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ABSTRACT OF THE DISSERTATION

New algorithms for Quadratic Unconstrained Binary

Optimization (QUBO) with applications in engineering

and social sciences

by Gabriel Tavares

Dissertation Director:

DR. PETER L. HAMMER and DR. ENDRE BOROS

This dissertation investigates the Quadratic Unconstrained Binary Optimization (QUBO)

problem, i.e. the problem of minimizing a quadratic function in binary variables. QUBO

is studied at two complementary levels. First, there is an algorithmic aspect that tells

how to preprocess the problem, how to find heuristics, how to get improved bounds

and how to solve the problem with all the above ingredients. Second, there is a prac-

tical aspect that uses QUBO to solve various applications from the engineering and

social sciences fields including: via minimization, 2D/3D Ising models, 1D Ising chain

models, image binarization, hierarchical clustering, greedy graph coloring/partitioning,

MAX–2–SAT, MIN–VC, MAX–CLIQUE, MAX–CUT, graph stability and minimum

k–partition.

Several families of fast heuristics for QUBO are analyzed, which include a novel

probabilistic based class of methods.

It is shown that there is a unique maximal set of persistencies for the linearization

model for QUBO. This set is determined in polynomial time by a maximum flow followed

by the computation of the strong components of a network that has 2n+2 nodes, where

ii



n is the number of variables. The identification of the above persistencies leads to a

unique decomposition of the function, such that each component can be optimized

separately. To find further persistencies, two additional techniques are proposed: one

is based on the second order derivatives of Hammer et al. [121]; the other technique is

a probing procedure on the two possible values of the variables. These preprocessing

tools work remarkably well for certain classes of problems.

We improved the Iterated Roof–Dual bound (IRD) of [51] by proposing two com-

binatorial methods: one was named the squeezed IRD; and the second was called the

project–and–lift IRD method.

The cubic–dual bound can be found by means of linear programming by adding a

set of triangle inequalities to the standard linearization, whose number is cubic in the

number of variables. We show that this set can be reduced depending on the coefficients

of the terms of the function. This leads to the possibility of computing the cubic–duals

of larger QUBOs.
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Chapter 1

Introduction

Quadratic Unconstrained Binary Optimization (or QUBO in short) is a mathematical

programming problem, whose objective is to find the minimum (or the maximum) value

of a quadratic function with a finite number of binary variables.

Numerous hard combinatorial optimization problems arise naturally or can easily

be reformulated as QUBO problems, including VLSI design (e.g., [32, 52, 55, 76, 152,

161, 217]), statistical mechanics (e.g., [32, 223, 198]), reliability theory and statistics

(e.g., [190, 204, 205]), economics and finance (e.g., [132, 144, 166, 167, 175]), operations

research and management science (e.g., [103, 118, 201, 232, 234, e.g.,], manufacturing

(e.g., [15, 25, 26, 91, 162]), data mining (e.g., [231]), vision (e.g. [69, 70, 159, 160, 203]),

as well as numerous algorithmic problems of discrete mathematics (e.g., [101, 119, 131,

196, 200, 197, 222]).

This dissertation covers a wide range of problems related to QUBO, both from

theoretical and practical perspectives. The various chapters of this work were written

on a natural sequence in terms of how a person should study this problem.

The following three chapters introduce basic materials for the subsequent more elab-

orated topics related to QUBO. Chapter 2 presents various classic models that can be

solved by QUBO. Chapter 3 describes a long list of QUBO problems used for testing

the proposed algorithms. Chapter 4 introduces several definitions and basic concepts,

including: persistency, first and second order derivatives, the concept of locotope, the

implication graph, basic concepts about posiform minimization, rounding and deran-

domization, and best linear approximations to pseudo–Boolean functions.

The roof–duality approach of Hammer et al. [123] is an essential tool embedded

in many of the algorithms that we propose. Chapter 5 reviews the roof–duality, and
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presents new persistency results, by using linear algebra and network flows arguments.

Chapter 6 describes in detail how to find heuristic solutions to QUBO. The heuristic

approaches suggested are one–pass or local optimization procedures. An innovative

probabilistic approach based on continuous extensions of pseudo–Boolean functions is

proposed and related to a more traditional approach based on rounding or switching

steps.

Chapter 7 describes a preprocessing routine for QUBO. It involves various compo-

nents, namely roof–duality persistency, decomposition and probing. The results ob-

tained with this preprocessing method are impressive for several applications, resulting

in the complete solution of many cases, such as vertex cover minimization of sparse or

real world graphs, via minimization problems in VLSI or the 1–dimensional Ising chain

models.

Chapter 8 describes several innovative ways to improve the roof–dual bound and its

iterated version proposed by Boros and Hammer [51, 52]. The new approach is based

on network flows and combinatorics and leads to substantially improved bounds for

many benchmarks. Linear programming enhanced with certain specific families of cuts

is also a very promising way to improve bounds and get a closer characterization of the

integer polytope, which is especially fast for sparse QUBOs.

After having all the components (roof–duality, preprocessing, heuristics and bounds)

then the next natural step is to use all of them to attempt to prove optimality for

those more difficult QUBOs. Chapter 9 covers three exact approaches to solve QUBO

problems: the first one is based on enumerative approaches, the second is a branch–

and–bound solver based on the network flows model, and the third approach is based

on Mixed Integer Programming (MIP). We shall demonstrate that in practice each one

of the approaches has its own advantages compared to the others.

The final chapter covers three applications of QUBO in more detail. It starts by

looking at the minimum vertex cover problem, extends to it the persistency and de-

composition results for QUBO. A special preprocessing routine is proposed and tested

among various classes of graphs. The combination of these data reduction techniques

with those implemented for QUBO leads to a very efficient solver for many instances.
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The next application that is considered is how to do clustering using QUBO. Two ap-

proaches are considered: one is a hierarchical clustering algorithm based on the graph

balancing problem; the other applies to graphs only and is based on the greedy coloring

(or partitioning) of the graph.

The main contributions of this dissertation are the following:

• If there are variables with integral optimal values for the relaxation of the classical

linearization model for QUBO ([123]), then it is well known that there is an

optimal solution to QUBO where these variables have the same values. This

subset of variables with known optimal values are called persistencies. We will

show that there is a unique maximal set of persistencies for the linearization model

(see Chapter 5). This set can be determined in polynomial time by computing

a maximum flow followed by the computation of the strong components of a

capacitated network that has 2n nodes, where n is the number of variables of the

function. This procedure results in a O
(
n3
)

time algorithm to determine all the

persistencies for the linearization model.

• The identification of the above persistencies leads to a decomposition of the func-

tion (if any exists). This occurs in such a way that each component of the function

can be optimized separately from the others, since the variables of each component

do not participate in the other components (see Chapter 7).

• To find further persistencies, we propose two additional techniques: one is based

on the second order derivatives of Hammer et al. [121] and its generalization (we

called it coordination); the other one is a probing procedure on the two possible

values of the variables, which when used in combination with a Boolean consensus

algorithm, it is able to derive additional persistencies. These two preprocessing

tools run also in polynomial time, and in practice can work remarkably well

for certain classes of problems (e.g. minimum vertex cover of planar or power-

law graphs, via minimization, 1–dimensional Ising chains, problems derived from

vision) (see Chapter 7).
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• We propose several families of one–pass (polynomial time) heuristics for QUBO.

One family is based on probabilistic assumptions. The second group of heuristics

is based on rounding methods and the third approach is based on best linear

approximations. We also studied several families of local (search) optimization

heuristics. The results indicate that our methods perform better than those con-

sidered in the literature (see Chapter 6).

• Roof–duality gives a very well known bound to the minimum of a quadratic

pseudo–Boolean function. Boros and Hammer [51, 52] proposed an improved

bound that they called as the iterated roof–duality bound. We improved further

this bound by proposing two methods which are entirely combinatorial: one is

called the squeezed iterated roof–duality; and the other one is called the project–

and–lift iterated roof–duality method (see Chapter 8).

• Boros et al. [49] showed a hierarchy of bounds for QUBO. One end of the hier-

archy corresponds to the roof–dual, and the other end corresponds to the actual

optimum. If the roof–dual bound is not the optimum, then the next level of the

hierarchy corresponds to the cubic–dual. The cubic–dual can be found by means

of linear programming by adding to the standard linearization a set of triangle

inequalities, whose number is cubic in the number of variables. We will show that

this set can be reduced depending on the coefficients of the terms of the func-

tion. This leads to the possibility of computing a good approximation (or even

the exact value) to the cubic–duals of larger QUBOs. This will be particularly

advantageous for sparse QUBOs, i.e. problems which have a reduced number of

quadratic terms per variable), which are common in real applications (see Chapter

8).

• After the cubic–dual, the next bound level in the hierarchy of Boros et al. [49]

is characterized for the first time here, in terms of the generators description

required to represent the function in the space of the cone of positive quadratic

pseudo–Boolean functions (see Chapter 8).
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• We propose the use of three exact approaches for QUBO: the first is an enumer-

ative approach, the second is a branch–and–bound method based on roof–duality

and network flows, and the third method is based on 0–1 linear optimization (see

Chapter 9). For various applications we demonstrate that each approach has its

advantages and disadvantages depending on the type of problem that they are

trying to solve. We also compare the proposed methods to those state–of–the–art

solvers for QUBO. In certain cases, the proposed methods are able to solve prob-

lems in a few seconds that no other (known) solvers can solve in several hours

or more of computing time. The proposed methods could prove optimality for

some publicly available unsolved problems (to our best knowledge), and in some

cases they could find (substantially) better solutions than the meta-heuristics for

QUBO (using about the same or less computing time).

• Along this dissertation we will cover many applications derived from engineer-

ing and social sciences: via minimization, 2d and 3D Ising models, 1D Ising

chain models, image binarization, hierarchical clustering, greedy graph coloring,

greedy graph partitioning, weighted MAX–2–SAT, MIN–VC, MAX–CLIQUE,

MAX–CUT, weighted maximum stable set, minimum k–partition, etc. This wide

practical view in combination with the various tools proposed to solve QUBO

problems, will give a substantially better understanding about how to attack the

algorithmic solution approach to any given QUBO problem.

Some basic definitions are introduced in the following section. The last section

describes an example that is widely used in this dissertation to demonstrate the various

techniques proposed.

1.1 Definitions and notation

Let R denote the set of reals, Z the set of integers, and let B = {0, 1} and U = [0, 1].

Further, let n denote a positive integer, and let V = (1, · · · , n). For a subset S ⊆ V,
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denote by 1S ∈ Bn its characteristic vector, i.e.

1Sj =





1 if j ∈ S

0 otherwise.

Functions in n binary variables, denoted by x1, x2, · · · , xn, are considered, and

x = (x1, · · · , xn) is used to denote a binary vector or to denote a vector of these

variables.

The complements of the binary variables are denoted by xi
def
= 1− xi. A variable or

its complement is called a literal. Let L
def
= {x1, · · · , xn, x1, · · · , xn} denote the set of

literals.

In the sequel, the letters x, y and z are used to refer to variables, u, v and w are

used to refer to literals, and bold face letters x, y, p, etc., are used to denote vectors.

1.1.1 Pseudo–Boolean functions

Pseudo–Boolean functions are real valued mappings f : Bn 7→ R from the set of binary

n-vectors. It is well-known that such a mapping has a unique multi–linear polynomial

expression in terms of the variables x1, · · · , xn (see [129, 131]):

f (x1, · · · , xn) =
∑

S⊆V

cS
∏

j∈S

xj. (1.1)

By convention, its is assumed that
∏
j∈∅ xj = 1.

The size of the largest subset of variables S ⊆ V for which cS 6= 0 is called the

degree of f , and is denoted by deg(f). A pseudo–Boolean function f is called linear

(quadratic, cubic, quartic, etc.) if deg(f) 6 1 (2, 3, 4, etc.)

The family of pseudo–Boolean functions of degree at most k is denoted by Fk:

Fk
def
= {(f : Bn 7→ R) |deg (f) 6 k} .

The size of a pseudo–Boolean f function represented by (1.1) is the total number
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of variable occurences in it, i.e

size (f)
def
=

∑

S:S⊆V,cS 6=0

|S| .

Pseudo–Boolean functions represented as posiforms are also considered, i.e. poly-

nomial expressions in terms of all literals, having the form

φ (x) =
∑

T⊆L

aT
∏

u∈T

u, (1.2)

where aT > 0 whenever T 6= ∅. If {u, u} ⊆ T for some u ∈ L,then
∏
u∈T u is identically

zero over Bn and, therefore, it is customary to assume that aT = 0.

Similarly to the case of polynomial expressions, the size of the largest subset T ⊆ L

of literals for which aT 6= 0 is called the degree of the posiform φ, and is denoted by

deg (φ). The posiform φ is called linear (quadratic, cubic, quartic, etc.) if deg (φ) 6 1

(2, 3, 4, etc.)

The size of a posiform is the total number of occurrences in it, i.e.

size (φ)
def
=

∑

T⊆L:aT 6=0

|T | .

For the purpose of analyzing algorithms, the sum of the coefficients

A (φ)
def
=
∑

T 6=∅

aT .

will also be needed.

It is simple to note that a posiform (1.2) uniquely determines a pseudo–Boolean

function. However, the reverse is not true; a pseudo–Boolean function can have several

distinct posiforms representing it. Furthermore, while it is computationally easy to

generate a posiform expression from a polynomial expression (1.1), it might be com-

putationally difficult to generate the unique polynomial expression corresponding to a

given posiform. We denote the unique multilinear polynomial associated to the posiform

φ by fφ, and the set of all posiforms of degree at most k representing a pseudo–Boolean
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function f by Pk (f). We also denote the constant term a∅ of a posiform φ by C (φ).

Consider the pseudo–Boolean minimization problem

νS (f) = min
x∈S

f (x) , (1.3)

where f is a given pseudo–Boolean function and S ⊆ Bn.

The focus of this dissertation is in minimization problems. However, pseudo–

Boolean maximization problems are also considered:

τS (f) = max
x∈S

f (x) . (1.4)

If S = Bn, then the subscript S in νS (f) or τS (f) may be disregarded in the text.

Thus, ν (f) (or simply νf ) and τ (f) (or simply τf ), respectively denote the minimum

and maximum of the pseudo–Boolean function f .

Let ArgminS (f) denote the subset of points belonging to S, which are minimizing

solutions of problem (1.3). Similarly, let ArgmaxS (f) denote the subset of points

belonging to S, which are maximizing solutions of problem (1.4).

In the sequel, the letters f , g and h will usually denote pseudo–Boolean functions

as well as their unique multi-linear polynomial expressions, while the greek letters φ, β

and ψ will denote posiforms.

1.1.2 Quadratic pseudo–Boolean functions

A pseudo–Boolean function f is called quadratic if its unique multi-linear polynomial

is quadratic (i.e. deg (f) 6 2.) Specializing the notations given earlier, it is assumed

that the quadratic pseudo–Boolean functions are represented either by their (unique)

multi-linear quadratic polynomial expression

f (x1, · · · , xn) = c0 +

n∑

i=1

cixi +
∑

16i<j6n

cijxixj (1.5)
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or by a quadratic posiform

f (x1, · · · , xn) = a0 +
∑

u∈L

auu+
∑

u,v∈L

auvuv, (1.6)

where as before, L denotes the set of literals, au > 0 and auv > 0 for all u, v ∈ L.

It should be remarked that among the posiforms representing a quadratic pseudo–

Boolean function there may also exist some having degrees higher than two.

1.2 A generic illustrative example

During this dissertation, to illustrate certain concepts and algorithms for QUBO, we

shall use the quadratic function,

f6 (x1, x2, x3, x4, x5, x6)

= 2x1 + x2 − 2x3 − x4 + x5 − x6

−x1x2 + 2x1x3 − 2x1x4 + 2x1x5 − x1x6

+x2x3 − x2x4 − x2x5 + x2x6

+2x3x4 − 2x3x5 + x3x6

+2x4x5 − x4x6

+2x5x6

of six variables.

The minimum and maximum values of f6 in B6 are respectively ν (f6) = −4 and

τ (f6) = 5. The corresponding minima and maxima are

ArgminB6 (f) = {(1, 0, 0, 1, 0, 1) , (1, 1, 0, 1, 0, 1)}

and

ArgmaxB6 (f) = {(1, 0, 0, 0, 1, 0) , (1, 0, 0, 0, 1, 1) , (1, 1, 0, 0, 1, 1) , (1, 1, 1, 0, 1, 1)} .
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Chapter 2

Classic Combinatorial Optimization Models

The purpose of this chapter is to present a set of combinatorial optimization problems

and show how QUBO arises to solve many of them, either naturally or by reformulation.

Throughout this dissertation we will show additional families of problems that could

be solved by QUBO. This chapter describes the most common models that appear in

the literature.

2.1 Pseudo–Boolean optimization

Rosenberg [213] shown that the optimization of a pseudo–Boolean f with deg (f) > 3

can be reduced in polynomial time to the optimization of a quadratic pseudo–Boolean

function with additional variables. The basic idea consists in replacing a product xixj

appearing in a non–quadratic term of f , by a new binary variable yij.

Lemma 2.1. Let xi, xj , yij ∈ B. Then the following equivalences hold:

yij = xixj iff (a+ b+ c) yij − (a+ c) xiyij − (b+ c) xjyij + cxixj = 0,

and

yij 6= xixj iff (a+ b+ c) yij − (a+ c) xiyij − (b+ c) xjyij + cxixj > 0,

for any positive values a, b and c.

The above result can be used to transform a pseudo–Boolean optimization problem

into a QUBO. The transformation is polynomial time in size and time. The dimension

of the problem may increase substantially, but all the engineering tools available for

QUBO could be used to solve those general pseudo–Boolean optimization problems.

An interesting new approach, for the same purpose of the above idea, as been
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introduced by Buchheim and Rinaldi [72]. This method also requires the introduction of

additional variables or constraints, but compared to the previous method, this approach

produces smaller optimization problems, typically making it more tractable from a

practical point of view.

2.2 Graph theory

Let G = (V,E) be an undirected graph, with vertex set V and edge set E. The

complement G of G is the graph G =
(
V,
(V

2

)
\E
)
, i.e. the graph having the same vertex

set V and having as edge set the complement of the edge set E of G. Sometimes, we

associate to each edge of the graph a real weight we ∈ R, e ∈ E. We may also associate

to a vertex, a real weight cj ∈ R, j ∈ V .

2.2.1 Maximum clique

A clique of the graph G = (V,E) is a set of pairwise adjacent vertices. Naturally, a

maximum clique (or MAX–Clique in short) is a clique of maximum cardinality. The

size of a maximum clique is commonly called the clique number of G. We shall denote

it as θ (G).

A subset S ⊆ V is called independent (or stable), if no edge of G has both endpoints

in S. A maximum independent set is a largest cardinality independent set; the cardi-

nality of a maximum independent set will be denoted by α (G) and called the stability

number of G.

An independent set in a graph G is a clique in the complement graph G. Thus,

α (G) = θ
(
G
)
. Moreover, since the complement graph G has a polynomial size rep-

resentation of the input size of G, and since it can be obtained in a polynomial time

function of the size of G, then there is a strong equivalence between the maximum clique

and the maximum independent set problems. If a solution to one of the problems is

available, a solution to the other problem can be obtained immediately.

Theorem 2.1. The cardinality of a maximum independent set of G = (V,E) is equal
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to the optimum value of the QUBO

α (G) = max
x∈BV



∑

i∈V

xi −
∑

(i,j)∈E

(
1 + ε(i,j)

)
xixj


 , (2.1)

where ε(i,j) (> 0) are arbitrary nonnegative reals for all (i, j) ∈ E. Furthermore, if

x? = 1S is a maximizing binary vector of (2.1), then a maximum cardinality set S?

(⊆ S) of G can be obtained in O (|E|) time.

Proof. Let us associate to G the quadratic pseudo–Boolean function f (x1, · · · , xn) =
∑

i∈V xi−
∑

(i,j)∈E

(
1 + ε(i,j)

)
xixj . Let further f (x?1, · · · , x

?
n) be a maximum of f , and

let S? be the set of vertices j ∈ V for which x?j = 1. We will show next that the size

of a maximum independent set is f (x?1, · · · , x
?
n), and the set S? can be reduced to a

maximum independent set Ŝ ⊆ S∗ in O (|E|) time.

If S? is an independent set, it is clearly maximal, and since x?ix
?
j = 0 for every

(i, j) ∈ E, the problem is solved. Let us assume that S? is not a stable set, and let

h and k be two adjacent vertices with x?h = x?k = 1. Let us consider now the vector

(x??1 , · · · , x
??
n ) defined by

x??l =





x?l if l 6= k,

0 if l = k.

If N?
k is the neighborhood of k in the set V \ S?, then clearly

f (x??1 , · · · , x
??
n ) = f (x?1, · · · , x

?
n)− 1 +

∑

t∈N?
k

(
1 + ε(i,j)

)
x?t ,

and since h ∈ N?
k , the set N?

k is not empty, and therefore

f (x??1 , · · · , x
??
n ) > f (x?1, · · · , x

?
n) .

On the other hand, from the maximality of f in (x?1, · · · , x
?
n) it follows that

f (x??1 , · · · , x
??
n ) 6 f (x?1, · · · , x

?
n) .
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By repeating this transformation several times (at most |V \ S?| times), the set S? will

be eventually transformed to an independent set Ŝ of the graph G, which must have a

maximum size.

From the previous proof, it can be easily seen that when all coefficients εe, e ∈ E,

are restricted to be positive, then a set S associated to the characteristic vector of an

optimal solution of (2.1), is a maximum cardinality independent set of G.

2.2.2 Minimum vertex cover

The complement V \S of an independent set S of G is called a vertex cover of the graph.

Let us denote the size of the smallest vertex cover of G as τ (G) = |V | − α (G). Then

using (2.1) it can be shown that

τ (G) = min
x∈BV



∑

i∈V

xi +
∑

(i,j)∈E

(
1 + ε(i,j)

)
xixj


 . (2.2)

The knowledge of any one of the three numbers θ
(
G
)
, α (G) or τ (G) implies that

the other two values can be immediately determined. In general finding any of these

numbers is a NP–hard optimization problem ([104]). It is important to note that even

for planar graphs it is known that solving the minimum vertex cover problem is NP–

hard ([105]).

The concepts introduced above can be extended analogously to the weighted variants

of these problems. For instance, the weighted stability number of a graph G = (V,E)

with nonnegative costs cV , associated to the vertices of the graph, is equal to the

optimal solution of problem

max
x∈BV



∑

i∈V

cixi −
∑

(i,j)∈E

(
max (ci, cj) + ε(i,j)

)
xixj


 . (2.3)

In a similar way, the above formulations can also be extended to hypergraphs. For

instance, given a hypergraph H ⊆ 2V , a subset S ⊆ V is called a vertex cover of H

(known also as a hitting set) if S ∩H 6= ∅ for all hyperedges H ∈ H. If the size of the
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smallest such set is denoted by τ (H), then

τ (H) = min
x∈BV

(
∑

i∈V

xi +
∑

H∈H

(1 + εH)
∏

i∈H

xi

)
. (2.4)

This optimization problem can also be viewed as a pseudo–Boolean formulation of the

set covering problem over the transposed hypergraph. The formulation of the hitting

set problem requires optimization of non-quadratic pseudo–Boolean functions, but in

theory, as shown in subsection 2.1, a degree reduction technique can be used to get a

quadratic problem with the same optimal solution as the original problem with a higher

degree.

2.2.3 Maximum cut

A cut of the graph G = (V,E) is defined by a partition of the vertex set V into two

subsets S and S, and consists of the set of edges with exactly one endpoint in S and

another in S. We shall denote the cut defined by S as
(
S, S

)
.

The maximum cut (or MAX–CUT in short) problem is to find a cut
(
S, S

)
with the

largest cardinality. If x = 1S is the characteristic vector representing S, then it can be

shown that

max
S⊆V

∣∣(S, S
)∣∣ = max

x∈BV



∑

(i,j)∈E

(xixj + xixj)


 . (2.5)

The weighted MAX–CUT problem in a graph G = (V,E) with weights wE is to find

a cut
(
S, S

)
for which the sum of the weights of the corresponding edges is maximum.

If the total weight of a cut is denoted by W
(
S, S

)
, then the weighted maximum cut

can be found by solving the problem

max
S⊆V

W
(
S, S

)
= max

x∈BV



∑

(i,j)∈E

wij (xixj + xixj)


 . (2.6)

It should be remarked that any optimal solution x = (x?1, · · · , x
?
n) of problem (2.6)

has a complementary solution (x?1, · · · , x
?
n).
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2.3 Maximum satisfiability

The maximum satisfiability problem (or MAX–SAT in short) is a popular subject in

applied mathematics and computer science, and it has a natural pseudo–Boolean for-

mulation. The input of a MAX–SAT instance (usually called a formula) consists of

a family C of subsets C ⊆ L of literals, called clauses. A binary assignment x ∈ BV

satisfies a clause C, if at least one literal in C takes value 1 (true) for this assignment.

The maximum satisfiability problem consists in finding a binary assignment satisfying

the maximum number of clauses in C. It is easy to see that a clause C is satisfied by

x ∈ BV if and only if
∏
u∈C u = 0. Thus, MAX–SAT is equivalent to the problem

max
x∈BV

∑

C∈C

(
1−

∏

u∈C

u

)
.

In the weighted maximum satisfiability problem there is also a nonnegative weight

aC associated with each clause C ∈ C, and the objective is to maximize the total weight

of satisfied clauses:

max
x∈BV

∑

C∈C

aC

(
1−

∏

u∈C

u

)
.

If the clauses C have at most k literals, then the (weighted) MAX–SAT problem

is called the MAX–k–SAT problem. In particular, the weighted MAX–2–SAT problem

can be formulated as the optimization of a special quadratic negaform1:

τ (ψ) = max
x∈BV

ψ = max
x∈BV



∑

{u}∈C

a{u} (1− u) +
∑

{u,v}∈C

a{u,v} (1− u v)


 .

If the previous negaform is denote by ψ, then we consider the minimum of the

quadratic posiform φ = A (−ψ)− ψ, i.e.

τ (φ) = min
x∈BV

φ =
∑

{u}∈C

a{u}u+
∑

{u,v}∈C

a{u,v}u v. (2.7)

1In a similar way to a posiform, a negaform of a pseudo–Boolean function f (x1, · · · , xn) is defined
as a polynomial g (x1, x1, · · · , xn, xn), taking the same values as f in every binary n–vector, and having
the property that all its coefficients (with the possible exception of the free term) are non–positive.
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Since for any assignment of the formula C, τ (ψ) is the maximum number of true clauses

and ν (φ) is the minimum number of false clauses, then it is simple to notice that

τ (ψ) + ν (φ) = A (−ψ) = A (φ).
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Chapter 3

Test Beds

A solution method that works for a particular class of problems, may not work for

another. This is particularly important if the problem that has to be solved is a “hard”

optimization problem, whose optimal solution is difficult to be found or certified. There-

fore, it is important to have a set of benchmarks, which would provide a way to compare

the quality of solutions and the efficiency of the proposed algorithms.

A set of QUBO benchmarks is listed and described in this chapter. Each test

problem is described by enhancing its basic structural properties, and by showing its

origin, best known solution values, and generation parameters (when available).

Since we were dealing with the QUBO, it was natural to search for test problems,

previously studied by other researchers. Many of these publicly available problems have

heuristic solutions that are not known to be optimal. The best known solutions of the

“large” benchmarks were found using meta–heuristics. Every benchmark problem has

been investigated by several authors, and has been tested using different methods. The

high degree of sophistication put into these algorithms, gives a high degree of confidence

to the fact that these best known solutions are at least very close to the optimum.

Each benchmark with a known optimal solution was included in a particular set of

problems, which we called the optimal dataset for QUBO. The optimal dataset gives

to the researchers, a way of measuring with accuracy, the quality of solutions returned

by their proposed algorithms.

By providing information about this set and about the best known solutions, we

hope to motivate the scientific community to make contributions to enlarge the number

of benchmark problems which have provably optimal solutions, or simply to improve

the best known solutions of the problems.



18

Table 3.1: Statistics of the QUBO problems used for testing the proposed algorithms.
Numb. Numb. Variables (n) Density (d) ρ Diag. Dom. (p)

Class Family Probl. Opt. min avg ± stdev max min avg ± stdev max min avg ± stdev max min avg ± stdev max

20 6.1% 0.2% 0.0%

Benchmark 143 69 1 018.4± 1 461.7 38.0%± 34.9% 43.8%± 17.4% 2.5%± 4.8%
6 000 99.5% 58.0% 26.9%

25 18.0% 31.1% 0.9%

Small 240 225 62.5± 28.0 59.7%± 28.2% 62.0%± 16.6% 5.2%± 5.1%
100 100.0% 89.1% 29.2%

500 19.5% 2.0% 0.0%

Fixed Degree Medium 2 900 0 1 250.0± 559.1 59.5%± 28.1% 30.3%± 16.8% 0.2%± 0.2%
2 000 99.8% 59.3% 1.1%

500 24.6% 0.0% 0.0%

Large 480 60 2 250.0± 1 751.8 62.3%± 27.9% 23.5%± 20.5% 0.2%± 0.2%
5 000 100.0% 50.6% 0.8%

15 000 29.7% 0.0% 0.0%

Massive 108 0 22 500.0± 5 616.2 59.6%± 24.4% 24.9%± 20.5% 0.0%± 0.0%
30 000 89.6% 50.0% 0.0%

28 0.1% 0.1% 0.1%

Non-Weighted 130 114 776.1± 668.1 30.2%± 24.1% 3.8%± 6.8% 4.6%± 10.2%
MAX-Clique 4 000 96.4% 38.5% 62.5%

500 10.1% 0.3% 0.3%

Weighted 8 5 500.0± 0.0 45.0%± 24.5% 0.7%± 0.6% 0.7%± 0.6%
500 79.9% 2.0% 2.0%

1 000 0.0% 37.5% 135.1%

MIN-VC Planar Graphs 436 436 20 871.6± 79 337.3 0.2%± 0.1% 42.0%± 7.4% 155.4%± 20.7%
500 000 0.6% 82.0% 266.1%

250 0.1% 50.0% 100.0%

Non-Weighted 106 4 1 511.3± 1 577.8 1.7%± 1.7% 50.0%± 0.0% 100.0%± 0.0%
MAX-Cut 8 000 7.0% 50.0% 100.0%

125 0.0% 42.8% 11.0%

Weighted 269 33 1 243.4± 1 343.9 1.7%± 1.7% 50.7%± 3.1% 56.6%± 34.5%
10 000 6.3% 58.7% 125.2%

50 2.7% 46.6% 5.5%

Non-Weighted 177 97 177.4± 132.1 40.8%± 18.9% 49.9%± 0.6% 26.8%± 14.7%
MAX-2-SAT 400 70.9% 51.7% 61.7%

50 2.6% 47.9% 5.1%

Weighted 497 263 183.9± 133.4 42.7%± 17.9% 50.0%± 0.6% 26.6%± 14.0%
400 71.8% 53.1% 65.7%
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Several QUBO applications representative of different classes of problems were in-

troduced in Chapter 2. To test the algorithm’s “sensitivity”, it is desirable to have test

cases representing different classes of problems.

3.1 Benchmarks with prescribed density

The class of benchmarks with prescribed density consists of quadratic multilinear poly-

nomials, which are randomly generated with a predetermined expected density1 d, a

uniform distribution of values of the linear coefficients in an interval [c−, c+], and a

uniform distribution of values of the quadratic coefficients in an interval [q−, q+]. The

constant term of the function is zero. Since a quadratic term’s probability to have a

nonzero coefficient is d, the expected number of quadratic terms which include a specific

variable and have a nonzero coefficient is (n− 1) d.

When reporting computational results about QUBO, the standard practice followed

by many authors was to generate random instances with prescribed density. An incove-

nience of this approach was that the information was insufficient to allow the replication

of test problems by other researchers. In order to overcome these difficulties, Pardalos

and Rodgers (P&R) [195] have introduced a test problem generator for QUBO. In their

notation, the QUBO is formulated as max
{
xTQx : x ∈ Bn

}
where qji = qij = cij/2,

i 6= j, 1 6 i < j 6 n and qii = ci, 1 6 i 6 n. The “standard” parameters in this

approach include: n, d, c−, c+, q−, q+, and a seed to initialize a random number gener-

ator. The P&R routine generates symmetric integer matrices Q, such that the expected

density is d, the distribution of the coefficients qii (1 6 i 6 n) is discrete uniform in

[c−, c+], and the distribution of the nonzero coefficients qij = qji (1 6 i < j 6 n) is

discrete uniform in [q−, q+].

Before presenting the list of problems considered in this section, we introduce some

parameters, which are strongly related to the quality of solutions returned by the tra-

ditional algorithms proposed to solve QUBO problems.

1The density d of a quadratic pseudo–Boolean function represented by the polynomial expression
(1.5) is defined as the number of nonzero coefficients cij (1 6 i < j 6 n) divided by

�
n

2�.
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Let

P
def
= C+ +Q+ where C+ def

=
∑
j∈V
cj>0

cj and Q+ def
=

∑
16i<j6n
cij>0

cij,

N
def
= C− +Q− where C−

def
=
∑
j∈V
cj<0

cj and Q−
def
=

∑
16i<j6n
cij>0

cij,

i.e. P (respectively, N) is the sum of the positive (respectively, negative) coefficients of

the quadratic pseudo–Boolean function f given as (1.5)

Let ρ be proportion of the sum positive coefficients in the total weight associated

to the set of coefficients of f , i.e.

ρ
def
= P

P−N . (3.1)

f is said to have p diagonal dominance if

p
def
=
C+ − C−

Q+ −Q−
,

or equivalently

p =
c

q (n− 1)
,

where c is the average of the absolute values of linear coefficients, and q is the average

of the absolute values of the quadratic coefficients.

Since problems become easier with growing diagonal dominance p ([33, 44, 80]), this

parameter has been used to characterize the complexity of finding an optimal solution to

a given QUBO. It is interesting to notice that another parameter (ρ) is highly relevant

in the study of heuristics for the solution of QUBO. The relationship of the quality of

solutions given by several heuristics on the parameter ρ will be discussed on Chapter 6.

Using the above definitions, it is not difficult to prove that the following results hold

for all problems generated with P&R.

Lemma 3.1. If a QUBO is randomly generated with n variables, expected density d,
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diagonal coefficients with discrete uniform distribution in [c−, c+], c− ∈ Z, c+ ∈ Z,

off-diagonal coefficients with discrete uniform distribution in [q−, q+], q− ∈ Z, q+ ∈ Z,

all coefficients mutually independent, then

E [c] =





c−+c+

2 , c− ∈ Z+

− c−+c+

2 , c+ ∈ Z−

c+(c++1)+c−(c−−1)
2(c+−c−+1)

, c− ∈ Z−0 , c+ ∈ Z+
0

E [q] =





q−+q+

2 d, q− ∈ Z+

− q−+q+

2 d, q+ ∈ Z−

q+(q++1)+q−(q−−1)
2(q+−q−+1) d, q− ∈ Z−0 , q+ ∈ Z+

0

E [p] =
E [c]

E [q] (n− 1)
.

Lemma 3.2. If a QUBO is randomly generated with: n variables, expected density d,

diagonal coefficients with discrete uniform distribution in [c−, c+], c− ∈ Z−0 , c+ ∈ Z+
0 ,

off-diagonal coefficients with discrete uniform distribution in [q−, q+], q− ∈ Z−0 , q+ ∈

Z+
0 , all coefficients mutually independent, then

i)

E [ρ] =

c+(c++1)
2(c+−c−+1)

+
q+(q++1)

2(q+−q−+1)
(n− 1) d

E [c] + E [q] (n− 1)
;

ii) and as nd→∞,

ρ→ ρ ≡
1

1 + q−(q−−1)
q+(q++1)

. (3.2)

In the following subsections, 143 publicly available benchmark datasets are de-

scribed, as well as the 4 900 randomly generated test problems used in evaluating the

efficiency of the different variants of the proposed algorithms.

3.1.1 Benchmark families

In the past literature about QUBO, 143 test problems (see Table 3.2) were frequently

used (see e.g., [18, 37, 107, 108, 177, 178, 189]) for testing QUBO algorithms.

The basic generation parameters of the sub–families containing these problems can
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be seen in Table 3.2, while the individual characteristics of the problems appear in

Tables A.1 to A.5 of the Appendix.

Table 3.2: QUBO benchmarks with prescribed density.
Variables Number Density Linear Coef. Quadr. Coef.

Family Sub-Family (n) Problems (d %) (c−) (c+) (q−) (q+) ρ

GKA A 30 to 100 8 6.5 to 50 −100 100 −100 100 0.5
B 20 to 125 10 100 0 63 −100 0 0
C 40 to 100 7 10 to 80 −50 50 −100 100 0.5
D 100 10 6.5 to 50 −50 50 −75 75 0.5
E 200 5 10 to 50 −50 50 −100 100 0.5

F F1 500 5 10 to 100 −75 75 −50 50 0.5
F2 500 5 10 to 100 0 100 −50 0 0

G G1 1 000 10 10 to 100 −75 75 −50 50 0.5
G2 1 000 5 10 to 100 0 100 −50 0 0

Beasley B–50 50 10 10 −100 100 −100 100 0.5
B–100 100 10 10 −100 100 −100 100 0.5
B–250 250 10 10 −100 100 −100 100 0.5
B–500 500 10 10 −100 100 −100 100 0.5
B–1000 1 000 10 10 −100 100 −100 100 0.5
B–2500 2 500 10 10 −100 100 −100 100 0.5

Palubeckis P–3000 3 000 5 50 to 100 −100 100 −100 100 0.5
P–4000 4 000 5 50 to 100 −100 100 −100 100 0.5
P–5000 5 000 5 50 to 100 −100 100 −100 100 0.5
P–6000 6 000 3 50 to 100 −100 100 −100 100 0.5

The test problems in the families A, B, D, E and F1, were proposed by Glover et al.

[108]. They were generated using the P&R routine ([195]), with the basic parameters

shown in Table 3.2. The corresponding best known solutions, and the information on

which solutions are known to be optimal, can be seen in Table A.2 of the Appendix.

The group of problem in the B family define submodular quadratic pseudo–Boolean

functions, 100% dense problems with the number of variables ranging from 20 to 125.

The seven small sized datasets in group C were proposed by Pardalos and Rodgers

[195], as being the most “challenging” problems that they could solve optimally with

their enumerative procedure. Later, these problems were adopted by Glover et al. [108]

and Beasley [37].

The 10 problems of the group G1 were proposed by Glover et al. [109]. The P&R

routine was used to generate these problems, which have 1 000 variables, and various

densities ranging from 10% to 100%. The details of the G1 problems can be seen in

Table A.3 of the Appendix. Later, these test problems were used as benchmarks in
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several studies of QUBO ([18, 177, 178]).

The datasets in the groups F2 and G2 were proposed by Kochenberger et al. [158].

They define submodular quadratic pseudo–Boolean functions, respectively having 500

and 1000 variables, and densities varying from 10% to 100%. The general characteristics

of these problems can be seen in Table A.4. These problems were downloaded from the

Hearin Center for Enterprise Science website [2].

For the benefit of those who may want to replicate the experiments, we would like to

make the following remarks. Some of the recently published papers ([37, 107, 108, 178])

report on heuristic solutions for the maximization problem. However, it should be

kept in mind that the GKAc datasets were proposed initially by Pardalos and Rodgers

[195] as minimization problems. Subsequently, these problems were changed by Glover

et al. [108] to the maximization of the negatives of the functions minimized in [195].

Similarly, the GKAa,b,d,e and F1 datasets were created by using the generator of [195],

and modified afterwards to maximization problems, as explained above. Since then,

the literature (e.g., [37, 107, 178]) reporting on these datasets, as well as the present

study, followed the format of the Glover et al. [108] problems.

The Beasley family of test problems for QUBO consists of a set of 60 randomly

generated test problems, where the number of variables n varies from 50 to 2 500; 10

problems for each value of n. They were proposed by Beasley [37], and since then

several other studies of QUBO (e.g., [18, 107, 178]) have reported heuristic values on

the maximum value of the corresponding quadratic pseudo–Boolean functions. The

basic parameters of the Beasley problems can be seen in Table 3.2, and the information

on best known values is listed in Table A.1 of the Appendix. The Beasley datasets were

downloaded from the OR-Library website [38] (see also [36, 25])

All the Beasley test problems are reported to be 10% dense, but the definition of

expected density in this family (given there as the probability that the coefficient of

a linear or quadratic term is nonzero) differs from the definition used in this study,

making these problems somewhat more difficult.

More recently, Palubeckis [187, 189] introduced 18 new test problems generated
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from a similar routine to the one provided by P&R. They use the same random number

generator, but they differ in the way how the seeds provided to the random number

generator, are handled. In the P&R case, two seeds are used, one for decisions on

density and the other to generate the function’s coefficients. In the Palubeckis case

only one seed is used for both cases.

The generation parameters of the Palubeckis problems can be seen in Table 3.2, and

the information on best known values is listed in Table A.5 of the Appendix. The sizes

of these problems vary from 3 000 to 6 000 in the number of variables, and from 50% to

100% in density.

Let us remark the following facts on the benchmark problems for QUBO:

• Only 69 out of the 143 problems in the benchmark families have a solution which

is provably optimal;

• All the best known solutions (including optimal ones) refer to the maximum values

of the corresponding functions;

• Except for the submodular sub-families B, F2 and G2 (with ρ = 0.0), all the other

sub-families have a ρ value of 0.5. This fact implies that the expected sum of all

coefficients of the functions in these particular datasets is zero.

3.1.2 Randomly generated test problems

In order to increase the number of test problems with prescribed fixed density, 3 728

additional datasets were created by using the P&R generator. Four groups of problems

are considered:

• Small (see Table 3.3) – This family contains 240 QUBO minimization problems,

whose number of variables ranges from 25 to 100 (in steps of 25). The expected

densities vary from 20% to 100% (in steps of 20%), and the expected values of ρ

vary from 0.40 to 0.85 (in steps of 0.15). There are three instances (k = 1, 2, 3)

for each set of parameters. The starting seed for the random number generator

is the value of the expression k+ 210×
⌊
100d

⌋
+ 217n. An optimal solution to the
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minimum of the associated quadratic pseudo–Boolean function is known for 213

“small” datasets, whose values can be seen in Table A.6 of the Appendix.

Table 3.3: Characteristics of QUBO problems in the Small family.
Variables Number Density Linear Coef. Quadr. Coef.

Sub-Family (n) Problems (d %) (c−) (c+) (q−) (q+) ρ

S-25-0.40 25 15 20 to 100 −50 50 −61 50 0.40
S-50-0.40 50 15 20 to 100 −50 50 −61 50 0.40
S-75-0.40 75 15 20 to 100 −50 50 −61 50 0.40
S-100-0.40 100 15 20 to 100 −50 50 −61 50 0.40
S-25-0.55 25 15 20 to 100 −50 50 −45 50 0.55
S-50-0.55 50 15 20 to 100 −50 50 −45 50 0.55
S-75-0.55 75 15 20 to 100 −50 50 −45 50 0.55
S-100-0.55 100 15 20 to 100 −50 50 −45 50 0.55
S-25-0.70 25 15 20 to 100 −50 50 −32 50 0.70
S-50-0.70 50 15 20 to 100 −50 50 −32 50 0.70
S-75-0.70 75 15 20 to 100 −50 50 −32 50 0.70
S-100-0.70 100 15 20 to 100 −50 50 −32 50 0.70
S-25-0.85 25 15 20 to 100 −50 50 −20 50 0.85
S-50-0.85 50 15 20 to 100 −50 50 −20 50 0.85
S-75-0.85 75 15 20 to 100 −50 50 −20 50 0.85
S-100-0.85 100 15 20 to 100 −50 50 −20 50 0.85

• Medium (see Table 3.4) – This family of QUBO maximization problems was intro-

duced in Boros et al. [62]. The number of variables in these problems ranges from

500 to 2 000 (in steps of 500). Expected density values range from 20% to 100%

(in steps of 20%). The lower and upper bounds of the coefficients of linear terms

were fixed to −50 and +50 respectively. The upper bound q+ of the coefficients of

quadratic terms was fixed to +50, while the lower bound q− of these coefficients

was left to be determined for each dataset by the values of the parameter ρ. In

fact, a continuous uniform distribution was assumed, and therefore the expression

(3.2) of Lemma 3.2 becomes

ρ ≡
1

1 +
(
q−

q+

)2 ,

and thus

q− = −

⌊
50

√
1− ρ

ρ

⌋

was used to determine the value of q−. The values of ρ range from 0.02 to 0.58
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in steps of 0.02. We have generated a total of 2 900 problems representing five

instances (k = 1, · · · , 5) for each combination of the four values of the parameter

n, five values of the parameter d and 29 values of the parameter ρ. The starting

seed for the random number generator is the value of the expression
⌊

49
20n
⌋

+
⌊
1225d

⌋
+ b250ρc+ k − 1475.

Table 3.4: Characteristics of QUBO problems in the Medium family.
Variables Number Density Linear Coef. Quadr. Coef.

Sub-Family (n) Problems (d %) (c−) (c+) (q−) (q+) ρ

M-0.02 500 to 2 000 100 20 to 100 −50 50 −350 50 0.02
M-0.04 500 to 2 000 100 20 to 100 −50 50 −244 50 0.04
M-0.06 500 to 2 000 100 20 to 100 −50 50 −197 50 0.06
M-0.08 500 to 2 000 100 20 to 100 −50 50 −169 50 0.08
M-0.10 500 to 2 000 100 20 to 100 −50 50 −150 50 0.10
M-0.12 500 to 2 000 100 20 to 100 −50 50 −135 50 0.12
M-0.14 500 to 2 000 100 20 to 100 −50 50 −123 50 0.14
M-0.16 500 to 2 000 100 20 to 100 −50 50 −114 50 0.16
M-0.18 500 to 2 000 100 20 to 100 −50 50 −106 50 0.18
M-0.20 500 to 2 000 100 20 to 100 −50 50 −100 50 0.20
M-0.22 500 to 2 000 100 20 to 100 −50 50 −94 50 0.22
M-0.24 500 to 2 000 100 20 to 100 −50 50 −88 50 0.24
M-0.26 500 to 2 000 100 20 to 100 −50 50 −84 50 0.26
M-0.28 500 to 2 000 100 20 to 100 −50 50 −80 50 0.28
M-0.30 500 to 2 000 100 20 to 100 −50 50 −76 50 0.30
M-0.32 500 to 2 000 100 20 to 100 −50 50 −72 50 0.32
M-0.34 500 to 2 000 100 20 to 100 −50 50 −69 50 0.34
M-0.36 500 to 2 000 100 20 to 100 −50 50 −66 50 0.36
M-0.38 500 to 2 000 100 20 to 100 −50 50 −63 50 0.38
M-0.40 500 to 2 000 100 20 to 100 −50 50 −61 50 0.40
M-0.42 500 to 2 000 100 20 to 100 −50 50 −58 50 0.42
M-0.44 500 to 2 000 100 20 to 100 −50 50 −56 50 0.44
M-0.46 500 to 2 000 100 20 to 100 −50 50 −54 50 0.46
M-0.48 500 to 2 000 100 20 to 100 −50 50 −52 50 0.48
M-0.50 500 to 2 000 100 20 to 100 −50 50 −50 50 0.50
M-0.52 500 to 2 000 100 20 to 100 −50 50 −48 50 0.52
M-0.54 500 to 2 000 100 20 to 100 −50 50 −46 50 0.54
M-0.56 500 to 2 000 100 20 to 100 −50 50 −44 50 0.56
M-0.58 500 to 2 000 100 20 to 100 −50 50 −42 50 0.58

• Large (see Table 3.5) – This family of 480 QUBO maximization problems was

also introduced in Boros et al. [62]. The number of variables in these problems

ranges from 500 to 5 000. Expected density values range from 25% to 100% (in

steps of 25%). The lower and upper bounds of the coefficients of the terms are

described in Table 3.5. This choice of bounds produces three types of problems:
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160 submodular problems with ρ = 0.0; 160 problems with ρ = 0.2; and 160

problems with ρ = 0.5. Ten instances (k = 1, · · · , 10) for each combination of the

four values of the parameter n, four values of the parameter d and three values of

the parameter ρ. The starting seed for the random number generator is the value

of the expression

⌊n
5

⌋
+
⌊
40d
⌋

+ k − 110 +





4 000, ρ = 0.0

3 000, ρ = 0.2

0, ρ = 0.5

.

The best known values of the problems in this particular group are given in Table

A.7 of the Appendix.

Table 3.5: Characteristics of QUBO problems in the Large family.
Variables Number Density Linear Coef. Quadr. Coef.

Sub-Family (n) Problems (d %) (c−) (c+) (q−) (q+) ρ

L-500-0.00 500 40 25 to 100 1 100 −100 −1 0.00
L-1000-0.00 1 000 40 25 to 100 1 100 −100 −1 0.00
L-2500-0.00 2 500 40 25 to 100 1 100 −100 −1 0.00
L-5000-0.00 5 000 40 25 to 100 1 100 −100 −1 0.00
L-500-0.20 500 40 25 to 100 −50 100 −100 50 0.20
L-1000-0.20 1 000 40 25 to 100 −50 100 −100 50 0.20
L-2500-0.20 2 500 40 25 to 100 −50 100 −100 50 0.20
L-5000-0.20 5 000 40 25 to 100 −50 100 −100 50 0.20
L-500-0.50 500 40 25 to 100 −100 100 −100 100 0.50
L-1000-0.50 1 000 40 25 to 100 −100 100 −100 100 0.50
L-2500-0.50 2 500 40 25 to 100 −100 100 −100 100 0.50
L-5000-0.50 5 000 40 25 to 100 −100 100 −100 100 0.50

• Massive (see Table 3.6) – This family contains 108 QUBO maximization problems

with the number of variables ranging from 15 000 to 30 000 (in steps of 5 000),

expected densities varying from 30% to 90% (in steps of 30%), expected values

0.0, 0.25 and 0.5, for the ρ parameter, and three instances (k = 1, 2, 3) for each set

of parameters. The starting seed for the random number generator is the value

of the expression k + 23q+ + 210
⌊
100d

⌋
+ 217 bn/10c.
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Table 3.6: Characteristics of QUBO problems in the Massive family.
Variables Number Density Linear Coef. Quadr. Coef.

Sub-Family (n) Problems (d %) (c−) (c+) (q−) (q+) ρ

H-15000-0.00 15 000 9 30 to 90 1 50 −100 0 0.00
H-20000-0.00 20 000 9 30 to 90 1 50 −100 0 0.00
H-25000-0.00 25 000 9 30 to 90 1 50 −100 0 0.00
H-30000-0.00 30 000 9 30 to 90 1 50 −100 0 0.00
H-15000-0.25 15 000 9 30 to 90 1 50 −100 57 0.25
H-20000-0.25 20 000 9 30 to 90 1 50 −100 57 0.25
H-25000-0.25 25 000 9 30 to 90 1 50 −100 57 0.25
H-30000-0.25 30 000 9 30 to 90 1 50 −100 57 0.25
H-15000-0.50 15 000 9 30 to 90 1 50 −100 100 0.50
H-20000-0.50 20 000 9 30 to 90 1 50 −100 100 0.50
H-25000-0.50 25 000 9 30 to 90 1 50 −100 100 0.50
H-30000-0.50 30 000 9 30 to 90 1 50 −100 100 0.50

3.2 Graphs for maximum clique

A set of 138 benchmark graphs related to the maximum clique problem, introduced

earlier in Section 2.2.1, is described in this section.

In order to facilitate comparisons among different methods related to clique prob-

lems, a set of benchmark graphs arising from different fields of application has been

constructed in conjunction with the 1993 DIMACS challenge on maximum cliques, col-

oring and satisfiability [151]. These data are publicly available at a DIMACS FTP site2,

along with other useful information.

Tables 3.7 and 3.8 describe the list of 85 DIMACS graphs, including the size of the

largest clique found for each instance. The largest clique is known to be maximum in

most graphs. The information on the largest and optimal cliques was taken mostly

from the DIMACS FTP site described above. Other sources used were [75, 186].

The DIMACS graphs are categorized in 11 subfamilies:

• The Brockington graphs ([71]) are constructed to deliberately “hide” the optimal

clique in relatively unattractive regions of the solutions space. This property

makes this class of problems difficult to be solved by algorithms that use local

information (e.g., vertex degree), which is generally used to guide the search

2DIMACS. (10/29/2004). The Second DIMACS Implementation Challenge: 1992-1993.
ftp://dimacs.rutgers.edu/pub/challenge/.
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Table 3.7: DIMACS graphs for the maximum clique problem (Part I).
Problem Vertices Edges Density Maximum

Sub-Family Name (|V |) (|E|) (d %) ρ % p % Clique

Brockington brock200 1 200 14 834 25.46 3.80 3.95 21
brock200 2 200 9 876 50.37 1.96 2.00 12
brock200 3 200 12 048 39.46 2.48 2.55 15
brock200 4 200 13 089 34.23 2.85 2.94 17
brock400 1 400 59 723 25.16 1.95 1.99 27
brock400 2 400 59 786 25.08 1.96 2.00 29
brock400 3 400 59 681 25.21 1.95 1.99 31
brock400 4 400 59765 25.11 1.96 2.00 33
brock800 1 800 207 505 35.07 0.71 0.71 23
brock800 2 800 208 166 34.87 0.71 0.72 24
brock800 3 800 207 333 35.13 0.71 0.71 25
brock800 4 800 207 643 35.03 0.71 0.71 26

C–FAT c–fat200–1 200 1 534 92.29 1.08 1.09 12
c–fat200–2 200 3 235 83.74 1.19 1.20 24
c–fat200–5 200 8 473 57.42 1.72 1.75 58
c–fat500–1 500 4 459 96.43 0.41 0.42 14
c–fat500–2 500 9 139 92.67 0.43 0.43 26
c–fat500–5 500 23 191 81.41 0.49 0.49 64
c–fat500–10 500 46 627 62.62 0.64 0.64 126

C C125.9 125 6 963 10.15 13.71 15.88 34
C250.9 250 27 984 10.09 7.37 7.96 44
C500.9 500 112 332 9.95 3.87 4.03 >57
C1000.9 1 000 450 079 9.89 1.98 2.02 >68
C2000.9 2 000 1 799 532 9.98 0.99 1.00 >78
C2000.5 2 000 999 836 49.98 0.20 0.20 >16
C4000.5 4 000 4 000 268 49.98 0.10 0.10 >18

DSJC DSJC500.5 500 125 248 49.80 0.80 0.80 14
DSJC1000.5 1000 499 652 49.98 0.40 0.40 15

Hamming hamming6-2 64 1 824 9.52 25.00 33.33 32
hamming6-4 64 704 65.08 4.65 4.88 4
hamming8-2 256 31 616 3.14 20.00 25.00 128
hamming8-4 256 20 864 36.08 2.13 2.17 16
hamming10-2 1 024 518 656 0.98 16.67 20.00 512
hamming10-4 1 024 434 176 17.11 1.13 1.14 >40

Johnson johnson8-2-4 28 210 44.44 14.29 16.67 4
johnson8-4-4 70 1 855 23.19 11.11 12.50 14
johnson16-2-4 120 5 460 23.53 6.67 7.14 8
johnson32-2-4 496 107 880 12.12 3.23 3.33 16

Keller keller4 171 9 435 35.09 3.24 3.35 11
keller5 776 225 990 24.85 1.03 1.04 27
keller6 3 361 4 619 898 18.18 0.33 0.33 >59



30

Table 3.8: DIMACS graphs for the maximum clique problem (Part II).
Problem Vertices Edges Density Maximum

Sub-Family Name (|V |) (|E|) (d %) ρ % p % Clique

Mannino MANN a9 45 918 7.27 38.46 62.50 16
MANN a27 378 70 551 0.99 35.00 53.85 126
MANN a45 1 035 533 115 0.37 34.33 52.27 345
MANN a81 3 321 5 506 380 0.12 33.88 51.25 >1100

P–HAT p hat300-1 300 10 933 75.62 0.88 0.88 8
p hat300-2 300 21 928 51.11 1.29 1.31 25
p hat300-3 300 33 390 25.55 2.55 2.62 36
p hat500-1 500 31 569 74.69 0.53 0.54 9
p hat500-2 500 62 946 49.54 0.80 0.81 36
p hat500-3 500 93 800 24.81 1.59 1.62 >50
p hat700-1 700 60 999 75.07 0.38 0.38 11
p hat700-2 700 121 728 50.24 0.57 0.57 44
p hat700-3 700 183 010 25.20 1.12 1.14 >62
p hat1000-1 1 000 122 253 75.52 0.26 0.27 10
p hat1000-2 1 000 244 799 50.99 0.39 0.39 >46
p hat1000-3 1 000 371 746 25.58 0.78 0.78 >68
p hat1500-1 1 500 284 923 74.66 0.18 0.18 12
p hat1500-2 1 500 568 960 49.39 0.27 0.27 >65
p hat1500-3 1 500 847 244 24.64 0.54 0.54 >94

R.5 r100.5 100 5 016 49.33 3.93 4.10 9
r200.5 200 20 072 49.57 1.99 2.03 11
r300.5 300 44 722 50.14 1.32 1.33 12
r400.5 400 80 122 49.80 1.00 1.01 13
r500.5 500 124 322 50.17 0.79 0.80 13

Sanchis san200 0.7 1 200 13930 30.00 3.24 3.35 30
san200 0.7 2 200 13930 30.00 3.24 3.35 18
san200 0.9 1 200 17 910 10.00 9.13 10.05 70
san200 0.9 2 200 17 910 10.00 9.13 10.05 60
san200 0.9 3 200 17 910 10.00 9.13 10.05 44
san400 0.5 1 400 39 900 50.00 0.99 1.00 13
san400 0.7 1 400 55 860 30.00 1.64 1.67 40
san400 0.7 2 400 55 860 30.00 1.64 1.67 30
san400 0.7 3 400 55 860 30.00 1.64 1.67 22
san400 0.9 1 400 71 820 10.00 4.77 5.01 100
san1000 1000 250 500 49.85 0.40 0.40 15
sanr200 0.7 200 13 868 30.31 3.21 3.32 18
sanr200 0.9 200 17 863 10.24 8.94 9.82 42
sanr400 0.5 400 39 984 49.89 0.99 1.00 13
sanr400 0.7 400 55 869 29.99 1.64 1.67 >21
gen200 p0.9 44 200 17 910 10.00 9.13 10.05 44
gen200 p0.9 55 200 17 910 10.00 9.13 10.05 55
gen400 p0.9 55 400 71 820 10.00 4.77 5.01 55
gen400 p0.9 65 400 71 820 10.00 4.77 5.01 65
gen400 p0.9 75 400 71 820 10.00 4.77 5.01 75
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through the solution space.

• A major step in the algorithm of the fault diagnosis problem proposed by Berman

and Pelc [40] is to find the maximum clique of a special class of graphs, called c–

fat rings. In order to define a c–fat graph G = (V,E), let us consider an arbitrary

finite set of vertices V . Let c be a real parameter, k =
⌊
|V |

c log|V |

⌋
, and let us consider

a partition W0, · · · ,Wk−1 of V , such that c log |V | 6 |Wi| 6 dc log |V |e+ 1 for all

i = 0, · · · , k − 1. The edge set E is defined as the set of those edges (u, v) which

link distinct pairs of vertices u ∈Wi and v ∈Wj , such that |i− j| ∈ {0, 1, k − 1}.

The DIMACS c–fat rings were created by Panos Pardalos using the c–fat rings

generator of Hasselberg, Pardalos and Vairaktarakis [136].

• The C graphs Gn,p were randomly generated by Michael Trick using ggen, a

program by Craig Morgenstern. The parameters used to create these graphs are

the number of vertices n, and the probability p of an edge to exist between any

two vertices.

• The DSJC graphs were randomly generated by Johnson et al. [150], all having

an expected density of 50%.

• The Hamming graphs arise from coding theory problems ([224]). The Hamming

distance between the binary vectors u = (u1, · · · , un) and v = (v1, · · · , vn) is the

number of indices i = 1, · · · , n where ui 6= vi. The Hamming graph H (n, h) of

size n and distance h is the graph whose vertex set is the set of all binary n–

vectors, and whose edges link any two n-vectors at distance h or larger. Clearly,

the graph H (n, h) has 2n vertices, 2n−1
∑n

i=h

(
n
i

)
edges, and the degree of each

vertex is
∑n

i=h

(n
i

)
. A binary code consisting of a set of binary vectors, any two

of which have Hamming distance greater or equal to h, can correct bh−1
2 c errors.

