. Using rounding procedures, a heuristic solution to the minimization of

a quadratic pseudo—Boolean function f is provided by ONE-PASS in O (n2) time.

Proof. The value of the partial derivatives A;, j € V \ (UU Z), is kept updated in
the point p®), k = 1,--- ,n, associated to each of the n rounding steps. The initial
calculation of these values can be carried out in O (size (f)) time, and the subsequent
updates can be done in O (n) time, by using the relations

AVIRZ _ AUZ (1 _pgk—ﬂ) cij, if j >,

AgU{i},Z = A;LZ + (1 —pgk_l)) Cji, if j <1,
U,ZU{1i k—1 o .
AP = AUZ e, if j > i,

U,Zufi Uz k—1 e
A]’ ol = A] _pg)Cji7 lfj <1,

for all j € V\ (U U Z). With the A; (j € V\ (U U Z)) values available, the component
selection step given in Lemma 6.4 can also be done in o (n) time. Adding these times

for n rounding steps, the claimed time complexity of O (n2) follows readily. O

Theorem 6.5. One-pass rounding heuristic using the center as starting point produces
a solution for QUBO equivalent to the solution returned by the best linear approximation

one-pass heuristic. (see Section 6.1.2.1)

Proof. This result follows trivially since the coefficients of the best linear ls-approximation
of a pseudo—Boolean function f are the values of the partial derivatives of f in the center

(see Proposition 4.8 and (6.1)). O

At every iteration of the ONE-PASS method, several variables x; not yet fixed (i.e.
j € VA{U U Z}) may have a partial derivative A?’Z with constant sign regardless of
the values of the other variables z; not yet fixed (i.e. ¢ # j,i € V\ {U U Z}) by the

procedure.

137

The variables in those circumstances will be rounded to the corresponding value
determined by the local minimum conditions (i.e., if A?’Z > 0 then z; = 0, otherwise
xj = 1). The point that can make a difference in the one-pass rounding algorithms is
to when an immediate rounding (or switching) operation is applied or not.

In the study of the one—pass rounding heuristics we consider a version of ONE—
Pass(X,Y) that immediately rounds all variables (not yet fixed) which satisfy the local
optimality conditions. Before presenting this variant, let us introduce L?’Z (respectively
U jU’Z) as being the minimum (respectively maximum) of the pseudo—Boolean linear

function A?’Z. Let
SUZ — {j eV\{Uuz} |tV Ul > 0} :

be the set containing the variables (not yet fixed) which satisfy the local optimality
conditions.
An additional family of one—pass rounding heuristics that we consider is character-

ized as follows:

i=ip =minSV7, SV7 Ly
X from (6.11), SZ’Z =0,
Y = Y from (6.11).

Theorem 6.6. Using rounding procedures that enforce local optimality as soon as pos-
sible, a heuristic solution to the minimization of a quadratic pseudo—Boolean function

f is provided by ONE—PASS in O (nz) time.

Proof. The claimed complexity follows from the fact that the minimum L;J’Z and the
maximum U JU 2 of the partial derivative A?’Z can be obtained directly from separate

data structures which contain the values updated according to the sets U and Z. The

138

initial calculation of these values can be carried out in O (size (f)) time, and the sub-

sequent updates can be done in O (n) time, by using the relations

yvulihz _ Uz +min (0,¢;;), if j >4,

J J
U/ = o7 fmin (0,¢5), i <,
U = ol max (0,¢5), i § >4,
U]U’ZU{Z} = U]U’Z —max (0,¢53), if j<i,

vu{ih,Zz s UZ

Lj = Lj
vuiy,z _ ,UZ

L; = L;

U,ZU{i Uz ; if j >4
L u{i} _ L; —min (0,¢;;), if j >,

+ max (0, Cij) , if 5 >4,
+ max (0,¢;), ifj<i,
L) —min (0,¢55), if j <1,

for all j € V\ (UU Z). With the previous relations, it is simple to see that the same

arguments used in the proof of Theorem 6.4 imply the claimed time complexity. O

We end this section by presenting an example that illustrates that more complex

expressions can be used in one-pass procedures for QUBO.

Example 6.2. Let us consider an arbitrary quadratic pseudo—Boolean function f given
as (1.5). Let p € U™ be an arbitrary real vector, and assume that the variables x;,
i=1,---,n are pairwise independent random variables for which p; = Prob [x; = 1] =
1 —Prob[z; =0] fori=1,--- ,n. We start by finding the expected value decrease of f

when the quadratic relation x1xo = 0 is assumed:

Exp [f (x)] — Exp [f (x) [z122 = 0]

Ex x)]|—Prob[z1z2=1]Ex x)|x1z2=1
= Explf (x)] — BxlfOIIProbin sl 0l zem]
' Pn)— 1,1,p3- ,pn
= f(pb 7pn) — fp1y) 117_111;121];(P Pn)
= %(f(lv]wp:i 7pn) _f(pb 7pn))
= B ((L—p)Ar1(p1,-+) + (L= p2) Ao (p1,- - ,pn) + (1 —p1 — P2 + p1p2) c12)

_ p1ip2
1—pip2

(P1A1 (p1, -+ ,Pn) + D22 (p1,- -+ ,Pn) + D1DaC12) -
(6.12)

139

In particular if p; = %, i=1,---,n, then (6.12) becomes

Exp [f (x)] = Exp [f (%) |z122 = 0]
= 5GAG o g) T8 (G g))

— Li+Ui+Lo+Us+cio
12 :
In the general case of assigning a quadratic term xga)xgﬁ) = 0 under the previous

conditions, the expected value decrease of this assignment is given by the following

formula:

Bxp [f ()] = Bxp [£ (0 [+ = 0

- ((a—p1) A (pr, -+, pn) + (B —p2) Ao (p1, -+ pn) + (af — Bp1 — apz + pip2) c12).-

A possible good strategy for selecting a term in the DDT devour stage (presented in
Section 6.1.1) is to consider either a quadratic term or a linear term, which provides the
expected largest decrease in function value, as was illustrated in the previous example

for the quadratic term and by method X of (6.11) for the linear case.

6.1.3 Measuring heuristics performance

Let f be a pseudo—Boolean function given as a multilinear polynomial (1.1), whose
minimum value is v (f). Let us denote the solution returned by a given heuristic H as
xH.

The traditional way to measure the performance of heuristics on QUBO problems

is to use the relative error

Cdet S (XT) v (f)
RN ===

In spite of being widely used, the relative error R (H; f) does not satisfy some im-

portant properties that these performance indicators should have. Namely, the relative

140

error depends on the constant of the function,

lim R(H; f+¢)=0, and

C— 00

the relative error depends on complementation of variables. For instance, R (H; f)

would report different results for

f(z,y)= —2x—3y+3zy, and

3+ f(z,9) = x+ 3y —3zry, whereyg=1-—y.

Let us note that a minimizer of f can easily be derived from the optimum of the
functions obtained with the previous transformations. Therefore, the measure of quality
of heuristics should be independent of such variations.

An idea to solve this issue is to adopt a normalization of the relative error by using
a constant ¢ which satisfies

Exp[f +d = [f + <% %) _

As a consequence of the previous relation, the normalized relative error

v (1 (3) A

is obtained. It turns out that N was proposed by Zemel [240] (see also [184]), which
concludes that IV is a “proper” measure to evaluate the quality of approximate solutions
to 0—1 programming problems.

Since the optimum is not know for many of the test problems, we also will use the

approximative relative error

d:ef f (XH) _ f (Xbcst)

G (H;f) 7) ,

141

and the approximative normalized error

f (XH) _ f (Xbcst)

K(H f)¥ :
D e =T ()

best gtands for the best known solution to the minimum

for evaluation purposes, where x
value of f.
Given a computer system S, the computing time of heuristic H applied to problem

fin S is denoted by T (S; H; f).

To analyze the performance of the proposed algorithms in a particular family F of
QUBO problems, we shall frequently use the average value W, associated to a heuristic

H in a set of problems F, i.e.

— def

W (H; F) = Exp[W (H; f)|f € Fl],
where W stands for any of the performance indicators previously defined: N, K, R or
G. Similarly, the average computing time of a heuristic H in a set of problems F using

a computer system S is denoted as

Y Exp [T(S; H; f) |f € F).

T (S;H; F)
The variance of the results of W in a set of problems F is an important performance

measure that we also consider:

def

oty (H; F) S Var [W (H; f) |f € Fl].

6.1.4 Computational results

Five class families of one—pass heuristics were described in Section 6.1. In Table 6.3 a list
of 49 one—pass algorithms for QUBO is presented. Each method listed in the table has a
name and is briefly distinguished from the others, so that they can be referenced in the

text that follows. The analysis includes only 48 variants of the proposed 49 algorithms

142

since the solution returned by ONE-PAss-BLA is equal to the solution returned by
ONE-PAss-R(I7) (see Theorem 6.5).

Except for the ONE-PASS-DDT-L heuristic, which was implemented using the im-
plication network structure (see definition in Section 5.3), all the heuristics were im-
plemented using an upper triangular (dense) matrix structure. This choice was made
with the intuitive idea of allowing all heuristics to compete equally in terms of using
the same data structure.

We remark the fact that we did studied several other data structures for the DDT
heuristic of Boros et al. [58], which uses a signed graph as input to the algorithm. If an
adjacency list is adopted to represent the signed graph, then the DDT heuristic would
outperform the corresponding heuristic based on the matrix representation in problems
with density smaller than 19%. However, for the other cases, the usage of the matrix

structure would clearly provide faster runs of the DDT algorithm.

The number of test problems considered in the subsequent analysis is 5 458. Except
for the 36 massive planar graphs of the RUDY benchmark, for which the adopted matrix
structure would be prohibitive in terms of the available capacity of computer memory,
we considered here all the problems described in Chapter 3. The characteristics of
the data set can be seen in Table 3.1. A summary of the classes of QUBO problems
considered is presented in Table 6.4. The total number of experiments considered in
this section is 258 404.

The ONE-PASs-DDT-L heuristic was only considered in 1942 datasets. We shall
disregard this heuristic from the analysis that follows, since its performance was clearly
inferior to the other heuristics in all aspects (e.g., the average relative gap (G) value is
over 200%).

The ONE-PASS-BLA heuristic was tested in 5394 problems. The 62 problems that
were not tried for this heuristic have a sum of coefficients which is larger than the
largest valid (integer) number of the 32 bits computer used for testing (i.e. 23!); recall
that this particular heuristic uses this parameter at every iteration of the algorithm

(see (6.4)).

143

Table 6.3: One—pass heuristics for QUBO considered in the computational experiments.

| Class || Name | Options |
DDT ONE-PAss-DDT-L largest term from the roof-dual posiform
ONE-PAss-DDT-B largest bi-term of the bi-form
Best Linear ONE-PAss-BLA best linear approximation
Approximation || ONE-PAss-BHLA best homogeneous linear approximation
ONE-Pass-P-U Aj ~ Uniform (Lj, UJ)
8NE—PASS—P—N crz = %1)) ij ~ Normal; z; ~ Berrfloulli((%))
NE-PASS-P-N(o* = j ~ Normal; x; ~ Uniform (0, 1
Probabilistic ONE-PAss-P-N(0? = E) A; ~ Normal; z; ~ Uniform (0.25,0.75)
ONE-PAss-P-N(o? = %) A; ~ Normal; z; ~ Uniform (0.40, 0.60)
ONE-PASs-P-N(0? = T?O) A; ~ Normal; z; ~ Uniform (0.45,0.55)
ONE-PAss-P-N(0? = 0 000) A; ~ Normal; z; ~ Uniform (0.49,0.51)
ONE-Pass-R(17) starting point is I; = (%, e %)
ONE-PAss-R(I3) starting point is I
ONE-Pass-R(13) starting point is I3
ONE-Pass-R(1y) starting point is Iy
ONE—PASS—R(I5,02 = %) s.p. is Is; z; ~ Bernoulli (%)
ONE-Pass-R(I5,0? = 35) s.p. is I; xj ~ Uniform (0,1)
ONE-PASS-R(I5,02% = 4%) s.p. is I5; z; ~ Uniform (0.25,0.75)
ONE-PASs-R(I5, 0% = W) 8.p. is Is; x; ~ Uniform (0.40, 0.60)
ONE-PASS-R(I5, 0% = %90) 8.p. is Is; x; ~ Uniform (0.45,0.55)
Rounding ONE-PAss-R(I5, 0% = w555 s.p. is I5; z; ~ Uniform (0.49,0.51)
ONE-Pass-R(I3) starting point is I3
ONE-Pass-R(I3}) starting point is I
ONE-Pass-R(I}) starting point is I}
ONE-PASS-R(I%,02 = 1) s.p. is IZ; x; ~ Bernoulli (3)
ONE-PAss-R(IZ, 0% = #) s.p. is I#; x; ~ Uniform (0, 1)
ONE-PAss-R (1,02 = Q) s.p. is IZ; x; ~ Uniform (0.25,0.75)
ONE-PASs-R(I¥,0? = W) s.p. is IZ; x; ~ Uniform (0.40, 0.60)
ONE-Pass-R(IZ, 0% = ﬁ) s.p. is IZ; x; ~ Uniform (0.45,0.55)
ONE-PASS-R(IZ, 0% = 5005 s.p. is IZ; x; ~ Uniform (0.49,0.51)
ONE-Pass-RT (I7) starting point is Iy = (5, , 3)
ONE-Pass-R™T (I2) starting point is I
ONE-PAss-R™ (I3) starting point is I3
ONE-PAsS-RT (Iy) starting point is Iy
ONE-PASS-RT (I5,0° = 1) s.p. is I5; ; ~ Bernoulli (3)
ONE-Pass-R* (I5,0% = ? s.p. is I; x; ~ Uniform (0,1)
ONE-Pass-R* (I5,0% = 7 s.p. is I; x; ~ Uniform (0.25,0.75)
Rounding ONE-PASS-RT (I5,0% = 555) s.p. is I5; z; ~ Uniform (0.40, 0.60)
with ONE-PASs-R™ (15, o— @) s.p. is I5; z; ~ Uniform (0.45, 0.55)
lf)call. 8NE—EASS—§1 ((}Tg),)ag = 500 s.tp. is In; xj ~ UIniform (0.49,0.51)
optimality NE-PASS- 3 starting point is I3
conditions ONE-PAss-R* (I3) starting point is I3
ONE-PAss-RT (I}) starting point is I}
ONE-Pass-RT (If,02 = 1) s.p. is I#; ; ~ Bernoulli (3)
ONE-Pass-RT (IZ,0% = ?) s.p. is I¥; x; ~ Uniform (0, 1)
ONE-Pass-R* (IZ,0% = 4—§) s.p. is I}; x; ~ Uniform (0.25,0.75)
ONE-Pass-R* (IZ,0% = @) s.p. is I}; x; ~ Uniform (0.40, 0.60)
ONE-PASs-R™ (Ig)‘,cr2 = Tﬁm) s.p. is IZ; x; ~ Uniform (0.45,0.55)
ONE-PASs-R™ (Ig)‘,cr2 = 30000) s.p. is IZ; x; ~ Uniform (0.49,0.51)

144

Table 6.4: Families of QUBO problems used to evaluate the proposed one—pass heuris-
tics.

Families of Number of | Optimum Variables
QUBO Problems Problems Known (n)
Benchmarks 143 69 20 to 6000
Randomly generated 3728 285 25 to 30000
MAX-Clique 138 119 28 to 4000
MIN-VC (planar) 400 400 | 1000 to 4000
MAX-CUT 375 36 125 to 10000
MAX-2-SAT 674 360 50 to 400
| All Problems || 5458 | 1269 | 20 to 30000 |

The application of an immediate rounding step to the variables, which were not yet
fixed by the one-pass procedure, that have partial derivatives with constant sign (thus,
satisfying the local optimality conditions for any 0-1 value of the remaining variables),
proved to be useful in 16.3% of the cases, while it returned worse results in 5.4% of the

cases. Formally, these results can be described as

|{ fec.1€1| f(ONe-Pass-R* (1)) > f(ONE-Pass-R(1)) }|

eI = 16.3%,
_ Rt = _ _
|{ rec.1€l| f(One-Pass ITCH(H.‘T)) f(ONE-Pass-R(1)) } | _ 78.3%,
_ Rt _ _
|{ fec,1€l| f(One-Pass ITCHEI.‘T))<]‘(ONE Pass-R(I)) }| _5.4%,

where C corresponds to the complete set of 5458 test problems, and I corresponds to
the set of 19 initialization procedures considered.

In the current implementation, the average computing time of the heuristics, which
consider the local optimality conditions, is 39.5% higher than the corresponding heuris-
tic versions that do not consider the optimality conditions. For this reason, and because
the solutions returned are typically similar, the computational experiments and analysis

that follow do not include these (ONE-PASs-R™) heuristics.

6.1.4.1 Computing time

The worst complexity time of all one-pass heuristics implemented is O (n2) All heuris-
tics were implemented using the same data structure (i.e. a triangular dense matrix).
Seven heuristics use the probabilistic approach presented in Section 6.1.2.2, whereas the

remaining nineteen heuristics use the rounding procedures presented in Section 6.1.2.3.

145

The algorithms were implemented in C++, compiled using Microsoft Windows 32-
bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the Microsoft
Incremental Linker (version 6) using the single-threaded run—time library.

All the experiments were found using the same computer system, which is based on
a Xeon 3.06 GHz, 3.5 GB RAM and Windows XP. The previous choices allowed us to
evaluate the heuristics computing times under the same conditions.

Table 6.5 displays average computing times of the one—pass heuristics on several
families of QUBO problems. From the 26 one-pass heuristics tested, Table 6.5 lists the
fastest (average) computing times, the overall average computing times and the slowest
(average) computing times for the various groups of problems.

Table 6.5: Computing time of the one—pass heuristics across several families of QUBO
problems.

Computing Time of the
One—Pass Heuristics having
Families of Fastest | Average | Slowest
QUBO Problems Time Time Time
Benchmarks 0.2s 0.4s 0.6 s
Randomly generated 1.9s 2.9s 3.8s
MAX-Clique <0.1s <0.1s <0.1s
MIN-VC (planar) 0.3s 0.5s 0.6s
MAX-CUT 0.2s 0.4s 0.5s
MAX-2-SAT <0.1s <0.1s <0.1s
| All Problems || 1.5s | 24 s | 3.1s |

If all problems are considered, it can be seen that the average running time of the
complete set of heuristics varies between 1.5 and 3.1 seconds. The more time consuming
tests occurred in the large randomly generated cases, clearly indicating that the number
of variables (n) is highly correlated with the heuristics computing time.

Figure 6.3 displays the average computing time of the fastest, slowest and average
case one-pass heuristics according to the number of variables. The following average

computing times are displayed:
e For QUBOs having 1000 variables, the heuristics time is in the interval]0.0s, 0.2s];
e For QUBOs having 5000 variables, the heuristics time is in the interval [1.2s,4.7s];

e For QUBOs having 10000 variables, the heuristics time is in the interval [8s, 17s];

146

e For QUBOs having 30 000 variables, the heuristics time is in the interval [96s, 272s].

300 sec ‘
250 sec
200 sec

150 sec A

100 sec

50 sec

Computing Time of One-Pass Methods

OsecVr = VYV'TVD T T ; T
0 5000 10000 15000 20000 25000 30000

Number of Variables (n)

\-O-average case —#-fastest heuristic slowest heuristic\

Figure 6.3: Average computing time of the (fastest, slowest, average case) one-pass
QUBO heuristics according to the number of variables (n).

It should be remarked the fact that the test problems include instances with very
large density. For instance some of the 30000 variable’s problems have 90% density,
thus implying that the associated QUBO has almost 405 million nonzero quadratic

terms.

6.1.4.2 Quality of solutions

The quality of the proposed one—pass heuristics can be analyzed through the normalized
or the relative error, earlier introduced in Section 6.1.3.

Table 6.6 lists the approzimate expected relative and normalized errors of the studied
set of one—pass heuristics, for several families of QUBO problems. It is interesting to
note that the performance of the heuristics varies considerably using these two criteria.
For instance, the most “difficult” class of problems studied for the proposed one-pass
heuristics is MAX-Clique if the relative error is considered, and is MAX-CUT if the
normalized error is used instead.

Optimality is known for 23% of the problems that were used for testing. The best

147

Table 6.6: Quality of the one—pass heuristics across several families of QUBO problems.

(a) Approximate relative error.

Relative Error G of One—Pass Heuristics having
Families of Larger Average Smaller
QUBO Problems Error£St. Dev. Error£St. Dev. Error£St. Dev.
Benchmarks 5% + 12% | 4% =+ ™% | 23% + 4.5%
Randomly generated || 29% + 24% | 256% + 18% 21% =+ 14%
MAX-Clique 32% £+ 20% | 28% £+ 15% 25% =+ 12%
MIN-VC (planar) 30% + 9% | 6% £+ 1.6%| 01% + 0.1%
MAX-CUT 8% + % | 6% =+ 3% | 44% £+ 2%
MAX-2-SAT 5% + 1% | 4% =+ 8% | 2% + 3. 7%
[All Problems [22% + 23% [18% + 18% | 157% £ 15.2% |

(b) Approximate normalized error.

Normalized Error W of One—Pass Heuristics having
Families of Larger Average Smaller

QUBO Problems Error£St. Dev. Error£St. Dev. Error£St. Dev.
Benchmarks 3% =+ 3% 1% + 1% [0.7% =+ 0.6%
Randomly generated || 1.4% + 2.6% | 0.7% + 12% | 05% =+ 0.8%
MAX-Clique 3% + 14% | 0.8% =+ 3% 1 04% £ 0.9%
MIN-VC (planar) 25% + 8% 5% £+ 13% | 0.0% + 0.1%
MAX-CUT 13% =+ 5% | 10% =+ 3% | 9% =+ 2.6%
MAX-2-SAT 8% =+ 6% 6% =+ 5% | 4.7% £+ 4.0%

[All Problems [4% + ™% [24% £ 41%[17% = 3.0% |

known solutions of the open problems were found by meta-heuristic approaches, either
obtained from the literature or by using our own implementations.

The expected approximate relative error of the one-pass heuristics studied is partic-
ularly high for the groups of randomly generated problems and for MAX-Clique, having
respective expected errors in [21%,29%] and [25%, 32%)]. However, for the remaining
classes of QUBOs the expected relative error is inferior to 10%, and if the best one—pass
heuristic is considered the error is smaller than 5%.

The expected approximate normalized error of the one-pass heuristics studied is
smaller than 3% for the randomly generated problems and for the MAX-Clique prob-
lems. The “best” one—pass heuristic studied provides an expected error smaller than
0.7%, and variance smaller than 0.9%, for the groups of randomly generated prob-
lems, benchmark problems, MAX-Clique and MIN-VC of planar graphs. The expected
normalized error for MAX-CUT problems is in the interval [7.9%, 13%)], and for MAX-
2-SAT problems is in the interval [4.7%, 8%].

148

Table 6.7 gives the one-pass heuristics that minimize the approximate relative and
normalized errors. There is no clear winner for each class of QUBO problems analyzed.
The probabilistic based methods are somewhat superior for the standard benchmarks
and for MIN-VC of planar graphs. However, in general the rounding methods provide
better quality solutions.

Table 6.7: One—pass heuristics that minimize the approximate errors of several families
of QUBO problems.

Families of Heuristic that Minimizes the Fxpected
QUBO Problems Relative Error (G) | Normalized Error (K)
Benchmarks ONE-PAss-P-N(o? = %) ONE-PAss-P-N(o? =)

Randomly generated | ONE-PASS-R(I5,02 = 1) | ONE-PAss-R(l4)
MAX-Clique ONE-Pass-R(12) ONE-PASS-R(I5,07% = 1)
MIN-VC (planar) any probabilistic any probabilistic
MAX-CUT ONE-PASs-R(I3) ONE-PASs-R(I4)
MAX-2-SAT ONE-PASs-R(I5,0° = ONE-Pass-R(I5,0? = 1)

P 1 s =
IN—"[~—

All Problems |

ONE-Pass-R(I5, 0% = ONE-Pass-R(14) |

The rounding heuristics ONE-PASS—R(I5, o = %) and ONE-PAsSsS-R(I;) frequently
provide the best quality solutions of the one-pass methods that we have studied. It
should be remarked the fact that the later heuristic does require the use and mainte-
nance of simpler data structures, and therefore it produces heuristic solutions a little
faster than the former heuristic. For instance, the average computing time of ONE-
Pass-R(1y), on the larger QUBOs having 30 000 variables and 90% density, is 164 sec-

onds, whereas for the heuristic ONE—PASS—R(I5,J2 = %) the average computing time

on the same large problems is 174 seconds.

6.1.5 Comparing proposed methods to other results from the litera-

ture

Several one—pass heuristics for QUBO have been proposed in the past. Boros et al. [58]
proposed the DDT heuristics (see Section 6.1.1). Merz and Freisleben [178] proposed
ONE-PAss-R(I3), i.e. a steepest descent (greedy) heuristic having as starting point the
center. Glover et al. [107] proposed a series of one-pass heuristics based on the posiform

representation of the problem.

149

Since a quadratic pseudo—Boolean function has possibly many posiform represen-
tations of it, then the performance of the proposed heuristics, based on this structure,
usually differs for different posiforms representing the same function. For this reason,
we have benchmarked the proposed one-pass heuristics only with those test problems
previously studied by Glover et al. [107].

It should be remarked that the DDT heuristics also assume a posiform representation
for the function. In this section we have only investigate the special DDT heuristic
based on the bi-form (see Section 8.1) representation (i.e. ONE-PAss-DDT-B), which

is uniquely defined for every quadratic pseudo—Boolean function.

Based on the full range of computational testing conducted during the heuristics
selection phase, Glover et al. [107] conclude that their proposed methods A2 (A2n and
A2t) and V3 (V3n and V3t) are effective methods for the problems that they have
tested. Considering both solution quality and computing time, A2n gave overall the
best performance, followed closely by A2t, V' 3n and V' 3t, in this order. For comparison
with our proposed one-pass methods, we shall use a heuristic based on the maximum of
the four best one-pass heuristics proposed by Glover et al. [107]; we call it best (42, V' 3).

The solution quality of the four one-pass heuristics A2n, A2t, V3n and V'3t has been
compared with the best known solutions on standard publicly available benchmarks.
All the test problems considered are mazximization QUBO problems. These benchmarks

include the following groups of problems (see Table 3.2 in Section 3.1.1):

e Beasley [37] QUBO problems — Consists of a set of 60 randomly generated test
problems, where the number of variables n varies from 50 to 2500, and having
10% density; the coefficients of the multilinear representation of the functions

range between -100 and 100;

e Fy from Glover et al. [108] — Consists of 5 problems having 500 variables with den-
sities ranging from 10% to 100%; the linear coefficients are uniformly distributed

in [—75,75] and the quadratic coefficients are uniformly distributed in [—50, 50].

e (1 from Glover et al. [109] — Consists of 10 problems having 1000 variables with

densities ranging from 10% to 100%, but only 5 instances are considered in [107];

150

the coefficients have the same distributions as those of problems belonging to

group Fj.

e B from Glover et al. [108] — Consists of 10 problems with all nonzero quadratic
coefficients being negative, 100% dense problems with the number of variables

ranging from 20 to 125.

e Iy and Gy from Kochenberger et al. [158] — Consists of 10 problems with all
nonzero quadratic coefficients being negative, respectively having 500 and 1000

variables, and densities varying from 10% to 100%.

Best known values of the previous problems are listed in Table A.1, Table A.2, Table
A.3 and Table A.4 of the Appendix.

We have noticed that the quality of solutions of the one-pass heuristics depends
heavily on the distribution of the coefficients sign of the quadratic terms of the mul-
tilinear polynomials. Problems in the Beasley family, F; and G; have approximately
50% positive nonzero quadratic terms (i.e. p = 0.5), whereas problems in the groups
B, F» and G5 have no positive quadratic terms (i.e. 5 = 0.0).

Table 6.8: Quality of solutions comparison between the proposed methods and the
one-pass heuristics from the literature.

One-Pass Ezp. Relative Error (G) for || Exp. Normalized Error (K) for
Heuristic p=05] 7=0.0 p=05] 2=0.0
best(A2, V3) ([107)) 8.5% 12.4% || 8.21% 0.049%
ONE-PAss-DDT-B ([58]) 1.1% 31.2% || 1.01% 0.146%
ONE-Pass-R(I1) ([178)) 1.2% 32.1% || 1.04% 0.149%
ONE-PASS-R(I3) 1.0% 11.7% || 0.90% 0.041%
ONE-Pass-R(1y) 0.9% 13.1% || 0.87% 0.050%
ONE-Pass-R(I5,0? = 1) 1.1% 12.7% || 1.01% 0.048%
ONE-Pass-P-N(o? = o) | 0.8% 10.8% || 0.79% 0.043%

Table 6.8 displays the approximate relative and normalized errors of several one—
pass methods for the groups of problems listed above. It can be seen there that, for
the analyzed groups of problems, the probabilistic based one-pass heuristic ONE-PASS-
P—N(a2 = 4%) has the smallest expected relative errors for both groups of problems
having p = 0.5 and for problems having p = 0.0. This heuristic has also the smallest

expected normalized error for problems having p = 0.5.

151

ONE-PAss-R(I3), followed very closely by the probabilistic heuristic, has the small-
est expected normalized error for problems having p = 0.0.

It can also be seen that the probabilistic heuristic and the rounding heuristics ONE-
Pass-R(Ix) (k = 3,4) and ONE-PASS-P-N(0? = 1) have similar performance.

It is interesting to note that I3 is a starting point which is determined by parameter
p (see Table 6.2), and therefore it is somewhat expected that the quality of solutions
provided by this heuristic is improved according to the value of the parameter p con-
sidered.

The one—pass methods from the literature are only good choices for one of the
groups, e.g. best(A2,V3) is good for problems having p = 0.0, and both ONE-PASs-

DDT-B and ONE-PAss-R(I;) are good options for problems having p = 0.5.

6.2 Local-search heuristics

In this section, a large family of monotone heuristics is considered, in which the value of
f is increased iteratively, by changing the value of only one of the variables (procedures
of this type are sometimes called local search or 1-opt in the literature). We focus on
variants of local search in which we stop only if no further improvement can be achieved
by changing the value of a single variable. The main aim of this study is to evaluate
a new family of starting point and variable selection techniques, and to demonstrate
that they can substantially improve the effectiveness of local search methods without
diminishing their efficiency.

Let us remark that the considered local search procedures have no theoretical guar-
antees to terminate in polynomial time (in terms of the size of the input). To achieve
potentially faster, polynomial time termination, one may change the stopping criterion,
and have the procedure stop after a certain (polynomial number) of iterations.

In a variant of this type (so called one—pass procedures) once a variable received
a binary assignment, it is not changed subsequently (see e.g, [58, 107, 178]). Hence,
such one-pass algorithms terminate in at most n iterations. We have examined a large

family of one—pass heuristics in Section 6.1.

152

In the next subsection we describe the proposed family of heuristics, and in the
subsequent subsections we thoroughly analyze them by experimenting on large number
of benchmark problems from the literature as well as on randomly generated problems
sets. As our analysis shows, there are substantial differences depending on how we
choose the starting point for our procedure, as well as on the strategy applied to choose
a next variable and its value. Finally, we compare the results of the best heuristics
we found to the best results and methods from the literature, and demonstrate that
despite the simplicity of this procedure, it still performs quite competitively, even with

more sophisticated (and hence more time consuming) approaches.

6.2.1 Methods

In this section we describe a parametric family of local search heuristics for QUBO, and
the motivating mathematical theory behind the choices we propose for the parameters.
6.2.1.1 Basic concepts and notations

To measure computational complexity, let us denote by w;(f) the number of occurrences

of variable z; in the polynomial expression (1.5) of f, i.e.,

wilf) = 1+ [{(i,5) |1<i<
{(,7) 11<i<

Jj<mn, ¢; #0} if¢ #0, and

Jj<mn, ¢ #0} otherwise.
Let us denote by size(f) = > 1, w;(f) the “length” of the polynomial expression of f.

Binary vectors, no single component of which can be changed so as to decrease the
value of a pseudo—Boolean function f, are called local minima of f. It should be noted
that the number of local minima can be exponentially large (see [191]) and that the
computational complexity of finding a local minimum of a quadratic pseudo—Boolean
function is open (see e.g. [194]). It will be seen in the sequel that the large volume
of computational experience carried out for finding a local optimum of a quadratic
pseudo—Boolean function, indicates clearly that in most cases such a local optimum

can be obtained efficiently. Moreover, by choosing carefully the starting point and

153

the sequence of local improvement steps, it will be seen that usually the value of the
function in the local optimum obtained in this way is low.

The mathematical property, which makes it possible that the above described sim-
ple monotone procedure works successfully, is the multi-linearity of pseudo—Boolean
functions.

Let us consider the partial derivatives A; (i = 1,---,n), given by (4.4), of a
quadratic pseudo—Boolean function f. Let us note that the residual function, 6; =
f — x;A; does not depend on variable x;, for ¢ = 1,--- ,n, and hence the character-
ization of local minimum of f follows immediately from the necessary conditions of
optimality established by Proposition 4.1 (see Section 4.2).

The above simple characterization serves as a basis for a number of heuristic algo-
rithms in the literature. The core of such procedures is the following local improvement
along a component for which the corresponding necessary condition (4.3) of optimality

is violated:

x' = IMPROVE(f,x,1)

Input: A quadratic pseudo—Boolean function f, given by (1.5), and

a vector Xx.

Main Step: Obtain x’ from x by switching the value of its ith com-

ponent to 0 if A; (x) > 0 and to 0 if A; (x) < 0.

Output: Vector x’.

In the family of heuristics considered, we shall produce a finite sequence x*¥) of vec-
tors for which x(**1) = IMPROVE(, x(k),i(k)), and consequently f (x*¥)) > f (x(+1)
hold for every k. We can obtain a uniquely described heuristic procedure by further

specifying
(i) how to choose x(©);
(ii) how to choose the index iy; and

(iii) when to stop.

154

Before going into these details, let us note that the above discussion did not really
utilize the fact that variables take only binary values. In fact, (1.5) is a real-valued
expression, and can be evaluated for an arbitrary real vector x € U", just like the
expressions of A;, 6;, the local optimality conditions, and IMPROVE(f, x, 7).

The continuous extensions properties of pseudo—Boolean functions (see Section 4.7)
suggest that we could also start from a fractional vector p € U™ and use IMPROVE to

obtain a “better” binary vector.

Proposition 6.3. Given the expression (1.5) of a quadratic pseudo—Boolean function
f and a vector p € U™, a binary vector x € B"™ for which f (x) < f (p) can be obtained

in O (size(f)) time, by applying IMPROVE at most n times.

Proof. Let us start withx(®) = p, and let 7 = (g, - -+ ,i¢) be a permutation of the indices
of the fractional components of p. Let us apply then xU*1D = ImprovE(f, xU), i;) for
j=0,---,t (we have t < n), and let x™ = x(+1) Clearly, for any permutation 7 of
the fractional components of p we obtain a binary vector x™ satisfying the claim in the
statement. Furthermore, in O (size (f)) time we can build a data structure associating
variables with their occurrences, and holding the values of f and A; fori =1,--- |n
at vector p. In the subsequent calls of IMPROVE we update these values, using the
previously built data structure. Clearly, in the jth call of IMPROVE computations
depend only on the occurrences of variable z;;, and thus this step can be executed in
(0] (wij (f)) time. Consequently, the total computational time is limited by O (size (f)).

O

The procedure described in the above proof is in fact a simple variant of the heuristic
algorithms we consider in this paper. It is known also as pseudo—Boolean rounding (see
Section 4.7). An immediate corollary of the above is the fact that optimizing a pseudo—
Boolean function over the unit cube or over its extreme points results in the same
optimum.

Let us remark that while a violation of the local optimality conditions (4.3) at a
binary vector implies A; # 0 for some index i = 1,--- , n, the same does not necessarily

hold true at a fractional vector. For instance, if f (x1,x2) = x1 + z2 — 4122 then we

155

have Ay (%, %) = Ay (i, i) = 0, even though the fractional point p = (%, %) is not a
local maximum. This implies that special care has to be taken when selecting index %

for IMPROVE, whenever we start with a fractional vector.

6.2.1.2 Algorithms

We shall describe bellow a general outline of the proposed family of algorithms. These
procedures are based on iteratively calling IMPROVE. There are however a great number
of possibilities on the way to initiate the algorithm, and to choose an index for IMPROVE.
The algorithms will be described using three independent parameters. First, a method
will be specified by the way it chooses the initial vector x(©) € U”; we shall consider a
set 1 of various alternatives for this choice. Let us remark that in view of Proposition
4.6, the initial point x(9) does not have to be necessarily binary, but can be an arbitrary
point of the unit cube. Second, the preference method P will specify the subset S C'V
of preferred indices, from which the particular candidate selection method C (our third

parameter) chooses an index for IMPROVE.

AvcoriTam(ILP,C)

Input: A quadratic pseudo—Boolean function f, given by (1.5).

Initialization: Choose an initial vector x(©) € U™ by method I, and

set k=0 and H = 0.

Step 1: Choose a subset S C V by preference method P. If S = 0,
then STOP, and finish with Output.

Step 2: Otherwise, choose an index i, € S by method C.
Step 3: Set x*+*1 = ImproVE(f,x*) 4y), and H = HU {i},}.
Step 4: Set k =k + 1, and return to Step 1.

Output: Vector x*).

156

The detailed description of the parameters selection methods will be given in the

next subsections.
Initialization

The description of four starting points (1, Iz, I3 and I4) considered in the local
search heuristics studied is given in Table 6.2. We also consider the starting point Ig
(Random), ie. x(© = (&,---,&,), where &, i = 1,--- ,n are independent, random

variables, uniformly distributed in U.
Candidate Selection

In order to increase the value of the function f, by changing the value of a variable,
the selection of that variable has to balance computational time and gain in function
value.

In what follows, we shall use the quantities d; (p) previously defined in (6.10), which
measure the size of local improvement when changing only one component (optimally)
of point (p).

Let us associate to a given function f and vector p the set

I(f,p)={il|di(p) >0}

containing all indices at which we could decrease the value of the function by a local
improvement step. When determining the “pool” of candidate variables to which the
IMPROVE routine will be applied we shall consider two basic alternatives (see Table 6.9).
In the first one, the pool will consist simply of I(f,p). In the second one, the pool will
be restricted to those elements of I(f,p) to which the IMPROVE step has not yet been
applied. In Table 6.9, H stands for the set of those variables on which transformations
were carried out in previous steps.

Once the pool S is defined, we have to define the criterion which will determine the
choice of the variable to serve as a “pivot” to which the IMPROVE routine is applied.

This decision is based on the one hand on the expected improvement in function value,

Table 6.9: List of target sets considered in the computational experiments.

P1:

Pz:

Pool of Candidate Variables P

S =1(/,p)-
S=I(f,p)N(V\H) if H#V, and S = I(f, p) otherwise.

157

and on the other hand on the computational effort of applying this selection step. The

four criteria examined are shown in Table 6.10.

Table 6.10: Criteria list of pivot selection considered in the computational experiments.

Cz:
C3:

C4:

Alternatives C for Pivot Selection

: Choose the smallest index 4 such that d;(p) = max;cg d;(p).

Choose the smallest index in I(f,p) N S.

Let j be the index of the last pivot, and let S’* = {i € S | i > j}
and S~ = {i € S | i < j}. If I(f,p) N S’T # O choose the
smallest index in this set. Otherwise, choose the smallest index in
I(f,p)NS/~.

Choose randomly an index in I(f,p) N S.

Algorithm Specification

The combinations of the five initialization alternatives I, the two variable pool se-

lection alternatives IP (see Table 6.9), and the four variable selection alternatives C (see

Table 6.10), define 40 different variants of ALGORITHM(I,P,C). We shall label these

variants by A;p.c, where i € {1,2,3,4,6}, p=1,2 and c € {1,--- ,4}.

6.2.1.3 Implementation details

In each iteration of a given heuristic, a variable has to be selected from the pool of

candidates, and then assigned the value 0 or 1. To make this procedure efficient, we

used a list structure to associate variables with their occurrences. The adoption of this

158

data structure implies that the list of quadratic terms having both a nonzero coefficient
and the corresponding variable, can be obtained in constant time. Further, we hold the
values of the first derivative functions A; for i = 1,--- ,n at the current vector x’.

Let us analyze the complexity of the steps of ALGORITHM(I,P,C):

Initialization: The initialization time is highly dependent on the method I adopted;
cases I1 and I are computed in O (n) time, and cases I, I3 and I4 are calculated

in O (size(f)).

Step 1: The preference methods P analyzed in this paper consider pools of variables
that are subsets of I(f,p). Since we kept the values of A; for i = 1,--- ,n at
the current vector x’, then by using Lemma 6.4, the set I(f,p) can be defined in

O (n) time.

Step 2: The computing time of the four criteria methods C described in Table 6.10,
depends on the size of I (f, p), implying that at most O (n) time is needed in this

step.

Step 3: Because the first derivative values are held, IMPROVE takes O (1) time. The

values of Aj for j =1,--- ,n are updated in this step as follows:
Aj (x(t)) + (xgﬂ) — ng)) Citj, J > it
A; (X(t+1)) ={ Ay (x), =it
A] (X(t)) + (Z'Ef-i_l) — Z'Ef)) cjit7 j < it

Clearly, this operation takes at most O (w;,) time per variable, implying that this

step takes at most O (n) time.

As a consequence of the previous computing times, each iteration in the loop of

AvLcorITHM(I,P,C) takes at most O (n) time.

The heuristics were implemented in C++, compiled using the Microsoft Windows
32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the Mi-

crosoft Incremental Linker (version 6). The computer used for testing has a Xeon(TM)

159

CPU 3.06 GHz, 3.5 GB of RAM and has installed the Windows XP Professional (version

2002) operating system.

6.2.2 Algorithm selection

The aim of this section is to analyze the relative efficiency of the 40 variants of the
methods described in the previous section.

The different variants of the proposed algorithms have been tested on 125 pub-
licly available benchmark problems, and on additional 4900 randomly generated test
problems having prescribed parameters.

The 125 benchmarks are described in Section 3.1.1 and include the Glover et al.
[108] and the Beasley [37] problems.

2900 of the 4900 randomly generated problems correspond to the Medium fam-
ily described in Section 3.1.2 (see also Table 3.4). The remaining 2000 problems were
generated using the same characteristics as those exhibited by the Medium family prob-
lems, however covering different values of 5 ranging from 0.6 to 0.98. This will allow
us to test the proposed heuristics on problems that cover the full spectrum of p values,
which vary between 0 and 1.

Coincidently all QUBOs above are maximization problems. Any QUBO maximiza-
tion problem represented as a multilinear polynomial of a quadratic pseudo—Boolean
function f can be brought to a QUBO minimization problem just by considering the
symmetric function — f.

We shall present in the sequel the results of the computational testing of variants
of initial point selection, alternatives for selecting the pool of candidate variables, and

for choosing the pivot.

In order to evaluate the performance of the proposed algorithms, it will be useful to
compare the value of the quadratic pseudo-Boolean function in the solution produced
by one of these algorithms with the best value found by existing algorithms.

Since the performance of the Multi-Start Tabu Search (MSTS) routine of Palubeckis

(downloaded from [183]) was found to deliver on the available benchmark problems at

160

least as good solutions as those reported in the literature (e.g., see [187]), we have used
this value as standard for comparisons. For instance, this routine delivered for some
of the sub-families of problems (F; and G2) better values, previously not known (e.g.,
compare with the values in [107]).

Let us denote by z; the best known value of the quadratic function f. The list of
all best values and the corresponding 01 solutions for the test problems used in this
study can be found in [229].

Let 7 denote one of the five possible initialization methods proposed in Table 6.2. Let
p denote one of the two pools of candidates for pivots proposed in Table 6.9. Similarly,
let ¢ denote one of the four criteria proposed in Table 6.10 for choosing a pivot. The
output of algorithm A;). when applied to the quadratic pseudo-Boolean function f
will be denoted by x; .. ¢, and the value of the function f in this point will be denoted
by v; p.c.r. We shall denote by r;, ..r the performance ratio of the heuristic over the
best know value

, def Vip,c;f
r27p7c;f - Zf °

We shall denote the computing time of applying A;), . using a specific computer
system T' by t;,, .r.7; since in this work all the different algorithms will be run on the
same computer system (see Subsection 6.2.1.3), for the sake of simplicity we shall omit
to specify T for each test problem and shall denote the running times by ¢; , ...

If F is a family of quadratic pseudo—Boolean functions used for algorithm testing,
we shall denote by V; ,, ..7 the set of values obtained by applying the algorithm A; , . to
all the test problems f € F. Similarly, V7, .7 will represent the set of values obtained
by applying the algorithms Ay, . for every ¢ € I to every f € F. The notations V7, c.r,
Vi, pe.F, etc. have similar interpretations. We shall also denote by 17, ¢.7 and Ry, c.7,
etc. the sets of computing times, respectively heuristic over best known values, for the
corresponding sets.

Several of the tables below present the statistics of the computational experiments
for some outcome w; y .7, where w can stand for value v, or the ratio r of heuristic over

best known value, or computing time ¢. In these tables (see Figure 6.4) four data are

161

grouped together in a cell. The number in the top left corner represents min Wy pc. 7.
The number in the lower right corner represents max Wi pc.7. The center of the cell

involves the expected values Exp [(W; pc.r)] and standard deviations o (W pc. 7).

min Wy pc,7

Exp (Wi pc.r) £ 0 (Wrpo.F)

max W]ﬁpﬁc;]:

Figure 6.4: Description of the details shown in a cell of a cross-analysis table.

We have applied all the 40 alternatives of the proposed heuristics (corresponding
to the five initialization procedures, two choices of the pool and four possible selection
criteria of the pivot) to the solution of each one of the 5025 test problems in S. The

analysis and selection process described below is based on these 201 000 experiments.
Solution Quality Analysis

Tables 6.11(a) and 6.11(b) below report statistics concerning the sets R; ;, c:benchmarks
and R; p c.random tests Of performance ratios respectively, for the different procedures
1€{1,2,3,4,6},p=1,2, and c € {1,--- ,4}.

It can be seen that the best average values both for benchmark and for random
problems are obtained for ¢ = 1. It can also be seen that the algorithm Aj; is
optimal for both families of problems, and that A1 and A4 1,1 are two other excellent
candidates in both cases.

If the algorithm’s selection criterion is not based on average performance but on high
“worst case” performance (i.e., on assuring the highest minimum performance ratio)
both for benchmark and random problems, then perhaps the best algorithm is A3 ;.

Finally if the algorithm’s selection criterion aims at minimizing variance then again
Ay 1,1 is the best choice for both families of problems.

The minimum performance ratios for the algorithm As 51 in the case of benchmark
problems are comparable with those of Aj 11, but are of somewhat lower quality in the
case of random problems. Therefore, A3 21 will not be included in our selection of best

heuristics.

Table 6.11: Performance ratio sets R; , ..z for algorithms A; pc.
(a) F=benchmarks.

P P>
C1 Ca C3 Cy C1 Ca C3 Cy
47.5% 14.1% 33.8% 25.5% 47.5% | 33.8% 33.8% 33.8%
I 95.8 +9.8% 94.3 £11.3% 93.5 + 13.0% 93.7 £ 12.6% 95.7 + 9.8% 93.1 4+ 13.7% 93.5 + 13.0% 93.1 £ 13.5%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
58.9% 58.6% 39.7% 14.9% 58.9% | 39.7% 39.7% 41.3%
Ig 95.7 + 7.6% 95.1 +9.2% 93.1 4+ 13.0% 94.2 £10.2% 95.1 4+ 8.9% 92.9 4+ 13.5% 93.1 4+ 13.0% 92.6 +13.6%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
76.6% 70.5% 16.6% 66.9% 76.6% | 16.6% 16.6% 67.4%
I 97.7 +5.0% 96.0 4 6.9% 95.2 + 8.5% 95.5 + 7.5% 97.7 + 5.0% 95.3 + 8.6% 95.2 4+ 8.5% 95.8 + 7.0%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
77.3% 61.6% 61.6% 16.3% 77.3% | 61.6% 61.6% 43.3%
I3 96.4 4+ 5.3% 95.1 4+ 8.2% 94.9 4+ 8.3% 93.9 +9.9% 96.4 4+ 5.3% 95.0 4+ 8.3% 95.0 4 8.3% 93.7 +10.9%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
77.3% 61.6% 61.6% 51.9% 77.3% | 61.6% 61.6% 45.5%
1y 97.6 + 5.3% 95.9 4 8.4% 95.8 + 7.7% 94.8 £10.2% 97.5 + 5.3% 95.9 4+ 7.8% 95.8 + 7.7% 94.6 £+ 10.9%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
(b) F=random tests.
P L
Cy Co Cs Cy Cy Co Cs Cy
27.4% 24.6% 10.3% 20.2% 26.8% | 10.3% 10.3% 12.4%
I 88.4 £+ 16.0% 86.2 +18.1% 83.0 £+ 21.2% 84.0 £ 20.1% 87.6 = 16.8% 83.7 £ 20.8% 83.0 £ 21.2% 83.2 +21.0%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
36.3% 24.1% 10.3% 16.6% 25.3% | 10.3% 10.3% 15.3%
Is 88.1 + 14.9% 85.9 + 18.3% 82.9 + 21.3% 83.7 £ 20.3% 85.6 + 18.3% 83.6 = 20.9% 82.9 + 21.3% 83.0 £ 21.3%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
38.3% 28.3% 15.5% 20.4% 33.1% | 15.5% 15.5% 11.0%
I 89.9 + 13.5% 87.5+15.9% 83.0 £+ 21.2% 84.3 +£19.3% 88.5 £ 15.3% 83.7 £ 20.8% 83.0 £ 21.2% 83.1+21.1%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
43.1% 16.4% 13.9% 18.1% 43.1% | 16.4% 13.9% 12.0%
I3 86.9 +15.1% 83.6 = 20.9% 82.8 +21.3% 83.0 £ 21.0% 86.9+15.1% 83.3 £21.2% 82.8 +21.3% 82.8 +21.3%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
38.4% 28.3% 15.5% 22.9% 24.3% | 15.5% 15.5% 17.1%
n 88.7 £ 15.3% 87.7+15.8% 83.1+21.2% 84.6 + 19.0% 87.0 £+ 17.9% 83.9 £+ 20.7% 83.1+21.2% 83.1+21.2%

100.0%

100.0%

100.0%

W
W
W

100.0%

100.0%

100.0%

100.0%

100.0%

W

91

163

Computing Time Analysis

Tables 6.12(a) and 6.12(b) show average computing times in a manner similar to the
way Tables 6.11(a) and 6.11(b) show average solution qualities. It can be seen that for
the benchmark problems the average computing times range from 0.03 to 0.06 seconds,
while for the random problems the times vary between 0.21 and 0.38 seconds. It seems
to us that the differences between the average computing times given by the different
heuristics considered are minimal. Therefore, the final conclusion will be essentially

based on the quality of solutions.
Selected Algorithms

Since the algorithms Ay 11, where I = {2,3,4} were seen to provide both outstand-
ing solution quality and computing time, we shall restrict from here on our attention

to these algorithms. In conclusion the selected algorithms

(i) select as initial point, one identified by any of the three problem-dependent criteria

2, 3 or 4, and

(ii) use as pivot the first (i.e., smallest index) variable — regardless of whether it has or
has not been previously used as pivot — the switching (if it is binary) or rounding

(if fractional) of which gives the maximum objective function increase.

When comparing the three selected algorithms from the point of view of solution
quality, A 11 is best, followed closely by A4 1,1; from the point of view of computing

time Az 1,1 is the leader.
Comparative Performance Analysis

In order to narrow down further the selection of “best” algorithms, we shall reexam-
ine the quality of solutions and the computing times of the three selected algorithms,
as functions of the number of variables n, the density d, diagonal dominance p, and

parameter p defined in subsection 6.2.1.2. By examining the relationship between the

Table 6.12: Computing times T; , .. for algorithms A; pc (I ={1,2,3,4,6}, P ={1,2},and C = {1,--- ,4}).
(a) F=benchmarks.

Py Py
Ch [C3 Cy Ch Cy C3 Cy
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
I 0.04 £0.07s 0.04 £ 0.09s 0.03 £ 0.05s 0.05£0.10s 0.03 £ 0.06s 0.03 £0.06s 0.03 £ 0.05s 0.05 £ 0.09s
0.23s 0.33s 0.20s 0.34s 0.22s 0.23s 0.20s 0.30s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
Ig 0.04 £0.07s 0.05 £ 0.09s 0.03 £ 0.05s 0.05£0.10s 0.03 £ 0.06s 0.03 £0.06s 0.03 £ 0.05s 0.05 £ 0.09s
0.23s 0.34s 0.20s 0.36s 0.22s 0.23s 0.20s 0.31s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
I 0.05 £ 0.09s 0.05£0.11s 0.04 £0.07s 0.06 £0.12s 0.04 £ 0.08s 0.04 £0.08s 0.04 £0.07s 0.06 £0.11s
0.33s 0.44s 0.28s 0.41s 0.28s 0.33s 0.27s 0.36s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
I3 0.03 £ 0.06s 0.05 £ 0.09s 0.03 £ 0.06s 0.04 £0.08s 0.03 £ 0.06s 0.03 £0.07s 0.03 £ 0.06s 0.04 £0.07s
0.28s 0.39s 0.23s 0.28s 0.27s 0.27s 0.24s 0.28s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
Iy 0.05 £ 0.09s 0.05+£0.10s 0.04 £0.07s 0.06 £0.12s 0.04 £ 0.08s 0.04 £0.07s 0.04 £0.07s 0.06 £0.11s
0.31s 0.39s 0.30s 0.41s 0.30s 0.31s 0.28s 0.36s
(b) F=random tests.
P P>
C1 Cy C3 Cy 1 [C3 Cy
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
I 0.25 £ 0.25s 0.24 £0.26s 0.21 £0.22s 0.28 £ 0.28s 0.25 £ 0.25s 0.22 £ 0.23s 0.21 £0.22s 0.28 £0.28s
1.06s 1.76s 1.00s 1.34s 1.03s 1.36s 1.00s 1.30s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
Ig 0.25 £ 0.25s 0.25 £0.26s 0.21 £0.22s 0.29 £ 0.28s 0.25 £ 0.25s 0.22 £ 0.23s 0.21 £0.22s 0.28 £0.28s
1.05s 1.94s 0.99s 1.38s 1.05s 1.33s 1.02s 2.00s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
I 0.35£0.35s 0.33 £0.35s 0.30 £0.31s 0.38 £0.37s 0.34 £0.35s 0.31 £0.32s 0.30 £0.31s 0.38£0.37s
1.47s 2.17s 1.36s 1.69s 1.48s 1.73s 1.36s 1.67s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
I3 0.23 £0.25s 0.24 £0.28s 0.22 £0.24s 0.24 £0.27s 0.23 £ 0.25s 0.23 £ 0.25s 0.22 £0.24s 0.24 £0.27s
1.38s 2.80s 1.38s 1.70s 1.39s 1.58s 1.39s 1.97s
0.00s 0.00s 0.00s 0.00s 0.00s | 0.00s 0.00s 0.00s
Iy 0.35£0.35s 0.34 £0.35s 0.30 £ 0.32s 0.38 £0.37s 0.34 £0.35s 0.31 £0.33s 0.31 £0.32s 0.38 £0.38s
1.45s 2.15s 1.55s 1.70s 1.50s 1.70s 1.51s 2.19s

791

165

Table 6.13: Correlations between quality of solutions (r;1.1, ¢ = 2,3,4), computing
times (¢;1,1, @ = 2,3,4) and input parameters (n, d, p and p) of the test problems in S.

21,1 | T31,1 | Ta11 to11 | t3,1,1 | fa11
—0.08 | —=0.04 | —0.07 0.77 0.71 0.77
—0.10 | —0.08 | —0.09 0.47 0.44 0.47
0.84 0.86 0.84 0.00 —0.12 | 0.00
0.13 0.13 0.13 —0.18 | —=0.17 | —0.18

TS

variables r and t, and the variables n, d, p and p, on the dataset S, we find the corre-
lations of Table 6.13.

Clearly, the most influential factor for the solution quality r is the parameter p,
while n and d are the most influential factors for the computing time t. It is also clear
that diagonal dominance p is less influential (both on solution quality and time) than
the other three parameters. Finally, the negative role of n and d on solution quality,
which is to be expected, can be seen to be present in the table, but at a very low level.
We can also remark that the influence of p on time is negligible.

Since p emerges as the critical parameter on which the solution quality parameter
depends, we have analyzed the behavior of the 3 functions Exp [r;11] (¢ € {2,3,4}), as

functions of p.

100% 7H

95% -
90% -
85% -

80%
ﬂ f —A211
75% —0—A311

——A411

Explrizal

70% -

65% -

60% A\

55%

50%

Figure 6.5: Exp[ri11], ¢ € {2,3,4}, values as a function of p in the random test
problems.

166

It can been seen from the graphs of these three functions (Figure 6.5) that the
algorithms giving on the average the highest quality solutions depend on the values
of p as shown in Table 6.14. In particular it can be seen that algorithm A is an
optimal one for any value of p > 0.075. Therefore, the algorithm starting from the
point X = (p,---,p), and performing a sequence of rounding or switching operations
on a greedy selected pivot (regardless of whether it has or it has not been used as a

pivot) provides a solution with the highest expected value.

Table 6.14: Algorithms returning on average the highest value for the test problems,
according to the p parameter.

| Values of p | “Best” Algorithms |
p < 0.075 A371)1
0.075 < p < 0.275 As i1
0.275 =2 p < 0.525 A2)171, A4)171
0.525 > p A2 11,A311,A411

The rest of this paper will deal with this algorithm. For a better identification and
future reference, we named the algorithm Aj ;1 as the ACcelarated Sign Initiated Open
Minded heuristic (or ACSIOM in short). In sections that follow, the performance ratio
r and computing time t of heuristic ACSIOM is denoted as racsroym and tacsrom

respectively.

6.2.3 Parametric analysis of heuristic ACSIOM

The goal of this section is to analyze the computing time t of the proposed heuristic
ACSIOM (i.e. A1 1) and the quality 7 of solutions provided by it, in terms of the input
parameters n, d, p and p describing the datasets. The proposed heuristic was tested on

a set 7 of 8905 instances consisting of the following four groups of problems:

(i) The 125 benchmark problems described in the previous section.

(ii) The 2900 randomly generated problems corresponding to the Medium family, and
described in Section 3.1.2 (see also Table 3.4). The reason for not including the
random test problems with p > 0.6 considered in Section 6.2.2 is that these cases

have an excessively favorable behavior when ACSIOM is applied to them (their

167

heuristic values being the same as those given by the best known solutions in all

but one of the 2000 cases).

(iii) The group of 5400 randomly generated problems corresponding to the Small
family, and described in Section 3.1.2 (see also Table 3.3). Because of the relatively
small size of these problems it can be assumed that the best known solution values

are actually the exact optimum of the problem.

(iv) The group of 480 randomly generated problems corresponding to the Large family,
and also described in Section 3.1.2 (see also Table 3.5). All the 160 test problems
in the second subgroup turn out to be submodular; using a depth first search enu-
merative procedure, we were able to find the optimal solution of 60 test problems
in this group. It is interesting to notice that the expected values of p in the three

subgroups are respectively 0.5, 0.0 and 0.2.

6.2.3.1 Quality of solutions

The correlation analysis aimed at clarifying the influence of various input parameters of
Section 6.2.2, included test problems with various values of p, in particular with values
exceding 0.6. In this subsection we shall analyze the role of the input parameters using
the 8905 test problems in 7 described above.

If we compare the correlation results in Table 6.13 (referring to the test set S), with
those in Table 6.15 (referring to the test set 7°), one can see that the values are similar,
except for the correlation between the number n of variables and the performance ratio
racsiom, which decreased from —0.08 to —0.53. There are two explanations for this
substantial change. On the one hand the datasets considered were restricted to problems
with p < 0.6, while on the other the hand the variance of the number of variables was

considerably higher than in the first one.

Figure 6.6 presents the number of problems for which the value provided by ACSIOM
is within a given fraction of the best known solution. It can be seen that for 90% of
the problems in S the corresponding heuristic value is within 26% of the best known

solution. More precisely:

168

Table 6.15: Correlations between quality of solutions (racsroar), computing times
(tacsrom) and input parameters (n, d, p and p) of the test problems in 7.

Percentage of Problems

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

—T
——small
—o—medium
—o—large

—e— benchmark

racsioMm || tacsiom
n —0.53 0.73
d —0.12 0.15
P) 0.89 ~0.25
D 0.20 ~0.09
m—-ﬂ:%]
P, R
AN
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ;.
I Acsiom

Figure 6.6: Distribution of problems according to racsronm-

169

(i) For the benchmark problems (group (i)) the performance of ACSIOM is within

10% of the best known solution in 90% of the cases.

(ii) For the Medium problems (group (ii)) the performance of ACSIOM is within 36%

of the best known solution in 90% of the cases.

(iii) For the Small problems (group (iii)) the performance of ACSIOM is within 3%

of the best known (probably optimal) solution in 96% of the cases.

(iv) For the Large problems (group (iv)) the performance of ACSIOM is within 28.5%

of the best known solution in 90% of the cases.

It is interesting to remark that relatively speaking, the performance of ACSIOM
in the class of benchmark problems was much better than in the class of randomly
generated Medium and Large problems. These results are indicative of the fact that
the study of heuristics of QUBO needs to include problems with different characteris-
tics than the ones exhibited by the benchmark datasets. In the family of Small test
problems, algorithm ACSIOM returns on average a value within 1% of the best known
solution, for every combination of the number of variables (from 20 to 100 in steps
of 10), densities (from 10% to 100% in steps of 10%), and magnitudes of quadratic

coefficients (see Table 3.3).

The family of Medium size problems was partitioned into four subsets according to

the values of p:

Medium = Medium,<o.15 U Mediumg 15<,<0.3 U Mediumg 3<,<0.45 U Mediumg 45<,<0.6-
(6.13)
The analysis of the performance ratio racsrom as a function of the number of
variables n and density d is reported in Table B.2 of the Appendix. Each cell of these
tables refers to a group with between 35 and 40 test problems.
It can be seen in the tables that the performance ratio is highly dependent on the

parameter p, confirming the conclusions of Subsection 6.2.2 of this paper.

170

Algorithm ACSIOM performs considerably better for low density problems (d =
20%) than for high density problems (d = 100%), this difference being substantially
reduced when the parameter p increases. This is important since the type of problems
in numerous applications (e.g., Ising model ([32]), maximum clique in sparse graphs)
the quadratic model is of low density. In general, the ACSIOM heuristic decreases the
performance ratios whenever the density increases.

The algorithm performs considerably better in problems with 500 variables than
in problems with 2000 variables, this difference being substantially reduced as the
parameter p increases. In general, the ACSIOM heuristic decreases the performance

ratios whenever the number of variables is increased.

Figure 6.5 of Section 6.2.2 and the previous analysis suggest that the performance
ratio of r4csrom has a good chance to be well approximated by using some regression
estimator, depending on the input parameters.

If p > 0.525 then racsronm is very close to 100%, showing that the heuristic value
is independent of the number of variables or density for this class of problems.

By using a least squares fitting, several linear regressions of racsron were com-
puted, the independent variables being: n, d, p and p. Given the regression population

F, we would like to approximate r4csroar by using the linear estimator

TACSIOM = Qg + AN + agd + a,p + app,

where a,, a4, a, and a, are the coeflicients of the regressors (n, d, p and p, resp.) and
ap is the intercept value of the estimator, when all the independent variables have a
zero value.

The first regression was found for the family of Medium problems with p < 0.525.
The ANOVA test shows that the model is significant at the 95% level, and the R? value
is high, but we noticed that the P—value associated with the coefficient of the diagonal
dominance (a,) is 0.7081, this being a clear indication that p is not a reliable parameter
for the model because it has “too much” dispersion/variance.

In view of the high P—value of the parameter p, it was decided to eliminate it from

171

the model. The new regression results are shown in Figure B.1 of the Appendix; the
new model is of very high quality having a standard error of 0.0605, a R? of 0.7880, and
a correlation of 0.8877 between the estimator (Facsroar) and the observed (racsroa)
values.

The final regression model corresponding to the heuristic ACSIOM is

R 0.68725 — 2.9132 x 10~5n — 0.079109d + 0.75261p, p < 0.525
rAcSIOM =

1, otherwise.
As one can traditionally expect, both the number of variables (n) and the density

(d) are negatively correlated with the estimator. It is to be remarked that the coefficient

of p is positive and shows the important role played by this parameter.

6.2.3.2 Computational efficiency

We shall deal in this subsection with two important questions concerning the efficiency
of the proposed local search algorithm ACSIOM. First, we shall analyze the computing
time, and second we shall analyze the number of times the value of a variable was
switched between 0 and 1, i.e. the number of times the routine IMPROVE was called for
a given variable. The importance of the second question comes from the fact that the

complexity of finding a local optimum of a QUBO is not known (see [194]).
Computing Time

We have analyzed the dependence of the computing time on three key parameters:
the number of variables n, the density d, and p as defined in (3.1). Table 6.16 reports
statistics on the computing times tacgronr of problems in the large family, for various
choices of n and d.

The reason for which p was not included in this analysis is that the difference in
times for various values of p turned out to be minuscule (e.g., at most two tenths of a
second in the problems with 5000 variables).