Thus, a coding theorist (see [174]) would like to find the maximum number of

binary vectors of size n with Hamming distance h, i.e. the maximum clique of

H (n, h). The DIMACS Hamming graphs were created by Panos Pardalos (for

details see [136]).
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• The Johnson graphs also arise from coding theory problems. The Johnson graph

Jpcn,w, h, with parameters n, w and h, is the graph with vertex set of binary vec-

tors of size n and weight w, where two vertices are adjacent if their Hamming dis-

tance is at least h. The graph J (n,w, h) has
(n
w

)
vertices, 1

2

(n
w

)∑w
k=dh

2
e

(w
k

)(n−w
k

)

edges and the degree of each vertex is
∑w

k=dh
2
e

(
w
k

)(
n−w
k

)
([136]). A binary code

consisting of vectors of size n, weight w and distance h, can correct w− h
2 errors.

In this case, a coding theorist ([174]) would like to find a weighted binary code,

defined by the maximum number of binary vectors of size n that have precisely

w indices with value 1, and for which the Hamming distance of any two of these

vectors is h. This number is precisely the maximum clique of J (n,w, h). The

DIMACS Hamming graphs were created by Panos Pardalos (for details see [136]).

• The Keller graphs are graphs for which a maximum clique can be used to prove

or disprove the Keller’s conjecture on tilings hypercubes (see [164, 136] for more

details). The Keller graph Γk is a graph with vertex set

Vk = {(d1, · · · , dk) : di ∈ {0, 1, 2, 3} , i = 1, · · · , k}

where two vertices u = (du1 , · · · , d
u
k) and v = (dv1, · · · , d

v
k) in Vk are adjacent if and

only if

∃i, i = 1, · · · , k : dui − d
v
i ≡ 2 mod 4

and

∃j 6= i, j = 1, · · · , k : duj 6= dvj .

Corrádi and Szabó [88] show that there is a counterexample to Keller’s conjecture

if and only if there is a positive integer k, such that Γk has a clique of size 2k.

Γk has 4k vertices, 1
24k

(
4k − 3k − k

)
edges and the degree of each node is 4k −

3k − k. Γk is very dense, and it has at least 8kk! different cliques.

• The Mannino graphs are a consequence of a clique formulation of the Steiner

triple problem, translated from the set covering formulation. It should be noted
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that these graphs are extremely dense in which only a few from all possible edges

are missing.

• The P-fat graphs ([106]) are created from a generalization of the classical uniform

random graph generator. These graphs have a wider node degree spread and larger

cliques than uniform random graphs.

• The five graphs in the R.5 family were proposed in the DIMACS challenge to serve

as benchmarks for defining ratios of computing times between different computer

machines when the same source code of program dfmax is used. dfmax is a

simple-minded branch-and-bound program very similar to that of Carraghan and

Pardalos [79]. The source code of program dfmax, written by David Applegate

and David Johnson, is available at the DIMACS FTP site. In practice it can

find a maximum clique for graph with 500 vertices, and 50% density, in a few

minutes. The R.5 graphs are random graphs, 50% dense, with the number of

vertices varying from 100 to 500.

• Sanchis [214, 215] proposed three sub-families of test problems: san, sanr and gen.

The san graphs are randomly generated problems from the complement graph

of instances of the vertex covering problem (see Section 2.2.1). The generation

parameters include the number of vertices, the number of edges, and the maximum

clique size. The sanr graphs are of similar size to the san graphs, but with different

clique characteristics. The gen graphs are artificially generated instances with

large, known embedded clique. Regarding the difficulty of the problems generated,

the reader is referred to [214].

Pardalos with Carraghan [79] and Rodgers [196] proposed a routine to generate

graphs. Using this routine Pardalos et al. [79, 196] proposed some benchmarks for

which the corresponding maximum cliques were found. We shall call this subfamily

of test problems has CPR. The list of problems and the corresponding sizes of the

maximum cliques can be seen in Table 3.9.
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The FRB maximum clique benchmarks presented in Table 3.9 are directly trans-

formed from forced satisfiable Constraint Satisfaction Problems ([237]), with the set

of vertices and the set of edges respectively corresponding to the set of variables, and

to the set of binary clauses in the satisfiability instances. Based on this model (called

model RB) and transformation, the FRB graphs are obtained as follows:

1. Generate k disjoint cliques, each of which has ka vertices (where a > 0 is a

constant);

2. Randomly select two different cliques and then generate without repetitions pn2a

random edges between these two cliques (where 0 < p < 1 is a constant);

3. Run step 2 (with repetitions) for another rn log n − 1 times (where r > 0 is a

constant).

The graph obtained with the previous procedure generates a graph with a maximum

independent set of size at most k. Determining if such an upper bound can be reached is

equivalent to determining the satisfiability of the corresponding constraint satisfaction

problem. Furthermore, there is a one-to-one correspondence between the solutions of

these two problems. To hide an independent set of size k in these graph instances, a

vertex is selected at random from each disjoint clique to form an independent set of

size k. Then, in the step of generating random edges, no edge is allowed to violate

this maximum independent set. The graphs of Table 3.9 are the complements of graph

instances generated in this way.

In this study, we solve the maximum clique problem by associating to it a quadratic

pseudo–Boolean function (see (2.1) in Section 2.2.1), for which the maximum value is

the maximum clique size. Otherwise stated, for every edge (i, j) ∈ E, ε(i,j) = 0 is

assumed in (2.1) and (2.3). The parameters d, ρ and p shown in Tables 3.7–3.9 were

computed using this assumption.

A group of 8 graphs related to the weighted maximum clique problem (see Section

2.2.1) is listed in Table 3.10. These test problems are obtained from complemented



35

Table 3.9: Additional graphs ([79, 196, 237]) for the maximum clique problem.
Problem Vertices Edges Density Maximum

Sub-Family Name (|V |) (|E|) (d %) ρ % p % Clique

CPR 1000A 1 000 50 000 89.99 0.22 0.22 6
1000B 1 000 100 000 79.98 0.25 0.25 7
1000C 1 000 150 000 69.97 0.29 0.29 10
2000B 2 000 400 347 79.97 0.12 0.13 8
3000B 3 000 899 647 80.00 0.08 0.08 9

FRB frb30-15-1 450 83 198 17.65 2.46 2.52 30
frb30-15-2 450 83 151 17.69 2.46 2.52 30
frb30-15-3 450 83 216 17.63 2.46 2.53 30
frb30-15-4 450 83 194 17.65 2.46 2.52 30
frb30-15-5 450 83 231 17.61 2.47 2.53 30
frb35-17-1 595 148 859 15.76 2.09 2.14 35
frb35-17-2 595 148 868 15.76 2.09 2.14 35
frb35-17-3 595 148 784 15.81 2.09 2.13 35
frb35-17-4 595 148 873 15.76 2.09 2.14 35
frb35-17-5 595 148 572 15.93 2.07 2.11 35
frb40-19-1 760 247 106 14.32 1.81 1.84 40
frb40-19-2 760 247 157 14.31 1.81 1.84 40
frb40-19-3 760 247 325 14.25 1.82 1.85 40
frb40-19-4 760 246 815 14.43 1.79 1.83 40
frb40-19-5 760 246 801 14.43 1.79 1.83 40
frb45-21-1 945 386 854 13.27 1.57 1.60 45
frb45-21-2 945 387 416 13.14 1.59 1.61 45
frb45-21-3 945 387 795 13.06 1.60 1.62 45
frb45-21-4 945 387 491 13.13 1.59 1.61 45
frb45-21-5 945 387 461 13.13 1.59 1.61 45
frb50-23-1 1 150 580 603 12.12 1.42 1.44 50
frb50-23-2 1 150 579 824 12.24 1.40 1.42 50
frb50-23-3 1 150 579 607 12.27 1.40 1.42 50
frb50-23-4 1 150 580 417 12.15 1.41 1.43 50
frb50-23-5 1 150 580 640 12.11 1.42 1.44 50
frb53-24-1 1 272 714 129 11.66 1.33 1.35 53
frb53-24-2 1 272 714 067 11.66 1.33 1.35 53
frb53-24-3 1 272 714 229 11.64 1.33 1.35 53
frb53-24-4 1 272 714 048 11.67 1.33 1.35 53
frb53-24-5 1 272 714 130 11.66 1.33 1.35 53
frb56-25-1 1 400 869 624 11.20 1.26 1.28 56
frb56-25-2 1 400 869 899 11.17 1.26 1.28 56
frb56-25-3 1 400 869 921 11.17 1.26 1.28 56
frb56-25-4 1 400 869 262 11.24 1.26 1.27 56
frb56-25-5 1 400 869 699 11.19 1.26 1.28 56
frb59-26-1 1 534 1 049 256 10.76 1.20 1.21 59
frb59-26-2 1 534 1 049 648 10.73 1.20 1.22 59
frb59-26-3 1 534 1 049 729 10.72 1.20 1.22 59
frb59-26-4 1 534 1 048 800 10.80 1.19 1.21 59
frb59-26-5 1 534 1 049 829 10.71 1.20 1.22 59
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graphs, randomly generated by Pardalos and Desai ([192]), for which a maximum

weighted independent set was found. The weights of the vertices are random inte-

gers between 1 and 10. Table 3.10 list the characteristics of the complements of the

original graphs, including the weight of the optimal clique. Note that [192] only reports

the size of the largest independent set, and not the corresponding weight.

Table 3.10: Graphs of Pardalos and Desai [192] for the weighted maximum clique
problem.

Problem Vertices Edges Density Maximum
Sub-Family Name (|V |) (|E|) (d %) ρ % p % Clique Weight

PD-500 PD-500.1 500 112 176 10.08 1.96 1.99 >380
PD-500.2 500 99 832 19.97 0.99 1.00 >222
PD-500.3 500 87 445 29.90 0.67 0.67 >163
PD-500.4 500 74 925 39.94 0.50 0.50 125
PD-500.5 500 62 422 49.96 0.40 0.40 96
PD-500.6 500 49 749 60.12 0.33 0.33 78
PD-500.7 500 37 183 70.19 0.28 0.29 63
PD-500.8 500 25 083 79.89 0.25 0.25 51

In this study, we solve the weighted maximum clique problem by associating to it a

quadratic pseudo–Boolean function (see (2.3) in Section 2.2.1), for which the maximum

value is the maximum weight of a clique. We used ε(i,j) = ci + cj in (2.3), for every

edge (i, j) ∈ E. The values of d, ρ and p in Table 3.10 are a consequence of this option.

3.3 Planar graphs for minimum vertex cover

A set of planar graphs randomly generated by the LEDA software package ([176]) is

considered in this study. It is important to note that even for planar graphs it is known

that solving the minimum vertex cover problem is NP–hard ([105]).

Using the LEDA generator we tried to replicate the experiment reported in Alber,

Dorn and Niedermeier [13], although it should be noted that not having access to the

seeds used in [13], the graphs generated by us are not exactly identical to the ones used

by Alber, Dorn and Niedermeier [13]. In order to distinguish between the two planar

vertex cover benchmarks, we shall call those of [13] ADN benchmark graphs and the

new ones PVC LEDA benchmark.
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The total number of planar graphs that we have generated with LEDA is 400, parti-

tioned into 4 sets of 100 graphs, each subset having a specific number of vertices: 1000,

2000, 3000 and 4000. The planar density of each graph G (V,E) was randomly de-

termined, i.e. |E| v discrete uniform (|V | − 1, 3 |V | − 6). Some comparative statistical

numbers about these two benchmarks are displayed in Table 3.11.

Table 3.11: Comparative statistical numbers about the LEDA benchmarks.
Average Average Average

Benchmark Vertices Number Number Maximum Average Minimum
of Graphs of Edges Degree Degree Vertex Cover

PVC LEDA 1000 100 2037.9 73.0 4.08 460.6
2000 100 4068.6 106.7 4.07 921.1
3000 100 6204.3 132.4 4.14 1391.2
4000 100 8207.1 149.2 4.10 1848.2

ADN ([13]) 1000 100 1978.9 73.3 3.96 453.9
2000 100 3960.8 104.9 3.96 917.3
3000 100 6070.6 129.6 4.05 1373.8
4000 100 8264.5 146.6 4.13 1856.8

In addition to the PVC LEDA planar graphs we have also generated a dataset

containing larger graphs with up to 500 000 vertices. These graphs were generated in

order to analyze the scalability of the routine PrePro. Because of size limitations

associated to our trial license on LEDA, we used for this experiment Rinaldi’s ([211])

generator called RUDY. With the RUDY program, we generated a total of 36 graphs

whose sizes are of 50 000, 100 000, 250 000 and 500 000 vertices; for each of these graph

sizes, we generated nine graphs: three instances with density of 10%, three with density

of 50% and three with density of 90%. This set of benchmark graphs is called PVC

RUDY.

3.4 Graphs for MAX–CUT

A collection of (weighted) graphs related to the (weighted) MAX–CUT problem, in-

troduced earlier in Section 2.2.3, is described in this section. A set of 135 (weighted)

graphs used previously in other studies, is described next. In addition to the public

benchmarks, we randomly generated a set of 240 graphs with m-Hamiltonian cycles,

where m is a specified parameter. The generation details of the Hamiltonian graphs

are presented at the end of this section.
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3.4.1 Benchmark families

The MAX–CUT problem arises from different applications, such as when one needs to

find the minimum energy and particle states of a Ising model, or when the minimum

number of layers/vias has to be computed during the design process for VLSI chips or

printed circuit boards.

Most of the benchmark problems for MAX–CUT are randomly generated with dif-

ferent algorithms or settings, making it possible to analyze this problem on variety of

classes of graphs. The benchmarks for MAX–CUT include 14 2D-toroidal graphs and

34 3D-toroidal graphs. Ten graphs derived from VLSI problems are also part of this

group of problems.

Helmberg and Rendl [140] used the graph generator rudi, written by Rinaldy, to

create the G graphs. The graphs of the G family have been frequently cited in several

publications related to the MAX–CUT problem (e.g., [74, 97, 188]). It contains a group

of random graphs with no weights associated to the edges (listed in Table 3.12), and a

group of graphs with a ±1 weights associated to the edges (listed in Table 3.13). The

probability of an edge to have a negative weight is in this case 50%.

For each group of problems, Helmberg and Rendl [140] considers three classes of

graphs: random graphs with a prescribed edge density; graphs resulting from the union

of two random planar graphs; and 2D-toroidal graphs. Tables 3.12 and 3.13 contain

the graph characteristics, and also includes information about the largest known cut.

Burer et al. [74] proposed the graph instances in Table 3.14. These graphs consist

of thirty cubic lattices having randomly generated ±1 interaction magnitudes. Each

graph has a side length L, has n = L3 vertices and 3n edges. There are ten graphs

for each value of the side length L, which are the values 5, 10 and 14. [74] tested a

rank-2 relaxation heuristic (called circut) for MAX–CUT on these cubic lattice graphs.

Subsequently, Festa et al. [97] and Palubeckis et al. [188] respectively used these graphs

for testing GRASP and tabu search as heuristic techniques for MAX–CUT.

The torus graphs are 3D-toroidal graphs, originated from the Ising model of spin
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Table 3.12: G-graphs of Helmberg and Rendl [140] for MAX–CUT.
Problem Vertices Edges Density MAX–CUT

Family Sub-Family Name (|V |) (|E|) (d %)
∣∣(S, S

)∣∣
Random GR-800 G1 800 19 176 6.00 >11 624†

G2 800 19 176 6.00 >11 620‡

G3 800 19 176 6.00 >11 622†

G4 800 19 176 6.00 >11 646
G5 800 19 176 6.00 >11 631

GR-1000 G43 1 000 9 990 2.00 >6 660‡

G44 1 000 9 990 2.00 >6 650‡

G45 1 000 9 990 2.00 >6 654‡

G46 1 000 9 990 2.00 >6 649
G47 1 000 9 990 2.00 >6 657

GR-2000 G22 2 000 19 990 1.00 >13 358‡

G23 2 000 19 990 1.00 >13 354‡

G24 2 000 19 990 1.00 >13 335
G25 2 000 19 990 1.00 >13 339
G26 2 000 19 990 1.00 >13 317

GR-5000 G55 5 000 12 498 0.10 >10 264
GR-7000 G60 7 000 17 148 0.07 >14 149

2×Planar GP-800 G14 800 4 694 1.47 >3 064
G15 800 4 661 1.46 >3 050‡

G16 800 4 672 1.46 >3 052‡

G17 800 4 667 1.46 >3 044
GP-1000 G51 1 000 5 909 1.18 >3 848

G52 1 000 5 916 1.18 >3 849
G53 1 000 5 914 1.18 >3 848
G54 1 000 5 916 1.18 >3 848

GP-2000 G35 2 000 11 778 0.59 >7 683
G36 2 000 11 766 0.59 >7 674
G37 2 000 11 785 0.59 >7 681‡

G38 2 000 11 779 0.59 >7 672
GP-5000 G58 5 000 29 570 0.24 >19 246
GP-7000 G63 7 000 41 459 0.17 >26 959

Toroidal GT-50×60 G48 3 000 6 000 0.13 6 000?

GT-30×100 G49 3 000 6 000 0.13 6 000?

GT-25×120 G50 3 000 6 000 0.13 5 880?

†Solution reported first by Festa et al. [97].
‡Solution reported first by Palubeckis and Krivickiene [188].

?Solution reported first by Burer et al. [74].
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Table 3.13: G±1–graphs of Helmberg and Rendl [140] for MAX–CUT.
Problem Vertices Edges Density MAX–CUT

Family Sub-Family Name (|V |) (|E|) (d %)
∣∣W

(
S, S

)∣∣
Random GR-800 G6 800 19 176 6.00 >2 178

G7 800 19 176 6.00 >2 006
G8 800 19 176 6.00 >2 005
G9 800 19 176 6.00 >2 054
G10 800 19 176 6.00 >2 000

GR-2000 G27 2 000 19 990 1.00 >3 325
G28 2 000 19 990 1.00 >3 296
G29 2 000 19 990 1.00 >3 391
G30 2 000 19 990 1.00 >3 408
G31 2 000 19 990 1.00 >3 294

GR-5000 G56 5 000 12 498 0.10 >3 994
GR-7000 G61 7 000 17 148 0.07 >5 741

2×Planar GP-800 G18 800 4 694 1.47 >988
G19 800 4 661 1.46 >906
G20 800 4 672 1.46 >941
G21 800 4 667 1.46 >930

GP-2000 G39 2 000 11 778 0.59 >2 375
G40 2 000 11 766 0.59 >2 384
G41 2 000 11 785 0.59 >2 380
G42 2 000 11 779 0.59 >2 465

GP-5000 G59 5 000 29 570 0.24 >5 971
GP-7000 G64 7 000 41 459 0.17 >8 575?

Toroidal GT-100×8 G11 800 1 600 0.50 564†

GT-50×16 G12 800 1 600 0.50 556†

GT-25×32 G13 800 1 600 0.50 582‡

GT-100×20 G32 2 000 4 000 0.20 >1 410
GT-80×25 G33 2 000 4 000 0.20 >1 382
GT-50×40 G34 2 000 4 000 0.20 >1 384
GT-100×50 G57 5 000 10 000 0.08 >3 492
GT-100×70 G62 7 000 14 000 0.06 >4 862
GT-100×80 G65 8 000 16 000 0.05 >5 550
GT-90×100 G66 9 000 18 000 0.04 >6 352
GT-100×100 G67 10 000 20 000 0.04 >6 932

†Solution reported first by Festa et al. [97].
‡Solution reported first by Palubeckis and Krivickiene [188].

?Solution reported first by Burer et al. [74].
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Table 3.14: Cubic lattice graphs of Burer et al. [74] for MAX–CUT.
Problem Vertices Edges Density MAX–CUT

Family Sub-Family Name (|V |) (|E|) (d %)
∣∣W
(
S, S

)∣∣
sg3dl sg3dl05 sg3dl051000 125 375 4.84 110

sg3dl052000 125 375 4.84 112
sg3dl053000 125 375 4.84 106
sg3dl054000 125 375 4.84 114
sg3dl055000 125 375 4.84 112
sg3dl056000 125 375 4.84 110
sg3dl057000 125 375 4.84 112
sg3dl058000 125 375 4.84 108
sg3dl059000 125 375 4.84 110
sg3dl0510000 125 375 4.84 112

sg3dl10 sg3dl101000 1 000 3 000 0.60 >896
sg3dl102000 1 000 3 000 0.60 >900
sg3dl103000 1 000 3 000 0.60 >892
sg3dl104000 1 000 3 000 0.60 >898
sg3dl105000 1 000 3 000 0.60 >886
sg3dl106000 1 000 3 000 0.60 >888
sg3dl107000 1 000 3 000 0.60 >900
sg3dl108000 1 000 3 000 0.60 >882
sg3dl109000 1 000 3 000 0.60 >902
sg3dl1010000 1 000 3 000 0.60 >894

sg3dl14 sg3dl141000 2 744 8 232 0.22 >2 446
sg3dl142000 2 744 8 232 0.22 >2 458
sg3dl143000 2 744 8 232 0.22 >2 442
sg3dl144000 2 744 8 232 0.22 >2 450
sg3dl145000 2 744 8 232 0.22 >2 446
sg3dl146000 2 744 8 232 0.22 >2 450
sg3dl147000 2 744 8 232 0.22 >2 444
sg3dl148000 2 744 8 232 0.22 >2 446
sg3dl149000 2 744 8 232 0.22 >2 424
sg3dl1410000 2 744 8 232 0.22 >2 458
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glasses in physics. They were taken from the DIMACS library of mixed semidefinite-

quadratic-linear programs [1] (see also [179]). Two graphs have ±1 interaction magni-

tudes, whereas the other two graphs have interactions determined by a Gaussian dis-

tribution. The general characteristics of these graphs, and the largest cut information

can be seen in Table 3.15.

Table 3.15: DIMACS torus graphs for MAX–CUT.
Problem Vertices Edges Density MAX–CUT
Name (|V |) (|E|) (d %)

∣∣W
(
S, S

)∣∣
pm3-8-50 512 1 536 1.17 458
pm3-15-50 3 375 10 125 0.18 >3 016†

g3-8 512 1 536 1.17 41 684 814‡

g3-15 3 375 10 125 0.18 >285 790 637‡

†Solution reported first by Palubeckis and Krivickiene [188].
‡Solution reported first by Burer et al. [74].

Homer and Peinado ([145]) tested several approximation algorithms for MAX–CUT

on sparse random graphs and on graphs derived from circuit design problems:

• Sparse random graphs – These eight graphs constitute the family R of Homer and

Peinado ([145]). Each graph has an edge probability of 10/n, and the number of

vertices n varies from 1000 to 8 000. These graphs belong to the random graph

class C in Goemans and Williamson [112].

• Via graphs – Graphs provided by Homer and Peinado [145], derived from layer

assignment problems in the design process for VLSI chips. Each edge has a

coefficient associated to it, some of them being negative.

The characteristics of these graphs, and the largest cut information can be seen in Table

3.16.

Kim et al. [157] tested a hybrid genetic algorithm on both the R and the via fam-

ilies of graphs. Kim et al. [157] also includes the following classes of graphs in their

experiments:

• Gn.p graphs: Each graph has n vertices (n being 500 or 1000), and an edge is

placed between two vertices with probability p, independently of other edges. The

probability p is chosen so that the expected vertex degree is d = p (n− 1).
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Table 3.16: Graphs of Homer and Peinado [145] for MAX–CUT.
Problem Vertices Edges Density MAX–CUT

Family Name (|V |) (|E|) (d %)
∣∣W

(
S S
)∣∣

random R1000 1 000 5 033 1.01 >3 687†

R2000 2 000 9 943 0.50 >7 308†

R3000 3 000 14 965 0.33 >10 997
R4000 4 000 19 939 0.25 >14 684
R5000 5 000 24 794 0.20 >18 225
R6000 6 000 29 862 0.17 >21 937
R7000 7 000 35 110 0.14 >25 763
R8000 8 000 39 642 0.12 >29 140†

via via.c1n 828 1 389 0.41 6 150
via.c2n 980 1 712 0.36 7 098
via.c3n 1 327 2 393 0.27 6 898
via.c4n 1 366 2 539 0.27 10 098
via.c5n 1 202 2 129 0.29 7 956
via.c1y 829 1 693 0.49 7 746
via.c2y 981 2 039 0.42 8 226
via.c3y 1 328 2 757 0.31 9 502
via.c4y 1 367 2 848 0.31 12 516
via.c5y 1 203 2 452 0.34 10 248

†Solution reported first by Kim et al. [157].

• Un.p graphs: Each graph has n vertices (n being 500 or 1000) that lie in the unit

square and whose coordinates are chosen uniformly from the unit interval. There

is an edge between two vertices if their Euclidean distance is t, which results in

an expected vertex degree of d = nπt2.

The characteristics of these graphs, and the largest cut information can be seen in Table

3.17.

3.4.2 Graphs with m-Hamiltonian random cycles

We have randomly generated 240 graphs for MAX–CUT. Each graph has a user-

specified number of Hamiltonian cycles randomly generated. This family was named as

the Hamilton family, and has the following characteristics (see Table 3.18): number of

vertices is 250, 500, 1 000 or 2000, plus one additional vertex that represents an exterior

field; number of Hamiltonian cycles varies from 2 to 8 (in steps of 2); weights of edges

are discrete uniformly distributed as [−50, 100], [−50, 50], [−50,−1], or are fixed to 1;

and three instances (k = 1, 2, 3) were generated for each set of parameters.

The best known solutions of the problems in the Hamilton family are given in Table
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Table 3.17: Graphs of Kim, Kim and Moon [157] for MAX–CUT.
Problem Vertices Edges Density MAX–CUT

Family Name (|V |) (|E|) (d %)
∣∣W
(
S S
)∣∣

random g500.2.5 500 625 0.50 574
g500.05 500 1 223 0.98 >1 008
g500.10 500 2 355 1.89 >1 735
g500.20 500 5 120 4.10 >3 390
g1000.2.5 1 000 1 272 0.25 >1 173
g1000.05 1 000 2 496 0.50 >2 053
g1000.10 1 000 5 064 1.01 >3 705
g1000.20 1 000 10 107 2.02 >6 729

geometric U500.05 500 1 282 1.03 900
U500.10 500 2 355 1.89 >1 546
U500.20 500 4 549 3.65 >2 783
U500.40 500 8 793 7.05 >5 181
U1000.05 1 000 2 394 0.48 >1 711
U1000.10 1 000 4 696 0.94 >3 073
U1000.20 1 000 9 339 1.87 >5 737
U1000.40 1 000 18 015 3.61 >10 560

Table 3.18: Graphs with m-Hamiltonian randomly generated cycles for MAX–CUT.
Vertices Number Number Exterior Edge’s Weights

Family Sub-Family (|V |) Problems Cycles (m) Field (h) (w−) (w+)

Hamilton HAM-2-1 250 to 2 000 12 2 −75 50 100
HAM-2-2 250 to 2 000 12 2 75 50 100
HAM-2-3 250 to 2 000 12 2 0 −50 50
HAM-2-4 250 to 2 000 12 2 25 −50 50
HAM-2-5 250 to 2 000 12 2 0 1 1
HAM-4-1 250 to 2 000 12 4 −75 50 100
HAM-4-2 250 to 2 000 12 4 75 50 100
HAM-4-3 250 to 2 000 12 4 0 −50 50
HAM-4-4 250 to 2 000 12 4 25 −50 50
HAM-4-5 250 to 2 000 12 4 0 1 1
HAM-6-1 250 to 2 000 12 6 −75 50 100
HAM-6-2 250 to 2 000 12 6 75 50 100
HAM-6-3 250 to 2 000 12 6 0 −50 50
HAM-6-4 250 to 2 000 12 6 25 −50 50
HAM-6-5 250 to 2 000 12 6 0 1 1
HAM-8-1 250 to 2 000 12 8 −75 50 100
HAM-8-2 250 to 2 000 12 8 75 50 100
HAM-8-3 250 to 2 000 12 8 0 −50 50
HAM-8-4 250 to 2 000 12 8 25 −50 50
HAM-8-5 250 to 2 000 12 8 0 1 1
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A.8 of the Appendix.

3.5 Maximum 2-satisfiability test problems

A set of (weighted) satisfiability formulas related to the (weighted) MAX–2–SAT prob-

lem, introduced earlier in Section 2.3, is described in this section. A set of 34 benchmark

(weighted) formulas is described in the following subsection. In addition to the bench-

marks, a set of 640 satisfiability formulas were randomly generated by using probabilistic

parameters over the set of all possible clauses. The MAX–2–SAT generator and the

details of the parameters of these formulas are presented in the end of this section.

3.5.1 Benchmark families

Borchers and Furman [47] proposed an exact algorithm for (weighted) MAX–SAT, and

tested this solver in a set of random (weighted) MAX–2–SAT problems. Since then,

several other researchers ([16, 17, 113, 147, 219, 220, 221, 236, 241]) used this algorithm

and test problems, for comparison with their proposed algorithmic approaches. The

source code and the MAX–2–SAT instances are publicly available on the Internet ([3]).

The list of problems contains 17 standard formulas and 17 formulas with weights

(ranging from one to ten) associated to the clauses. The number of variables in the

formulas is 50, 100 and 150. The number of clauses varies from 100 to 600, depending

on the number of variables.

The details of the non-weighted formulas can be seen in Table 3.19, and the details

of the weighted formulas can be seen in Table 3.20. The optimal MAX–SAT solution is

known for all instances. In this study, we solved the (weighted) MAX–2–SAT problem

by associating a quadratic posiform φ (see (2.7) in Section 2.3) to it, for which the

minimum value ν (φ) is the minimum weighted set of unsatisfied clauses. The values

of the parameters d, ρ and p are relative to the (unique) quadratic pseudo–Boolean

polynomial 1.5 associated with the posiform φ.
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Table 3.19: MAX–2–SAT instances of Borchers and Furman [47].
Problem (φ) Variables Clauses Density False Clauses

Sub-Family Name (n) (A (φ)) (d %) ρ % p % (ν (φ))

BF-50 BF-50-100 50 100 7.59 49.32 57.45 4
BF-50-150 50 150 10.86 49.76 50.74 8
BF-50-200 50 200 14.37 46.56 43.96 16
BF-50-250 50 250 17.22 50.79 40.27 22
BF-50-300 50 300 20.90 48.78 34.67 32
BF-50-350 50 350 23.10 49.16 34.74 41
BF-50-400 50 400 25.22 48.50 37.06 45
BF-50-450 50 450 29.88 49.60 28.65 63
BF-50-500 50 500 30.69 49.71 23.80 66

BF-100 BF-100-200 100 200 3.88 49.84 61.73 5
BF-100-300 100 300 5.88 50.69 45.95 15
BF-100-400 100 400 7.47 50.49 36.97 29
BF-100-500 100 500 9.56 48.34 37.34 44
BF-100-600 100 600 10.85 49.11 31.12 65

BF-150 BF-150-300 150 300 2.67 50.65 55.70 4
BF-150-450 150 450 3.94 49.69 44.14 22
BF-150-600 150 600 5.12 49.94 41.70 38

Table 3.20: Weighted MAX–2–SAT instances of Borchers and Furman [47].
Problem (φ) Variables Clauses Weight Density False Clauses

Sub-Family Name (n) Number (A (φ)) (d %) ρ % p % Weight (ν (φ))

BFW-50 BFW-50-100 50 100 554 7.76 51.31 57.68 16
BFW-50-150 50 150 800 11.18 49.91 50.66 34
BFW-50-200 50 200 1 103 15.18 51.11 44.03 69
BFW-50-250 50 250 1 361 18.94 50.68 45.52 96
BFW-50-300 50 300 1 634 21.06 49.98 36.85 132
BFW-50-350 50 350 1 936 24.57 48.80 38.95 211
BFW-50-400 50 400 2 204 27.51 53.01 33.96 211
BFW-50-450 50 450 2 519 30.53 52.09 36.18 257
BFW-50-500 50 500 2 820 33.88 48.74 29.58 318

BFW-100 BFW-100-200 100 200 1 103 3.94 48.71 65.70 7
BFW-100-300 100 300 1 634 5.92 51.43 49.81 67
BFW-100-400 100 400 2 204 7.90 52.17 43.89 119
BFW-100-500 100 500 2 820 9.62 51.63 37.75 241
BFW-100-600 100 600 3 369 11.47 49.17 39.59 266

BFW-150 BFW-150-300 150 300 1 634 2.65 50.80 57.71 24
BFW-150-450 150 450 2 519 3.92 50.88 51.77 79
BFW-150-600 150 600 3 369 5.23 50.43 44.44 189
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3.5.2 Randomly generated MAX–2–SAT formulas

To increase the number of MAX–2–SAT problems, we have randomly generated 640

satisfiability formulas. The random generator of MAX–2–SAT problems can create

formulas with distinct characteristics, such as: high or low frequency of unit clauses

(i.e., clauses with one literal); high or low density (i.e., the probability of any two literals

to belong to a quadratic clause); high or low impurity (i.e., the ratio of the number

of quadratic clauses with exactly one complemented literal and all quadratic clauses);

high or low frequency of biterms (i.e., sets of two distinct quadratic clauses involving

the same two variables).

As we have mentioned in the previous subsection, a MAX–2–SAT problem can be

solved by optimizing a quadratic posiform φ (see (2.7) in Section 2.3), for which the

minimum value ν (φ) is the minimum (weighted) size of a set with false clauses. Com-

putationally, it is simple to obtain the unique multilinear quadratic pseudo–Boolean

function f associated to a quadratic posiform φ. A quadratic term xixj has a nonzero

coefficient in f if and only if there is a term in φ containing literals involving the same

variables xi and xj, and consequently if there is a clause with literals of these two vari-

ables. Therefore, a quadratic clause involving variables xi and xj, results in one out

of the following six cases, in a nonzero term of φ: xixj, xixj, xixj , xixj , xixj + xixj

and xixj +xixj. Unit clauses involving variable xi are result of terms involving a single

literal of this variable, i.e. xi and xj.

The input parameters of the MAX–2–SAT generator are: the number of variables n;

the cumulative distribution of the linear terms (including a probability of nonexistence)

for all variables xi, i = 1, · · · , n; the cumulative distribution of the possible cases of

quadratic terms (including a probability of nonexistence) for all pairs of variables with

indices 1 6 i < j 6 n, the lower and upper bounds of the clause weights, and a seed to

initiate the generator of random numbers.

Table 3.21 list the eight profiles of probability parameters that were used in this

study. For instance, profiles 2, 4 and 6 generate dense formulas, whereas 7 and 8

generate sparser formulas. The number of negated literals in a formula generated with
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profiles 5-to-8 is approximately the same number of nonnegated literals in the same

formula. Profiles 1 and 2 generate formulas with considerably more negated literals

than nonnegated ones, whereas 3 and 4 generate formulas with the reverse role.

Table 3.21: Profiles of probabilities for a clause to belong to a (weighted) MAX-2-SAT
formula.
Profile Unit clauses, 1 6 i 6 n Quadratic clauses, 1 6 i < j 6 n

ID Inex. xi xi Inex. xixj xixj xixj xixj xixj + xixj xixj + xixj

1 0.50 0.25 0.25 0.60 0.05 0.10 0.10 0.05 0.02 0.08
2 0.50 0.25 0.25 0.40 0.05 0.10 0.10 0.05 0.10 0.20
3 0.50 0.25 0.25 0.60 0.10 0.05 0.05 0.10 0.08 0.02
4 0.50 0.25 0.25 0.40 0.10 0.05 0.05 0.10 0.10 0.20
5 0.50 0.25 0.25 0.60 0.05 0.05 0.05 0.05 0.10 0.10
6 0.50 0.25 0.25 0.30 0.10 0.10 0.10 0.10 0.15 0.15
7 0.50 0.25 0.25 0.80 0.02 0.02 0.02 0.02 0.06 0.06
8 0.50 0.25 0.25 0.80 0.04 0.04 0.04 0.04 0.02 0.02

The list of MAX–2–SAT problems that we have randomly generated include formu-

las with 50, 100, 200 and 400 variables. Each set of formulas with the same number of

variables has five instances for each one of the eight profiles of probability distributions

shown in Table 3.21. Table 3.22 displays the different sub–families that we have ran-

domly generated, and it includes some statistics about the number of clauses generated

in the different categories.

The best known solutions found by the proposed methods are given in Table A.9 of

the Appendix. Interesting to be noted that the class of harder MAX–2–SAT instances

for our methods belong to profiles 3 and 7, followed closely by profiles 4 and 8.

Recently this generator of MAX–2–SAT formulas has been used to create “very”

hard small instances, which were considerably more difficult to be solved than other

instances, similar in size, that were created by other random generators ([148]).
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Table 3.22: Randomly generated (weighted) MAX–2–SAT formulas.
Variables Number Clause Clauses number

Family Sub-Family (n) Problems Weights min avg max

SAT SAT-50 50 40 1 242 557.4 892
SAT-100 100 40 1 991 2 214.0 3 554
SAT-200 200 40 1 3 986 8 808.4 14 136
SAT-400 400 40 1 16 020 35 142.8 56 103

WSAT-[1,10] WSAT-50-[1,10] 50 40 [1,10] 251 558.4 906
WSAT-100-[1,10] 100 40 [1,10] 997 2 214.5 3 530
WSAT-200-[1,10] 200 40 [1,10] 3 954 8 800.6 14 115
WSAT-400-[1,10] 400 40 [1,10] 16 016 35 118.8 56 194

WSAT-[1,100] WSAT-50-[1,100] 50 40 [1,100] 254 558.7 891
WSAT-100-[1,100] 100 40 [1,100] 988 2 218.5 3 531
WSAT-200-[1,100] 200 40 [1,100] 3 960 8 810.2 14 085
WSAT-400-[1,100] 400 40 [1,100] 15 819 35 085.9 56 237

WSAT-[90,100] WSAT-50-[90,100] 50 40 [90,100] 235 560.8 891
WSAT-100-[90,100] 100 40 [90,100] 990 2 220.2 3 572
WSAT-200-[90,100] 200 40 [90,100] 4 023 8 798.0 14 117
WSAT-400-[90,100] 400 40 [90,100] 15 966 35 097.6 56 224
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Chapter 4

Basic Tools and Concepts

This chapter describes a set of concepts, definitions and tools related to pseudo–Boolean

optimization, which will be used throughout this dissertation.

The first section introduces the definition of strong and weak persistency following

the same approach of Boros and Hammer [54]. Persistency is a property inherent to

certain variables which can be removed from the function by fixing them at a known

value, without changing the optimal value of the resulting function.

Section 4.2 introduces the first order partial derivatives of the functions and its

inherent properties, like persistency, decomposition, local optimization and minimum

and maximum values.

Section 4.3 presents the second order derivatives of Hammer and Hansen [121] and

generalizes this concept further. This new type of derivatives is able to determine

certain persistency property for a relation between two binary variables.

Section 4.4 introduces the concept of locotope, which is a polytope characterized

by first order derivatives information. This polytope is able to enforce local optimality

conditions and is useful if used in combination with linear programming techniques to

solve QUBO.

Section 5.3 introduces the implication graph, an important concept that is able to

represent order logical relations between the binary variables. This concept is extended

in Chapter 5 to the implication network model to represent quadratic pseudo–Boolean

functions.

Section 4.6 introduces some basic concepts about posiform minimization, including

how to define a canonical representation of it, called the standard form.

The last section covers certain continuous extensions and related properties for
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pseudo–Boolean optimization.

4.1 Persistency

The concept of persistency is needed in the discussion that follows. Before defining it,

let us start by calling a partial assignment, to a binary vector y ∈ BS corresponding

to a subset S ⊆ V. Further, for a subset S ⊆ V of indices and a vector x ∈ Bn,

x [S] ∈ BS denotes the subvector corresponding to indices in S, i.e. x [S] = (xi|i ∈ S).

For a partial assignment y ∈ BS and a vector x ∈ Bn, let the switch of x by y be the

binary vector z defined by

zj =





xj if j /∈ S

yj if j ∈ S,

and let us denote it by z = x [S ← y].

Definition 4.1 ([54]). Given a pseudo–Boolean function f and a partial assignment

y ∈ BS, we say that:

i) Strong persistency holds for f at y, if for all x ∈ ArgminBn (f) we have x [S] = y,

i.e. if the restriction of all minimizing points of f to S coincide with the partial

assignment y.

ii) Weak persistency holds for f at y, if x [S ← y] ∈ ArgminBn (f), i.e. if a switch

of a minimizing point of f by the partial assignment y is an optimal point too.

4.2 First order partial derivatives

For all indices i ∈ V, the ith partial derivative by variable xi of a pseudo–Boolean

function f is given as

∆i (x)
def
= ∂f

∂xi
(x)

= f (x1, · · · , xi−1, 1, xi+1, · · · , xn)− f (x1, · · · , xi−1, 0, xi+1, · · · , xn)

(4.1)
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and its ith residual is given as

Θi (x) = f (x)− xi∆i (x) . (4.2)

The functions ∆i and Θi are themselves pseudo–Boolean functions, which depend on

all variables, but xi. From (4.2), a pseudo–Boolean function f can be expressed as

f (x) = xi∆i (x) + Θi (x) for any given variable xi, i ∈ V. The following proposition

uses this expression to prove some necessary conditions of optimality for the minimizing

points of f .

Proposition 4.1 ([121, 130]). Let f be a pseudo–Boolean function. Every minimizing

point x ∈ ArgminBn (f) satisfies

(2xi − 1) ∆i (x) 6 0, (4.3)

for all indices i ∈ V.

Proof. Let us consider an arbitrary minimizer x ∈ ArgminBn (f) of function f , and

consider the partial assignments (b) ∈ B{i} and (1− b) ∈ B{i}, where b is a binary value.

First let us remark, that either x [{i} ← (b)] ∈ ArgminBn (f) or x [{i} ← (1− b)] ∈

ArgminBn (f). If only one of these two cases is verified then strong persistency holds at

the corresponding partial assignment. If both cases are verified then weak persistency

holds at these two partial assignments. Using (4.2) one easily derives

f (x [{i} ← (b)])− f (x [{i} ← (1− b)]) = (b∆i (x)− (1− b)∆i (x))

= (2b− 1) ∆i (x) .

Without loss of generality xi = b can be assumed. This fact implies that the assertion is

true. Let us also note that if strong persistency holds at one of the partial assignments,

then the previous relation (assuming xi = b) is strictly negative. If instead weak

persitency holds, then the previous relation is zero.

Trivial consequences of the last proposition are the following two corollaries.
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Corollary 4.1. Let f be a pseudo–Boolean function, and let S ⊇ ArgminBn (f). Then,

if for some i ∈ V, ∆i (y) > 0 (< 0) for all y ∈ S, then all minimizing points x ∈

ArgminBn (f) must have xi = 0 (= 1).

Corollary 4.2. Let f be a pseudo–Boolean function, and let S ⊆ Bn such that ArgminS (f)

∩ ArgminBn (f) 6= ∅. Then, if for some i ∈ V, ∆i (y) > 0 (6 0) for all y ∈ S, then

there exists at least a minimizing point x ∈ ArgminBn (f) with xi = 0 (= 1).

The usefulness of the previous corollaries depends on the set S. Typically S = Bn

is used, but the finding of more persistencies usually depends on the size of S being as

small as possible.

Specializing the notations given earlier (4.1) to the general case, the ith partial

derivative (i ∈ V) of a quadratic pseudo–Boolean function is given by

∆i (x1, · · · , xn) = ci +
i−1∑

j=1

cijxj +
n∑

j=i+1

cijxj. (4.4)

The derivative functions ∆i given in (4.4) are linear pseudo–Boolean functions,

whose minimum and maximum values are denoted as

Li
def
= υ (∆i) = ci +

i−1∑
j=1
cji<0

cji +
n∑

j=i+1
cij<0

cij , and

Ui
def
= τ (∆i) = ci +

i−1∑
j=1
cji>0

cji +
n∑

j=i+1
cij>0

cij ,

(4.5)

for all i ∈ V.

It is simple to note that

∆i

(
1

2
, · · · ,

1

2

)
=
Ui + Li

2
,

for all i ∈ V.
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4.3 Second order derivatives

Similarly to the single variable case (4.2), one can express a quadratic pseudo–Boolean

function as

f (x) = xi∆i (x) + xj∆j (x)− xixjcij + ϕij (x) , (4.6)

for all pairs of variables (i, j) (1 6 i < j 6 n), where ϕij is the residual part of f not

containing terms involving both the ith and jth variables.

Let b ∈ B, then the following relations

f
(
x
[
{i, j} ←

(
b, b
)])

= b∆i

(
x
[
{j} ←

(
b
)])

+ b∆j (x [{i} ← (b)]) + ϕij (x)

f (x [{i, j} ← (b, b)]) = b∆i (x [{j} ← (b)]) + b∆j (x [{i} ← (b)])− bcij + ϕij (x)

(4.7)

can easily be derived from (4.6), for all pairs of indices of variables (i, j) (1 6 i < j 6 n).

The following theorem provides some necessary conditions based on quadratic rela-

tions between variables, for quadratic pseudo–Boolean minimization problems.

Theorem 4.1. Let f be a quadratic pseudo–Boolean function represented as expression

(1.5). For all i and j (1 6 i < j 6 n):

i) If ∆j (x)−cijxi < 0 or ∆i (x)−cijxj < 0 or ∆i (x)+∆j (x)+cij (1− (xi + xj)) < 0

holds for all x ∈ Bn, then x?i x
?
j = 0 for all x? ∈ ArgminBn (f);

ii) If ∆j (x) + cijxi < 0 or ∆i (x)− cijxj > 0 or ∆i (x) −∆j (x) + (xi − xj) cij > 0

holds for all x ∈ Bn, then x?i x
?
j = 0 for all x? ∈ ArgminBn (f);

iii) If ∆j (x) − cijxi > 0 or ∆i (x) + cijxj < 0 or ∆i (x) −∆j (x) + (xi − xj) cij < 0

holds for all x ∈ Bn, then x?i x
?
j = 0 for all x? ∈ ArgminBn (f);

iv) If ∆j (x)+cijxi > 0 or ∆i (x)+cijxj > 0 or ∆i (x)+∆j (x)+cij (1− (xi + xj)) > 0

holds for all x ∈ Bn, then x?i x
?
j = 0 for all x? ∈ ArgminBn (f).

Proof. We shall prove the third case of (i) by using a contradiction. The other cases can

be proved in a similar way. Suppose that there is a point x ∈ ArgminBn (f) satisfying

xixj = 1, i.e. xi = xj = 0, and that ∆i (x) + ∆j (x) + cij (1− (xi + xj)) < 0. Since
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x is a minimizer of f with xi = 0 and xj = 0, then f (x) = f (x [{i, j} ← (0, 0)]) 6

(x [{i, j} ← (1, 1)]). Using the relations (4.7), a contradiction to our assumption is

obtained as follows:

f (x [{i, j} ← (0, 0)]) 6 f (x [{i, j} ← (1, 1)])

⇒ f (x [{i, j} ← (1, 1)])− f (x [{i, j} ← (0, 0)]) > 0

⇒ ∆i (x [{j} ← (1)]) + ∆j (x [{i} ← (1)])− cij > 0

⇒ ∆i (x) + ∆j (x) + cij (1− (xi + xj)) > 0.

Hammer and Hansen [121] called to the linear function ∆i (x)−∆j (x)+(xi − xj) cij

the (i, j)th second order derivative of f and denote it by ∆ij . Theorem 4.1 shows that

the linear function ∆i (x) + ∆j (x) + cij (1− (xi + xj)) has a similarly important role

as ∆ij; it will be called (i, j)th second order co-derivative and will be denoted by ∇ij.

Example 4.1. Consider the quadratic pseudo–Boolean function f6. Since

∆5 (x1, x2, x3, x4, x5, x6) = 1 + 2x1 − x2 − 2x3 + 2x4 + 2x6

∆6 (x1, x2, x3, x4, x5, x6) = −1− x1 + x2 + x3 − x4 + 2x5,

then

∇56 (x1, x2, x3, x4, x5, x6) = 2 + x1 − x3 + x4.

From Theorem 4.1.(iv), because ∇56 (x) > 0 for all x ∈ Bn, then relation x5x6 = 0

follows for all minimizers of f6.

The other conclusions of Theorem 4.1, which are not related to the (i, j)th second

order derivatives, can be derived from a two–stage process involving an analysis of the

first derivatives. In the first stage a variable i is assumed to have a binary value v.

In practice, this step results in a new function f ′ with one less variable, so that in

the second stage a first derivative analysis can be made in f ′. Let us assume that

variable j in this second stage is strongly persistent with value u. Then, a quadratic
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relation satisfied by the minimizers of f is of the form xi = v ⇒ xj = v. Let us remark

the implications in Theorem 4.1 involving ∆ij and ∇ij cannot be obtained simply by

looking at first derivative conclusions, as is done in the two–stage process explained

before.

Trivial consequence of Theorem 4.1 is the following corollary presenting weaker

conditions for the existence of persistencies.

Corollary 4.3. Let f be a quadratic pseudo–Boolean function represented as expression

(1.5). For all i and j (1 6 i < j 6 n):

i) If ∆j (x)−cijxi 6 0 or ∆i (x)−cijxj 6 0 or ∆i (x)+∆j (x)+cij (1− (xi + xj)) 6 0

holds for all x ∈ Bn, then there exists a x? ∈ ArgminBn (f) such that x?i x
?
j = 0

also holds;

ii) If ∆j (x) + cijxi 6 0 or ∆i (x)− cijxj > 0 or ∆i (x) −∆j (x) + (xi − xj) cij > 0

holds for all x ∈ Bn, then there exists a x? ∈ ArgminBn (f) such that x?i x
?
j = 0

also holds;

iii) If ∆j (x) − cijxi > 0 or ∆i (x) + cijxj 6 0 or ∆i (x) −∆j (x) + (xi − xj) cij 6 0

holds for all x ∈ Bn, then there exists a x? ∈ ArgminBn (f) such that x?i x
?
j = 0

also holds;

iv) If ∆j (x)+cijxi > 0 or ∆i (x)+cijxj > 0 or ∆i (x)+∆j (x)+cij (1− (xi + xj)) > 0

holds for all x ∈ Bn, then there exists a x? ∈ ArgminBn (f) such that x?i x
?
j = 0

also holds.

Example 4.2. Consider the quadratic pseudo–Boolean function f6. If x4 = 0 holds in

a minimizer of f6, then because

∆1 (x1, x2, x3, 0, x5, x6) = 2− x2 + 2x3 + 2x5 − x6 > 0, for all x ∈ B6,

the quadratic relation x1x4 = 0 must hold in at least one minimizer of f6.
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4.4 Locotope

Binary vectors, no single component of which can be changed so as to decrease the

value of a pseudo–Boolean function f , are called local minima of f . It should be

noted that the number of local minima can be exponentially large ([191]) and that the

computational complexity of finding a local minimum of a quadratic pseudo–Boolean

function is open (see e.g. [194]).

Proposition 4.2. Given a quadratic pseudo–Boolean function f , a binary vector x ∈

Bn is a local minimum of f if and only if

(2xi − 1) ∆i (x) 6 0,

for all indices i ∈ V.

Proof. Expressing f as (4.2) and noticing that neither ∆i nor Θi depend on xi, the

statement follows readily.

Together, Propositions 4.1 and 4.2 show that a minimizer x ∈ ArgminBn (f) is also

a local minimum of f . But, the reverse is not true in general. Let us denote by M the

set of local minima of f .

Proposition 4.3. For every index i, i = 1, · · · , n, let Ui and Li be respectively the

minimum and the maximum values of the first derivative ∆i function, as were defined

in (4.5). Then, the set M of local minima of a pseudo–Boolean function f is given by

M = {x ∈ Bn : Lixi 6 ∆i (x) 6 Uixi, i = 1, · · · , n} .

Proof. If xi = 0 then 0 6 ∆i (x) 6 Ui and hence (2xi − 1) ∆i (x) 6 0 holds. If xi = 1

then Li 6 ∆i (x) 6 0 and (2xi − 1) ∆i (x) 6 0 also holds.

The usefullness of the last proposition comes from the fact that it characterizes all

local minima of a pseudo–Boolean function by using 2n linear inequalities. It is also

simple to verify that whenever Ui < 0 (Li > 0), then xi must be one (zero) in every
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minimizing point of f . Further, if Ui 6 0 (Li > 0), then there is a minimizing point of

f for which xi is one (zero).

We denote by L (⊇M) the polytope defined by relaxing the integrality property of

the components of vectors in M, i.e.

L
def
= {x ∈ Un : Lixi 6 ∆i (x) 6 Uixi, i = 1, · · · , n} .

We shall name this very special polytope as the standard locotope. By employing

linear programming techniques, it is possible to improve the lower and upper bounds

of the first derivatives, while maintaining the property that it also contains the set of

local minima M. Let l and u be real n-vectors. Then

L (l,u)
def
= {x ∈ Un : lixi 6 ∆i (x) 6 uixi, i = 1, · · · , n}

satisfies L ⊆ L (l,u) ⊆M.

Let us remark that getting “better” lower and upper bounds for the first derivative

functions, may lead to the finding of new logical relations, which would not be found if

these bounds were not improved.

Next, an algorithm that improves the minimum and maximum values of the first

derivative functions over the locotope, is given. We named it as the Locotope Tightening

Algorithm (or LTA in short). The LTA description is given in Figure 4.1. In this

algorithm, the following linear program is called every time an individual bound is

improved.

opt ∆k (x)

subject to

x ∈ L (l,u)

xi = 0, i ∈ {j ∈ V |lj > 0} ∪ {j ∈ V |lj = 0, uj > 0}

xi = 1, i ∈ {j ∈ V |uj 6 0}

(LP(opt, k, l,u))

The objective function of this problem is the first derivative function ∆k associated
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to variable xk. To get the appropriate bound, this function is either maximized to get

the upper bound (i.e. opt = max), or minimized to get the lower bound (i.e opt = min.)

The decision space is the intersection of the polytope L (l,u) with the current bounds l

and u, and a set of equations (possibly empty) for each variable that has a value fixed

to 0 or 1, according to the current bounds l and u.

Locotope Tightening Algorithm(S)

Input: A quadratic pseudo–Boolean function f , given by (1.5), where
all coefficients are integers.

Initialization: Let l← l and u← u, where the vectors l and u
are given by the “standard” bounds (4.1).

Step 1: If stopping criteria S is satisfied then STOP.

Step 2: For every variable k not yet fixed (i.e. k ∈ {i ∈ V |liui < 0}):

(i) Let x∗ be an optimal solution of LP(min, k, l,u);

(ii) Let lk ← d∆k (x∗)e.

Step 3: For every variable k not yet fixed (i.e. k ∈ {i ∈ V |liui < 0}):

(i) Let x∗ be an optimal solution of LP(max, k, l,u);

(ii) Let uk ← b∆k (x∗)c.

Step 4: Go to step 1.

Output: Vectors l and u.

Figure 4.1: Locotope Tightening Algorithm (LTA).

Note that due to the way LP(min, k, l,u) is formulated, the locotope obtained in

this way may exclude some optimal solutions of the original function, but at least one

minimizer is guaranteed to belonging to it.

As soon as a linear program is solved, the corresponding bound is compared with

the old value, and updated if it is better. This last step also assumes that a quadratic

pseudo–Boolean function has integer coefficients, implying that the bounds must be

integral as well. This is not a restriction in practice since a QUBO problem can be

brought into this condition by scaling the function by a enough large factor.

The sequence of linear programs to be solved may be different than the one presented
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in Figure 4.1. Let us note that the improvement in the LTA is first given to the

lower bounds, and only after to the upper bounds. However, an alternating sequence

between maximization and minimization programs is also possible. Let us also note

that consecutive programs have constraints almost identical, typically only different in

one coefficient corresponding to the most recent improvement found for a bound. This

characteristic may be exploited to obtain a more efficient algorithm. For instance, if a

simplex method is adopted to solve the linear program, then a basic feasible solution

in one improvement step may be used in the following simplex iteration. Another

possibility is to keep the constraints unchanged (with the new bounds found) until a

persistency is found, or until a prescribed number of simplex calls is made.

The stopping criterion S in the LTA routine, can be a condition to test if no improve-

ment is possible for each bound. To satisfy this condition, the number of times that

steps 2 and 3 are executed may be very large. Thus, a stopping criterion based on the

maximum number of calls to steps 2 and 3 can be used in addition to the improvement

condition. This maximum number of calls may also depend on the fact that a variable

was fixed to 1 or 0 in the last execution of step 2 or step 3.

Example 4.3. Consider the quadratic pseudo–Boolean function f10. A call to the LTA

routine using f10 as input, produced no persistencies. All possible improvements of the

bounds were found in one execution of steps 2 and 3. The “standard bounds” of the

first derivatives of f10 are

l = (−5, −3, −5, −8, −5, −6, −5, −5, −8, −5) and

u = (7, 8, 8, 6, 10, 6, 6, 6, 6, 12) ,

and the improved bounds returned by the output of LTA are

l′ = (−4, −2, −5, −7, −3, −6, −4, −4, −5, −3) and

u′ = (7, 6, 6, 6, 8, 4, 5, 4, 5, 8) .
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4.5 Implication graph

Given a set of logical relations, it is desirable to derive all logical consequences of it.

In particular, we are interested in deriving logical conclusions from a set of quadratic

relations between two binary (Boolean) variables. In the present study, the relevance

of analyzing such a set of quadratic relations is that they may imply persistent values

for the individual variables, or to other logical quadratic relations. In practice, if all

minimizers of function f satisfy the original set of relations, then they must also satisfy

the implied conditions.

We represent a quadratic relation between two literals u, v ∈ L by elementary

Boolean equations of the type uv = 0, which is an implication meaning that both

literals must have complemented values (e.g., if u = 1 then v = 0) if they are distinct

(quadratic), and they must have value zero if u and v refer to the same literal (linear).

Example 4.4. Knowing that the quadratic relations x∗1x
∗
2 = 0, x∗2x

∗
3 = 0 and x∗3x

∗
1 = 0

hold for all minimizers x∗ ∈ Argmin (f), then x∗ must satisfy the conditions x∗1 =

x∗2 = x∗3. From these equality relations between variables, a new (quadratic) func-

tion f ′ : BV \{x1,x2} ← R with two less variables, can easily be obtained from f , such

that f ′ (x3, x4, · · · , xn) = f (x3, x3, x3, x4 · · · , xn), thus implying that a weak persistency

holds for f at y, where y ∈ ArgminBV \{x1,x2} (f ′).

A quadratic Boolean equation is a system of elementary (linear and quadratic) equa-

tions. The name “equation” for this system is related to the fact that it can be repre-

sented as the disjunction (operator ∨, where u∨ v = max (u, v)) of a subset Q ⊆ L×L

of pairs of literals and a subset L ⊆ L of literals, i.e.

∨

u∈L

u ∨
∨

u,v∈Q

uv = 0. (4.8)

Definition 4.2. A Boolean equation is consistent (or satisfiable) if and only if there

is a (partial) assignment y ∈ BS, S ⊆ V (or solution) that satisfies all elementary

equations on it.

The consistency of a quadratic Boolean equation, and a solution to it (if any), can be
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carried out by using polynomial time algorithms (see e.g. [133]). Notice that the total

number of solutions of a consistent quadratic Boolean equation may be exponentially

large. Therefore, in some situations it is useful to produce a parametric solution of it

(see e.g. [90]).

In this study we give preference to the Strong Components Algorithm (or SCA

in short) of Aspvall, Plass and Tarjan [22]. The SCA algorithm exploits a digraph

model called the implication graph. In the exposition that follows, a quadratic Boolean

equation Φ = 0 expressed as (4.8) is considered, where without loss of generality, it can

be assumed that L = ∅.

The implication graph associated with Φ is the digraph D = (L, A), where

A = {(u, v) , (u, v) |(u, v) ∈ Q} .

The digraph D is isomorphic to the digraph D̃ obtained from D by reversing the

orientation of every arc and complementing every literal.

The SCA is based on the following key result.

Proposition 4.4 ([22]). The equation Φ = 0 is consistent if and only if in the impli-

cation graph D no literal u ∈ L is in the same strong component as its complement

u.

The algorithm works on D and finds the strong components of d in reverse topologi-

cal order. The isomorphism between D and D̃ implies that for every strong component

C of D there exists a “mirror” component C̃ of D, called the dual of C, induced by

the complements of the literals in C. Hence, Proposition 4.4 implies that Φ = 0 is

satisfiable if and only if C 6= C̃ for all C of D.