It can be seen in Table 6.16 that computing times increase with increased values of

n and d. As a matter of fact, it was seen that the correlation between the computing

172

Table 6.16: Number of variables (n) versus density (d) analysis on the heuristic com-

putation times (tacsron) for the large family of test problems.
d=25% d = 50% d="175% d

100%

o
o
=
w
o
)
o
@®
W
o
o
o
G
w
o
(=]
o
)
w
o

n = 500 0.02 £ 0.01sec | 0.03 £ 0.00sec | 0.05 £ 0.01sec | 0.07 £ 0.01sec

0.03sec 0.05sec 0.06sec 0.08sec

n = 1000 || 0.08 £0.01sec | 0.14 £ 0.01sec | 0.22 & 0.04sec | 0.28 + 0.01sec

0.09sec 0.16sec 0.42sec 0.30sec

0.50s¢ 1.00se¢ 1.59se 2.28se€]

n = 2500 || 0.53 £0.03sec | 1.04 £ 0.03sec | 1.63 +0.03sec | 2.33 = 0.04sec

2.44sec
2.47s¢f 5.24se€] 8.16s¢€] 10.98sfec

n = 5000 || 2.58 £0.12sec | 5.40 £0.11sec | 8.33 = 0.20sec | 11.18 = 0.17sec

2.83sec 5.61sec 9.09sec 11.73sec

o
(=
=2}
@
(0]
(=]
=
W
@
Q
(=]
[V
o
@
o
(=]
[V
=
@
o

0.58sec 1.13sec 1.67s

times tgcs10Mm and the estimator

tacsiom = —0.044667 4+ 4.2410 x 10™"n2d,

is of 99.3%, while the standard error of the model is 0.1046, and its R? is 0.9869.
The reason for selecting a model which includes a cubic term is that it provides an
excellent fit, substantially better than that given by any regression involving functions

of degree at most two.
Roundings per Variable

In analyzing the number of roundings per variable in algorithm ACSIOM we have
again this number to be a function of n, d and p, and have carried out the computational
experiments on the Medium family which includes a sufficient large number of examples
to make its conclusions extremely relevant.

The set of test problems was partitioned in four subsets according to the parameter
p, as shown in formula (6.13). Each of the four subsets it is analyzed according to n
and d.

In Table B.3 of the Appendix, it can be seen that on the average approximately one
rounding is needed for each variable to get a local optimum using algorithm ACSIOM.

It is interesting to note that for p < 0.3 the number of roundings per variable

173

is monotonically nondecreasing on n and d. However, for p > 0.3 this tendency is
reversed. If 0.45 < p < 0.6 then the average number of roundings is almost constant
(around 1.013).

Also interesting to notice is the fact that the set of problems with the highest
average roundings per variable is Mediumg 3<,<0.45 With an overall average value of
1.02849. This subset of problems is followed in this order by the subsets of problems
Mediumg 15<p<0.3, Mediumg as<p<0.6 and Medium,<o.15 with respective average values

of 1.01437, 1.01336 and 1.008367.

6.2.4 Comparing ACSIOM to other results from the literature

In this section we compare ACSIOM to other 1-opt algorithms from the literature. The
best result with this type of methods were reported recently in [178]. We ran ACSIOM
on the previously set of benchmark problems, and reported the relative performance
values in Table 6.17, along those from [178]. Note that this publication reported results
with other, algorithmically more involved and hence more time consuming approaches
(k-opt, and greedy-k-opt), and we included those results as well in Table 6.17 for com-
pleteness. For details of those methods we refer the reader to [178].

Let us also remark that the computing environment used in [178] is quite different
from ours. Discounting the speed difference between the computers, it seems that both
implementations are similarly competitive, however a direct comparison of the running
times would not be very meaningful. Therefore, we compared only the quality of the
obtained solutions in Table 6.17.

The above results show that ACSIOM is producing uniformly better results than
the 1-opt heuristic, and remains competitive even with the k-opt variants, which utilize

the input in much more depth, and take more time.

6.2.5 Conclusions

In summary, we can state that even very simple structured and time efficient local
search based methods can be greatly improved by carefully analyzing and selecting the

right parameters. We believe that the combination of the initial vector selection (I3)

174

Table 6.17: Average relative error of local maximization heuristics within several bench-
mark sub-families.

Sub-Family 1-opt™) k—opt™) greedy—k—opt™) ACSIOM

(F) avg sdev avg sdev avg sdev | 1-E(R,F) | o(R,F) | E(T,F)
GKA, 2.02% | 0.83% 0.38% | 0.30% 0.20% | 0.27% 0.24% 0.41% 0.00 s
GKA, 29.44% | 5.31% | 14.69% | 4.54% | 19.76% | 6.03% 10.97% 8.92% 0.00 s
GKA. 1.21% | 0.78% 0.24% | 0.24% 0.19% | 0.14% 0.14% 0.18% 0.00 s
GK Ay 2.711% | 0.73% 0.71% | 0.35% 0.42% | 0.27% 0.23% 0.45% 0.00 s
GKA. 1.99% | 0.96% 0.50% | 0.31% 0.31% | 0.15% 0.33% 0.28% 0.00 s
P 1.95% | 0.36% 0.56% | 0.09% 0.31% | 0.10% 0.66% 0.48% 0.04 s
ORL 50 5.20% | 3.57% 0.89% | 0.82% 0.55% | 0.50% 0.41% 0.70% 0.00 s
ORL 100 3.02% | 1.54% 0.65% | 0.46% 0.49% | 0.56% 0.58% 0.94% 0.00 s
ORL 250 2.44% | 1.12% 0.65% | 0.45% 0.41% | 0.24% 0.51% 0.45% 0.00 s
ORL 500 2.12% | 0.48% 0.62% | 0.23% 0.48% | 0.18% 0.57% 0.30% 0.01 s
ORL 1000 1.71% | 0.24% 0.54% | 0.12% 0.39% | 0.08% 0.41% 0.26% 0.05 s
ORL 2500 1.15% | 0.13% 0.40% | 0.07% 0.29% | 0.07% 0.35% 0.13% 0.28 s
I[178]

(which is a kind of surprise for us), and the greediness in choosing the next variable
(P C1) together contributed to the good performance of ACSIOM. Let us remark that
the choice of the initial point of course influences any local search method greatly (e.g.,
we could start from an optimal solution). However, it is a surprise for us that such
a simple approach, derived from the input in linear time could make a characteristic
difference, when compared to other linear time computable initial vectors.

The obtained results demonstrate that ACSIOM could effectively be used as a stand-
alone solver for very large sized problems, or also in an ensemble of heuristics. We also
plan to explore its use in an exact solver, where faster and better quality heuristic

solutions can help to trim the size of the search tree.

6.3 Omne—pass heuristics enhancement by local-search

Given a n-binary vector x, we denote its neighborhood as N (x) C B™.
A local-search procedure for a pseudo—Boolean function f produces a sequence of

points (p(o),p(l), e ,p(t)) such that
p®) = arg min {f (p) ‘p eN (p(k_l)) } ,

and that f (p(t)) < f(y) forally e N (p(t)).
Clearly, this procedure will produce a finite sequence of decreasing values for function

f. This is the reason why this procedure is sometimes called steepest—descent or a greedy

175

method.

Due to the termination condition of the method, p(® is called a local optimum of f
in the neighborhood N.

The input parameters of this approach are the starting point p(® and the charac-
terization of the neighborhood set N.

A standard special family of local-search procedures is defined by

NH = {y cB" |X € IB%n,dHtmwm'ng (X,Y) < 1},

where dfagmming (X,y) represents the Hamming distance! between the n-vectors x and
y.

These standard methods have already been investigated in the previous section,
along other several alternative local-search methods, which are not necessarily steepest
approaches.

A heuristic of this nature, selected among 40 variants, was called ACSIOM and it so
happens to be a steepest descent heuristic, whose starting point is defined by method
I5 (see Table 6.2).

The local search procedure applied to QUBO, based on the neighborhood Ny, is not
know if it is polynomially solvable ([194]). However, this method works very efficiently
in practice for QUBO problems.

In Section 6.1 we have introduced a class of one—pass heuristics based on a rounding
procedure that fixes a single variable at every iteration of the method, therefore pro-
ducing a solution in polynomial time. The method stops after n iterations and therefore
the solution may or may not be a local optimum. Clearly, the 0—1 vector returned by a
one—pass method can be used as a starting point of more sophisticated local searches.

In this section we investigate the impact — in the quality and computing time of
solutions — of applying a standard steepest-descent procedure to a starting point defined

by a one—pass heuristic. This enhanced heuristic was called as STEEPEST-DESCENT(I),

YdHamming (%,y) = Yoi_y |z — 1.

176

where I is the (one—pass) method that defines the starting point. Five one-pass heuris-
tics, ONE-PAsS-R(Ix) (k = 1,---,4) and ONE—PASS—R(I5,02 = i), are considered as

starting points I in the subsequent analysis.

6.3.1 Computing time

180 sec T64s

o 149 s
.E 150 sec -
(=]
£ 120 sec 109s _—
5 98s
(=X
£ 90sec —
8 60s 98
o 60 sec -
® 32s 37s
<

0 sec -

15000 20000 25000 30000

Variables (n)

‘ W one-pass heuristics @ steepest descent heuristics ‘

Figure 6.7: Average computing times of one—pass heuristics and of their local improve-
ment by steepest ascent.

The average computing times of the five one—pass heuristics studied in this section,
is displayed in Figure 6.7, for instances of the Massive family of QUBO problems. These
instances have between 15000 and 30 000 variables and expected densities of 30%, 60%
and 90% (see Table 3.6). Since these instances are mazimization QUBO problems,
then we consider the greedy local search algorithm version to find a local maximum,
and naturally called this procedure STEEPEST—ASCENT.

Figure 6.7 also displays the time needed to find a local optimum, for the same
test problems, using the STEEPEST—-ASCENT procedure from the one-pass solutions.
The additional computing time needed to locally improve the one-pass heuristics is on
an average case, 14% higher for QUBOs having 15000 variables, and 10% higher for
QUBOs having 30000 variables. These numbers clearly indicate that a local optimum

can be found efficiently in practice.

177

6.3.2 Quality of solutions

This section addresses the question of how much is the quality of the one—pass so-
lutions improved if they are enhanced to a local optimum. Table 6.18 provides the
average relative and normalized errors of the five ONE-PASS heuristics and correspond-

ing STEEPEST-DESCENT versions, for various families of QUBO problems.

Table 6.18: Performance gain by locally improving the solutions of one—pass heuristics.

Expected Relative Error (G) Ezpected Normalized Error (K)
Families of ONE STEEPEST | Average | ONE | STEEPEST | Awverage
QUBO Problems PAss DESCENT Gain Pass | DESCENT Gain
Benchmarks 3.61% 2.78% 0.83% | 1.18% 0.67% 0.51%
Randomly generated || 25.65% 19.36% 6.29% | 0.76% 0.45% 0.31%
MAX-Clique 26.74% 24.21% 2.53% || 0.53% 0.42% 0.11%
MIN-VC (planar) 0.28% 0.25% 0.03% || 0.23% 0.21% 0.03%
MAX-CUT 5.10% 4.29% 0.81% || 8.63% 7.18% 1.45%
MAX-2-SAT 3.35% 2.09% 1.26% || 5.36% 3.10% 2.26%
[All Problems [1849% | 14.04% | 4.45% | 1.96% | 131% | 0.65%]

The average approximate relative error decrease of STEEPEST-DESCENT is 4.4%,
and the associated average approximate normalized error is 0.65%.

The largest gain in relative error is in the randomly generated group of problems
with an average value of 6.3%. The largest gain in normalized error occurs in MAX-
2-SAT with an average value of 2.3%, followed by the MAX-CUT group of problems
with an average error of 1.4%.

It is interesting to note that the efficacy of the STEEPEST-DESCENT heuristics

studied, behaves quite differently depending on what performance measures are used.

6.3.3 Concluding remarks

Both the ONE—-PASS and STEEPEST-DESCENT heuristics for QUBO produce reasonable
quality solutions, very efficiently. These types of procedures are needed to handle
problems having tens of thousands of variables and millions of quadratic terms.

The use of polynomial time algorithms embedded in more elaborated procedures
is an important aspect, especially if one would like to guarantee that the more so-

phisticated algorithm has also a computing time bounded by a polynomial of its size.

178

The computational complexity of STEEPEST-DESCENT (or STEEPEST—ASCENT) meth-
ods for QUBO is not known. The use of ONE-PASS methods is therefore crucial to
guarantee efficient performance. For instance, a probabilistic one-pass heuristic (based
on a sparse network data structure) is used in the probing procedure of the QUBO

preprocessing routine (see Figure 7.3).

One additional conclusion is that the one—pass and local-search heuristics for QUBO
should use the distribution of the partial derivative (gradient) values to define starting
points, as has been demonstrated by the computational experiments. This statement
also suggests that a good starting point is typically an “interior” point of the cube U".
The literature on QUBO heuristics and meta-heuristics considers various alternative
starting points, but they are traditionally defined by extreme points of B™.

To provide evidence to the previous statement, we did an experiment on the group
G1 of QUBO problems proposed by Glover et al. [109]. G; includes 10 mazimization
problems having 1000 variables and densities varying from 10% to 100% (see Tables
3.2 and A.3).

The experiment considers 1000 randomly generated starting points used for the
greedy local-search maximization heuristic (i.e. STEEPEST-ASCENT). Each starting

point p*) € B (k=1,---,1000) is randomly generated from the Bernoulli (%) distri-
(k)

bution, i.e. p;”’ = 1 with probability %

Each of the heuristics STEEPEST—ASCENT (pgk), EE ,p%k)), k=1,---,1000, is car-

ried out on each of the G; problems, and each one of their values is compared with the

1

value returned by STEEPEST*ASCENT(T e

, %) on the same problem.

Under the circumstances that points p*) have been generated, one would normally
think that in about 50% of the cases the solution value of STEEPEST—ASCENT (p(k))
is not smaller than that returned by STEEPEST*ASCENT(%,--- ,%) The results of
our experiment, displayed in Table 6.19, show however that this fact is not always
true. Except for instance number five of the G family, STEEPEST*ASCENT(%, cee %)
provided better values for all the remaining nine problems in more than 80% of the

cases. Even in the case of instance five, the interior point method was superior in

179

63.9% of the cases.

Table 6.19: Percentage number of tests where the STEEPEST—
ASCENT(%, e ,%) heuristic gives better solution values than STEEPEST—
ASCENT (Bernoulli (3) ,- -+ ,Bernoulli (3)), for the Gy QUBO problems ([109]).
% of Cases where Interior Point Method
Problem | Density STEEPEST-ASCENT(3,-- , 3)
Number (E%) was Worse | was the Same | was Better
1 10 16.2% 0.1% 83.7%
2 20 19.7% 0.0% 80.3%
3 30 7.5% 0.0% 92.5%
4 40 0.7% 0.0% 99.3%
5 50 36.1% 0.0% 63.9%
6 60 1.8% 0.0% 98.2%
7 70 0.9% 0.0% 99.1%
8 80 2.3% 0.0% 97.7%
9 90 2.6% 0.0% 97.4%
10 100 9.3% 0.0% 90.7%

It is also interesting to note that out of the 10000 experiments only one case has a
value coincident with the value returned by STEEPEST*ASCENT(%, e ,%) This fact
provides some indication about the neighborhood space of solutions being potentially

enlarged, if an interior point approach is also considered for QUBO.

180

Chapter 7

Preprocessing

A family of preprocessing techniques for QUBO is proposed in this chapter. It is
based on several computationally efficient transformations of this problem, and aimed
at simplifying it and possibly decomposing it into smaller problems of the same type.
More precisely, the proposed preprocessing involves a series of transformations of the

quadratic pseudo—Boolean objective function f, including:

(i) The fixation of some of the variables at values which must hold at every optimum,
and the enforcement of certain binary relations (e.g., equations, inequalities, or
non-equalities) between the values of certain pairs of variables, which must hold

in every optimum;

(i) The fixation of some of the variables and the enforcement of some binary relations
between certain pairs of variables, which must hold in at least one optimal solution

of the problem;

(#ii) The possible decomposition of the problem into several smaller QUBO problems

involving pairwise disjoint subsets of the original variables.

As a result, we obtain a constant K and quadratic pseudo-Boolean functions f, : B —
R, r = 1,--- ,¢, where the sets of indices S, C {1,--- ,n}, r = 1,--- ¢ are pairwise

disjoint, such that

xeB”

min f (x) = K+§:<min f,,(y)>.

The proposed method has several key ingredients. The first ingredient is the repre-
sentation of a quadratic pseudo—Boolean function by means of the implication network

(see Section 5.3). This representation allows an efficient derivation via network flow

181

computations of a lower bound on the minimum of the function and allows the identi-
fication of variables whose values in the optimum can be easily predicted, as well as of
other information which makes the simplification of the problem possible. The second
ingredient is the methodology primarily based on the theory of roof-duality (see Chapter
5), combined with the use of first (see Section 4.2) and second order derivatives and
co-derivatives (see Section 4.3). This methodology provides an effective lower bound
for the minimum of a quadratic pseudo—Boolean function, as well as information about
the values of a subset of the variables in the optimum (so called linear persistencies;
see Section 4.1), and about binary relations which must hold between certain pairs of
variables in the optimum (so called quadratic persistencies). An additional component
of the methodology is the decomposition of a large problem into several smaller ones,
which can be derived at a low extra cost by combining the conclusions of roof—duality
with those offered by the network representation of the problem (see Section 7.2.3).
The third ingredient of the proposed method consists of the integration of conclusions
obtained from subproblems associated to the original problem. This integration is real-
ized by combining the conclusions of probing (i.e. multiple application of roof-duality
to naturally associated subproblems), and of Boolean consensus (i.e. the exhaustive

expansion of the detected linear and quadratic persistencies).

We present an extensive computational evaluation of the proposed preprocessing
method in Section 7.6, using various benchmark sets and randomly generated test
problems of various types, involving thousands of variables, as described in Section 7.5.
Our experience shows that for dense problems the proposed preprocessing technique is
less effective as the size of the problems grows. It is demonstrated on numerous pub-
licly available test problems that for relatively sparse problems, including in particular
certain classes of structured problems, the proposed preprocessing method achieves sub-
stantial reductions in size at a very low computational cost. For instance, applying the
method to QUBO problems corresponding to vertex cover problems in planar graphs
involving up to 500 000 nodes, lead to the optimal fixation of 100% of the variables, i.e.

to the exact solution of the problem, in every single instance considered (see Section

182

7.7).

7.1 Basic preprocessing tools

7.1.1 First order derivatives

The i—th first order partial derivative (i € V) of a quadratic pseudo—Boolean function f
is given by (4.4). Corollary 4.1 of Section 4.2 provides necessary conditions of optimality
for QUBO by analyzing the sign of the derivative functions, which can automatically
determine certain (strong or weak) persistencies. If A; (x) is strictly negative, respec-
tively strictly positive, the above implications represent strong persistencies. These
simple relations have been already noticed in Hammer and Rudeanu [131], and repre-
sent an essential component of even the most recent work on preprocessing (see [24]).

Hammer, Hansen and Simeone [123] have shown that those strong persistencies
which can be obtained from the analysis of partial derivatives, can also be obtained
by roof-duality (a tool described in Chapter 5). Moreover, roof-duality is a stronger
preprocessing technique, as shown in [123], where an example is presented displaying
persistencies found by roof—duality, but not following from the analysis of the signs of
partial derivatives (see Example 5.6).

In view of these results, the preprocessing algorithm to be described in Section 7.4,
which will exploit heavily roof-duality, will not explicitly include an analysis of the
signs of partial derivatives, since the conclusions derivable from such an analysis will

be automatically included among those provided by roof-duality.

7.1.2 Second order derivatives and co—derivatives

A natural generalization of the concept of the first order derivative (see Section 4.3)
allows us to establish some persistent binary relations to hold among the values taken
in the optimum by certain pairs of variables.

In particular, we shall consider quadratic persistencies established by Theorem 4.1
of Section 4.1, which uses the concept of (i, j)th second order derivative of f (denoted

by Aj;j), proposed by Hammer and Hansen [121]. The complement concept of (4, j)th

183

second order co-derivative (denoted by V;;) was also introduced in Section 4.1. With

these notations,

A (x) = f&x{ig < @0)]) - f&x[{i g} < (0,1)

and

Vij(x) = f&x[{ii = 0D) - f&HL < (0,0)]),

i.e. evaluate the effect of simultaneously changing the values of z; and z;, while keeping
the values of the other variables unchanged.
From Theorem 4.1, then if f (1, - ,z,) is a quadratic pseudo—Boolean function,

and if x; and x; are two of its variables, then
(i) If V,j (x) > 0 for every x € BY then z;z; = 0 is a weak persistency;
(i3) If V;; (x) < 0 for every x € BY then T;7; = 0 is a weak persistency;
(i4i) If Azj (x) > 0 for every x € BY then z;7; = 0 is a weak persistency;
(iv) If Ay (x) <0 for every x € BY then Z;z; = 0 is a weak persistency.

If in any of the implications above the left hand side inequality is strict, then the

corresponding persistency is strong.

7.2 Roof—duality

Let us recall first that the roof-dual bound proposed in [123], can be determined effi-
ciently by maximum flow computations in the implication network Gy ([51, 54, 56]; see
Section 5.3).

From Proposition 5.8, for any quadratic posiform ¢ given by (1.6) and any feasible

flow ¢ in the corresponding implication network G4 the equality

¢ =ao+v(Ge[¢p]) +Ya,y

184

holds, where the right hand side is a quadratic posiform. Therefore,

a0 +v (G [¢]) < min ¢ (x). (7.1)

Incidentally, if ¢ is a maximum flow for network Gy then we have v (Gy[y]) <
v (G [¢]), where v is any flow of the network. Thus, the computation of the maximum
flow determines the best lower bound in (7.1) exactly for the implication network form
of a quadratic posiform. In fact the bound in (7.1) was shown in [51, 54] to be the same

as the roof-dual value of ¢, introduced in [123].

7.2.1 Strong persistency

Let us observe next that if ¢ is a feasible flow in an implication network Gy [¢] then in

view of the existence of a symmetric flow and of the equality

v (@) =v(e),
the symmetrized flow ¢ defined by

@ (u,v) = ¢ (v,u) = cp(u,fu)—;gp(v,u) for all u,v € N, u#wv

is also a feasible flow in G¢. This implies that in any implication network, among the
maximum flows there always exists a symmetric one, for which ¢ = ¢ holds.

Let us consider therefore a symmetric maximum flow ¢ in the implication network
Gy o], and let ¥ = g olel- As we observed above, the corresponding implication
network G, is exactly the residual network of Gy corresponding to flow ¢. Let us then
define S C N as the set of nodes v € N to which there exists a directed o — v path
in Gy, each arc of which has a positive residual capacity (we assume that zy € S).
Furthermore, let T'= {7 | v € S}. Since ¢ is a maximum flow in G4, we cannot have
To € S, and consequently T'N S = () follows by the assumed symmetry flow conditions
of the implication network G.

The following fact is well-known in network optimization:

185

Proposition 7.1. The set S is unique, and is independent of the choice of the maximum

flow . It is in fact the intersection of the source sides of all minimum cuts of G .

Let us note also that {u,v} C S cannot hold for any quadratic term a,,uv of ¢ with
positive coefficient a,,, since otherwise we would have a positive capacity arc (u,7)
from u € S to v € T by the definition of arc capacities in the implication network
associated to v, leading to a positive capacity path from x(to Ty, in contradiction with
the maximality of . Thus, it follows that the assignment which sets all literals in S to
1 (there exists such an assignment, since 7'N.S = ()) makes all terms of 1) which involve

literals from S or T vanish. Introduce
J={ eV | {r3,}n 8 # 0}

and let y € B’ be the partial assignment for which u (y) = 1 holds for all u € S (and
consequently, v (y) =0 for all v € T").

From Proposition 5.9, the partial assignment y € B’ is a strong autarky' for 1
(and hence for ¢). Consequently, the assignments z; = y; for all j € J are strongly
persistent for QUBO.

In fact the set of variables z;, j € J consists exactly of those involved in the so
called master roof as defined in [123]. This discussion shows that as a byproduct of a
maximum flow computation, the above approach determines J in additional computing

time, which is linear in the number of nonzero terms of 1, i.e. linear in the size of ¢.

7.2.2 Weak persistency

Let us consider now the directed graph G obtained from G by keeping only those arcs
which have a positive residual capacity. Since we can assume that the maximum flow

© is symmetric, we shall have

(v,u) e A <é> whenever (u,v) € A (@) . (7.2)

1A partial assignment y € B°, S C V is called an autarky for ¢ if all terms of ¢ involving variables
with indices from S vanish when we substitute y.

186

Let us compute the strong components of this directed graph (necessitating linear time
in the number of arcs, i.e. linear time in the size of ¢ [227]), and denote these strong
components by K;, i = 1,--- ,c. It is easy to see that the symmetry (7.2) implies the

following

Proposition 7.2. For every strong component K; of@ we have either

{vjveK;} = K; (7.3)
or

{@ ’ RS Kz} = Ky (74)
for some ' # 1.
Proof. Follows readily by (7.2). O

Let us label now as Ky, Ky, Ko, Ko, -+, Ky, Ky, those strong components which

satisfy (7.4), in such a way that
(i) there is no directed path in G from K; to Ky for i = 1,---,¢, and
(74) there is no directed path in G from xg to Ky fori=1,--- L.

Since ¢ is a maximum flow, we cannot have a directed path from zy to Zg in é, and
hence the symmetry conditions (7.2) imply the existence of such a labeling. Let us note
that condition (i) is equivalent to saying that the strong components K; and K; are
dual components of the associated implication graph (see Section 4.5).

Let J; = {j € V| {z;,7;} N K; # 0} and let y; € B’ be the partial assignment for
which u (y;) =1 for all u € K;, fori=1,--- ,£.

Theorem 7.1. The partial assignment y; is an autarky for ¢, fori=1,--- ,£. More-
over, it is a strong autarky if there is a directed path in G from xq, or if there is a
directed arc between K; and K. Consequently, the assignments x; = y;; for all j € J;

and i =1,---,0 are all persistent assignments for QUBO.

187

Proof. The claim is implied by the fact that the terms of 1 including variables in
Ji, i =1,--- ¢ vanish. O

It should be remarked that the weak persistency results of the previous Theorem
are “stronger” than those derived from Theorem 5.3, since the later persistencies are
all derivable from those determined by Theorem 7.1.

Let us note that if there is a directed arc (u,v) between K; and K; for some
i=1,---,¢, then symmetry (7.2) implies that an arc (7,%) must also exist between K;
and K. It is this property that makes the persistency result of Proposition 7.1 to be
strong, in this particular situation.

In general, deciding if a partial assignment y; is a strong autarky for ¢, for i =
1,---, ¢ is a NP-hard decision problem. This result can easily be established, since the
outcome of this decision depends on the optimization of NP—hard sub-problems, each

one associated to a component of type (7.3).

Example 7.1. Consider the quadratic posiform ¢ given by

¢ = 2x1T9 + 4T 122 + 2x9T3 + 2Tox3 + 2173 + 4T1T3 + 22475 + 2T 425 + 22571,

and the associated network Gy shown in Figure 7.1. The strong components of G are:

K1 = {wo},

Ky = {Zo},

Ky = {Z4,Ts},

Ky = {wz4,z5} and

Ks = {z1,x9,23,T1,T2, T3} .

Let us note that there is no directed path from K5 to Ko, there is no directed path from
w0 to Ky, and that Ky and Ko satisfy condition (7.4). Let Jo = {4,5} and let yo € B2
be the partial assignment for which T4 = T5 = 1. By Proposition 7.1, x4 = x5 = 0 must
hold in a minimizer of ¢. Let us now show that these two assignments are not strongly

persistent. In the first place one can verify that 1 = 1 must hold in all minimizers of

188

¢. Therefore, the only term connecting K3 to the other components vanishes. So, any
solution satisfying the equation x4Ts + Taxs = 0, including r4 = x5 = 1, must also hold

in a minimizer of ¢.

1
1 -

VN
%s@w@{(%1»@:
12 /21
&

1
1

Figure 7.1: The network Gy corresponding to the posiform ¢ of Example 7.1. We
indicate only those arcs which have positive capacities.

7.2.3 Decomposition

Let us assume now that we have already fixed all weakly and strongly persistent vari-
ables (e.g., by Proposition 7.1), and that the strong components of the residual posiform
Y, Ky i=1,--- ¢, are all of type (7.3).

Clearly, in this case the symmetry conditions (7.2) imply that there are no arcs
between different strong components, i.e. 1 does not involve a quadratic term a,,uv,
ayy > 0 for which v € K;, v € K; and ¢ # j. Thus, denoting by 1; the posiform

corresponding to the induced subnetwork K;, i =1,--- ,c, we have

Y= i
=1

Furthermore, due to property (7.3), these posiforms involve disjoint sets of variables.

Hence, we have

Theorem 7.2.

xeBV xeB7i

min ¢ (x) = ; <min Ui (x)> : (7.5)

189

A similar decomposition of quadratic posiforms which does not involve linear terms
was already proposed in [42] (see Proposition 5.5). Let us note that after computing
the maximum flow in the implication network G, both the persistent assignments, as

well as the above decomposition can be determined in linear time of the size of ¢.

Example 7.2. Consider ¢ to be a homogeneous quadratic posiform whose nonzero

terms are:

T1T2,T1X2, L2T3, T2TL3, L1X3, T1T3, TAT5, T4X5, T5L6, T5LE, T4T6, TATE,

T7Xg, T7X, T1T7, TATS, L9T10, T9L10, L7L9, T11, T11T12, L1112, L10L11 -

The associated network Gy, shown in Figure 7.2, has the following strong components:

Ky = {xo}, Ky = {Zo},

Ky = {z11,712}, Koy = {T11,T12},
K3 = {zg9,710}, Ky = {79,712},
K, = {x7,zs}, Ky = {=Z7,7s},
Ks = {x1,x9,x3,T1,To, T3} and

K¢ = {x4,75,26,T4,T5,T6} -

Let us first note that there is no directed path from xy to To. Thus, by strong persistency
(Proposition 5.9) x11 = x12 = 1 must hold for all minimizers of ¢. Also, regardless of
the values of the coefficients in the nontrivial terms of ¢, by weak persistency (Propo-
sition 7.1) the partial assignment x7 = xg = 9 = T19 = 11 = 12 = 1 must hold in
a minimizer of ¢. This partial assignment automatically cancels all those terms of ¢
which involve at least a variable from the set {x7,xg, xg, T10, T11, T12}. After eliminating
these terms, the original problem is decomposed into two subproblems, involving disjoint
sets of variables, coming respectively from Ks and Kg. Obuviously, these two subprob-
lems can be optimized separately, and the sum of their optimal values will coincide with

the minimum of ¢.

190

.
.

\@@

Figure 7.2: The network Gy corresponding to the posiform ¢ of Example 7.2. We
disregarded the values of the capacities, and indicated only those arcs which have
positive capacities. The dashed arcs represent arcs connecting the strong components

of Gfi)'

7.3 Combining basic tools

7.3.1 Enhancing roof-duality by probing

It will be seen in this section that the results of roof-duality can be substantially
strengthened by analyzing the roof—duals of several quadratic pseudo—Boolean functions
associated to the original one. The analysis of the roof-duals of the 2n quadratic
pseudo—Boolean functions obtained by fixing either to zero or to one the value of one
of the n variables of a quadratic pseudo-Boolean function f (z1,--- ,xz,), will be called
probing.

Among the specific results of probing we mention the possibility of identifying an

191

improved lower bound of the minimum of a quadratic pseudo—Boolean function, and of
enlarging at the same time the set of variables and binary relations for which persistency
conclusions apply.

In view of the fact that finding the roof-dual of a quadratic pseudo—Boolean function
can be achieved by simply solving a maximum flow problem in a network, the calculation
of the roof—duals of 2n quadratic pseudo—Boolean functions associated to the initially
considered one is a feasible, easy—to—carry—out operation. Let us provide now some
technical ideas on how to efficiently calculate the 2n roof-duals required by probing.

Let us assume first that using a simple heuristic (e.g. as proposed in [58, 61]) we

have found some upper bound U on the minimum of (1.5), say

min ¢ (x) < U. (7.6)

xeBY

Let us now consider the most typical branching procedure, in which we split the
problem into two somewhat smaller ones by fixing variable x; at the two possible binary
values. Since ¢ is a posiform, all of its terms — with the possible exception of the constant
ag — contribute nonnegative quantities to the objective. Therefore, if M > U — ag, then

min ¢ (x) = min { min ¢ (x) + Mz, m%ﬁn o (x) + ME]-} , (7.7)
xeBY

xeBV xeBY

where ag is the constant in ¢, as given in (1.6).

The two subproblems in (7.7) have simple network representations.

In order to calculate the roof-duals of min cpv ¢ (x) + Mz and of min,pv ¢ (x)+
M=;, and to derive persistency relations from these, we should add to the original
network an arc, (zo, ;) in the first case and (zo, ;) in the second case, and to assign
to these the large capacity M.

Clearly, computationally it is simpler to increase the capacity of two arcs than to
substitute x; = 0, respectively x; = 1, implying the deletion of nodes x; and Z;, and of
all arcs incident to these nodes in the network. In addition, keeping the same network

and updating the capacities of a few arcs at each branch evaluation, allows us to carry

192

out computations without increasing the amount of computer memory needed to keep
the network data necessary to find a maximum flow for each subproblem. From an
implementational point of view, this approach has the added advantage of allowing the
easy restoration of the network corresponding to the original problem, by simply finding
an additional maximum flow — an option which turned out to be on the average to be
much better than creating a copy to be reused after branching. It should be remarked
that without these simplifying steps, the large scale QUBOs (including for instance
those coming from finding optimal vertex covers of planar graphs with half a million

vertices; see Section 7.7) could not have been handled.

We can similarly administer more complicated branching policies, as well. For
instance, if u,v € L are two literals, u # v, then branching on the binary relation
u < v can be written as

min ¢ (x) = min{ min ¢ (x) + M@+ Mv, min ¢ (x) + Muﬁ} (7.8)

xEBV xEBV x€BY

for some M > U — ag, resulting in the modification of 4 arc capacities in the first
branch corresponding to u = 1 and v = 0, and of two arc capacities on the other branch

corresponding to u < v.