The implication nature of this graph comes from the fact that for any two literals u

and v, uv = 0 if and only if u 6 v (or equivalently v 6 u.) A vertex v ∈ L is said to be

a predecessor (sucessor) of u ∈ L if there is a path in D from v (u) to u (v). Having

this in mind, the following facts are immediate.

Lemma 4.1. Let D = (L, A) be the implication graph of a quadratic Boolean equation
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Φ = 0. Then,

i) If for all literals u ∈ L, u is not both a predecessor and a sucessor of its comple-

ment u, then Φ = 0 is consistent;

ii) If Φ = 0 is consistent, and u ∈ L is a predecessor of its complement u, then u = 0;

iii) If Φ = 0 is consistent, and there is a strong component C ∈ D involving more

than one literal, then all literals u ∈ C must have the same value b, i.e. u = v = b

for all u, v ∈ C;

iv) If Φ = 0 is consistent, and there is an arc going from the strong component Cu

to the strong component Cv, then uv = 0 for all u ∈ Cu and v ∈ Cv;

v) If Φ = 0 is consistent in a solution x with a literal u ∈ L having value one

(u (x) = 1), then all the successors v of u must also have value one (v (x) = 1).

vi) If Φ = 0 is consistent in a solution x with a literal u ∈ L having value zero

(u (x) = 0), then all the predecessors v of u must also have value zero (v (x) = 0).

Lemma 4.1 implies that Φ = 0 is inconsistent if and only if there is a cycle in D

containing both a literal u and its complement u. Parts (ii–iii) of Lemma 4.1 are rules

that can be used to define persistencies on single variables, either by the existence of

strong components with several literals, or simply because there is a path in D between

a literal u and its complement u.

We say that a strong component C in a digraphD is condensed if all the vertices in C

are lumped together in a new vertex uC , such that every outgoing arc (u, v) , u ∈ C, v ∈

L \ C is removed and replaced by an arc (uC , v), and every incoming arc (v, u) , u ∈

C, v ∈ L \ C is removed and replaced by an arc (v, uC). If |C| > 1, then this basic

operation allows us to get an implication graph with fewer vertices, whose consistency

and solutions (if any) also satisfy the initial equation Φ = 0.

Let us call condensation to the digraph D∗ obtained from digraph D by condensing

all of its strong components. Notice that D∗ is an acyclic digraph, and consequently

it contains a vertex with no incoming arcs, and it contains a vertex with no outgoing

arcs.
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We say that an implication graph D is in normal form if it is its condensation (i.e.

if D = D∗), and if there is no path between a literal u ∈ L and its complement u. Let

us also denote by φD to the left hand side of the quadratic Boolean equation associated

to the implication graph D.

4.6 Posiform minimization

Posiforms have interesting structural properties that can be explored towards finding

logical relations between the literals, which imply a set of simple conditions that a

minimizer of the associated function has to satisfy.

The most trivial result on posiforms is perhaps the fact that the minimum of a

posiform φ is bounded from below by its constant term C (φ) (or a∅), i.e. ν (fφ) > C (φ).

In fact, every pseudo–Boolean function f : Bn → R can be represented by a posiform φ

for which C (φ) = min
x∈Bn

fφ (x) (see e.g. [54]).

Another simple result is related to the concept of pure literals (sometimes also called

monotone literals). A literal u is called pure in the posiform φ, if it appears on it only

in the positive form, or only in the complemented form. Pure literals define weak

persistencies as follows.

Lemma 4.2. If u is a pure literal in the posiform φ, then there is a minimizer of fφ

satisfying u = 0.

Suppose that an upper bound zφ to the minimum of a posiform φ is known. Then

the following results follow trivially.

Lemma 4.3. Let φ be a posiform represented as (1.2). If ν (fφ) 6 zφ < C (φ) + aT

for a given non–empty subset of literals T ⊆ L, then the condition
∏
u∈T u = 0 must be

satisfied by all minima of fφ.

Proof. Let x∗ be a minimizer of fφ. Since zφ > ν (fφ), then zφ > fφ (x∗), or

zφ >
∑

S⊆L

aS
∏

u∈S

u∗ ⇒ zφ > C (φ) + aT
∏

u∈T

u∗.
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To avoid a contradiction with the assumption zφ < C (φ) + aT , the minimizer indeed

has to satisfy
∏
u∈T u

∗ = 0.

Example 4.5. A quadratic posiform that represents the quadratic pseudo–Boolean func-

tion f6 is

φf6 = −5 + x6 + 2x1x3 + 2x1x4 + 2x1x5 + x1x2 + x1x6

+x2x3 + x2x6 + x2x4 + x2x5

+x3x6 + 2x3x4 + 2x3x5

+2x4x5 + x4x6

+2x5x6.

From this posiform, one gets ν (f6) > −5. Since f6 (1, 0, 0, 1, 0, 1) = −4, then we can set

zφ = −4 and thus by Lemma 4.3 we can conclude that the following quadratic Boolean

equation must be satisfied by any minimizer of f6:

x1x3 ∨ x1x4 ∨ x1x5 ∨ x3x4 ∨ x3x5 ∨ x4x5 ∨ x5x6 = 0.

Lemma 4.4. Let φ be a quadratic posiform represented as (1.6). If ν (fφ) 6 zφ <

C (φ) +min (auv, au v) for any two distinct literals u, v ∈ L, then the condition u = v

must be satisfied by all minima of fφ.

Proof. By Lemma 4.3 uv = 0 ∧ u v = 0, or similarly uv ∨ u v = 0.

4.6.1 Standard quadratic posiforms

Through simple algebraic manipulations, any given quadratic posiform can be trans-

formed to an equivalent quadratic posiform in standard form, whose nonzero terms

satisfy some conditions as follows.

Definition 4.3. A quadratic posiform φ of form (1.6) is in standard form if and only

if auvauv = 0, auvauv = 0 and auau = 0 for all literals u, v ∈ L.

Next, we show that any posiform φ ∈ P2 (f) can be efficiently transformed into a

standard posiform φ′ ∈ P2 (f). In Figure 4.2 the Standard Posiform Algorithm (or SPA
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in short) to obtain a standard posiform is described. The SPA can be implemented to

run in polynomial time in the size of φ, and produces a posiform φ′ in the same variables,

the size of which is not larger than size (φ).

In the sequel, we shall assume that every posiform associated to a network model

is in standard form. It should be remarked that it is trivial to provide a standard

posiform corresponding to any quadratic pseudo–Boolean function expressed as the

multilinear polynomial (1.1). Furthermore, several combinatorial problems (e.g., MAX–

CUT, MAX–2–SAT) have a natural representation has an optimization problem of a

standard posiform.

4.7 Rounding procedures and derandomization

The multi–linear expression (1.1) of a pseudo–Boolean function f : Bn 7→ R can be

used as well to characterize a function g : Dn 7→ R, whose domain D is not restricted to

the case where all variables are binary (i.e. where D = B). Obviously if B is a subset of

D then the minimum of function f can not be smaller than that of g in the respective

domains.

Lemma 4.5. Let f : Bn 7→ R and g : Dn 7→ R be two functions. If B ⊆ D, then

ν (f) > min {g (x) |x ∈ D}.

In particular, we shall see later on this section that if D = U then the previous

result is gap free. In order to make it clear that two functions (maybe having different

domains) have a common expression (1.1) we shall represent it with the same name,

providing when necessary the domain to make this fact clear.

Lemma 4.6. Let f be a pseudo–Boolean function given by (1.1), and let r ∈ Un. Then,

f (r1, · · · , ri−1, ri, ri+1, · · · , rn) = ri f (r1, · · · , ri−1, 1, ri+1, · · · , rn)

+ (1− ri) f (r1, · · · , ri−1, 0, ri+1, · · · , rn) ,

for every i = 1, · · · , n.
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Standard Posiform Algorithm

Input: A quadratic posiform φ ∈ P2 (f), given by (1.6).

Initialization:

Let a′0 ← a0.
Let a′u ← au for all literals u ∈ L.
Let a′uv ← auv for all literals u, v ∈ L.

Step 1: For any two literals u, v ∈ L,

(i) If a′uva
′
uv > 0, then let

a′uv ← max (a′uv − a
′
uv, 0) ,

a′uv ← max (a′uv − a
′
uv, 0) and

a′v ← a′v +min (a′uv, a
′
uv) .

(ii) If a′uva
′
uv > 0, then let

a′uv ← max (a′uv − a
′
uv, 0) ,

a′uv ← max (a′uv − a
′
uv, 0) and

a′u ← a′u +min (a′uv, a
′
uv) .

Step 2: For all literals u ∈ L, let

a′u ← max (a′u − a
′
u, 0) ,

a′u ← max (a′u − a
′
u, 0) and

a′0 ← a′0 +min (a′u, a
′
u) .

Output: A standard quadratic posiform φ′ ∈ P2 (f), given by

φ′ = a′0 +
∑

u∈L

a′uu+
∑

u,v∈L

a′uvuv.

Figure 4.2: Standard posiform algorithm.
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Proof. From (4.2),

f (r) = ri∆i (r) + Θi (r) . (4.9)

Substituting

∆i (r) = f (r1, · · · , ri−1, 1, ri+1, · · · , rn)− f (r1, · · · , ri−1, 0, ri+1, · · · , rn) and

Θi (r) = f (r1, · · · , ri−1, 0, ri+1, · · · , rn)

in (4.9), then the claimed result follows immediately.

Given r ∈ U and x ∈ B, then

rx (1− r)(1−x) =





r, if x = 1,

1− r, if x = 0.

Assuming that 00 = 1, then the above expression can be determined in the standard

algebraic way. This assumption is used in the following results.

Theorem 4.2. Let f be a pseudo–Boolean function given by (1.1), and let r ∈ Un.

Then,

f (r1, · · · , rn) =
∑

x∈Bn

(
n∏

i=1

rxi

i (1− ri)
(1−xi)

)
f (x1, · · · , xn) .

Proof. Let us prove this fact by induction on the number of variables k. If k = 1 the

claimed result follows immediately by Lemma 4.6. Let us now assume that the claim

is valid for 1 6 k < n, i.e.

f (r1, · · · , rk, rk+1, · · · , rn) =
∑

x∈Bk

(
k∏

i=1

rxi

i (1− ri)
(1−xi)

)
f (x1, · · · , xk, rk+1, · · · , rn) .

From Lemma 4.6

f (x1, · · · , xk, rk+1, · · · , rn) = rk+1 f (x1, · · · , xk, 1, rk+2, · · · , rn)

+ (1− rk+1) f (x1, · · · , xk, 0, rk+2, · · · , rn) .
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If we substitute this expression above then we get

f (r1, · · · , rk, rk+1, · · · , rn) =
∑

x∈Bk+1

(
k+1∏

i=1

rxi

i (1− ri)
(1−xi)

)
f (x1, · · · , xk+1, rk+2, · · · , rn) .

and therefore the claim is also valid for k + 1 variables.

Let us note that
∑

x∈Bn

(
n∏

i=1

rxi

i (1− ri)
(1−xi)

)
= 1,

for any r ∈ Un, and that 0 6
∏n
i=1 r

xi

i (1− ri)
(1−xi) 6 1 for every r ∈ Un and x ∈ Bn.

This means that f (r) can be seen as a convex combination of the complete set of

n–binary vectors, whose weights are defined by r.

Proposition 4.5 ([54]). Let f be a pseudo–Boolean function given by (1.1), and let

r ∈ Un. There are binary vectors x,y ∈ Bn for which

f (x) 6 f (r) 6 f (y) .

Proof. Existence of vectors x and y is an immediate consequence of Theorem 4.2.

Consider any x? ∈ ArgminBn (f). Then,

f (r1, · · · , rn) =
∑

x∈Bn

(
n∏
i=1

rxi

i (1− ri)
(1−xi)

)
f (x1, · · · , xn)

>
∑

x∈Bn

(
n∏
i=1

rxi

i (1− ri)
(1−xi)

)
f (x?)

> f (x?) .

So, x = x? holds for the claimed inequality. Obviously, any y ∈ ArgmaxBn (f) will

satisfy the other inequality as well.

Immediate consequences of the above proposition are the following two facts:

Corollary 4.4.

min
r∈Un

f (r) = min
x∈Bn

f (x)

and

max
r∈Un

f (r) = max
x∈Bn

f (x) .
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Let us recall next from [54, 64, 212] a few properties of continuous extensions of

pseudo–Boolean functions.

Proposition 4.6. Let us consider an arbitrary real vector p ∈ Un, and assume that

the variables xi, i = 1, · · · , n are pairwise independent random variables for which

pi = Prob [xi = 1] = 1− Prob [xi = 0] for i = 1, · · · , n. Then,

Exp [f (x)] = f (p) .

Proof. By definition we have Exp [xi] = pi for i = 1, · · · , n, and Exp
[∏

j∈S xj

]
=

∏
j∈S pj for S ⊆ V by the pairwise independence assumption of xi and xj for every

i 6= j. In view of the additivity of expectation, we obtain the stated equality by using

(1.5) as follows:

Exp [f (x)] = Exp

[
∑
S⊆V

cS
∏
j∈S

xj

]

=
∑
S⊆V

cS
∏
j∈S

Exp [xj ]

=
∑
S⊆V

cS
∏
j∈S

pj

= f (p) .

4.8 Best linear Euclidean approximations

Any linear pseudo–Boolean function in n variables can be optimized efficiently; if the

coefficient associated to a variable is positive then the variable has a persistent value

0, if the coefficient is negative then the corresponding variable has a persistent value 1,

and if the coefficient is zero then the optimal value of the variable can be either 0 or

1. It is natural therefore to find a “best” linear approximation of a nonlinear pseudo–

Boolean function, and use it to get a quick upper bound to the nonlinear minimization

problem.

Hammer and Holzman [125] studied the L2–approximation of pseudo–Boolean func-

tions by linear functions, enhancing some important properties preserved in the approx-

imation, and its close relationship with the well know power indices of Banzhaf ([149])
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and Shapley ([218]) in the presence of a simple game.

In this section, the results of [125] are extended by restricting the linear Euclidean

approximation to the homogeneous case. This leads to an explicit formula for computing

the approximation directly from (1.1).

Definition 4.4. Let F be a subfamily of pseudo–Boolean functions, and let f : Bn 7→ R

be a pseudo–Boolean function. The best Euclidean (or L2–norm) approximation of f in

F is the function g ∈ F that minimizes
∑

x∈Bn (g (x)− f (x))2. We write g = AF (f).

In what follows, pseudo–Boolean functions are considered to be represented by their

table form, or equivalently, as vectors in R2n
. The vector space associated to a subfamily

F of pseudo–Boolean Functions is defined as

WF
def
= {(g : Bn 7→ R) |g ∈ F } .

Lemma 4.7. If WF is a linear subspace, then the best L2–approximation in F exists

and is unique.

Proof. Since WF is a linear subspace, then the existence and uniqueness of the best

L2–approximation in F follow from the theory of orthogonal projections in Euclidean

spaces.

Lemma 4.8. If WF is a linear subspace, then AF is a linear operator, i.e.

AF

(
m∑

i=1

αifi

)
=

m∑

i=1

αiAF (fi) , (4.10)

for all pseudo–Boolean functions fi, i = 1, · · · ,m, and all real numbers αi, i = 1, · · · ,m.

Proof. By Lemma 4.7, A is the orthogonal projection onto WF . It follows that AF is a

linear operator.

The family of linear pseudo–Boolean functions is denoted as

L
def
= {(l : Bn 7→ R) |deg (l) 6 1}
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and the family of homogeneous linear pseudo–Boolean functions is denoted as

H
def
= {l ∈ L |c∅ = 0} .

WL andWH are linear subspaces in Rn2
. Indeed, a linear combination of (homogeneous)

linear functions, it is also a (homogeneous) linear function.

Proposition 4.7 ([125]). The best linear approximation of a monomial
∏
i∈S xi is

AL

(
∏

i∈S

xi

)
≡ −
|S| − 1

2|S|
+

1

2|S|−1

∑

j∈S

xj .

Proposition 4.8 ([125]). The best linear approximation of a pseudo–Boolean function

f given as in (1.1) is

AL (f) ≡ −
∑

S⊆V

cS (|S| − 1)

2|S|
+
∑

j∈V




∑

S⊆V:j∈S

cS

2|S|−1


xj

≡ −
∑

S⊆V

cS (|S| − 1)

2|S|
+
∑

j∈V

∆j

(
1

2
, · · · ,

1

2

)
xj.

Proof. Use Proposition 4.7, Lemma 4.8, and apply the linearity property (4.10) to

expression (1.1).

Next, we show some lemmas that later on this section will be used to define the

counterparts of Propositions 4.7 and 4.8 to the homogeneous case.

Let S ⊆ V. The best homogeneous linear l2–approximation of
∏
i∈S xi is determined

by solving the following nonlinear optimization problem:

min
(a1,··· ,an)∈Rn


h (a1, · · · , an) =

∑

x∈Bn

(
n∑

i=1

aixi −
∏

i∈S

xi

)2

 (4.11)

Lemma 4.9. h is a strictly convex function.
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Proof. The first partial derivatives of h are defined as

∂h (a1, · · · , an)

∂aj
= 2

∑

x∈Bn

xj

(
n∑

i=1

aixi −
∏

i∈S

xi

)
,

for j = 1, · · · , n.

The second order partial derivatives of h are defined as

∂2h(a1,··· ,an)
∂aj∂aj

= 2n for j = 1, · · · , n and

∂2h(a1,··· ,an)
∂aj∂ak

= 2n−1 for j, k = 1, · · · , n, j 6= k.

To show that h is a strictly convex function, we next show that the corresponding

Hessian

∇2h (a1, · · · , an) = 2n−1




2 1 · · · 1 1

1 2 · · · 1 1

...
...

. . .
...

...

1 1 · · · 2 1

1 1 · · · 1 2




,

is positive definite.

The eigenvalues of ∇2h (a1, · · · , an) are positive and given by





λj = 2n−1, j = 1, · · · , n− 1

λn = (n+ 1) 2n−1.
(4.12)

This result can be found by computing the eigenvalues of the matrix of dimension

n × n with all elements equal to 1 (we call it B). Clearly, the determinant of B is 0,

n− 1 of the B eigenvalues are zero and the remaining eigenvalue is n (because the sum

of the eigenvalues is equal to the sum of the elements of the main diagonal). Since the

eigenvalues of B+ I can be obtained by the sum of the eigenvalues of B plus 1 (i.e. the

eigenvalues of I), then (4.12) follows.

h (a1, · · · , an) > 0 and Lemma 4.9 imply that the solution of (4.11) exists, is unique
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and it is determined by the first order stationary conditions:

∂h (a1, · · · , an)

∂aj
= 2

∑

x∈Bn

xj

(
n∑

i=1

aixi −
∏

i∈S

xi

)
= 0 for all j = 1, · · · , n. (4.13)

Note that the existence and uniqueness properties of this solution, can also be derived

from Lemma 4.7.

Lemma 4.10. The unique solution of (4.13) is given by

aj =





n−|S|+2

2|S|−1(n+1)
, j ∈ S

− |S|−1

2|S|−1(n+1)
, j ∈ V�S.

(4.14)

Proof. Since

2
∑

x∈Bn

xixj =





2n−1, i 6= j

2n, i = j
and 2

∑
x∈Bn

xj
∏
i∈S

xi =





2n−|S|, j /∈ S

2n−|S|+1, j ∈ S

then (4.13) can be formulated in matrix terms as

2n−1 (B + I)a =
2n

2|S|
(e + χS) ,

where B is defined as before, e = (1, · · · , 1) and χS is the characteristic vector repre-

senting S in {1, · · · , n}. So,

(B + I)a =
1

2|S|−1
(e + χS)

⇐⇒ a =
1

2|S|−1
(B + I)−1 (e + χS)

⇐⇒ a =
1

2|S|−1

(
I−

1

n+ 1
B

)
(e + χS)

⇐⇒ a =
((n+ 1) I−B) (e + χS)

2|S|−1 (n+ 1)

⇐⇒ a =
e + ((n+ 1) I−B)χS

2|S|−1 (n+ 1)
.
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Theorem 4.3. The best homogeneous linear approximation of a monomial
∏
i∈S xi is

AH

(
∏

i∈S

xi

)
≡

1

2|S|−1 (n+ 1)


(n− |S|+ 2)

∑

j∈S

xj − (|S| − 1)
∑

j∈V�S

xj


 .

Proof. Since the unique minimizer of problem (4.11) is determined by (4.10), the result

follows from Lemma 4.10.

There is a notorious difference in the L2–approximation of a monomial
∏
j∈S xj

between the general and the homogeneous cases, and it is the fact that the coefficient

of a variable not involved in the monomial is always zero for the first case and is possibly

nonzero, i.e. 



2
n+1 , S = ∅

0, |S| = 1

1−|S|
2|S|−1(n+1)

|S| > 1,

(4.15)

for the homogeneous case. Furthermore, the coefficient does not depend on n for the

general case, but the coefficients (4.15) of the homogeneous case depend on the dimen-

sion of the function to be approximated.

Theorem 4.4. The best homogeneous linear approximation of a pseudo–Boolean func-

tion f given as in (1.1) is

AH (f) ≡
∑

j∈V




∑

S⊆V:j∈S

cS (n− |S|+ 2)

2|S|−1 (n+ 1)
−

∑

S⊆V:j∈V�S

cS (|S| − 1)

2|S|−1 (n+ 1)


xj

≡
∑

j∈V




∑

S⊆V:j∈S

cS

2|S|−1
−

1

n+ 1

∑

S⊆V

cS (|S| − 1)

2|S|−1


xj

≡
∑

j∈V


∆j

(
1

2
, · · · ,

1

2

)
−

1

n+ 1

∑

S⊆V

cS (|S| − 1)

2|S|−1


xj .

Proof. Use Theorem 4.3, Lemma 4.8, and apply the linearity property (4.10) to expres-

sion (1.1).

A consequence of the last result is the fact that the best homogeneous linear ap-

proximation has coefficients equal to the corresponding non–homogeneous case, minus
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a constant

1

n+ 1

∑

S⊆V

cS (|S| − 1)

2|S|−1
.

Because of this fact, the following relationship between the two linear operators AH

and AL holds for any pseudo–Boolean function f .

Corollary 4.5.

AH (f) ≡ (1−AH (1))
∑

S⊆V

cS (|S| − 1)

2|S|
+AL (f) .

The best homogeneous linear L2–approximation is exemplified next.

Example 4.6. Let g : B5 7→ R be defined as

g (x1, x2, x3, x4, x5) = 8− x1 + 5x2 − x1x5 + 4x3x5 − 6x2x4x5 + 2x1x2x3x4.

This example appears in [125] and the corresponding best linear approximation is

AL (g) ≡
67

8
−

1

8
(−10x1 + 30x2 + 18x3 − 10x4 + 0x5) .

Using (4.10), we get a term–by–term homogeneous linear approximation of g as

follows:

1 by AH (1) ≡ 1
3x1 + 1

3x2 + 1
3x3 + 1

3x4 + 1
3x5,

x1 by AH (x1) ≡ x1,

x2 by AH (x2) ≡ x2,

x1x5 by AH (x1x5) ≡ 5
12x1 −

1
12x2 −

1
12x3 −

1
12x4 + 5

12x5,

x3x5 by AH (x3x5) ≡ − 1
12x1 −

1
12x2 + 5

12x3 −
1
12x4 + 5

12x5,

x2x4x5 by AH (x2x4x5) ≡ − 1
12x1 + 1

6x2 −
1
12x3 + 1

6x4 + 1
6x5 and

x1x2x3x4 by AH (x1x2x3x4) ≡
1
16x1 + 1

16x2 + 1
16x3 + 1

16x4 −
1
16x5.

As expected, the linear part of g is its own approximation. Putting things together
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and using linearity, we get the best homogeneous L2–norm linear approximation of g:

AH (g) ≡ 8

(
1

3
x1 +

1

3
x2 +

1

3
x3 +

1

3
x4 +

1

3
x5

)
− x1 + 5x2

−

(
5

12
x1 −

1

12
x2 −

1

12
x3 −

1

12
x4 +

5

12
x5

)

+4

(
−

1

12
x1 −

1

12
x2 +

5

12
x3 −

1

12
x4 +

5

12
x5

)

−6

(
−

1

12
x1 +

1

6
x2 −

1

12
x3 +

1

6
x4 +

1

6
x5

)

+2

(
1

16
x1 +

1

16
x2 +

1

16
x3 +

1

16
x4 −

1

16
x5

)

≡
1

24
(37x1 + 157x2 + 121x3 + 37x4 + 67x5) .

The following example will provide explicit formulas of approximations of polyno-

mial expressions involving complemented variables, i.e. literals.

Example 4.7. Let P,N ⊆ V, P ∩N = ∅, and g : Bn 7→ R be defined as

g (x) =
∏

i∈P

xi
∏

j∈N

xj. (4.16)

The approximation coefficient Γ1 corresponding to a variable xi not appearing in

product (4.16) (i.e., variables xi ∈ V\ (P ∪N)) is defined firt. If xj = 1− xj, j ∈ N is

used to find the associated multilinear expression, then a polynomial with 2p monomials

(without complemented variables) is obtained. According to the number of variables on

it, the coefficient of each of the resulting monomials is either +1 or −1. So,

Γ1 =

|N |∑

j=0

(
|N |

j

)
(−1)|N |+j A (n, |P |+ |N | − j) , (4.17)

where A (n, |P |+ |N | − j) = −|P |−|N |+j+1

2|P |+|N|−j−1(n+1)
. Simplifying the right hand side of (4.17),
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then we get

Γ1 =

p∑

j=0

(
|N |

j

)
(−1)|N |+j

− |P | − |N |+ j + 1

2|P |+|N |−j−1 (n+ 1)

=
(−1)|N |

[
(− |P | − |N |+ 1)

∑|N |
j=0

(|N |
j

)
(−2)j +

∑|N |
j=1

(|N |
j

)
(−2)j

]

2|P |+|N |−1 (n+ 1)

=
(−1)|N |

[
(− |P | − |N |+ 1) (−1)|N | + |N |

∑|N |−1
k=0

(|N |−1
k

)
(−2)k+1

]

2|P |+|N |−1 (n+ 1)

=
− |P | − |N |+ 1− 2 |N | p (−1)|N | (−1)|N |−1

2|P |+|N |−1 (n+ 1)

=
|N | − |P |+ 1

2|P |+|N |−1 (n+ 1)
.

The approximation coefficient Γ2 corresponding to a non–negated variable xi appear-

ing in product (4.16) (i.e., variables xi, i ∈ P ) is given as

Γ2 =

|N |∑

j=0

(
|N |

j

)
(−1)|N |+j A (n, |P |+ |N | − j) , (4.18)

where A (n, |P |+ |N | − j) = n−|P |−|N |+j+2

2|P |+|N|−j−1(n+1)
. Simplifying (4.18), then the following

formula to get Γ2 is derived:

Γ2 =

|P |+|N |∑

j=0

(
|N |

j

)
(−1)|N |+j

n− |P | − |N |+ j + 2

2|P |+|N |−j−1 (n+ 1)

=
|N | − |P |+ n+ 2

2|P |+|N |−1 (n+ 1)

= Γ1 + 21−|P |−|N |.

The approximation coefficient Γ3 corresponding to a negated variable appearing in

product (4.16) (i.e., variables xi ∈ N) is obtained through the use of the previous

approximations, Γ1 and Γ2. Γ1 is used for a term with less one variable and coefficient
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+1. Γ2 is used for a term with the same number of variables but with coefficient −1:

Γ3 = Γ1 (|P |+ |N | − 1, |N | − 1)− Γ2 (|N |+ |N | , |N | − 1)

=
− (|P |+ |N | − 1) + 1 + 2 (|N | − 1)

2(|P |+|N |−1)−1 (n+ 1)
−
n− |P | − |N |+ 2 + 2 (|N | − 1)

2|P |+|N |−1 (n+ 1)

=
−2 (|P |+ |N |) + 4 |N | − n+ |P |+ |N | − 2 |N |

2|P |+|N |−1 (n+ 1)

=
|N | − |P | − n

2|P |+|N |−1 (n+ 1)

= Γ1 − 21−|P |−|N |.

Example 4.8. Let g : B5 7→ R be defined as

g (x1, x2, x3, x4, x5) = 8− x1 + 5x2 − x1x5 + 4x3x5 − 6x2x4x5 + 2x1x2x3x4.

This example appears in [125] and the corresponding best linear approximation is

AL (g) ≡
79

8
+

1

8
(6x1 + 50x2 − 14x3 − 14x4 − 24x5)

Using the results of Example 4.7, we get a term–by–term homogeneous linear ap-

proximation of g as follows:

x1 by AH (x1) ≡ −2
3x1 + 1

3x2 + 1
3x3 + 1

3x4 + 1
3x5,

x1x5 by AH (x1x5) ≡ 7
12x1 + 1

12x2 + 1
12x3 + 1

12x4 −
5
12x5,

x3x5 by AH (x3x5) ≡ 1
4x1 + 1

4x2 −
1
4x3 + 1

4x4 −
1
4x5,

x2x4x5 by AH (x2x4x5) ≡ 0x1 −
1
4x2 + 0x3 + 1

4x4 + 1
4x5 and

x1x2x3x4 by AH (x1x2x3x4) ≡
7
48x1 −

5
48x2 + 7

48x3 −
5
48x4 + 1

48x5.
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Putting things together, we get

AH (g) ≡ 8

(
1

3
x1 +

1

3
x2 +

1

3
x3 +

1

3
x4 +

1

3
x5

)

−

(
−

2

3
x1 +

1

3
x2 +

1

3
x3 +

1

3
x4 +

1

3
x5

)

+5x2

−

(
7

12
x1 +

1

12
x2 +

1

12
x3 +

1

12
x4 −

5

12
x5

)

+4

(
1

4
x1 +

1

4
x2 −

1

4
x3 +

1

4
x4 −

1

4
x5

)

−6

(
0x1 −

1

4
x2 + 0x3 +

1

4
x4 +

1

4
x5

)

+2

(
7

48
x1 −

5

48
x2 +

7

48
x3 −

5

48
x4 +

1

48
x5

)

=
1

24
(97x1 + 229x2 + 37x3 + 37x4 + 7x5)

Corollary 4.6. The best homogeneous linear approximation of a quadratic pseudo–

Boolean function f given as in (1.5) is

AH (f) ≡
∑

j∈V




2c0
n+ 1

+ cj +

n

(
j−1∑
r=1

crj +
n∑

r=j+1
cjr

)
−

∑
16r<s6n:r 6=j,s 6=j

crs

2 (n+ 1)



xj .
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Chapter 5

Roof–Duality and New Persistency Results

Hammer, Hansen and Simeone [123] have shown how three different approaches yielded

the same upper bound to the maximum of a quadratic pseudo–Boolean function f ∈ F2.

This bound was called the roof dual of f . Roof–duality appeared in many other studies

since [123], and its strong relation with many other basic methods was demonstrated in

several publications (e.g., [12, 123, 56]), together with numerous generalizations (e.g.,

[49, 50, 54]) and algorithmic improvements (e.g., [51, 59]).

In this study, the roof dual results of Hammer et al. [123] are translated into the

lower bound case, for which the term floor dual would probably be more appropriate.

However, we kept the name roof dual in order to emphasize that all results are perfectly

analogous for the case of upper and lower bounds.

Boros et al. [51, 59] proposed a network flow model which is able to represent a

quadratic posiform. Based on this network model, Boros et al. [51, 59] proposed a

maximum flow algorithm in a capacitated network with 2n+2 vertices, which provides

an efficient way to compute the roof dual. A special implementation of the maximum

flow algorithm of [51, 59] to find the roof dual is described in this chapter. The prac-

tical computational efficiency of the implemented algorithm is then demonstrated and

compared with that of other alternative methods.

The quality of the roof dual bound is highly dependent on the type of problem. For

a general QUBO, the quality of this bound is not very good. However, we will see in

this and in the subsequent chapters that roof dual delivers near-optimal solutions for

QUBOs derived from various families of problems.
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5.1 Minorization

Definition 5.1. A linear minorant (or lower plane) of a pseudo–Boolean function f

in S is any linear function l (x) = a0 +
∑

ieV aixi having real coefficients a0, a1, · · · , an,

which satisfy l (x) 6 f (x) for all x ∈ S.

If a pseudo–Boolean function f is replaced with a linear minorant l in (1.3) then a

linear relaxation

min
x∈S

l (x) (5.1)

of the minimum of the function is obtained. Clearly, the optimal solution of (5.1) is a

lower bound on νS (f), the optimum value of (1.3).

Definition 5.2. Let L be a family of linear minorants of f in S. The set of linear

minorants L is said to be complete in S if f is the pointwise maximum of these linear

functions, i.e. if

f (x) = max
l∈L

l (x) ,

for all x ∈ S.

For a complete family of minorants L in S, the equality

min
x∈S

f (x) = min
x∈S

max
l∈L

l (x)

holds.

It is desirable to find a linear minorant in L for which the optimal value of (5.1) is

as close as possible to νS (f). This result can be obtained by solving the problem

MS (f,L)
def
= max

l∈L
min
x∈S

l (x) 6 min
x∈S

max
l∈L

l (x) = νS (f) .

A linear minorant l∗ such that maxx∈S l
∗ (x) = MS (f,L) is called best linear mino-

rant (or best lower plane) in L. One always has MS (f,L) 6 νS (f), and the difference

νS (f) − MS (f,L) is called the duality gap with respect to L. Note that the same

reasoning can be used to define linear majorants (or upper planes) of f in S, i.e. a
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linear function in the V variables, such that l (x) > f (x) for all x ∈ S.

A term–by–term majorization procedure was shown by Hammer, Hansen and Sime-

one [123], which provides a well known upper bound for f ∈ F2 in Bn, called roof dual of

f . The method of finding a “good” linear majorant (or minorant) to a pseudo–Boolean

function appeared much earlier in the literature (e.g., [122, 127]).

The roof dual results of Hammer et al. [123] are translated next into the lower

bound case. This method considers a complete family of linear minorants, formed by

combining best L1–norm linear minorants of the quadratic terms of the polynomial

representation (1.5) of the function.

Lemma 5.1 ([123]). All linear minorants α0 + αxx+ αyy of the product xy in L1 are

of the form −α0 = αx = αy = λ with λ ∈ [0, 1].

Lemma 5.2 ([123]). All linear minorants β0 +βxx+βyy of the product −xy in L1 are

of the form β0 = 0 and βx = 1− βy = λ with λ ∈ [0, 1].

At this point, it is natural to ask about the possible existence of other linear mino-

rants found by using other norms. It turns out however that the solution sets presented

in Lemmas 5.1 and 5.2 for the L1–norm case, contain the solutions of the L2 and L∞

cases. As a consequence the L1–norm provides best linear minorants which are not

“worse” than the ones corresponding to the L2 and L∞ cases ([123]).

Given a quadratic pseudo–Boolean function f ∈ F2 as in (1.1), a family R of

linear minorants of it is defined by taking the weighted sum of the best L1–norm linear

minorants of its terms, and using as weights the coefficients of the terms, i.e.
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R (f)
def
=





c0 +
n∑
i=1

cixi +
∑

16i<j6n
cij<0

cij (λijxi + (1− λij)xj)

+
∑

16i<j6n
cij>0

cijλij (−1 + xi + xj)

∣∣∣∣∣∣
0 6 λij 6 1,

1 6 i < j 6 n





=





c0 +
n∑
i=1




−
n∑

j=i+1
cij>0

cijλij+




ci +
n∑

j=i+1
cijλij

+
i−1∑
j=1
cji>0

cjiλji +
i−1∑
j=1
cji<0

cji (1− λji)



xi




∣∣∣∣∣∣
0 6 λij 6 1,

1 6 i < j 6 n





.

R (f) is a complete family, and therefore the roof dual value of f follows ([123]):

MR (f)
def
= M (f,R (f)) = min

l∈R(f)
max
x∈Bn

l (x) .

Let us see that MR (f) can be found by solving a linear program. A linear pseudo–

Boolean function of family R (f) has the form l (λ) = g0 (λ) +
∑

i∈V gi (λ)xi. For a

fixed λ = λ∗ the minimum value of l (λ)∗ is simple determined by the sign of the linear

coefficients gi (λ
∗) for all indices i ∈ V. If gi (λ

∗) > 0 then x∗i = 0, if gi (λ
∗) < 0 then

x∗i = 1, and if gi (λ
∗) = 0 then x∗i can be any binary value. Putting these facts together,

and introducing a variable ti for every negative linear coefficient gi (λ), i ∈ V, it is not

difficult to show ([123]) that MR (f) is the optimal value of the linear program

max c0 −
∑

16i<j6n
cji>0

cijλij +
n∑
i=1

ti

subject to

ci +
i−1∑
j=1
cji>0

cjiλji +
i−1∑
j=1
cji<0

cji (1− λji) +
n∑

j=i+1
cijλij > ti, i ∈ V

0 6 λij 6 1, 1 6 i < j 6 n

ti 6 0, i ∈ V,

(5.2)
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which is characterized by n constraints and
(n
2

)
+ n variables.

5.2 Linearization

It is very common to use linear integer programming to optimize a polynomial in 0–1

variables. The first publication of this nature is perhaps due to Fortet [100], and there

were many others to follow ([27, 110, 111, 128, 210, 233]).

The basic idea of this approach is to replace a term of the polynomial by a new

variable, and use linear inequalities to enforce the new variable to take the value of the

term for all possible values of the 0–1 variables involved in the term.

Example 5.1. Let f be a pseudo–Boolean function given as a multilinear polynomial

(1.1), and let us construct a linear integer program, whose optimal value is equivalent

to the minimum value of f . Consider a term
∏
i∈S

xi of f with a nonzero coefficient cS.

The linearization procedure replaces the product
∏
i∈S

xi by a new variable zS, such that

zS =
∏
i∈S

xi for all binary assignments of the variables in S. The inequalities

zS 6 xi, i ∈ S

zS >
∑
i∈S

xi − |S|+ 1

zS > 0

are used to enforce this relation. It is easy to see that zS is bounded from above by

the first set of constraints, and is bounded from below by the last two constraints. One

of these two options is redundant in a minimum of f . Namely, if cS is negative (re-

spectively positive) then the last two constraints are redundant, whereas if cS is positive

(respectively negative) then the first |S| constraints are redundant in any minimum (re-

spectively maximum) of f .

The standard linearization procedure for computing the minimum value of a quadratic
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pseudo–Boolean function given as (1.5) is

min

(
c0 +

n∑
i=1

cixi +
∑

16i<j6n
cijyij

)

subject to

yij 6 xi, 1 6 i < j 6 n, cij < 0,

yij 6 xj, 1 6 i < j 6 n, cij < 0,

yij > xi + xj − 1, 1 6 i < j 6 n, cij > 0,

yij > 0, 1 6 i < j 6 n,

xj ∈ B, j ∈ V,

(5.3)

whose optimal solutions x? ∈ Bn are minimizers of f .

Replacing in the above formulation the integrality conditions on x, by the conditions

x ∈ U, a linear programming relaxation is obtained, whose optimum value LR (f) is a

lower bound on the minimum of f .

Proposition 5.1 ([123]).

LR (f) = MR (f) .

Proof. The somewhat technical proof can be found in Hammer et al. [123], whose basic

step is to show that the linear program (5.3) is the dual of problem (5.2).

5.2.1 Persistency of linearizations

Proposition 5.2 ([48]). Let Uk,Zk (k = 1, · · · ,m) be subsets of the set of variables

V, such that Uk ∩ Zk = ∅ (k = 1, · · · ,m). If the polyhedron P defined by the set of

inequalities
∑
i∈Uk

xi +
∑
i∈Zk

(1− xi) 6 1 (k = 1, · · · ,m) ,

0 6 xi 6 1 i ∈ V.

(5.4)

is not empty, then it has an element with values xi ∈
{
0, 1

2 , 1
}

for all i ∈ V.
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Proof. To a real vector α ∈ Rn we shall associate another vector α̂ defined by

α̂i =





0 if αi <
1
2 ,

1
2 if αi = 1

2 , (i = 1, · · · , n) .

1 if αi >
1
2 ,

Let us prove the claim by showing that if α is an element of the polyhedron P, then

so is α̂. Clearly, there is at most an index for which either αi <
1
2 and i ∈ Zk or

αi >
1
2 and i ∈ Uk for a given k = 1, · · · ,m. If such index i exists, then for all

the remaining indices j 6= i one must have αj <
1
2 for j ∈ Uk \ {i} and αj >

1
2 for

j ∈ Zk \ {i}, implying thus α̂j = 0, and hence
∑
j∈Uk

α̂j +
∑
j∈Zk

(1− α̂j) 6 1. If there

is no such index i, then α̂j 6 αj for j ∈ Uk and α̂j > αj for j ∈ Zk, implying that
∑
j∈Uk

α̂j +
∑
j∈Zk

(1− α̂j) 6
∑
j∈Uk

αj +
∑
j∈Zk

(1− αj) 6 1.

Definition 5.3 ([60]). Given a vector α ∈ P, the set of indices i = 1, · · · , n having

αi = 1
2 is called the curse of α, and is denoted by C (α).

Proposition 5.3 ([60]). If α ∈ P and β ∈ P, then there is a γ ∈ P such that C (γ) =

C (α) ∩ C (β).

Proof. It is easy to check that γ = 1
4 α̂+ 3

4 β̂ satisfies the above conditions.

Since there is only a finite number of possible curses, it follows from Proposition 5.3

that

Corollary 5.1. There is a unique maximal subset CP ⊆ {1, · · · , n} such that CP ⊆ C (α)

for every α ∈ P.

The next question that we address is how to find out an element of P that has a

maximal set of integral values.

Lemma 5.3. Given a polyhedron P defined as (5.4) and an index i ∈ {1, · · · , n}, then

the lower dimension polyhedron P′
def
= {x ∈ P |xi = b} (b = 0, 1), when it is non-empty,

has a set of inequalities representation equivalent to the structure of those “packing”

inequalities of (5.4).
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Proof. Let us assume that there is a point α ∈ P having αi = b. Then this assignment

in (5.4) results in packing inequalities having the form
∑
j∈U

xj +
∑
j∈Z

(1− xj) 6 1 − b.

There are two cases to consider:

(i) If the right hand side 1−b is 1 then the resulting inequality has the required form;

(ii) If the right hand side 1−b is 0 then all the points must have value 0 for all indices

in U and must have value 1 for all indices in Z.

All the transitive assignments (ii) can be re-applied to the remaining packing inequali-

ties, either resulting again in either case (i) or (ii). Thus, in the end of the this recursive

procedure either we get an assignment of values to some indices or we get inequalities

of the type
∑
j∈U ′

xj +
∑
j∈Z′

(1− xj) 6 1.

Theorem 5.1. If P is non-empty, then there is a vector γ ∈ P that has integral values

for all indices except for indices belonging to CP.

Proof. Since CP is the intersection of all curses of points in P, then for the remaining

indices j ∈ {1, · · · , n} \ CP there is a point α with integral value for αj. Using this

property and the result of Corollary 5.1 we shall construct a point γ that has a maximal

set of integral values. Given an index j ∈ {1, · · · , n} \ CP find a point α with integral

value for αj . Fix γj = αj and define a new polyhedron P′ = P ∩ {x ∈ P |xj = αj }.

From Lemma 5.3, P′ also has half integral points, and Corollary 5.1 also applies to it.

Also, note that CP′ = CP. Thus, if there are indices not in CP not yet fixed in γ we

can apply the above procedure to fix those indices to an integral value, thus proving

the claim.

Lemma 5.4. Let f be a pseudo–Boolean function f and let φf =
∑

T⊆L aT
∏
u∈T u be

a posiform representation of it. Then, the maximum of f is the optimum value of the
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0–1 linear integer program

max a∅ +
∑

T⊆L|aT>0

aT yT

subject to

yT + (1− u) 6 1, T ⊆ L, aT > 0, u ∈ T,

u = 1− u, u ∈ L,

u ∈ BL,

y ∈ B|{T⊆L|aT>0}|.

(5.5)

Proof. The result follows directly after applying the linearization procedure to each

non-trivial term of the posiform.

If the integrality constraint of problem (5.5) is relaxed and if all the complemented

literals u are replaced by 1−u, then the corresponding set of feasible solutions is defined

by packing inequalities. Let us call this polyhedron as PS . It is trivial to see that PS

is non-empty, since point
(

1
2 , · · · ,

1
2

)
belongs to it. Corollary 5.1 implies that there is a

unique maximal subset CPS
of indices of points of PS having value 1

2 .

The question addressed next is to show that the integral values of an optimal solution

of the relaxation are persistent in (5.5). This result allows us to simplify the problem

at hand by fixing the corresponding variables with those values.

Theorem 5.2. Let α? ∈ PS be an optimal solution to the relaxation of (5.5). Then,

if α?i = 1 for i ∈ U , and α?i = 0 for i ∈ Z, then there is an integral optimal solution β?

of (5.5) having β?i = α?i for i ∈ U ∪ Z.

Proof. To prove this result we first reduce problem (5.5) to a vertex packing problem

on a weighted graph G = (V,E). The vertex set V is defined by the set of literals plus

the set of variables used to linearize high degree terms, i.e. V = V1 ∪ V>2 where

V1 = {{u} |u ∈ L} , and

V>2 = {T |T ⊆ L, aT > 0, |T | > 1} .

The edge set E is defined as follows:
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• For every non-complemented vertex {u} ∈ V1 we define an edge ({u} , {u});

• For every vertex T ∈ V>2 we define an edge (T, {u}) for every u ∈ T .

The weight of a vertex {u} ∈ V1 is a{u}+M , where M is a sufficient large number (e.g.

M = 1+2
∑

T⊆L|T 6=∅

aT ). The weight of a vertex T ∈ V>2 is simply aT . Next, we present

the standard 0-1 linear program to find a maximum vertex packing (or similarly, stable

set, independent set) to graph G (see also Section 10.1):

max a∅ +
n∑
i=1

(
M + a{xi}

)
xi +

n∑
i=1

(
M + a{xi}

)
xci +

∑
T⊆L|aT>0,|T |>2

aT yT

subject to

yT + xci 6 1, T ⊆ L, aT > 0, |T | > 2, xi ∈ T,

yT + xi 6 1, T ⊆ L, aT > 0, |T | > 2, xi ∈ T,

xi + xci 6 1, i = 1, · · · , n,

x,xc ∈ Bn,

y ∈ B|{T⊆L|aT>0,|T |>2}|.

(5.6)

Let us call to the polyhedron defined by the continuous relaxation of problem (5.6) as

P′S . It is well known that every extreme point of P′S is half-integral ([30]), and that if

an optimal solution of the relaxation of problem (5.6) has integral values, then there is

a persistency for each one of those indices with discrete values in a optimum of problem

(5.6) ([182]; see Section 10.1). Every optimal solution (x?,xc?,y?) of problem (5.6)

must have x? = (1, · · · , 1) − xc?. Also due to our choice of value M , any such optimal

solution originates an optimal solution (x?,y?) of problem (5.5) with the same value

shifted below by M .

We summarize next the main results presented so far in this section. First, we have

seen that posiform maximization (5.5) is equivalent to a weighted graph stability prob-

lem (5.6). From graph stability theory, we have seen that the relaxed linearized version

of the problem has half-integral values ([30]), and that the variables of the relaxation

with value 1 belong to an optimal weighted stable set ([182]). Second, Corollary 5.1

shows that the relaxation of the linearization problem associated to the maximization
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of a posiform has a maximal set of variables with value 1
2 in all feasible solutions. This

last result gives a limit on the maximum number of variables that can be simplified by

their persistent values in the relaxed version of the linearization models.

The important question to address next is therefore how to find efficiently this

maximal set of persistencies. A possible procedure is to use linear programming to

solve the relaxation of the stability problem (5.6) of a graph G. If there are any

variables with integral values, then add all associated vertices with value 1 to a set S

and remove from G all vertices in S and all their neighbors. After this stage then a

probing procedure can be applied. For each vertex i left in G, we would force vertex i to

belong to a maximum stable set, and apply any persistent conclusions on the reduced

graph to infer if this vertex is on a maximum stable set of the original graph. For

instance, if the optimum of problem (5.6) for the reduced graph is equivalent to the

optimum of that problem associated to the original graph, then vertex i must belong to

a maximum stable set of the original graph. This procedure has been initially proposed

by Nemhauser and Trotter [182].

In Section 10.1 we propose an alternative algorithm that is based on the network

flow model presented in the following section. A maximal set of persistencies for graph

stability (and consequently for posiform maximization as well) is derived through the

application of a strong components algorithm to the resulting residual network (see

Chapter 7 and Section 10.1).

It should be remarked that it is possible to translate the previous results to posiform

minimization, since given any posiform in n variables it is possible to reproduce a

negaform of it without exponentially increasing the size of the original posiform. For

instance, the term uvwz could be replaced by uvwz = 1− uvwz − uvw − uv − u.

Clearly, a QUBO problem can be represented in either forms, and from its multilin-

ear form (1.5), a quadratic pseudo–Boolean function can be brought into any quadratic

posiform or negaform. Thus, all the results described in this section apply to the QUBO

linearization problem (5.3).
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5.3 Implication networks

In this section, we introduce the network flow model for a given quadratic posiform φ

in standard form (see Section 4.6.1). It will be seen that this network model can be

used to decompose the original problem in “simpler” subproblems, and to derive lower

bounds, (weak and strong) persistencies and logical relations of the minimum of the

associated posiform.

Let us associate to a standard quadratic posiform φ, a capacitated directed network

Gφ = (N,A), where the node set is defined as N = L ∪ {x0, x0}, with x0 being an

additional symbol representing the constant x0 = 1. To every quadratic term auvuv of

φ we associate two arcs (u, v) and (v, u), and let the capacity of both arcs be 1
2auv. By

writing the linear terms as auu = auux0, similarly we associate two arcs (u, x0) and

(x0, u), and let the capacity of both arcs be 1
2au. Let us note that the constant term

C (φ) was disregarded from this construction.

Conversely, given a directed network Gφ = (N,A) with N = L∪ {x0, x0}, and with

nonnegative capacities cuv assigned to the arcs (u, v), we can associate to it a quadratic

posiform:

φG =
∑

(u,v)∈A

cuvuv.

It is easy to see that the above definitions imply that

Proposition 5.4 ([54]). There is a one–to–one correspondence between quadratic posi-

forms for which C (φ) = 0, and capacitated directed networks G = (N,A) with node set

N = L ∪ {x0, x0}. Furthermore, the involution φGφ
= φ holds for such corresponding

pairs.

Example 5.2. Consider the quadratic pseudo–Boolean function g = f6 (x1, x2, x3, x4, x5, 0).
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x0 x0

x1x1

x2x2

x3x3

x4x4

x5x5

1 1

1 1

2 2

1 1

11

11

0.50.5

11
0.50.5

0.50.5

0.50.5
1 1

11

1 1

Figure 5.1: The network Gφg corresponding to the posiform φg of Example 5.2.

A quadratic posiform that represents g is

φg = −8 + 2x1 + 2x3 + 4x4 + 2x5

+2x1x3 + 2x1x5 + x1x2 + 2x1x4

+x2x3 + x2x4 + x2x5

+2x3x4 + 2x3x5

+2x4x5.

The corresponding capacitated network Gφg can be seen in Figure 5.1.

Definition 5.4. A posiform φ ∈ P2 (f) given as expression (1.6) is purely quadratic

if it does not contain linear terms, i.e. au = 0 for all u ∈ L.

Purely quadratic posiforms can be used to detect components of the original network

that can be optimized separately, thus providing a convenient way to find the optimum

of the original problem by solving several simpler sub–problems.
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Proposition 5.5 ([42]). Let φ ∈ P2 (f) be a purely quadratic posiform, and let Gφ =

(N,A) be the corresponding capacitated network. Let C1, C2, · · · , Ck ⊆ N be the strongly

connected components of Gφ, which contains both a variable and its complement. Let

Gi = (Ci, Ai) , i = 1, · · · , k, be the subnetworks of Gφ induced by Ci, i = 1, · · · , k. Then,

ν (f) = C (φ) +
k∑

i=1

ν
(
fφGi

)
.

In Proposition 5.5, the capacities of the network are not involved. In fact, if one

disregards the capacities and the linear terms, the network is exactly the implication

graph of Aspvall et al. [22] (see Section 4.5.) The strong components of the network

Gφ can be found in linear time by depth first search ([227]), or by a specialized version

that uses the symmetry property of the network construction (see e.g. [134]).

Proposition 5.5 is a consequence of the symmetry of the network construction. This

property implies that whenever two literals u and v belong to the same strong compo-

nent Ci, then the complements u and v also belong to the same strong component Cj.

Furthermore, if a literal u appears in a component Ci, and if its complement u appears

in a dual component Cj, then every other literal v ∈ Ci has its complement also in Cj.

Let us note that Ci and Cj could or could not refer to the same component. If the

components are distinct, then they are called dual components of each other. In this

case, there is no cycle between any literal v ∈ Ci and its complement v in Gφ.

Let ψ be the purely quadratic posiform containing terms of φ, which involve variables

appearing in dual components of Gφ. By Proposition 5.5, terms having variables in

dual components can be disregarded from the optimization process. The reason for this

being possible is the fact that there is a solution to the expression ψ = 0, for any given

minimizer of fφ−ψ, i.e. for any minimizer of the posiform containing all terms of φ with

literals belonging to non–dual components.

Example 5.3. Consider the quadratic pseudo–Boolean function g = f6 (x1, x2, x3, x4, x5, 0)
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of Example 5.2. A purely quadratic posiform that represents g is

ψg = −3 + x1x2 + 2x1x3 + 2x1x4 + x1x5 + x1x5

+x2x3 + x2x5 + x2x4

+2x3x4 + 2x3x5

+2x4x5.

The capacitated network Gψg has two strong components: C1 = {x1, x2, x3, x4, x5}

and C2 = {x1, x2, x3, x4, x5} (see Figure 5.2). C1 and C2 are dual components. Then,

by Proposition 5.5 the minimum value of g in B5 is C (ψg) (= −3), and all optimal

solutions must satisfy the quadratic Boolean equation

x1x2 ∨ x1x3 ∨ x1x4 ∨ x1x5 ∨ x1x5 ∨ x2x3 ∨ x2x5 ∨ x2x4 ∨ x3x4 ∨ x3x5 ∨ x4x5 = 0.

If the capacities of Gψg are disregarded, then the network given in Figure 5.2 also

represents the implication graph. From this implication graph, it is simple to verify that

every literal u ∈ C1 must have an optimal value not smaller than the value of any literal

in v ∈ C2, i.e. u > v. Thus, the solution of the previous quadratic Boolean equation is

unique, and equal to (0, 0, 1, 0, 1).

Example 5.3 suggests the following result.

Proposition 5.6 ([22]). Let φ ∈ P2 (f) be a purely quadratic posiform, for a quadratic

pseudo–Boolean function f ∈ F2. The minimum of a f coincides with the constant part

of the posiform φ (i.e. ν (f) = C (φ)) if and only if all the strong components in Gφ

have dual components.

Proof. Sufficiency is an immediate result of Proposition 5.5. To prove necessity, we

assume that there is a strong component C in Gφ, without a dual component. By the

symmetry property of Gφ and the non–duality property of C, every literal u in the

component C has its complement u also in C.

Consider now the implication graph associated to the literals in C. From the theory

of quadratic Boolean equations, since the implication graph is strongly connected (i.e.
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Figure 5.2: The network Gψg corresponding to the posiform ψg of Example 5.3.

there is a path from any literal u ∈ C to its complement), then the associated quadratic

Boolean equation is not consistent. This implies that the posiform φC associated to

the subnetwork of Gφ induced by the nodes in C is positive for any assignment of the

variables in C. Consequently, we get a contradiction ν (f) = C (φ)+ ν (fφC
) > C (φ) of

our assumption.

For any given quadratic pseudo–Boolean function f , an efficient way to obtain a

purely quadratic posiform ψ is given next. This method uses flow techniques in a

capacitated network Gφ, where φ is any posiform representing f .

Let G = (L ∪ {x0, x0} , A) be a capacitated network with source x0 and sink x0,

and having positive capacities cuv for all arcs (u, v) ∈ A. A feasible flow in G = (N,A)

is a mapping ϕ : A← R+ satisfying the constraints

0 ≤ ϕ (u, v) 6 cuv for all arcs (u, v) ∈ A,
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∑

(x0,v)∈A

ϕ (x0, v) +
∑

(v,x0)∈A

ϕ (v, x0) = 0,

and
∑

(u,v)∈A

ϕ (u, v) =
∑

(v,w)∈A

ϕ (v,w) for all nodes v ∈ L.

Given a capacitated network G = (N,A) with positive capacities cuv for all arcs

(u, v) ∈ A, and a feasible flow ϕ in it, the residual network G [ϕ] = (N,Aϕ) is a

capacitated network with the same node set N , arcs set given by

Aϕ = {(u, v) ∈ A |cuv > ϕ (u, v)} ∪ {(v, u) |(u, v) ∈ A,ϕ (u, v) > 0} ,

and residual capacities

cϕuv =





cuv − ϕ (u, v) , (u, v) ∈ A,

ϕ (v, u) , (v, u) ∈ A,

for all arcs (u, v) ∈ Aϕ.

An augmenting path of capacity w in the residual network G [ϕ] is a directed path

(i.e., a sequence of nodes: x0 ≡ u0, u1, · · · , uk, uk+1 ≡ x0) from the source node x0

to the sink x0, where w is the minimum residual capacity of any arc in the path, i.e.

w = min
j=0,··· ,k+1

(
cϕujuj+1

)
.

Due to the special structure of the network Gφ, a feasible flow can always be assumed

to be symmetric, i.e. such that ϕ (u, v) = ϕ (v, u) holds for every arc (u, v) in Gφ. Thus,

for symmetric feasible flows ϕ, if x0, u1, · · · , uk, x0 represents an augmenting path with

capacity w in Gφ [ϕ], then the path x0, uk, · · · , u1, x0 is also augmenting and has the

same capacity w in Gφ [ϕ]. This path is called the twin path. It should be remarked

that twin paths can actually share arcs.

An alternating sum is an expression of the form

u1 + u1u2 + u2u3 + · · ·+ uk−1uk + uk (5.7)

involving the literals u1, · · · , un ∈ L. A quadratic posiform φ contains the alternating
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sum (5.7) with maximum weight w, if for the corresponding coefficients of φ in (1.6) we

have w = min
(
au1 , au1u2, au2u3 , · · · , auk−1uk

, auk

)
. It is well known that the following

identity holds for alternating sums:

u1 + u1u2 + u2u3 + · · ·+ uk−1uk + uk = 1 + u1u2 + u2u3 + · · · + uk−1uk.

If a quadratic posiform φ contains an alternating sum (5.7) with maximum weight

w, then φ can be transformed into a posiform φ′ representing the same function, but

having a larger constant term C (φ′) (= C (φ) + w), as follows:

φ′ = φ

= C (φ) + au1u1 +
∑k−1

i=1 auiui+1uiui+1 + auk
uk + ψ

= C (φ) + w + w
∑k

i=1 uiui+1 + (au1 − w) u1

+
∑k−1

i=1

(
auiui+1 − w

)
uiui+1 + (auk

− w) uk + ψ,

where ψ is the remaining part of φ, not containing the alternating sum and the constant

part a0.

From the previous observations, it is clear that there is a one-to-one correspondence

between alternating sums contained in a posiform φ, and augmenting paths in the

corresponding network Gφ. Thus, we have:

Proposition 5.7 ([54, 59]). Let φ be a quadratic posiform, and let ϕ be a feasible flow in

the corresponding capacitated network Gφ. Then, x0, u1, · · · , uk, x0 is an augmenting

path with capacity w in the residual network Gφ [ϕ] if and only if u1 + u1u2 + · · · +

uk−1uk +uk is an alternating sum of maximum weight w in the corresponding posiform

φGφ[ϕ].

Also a consequence of the above is the following result.

Proposition 5.8 ([54, 59]). Let φ ∈ P2 (f) for a quadratic pseudo–Boolean function

f ∈ F2, and let ϕ be a feasible flow in the corresponding network Gφ. Let us denote

by v (ϕ) the value of the flow (i.e. the total flow leaving the source, or the total flow

arriving to the sink), and let ψ = φGφ[ϕ] denote the posiform corresponding to the
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residual network. Then,

C (φ) + v (ϕ) + ψ ∈ P2 (f) .

All feasible flows can be obtained from the constant zero flow by iteratively increas-

ing the flow along augmenting paths. A flow ϕ is a maximum flow if and only if the

residual network Gφ [ϕ] contains no augmenting path.

Example 5.4. Consider the quadratic pseudo–Boolean function h = f6 (x1, x2, x3, x4, x5, 1).