We can also apply the above for handling persistencies. For instance, if we learn
that u < v is a persistent binary relation, then we can rewrite (7.8) as

min ¢ (x) = min ¢ (x)+ Muv. (7.9)

xEBV x€BY

Let us note that in all of the above cases, we had to increase the capacity of some of
the arcs. Thus, as our procedure advances and we learn more and more persistencies,
at the same time the maximum flow value is also increasing. Hence, according to (7.1),

as an added value we get better and better lower bounds on the minimum of (1.5).

To describe probing and its benefits, let us consider an arbitrary quadratic posiform

193

¢, as given in (1.6). For a literal u € L let us consider the posiform

¢u:¢+Mﬂ7

where M > U — ag for an upper bound U satisfying (7.6). Let us further denote by
Su € L (W, C L) the set of strongly (weakly) persistent literals for v, as defined in
Section 7.2.1 (7.2.2), and let L, denote the roof-dual bound for t),.

We can derive several consequences from the sets 5, W, and lower bounds L, when

generating these for all literals u € L.

Proposition 7.3. Let U be an upper bound of minggv ¢ (x), and letu € L and j € V.
Then

e The value L* = maxyer min{L,, Lz} is a lower bound on the minimum of ¢.
o If L, > U then u =0 is a strongly persistent assignment for ¢.

o Ifve Sy NSz (ve Wy, NWg,) then v =1 is a strongly (weakly) persistent

assignment for ¢.

o IfveS,, andv € Sz, (veEW,, andv € Wy,) then x; = v is a strongly (weakly)

persistent relation for ¢.

e For allv € Sp; and w € Sz, (v € Wy, and w € ij) the quadratic relations

rj <v, Ty <w and W< v are all strongly (weakly) persistent for ¢.

All these follow from the above definitions, by which the assignment v = 1 is strongly
(weakly) persistent for 4, for all v € S, (v € W,,). Let us note that by adding these
new persistencies to ¢, as in (7.7) and (7.9), we may increase both the roof-dual value
as well as the set of strongly and weakly persistent literals of ¢. Furthermore, the
addition of these to ¢ may also change the sets S, or W, for some other literals v € L,
v # U.

It is simple to verify that the quadratic persistencies determined through the pre-

vious proposition include a subset of those persistent binary relations derivable from

194

Theorem 4.1. However, probing may not be able to find quadratic persistencies which
are determined by the analysis of the second order (co-)derivatives (see Section 7.1.2).

Let us remark that the lower bound derived from probing was also considered in
[51, 56], and that analogous techniques were explored in the broader context of binary

optimization in [23, 216].

7.3.2 Consensus

It has been remarked above that order relations between literals can be derived both
from the signs of the second order derivatives and co—derivatives, as well as during the
process of probing. The interactions of the various binary relations, and the conclusions
obtained by combining them can be very easily derived by the introduction of a Boolean
quadratic equation ® = 0, where the terms of ® are quadratic elementary conjunctions
(representing the detected binary relations between literals) which must take the value
zero in every minimum of (1.5). Moreover, the application of the consensus method to
® allows the polynomial detection of all of its prime implicants (see [89]). Taking into
account that the prime implicants of this function represent either variables with fixed
values in the optimum, or order relations which must hold between pairs of literals in
every optimum, it is clear that the detection of all prime implicants of ® provides an
enlarged set of strong persistencies.

Finally, we should remark that the conclusions that can be obtained from the knowl-
edge of the prime implicants of ® can also be obtained directly (using Proposition 7.3)
during our implementation of probing, by appropriately transforming the original func-
tions via term additions (as explained in the previous section) corresponding to the

persistent binary relations found by the preprocessing tools considered.

7.4 Algorithm and implementation

The proposed preprocessing algorithm is presented in this section, in which the tools
described in the previous sections are used iteratively and recursively. The structure

adopted is based on the network flow model of Section 5.3. Our goal is to find better

195

PrREPRO(9, (Vo, V1, E), ©)

Input: A quadratic posiform ¢ representing a quadratic pseudo—
Boolean function f, as in (1.6).

Step 1: Call NETWORK(¢, @, (Vp, V1, E)).

Step 2: If ® = () then © « () and STOP. Otherwise, for all (¢, L,U) €
® do call HEURISTIC(2), U).

Step 3: For all (¢, L,U) € ® do call COORDINATION(¢), U, E).
Step 4: P «— {(¢,L,U) € ® |[¢ is purely quadratic }.

Step 5: For all (¢, L,U) € P do call PrRoBING (¥, L, U, (Vo, V1, E)).
Step 6: P «— {(v,L,U) € Py is purely quadratic }.

Step 7: For all (¢,L,U) € (¢ \ P) do call PREPRO (¢, (Vp, V1, E),S).
©—PUS.

Output: It returns in © a set of triplets, whose sum of all posiforms has
the same minimum value as the minimum value of f. Additionally,
a set of persistencies for the initial posiforms is returned as follows:
Vo — A set of variables with value 0,
V1 — A set of variables with value 1, and

E — A set of equality relations between pairs of literals,

which must hold in a minimizer of f.

Figure 7.3: PREPRO algorithm.

and better lower bounds, weak (and strong) linear persistencies and weak (and strong)
quadratic persistencies for ¢, as well as to decompose the problem into several smaller
problems, as explained in Section 7.2.3.

The PREPRO algorithm is described in Figure 7.3. The input of the algorithm is a
quadratic posiform ¢ representing a quadratic pseudo—Boolean function f, as in (1.6).
The output returned by PREPRO is a decomposed representation of the minimum of
f, as in (7.5), where the subproblems on the right hand side of (7.5) involve pairwise
disjoint sets of variables, together with a lower and an upper bound to the minimum
of each subproblem, and with a partial (optimal) assignment to the derived persistent

variables.

196

Four main components are part of PREPRO:

e NETWORK — This routine has a posiform ¢ as input. It first finds a maximum flow
in the network G as explained in Proposition 5.8 (see Section 7.2). The maximum
flow implementation that we have adopted is based on the shortest augmenting
path algorithm, yielding a worst case time of O (n3), and is especially designed
to obtain a residual network satisfying the flow symmetry conditions. When a
minimum cut is found, a set of strong persistencies is obtained directly from
a non—empty source side of a minimum cut (see Propositions 5.8 and 7.1) and
saved accordingly in (Vp, V7). The nodes of the residual network and correspond-
ing arcs, which are associated to the set of strong persistencies are removed from
the network. Using a linear time algorithm for identifying the strongly connected
components of the residual network, a subset of weak persistencies is identified
in every component of type (7.4) (see also Theorem 7.1), and saved accordingly
in (Vo, V7). The nodes of the residual network and corresponding arcs, which are
associated to the set of weak persistencies is removed from the network. What is
left after applying NETWORK is a disjoint set of strong components, each corre-
sponding to a subproblem (included in ®) that can be optimized separately from

the other subproblems.

e HEURISTIC — For each subproblem identified in NETWORK, an upper bound U
is found, and later used in the COORDINATION and PROBING procedures. Any
heuristic method valid for QUBO can be used. All of our experimental results
include a fast one—pass heuristic based on a greedy approach, which ranks the
set of non—fixed variables according to an approximated probability value of a

variable to have a persistent value (see Chapter 6).

e COORDINATION — This procedure has as input a posiform 1, and the upper bound
U found by HEURISTIC. Let us note that the minimum of any posiform called
within PREPRO is strictly larger than its constant value ag. This routine identifies
binary persistent relations originated from the analysis of the second order deriv-

ative and co-derivative functions as explained in Section 4.3. The basic idea is to

197

compute over all possible pair of variables i < 7, the minimum and the maximum
of the linear pseudo-Boolean functions A;; and V;;. A key element to save com-
puting time in this operation is to stop it as soon as one learns that the minimum
is strictly negative and the maximum is strictly positive. If a quadratic persistency
u < v is found, then % is updated by adding a term a,zuv with a large enough
coefficient (we use a,z = 2(U — ap) + 1). Since the implication network structure
was adopted in all tools, this last operation can be efficiently implemented by
updating the coefficient of the arcs (u,v) and (v,u). Our data structure is also
able to quickly identifying if the reverse relation v < w is a quadratic persistency.
In the affirmative case, F is updated to include the equality persistency u = v,
and 1) is transformed by replacing v () by w (@). This routine stops as soon as

a linear term or a equality persistency is found.

PROBING — This procedure has as input a purely quadratic posiform v (i.e. a
posiform that does not have linear terms) and the upper bound U found by
HeurisTic. The implication network structure plays a crucial role in this rou-
tine. Independently, each variable z; is fixed to one of the possible binary values,
and the resulting function is analyzed in terms of roof-duality and strong and
weak persistencies. This operation can be accommodated easily in the network
1 as explained in Section 7.3.1. For a given assignment to z;, a maximum flow
algorithm is applied to the transformed network. All the strong and weak persis-
tencies derived from the residual network are updated both in the network and in
(Vo, V1, E), as explained in Proposition 7.3. To analyze the complement assign-
ment of x;, a maximum flow algorithm is applied to the residual network. All
the strong and weak persistencies derived from the residual network are again up-
dated as before. A third maximum flow algorithm is applied to obtain a network
which represents the same function as . The use of maximum flow algorithms
to recuperate the original function being optimized is possible due to Proposition
5.8. A clear advantage of this approach is that the amount of memory needed for

the data structures remains about the same through every step of the procedure.

198

Let us note that probing through the implication network is able to capture per-
sistencies of transitive relations (see Section 7.3.2). For instance, suppose that
u < v and v < w are quadratic persistencies, then if at some point w < u is also
found to be persistent, then the network and the set F are immediately updated
with the equality relation v = v = w. The routine stops as soon as a linear term

or a linear/equality persistency is found.

Step 4 of PREPRO selects the subproblems for which probing is applied. Step 6 of
PREPRO selects the subproblems for which PREPRO is recursively applied. Obviously,
the rules that govern these choices may vary. In our implementation, the rule adopted
is to apply NETWORK to a subproblem whenever a new linear persistency or a new
linear term was found by COORDINATION or PROBING.

All the tools considered in PREPRO are polynomial time algorithms:

NETWORK - 0(n?);
HEURISTIC - 0(n?);
COORDINATION — O (n?log (n)) ;
PROBING - 0(n%).

As a consequence of the previous complexity times, each run from Step 1 to Step 5

of PREPRO takes at most O (n4).

7.5 Test problems

Most of the problem classes on which we have tested the proposed preprocessing pro-
cedures are benchmarks used in several other studies related to QUBO. These datasets
include 85 problems with prescribed density, 13 graphs for MAX-Clique, 38 graphs
for MAX-CUT, and 34 MAX-2-SAT formulas. Beside the above classes we have also
carried out computational experiments on 436 randomly generated planar graphs for

vertex cover optimization problems.

199

7.5.1 Benchmarks with prescribed density

The class of benchmarks with prescribed density that we have examined in this chapter
includes the test problems of Glover, Kochenberger and Alidaee [108], and the prob-
lems of Beasley [37] with at most 500 variables. The basic generation parameters of
the sub—families containing these problems can be seen in Table 3.2, while the indi-
vidual characteristics of the problems appear in Tables A.1 and A.2 of the Appendix.
Obviously, Glover’s and Beasley’s maximization problems have been first converted to
minimization problems in order to make the direct application of our proposed proce-

dures possible.

7.5.2 Maximum cliques of graphs

In order to facilitate comparisons among different exact and heuristic methods related
to clique (see definition in Section 2.2.1) problems, a set of benchmark graphs has been
constructed in conjunction with the 1993 DIMACS Challenge on maximum cliques, col-
oring and satisfiability ([151]). This chapter only reports preprocessing results for two
families of this dataset, since for the other graphs PREPRO did not find any persisten-
cies. Namely, we consider the benchmarks containing c—fat graphs or Hamming graphs.
The graphs analyzed here are described in Section 3.2 and their main characteristics

are listed in Table 3.7.

7.5.3 Minimum vertex cover problems of planar graphs

Motivated by a recent work by Alber, Dorn and Niedermeier [13] we have analyzed the
performance of PREPRO for preprocessing minimum vertex cover problems in the class
of planar graphs. A major difference between the two approaches is that the method of
Alber, Dorn and Niedermeier considers “the influence of a clever, VERTEX COVER-
specific data reduction” (see [13], page 220), whereas the results obtained by PREPRO
are entirely due to its ways of simplifying QUBOs, since we have not introduced any

specific adaptation of this method for the case of vertex cover problems.

200

In the computational experiments we considered 400 planar graphs randomly gen-
erated by the LEDA software package (see details in Section 3.3), whose general char-

acteristics are similar to those graphs generated by [13] (see Table 3.11).

7.5.4 Graphs for MAX-CUT

The MAX-CUT values of several classes of graphs is considered in the PREPRO exper-
iments. Let us remark that any optimal solution x = (z1,--- ,z,) of the MAX-CUT
problem has a complementary solution (Zi,- - ,T,). Thus, before calling PREPRO for
a MAX-CUT problem, we select a variable and assign to it a 0—1 value.

Let us note that these problems are maximization problems (see Section 2.2.3).
Therefore, we transformed the MAX—-CUT problems (2.5) into quadratic posiform min-
imization problems.

We tested the PREPRO algorithm on the following graphs, previously described in
Section 3.4: torus graphs ([145]; see Table 3.15), via and sparse random graphs ([145];
see Table 3.16), and Gn.p and Un.p graphs ([157]; see Table 3.17).

7.5.5 MAX-—2-SAT formulas

Algorithm PREPRO was tested in the set of random weighted and non-weighted MAX-—
2-SAT formulas (see Section 2.3) proposed by Borchers and Furman [47]. The list
[47] contains 17 standard formulas and 17 weighted formulas, which were described
previously in Section 3.5 (see also Tables 3.19 and 3.20). We solve the (weighted)
MAX-2-SAT problem by associating to it a quadratic posiform ¢ (see (2.7)), for which

the minimum value v (¢) is the minimum weighted set of unsatisfied clauses.

7.6 Computational experiments

7.6.1 Test environment

The algorithm PREPRO was implemented in C++, compiled using the Microsoft Win-
dows 32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the

Microsoft Incremental Linker (version 6).

201

All the computational experiments of this chapter were carried out on a computer
with a 2.80 GHz Pentium 4, 512 MB of RAM, hyper-threading technology, and has

installed the Windows XP Professional (version 2002) operating system.

7.6.2 Results

Given a posiform ¢, its roof-dual bound, a set of strong/weak persistencies and a de-
composition of type (7.5) of it, can easily be derived from the residual network resulting
after applying a maximum flow algorithm to the implication network associated to ¢.
We consider this preprocessing step (entirely based on the roof-duality theory) as a
standard preprocessing tool in all experiments that we have carried out. We tested four

possible preprocessing strategies:
A Only the standard tool is considered;
B Standard tool and coordination are considered;
C Standard tool and probing are considered; and
D All preprocessing tools are considered.

Since strategy D usually provides the best data reduction of the problems, we have
included in Appendix C several statistical results about the preprocessing performance

of this strategy in all benchmarks.

At first glance, we have tried to understand how any of the preprocessing techniques
would impact in the reduction of the problem’s size. Table 7.1 provides preprocessing
results for the test beds, whose values are averages for groups of problems belonging
to the same family. Strategy D provides 100% data reduction for the following bench-
marks: MAX-Clique problems in all HAM-2 graphs and all ¢c-FAT graphs; minimum
vertex cover problems in all PVC LEDA planar graphs; MAX-CUT problems in all
VIA graphs. These results clearly indicate that one can expect getting an outstanding
data reduction level in these special well structured problems.

It should be remarked that the border separating successful from unsuccessful pre-

processing cases is very thin. For instance, all the Hamming graphs in HAM-2 were

202

optimally solved with the standard preprocessing tool. However, in the closely related
family HAM—4 there was no reduction found for any of the graphs, even when all the
preprocessing tools were considered. We also remark the fact that strategy C provided
optimality for all MAX-Clique problems and all MAX—-CUT problem in the VIA graphs,
using a substantial smaller computing time than the one corresponding to strategy D.
Strategy C with an average value of 99.9%, provided also a very good data reduction
on the minimum vertex cover problems in the PVC LEDA planar graphs.

Table 7.2 suggests the particular preprocessing techniques which can be recom-
mended for each of the problem families considered, in order to achieve (on the average)
as high a data reduction as possible within a limited amount of time. In view of the
relatively uniform behavior of problems within the same family, the recommendation
of a common strategy for problems within a family seems reasonable. Here are some

remarks and some recommendations for the examined groups:

e Problems with prescribed density — Coordination does not have a practical in-
fluence in the preprocessing results. Probing should be used in the cases where
density is low. In general, the probing tool should be used in this class, if the
condition nd < 20 is satisfied. Let us also note that family B consists of very
dense submodular maximization problems, and for which the preprocessing out-
come changed considerably, in comparison with the other problems. Six of the
10 problems in the B group were solved optimally, and for the unsolved cases, a

large number of quadratic persistencies was found.

o Minimum vertex cover of planar graphs — Probing when used with the coordination
method provides slightly better preprocessing data reduction, without degrading

the computing times returned by probing only.

e MAX-CUT in torus graphs — The standard preprocessing tool should be used for
the graphs with +1 weights in the edges (see also Table C.5). Probing should be

used in the other weighted graphs.

o MAX-CUT in VIA graphs — All the problems in the VIA.CY family are solved

optimally by the basic preprocessing tool (see also Table C.5). Every instance in

Table 7.1: Average QUBO simplifications and decomposition after preprocessing.

Preprocessing Tools Used:

Roof-Duality Roof-Duality and Coordination Roof-Duality and Probing ALL Tools
Type of Family Total | Variab. Total Relat. Quad. Variab. Total Relat. Quad. Variab. Total Relat. Quad. | Variab.
Problem Name Time | Reduc. Time Gap Rel. Reduc. Time Gap Rel. Reduc. Time Gap Rel. Reduc.
A 0.0 52.3% 0.0 8.2% 1 52.9% 0.0 5.1% 1 64.0% 0.0 5.1% 1 64.0%
B 0.0 0.9% 0.1 85.3% 1762 0.9% 1.2 34.9% 785 72.2% 2.9 41.9% 801 68.2%
C 0.0 18.1% 0.0 22.4% 0 18.5% 0.1 19.8% 1 30.2% 0.1 19.8% 1 30.2%
D 0.0 0.6% 0.0 56.8% 0 0.6% 1.2 55.4% 3 1.6% 1.2 55.4% 3 1.6%
Fixed E 0.0 0.0% 0.1 57.9% 0 0.0% 5.2 57.2% 6 0.0% 5.3 57.2% 6 0.0%
Degree F1 1.1 0.0% 1.6 78.7% 0 0.0% 149.8 78.6% 0 0.0% 150.1 78.6% 0 0.0%
B-50 0.0 94.2% 0.0 0.2% 2 94.4% 0.0 0.0% 0 100.0% 0.0 0.0% 0 100.0%
B-100 0.0 4.9% 0.0 13.3% 0 5.2% 0.3 8.8% 26 36.3% 0.4 8.8% 26 36.3%
B-250 0.0 0.0% 0.1 44.1% 0 0.0% 3.3 43.5% 1 0.0% 3.4 43.5% 1 0.0%
B-500 0.1 0.0% 0.4 60.6% 0 0.0% 28.4 60.3% 0 0.0% 28.5 60.3% 0 0.0%
C-FAT-200 0.0 0.0% 1.3 68.7% 29 0.0% 4.8 0.0% 0 100.0% 14.1 0.0% 0 100.0%
MAX C-FAT-500 0.1 0.0% 21.9 77.0% 56 0.0% 80.8 0.0% 0 100.0% 327.4 0.0% 0 100.0%
Clique HAM-2 0.0 | 100.0% 0.0 0.0% 0 100.0% 0.0 0.0% 0 100.0% 0.0 0.0% 0 100.0%
HAM-4 0.1 0.0% 12.8 89.6% 0 0.0% 79.0 88.3% 0 0.0% 91.5 88.3% 0 0.0%
LEDA-1000 0.0 75.3% 0.1 0.0% 0 99.9% 0.1 0.0% 0 99.9% 0.1 0.0% 0 100.0%
MIN LEDA-2000 0.1 74.5% 0.2 0.0% 0 99.9% 0.2 0.0% 0 99.8% 0.2 0.0% 0 100.0%
Vert. Cov. | LEDA-3000 0.2 75.0% 0.3 0.0% 0 99.9% 0.3 0.0% 0 99.8% 0.3 0.0% 0 100.0%
LEDA-4000 0.4 75.1% 0.5 0.0% 0 99.8% 0.6 0.0% 0 99.9% 0.5 0.0% 0 100.0%
Torus 0.1 0.2% 6.4 39.2% 0 0.2% 220.0 38.3% 2 3.1% 853.3 38.3% 2 3.1%
R 0.4 0.0% 64.7 28.9% 0 0.0% 1818.1 28.7% 1 0.2% || 3187.8 28.7% 1 0.2%
VIA.CN 0.1 4.0% 1.1 4.6% 3 4.0% 13.2 0.0% 0 100.0% 100.5 0.0% 0 100.0%
MAX VIA.CY 0.1 | 100.0% 0.1 0.0% 0 100.0% 0.1 0.0% 0 100.0% 0.1 0.0% 0 100.0%
Cut G500 0.0 4.2% 0.5 23.1% 3 4.2% 6.2 22.3% 5 19.0% 11.8 22.3% 5 19.0%
G1000 0.1 2.7% 2.2 23.5% 5 2.7% 36.1 23.0% 7 18.8% 100.8 23.0% 7 18.8%
U500 0.0 1.0% 2.6 35.2% 31 2.6% 9.1 36.0% 0 5.7% 14.3 33.8% 32 11.5%
U1000 0.1 0.6% 14.7 35.2% 57 2.5% 39.0 35.9% 0 7.6% 76.2 34.2% 83 9.9%
BF-50 0.0 9.3% 0.0 240.0% 1 11.3% 0.1 | 121.2% 8 25.8% 0.1 | 121.2% 8 25.8%
BF-100 0.0 12.6% 0.0 691.1% 1 13.8% 0.1 | 271.9% 24 27.6% 0.2 | 271.9% 25 27.6%
MAX BF-150 0.0 17.1% 0.0 908.1% 0 17.1% 0.3 | 258.3% 55 42.2% 0.5 | 258.3% 55 42.2%
2-Sat BFW-50 0.0 6.2% 0.0 391.4% 1 6.2% 0.1 | 133.2% 8 24.2% 0.1 | 133.2% 8 24.2%
BFW-100 0.0 14.2% 0.0 | 1731.4% 5 14.2% 0.2 | 335.5% 39 26.2% 0.3 | 335.5% 39 26.2%
BFW-150 0.0 17.1% 0.0 | 3214.3% 4 17.1% 0.7 | 263.1% 68 45.6% 0.9 | 265.2% 67 45.8%

€0¢

Table 7.2: Preprocessing strategies recommended for the benchmarks.

Type of Family Number of Best

Problem Name Instances Density | Strategy

A 8 18.78% C

B 10 98.83% C

C 7 36.01% C

D 10 54.31% A

Fixed E 5 29.62% A

Degree F1 5 51.56% A

B-50 10 9.75% C

B-100 10 9.75% C

B-250 10 9.94% A

B-500 10 9.90% A

C-FAT-200 3 77.82% C

MAX C-FAT-500 4 83.28% C

Clique HAM-2 3 4.55% A

HAM-4 3 39.42% A

LEDA-1000 100 0.41% D

MIN LEDA-2000 100 0.20% D

Vertex Cover | LEDA-3000 100 0.14% D

LEDA-4000 100 0.10% D

Torus 4 0.68% C

R 8 0.34% C

VIA.CN 5 0.32% C

MAX VIA.CY 5 0.37% A

Cut G500 4 1.87% C

G1000 4 0.95% C

U500 4 3.40% D

U1000 4 1.72% D

BF-50 9 19.98% C

BF-100 5 7.53% C

MAX BF-150 3 3.91% C

2-SAT BFW-50 9 21.18% C

BFW-100 5 7.77% C

BFW-150 3 3.93% C

204

205

this group of problems is solved in less than 0.2 seconds. The VIA.CN problems
are all optimally solved with probing, taking an average computing time of 13.2
seconds. In two of the VIA.CN problems, the analysis of the starting implication
network found 2 components which were preprocessed separately under the result

of Theorem 7.5.

e MAX-CUT in Gn.p graphs — The preprocessing efficiency decreases with density
for the graphs with the same number of vertices (see also Table C.5). Probing
helped increasing data reduction for graphs with densities up to 5%, and attained
“as expected” better performance for graphs with 500 vertices, than for those

with 1000 vertices.

e MAX-CUT in Un.p graphs — The preprocessing efficiency decreases with density
for the graphs with the same number of vertices (see also Table C.5). In this
category, the standard preprocessing tool found some non trivial decomposition,
and both coordination and probing helped improving the average data reduction

rates from 2-3% to about 11%.

o MAX-2-SAT - The preprocessing efficiency decreases with the number of clauses
when the number of variables is fixed (see also Table C.6). Both in the non—
weighted and weighted formulas, the probing technique provided better reduction

indicators.

In conclusion it can be seen that the choice “best strategy” is highly problem fam-
ily dependent. It should also be remarked that only three out of the four examined
strategies turn out to provide the “best” performance for some of the considered group
of problems; strategy B (consisting of the application of the standard tool and coor-
dination, but not of probing) did not give best results in any of the examined cases.
Table 7.2 indicates the best recommended strategies for each of the examined families

of problems.

206

7.7 Optimal vertex covers of planar graphs

In view of the outstanding results obtained by applying PREPRO (described in Figure
7.3) to the minimum vertex cover problem in random planar graphs, we have tried to
refine this method to the point where it would not only preprocess the problem but
actually produce an optimal solution of it. As it will be seen in this section, the resulting
method allowed the efficient detection of minimum vertex covers in planar graphs of
impressive dimensions, including some having 500 000 vertices.

Although the vertex cover problem is known to be NP-hard in the class of planar
graphs ([105]), our computational experiments with a large collection of benchmark
planar graphs indicate that, in all likelihood, finding vertex covers in planar graphs
may be frequently tractable. This conclusion provides the motivation for the work
reported in this section.

Before presenting the results of our computational experiments we would like to
emphasize that PREPRO is not capable of solving the QUBO problems associated to
every planar graph, and that it may encounter problems even in the case of very small
graphs. For example there are no persistencies in the QUBO associated to the “toy

box” graph of Figure 7.4.

Y

(a) 3-dimensional drawing. (b) Planar drawing.

Figure 7.4: Planar graph for which PREPRO does not find any persistent result.

7.7.1 Deriving minimum vertex cover from QUBO’s optimum

We have seen in Section 2.2.2 that finding a minimum vertex cover of a graph G = (V, E)

is a QUBO, and we have also noticed in Section 7.6.2 that out of the 400 QUBOs coming

207

from vertex cover problems in randomly generated planar graphs, every single QUBO
was solved to optimality by PREPRO. The only matter which needs special attention
is that — due to the fact that in (2.2) we have fixed to zero the values of ¢(; ;) for every
edge (i, 7) — it may happen that the optimal 01 solution of a QUBO defines a vertex set
which does not cover every edge. Let us see next that there is a simple polynomial time
transformation, which associates to the optimal solution of QUBO an optimal vertex

cover of G. This result follows directly from Theorem 2.1.

Corollary 7.1. Let G = (V,E) be a graph, and let us associate to it the quadratic
pseudo-Boolean function f (x1,- -, xn) = 3 ey Tit+D_(; jep TiTj and the QUBO (2.2).
Let further f(xi,--- ,z}) be a minimum of f, and let S* be the set of vertices j € V
for which z; = 1. Then, the size of a minimum vertex cover is f (z7,--- ,x}), and the

set S* can be enlarged to a minimum vertez cover § D S* in O (|E|) time.

While the previous result holds in any graph, it is particularly useful in classes of
graphs for which the associated QUBO (2.2) can be solved to optimality.

As a consequence of the discussion above, we have supplemented PREPRO with the
simple procedure outlined in the proof of Theorem 2.1 to derive an optimal vertex cover
from the optimal solution of the corresponding QUBO problem (2.2). This amended
version of the proposed algorithm will be called PREPRO™.

In this section the preprocessing strategies A, B and C of the previous section will
not be considered, i.e. all the experiments below were carried out by using strategy D,
which involves all the preprocessing tools of Section 7.6.2.

The results obtained by PREPRO™ for moderately sized graphs (i.e. having up to
a few thousand vertices), have been compared with those of the recent paper of Alber,
Dorn and Niedermeier (or ADN in short) reported in [13], which is essentially based on

the data reduction results of Nemhauser and Trotter [182].

7.7.2 Preprocessing

Table 7.3 provides averages of results obtained by preprocessing minimum vertex cover

problems on 400 random planar graphs generated by the LEDA package (see Section

208

7.5.3). Four groups of 100 graphs each have been considered, each graph in these sets

containing respectively 1000, 2000, 3000 and 4000 vertices.

Table 7.3: Comparative preprocessing results for minimum vertex cover problems in
planar graphs.

Number of Time Variables Fized Size of Residual
Graphs Vertices (sec) (%) Problem
per Family | per Graph || ADN ([13]) | PREPRrO || ADN ([13]) | PREPRO || ADN ([13]) | PREPRO
100 1000 4.06 0.05 68.4 100 315.8 0
100 2000 12.24 0.16 67.4 100 652.9 0
100 3000 30.90 0.27 65.5 100 1036.1 0
100 4000 60.45 0.53 62.7 100 1492.9 0

Remarkably, PREPRO achieved 100% data reduction in all PVC LEDA graphs,
whereas the ADN method obtained between 63% and 68% average data reduction
on their LEDA benchmarks, which have similar characteristics to the PVC LEDA
graphs (see Table 3.11). It can also be seen that the best performance of the ADN
method (68.4% reduction of vertex set) occurs on the group of relatively smaller graphs,
while the performance of PREPRO (100% reduction of vertex set) does not seem to be

influenced by the size of the graphs considered.

7.7.3 Optimization

While the results reported in Table 7.3 refer to the preprocessing by PREPRO of the
minimum vertex cover problem, we shall discuss below the results of applying PREPRO™
for actually finding optimal solutions to this problem.

It is important to remark that PREPRO™ assumes the knowledge of the exact op-
timum of the associated QUBO. If this optimum is not available PREPRO™ is further
enhanced to an algorithm PREPRO*, by adding a branch—and—bound component to it,
in order to handle minimum vertex cover problems even in this case. However, the use
of PREPRO* turned out not to be necessary in any of the 400 test problems randomly
generated with the LEDA software package, which were all solved to optimality without
the branch—and-bound component having been called.

Table 7.4 provides comparative results for finding optimal vertex covers for graphs

209

Table 7.4: Average computing times of optimal vertex covers for graphs belonging to
the LEDA benchmarks

Algorithm ADN ([13]) PREPRO* in the PVC LEDA Benchmark
750 MHz 500 MHz Pentium III | 2.8 GHz Pentium 4
Computer Linux Windows 98 Windows XP
System 720 MB RAM 96 MB RAM 512 MB RAM
(speed) (slower) (faster)
1000 vertices 5.75 s 0.24 s 0.06 s
2000 vertices 19.93 s 0.64 s 0.18 s
3000 vertices 51.54 s 1.07 s 0.31s
4000 vertices 109.84 s 1.71 s 0.56 s
Average
Speedup 51 times 169 times

belonging to the LEDA benchmarks. It includes computing times for the exact algo-
rithm of Alber, Dorn and Niedermeier [13] and solution times for PREPRO* (which
coincide with PREPRO™ for all the 400 cases). We would like to recall the fact that —
not having had access to the test problems of [13] — we have randomly generated our
problems, but made sure (as explained in Section 7.5.3) that the parameters used in
the random graph generation process were chosen so as to match exactly does of [13].

In order to be able to differentiate between the acceleration due to computer systems
and those due to algorithms, all the experiments reported in Table 7.4 have been carried
out twice, first on a somewhat slower computer system (500 MHz Pentium III, 98 MB
RAM, Windows 98) than the one used by [13] (715 MHz, 720 MB RAM, Linux), and
second on a faster system (2.8 GHz Pentium 4, 512 MB RAM, Windows XP).

The basic conclusion of this set of experiments is that using the slower computer

system, PREPRO* is about 50 times faster than that of [13], on average.

7.7.4 Minimum vertex covers of very large planar graphs

Based on the high efficiency of PREPRO* when applied to the optimization of vertex
cover problems in planar graphs, we have investigated the possibility of using it on
substantially larger planar graphs. The relevant experiments were carried out on the
set of 36 benchmark problems contained in the RUDY list (described in Section 3.3; see
Table C.4 of the Appendix), which contains graphs whose vertex sets contain 50 000,
100 000, 250 000 and 500000 vertices, and have planar densities of 10%, 50% and 90%.

210

For each particular number of vertices and each density the list contains three graphs.

Table 7.5: Average computing times over 3 experiments of optimal vertex covers for

graphs belonging to the PVC RUDY benchmark.