A quadratic posiform that represents h is

φh = −7 + x1 + x2 + x3 + 5x4

+2x1x3 + 2x1x5 + x1x2 + 2x1x4

+x2x3 + x2x4 + x2x5

+2x3x4 + 2x3x5

+2x4x5.

(5.8)

The corresponding network Gφh
can be seen in Figure 5.3.a). Checking in Figure

5.3, we can see that 0.5 units of flow can be pushed sequentially through each of the

following augmenting paths:

x0 → x2 → x4 → x0 and its twin x0 → x4 → x2 → x0,

x0 → x4 → x3 → x0 and its twin x0 → x3 → x4 → x0,

x0 → x1 → x4 → x0 and its twin x0 → x4 → x1 → x0.

Since there is no augmenting path in the residual network Gφh
[ϕ∗] displayed in Figure

5.3.b), we have arrived to a maximum flow ϕ∗ of value 3.

The corresponding quadratic posiform of the network Gφh
[ϕ∗] is

ψh = 2x4

+2x1x3 + x1x4 + 2x1x5 + x1x2 + x1x4

+x2x3 + x2x4 + x2x5

+x3x4 + x3x4 + 2x3x5

+2x4x5.
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Since C (φh) = −7, and that v (ϕ∗) = 3, then φ = C (φh) + v (ϕ∗) +ψh = −4 +ψh, and

hence −4 + ψh ∈ P2 (h).

Note that the dotted arcs appearing in Figure 5.3.b), i.e. those arcs which enter the

source or leave the sink, have positive capacity but play no role in the analysis.

A x0–x0

[
S, S

]
–cut in the residual network Gφ [ϕ] is a partition of the node set

N = L ∪ {x0, x0} into two subsets S and S = N − S, such that x0 ∈ S and x0 ∈ S.

From the theory of network flows, it is well known that finding a maximum flow in Gφ

produces at least a minimum cut x0–x0

[
S, S

]
–cut in the resulting residual network.

Note that this cut does not have forward arcs in Gφ [ϕ]. As a consequence of this

operation, the number of strong components may increase. If this is the case (i.e. if S

contains other nodes than x0), then the original posiform can be decomposed, and the

posiforms associated to the strong components can be optimized separately. In fact,

Boros and Hammer [54] proved the following result about the existence of persistent

values in every minima of fφ for the literals of φ (if any) belonging to the source side

of the minimum cut.

Proposition 5.9 (strong persistency ([54])). Let φ ∈ P2 (f) for a quadratic pseudo–

Boolean function f ∈ F2. Let ϕ∗ denote a symmetric maximum flow in Gφ, and let

S ⊆ L denote the set of nodes of Gφ [ϕ∗] that are reachable from x0 via a path with

positive residual capacities. Then, u (x∗) = 1 must be satisfied for all u ∈ S in every

minimizer x∗ ∈ Argmin (f).

Proof. By symmetry S contains a set of dual components (call it D), corresponding to

the strong components of S. Let GS = (S,AS), be the subnetwork of Gφ induced by S,

and let GD = (D,AD) be the subnetwork of Gφ induced by D. By duality, φGS
= φGD

.

Next, we prove that there is a unique minimizer of φGS
(or φGD

) with value equal to

zero. Let us consider every arc with positive residual capacity, that was used to find

the set S. Two types of arcs were used for this purpose:

1. If the arc (with positive capacity cu) is of type (x0, u), where u ∈ S, then there

exists a term with positive coefficient cuu in φGS
. In order for the term to vanish

in any solution of φGS
= 0, then u = 1.
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(a) The capacitated network Gφh
.
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(b) The residual network Gφh
[ϕ∗] with a maximum flow ϕ∗.

Figure 5.3: Capacitated networks of Example 5.4.
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2. If the arc (with positive capacity cuv) is of type (u, v), where u, v ∈ S, then there

exists a term with positive coefficient cuvuv in φGS
. Let us notice that this arc is

followed by a previous arc (w, u), where either w = x0 or w ∈ S. If w = x0 then

apply 1) to obtain u = 1. With the additional constraint uv = 0, then v = 1.

If w ∈ S then recursively apply 2) to the arc (w, u), which ultimately will imply

that u = v = 1.

Thus, every literal in S must have a value equal to one so that φGS
= 0. To prove that

this is also a necessary condition for every minimizer of f , we have to check if all terms

involved in the x0–x0

[
S, S

]
–cut also have value zero in this solution. Indeed, every

arc in the cut is an arc from a literal v ∈ S \D and a literal u ∈ S. The twin of arc

(v, u) is the arc (u, v) from u ∈ D to v ∈ S \D. Assuming that the capacity of each of

these two arcs is cuv

2 (> 0), then the corresponding term is cuvvu, and because u = 1

the value of the term is also zero.

Example 5.5. Consider the quadratic pseudo–Boolean function h = f6 (x1, x2, x3, x4, x5, 1)

of Example 5.4. From the residual network of Figure 5.3.b), the set S = {x4, x1, x3, x5}

of literals that are reachable from the source x0 can be easily obtained. Since there is no

augmenting path in the residual network, then every minimizer x ∈ Argmin (h) must

satisfy x1 = x4 = 1 and x3 = x5 = 0 for all literals in S. This partial assignment

makes φh = −4, where φh is expression (5.8). Thus, the minimum of h is −4, and the

corresponding minimizers are: (1, 0, 0, 1, 0) and (1, 1, 0, 1, 0).

Notice that x5 is a pure literal in φh. The pure literal rule of Lemma 4.2 could be

used to prove that there is an optimal solution with x5 = 0, but it can not be used to

assure that all solutions have this value for x5.

Let us remark that the minimum cut in Gφ is not necessarily unique, and therefore

the original problem can be further decomposed into several sub–problems, that are

easier to be optimized.

Theorem 5.3 (weak persistency). Let φ ∈ P2 (f) be a purely quadratic posiform, for a

quadratic pseudo–Boolean function f ∈ F2. Let u ∈ L be a literal for which there is no

path with positive capacities from u to u in Gφ. Let S ⊆ L denote the set of nodes of
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Gφ that are reachable from u via a path with positive residual capacities. Then, there

is a minimizer x∗ ∈ Argmin (f) that satisfies u (x∗) = 1 and v (x∗) = 1 for all v ∈ S.

Proof. Since φ does not contain linear terms, then the corresponding network Gφ does

not contain outgoing arcs from x0, and by symmetry does not contain incoming arcs

into x0. Let ε be a positive number. Let us add a linear term 2εu to φ, and call the

resulting posiform as ψ (= 2εu + φ). Next, we find a symmetric maximum flow in the

network Gψ. If the maximum flow is positive, then there is a (augmenting) path with

positive residual capacities from u to u. So, the maximum flow must be zero to be

in accordance with the theorem assumption. We now use the fact that ε can be very

small, and therefore in the limit when ε approaches zero, Proposition 5.9 can be applied

to the network Gψ, and the corresponding (maximum) flow with value zero. The claim

follows immediately.

Example 5.6. Consider the quadratic pseudo–Boolean function

f (x1, x2, x3) = 1 + (2 + ε)x1 + x3 − x1x2 − 2x1x3 + x2x3.

A posiform that represents f is φ = 1 + εx1 + x1x2 + x1x3 + x1x3 + x2x3. Consider the

corresponding network Gφ:

x0 x0x1 x1

x2

x2

x3

x3

ε ε

0.5

0.5

0.5

0.5

0.5

0.5

Since there is no augmenting path in Gφ, then by Proposition 5.9 all the literals

reachable from x0 must have value one, i.e. x1 = x3 = 1 or x1 = x3 = 0, in every

minima of f .
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The values of the first derivatives of variables x1 and x3 are characterized as −1+ε 6

∆1 6 2 + ε and −1 + ε 6 ∆3 6 2 + ε. If ε is chosen to be in [0, 1[ then the simple

knowledge of the ranges of the first derivatives cannot be used to derive the persistencies

found by roof–duality for x1 or x3.

Through the assignment of any implied persistent results, Proposition 5.9 can be

used to obtain a purely quadratic posiform with the same minimum value of the original

posiform.

Corollary 5.2. Let φ ∈ P2 (f) be a quadratic posiform, for a quadratic pseudo–Boolean

function f ∈ F2. Let ϕ∗ denote a symmetric maximum flow in Gφ, and let S ⊆ L denote

the set of nodes of Gφ [ϕ∗] that are reachable from x0 via a path with positive residual

capacities. Let D = {u |u ∈ S }. Let G = (N \ (S ∪D) , AS) be a subnetwork of the

residual network Gφ [ϕ∗] induced by the nodes in N , not belonging to S or D. Then,

φG is a purely quadratic posiform for which ν (f) = ν (fφG
). Further, if VS is the set of

variables appearing in S, then a weak persistency holds for f at y ∈ Argmin
BV \VS (fφG

).

The final comment of this section is to remark once again, the importance that

the employment of max–flow techniques have in the optimization of quadratic pseudo–

Boolean functions. Several persistent results can be asserted just by finding the source

side of a minimum cut. It also provides an equivalent purely quadratic posiform φ with a

larger constant term, and therefore, it gives better lower bounds to the minimum of the

corresponding quadratic pseudo–Boolean function fφ. Interestingly, this bound called

roof–dual is equal to the bound returned by other alternative (linear programming)

techniques ([54, 123]), computationally more demanding than the network flow model

approach presented here.

5.4 Computational results

The network flow model presented in the previous section, which represents a quadratic

pseudo–Boolean function f , has been implemented as a computer program. It consists

of 2n + 2 nodes, one for each literal, and 2m arcs, two for each nonzero term of the

multilinear representation of f (see Section 5.3).
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The data structure adopted is a special network, where each node contains of a list

of incoming arcs and a “map” of outgoing arcs.

A map is a dictionary collection that maps unique keys (i.e. literals) to values

(i.e. nodes). Once a key-value pair has been inserted into the map, then the pair can

efficiently1 be retrieved or deleted using the key to access it. One can also iterate over

all the elements in the map in constant time per element.

With this structure is possible to get the list of all terms involving any literal in

O (log (n) + n) time, and is possible to create, to delete or to get the coefficient of any

quadratic term in O (log (n)).

A maximum flow algorithm applied over the network just described, has been im-

plemented to compute the roof-dual value of f . The maximum flow implementation

that has been considered is based on the shortest augmenting path algorithm, yielding

a worst case time of O
(
n3
)
, and is especially designed to deal with the existence of the

flow symmetry conditions ([134]).

All algorithms based on the network flow model were implemented in C++, compiled

using the Microsoft Windows 32-bit C/C++ Optimizing Compiler (version 12) for

80x86, and linked with the Microsoft Incremental Linker (version 6).

In our computational experiments of this section we present two types of results. In

subsection 5.4.1 we demonstrate both the effectiveness and efficiency of our implemen-

tation to derive roof-duality consequences, by comparing it to the one achieved through

the use of linear programming (see 5.4.1). In subsection 5.4.2 we first show that roof-

duality can deal with very large problems, which have some special characteristics, by

producing both a large number of persistencies, and near-optimal bounds.

Roof-duality is a key tool used frequently throughout this dissertation. Many other

computational results based on roof-duality algorithms, which are associated to various

types of applications, are presented in the chapters that follow.

1If the map has r entries then an element can be either found or proved not to exist in the map in
O (log2 (r))
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5.4.1 Network flow model versus linear programming

An important aspect about roof–duality is the fact that the Linear Programming (LP)

solution of problem (5.3) is half-integral ([30]). Moreover, Balinski [30] has also shown

that all basic feasible solutions are also
(
0, 1

2 , 1
)
-valued. This information could be used

by special designed linear programming algorithms, so that the solve times of problem

(5.3) could be made more efficient. This can be particularly important for solvers based

on interior point methods, for which a reasonable good starting point can provide faster

solve times. This possibility was not tried here, since the available linear programming

solvers that we had at hand did not include this possibility.

All the experiments of this section were found using the same computer system,

which is based on a Xeon 3.06 GHz, 3.5 GB RAM and Windos XP.

We have considered two methods to solve the LPs. One is the Newton-barrier

algorithm and the other is the simplex dual algorithm. Both algorithms are part of

the mathematical programming software package Xpress–MP. The presolve and the

crossover algorithm of the Newton-barrier solver (version 2006B) were turned off in all

runs, since we noticed that they would slow down the computing times for the problems

that we have tested in this section.

For testing our implementation of the network flow model against the LP solvers,

we have considered two families of problems:

• The G1 group consists of maximization QUBOs with 1 000 variables and densities

varying from 10% to 100% (in steps of 10%). The best known solutions are given

in Table A.3 of the Appendix. This group of problems is used to compare the

effect played by the density (d) parameter on the outcome of the algorithms.

• The 60 Beasley maximization QUBOs, which have a 10% density each. The

number of variables n varies from 50 to 2 500; 10 problems were created for each

value of n. This group of problems is used to compare the effect played by the

number of variables (n) parameter on the outcome of the algorithms.
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Table 5.1: Network flow model versus LP to find the roof–duals of the G1 problems
proposed by Glover et al. [109].

Problem Density Roof–Dual Roof–Dual Computing Time using
Number (d%) Value LP Newton-barrier? LP Dual? Network Flows

1 10 587 424.0 5.3 s 70.7 s 0.2 s
2 20 1 186 105.0 8.1 s 290.9 s 0.4 s
3 30 1 772 322.5 10.8 s 694.2 s 0.7 s
4 40 2 360 450.0 13.1 s 1 309.3 s 1.0 s
5 49 2 957 813.0 14.4 s 2 222.2 s 1.5 s
6 60 3 565 800.0 16.8 s 2 963.6 s 2.0 s
7 69 4 159 309.0 19.3 s 4 037.4 s 2.7 s
8 79 4 743 848.5 22.4 s 5 388.2 s 3.6 s
9 89 5 330 495.0 26.3 s 7 271.1 s 4.6 s
10 99 5 933 962.5 27.6 s 9 218.0 s 5.6 s

Table 5.1 gives the G1 roof–dual computing times of the 3 algorithms that we

have considered to find the roof-dual bound. It can be seen in this table that our

implementation of the network flow model is faster than the LP Newton-barrier solver.

Namely, it is

• 26 times faster for the instance with 10% density;

• 10 times faster for the instance with 50% density; and

• 5 times faster for the full dense instance.

This trend of results indicates that the network flow model is considerably faster than

LP Newton-barrier in computing the roof-dual bound. These facts also show that the

efficiency of the network model is more noticeable for sparser QUBOs, which appear

frequently in real world applications (see Chapter 10).

The LP simplex dual solver is somewhat slower in finding the roof–dual bound for

the G1 instances. It should be remarked the fact that we have also tried the crossover

to an optimal basic feasible solution of the LP Newton-barrier solution. The conclusion

about using this option is that it was even slower than the option of using the dual

algorithm (which always produces an optimal basis).

Table 5.2 provides the average computing times to find the roof-duals of the problems

belonging to the Beasley group of problems. The results show that the network flow

model implementation is 10 to 30 times faster than the LP Newton-barrier solver, and
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Table 5.2: Average relative gap (g) to the best known lower bound (z) and average
computing times of the roof–duals of 10% dense QUBO problems (Beasley [37]).

Variables Roof–Dual Roof–Dual Computing Time using
Family (n) Gap

(
g = ρ−z

z

)
LP Newton-barrier LP Dual Network Flows

ORL–50 50 0.1% <0.05 s <0.05 s <0.05 s
ORL–100 100 15.3% <0.05 s <0.05 s <0.05 s
ORL–250 250 78.1% 0.1 s 0.2 s <0.05 s
ORL–500 500 150.6% 0.6 s 4.2 s 0.05 s
ORL–1000 1 000 248.8% 5.3 s 68.4 s 0.2 s
ORL–2500 2 500 430.4% 43.8 s 1 889.0 s 1.5 s

that the speedup of the network model increases with an increase on the number of

variables. For this group of problems the LP dual solver is still the slowest option, but

the results show that the simplex algorithm is somewhat better for sparser problems.

The roof-dual values (and gaps) presented in the previous tables are also clear

indication that roof-duality is mostly effective for QUBOs with a sparse structure. We

remark once again that many QUBOs derived from practical applications are sparse.

5.4.2 Application of roof-duality to VLSI design

The purpose of this section is twofold. The first objective is to stress out the importance

of QUBO in VLSI design. The second objective is to illustrate that roof–duality can

be a powerful tool for certain structured combinatorial optimization problems.

Quadratic optimization has been used for a long time in the field of LSI and PBCs

(Printed Circuit Boards) (e.g. [32, 52, 55, 85, 114, 152]). In the sections that follow we

shall consider two problems in VLSI design. First, we investigate the impact of roof–

duality in some MAX–CUT problems derived from via minimization problems, which

are part of the layer assignment phase of channel routing. Second, we look at the so

called module flipping problem considered in the placement phase of the layout design

of circuits. We propose a random generator of a particular family of these problems,

and analyze the impact of roof-duality in various instances.
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5.4.2.1 Via minimization

The physical layout design of integrated circuits is usually split up into the placement,

routing, layer assignment and compaction phases. We assume that modules placement

and routing has been already completed. We concentrate on QUBO problems derived

from the layer assignment phase, whose objective is to assign wire segments to layers

such that intersection segments belonging to different nets are assigned to different

layers. Wires of a net on different layers are connected by vias. Vias need additional

space and they create difficulties during the compaction phase. The via minimization

problem consists in finding a layer assignment such that the number of vias is as small

as possible.

We assume that the transient routing has been found, i.e. that all cells are placed

on the chip and that all nets have been routed, but the assignment of wire segments to

layers has not been performed yet. A net may connect two or more pins. In the later

case, the net may contain 3-way junctions and more rarely it may also contain 4-way

junctions.

From the transient routing, the via minimization problem (for two-layers) is trans-

formed into an equivalent MAX–CUT problem of the so called layout graph (see e.g.

[83, 114, 202]).

If the transient routing contains no k-junctions for k > 4, then in the two-layers case

the layout graph is planar. Consequently the MAX–CUT of this class of graphs can be

found in polynomial time ([117]), thus implying that the via minimization problem can

be efficiently found for these cases ([83, 202]).

Certain side constraints are required in practice. Frequently, one of the two layers

is preferred and pins are preassigned to a specific layer ([32, 114]). The previous MAX-

CUT reduction can be generalized to the via minimization problem subject to layer

preference and pin preassignments ([32]). In this case however the MAX-CUT that

results from this reduction is NP-hard ([32]; see also [180]).

In Table 5.3 we considered MAX–CUT instances derived from layout graphs pro-

vided by Homer and Peinado [145]. There are two groups of five graphs each:
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• All five problems of the group via.cy problems are solved optimally by using the

strong persistency property of roof-duality, i.e. for each problem the bound coin-

cides with the optimum and the residual problem is a small satisfiable quadratic

Boolean expression. The largest residual problem in this group has 36 binary

variables only.

• Strong persistency is not so effective on the group via.cn set of problems, since

only a few variables are fixed by roof–duality in the associated QUBO. The average

gap to the optimum from the roof dual bound is relatively small since it varies

between 3% and 6%.

Due to the previous results, it is not surprising that all VIA problems considered

here, could be solved efficiently by using state-of-the-art solvers to solve the standard

(roof-duality) mixed-integer program (5.3). In Chapter 7 we will demonstrate that all

of these ten problems can be entirely solved very quickly just by using preprocessing

techniques for QUBO, without the support of any type of branching or enumeration

procedure. This is particularly important for VIA minimization problems of large

dimensions.

Table 5.3: Via minimization problems of Homer and Peinado [145].

Vertices Edges Maximum Roof–Dual
Problem (n) (z) Persist. Time Value (ρ) Gap

(
g = ρ−z

z

)

via.c1n 828 1 389 6 150 96 0.06 s 6 339 3.1%
via.c2n 980 1 712 7 098 7 0.08 s 7 473 5.3%
via.c3n 1 327 2 393 6 898 13 0.12 s 7 282 5.6%
via.c4n 1 366 2 539 10 098 10 0.09 s 10 437 3.4%
via.c5n 1 202 2 129 7 956 6 0.06 s 8 427 5.9%
via.c1y 829 1 693 7 746 814 0.05 s 7 746 0.0%
via.c2y 981 2 039 8 226 957 0.06 s 8 226 0.0%
via.c3y 1 328 2 757 9 502 1 315 0.09 s 9 502 0.0%
via.c4y 1 367 2 848 12 516 1 341 0.09 s 12 516 0.0%
via.c5y 1 203 2 452 10 248 1 167 0.09 s 10 248 0.0%

5.4.2.2 Cell flipping in standard cell technology

In the layout stage of VLSI and printed circuit board (PCB) design, after all circuit

modules (rectangular) are placed, it is possible to flip the modules so as to reduce the
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total net length([55, 85]). Cheng et al. [85] formulate the orientation of modules as a

graph problem and prove it to be NP-complete. The orientation problem is shown to

be equivalent to MAX-CUT of a graph ([85]; see also [52]). Experiments with real cases

show that module orientation reduces the total net length and improves the routability

([85]).

After the routing phase in the layout design of VLSI and PBCs, the optimal wiring

has to be decided. Direct connections have to be established between certain pairs of

pins belonging to different modules. The pins have fixed locations on the rectangular

perimeter of the module. Since each module can be placed on the base plate in four

different positions occupying the same rectangular area, then the total length of the

wiring depends substantially on their positioning. The different placements of a module

can be achieved by flipping it either vertically, horizontally, or in both directions. The

problem of finding the flipping positions of the modules which minimize the total net

length is the flipping problem.

A random generator of 2-pin cell flipping problems has been created. For simplicity,

we only consider a simplified version of the rectangular modules, by allowing only

vertical flippings and assuming that the modules are simply segments of a line. The

generator has four parameters that have to be specified:

n – Number of 2-pin cells;

m – Number of nets, which connect two 2-pin cells;

H – Horizontal size of the chip;

k – A seed to feed to the pseudo-random numbers generator.

The starting horizontal location (Li) and size (Si) of the i-th cell is uniformly

determined from the interval [0,H], i.e.

Ai = Uniform (0,H) ,

Bi = Uniform (0,H) ,

Li = min (Ai, Bi) ,

Si = max (Ai, Bi)− Li,
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for every cell i = 1, · · · , n.

Each net (i, j) has an origin cell i and a destination cell j (6= i) randomly chosen.

The extremity of the cell (i.e., left or right) which is used by the net in both endpoints is

also randomly determined. The “origin” extremity is denoted with the binary indicator

oi,j (is equal to 0 for left extremity, and 1 otherwise), and similarly the “destination”

extremity is denoted with the binary indicator di,j .

Let us further define I(i, 0) = Ai and I(i, 1) = Bi for every cell i = 1, · · · , n.

The objective is to minimize the total horizontal wiring needed to connect all the

2-pin cells by doing cell flipping, i.e.

min
x∈Bn

∑

(i,j)∈N


 |I(i, oi,j)− I(j, di,j)|xixj + |I(i, oi,j)− I(j, di,j)| xixj+
∣∣I(i, oi,j)− I

(
j, di,j

)∣∣xixj +
∣∣I(i, oi,j)− I

(
j, di,j

)∣∣xixj


 ,

where N is the set of m nets, and the binary decision xi is 0 if cell i has to be flipped

or 1 otherwise.

The first set of experiments is based on problems randomly created with the previous

generator. It considers instances with an horizontal size H of 1 000 having 1 000 000

nets each, and whose number of cells n is either 250 000, 500 000 or 750 000.

From the results of Table 5.4 it can be seen that the roof duals of the 1 million nets

problems can be computed in about 2 minutes.

The number of strong persistencies of these QUBO problems is around 675 and is

somewhat independent of the number of cells n.

Weak persistencies were found by applying the pure literal rule (see Lemma 4.2) to

the residual posiform of the QUBO problem obtained after applying strong persistency.

Interestingly, the number of weak persistencies that were found in this way is very large.

Namely, it is over 87% of the original cells for problems with 250 000 cells, and it is

96% of the original cells for problems with 750 000 cells. It should be remarked that the

computing times could be improved if the pure literal rule is applied both initially and

at the end of the method. In fact, most of the pure literals can be detected initially in

this particular family of QUBO problems.
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Table 5.4: Impact of roof–duality on large 2-pin cell flipping randomly generated problems having 1 000 000 nets each.

Cells Nets/Cells Roof–Dual Residual QUBO

Problem (n)
(

m
n

)
Strong Pers. (s) Pure Lit. (p) Time? Value (ρ) (n′ = n− s− p)

(
n′

n

)
Quad. Terms

fliflop-250K-1M-1 691 217 259 126 s 266 282 720.0 32 050 655 312
fliflop-250K-1M-2 692 217 270 130 s 266 148 770.5 32 038 655 978
fliflop-250K-1M-3 250 000 4 614 217 262 127 s 264 853 326.0 32 124 12.8% 662568
fliflop-250K-1M-4 665 217 264 128 s 265 823 910.5 32 071 656 688
fliflop-250K-1M-5 679 217 274 128 s 266 445 939.0 32 047 654 725
fliflop-500K-1M-1 688 467 262 128 s 266 350 120.5 32 050 654 964
fliflop-500K-1M-2 658 467 265 128 s 266 093 176.5 32 077 656 528
fliflop-500K-1M-3 500 000 2 628 467 262 130 s 264 931 318.0 32 110 6.4% 662248
fliflop-500K-1M-4 660 467 262 128 s 265 835 648.0 32 078 656 960
fliflop-500K-1M-5 686 467 274 131 s 266 600 282.0 32 040 654 333
fliflop-750K-1M-1 684 717 259 129 s 266 337 871.5 32 057 655 260
fliflop-750K-1M-2 687 717 269 132 s 266 081 472.0 32 044 656 003
fliflop-750K-1M-3 750 000 1.33 649 717 263 126 s 264 954 628.5 32 088 4.3% 662022
fliflop-750K-1M-4 675 717 261 128 s 265 808 816.0 32 064 656 604
fliflop-750K-1M-5 710 717 274 131 s 266 646 530.5 32 016 653 744

?Obtained on an Intel Xeon 3.06GHz. .
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Also interesting, is the fact that the residual size of the QUBO problems, after

applying both weak and strong persistency, is somewhat constant, consisting of about

32 000 variables and about 655 000 nonzero quadratic terms.

To measure the impact of roof-duality in solving 2-pin cell problems of this nature,

a set of additional instances has been generated, each one having 10 000 nets and an

horizontal size H of 1 000 as before. The number of cells varies between 1 000 and 7 500

in steps of 500. Five distinct instances were created for each combination of n, m and

H. When not solving completely a given 2-pin cell problem, the quality of the roof-dual

bound has been compared with that one provided by a one–pass heuristic (see Chapter

6).

Table 5.5 shows that roof–duality delivers optimal solutions for all problems having

more than 4 000 nets. As soon as the density (d) starts increasing, the relative gap (g)

associated to the roof-dual increases rapidly from 0.01% to 6.5%, respectively for the

3 500 and 1 000 cells cases.

Table 5.5: Average relative gap of roof–duality on randomly generated 2-pin cell flipping
problems having 10 000 nets.

Cells Nets/Cells Density Roof Dual Upper bound Rel. Gap
(n)

(
m
n

)
(d) (ρ) (z)

(
z−ρ

z

)

1,000 10.0 2.00% 2,661,363 2,845,028 6.46%
1,500 6.7 0.89% 2,623,640 2,745,590 4.44%
2,000 5.0 0.50% 2,599,938 2,661,745 2.32%
2,500 4.0 0.32% 2,573,110 2,607,212 1.31%
3,000 3.3 0.22% 2,502,887 2,511,469 0.34%
3,500 2.9 0.16% 2,445,970 2,446,239 0.01%
4,000 2.5 0.13% 2,398,005 2,398,005 0.00%
4,500 2.2 0.10% 2,368,370 2,368,370 0.00%
5,000 2.0 0.08% 2,299,954 2,299,954 0.00%
5,500 1.8 0.07% 2,259,256 2,259,256 0.00%
6,000 1.7 0.06% 2,217,748 2,217,748 0.00%
6,500 1.5 0.05% 2,192,810 2,192,810 0.00%
7,000 1.4 0.04% 2,151,678 2,151,678 0.00%
7,500 1.3 0.04% 2,115,016 2,115,016 0.00%

This trend of results linked to QUBOs of low or high density, is typically the one

that determines if roof-duality is or not is a good tool to solve a given QUBO problem.
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This particular family of QUBO problems is also interesting by the fact that roof–

duality impacts differently for flipping problems of 10 000 nets and for flipping problems

of 1 000 000 nets. In the smaller instances, after applying roof–duality, the residual

problems are minuscule, whereas for the large instances the number of quadratic terms

in the residual problems is about 2
3 of the number of nets.
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Chapter 6

Heuristics

Several exact methods have been developed and tested for QUBO in the literature (see

Chapter 9). Since however QUBO is known to be NP-hard (see [104]) many of the

large problems arising from practical applications proved to be not tractable for these

exact approaches. Several heuristic algorithms, based on different ideas, were proposed

recently in the literature to find acceptable solutions for such large problems.

The heuristics proposed in the past for QUBO can be broadly classified in three

groups:

• The one–pass heuristics (see e.g. [58, 107, 178]) are based on polynomial time

algorithms, which assure solutions with “reasonable” quality in “very good” com-

puting times, for “very large” problems (up to tens of thousands of variables).

• The local–search heuristics (see e.g. [62, 178]; sometimes called 1–opt heuristics)

are based on the exploration of directions of improvement, within a simple and

well defined neighborhood of solutions. This class of heuristics provides a solution

with “good” quality in a typically “good” computing time for “large” problems (up

to several thousands of variables), but it does not provide a provably polynomial

running time.

• The meta–heuristics are based on the search of a well defined neighborhood of

other solutions, providing a solution with “very good” quality in a usual “rea-

sonable” amount of computing time for “reasonable” sized problems (up to a few

thousands of variables). In many cases, the local–search methods are used as

subroutines in this class.

In this chapter we consider the pseudo–Boolean minimization problem (1.4) in Bn,
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that is the problem of minimizing a pseudo–Boolean function f over the set Bn of binary

n–vectors.

6.1 One–pass heuristics

One drawback of local search based approaches (see Section 6.3) is that they do not

provide guarantees – neither for running times, nor for solution quality. While we

can have little hopes for the second type of guarantees with a quick, local search type

approach, running time guarantees can easily be achieved by simply terminating earlier

the search process. Such approaches appear in the literature and are called sometimes

one–pass or greedy procedures (see e.g. [107, 178]).

6.1.1 DDT methods

We start by presenting the family of DDT heuristics introduced by Boros, Hammer and

Sun [58], which is one of the earliest one–pass approaches presented for QUBO. DDT

consists of three stages: Devour, Digest and Tidy–up. In the “devour” stage, a linear or

quadratic logical relation is produced. In the “digest” stage all the logical consequences

of the previous step are derived. In the “tidy–up” step the new logical conclusions are

enforced by transforming the function being optimized accordingly.

The DDT framework can be described in a more general way, which includes not

only the original methods, but it also covers a family of recently proposed one–pass

procedures (see Section 6.1.2). The general idea of the DDT algorithm is described in

Figure 6.1.

At each iteration of the DDT algorithm, a 0–1 value is assigned to a certain “ele-

mentar” quadratic expression Ψ defined by method X. Ψ has to be chosen in such a

way that the resulting set of logical relations is satisfiable (i.e. Φ∨Ψ = 0 is consistent),

and such that the size of the set of solutions of the equation of Φ ∨ Ψ = 0 is strictly

smaller than that of the equation Φ = 0, i.e.

{
x ∈ BV\(U∪Z) |(Φ + Ψ) (x) = 0

}
⊂
{
x ∈ BV\(U∪Z) |Φ (x) = 0

}
.
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DDT(X,Y)

Input: A pseudo–Boolean function f .

Initialization: Let U and Z be subsets of variables with assigned values
1 and 0, respectively. Initially, U = ∅ and Z = ∅.

Let Φ be a satisfiable quadratic Boolean expression. Initially, Φ = 0.

Step 1: If V \ (U ∪ Z) = ∅ then STOP.

Step 2: Using method X, choose a logical expression uv∨wz, involving
literals u,v,w,z, associated to variables with indices in V \ (U ∪ Z).

Step 3: According to method Y, set the value of expression uv ∨ wz:

• If uv ∨ wz = 1 then let Φ← Φ ∨ uw ∨ u z ∨ v w ∨ v z;

• If uv ∨ wz = 0 then let Φ← Φ ∨ uv ∨wz.

Step 4: Draw all logical conclusions C of the quadratic Boolean equa-
tion Φ = 0. Update U , Z, Φ and f according to the new derived
conclusions C. Goto step 1.

Output: Vector x?, in which x?j = 1 if and only if j ∈ U .

Figure 6.1: The DDT heuristics.

Boros et al. [58] applied the DDT method to quadratic pseudo–Boolean functions

represented by a posiform (1.6). They proposed two variants of method X:

(i) Select a term ab with the largest weight of a given posiform φf . In this case

uv = ab and wz = ab in step 2 of DDT.

(ii) Select a bi–term ab+ ab with largest weight in the bi–form of f (see Section 8.1).

In this case uv = ab and wz = ab in step 2 of DDT.

The value assigned to expression Ψ, which was determined by method X, is defined

by method Y. For the Boros et al. [58] DDT methods, Ψ is always assumed to be equal

to zero. Let us note that in case (ii) above, this choice leads to an assignment of the

type a = b for literals a and b (because a = b ⇔ ab + ab = 0). This choice implies in

this case that the next iteration of DDT has one less variable, and thus that DDT ends

after n iterations.
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Step 4 of DDT correspond to the “digest” and “tidy–up” phases. The complexity

of doing these operations is basically associated to the complexity of finding all strong

persistencies for quadratic Boolean equations. There are several ways to accomplish

this task efficiently (see e.g. [133]). We have adopted in this study the implication

graph algorithm of Aspvall et al. [22] (see Section 4.5 for details) in our implementation

of case (i) above of the DDT method.

Proposition 6.1 ([58]). The DDT method (i) of Boros, Hammer and Sun [58] gener-

ates a heuristic solution to the minimum of a quadratic pseudo–Boolean function f given

as quadratic posiform φf (1.6) in O
(
m2
)

time, where m is the number of (nonzero)

terms of φf .

Proof. Since the total number of terms of φf is m, then the DDT method runs in m

iterations. Let us now see how much time DDT takes in each iteration. In step 2 the

search for the largest coefficient of a nonzero term of φf takes at most O (m) steps.

By using the set of rules of Lemma 4.1, Step 4 uses at most O (n) steps to derive the

consequences of assigning a term to zero. To update both φf and the implication graph

data structures we need at most O (n) steps for each variable fixed. Putting these

results together we obtain the claimed O
(
m2
)

time.

Proposition 6.2 ([58]). The DDT method (ii) of Boros, Hammer and Sun [58] gen-

erates a heuristic solution to the minimum of a quadratic pseudo–Boolean function f

given as a bi–form βf in O (nm) time, where m is the number of (nonzero) terms of

βf .

Proof. We have already seen that this method takes at most O (n) iterations. As in

the previous case the amount of time needed for each iteration is at most O (m), thus

generating the claimed O (nm) time.

The DDT methods can be implemented in such a way that the average computing

time is reduced considerably. The bottleneck of DDT occurs during the search of a

large coefficient term in step 2. To improve the time of this operation we used a data

structure which includes for each non–fixed variable xj, the largest coefficient of a term
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where xj appears. Clearly, the search for a large coefficient term is now O (n) instead

of O (m). The time needed to update the structure for each variable fixed is O (n) on

average, and for each quadratic term fixed is O (1). Adding these times, it can be seen

that the DDT method could be implemented to run in O (nm) average time for case

(i), and in O
(
n2
)

average time for case (ii).

As a final remark of this section, it is important to note that the heuristic value of

case (i) of Boros et al. [58] is highly dependent on the posiform selected as input to the

algorithm, whereas case (ii) is invariant with respect to the input, since the bi–form is

uniquely defined for each quadratic pseudo–Boolean function (see Section 8.1).

6.1.2 Greedy heuristics

In the family of one–pass algorithms proposed in this section, the variables get binary

assignments one by one, until a binary value is assigned to every variable, at which time

the procedure stops. The algorithm invokes two methods: method X is used to choose

the index of the next variable to which a binary value will be assigned, while method

Y decides which of the two possible assignments is more advantageous.

This type of algorithms can be seen as special cases of the DDT method introduced

in the previous section, but since the assignment of 0–1 values to quadratic expressions

is not considered in this family of heuristics, we provide the general approach of the

considered algorithms in Figure 6.2.

At a given iteration of One–Pass, with given methods X and Y, we shall frequently

use the partial assignment yU,Z defined by

yU,Zj =





1 if j ∈ U

0 if j ∈ Z,

which denotes a binary vector containing the partial assignment induced by the sets U

and Z.

In the following sections we consider three particular methods X and Y. The first

choice is based on best linear approximation methods. The second choice is based on



121

One–Pass(X,Y)

Input: A pseudo–Boolean function f , given by (1.1).

Initialization: Let U and Z be subsets of variables with assigned values
1 and 0, respectively. Initially, U = ∅ and Z = ∅.

Step 1: If V \ (U ∪ Z) = ∅ then STOP.

Step 2: Choose an index i ∈ V \ (U ∪ Z) by method X.

Step 3: According to method Y the chosen index i is added to either
U or Z. Goto step 1.

Output: Vector x?, in which x?j = 1 if and only if j ∈ U .

Figure 6.2: Algorithm description of one–pass heuristics.

probabilistic assumptions on the partial derivatives of the function. The last choice is

based on rounding methods.

6.1.2.1 Best linear approximation methods

The first greedy heuristic that we present is based on finding a “best” linear approxima-

tion (see Section 4.8) to a pseudo–Boolean function f , and using then the coefficients

of the linear terms of this function to infer a measure of the variables’ contribution to

the optimal value of the original function f . The basic idea is that a variable whose

linear coefficient is large in absolute value has a potentially larger impact on the value

of f , and therefore fixing this variable (to 1 if the coefficient is positive, and to 0 if it

is negative) may have a high impact on the value to the function.

For the purpose of describing the one–pass methods X and Y of this subsection, we

shall assume that the best linear approximation is given as

A
(
f
(
x
[
U ∪ Z ← yU,Z

]))
= aU,Z0 +

∑

j∈V\(U∪Z)

aU,Zj xj .

Let

SU,Z
def
= arg max

j∈V\(U∪Z)

{∣∣∣aU,Zj
∣∣∣
}
.
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denote the set of variables whose coefficients are largest in absolute value.

The One–Pass(X,Y) heuristic method of this subsection can be described as fol-

lows:

X ≡ i← min
{
SU,Z

}
,

Y ≡ if aU,Zj 6 0 then U ← U ∪ {i} else Z ← Z ∪ {i} .

Method X selects from the set of variables in {V \ (U ∪ Z)} which have the largest

coefficients in absolute value
∣∣∣aU,Zj

∣∣∣, the one which has the smallest index j. Since we

are considering minimization problems, the value of xj determined by subroutine Y is

1 if aU,Zj 6 0, and 0 otherwise.

Best linear L2–approximation

The best Euclidean linear approximation of a pseudo–Boolean function was derived

by Hammer and Holzman [125] (see Proposition 4.8 of Section 4.8). The linear coeffi-

cients of the best Euclidean linear approximation are simply the values associated to

the corresponding first derivatives in the point
(

1
2

)V\(U∪Z)
, associated to the variables

which were not yet fixed by One–Pass, i.e.

aU,Zj = ∆j

((
1

2
, · · · ,

1

2

)[
U ∪ Z ← yU,Z

])
, (6.1)

for all j ∈ V \ (U ∪ Z).

Example 6.1. Let us consider the application of One–Pass based on the best Euclid-

ean linear approximation to the hitting set problem (2.4), and demonstrate that the

classical greedy algorithm for this problem is equivalent to this one–pass heuristic.

Let us denote by dH (v) the degree of vertex v in the hypergraph H, i.e. dH (v) =

|{H ∈ H |H 3 v}|, and let DH = maxv∈V dH (v). In the pseudo–Boolean formulation

(2.4) we shall consider εH = −1 + 2|H|−1 for every subset H ∈ H. In this case

aU,Zj = 1−
∑

H∈HU,Z
j

1 = 1− d
HU,Z

j
(j) ,
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where HU,Zj is the subset of hyperedges of H containing vertex j, but which do not contain

any vertex in U ∪ V . Recalling that the greedy algorithm for the hitting set problem

selects at every iteration the vertex with largest degree of the remaining hyperedges, one

trivially can see that both the greedy procedure and this One–Pass heuristic will return

the same solution.

Two interesting facts arise from Example 6.1. First, it can be seen that One–Pass

depends on the way the hitting set problem was formulated – since εH (H ∈ H) can be

any nonnegative number. Second, due to the equivalence shown before, Example 6.1

demonstrates that the value returned by One–Pass based on the best Euclidean lin-

ear approximation is a polynomial time (1 + log (DH))–factor approximation algorithm

([173]) for the hitting set (and thus for the set covering) problem.

Formula (6.1) can be specialized for the quadratic case using (4.4) to get

aU,Zj = cj +
1

2




∑

k∈V\(U∪Z):k<j

ckj +
∑

k∈V\(U∪Z):k>j

cjk


+




∑

k∈U :k<j

ckj +
∑

k∈U :k>j

cjk


 ,

(6.2)

for all j ∈ V \ (U ∪ Z).

It is interesting to notice that the best linear coefficients (6.1) coincide in absolute

value with the coefficients of the linear terms of the bi–form associated to the quadratic

function (see Section 8.1). This situation implies that there is a close relationship

between the DDT method (ii) introduced in the previous subsection and the one–pass

approach based on best linear approximations. The big difference between these two

methods is that DDT also considers equality relations between literals at each iteration

of the method, and the one–pass method of this section does not.

From formula (6.2), it is simple to verify that

a
U∪{i},Z
j = aU,Zj + 1

2cij , if j > i,

a
U∪{i},Z
j = aU,Zj + 1

2cji, if j < i,

a
U,Z∪{i}
j = aU,Zj − 1

2cij , if j > i,

a
U,Z∪{i}
j = aU,Zj − 1

2cji, if j < i,

(6.3)
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for all j and i ∈ V \ (U ∪ Z), j 6= i.

Theorem 6.1. Using best linear L2–approximations, a heuristic solution to the mini-

mization of a quadratic pseudo–Boolean function f is provided by One–Pass in O
(
n2
)

time.

Proof. To get the claimed complexity, the computations need to be organized carefully.

First, we can build a variable–term data structure, and pre–compute the starting a∅,∅j

values in O (size (f)) time. After this, each of the n iterations can be executed in at

most O (n) steps (to select the appropriate coefficient), and using (6.3) the evaluation

of each aU,Zj , j ∈ V \ (U ∪ Z) can be executed in time proportional to the number

of occurrences of xj in (1.5). Hence the total time of the algorithm after the pre–

computations is O
(
n2
)
, thus proving our claim.

Best homogeneous linear L2–approximation

When optimizing a pseudo–Boolean function given as multi–linear polynomial (1.1),

the constant c∅ value does not affect the optimal 0–1 vector solution. For the same

reason, the constant part of the best linear approximation does not have an impact in

its optimization. Therefore, we considered next the use of the best homogeneous linear

approximation (see Theorem 4.4 in Section 4.8) in the framework of One–Pass.

In what follows we consider the application of this heuristic to quadratic pseudo–

Boolean functions only, in spite of the fact that these ideas would also work in the

general case. We recall Corollary 4.5 that basically states that the linear coefficients

between the homogeneous and the non–homogeneous case differ by a constant Q. In

the quadratic pseudo–Boolean case this constant is

Q = −
2c0
n+ 1

+

∑
16r<s6n

crs

2 (n+ 1)
(6.4)

We shall disregard the constant part (c0) of the function at every iteration of One–

Pass. In this case, Q is equal to the sum of all quadratic coefficients divided by 2 (n+ 1).
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The linear coefficients of the best homogeneous Euclidean linear approximation are

therefore

aU,Zj = ∆j

((
1

2
, · · · ,

1

2

)[
U ∪ Z ← yU,Z

])
−QU,Z ,

for all j ∈ V \ (U ∪ Z), where

QU,Z =

∑
r,s∈V\(U∪Z):r<s

crs

2 (|V \ (U ∪ Z)|+ 1)
.

It is simple to verify that

a
U∪{i},Z
j = aU,Zj + 1

2cij +QU,Z −QU∪{i},Z , if j > i,

a
U∪{i},Z
j = aU,Zj + 1

2cji +QU,Z −QU∪{i},Z , if j < i,

a
U,Z∪{i}
j = aU,Zj − 1

2cij +QU,Z −QU,Z∪{i}, if j > i,

a
U,Z∪{i}
j = aU,Zj − 1

2cji +QU,Z −QU,Z∪{i}, if j < i,

(6.5)

for all j and i ∈ V \ (U ∪ Z), j 6= i, and where

QU,Z −QU∪{i},Z = QU,Z −QU,Z∪{i}

=

�
r,s∈V\(U∪Z):r<s

crs

2(|V\(U∪Z)|+1) −

�
r,s∈V\(U∪Z∪{i}):r<s

crs

2|V\(U∪Z)|

=

−2QU,Z+

� �
k∈V\(U∪Z):k<i

cki+
�

k∈V\(U∪Z):k>i

cik�
2|V\(U∪Z)|

Theorem 6.2. Using best homogeneous linear L2–approximations, a heuristic solution

to the minimization of a quadratic pseudo–Boolean function f is provided by One–Pass

in O
(
n2
)

time.

Proof. Clearly, Q∅,∅ and the initial a∅,∅j values can be computed in O (size (f)) time.

If a variable–term data structure is used to handle the coefficients in (1.5), then the

intermediate aU,Zj and QU,Z values can be computed in at most 2n steps from (6.5).

Since a single variable is fixed at each iteration, then the algorithm has n iterations

which with the pre–computations will take a total time of O
(
n2
)
, thus proving our

claim.
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6.1.2.2 Probabilistic methods

Let f be a quadratic pseudo–Boolean function represented by a multi–linear polynomial

(1.5). For every index j ∈ V, let us associate to the partial derivative ∆j of f , a

stochastic function

ζj (ξ1, · · · , ξn)
def
= cj +

j−1∑

k=1

ckjξk +

n∑

k=j+1

cjkξk,

where ξk, k ∈ V are random variables. ζj can be seen as a random variable that

simulates the distribution of the values associated with the jth partial derivative of

f . Consider now some results that will be helpful in justifying the proposed heuristic

methods of this subsection.

Lemma 6.1.

Exp [ζj (ξ1, · · · , ξn)] = ∆j (Exp [ξ1] , · · · ,Exp [ξn]) , j ∈ V.

Proof. Using (4.4), the equation stated above follows immediately from the additivity

of the expected value.

Lemma 6.2. If ξ1, · · · , ξn are independent random variables then

Var [ζj (ξ1, · · · , ξn)] =

j−1∑

k=1

c2kjVar [ξk] +
n∑

k=j+1

c2jkVar [ξk] , j ∈ V.

Proof. The statement follow by using (4.4) and the independence property combined

with the fact that if α ∈ R, then Var [αξk] = α2Var [ξk].

Lemma 6.3. If ξ1, · · · , ξn is a sequence of independent random variables defined on

the same probability space, having finite expected values µ1, · · · , µn, variances σ2
1, · · · , σ

2
n

and third central moments r3j = Exp
[
|ξj − µj |

3
]
, j ∈ V, and if

lim
n→∞

rn√∑n
j=1 σ

2
j

= 0,
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then

Nj ≡
ζj (ξ1, · · · , ξn)−∆j (µ1, · · · , µn)√∑j−1

k=1 c
2
kjσ

2
k +

∑n
k=j+1 c

2
jkσ

2
k

, j ∈ V,

converges to the standard normal distribution.

Proof. This is a restatement of a generalization of the central limit theorem under the

Lyapunov conditions.

Remark 6.1. The practical implication of Lemma 6.3 is that a large linear combina-

tion of independent random variables has values normally distributed. Therefore, if a

traditional (e.g., uniform, Bernoulli, etc.) probability distribution is considered for ξk,

k ∈ V, then

Normal


∆j (µ1, · · · , µn) ,

j−1∑

k=1

c2kjσ
2
j +

n∑

k=j+1

c2jkσ
2
j


 (6.6)

is a good approximation of ζj (ξ1, · · · , ξn), j ∈ V.

According to the necessary conditions of optimality stated in Proposition 4.1, every

minimizing point (x∗1, · · · , x
∗
n) of f must satisfy the following two conditions for every

index j ∈ V:

1. If x∗j = 1 then ∆j (x∗) 6 0;

2. If x∗j = 0 then ∆j (x∗) > 0.

Proposition 4.1 suggests that a potentially good strategy for selecting the next

variable to be fixed by subroutine X in One–Pass, is to give priority to those variables

whose partial derivatives have constant signs with large probability.

This selection process and subsequent fixation at every iteration of One–Pass create

a new function, where the new derivative functions of the remaining variables (depend-

ing on the selected variable) also change.

The One–Pass procedure creates a sequence of actions that depend on the decisions

made previously, each one being based on how the values of the resulting derivative

functions are distributed. A key issue is therefore to know what probability distribution

to assume for the partial derivative values. We consider two basic approaches:
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• Uniform – The range of values of the first derivative function ∆j (j ∈ V) is uni-

formly distributed between its minimum and maximum values (i.e., Uniform (Lj, Uj));

• Normal – The range of values of the first derivative function ∆j (j ∈ V) is

normally distributed, as defined in (6.6).

Let us introduce further notation to indicate the fact that some of the variables

have already been assigned a 0–1 value. The function f under the partial assignment

yU,Z will be denoted as fU,Z, and similarly the first derivatives, the associated stochas-

tic functions, and the corresponding minimum and maximum values will be denoted

respectively as ∆U,Z
j , ζU,Zj , UU,Z

j and LU,Z
j , for all j ∈ V \ (U ∪ Z).

Let us denote the subset of (random) variables for which the probabilities of the

corresponding partial derivatives to have constant signs are highest by

SU,Z
def
= arg max

j∈V\(U∪Z)

(
Prob

[
ζU,Zj > 0

]
,Prob

[
ζU,Zj < 0

])
.

The One–Pass(X,Y) sub–family of heuristic methods that we shall study in this

subsection is characterized as follows:

X ≡ i = min

{
k ∈ SU,Z

∣∣∣∣
∣∣∣Exp

[
ζU,Zk

]∣∣∣ = max
j∈SU,Z

(∣∣∣Exp
[
ζU,Zj

])∣∣∣
}

,

Y ≡ if
(
Exp

[
ζU,Zi

]
6 0
)

then U ← U ∪ {i} else Z ← Z ∪ {i} .

This algorithm depends on the way in which the probability distributions of the first

derivative values are defined. In our computational experiments we only considered

cases which use the same probability distribution for all non–fixed variables (i.e. for xj,

j ∈ V \ (U ∪ Z)). In addition, we assumed that the expected value of each non–fixed

variable is 0.5. These choices were made with the intuitive idea of giving equal chances

to every non–fixed variable to be selected.

The stochastic variants of the partial derivative functions that we have tested are

described in Table 6.1. For simplicity, this table only considers the cases analyzed in the

first iteration of One–Pass (i.e. if U = Z = ∅). It should be noted here that a partial
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Table 6.1: Probability distributions of random variables used to characterize the prob-
ability distribution of partial derivatives of quadratic pseudo–Boolean functions.

ζj , j ∈ V ξj , j ∈ V

discrete Uniform (Lj, Uj) –

Normal
(

Lj+Uj

2 , 1
4

(∑j−1
k=1 c

2
kj +

∑n
k=j+1 c

2
jk

))
Bernoulli

(
1
2

)

Normal
(

Lj+Uj

2 , 1
12

(∑j−1
k=1 c

2
kj +

∑n
k=j+1 c

2
jk

))
Uniform (0, 1)

Normal
(

Lj+Uj

2 , 1
48

(∑j−1
k=1 c

2
kj +

∑n
k=j+1 c

2
jk

))
Uniform (0.25, 0.75)

Normal
(

Lj+Uj

2 , 1
300

(∑j−1
k=1 c

2
kj +

∑n
k=j+1 c

2
jk

))
Uniform (0.40, 0.60)

Normal
(

Lj+Uj

2 , 1
1 200

(∑j−1
k=1 c

2
kj +

∑n
k=j+1 c

2
jk

))
Uniform (0.45, 0.55)

Normal
(

Lj+Uj

2 , 1
30 000

(∑j−1
k=1 c

2
kj +

∑n
k=j+1 c

2
jk

))
Uniform (0.49, 0.51)

assignment essentially results in a new quadratic pseudo–Boolean function to which

the options listed in this table are applied again. We also remark that variables fixed

during the process can be seen as constants, i.e. random variables with no variance.

The first option in Table 6.1 considers that the values of the partial derivatives

are integers between their minimum and maximum values. This choice was motivated

by the fact that the test problems have integer coefficients. The second and following

variants consider the variate (6.6), and assume that all variables have an independent

and identical distribution. All options in Table 6.1 have the same expectation. In these

cases, the expected value of the j-th partial derivative in a given iteration of One–Pass

is

Exp
[
ζU,Zj

]
=
LU,Zj + UU,Zj

2
= ∆j

((
1

2
, · · · ,

1

2

)[
U ∪ Z ← yU,Z

])
,



130

where

LU,Zj = min
x∈V\(U∪Z)

∆j

(
x
[
U ∪ Z ← yU,Z

])

= Lj −
∑

k∈Z:k<j
ckj<0

ckj −
n∑

k∈Z:k>j
cjk<0

cjk +
∑

k∈U :k<j
ckj>0

ckj +
n∑

k∈U :k>j
cjk>0

cjk

= cj +
∑

k∈V\(U∪Z):k<j
ckj<0

ckj +
n∑

k∈V\(U∪Z):k>j
cjk<0

cjk +
∑

k∈U :k<j

ckj +
∑

k∈U :k>j

cjk and

UU,Zj = max
x∈V\(U∪Z)

∆j

(
x
[
U ∪ Z ← yU,Z

])

= Uj −
∑

k∈Z:k<j
ckj>0

ckj −
n∑

k∈Z:k>j
cjk>0

cjk +
∑

k∈U :k<j
ckj<0

ckj +
n∑

k∈U :k>j
cjk<0

cjk

= cj +
∑

k∈V\(U∪Z):k<j
ckj>0

ckj +
n∑

k∈V\(U∪Z):k>j
cjk>0

cjk +
∑

k∈U :k<j

ckj +
∑

k∈U :k>j

cjk,

for all j ∈ V \ (U ∪ Z).

The expected values Exp
[
ζU,Zj

]
, j ∈ V\(U ∪ Z), are coincident with the coefficients

(6.1) of the best linear approximation of the function, which is defined by a partial

assignment corresponding to the subset of variables (U ∪ Z) with value fixed. As

a consequence of this relation, Exp
[
ζU,Zj

]
can be computed efficiently between two

consecutive iterations of One–Pass, as it was shown in (6.3) for the One–Pass case

based on the best linear approximation.

In the normal distribution cases, it can be seen that the impact of the distribu-

tion assumed for the set of non–fixed variables is basically in the “multiplier” term

associated with the variance component. Therefore, the key player to be analyzed in

the computational analysis is in fact which multiplier is more suitable to obtain better

quality solutions for QUBO.

For the options listed in Table 6.1, the variance of the partial derivatives j, j ∈

V \ (U ∪ Z) in a given iteration of One–Pass is

Var
[
ζU,Zj

]
= α




∑

k∈V\(U∪Z):k<j

c2kj +
∑

k∈V\(U∪Z):k>j

c2jk


 , (6.7)

where α is the variance of the individual variables. In the cases listed in Table 6.1 the
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variances of the variables were chosen to be all equal.

When using

Var
[
ζ
U∪{i},Z
j

]
= Var

[
ζU,Zj

]
− αc2ij , if j > i,

Var
[
ζ
U∪{i},Z
j

]
= Var

[
ζU,Zj

]
− αc2ji, if j < i,

Var
[
ζ
U,Z∪{i}
j

]
= Var

[
ζU,Zj

]
− αc2ij , if j > i,

Var
[
ζ
U,Z∪{i}
j

]
= Var

[
ζU,Zj

]
− αc2ji, if j < i,

(6.8)

for all j and i ∈ V\(U ∪ Z), j 6= i, then the variance of the partial derivatives (6.7) can

be computed efficiently between two consecutive iterations of One–Pass. These values

also show that the variance of the partial derivatives are non–increasing functions at

every iteration of One–Pass, which at the end of the procedure will have value zero.

Theorem 6.3. Using the probability distributions of partial derivatives, a heuristic

solution to the minimization of a quadratic pseudo–Boolean function f is provided by

One–Pass in O
(
n2
)

time.

Proof. Using the relations (6.8) and using the fact mentioned above about calculating

the expected values of the partial derivatives between two consecutive iterations, we

can use the same arguments used in Theorem 6.1 to prove our claim.

6.1.2.3 Rounding methods

The minimum of a polynomial function f in 0–1 variables coincides with the minimum

of the same polynomial defined when the variables are continuous, taking values in

the interval [0, 1] (see Section 4.7). Furthermore, the value of f at any point p ∈ Un

can be seen as being the expected value of the pseudo–Boolean function f , whose 0–1

variables have independent probabilities given as Prob [xi = 1] = pi for all i = 1, · · · , n

(see Proposition 4.6), i.e. f (p) = Exp [f (x)].

The heuristic method presented in this subsection finds a finite sequence of points

p(0), · · · , p(n) belonging to Un such that the following four conditions are met:
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i) The expected value of f does not increase along the sequence, i.e.

f
(
p(k)

)
> f

(
p(k+1)

)
for all k = 0, · · · , n− 1;

ii) Two consecutive points differ in at most a single coordinate, i.e.

p
(k)
i = p

(k+1)
i for all k = 0, · · · , n− 1, and i ∈ V \ {ik+1} ;

iii) The set of indices {ik |k = 1, · · · , n} selected along the sequence, defines the com-

plete set of variables, i.e.

V = {ik |k = 1, · · · , n} ;

iv) The last point of the sequence is a binary vector, i.e. p(n) ∈ Bn.

These conditions together imply that the value of each variable is rounded (if frac-

tional) or switched (if binary) to a 0–1 value, thus justifying the name given to the

“rounding” heuristics considered in this section.

The value decrease of f between two consecutive points of the sequence is

f
(
p(k)

)
− f

(
p(k+1)

)

= p
(k)
ik+1

∆ik+1

(
p(k)

)
+ Θik+1

(
p(k)

)
− p

(k+1)
ik+1

∆ik+1

(
p(k+1)

)
−Θik+1

(
p(k+1)

)

=
(
p
(k)
ik+1
− p

(k+1)
ik+1

)
∆ik+1

(
p(k)

)
,

(6.9)

for all k = 0, · · · , n− 1. Thus, from our choices (i-iv) given above we get

∆ik+1

(
p(k)

)
> 0 ⇒ p

(k+1)
ik+1

= 0 and

∆ik+1

(
p(k)

)
< 0 ⇒ p

(k+1)
ik+1

= 1.

The heuristic value returned by these rounding procedures is therefore

f
(
p(n)

)
= f

(
p(0)

)
−
n−1∑

k=0

((
p
(k)
ik+1
− p

(k+1)
ik+1

)
∆ik+1

(
p(k)

))
.
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Because both the speed and the quality of solutions are important factors to consider

in the design of algorithms for one–pass heuristics, we shall adopt a greedy variant of

each step of the method. Therefore:

1. The initial value of f
(
p(0)

)
should be chosen as small as possible;

2. The “transition index” ik defining point p(k) from point p(k−1) should be selected

so as to minimize the value of f
(
p(k)
)
.

In order to make the choice of the initial point both effective and efficient, we have

studied several alternative ways of computing a low valued point in O (size (f)) time.

The various starting points considered in this study are listed in Table 6.2.

The description of the starting points considered in this study is listed in Table 6.2.

The selection method I1 is self-explanatory. Methods I2 and I3 are two slightly

different attempts to decrease Exp [f ] (see Proposition 4.6 and Corollary 4.4). Finally,

methods I4 and I5 try to estimate the probability of each variable xi to take the value

0 at a local minimum. They both use the characterization of local minima (see Propo-

sition 4.1). I4 uses the available bounds for the derivatives, and assumes for simplicity

that the (integer) values of the derivatives are uniformly distributed between their

upper and lower bounds. I5 assumes that the values of the derivatives are normally

distributed, having means and standard deviations defined as in Lemma 6.3.