Planar Density

| Vertices | 10% | 50% | 90%
50000 1.2 min 3.7 min 1.8 min

100000 4.8 min 16.2 min 7.4 min

250000 30.4 min | 107.7 min 48.2 min

500000 || 124.7 min | 422.4 min | 195.3 min

Table 7.5 presents the average computing times needed by PREPRO* for finding
minimum vertex cover sets in all the graphs contained in the RUDY list. Each of the
computing times reported in the table represents the average needed for solving the
three problems with a fixed number of vertices and a fixed planar density contained in
the RUDY list. The average computing times range from 2.2 minutes for the graphs
with 50000 vertices up to 4.1 hours for the graphs with 500 000 vertices. Clearly, the
computing times vary with the size of the vertex set. A similarly foreseeable phe-
nomenon happens with the dependency of computing times and densities. Indeed, the
average computing time for the low density graphs is 40 minutes, for medium density
graphs this increases to 2.3 hours, and for high density graphs it drops to 1 hour.

More detailed information about the performance of PREPRO can be read from the
statistics presented in Table C.4 in the Appendix, where specific data are given for
each of the 36 problems of the RUDY list. First, it can be seen that almost all of the
computing time (78.7%) is spent on calculating the roof duals; moreover, most of this
time (99.9%) is spent on calculating the very first roof dual.

The large investment of computing time in the calculation of roof duals brings re-
turns in the form of graph size reductions (which are due to strong and weak persistency)

and in the form of decompositions.

e The detailed analysis of the problem size reductions occurring in PREPRO shows
that roof-duality accounts for 99.8% of these reductions for planar graphs of
density 10%, 93.2% for the 50% dense graphs, and 51.8% for the 90% dense

graphs.

211

e [t is interesting to note the extremely small size of the average components of
the graphs left after applying decomposition and strong and weak persistency.
Indeed, the average size of these components for graphs of 10%, 50% and 90%

density is of 3.1, 4.4 and 14.4 vertices, respectively.

Beside roof-duality, important simplifications of the remaining QUBOs were ob-
tained by the coordination method and by probing. It can be seen in column (n.)
of Table C.4 of the Appendix that the number of equality relations between pairs of
variables or their complements, discovered by the coordination method is an increasing
monotone function of planar density. Also, column (ns) of Table C.4 shows that the
number of variables whose values are fixed by probing reaches maximum values for the
medium density graphs. In conclusion it can be seen that there is substantial comple-
mentarity in the effect of applying the basic preprocessing techniques considered in this

paper. Indeed,

e 10% dense planar graphs derive almost the entire solution from the application

of roof-duality;
e 50% dense planar graphs derive a considerable reduction through probing; and

e 90% dense planar graphs derive a considerable reduction through the coordination

method.

However, the most important conclusion is that PREPRO™ found optimal vertex

covers for all the 36 benchmarks in the RUDY list.

7.8 Final remarks

This study is devoted to the systematic simplification of QUBOs. The proposed method
uses enhanced versions of several basic techniques (e.g., extraction of conclusions from
the analysis of first and second order derivatives [121], and from roof-duality [123]) and
several integrative techniques (e.g., probing, consensus) for combining the conclusions
provided by the basic techniques. The application of these techniques is implemented

using the network flow model of [54, 56].

212

The use of the proposed preprocessing techniques provides:
(7) A lower bound of the minimum of the objective function;
(74) The values of some of the variables in some or every optimum;

(73i) Binary relations (equations, inequalities, or non-equalities) between the values of

certain pairs of variables in some or every optimum;

(iv) The decomposition (if possible) of the original problem into several smaller pair-

wise independent minimization problems.

The efficiency of the proposed techniques is demonstrated through numerous compu-
tational experiments carried both on benchmark problems and on randomly generated
ones.

The simplifications obtained with the proposed methods exceed substantially those
reported in the literature. An interesting example is the minimum vertex cover problem
for which [13] reports a preprocessing stage reduction of dimensionality by 62.7%—68.4%,
while the method proposed here achieves 100% reduction (i.e. exact solution) in each
of the test problems. Moreover, while the computing times reported in [13] for finding
optimal vertex covers for graphs from 1000 to 4 000 vertices range from 5.75 to 109.84
seconds, those required by the proposed method range from 0.24 to 1.71 seconds using
a somewhat slower computer, or from 0.06 to 0.56 seconds using a somewhat faster one.

The experiments show that the methods can be applied successfully to problems of

unusually large size, for instance:
e MAX-Clique on graphs derived from fault diagnosis having up to 500 vertices;

e MAX-CUT problems on graphs derived from VLSI design having thousands of

vertices;

e Minimum vertex cover problems on randomly generated planar graphs (an NP-

hard problem [105]) having up to 500 000 vertices (reported in Section 7.7).

It should be added that the proposed preprocessing technique have not only simpli-

fied the above problems but have in fact produced their exact optimum solutions. As

213

far as we know there are no reports in the literature about methods capable of providing

optimal solutions to vertex cover problems in planar graphs with the investigated sizes.

214

Chapter 8

Lower Bounds to the Minimum

Given any (heuristic) solution x™ to the minimum of a quadratic pseudo-Boolean func-
tion f, it is desirable to know how far is f (x*) from the optimum v (f). Since v (f) is
most likely not know for most quadratic pseudo—Boolean functions f, then the quality
of x™ as a minimizer of f is typically analyzed by comparing how far is f (x*) from an
“easy” computable lower bound to v (f).

It is well know that contrary to several heuristics, which provide reasonably good
solutions (i.e. upper bounds) in an “efficient” computing time to QUBO, the lower
bound “closeness” to the optimum is traditionally associated to a much larger computer
effort. Therefore, when selecting a lower bound technique, one has to trade—off between
the desired quality and the time needed to compute the bound. This fact will become
evident throughout the computational results shown subsequently in this and in the
following chapters.

Lower and upper bounds are also crucial elements in the design framework of the
state-of-the-art exact methods for QUBO (see Chapter 9). Typically, bounding is used

by branch-and-bound methods to cutoff the solutions space as much as possible.

Probably, the best known lower bound to QUBO is the roof dual bound of Hammer
et al. [123] (see Chapter 5). In addition to the value of the bound, this technique
characterizes some strong persistent values for some variables, which hold in all optimal
solutions ([123]), thus simplifying the problem at hand.

It turns out that the roof dual bound can be determined by using several alternative
algorithm approaches. The most well known approach is based on solving the Linear
Program (LP) (5.3), which is obtained by linearizing each quadratic term x;z; through

the use of auxiliary variables y;; for every x € B" (1 < i < j < n). The roof dual can

215

also be (efficiently) computed by finding a symmetric maximum flow in the network

model of ([51, 59, 226]) (see Section 5.3).

Let

n
def
Ly (x,y) = o+ E Xy + E CijYij-
i=1 1<i<ji<n

The 0-1 LP (5.3) can be rewritten as

v(f) =min {L; (x,y)|(x,y) € S, x e B" |, (8.1)
where)
St = ¢ (x,y) (1<i<j<n)
r +x; —y; <1

The roof dual bound of quadratic pseudo—Boolean function f (denoted here as

Cy (f)) is obtained by relaxing the integrality constraints on x in (8.1) to x € U™, i.e.
C def . { [2] n
5(f) = min{ Ls (x,y) |(x,y) € S¥,x e U" ;. (ROOF DUAL)

Let us note that the (ROOF DUAL) LP is characterized by n + (g) nonnegative
variables and by 3(’5) constraints.
Boros et al. [49] have presented a hierarchy of bounds Cs (f) < Cs(f) < C4(f) <
- < Cp (f) =v(f) for QUBO. C; (f) corresponds to the roof dual value of f. The Cj
bound, also known as the cubic dual, has been shown to be equal to the first Chvatal
closure of S ([50]). The present chapter is mostly devoted to studying alternative
approaches that provide lower bounds to a quadratic pseudo—Boolean function f that
have values between the roof dual and the cubic dual bounds.
Cy4 (f) is characterized here for the first time, and we provide some combinatorial
constructs to get improved bounds based on the so-called arithmetic consensus of two

terms of a posiform.

216

Other than by solving an LP, it is not known if there is any combinatorial algorithm
that could provide the cubic dual in polynomial time. Several combinatorial bounding
approaches were proposed in the past to get better lower bounds than the roof dual
bound. Any of these methods returns the roof dual bound when the function is gap—
free, otherwise they return a strictly better bound than roof dual, with the first two
cases being not better than the cubic dual of the function. A brief description and the

main references of these bounding procedures are listed next:

e Boros and Hammer [52] introduced the iterated roof dual bound, which is based
on solving a noose packing problem of a graph representation of the problem
(called the biform graph). This bound can be efficiently computed by finding a

sequence of maximum flows in a capacitated bi—form network.

e Using a different approach based on a consensus identity, Bourjolly et al. [65, 67]
proposed a bound which partitions the function into two posiforms, the first one
being an arbitrary quadratic posiform, and the second being a cubic positive
posiform. There is not known reference about a comparative study between the

bound of [65, 67] and the iterated roof dual bound.

e Billionnet and Sutter [44] proposed a method to find a quartic posiform of a
given quadratic pseudo—Boolean function. Clearly the constant of this posiform
is a lower bound to the minimum of the function. To do this operation, several
minimum weight cycles are squeezed out of the residual positive posiform (similar
to the ones proposed in [65, 67]). An additional improvement will produce the
residual quartic posiform. There is not known relation between this bound and

the hierarchy of bounds of Boros et al. [49].

It is well known that the MAX—-CUT problem is equivalent to the maximization of a
quadratic pseudo—Boolean function ([52]). Goemans and Williamson [112] proposed the
semidefinite relaxation for MAX—-CUT, and due to the 1-to—1 correspondence between
these two problems, the semidefinite relaxation provides a lower bound to QUBO as

well.

217

Recently, Rendl et al. [98] proposed to use Lagrangian duality theory, by using both
the semidefinite relaxation and by dualizing a subset of the set of triangle inequalities,
which are valid for the cut polytope, and whose complete set would provide the cubic
dual of the function. The use of these additional inequalities provided a substantial
reduction to the semidefinite relaxation gap of several MAX-CUT benchmarks ([206]).

Billionet and Elloumi [41] used semidefinite programming and used the fact that
ZE? —z; =0 (for all ¢ = 1,--- ,n) to produce an equivalent unconstrained quadratic
optimization problem to QUBO, which is no longer multilinear, but whose relaxation is
convezr. The bound produced by solving this relaxation is the same as the semidefinite
relaxation of [112]. The advantage of using this perturbed problem is the fact that
the 0—1 version of this problem can be optimized by using other solvers, which have
algorithms ready—to—solve these convex Integer Quadratic Problems (known as MIQP).

Another bounding approach to QUBO is based on the decomposition method of
Chardaire and Sutter ([82]; see also [95]). This method partitions the original function
into bilinear functions, for which the optimum can be obtained in reasonable time. The
dual formulation of this decomposition provides at least the roof dual bound.

In order to solve QUBO, many researchers use an equivalent linear integer formula-
tion. This formulation is obtained by doing linearizations of quadratic sub—expressions,
through the use of additional variables and linear constraints (see e.g. [63]). Obviously,
the relaxation of these integer programs produces a lower bound to the optimal value.
It turns out that the bounds obtained from several linearization approaches are related
to one of the bounds in the Boros et al. [49] hierarchy. In the related literature, the
focus of these approaches has been given to find linearizations which require a small
number of additional variables. A recent work by Gueye and Michelon [115] reviews

and analyzes this aspect.

The operation that finds if the roof dual bound is gap free (i.e. if v (f) = Cy(f))
can be done in polynomial time ([123]). This problem can be efficiently reduced (in size
and time) to a 2-satisfiability problem, which is well known for having a polynomial

running time (see e.g. [90, 133]).

218

If the roof dual bound is not gap free then v (f) > Cy (f), and therefore in this case
it is useful to study and analyze other approaches that can strictly reduce the roof dual
gap v (f) — Ca (f). In the hierarchy of bounds proposed by Boros et al. [49], the cubic
dual bound (i.e. C5(f)) is such an example.

The cubic dual is well characterized by means of LP ([50]). It is simply defined
by (ROOF DUAL) intersected with a family of valid cuts (called triangle inequalities)
denoted by S, which is produced by the first Chvital closure of SI?. Boros et al. [50]

have shown that SB! is characterized by 3(3) + 4(?) inequalities as

Ty +T; AT ~Yij— Yik — Yik S 1

N

i +Yig T Yik — Yik <O, ,
il — s (x,y) ‘ RS ! (1<i<j<k<n)

—Zj +Yij — Yik +Yjk <0,

0
Tk —Yij T Yik T Yk <0,

(8.2)
The cubic dual of a quadratic pseudo—Boolean function f can therefore be found by

solving the LP
Cs () min { Ly (x,3) | (x,y) € $F,x e U], (CUBIC DUAL)

whose size is polynomially bounded by the size of f.

Other by using LP algorithms, there is not other known (combinatorial) method
that can provide the cubic dual in efficient time, in contrast with the roof dual bound
which is well characterized by using network flow procedures. In Section 8.5 we shall
introduce some ideas that may lead to the discovery of such a method for the cubic
dual. In the next section, we give particular emphasis to problem (ROOF DUAL)
whose constraint set is augmented with various sub-families of inequalities from S[.
We will demonstrate that a state-of-the-art solver for LP can solve relatively large
sparse QUBOs efficiently, which appear frequently in practical applications.

This chapter is organized as follows. The next section will introduce bi—forms and
the relation between graph balancing and QUBO. Section 8.2 will show how to relate

the graph balancing graph with the network model introduced earlier in Section 5.3.

219

In Section 8.4, the iterated roof-dual bound is reviewed and an implementation of it
based on the network model is given and demonstrated. The following two sections
propose improved bounds over the iterated roof-dual one. These methods are based on
combinatorial constructs and network flows. The last 2 sections of this chapter cover

the usefulness of linear programming augmented with some families of cuts to solve

sparse QUBOs.

8.1 Bi-forms and packing of cycles

A quadratic pseudo—Boolean function f € Fy may be represented by infinitely many
posiforms. Among the posiforms representing f there may also exist some having
degrees higher than two. For instance, 1 —x —y—z+axy+zz+yz=xzyz+77%.

A very special posiform is introduced in this section, which has the peculiar property

of being uniquely defined for any quadratic pseudo—Boolean function.

Definition 8.1 ([51]). Ifz and y are binary variables, then the expression x;T;+T;x; is

called a positive bi-term, while the expression x;x; +7;Z; is called a negative bi-term.

Bi—terms naturally express the equality or non-equality of the variables involved,

ie.

r%; +Tix; =0 < x=yand

v +T,2; =0 & x#vy.
Definition 8.2 ([51]). If E is a collection of bi-terms such that no pair of variables
is involved in more than one element of E, and a. are positive numbers for all e € E,

then the quadratic pseudo-Boolean posiform 3 =) .pace is called a bi-form.

Proposition 8.1 ([51]). Any quadratic pseudo—Boolean function f in variables x1,- -,z
has a unique constant cy, and a unique bi-form [(3; in the variables xo,x1,- -+ , 2y, such
that

[z, an) =cp+ 0 (Lxy, -+ ,20) . (8.3)

Proof. Let us assume that f is given as expression (1.5). To prove the claim, we use

the fact that all coefficients in (1.5) are uniquely defined for f. In fact, ¢y and gy are

220

uniquely determined by the coefficients:

1<i<j<n eV
W30 A(ded)<o
and
By = > A (%7 o ,%) (w0 + TiT0)
i€V
Ai(1ed)0
+ Z |AZ (%7 : 7%)‘ ($Z£0+£2£0)
1€V
A3 d)<o
+ Z % (l‘il‘j + fifj) + Z |% (Eia:j + ZEifj) .
1<i<j<n 1<i<j<n
c;;>0 ¢i; <0
O
Example 8.1. Consider the quadratic pseudo—Boolean function g = —fg. The unique

bi-form of g is then

By = 2(T1xo + 21T0) + % (Tazo + x2T0)
+ (x420 + T4To) + % (Tszo + 25T0)

+35 (z122 + T1T2) + (21T + T133) + (2124 + T1Ts)

+

(175 + T1w5) + % (r176 + T1T6) + % (z2T3 + Tax3)
+% (m2x4 + ToTy) + % (xows + TQTE,) + % (ngﬁ + Toxg)
+ (234 + T3wa) + (2325 + T3T5) + 3 (T3T6 + T32e)

+ (245 + Tuxs) + 5 (2476 + TaTe) + (T5T6 + TrTe)

satisfying the equation g (x1,--- ,x¢) = Py (1,21, ,x6) — %.

Proposition 8.2 ([51]). If 8 is a bi—form, then B (xo,z1, -+ ,xn) = B(To, T1,"** ,Tn)

for every binary vector (xg,z1,--- ,,) € B"HL,

Proof. Follows directly from the definitions, since the value of 8 depends only on equal-
ities and non-equalities of the variables, that is on relations which do not change when

simultaneously all the variables are complemented. O

221

Proposition 8.3 ([51]). If By is the unique bi-form of the quadratic pseudo—Boolean

function f, then

min T1, " ,Tn) = Cf + min Lo, X1, T
(wl,"',wn)EB"f(! N) ! (z0,21, yxn)EBPTL ﬂf(0,41 n)
and
max T1, * , T = c¢cf + max TO, L1, 5 Tp) -
(Z‘ly“‘,Z‘n)E]an(1 n) ! (2021) B B (wo, z1 n)
Proof. Follows readily by Proposition 8.2. 0

The above remarks imply that instead of zg, any of the n+ 1 variables of the bi-form

Bf could be fixed at 1, without changing the set of values associated to 3.

Corollary 8.1. If By is the unique bi-form of the quadratic pseudo—Boolean function f,
giwen as in (8.3), and h (xg, -+, Ti—1,Tix1,-++ Tn) = CF+L (@0, -+ Tim1, L, Tig1, -+, Tn),
1.e. if we obtain g from ¢ by firing x; = 1, then both f and h are quadratic pseudo—

Boolean functions and have the same minimum and mazimum values.

Example 8.2. Returning to the quadratic pseudo—Boolean function g = — fg used in

Ezample 8.1 and its unique bi-form B3y, then function

h (l‘o, x9,T3,T4,T5, l‘6) = —1—29 + ﬁg (ZE(], 1,20, x3, 14, T5, ZEG)
= -2+ w9+ x4+ 225 + 216
—x0x2 + 2x0T4 — DToT5
—X2x3 + ToXy4 + T2T5 — T2Tg
—2x3xT4 + 22375 — T3T6

—2x4x5 + T4Te — 2T5T6
has the same minimum (i.e. v (f) = —5) and maximum values (i.e. T(g) =4) as g.

Noting that a quadratic pseudo—Boolean function, given as a multilinear polynomial
(1.5), can be transformed to a bi~form in O (n2) time, then Proposition 8.1 shows

that the minimization of a quadratic Pseudo—Boolean function is equivalent to the

222

minimization of the corresponding unique bi—form.
It should be noted that certain combinatorial algorithms are naturally formulated

as bi—forms, in particular MAX-CUT and graph balancing problems.

Definition 8.3. Given a bi-form, f = > .pace, we associate to it a graph Gy,
whose vertices correspond to the indices {0,1,--- ,n} of the variables, and whose edges
correspond to those pairs (i,) for which there is a bi—term in f involving the variables x;
and xj. The edge e = (i, j) will sometimes refer to the edge (i,7) of Gy, and some other
times to the Boolean expression e (X) = (x;T; + ZTyx;) or = (x;x; + T;T;) associated to
it in f. An edge will be called positive (negative) if the associated bi—term is positive
(negative); the weight of an edge e is the corresponding positive coefficient a in f. In

other words, Gy is a weighted signed graph, associated to the bi-form of f.

Example 8.3. The weighted signed graph G, of the bi-form (3, associated to the
quadratic pseudo—Boolean function g = —fg (see Example 8.1) is displayed in Figure
8.1.

Definition 8.4. If x is a 0—1 vector of n+ 1 components, then an edge e € E is called

conflicting with x if e (x) # 0, otherwise we say it agrees with x.

Remark 8.1. For any 0-1 vector x € B"*1,

f(x)= Z Q.

e is conflicting with x

Definition 8.5. Paths in Gy with a possible repetition of edges (such paths are called
sometimes walks) are considered next. The number of times an edge e is used by a path
P will be called the multiplicity of e with respect to P, and will be denoted by mp (e).

A path is called closed, if its first and last vertices coincide.

Definition 8.6. A path is called negative if the sum of the multiplicities of the negative
edges in it is odd. A closed negative path without repetition of edges is called a negative
cycle, while a closed negative path, with possibly repeated edges, is called a noose. A

noose is called rooted if it passes through the root of f. To a rooted noose N (which we

223

positive edges

———————— negative edges

Figure 8.1: The graph G of the bi-form given in Example 8.1.

will consider as a subset N of the edges together with a multiplicity function my) we

shall also associate the QUBO N =} .y my(e)e.
The following easy remarks (see e.g. [51, 57, 68]) will be useful later in this section.

Remark 8.2. The equation f(X) =0 is consistent if and only if there is no negative
cycle in Gy. Moreover, the equation f (X) = 0 has a unique solution (assuming xo =1)

if and only if Gy is connected and does not contain negative cycles.

Remark 8.3. If e and ¢ are bi-terms involving the pairs of variables x,y and y, z,
respectively, then

/ "
et+e =¢ +c

for some cubic posiform c¢ and a bi-term €” involving ¥ and z. Moreover the sign of €”

is the product of the signs of e and €.

224

Proof.

sl
N
N~—
+
i~
8
<
N
+
gl
<
)

O

Example 8.4. Consider the rooted noose N = {(0,1),(1,4),(4,3),(3,5),(5,4),(4,0)}
in the graph of Figure 8.1. Applying Remark 8.3, we have

N = (2oT1 +Tox1) + (2124 + T1Ts) + (23T4 + Tyza)+
(x3x5 + T3Ts) + (£aTs + Taxs) + (Toxsa + ToTa)

142 [(20T1Ta + Tor12a) + (X0T324 + ToxsTsa) + (Tox3T5 + ToT3Ts) + (ToTaTs + ToTaZs)] -

Thus

N (1,x1,x2,x3,x4,x5) =1+2 (Tlf4 + T3x4 + X375 + x4T5) .

More generally,

Remark 8.4. If N is a rooted noose in Gy, then

N(17x17"' 7$n) = 1+Q(x17517"' 7331175”)7

where q is a quadratic posiform.

Let f be a given bi-form, xg its root, and let C, " and Ny denote the set of negative
cycles, the set of nooses and the set of rooted nooses in G, respectively. If (P) is an
optimization problem, its optimum value is denoted next by w (P).

Given a bi-form f, Boros et al. [51, 57] associated to it the following mathematical

programming problems:

225

e A “cycle covering” problem

min v (y) =Y acye

ecll
st Y we=1 V(e (CC)
ecC
Ye €B Vee E,

e A “noose covering” problem

min v (y) = Z QeYe

eclk
s.t. Z my(e)ye =1 VN eEN, (NC)
eeEN
Yo € B Ve€eEFE,

e The continuous relaxation (NC®) of the noose covering problem, obtained from

(NC) by replacing the conditions y. € B by y. > 0 for all e € E.

e A “noose packing” problem

max w(€) =) &

NeN
s.t. Z my(e)én < ae Vee L, (NP)
N>e
En =20 VN ceN.

e The “rooted noose packing” problem (RNP) which is obtained from (NP) by
replacing N by Nj.

Boros et al. [51, 57] shown that problems (CC) and (NC) are integer programming
problems which are equivalent with the minimization of f, while (NC€), (NP) and
(RNP) are weaker linear programming relaxations of the above integer programming
problems, and the weakest one (RNP) turns out to be equivalent with roof-duality

(see Proposition (8.4)).

Example 8.5. For bi-form (3, given in Ezample 8.1 the following is an optimal rooted

226

4
N[

N[

positive edges

———————— negative edges

Figure 8.2: The residual graph G; of the bi-form given in Example 8.1.

noose packing for root xy (i.e. to problem (RNP)):

3. if N =[(0,1),(1,2),(2,0)]
1, if N=10,4),(4,5),(50)],
Ev =14 1, if N=10,1),(1,3),(3,5),(5,0)], (8.5)
3. if N=1(0,1),(1,6),(6,5), (5,0)],
| 0, otherwise,

The residual graph G; is obtained after removing from graph G4 (see Figure 8.1)
the strictly positive nooses from £y. G; 1s displayed in Figure 8.2.
The sum of the rooted nooses values is 3, and consequently the roof-dual value of g

. 19 _ 13
s —5 +3=—%.

The “roof duality” approach of [123] for the minimization of bi-forms is rephrased

227

next. For this, the bi-form of f is written as

F= > oyad+Timg) + Y ayniag + BT),
(,j)eE+ (i,j)€E~

where E1 and E~ denote the set of positive and negative edges in Gy, respectively.

For each quadratic term of f, its Ly optimal linear lower bounds are given by

zix; = Nj(xi+x; —1), forany 0<A;<1,

%5 2 (i — j), for any 0<A5< 1,
Tizj > Ay — i), for any 0 <\;;< 1,

ZiTj = N5(1 —a; —xj5), forany 0 é)\ﬁé 1,

for 0 < i < j < n. For a fixed parameter vector A let

L (X) = Z OZZJ(/\EE — >\ij)+
(3,5)€eE—
Yowi| Y aly =)+ Y aihg—Ay)
=0 | (i,j)eE- (i,§) B+

It can be seen (as in [123]) that the roof dual p (f) of f is given by
p(f)= m}f\ixminLA (x).

The following result relates the optimum of all the above (integer) linear programs.
It is to be noted that recently the cycle packing problem has been rediscovered by
Ibaraki et al. [148, 147], who have proposed various efficient heuristics to compute
these improved bounds and when embedded within a branch-and-bound framework

resulted in being one of the most efficient solvers for many classes of QUBO.

228

Proposition 8.4 ([51, 57]).

mingegn+1 f (x) = w

Y,
€
=~
Z

=z
Il

=
=

By the symmetries observed in Corollary 8.1, it should be remarked that any of
the variables could be used as roots, and in this way consider analogous rooted noose
packing problems. Denoting by N; the set of nooses rooted at vertex mz;, for i =

0,1,--- ,n, we consider the problems ([51, 52, 57])

max w(§) = ZNGM N
st. Y nsemn(e)én < ae VeeFE, (RNP(i))

En =0 VN eN;.

Clearly, problem (RNP(0)) is the same as (RNP). Furthermore, the optimum value
of each of the problems (RNP(i)) (i = 0,1,--- ,n) is a lower bound on the minimum

of f. Thus, since w (RNP) = p(f) then the following corollary applies readily.

Corollary 8.2 ([51, 52, 57]).

Join f(x) > max w(RNP()) > w(RNP) = p(f).

In concluding this section, let us make a few additional remarks. Let us note first
that in the noose packing problem (NP) we could replace A/ by C without changing
the optimum value. Furthermore, the resulting negative cycle packing problem can
easily be shown to be equivalent with negative triangle packing, which we state here for
completeness. For this, let us introduce a positive edge e for every pair of variables which
are not connected by an edge in Gy, assume that o, = 0 for these newly introduced

edges, and denote by E this extended set of edges. Let us also denote by € the sign

229

complement of edge e (i.e., if e is a negative edge between variables x; and x;, then €
denotes a positive edge between x; and x;, etc.), and note that if e € E, then we have
€ ¢ E. Let us denote finally by 7 the collection of all negative triangles (i.e., negative

cycles consisting of three edges), and consider the problem

max w(€) =Y &r— Y. <Z£T>

TeT cch \T>
s.t. OQZET—Z&“éO@ Veek, (TP)
T>e T>e
Er >0 VT eT.

We can thus conclude that w(NP) = w(TP). Furthermore, comparing problem (TP)
with the formulation of the cubic dual bound C3, and in particular with the triangle
inequalities based formulations of it (i.e. (CUBIC DUAL)), the following claim can be

shown:

Proposition 8.5. w(NP) = w(TP) = Cs.

8.2 Optimal rooted noose packings relationship to the network model

Boros et al. [51, 57] has shown that the optimum value and an optimal rooted noose
packing can be computed by solving a maximum-flow problem in an undirected network
on 2n + 2 vertices. Together with the result of the previous section this implies that the
roof dual p (f) of a quadratic pseudo—Boolean function f in n variables, as well as any
of the possibly improved lower bounds w(RNP(i)) can be computed in O(n3) time.
We present this approach for the case of xg as root, though it can be applied directly

for any other choice of a root.

Definition 8.7. If f is a bi-form rooted at o, then let Uy = (W, A) be the bi-form
network, whose 2n+2 nodes correspond to the literals of the set W = {x¢, To, ..., Tn, Tn },
and whose edges are associated to the edges of Gy in the following way. Ife € E is a
positive edge between i and j, i.e. e = x;T; + T;x;, then there are two corresponding
edges in A: an edge € between x; and x; and another edge ¢” between T; and T;. If

e € I is a negative edge between i and j, i.e. e = xz;x; + T;T;, then there are two

230

corresponding edges in A: an edge € between x; and T; and another edge €’ between T;

and z;. Let in both cases c(€') = c¢(e") = 2a, be the capacities of these edges in Uy.
J 2 !

Definition 8.8 ([51, 57]). If P is a path from xq to Ty in a bi-form network Uy, going
through the vertices {uy, ..., up} (i.e. uy = xg, up = To), then the sequence {uyp, - ,u1}

describes another path P between xo and To. The pair (P, ﬁ) will be called a bi-path.
The following Lemmas can be seen easily.

Lemma 8.1 ([51, 57]). There is a one-to-one correspondence between the rooted nooses

in Gy and the bi-paths in the bi-form network Uy.

Proof. A rooted noose provides a closed walk from z to z¢ in G, in which we pass an
odd number of times negative edges (some of them possibly twice). Thus, by the above
definitions, the corresponding edges in Uy form a path P from zg to o and its twin
P, i.e., a bi-path. Conversely, a bi-path (P, ?) in Uy corresponds to a closed walk W
from z to o in G. Since along the path P (and P) we must move an odd number of
times from an un-complemented variable to a complemented one, in W we must pass

through an odd number of negative edges, i.e., W is a rooted noose in G/. O

It is well-known in the theory of network flows that a flow F' from ¢ to To (in Uy) can
always be decomposed into the sum of a finite number of elementary flows Fy,--- | Fi,
going through the paths Py,--- , P; from zg to Tg. Thus, due to the symmetric nature

of Uy, the following claim follows readily from the definitions.

Lemma 8.2 ([51, 57]). Let F; i = 1,...,t be elementary flows from xy to Ty through
the paths P;, and having values f;, respectively. Further, let F; be the elementary flow
through the path P; having the value f; fori=1,--- t. If F = F; is a feasible flow

in Uy, then F =" F; is also a feasible flow in Uy (having the same value as F).
A flow F from zg to Zp in Uy with the property F' = F is called a bi-flow.

Lemma 8.3 ([51, 57]). To every feasible rooted noose packing & = nepy, §ndV there
is a corresponding bi-flow of Uy with ZNEN@ En as its flow value. Conwversely, every
feasible bi-flow in Uy corresponds in this way to a feasible solution of (RNP) (however,

this correspondence may not be one-to-one, in general).

231

Proof. Since a convex combination of feasible flows is again a feasible flow, Lemma 8.2
implies that from any feasible flow I’ of Uy we can obtain a feasible bi-flow with the
same flow value, by considering simply %F + %F Therefore, Lemmas 8.1 and 8.2 imply

readily the claim. O

Example 8.6. To illustrate that rooted noose packings of Gy and bi-flows of Uy are

not necessarily in a one-to-one correspondence, let us consider the bi-form f defined by

f(x(), T, T2, T3, a;4) = 2(%0%1 + Tofl) + 2(%0%2 + TQTQ) + 2(3;1332 + Tlfg)

+2(x123 + T1T3) + 2(x324 + T3Ts) + 2(z421 + TaT1)

and its graph Gy. The nooses

N1 =2(xoz1 +ToT1) + (v123 + T1T3) + (X374 + T3Ty) + (w421 + T4T1)

Ny = 2(xzoz2 + ToT2) + 2(r122 + T1T2) + (x173 + T17T3)

+(a:3x4 + 5354) + (a:4a;1 + T4Tl)

with weights {n, = En, = 1 form a feasible rooted noose packing in Gy. In the corre-
sponding bi-flow of Uy however the flows cancel out on some of the arcs (corresponding
to a circulation), and the non-zero edges of the resulting bi-flow correspond to the rooted

noose packing consisting of a single noose N3 with weight {n, = 2, where
N3 = (a;oxl + Tofl) + (xoxg + TQTQ) + (xla;g + Tlfg).

Finally, Lemma 8.3 implies immediately the main statement of this section:

Proposition 8.6 ([51, 57]). w (RNP) is equal to the value of the mazimum flow from

xo to Ty in the bi-form network Uy.
Corollary 8.3. Problem (RNP) can be solved in O (n?’) time.

Let us add that whenever the given bi-form f has integral coefficients, the corre-
sponding network Uy has a half-integral maximum bi-flow, as the simple argument in
the proof of Lemma 8.3 shows. Consequently, for integral bi-forms we have half-integral

optimal noose packings.