We have successfully experimented with a more sophisticated type procedure for

identifying the starting point p(0). The procedure consists in choosing one coordinate

at a time, identifying an “ideal” value of it, substituting this value into the function,

repeating the above steps on the above function, etc., until p(0) is found.

Using the previous idea, we have considered four additional starting points based on

the same basic constructs used by methods Is, s = 2, · · · , 5. The idea is to reapply the

principle associated to starting point Is, s = 2, · · · , 5, to every component j = 1, · · · , n.

For instance, if the optimal choice of method I3 is used for the first component, then

x1 = α (see definition of α in Table 6.2), x2 would get the optimal choice α2 applied

to the “new” function f (x [{1} ← (α)]), and in general xj, j = 3, · · · , n, would get
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Table 6.2: Starting points considered in the computational experiments.

I1 (Center): p(0) =
(

1
2 , ...,

1
2

)

I2 (Pos/Neg): p(0) = (1− ρ, · · · , 1− ρ), where ρ is the proportion of terms
having positive coefficients, i.e.

ρ =

∑
i∈V:ci>0

ci +
∑

16i<j6n:cij>0
cij

n∑
i=1
|ci|+

∑
16i<j6n

|cij |
.

I3 (Best): p(0) = (α, · · · , α) assumes that all variables take the same
value, and α is the optimal choice for that value, i.e.

α = arg min
06λ61

λ




n∑

i=1

ci + λ
∑

16i<j6n

cij


 .

I4 (Delta): p(0) = (γ1, · · · , γn), where for i = 1, · · · , n we have

γi =





0, Li > 0,
0.5−Li

1+Ui−Li
, Li < 0 and Ui > 0,

1, otherwise.

I5 (Normal): p(0) = (ν1, · · · , νn), where for i = 1, · · · , n we have

νi =





1, Li > 0,

1− Φ

(
Lj+Uj�

(
� j−1

k=1 c
2
kj

+
�n

k=j+1 c
2
jk)

)
, Li < 0 and Ui > 0,

0, otherwise.
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the optimal choice αj applied to the function f (x [{1, · · · , j − 1} ← (α,α2, · · · , αj−1)]).

This method results in the starting point (α,α2, · · · , αn).

These improved starting point methods will be denoted I?s , s = 2, · · · , 5; each of

them is based on the underlying ideas associated to the corresponding methods Is,

s = 2, · · · , 5, described in Table 6.2, enhanced by there iterative application illustrated

above.

It should be remarked that all methods I?s , s = 2, · · · , 5, run also in O (size (f)), but

do obviously require somewhat larger computing times than the corresponding methods

Is, s = 2, · · · , 5.

In order to decrease the value of the function f by changing the value of a variable,

the selection of that variable has to balance computational time and loss in function

value. To be able to describe the proposed method, we need a few more notations.

Given a quadratic pseudo–Boolean function f and a vector p(k) ∈ Un, let us intro-

duce for every j ∈ V \ (U ∪ Z) the quantities

dj = dj

(
p(k)

)
= f

(
p(k)

)
− f

(
p(k+1)

)
, (6.10)

which measure the size of local improvement when changing only the component j

(optimally).

Lemma 6.4. For any vector p(k) ∈ Un and index j ∈ V \ (U ∪ Z) we have

dj

(
p(k)

)
= max

{
p
(k)
j ∆j

(
p(k)

)
,
(
p
(k)
j − 1

)
∆j

(
p(k)

)}
.

If the values of the derivatives ∆j

(
p(k)

)
(j ∈ V \ (U ∪ Z)), are available, then the quan-

tities dj (j ∈ V \ (U ∪ Z)), can be computed in O (n) extra time.

Proof. Immediate by (6.9) and the definitions.

A One–Pass(X,Y) family of rounding heuristics that we shall study is characterized

as follows:
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X ≡ i = ik = min

{
r

∣∣∣∣dr = max
j∈V\(U∪Z)

(dj)

}
,

Y ≡ if
(
∆U,Z
i 6 0

)
then U ← U ∪ {i} else Z ← Z ∪ {i} .

(6.11)

Theorem 6.4. Using rounding procedures, a heuristic solution to the minimization of

a quadratic pseudo–Boolean function f is provided by One–Pass in O
(
n2
)

time.

Proof. The value of the partial derivatives ∆j , j ∈ V \ (U ∪ Z), is kept updated in

the point p(k), k = 1, · · · , n, associated to each of the n rounding steps. The initial

calculation of these values can be carried out in O (size (f)) time, and the subsequent

updates can be done in O (n) time, by using the relations

∆
U∪{i},Z
j = ∆U,Z

j +
(
1− p

(k−1)
i

)
cij , if j > i,

∆
U∪{i},Z
j = ∆U,Z

j +
(
1− p

(k−1)
i

)
cji, if j < i,

∆
U,Z∪{i}
j = ∆U,Z

j − p
(k−1)
i cij , if j > i,

∆
U,Z∪{i}
j = ∆U,Z

j − p
(k−1)
i cji, if j < i,

for all j ∈ V \ (U ∪ Z). With the ∆j (j ∈ V \ (U ∪ Z)) values available, the component

selection step given in Lemma 6.4 can also be done in o (n) time. Adding these times

for n rounding steps, the claimed time complexity of O
(
n2
)

follows readily.

Theorem 6.5. One-pass rounding heuristic using the center as starting point produces

a solution for QUBO equivalent to the solution returned by the best linear approximation

one-pass heuristic. (see Section 6.1.2.1)

Proof. This result follows trivially since the coefficients of the best linear l2-approximation

of a pseudo–Boolean function f are the values of the partial derivatives of f in the center

(see Proposition 4.8 and (6.1)).

At every iteration of the One–Pass method, several variables xj not yet fixed (i.e.

j ∈ V \ {U ∪ Z}) may have a partial derivative ∆U,Z
j with constant sign regardless of

the values of the other variables xi not yet fixed (i.e. i 6= j, i ∈ V \ {U ∪ Z}) by the

procedure.
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The variables in those circumstances will be rounded to the corresponding value

determined by the local minimum conditions (i.e., if ∆U,Z
j > 0 then xj = 0, otherwise

xj = 1). The point that can make a difference in the one–pass rounding algorithms is

to when an immediate rounding (or switching) operation is applied or not.

In the study of the one–pass rounding heuristics we consider a version of One–

Pass(X,Y) that immediately rounds all variables (not yet fixed) which satisfy the local

optimality conditions. Before presenting this variant, let us introduce LU,Zj (respectively

UU,Zj ) as being the minimum (respectively maximum) of the pseudo–Boolean linear

function ∆U,Z
j . Let

SU,Z+ =
{
j ∈ V \ {U ∪ Z}

∣∣∣LU,Zj UU,Zj > 0
}
.

be the set containing the variables (not yet fixed) which satisfy the local optimality

conditions.

An additional family of one–pass rounding heuristics that we consider is character-

ized as follows:

X ≡





i = ik = minSU,Z+ , SU,Z+ 6= ∅

X from (6.11), SU,Z+ = ∅,

Y ≡ Y from (6.11).

Theorem 6.6. Using rounding procedures that enforce local optimality as soon as pos-

sible, a heuristic solution to the minimization of a quadratic pseudo–Boolean function

f is provided by One–Pass in O
(
n2
)

time.

Proof. The claimed complexity follows from the fact that the minimum LU,Zj and the

maximum UU,Zj of the partial derivative ∆U,Z
j can be obtained directly from separate

data structures which contain the values updated according to the sets U and Z. The
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initial calculation of these values can be carried out in O (size (f)) time, and the sub-

sequent updates can be done in O (n) time, by using the relations

U
U∪{i},Z
j = UU,Zj + min (0, cij) , if j > i,

U
U∪{i},Z
j = UU,Zj + min (0, cji) , if j < i,

U
U,Z∪{i}
j = UU,Zj −max (0, cij) , if j > i,

U
U,Z∪{i}
j = UU,Zj −max (0, cji) , if j < i,

L
U∪{i},Z
j = LU,Zj + max (0, cij) , if j > i,

L
U∪{i},Z
j = LU,Zj + max (0, cji) , if j < i,

L
U,Z∪{i}
j = LU,Zj −min (0, cij) , if j > i,

L
U,Z∪{i}
j = LU,Zj −min (0, cji) , if j < i,

for all j ∈ V \ (U ∪ Z). With the previous relations, it is simple to see that the same

arguments used in the proof of Theorem 6.4 imply the claimed time complexity.

We end this section by presenting an example that illustrates that more complex

expressions can be used in one-pass procedures for QUBO.

Example 6.2. Let us consider an arbitrary quadratic pseudo–Boolean function f given

as (1.5). Let p ∈ Un be an arbitrary real vector, and assume that the variables xi,

i = 1, · · · , n are pairwise independent random variables for which pi = Prob [xi = 1] =

1− Prob [xi = 0] for i = 1, · · · , n. We start by finding the expected value decrease of f

when the quadratic relation x1x2 = 0 is assumed:

Exp [f (x)]− Exp [f (x) |x1x2 = 0]

= Exp [f (x)]− Exp[f(x)]−Prob[x1x2=1]Exp[f(x)|x1x2=1 ]
1−Prob[x1x2=1]

= f (p1, · · · , pn)−
f(p1,··· ,pn)−p1p2f(1,1,p3··· ,pn)

1−p1p2

= p1p2
1−p1p2

(f (1, 1, p3 · · · , pn)− f (p1, · · · , pn))

= p1p2
1−p1p2

((1− p1) ∆1 (p1, · · · , pn) + (1− p2)∆2 (p1, · · · , pn) + (1− p1 − p2 + p1p2) c12)

= p1p2
1−p1p2

(p1∆1 (p1, · · · , pn) + p2∆2 (p1, · · · , pn) + p1p2c12) .

(6.12)
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In particular if pi = 1
2 , i = 1, · · · , n, then (6.12) becomes

Exp [f (x)]− Exp [f (x) |x1x2 = 0]

= 1
3

(
1
2∆1

(
1
2 , · · · ,

1
2

)
+ 1

2∆2

(
1
2 , · · · ,

1
2

)
+ 1

4c12
)

= L1+U1+L2+U2+c12
12 .

In the general case of assigning a quadratic term x
(α)
1 x

(β)
2 = 0 under the previous

conditions, the expected value decrease of this assignment is given by the following

formula:

Exp [f (x)]− Exp
[
f (x)

∣∣∣x(α)
1 x

(β)
2 = 0

]

= p1p2
1−p1p2

((α− p1) ∆1 (p1, · · · , pn) + (β − p2)∆2 (p1, · · · , pn) + (αβ − βp1 − αp2 + p1p2) c12) .

A possible good strategy for selecting a term in the DDT devour stage (presented in

Section 6.1.1) is to consider either a quadratic term or a linear term, which provides the

expected largest decrease in function value, as was illustrated in the previous example

for the quadratic term and by method X of (6.11) for the linear case.

6.1.3 Measuring heuristics performance

Let f be a pseudo–Boolean function given as a multilinear polynomial (1.1), whose

minimum value is ν (f). Let us denote the solution returned by a given heuristic H as

xH .

The traditional way to measure the performance of heuristics on QUBO problems

is to use the relative error

R (H; f)
def
=
f
(
xH
)
− ν (f)

ν (f)
.

In spite of being widely used, the relative error R (H; f) does not satisfy some im-

portant properties that these performance indicators should have. Namely, the relative
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error depends on the constant of the function,

lim
c→∞

R (H; f + c) = 0, and

the relative error depends on complementation of variables. For instance, R (H; f)

would report different results for

f (x, y) = −2x− 3y + 3xy, and

3+ f (x, y) = x+ 3y − 3xy, where y = 1− y.

Let us note that a minimizer of f can easily be derived from the optimum of the

functions obtained with the previous transformations. Therefore, the measure of quality

of heuristics should be independent of such variations.

An idea to solve this issue is to adopt a normalization of the relative error by using

a constant c which satisfies

Exp [f + c] = [f + c]

(
1

2
, · · · ,

1

2

)
= 0.

As a consequence of the previous relation, the normalized relative error

N (H; f)
def
= R

(
H; f − f

(
1

2
, · · · ,

1

2

))
=

f
(
xH
)
− ν (f)

ν (f)− f
(

1
2 , · · · ,

1
2

) .

is obtained. It turns out that N was proposed by Zemel [240] (see also [184]), which

concludes that N is a “proper” measure to evaluate the quality of approximate solutions

to 0–1 programming problems.

Since the optimum is not know for many of the test problems, we also will use the

approximative relative error

G (H; f)
def
=
f
(
xH
)
− f

(
xbest

)

f (xbest)
,
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and the approximative normalized error

K (H; f)
def
=

f
(
xH
)
− f

(
xbest

)

f (xbest)− f
(

1
2 , · · · ,

1
2

) ,

for evaluation purposes, where xbest stands for the best known solution to the minimum

value of f .

Given a computer system S, the computing time of heuristic H applied to problem

f in S is denoted by T (S;H; f).

To analyze the performance of the proposed algorithms in a particular family F of

QUBO problems, we shall frequently use the average value W , associated to a heuristic

H in a set of problems F , i.e.

W (H;F)
def
= Exp [W (H; f) |f ∈ F|] ,

where W stands for any of the performance indicators previously defined: N , K, R or

G. Similarly, the average computing time of a heuristic H in a set of problems F using

a computer system S is denoted as

T (S;H;F)
def
= Exp [T (S;H; f) |f ∈ F|] .

The variance of the results of W in a set of problems F is an important performance

measure that we also consider:

σ2
W (H;F)

def
= Var [W (H; f) |f ∈ F|] .

6.1.4 Computational results

Five class families of one–pass heuristics were described in Section 6.1. In Table 6.3 a list

of 49 one–pass algorithms for QUBO is presented. Each method listed in the table has a

name and is briefly distinguished from the others, so that they can be referenced in the

text that follows. The analysis includes only 48 variants of the proposed 49 algorithms
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since the solution returned by One-Pass-BLA is equal to the solution returned by

One-Pass-R(I1) (see Theorem 6.5).

Except for the One-Pass-DDT-L heuristic, which was implemented using the im-

plication network structure (see definition in Section 5.3), all the heuristics were im-

plemented using an upper triangular (dense) matrix structure. This choice was made

with the intuitive idea of allowing all heuristics to compete equally in terms of using

the same data structure.

We remark the fact that we did studied several other data structures for the DDT

heuristic of Boros et al. [58], which uses a signed graph as input to the algorithm. If an

adjacency list is adopted to represent the signed graph, then the DDT heuristic would

outperform the corresponding heuristic based on the matrix representation in problems

with density smaller than 19%. However, for the other cases, the usage of the matrix

structure would clearly provide faster runs of the DDT algorithm.

The number of test problems considered in the subsequent analysis is 5 458. Except

for the 36 massive planar graphs of the RUDY benchmark, for which the adopted matrix

structure would be prohibitive in terms of the available capacity of computer memory,

we considered here all the problems described in Chapter 3. The characteristics of

the data set can be seen in Table 3.1. A summary of the classes of QUBO problems

considered is presented in Table 6.4. The total number of experiments considered in

this section is 258 404.

The One-Pass-DDT-L heuristic was only considered in 1 942 datasets. We shall

disregard this heuristic from the analysis that follows, since its performance was clearly

inferior to the other heuristics in all aspects (e.g., the average relative gap (G) value is

over 200%).

The One-Pass-BLA heuristic was tested in 5 394 problems. The 62 problems that

were not tried for this heuristic have a sum of coefficients which is larger than the

largest valid (integer) number of the 32 bits computer used for testing (i.e. 231); recall

that this particular heuristic uses this parameter at every iteration of the algorithm

(see (6.4)).
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Table 6.3: One–pass heuristics for QUBO considered in the computational experiments.

Class Name Options

DDT One-Pass-DDT-L largest term from the roof–dual posiform
One-Pass-DDT-B largest bi-term of the bi-form

Best Linear One-Pass-BLA best linear approximation
Approximation One-Pass-BHLA best homogeneous linear approximation

One-Pass-P-U ∆j ∼ Uniform (Lj , Uj)
One-Pass-P-N

(
σ2 = 1

4

)
∆j ∼ Normal; xj ∼ Bernoulli

(
1
2

)

One-Pass-P-N
(
σ2 = 1

12

)
∆j ∼ Normal; xj ∼ Uniform (0, 1)

Probabilistic One-Pass-P-N
(
σ2 = 1

48

)
∆j ∼ Normal; xj ∼ Uniform (0.25, 0.75)

One-Pass-P-N
(
σ2 = 1

300

)
∆j ∼ Normal; xj ∼ Uniform (0.40, 0.60)

One-Pass-P-N
(
σ2 = 1

1 200

)
∆j ∼ Normal; xj ∼ Uniform (0.45, 0.55)

One-Pass-P-N
(
σ2 = 1

30 000

)
∆j ∼ Normal; xj ∼ Uniform (0.49, 0.51)

One-Pass-R(I1) starting point is I1 ≡
(

1
2 , · · · ,

1
2

)

One-Pass-R(I2) starting point is I2
One-Pass-R(I3) starting point is I3
One-Pass-R(I4) starting point is I4
One-Pass-R

(
I5, σ

2 = 1
4

)
s.p. is I5; xj ∼ Bernoulli

(
1
2

)

One-Pass-R
(
I5, σ

2 = 1
12

)
s.p. is I5; xj ∼ Uniform (0, 1)

One-Pass-R
(
I5, σ

2 = 1
48

)
s.p. is I5; xj ∼ Uniform (0.25, 0.75)

One-Pass-R
(
I5, σ

2 = 1
300

)
s.p. is I5; xj ∼ Uniform (0.40, 0.60)

One-Pass-R
(
I5, σ

2 = 1
1 200

)
s.p. is I5; xj ∼ Uniform (0.45, 0.55)

Rounding One-Pass-R
(
I5, σ

2 = 1
30 000

)
s.p. is I5; xj ∼ Uniform (0.49, 0.51)

One-Pass-R(I?
2 ) starting point is I?

2

One-Pass-R(I?
3 ) starting point is I?

3

One-Pass-R(I?
4 ) starting point is I?

4

One-Pass-R
(
I?
5 , σ

2 = 1
4

)
s.p. is I?

5 ; xj ∼ Bernoulli
(

1
2

)

One-Pass-R
(
I?
5 , σ

2 = 1
12

)
s.p. is I?

5 ; xj ∼ Uniform (0, 1)
One-Pass-R

(
I?
5 , σ

2 = 1
48

)
s.p. is I?

5 ; xj ∼ Uniform (0.25, 0.75)
One-Pass-R

(
I?
5 , σ

2 = 1
300

)
s.p. is I?

5 ; xj ∼ Uniform (0.40, 0.60)
One-Pass-R

(
I?
5 , σ

2 = 1
1 200

)
s.p. is I?

5 ; xj ∼ Uniform (0.45, 0.55)
One-Pass-R

(
I?
5 , σ

2 = 1
30 000

)
s.p. is I?

5 ; xj ∼ Uniform (0.49, 0.51)

One-Pass-R+ (I1) starting point is I1 ≡
(

1
2 , · · · ,

1
2

)

One-Pass-R+ (I2) starting point is I2
One-Pass-R+ (I3) starting point is I3
One-Pass-R+ (I4) starting point is I4
One-Pass-R+

(
I5, σ

2 = 1
4

)
s.p. is I5; xj ∼ Bernoulli

(
1
2

)

One-Pass-R+
(
I5, σ

2 = 1
12

)
s.p. is I5; xj ∼ Uniform (0, 1)

One-Pass-R+
(
I5, σ

2 = 1
48

)
s.p. is I5; xj ∼ Uniform (0.25, 0.75)

Rounding One-Pass-R+
(
I5, σ

2 = 1
300

)
s.p. is I5; xj ∼ Uniform (0.40, 0.60)

with One-Pass-R+
(
I5, σ

2 = 1
1 200

)
s.p. is I5; xj ∼ Uniform (0.45, 0.55)

local One-Pass-R+
(
I5, σ

2 = 1
30 000

)
s.p. is I5; xj ∼ Uniform (0.49, 0.51)

optimality One-Pass-R+ (I?
2 ) starting point is I?

2

conditions One-Pass-R+ (I?
3 ) starting point is I?

3

One-Pass-R+ (I?
4 ) starting point is I?

4

One-Pass-R+
(
I?
5 , σ

2 = 1
4

)
s.p. is I?

5 ; xj ∼ Bernoulli
(

1
2

)

One-Pass-R+
(
I?
5 , σ

2 = 1
12

)
s.p. is I?

5 ; xj ∼ Uniform (0, 1)
One-Pass-R+

(
I?
5 , σ

2 = 1
48

)
s.p. is I?

5 ; xj ∼ Uniform (0.25, 0.75)
One-Pass-R+

(
I?
5 , σ

2 = 1
300

)
s.p. is I?

5 ; xj ∼ Uniform (0.40, 0.60)
One-Pass-R+

(
I?
5 , σ

2 = 1
1 200

)
s.p. is I?

5 ; xj ∼ Uniform (0.45, 0.55)
One-Pass-R+

(
I?
5 , σ

2 = 1
30 000

)
s.p. is I?

5 ; xj ∼ Uniform (0.49, 0.51)
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Table 6.4: Families of QUBO problems used to evaluate the proposed one–pass heuris-
tics.

Families of Number of Optimum Variables
QUBO Problems Problems Known (n)

Benchmarks 143 69 20 to 6 000
Randomly generated 3 728 285 25 to 30 000
MAX-Clique 138 119 28 to 4 000
MIN-VC (planar) 400 400 1 000 to 4 000
MAX-CUT 375 36 125 to 10 000
MAX-2-SAT 674 360 50 to 400

All Problems 5 458 1 269 20 to 30 000

The application of an immediate rounding step to the variables, which were not yet

fixed by the one-pass procedure, that have partial derivatives with constant sign (thus,

satisfying the local optimality conditions for any 0-1 value of the remaining variables),

proved to be useful in 16.3% of the cases, while it returned worse results in 5.4% of the

cases. Formally, these results can be described as

|{f∈C,I∈I|f(One-Pass-R+(I))>f(One-Pass-R(I))}|
|C||I| = 16.3%,

|{f∈C,I∈I|f(One-Pass-R+(I))=f(One-Pass-R(I))}|
|C||I| = 78.3%,

|{f∈C,I∈I|f(One-Pass-R+(I))<f(One-Pass-R(I))}|
|C||I| = 5.4%,

where C corresponds to the complete set of 5 458 test problems, and I corresponds to

the set of 19 initialization procedures considered.

In the current implementation, the average computing time of the heuristics, which

consider the local optimality conditions, is 39.5% higher than the corresponding heuris-

tic versions that do not consider the optimality conditions. For this reason, and because

the solutions returned are typically similar, the computational experiments and analysis

that follow do not include these (One-Pass-R+) heuristics.

6.1.4.1 Computing time

The worst complexity time of all one-pass heuristics implemented is O
(
n2
)
. All heuris-

tics were implemented using the same data structure (i.e. a triangular dense matrix).

Seven heuristics use the probabilistic approach presented in Section 6.1.2.2, whereas the

remaining nineteen heuristics use the rounding procedures presented in Section 6.1.2.3.
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The algorithms were implemented in C++, compiled using Microsoft Windows 32-

bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the Microsoft

Incremental Linker (version 6) using the single–threaded run–time library.

All the experiments were found using the same computer system, which is based on

a Xeon 3.06 GHz, 3.5 GB RAM and Windows XP. The previous choices allowed us to

evaluate the heuristics computing times under the same conditions.

Table 6.5 displays average computing times of the one–pass heuristics on several

families of QUBO problems. From the 26 one-pass heuristics tested, Table 6.5 lists the

fastest (average) computing times, the overall average computing times and the slowest

(average) computing times for the various groups of problems.

Table 6.5: Computing time of the one–pass heuristics across several families of QUBO
problems.

Computing Time of the
One–Pass Heuristics having

Families of Fastest Average Slowest
QUBO Problems Time Time Time

Benchmarks 0.2 s 0.4 s 0.6 s
Randomly generated 1.9 s 2.9 s 3.8 s
MAX-Clique <0.1 s <0.1 s <0.1s
MIN-VC (planar) 0.3 s 0.5 s 0.6 s
MAX-CUT 0.2 s 0.4 s 0.5 s
MAX-2-SAT <0.1 s <0.1 s <0.1 s

All Problems 1.5 s 2.4 s 3.1 s

If all problems are considered, it can be seen that the average running time of the

complete set of heuristics varies between 1.5 and 3.1 seconds. The more time consuming

tests occurred in the large randomly generated cases, clearly indicating that the number

of variables (n) is highly correlated with the heuristics computing time.

Figure 6.3 displays the average computing time of the fastest, slowest and average

case one-pass heuristics according to the number of variables. The following average

computing times are displayed:

• For QUBOs having 1 000 variables, the heuristics time is in the interval ]0.0s, 0.2s];

• For QUBOs having 5 000 variables, the heuristics time is in the interval [1.2s, 4.7s];

• For QUBOs having 10 000 variables, the heuristics time is in the interval [8s, 17s];
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• For QUBOs having 30 000 variables, the heuristics time is in the interval [96s, 272s].
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Figure 6.3: Average computing time of the (fastest, slowest, average case) one-pass
QUBO heuristics according to the number of variables (n).

It should be remarked the fact that the test problems include instances with very

large density. For instance some of the 30 000 variable’s problems have 90% density,

thus implying that the associated QUBO has almost 405 million nonzero quadratic

terms.

6.1.4.2 Quality of solutions

The quality of the proposed one–pass heuristics can be analyzed through the normalized

or the relative error, earlier introduced in Section 6.1.3.

Table 6.6 lists the approximate expected relative and normalized errors of the studied

set of one–pass heuristics, for several families of QUBO problems. It is interesting to

note that the performance of the heuristics varies considerably using these two criteria.

For instance, the most “difficult” class of problems studied for the proposed one-pass

heuristics is MAX-Clique if the relative error is considered, and is MAX-CUT if the

normalized error is used instead.

Optimality is known for 23% of the problems that were used for testing. The best
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Table 6.6: Quality of the one–pass heuristics across several families of QUBO problems.

(a) Approximate relative error.

Relative Error G of One–Pass Heuristics having
Families of Larger Average Smaller

QUBO Problems Error±St.Dev. Error±St.Dev. Error±St.Dev.

Benchmarks 5% ± 12% 4% ± 7% 2.3% ± 4.5%
Randomly generated 29% ± 24% 25% ± 18% 21% ± 14%
MAX-Clique 32% ± 20% 28% ± 15% 25% ± 12%
MIN-VC (planar) 30% ± 9% 6% ± 1.6% 0.1% ± 0.1%
MAX-CUT 8% ± 7% 6% ± 3% 4.4% ± 2.7%
MAX-2-SAT 5% ± 17% 4% ± 8% 2.7% ± 3.7%

All Problems 22% ± 23% 18% ± 18% 15.7% ± 15.2%

(b) Approximate normalized error.

Normalized Error W of One–Pass Heuristics having
Families of Larger Average Smaller

QUBO Problems Error±St.Dev. Error±St.Dev. Error±St.Dev.

Benchmarks 3% ± 3% 1% ± 1% 0.7% ± 0.6%
Randomly generated 1.4% ± 2.6% 0.7% ± 1.2% 0.5% ± 0.8%
MAX-Clique 3% ± 14% 0.8% ± 3% 0.4% ± 0.9%
MIN-VC (planar) 25% ± 8% 5% ± 1.3% 0.0% ± 0.1%
MAX-CUT 13% ± 5% 10% ± 3% 7.9% ± 2.6%
MAX-2-SAT 8% ± 6% 6% ± 5% 4.7% ± 4.0%

All Problems 4% ± 7% 2.4% ± 4.1% 1.7% ± 3.0%

known solutions of the open problems were found by meta-heuristic approaches, either

obtained from the literature or by using our own implementations.

The expected approximate relative error of the one-pass heuristics studied is partic-

ularly high for the groups of randomly generated problems and for MAX-Clique, having

respective expected errors in [21%, 29%] and [25%, 32%]. However, for the remaining

classes of QUBOs the expected relative error is inferior to 10%, and if the best one–pass

heuristic is considered the error is smaller than 5%.

The expected approximate normalized error of the one-pass heuristics studied is

smaller than 3% for the randomly generated problems and for the MAX-Clique prob-

lems. The “best” one–pass heuristic studied provides an expected error smaller than

0.7%, and variance smaller than 0.9%, for the groups of randomly generated prob-

lems, benchmark problems, MAX-Clique and MIN-VC of planar graphs. The expected

normalized error for MAX-CUT problems is in the interval [7.9%, 13%], and for MAX-

2-SAT problems is in the interval [4.7%, 8%].
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Table 6.7 gives the one-pass heuristics that minimize the approximate relative and

normalized errors. There is no clear winner for each class of QUBO problems analyzed.

The probabilistic based methods are somewhat superior for the standard benchmarks

and for MIN-VC of planar graphs. However, in general the rounding methods provide

better quality solutions.

Table 6.7: One–pass heuristics that minimize the approximate errors of several families
of QUBO problems.

Families of Heuristic that Minimizes the Expected
QUBO Problems Relative Error (G) Normalized Error (K)

Benchmarks One-Pass-P-N
(
σ2 = 1

48

)
One-Pass-P-N

(
σ2 = 1

48

)

Randomly generated One-Pass-R
(
I5, σ

2 = 1
4

)
One-Pass-R(I4)

MAX-Clique One-Pass-R(I2) One-Pass-R
(
I5, σ

2 = 1
4

)

MIN-VC (planar) any probabilistic any probabilistic
MAX-CUT One-Pass-R(I3) One-Pass-R(I4)
MAX-2-SAT One-Pass-R

(
I5, σ

2 = 1
4

)
One-Pass-R

(
I5, σ

2 = 1
4

)

All Problems One-Pass-R
(
I5, σ

2 = 1
4

)
One-Pass-R(I4)

The rounding heuristics One-Pass-R
(
I5, σ

2 = 1
4

)
and One-Pass-R(I4) frequently

provide the best quality solutions of the one-pass methods that we have studied. It

should be remarked the fact that the later heuristic does require the use and mainte-

nance of simpler data structures, and therefore it produces heuristic solutions a little

faster than the former heuristic. For instance, the average computing time of One-

Pass-R(I4), on the larger QUBOs having 30 000 variables and 90% density, is 164 sec-

onds, whereas for the heuristic One-Pass-R
(
I5, σ

2 = 1
4

)
the average computing time

on the same large problems is 174 seconds.

6.1.5 Comparing proposed methods to other results from the litera-

ture

Several one–pass heuristics for QUBO have been proposed in the past. Boros et al. [58]

proposed the DDT heuristics (see Section 6.1.1). Merz and Freisleben [178] proposed

One-Pass-R(I2), i.e. a steepest descent (greedy) heuristic having as starting point the

center. Glover et al. [107] proposed a series of one-pass heuristics based on the posiform

representation of the problem.
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Since a quadratic pseudo–Boolean function has possibly many posiform represen-

tations of it, then the performance of the proposed heuristics, based on this structure,

usually differs for different posiforms representing the same function. For this reason,

we have benchmarked the proposed one-pass heuristics only with those test problems

previously studied by Glover et al. [107].

It should be remarked that the DDT heuristics also assume a posiform representation

for the function. In this section we have only investigate the special DDT heuristic

based on the bi-form (see Section 8.1) representation (i.e. One-Pass-DDT-B), which

is uniquely defined for every quadratic pseudo–Boolean function.

Based on the full range of computational testing conducted during the heuristics

selection phase, Glover et al. [107] conclude that their proposed methods A2 (A2n and

A2t) and V 3 (V 3n and V 3t) are effective methods for the problems that they have

tested. Considering both solution quality and computing time, A2n gave overall the

best performance, followed closely by A2t, V 3n and V 3t, in this order. For comparison

with our proposed one-pass methods, we shall use a heuristic based on the maximum of

the four best one-pass heuristics proposed by Glover et al. [107]; we call it best (A2, V 3).

The solution quality of the four one-pass heuristics A2n, A2t, V 3n and V 3t has been

compared with the best known solutions on standard publicly available benchmarks.

All the test problems considered are maximization QUBO problems. These benchmarks

include the following groups of problems (see Table 3.2 in Section 3.1.1):

• Beasley [37] QUBO problems – Consists of a set of 60 randomly generated test

problems, where the number of variables n varies from 50 to 2 500, and having

10% density; the coefficients of the multilinear representation of the functions

range between -100 and 100;

• F1 from Glover et al. [108] – Consists of 5 problems having 500 variables with den-

sities ranging from 10% to 100%; the linear coefficients are uniformly distributed

in [−75, 75] and the quadratic coefficients are uniformly distributed in [−50, 50].

• G1 from Glover et al. [109] – Consists of 10 problems having 1 000 variables with

densities ranging from 10% to 100%, but only 5 instances are considered in [107];



150

the coefficients have the same distributions as those of problems belonging to

group F1.

• B from Glover et al. [108] – Consists of 10 problems with all nonzero quadratic

coefficients being negative, 100% dense problems with the number of variables

ranging from 20 to 125.

• F2 and G2 from Kochenberger et al. [158] – Consists of 10 problems with all

nonzero quadratic coefficients being negative, respectively having 500 and 1000

variables, and densities varying from 10% to 100%.

Best known values of the previous problems are listed in Table A.1, Table A.2, Table

A.3 and Table A.4 of the Appendix.

We have noticed that the quality of solutions of the one-pass heuristics depends

heavily on the distribution of the coefficients sign of the quadratic terms of the mul-

tilinear polynomials. Problems in the Beasley family, F1 and G1 have approximately

50% positive nonzero quadratic terms (i.e. ρ = 0.5), whereas problems in the groups

B, F2 and G2 have no positive quadratic terms (i.e. ρ = 0.0).

Table 6.8: Quality of solutions comparison between the proposed methods and the
one–pass heuristics from the literature.

One–Pass Exp. Relative Error (G) for Exp. Normalized Error (K) for
Heuristic ρ = 0.5 ρ = 0.0 ρ = 0.5 ρ = 0.0

best(A2, V 3) ([107]) 8.5% 12.4% 8.27% 0.049%
One-Pass-DDT-B ([58]) 1.1% 31.2% 1.01% 0.146%
One-Pass-R(I1) ([178]) 1.2% 32.1% 1.04% 0.149%

One-Pass-R(I3) 1.0% 11.7% 0.90% 0.041%
One-Pass-R(I4) 0.9% 13.1% 0.87% 0.050%
One-Pass-R

(
I5, σ

2 = 1
4

)
1.1% 12.7% 1.01% 0.048%

One-Pass-P-N
(
σ2 = 1

48

)
0.8% 10.8% 0.79% 0.043%

Table 6.8 displays the approximate relative and normalized errors of several one–

pass methods for the groups of problems listed above. It can be seen there that, for

the analyzed groups of problems, the probabilistic based one-pass heuristic One-Pass-

P-N
(
σ2 = 1

48

)
has the smallest expected relative errors for both groups of problems

having ρ = 0.5 and for problems having ρ = 0.0. This heuristic has also the smallest

expected normalized error for problems having ρ = 0.5.
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One-Pass-R(I3), followed very closely by the probabilistic heuristic, has the small-

est expected normalized error for problems having ρ = 0.0.

It can also be seen that the probabilistic heuristic and the rounding heuristics One-

Pass-R(Ik) (k = 3, 4) and One-Pass-P-N
(
σ2 = 1

48

)
have similar performance.

It is interesting to note that I3 is a starting point which is determined by parameter

ρ (see Table 6.2), and therefore it is somewhat expected that the quality of solutions

provided by this heuristic is improved according to the value of the parameter ρ con-

sidered.

The one–pass methods from the literature are only good choices for one of the

groups, e.g. best(A2, V 3) is good for problems having ρ = 0.0, and both One-Pass-

DDT-B and One-Pass-R(I1) are good options for problems having ρ = 0.5.

6.2 Local–search heuristics

In this section, a large family of monotone heuristics is considered, in which the value of

f is increased iteratively, by changing the value of only one of the variables (procedures

of this type are sometimes called local search or 1-opt in the literature). We focus on

variants of local search in which we stop only if no further improvement can be achieved

by changing the value of a single variable. The main aim of this study is to evaluate

a new family of starting point and variable selection techniques, and to demonstrate

that they can substantially improve the effectiveness of local search methods without

diminishing their efficiency.

Let us remark that the considered local search procedures have no theoretical guar-

antees to terminate in polynomial time (in terms of the size of the input). To achieve

potentially faster, polynomial time termination, one may change the stopping criterion,

and have the procedure stop after a certain (polynomial number) of iterations.

In a variant of this type (so called one–pass procedures) once a variable received

a binary assignment, it is not changed subsequently (see e.g, [58, 107, 178]). Hence,

such one-pass algorithms terminate in at most n iterations. We have examined a large

family of one–pass heuristics in Section 6.1.
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In the next subsection we describe the proposed family of heuristics, and in the

subsequent subsections we thoroughly analyze them by experimenting on large number

of benchmark problems from the literature as well as on randomly generated problems

sets. As our analysis shows, there are substantial differences depending on how we

choose the starting point for our procedure, as well as on the strategy applied to choose

a next variable and its value. Finally, we compare the results of the best heuristics

we found to the best results and methods from the literature, and demonstrate that

despite the simplicity of this procedure, it still performs quite competitively, even with

more sophisticated (and hence more time consuming) approaches.

6.2.1 Methods

In this section we describe a parametric family of local search heuristics for QUBO, and

the motivating mathematical theory behind the choices we propose for the parameters.

6.2.1.1 Basic concepts and notations

To measure computational complexity, let us denote by ωi(f) the number of occurrences

of variable xi in the polynomial expression (1.5) of f , i.e.,

ωi(f) =





1 + |{(i, j) | 1 6 i < j 6 n, cij 6= 0}| if ci 6= 0, and

|{(i, j) | 1 6 i < j 6 n, cij 6= 0}| otherwise.

Let us denote by size(f) =
∑n

i=1 ωi(f) the “length” of the polynomial expression of f .

Binary vectors, no single component of which can be changed so as to decrease the

value of a pseudo–Boolean function f , are called local minima of f . It should be noted

that the number of local minima can be exponentially large (see [191]) and that the

computational complexity of finding a local minimum of a quadratic pseudo–Boolean

function is open (see e.g. [194]). It will be seen in the sequel that the large volume

of computational experience carried out for finding a local optimum of a quadratic

pseudo–Boolean function, indicates clearly that in most cases such a local optimum

can be obtained efficiently. Moreover, by choosing carefully the starting point and
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the sequence of local improvement steps, it will be seen that usually the value of the

function in the local optimum obtained in this way is low.

The mathematical property, which makes it possible that the above described sim-

ple monotone procedure works successfully, is the multi–linearity of pseudo–Boolean

functions.

Let us consider the partial derivatives ∆i (i = 1, · · · , n), given by (4.4), of a

quadratic pseudo–Boolean function f . Let us note that the residual function, θi =

f − xi∆i does not depend on variable xi, for i = 1, · · · , n, and hence the character-

ization of local minimum of f follows immediately from the necessary conditions of

optimality established by Proposition 4.1 (see Section 4.2).

The above simple characterization serves as a basis for a number of heuristic algo-

rithms in the literature. The core of such procedures is the following local improvement

along a component for which the corresponding necessary condition (4.3) of optimality

is violated:

x′ = Improve(f ,x, i)

Input: A quadratic pseudo–Boolean function f , given by (1.5), and

a vector x.

Main Step: Obtain x′ from x by switching the value of its ith com-

ponent to 0 if ∆i (x) > 0 and to 0 if ∆i (x) < 0.

Output: Vector x′.

In the family of heuristics considered, we shall produce a finite sequence x(k) of vec-

tors for which x(k+1) = Improve(f,x(k), i(k)), and consequently f
(
x(k)

)
> f

(
x(k+1)

)

hold for every k. We can obtain a uniquely described heuristic procedure by further

specifying

(i) how to choose x(0);

(ii) how to choose the index ik; and

(iii) when to stop.
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Before going into these details, let us note that the above discussion did not really

utilize the fact that variables take only binary values. In fact, (1.5) is a real-valued

expression, and can be evaluated for an arbitrary real vector x ∈ Un, just like the

expressions of ∆i, θi, the local optimality conditions, and Improve(f,x, i).

The continuous extensions properties of pseudo–Boolean functions (see Section 4.7)

suggest that we could also start from a fractional vector p ∈ Un and use Improve to

obtain a “better” binary vector.

Proposition 6.3. Given the expression (1.5) of a quadratic pseudo–Boolean function

f and a vector p ∈ Un, a binary vector x ∈ Bn for which f (x) 6 f (p) can be obtained

in O (size (f)) time, by applying Improve at most n times.

Proof. Let us start with x(0) = p, and let π = (i0, · · · , it) be a permutation of the indices

of the fractional components of p. Let us apply then x(j+1) = Improve(f,x(j), ij) for

j = 0, · · · , t (we have t < n), and let xπ = x(t+1). Clearly, for any permutation π of

the fractional components of p we obtain a binary vector xπ satisfying the claim in the

statement. Furthermore, in O (size (f)) time we can build a data structure associating

variables with their occurrences, and holding the values of f and ∆i for i = 1, · · · , n

at vector p. In the subsequent calls of Improve we update these values, using the

previously built data structure. Clearly, in the jth call of Improve computations

depend only on the occurrences of variable xij , and thus this step can be executed in

O
(
ωij (f)

)
time. Consequently, the total computational time is limited by O (size (f)).

The procedure described in the above proof is in fact a simple variant of the heuristic

algorithms we consider in this paper. It is known also as pseudo–Boolean rounding (see

Section 4.7). An immediate corollary of the above is the fact that optimizing a pseudo–

Boolean function over the unit cube or over its extreme points results in the same

optimum.

Let us remark that while a violation of the local optimality conditions (4.3) at a

binary vector implies ∆i 6= 0 for some index i = 1, · · · , n, the same does not necessarily

hold true at a fractional vector. For instance, if f (x1, x2) = x1 + x2 − 4x1x2 then we
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have ∆1

(
1
4 ,

1
4

)
= ∆2

(
1
4 ,

1
4

)
= 0, even though the fractional point p =

(
1
4 ,

1
4

)
is not a

local maximum. This implies that special care has to be taken when selecting index i

for Improve, whenever we start with a fractional vector.

6.2.1.2 Algorithms

We shall describe bellow a general outline of the proposed family of algorithms. These

procedures are based on iteratively calling Improve. There are however a great number

of possibilities on the way to initiate the algorithm, and to choose an index for Improve.

The algorithms will be described using three independent parameters. First, a method

will be specified by the way it chooses the initial vector x(0) ∈ Un; we shall consider a

set I of various alternatives for this choice. Let us remark that in view of Proposition

4.6, the initial point x(0) does not have to be necessarily binary, but can be an arbitrary

point of the unit cube. Second, the preference method P will specify the subset S ⊆ V

of preferred indices, from which the particular candidate selection method C (our third

parameter) chooses an index for Improve.

Algorithm(I,P,C)

Input: A quadratic pseudo–Boolean function f , given by (1.5).

Initialization: Choose an initial vector x(0) ∈ Un by method I, and

set k = 0 and H = ∅.

Step 1: Choose a subset S ⊆ V by preference method P. If S = ∅,

then STOP, and finish with Output.

Step 2: Otherwise, choose an index ik ∈ S by method C.

Step 3: Set x(k+1) = Improve(f,x(k), ik), and H = H ∪ {ik}.

Step 4: Set k = k + 1, and return to Step 1.

Output: Vector x(k).
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The detailed description of the parameters selection methods will be given in the

next subsections.

Initialization

The description of four starting points (I1, I2, I3 and I4) considered in the local

search heuristics studied is given in Table 6.2. We also consider the starting point I6

(Random), i.e. x(0) = (ξ1, · · · , ξn), where ξi, i = 1, · · · , n are independent, random

variables, uniformly distributed in U.

Candidate Selection

In order to increase the value of the function f , by changing the value of a variable,

the selection of that variable has to balance computational time and gain in function

value.

In what follows, we shall use the quantities di (p) previously defined in (6.10), which

measure the size of local improvement when changing only one component (optimally)

of point (p).

Let us associate to a given function f and vector p the set

I (f,p) = {i | di (p) > 0}

containing all indices at which we could decrease the value of the function by a local

improvement step. When determining the “pool” of candidate variables to which the

Improve routine will be applied we shall consider two basic alternatives (see Table 6.9).

In the first one, the pool will consist simply of I(f,p). In the second one, the pool will

be restricted to those elements of I(f,p) to which the Improve step has not yet been

applied. In Table 6.9, H stands for the set of those variables on which transformations

were carried out in previous steps.

Once the pool S is defined, we have to define the criterion which will determine the

choice of the variable to serve as a “pivot” to which the Improve routine is applied.

This decision is based on the one hand on the expected improvement in function value,
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Table 6.9: List of target sets considered in the computational experiments.

Pool of Candidate Variables P

P1: S = I(f,p).

P2: S = I(f,p) ∩ (V \H) if H 6= V, and S = I(f,p) otherwise.

and on the other hand on the computational effort of applying this selection step. The

four criteria examined are shown in Table 6.10.

Table 6.10: Criteria list of pivot selection considered in the computational experiments.

Alternatives C for Pivot Selection

C1: Choose the smallest index i such that di(p) = maxj∈S dj(p).

C2: Choose the smallest index in I(f,p) ∩ S.

C3: Let j be the index of the last pivot, and let Sj+ = {i ∈ S | i > j}
and Sj− = {i ∈ S | i < j}. If I(f,p) ∩ Sj+ 6= ∅ choose the
smallest index in this set. Otherwise, choose the smallest index in
I(f,p) ∩ Sj−.

C4: Choose randomly an index in I(f,p) ∩ S.

Algorithm Specification

The combinations of the five initialization alternatives I, the two variable pool se-

lection alternatives P (see Table 6.9), and the four variable selection alternatives C (see

Table 6.10), define 40 different variants of Algorithm(I,P,C). We shall label these

variants by Ai,p,c, where i ∈ {1, 2, 3, 4, 6}, p = 1, 2 and c ∈ {1, · · · , 4}.

6.2.1.3 Implementation details

In each iteration of a given heuristic, a variable has to be selected from the pool of

candidates, and then assigned the value 0 or 1. To make this procedure efficient, we

used a list structure to associate variables with their occurrences. The adoption of this
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data structure implies that the list of quadratic terms having both a nonzero coefficient

and the corresponding variable, can be obtained in constant time. Further, we hold the

values of the first derivative functions ∆i for i = 1, · · · , n at the current vector xt.

Let us analyze the complexity of the steps of Algorithm(I,P,C):

Initialization: The initialization time is highly dependent on the method I adopted;

cases I1 and I6 are computed in O (n) time, and cases I2, I3 and I4 are calculated

in O (size (f)).

Step 1: The preference methods P analyzed in this paper consider pools of variables

that are subsets of I (f,p). Since we kept the values of ∆i for i = 1, · · · , n at

the current vector xt, then by using Lemma 6.4, the set I (f,p) can be defined in

O (n) time.

Step 2: The computing time of the four criteria methods C described in Table 6.10,

depends on the size of I (f,p), implying that at most O (n) time is needed in this

step.

Step 3: Because the first derivative values are held, Improve takes O (1) time. The

values of ∆j for j = 1, · · · , n are updated in this step as follows:

∆j

(
x(t+1)

)
=





∆j

(
x(t)
)

+
(
x

(t+1)
it − x

(t)
it

)
citj, j > it

∆j

(
x(t)
)
, j = it

∆j

(
x(t)
)

+
(
x

(t+1)
it − x

(t)
it

)
cjit, j < it

Clearly, this operation takes at most O (ωit) time per variable, implying that this

step takes at most O (n) time.

As a consequence of the previous computing times, each iteration in the loop of

Algorithm(I,P,C) takes at most O (n) time.

The heuristics were implemented in C++, compiled using the Microsoft Windows

32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the Mi-

crosoft Incremental Linker (version 6). The computer used for testing has a Xeon(TM)
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CPU 3.06 GHz, 3.5 GB of RAM and has installed the Windows XP Professional (version

2002) operating system.

6.2.2 Algorithm selection

The aim of this section is to analyze the relative efficiency of the 40 variants of the

methods described in the previous section.

The different variants of the proposed algorithms have been tested on 125 pub-

licly available benchmark problems, and on additional 4 900 randomly generated test

problems having prescribed parameters.

The 125 benchmarks are described in Section 3.1.1 and include the Glover et al.

[108] and the Beasley [37] problems.

2 900 of the 4 900 randomly generated problems correspond to the Medium fam-

ily described in Section 3.1.2 (see also Table 3.4). The remaining 2 000 problems were

generated using the same characteristics as those exhibited by the Medium family prob-

lems, however covering different values of ρ ranging from 0.6 to 0.98. This will allow

us to test the proposed heuristics on problems that cover the full spectrum of ρ values,

which vary between 0 and 1.

Coincidently all QUBOs above are maximization problems. Any QUBO maximiza-

tion problem represented as a multilinear polynomial of a quadratic pseudo–Boolean

function f can be brought to a QUBO minimization problem just by considering the

symmetric function −f .

We shall present in the sequel the results of the computational testing of variants

of initial point selection, alternatives for selecting the pool of candidate variables, and

for choosing the pivot.

In order to evaluate the performance of the proposed algorithms, it will be useful to

compare the value of the quadratic pseudo–Boolean function in the solution produced

by one of these algorithms with the best value found by existing algorithms.

Since the performance of the Multi-Start Tabu Search (MSTS) routine of Palubeckis

(downloaded from [183]) was found to deliver on the available benchmark problems at
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least as good solutions as those reported in the literature (e.g., see [187]), we have used

this value as standard for comparisons. For instance, this routine delivered for some

of the sub-families of problems (F2 and G2) better values, previously not known (e.g.,

compare with the values in [107]).

Let us denote by zf the best known value of the quadratic function f . The list of

all best values and the corresponding 0–1 solutions for the test problems used in this

study can be found in [229].

Let i denote one of the five possible initialization methods proposed in Table 6.2. Let

p denote one of the two pools of candidates for pivots proposed in Table 6.9. Similarly,

let c denote one of the four criteria proposed in Table 6.10 for choosing a pivot. The

output of algorithm Ai,p,c when applied to the quadratic pseudo–Boolean function f

will be denoted by xi,p,c;f , and the value of the function f in this point will be denoted

by vi,p,c;f . We shall denote by ri,p,c;f the performance ratio of the heuristic over the

best know value

ri,p,c;f
def
=
vi,p,c;f
zf

.

We shall denote the computing time of applying Ai,p,c using a specific computer

system T by ti,p,c;f ;T ; since in this work all the different algorithms will be run on the

same computer system (see Subsection 6.2.1.3), for the sake of simplicity we shall omit

to specify T for each test problem and shall denote the running times by ti,p,c;f .

If F is a family of quadratic pseudo–Boolean functions used for algorithm testing,

we shall denote by Vi,p,c;F the set of values obtained by applying the algorithm Ai,p,c to

all the test problems f ∈ F . Similarly, VI,p,c;F will represent the set of values obtained

by applying the algorithms AI,p,c for every i ∈ I to every f ∈ F . The notations VI,p,C;F ,

Vi,P,c;F , etc. have similar interpretations. We shall also denote by TI,p,C;F and RI,p,C;F ,

etc. the sets of computing times, respectively heuristic over best known values, for the

corresponding sets.

Several of the tables below present the statistics of the computational experiments

for some outcome wi,p,c;F , where w can stand for value v, or the ratio r of heuristic over

best known value, or computing time t. In these tables (see Figure 6.4) four data are
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grouped together in a cell. The number in the top left corner represents minWI,P,C;F .

The number in the lower right corner represents maxWI,P,C;F . The center of the cell

involves the expected values Exp [(WI,P,C;F)] and standard deviations σ (WI,P,C;F).

minWI,P,C;F

Exp (WI,P,C;F)± σ (WI,P,C;F)
maxWI,P,C;F

Figure 6.4: Description of the details shown in a cell of a cross-analysis table.

We have applied all the 40 alternatives of the proposed heuristics (corresponding

to the five initialization procedures, two choices of the pool and four possible selection

criteria of the pivot) to the solution of each one of the 5 025 test problems in S. The

analysis and selection process described below is based on these 201 000 experiments.

Solution Quality Analysis

Tables 6.11(a) and 6.11(b) below report statistics concerning the sets Ri,p,c;benchmarks

and Ri,p,c;random tests of performance ratios respectively, for the different procedures

i ∈ {1, 2, 3, 4, 6}, p = 1, 2, and c ∈ {1, · · · , 4}.

It can be seen that the best average values both for benchmark and for random

problems are obtained for c = 1. It can also be seen that the algorithm A2,1,1 is

optimal for both families of problems, and that A2,2,1 and A4,1,1 are two other excellent

candidates in both cases.

If the algorithm’s selection criterion is not based on average performance but on high

“worst case” performance (i.e., on assuring the highest minimum performance ratio)

both for benchmark and random problems, then perhaps the best algorithm is A3,1,1.

Finally if the algorithm’s selection criterion aims at minimizing variance then again

A2,1,1 is the best choice for both families of problems.

The minimum performance ratios for the algorithm A2,2,1 in the case of benchmark

problems are comparable with those of A2,1,1, but are of somewhat lower quality in the

case of random problems. Therefore, A2,2,1 will not be included in our selection of best

heuristics.
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Table 6.11: Performance ratio sets Ri,p,c;F for algorithms AI,P,C .

(a) F=benchmarks.

P1 P2

C1 C2 C3 C4 C1 C2 C3 C4

47.5% 44.1% 33.8% 25.5% 47.5% 33.8% 33.8% 33.8%

I1 95.8± 9.8% 94.3± 11.3% 93.5± 13.0% 93.7± 12.6% 95.7± 9.8% 93.1± 13.7% 93.5± 13.0% 93.1± 13.5%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

58.9% 58.6% 39.7% 44.9% 58.9% 39.7% 39.7% 41.3%

I6 95.7± 7.6% 95.1± 9.2% 93.1± 13.0% 94.2± 10.2% 95.1± 8.9% 92.9± 13.5% 93.1± 13.0% 92.6± 13.6%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

76.6% 70.5% 46.6% 66.9% 76.6% 46.6% 46.6% 67.4%

I2 97.7± 5.0% 96.0± 6.9% 95.2± 8.5% 95.5± 7.5% 97.7± 5.0% 95.3 ± 8.6% 95.2± 8.5% 95.8± 7.0%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

77.3% 61.6% 61.6% 46.3% 77.3% 61.6% 61.6% 43.3%

I3 96.4± 5.3% 95.1± 8.2% 94.9± 8.3% 93.9± 9.9% 96.4± 5.3% 95.0 ± 8.3% 95.0± 8.3% 93.7± 10.9%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

77.3% 61.6% 61.6% 51.9% 77.3% 61.6% 61.6% 45.5%

I4 97.6± 5.3% 95.9± 8.4% 95.8± 7.7% 94.8± 10.2% 97.5± 5.3% 95.9 ± 7.8% 95.8± 7.7% 94.6± 10.9%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

(b) F=random tests.

P1 P2

C1 C2 C3 C4 C1 C2 C3 C4

27.4% 24.6% 10.3% 20.2% 26.8% 10.3% 10.3% 12.4%

I1 88.4± 16.0% 86.2± 18.1% 83.0± 21.2% 84.0± 20.1% 87.6± 16.8% 83.7± 20.8% 83.0± 21.2% 83.2± 21.0%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

36.3% 24.1% 10.3% 16.6% 25.3% 10.3% 10.3% 15.3%

I6 88.1± 14.9% 85.9± 18.3% 82.9± 21.3% 83.7± 20.3% 85.6± 18.3% 83.6± 20.9% 82.9± 21.3% 83.0± 21.3%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

38.3% 28.3% 15.5% 20.4% 33.1% 15.5% 15.5% 11.0%

I2 89.9± 13.5% 87.5± 15.9% 83.0± 21.2% 84.3± 19.3% 88.5± 15.3% 83.7± 20.8% 83.0± 21.2% 83.1± 21.1%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

43.1% 16.4% 13.9% 18.1% 43.1% 16.4% 13.9% 12.0%

I3 86.9± 15.1% 83.6± 20.9% 82.8± 21.3% 83.0± 21.0% 86.9± 15.1% 83.3± 21.2% 82.8± 21.3% 82.8± 21.3%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

38.4% 28.3% 15.5% 22.9% 24.3% 15.5% 15.5% 17.1%

I4 88.7± 15.3% 87.7± 15.8% 83.1± 21.2% 84.6± 19.0% 87.0± 17.9% 83.9± 20.7% 83.1± 21.2% 83.1± 21.2%
100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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Computing Time Analysis

Tables 6.12(a) and 6.12(b) show average computing times in a manner similar to the

way Tables 6.11(a) and 6.11(b) show average solution qualities. It can be seen that for

the benchmark problems the average computing times range from 0.03 to 0.06 seconds,

while for the random problems the times vary between 0.21 and 0.38 seconds. It seems

to us that the differences between the average computing times given by the different

heuristics considered are minimal. Therefore, the final conclusion will be essentially

based on the quality of solutions.

Selected Algorithms

Since the algorithms AI,1,1, where I = {2, 3, 4} were seen to provide both outstand-

ing solution quality and computing time, we shall restrict from here on our attention

to these algorithms. In conclusion the selected algorithms

(i) select as initial point, one identified by any of the three problem-dependent criteria

2, 3 or 4, and

(ii) use as pivot the first (i.e., smallest index) variable – regardless of whether it has or

has not been previously used as pivot – the switching (if it is binary) or rounding

(if fractional) of which gives the maximum objective function increase.

When comparing the three selected algorithms from the point of view of solution

quality, A2,1,1 is best, followed closely by A4,1,1; from the point of view of computing

time A3,1,1 is the leader.

Comparative Performance Analysis

In order to narrow down further the selection of “best” algorithms, we shall reexam-

ine the quality of solutions and the computing times of the three selected algorithms,

as functions of the number of variables n, the density d, diagonal dominance p, and

parameter ρ defined in subsection 6.2.1.2. By examining the relationship between the
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Table 6.12: Computing times Ti,p,c;F for algorithms AI,P,C (I = {1, 2, 3, 4, 6}, P = {1, 2}, and C = {1, · · · , 4}).

(a) F=benchmarks.

P1 P2

C1 C2 C3 C4 C1 C2 C3 C4

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I1 0.04± 0.07s 0.04± 0.09s 0.03± 0.05s 0.05± 0.10s 0.03± 0.06s 0.03± 0.06s 0.03± 0.05s 0.05± 0.09s
0.23s 0.33s 0.20s 0.34s 0.22s 0.23s 0.20s 0.30s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I6 0.04± 0.07s 0.05± 0.09s 0.03± 0.05s 0.05± 0.10s 0.03± 0.06s 0.03± 0.06s 0.03± 0.05s 0.05± 0.09s
0.23s 0.34s 0.20s 0.36s 0.22s 0.23s 0.20s 0.31s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I2 0.05± 0.09s 0.05± 0.11s 0.04± 0.07s 0.06± 0.12s 0.04± 0.08s 0.04± 0.08s 0.04± 0.07s 0.06± 0.11s
0.33s 0.44s 0.28s 0.41s 0.28s 0.33s 0.27s 0.36s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I3 0.03± 0.06s 0.05± 0.09s 0.03± 0.06s 0.04± 0.08s 0.03± 0.06s 0.03± 0.07s 0.03± 0.06s 0.04± 0.07s
0.28s 0.39s 0.23s 0.28s 0.27s 0.27s 0.24s 0.28s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I4 0.05± 0.09s 0.05± 0.10s 0.04± 0.07s 0.06± 0.12s 0.04± 0.08s 0.04± 0.07s 0.04± 0.07s 0.06± 0.11s
0.31s 0.39s 0.30s 0.41s 0.30s 0.31s 0.28s 0.36s

(b) F=random tests.