232

The undirected network Uy could also be viewed, for algorithmic purpose, as the
directed network N obtained from Uy by replacing every undirected edge e = (u,v)
by two directed arcs ¢ = (u,v) and €” = (v,u) between the same pair of literals,
and assigning to both of them capacity C (¢/) = C (¢”) = C (e). Ny is precisely the
capacitated directed network, in this case is associated to the bi—form f, as has been
described in Section 5.3.

The directed network model can represent an arbitrary quadratic posiform of a
quadratic PBF f (including the bi-form), and the corresponding maximum-flow makes
also possible to derive the roof—dual of f. A natural question is therefore what network
model version to consider for each situation.

On the one hand the symmetric bi-form based model (Uy) is preferable, because
that leads to the cycle and noose packing problems, and allows us to apply an iterated
version of the rooted noose packing (see Sections 8.4 and 8.5). It also makes possible to
use maximum flow algorithms especially designed for undirected networks. For instance,
[154] shows that in an undirected network of n nodes and m edges a maximum flow
of value v can be computed in O(nm?/3vY/6) time. Thus, for bi-forms with ”small”
integer coefficients the roof dual value could be obtained more efficiently by using the
algorithm of [154] in the above undirected network model than by standard network
flow algorithms in the directed network model of [54, 226]

On the other hand the directed network model (INy) can be applied to an arbitrary
quadratic posiform, makes possible to directly get weak and strong persistencies and
may have certain algorithmic advantages depending on the input.

The next statement establishes for the first time the result that the conclusions
(e.g. bounds and persistencies) derived by the three models: G¢, Uy and Ny, can be
explicitly related. In particular, we are interested in quickly determining how to find
the residual graph of the noose packing problem (denoted as G’f) given that the residual
network of the directed network model Ny is known. This result makes possible to use
the directed network Ny (our model of choice in this dissertation) efficiently with the
iterated rooted noose packing algorithms to be presented later (see Sections 8.4 and

8.5).

233

Theorem 8.1. Let f be a quadratic pseudo—Boolean function. If

e G is the balancing graph of the bi-form of f,
o Uy is the undirected “network”™ associated to the bi-form of f and

o Ny is the directed network associated to the bi-form of f (i.e. by duplicating an

edge {i,j} of Uy into arcs (u,v) and (v,u) with the same capacity of edge {u,v}),

then the residual graph G’f that corresponds to the optimal noose cycle packing of G can
be obtained directly from the residual network Ny[Xo] corresponding to the mazimum
flow \o, by considering the residual capacities C (u,v) and C (v,u) of arcs (u,v) and
(v,u) for all edges {u,v} of Gy, so that the capacity of edge {u,v} in G’f I8 Oy) =
min (C (u,v),C (v,u)) (if this value is 0 then it means that the edge does not exist in

7

Proof. xis a feasible flow in Ny if and only if X is a feasible flow in the residual network

Ny [Ao] such that:

x' >0
x' (u,v) — x" (v,u) =x (u,v) — %0 (u,v) — x(u,v) =% (u,v) + [x (u,v) —x' (v, u)]
x' (u,v) X' (v,u) =0
(8.6)
y is a feasible flow in Uy if and only if for every edge {u,v}
u,v) =20
u,v) = max (0,x (u,v) — x (v, u)) ®.7)

234

Using (8.6) and substituting in (8.7) then the following system of equations is ob-

tained that relates flows y, xg and x':

y (u,v) >0
y (u,v) = max (0, %0 (u,v) — Xo (v,u) + 2 [x (u,v) — X' (v,u)])
y (v,u) = max (0, %0 (v, u) = %o (u,v) + 2 [x' (v, u) = X' (u,v)])
y (u,0)y (v,u) =0

From the above systems of equations, clearly there is a one-to-one correspondence
between a feasible flow in Uy and a feasible flow in N;. It is also clear that there is a one-
to-one correspondence between a feasible flow in Ny and a feasible flow in the residual
network Ny [Ao]. From Lemma (8.3) to every feasible rooted noose packing there is a
corresponding bi-flow in Uy. Thus, to every flow of the residual network N [Xo] there
is a corresponding feasible rooted noose packing. In particular from Proposition (8.6)
there is an optimal rooted noose packing associated to a maximum flow of Ny [Ao].

Let us consider any arc (u, v) of Nt [A] with capacity C' (u,v) and an arc (v, u) with
capacity C (v,u). Clearly, if C'(u,v) + C (v,u) > 0 then there is an edge in Uy with
strictly positive capacity and equal to % (C(u,v) + C (v,u)).

Without loss of generality, let us assume next that C(u,v) > C(v,u). Then
x (u,v) = 3(C (u,v) — C (v,u)). If X = 0 and x¢ is a maximum flow of Ny (i.e.
Ny [Ao] is the corresponding residual network) then there is a maximum flow in Uy hav-
ing a flow of 1 (C (u,v) — C (v,u)) from u to v (ie. y (u,v) = 1 (C (u,v) — C (v,u))).
Since there exists a linear combination of rooted nooses packings in Gy associated to
this flow, then the residual graph of Gy after removing these rooted nooses packings has
an edge {u,v} with capacity 1 (C (u,v) + C (v,u)) — 1 (C (u,v) — C (v,u)) = C (v,u),

which is the smallest capacity of the two arcs in Ny [Ao]. O

Example 8.7. The quadratic pseudo—Boolean function g previously used in FExample

235

8.2 can be represented by the following standard posiform:

g = —% + T1T2 + 2T173 + T1Te + 2T3T5 + 22475
r1T4 + 5154) + (xﬁg, + Elxg,)
(x93 + Toxs) + % (m2x4 + ToTy)

+(

+

+3 (z2a5 + ToT5) + 5 (22T + Tawe)
+ (23T + T3wa) + 5 (23T6 + T376)
+

(46 + TyTg) + (%E5x6 + %xg,ffj)

Using Theorem 8.1 and the fact that ¢4 is in one-to-one correspondence with the

residual network of Ny, then it is clear that
Vg = T1T2 + 27173 + T1T6 + 27375 + 22475 + Tsxe

is a posiform that corresponds to a feasible rooted nooses packing. Since ¢4 corresponds
to the residual network obtained after applying the mazximum flow to the bi—form of g,

then 14 it is also associated to the optimal rooted nooses packing (8.5).

8.3 Rooted noose packing structure and decomposition

From Theorem 8.1 (see also Example 8.7) it is clear that a bi-form f can be decomposed
into two components, one that corresponds to the rooted nooses £y and the other
that corresponds to the residual balancing graph of Gy. This fact has already been
introduced by Boros et al. [51] and was called the structure theorem. The following

proposition presents this result on a different angle.

Proposition 8.7. Let f be a quadratic pseudo—Boolean function whose unique bi—form

in the variables xo,x1,- - , Ty i 8. Then bi-form B¢ can be partitioned in 2 quadratic

pseudo—Boolean functions gpgck) and ng(k) satisfying the following conditions:
f

@) Br= 3 en+oV +oym
NeRy f

.. k k _ k) — _ _
(ZZ) (pgf) :xkdj}) (.Z'(),"' s Lh—1y Th4-1y """ 7‘Tn) +xk¢§“) (.Z'(),"' sy Lh—1y Lh41y """ 7‘Tn)

236

(7i7) ng(k) is a bi—form that corresponds to the residual balancing graph G;k) after
f

removing a set of nooses Ry rooted at xj with values &;

(iv) Tf);k) = ¢N}k)[AR] —quSck), i.e. ¢§ck) corresponds to the quadratic posiform associated
to the nooses in set R and can be determined by finding a flow Ar, between nodes

. and Ty, in N(k), as ascertained by Theorem 8.1.

We shall call the above decomposition as the Ry —decomposition. If Ry is an optimal

rooted noose packing then we sometimes represent this decomposition as

B = &k + ok + Ok

It should be noted that gpgfk) is a quadratic pseudo—Boolean function which has a
particular cubic posiform representation. Namely, for every nonzero cubic term xjpuv
of gp}k) there is a cubic term on the same variables T;u T (see (i7) above). This fact can

be shown by noticing that the identity
Truv +TEpuv = 1 —op —u— v+ xpu+ Tv + uv
= -1+ i(@pu+mm) + L (v + 70) + 3 (wo + D)
applies. This result will be explored further in the following sections.

Example 8.8. Let us consider the quadratic pseudo—Boolean function g of Example
8.2. Using x3 as root for the decomposition then the corresponding bi—form can be

decomposed as follows:

3
By = 2+ goé)+ ¢N§3)’ where
(,023) = I3 (5152 + 174 + T4x5 + 335T6) + 3 (331:E2 + 2124 + 2475 + 55:E6) and
Oy = 2(zoT1+Tom) + 3 (20T2 + Tom2) + ToTa + Tox4 + 3 (20T5 + Toxs)

2124 + T1T4) + (2175 + T1as) + 5 (2176 + T1T6) +

)+
_ 1 _ 1 _
ToTy + ToTy) + 3 (xox5 + ToT5) + 5 (29T + Toxg) +
) + 5 (z4m6 + T4Tg) +

).

(
(
(2475 + Tus
(

NI N N= N

T5Te + TsTg

237

In this example the R3 nooses correspond to an optimal noose packing rooted at xs.

Thus, w (RNP (3)) = ¢o + >, &v = —9.5+ 2 = —7.5. Note that in this case
NeR3

w(RNP (3)) < p(f) =—6.5.

Using x5 as root for the decomposition then the corresponding bi—form can be parti-

tioned as follows:

By, = % + 90575) + (25N9(5), where
(pgs) = x5 (21T + 22To + 2T4To + T1T2 + 2T1 23 + T1T6 + T2Tg) +

T5 (2513)0 + Xoxg + 22420 + T1T2 + 22173 + 126 + fgl‘ﬁ) and

¢ng5) = (:Elfo + 51330) + (ZE1:E4 + 51T4) + % (33253 + Tg:ﬂg) + % (ZE2334 + 52T4) +

($3f4 + 53334) + % (fg$6 + :ngﬁ) + % (l‘4l‘6 + 5456) .

The nooses Ry correspond to an optimal noose packing rooted at xs. Thus, w (RNP (5)) =

—6. In this case w (RNP (5)) > p(f) = —6.5 > w (RNP (3)).

8.4 Iterated roof—duality

The decomposition result established by Proposition 8.7 can be rewritten as
o, (tk+1) ,
flk —sz‘i‘()@flk +flk+17

where (i) p;, corresponds to the value of a feasible noose packing R of function f;, rooted

at z;, and (ii) 9053_’““) is the cubic posiform associated to R, for all kK = 0,--- ,n — 1.
ke
Thus,
= (1741)

J=0

i (8.9)
= X
7=0

R NI
Pi; 2. Pr. + fu
j=0 ’

forall k =1,--- ,n.

Lemma 8.4.
(n—1) (n—1) (i1
=0 j=0 Y

Proof. The claim follows directly from (8.9) since f;; = B and f;, = 0. To see that

238

fin, = 0 we use the fact that f;, is a bi-form that corresponds to the residual balancing

graph with at most one vertex (i.e. with index i,). O

Proposition 8.8. Given a quadratic pseudo—Boolean function f then

(n-1)
minf (x) > Cs(f) > co+po+ Y pi, = p(f).
j=1

Proof. The second inequality follows due to Lemma 8.4 and because the set of rooted
noose packing (with roots xg, x;,, -+ ,;, ,) is a solution to the noose packing problem
(NP) and consequently Proposition 8.5 applies. The last inequality follows from the

fact that po = p (f) — ¢y and because p;; > 0,5 =1,--- ,n— 1. O
Definition 8.9. The lower bound

(n=1)
p(f;207”'7in) = Cf+ 'Z() Pij
]:

has been called by Boros et al. [51, 52] as the iterated roof-dual of quadratic pseudo—

Boolean function f.

The iterated roof-dual value clearly depends on the sequence of roots (ig,- - ,i)
that is considered to define the above heuristic to the noose packing problem. In

particular, if the first root selected is xg then

(n=1)
‘]:

Figure 8.3 describes algorithm ITERATED-ROOF-DUAL to compute the iterated roof—

dual value of any quadratic pseudo—Boolean function represented as a bi—form network.

8.4.1 Computational results

An extensive computational experimentation of algorithm ITERATED-ROOF-DUAL us-
ing several benchmark problems available in the literature has been carried out and
are presented in this section. The results consider a particular implementation that

considers a method X to find a root xj which is the vertex in the residual balancing

ITERATED-ROOF-DUAL(f, X)

Input: N < Ny, ie. anetwork model representing the bi—form of the
quadratic pseudo—Boolean function f.

A method X to select a root in the network.
Initialization: Let p < c; as defined in (8.4).

Step 1: If N does not have any terms (i.e. arcs) associated to it then
STOP.

Step 2: Using method X select a root xy.

Step 3: Find maximum flow \; with value p; from node xj to its com-
plement 7.
P P+ Pk

Step 4: N — N [\g].

Remove the optimal rooted noose packing (with root in zj) from
the residual network N (i) by updating the largest capacity of the
arcs between any pair of nodes in N to the smallest capacity or (ii)
by removing all arcs (u,v) € N if corresponding reverse arc (v, u)
does not exist in V.

Goto step 1.

Output: It returns an iterated roof-dual bound p to the minimum of f.

Figure 8.3: ITERATED-ROOF-DUAL algorithm.

239

240

graph having the largest total weight to its neighbors. Also the root considered in the
first iteration of the method is zy. This method was suggested originally by Boros et
al. [61, 57]. We denote the resulting bound as p. We have tested other methods to
select roots, but in general the variability of the bound with different choices was not
very significant.

Let us note that the maximization and the minimization of quadratic pseudo—
Boolean functions are equivalent problems, since minimizing f is equivalent with max-
imizing — f. Thus, the presented results can be applied directly to maximization prob-
lems, as well. In this section we present our computational results in the context of
maximization.

In order to compare the quality and the computing times obtained with our imple-
mentations of the roof-dual and the iterated roof dual algorithms, we used the Semi-
Definite Relazation, or SDR (see Goemans and Williamson [112]). There are many
publicly available semidefinite solvers on the Internet. Each solver has strengths and
weaknesses, which are very much dependent on the type and size of the problem to be
solved. There is no solver which clearly dominates the others in all aspects, e.g. robust-
ness, memory management, or solution speed (see [179]). We have used the following

solvers that have been proposed to solve SemiDefinite Programs, or SDPs:

SDPA — SDPA is a software package for solving SDPs (see e.g. [102]). It is an implementa-
tion of a Mehrotra—type primal-dual predictor—corrector interior—point method.

The Windows version 6.2.1 of SPDA was used in this study.

DSDP - DSDP is a software implementation of the dual interior-point method for SDP
(see e.g. [39]). It provides primal and dual solutions, exploits low-rank structure
and sparsity in the data, and has relatively low memory requirements for an

interior-point method. The version 5.8 of DSDP was used in this study.

SBM - SBM is a software implementation of the spectral bundle method (see e.g. [138,
140]), for minimizing the maximum eigenvalue of an affine matrix function (real
and symmetric). The code is suited for large scale problems. It allows to exploit

structural properties of the matrices such as sparsity and low rank structure. The

241

version 1.1.3 of SBM was considered in this study.

We did not have a special preference for selecting any of the above methods. Our
goal was to cover a variety of SDR solution methods, e.g. by using a robust method
that handles small and medium sized problems (like SPDA), by using a method that
handles larger problems with a sparse structure (like DSDP), and by adopting a method
(like SBM) that is quicker than the others (although this speedup is achieved at the

price of obtaining an approximate solution to SDR).

Finally, we should mention that for a restricted number of problems we have added
computational experience also for the case when the ('3 bound was used. Other than
by using linear programming, we are unaware of any other approach that could provide
Cs in polynomial time. Since solving these large LP problems is time and memory

consuming, we computed this bound only for one family of problems.

The method used to solve the LPs is the Newton—Barrier algorithm that comes with
Xpress—-MP 2005B (release 16.10.02). Xpress—-MP is a suite of mathematical modeling
and optimization tools used to solve linear, integer, quadratic, non-linear, and stochastic
programming problems (e.g. see [21]). The presolve and the crossover was turned off
in all runs. In this section we use XPRESS to identify the results returned by this

particular LP solver, with the options previously mentioned.

The Roof-Dual and the Iterated Roof-Dual Algorithms (respectively called RDA
and IRDA hereafter) were implemented in C++, compiled using the Microsoft Win-
dows 32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the

Microsoft Incremental Linker (version 6) using the single-threaded run—time library.

Three computer systems were used for testing. The decision to use this many com-
puters and not one, is related to licensing requirements, operating system restrictions,
and amount of physical memory available. Table 8.1 shows the main characteristics of
each system, and also shows what algorithm(s) were tested in each one of them. The
three platforms are comparable in terms of speed with a maximum speedup smaller

than two, between the fastest (Computer III) and the slowest machine (Computer I).

242

Table 8.1: Characteristics of computer systems used for testing the algorithms.

| Computer Systems || I | IT | IIT |
CPU Intel Pentium 4 Xeon Intel Pentium 4
Clock Speed 2.8 GHz 3.06 GHz 3.6 GHz
Hyper—Threading? yes no yes
RAM 512 MB 3.5 GB 2 GB
Cache Lo 512 KB Lo 512 KB L, 1IMB
Operating System Wind. XPT Linux* Wind. XPT
Algorithms Tested || RDA, IRDA, SDPA | DSDP, SBM XPRESS

TMicrosoft Windows XP Professional version 5.1.2600 (service pack 2)
tFedora Core Linux 2.6.9-1.667smp 1686

8.4.1.1 MAX-CUT

In this study we included the analysis of two large groups of problems, one involving
maximum cut problems (or MAX-CUT in short) on graphs (known to be equivalent
to quadratic unconstrained binary maximization problems [52]), and another using
randomly generated quadratic binary optimization problems proposed by Glover et al.

[108] and Beasley [37].

The families of graphs used in the MAX—-CUT experiments are listed below:

G4 — Random graphs proposed by Kim and Moon [157];
Upn.a — Random geometric graphs proposed by Kim and Moon [157];
R,, — Sparse random graphs proposed by Homer and Peinado [145];

via — Graphs provided by Homer and Peinado [145], derived from layer assignment

problems in the design process for VLSI chips;
sg3dly, — 3D-toroidal graphs proposed by Burer, Monteiro and Zhang [74];

torus — 3D—toroidal graphs taken from the DIMACS library of mixed semidefinite-quadratic-

linear programs.

The characteristics of these graphs are briefly described in Section 3.4.
The first experiments concerned the finding of upper bounds for MAX-CUT in the
16 graphs of Kim et al. [157]. The results are shown in Tables D.1(a) and D.1(b) in

243

the Appendix. The tables show that in almost all these 16 cases the upper bound given
by the semidefinite relaxation was slightly better (on the average 7.1% lower) than
that given by the iterated roof-dual, and better than (on the average 27% lower) the
roof-dual bound. The difference in the quality of the bounds was amply compensated
by the computing times needed to find them. Indeed, on the average, the time needed
by DSDP (the most efficient of the three implementations of semidefinite relaxations)
was of 18.5 seconds, while that needed by the iterated roof-dual algorithm was of only
1.5 seconds, and that needed by the roof-dual algorithm was of 0.01 seconds.

Turning now to the MAX-CUT problem for the graphs of Homer and Peinado [145]
(see Tables D.2(a) and D.2(b) in the Appendix) we notice that the comparative values of
roof—dual-based versus semidefinite-relaxation—based upper bounds differ substantially
between the group R of random graphs, and the group of via graphs coming from VLSI
design. For the group R, the upper bounds of SDR are 21.1% better than those of roof—
duality, and 8.1% better than those coming from iterated roof-duality. The situation
of the via graphs is quite different, since the three upper bounds are quite comparable
within this group. More precisely, the upper bounds of SDR are only 1.7% better than
those of roof-duality, but the upper bounds of iterated roof-duality are 0.5% better
than those of SDR. As far as computing times go the average time needed by SBM (the
most efficient of the three implementations of SDR for the group of R graphs) was of
477.4 seconds, while for RDA the average time is 0.02 seconds and for IRDA it is of
35.8 seconds. For the group of via graphs, the average time needed by DSDP (the most
efficient of the three implementations of SDR for this group) was of 42 seconds, while
for RDA the average time is 0.03 seconds and for IRDA it is of 0.13 seconds.

The next group of MAX-CUT problems concerns cubic lattice graphs (similar in
structure to the graphs appearing in Ising problems) of Burer et al. [74] (see Tables
D.3(a) and D.3(b) in the Appendix). It can be seen that for these graphs, the upper
bound given by the iterated roof-dual is 1.4% better than that given by SDR, while the
SDR bound is 31.5% better than that given by the roof-dual bound. It is interesting
to note that the computing time required by SBM (the most efficient of the three

implementations of SDR for the cubic lattices) for finding the upper bound associated

244

to an average graph in the family was of 42.7 seconds, while that of IRDA was of 2.7
seconds, and that of RDA was less than 0.01 seconds.

The last group of MAX—-CUT problems examined are associated to torus graphs
(having also a similar structure to that of the graphs appearing in Ising problems) pro-
posed at the 7th DIMACS Implementation Challenge on Semidefinite Programming,
which are frequently used as benchmarks in computational studies concerning semi-
definite programming (e.g. [73, 74, 137, 179]; see Tables D.4(a) and D.4(b) in the
Appendix). For these graphs, the upper bound given by the iterated roof-dual bound
is 1.4% better than that given by SDR, which in its turn is 26.9% better than that given
by roof-duality. The average computing time required by SBM (the most efficient of
the three implementations of SDR for the torus graphs) is 115.7 seconds, while that
required by IRDA is of 4.5 seconds, and that required by RDA is of about 0.01 seconds.

In summary (see Tables 8.2(a) and 8.2(b)), the upper bounds for MAX-CUT ex-

amined in this study present the following characteristics:
e In the case of G, U and R graphs the best bounds are obtained by SDR;
e In the case of via, sg3dl and torus graphs the best bounds are obtained by IRDA;

e The shortest computing times are those of RDA, followed by those of IRDA.
The average computing time per graph is of 92.3 seconds for SDP (the fastest
implementation of the considered semidefinite programs), 6.0 seconds for IRDA,

and about 0.014 seconds for RDA.

8.4.1.2 Randomly generated quadratic binary optimization problems

The second group of problems includes standard randomly generated families of prob-
lems, having a constant density (i.e., proportion of coefficients with value zero) and
having all nonzero coefficients from a closed interval. The following two families were

considered:

D — A set of 10 QUBO problems proposed by Glover et al. [108] having 100 variables

per problem, and densities varying from 10% to 100% in steps of 10%;

245

Table 8.2: Bounding MAX-CUT.
(a) Average relative gap (g) to the largest known cut (z).

Number of SDR Gap Roof-Dual Iter. Roof-Dual

Family Problems || (9=¢/2—1)| Gap (g=p/z—1)| Gap (9 =p/z—1)

G graphs 8 5.68% 28.79% 11.04%

U graphs 8 2.64% 56.28% 13.24%

R graphs 8 7.31% 36.01% 16.72%
via graphs 10 0.53% 2.32% 0.02%
sg3dl graphs 30 14.86% 67.65% 13.27%
torus graphs 4 12.47% 54.26% 10.88%

(b) Average computing times.

Best || Roof-Dual Algorithms

Family SDP** || RDA* | IRDA*
G graphs || 23.2s | <0.01 s 0.9s
U graphs || 13.8s| <0.01s 2.2s
R graphs || 4774 s || <0.02 s 35.8 s
vta graphs || 42.0 s || <0.03 s 0.1s
sg3dl graphs || 42.7 s || <0.01 s 2.7s
torus graphs || 115.7 s || <0.01 s 4.5s

*Computed on computer system I.
**Computed on computer system II.

B —n — A set of 60 QUBO test problems with 10% density proposed by Beasley [37] (n =
50, 100, 250, 500, 1000, 2500; 10 problems for each value of n). The problems with
50 variables turned to be all solved to optimality by applying iterated roof—duality
(and in most cases even by applying roof-duality). Therefore, these problems have

been eliminated from the study.

The previous families are briefly described in Section 3.1.1.

We present in Table 8.3(a) the maximum values of some randomly generated quadratic
functions with binary variables, along with the values of four upper bounds to the
maximum (SDR, RDA, IRDA and C3), expressed as percentages of the values of the
corresponding exact maxima.

It can be seen that the best bounds for problems with densities of at most 40% were
provided by the cubic—dual (averaging 2.2% over the maximum), while for problems
having densities of 50% or higher the best upper bounds were given by SDR (averaging

7.6% above the maximum). On the other hand, the best computing times (see Table

246

Table 8.3: Iterated roof-duals of QUBO problems with 100 variables (Glover et al.
[108)).

(a) Upper bounds.

Upper Bounds to the Maximum

Problem || Density Semidefinite Roof Iter. Roof Cubic

Name (d) Maximum || Relazation | Dual (p) | Dual (p) Dual
1d 10% 6333 6592.77 | 7063.50 6424.50| 6333.00
2d 20% 6579 7234.24 | 12297.00 7791.00| 6709.82
3d 30% 9261 9962.97 | 18053.50| 10875.25| 9374.79
4d 40% 10727 11592.46 | 25156.50 | 13425.50 | 11321.82
5d 50% 11626 12632.10|30732.00| 15538.13| 13044.50
6d 60% 14 207 15235.31 | 37334.50 | 18041.50| 15664.33
7d 70% 14476 15671.97|44171.50| 20614.75| 18340.00
8d 0% 16 352 17353.30 | 50239.50 | 22723.50| 20625.67
9d 90% 15656 17010.86 | 55130.00 | 24109.00| 21753.67
10d 100% 19102 20421.35|63830.50 | 28370.50| 25951.67

(b) Computing times.

Semidefinite Programs Roof-Dual Algorithm || Cubic Dual LP
| Problem | DSDP** | SBM** | SDPA* || RDA* | IRDA* XPRESS***

1d 0.22s| 1.72s| 1.03s| <0.005s| <0.005s 118 s
2d 0.26s| 2.68s| 1.06s]|| <0.005s 0.02 s 164 s
3d 0.23s| 491s| 1.08s| <0.005s 0.05 s 173 s
4d 0.22s| 3.16s| 1.11s| <0.005s 0.08 s 143 s
5d 0.22s| 495s| 1.17s 0.02 s 0.11s 122 s
6d 0.20s| 890s| 1.08s| <0.005s 0.14 s 4's
7d 0.22s| 6.87s| 1.17s 0.02 s 0.20 s Tls
8d 0.23s[11.19s| 1.19s 0.02 s 0.25 s 72's
9d 0.23s| 878s| 1.20s| <0.005s 0.27 s 68 s
10d 0.23s| 9.35s| 1.25s| <0.005s 0.33 s 69 s

*Computed on computer system I.
**Computed on computer system II.
***Computed on computer system III.

247

8.3(b)) were achieved by RDA (averaging less than 0.01 seconds) and IRDA (averaging
less than 0.2 seconds). It follows that for problems which have low densities, the most
efficient methods may be those based on roof-duality. It is worth noting that numerous
problem classes (e.g., minimum vertex covers of planar graphs or power—law graphs,
MAX-CUT of Ising problems) belong to this category.

In Table D.5 in the Appendix we present three upper bounds obtained by SDR,
roof—duality and iterated roof-duality for the 10% dense quadratic unconstrained binary
optimization problems of Beasley [37] having up to 2500 variables. It can be seen that
for the “small” problems, i.e. those with 100 variables, the bounds given by IRDA are
the best among the three upper bounds considered; the average gap between IRDA
and the true maximum of the function is of 3.3% (see Table 8.4(a)). However, for
problems having 250 or more variables the best bounds are those given by SDR; the
average gap between SDR and the best know solution (representing a lower bound to
the maximum) is of 8.9%. As in the previous cases the computing times of the different
methods follow a clear pattern. The average time needed by DSDP (the fastest of the
three SRD procedures; see Table 8.4(b)) is of 1736.3 seconds. For the same problems,
the average time required by RDA is of 0.4 seconds, and by IRDA is of 88.2 seconds.

The above results demonstrate that the iterated roof dual bound can be computed
very efficiently with the proposed IRDA implementation. The computing time of this
bound is much faster than the computation of semidefinite bounds or the cubic dual.
We can also see that the quality of the iterated roof dual bound is highly competitive
with other approaches. In particular, for sparse problems, which are quite frequent
in applications, these bounds are superior to all other methods we tested, and can be
computed on average 20-50 times faster than those. We can also see that the cubic
dual bound is the best on a larger range of mostly sparser problems. However its time

complexity makes its application impractical for larger problems.

In spite of the fact that the bounds given by semidefinite relaxation are of high
quality, the time and memory requirements of the roof-duality based methods being

substantially smaller, assure the practical applicability of this latter group of methods,

248

Table 8.4: Iterated roof—duals of 10% dense quadratic unconstrained binary optimiza-
tion problems (Beasley [37]).

(a) Average relative gap (g) to the best known lower bound (z).

Variables || SDR Gap Roof-Dual Iter. Roof-Dual

Family | () | (9=7) | Gap (9= 2) | Gap (9= =)

ORL-100 100 6.3% 15.3% 3.3%

ORL-250 250 7.6% 78.1% 18.5%

ORL-500 500 9.0% 150.6% 41.6%

ORL-1000 1000 9.5% 248.8% 73.0%

ORL-2500 2500 9.4% 430.4% 129.1%

(b) Average computing times.

Semidefinite Programs Roof-Dual Algorithms

| Family | DSDpP** | SBM** | SDPA* RDA* | IRDA*
ORL-100 0.21s 2.55s 1.01 s || <0.005 s 0.01s
ORL-250 2.20 s 28.88 s 14.98 s 0.02 s 0.24 s
ORL-500 24.97 s 115.56 s | 131.21s 0.05s 2.38 s
ORL-1000 || 269.29 s 673.49 5| 1096.21 s 0.20 s 21.47 s
ORL-2500 || 8385.05 s | 107623.67* s n/af 1.49 s 416.78 s

*Computed on computer system I.
**Computed on computer system II.

TMemory exceeded for all problems with 2500 variables.
J;Computing time found for the first problem only.

and guarantee their high efficiency. Moreover, in view of the typical sparsity of real life
quadratic unconstrained binary optimization problems, the use of roof-duality based

methods is both effective and efficient.

8.5 Squeezed iterated roof-duality

The computational experiments that we have carried out (see e.g. Table 8.3(a)) clearly
indicate that the iterated roof-duals of various benchmarks are still not nearly close to
the corresponding C3 bounds. An algorithm is proposed here to improve the iterated
roof—duality bounds by means of a combinatorial approach that we called as the squeezed
iterated roof-dual bound.

Before getting into details, we recall the fact that any bi—form can be decomposed
into a special cubic posiform and a residual bi—form, as explained in Section 8.3. The

key ingredient of the enhanced iterated roof-duality method is to reuse part of the cubic

249

posiform of (8.9) on any given iteration of the standard iterated roof-dual algorithm.
This in practice means that certain parts of the rooted noose packings that have already
been applied are added to the residual bi—form to increase the chances of improving the

bound on the next iteration of the method.

Definition 8.10. Let us define the mate of a posiform ¢ (x1,%1, - ,%n,Ty) as the
posiform ¢ (T1,x1,- -+ ,Tn,Tyn). If a posiform is equivalent to its mate then we say that

the posiform is mated.

In particular, the mate of the cubic term wvw is wvw, for any literals u, v and w.
Let us consider the cubic posiforms @i,k = 0,--- ,n that (i) consists of terms that
have mates on the same posiform with the same coefficients and (ii) has a literal z; or

its complement in every of its terms

Definition 8.11. We shall call rotation to the operation of identifying a “mazimal”
n
set of terms derived from . ¢y that contains variable z;, j # k. The rotation principle

k=0
1s based on the identity

oy (2T + uD) + T (T T4+ ww) = x; (230 + W) + T (Tpv + uD) . (8.10)

Clearly, the left hand side of (8.10) has two terms involving variable x;, but the
right hand side has four terms involving the same variable. The two extra terms per
rotation increase the probability of improving the bound since the chance of finding
additional nooses rooted at x; (and with larger values) is also increased, when they are
added to the residual balancing graph.

A very important aspect of the algorithm is how to save and handle the residual

n

cubic posiform ¥ = > . The following characteristics are desirable:
k=0

e Given a variable z; efficiently determine terms where it appears;
e Given a variable z; efficiently remove terms where it appears;

e Given a cubic term x ;U efficiently identify all cubic terms vaxu in the posiform;

e Apply quick rotation operations between any cubic terms z;x,u and vriu;

250

e Use memory as economically as possible.

It is not a trivial task to create a structure that satisfies all the above points. It is
particular computationally difficult to identify a set of maximal rotations involving a

certain variable.

Lemma 8.5. For any variable x; the procedure of applying all possible rotations of x;

in Wy can be determined in O (ng) time.

Proof. The method is a finite procedure, since (i) there is a finite number of terms in
U (at most 2(?)) and (ii) the number of terms is monotonically increasing with respect

to every rotation procedure.]

Let ROTATION(z;, ¥s) be a procedure that computes a cubic posiform
vh = :ijgf) (Z0, -, Tj_1, T,) —I—Tﬂﬁ;’) (T, Tjo1,Tj + ,Tn) + W

that represents the same function f and for which there are no cubic terms involving a
rotation of x; that increases the number of terms involving this variable. Thus, gpgfj) is

maximal with respect to possible additional x; rotations.

Remark 8.5. It is not known if applying xj rotations (k # j) would result in finding

possible additional x; rotations.

Conjecture 8.1. Let f be a quadratic pseudo—Boolean function f represented (in what
follows) as f = cg+ 0+ ¥ + 6, where 6 is a nonnegative number, ¥ is a mated cubic
posiform and 0 is a bi—form. Then, the following combinatorial algorithm determines
Cs (f)-

Initially, ¥ = 6 = 0 and 0 = By. For every variable xj,5 =0,--- ,n:

(1) Find a mazimal mated cubic posiform W; in terms of the number of terms that

contain x;, so that ¥V = U* + W,

(ii) The cubic component of f is updated ¥ «— W*;

251

(#4i) Noting that V; represents a quadratic pseudo—Boolean function, then the bi—form

component of f is updated as 0 «— 0 + ¥;;
(tv) Find the optimal x; rooted noose packing R of 0;

(tv) Determine the R-decomposition of the bi-form as 0 = & + ¢; + ¢;. Update

0 ¢j, VeV +o; and 0 < 6+ &j;
At the end of the algorithm we conjecture that C3 (f) = cf + 0.

In practice the above algorithm will clearly determines a better bound than the
iterated roof—dual. It will also determine a bound which is not better than the cubic—
dual bound. We leave the above result as a conjecture to motivate other researchers to
pursue the finding for the first time of an efficient combinatorial problem to compute
Cs. Even if the above conjecture turns out not to be true, there are several related

open questions:

e Is there a polynomial time algorithm to squeeze out a maximal set of x;-terms

(j =0,---,n) of the mated cubic posiform?

Is the maximal set of the previous question also maximum possible?

Is the maximum (or maximal) set sufficient to obtain the maximum bound possible

from the residual bi—form?

Does the order of the various rooted noose packings matter?

Is only one rooted noose packing iteration per variable required or more?

In this dissertation, we developed a “squeezed” iterated roof-duality algorithm that
achieves only partially the above results. The pseudo-code of the algorithm is given in
Figure 8.4.

Firstly, the data structure used to maintain the mated cubic posiform ¥ is a a map
of roots xx (k = 0,--- ,n) to the corresponding quadratic residuals w;k) as described
in Proposition 8.7. To be noted that the mate information is not saved directly on any

structure; given any quadratic term a.,uv of w}k) then from the map we would get the

252

mated cubic terms ay, (zxuv +Zuv). The quadratic residuals structure is based on
the network model of Section 5.3. This has certain advantages to efficiently find x;
rotations in w}k), since valid rotations correspond to paths of length 2 from z; in the
network.

Secondly, the rotation principle is only applied on a limited way since it only con-
siders cubic mated terms within the scope of the w](ck) residuals.

Thirdly, we reapply the squeezing procedure a user specified number of rounds per

TOOt.

8.5.1 Computational results

The SQUEEZED-ITERATED-ROOF-DUAL algorithm (called SIRDA hereafter) has been
implemented in C++4 and linked as the IRDA.

Comparative results between RDA (Roof-dual), IRDA (Iterated Roof-Dual) and
SIRDA are presented in this section. We start by looking again at the 10 QUBO
problems created by Glover et al. [108] already considered in Section 8.4.1 (see Tables
8.3(a) and 8.3(b)).

Table 8.5(a) gives the squeezed iterated roof-duals of family D from Glover et al.
[108]. The results include versions of the SQUEEZED-ITERATED-ROOF-DUAL algorithm
with 1, 2 and 3 rounds. The quality of the “squeezed” bounds is clearly superior to
those returned by iterated roof—duality. The improvement of the squeezed bounds is
also noticeable between consecutive rounds, but with a smaller improvement percentage
as the number of rounds increases. The results also shown that Cj is still superior to
any of the squeezed iterated roof-duals.

Table 8.5(b) provides the computing times of our implementation of the squeezed
iterated roof duals (we called it SIRDA), again considering 1, 2 and 3 rounds. As ex-
pected, the iterated roof-duality bounds returned by IRDA can be found considerably
faster than those returned by SIRDA. This difference in computing times is more no-
ticeable for sparser problems. For instance, for the 10% dense instance IRDA is over 50
times faster than any of the SIRDA runs, whereas for the 100% dense instance, IRDA

is only about 5 times faster.

SQUEEZED-ITERATED-ROOF-DUAL(f, r)

Input: N < Ny, ie. a network model representing the bi-form of the
quadratic pseudo—Boolean function f.

Let be the number of rounds.

Initialization: Let p < c; as defined in (8.4).
Let j denote be the current root index. Let j « 0.
Let wg, k =0,--- ,n be the map structure to hold the mated cubic
residual posiforms. Let ¢ «— 0,k =0,--- ,n.

Step 1: If r =0 STOP.

Step 2: Squeeze out terms involving x; from the map structure:

(7) For all k € {0,--- ,n},k # j do ROTATION(z;, ¢r);
(74) For all k € {0,--- ,n} remove and add all cubic mated terms
containing x; and add them to V.

Step 3: Find maximum flow A\; with value p; from node z; to its com-
plement 7;.

P p+pj
N — N [)j].

Step 4: Let R be the optimal x; rooted noose packing associated to V.
Determine the cubic posiform ¢; of the R—decomposition and up-
date N accordingly.

Step 5: Prepare next squeezing iteration:

If j <nthen Let j « j+ 1. else Let j «— 0 and r «— r — 1.
Goto step 1.

Output: It returns a squeezed iterated roof-dual bound p to the mini-
mum of f.

Figure 8.4: SQUEEZED-ITERATED-ROOF-DUAL algorithm.

253

(a) Upper bounds.

Table 8.5: Squeezed iterated roof-duals of QUBO problems with 100 variables (Glover et al. [108]).

Upper Bounds to the Mazximum
Problem || Density Roof Iter. Roof | Squeezed Iterated Roof-Dual Cubic
Name (d) Maximum || Dual (p) | Dual (p) | (p;r =1)] (ir =2) | (p;r = 3) | Dual (C3)
1d 10% 6333 || 7063.50 6424.50 | 6343.25| 6340.22| 6340.22 6333.00
2d 20% 6579 || 12297.00 7791.00 | 7364.25| 7193.29| 7135.98 6709.82
3d 30% 9261 || 18053.50| 10875.25| 10364.31 | 10165.36 | 10062.67 9374.79
4d 40% 10727 || 25156.50 | 13425.50 | 12918.92 | 12496.26 | 12358.87 | 11321.82
5d 50% 11626 || 30732.00 | 15538.13 | 14942.95 | 14494.67 | 14370.52 | 13044.50
6d 60% 14207 || 37334.50 | 18041.50 | 17759.85 | 17214.67| 17016.77 | 15664.33
7d 70% 14476 || 44171.50| 20614.75| 20045.04 | 19318.99| 19114.80 | 18340.00
8d 80% 16352 || 50239.50 | 22723.50 | 22422.55 | 21 644.35 | 21432.43 | 20625.67
9d 90% 15656 || 55130.00 | 24109.00 | 23447.48 | 22628.34 | 22436.98 | 21753.67
10d 100% 19102 || 63830.50 | 28370.50 | 27851.14 | 26 830.85 | 26 630.88 | 25951.67
(b) Computing times.
Roof-Dual Algorithms Cubic Dual LP
| Problem | RDA* | IRDA* || SIRDA* (r =1) || SIRDA* (r = 2) || SIRDA* (r = 3) XPRESS**

1d <0.005 s | <0.005 s 0.44 s 0.52's 0.61 s 118 s
2d <0.005 s 0.02 s 0.72's 2.25's 3.86s 164 s
3d <0.005 s 0.05 s 0.72's 2.14 s 391s 173 s
4d <0.005 s 0.08 s 0.78 s 2.56 s 4.83 s 143 s
5d 0.02 s 0.11s 0.89 s 2.89 s 5.42 s 122 s
6d <0.005 s 0.14 s 1.08 s 3.44 s 6.23 s 74 s
7d 0.02 s 0.20 s 1.16 s 3.53s 6.38 s 71s
8d 0.02 s 0.25s 1.33 s 3.77 s 7.00 s 72's
9d <0.005 s 0.27 s 144 s 4.17 s 7.53 s 68 s
10d <0.005 s 0.33 s 1.73 s 4.30 s 7.86 s 69 s

*Computed on computer system I (see Table 8.1).

**Computed on computer system III (see Table 8.1).

¥4¢

255

Table 8.6: Squeezed iterated roof-duals of 10% dense quadratic unconstrained binary
optimization problems (Beasley [37]).

(a) Average relative gap (g) to the best know lower bound (z).

Variables || Roof-Dual | Iter. Roof-Dual | Squeezed Iter. Roof-Dual (g = F%)

Family (n) (9=22) (g = ﬁ%‘z) (r=1)|(r=2) (r =3)
ORL-100 100 15.3% 3.3%| 0.9%| 04% 0.4%
ORL-250 250 78.1% 18.5% | 12.9% | 10.9% 9.1%
ORL-500 500 150.6% 41.6% | 35.0%| 32.4% 31.5%
ORL-1000| 1000 248.8% 73.0% | 64.9% | 60.7% 59.7%

(b) Average computing times.

SIRDA*

| Family || RDA* [IRDA*|[(r=1)] (r=2) | (r=3)
ORL-100 | <0.005s| 0.01s| 0.38s 0.68 s 0.97 s
ORL-250 0.02s| 024s| 442s| 17.54s| 3586s
ORL-500 0.06s| 2.38s|1599s| 79.99s |205.65s
ORL-1000 0.20s]21.47s|96.41s|338.39s|923.13 s

*Computed on computer system I (see Table 8.1).

To have an idea how the squeezed iterated roof-dual bounds scale with the number
of variables, we apply SIRDA to the 10% dense QUBOs of Beasley [37] having up to
1000 variables. The average relative gaps of various sub-families (for which all problems
have the same number of variables) to the best know solutions are given in Table 8.6(a).
The corresponding average computing times are given in Table 8.6(b).

The average relative gap of the squeezed bounds of the 100 variable problems is less
than 1.0% (for r < 2 is 0.4%), instead of 3.3% for IRDA. In this case all the bounds
could be obtained within one second, thus implying that most likely these problems
could be solved to optimality by SIRDA without branching substantially. We will get
back to this topic in the next chapter.

In spite of the fact that the relative gaps increase considerably with the number
of variables, it should be noted that the improvement from the IRDA to the SIRDA
results is larger for the later algorithm. In particular, the differences from IRDA to
SIRDA (r = 2) are: 2.9% for the 100 variable group, 7.6% for the 250 variable group,
9.2% for the 500 variable group and 12.3% for the 1000 variable group.

As far as computing time concerns, the slow down factor from IRDA to SIRDA

256

(r = 2) are: 68 times for the 100 variable group, 73 times for the 250 variable group,
33 times for the 500 variable group and 16 times for the 1000 variable group.
More results about the squeezed iterated roof—duality are presented in the following

section, which considers a “non-bi—form” squeezed iterated roof duality algorithm.

8.6 Project—and-lift iterated roof—duality

In the previous sections we have seen that the bi—form representation of a quadratic
pseudo—Boolean function can provide substantially improved bounds over that one re-
turned by roof-duality. In this section we consider general posiform representations to
get improved bounds over roof-duality.

The following algebraic equation is due to Simeone [222].

Lemma 8.6. The identity

UV +T7W = W + wvw +uvw,

1s valid for any 8 literals u, v and w.

Definition 8.12. The operation that transforms a posiform 0 with positive terms qu,uv

and azmo W to a new posiform

0uv,7w] =60 —a(uww +7W) + a (U + vvw +TT W) ,
where o = min (o, g), will be called as the a—arithmetic consensus of terms o, uv

and az w0 W in 0.

Let us note that the resulting cubic posiform 6 [uv, T W] represents the same quadratic
function of posiform 6. It should be noted that the transformed posiform may have
positive terms involving the quadratic terms uw or ww. In this case we find the stan-
dard posiform (see Figure 4.2) of the transformed posiform and denote it as 6. Clearly,

0" contains a linear term which is the result of adding the terms ww or Tw and uw.

257

Example 8.9. The quadratic pseudo—Boolean function g previously used in FExamples

8.2 and 8.7 can be represented by the pure quadratic posiform (8.8).

2T 123 + 2T3T5 is a feasible consensus of ¢g. We apply a 2-arithmetic consensus

transformation of ¢4 using these two terms to get

¢g:

~B 1 2 (@175 + Trasws + 217375)
+T1T2 + T1T6 + 22475

+ (x124 + T1T4) + (1T5 + T1x5)

+3 (293 + Tows) + & (vox4 + TaTs)
+3 (zox5 + ToT5) + & (22T + Tawe)
+ (23T4 + Tsxa) + 5 (23T6 + T326)
+3 (2476 + TuT) + (3T526 + 525T6)
B 1 T + T5 + 2 (Trxzsws + 21T375)
+T1T2 + T1T6 + 22475

+ (2124 + T17T4)

(zoz4 + T2T4)

(x2T6 + Tawe)

+% (33253 + Tg:ﬂg) +
+% (332:E5 + Tgf;—;) +

N[—= D=

+ (234 + T3wa) + 5 (23T6 + T326)
—I—% (x426 + TaTg) + (%T5IE6 + %iﬂsfb‘)
U 4 2 (Fywsws + 21T5T5)

+T1 T + T1 T + 244T5

+2T1Ty

+3 (293 + Tax3) + 2224

+ToT5 + & (22T6 + Tos)

+ (3234 + 3T324) + 2376

—I—% (l‘4$6 + 5456) + 27526

The last equality follows since

1+ 14 + % (52T4 + ZE2335) + 1 (33354 + T3z + 33556) + 5

2
= 1+7124+ % (xoxy + TQTE,) + % (Tgx4 + 2376 + Tg,xﬁ) .

258

Let us denote by g (¢) to the posiform consisting of terms from 1 of degree not
larger than 2.
Given a quadratic posiform representing a quadratic pseudo—Boolean function f, let

us consider the following algorithmic approach:

1. Find a roof-dual posiform of f, remove any strong and weak persistencies, and

call to the resulting pure quadratic posiform as .

2. If ¢ (¢) is gap-free (i.e. ming(¢) = C(¢)) then STOP and return C (¢) as a

xeBn
bound to the minimum of f.
3. Find 2 terms in v with a feasible consensus of weight « and apply an a—arithmetic

consensus operation to it. Let us call to the resulting standard posiform 2.

4. If there is a linear term in 1 then the roof-dual posiform of ¢ (¢) is found, any
resulting strong and weak persistencies are removed, and the resulting posiform

is called ¥. Go to step 2.

5. Go to step 3.

The above iterative method is clearly a finite procedure since at every iteration it
either (i) improves the lower bound of the function or (ii) it reduces the number of
nontrivial quadratic terms by one. This type of algorithm has been originally proposed
by Bourjolly et al. [65, 66, 67, 68].

It is also clear that at the end of the method, 1 is cubic posiform with all cubic
terms being mated (see Definition 8.10). The end result of this approach is therefore
equivalent to the iterated roof-duality approach (see Proposition 8.7), since in both
cases the original posiform is transformed into a cubic posiform with this characteristic.
Also in this case we have no knowledge about any reference that considered improving
further the bound by reusing the residual cubic terms. Obviously, the approach that
has been already proposed for the “squeezed” iterated roof-duality algorithm can be

adopted here as well (see Section 8.5).

Before explaining our final implementation of the algorithm we first investigate a

related new topic that we call “project—and-lift”.

259

It is very well known that any quadratic pseudo—Boolean function can be expressed

as

f(x) =apf (x[{k} — {1}]) + 0 f (x [{k} — {0}]) (8.11)
for all binary vector x € B" and k=1, --- ,n.

Lemma 8.7. Let f be a pseudo—Boolean function. Then

min f(x) = min (zf (x[{k} < {1}]) + T f (x[{k} —{0}])),

S ;{1{} win (F (<18} — (1) £ (e [(8} — (OH)).
=i min OV (e[— (1) (1= 3) £ (e [{8) — (O1)).
— win (_min P09 < (). min Fx[0) < (01).
forallk=1,--- n.
Proof. Follow directly from (8.11). 0

The last equality of Lemma 8.7 is particularly interesting since the end result does
not depend on zj. This suggests that the function f can be projected into two lower
dimension pseudo—Boolean functions having n — 1 variables each. Clearly, the minimum
of the two bounds associated to these lower dimension functions is a bound to f.

In what follows, we consider projections over posiforms (or equivalent over capac-
itated networks). Let ¢; be a quadratic posiform representing f. For simplicity, we
denote ¢y|,,—p to a posiform representing f (x [{k} « {b}]), which is obtained from ¢;
by fixing z; = b, for b =0, 1.

Without loss of generality, it is assumed that there are no strong or weak persisten-
cies in f, since in this case the QUBO optimization problem can be simplified by fixing
those optimal values, and then the method described below would apply as well. Fur-
ther let us assume that ¢; is a standard pure quadratic posiform. This representation
can be obtained from the network model (see Section 5.3).

Let us also consider the roof-dual quadratic posiforms

¢ (¢f|1‘k=b) +o ((’Df|1’k:b) + ¢f|1‘k=b

260

found by computing a maximum flow ¢, in the network model (see Proposition

5.8) associated to ¢y, —p (b=0,1).

Clearly,
i 0y
= min (¢f|9ﬂk=1) (bf\xk:(])
[C =) T (@fpe=t) + U=t s
= min
c (¢f\xk=0) +v ((pf\kaO) T Y flay=0-
Therefore,

Corollary 8.4.

min gy > maxmin (C(Gpj=1) + 0 (Pfize=1) , O (Priz=0) +v (¢fizi=0))

What has been discussed so far is somewhat trivial and well known. What makes
the decomposition above interesting is the common structure of the lower dimension
residuals 1|, —, (v =0,1). This is possible since these posiforms were created by using
the same starting initial posiform ¢, and hence the (unique) corresponding capacitated
networks have the same arcs and capacities between all pairs of literals (u,v) such that
u,v # 2 and u,v # Tp. Furthermore, the residual networks obtained after finding
the maximum flow on those networks either both have the same (u,v) arcs or one
network has a (u,v) arc and the other one has a reverse arc (v,u). In conclusion,
if quv is a term of ¢s then there are nonnegative constants ¢, (b = 0,1) such that
[((a—c1)ut + 1] € gy, —1 and [(a — co) uD + couv] € @jfiz,—o. Without loosing

generality, let us assume that ¢; > ¢g. Then

[(a — 1) uT + craw] zp, + [(o — ¢o) uT + couv] Ty,
= (a—c)uv+cuv+ (a—cop— (a—c1)) U Ty + (c1 — o) vy,

= (a—c1)ut+ couv + (¢1 — co) (WO Ty + Tvay) .
The above remark implies the following lemma.

Lemma 8.8. The lower dimension posiforms ¢, —1 and Y|, —o have nonzero quadratic

261

terms that
(1) are either precisely the same; or
(ii) if one posiform has the term [Suv then the other one has a term [fuv.

Lemma 8.8 provides a way to [lift the lower dimension posiforms to the original

function by means of a cubic posiform

Uy =2 [C(Sflep=1) + 0 (Pflep=1) + Vflep=1 | +Tk [C (Df1z=0) + v (#flzr=0) + Y flzi=0] -

whose cubic terms are all mated.

The Project-and-Lift (P&L for short) idea described above is clearly related to the
arithmetic consensus algorithm described earlier in this section. The important achieve-
ment of P&L is to be able to get all consensus related to a variable by computing two
maximum flows. One can imagine that it is possible to develop an iterative procedure

that applies P&L to all the variables until there are no quadratic or linear terms left in

Uy

Example 8.10. Let us consider again the quadratic pseudo—Boolean function g of

Ezxample 8.9. Let us project ¢4 down using variable x3. Then,

¢g|x3:1 = —5+ %Tl + %Tﬁ + %33155 +T1To + 27174 + %Tliltg) + T17T¢
1 1= 1= | = — | 1
+5%224 + 5%2T6 + 5T2T4 + T2Ts + 5T2T6

+224T5 + $T4%6 + T4T6 + 525T6 + 3T526, and

Dglas—0 = —5+Ts+ 2124 + 21T5 + T1T2 + T1T4 + T175 + T1T6

+xox4 + 9T + ToT5 + 224T5 + T4T6 + 2T526.

262

Lifting back x3 to the original function we get

¢g = x3¢g|m3:1 +§3¢g\m3=0
—5+ 1T + 1T6 + ST + T T2 + 231 Ta + ST125 + T1T6 + 57274
= xg
+%$2T6 + %TQTZL + ToTs + %Tgxﬁ + 22475 + %x4x6 + %T4T6 + %mg,fﬁ + %f5x6
B 5475+ 124 + 21T5 + T1T2 + T1T4 + T 1275 + T1 T
+ 3
+xox4 + 2T + ToT5 + 224T5 + 426 + 2T526
= —5+ 3T123 + $23T + T3T
= 57173 + 573T6 + T3Ts
+X1T2 +T174 + T125 + %SE@5 + T1%g + %$2$4
1 ToT 1. = QrIT 1 3=
TaTs + 5T2T6 + 22475 + 524%T6 + 5T5T6
1, _ _ _ _
+35 (m1x3x5 + a:la;gxg,) + (x1x3x4 + x1x3x4)

+5 (ToxsTy + 29T3w4) + 5 (T2T3T + ToT3wg)

+% (£3T4T6 + Tazgwe) + % (x375T6 + T3T5T6)
(8.12)

From the above results then we can conclude that x € B"g (x) > —5. In fact this case it
18 known that the minimum of function g coincides with the bound and thus the above
posiform is gap—free. Generally, the problem of certifying that the above cubic posiform

18 gap—free is NP-complete.

A relatively unexplored area is about solving QUBO by considering surrogate func-
tions whose minimum (or maximum) is the same as that one of the function being
optimized. For bi-forms we have already introduced this concept in Corollary 8.1 (see
also Example 8.2). A similar phenomenon can be found within the P&L mechanism.
The trick is to detect and fix strong and weak persistencies in the lower dimension
posiforms of ;. This is possible since both lower dimension posiforms are independent

of z, (see Lemma 8.7). The following example illustrates this possibility.

Example 8.11. Let us consider function g considered previously. In Example 8.10 we
have already computed the roof-duals of the lower dimension posiforms: ¢g,,—1 has two
linear terms %El and %Eﬁ and ¢gz,—1 has one linear term Ts. By strong persistency
all minimizers of function g (x[{k} < {1}]) must have the assignment x; = xg = 1,

whereas all minimizers of function g (x [{k} < {0}]) must have the assignment x5 = 1.

263

Thus, the posiform

1 1 _ _
(;59 — §:E1333 + 5333336 + X375

has the same minimum value of function g, but represents a different quadratic pseudo—

Boolean function. Looking further into the persistency results it can be seen that
e 11 =Ty = x5 =1 is strongly persistent for ¢gp,—o;
® 1 =Ty =5 =3 =6 = 1 is strongly persistent for ¢gz,—1 -

Substituting these assignments in (8.12) then we can easily conclude that the minimum

of g is -5.

As in the previous sections, the big challenge that we have at hand is to squeeze
additional quadratic terms from the current cubic expression of ¥;. We considered
here the same approach used previously for the squeezed iterated roof-duality bound
presented in Section 8.5.

We have implemented a P&L iterated roof-duality algorithm, whose pseudo-code
can be seen in Figure 8.5.

In the next section we will see that the bounds obtained by this new algorithm
are superior in practice (at the end of the same round number) to those returned by
SIRDA. The difference lies in the fact that the residual quadratic problem is a bi—form
in STIRDA, whereas it is a generic posiform for the P&L algorithm version.

Improved data structures that (i) can efficiently handle both projections and lifted
mated cubic posiforms, and that (ii) can perform rotation transformations efficiently, are
important computational research topics. In this work, the focus of our implementation
was mostly to show the value of the method (using the tools that we already had at

hand) and to provide a working basis for future comparative studies.

8.6.1 Computational results

The PROJECT& LIFT-ITERATED-ROOF-DUAL algorithm (called PLIRDA hereafter) has

been implemented in C++.

PROJECT& LIFT-ITERATED-ROOF-DUAL(f,)

Input: Let N be a capacitated network representing a roof—dual posi-
form of a quadratic pseudo—Boolean function f. Remove and fix all
strong and weak persistencies from N.

Let r be the number of rounds.

Initialization: Let p <« C (N) as defined in (8.4).
Let j denote be the current index. Let j < 0.

Let ¢,k =0,--- ,n be the map structure to hold the mated cubic
residual posiforms. Let ¢ «— 0,k =0,--- ,n.

Step 1: If r =0 STOP.
Step 2: Squeeze out terms involving x; from the map structure:

(7) For all k € {0,--- ,n},k # j do ROTATION(z;, ¢r);

(i7) For all k € {0,--- ,n} remove and add all cubic mated terms
containing x; and add them to V.

Step 3: Let Nj;,—1 be a copy of the network N whose source is T; and
the sink is ;.

(1)

j with value p(-l) in the residual network

Find maximum flow A :

Nigo1 [Ag.”].

Step 4: Let Nj;,—o be a copy of the network N whose source is z; and
the sink is ;.
(0)

5 with value p(o) in the residual network

Find maximum flow A\ ;

Nix,—o [A§°>].

Step 5: p < p+ min (P§-1)7p§0))-

Step 6: Consider the mated cubic posiform

ON — xjth" B [/\;1)] +@-¢N’w‘70 [/\;o)].
=

Tj=

Decompose ¢y into a quadratic posiform represented as the network

N and a mated cubic residual ¢;, such that ¢; = <25N [A(”]
acjzl J

contains the x;—mate of all the mated cubic terms (involving z;)
within ¢y .
Step 7: Prepare next iteration:
If 7 <n then Let j < j + 1. else Let j < 0 and r «— r — 1.
Goto step 1.

Output: It returns a project—and-lift iterated roof-dual bound p to the
minimum of f.

Figure 8.5: PROJECT&LIFT-ITERATED-ROOF-DUAL algorithm.

264

265

Comparative results between SIRDA and PLIRDA are presented in this section.
Table 8.7(a) indicates how far are these two algorithms from the cubic dual (C3), for
the 10 QUBO problems created by Glover et al. [108]. The P&L iterated roof-dual
bound is significantly closer to C'3 than the squeezed version of the algorithm, for any
number of rounds (r = 1,2, 3) considered. The proximity to C3 from the P&L algorithm
is also more noticeable if the number of rounds r increases or if the density parameter
d is either high or low.

On an average case, SIRDA is 4.3 (respectively 2.9 and 2.5) times faster than
PLIRDA if one (respectively two and three) round is considered (see Table 8.7(b)).

In this section we investigate the quality of the P&L iterated roof dual bound in a
group of (non-weighted) MAX-2-SAT formulas generated by Bonami and Minoux [46],
who have proposed a new bound to solve these problems. This bound is based on the
classical Lift-and—Project (L&P) cut generation of a standard mixed integer program-
ming formulation of MAX—2-SAT. We have found recently that the L&P bounds for
these problems nearly coincide with Cj.

As before we could see that P&L iterated roof-dual bounds are clearly superior to
the squeezed ones. It also shows that the P&L bound is substantially better than the
standard iterated roof-dual bound, and that for these datasets it is between 5% and
8% away from the L&P (or in this case C3) bound.

For the tested instances, the computing times of PLIRDA seem to grow quadratically
with the number of variables. For instance when three rounds were considered, PLIRDA
spent around 3 seconds for the 75 variable instances and spent 32 seconds for the 200

variable cases.

8.7 Linearization models for sparse QUBOs

Robust high performance implementations of the state-of-the-art LP solvers are up to
100 times faster than implementations of ten years ago on the same hardware ([21]).
This fact used together with the hundred-fold or so increase in computer speed and

memory capacity, implies that very large LPs can be solved optimally in a standard

Table 8.7: Project—and-lift and squeezed iterated roof-duals of QUBO problems with 100 variables (Glover et al. [108]).
(a) Relative gap to the C3 bound.

Relative gap to the Cs bound (resp. ﬁESC?’ and %)
Problem | Density || SIRDA (p) | PLIRDA (p) || SIRDA (p) | PLIRDA (p) || SIRDA (p) | PLIRDA (p)
Name (d) (r=1) (r=2) (r=23)
1d 10% 0.2% 1.0% 0.1% 0.4% 0.1% 0.3%
2d 20% 9.8% 9.3% 7.2% 6.8% 6.4% 5.8%
3d 30% 10.6% 11.4% 8.4% 7.7% 7.3% 6.5%
4d 40% 14.1% 14.5% 10.4% 9.5% 9.2% 7.8%
5d 50% 14.6% 13.9% 11.1% 9.1% 10.2% 7.2%
6d 60% 13.4% 11.9% 9.9% 7.7% 8.6% 6.1%
7d 70% 9.3% 8.3% 5.3% 4.2% 4.2% 2.7%
8d 80% 8.7% 7.2% 4.9% 3.2% 3.9% 1.9%
9d 90% 7.8% 6.6% 4.0% 2.5% 3.1% 1.3%
10d 100% 7.3% 4.7% 3.4% 1.5% 2.6% 0.6%

(b) Computing time speed analysis between
SIRDA and PLIRDA.

time of PLIRDA

time of SIRDA
|P7”0blem| (T:1)|(7’:2)|(T:3)
1d 2.5 3.8 4.6
2d 3.1 2.2 2.0
3d 3.9 2.7 2.3
4d 4.9 2.9 2.3
5d 4.9 2.8 2.2
6d 5.0 2.8 2.3
7d 5.1 2.9 2.4
8&d 4.8 3.0 2.3
9d 4.9 2.8 2.2
10d 4.4 3.0 2.3

99¢

Table 8.8: Project-and-lift and squeezed iterated roof-duals of MAX-2-SAT (Bonami and Minoux [46]).

(a) Lower bounds.

Average Lower Bounds to the Minimum

Variables || Clauses | Average Roof Iter. Roof | Squeezed Iterated Roof-Dual | Project—and—Lift Iterated Roof-Dual | Lift € Project
(n) (m) | Minimum || Dual (p) | Dual (p) |(pir=1)|(Gir=2)[@ir=3) | (pir=1) | (msr=2)| (pir=3) | (L&Pfrom[46])
75 525 59.6 11.0 45.7 50.8 53.1 53.8 52.0 53.9 54.7 57.9
75 550 62.6 11.7 48.1 54.6 56.9 57.6 55.5 57.4 58.1 61.3
75 600 73.0 15.4 57.2 63.1 65.4 66.1 64.0 66.4 67.1 70.8
100 700 80.2 11.6 59.2 66.7 69.9 70.7 68.3 71.1 72.0 76.4
150 850 80.8 7.8 55.9 65.7 68.6 69.3 67.1 69.8 70.8 76.6
200 1000 89.8 6.0 57.5 67.8 71.2 71.8 71.2 74.2 75.1 81.7

(b) Computing times.
Average Computing Time*
SIRDA PLIRDA
‘ Variables ‘ Clauses ‘ kDA IRDA (r=1) ‘ (r=2) ‘ (r=3)|(r=1) ‘ (r=2) ‘ (r=3)
75 525 || <0.005s | 0.01 s 0.2s 0.7s 1.5s 0.8s 1.7s 2.8s
75 550 || <0.005 s | 0.02 s 0.3s 09s 1.6s 0.8s 1.8s 2.8s
75 600 || <0.005 s | 0.02 s 0.3s 09s 1.6s 0.8s 1.8s 3.0s
100 700 || <0.005 s | 0.02 s 0.5s 1.6 s 3.3s 14 s 34s 5.6s
150 850 || <0.005 s | 0.02 s 1.2s 4.3 s 8.3 s 34s 88s| 15.6s
200 1000 || <0.005 s | 0.04 s 2.2's 7.7s| 15.5s 6.4s| 17.5s| 32.0s

*Computed on computer system I (see Table 8.1).

29¢

268

nowadays computer. There are several examples of LPs solved to optimality, involving
tens of millions of nonzero elements, hundreds of thousands of constraints, and few
millions of variables.

In Chapter 9 we shall demonstrate that LP in combination with branch—and-bound
is an effective method to solve relatively sparse problems of large dimensions. The con-
cept of sparsity that we use here is related to problems of low density and in particular
to problems whose variables are typically not involved in too many (nonzero) quadratic
terms. In this section, we study various families of well defined cuts and show that
they can be characterized by a relatively small number of cuts for those sparse QUBO
problems.

We start by providing a simple result that can potentially reduce considerably the

size of certain (CUBIC DUAL) LPs.

Let
—yi;j <0, ¢; >0,
—x +yi; <0, ¢y <0,
D ={(x,y)| N Y (1<i<j<n)
-z 4y <0, ¢; <O,
r 4y —y; <1, ¢ >0,

Clearly, D2l C S2.

Lemma 8.9 ([54]).
Cy (f) = min {Lf (x,¥) ‘(x,y) eDl x e U"} .

The above lemma raises the question about the possibility of ignoring certain sets of
constraints, especially from S, depending on the quadratic coefficients of the function
being zero or not. If this is true then the size of the LP problems can be reduced
substantially, and in particular if the problem is sparse. The following result gives a

positive indication into this direction.