P1 P2

C1 C2 C3 C4 C1 C2 C3 C4

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I1 0.25± 0.25s 0.24 ± 0.26s 0.21± 0.22s 0.28± 0.28s 0.25± 0.25s 0.22 ± 0.23s 0.21± 0.22s 0.28± 0.28s
1.06s 1.76s 1.00s 1.34s 1.03s 1.36s 1.00s 1.30s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I6 0.25± 0.25s 0.25 ± 0.26s 0.21± 0.22s 0.29± 0.28s 0.25± 0.25s 0.22 ± 0.23s 0.21± 0.22s 0.28± 0.28s
1.05s 1.94s 0.99s 1.38s 1.05s 1.33s 1.02s 2.00s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I2 0.35± 0.35s 0.33 ± 0.35s 0.30± 0.31s 0.38± 0.37s 0.34± 0.35s 0.31 ± 0.32s 0.30± 0.31s 0.38± 0.37s
1.47s 2.17s 1.36s 1.69s 1.48s 1.73s 1.36s 1.67s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I3 0.23± 0.25s 0.24 ± 0.28s 0.22± 0.24s 0.24± 0.27s 0.23± 0.25s 0.23 ± 0.25s 0.22± 0.24s 0.24± 0.27s
1.38s 2.80s 1.38s 1.70s 1.39s 1.58s 1.39s 1.97s

0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s

I4 0.35± 0.35s 0.34 ± 0.35s 0.30± 0.32s 0.38± 0.37s 0.34± 0.35s 0.31 ± 0.33s 0.31± 0.32s 0.38± 0.38s
1.45s 2.15s 1.55s 1.70s 1.50s 1.70s 1.51s 2.19s
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Table 6.13: Correlations between quality of solutions (ri,1,1, i = 2, 3, 4), computing
times (ti,1,1, i = 2, 3, 4) and input parameters (n, d, ρ and p) of the test problems in S.

r2,1,1 r3,1,1 r4,1,1 t2,1,1 t3,1,1 t4,1,1

n −0.08 −0.04 −0.07 0.77 0.71 0.77
d −0.10 −0.08 −0.09 0.47 0.44 0.47
ρ 0.84 0.86 0.84 0.00 −0.12 0.00
p 0.13 0.13 0.13 −0.18 −0.17 −0.18

variables r and t, and the variables n, d, ρ and p, on the dataset S, we find the corre-

lations of Table 6.13.

Clearly, the most influential factor for the solution quality r is the parameter ρ,

while n and d are the most influential factors for the computing time t. It is also clear

that diagonal dominance p is less influential (both on solution quality and time) than

the other three parameters. Finally, the negative role of n and d on solution quality,

which is to be expected, can be seen to be present in the table, but at a very low level.

We can also remark that the influence of ρ on time is negligible.

Since ρ emerges as the critical parameter on which the solution quality parameter

depends, we have analyzed the behavior of the 3 functions Exp [ri,1,1] (i ∈ {2, 3, 4}), as

functions of ρ.
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Figure 6.5: Exp [ri,1,1], i ∈ {2, 3, 4}, values as a function of ρ in the random test
problems.
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It can been seen from the graphs of these three functions (Figure 6.5) that the

algorithms giving on the average the highest quality solutions depend on the values

of ρ as shown in Table 6.14. In particular it can be seen that algorithm A2,1,1 is an

optimal one for any value of ρ > 0.075. Therefore, the algorithm starting from the

point X = (ρ, · · · , ρ), and performing a sequence of rounding or switching operations

on a greedy selected pivot (regardless of whether it has or it has not been used as a

pivot) provides a solution with the highest expected value.

Table 6.14: Algorithms returning on average the highest value for the test problems,
according to the ρ parameter.

Values of ρ “Best” Algorithms

ρ < 0.075 A3,1,1

0.075 ≤ ρ < 0.275 A2,1,1

0.275 > ρ < 0.525 A2,1,1, A4,1,1

0.525 > ρ A2,1,1, A3,1,1, A4,1,1

The rest of this paper will deal with this algorithm. For a better identification and

future reference, we named the algorithm A2,1,1 as the ACcelarated Sign Initiated Open

Minded heuristic (or ACSIOM in short). In sections that follow, the performance ratio

r and computing time t of heuristic ACSIOM is denoted as rACSIOM and tACSIOM

respectively.

6.2.3 Parametric analysis of heuristic ACSIOM

The goal of this section is to analyze the computing time t of the proposed heuristic

ACSIOM (i.e. A2,1,1) and the quality r of solutions provided by it, in terms of the input

parameters n, d, ρ and p describing the datasets. The proposed heuristic was tested on

a set T of 8 905 instances consisting of the following four groups of problems:

(i) The 125 benchmark problems described in the previous section.

(ii) The 2 900 randomly generated problems corresponding to the Medium family, and

described in Section 3.1.2 (see also Table 3.4). The reason for not including the

random test problems with ρ > 0.6 considered in Section 6.2.2 is that these cases

have an excessively favorable behavior when ACSIOM is applied to them (their
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heuristic values being the same as those given by the best known solutions in all

but one of the 2 000 cases).

(iii) The group of 5 400 randomly generated problems corresponding to the Small

family, and described in Section 3.1.2 (see also Table 3.3). Because of the relatively

small size of these problems it can be assumed that the best known solution values

are actually the exact optimum of the problem.

(iv) The group of 480 randomly generated problems corresponding to the Large family,

and also described in Section 3.1.2 (see also Table 3.5). All the 160 test problems

in the second subgroup turn out to be submodular ; using a depth first search enu-

merative procedure, we were able to find the optimal solution of 60 test problems

in this group. It is interesting to notice that the expected values of ρ in the three

subgroups are respectively 0.5, 0.0 and 0.2.

6.2.3.1 Quality of solutions

The correlation analysis aimed at clarifying the influence of various input parameters of

Section 6.2.2, included test problems with various values of ρ, in particular with values

exceding 0.6. In this subsection we shall analyze the role of the input parameters using

the 8 905 test problems in T described above.

If we compare the correlation results in Table 6.13 (referring to the test set S), with

those in Table 6.15 (referring to the test set T ), one can see that the values are similar,

except for the correlation between the number n of variables and the performance ratio

rACSIOM , which decreased from −0.08 to −0.53. There are two explanations for this

substantial change. On the one hand the datasets considered were restricted to problems

with ρ 6 0.6, while on the other the hand the variance of the number of variables was

considerably higher than in the first one.

Figure 6.6 presents the number of problems for which the value provided by ACSIOM

is within a given fraction of the best known solution. It can be seen that for 90% of

the problems in S the corresponding heuristic value is within 26% of the best known

solution. More precisely:
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Table 6.15: Correlations between quality of solutions (rACSIOM), computing times
(tACSIOM) and input parameters (n, d, ρ and p) of the test problems in T .

rACSIOM tACSIOM

n −0.53 0.73
d −0.12 0.15
ρ 0.89 −0.25
p 0.20 −0.09
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(i) For the benchmark problems (group (i)) the performance of ACSIOM is within

10% of the best known solution in 90% of the cases.

(ii) For the Medium problems (group (ii)) the performance of ACSIOM is within 36%

of the best known solution in 90% of the cases.

(iii) For the Small problems (group (iii)) the performance of ACSIOM is within 3%

of the best known (probably optimal) solution in 96% of the cases.

(iv) For the Large problems (group (iv)) the performance of ACSIOM is within 28.5%

of the best known solution in 90% of the cases.

It is interesting to remark that relatively speaking, the performance of ACSIOM

in the class of benchmark problems was much better than in the class of randomly

generated Medium and Large problems. These results are indicative of the fact that

the study of heuristics of QUBO needs to include problems with different characteris-

tics than the ones exhibited by the benchmark datasets. In the family of Small test

problems, algorithm ACSIOM returns on average a value within 1% of the best known

solution, for every combination of the number of variables (from 20 to 100 in steps

of 10), densities (from 10% to 100% in steps of 10%), and magnitudes of quadratic

coefficients (see Table 3.3).

The family of Medium size problems was partitioned into four subsets according to

the values of ρ:

Medium = Mediumρ60.15 ∪Medium0.15<ρ60.3 ∪Medium0.3<ρ60.45 ∪Medium0.45<ρ60.6.

(6.13)

The analysis of the performance ratio rACSIOM as a function of the number of

variables n and density d is reported in Table B.2 of the Appendix. Each cell of these

tables refers to a group with between 35 and 40 test problems.

It can be seen in the tables that the performance ratio is highly dependent on the

parameter ρ, confirming the conclusions of Subsection 6.2.2 of this paper.
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Algorithm ACSIOM performs considerably better for low density problems (d =

20%) than for high density problems (d = 100%), this difference being substantially

reduced when the parameter ρ increases. This is important since the type of problems

in numerous applications (e.g., Ising model ([32]), maximum clique in sparse graphs)

the quadratic model is of low density. In general, the ACSIOM heuristic decreases the

performance ratios whenever the density increases.

The algorithm performs considerably better in problems with 500 variables than

in problems with 2 000 variables, this difference being substantially reduced as the

parameter ρ increases. In general, the ACSIOM heuristic decreases the performance

ratios whenever the number of variables is increased.

Figure 6.5 of Section 6.2.2 and the previous analysis suggest that the performance

ratio of rACSIOM has a good chance to be well approximated by using some regression

estimator, depending on the input parameters.

If ρ > 0.525 then rACSIOM is very close to 100%, showing that the heuristic value

is independent of the number of variables or density for this class of problems.

By using a least squares fitting, several linear regressions of rACSIOM were com-

puted, the independent variables being: n, d, ρ and p. Given the regression population

F , we would like to approximate rACSIOM by using the linear estimator

r̂ACSIOM = a0 + ann+ add+ aρρ+ app,

where an, ad, aρ and ap are the coefficients of the regressors (n, d, ρ and p, resp.) and

a0 is the intercept value of the estimator, when all the independent variables have a

zero value.

The first regression was found for the family of Medium problems with ρ 6 0.525.

The ANOVA test shows that the model is significant at the 95% level, and the R2 value

is high, but we noticed that the P–value associated with the coefficient of the diagonal

dominance (ap) is 0.7081, this being a clear indication that p is not a reliable parameter

for the model because it has “too much” dispersion/variance.

In view of the high P–value of the parameter p, it was decided to eliminate it from
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the model. The new regression results are shown in Figure B.1 of the Appendix; the

new model is of very high quality having a standard error of 0.0605, a R2 of 0.7880, and

a correlation of 0.8877 between the estimator (r̂ACSIOM) and the observed (rACSIOM)

values.

The final regression model corresponding to the heuristic ACSIOM is

r̂ACSIOM =





0.68725 − 2.9132 × 10−5n− 0.079109d + 0.75261ρ, ρ 6 0.525

1, otherwise.

As one can traditionally expect, both the number of variables (n) and the density

(d) are negatively correlated with the estimator. It is to be remarked that the coefficient

of ρ is positive and shows the important role played by this parameter.

6.2.3.2 Computational efficiency

We shall deal in this subsection with two important questions concerning the efficiency

of the proposed local search algorithm ACSIOM. First, we shall analyze the computing

time, and second we shall analyze the number of times the value of a variable was

switched between 0 and 1, i.e. the number of times the routine Improve was called for

a given variable. The importance of the second question comes from the fact that the

complexity of finding a local optimum of a QUBO is not known (see [194]).

Computing Time

We have analyzed the dependence of the computing time on three key parameters:

the number of variables n, the density d, and ρ as defined in (3.1). Table 6.16 reports

statistics on the computing times tACSIOM of problems in the large family, for various

choices of n and d.

The reason for which ρ was not included in this analysis is that the difference in

times for various values of ρ turned out to be minuscule (e.g., at most two tenths of a

second in the problems with 5 000 variables).

It can be seen in Table 6.16 that computing times increase with increased values of

n and d. As a matter of fact, it was seen that the correlation between the computing
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Table 6.16: Number of variables (n) versus density (d) analysis on the heuristic com-
putation times (tACSIOM) for the large family of test problems.

d = 25% d = 50% d = 75% d = 100%
0.01sec 0.03sec 0.05sec 0.06sec

n = 500 0.02± 0.01sec 0.03± 0.00sec 0.05± 0.01sec 0.07± 0.01sec
0.03sec 0.05sec 0.06sec 0.08sec

0.06sec 0.14sec 0.20sec 0.26sec

n = 1000 0.08± 0.01sec 0.14± 0.01sec 0.22± 0.04sec 0.28± 0.01sec
0.09sec 0.16sec 0.42sec 0.30sec

0.50sec 1.00sec 1.59sec 2.28sec

n = 2500 0.53± 0.03sec 1.04± 0.03sec 1.63± 0.03sec 2.33± 0.04sec
0.58sec 1.13sec 1.67sec 2.44sec

2.47sec 5.24sec 8.16sec 10.98sec

n = 5000 2.58± 0.12sec 5.40± 0.11sec 8.33± 0.20sec 11.18± 0.17sec
2.83sec 5.61sec 9.09sec 11.73sec

times tACSIOM and the estimator

t̂ACSIOM = −0.044667 + 4.2410 × 10−7n2d,

is of 99.3%, while the standard error of the model is 0.1046, and its R2 is 0.9869.

The reason for selecting a model which includes a cubic term is that it provides an

excellent fit, substantially better than that given by any regression involving functions

of degree at most two.

Roundings per Variable

In analyzing the number of roundings per variable in algorithm ACSIOM we have

again this number to be a function of n, d and ρ, and have carried out the computational

experiments on the Medium family which includes a sufficient large number of examples

to make its conclusions extremely relevant.

The set of test problems was partitioned in four subsets according to the parameter

ρ, as shown in formula (6.13). Each of the four subsets it is analyzed according to n

and d.

In Table B.3 of the Appendix, it can be seen that on the average approximately one

rounding is needed for each variable to get a local optimum using algorithm ACSIOM.

It is interesting to note that for ρ 6 0.3 the number of roundings per variable
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is monotonically nondecreasing on n and d. However, for ρ > 0.3 this tendency is

reversed. If 0.45 < ρ 6 0.6 then the average number of roundings is almost constant

(around 1.013).

Also interesting to notice is the fact that the set of problems with the highest

average roundings per variable is Medium0.3<ρ60.45 with an overall average value of

1.02849. This subset of problems is followed in this order by the subsets of problems

Medium0.15<ρ60.3, Medium0.45<ρ60.6 and Mediumρ60.15 with respective average values

of 1.01437, 1.01336 and 1.008367.

6.2.4 Comparing ACSIOM to other results from the literature

In this section we compare ACSIOM to other 1-opt algorithms from the literature. The

best result with this type of methods were reported recently in [178]. We ran ACSIOM

on the previously set of benchmark problems, and reported the relative performance

values in Table 6.17, along those from [178]. Note that this publication reported results

with other, algorithmically more involved and hence more time consuming approaches

(k-opt, and greedy-k-opt), and we included those results as well in Table 6.17 for com-

pleteness. For details of those methods we refer the reader to [178].

Let us also remark that the computing environment used in [178] is quite different

from ours. Discounting the speed difference between the computers, it seems that both

implementations are similarly competitive, however a direct comparison of the running

times would not be very meaningful. Therefore, we compared only the quality of the

obtained solutions in Table 6.17.

The above results show that ACSIOM is producing uniformly better results than

the 1-opt heuristic, and remains competitive even with the k-opt variants, which utilize

the input in much more depth, and take more time.

6.2.5 Conclusions

In summary, we can state that even very simple structured and time efficient local

search based methods can be greatly improved by carefully analyzing and selecting the

right parameters. We believe that the combination of the initial vector selection (I2)
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Table 6.17: Average relative error of local maximization heuristics within several bench-
mark sub-families.
Sub-Family 1–opt(?) k–opt(?) greedy–k–opt(?) ACSIOM

(F) avg sdev avg sdev avg sdev 1− E (R,F) σ (R,F) E (T,F)
GKAa 2.02% 0.83% 0.38% 0.30% 0.20% 0.27% 0.24% 0.41% 0.00 s
GKAb 29.44% 5.31% 14.69% 4.54% 19.76% 6.03% 10.97% 8.92% 0.00 s
GKAc 1.21% 0.78% 0.24% 0.24% 0.19% 0.14% 0.14% 0.18% 0.00 s
GKAd 2.71% 0.73% 0.71% 0.35% 0.42% 0.27% 0.23% 0.45% 0.00 s
GKAe 1.99% 0.96% 0.50% 0.31% 0.31% 0.15% 0.33% 0.28% 0.00 s
F1 1.95% 0.36% 0.56% 0.09% 0.31% 0.10% 0.66% 0.48% 0.04 s
ORL 50 5.20% 3.57% 0.89% 0.82% 0.55% 0.50% 0.41% 0.70% 0.00 s
ORL 100 3.02% 1.54% 0.65% 0.46% 0.49% 0.56% 0.58% 0.94% 0.00 s
ORL 250 2.44% 1.12% 0.65% 0.45% 0.41% 0.24% 0.51% 0.45% 0.00 s
ORL 500 2.12% 0.48% 0.62% 0.23% 0.48% 0.18% 0.57% 0.30% 0.01 s
ORL 1000 1.71% 0.24% 0.54% 0.12% 0.39% 0.08% 0.41% 0.26% 0.05 s
ORL 2500 1.15% 0.13% 0.40% 0.07% 0.29% 0.07% 0.35% 0.13% 0.28 s
(?)[178]

(which is a kind of surprise for us), and the greediness in choosing the next variable

(P1C1) together contributed to the good performance of ACSIOM. Let us remark that

the choice of the initial point of course influences any local search method greatly (e.g.,

we could start from an optimal solution). However, it is a surprise for us that such

a simple approach, derived from the input in linear time could make a characteristic

difference, when compared to other linear time computable initial vectors.

The obtained results demonstrate that ACSIOM could effectively be used as a stand-

alone solver for very large sized problems, or also in an ensemble of heuristics. We also

plan to explore its use in an exact solver, where faster and better quality heuristic

solutions can help to trim the size of the search tree.

6.3 One–pass heuristics enhancement by local–search

Given a n-binary vector x, we denote its neighborhood as N (x) ⊆ Bn.

A local–search procedure for a pseudo–Boolean function f produces a sequence of

points
(
p(0),p(1), · · · ,p(t)

)
such that

p(k) = arg min
{
f (p)

∣∣∣p ∈ N
(
p(k−1)

)}
,

and that f
(
p(t)
)

6 f (y) for all y ∈ N
(
p(t)
)
.

Clearly, this procedure will produce a finite sequence of decreasing values for function

f . This is the reason why this procedure is sometimes called steepest–descent or a greedy
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method.

Due to the termination condition of the method, p(t) is called a local optimum of f

in the neighborhood N .

The input parameters of this approach are the starting point p(0) and the charac-

terization of the neighborhood set N .

A standard special family of local-search procedures is defined by

NH = {y ∈ Bn |x ∈ Bn, dHamming (x,y) 6 1} ,

where dHamming (x,y) represents the Hamming distance1 between the n-vectors x and

y.

These standard methods have already been investigated in the previous section,

along other several alternative local–search methods, which are not necessarily steepest

approaches.

A heuristic of this nature, selected among 40 variants, was called ACSIOM and it so

happens to be a steepest descent heuristic, whose starting point is defined by method

I3 (see Table 6.2).

The local search procedure applied to QUBO, based on the neighborhoodNH , is not

know if it is polynomially solvable ([194]). However, this method works very efficiently

in practice for QUBO problems.

In Section 6.1 we have introduced a class of one–pass heuristics based on a rounding

procedure that fixes a single variable at every iteration of the method, therefore pro-

ducing a solution in polynomial time. The method stops after n iterations and therefore

the solution may or may not be a local optimum. Clearly, the 0–1 vector returned by a

one–pass method can be used as a starting point of more sophisticated local searches.

In this section we investigate the impact – in the quality and computing time of

solutions – of applying a standard steepest-descent procedure to a starting point defined

by a one–pass heuristic. This enhanced heuristic was called as Steepest–Descent(I),

1dHamming (x,y) = �n

i=1 |xi − y1|.
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where I is the (one–pass) method that defines the starting point. Five one-pass heuris-

tics, One-Pass-R(Ik) (k = 1, · · · , 4) and One-Pass-R
(
I5, σ

2 = 1
4

)
, are considered as

starting points I in the subsequent analysis.

6.3.1 Computing time
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Figure 6.7: Average computing times of one–pass heuristics and of their local improve-
ment by steepest ascent.

The average computing times of the five one–pass heuristics studied in this section,

is displayed in Figure 6.7, for instances of the Massive family of QUBO problems. These

instances have between 15 000 and 30 000 variables and expected densities of 30%, 60%

and 90% (see Table 3.6). Since these instances are maximization QUBO problems,

then we consider the greedy local search algorithm version to find a local maximum,

and naturally called this procedure Steepest–Ascent.

Figure 6.7 also displays the time needed to find a local optimum, for the same

test problems, using the Steepest–Ascent procedure from the one–pass solutions.

The additional computing time needed to locally improve the one-pass heuristics is on

an average case, 14% higher for QUBOs having 15 000 variables, and 10% higher for

QUBOs having 30 000 variables. These numbers clearly indicate that a local optimum

can be found efficiently in practice.
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6.3.2 Quality of solutions

This section addresses the question of how much is the quality of the one–pass so-

lutions improved if they are enhanced to a local optimum. Table 6.18 provides the

average relative and normalized errors of the five One–Pass heuristics and correspond-

ing Steepest–Descent versions, for various families of QUBO problems.

Table 6.18: Performance gain by locally improving the solutions of one–pass heuristics.
Expected Relative Error (G) Expected Normalized Error (K)

Families of One Steepest Average One Steepest Average
QUBO Problems Pass Descent Gain Pass Descent Gain

Benchmarks 3.61% 2.78% 0.83% 1.18% 0.67% 0.51%
Randomly generated 25.65% 19.36% 6.29% 0.76% 0.45% 0.31%
MAX-Clique 26.74% 24.21% 2.53% 0.53% 0.42% 0.11%
MIN-VC (planar) 0.28% 0.25% 0.03% 0.23% 0.21% 0.03%
MAX-CUT 5.10% 4.29% 0.81% 8.63% 7.18% 1.45%
MAX-2-SAT 3.35% 2.09% 1.26% 5.36% 3.10% 2.26%

All Problems 18.49% 14.04% 4.45% 1.96% 1.31% 0.65%

The average approximate relative error decrease of Steepest–Descent is 4.4%,

and the associated average approximate normalized error is 0.65%.

The largest gain in relative error is in the randomly generated group of problems

with an average value of 6.3%. The largest gain in normalized error occurs in MAX-

2-SAT with an average value of 2.3%, followed by the MAX-CUT group of problems

with an average error of 1.4%.

It is interesting to note that the efficacy of the Steepest–Descent heuristics

studied, behaves quite differently depending on what performance measures are used.

6.3.3 Concluding remarks

Both the One–Pass and Steepest–Descent heuristics for QUBO produce reasonable

quality solutions, very efficiently. These types of procedures are needed to handle

problems having tens of thousands of variables and millions of quadratic terms.

The use of polynomial time algorithms embedded in more elaborated procedures

is an important aspect, especially if one would like to guarantee that the more so-

phisticated algorithm has also a computing time bounded by a polynomial of its size.
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The computational complexity of Steepest–Descent (or Steepest–Ascent) meth-

ods for QUBO is not known. The use of One–Pass methods is therefore crucial to

guarantee efficient performance. For instance, a probabilistic one-pass heuristic (based

on a sparse network data structure) is used in the probing procedure of the QUBO

preprocessing routine (see Figure 7.3).

One additional conclusion is that the one–pass and local–search heuristics for QUBO

should use the distribution of the partial derivative (gradient) values to define starting

points, as has been demonstrated by the computational experiments. This statement

also suggests that a good starting point is typically an “interior” point of the cube Un.

The literature on QUBO heuristics and meta-heuristics considers various alternative

starting points, but they are traditionally defined by extreme points of Bn.

To provide evidence to the previous statement, we did an experiment on the group

G1 of QUBO problems proposed by Glover et al. [109]. G1 includes 10 maximization

problems having 1 000 variables and densities varying from 10% to 100% (see Tables

3.2 and A.3).

The experiment considers 1 000 randomly generated starting points used for the

greedy local–search maximization heuristic (i.e. Steepest–Ascent). Each starting

point p(k) ∈ Bn (k = 1, · · · , 1 000) is randomly generated from the Bernoulli
(

1
2

)
distri-

bution, i.e. p
(k)
i = 1 with probability 1

2 .

Each of the heuristics Steepest–Ascent
(
p
(k)
1 , · · · , p

(k)
n

)
, k = 1, · · · , 1 000, is car-

ried out on each of the G1 problems, and each one of their values is compared with the

value returned by Steepest–Ascent
(
1
2 , · · · ,

1
2

)
on the same problem.

Under the circumstances that points p(k) have been generated, one would normally

think that in about 50% of the cases the solution value of Steepest–Ascent
(
p(k)

)

is not smaller than that returned by Steepest–Ascent
(

1
2 , · · · ,

1
2

)
. The results of

our experiment, displayed in Table 6.19, show however that this fact is not always

true. Except for instance number five of the G1 family, Steepest–Ascent
(

1
2 , · · · ,

1
2

)

provided better values for all the remaining nine problems in more than 80% of the

cases. Even in the case of instance five, the interior point method was superior in
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63.9% of the cases.

Table 6.19: Percentage number of tests where the Steepest–

Ascent
(

1
2 , · · · ,

1
2

)
heuristic gives better solution values than Steepest–

Ascent
(
Bernoulli

(
1
2

)
, · · · ,Bernoulli

(
1
2

))
, for the G1 QUBO problems ([109]).

% of Cases where Interior Point Method
Problem Density Steepest–Ascent

(
1
2 , · · · ,

1
2

)

Number
(
d%
)

was Worse was the Same was Better

1 10 16.2% 0.1% 83.7%
2 20 19.7% 0.0% 80.3%
3 30 7.5% 0.0% 92.5%
4 40 0.7% 0.0% 99.3%
5 50 36.1% 0.0% 63.9%
6 60 1.8% 0.0% 98.2%
7 70 0.9% 0.0% 99.1%
8 80 2.3% 0.0% 97.7%
9 90 2.6% 0.0% 97.4%
10 100 9.3% 0.0% 90.7%

It is also interesting to note that out of the 10 000 experiments only one case has a

value coincident with the value returned by Steepest–Ascent
(

1
2 , · · · ,

1
2

)
. This fact

provides some indication about the neighborhood space of solutions being potentially

enlarged, if an interior point approach is also considered for QUBO.
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Chapter 7

Preprocessing

A family of preprocessing techniques for QUBO is proposed in this chapter. It is

based on several computationally efficient transformations of this problem, and aimed

at simplifying it and possibly decomposing it into smaller problems of the same type.

More precisely, the proposed preprocessing involves a series of transformations of the

quadratic pseudo–Boolean objective function f , including:

(i) The fixation of some of the variables at values which must hold at every optimum,

and the enforcement of certain binary relations (e.g., equations, inequalities, or

non-equalities) between the values of certain pairs of variables, which must hold

in every optimum;

(ii) The fixation of some of the variables and the enforcement of some binary relations

between certain pairs of variables, which must hold in at least one optimal solution

of the problem;

(iii) The possible decomposition of the problem into several smaller QUBO problems

involving pairwise disjoint subsets of the original variables.

As a result, we obtain a constant K and quadratic pseudo–Boolean functions fr : BSr 7→

R, r = 1, · · · , c, where the sets of indices Sr ⊆ {1, · · · , n}, r = 1, · · · , c are pairwise

disjoint, such that

min
x∈Bn

f (x) = K +

c∑

r=1

(
min

y∈BSr
fr(y)

)
.

The proposed method has several key ingredients. The first ingredient is the repre-

sentation of a quadratic pseudo–Boolean function by means of the implication network

(see Section 5.3). This representation allows an efficient derivation via network flow
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computations of a lower bound on the minimum of the function and allows the identi-

fication of variables whose values in the optimum can be easily predicted, as well as of

other information which makes the simplification of the problem possible. The second

ingredient is the methodology primarily based on the theory of roof–duality (see Chapter

5), combined with the use of first (see Section 4.2) and second order derivatives and

co-derivatives (see Section 4.3). This methodology provides an effective lower bound

for the minimum of a quadratic pseudo–Boolean function, as well as information about

the values of a subset of the variables in the optimum (so called linear persistencies;

see Section 4.1), and about binary relations which must hold between certain pairs of

variables in the optimum (so called quadratic persistencies). An additional component

of the methodology is the decomposition of a large problem into several smaller ones,

which can be derived at a low extra cost by combining the conclusions of roof–duality

with those offered by the network representation of the problem (see Section 7.2.3).

The third ingredient of the proposed method consists of the integration of conclusions

obtained from subproblems associated to the original problem. This integration is real-

ized by combining the conclusions of probing (i.e. multiple application of roof–duality

to naturally associated subproblems), and of Boolean consensus (i.e. the exhaustive

expansion of the detected linear and quadratic persistencies).

We present an extensive computational evaluation of the proposed preprocessing

method in Section 7.6, using various benchmark sets and randomly generated test

problems of various types, involving thousands of variables, as described in Section 7.5.

Our experience shows that for dense problems the proposed preprocessing technique is

less effective as the size of the problems grows. It is demonstrated on numerous pub-

licly available test problems that for relatively sparse problems, including in particular

certain classes of structured problems, the proposed preprocessing method achieves sub-

stantial reductions in size at a very low computational cost. For instance, applying the

method to QUBO problems corresponding to vertex cover problems in planar graphs

involving up to 500 000 nodes, lead to the optimal fixation of 100% of the variables, i.e.

to the exact solution of the problem, in every single instance considered (see Section
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7.7).

7.1 Basic preprocessing tools

7.1.1 First order derivatives

The i–th first order partial derivative (i ∈ V) of a quadratic pseudo–Boolean function f

is given by (4.4). Corollary 4.1 of Section 4.2 provides necessary conditions of optimality

for QUBO by analyzing the sign of the derivative functions, which can automatically

determine certain (strong or weak) persistencies. If ∆i (x) is strictly negative, respec-

tively strictly positive, the above implications represent strong persistencies. These

simple relations have been already noticed in Hammer and Rudeanu [131], and repre-

sent an essential component of even the most recent work on preprocessing (see [24]).

Hammer, Hansen and Simeone [123] have shown that those strong persistencies

which can be obtained from the analysis of partial derivatives, can also be obtained

by roof–duality (a tool described in Chapter 5). Moreover, roof–duality is a stronger

preprocessing technique, as shown in [123], where an example is presented displaying

persistencies found by roof–duality, but not following from the analysis of the signs of

partial derivatives (see Example 5.6).

In view of these results, the preprocessing algorithm to be described in Section 7.4,

which will exploit heavily roof–duality, will not explicitly include an analysis of the

signs of partial derivatives, since the conclusions derivable from such an analysis will

be automatically included among those provided by roof–duality.

7.1.2 Second order derivatives and co–derivatives

A natural generalization of the concept of the first order derivative (see Section 4.3)

allows us to establish some persistent binary relations to hold among the values taken

in the optimum by certain pairs of variables.

In particular, we shall consider quadratic persistencies established by Theorem 4.1

of Section 4.1, which uses the concept of (i, j)th second order derivative of f (denoted

by ∆ij), proposed by Hammer and Hansen [121]. The complement concept of (i, j)th
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second order co-derivative (denoted by ∇ij) was also introduced in Section 4.1. With

these notations,

∆ij (x) = f (x [{i, j} ← (1, 0)]) − f (x [{i, j} ← (0, 1)])

and

∇ij (x) = f (x [{i, j} ← (1, 1)]) − f (x [{i, j} ← (0, 0)]) ,

i.e. evaluate the effect of simultaneously changing the values of xi and xj , while keeping

the values of the other variables unchanged.

From Theorem 4.1, then if f (x1, · · · , xn) is a quadratic pseudo–Boolean function,

and if xi and xj are two of its variables, then

(i) If ∇ij (x) > 0 for every x ∈ BV then xixj = 0 is a weak persistency;

(ii) If ∇ij (x) 6 0 for every x ∈ BV then xixj = 0 is a weak persistency;

(iii) If ∆ij (x) > 0 for every x ∈ BV then xixj = 0 is a weak persistency;

(iv) If ∆ij (x) 6 0 for every x ∈ BV then xixj = 0 is a weak persistency.

If in any of the implications above the left hand side inequality is strict, then the

corresponding persistency is strong.

7.2 Roof–duality

Let us recall first that the roof–dual bound proposed in [123], can be determined effi-

ciently by maximum flow computations in the implication network Gφ ([51, 54, 56]; see

Section 5.3).

From Proposition 5.8, for any quadratic posiform φ given by (1.6) and any feasible

flow ϕ in the corresponding implication network Gφ the equality

φ = a0 + v (Gφ [ϕ]) + ψGφ[ϕ]
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holds, where the right hand side is a quadratic posiform. Therefore,

a0 + v (Gφ [ϕ]) 6 min
x∈BV

φ (x) . (7.1)

Incidentally, if ϕ is a maximum flow for network Gφ then we have v (Gφ [γ]) 6

v (Gφ [ϕ]), where γ is any flow of the network. Thus, the computation of the maximum

flow determines the best lower bound in (7.1) exactly for the implication network form

of a quadratic posiform. In fact the bound in (7.1) was shown in [51, 54] to be the same

as the roof–dual value of φ, introduced in [123].

7.2.1 Strong persistency

Let us observe next that if ϕ is a feasible flow in an implication network Gφ [ϕ] then in

view of the existence of a symmetric flow and of the equality

v (ϕ̃) = v (ϕ) ,

the symmetrized flow ϕ̃ defined by

ϕ̃ (u, v) = ϕ̃ (v, u) =
ϕ (u, v) + ϕ (v, u)

2
for all u, v ∈ N, u 6= v

is also a feasible flow in Gφ. This implies that in any implication network, among the

maximum flows there always exists a symmetric one, for which ϕ = ϕ̃ holds.

Let us consider therefore a symmetric maximum flow ϕ in the implication network

Gφ [ϕ], and let ψ = ψGφ[ϕ]. As we observed above, the corresponding implication

network Gψ is exactly the residual network of Gφ corresponding to flow ϕ. Let us then

define S ⊆ N as the set of nodes v ∈ N to which there exists a directed x0 7→ v path

in Gψ, each arc of which has a positive residual capacity (we assume that x0 ∈ S).

Furthermore, let T = {v | v ∈ S}. Since ϕ is a maximum flow in Gφ, we cannot have

x0 ∈ S, and consequently T ∩ S = ∅ follows by the assumed symmetry flow conditions

of the implication network Gψ.

The following fact is well–known in network optimization:
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Proposition 7.1. The set S is unique, and is independent of the choice of the maximum

flow ϕ. It is in fact the intersection of the source sides of all minimum cuts of Gφ.

Let us note also that {u, v} ⊆ S cannot hold for any quadratic term auvuv of ψ with

positive coefficient auv, since otherwise we would have a positive capacity arc (u, v)

from u ∈ S to v ∈ T by the definition of arc capacities in the implication network

associated to ψ, leading to a positive capacity path from x0 to x0, in contradiction with

the maximality of ϕ. Thus, it follows that the assignment which sets all literals in S to

1 (there exists such an assignment, since T ∩S = ∅) makes all terms of ψ which involve

literals from S or T vanish. Introduce

J = {j ∈ V | {xj, xj} ∩ S 6= ∅}

and let y ∈ BJ be the partial assignment for which u (y) = 1 holds for all u ∈ S (and

consequently, v (y) = 0 for all v ∈ T ).

From Proposition 5.9, the partial assignment y ∈ BJ is a strong autarky1 for ψ

(and hence for φ). Consequently, the assignments xj = yj for all j ∈ J are strongly

persistent for QUBO.

In fact the set of variables xj, j ∈ J consists exactly of those involved in the so

called master roof as defined in [123]. This discussion shows that as a byproduct of a

maximum flow computation, the above approach determines J in additional computing

time, which is linear in the number of nonzero terms of ψ, i.e. linear in the size of φ.

7.2.2 Weak persistency

Let us consider now the directed graph Ĝ obtained from Gψ by keeping only those arcs

which have a positive residual capacity. Since we can assume that the maximum flow

ϕ is symmetric, we shall have

(v, u) ∈ A
(
Ĝ
)

whenever (u, v) ∈ A
(
Ĝ
)
. (7.2)

1A partial assignment y ∈ BS, S ⊆ V is called an autarky for φ if all terms of φ involving variables
with indices from S vanish when we substitute y.
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Let us compute the strong components of this directed graph (necessitating linear time

in the number of arcs, i.e. linear time in the size of ψ [227]), and denote these strong

components by Ki, i = 1, · · · , c. It is easy to see that the symmetry (7.2) implies the

following

Proposition 7.2. For every strong component Ki of Ĝ we have either

{v | v ∈ Ki} = Ki (7.3)

or

{v | v ∈ Ki} = Ki′ (7.4)

for some i′ 6= i.

Proof. Follows readily by (7.2).

Let us label now as K1, K1′ , K2, K2′ ,· · · , K`, K`′ , those strong components which

satisfy (7.4), in such a way that

(i) there is no directed path in Ĝ from Ki to Ki′ for i = 1, · · · , `, and

(ii) there is no directed path in Ĝ from x0 to Ki′ for i = 1, · · · , `.

Since ϕ is a maximum flow, we cannot have a directed path from x0 to x0 in Ĝ, and

hence the symmetry conditions (7.2) imply the existence of such a labeling. Let us note

that condition (i) is equivalent to saying that the strong components Ki and Ki′ are

dual components of the associated implication graph (see Section 4.5).

Let Ji = {j ∈ V | {xj, xj} ∩Ki 6= ∅} and let yi ∈ BJi be the partial assignment for

which u (yi) = 1 for all u ∈ Ki, for i = 1, · · · , `.

Theorem 7.1. The partial assignment yi is an autarky for ψ, for i = 1, · · · , `. More-

over, it is a strong autarky if there is a directed path in Ĝ from x0, or if there is a

directed arc between Ki and Ki′ . Consequently, the assignments xj = yij for all j ∈ Ji

and i = 1, · · · , ` are all persistent assignments for QUBO.
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Proof. The claim is implied by the fact that the terms of ψ including variables in

Ji, i = 1, · · · , ` vanish.

It should be remarked that the weak persistency results of the previous Theorem

are “stronger” than those derived from Theorem 5.3, since the later persistencies are

all derivable from those determined by Theorem 7.1.

Let us note that if there is a directed arc (u, v) between Ki and Ki′ for some

i = 1, · · · , `, then symmetry (7.2) implies that an arc (v, u) must also exist between Ki

and Ki′ . It is this property that makes the persistency result of Proposition 7.1 to be

strong, in this particular situation.

In general, deciding if a partial assignment yi is a strong autarky for φ, for i =

1, · · · , ` is a NP–hard decision problem. This result can easily be established, since the

outcome of this decision depends on the optimization of NP–hard sub-problems, each

one associated to a component of type (7.3).

Example 7.1. Consider the quadratic posiform φ given by

φ = 2x1x2 + 4x1x2 + 2x2x3 + 2x2x3 + 2x1x3 + 4x1x3 + 2x4x5 + 2x4x5 + 2x5x1,

and the associated network Gφ shown in Figure 7.1. The strong components of Gφ are:

K1 = {x0} ,

K1′ = {x0} ,

K2 = {x4, x5} ,

K2′ = {x4, x5} and

K3 = {x1, x2, x3, x1, x2, x3} .

Let us note that there is no directed path from K2 to K2′ , there is no directed path from

x0 to K2′ , and that K2 and K2′ satisfy condition (7.4). Let J2 = {4, 5} and let y2 ∈ BJ2

be the partial assignment for which x4 = x5 = 1. By Proposition 7.1, x4 = x5 = 0 must

hold in a minimizer of φ. Let us now show that these two assignments are not strongly

persistent. In the first place one can verify that x1 = 1 must hold in all minimizers of



188

φ. Therefore, the only term connecting K3 to the other components vanishes. So, any

solution satisfying the equation x4x5 +x4x5 = 0, including x4 = x5 = 1, must also hold

in a minimizer of φ.

x0x0 x1x1

x2

x2

x3

x3

x4x4 x5x5

1
2

1
1

1
2

2
1

1
1

2
1

1
1 1

11 1

Figure 7.1: The network Gφ corresponding to the posiform φ of Example 7.1. We
indicate only those arcs which have positive capacities.

7.2.3 Decomposition

Let us assume now that we have already fixed all weakly and strongly persistent vari-

ables (e.g., by Proposition 7.1), and that the strong components of the residual posiform

ψ, Ki, i = 1, · · · , c, are all of type (7.3).

Clearly, in this case the symmetry conditions (7.2) imply that there are no arcs

between different strong components, i.e. ψ does not involve a quadratic term auvuv,

auv > 0 for which u ∈ Ki, v ∈ Kj and i 6= j. Thus, denoting by ψi the posiform

corresponding to the induced subnetwork Ki, i = 1, · · · , c, we have

ψ =

c∑

i=1

ψi.

Furthermore, due to property (7.3), these posiforms involve disjoint sets of variables.

Hence, we have

Theorem 7.2.

min
x∈BV

ψ (x) =

c∑

i=1

(
min
x∈BJi

ψi (x)

)
. (7.5)
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A similar decomposition of quadratic posiforms which does not involve linear terms

was already proposed in [42] (see Proposition 5.5). Let us note that after computing

the maximum flow in the implication network Gφ, both the persistent assignments, as

well as the above decomposition can be determined in linear time of the size of φ.

Example 7.2. Consider φ to be a homogeneous quadratic posiform whose nonzero

terms are:

x1x2, x1x2, x2x3, x2x3, x1x3, x1x3, x4x5, x4x5, x5x6, x5x6, x4x6, x4x6,

x7x8, x7x8, x1x7, x4x8, x9x10, x9x10, x7x9, x11, x11x12, x11x12, x10x11.

The associated network Gφ, shown in Figure 7.2, has the following strong components:

K1 = {x0} , K1′ = {x0} ,

K2 = {x11, x12} , K2′ = {x11, x12} ,

K3 = {x9, x10} , K3′ = {x9, x12} ,

K4 = {x7, x8} , K4′ = {x7, x8} ,

K5 = {x1, x2, x3, x1, x2, x3} and

K6 = {x4, x5, x6, x4, x5, x6} .

Let us first note that there is no directed path from x0 to x0. Thus, by strong persistency

(Proposition 5.9) x11 = x12 = 1 must hold for all minimizers of φ. Also, regardless of

the values of the coefficients in the nontrivial terms of φ, by weak persistency (Propo-

sition 7.1) the partial assignment x7 = x8 = x9 = x10 = x11 = x12 = 1 must hold in

a minimizer of φ. This partial assignment automatically cancels all those terms of φ

which involve at least a variable from the set {x7, x8, x9, x10, x11, x12}. After eliminating

these terms, the original problem is decomposed into two subproblems, involving disjoint

sets of variables, coming respectively from K5 and K6. Obviously, these two subprob-

lems can be optimized separately, and the sum of their optimal values will coincide with

the minimum of φ.
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Figure 7.2: The network Gφ corresponding to the posiform φ of Example 7.2. We
disregarded the values of the capacities, and indicated only those arcs which have
positive capacities. The dashed arcs represent arcs connecting the strong components
of Gφ.

7.3 Combining basic tools

7.3.1 Enhancing roof–duality by probing

It will be seen in this section that the results of roof–duality can be substantially

strengthened by analyzing the roof–duals of several quadratic pseudo–Boolean functions

associated to the original one. The analysis of the roof–duals of the 2n quadratic

pseudo–Boolean functions obtained by fixing either to zero or to one the value of one

of the n variables of a quadratic pseudo–Boolean function f (x1, · · · , xn), will be called

probing.

Among the specific results of probing we mention the possibility of identifying an
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improved lower bound of the minimum of a quadratic pseudo–Boolean function, and of

enlarging at the same time the set of variables and binary relations for which persistency

conclusions apply.

In view of the fact that finding the roof–dual of a quadratic pseudo–Boolean function

can be achieved by simply solving a maximum flow problem in a network, the calculation

of the roof–duals of 2n quadratic pseudo–Boolean functions associated to the initially

considered one is a feasible, easy–to–carry–out operation. Let us provide now some

technical ideas on how to efficiently calculate the 2n roof–duals required by probing.

Let us assume first that using a simple heuristic (e.g. as proposed in [58, 61]) we

have found some upper bound U on the minimum of (1.5), say

min
x∈BV

φ (x) 6 U . (7.6)

Let us now consider the most typical branching procedure, in which we split the

problem into two somewhat smaller ones by fixing variable xj at the two possible binary

values. Since φ is a posiform, all of its terms – with the possible exception of the constant

a0 – contribute nonnegative quantities to the objective. Therefore, if M > U −a0, then

min
x∈BV

φ (x) = min

{
min
x∈BV

φ (x) +Mxj, min
x∈BV

φ (x) +Mxj

}
, (7.7)

where a0 is the constant in φ, as given in (1.6).

The two subproblems in (7.7) have simple network representations.

In order to calculate the roof–duals of minx∈BV φ (x)+Mxj and of minx∈BV φ (x)+

Mxj , and to derive persistency relations from these, we should add to the original

network an arc, (x0, xj) in the first case and (x0, xj) in the second case, and to assign

to these the large capacity M .

Clearly, computationally it is simpler to increase the capacity of two arcs than to

substitute xj = 0, respectively xj = 1, implying the deletion of nodes xj and xj , and of

all arcs incident to these nodes in the network. In addition, keeping the same network

and updating the capacities of a few arcs at each branch evaluation, allows us to carry
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out computations without increasing the amount of computer memory needed to keep

the network data necessary to find a maximum flow for each subproblem. From an

implementational point of view, this approach has the added advantage of allowing the

easy restoration of the network corresponding to the original problem, by simply finding

an additional maximum flow – an option which turned out to be on the average to be

much better than creating a copy to be reused after branching. It should be remarked

that without these simplifying steps, the large scale QUBOs (including for instance

those coming from finding optimal vertex covers of planar graphs with half a million

vertices; see Section 7.7) could not have been handled.

We can similarly administer more complicated branching policies, as well. For

instance, if u, v ∈ L are two literals, u 6= v, then branching on the binary relation

u 6 v can be written as

min
x∈BV

φ (x) = min

{
min
x∈BV

φ (x) +Mu+Mv, min
x∈BV

φ (x) +Muv

}
(7.8)

for some M > U − a0, resulting in the modification of 4 arc capacities in the first

branch corresponding to u = 1 and v = 0, and of two arc capacities on the other branch

corresponding to u 6 v.

We can also apply the above for handling persistencies. For instance, if we learn

that u 6 v is a persistent binary relation, then we can rewrite (7.8) as

min
x∈BV

φ (x) = min
x∈BV

φ (x) +Muv. (7.9)

Let us note that in all of the above cases, we had to increase the capacity of some of

the arcs. Thus, as our procedure advances and we learn more and more persistencies,

at the same time the maximum flow value is also increasing. Hence, according to (7.1),

as an added value we get better and better lower bounds on the minimum of (1.5).

To describe probing and its benefits, let us consider an arbitrary quadratic posiform
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φ, as given in (1.6). For a literal u ∈ L let us consider the posiform

ψu = φ+Mu,

where M > U − a0 for an upper bound U satisfying (7.6). Let us further denote by

Su ⊆ L (Wu ⊆ L) the set of strongly (weakly) persistent literals for ψu, as defined in

Section 7.2.1 (7.2.2), and let Lu denote the roof–dual bound for ψu.

We can derive several consequences from the sets Su, Wu and lower bounds Lu when

generating these for all literals u ∈ L.

Proposition 7.3. Let U be an upper bound of minx∈BV φ (x), and let u ∈ L and j ∈ V.

Then

• The value L∗ = maxu∈L min {Lu, Lu} is a lower bound on the minimum of φ.

• If Lu > U then u = 0 is a strongly persistent assignment for φ.

• If v ∈ Sxj
∩ Sxj

(v ∈ Wxj
∩Wxj

) then v = 1 is a strongly (weakly) persistent

assignment for φ.

• If v ∈ Sxj
and v ∈ Sxj

(v ∈Wxj
and v ∈Wxj

) then xj = v is a strongly (weakly)

persistent relation for φ.

• For all v ∈ Sxj
and w ∈ Sxj

(v ∈ Wxj
and w ∈ Wxj

) the quadratic relations

xj 6 v, xj 6 w and w 6 v are all strongly (weakly) persistent for φ.

All these follow from the above definitions, by which the assignment v = 1 is strongly

(weakly) persistent for ψu, for all v ∈ Su (v ∈ Wu). Let us note that by adding these

new persistencies to φ, as in (7.7) and (7.9), we may increase both the roof–dual value

as well as the set of strongly and weakly persistent literals of φ. Furthermore, the

addition of these to φ may also change the sets Sv or Wv for some other literals v ∈ L,

v 6= u.

It is simple to verify that the quadratic persistencies determined through the pre-

vious proposition include a subset of those persistent binary relations derivable from
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Theorem 4.1. However, probing may not be able to find quadratic persistencies which

are determined by the analysis of the second order (co-)derivatives (see Section 7.1.2).

Let us remark that the lower bound derived from probing was also considered in

[51, 56], and that analogous techniques were explored in the broader context of binary

optimization in [23, 216].

7.3.2 Consensus

It has been remarked above that order relations between literals can be derived both

from the signs of the second order derivatives and co–derivatives, as well as during the

process of probing. The interactions of the various binary relations, and the conclusions

obtained by combining them can be very easily derived by the introduction of a Boolean

quadratic equation Φ = 0, where the terms of Φ are quadratic elementary conjunctions

(representing the detected binary relations between literals) which must take the value

zero in every minimum of (1.5). Moreover, the application of the consensus method to

Φ allows the polynomial detection of all of its prime implicants (see [89]). Taking into

account that the prime implicants of this function represent either variables with fixed

values in the optimum, or order relations which must hold between pairs of literals in

every optimum, it is clear that the detection of all prime implicants of Φ provides an

enlarged set of strong persistencies.

Finally, we should remark that the conclusions that can be obtained from the knowl-

edge of the prime implicants of Φ can also be obtained directly (using Proposition 7.3)

during our implementation of probing, by appropriately transforming the original func-

tions via term additions (as explained in the previous section) corresponding to the

persistent binary relations found by the preprocessing tools considered.

7.4 Algorithm and implementation

The proposed preprocessing algorithm is presented in this section, in which the tools

described in the previous sections are used iteratively and recursively. The structure

adopted is based on the network flow model of Section 5.3. Our goal is to find better
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PrePro(φ, (V0, V1, E) ,Θ)

Input: A quadratic posiform φ representing a quadratic pseudo–
Boolean function f , as in (1.6).

Step 1: Call Network(φ,Φ, (V0, V1, E)).

Step 2: If Φ = ∅ then Θ← ∅ and STOP. Otherwise, for all (ψ,L,U) ∈
Φ do call Heuristic(ψ,U).

Step 3: For all (ψ,L,U) ∈ Φ do call Coordination(ψ,U,E).

Step 4: P ← {(ψ,L,U) ∈ Φ |ψ is purely quadratic}.

Step 5: For all (ψ,L,U) ∈ P do call Probing(ψ,L,U, (V0, V1, E)).

Step 6: P ← {(ψ,L,U) ∈ P |ψ is purely quadratic}.

Step 7: For all (ψ,L,U) ∈ (Φ \ P) do call PrePro (ψ, (V0, V1, E) ,S).
Θ← P ∪ S.

Output: It returns in Θ a set of triplets, whose sum of all posiforms has
the same minimum value as the minimum value of f . Additionally,
a set of persistencies for the initial posiforms is returned as follows:

V0 – A set of variables with value 0,

V1 – A set of variables with value 1, and

E – A set of equality relations between pairs of literals,

which must hold in a minimizer of f .

Figure 7.3: PrePro algorithm.

and better lower bounds, weak (and strong) linear persistencies and weak (and strong)

quadratic persistencies for φ, as well as to decompose the problem into several smaller

problems, as explained in Section 7.2.3.

The PrePro algorithm is described in Figure 7.3. The input of the algorithm is a

quadratic posiform φ representing a quadratic pseudo–Boolean function f , as in (1.6).

The output returned by PrePro is a decomposed representation of the minimum of

f , as in (7.5), where the subproblems on the right hand side of (7.5) involve pairwise

disjoint sets of variables, together with a lower and an upper bound to the minimum

of each subproblem, and with a partial (optimal) assignment to the derived persistent

variables.
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Four main components are part of PrePro:

• Network – This routine has a posiform φ as input. It first finds a maximum flow

in the network Gφ as explained in Proposition 5.8 (see Section 7.2). The maximum

flow implementation that we have adopted is based on the shortest augmenting

path algorithm, yielding a worst case time of O
(
n3
)
, and is especially designed

to obtain a residual network satisfying the flow symmetry conditions. When a

minimum cut is found, a set of strong persistencies is obtained directly from

a non–empty source side of a minimum cut (see Propositions 5.8 and 7.1) and

saved accordingly in (V0, V1). The nodes of the residual network and correspond-

ing arcs, which are associated to the set of strong persistencies are removed from

the network. Using a linear time algorithm for identifying the strongly connected

components of the residual network, a subset of weak persistencies is identified

in every component of type (7.4) (see also Theorem 7.1), and saved accordingly

in (V0, V1). The nodes of the residual network and corresponding arcs, which are

associated to the set of weak persistencies is removed from the network. What is

left after applying Network is a disjoint set of strong components, each corre-

sponding to a subproblem (included in Φ) that can be optimized separately from

the other subproblems.

• Heuristic – For each subproblem identified in Network, an upper bound U

is found, and later used in the Coordination and Probing procedures. Any

heuristic method valid for QUBO can be used. All of our experimental results

include a fast one–pass heuristic based on a greedy approach, which ranks the

set of non–fixed variables according to an approximated probability value of a

variable to have a persistent value (see Chapter 6).

• Coordination – This procedure has as input a posiform ψ, and the upper bound

U found by Heuristic. Let us note that the minimum of any posiform ψ called

within PrePro is strictly larger than its constant value a0. This routine identifies

binary persistent relations originated from the analysis of the second order deriv-

ative and co-derivative functions as explained in Section 4.3. The basic idea is to
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compute over all possible pair of variables i < j, the minimum and the maximum

of the linear pseudo–Boolean functions ∆ij and ∇ij. A key element to save com-

puting time in this operation is to stop it as soon as one learns that the minimum

is strictly negative and the maximum is strictly positive. If a quadratic persistency

u 6 v is found, then ψ is updated by adding a term auvuv with a large enough

coefficient (we use auv = 2(U − a0) + 1). Since the implication network structure

was adopted in all tools, this last operation can be efficiently implemented by

updating the coefficient of the arcs (u, v) and (v, u). Our data structure is also

able to quickly identifying if the reverse relation v 6 u is a quadratic persistency.

In the affirmative case, E is updated to include the equality persistency u = v,

and ψ is transformed by replacing v (v) by u (u). This routine stops as soon as

a linear term or a equality persistency is found.

• Probing – This procedure has as input a purely quadratic posiform ψ (i.e. a

posiform that does not have linear terms) and the upper bound U found by

Heuristic. The implication network structure plays a crucial role in this rou-

tine. Independently, each variable xj is fixed to one of the possible binary values,

and the resulting function is analyzed in terms of roof–duality and strong and

weak persistencies. This operation can be accommodated easily in the network

ψ as explained in Section 7.3.1. For a given assignment to xj , a maximum flow

algorithm is applied to the transformed network. All the strong and weak persis-

tencies derived from the residual network are updated both in the network and in

(V0, V1, E), as explained in Proposition 7.3. To analyze the complement assign-

ment of xj, a maximum flow algorithm is applied to the residual network. All

the strong and weak persistencies derived from the residual network are again up-

dated as before. A third maximum flow algorithm is applied to obtain a network

which represents the same function as ψ. The use of maximum flow algorithms

to recuperate the original function being optimized is possible due to Proposition

5.8. A clear advantage of this approach is that the amount of memory needed for

the data structures remains about the same through every step of the procedure.
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Let us note that probing through the implication network is able to capture per-

sistencies of transitive relations (see Section 7.3.2). For instance, suppose that

u 6 v and v 6 w are quadratic persistencies, then if at some point w 6 u is also

found to be persistent, then the network and the set E are immediately updated

with the equality relation u = v = w. The routine stops as soon as a linear term

or a linear/equality persistency is found.

Step 4 of PrePro selects the subproblems for which probing is applied. Step 6 of

PrePro selects the subproblems for which PrePro is recursively applied. Obviously,

the rules that govern these choices may vary. In our implementation, the rule adopted

is to apply Network to a subproblem whenever a new linear persistency or a new

linear term was found by Coordination or probing.

All the tools considered in PrePro are polynomial time algorithms:

Network – O
(
n3
)
;

Heuristic – O
(
n2
)
;

Coordination – O
(
n3log (n)

)
;

Probing – O
(
n4
)
.

As a consequence of the previous complexity times, each run from Step 1 to Step 5

of PrePro takes at most O
(
n4
)
.

7.5 Test problems

Most of the problem classes on which we have tested the proposed preprocessing pro-

cedures are benchmarks used in several other studies related to QUBO. These datasets

include 85 problems with prescribed density, 13 graphs for MAX-Clique, 38 graphs

for MAX–CUT, and 34 MAX–2–SAT formulas. Beside the above classes we have also

carried out computational experiments on 436 randomly generated planar graphs for

vertex cover optimization problems.
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7.5.1 Benchmarks with prescribed density

The class of benchmarks with prescribed density that we have examined in this chapter

includes the test problems of Glover, Kochenberger and Alidaee [108], and the prob-

lems of Beasley [37] with at most 500 variables. The basic generation parameters of

the sub–families containing these problems can be seen in Table 3.2, while the indi-

vidual characteristics of the problems appear in Tables A.1 and A.2 of the Appendix.

Obviously, Glover’s and Beasley’s maximization problems have been first converted to

minimization problems in order to make the direct application of our proposed proce-

dures possible.

7.5.2 Maximum cliques of graphs

In order to facilitate comparisons among different exact and heuristic methods related

to clique (see definition in Section 2.2.1) problems, a set of benchmark graphs has been

constructed in conjunction with the 1993 DIMACS Challenge on maximum cliques, col-

oring and satisfiability ([151]). This chapter only reports preprocessing results for two

families of this dataset, since for the other graphs PrePro did not find any persisten-

cies. Namely, we consider the benchmarks containing c–fat graphs or Hamming graphs.

The graphs analyzed here are described in Section 3.2 and their main characteristics

are listed in Table 3.7.

7.5.3 Minimum vertex cover problems of planar graphs

Motivated by a recent work by Alber, Dorn and Niedermeier [13] we have analyzed the

performance of PrePro for preprocessing minimum vertex cover problems in the class

of planar graphs. A major difference between the two approaches is that the method of

Alber, Dorn and Niedermeier considers “the influence of a clever, VERTEX COVER–

specific data reduction” (see [13], page 220), whereas the results obtained by PrePro

are entirely due to its ways of simplifying QUBOs, since we have not introduced any

specific adaptation of this method for the case of vertex cover problems.
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In the computational experiments we considered 400 planar graphs randomly gen-

erated by the LEDA software package (see details in Section 3.3), whose general char-

acteristics are similar to those graphs generated by [13] (see Table 3.11).

7.5.4 Graphs for MAX–CUT

The MAX–CUT values of several classes of graphs is considered in the PrePro exper-

iments. Let us remark that any optimal solution x = (x1, · · · , xn) of the MAX–CUT

problem has a complementary solution (x1, · · · , xn). Thus, before calling PrePro for

a MAX–CUT problem, we select a variable and assign to it a 0–1 value.

Let us note that these problems are maximization problems (see Section 2.2.3).

Therefore, we transformed the MAX–CUT problems (2.5) into quadratic posiform min-

imization problems.

We tested the PrePro algorithm on the following graphs, previously described in

Section 3.4: torus graphs ([145]; see Table 3.15), via and sparse random graphs ([145];

see Table 3.16), and Gn.p and Un.p graphs ([157]; see Table 3.17).

7.5.5 MAX–2–SAT formulas

Algorithm PrePro was tested in the set of random weighted and non–weighted MAX–

2–SAT formulas (see Section 2.3) proposed by Borchers and Furman [47]. The list

[47] contains 17 standard formulas and 17 weighted formulas, which were described

previously in Section 3.5 (see also Tables 3.19 and 3.20). We solve the (weighted)

MAX–2–SAT problem by associating to it a quadratic posiform φ (see (2.7)), for which

the minimum value ν (φ) is the minimum weighted set of unsatisfied clauses.

7.6 Computational experiments

7.6.1 Test environment

The algorithm PrePro was implemented in C++, compiled using the Microsoft Win-

dows 32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the

Microsoft Incremental Linker (version 6).
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All the computational experiments of this chapter were carried out on a computer

with a 2.80 GHz Pentium 4, 512 MB of RAM, hyper-threading technology, and has

installed the Windows XP Professional (version 2002) operating system.

7.6.2 Results

Given a posiform φ, its roof–dual bound, a set of strong/weak persistencies and a de-

composition of type (7.5) of it, can easily be derived from the residual network resulting

after applying a maximum flow algorithm to the implication network associated to φ.

We consider this preprocessing step (entirely based on the roof–duality theory) as a

standard preprocessing tool in all experiments that we have carried out. We tested four

possible preprocessing strategies:

A Only the standard tool is considered;

B Standard tool and coordination are considered;

C Standard tool and probing are considered; and

D All preprocessing tools are considered.

Since strategy D usually provides the best data reduction of the problems, we have

included in Appendix C several statistical results about the preprocessing performance

of this strategy in all benchmarks.

At first glance, we have tried to understand how any of the preprocessing techniques

would impact in the reduction of the problem’s size. Table 7.1 provides preprocessing

results for the test beds, whose values are averages for groups of problems belonging

to the same family. Strategy D provides 100% data reduction for the following bench-

marks: MAX–Clique problems in all HAM–2 graphs and all c–FAT graphs; minimum

vertex cover problems in all PVC LEDA planar graphs; MAX–CUT problems in all

VIA graphs. These results clearly indicate that one can expect getting an outstanding

data reduction level in these special well structured problems.

It should be remarked that the border separating successful from unsuccessful pre-

processing cases is very thin. For instance, all the Hamming graphs in HAM–2 were
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optimally solved with the standard preprocessing tool. However, in the closely related

family HAM–4 there was no reduction found for any of the graphs, even when all the

preprocessing tools were considered. We also remark the fact that strategy C provided

optimality for all MAX-Clique problems and all MAX–CUT problem in the VIA graphs,

using a substantial smaller computing time than the one corresponding to strategy D.

Strategy C with an average value of 99.9%, provided also a very good data reduction

on the minimum vertex cover problems in the PVC LEDA planar graphs.

Table 7.2 suggests the particular preprocessing techniques which can be recom-

mended for each of the problem families considered, in order to achieve (on the average)

as high a data reduction as possible within a limited amount of time. In view of the

relatively uniform behavior of problems within the same family, the recommendation

of a common strategy for problems within a family seems reasonable. Here are some

remarks and some recommendations for the examined groups:

• Problems with prescribed density – Coordination does not have a practical in-

fluence in the preprocessing results. Probing should be used in the cases where

density is low. In general, the probing tool should be used in this class, if the

condition nd 6 20 is satisfied. Let us also note that family B consists of very

dense submodular maximization problems, and for which the preprocessing out-

come changed considerably, in comparison with the other problems. Six of the

10 problems in the B group were solved optimally, and for the unsolved cases, a

large number of quadratic persistencies was found.

• Minimum vertex cover of planar graphs – Probing when used with the coordination

method provides slightly better preprocessing data reduction, without degrading

the computing times returned by probing only.

• MAX–CUT in torus graphs – The standard preprocessing tool should be used for

the graphs with ±1 weights in the edges (see also Table C.5). Probing should be

used in the other weighted graphs.

• MAX–CUT in VIA graphs – All the problems in the VIA.CY family are solved

optimally by the basic preprocessing tool (see also Table C.5). Every instance in
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Table 7.1: Average QUBO simplifications and decomposition after preprocessing.
Preprocessing Tools Used:

Roof-Duality Roof-Duality and Coordination Roof-Duality and Probing ALL Tools

Type of Family Total Variab. Total Relat. Quad. Variab. Total Relat. Quad. Variab. Total Relat. Quad. Variab.

Problem Name Time Reduc. Time Gap Rel. Reduc. Time Gap Rel. Reduc. Time Gap Rel. Reduc.

A 0.0 52.3% 0.0 8.2% 1 52.9% 0.0 5.1% 1 64.0% 0.0 5.1% 1 64.0%
B 0.0 0.9% 0.1 85.3% 1762 0.9% 1.2 34.9% 785 72.2% 2.9 41.9% 801 68.2%
C 0.0 18.1% 0.0 22.4% 0 18.5% 0.1 19.8% 1 30.2% 0.1 19.8% 1 30.2%
D 0.0 0.6% 0.0 56.8% 0 0.6% 1.2 55.4% 3 1.6% 1.2 55.4% 3 1.6%

Fixed E 0.0 0.0% 0.1 57.9% 0 0.0% 5.2 57.2% 6 0.0% 5.3 57.2% 6 0.0%
Degree F1 1.1 0.0% 1.6 78.7% 0 0.0% 149.8 78.6% 0 0.0% 150.1 78.6% 0 0.0%

B-50 0.0 94.2% 0.0 0.2% 2 94.4% 0.0 0.0% 0 100.0% 0.0 0.0% 0 100.0%
B-100 0.0 4.9% 0.0 13.3% 0 5.2% 0.3 8.8% 26 36.3% 0.4 8.8% 26 36.3%
B-250 0.0 0.0% 0.1 44.1% 0 0.0% 3.3 43.5% 1 0.0% 3.4 43.5% 1 0.0%
B-500 0.1 0.0% 0.4 60.6% 0 0.0% 28.4 60.3% 0 0.0% 28.5 60.3% 0 0.0%
C-FAT-200 0.0 0.0% 1.3 68.7% 29 0.0% 4.8 0.0% 0 100.0% 14.1 0.0% 0 100.0%

MAX C-FAT-500 0.1 0.0% 21.9 77.0% 56 0.0% 80.8 0.0% 0 100.0% 327.4 0.0% 0 100.0%
Clique HAM-2 0.0 100.0% 0.0 0.0% 0 100.0% 0.0 0.0% 0 100.0% 0.0 0.0% 0 100.0%

HAM-4 0.1 0.0% 12.8 89.6% 0 0.0% 79.0 88.3% 0 0.0% 91.5 88.3% 0 0.0%
LEDA-1000 0.0 75.3% 0.1 0.0% 0 99.9% 0.1 0.0% 0 99.9% 0.1 0.0% 0 100.0%

MIN LEDA-2000 0.1 74.5% 0.2 0.0% 0 99.9% 0.2 0.0% 0 99.8% 0.2 0.0% 0 100.0%
Vert. Cov. LEDA-3000 0.2 75.0% 0.3 0.0% 0 99.9% 0.3 0.0% 0 99.8% 0.3 0.0% 0 100.0%

LEDA-4000 0.4 75.1% 0.5 0.0% 0 99.8% 0.6 0.0% 0 99.9% 0.5 0.0% 0 100.0%
Torus 0.1 0.2% 6.4 39.2% 0 0.2% 220.0 38.3% 2 3.1% 853.3 38.3% 2 3.1%
R 0.4 0.0% 64.7 28.9% 0 0.0% 1818.1 28.7% 1 0.2% 3187.8 28.7% 1 0.2%
VIA.CN 0.1 4.0% 1.1 4.6% 3 4.0% 13.2 0.0% 0 100.0% 100.5 0.0% 0 100.0%

MAX VIA.CY 0.1 100.0% 0.1 0.0% 0 100.0% 0.1 0.0% 0 100.0% 0.1 0.0% 0 100.0%
Cut G500 0.0 4.2% 0.5 23.1% 3 4.2% 6.2 22.3% 5 19.0% 11.8 22.3% 5 19.0%

G1000 0.1 2.7% 2.2 23.5% 5 2.7% 36.1 23.0% 7 18.8% 100.8 23.0% 7 18.8%
U500 0.0 1.0% 2.6 35.2% 31 2.6% 9.1 36.0% 0 5.7% 14.3 33.8% 32 11.5%
U1000 0.1 0.6% 14.7 35.2% 57 2.5% 39.0 35.9% 0 7.6% 76.2 34.2% 83 9.9%
BF-50 0.0 9.3% 0.0 240.0% 1 11.3% 0.1 121.2% 8 25.8% 0.1 121.2% 8 25.8%
BF-100 0.0 12.6% 0.0 691.1% 1 13.8% 0.1 271.9% 24 27.6% 0.2 271.9% 25 27.6%

MAX BF-150 0.0 17.1% 0.0 908.1% 0 17.1% 0.3 258.3% 55 42.2% 0.5 258.3% 55 42.2%
2–Sat BFW-50 0.0 6.2% 0.0 391.4% 1 6.2% 0.1 133.2% 8 24.2% 0.1 133.2% 8 24.2%

BFW-100 0.0 14.2% 0.0 1731.4% 5 14.2% 0.2 335.5% 39 26.2% 0.3 335.5% 39 26.2%
BFW-150 0.0 17.1% 0.0 3214.3% 4 17.1% 0.7 263.1% 68 45.6% 0.9 265.2% 67 45.8%
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Table 7.2: Preprocessing strategies recommended for the benchmarks.
Type of Family Number of Best
Problem Name Instances Density Strategy

A 8 18.78% C
B 10 98.83% C
C 7 36.01% C
D 10 54.31% A

Fixed E 5 29.62% A
Degree F1 5 51.56% A

B-50 10 9.75% C
B-100 10 9.75% C
B-250 10 9.94% A
B-500 10 9.90% A

C-FAT-200 3 77.82% C
MAX C-FAT-500 4 83.28% C
Clique HAM-2 3 4.55% A

HAM-4 3 39.42% A

LEDA-1000 100 0.41% D
MIN LEDA-2000 100 0.20% D

Vertex Cover LEDA-3000 100 0.14% D
LEDA-4000 100 0.10% D

Torus 4 0.68% C
R 8 0.34% C
VIA.CN 5 0.32% C

MAX VIA.CY 5 0.37% A
Cut G500 4 1.87% C

G1000 4 0.95% C
U500 4 3.40% D
U1000 4 1.72% D

BF-50 9 19.98% C
BF-100 5 7.53% C

MAX BF-150 3 3.91% C
2–SAT BFW-50 9 21.18% C

BFW-100 5 7.77% C
BFW-150 3 3.93% C
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this group of problems is solved in less than 0.2 seconds. The VIA.CN problems

are all optimally solved with probing, taking an average computing time of 13.2

seconds. In two of the VIA.CN problems, the analysis of the starting implication

network found 2 components which were preprocessed separately under the result

of Theorem 7.5.

• MAX–CUT in Gn.p graphs – The preprocessing efficiency decreases with density

for the graphs with the same number of vertices (see also Table C.5). Probing

helped increasing data reduction for graphs with densities up to 5%, and attained

“as expected” better performance for graphs with 500 vertices, than for those

with 1000 vertices.

• MAX–CUT in Un.p graphs – The preprocessing efficiency decreases with density

for the graphs with the same number of vertices (see also Table C.5). In this

category, the standard preprocessing tool found some non trivial decomposition,

and both coordination and probing helped improving the average data reduction

rates from 2–3% to about 11%.

• MAX–2–SAT – The preprocessing efficiency decreases with the number of clauses

when the number of variables is fixed (see also Table C.6). Both in the non–

weighted and weighted formulas, the probing technique provided better reduction

indicators.

In conclusion it can be seen that the choice “best strategy” is highly problem fam-

ily dependent. It should also be remarked that only three out of the four examined

strategies turn out to provide the “best” performance for some of the considered group

of problems; strategy B (consisting of the application of the standard tool and coor-

dination, but not of probing) did not give best results in any of the examined cases.

Table 7.2 indicates the best recommended strategies for each of the examined families

of problems.
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7.7 Optimal vertex covers of planar graphs

In view of the outstanding results obtained by applying PrePro (described in Figure

7.3) to the minimum vertex cover problem in random planar graphs, we have tried to

refine this method to the point where it would not only preprocess the problem but

actually produce an optimal solution of it. As it will be seen in this section, the resulting

method allowed the efficient detection of minimum vertex covers in planar graphs of

impressive dimensions, including some having 500 000 vertices.

Although the vertex cover problem is known to be NP–hard in the class of planar

graphs ([105]), our computational experiments with a large collection of benchmark

planar graphs indicate that, in all likelihood, finding vertex covers in planar graphs

may be frequently tractable. This conclusion provides the motivation for the work

reported in this section.

Before presenting the results of our computational experiments we would like to

emphasize that PrePro is not capable of solving the QUBO problems associated to

every planar graph, and that it may encounter problems even in the case of very small

graphs. For example there are no persistencies in the QUBO associated to the “toy

box” graph of Figure 7.4.

(a) 3–dimensional drawing. (b) Planar drawing.

Figure 7.4: Planar graph for which PrePro does not find any persistent result.

7.7.1 Deriving minimum vertex cover from QUBO’s optimum

We have seen in Section 2.2.2 that finding a minimum vertex cover of a graphG = (V,E)

is a QUBO, and we have also noticed in Section 7.6.2 that out of the 400 QUBOs coming
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from vertex cover problems in randomly generated planar graphs, every single QUBO

was solved to optimality by PrePro. The only matter which needs special attention

is that – due to the fact that in (2.2) we have fixed to zero the values of ε(i,j) for every

edge (i, j) – it may happen that the optimal 0–1 solution of a QUBO defines a vertex set

which does not cover every edge. Let us see next that there is a simple polynomial time

transformation, which associates to the optimal solution of QUBO an optimal vertex

cover of G. This result follows directly from Theorem 2.1.

Corollary 7.1. Let G = (V,E) be a graph, and let us associate to it the quadratic

pseudo–Boolean function f (x1, · · · , xn) =
∑

i∈V xi+
∑

(i,j)∈E xixj and the QUBO (2.2).

Let further f (x∗1, · · · , x
∗
n) be a minimum of f , and let S∗ be the set of vertices j ∈ V

for which x∗j = 1. Then, the size of a minimum vertex cover is f (x∗1, · · · , x
∗
n), and the

set S∗ can be enlarged to a minimum vertex cover Ŝ ⊇ S∗ in O (|E|) time.

While the previous result holds in any graph, it is particularly useful in classes of

graphs for which the associated QUBO (2.2) can be solved to optimality.

As a consequence of the discussion above, we have supplemented PrePro with the

simple procedure outlined in the proof of Theorem 2.1 to derive an optimal vertex cover

from the optimal solution of the corresponding QUBO problem (2.2). This amended

version of the proposed algorithm will be called PrePro+.

In this section the preprocessing strategies A, B and C of the previous section will

not be considered, i.e. all the experiments below were carried out by using strategy D,

which involves all the preprocessing tools of Section 7.6.2.

The results obtained by PrePro+ for moderately sized graphs (i.e. having up to

a few thousand vertices), have been compared with those of the recent paper of Alber,

Dorn and Niedermeier (or ADN in short) reported in [13], which is essentially based on

the data reduction results of Nemhauser and Trotter [182].

7.7.2 Preprocessing

Table 7.3 provides averages of results obtained by preprocessing minimum vertex cover

problems on 400 random planar graphs generated by the LEDA package (see Section
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7.5.3). Four groups of 100 graphs each have been considered, each graph in these sets

containing respectively 1000, 2000, 3000 and 4000 vertices.

Table 7.3: Comparative preprocessing results for minimum vertex cover problems in
planar graphs.

Number of Time Variables Fixed Size of Residual
Graphs Vertices (sec) (%) Problem

per Family per Graph ADN ([13]) PrePro ADN ([13]) PrePro ADN ([13]) PrePro

100 1 000 4.06 0.05 68.4 100 315.8 0
100 2 000 12.24 0.16 67.4 100 652.9 0
100 3 000 30.90 0.27 65.5 100 1 036.1 0
100 4 000 60.45 0.53 62.7 100 1 492.9 0

Remarkably, PrePro achieved 100% data reduction in all PVC LEDA graphs,

whereas the ADN method obtained between 63% and 68% average data reduction

on their LEDA benchmarks, which have similar characteristics to the PVC LEDA

graphs (see Table 3.11). It can also be seen that the best performance of the ADN

method (68.4% reduction of vertex set) occurs on the group of relatively smaller graphs,

while the performance of PrePro (100% reduction of vertex set) does not seem to be

influenced by the size of the graphs considered.

7.7.3 Optimization

While the results reported in Table 7.3 refer to the preprocessing by PrePro of the

minimum vertex cover problem, we shall discuss below the results of applying PrePro+

for actually finding optimal solutions to this problem.

It is important to remark that PrePro+ assumes the knowledge of the exact op-

timum of the associated QUBO. If this optimum is not available PrePro+ is further

enhanced to an algorithm PrePro∗, by adding a branch–and–bound component to it,

in order to handle minimum vertex cover problems even in this case. However, the use

of PrePro∗ turned out not to be necessary in any of the 400 test problems randomly

generated with the LEDA software package, which were all solved to optimality without

the branch–and–bound component having been called.

Table 7.4 provides comparative results for finding optimal vertex covers for graphs
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Table 7.4: Average computing times of optimal vertex covers for graphs belonging to
the LEDA benchmarks.

Algorithm ADN ([13]) PrePro∗ in the PVC LEDA Benchmark
750 MHz 500 MHz Pentium III 2.8 GHz Pentium 4

Computer Linux Windows 98 Windows XP
System 720 MB RAM 96 MB RAM 512 MB RAM
(speed) (slower) (faster)

1 000 vertices 5.75 s 0.24 s 0.06 s
2 000 vertices 19.93 s 0.64 s 0.18 s
3 000 vertices 51.54 s 1.07 s 0.31 s
4 000 vertices 109.84 s 1.71 s 0.56 s

Average
Speedup 51 times 169 times

belonging to the LEDA benchmarks. It includes computing times for the exact algo-

rithm of Alber, Dorn and Niedermeier [13] and solution times for PrePro∗ (which

coincide with PrePro+ for all the 400 cases). We would like to recall the fact that –

not having had access to the test problems of [13] – we have randomly generated our

problems, but made sure (as explained in Section 7.5.3) that the parameters used in

the random graph generation process were chosen so as to match exactly does of [13].

In order to be able to differentiate between the acceleration due to computer systems

and those due to algorithms, all the experiments reported in Table 7.4 have been carried

out twice, first on a somewhat slower computer system (500 MHz Pentium III, 98 MB

RAM, Windows 98) than the one used by [13] (715 MHz, 720 MB RAM, Linux), and

second on a faster system (2.8 GHz Pentium 4, 512 MB RAM, Windows XP).

The basic conclusion of this set of experiments is that using the slower computer

system, PrePro∗ is about 50 times faster than that of [13], on average.

7.7.4 Minimum vertex covers of very large planar graphs

Based on the high efficiency of PrePro∗ when applied to the optimization of vertex

cover problems in planar graphs, we have investigated the possibility of using it on

substantially larger planar graphs. The relevant experiments were carried out on the

set of 36 benchmark problems contained in the RUDY list (described in Section 3.3; see

Table C.4 of the Appendix), which contains graphs whose vertex sets contain 50 000,

100 000, 250 000 and 500 000 vertices, and have planar densities of 10%, 50% and 90%.
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For each particular number of vertices and each density the list contains three graphs.

Table 7.5: Average computing times over 3 experiments of optimal vertex covers for
graphs belonging to the PVC RUDY benchmark.

Planar Density
Vertices 10% 50% 90%

50 000 1.2 min 3.7 min 1.8 min
100 000 4.8 min 16.2 min 7.4 min
250 000 30.4 min 107.7 min 48.2 min
500 000 124.7 min 422.4 min 195.3 min

Table 7.5 presents the average computing times needed by PrePro∗ for finding

minimum vertex cover sets in all the graphs contained in the RUDY list. Each of the

computing times reported in the table represents the average needed for solving the

three problems with a fixed number of vertices and a fixed planar density contained in

the RUDY list. The average computing times range from 2.2 minutes for the graphs

with 50 000 vertices up to 4.1 hours for the graphs with 500 000 vertices. Clearly, the

computing times vary with the size of the vertex set. A similarly foreseeable phe-

nomenon happens with the dependency of computing times and densities. Indeed, the

average computing time for the low density graphs is 40 minutes, for medium density

graphs this increases to 2.3 hours, and for high density graphs it drops to 1 hour.

More detailed information about the performance of PrePro can be read from the

statistics presented in Table C.4 in the Appendix, where specific data are given for

each of the 36 problems of the RUDY list. First, it can be seen that almost all of the

computing time (78.7%) is spent on calculating the roof duals; moreover, most of this

time (99.9%) is spent on calculating the very first roof dual.

The large investment of computing time in the calculation of roof duals brings re-

turns in the form of graph size reductions (which are due to strong and weak persistency)

and in the form of decompositions.

• The detailed analysis of the problem size reductions occurring in PrePro shows

that roof–duality accounts for 99.8% of these reductions for planar graphs of

density 10%, 93.2% for the 50% dense graphs, and 51.8% for the 90% dense

graphs.
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• It is interesting to note the extremely small size of the average components of

the graphs left after applying decomposition and strong and weak persistency.

Indeed, the average size of these components for graphs of 10%, 50% and 90%

density is of 3.1, 4.4 and 14.4 vertices, respectively.

Beside roof–duality, important simplifications of the remaining QUBOs were ob-

tained by the coordination method and by probing. It can be seen in column (ne)

of Table C.4 of the Appendix that the number of equality relations between pairs of

variables or their complements, discovered by the coordination method is an increasing

monotone function of planar density. Also, column (nf ) of Table C.4 shows that the

number of variables whose values are fixed by probing reaches maximum values for the

medium density graphs. In conclusion it can be seen that there is substantial comple-

mentarity in the effect of applying the basic preprocessing techniques considered in this

paper. Indeed,

• 10% dense planar graphs derive almost the entire solution from the application

of roof–duality;

• 50% dense planar graphs derive a considerable reduction through probing; and

• 90% dense planar graphs derive a considerable reduction through the coordination

method.

However, the most important conclusion is that PrePro+ found optimal vertex

covers for all the 36 benchmarks in the RUDY list.

7.8 Final remarks

This study is devoted to the systematic simplification of QUBOs. The proposed method

uses enhanced versions of several basic techniques (e.g., extraction of conclusions from

the analysis of first and second order derivatives [121], and from roof–duality [123]) and

several integrative techniques (e.g., probing, consensus) for combining the conclusions

provided by the basic techniques. The application of these techniques is implemented

using the network flow model of [54, 56].
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The use of the proposed preprocessing techniques provides:

(i) A lower bound of the minimum of the objective function;

(ii) The values of some of the variables in some or every optimum;

(iii) Binary relations (equations, inequalities, or non-equalities) between the values of

certain pairs of variables in some or every optimum;

(iv) The decomposition (if possible) of the original problem into several smaller pair-

wise independent minimization problems.

The efficiency of the proposed techniques is demonstrated through numerous compu-

tational experiments carried both on benchmark problems and on randomly generated

ones.

The simplifications obtained with the proposed methods exceed substantially those

reported in the literature. An interesting example is the minimum vertex cover problem

for which [13] reports a preprocessing stage reduction of dimensionality by 62.7%–68.4%,

while the method proposed here achieves 100% reduction (i.e. exact solution) in each

of the test problems. Moreover, while the computing times reported in [13] for finding

optimal vertex covers for graphs from 1 000 to 4 000 vertices range from 5.75 to 109.84

seconds, those required by the proposed method range from 0.24 to 1.71 seconds using

a somewhat slower computer, or from 0.06 to 0.56 seconds using a somewhat faster one.

The experiments show that the methods can be applied successfully to problems of

unusually large size, for instance:

• MAX-Clique on graphs derived from fault diagnosis having up to 500 vertices;

• MAX-CUT problems on graphs derived from VLSI design having thousands of

vertices;

• Minimum vertex cover problems on randomly generated planar graphs (an NP-

hard problem [105]) having up to 500 000 vertices (reported in Section 7.7).

It should be added that the proposed preprocessing technique have not only simpli-

fied the above problems but have in fact produced their exact optimum solutions. As
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far as we know there are no reports in the literature about methods capable of providing

optimal solutions to vertex cover problems in planar graphs with the investigated sizes.
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Chapter 8

Lower Bounds to the Minimum

Given any (heuristic) solution x+ to the minimum of a quadratic pseudo–Boolean func-

tion f , it is desirable to know how far is f (x+) from the optimum ν (f). Since ν (f) is

most likely not know for most quadratic pseudo–Boolean functions f , then the quality

of x+ as a minimizer of f is typically analyzed by comparing how far is f (x+) from an

“easy” computable lower bound to ν (f).

It is well know that contrary to several heuristics, which provide reasonably good

solutions (i.e. upper bounds) in an “efficient” computing time to QUBO, the lower

bound “closeness” to the optimum is traditionally associated to a much larger computer

effort. Therefore, when selecting a lower bound technique, one has to trade–off between

the desired quality and the time needed to compute the bound. This fact will become

evident throughout the computational results shown subsequently in this and in the

following chapters.

Lower and upper bounds are also crucial elements in the design framework of the

state-of-the-art exact methods for QUBO (see Chapter 9). Typically, bounding is used

by branch-and-bound methods to cutoff the solutions space as much as possible.

Probably, the best known lower bound to QUBO is the roof dual bound of Hammer

et al. [123] (see Chapter 5). In addition to the value of the bound, this technique

characterizes some strong persistent values for some variables, which hold in all optimal

solutions ([123]), thus simplifying the problem at hand.

It turns out that the roof dual bound can be determined by using several alternative

algorithm approaches. The most well known approach is based on solving the Linear

Program (LP) (5.3), which is obtained by linearizing each quadratic term xixj through

the use of auxiliary variables yij for every x ∈ Bn (1 6 i < j 6 n). The roof dual can
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also be (efficiently) computed by finding a symmetric maximum flow in the network

model of ([51, 59, 226]) (see Section 5.3).

Let

Lf (x,y)
def
= c0 +

n∑

i=1

cixi +
∑

16i<j6n

cijyij.

The 0-1 LP (5.3) can be rewritten as

ν (f) = min
{
Lf (x,y)

∣∣∣(x,y) ∈ S[2],x ∈ Bn
}
, (8.1)

where

S[2] =





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−yij 6 0,

−xi +yij 6 0,

−xj +yij 6 0,

xi +xj −yij 6 1,

(1 6 i < j 6 n)





.

The roof dual bound of quadratic pseudo–Boolean function f (denoted here as

C2 (f)) is obtained by relaxing the integrality constraints on x in (8.1) to x ∈ Un, i.e.

C2 (f)
def
= min

{
Lf (x,y)

∣∣∣(x,y) ∈ S[2],x ∈ Un
}
. (ROOF DUAL)

Let us note that the (ROOF DUAL) LP is characterized by n +
(n
2

)
nonnegative

variables and by 3
(n
2

)
constraints.

Boros et al. [49] have presented a hierarchy of bounds C2 (f) 6 C3 (f) 6 C4 (f) 6

· · · 6 Cn (f) = ν (f) for QUBO. C2 (f) corresponds to the roof dual value of f . The C3

bound, also known as the cubic dual, has been shown to be equal to the first Chvátal

closure of S[2] ([50]). The present chapter is mostly devoted to studying alternative

approaches that provide lower bounds to a quadratic pseudo–Boolean function f that

have values between the roof dual and the cubic dual bounds.

C4 (f) is characterized here for the first time, and we provide some combinatorial

constructs to get improved bounds based on the so-called arithmetic consensus of two

terms of a posiform.
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Other than by solving an LP, it is not known if there is any combinatorial algorithm

that could provide the cubic dual in polynomial time. Several combinatorial bounding

approaches were proposed in the past to get better lower bounds than the roof dual

bound. Any of these methods returns the roof dual bound when the function is gap–

free, otherwise they return a strictly better bound than roof dual, with the first two

cases being not better than the cubic dual of the function. A brief description and the

main references of these bounding procedures are listed next:

• Boros and Hammer [52] introduced the iterated roof dual bound, which is based

on solving a noose packing problem of a graph representation of the problem

(called the biform graph). This bound can be efficiently computed by finding a

sequence of maximum flows in a capacitated bi–form network.

• Using a different approach based on a consensus identity, Bourjolly et al. [65, 67]

proposed a bound which partitions the function into two posiforms, the first one

being an arbitrary quadratic posiform, and the second being a cubic positive

posiform. There is not known reference about a comparative study between the

bound of [65, 67] and the iterated roof dual bound.

• Billionnet and Sutter [44] proposed a method to find a quartic posiform of a

given quadratic pseudo–Boolean function. Clearly the constant of this posiform

is a lower bound to the minimum of the function. To do this operation, several

minimum weight cycles are squeezed out of the residual positive posiform (similar

to the ones proposed in [65, 67]). An additional improvement will produce the

residual quartic posiform. There is not known relation between this bound and

the hierarchy of bounds of Boros et al. [49].

It is well known that the MAX–CUT problem is equivalent to the maximization of a

quadratic pseudo–Boolean function ([52]). Goemans and Williamson [112] proposed the

semidefinite relaxation for MAX–CUT, and due to the 1–to–1 correspondence between

these two problems, the semidefinite relaxation provides a lower bound to QUBO as

well.
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Recently, Rendl et al. [98] proposed to use Lagrangian duality theory, by using both

the semidefinite relaxation and by dualizing a subset of the set of triangle inequalities,

which are valid for the cut polytope, and whose complete set would provide the cubic

dual of the function. The use of these additional inequalities provided a substantial

reduction to the semidefinite relaxation gap of several MAX–CUT benchmarks ([206]).

Billionet and Elloumi [41] used semidefinite programming and used the fact that

x2
i − xi = 0 (for all i = 1, · · · , n) to produce an equivalent unconstrained quadratic

optimization problem to QUBO, which is no longer multilinear, but whose relaxation is

convex. The bound produced by solving this relaxation is the same as the semidefinite

relaxation of [112]. The advantage of using this perturbed problem is the fact that

the 0–1 version of this problem can be optimized by using other solvers, which have

algorithms ready–to–solve these convex Integer Quadratic Problems (known as MIQP).

Another bounding approach to QUBO is based on the decomposition method of

Chardaire and Sutter ([82]; see also [95]). This method partitions the original function

into bilinear functions, for which the optimum can be obtained in reasonable time. The

dual formulation of this decomposition provides at least the roof dual bound.

In order to solve QUBO, many researchers use an equivalent linear integer formula-

tion. This formulation is obtained by doing linearizations of quadratic sub–expressions,

through the use of additional variables and linear constraints (see e.g. [63]). Obviously,

the relaxation of these integer programs produces a lower bound to the optimal value.

It turns out that the bounds obtained from several linearization approaches are related

to one of the bounds in the Boros et al. [49] hierarchy. In the related literature, the

focus of these approaches has been given to find linearizations which require a small

number of additional variables. A recent work by Gueye and Michelon [115] reviews

and analyzes this aspect.

The operation that finds if the roof dual bound is gap free (i.e. if ν (f) = C2 (f))

can be done in polynomial time ([123]). This problem can be efficiently reduced (in size

and time) to a 2-satisfiability problem, which is well known for having a polynomial

running time (see e.g. [90, 133]).
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If the roof dual bound is not gap free then ν (f) > C2 (f), and therefore in this case

it is useful to study and analyze other approaches that can strictly reduce the roof dual

gap ν (f)−C2 (f). In the hierarchy of bounds proposed by Boros et al. [49], the cubic

dual bound (i.e. C3 (f)) is such an example.

The cubic dual is well characterized by means of LP ([50]). It is simply defined

by (ROOF DUAL) intersected with a family of valid cuts (called triangle inequalities)

denoted by S[3], which is produced by the first Chvátal closure of S[2]. Boros et al. [50]

have shown that S[3] is characterized by 3
(n
2

)
+ 4
(n
3

)
inequalities as

S[3] = S[2]∪





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

xi +xj +xk −yi,j − yi,k − yj,k 6 1,

−xi +yi,j + yi,k − yj,k 6 0,

−xj +yi,j − yi,k + yj,k 6 0,

−xk −yi,j + yi,k + yj,k 6 0,

(1 6 i < j < k 6 n)





.

(8.2)

The cubic dual of a quadratic pseudo–Boolean function f can therefore be found by

solving the LP

C3 (f)
def
= min

{
Lf (x,y)

∣∣∣(x,y) ∈ S[3],x ∈ Un
}
, (CUBIC DUAL)

whose size is polynomially bounded by the size of f .

Other by using LP algorithms, there is not other known (combinatorial) method

that can provide the cubic dual in efficient time, in contrast with the roof dual bound

which is well characterized by using network flow procedures. In Section 8.5 we shall

introduce some ideas that may lead to the discovery of such a method for the cubic

dual. In the next section, we give particular emphasis to problem (ROOF DUAL)

whose constraint set is augmented with various sub-families of inequalities from S[3].

We will demonstrate that a state-of-the-art solver for LP can solve relatively large

sparse QUBOs efficiently, which appear frequently in practical applications.

This chapter is organized as follows. The next section will introduce bi–forms and

the relation between graph balancing and QUBO. Section 8.2 will show how to relate

the graph balancing graph with the network model introduced earlier in Section 5.3.
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In Section 8.4, the iterated roof–dual bound is reviewed and an implementation of it

based on the network model is given and demonstrated. The following two sections

propose improved bounds over the iterated roof-dual one. These methods are based on

combinatorial constructs and network flows. The last 2 sections of this chapter cover

the usefulness of linear programming augmented with some families of cuts to solve

sparse QUBOs.

8.1 Bi–forms and packing of cycles

A quadratic pseudo–Boolean function f ∈ F2 may be represented by infinitely many

posiforms. Among the posiforms representing f there may also exist some having

degrees higher than two. For instance, 1− x− y − z + xy + xz + yz = xyz + xyz .

A very special posiform is introduced in this section, which has the peculiar property

of being uniquely defined for any quadratic pseudo–Boolean function.

Definition 8.1 ([51]). If x and y are binary variables, then the expression xixj+xixj is

called a positive bi–term, while the expression xixj +xixj is called a negative bi–term.

Bi–terms naturally express the equality or non-equality of the variables involved,

i.e.

xixj + xixj = 0 ⇔ x = y and

xixj + xixj = 0 ⇔ x 6= y.

Definition 8.2 ([51]). If E is a collection of bi–terms such that no pair of variables

is involved in more than one element of E, and αe are positive numbers for all e ∈ E,

then the quadratic pseudo–Boolean posiform β =
∑

e∈E aee is called a bi–form.

Proposition 8.1 ([51]). Any quadratic pseudo–Boolean function f in variables x1, · · · , xn

has a unique constant cf , and a unique bi-form βf in the variables x0, x1, · · · , xn, such

that

f (x1, · · · , xn) = cf + βf (1, x1, · · · , xn) . (8.3)

Proof. Let us assume that f is given as expression (1.5). To prove the claim, we use

the fact that all coefficients in (1.5) are uniquely defined for f . In fact, cf and βf are
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uniquely determined by the coefficients:

cf = c0 −
∑

16i<j6n
cij>0

cij
2

+
∑

i∈V
∆i( 1

2
,··· , 1

2)<0

∆i

(
1

2
, · · · ,

1

2

)
(8.4)

and

βf =
∑
i∈V

∆i( 1
2
,··· , 1

2)>0

∆i

(
1
2 , · · · ,

1
2

)
(xix0 + xix0)

+
∑
i∈V

∆i( 1
2
,··· , 1

2)<0

∣∣∆i

(
1
2 , · · · ,

1
2

)∣∣ (xix0 + xix0)

+
∑

16i<j6n
cij>0

cij
2 (xixj + xixj) +

∑
16i<j6n
cij<0

∣∣ cij
2

∣∣ (xixj + xixj) .

Example 8.1. Consider the quadratic pseudo–Boolean function g = −f6. The unique

bi-form of g is then

βg = 2 (x1x0 + x1x0) + 1
2 (x2x0 + x2x0)

+ (x4x0 + x4x0) + 5
2 (x5x0 + x5x0)

+1
2 (x1x2 + x1x2) + (x1x3 + x1x3) + (x1x4 + x1x4)

+ (x1x5 + x1x5) + 1
2 (x1x6 + x1x6) + 1

2 (x2x3 + x2x3)

+1
2 (x2x4 + x2x4) + 1

2 (x2x5 + x2x5) + 1
2 (x2x6 + x2x6)

+ (x3x4 + x3x4) + (x3x5 + x3x5) + 1
2 (x3x6 + x3x6)

+ (x4x5 + x4x5) + 1
2 (x4x6 + x4x6) + (x5x6 + x5x6)

satisfying the equation g (x1, · · · , x6) = βg (1, x1, · · · , x6)−
19
2 .

Proposition 8.2 ([51]). If β is a bi–form, then β (x0, x1, · · · , xn) = β (x0, x1, · · · , xn)

for every binary vector (x0, x1, · · · , xn) ∈ Bn+1.

Proof. Follows directly from the definitions, since the value of β depends only on equal-

ities and non-equalities of the variables, that is on relations which do not change when

simultaneously all the variables are complemented.
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Proposition 8.3 ([51]). If βf is the unique bi–form of the quadratic pseudo–Boolean

function f , then

min
(x1,··· ,xn)∈Bn

f (x1, · · · , xn) = cf + min
(x0,x1,··· ,xn)∈Bn+1

βf (x0, x1, · · · , xn)

and

max
(x1,··· ,xn)∈Bn

f (x1, · · · , xn) = cf + max
(x0,x1,··· ,xn)∈Bn+1

βf (x0, x1, · · · , xn) .

Proof. Follows readily by Proposition 8.2.

The above remarks imply that instead of x0, any of the n+1 variables of the bi-form

βf could be fixed at 1, without changing the set of values associated to βf .

Corollary 8.1. If βf is the unique bi-form of the quadratic pseudo–Boolean function f ,

given as in (8.3), and h (x0, · · · , xi−1, xi+1, · · · , xn) = cf+β (x0, · · · , xi−1, 1, xi+1, · · · , xn),

i.e. if we obtain g from φ by fixing xi = 1, then both f and h are quadratic pseudo–

Boolean functions and have the same minimum and maximum values.

Example 8.2. Returning to the quadratic pseudo–Boolean function g = −f6 used in

Example 8.1 and its unique bi–form βg, then function

h (x0, x2, x3, x4, x5, x6) = −19
2 + βg (x0, 1, x2, x3, x4, x5, x6)

= −2 + x2 + x4 + 2x5 + 2x6

−x0x2 + 2x0x4 − 5x0x5

−x2x3 + x2x4 + x2x5 − x2x6

−2x3x4 + 2x3x5 − x3x6

−2x4x5 + x4x6 − 2x5x6

has the same minimum (i.e. ν (f) = −5) and maximum values (i.e. τ (g) = 4) as g.

Noting that a quadratic pseudo–Boolean function, given as a multilinear polynomial

(1.5), can be transformed to a bi–form in O
(
n2
)

time, then Proposition 8.1 shows

that the minimization of a quadratic Pseudo–Boolean function is equivalent to the
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minimization of the corresponding unique bi–form.

It should be noted that certain combinatorial algorithms are naturally formulated

as bi–forms, in particular MAX–CUT and graph balancing problems.

Definition 8.3. Given a bi–form, f =
∑

e∈E αee, we associate to it a graph Gf ,

whose vertices correspond to the indices {0, 1, · · · , n} of the variables, and whose edges

correspond to those pairs (i, j) for which there is a bi–term in f involving the variables xi

and xj. The edge e = (i, j) will sometimes refer to the edge (i, j) of Gf , and some other

times to the Boolean expression e (X) = (xixj + xixj) or = (xixj + xixj) associated to

it in f . An edge will be called positive (negative) if the associated bi–term is positive

(negative); the weight of an edge e is the corresponding positive coefficient αe in f . In

other words, Gf is a weighted signed graph, associated to the bi–form of f .

Example 8.3. The weighted signed graph Gg of the bi–form βg associated to the

quadratic pseudo–Boolean function g = −f6 (see Example 8.1) is displayed in Figure

8.1.

Definition 8.4. If x is a 0–1 vector of n+ 1 components, then an edge e ∈ E is called

conflicting with x if e (x) 6= 0, otherwise we say it agrees with x.

Remark 8.1. For any 0–1 vector x ∈ Bn+1,

f (x) =
∑

e is conflicting with x

αe.

Definition 8.5. Paths in Gf with a possible repetition of edges (such paths are called

sometimes walks) are considered next. The number of times an edge e is used by a path

P will be called the multiplicity of e with respect to P , and will be denoted by mP (e).

A path is called closed, if its first and last vertices coincide.

Definition 8.6. A path is called negative if the sum of the multiplicities of the negative

edges in it is odd. A closed negative path without repetition of edges is called a negative

cycle, while a closed negative path, with possibly repeated edges, is called a noose. A

noose is called rooted if it passes through the root of f . To a rooted noose N (which we
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Figure 8.1: The graph Gg of the bi-form given in Example 8.1.

will consider as a subset N of the edges together with a multiplicity function mN) we

shall also associate the QUBO N =
∑

e∈N mN (e)e.

The following easy remarks (see e.g. [51, 57, 68]) will be useful later in this section.

Remark 8.2. The equation f (X) = 0 is consistent if and only if there is no negative

cycle in Gf . Moreover, the equation f (X) = 0 has a unique solution (assuming x0 = 1)

if and only if Gf is connected and does not contain negative cycles.

Remark 8.3. If e and e′ are bi-terms involving the pairs of variables x, y and y, z,

respectively, then

e+ e′ = e′′ + c

for some cubic posiform c and a bi-term e′′ involving x and z. Moreover the sign of e′′

is the product of the signs of e and e′.
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Proof.

(xy + x y) + (yz + y z)=(xz + xz) + 2(xyz + x y z),

(xy + x y) + (yz + yz)=(xz + x z) + 2(xyz + x yz),

(xy + xy) + (yz + yz)=(xz + xz) + 2(xyz + xyz).

Example 8.4. Consider the rooted noose N = {(0, 1) , (1, 4) , (4, 3) , (3, 5) , (5, 4) , (4, 0)}

in the graph of Figure 8.1. Applying Remark 8.3, we have

N = (x0x1 + x0x1) + (x1x4 + x1x4) + (x3x4 + x3x4)+

(x3x5 + x3x5) + (x4x5 + x4x5) + (x0x4 + x0x4)

= 1 + 2 [(x0x1x4 + x0x1x4) + (x0x3x4 + x0x3x4) + (x0x3x5 + x0x3x5) + (x0x4x5 + x0x4x5)] .

Thus

N (1, x1, x2, x3, x4, x5) = 1 + 2 (x1x4 + x3x4 + x3x5 + x4x5) .

More generally,

Remark 8.4. If N is a rooted noose in Gf , then

N (1, x1, · · · , xn) = 1 + q (x1, x1, · · · , xn, xn) ,

where q is a quadratic posiform.

Let f be a given bi-form, x0 its root, and let C, N and N0 denote the set of negative

cycles, the set of nooses and the set of rooted nooses in Gf , respectively. If (P ) is an

optimization problem, its optimum value is denoted next by ω (P ).

Given a bi-form f , Boros et al. [51, 57] associated to it the following mathematical

programming problems:
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• A “cycle covering” problem

min v (y) =
∑

e∈E

αeye

s.t.
∑

e∈C

ye > 1 ∀ C ∈ C,

ye ∈ B ∀ e ∈ E,

(CC)

• A “noose covering” problem

min v (y) =
∑

e∈E

αeye

s.t.
∑

e∈N

mN (e)ye > 1 ∀ N ∈ N ,

ye ∈ B ∀ e ∈ E,

(NC)

• The continuous relaxation (NCc) of the noose covering problem, obtained from

(NC) by replacing the conditions ye ∈ B by ye > 0 for all e ∈ E.

• A “noose packing” problem

max w (ξ) =
∑

N∈N

ξN

s.t.
∑

N3e

mN (e)ξN 6 αe ∀ e ∈ E,

ξN > 0 ∀ N ∈ N .

(NP)

• The “rooted noose packing” problem (RNP) which is obtained from (NP) by

replacing N by N0.

Boros et al. [51, 57] shown that problems (CC) and (NC) are integer programming

problems which are equivalent with the minimization of f , while (NCc), (NP) and

(RNP) are weaker linear programming relaxations of the above integer programming

problems, and the weakest one (RNP) turns out to be equivalent with roof–duality

(see Proposition (8.4)).

Example 8.5. For bi-form βg given in Example 8.1 the following is an optimal rooted
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Figure 8.2: The residual graph G′g of the bi-form given in Example 8.1.

noose packing for root x0 (i.e. to problem (RNP)):

ξN =





1
2 , if N = [(0, 1), (1, 2), (2, 0)] ,

1, if N = [(0, 4), (4, 5), (5, 0)] ,

1, if N = [(0, 1), (1, 3), (3, 5), (5, 0)] ,

1
2 , if N = [(0, 1), (1, 6), (6, 5), (5, 0)] ,

0, otherwise,

(8.5)

The residual graph G′g is obtained after removing from graph Gg (see Figure 8.1)

the strictly positive nooses from ξN . G′g is displayed in Figure 8.2.

The sum of the rooted nooses values is 3, and consequently the roof–dual value of g

is −19
2 + 3 = −13

2 .

The “roof duality” approach of [123] for the minimization of bi-forms is rephrased
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next. For this, the bi-form of f is written as

f =
∑

(i,j)∈E+

αij(xixj + xixj) +
∑

(i,j)∈E−

αij(xixj + xixj),

where E+ and E− denote the set of positive and negative edges in Gf , respectively.

For each quadratic term of f , its L1 optimal linear lower bounds are given by

xixj > λij(xi + xj − 1), for any 0 6λij6 1,

xixj > λij(xi − xj), for any 0 6λij6 1,

xixj > λij(xj − xi), for any 0 6λij6 1,

xixj > λi j(1− xi − xj), for any 0 6λi j6 1,

for 0 6 i < j 6 n. For a fixed parameter vector λ let

Lλ (x) =
∑

(i,j)∈E−

αij(λi j − λij)+

n∑

i=0

xi



∑

(i,j)∈E−

αij(λij − λi j) +
∑

(i,j)∈E+

αij(λij − λij)


 .

It can be seen (as in [123]) that the roof dual ρ (f) of f is given by

ρ (f) = max
λ

min
x
Lλ (x) .

The following result relates the optimum of all the above (integer) linear programs.

It is to be noted that recently the cycle packing problem has been rediscovered by

Ibaraki et al. [148, 147], who have proposed various efficient heuristics to compute

these improved bounds and when embedded within a branch-and-bound framework

resulted in being one of the most efficient solvers for many classes of QUBO.
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Proposition 8.4 ([51, 57]).

minx∈Bn+1 f (x) = ω (CC)

= ω (NC)

> ω (NCc)

= ω (NP)

> ω (RNP) = ρ(f).

By the symmetries observed in Corollary 8.1, it should be remarked that any of

the variables could be used as roots, and in this way consider analogous rooted noose

packing problems. Denoting by Ni the set of nooses rooted at vertex xi, for i =

0, 1, · · · , n, we consider the problems ([51, 52, 57])

max w(ξ) =
∑

N∈Ni
ξN

s.t.
∑

N3emN (e)ξN 6 αe ∀ e ∈ E,

ξN > 0 ∀ N ∈ Ni.

(RNP(i))

Clearly, problem (RNP(0)) is the same as (RNP). Furthermore, the optimum value

of each of the problems (RNP(i)) (i = 0, 1, · · · , n) is a lower bound on the minimum

of f . Thus, since ω (RNP) = ρ (f) then the following corollary applies readily.

Corollary 8.2 ([51, 52, 57]).

min
x∈Bn+1

f (x) > max
i=0,··· ,n

ω(RNP(i)) > ω (RNP) = ρ (f) .

In concluding this section, let us make a few additional remarks. Let us note first

that in the noose packing problem (NP) we could replace N by C without changing

the optimum value. Furthermore, the resulting negative cycle packing problem can

easily be shown to be equivalent with negative triangle packing, which we state here for

completeness. For this, let us introduce a positive edge e for every pair of variables which

are not connected by an edge in Gf , assume that αe = 0 for these newly introduced

edges, and denote by Ẽ this extended set of edges. Let us also denote by e the sign
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complement of edge e (i.e., if e is a negative edge between variables xi and xj, then e

denotes a positive edge between xi and xj, etc.), and note that if e ∈ Ẽ, then we have

e 6∈ Ẽ. Let us denote finally by T the collection of all negative triangles (i.e., negative

cycles consisting of three edges), and consider the problem

max w (ξ) =
∑

T∈T

ξT −
∑

e∈Ẽ

(
∑

T3e

ξT

)

s.t. 0 6
∑

T3e

ξT −
∑

T3e

ξT 6 αe ∀ e ∈ Ẽ,

ξT > 0 ∀ T ∈ T .

(TP)

We can thus conclude that ω(NP) = ω(TP). Furthermore, comparing problem (TP)

with the formulation of the cubic dual bound C3, and in particular with the triangle

inequalities based formulations of it (i.e. (CUBIC DUAL)), the following claim can be

shown:

Proposition 8.5. ω(NP) = ω(TP) = C3.

8.2 Optimal rooted noose packings relationship to the network model

Boros et al. [51, 57] has shown that the optimum value and an optimal rooted noose

packing can be computed by solving a maximum-flow problem in an undirected network

on 2n+2 vertices. Together with the result of the previous section this implies that the

roof dual ρ (f) of a quadratic pseudo–Boolean function f in n variables, as well as any

of the possibly improved lower bounds ω(RNP(i)) can be computed in O(n3) time.

We present this approach for the case of x0 as root, though it can be applied directly

for any other choice of a root.

Definition 8.7. If f is a bi-form rooted at x0, then let Uf = (W,A) be the bi–form

network, whose 2n+2 nodes correspond to the literals of the set W = {x0, x0, ..., xn, xn},

and whose edges are associated to the edges of Gf in the following way. If e ∈ E is a

positive edge between i and j, i.e. e = xixj + xixj , then there are two corresponding

edges in A: an edge e′ between xi and xj and another edge e′′ between xi and xj. If

e ∈ E is a negative edge between i and j, i.e. e = xixj + xixj , then there are two
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corresponding edges in A: an edge e′ between xi and xj and another edge e′′ between xi

and xj. Let in both cases c(e′) = c(e′′) = 1
2αe be the capacities of these edges in Uf .

Definition 8.8 ([51, 57]). If P is a path from x0 to x0 in a bi–form network Uf , going

through the vertices {u1, ..., up} (i.e. u1 = x0, up = x0), then the sequence {up, · · · , u1}

describes another path P between x0 and x0. The pair
(
P,P

)
will be called a bi-path.

The following Lemmas can be seen easily.

Lemma 8.1 ([51, 57]). There is a one-to-one correspondence between the rooted nooses

in Gf and the bi-paths in the bi–form network Uf .

Proof. A rooted noose provides a closed walk from x0 to x0 in Gf , in which we pass an

odd number of times negative edges (some of them possibly twice). Thus, by the above

definitions, the corresponding edges in Uf form a path P from x0 to x0 and its twin

P , i.e., a bi-path. Conversely, a bi-path
(
P,P

)
in Uf corresponds to a closed walk W

from x0 to x0 in Gf . Since along the path P (and P ) we must move an odd number of

times from an un-complemented variable to a complemented one, in W we must pass

through an odd number of negative edges, i.e., W is a rooted noose in Gf .

It is well-known in the theory of network flows that a flow F from x0 to x0 (in Uf ) can

always be decomposed into the sum of a finite number of elementary flows F1, · · · , Ft,

going through the paths P1, · · · , Pt from x0 to x0. Thus, due to the symmetric nature

of Uf , the following claim follows readily from the definitions.

Lemma 8.2 ([51, 57]). Let Fi i = 1, ..., t be elementary flows from x0 to x0 through

the paths Pi, and having values fi, respectively. Further, let F i be the elementary flow

through the path P i having the value fi for i = 1, · · · , t. If F =
∑
Fi is a feasible flow

in Uf , then F =
∑
F i is also a feasible flow in Uf (having the same value as F ).

A flow F from x0 to x0 in Uf with the property F = F is called a bi-flow.

Lemma 8.3 ([51, 57]). To every feasible rooted noose packing ξ =
∑

N∈N0
ξnN there

is a corresponding bi-flow of Uf with
∑

N∈N0
ξN as its flow value. Conversely, every

feasible bi-flow in Uf corresponds in this way to a feasible solution of (RNP) (however,

this correspondence may not be one-to-one, in general).
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Proof. Since a convex combination of feasible flows is again a feasible flow, Lemma 8.2

implies that from any feasible flow F of Uf we can obtain a feasible bi-flow with the

same flow value, by considering simply 1
2F + 1

2F . Therefore, Lemmas 8.1 and 8.2 imply

readily the claim.

Example 8.6. To illustrate that rooted noose packings of Gf and bi-flows of Uf are

not necessarily in a one-to-one correspondence, let us consider the bi-form f defined by

f(x0, x1, x2, x3, x4) = 2(x0x1 + x0x1) + 2(x0x2 + x0x2) + 2(x1x2 + x1x2)

+ 2(x1x3 + x1x3) + 2(x3x4 + x3x4) + 2(x4x1 + x4x1)

and its graph Gf . The nooses

N1 = 2(x0x1 + x0x1) + (x1x3 + x1x3) + (x3x4 + x3x4) + (x4x1 + x4x1)

N2 = 2(x0x2 + x0x2) + 2(x1x2 + x1x2) + (x1x3 + x1x3)

+(x3x4 + x3x4) + (x4x1 + x4x1)

with weights ξN1 = ξN2 = 1 form a feasible rooted noose packing in Gf . In the corre-

sponding bi-flow of Uf however the flows cancel out on some of the arcs (corresponding

to a circulation), and the non-zero edges of the resulting bi-flow correspond to the rooted

noose packing consisting of a single noose N3 with weight ξN3 = 2, where

N3 = (x0x1 + x0x1) + (x0x2 + x0x2) + (x1x2 + x1x2).

Finally, Lemma 8.3 implies immediately the main statement of this section:

Proposition 8.6 ([51, 57]). ω (RNP) is equal to the value of the maximum flow from

x0 to x0 in the bi–form network Uf .

Corollary 8.3. Problem (RNP) can be solved in O
(
n3
)

time.

Let us add that whenever the given bi-form f has integral coefficients, the corre-

sponding network Uf has a half-integral maximum bi-flow, as the simple argument in

the proof of Lemma 8.3 shows. Consequently, for integral bi-forms we have half-integral

optimal noose packings.
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The undirected network Uf could also be viewed, for algorithmic purpose, as the

directed network Nf obtained from Uf by replacing every undirected edge e = (u, v)

by two directed arcs e′ = (u, v) and e′′ = (v, u) between the same pair of literals,

and assigning to both of them capacity C (e′) = C (e′′) = C (e). Nf is precisely the

capacitated directed network, in this case is associated to the bi–form f , as has been

described in Section 5.3.

The directed network model can represent an arbitrary quadratic posiform of a

quadratic PBF f (including the bi–form), and the corresponding maximum-flow makes

also possible to derive the roof–dual of f . A natural question is therefore what network

model version to consider for each situation.

On the one hand the symmetric bi-form based model (Uf ) is preferable, because

that leads to the cycle and noose packing problems, and allows us to apply an iterated

version of the rooted noose packing (see Sections 8.4 and 8.5). It also makes possible to

use maximum flow algorithms especially designed for undirected networks. For instance,

[154] shows that in an undirected network of n nodes and m edges a maximum flow

of value v can be computed in O(nm2/3v1/6) time. Thus, for bi-forms with ”small”

integer coefficients the roof dual value could be obtained more efficiently by using the

algorithm of [154] in the above undirected network model than by standard network

flow algorithms in the directed network model of [54, 226]

On the other hand the directed network model (Nf ) can be applied to an arbitrary

quadratic posiform, makes possible to directly get weak and strong persistencies and

may have certain algorithmic advantages depending on the input.

The next statement establishes for the first time the result that the conclusions

(e.g. bounds and persistencies) derived by the three models: Gf , Uf and Nf , can be

explicitly related. In particular, we are interested in quickly determining how to find

the residual graph of the noose packing problem (denoted as G′f ) given that the residual

network of the directed network model Nf is known. This result makes possible to use

the directed network Nf (our model of choice in this dissertation) efficiently with the

iterated rooted noose packing algorithms to be presented later (see Sections 8.4 and

8.5).
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Theorem 8.1. Let f be a quadratic pseudo–Boolean function. If

• Gf is the balancing graph of the bi–form of f ,

• Uf is the undirected “network” associated to the bi–form of f and

• Nf is the directed network associated to the bi–form of f (i.e. by duplicating an

edge {i, j} of Uf into arcs (u, v) and (v, u) with the same capacity of edge {u, v}),

then the residual graph G′f that corresponds to the optimal noose cycle packing of Gf can

be obtained directly from the residual network Nf [λ0] corresponding to the maximum

flow λ0, by considering the residual capacities C (u, v) and C (v, u) of arcs (u, v) and

(v, u) for all edges {u, v} of Gf , so that the capacity of edge {u, v} in G′f is α{u,v} =

min (C (u, v) , C (v, u)) (if this value is 0 then it means that the edge does not exist in

G′f ).

Proof. x is a feasible flow in Nf if and only if x′ is a feasible flow in the residual network

Nf [λ0] such that:





x′ > 0

x′ (u, v)− x′ (v, u) = x (u, v)− x0 (u, v) → x (u, v) = x0 (u, v) + [x′ (u, v)− x′ (v, u)]

x′ (u, v)x′ (v, u) = 0

(8.6)

y is a feasible flow in Uf if and only if for every edge {u, v}






y (u, v) > 0

y (u, v) = max (0,x (u, v)− x (v, u))

y (v, u) = max (0,x (v, u)− x (u, v))

y (u, v)y (v, u) = 0

(8.7)
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Using (8.6) and substituting in (8.7) then the following system of equations is ob-

tained that relates flows y, x0 and x′:





y (u, v) > 0

y (u, v) = max (0,x0 (u, v)− x0 (v, u) + 2 [x′ (u, v)− x′ (v, u)])

y (v, u) = max (0,x0 (v, u)− x0 (u, v) + 2 [x′ (v, u)− x′ (u, v)])

y (u, v)y (v, u) = 0

From the above systems of equations, clearly there is a one-to-one correspondence

between a feasible flow in Uf and a feasible flow in Nf . It is also clear that there is a one-

to-one correspondence between a feasible flow in Nf and a feasible flow in the residual

network Nf [λ0]. From Lemma (8.3) to every feasible rooted noose packing there is a

corresponding bi-flow in Uf . Thus, to every flow of the residual network Nf [λ0] there

is a corresponding feasible rooted noose packing. In particular from Proposition (8.6)

there is an optimal rooted noose packing associated to a maximum flow of Nf [λ0].

Let us consider any arc (u, v) of Nf [λ0] with capacity C (u, v) and an arc (v, u) with

capacity C (v, u). Clearly, if C (u, v) + C (v, u) > 0 then there is an edge in Uf with

strictly positive capacity and equal to 1
2 (C (u, v) + C (v, u)).

Without loss of generality, let us assume next that C (u, v) > C (v, u). Then

x0 (u, v) = 1
2 (C (u, v)− C (v, u)). If x′ = 0 and x0 is a maximum flow of Nf (i.e.

Nf [λ0] is the corresponding residual network) then there is a maximum flow in Uf hav-

ing a flow of 1
2 (C (u, v) − C (v, u)) from u to v (i.e. y (u, v) = 1

2 (C (u, v)− C (v, u))).

Since there exists a linear combination of rooted nooses packings in Gf associated to

this flow, then the residual graph of Gf after removing these rooted nooses packings has

an edge {u, v} with capacity 1
2 (C (u, v) + C (v, u)) − 1

2 (C (u, v)− C (v, u)) = C (v, u),

which is the smallest capacity of the two arcs in Nf [λ0].

Example 8.7. The quadratic pseudo–Boolean function g previously used in Example
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8.2 can be represented by the following standard posiform:

φg = −13
2 + x1x2 + 2x1x3 + x1x6 + 2x3x5 + 2x4x5

+ (x1x4 + x1x4) + (x1x5 + x1x5)

+1
2 (x2x3 + x2x3) + 1

2 (x2x4 + x2x4)

+1
2 (x2x5 + x2x5) + 1

2 (x2x6 + x2x6)

+ (x3x4 + x3x4) + 1
2 (x3x6 + x3x6)

+1
2 (x4x6 + x4x6) +

(
3
2x5x6 + 1

2x5x6

)

(8.8)

Using Theorem 8.1 and the fact that φg is in one-to-one correspondence with the

residual network of Ng, then it is clear that

ψg = x1x2 + 2x1x3 + x1x6 + 2x3x5 + 2x4x5 + x5x6

is a posiform that corresponds to a feasible rooted nooses packing. Since φg corresponds

to the residual network obtained after applying the maximum flow to the bi–form of g,

then ψg it is also associated to the optimal rooted nooses packing (8.5).

8.3 Rooted noose packing structure and decomposition

From Theorem 8.1 (see also Example 8.7) it is clear that a bi–form f can be decomposed

into two components, one that corresponds to the rooted nooses ξN and the other

that corresponds to the residual balancing graph of Gf . This fact has already been

introduced by Boros et al. [51] and was called the structure theorem. The following

proposition presents this result on a different angle.