269

Theorem 8.2. Let f be quadratic pseudo—Boolean function given as (1.5) and

DY = SPIL{ (x.y)

Then,

T; +Tj

+xk

—Yij — Yik — Yjk < 1, 1<

+Yi; + Yik — Yjk

N

0,

+Yi; — Yik t Uik <0,

0
—Yij T Yik +Yjr <0,

Cs(f) :min{Lf (x,¥) ‘(x,y) € DB],XEUTL}.

1<j<k<n
cij 70 or

cik 70 or
cjr # 0

Proof. The result follows from the fact that Cs = w(TP) (see Proposition 8.5). (TP)

is a triangle packing problem that considers all negative triangles for packing. Linear

combinations of negative triangles are feasible solutions within (TP). Since every neg-

ative triangle is linked to at least one edge of G'¢ (the balancing graph of f) then the

result follows readily.

O

We shall consider next other LP models that further reduce the size of the number

of triangle cuts to be added to the roof dual LP formulation. The bound obtained in

this way is between the roof-dual and the cubic—dual bounds.

First we consider

W = {(x,y)

Ty
and
X

W (8) = WPl (x,y)

—Yij
+Yij
+Yij

—Yij

+xi

<0,

<0, 1<i<j<n
<0, cij 70
<L

~Yij —Yik —Yjk <1,

0,

N

tYij + Yik — Yjk
+Yi; — Yik Yk <0,
—Yij T Yik +Yjk <0,

1<i<ji<k<n

(i,4,k) €S

(8.13)

270

S in (8.13) represents the set of triplets (i,7, k) corresponding to the triangle in-

equalities involving variables x;, x; and ;. In this study we consider three cases:
o So={(i,j, k) € V3|cijemen # 0}
e S = {(z’,j, k) €V3]ci; #0 and (cip #0 or cj # 0)};
o So={(i,j, k) € V3|ci; #£0}.

Let us define
k(f,S) & nin {Lf (x,y) ‘(x,y) e WBl(S) x e [U"} .
Lemma 8.10. Let f be quadratic pseudo—Boolean function given as (1.5). Then,

Co(f) =r(f,0) <k(f, So) <k(f,S1) <k(f,S2) <C3(f).

Proof. The result follows trivially from the fact that Sy C S1 C Ss. O

All the computational experiments that we have carried out suggest the following

strong claim that we were unable to demonstrate.

Conjecture 8.2.

Cs3(f)=r(f,S2).

The above result is in accordance to the squeezing scheme presented previously
in this chapter. We believe that there is a maximum possible iterated roof-dual im-
provement per variable, and that in subsequent iterations it is not necessary to squeeze
further terms from variables whose terms were already squeezed out. Also we think
that the variables sequencing order for the iterated procedure does not matter and that

any sequence will return C5 after at most n iterations.

8.7.1 Computational results

The conclusions of the following computational experiments will clearly demonstrate

that LP can “quickly” provide good results for many sparse QUBOs, which are typical

271

in many real problems.

The LP solver that we used is Xpress-Barrier from the 2007B release of Xpress—MP.
In our tests we also consider the time of finding an optimal basic feasible solution by
using the Xpress crossover algorithm. This step is important when the studied linear
program bounds are used during the B&B search (see Chapter 9). Additionally, the
finding of such basis allows us to determine what cuts are binding at the LP extreme
point solution. This information can be used to reduce the size of the problem (by
removing non-binding cuts) while keeping the same bound. Typically, the problem
reduction makes the MIP solver to run faster and saves in memory consumption.

We start by analyzing the bounds in the test set of Bonami and Minoux [46] about
MAX-2-SAT. It should be remarked that we considered the standard linearization model
in what follows, but it should be mentioned that MAX-2-SAT can be solved by a more
compacted linear program, which does not required additional variables (see [46]).

The results carried out on these problems are given on Tables 8.9(a) and 8.9(b), and
cover the iterated roof duality, its P&L version, the L&P bound proposed in [46], and
the linear programming bounds & (Sp), x (S1) and & (Ss).

Table 8.9(a) includes the average relative gap of the studied lower bounds to the
minimum possible number of unsatisfied clauses. First, L&P and & (S3) are remarkably
close to each other. Second, these two bounds are clearly superior to the iterated
roof-dual versions.

The computing times seem to favor the P&L iterated roof dual bound, especially
when the number of variables increases. This result gives some indication to the fact
that as the size of the problem increases the combinatorial approaches may have a better
chance to succeed in solving them. We also remark that the solve times of PLIRDA
can be somewhat improved simply by adopting better algorithm data structures and
implementations.

Another interesting point to discuss is the fact that linear programming may take
longer to compute the bound for those larger instances, but when the non-binding cuts
are removed from the formulation, then this approach becomes attractive to be solved

by the current MIP technology (see Chapter 9).

(a) Average relative gap to the minimum number of unsatisfied clauses.

Table 8.9: Linear programming bounds of MAX-2-SAT (Bonami and Minoux [46]).

Average Relative Gap of some Lower Bounds to the Minimum (v)

Variables || Clauses | Iter. Roof Project-and-Lift Iterated Roof-Dual Lift & Project Linear Programming
(n) (m) | Duat (452) [(570 = 1) [(55857 =2) | (57 =3) | (L&P fromfag)) | (2=5022) | (=) | (=)
75 525 23.3% 12.6% 9.4% 8.1% 2.7% 17.1% 3.4% 2.7%
(0] 550 23.1% 11.3% 8.2% 71% 2.0% 14.6% 2.4% 2.0%
(0] 600 21.7% 12.3% 9.1% 8.0% 2.9% 14.1% 3.4% 2.9%
100 700 26.2% 14.8% 11.3% 10.2% 4.6% 24.6% 5.6% 4.6%
150 850 30.7% 16.8% 13.6% 12.3% 5.1% 46.3% 10.0% 5.1%
200 1000 35.9% 20.6% 17.3% 16.2% 8.9% 61.1% 17.2% 8.5%
(b) Computing times.
Average Computing Time
PLIRDA* XPRESS-Barrier*™
. IRDA*
‘ Variables ‘ Clauses ‘ (r=1) ‘ (r=2) ‘ (r=3) 1 (k(S0)) ‘ (k(S1)) ‘ (k(S2))

75 525 || 0.01s 0.8s 1.7s 28s 0.1s 1.0s 5.9s

75 550 || 0.02s 0.8s 1.8s 28s 0.2s 1.3s 6.6 s

75 600 || 0.02s 0.8 s 185 3.0s 0.1s 1.3s 59s

100 700 || 0.02s 14s 34s 5.6s 0.1s 19s 13.7 s

150 850 || 0.02s 34s 8.8s| 15.6s 0.1s 2.8s 47.0 s

200 1000 || 0.04 s 6.4 s 17.5s| 32.0s 0.1s 3.2s 102.4 s

*Computed on computer system I (see Table 8.1).
**Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.

¢Le

273

The usefulness of the 3 linear programming models proposed in this section is mostly
a property of sparse QUBOs. The concept of sparsity used here is different from the
density property used along this dissertation. Here we consider that each variable is not
involved in more than a constant k& quadratic terms of the multilinear representation
of the function. In a private conversation, Endre Boros called these functions as ultra—
sparse, which have the interesting property that the density approaches zero (i.e. d < 0)
as the number of variables increases (i.e as n < inf).

We have already seen that ultra—sparse functions are common in many real world
applications (e.g. 2D /3D Ising models, planar vertex covers, via minimization, biomed-
ical imaging).

Next we consider a ultra—sparse family that we have randomly generated for MAX—
CUT. We called this family as the Hamilton family (see Section 3.4.2). It consists of
weighted graphs with a m Hamiltonian cycles. Here we analyze the case where m is 2
and the graphs have 250 or 500 variables. Because m = 2 then every vertex has at most
four neighbors for any instance. In this case k = 4 for the above sparsity definition.

Table 8.10(a) shows the average relative gaps to the best known weighted cuts of
graphs having 250 and 500 vertices. The bounds (k (Sp)) and (k (S1)) are very close to
each other. They are clearly inferior to the bound (x (S2)), whose relative gap varies
from 0.0% to 3.5%, whereas the other bounds have gaps varying between 4.5% and
21%.

It is also interesting to see that the relative gap varies substantially for different
weight schemes. The easiest group corresponds to graphs with weights [—50, 50], for
which XPRESS-Barrier with the Sy—cuts returns near optimal solutions for the 250
vertices instances, and returns around 1%-to—2% relative gaps for the 500 vertices
instances. The hardest group corresponds to the graphs having weights [50,100] and
negative exterior field.

The computing times are substantially larger for the case that uses the Sy—cuts.
The longest XPRESS—Barrier run time was 1182 seconds for the 500 graphs instances
having [—50, 50] weights.

274

Table 8.10: Upper bounds based on linear programming for MAX-CUT graphs from
the Hamilton family.

(a) Average relative gap to the best known cuts with average weight ().

Exterior | Edge’s Weights | Vertices Linear Programming
Field (h) | ([w™w?]) | (v]) | (=g [(o) [(o)
0 [1,1] 250 14.6% 14.6% 1.1%
500 15.3% 15.3% 2.2%
0 [—50, 50] 250 21.0% 19.6% 0.0%
500 20.8% 20.3% 1.0%
25 [—50, 50] 250 4.5% 4.0% 0.0%
500 3.6% 3.4% 1.8%
-75 [50, 100] 250 16.2% 16.2% 1.5%
500 17.5% 17.5% 3.5%
75 [50, 100] 250 9.3% 9.3% 1.1%
500 9.6% 9.6% 1.8%

(b) Computing times obtained from XPRESS-Barrier.

Exterior | Edge’s Weights | Vertices Linear Programming
Field (h) | (fw™,w*]) (V) [((S0)) | (6 (S1)) | (r(S2))
0 [1,1] 250 0.1s 0.3s 63.2 s
500 0.3s 09s| 914.5s
0 [—50, 50] 250 0.1s 0.3s| 108.6s
500 0.3s 0.8 s(1039.4 s
25 [—50, 50] 250 0.1s 0.3s 91.8 s
500 0.3s 09s|1182.1s
-75 [50, 100] 250 0.1s 0.3s 50.1 s
500 0.3s 0.8s| 656.7s
75 [50, 100] 250 0.1s 0.3s 54.0 s
500 0.3s 09s| 619.7s

*Computed on an AMD Athlon 64 X2 Dual Core 4800+,
2.41 GHz, 4GB RAM and runs XP.

275

8.8 A closer look at C;

Cy (f) is a lower bound to the minimum of the quadratic pseudo—Boolean function f,
and belongs to the fourth level of the hierarchy of bounds proposed by Boros et al. [49],
following its immediate level Cs (f) bound. There is not much work in the literature
about what properties characterize this bound, as well as its usefulness is not known
in practical applications. In this section we provide a characterization of Cy4 in terms
of cones of positive functions and in terms of LP. At the end, we will show an example
derived from the minimum 3-partition minimization for which C5 provides weak bounds
but Cy gives remarkably better results.

In what follows we shall consider quadratic pseudo—Boolean functions in n = |V/|
variables as vectors of the 1 +n -+ (Z) multilinear coefficients of their unique polynomial
representation.

For a subset S C V of the variables, we denote by Fg the family of quadratic
pseudo—Boolean functions only depending on variables from S. Let F. ; C Fg the sub-
family of nonnegative ones. It is simple to verify that Fg is a subspace of dimension
1+[S|+ (g) of RH"SH@), and that .7:; is a convex cone in this subset. .7-"; is described
by the 215! inequalities requiring the nonnegativity of its elements. Therefore it is a

polyhedral cone and consequently it is finitely generated. Let
Qr ={FiISCV,[S| <k}

S
be a convex cone in R*HISHE) for 2 < k < n, which is generated by the above cones

that correspond to at most k variables.

Proposition 8.9 ([49, 54]).

and all of these cones are finitely generated.

We denote the generators of cone Oy (k =2,--- ,n) as the set B(Qy). The charac-

terization of the extremal elements of the above cones is important but difficult to be

276

fully understood ([54]). It is well defined for cone Q3 and we provide here for the first
time a characterization of the generators of Qg.
Before showing this result, let us first consider a special family of functions proposed

by Boros et al. [49]:

by <ZHEU2“ - 0‘) (8.14)

where U C L is a subset of the literals with not complemented pairs, and where o € Z.
It is clear that (8.14) defines a pseudo-Boolean function and that by using the

identity u? = u, a quadratic polynomial representation of it can be computed.
Example 8.12.

b (v tvtwtz—1)(utvtw+z—2)
{uﬂ)fu},z},l - 2

= l—-u—v—w—2z+u+uw+ uz +ovw+ vz + wz.

Proposition 8.10 ([49]). If U C L is a subset of the literals containing no comple-
mented pairs, and o is an integer such that 1 < a < |U|—2 for |U| =2 3, and a =1 for

U| =2, then by, € B(Qy) for k > |U|.

Proposition 8.11 ([50]). Let

By = {uwv|u,v e Liu#v,u#7}
= {by1|U C L containing no complemented literals, |[U| =2},
Bs = {ww+uvw |u,v,we€ L,u ¢ {v,v,w,w},v ¢ {w,w}}

= {by1|U C L containing no complemented literals, {U| = 3},
Then, we have B (Qs) = By and B (Qs) = By U Bs.

Ahead, we will characterize B (Q4) which also has generators of the form (8.14). To
be remarked that not every generator of the cones Qy, is a function of the form (8.14).
Boros and Hammer [53] provided several families of extremal elements of Qj that are
not of this form.

From the comments of the previous sections it is also not a big surprise to see that

the “cubic” generators of the cone Qg are precisely the mated cubic terms. So, one

277

immediately guesses that there is a strong connection between Qs and the cubic dual

(3. To see this, let us define
Cp(f)=max{C eR|f—-C € Qi}

for all K =2,--- ,n. Since f has finite possible values and since O is a closed convex
cone in R+ (3) then the maximum of the above definition exists. From the definition

of the cones Q, then it is clear that

Co(f) <C3(f) <Cu(f) <~ <Cp(f) = minf(x).

xeBn

Using the basis generators B (Qy) of cone Q, then the lower bound Cj (f) can be

expressed as the optimum of the linear programming problem

Cr(f)=max{ CER|f-C= > b, o €B(Q) ;.
beB(Qk)

where the equations correspond to the 1 4+ n + (Z) coefficients of f.

From Proposition 8.11 it is easy to see that Cy (f) corresponds to the roof-dual and
Cs5 (f) corresponds to the cubic—dual.

Let us show next some preliminary results that will lead to show how to find the

basis generators of Q.

Lemma 8.11. Let Ay, Ay, Aw, Az € [0,1] and Ay + Ay + Ay + Az = 1. Then byy y w211

has the following quartic posiform representation:

b{u,v,w7z}7l = uvwz
+A T (vwz) + (1 — Ay) vwz
+AT (uwz) 4+ (1 — Ay) uwz
A (uvz) + (1 — Ay) uvz

+A.Z (vwz) + (1 — A,) vwz.

278

Proof. To see this result we apply the following trivial steps:

byi = UWUWZ — wvwz + uvw + uwvz + uwz + vwz

+A VW2 — Aowz + vwz
A UTWE — A\yUWz + uwz
FApUVWZ — Apuvz + uvz

+ A UVWZ — A uvw + uvw.

O

Lemma 8.12. Let ¢ = ZTQ{U@,U},Z,HJ,E,E} ar [[,era be a posiform representing a
quadratic pseudo—Boolean function f : Biwvw:2t R Then, there is a posiform 0 =
>orc (w,0,0,2,5,5,5,%} Br [1,er @ representing f, which satisfies the following conditions

on its terms of degree 4:

Blupw,zy = YUuwmwz) t Cchuowz T Ynowz) + Yupwz)

ﬂ{u,v,w,E} = O4{u,v,w,z}
ﬁT = 07 |T| — 47
def {w,v,w,z},{u,v,w,z},{u,v,w, z},{u,v,w, 2}, {u,v,w, 2},
T € A=

{u,v,w,z} ,{u,v,w,z},{uw,v,w,z} ,{u,v,w, 2}, {u,v,w, z},{w,0,w, z}

Proof. If the quartic term only differs in one literal (say {u,v,w,z}) from {u,v,w, z}

279

then we apply the relation:

a{uvvvw)z}uvwz + Oé{ﬂﬂijvz}ﬂvwz

= (uwwz) — Vaww,:)) W2 + Qg VW2

If the quartic term differs in two literals (say {u, 7, w, z}) from {u, v, w, z} then we apply

the relation:

Xu,0,w,2 UWVWZ + Q50,23 W VWZ

= (Quvwz) + Wupw,zy) W02 = Qg 2y (VW02 +0W02) + 0y g W2

If the quartic term differs in all literals from {u,v,w, z} then we apply the relation:

a{u7v7w7'z}uvwz + a{ﬂﬂ}’wvz}uvwz
= (a{u,v,mz} + a{ﬂ@mg}) UVWZ — Qg pw,z) (VW + uvz + vwz + vwz)

Fogpmzy (W0 + uw 4+ uz + vw + vz + Wwz) — Ay)

Obviously, it is always possible to find a posiform of the resulting expression. Also,
it is clear that p = 0, |T| =4, T € A and the quartic terms differing in 3 literals
from {a,b,c,d} have the same coefficient. Since ¢ is a quadratic pseudo—Boolean func-
tion then all corresponding quartic terms must vanish when all terms of degree 4 are

combined. Therefore,

0 = a{u,v,w,z} + a{ﬂ,v,w,z} + O‘{u,ﬁ,w,z} + O‘{u,v,ﬁ,z} + O‘{u,v,w,?}
- (a{ﬂ,ﬂ,w,z} + a{ﬂ,v,ﬁ,z} + a{ﬂ,v,w,z} + a{u,ﬁ,ﬁ,z} + a{u,ﬁ,w,E} + a{u,v,ﬁ,E})

+ (Uupws) T Vpswz) + sz + Aurms)) — Uusw)-

and using the coefficients obtained in the previous sequence of relations we get

0= —Blupuwzy + (Yasmsy + Masws + Yaews T Yusws)) -

280

Theorem 8.3. Let

A (vwz +TWZ) + (1 — Ay) (vwz) +
AT (vwz +TWZ) + (1 — Ay) (vwz) +
AW (uvz +u0Z) + (1 — Ay) (wvz) + ;

By, =
A Z (wow +TTvw) + (1 — A;) (wwz)

{ lu,v,w,z € Lyu ¢ {v,0,w,w,2,z},v ¢ {w,w,zz},w ¢ {z,Z}
)\’LH)\’!M)\’UM)\Z € [071]7)\u+)\v+)\w+)\z =1

= {bu1|U C L containing no complemented literals,|[U| =4} .
Then, we have B (Q4) C By U Bs U By.

Proof. Since bfy y w231 =1 —u—v—w—2+uv+uw+ uz +vw + vz + wz, then By
is contained in Q4. Consider now a posiform ¢ and assume that ¢ € Q4. We want
to show that the posiform # € Q4 obtained from ¢, according to Lemma 8.12, can be
written as a nonnegative combination of posiforms from By U Bs U B4. To check this,

we express 6 in the form

0= Z)\bb—l-ZOzTHU,

beB2UB3UBy TeA ueT

where Ay > 0 (b € BoUBsUBy), ar > 0, |T| € {3,4} (T € A), and A having the
smallest number of quartic terms. Trivially, # can always be expressed in this form.
Say |A| > 0 and that at least a term of length 4 exists. Note that if there is no such
term (B4 = () then according to Boros et al. [50] Bs U B3 U By is a basis for Q3 C Q4.
So, let us assume that a quartic term exists and let us call it T,, = {u,v,w,z} € A.
Since 0 is a quartic form of a quadratic pseudo—Boolean function, the quartic part of
ar, wvwz must be cancelled by some other quartic terms in A, which can only be of the

form Th = {u,7,w, z}. From lemma 8.12, we may assume that a7, > ap,. Then

ap, vvwztanuvwz = (ar, — ar,) wwztoar, z (uww + vw + vw)—ar, z (v + v + w)+ar, 2

(8.15)

281

These simple algebraic transformations contradict our initial assumption that A con-
tains the smallest number of quartic terms. So, what it is left to prove is the case when
A consists only of terms of length 3. So, let us assume that A consists of the smallest
number of cubic terms and that at least one cubic term exists. We call this term as
Cp = {v,w,z} € A. Since 6 is a quadratic pseudo—Boolean function, the cubic part of
ac, vwx must be cancelled by some other cubic terms in A, which can only be of the
form Cy = {7, w, z}. We may assume without loss of generality that ac, > ac,. Then,
ac, vwz +ac,twz = (ac, — ac,) vwz +apwz. If ac, > ac,, then the only possibility
to cancel the (ac, — ac,) vwz term is by having in A the cubic term (a¢, — ac,) TWZ.
But, this situation would imply that (ac¢, — ac,) (vwz +TWZ) belong to A and not
B3 as we have assumed. Therefore, the cubic terms originally existent in A must be
cancelled by the new cubic terms defined in (8.15). Let er be the coefficient of the cubic
term T ({u, v, w},{u,v, 2}, {u,w, 2z}, {v,w, z}) generated by (8.15). According to these
algebraic transformations, if there is a quartic term 7;, in A with a positive coefficient,

then we must have the following system of equations satisfied:

Clupwy = Yagpwzy T Yuewz) T Mupwz)
C{’U,,U,Z} = O‘{u,ﬁ,ﬁ,i} + O‘{E,v,ﬁz} + a{ﬂ7ﬁ7myz} (8 16)
Cluwezy = Yagpwzy T Yuzwzt T Muow,)
Clowzy = Yapwz T Yuswz) T Muow,z)

Now, recalling from lemma 8.12 that

ar, = Agpw,zt T Wapwzr T Waewzr T upwz)s

and letting

Mupwzl Muvwzr Yaovwzr YHuvwz)
()\m)\va)\wa)‘z) = < ; ; 5 .
ar, ar, ar, ar,

282

Then (8.15) and (8.16) imply that

AT, VVWZ + Oy 575, 2} UV W Z + Qg 5,2} UWVW Z + Qg 50,2} U VWZ + Oz 575, 2} WU W2

= aTn

= aTn

= aTn

+ (CLupuw} VW + CLyp, ATVE + Clyap,) UD Z + Cly 2} VW Z)

UVWZ + AUT W Z + AyUVW Z + Ay W ITWZ + A\, UT W2

+ A+ A+ A)TTTW+ (A + Ay + X)) TTZ

+ A+ A+ X)TWZ+ A+ Ay + X)) TWZ

UVWZ + AUD W Z + AyUVW Z + AU TWZ + A, WD W2
+1-=X)atw+ (1 - Ay)utzZ+ (1= X)) uwz+ (1 —\,)TWZ
Ayt (Vwz +TWZ) + Ao (vwz +TWZ) + Ayw (uwvz +TTZ) + Az (wow + TTW)
A

1= X)uvw+ (1 —Ap)T0z2+ (1 - N)Twz+ (1 —\,)TWZ

must be a partial sum contained in the sum of 6 defined by A. Because there is a

element of B4 with terms in A with positive coefficients we got a contradiction as the

size of A can be reduced.]

Note that b,),1 has a unique cubic posiform representation in the literals u, v

and w. However, by, ,, . -},1 has several quartic posiforms representing it. On example

is for instance

VWZ — uwvwz + uvw + uvz + vwz + vwz

|

bU{u,v,w,z},l =

VW Z + uwvwz + uvw + uvz + uvwz

Il
N

= W(0wz 4 vwz) + u (vw + vz + wz) .

A consequence of the previous observation is that to compute Cy4 (f) be means of

linear programming we need to consider 16 valid inequalities (out of possible 16) in the

traditional linearization in order to assure that all the generators of B4 are contemplated.

Theorem 8.4. Let us define

x;
x;
x;
T

—2z;+

Wi Wb U (x.y)

—x;
—x;
—x;

2x;

Then

—T;

—T;

+2Z‘j

+xg

+xg

—2:Bk

+xg

+xg

—Tp

—x

—x

—Tp

+2Z‘k

+zr
—2x,
+zr
+zr
+zr

42z,

—Yi,j — Yik — Yi,r —Yjk — Yjr — Yk,r
—Yi,j — Yi,k T Yi,r —Yj.k T Yjr + Yk,r
—Yi,j T Yi,k — Yir T Yjk — Yjr T Yk,r
+Yij — Yik — Yir T Y5k T Yjr — Yk,r
+Yi,5 + Yik +Yir —Yj.k — Yjr — Yk,
+Yi,5 + Yik +Yir —Yj.k — Yjr — Yk,
+Yij — Yik — Yir T Yik T Yjr — Yk,r
—Yi,j T Yik —Yir T Yjk — Yir T Ykr
—Yi,j — Yi,k T Yi,r —Yjk T Yjr + Yk,r
—Yi,j tYi,k Y Yir T Yik + Yjir — Ykeor
+Yij — Yik + Yir + Yk — Yjr T Yk,r
+Yij + Yik — Yi,r — Yi.k T Yjr + Yk,r
+Yij + Yik — Yi,r — Yi.k T Yjr + Yk,r
+Yi,5 — Yik T Yir T Y5k — Yjr T Yk,
—Yi,j T Yik T Yir T Yjk T Yir — Ykr

“Yi,j — Yi,k —Yi,r — Y5,k — Yjor — Yk,

1<i<j<k<r<n)

283

_ =

w O O o o o o o o o o = o=

INCINCINCIN NN N IN N IN N IN N IN NN

(8.17)

Cy(f) = min{Lf (x,y) ‘(x,y) e wWh x e U"}.

A final idea that we would like to bring to this discussion is the possibility of

improving the bounds by applying the arithmetic consensus repeatedly to a posiform,

resulting possibly in an equivalent posiform with larger degree.

Example 8.13. This example exemplifies how to apply the arithmetic consensus to

transform a posiform of degree 4 into a posiform of degree 5:

TYUU + xYvz

8.8.1 Computational results

zy (uv + vz)

zy (uz + vz + uvz)

TYUZ + rYuvzZ + TYUUZ.

The experiments shown in this section consider the Minimum k—Partition (MkP) prob-

lem. Given a weighted graph G = (V,E,w), the MkP problem is the problem of

284

partitioning the set of vertices V into k disjoint subsets such that the total weight of
the edges joining vertices of the same partition is minimum.

The MEP problem can be formulated as 0-1 LP (see [87]) or alternatively as a Semi-
definite Program (see [20]). On a private communication Boros et al. [19] formulated

the MEP problems as a QUBO as follows.

For each vertex i of G we associate k binary variables z;. such that:
k
(1) Y xyp =1 and
r=1
k
(17) > xipzjr =0 = i and j are in different partitions.
r=1
If vertices i and j are grouped together on the same partition then the objective is

penalized by the weight w;;. Given a feasible assignment according to (i) and (ii), then

the quadratic pseudo—Boolean function

k k 2
fr(x) = Z Z Wij Zazira:jr + M (Z Tip — 1)
r=1

i€V \jevli<y r=1

represents the total weight of a k—partition of G. If M is large enough (M = Ei,jeV\Kj |wi;|
is enough), then the minimizers of fj are characteristic vectors of weighted minimum
k-partitions of graph G.
For k = 3 this approach can be specialized further, since
Tz =1 —xi — 242,
<~ Ti1xio = 0.
T3 €B

for any vertex ¢ € V. Thus, the minimizers of the quadratic pseudo—Boolean function

g(x) = Y| X wiy@azp +zierje+ (1—2n—2i2) (1 -2 —2j2) + Mxilwﬁ)
i€V \jevl]i<j

= > Yo wij zazj + 2wz + TinTjo + TieTji — 1) + Mzpxio |,
eV \jev]i<j

are characteristic vectors of minimum weighted 3—partitions of G. To be noted that g

is only defined by 2|V| vertices.

285

Since the number of inequalities required to compute Cy is very large, in the next
experiments we consider only a subset of the cuts. Instead of considering the 16 cuts of
(8.17) for all cases in (1 < i< j <k <r <n)we only consider a subset of these cases

Z such that every element (i, j, k,r) € Z satisfies
CikCijChrCjr 7 0 O €3jCirCjjCr 7 0. (8.18)

Condition (8.18) defines a tuple associated to 16 cuts not available in W that
due to its shape in the nonzero coefficients space, we named as the “pure square”

inequalities. We denote this reduced subspace as W4 (2).

In this section we investigate some M3P problems considered by Anjos et al. [20].
The graphs in question where generated by the software RUDY ([211]) and consist
of 2-dimensional and 3-dimensional randomly generated Ising instances, some having
Gaussian distributed weights and the others having +1 or -1 weights with 50% proba-
bility.

Using Xpress, under the same conditions of Section 8.7.1, we analyzed 4 bounds:

k(f,S1), k£ (f,82), 2(f,S1) and z (f, S2), where
2 (f,S) = min {Lf (x,y) ((x, y) e WB () uwWH (2),x e [U"} . (8.19)
Table 8.11(a) includes the values of the four bounds, and Table 8.11(b) shows the

corresponding computing times. There are two aspects to be emphasized:

e z(f,S1) provides almost the same bounds as z (f,S2), but it is much less com-

puting demanding;

e The pure square cuts make the most difference with respect to how close the

bound is from the minimum.

MS3P is the (only) problem that we are aware of for which Cy is clearly superior than
Cs, and therefore making possible to solve them in practice by using linear programming

together with square inequalities (see Chapter 9).

286

Table 8.11: Lower bounds for M3P problems proposed by Anjos et al. [20].

(a) Lower bounds.

Without Pure Square Cuts || With Pure Square Cuts
| Instance | Weights | M3P || k(S1) | k(Sy) 2(S1) | 2(S)
4x4 -954077 || -1,222,806.7 | -1,222,806.7 || -954,077.0| -954,077.0
5x5 -1484 348 || -2,104,102.3 | -2,078,937.0 | -1,535,693.0 | -1,496,165.6
6x6 -2865560 || -3,724,596.0 | -3,704,117.0 | -2,952,370.3 | -2,932,387.9
<7 Gaussian | -3282435 || -4,750,640.0 | -4,750,640.0 || -3,353,935.1 | -3,350,514.6
8x8 -5935339 || -7,186,373.7 | -7,186,373.7 || -6,004,188.1 | -6,002,920.4
4x4 -13 -18.0 -17.5 -13.8 -13.6
5x5 -20 -29.3 -29.3 -22.3 -22.1
6x6 +1 -29 -42.3 -42.0 -31.9 -31.7
<7 -40 -57.7 -57.7 -43.2 -43.1
8x8 -55 =777 =777 -58.4 -58.3
9x9 -65 -95.0 -95.0 -70.3 -70.3
2x3x4 -20 -32.5 -32.4 -23.1 -23.1
2x4x4 -28 -44.5 -44.2 -32.7 -32.7
3x3x3 -26 -42.3 -42.3 -30.0 -30.0
3x3x4 +1 -36 -58.8 -58.8 -42.1 -41.9
3x4x4 -48 -79.2 -79.2 -56.7 -56.7
3x4x5b -65 -101.7 -101.7 -73.5 -73.4
4x4x4 -65 -108.7 -108.3 -79.1 -78.9

(b) XPRESS-Barrier computing times*.

Without Pure Square Cuts || With Pure Square Cuts
| Instance | Weights |k (S1) | K (S2) z(S1) | 2 (82)

4x4 0.1s 0.3s|l 09s 1.1s
5x5 0.2 s 09s|l 1.3s 2.3s
6x6 0.3s 25s| 19s 5.7 s
X7 Gaussian || 0.5s 6.7s| 29s 11.1s
8x8 0.7s 14.9s|| 3.9s 29.2 s
4x4 0.1s 0.3s|l 0.8s 1.1s
5x5 0.2 s 09s|l 14s 2.7s
6x6 +1 0.3s 2.6s]|| 1.8s 5.2s
X7 0.5s 7.0s]|| 26s 10.6 s
8x8 0.7s 159s| 34s 26.0 s
9x9 0.8s 29.4s|| 4.8s 59.1s
2x3x4 0.2 s 0.8s|l 1.4s 2.4 s
2x4x4 0.4s 2.1s| 23s 5.5s
3x3x%x3 0.5s 19s| 3.0s 5.3s
3x3 x4 +1 09 s 458l 5.3s 114s
3x4x4 1.3s 12.2s|| 8.0s 26.0 s
3x4x5 1.8 s 23.5s| 99s 61.7 s
4x4x4 2.2s 31.5s12.5s 66.0 s

*Computed on an AMD Athlon 64 X2 Dual Core 4800+,
2.41 GHz, 4GB RAM and runs XP.

287

Chapter 9

Exact Methods

Let us start by considering the family A of quadratic pseudo—Boolean functions

n 5]
N = f:IB%”HRnGZJr,f(xl,"',xn):—n(n—l)in—Zaﬁi—l—Zn Z T o,
i=1 i=1

1<i<j<n

proposed by Pardalos [191].

Proposition 9.1 ([146, 191, 195]). A quadratic pseudo—Boolean function f € N having

a number n € Z1 of even variables satisfies the following properties:

(1)

v(f) = (xh.ffljf)e@nf(:”l"”’fﬂn)z_g

(ii) The unique global minimum x* of f in B" is x* = (1,---,1,0,---,0), having

exactly 5 ones followed by & zeros;

(iii) f has an exponential number of local minima. More precisely, every point with 4

ones is a local minimum of f, and therefore there are (n72) local minima.

In the case where n is odd, it is also known ([146, 193]) that there is a global
minimum x* = (