Proposition 8.7. Let f be a quadratic pseudo–Boolean function whose unique bi–form

in the variables x0, x1, · · · , xn is βf . Then bi–form βf can be partitioned in 2 quadratic

pseudo–Boolean functions ϕ
(k)
f and φ

N
(k)
f

satisfying the following conditions:

(i) βf =
∑

N∈Rk

ξN + ϕ
(k)
f + φ

N
(k)
f

(ii) ϕ
(k)
f = xkψ

(k)
f (x0, · · · , xk−1, xk+1, · · · , xn) + xkψ

(k)
f (x0, · · · , xk−1, xk+1, · · · , xn)
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(iii) φ
N

(k)
f

is a bi–form that corresponds to the residual balancing graph G
(k)
f after

removing a set of nooses Rk rooted at xk with values ξ;

(iv) ψ
(k)
f = φ

N
(k)
f

[λR]
−φ

G
(k)
f

, i.e. ψ
(k)
f corresponds to the quadratic posiform associated

to the nooses in set R and can be determined by finding a flow λRk
between nodes

xk and xk in N
(k)
f , as ascertained by Theorem 8.1.

We shall call the above decomposition as the Rk–decomposition. If Rk is an optimal

rooted noose packing then we sometimes represent this decomposition as

βf = ξk + ϕk + φk.

It should be noted that ϕ
(k)
f is a quadratic pseudo–Boolean function which has a

particular cubic posiform representation. Namely, for every nonzero cubic term xkuv

of ϕ
(k)
f there is a cubic term on the same variables xku v (see (ii) above). This fact can

be shown by noticing that the identity

xkuv + xku v = 1− xk − u− v + xku+ xkv + uv

= −1
2 + 1

2 (xku+ xku) + 1
2 (xkv + xkv) + 1

2 (uv + u v)

applies. This result will be explored further in the following sections.

Example 8.8. Let us consider the quadratic pseudo–Boolean function g of Example

8.2. Using x3 as root for the decomposition then the corresponding bi–form can be

decomposed as follows:

βg = 2 + ϕ
(3)
g + φ

N
(3)
g

, where

ϕ
(3)
g = x3 (x1x2 + x1x4 + x4x5 + x5x6) + x3 (x1x2 + x1x4 + x4x5 + x5x6) and

φ
N

(3)
g

= 2 (x0x1 + x0x1) + 1
2 (x0x2 + x0x2) + x0x4 + x0x4 + 5

2 (x0x5 + x0x5)

1
2 (x1x4 + x1x4) + (x1x5 + x1x5) + 1

2 (x1x6 + x1x6)+

1
2 (x2x4 + x2x4) + 1

2 (x2x5 + x2x5) + 1
2 (x2x6 + x2x6) +

1
2 (x4x5 + x4x5) + 1

2 (x4x6 + x4x6) +

1
2 (x5x6 + x5x6) .
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In this example the R3 nooses correspond to an optimal noose packing rooted at x3.

Thus, ω (RNP (3)) = c0 +
∑

N∈R3

ξN = −9.5 + 2 = −7.5. Note that in this case

ω (RNP (3)) < ρ (f) = −6.5.

Using x5 as root for the decomposition then the corresponding bi–form can be parti-

tioned as follows:

βg = 7
2 + ϕ

(5)
g + φ

N
(5)
g

, where

ϕ
(5)
g = x5 (2x1x0 + x2x0 + 2x4x0 + x1x2 + 2x1x3 + x1x6 + x2x6)+

x5 (2x1x0 + x2x0 + 2x4x0 + x1x2 + 2x1x3 + x1x6 + x2x6) and

φ
N

(5)
g

= (x1x0 + x1x0) + (x1x4 + x1x4) + 1
2 (x2x3 + x2x3) + 1

2 (x2x4 + x2x4)+

(x3x4 + x3x4) + 1
2 (x3x6 + x3x6) + 1

2 (x4x6 + x4x6) .

The nooses R5 correspond to an optimal noose packing rooted at x5. Thus, ω (RNP (5)) =

−6. In this case ω (RNP (5)) > ρ (f) = −6.5 > ω (RNP (3)).

8.4 Iterated roof–duality

The decomposition result established by Proposition 8.7 can be rewritten as

fik = ρik + ϕ
(ik+1)
fik

+ fik+1
,

where (i) ρik corresponds to the value of a feasible noose packingR of function fik rooted

at xik and (ii) ϕ
(ik+1)
fik

is the cubic posiform associated to R, for all k = 0, · · · , n − 1.

Thus,

fi0 =
(k−1)∑
j=0

(
ρij + ϕ

(ij+1)
fij

)
+ fik

=
(k−1)∑
j=0

ρij +
(k−1)∑
j=0

ϕ
(ij+1)
fij

+ fik

(8.9)

for all k = 1, · · · , n.

Lemma 8.4.

βf =
(n−1)∑
j=0

ρij +
(n−1)∑
j=0

ϕ
(ij+1)
fij

Proof. The claim follows directly from (8.9) since fi0 = βf and fin = 0. To see that
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fin = 0 we use the fact that fin is a bi–form that corresponds to the residual balancing

graph with at most one vertex (i.e. with index in).

Proposition 8.8. Given a quadratic pseudo–Boolean function f then

min
x∈Bn

f (x) > C3 (f) > c0 + ρ0 +

(n−1)∑

j=1

ρij > ρ (f) .

Proof. The second inequality follows due to Lemma 8.4 and because the set of rooted

noose packing (with roots x0, xi1 , · · · , xin−2) is a solution to the noose packing problem

(NP) and consequently Proposition 8.5 applies. The last inequality follows from the

fact that ρ0 = ρ (f)− cf and because ρij > 0, j = 1, · · · , n− 1.

Definition 8.9. The lower bound

ρ̂ (f ; i0, · · · , in) = cf +
(n−1)∑
j=0

ρij

has been called by Boros et al. [51, 52] as the iterated roof–dual of quadratic pseudo–

Boolean function f .

The iterated roof–dual value clearly depends on the sequence of roots (i0, · · · , in)

that is considered to define the above heuristic to the noose packing problem. In

particular, if the first root selected is x0 then

ρ̂ (f ; 0, i1, · · · , in) = ρ (f) +
(n−1)∑
j=1

ρij .

Figure 8.3 describes algorithm Iterated-Roof-Dual to compute the iterated roof–

dual value of any quadratic pseudo–Boolean function represented as a bi–form network.

8.4.1 Computational results

An extensive computational experimentation of algorithm Iterated-Roof-Dual us-

ing several benchmark problems available in the literature has been carried out and

are presented in this section. The results consider a particular implementation that

considers a method X to find a root xk which is the vertex in the residual balancing
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Iterated-Roof-Dual(f,X)

Input: N ← Nf , i.e. a network model representing the bi–form of the
quadratic pseudo–Boolean function f .

A method X to select a root in the network.

Initialization: Let ρ̂← cf as defined in (8.4).

Step 1: If N does not have any terms (i.e. arcs) associated to it then
STOP.

Step 2: Using method X select a root xk.

Step 3: Find maximum flow λk with value ρk from node xk to its com-
plement xk.

ρ̂← ρ̂+ ρk.

Step 4: N ← N [λk].

Remove the optimal rooted noose packing (with root in xk) from
the residual network N (i) by updating the largest capacity of the
arcs between any pair of nodes in N to the smallest capacity or (ii)
by removing all arcs (u, v) ∈ N if corresponding reverse arc (v, u)
does not exist in N .

Goto step 1.

Output: It returns an iterated roof–dual bound ρ̂ to the minimum of f .

Figure 8.3: Iterated-Roof-Dual algorithm.
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graph having the largest total weight to its neighbors. Also the root considered in the

first iteration of the method is x0. This method was suggested originally by Boros et

al. [51, 57]. We denote the resulting bound as ρ̂. We have tested other methods to

select roots, but in general the variability of the bound with different choices was not

very significant.

Let us note that the maximization and the minimization of quadratic pseudo–

Boolean functions are equivalent problems, since minimizing f is equivalent with max-

imizing −f . Thus, the presented results can be applied directly to maximization prob-

lems, as well. In this section we present our computational results in the context of

maximization.

In order to compare the quality and the computing times obtained with our imple-

mentations of the roof–dual and the iterated roof dual algorithms, we used the Semi-

Definite Relaxation, or SDR (see Goemans and Williamson [112]). There are many

publicly available semidefinite solvers on the Internet. Each solver has strengths and

weaknesses, which are very much dependent on the type and size of the problem to be

solved. There is no solver which clearly dominates the others in all aspects, e.g. robust-

ness, memory management, or solution speed (see [179]). We have used the following

solvers that have been proposed to solve SemiDefinite Programs, or SDPs:

SDPA – SDPA is a software package for solving SDPs (see e.g. [102]). It is an implementa-

tion of a Mehrotra–type primal–dual predictor–corrector interior–point method.

The Windows version 6.2.1 of SPDA was used in this study.

DSDP – DSDP is a software implementation of the dual interior-point method for SDP

(see e.g. [39]). It provides primal and dual solutions, exploits low-rank structure

and sparsity in the data, and has relatively low memory requirements for an

interior-point method. The version 5.8 of DSDP was used in this study.

SBM – SBM is a software implementation of the spectral bundle method (see e.g. [138,

140]), for minimizing the maximum eigenvalue of an affine matrix function (real

and symmetric). The code is suited for large scale problems. It allows to exploit

structural properties of the matrices such as sparsity and low rank structure. The
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version 1.1.3 of SBM was considered in this study.

We did not have a special preference for selecting any of the above methods. Our

goal was to cover a variety of SDR solution methods, e.g. by using a robust method

that handles small and medium sized problems (like SPDA), by using a method that

handles larger problems with a sparse structure (like DSDP), and by adopting a method

(like SBM) that is quicker than the others (although this speedup is achieved at the

price of obtaining an approximate solution to SDR).

Finally, we should mention that for a restricted number of problems we have added

computational experience also for the case when the C3 bound was used. Other than

by using linear programming, we are unaware of any other approach that could provide

C3 in polynomial time. Since solving these large LP problems is time and memory

consuming, we computed this bound only for one family of problems.

The method used to solve the LPs is the Newton–Barrier algorithm that comes with

Xpress–MP 2005B (release 16.10.02). Xpress–MP is a suite of mathematical modeling

and optimization tools used to solve linear, integer, quadratic, non-linear, and stochastic

programming problems (e.g. see [21]). The presolve and the crossover was turned off

in all runs. In this section we use XPRESS to identify the results returned by this

particular LP solver, with the options previously mentioned.

The Roof–Dual and the Iterated Roof–Dual Algorithms (respectively called RDA

and IRDA hereafter) were implemented in C++, compiled using the Microsoft Win-

dows 32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the

Microsoft Incremental Linker (version 6) using the single–threaded run–time library.

Three computer systems were used for testing. The decision to use this many com-

puters and not one, is related to licensing requirements, operating system restrictions,

and amount of physical memory available. Table 8.1 shows the main characteristics of

each system, and also shows what algorithm(s) were tested in each one of them. The

three platforms are comparable in terms of speed with a maximum speedup smaller

than two, between the fastest (Computer III) and the slowest machine (Computer I).
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Table 8.1: Characteristics of computer systems used for testing the algorithms.

Computer Systems I II III

CPU Intel Pentium 4 Xeon Intel Pentium 4
Clock Speed 2.8 GHz 3.06 GHz 3.6 GHz

Hyper–Threading? yes no yes
RAM 512 MB 3.5 GB 2 GB
Cache L2 512 KB L2 512 KB L2 1MB

Operating System Wind. XP† Linux‡ Wind. XP†

Algorithms Tested RDA, IRDA, SDPA DSDP, SBM XPRESS
†Microsoft Windows XP Professional version 5.1.2600 (service pack 2)
‡Fedora Core Linux 2.6.9-1.667smp i686

8.4.1.1 MAX–CUT

In this study we included the analysis of two large groups of problems, one involving

maximum cut problems (or MAX–CUT in short) on graphs (known to be equivalent

to quadratic unconstrained binary maximization problems [52]), and another using

randomly generated quadratic binary optimization problems proposed by Glover et al.

[108] and Beasley [37].

The families of graphs used in the MAX–CUT experiments are listed below:

Gn,d – Random graphs proposed by Kim and Moon [157];

Un,d – Random geometric graphs proposed by Kim and Moon [157];

Rn – Sparse random graphs proposed by Homer and Peinado [145];

via – Graphs provided by Homer and Peinado [145], derived from layer assignment

problems in the design process for VLSI chips;

sg3dlL – 3D–toroidal graphs proposed by Burer, Monteiro and Zhang [74];

torus – 3D–toroidal graphs taken from the DIMACS library of mixed semidefinite-quadratic-

linear programs.

The characteristics of these graphs are briefly described in Section 3.4.

The first experiments concerned the finding of upper bounds for MAX-CUT in the

16 graphs of Kim et al. [157]. The results are shown in Tables D.1(a) and D.1(b) in
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the Appendix. The tables show that in almost all these 16 cases the upper bound given

by the semidefinite relaxation was slightly better (on the average 7.1% lower) than

that given by the iterated roof–dual, and better than (on the average 27% lower) the

roof–dual bound. The difference in the quality of the bounds was amply compensated

by the computing times needed to find them. Indeed, on the average, the time needed

by DSDP (the most efficient of the three implementations of semidefinite relaxations)

was of 18.5 seconds, while that needed by the iterated roof–dual algorithm was of only

1.5 seconds, and that needed by the roof–dual algorithm was of 0.01 seconds.

Turning now to the MAX–CUT problem for the graphs of Homer and Peinado [145]

(see Tables D.2(a) and D.2(b) in the Appendix) we notice that the comparative values of

roof–dual–based versus semidefinite–relaxation–based upper bounds differ substantially

between the group R of random graphs, and the group of via graphs coming from VLSI

design. For the group R, the upper bounds of SDR are 21.1% better than those of roof–

duality, and 8.1% better than those coming from iterated roof–duality. The situation

of the via graphs is quite different, since the three upper bounds are quite comparable

within this group. More precisely, the upper bounds of SDR are only 1.7% better than

those of roof–duality, but the upper bounds of iterated roof–duality are 0.5% better

than those of SDR. As far as computing times go the average time needed by SBM (the

most efficient of the three implementations of SDR for the group of R graphs) was of

477.4 seconds, while for RDA the average time is 0.02 seconds and for IRDA it is of

35.8 seconds. For the group of via graphs, the average time needed by DSDP (the most

efficient of the three implementations of SDR for this group) was of 42 seconds, while

for RDA the average time is 0.03 seconds and for IRDA it is of 0.13 seconds.

The next group of MAX–CUT problems concerns cubic lattice graphs (similar in

structure to the graphs appearing in Ising problems) of Burer et al. [74] (see Tables

D.3(a) and D.3(b) in the Appendix). It can be seen that for these graphs, the upper

bound given by the iterated roof–dual is 1.4% better than that given by SDR, while the

SDR bound is 31.5% better than that given by the roof–dual bound. It is interesting

to note that the computing time required by SBM (the most efficient of the three

implementations of SDR for the cubic lattices) for finding the upper bound associated
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to an average graph in the family was of 42.7 seconds, while that of IRDA was of 2.7

seconds, and that of RDA was less than 0.01 seconds.

The last group of MAX–CUT problems examined are associated to torus graphs

(having also a similar structure to that of the graphs appearing in Ising problems) pro-

posed at the 7th DIMACS Implementation Challenge on Semidefinite Programming,

which are frequently used as benchmarks in computational studies concerning semi-

definite programming (e.g. [73, 74, 137, 179]; see Tables D.4(a) and D.4(b) in the

Appendix). For these graphs, the upper bound given by the iterated roof–dual bound

is 1.4% better than that given by SDR, which in its turn is 26.9% better than that given

by roof–duality. The average computing time required by SBM (the most efficient of

the three implementations of SDR for the torus graphs) is 115.7 seconds, while that

required by IRDA is of 4.5 seconds, and that required by RDA is of about 0.01 seconds.

In summary (see Tables 8.2(a) and 8.2(b)), the upper bounds for MAX–CUT ex-

amined in this study present the following characteristics:

• In the case of G, U and R graphs the best bounds are obtained by SDR;

• In the case of via, sg3dl and torus graphs the best bounds are obtained by IRDA;

• The shortest computing times are those of RDA, followed by those of IRDA.

The average computing time per graph is of 92.3 seconds for SDP (the fastest

implementation of the considered semidefinite programs), 6.0 seconds for IRDA,

and about 0.014 seconds for RDA.

8.4.1.2 Randomly generated quadratic binary optimization problems

The second group of problems includes standard randomly generated families of prob-

lems, having a constant density (i.e., proportion of coefficients with value zero) and

having all nonzero coefficients from a closed interval. The following two families were

considered:

D – A set of 10 QUBO problems proposed by Glover et al. [108] having 100 variables

per problem, and densities varying from 10% to 100% in steps of 10%;



245

Table 8.2: Bounding MAX–CUT.

(a) Average relative gap (g) to the largest known cut (z).

Number of SDR Gap Roof–Dual Iter. Roof–Dual
Family Problems (g = ς/z − 1) Gap (g = ρ/z − 1) Gap (g = ρ̂/z − 1)

G graphs 8 5.68% 28.79% 11.04%
U graphs 8 2.64% 56.28% 13.24%
R graphs 8 7.31% 36.01% 16.72%
via graphs 10 0.53% 2.32% 0.02%

sg3dl graphs 30 14.86% 67.65% 13.27%
torus graphs 4 12.47% 54.26% 10.88%

(b) Average computing times.

Best Roof–Dual Algorithms
Family SDP∗∗ RDA∗ IRDA∗

G graphs 23.2 s <0.01 s 0.9 s
U graphs 13.8 s <0.01 s 2.2 s
R graphs 477.4 s <0.02 s 35.8 s
via graphs 42.0 s <0.03 s 0.1 s

sg3dl graphs 42.7 s <0.01 s 2.7 s
torus graphs 115.7 s <0.01 s 4.5 s
?Computed on computer system I.

??Computed on computer system II.

B − n – A set of 60 QUBO test problems with 10% density proposed by Beasley [37] (n =

50, 100, 250, 500, 1000, 2500; 10 problems for each value of n). The problems with

50 variables turned to be all solved to optimality by applying iterated roof–duality

(and in most cases even by applying roof–duality). Therefore, these problems have

been eliminated from the study.

The previous families are briefly described in Section 3.1.1.

We present in Table 8.3(a) the maximum values of some randomly generated quadratic

functions with binary variables, along with the values of four upper bounds to the

maximum (SDR, RDA, IRDA and C3), expressed as percentages of the values of the

corresponding exact maxima.

It can be seen that the best bounds for problems with densities of at most 40% were

provided by the cubic–dual (averaging 2.2% over the maximum), while for problems

having densities of 50% or higher the best upper bounds were given by SDR (averaging

7.6% above the maximum). On the other hand, the best computing times (see Table
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Table 8.3: Iterated roof–duals of QUBO problems with 100 variables (Glover et al.
[108]).

(a) Upper bounds.

Upper Bounds to the Maximum
Problem Density Semidefinite Roof Iter. Roof Cubic
Name (d) Maximum Relaxation Dual (ρ) Dual (ρ̂) Dual

1d 10% 6 333 6 592.77 7 063.50 6 424.50 6333.00
2d 20% 6 579 7 234.24 12 297.00 7 791.00 6709.82
3d 30% 9 261 9 962.97 18 053.50 10 875.25 9374.79
4d 40% 10 727 11 592.46 25 156.50 13 425.50 11321.82
5d 50% 11 626 12632.10 30 732.00 15 538.13 13 044.50
6d 60% 14 207 15235.31 37 334.50 18 041.50 15 664.33
7d 70% 14 476 15671.97 44 171.50 20 614.75 18 340.00
8d 80% 16 352 17353.30 50 239.50 22 723.50 20 625.67
9d 90% 15 656 17010.86 55 130.00 24 109.00 21 753.67
10d 100% 19 102 20421.35 63 830.50 28 370.50 25 951.67

(b) Computing times.

Semidefinite Programs Roof–Dual Algorithm Cubic Dual LP
Problem DSDP∗∗ SBM∗∗ SDPA∗ RDA∗ IRDA∗ XPRESS∗∗∗

1d 0.22 s 1.72 s 1.03 s <0.005 s <0.005 s 118 s
2d 0.26 s 2.68 s 1.06 s <0.005 s 0.02 s 164 s
3d 0.23 s 4.91 s 1.08 s <0.005 s 0.05 s 173 s
4d 0.22 s 3.16 s 1.11 s <0.005 s 0.08 s 143 s
5d 0.22 s 4.95 s 1.17 s 0.02 s 0.11 s 122 s
6d 0.20 s 8.90 s 1.08 s <0.005 s 0.14 s 74 s
7d 0.22 s 6.87 s 1.17 s 0.02 s 0.20 s 71 s
8d 0.23 s 11.19 s 1.19 s 0.02 s 0.25 s 72 s
9d 0.23 s 8.78 s 1.20 s <0.005 s 0.27 s 68 s
10d 0.23 s 9.35 s 1.25 s <0.005 s 0.33 s 69 s

?Computed on computer system I.
??Computed on computer system II.

???Computed on computer system III.
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8.3(b)) were achieved by RDA (averaging less than 0.01 seconds) and IRDA (averaging

less than 0.2 seconds). It follows that for problems which have low densities, the most

efficient methods may be those based on roof–duality. It is worth noting that numerous

problem classes (e.g., minimum vertex covers of planar graphs or power–law graphs,

MAX–CUT of Ising problems) belong to this category.

In Table D.5 in the Appendix we present three upper bounds obtained by SDR,

roof–duality and iterated roof–duality for the 10% dense quadratic unconstrained binary

optimization problems of Beasley [37] having up to 2 500 variables. It can be seen that

for the “small” problems, i.e. those with 100 variables, the bounds given by IRDA are

the best among the three upper bounds considered; the average gap between IRDA

and the true maximum of the function is of 3.3% (see Table 8.4(a)). However, for

problems having 250 or more variables the best bounds are those given by SDR; the

average gap between SDR and the best know solution (representing a lower bound to

the maximum) is of 8.9%. As in the previous cases the computing times of the different

methods follow a clear pattern. The average time needed by DSDP (the fastest of the

three SRD procedures; see Table 8.4(b)) is of 1 736.3 seconds. For the same problems,

the average time required by RDA is of 0.4 seconds, and by IRDA is of 88.2 seconds.

The above results demonstrate that the iterated roof dual bound can be computed

very efficiently with the proposed IRDA implementation. The computing time of this

bound is much faster than the computation of semidefinite bounds or the cubic dual.

We can also see that the quality of the iterated roof dual bound is highly competitive

with other approaches. In particular, for sparse problems, which are quite frequent

in applications, these bounds are superior to all other methods we tested, and can be

computed on average 20-50 times faster than those. We can also see that the cubic

dual bound is the best on a larger range of mostly sparser problems. However its time

complexity makes its application impractical for larger problems.

In spite of the fact that the bounds given by semidefinite relaxation are of high

quality, the time and memory requirements of the roof–duality based methods being

substantially smaller, assure the practical applicability of this latter group of methods,



248

Table 8.4: Iterated roof–duals of 10% dense quadratic unconstrained binary optimiza-
tion problems (Beasley [37]).

(a) Average relative gap (g) to the best known lower bound (z).

Variables SDR Gap Roof–Dual Iter. Roof–Dual

Family (n)
(
g = ς−z

z

)
Gap

(
g = ρ−z

z

)
Gap

(
g = �ρ−z

z

)

ORL–100 100 6.3% 15.3% 3.3%
ORL–250 250 7.6% 78.1% 18.5%
ORL–500 500 9.0% 150.6% 41.6%
ORL–1000 1 000 9.5% 248.8% 73.0%
ORL–2500 2 500 9.4% 430.4% 129.1%

(b) Average computing times.

Semidefinite Programs Roof–Dual Algorithms
Family DSDP∗∗ SBM∗∗ SDPA∗ RDA∗ IRDA∗

ORL–100 0.21 s 2.55 s 1.01 s <0.005 s 0.01 s
ORL–250 2.20 s 28.88 s 14.98 s 0.02 s 0.24 s
ORL–500 24.97 s 115.56 s 131.21 s 0.05 s 2.38 s
ORL–1000 269.29 s 673.49 s 1 096.21 s 0.20 s 21.47 s
ORL–2500 8 385.05 s 107 623.67‡ s n/a† 1.49 s 416.78 s
?Computed on computer system I.

??Computed on computer system II.
†Memory exceeded for all problems with 2 500 variables.
‡Computing time found for the first problem only.

and guarantee their high efficiency. Moreover, in view of the typical sparsity of real life

quadratic unconstrained binary optimization problems, the use of roof–duality based

methods is both effective and efficient.

8.5 Squeezed iterated roof–duality

The computational experiments that we have carried out (see e.g. Table 8.3(a)) clearly

indicate that the iterated roof-duals of various benchmarks are still not nearly close to

the corresponding C3 bounds. An algorithm is proposed here to improve the iterated

roof–duality bounds by means of a combinatorial approach that we called as the squeezed

iterated roof–dual bound.

Before getting into details, we recall the fact that any bi–form can be decomposed

into a special cubic posiform and a residual bi–form, as explained in Section 8.3. The

key ingredient of the enhanced iterated roof–duality method is to reuse part of the cubic
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posiform of (8.9) on any given iteration of the standard iterated roof–dual algorithm.

This in practice means that certain parts of the rooted noose packings that have already

been applied are added to the residual bi–form to increase the chances of improving the

bound on the next iteration of the method.

Definition 8.10. Let us define the mate of a posiform φ (x1, x1, · · · , xn, xn) as the

posiform φ (x1, x1, · · · , xn, xn). If a posiform is equivalent to its mate then we say that

the posiform is mated.

In particular, the mate of the cubic term uvw is u v w, for any literals u, v and w.

Let us consider the cubic posiforms ϕk, k = 0, · · · , n that (i) consists of terms that

have mates on the same posiform with the same coefficients and (ii) has a literal xk or

its complement in every of its terms

Definition 8.11. We shall call rotation to the operation of identifying a “maximal”

set of terms derived from
n∑
k=0

ϕk that contains variable xj , j 6= k. The rotation principle

is based on the identity

xk (xju+ uv) + xk (xj u+ uv) = xj (xkv + uv) + xj (xkv + uv) . (8.10)

Clearly, the left hand side of (8.10) has two terms involving variable xj , but the

right hand side has four terms involving the same variable. The two extra terms per

rotation increase the probability of improving the bound since the chance of finding

additional nooses rooted at xj (and with larger values) is also increased, when they are

added to the residual balancing graph.

A very important aspect of the algorithm is how to save and handle the residual

cubic posiform Ψf =
n∑
k=0

ϕk. The following characteristics are desirable:

• Given a variable xj efficiently determine terms where it appears;

• Given a variable xj efficiently remove terms where it appears;

• Given a cubic term xjxku efficiently identify all cubic terms vxku in the posiform;

• Apply quick rotation operations between any cubic terms xjxku and vxku;
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• Use memory as economically as possible.

It is not a trivial task to create a structure that satisfies all the above points. It is

particular computationally difficult to identify a set of maximal rotations involving a

certain variable.

Lemma 8.5. For any variable xj the procedure of applying all possible rotations of xj

in Ψf can be determined in O
(
n3
)

time.

Proof. The method is a finite procedure, since (i) there is a finite number of terms in

Ψf (at most 2
(n
3

)
) and (ii) the number of terms is monotonically increasing with respect

to every rotation procedure.

Let Rotation(xj ,Ψf ) be a procedure that computes a cubic posiform

Ψ?
f = xjψ

(j)
f (x0, · · · , xj−1, xj , · · · , xn) + xjψ

(j)
f (x0, · · · , xj−1, xj, · · · , xn) + Ψ′f

that represents the same function f and for which there are no cubic terms involving a

rotation of xj that increases the number of terms involving this variable. Thus, ϕ
(j)
f is

maximal with respect to possible additional xj rotations.

Remark 8.5. It is not known if applying xk rotations (k 6= j) would result in finding

possible additional xj rotations.

Conjecture 8.1. Let f be a quadratic pseudo–Boolean function f represented (in what

follows) as f = cf + δ + Ψ + θ, where δ is a nonnegative number, Ψ is a mated cubic

posiform and θ is a bi–form. Then, the following combinatorial algorithm determines

C3 (f).

Initially, Ψ = δ = 0 and θ = βf . For every variable xj , j = 0, · · · , n:

(i) Find a maximal mated cubic posiform Ψj in terms of the number of terms that

contain xj , so that Ψ = Ψ? + Ψj;

(ii) The cubic component of f is updated Ψ← Ψ?;
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(iii) Noting that Ψj represents a quadratic pseudo–Boolean function, then the bi–form

component of f is updated as θ ← θ + Ψj;

(iv) Find the optimal xj rooted noose packing R of θ;

(iv) Determine the R–decomposition of the bi–form as θ = ξj + ϕj + φj . Update

θ ← φj , Ψ← Ψ + ϕj and δ ← δ + ξj;

At the end of the algorithm we conjecture that C3 (f) = cf + δ.

In practice the above algorithm will clearly determines a better bound than the

iterated roof–dual. It will also determine a bound which is not better than the cubic–

dual bound. We leave the above result as a conjecture to motivate other researchers to

pursue the finding for the first time of an efficient combinatorial problem to compute

C3. Even if the above conjecture turns out not to be true, there are several related

open questions:

• Is there a polynomial time algorithm to squeeze out a maximal set of xj–terms

(j = 0, · · · , n) of the mated cubic posiform?

• Is the maximal set of the previous question also maximum possible?

• Is the maximum (or maximal) set sufficient to obtain the maximum bound possible

from the residual bi–form?

• Does the order of the various rooted noose packings matter?

• Is only one rooted noose packing iteration per variable required or more?

In this dissertation, we developed a “squeezed” iterated roof-duality algorithm that

achieves only partially the above results. The pseudo-code of the algorithm is given in

Figure 8.4.

Firstly, the data structure used to maintain the mated cubic posiform Ψ is a a map

of roots xk (k = 0, · · · , n) to the corresponding quadratic residuals ψ
(k)
f as described

in Proposition 8.7. To be noted that the mate information is not saved directly on any

structure; given any quadratic term auvuv of ψ
(k)
f then from the map we would get the
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mated cubic terms auv (xkuv + xku v). The quadratic residuals structure is based on

the network model of Section 5.3. This has certain advantages to efficiently find xj

rotations in ψ
(k)
f , since valid rotations correspond to paths of length 2 from xj in the

network.

Secondly, the rotation principle is only applied on a limited way since it only con-

siders cubic mated terms within the scope of the ψ
(k)
f residuals.

Thirdly, we reapply the squeezing procedure a user specified number of rounds per

root.

8.5.1 Computational results

The Squeezed-Iterated-Roof-Dual algorithm (called SIRDA hereafter) has been

implemented in C++ and linked as the IRDA.

Comparative results between RDA (Roof–dual), IRDA (Iterated Roof–Dual) and

SIRDA are presented in this section. We start by looking again at the 10 QUBO

problems created by Glover et al. [108] already considered in Section 8.4.1 (see Tables

8.3(a) and 8.3(b)).

Table 8.5(a) gives the squeezed iterated roof–duals of family D from Glover et al.

[108]. The results include versions of the Squeezed-Iterated-Roof-Dual algorithm

with 1, 2 and 3 rounds. The quality of the “squeezed” bounds is clearly superior to

those returned by iterated roof–duality. The improvement of the squeezed bounds is

also noticeable between consecutive rounds, but with a smaller improvement percentage

as the number of rounds increases. The results also shown that C3 is still superior to

any of the squeezed iterated roof-duals.

Table 8.5(b) provides the computing times of our implementation of the squeezed

iterated roof duals (we called it SIRDA), again considering 1, 2 and 3 rounds. As ex-

pected, the iterated roof-duality bounds returned by IRDA can be found considerably

faster than those returned by SIRDA. This difference in computing times is more no-

ticeable for sparser problems. For instance, for the 10% dense instance IRDA is over 50

times faster than any of the SIRDA runs, whereas for the 100% dense instance, IRDA

is only about 5 times faster.
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Squeezed-Iterated-Roof-Dual(f, r)

Input: N ← Nf , i.e. a network model representing the bi–form of the
quadratic pseudo–Boolean function f .

Let r be the number of rounds.

Initialization: Let ρ← cf as defined in (8.4).

Let j denote be the current root index. Let j ← 0.

Let ϕk, k = 0, · · · , n be the map structure to hold the mated cubic
residual posiforms. Let ϕk ← 0, k = 0, · · · , n.

Step 1: If r = 0 STOP.

Step 2: Squeeze out terms involving xj from the map structure:

(i) For all k ∈ {0, · · · , n} , k 6= j do Rotation(xj , ϕk);

(ii) For all k ∈ {0, · · · , n} remove and add all cubic mated terms
containing xj and add them to N .

Step 3: Find maximum flow λj with value ρj from node xj to its com-
plement xj.

ρ← ρ+ ρj .

N ← N [λj].

Step 4: Let R be the optimal xj rooted noose packing associated to N .

Determine the cubic posiform ϕj of the R–decomposition and up-
date N accordingly.

Step 5: Prepare next squeezing iteration:

If j < n then Let j ← j + 1. else Let j ← 0 and r ← r − 1.

Goto step 1.

Output: It returns a squeezed iterated roof–dual bound ρ to the mini-
mum of f .

Figure 8.4: Squeezed-Iterated-Roof-Dual algorithm.
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Table 8.5: Squeezed iterated roof–duals of QUBO problems with 100 variables (Glover et al. [108]).

(a) Upper bounds.

Upper Bounds to the Maximum
Problem Density Roof Iter. Roof Squeezed Iterated Roof–Dual Cubic
Name (d) Maximum Dual (ρ) Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ; r = 3) Dual (C3)

1d 10% 6333 7 063.50 6 424.50 6 343.25 6 340.22 6 340.22 6 333.00
2d 20% 6579 12 297.00 7 791.00 7 364.25 7 193.29 7 135.98 6 709.82
3d 30% 9261 18 053.50 10 875.25 10 364.31 10 165.36 10 062.67 9 374.79
4d 40% 10 727 25 156.50 13 425.50 12 918.92 12 496.26 12 358.87 11 321.82
5d 50% 11 626 30 732.00 15 538.13 14 942.95 14 494.67 14 370.52 13 044.50
6d 60% 14 207 37 334.50 18 041.50 17 759.85 17 214.67 17 016.77 15 664.33
7d 70% 14 476 44 171.50 20 614.75 20 045.04 19 318.99 19 114.80 18 340.00
8d 80% 16 352 50 239.50 22 723.50 22 422.55 21 644.35 21 432.43 20 625.67
9d 90% 15 656 55 130.00 24 109.00 23 447.48 22 628.34 22 436.98 21 753.67
10d 100% 19 102 63 830.50 28 370.50 27 851.14 26 830.85 26 630.88 25 951.67

(b) Computing times.

Roof–Dual Algorithms Cubic Dual LP
Problem RDA∗ IRDA∗ SIRDA∗ (r = 1) SIRDA∗ (r = 2) SIRDA∗ (r = 3) XPRESS∗∗

1d <0.005 s <0.005 s 0.44 s 0.52 s 0.61 s 118 s
2d <0.005 s 0.02 s 0.72 s 2.25 s 3.86 s 164 s
3d <0.005 s 0.05 s 0.72 s 2.14 s 3.91 s 173 s
4d <0.005 s 0.08 s 0.78 s 2.56 s 4.83 s 143 s
5d 0.02 s 0.11 s 0.89 s 2.89 s 5.42 s 122 s
6d <0.005 s 0.14 s 1.08 s 3.44 s 6.23 s 74 s
7d 0.02 s 0.20 s 1.16 s 3.53 s 6.38 s 71 s
8d 0.02 s 0.25 s 1.33 s 3.77 s 7.00 s 72 s
9d <0.005 s 0.27 s 1.44 s 4.17 s 7.53 s 68 s
10d <0.005 s 0.33 s 1.73 s 4.30 s 7.86 s 69 s

?Computed on computer system I (see Table 8.1).
??Computed on computer system III (see Table 8.1).
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Table 8.6: Squeezed iterated roof–duals of 10% dense quadratic unconstrained binary
optimization problems (Beasley [37]).

(a) Average relative gap (g) to the best know lower bound (z).

Variables Roof–Dual Iter. Roof–Dual Squeezed Iter. Roof–Dual
(
g = �ρ

?−z
z

)

Family (n)
(
g = ρ−z

z

) (
g = �ρ−z

z

)
(r = 1) (r = 2) (r = 3)

ORL–100 100 15.3% 3.3% 0.9% 0.4% 0.4%
ORL–250 250 78.1% 18.5% 12.9% 10.9% 9.1%
ORL–500 500 150.6% 41.6% 35.0% 32.4% 31.5%
ORL–1000 1 000 248.8% 73.0% 64.9% 60.7% 59.7%

(b) Average computing times.

SIRDA∗

Family RDA∗ IRDA∗ (r = 1) (r = 2) (r = 3)

ORL–100 <0.005 s 0.01 s 0.38 s 0.68 s 0.97 s
ORL–250 0.02 s 0.24 s 4.42 s 17.54 s 35.86 s
ORL–500 0.05 s 2.38 s 15.99 s 79.99 s 205.65 s
ORL–1000 0.20 s 21.47 s 96.41 s 338.39 s 923.13 s

?Computed on computer system I (see Table 8.1).

To have an idea how the squeezed iterated roof-dual bounds scale with the number

of variables, we apply SIRDA to the 10% dense QUBOs of Beasley [37] having up to

1000 variables. The average relative gaps of various sub-families (for which all problems

have the same number of variables) to the best know solutions are given in Table 8.6(a).

The corresponding average computing times are given in Table 8.6(b).

The average relative gap of the squeezed bounds of the 100 variable problems is less

than 1.0% (for r 6 2 is 0.4%), instead of 3.3% for IRDA. In this case all the bounds

could be obtained within one second, thus implying that most likely these problems

could be solved to optimality by SIRDA without branching substantially. We will get

back to this topic in the next chapter.

In spite of the fact that the relative gaps increase considerably with the number

of variables, it should be noted that the improvement from the IRDA to the SIRDA

results is larger for the later algorithm. In particular, the differences from IRDA to

SIRDA (r = 2) are: 2.9% for the 100 variable group, 7.6% for the 250 variable group,

9.2% for the 500 variable group and 12.3% for the 1 000 variable group.

As far as computing time concerns, the slow down factor from IRDA to SIRDA
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(r = 2) are: 68 times for the 100 variable group, 73 times for the 250 variable group,

33 times for the 500 variable group and 16 times for the 1 000 variable group.

More results about the squeezed iterated roof–duality are presented in the following

section, which considers a “non-bi–form” squeezed iterated roof duality algorithm.

8.6 Project–and–lift iterated roof–duality

In the previous sections we have seen that the bi–form representation of a quadratic

pseudo–Boolean function can provide substantially improved bounds over that one re-

turned by roof–duality. In this section we consider general posiform representations to

get improved bounds over roof–duality.

The following algebraic equation is due to Simeone [222].

Lemma 8.6. The identity

uv + v w = uw + uvw + u v w,

is valid for any 3 literals u, v and w.

Definition 8.12. The operation that transforms a posiform θ with positive terms αuvuv

and αv wv w to a new posiform

θ [uv, v w] = θ − α (uv + v w) + α (uw + uvw + u v w) ,

where α = min (αuv, αv w), will be called as the α–arithmetic consensus of terms αuvuv

and αv wv w in θ.

Let us note that the resulting cubic posiform θ [uv, v w] represents the same quadratic

function of posiform θ. It should be noted that the transformed posiform may have

positive terms involving the quadratic terms uw or uw. In this case we find the stan-

dard posiform (see Figure 4.2) of the transformed posiform and denote it as θ′. Clearly,

θ′ contains a linear term which is the result of adding the terms uw or uw and uw.
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Example 8.9. The quadratic pseudo–Boolean function g previously used in Examples

8.2 and 8.7 can be represented by the pure quadratic posiform (8.8).

2x1x3 + 2x3x5 is a feasible consensus of φg. We apply a 2–arithmetic consensus

transformation of φg using these two terms to get

φg = −13
2 + 2 (x1x5 + x1x3x5 + x1x3x5)

+x1x2 + x1x6 + 2x4x5

+ (x1x4 + x1x4) + (x1x5 + x1x5)

+1
2 (x2x3 + x2x3) + 1

2 (x2x4 + x2x4)

+1
2 (x2x5 + x2x5) + 1

2 (x2x6 + x2x6)

+ (x3x4 + x3x4) + 1
2 (x3x6 + x3x6)

+1
2 (x4x6 + x4x6) +

(
3
2x5x6 + 1

2x5x6

)

= −13
2 + x1 + x5 + 2 (x1x3x5 + x1x3x5)

+x1x2 + x1x6 + 2x4x5

+ (x1x4 + x1x4)

+1
2 (x2x3 + x2x3) + 1

2 (x2x4 + x2x4)

+1
2 (x2x5 + x2x5) + 1

2 (x2x6 + x2x6)

+ (x3x4 + x3x4) + 1
2 (x3x6 + x3x6)

+1
2 (x4x6 + x4x6) +

(
3
2x5x6 + 1

2x5x6

)

= −11
2 + 2 (x1x3x5 + x1x3x5)

+x1x2 + x1x6 + 2x4x5

+2x1x4

+1
2 (x2x3 + x2x3) + x2x4

+x2x5 + 1
2 (x2x6 + x2x6)

+
(

1
2x3x4 + 3

2x3x4

)
+ x3x6

+1
2 (x4x6 + x4x6) + 2x5x6

The last equality follows since

x1 + x1x4 + 1
2 (x2x4 + x2x5) + 1

2 (x3x4 + x3x6 + x5x6) + x5

= 1 + x1x4 + 1
2 (x2x4 + x2x5) + 1

2 (x3x4 + x3x6 + x5x6) .
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Let us denote by q (ψ) to the posiform consisting of terms from ψ of degree not

larger than 2.

Given a quadratic posiform representing a quadratic pseudo–Boolean function f , let

us consider the following algorithmic approach:

1. Find a roof-dual posiform of f , remove any strong and weak persistencies, and

call to the resulting pure quadratic posiform as ψ.

2. If q (ψ) is gap-free (i.e. min
x∈Bn

q (ψ) = C (ψ)) then STOP and return C (ψ) as a

bound to the minimum of f .

3. Find 2 terms in ψ with a feasible consensus of weight α and apply an α–arithmetic

consensus operation to it. Let us call to the resulting standard posiform ψ.

4. If there is a linear term in ψ then the roof–dual posiform of q (ψ) is found, any

resulting strong and weak persistencies are removed, and the resulting posiform

is called ψ. Go to step 2.

5. Go to step 3.

The above iterative method is clearly a finite procedure since at every iteration it

either (i) improves the lower bound of the function or (ii) it reduces the number of

nontrivial quadratic terms by one. This type of algorithm has been originally proposed

by Bourjolly et al. [65, 66, 67, 68].

It is also clear that at the end of the method, ψ is cubic posiform with all cubic

terms being mated (see Definition 8.10). The end result of this approach is therefore

equivalent to the iterated roof–duality approach (see Proposition 8.7), since in both

cases the original posiform is transformed into a cubic posiform with this characteristic.

Also in this case we have no knowledge about any reference that considered improving

further the bound by reusing the residual cubic terms. Obviously, the approach that

has been already proposed for the “squeezed” iterated roof–duality algorithm can be

adopted here as well (see Section 8.5).

Before explaining our final implementation of the algorithm we first investigate a

related new topic that we call “project–and–lift”.
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It is very well known that any quadratic pseudo–Boolean function can be expressed

as

f (x) = xkf (x [{k} ← {1}]) + xkf (x [{k} ← {0}]) (8.11)

for all binary vector x ∈ Bn and k = 1, · · · , n.

Lemma 8.7. Let f be a pseudo–Boolean function. Then

min
x∈BV

f (x) = min
x∈BV

(xkf (x [{k} ← {1}]) + xkf (x [{k} ← {0}])) ,

= min
x∈BV \{k}

min (f (x [{k} ← {1}]) , f (x [{k} ← {0}])) ,

= min
x∈BV \{k}

min
λ∈U

(λf (x [{k} ← {1}]) + (1− λ) f (x [{k} ← {0}])) ,

= min

(
min

x∈BV \{k}
f (x [{k} ← {1}]) , min

x∈BV \{k}
f (x [{k} ← {0}])

)
,

for all k = 1, · · · , n.

Proof. Follow directly from (8.11).

The last equality of Lemma 8.7 is particularly interesting since the end result does

not depend on xk. This suggests that the function f can be projected into two lower

dimension pseudo–Boolean functions having n−1 variables each. Clearly, the minimum

of the two bounds associated to these lower dimension functions is a bound to f .

In what follows, we consider projections over posiforms (or equivalent over capac-

itated networks). Let φf be a quadratic posiform representing f . For simplicity, we

denote φf |xk=b to a posiform representing f (x [{k} ← {b}]), which is obtained from φf

by fixing xk = b, for b = 0, 1.

Without loss of generality, it is assumed that there are no strong or weak persisten-

cies in f , since in this case the QUBO optimization problem can be simplified by fixing

those optimal values, and then the method described below would apply as well. Fur-

ther let us assume that φf is a standard pure quadratic posiform. This representation

can be obtained from the network model (see Section 5.3).

Let us also consider the roof-dual quadratic posiforms

C
(
φf |xk=b

)
+ v

(
ϕf |xk=b

)
+ ψf |xk=b
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found by computing a maximum flow ϕf |xk=b in the network model (see Proposition

5.8) associated to φf |xk=b (b = 0, 1).

Clearly,

min
x∈BV

φf

= min
(
φf |xk=1 , φf |xk=0

)

= min


 C

(
φf |xk=1

)
+ v

(
ϕf |xk=1

)
+ ψf |xk=1 ,

C
(
φf |xk=0

)
+ v

(
ϕf |xk=0

)
+ ψf |xk=0 .


 .

Therefore,

Corollary 8.4.

min
x∈BV

φf > max
k∈V

min
(
C
(
φf |xk=1

)
+ v

(
ϕf |xk=1

)
, C
(
φf |xk=0

)
+ v

(
ϕf |xk=0

))
.

What has been discussed so far is somewhat trivial and well known. What makes

the decomposition above interesting is the common structure of the lower dimension

residuals ψf |xk=v (v = 0, 1). This is possible since these posiforms were created by using

the same starting initial posiform φf , and hence the (unique) corresponding capacitated

networks have the same arcs and capacities between all pairs of literals (u, v) such that

u, v 6= xk and u, v 6= xk. Furthermore, the residual networks obtained after finding

the maximum flow on those networks either both have the same (u, v) arcs or one

network has a (u, v) arc and the other one has a reverse arc (v, u). In conclusion,

if αuv is a term of φf then there are nonnegative constants cb (b = 0, 1) such that

[(α− c1)uv + c1uv] ∈ ϕf |xk=1 and [(α− c0)uv + c0uv] ∈ ϕf |xk=0 . Without loosing

generality, let us assume that c1 > c0. Then

[(α− c1) uv + c1uv] xk + [(α− c0)uv + c0uv] xk

= (α− c1) uv + c0uv + (a− c0 − (a− c1)) uv xk + (c1 − c0) uvxk

= (α− c1) uv + c0uv + (c1 − c0) (uv xk + uvxk) .

The above remark implies the following lemma.

Lemma 8.8. The lower dimension posiforms ψf |xk=1 and ψf |xk=0 have nonzero quadratic
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terms that

(i) are either precisely the same; or

(ii) if one posiform has the term βuv then the other one has a term βuv.

Lemma 8.8 provides a way to lift the lower dimension posiforms to the original

function by means of a cubic posiform

Ψf = xk
[
C
(
φf |xk=1

)
+ v

(
ϕf |xk=1

)
+ ψf |xk=1

]
+xk

[
C
(
φf |xk=0

)
+ v

(
ϕf |xk=0

)
+ ψf |xk=0

]
.

whose cubic terms are all mated.

The Project–and–Lift (P&L for short) idea described above is clearly related to the

arithmetic consensus algorithm described earlier in this section. The important achieve-

ment of P&L is to be able to get all consensus related to a variable by computing two

maximum flows. One can imagine that it is possible to develop an iterative procedure

that applies P&L to all the variables until there are no quadratic or linear terms left in

Ψf .

Example 8.10. Let us consider again the quadratic pseudo–Boolean function g of

Example 8.9. Let us project φg down using variable x3. Then,

φg|x3=1 = −5 + 1
2x1 + 1

2x6 + 1
2x1x5 + x1x2 + 2x1x4 + 3

2x1x5 + x1x6

+1
2x2x4 + 1

2x2x6 + 1
2x2x4 + x2x5 + 1

2x2x6

+2x4x5 + 1
2x4x6 + 1

2x4x6 + 1
2x5x6 + 3

2x5x6, and

φg|x3=0 = −5 + x5 + x1x4 + x1x5 + x1x2 + x1x4 + x1x5 + x1x6

+x2x4 + x2x6 + x2x5 + 2x4x5 + x4x6 + 2x5x6.
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Lifting back x3 to the original function we get

φg = x3φg|x3=1 + x3φg|x3=0

= x3


 −5 + 1

2x1 + 1
2x6 + 1

2x1x5 + x1x2 + 2x1x4 + 3
2x1x5 + x1x6 + 1

2x2x4

+1
2x2x6 + 1

2x2x4 + x2x5 + 1
2x2x6 + 2x4x5 + 1

2x4x6 + 1
2x4x6 + 1

2x5x6 + 3
2x5x6




+ x3


 −5 + x5 + x1x4 + x1x5 + x1x2 + x1x4 + x1x5 + x1x6

+x2x4 + x2x6 + x2x5 + 2x4x5 + x4x6 + 2x5x6




= −5 + 1
2x1x3 + 1

2x3x6 + x3x5

+x1x2 + x1x4 + x1x5 + 1
2x1x5 + x1x6 + 1

2x2x4

+x2x5 + 1
2x2x6 + 2x4x5 + 1

2x4x6 + 3
2x5x6

+1
2 (x1x3x5 + x1x3x5) + (x1x3x4 + x1x3x4)

+1
2 (x2x3x4 + x2x3x4) + 1

2 (x2x3x6 + x2x3x6)

+1
2 (x3x4x6 + x3x4x6) + 1

2 (x3x5x6 + x3x5x6)

(8.12)

From the above results then we can conclude that x ∈ Bng (x) > −5. In fact this case it

is known that the minimum of function g coincides with the bound and thus the above

posiform is gap–free. Generally, the problem of certifying that the above cubic posiform

is gap–free is NP-complete.

A relatively unexplored area is about solving QUBO by considering surrogate func-

tions whose minimum (or maximum) is the same as that one of the function being

optimized. For bi–forms we have already introduced this concept in Corollary 8.1 (see

also Example 8.2). A similar phenomenon can be found within the P&L mechanism.

The trick is to detect and fix strong and weak persistencies in the lower dimension

posiforms of xk. This is possible since both lower dimension posiforms are independent

of xk (see Lemma 8.7). The following example illustrates this possibility.

Example 8.11. Let us consider function g considered previously. In Example 8.10 we

have already computed the roof-duals of the lower dimension posiforms: φg|x3=1 has two

linear terms 1
2x1 and 1

2x6 and φg|x3=1 has one linear term x5. By strong persistency

all minimizers of function g (x [{k} ← {1}]) must have the assignment x1 = x6 = 1,

whereas all minimizers of function g (x [{k} ← {0}]) must have the assignment x5 = 1.
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Thus, the posiform

φg −

(
1

2
x1x3 +

1

2
x3x6 + x3x5

)

has the same minimum value of function g, but represents a different quadratic pseudo–

Boolean function. Looking further into the persistency results it can be seen that

• x1 = x4 = x5 = 1 is strongly persistent for φg|x3=0 ;

• x1 = x4 = x5 = x2 = x6 = 1 is strongly persistent for φg|x3=1 .

Substituting these assignments in (8.12) then we can easily conclude that the minimum

of g is -5.

As in the previous sections, the big challenge that we have at hand is to squeeze

additional quadratic terms from the current cubic expression of Ψf . We considered

here the same approach used previously for the squeezed iterated roof-duality bound

presented in Section 8.5.

We have implemented a P&L iterated roof-duality algorithm, whose pseudo-code

can be seen in Figure 8.5.

In the next section we will see that the bounds obtained by this new algorithm

are superior in practice (at the end of the same round number) to those returned by

SIRDA. The difference lies in the fact that the residual quadratic problem is a bi–form

in SIRDA, whereas it is a generic posiform for the P&L algorithm version.

Improved data structures that (i) can efficiently handle both projections and lifted

mated cubic posiforms, and that (ii) can perform rotation transformations efficiently, are

important computational research topics. In this work, the focus of our implementation

was mostly to show the value of the method (using the tools that we already had at

hand) and to provide a working basis for future comparative studies.

8.6.1 Computational results

The Project&Lift-Iterated-Roof-Dual algorithm (called PLIRDA hereafter) has

been implemented in C++.
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Project&Lift-Iterated-Roof-Dual(f, r)

Input: Let N be a capacitated network representing a roof–dual posi-
form of a quadratic pseudo–Boolean function f . Remove and fix all
strong and weak persistencies from N .

Let r be the number of rounds.

Initialization: Let ρ̃← C (N) as defined in (8.4).

Let j denote be the current index. Let j ← 0.

Let ϕk, k = 0, · · · , n be the map structure to hold the mated cubic
residual posiforms. Let ϕk ← 0, k = 0, · · · , n.

Step 1: If r = 0 STOP.

Step 2: Squeeze out terms involving xj from the map structure:

(i) For all k ∈ {0, · · · , n} , k 6= j do Rotation(xj , ϕk);

(ii) For all k ∈ {0, · · · , n} remove and add all cubic mated terms
containing xj and add them to N .

Step 3: Let N|xj=1 be a copy of the network N whose source is xj and
the sink is xj.

Find maximum flow λ
(1)
j with value ρ

(1)
j in the residual network

N|xj=1

[
λ

(1)
j

]
.

Step 4: Let N|xj=0 be a copy of the network N whose source is xj and
the sink is xj.

Find maximum flow λ
(0)
j with value ρ

(0)
j in the residual network

N|xj=0

[
λ

(0)
j

]
.

Step 5: ρ̃← ρ̃+ min
(
ρ
(1)
j , ρ

(0)
j

)
.

Step 6: Consider the mated cubic posiform

φN ← xjφN|xj=1

�
λ
(1)
j � + xjφN|xj=0

�
λ
(0)
j � .

Decompose φN into a quadratic posiform represented as the network
N and a mated cubic residual ϕj , such that ϕj = φ

N|xj=1

�
λ
(1)
j �

contains the xj–mate of all the mated cubic terms (involving xj)
within φN .

Step 7: Prepare next iteration:

If j < n then Let j ← j + 1. else Let j ← 0 and r ← r − 1.

Goto step 1.

Output: It returns a project–and–lift iterated roof–dual bound ρ̃ to the
minimum of f .

Figure 8.5: Project&Lift-Iterated-Roof-Dual algorithm.
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Comparative results between SIRDA and PLIRDA are presented in this section.

Table 8.7(a) indicates how far are these two algorithms from the cubic dual (C3), for

the 10 QUBO problems created by Glover et al. [108]. The P&L iterated roof–dual

bound is significantly closer to C3 than the squeezed version of the algorithm, for any

number of rounds (r = 1, 2, 3) considered. The proximity to C3 from the P&L algorithm

is also more noticeable if the number of rounds r increases or if the density parameter

d is either high or low.

On an average case, SIRDA is 4.3 (respectively 2.9 and 2.5) times faster than

PLIRDA if one (respectively two and three) round is considered (see Table 8.7(b)).

In this section we investigate the quality of the P&L iterated roof dual bound in a

group of (non-weighted) MAX–2–SAT formulas generated by Bonami and Minoux [46],

who have proposed a new bound to solve these problems. This bound is based on the

classical Lift–and–Project (L&P) cut generation of a standard mixed integer program-

ming formulation of MAX–2–SAT. We have found recently that the L&P bounds for

these problems nearly coincide with C3.

As before we could see that P&L iterated roof–dual bounds are clearly superior to

the squeezed ones. It also shows that the P&L bound is substantially better than the

standard iterated roof–dual bound, and that for these datasets it is between 5% and

8% away from the L&P (or in this case C3) bound.

For the tested instances, the computing times of PLIRDA seem to grow quadratically

with the number of variables. For instance when three rounds were considered, PLIRDA

spent around 3 seconds for the 75 variable instances and spent 32 seconds for the 200

variable cases.

8.7 Linearization models for sparse QUBOs

Robust high performance implementations of the state-of-the-art LP solvers are up to

100 times faster than implementations of ten years ago on the same hardware ([21]).

This fact used together with the hundred-fold or so increase in computer speed and

memory capacity, implies that very large LPs can be solved optimally in a standard
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Table 8.7: Project–and-lift and squeezed iterated roof–duals of QUBO problems with 100 variables (Glover et al. [108]).

(a) Relative gap to the C3 bound.

Relative gap to the C3 bound (resp.

�

ρ−C3

C3

and

�

ρ−C3

C3

).

Problem Density SIRDA (ρ) PLIRDA (ρ̃) SIRDA (ρ) PLIRDA (ρ̃) SIRDA (ρ) PLIRDA (ρ̃)
Name (d) (r = 1) (r = 2) (r = 3)

1d 10% 0.2% 1.0% 0.1% 0.4% 0.1% 0.3%
2d 20% 9.8% 9.3% 7.2% 6.8% 6.4% 5.8%
3d 30% 10.6% 11.4% 8.4% 7.7% 7.3% 6.5%
4d 40% 14.1% 14.5% 10.4% 9.5% 9.2% 7.8%
5d 50% 14.6% 13.9% 11.1% 9.1% 10.2% 7.2%
6d 60% 13.4% 11.9% 9.9% 7.7% 8.6% 6.1%
7d 70% 9.3% 8.3% 5.3% 4.2% 4.2% 2.7%
8d 80% 8.7% 7.2% 4.9% 3.2% 3.9% 1.9%
9d 90% 7.8% 6.6% 4.0% 2.5% 3.1% 1.3%
10d 100% 7.3% 4.7% 3.4% 1.5% 2.6% 0.6%

(b) Computing time speed analysis between
SIRDA and PLIRDA.

time of PLIRDA
time of SIRDA

Problem (r = 1) (r = 2) (r = 3)

1d 2.5 3.8 4.6
2d 3.1 2.2 2.0
3d 3.9 2.7 2.3
4d 4.9 2.9 2.3
5d 4.9 2.8 2.2
6d 5.0 2.8 2.3
7d 5.1 2.9 2.4
8d 4.8 3.0 2.3
9d 4.9 2.8 2.2
10d 4.4 3.0 2.3
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Table 8.8: Project–and–lift and squeezed iterated roof–duals of MAX–2–SAT (Bonami and Minoux [46]).

(a) Lower bounds.

Average Lower Bounds to the Minimum

Variables Clauses Average Roof Iter. Roof Squeezed Iterated Roof–Dual Project–and–Lift Iterated Roof–Dual Lift & Project
(n) (m) Minimum Dual (ρ) Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ; r = 3) (ρ̃; r = 1) (ρ̃; r = 2) (ρ̃; r = 3) (L&Pfrom[46])

75 525 59.6 11.0 45.7 50.8 53.1 53.8 52.0 53.9 54.7 57.9
75 550 62.6 11.7 48.1 54.6 56.9 57.6 55.5 57.4 58.1 61.3
75 600 73.0 15.4 57.2 63.1 65.4 66.1 64.0 66.4 67.1 70.8
100 700 80.2 11.6 59.2 66.7 69.9 70.7 68.3 71.1 72.0 76.4
150 850 80.8 7.8 55.9 65.7 68.6 69.3 67.1 69.8 70.8 76.6
200 1000 89.8 6.0 57.5 67.8 71.2 71.8 71.2 74.2 75.1 81.7

(b) Computing times.

Average Computing Time∗

SIRDA PLIRDA

Variables Clauses
RDA IRDA

(r = 1) (r = 2) (r = 3) (r = 1) (r = 2) (r = 3)

75 525 <0.005 s 0.01 s 0.2 s 0.7 s 1.5 s 0.8 s 1.7 s 2.8 s
75 550 <0.005 s 0.02 s 0.3 s 0.9 s 1.6 s 0.8 s 1.8 s 2.8 s
75 600 <0.005 s 0.02 s 0.3 s 0.9 s 1.6 s 0.8 s 1.8 s 3.0 s
100 700 <0.005 s 0.02 s 0.5 s 1.6 s 3.3 s 1.4 s 3.4 s 5.6 s
150 850 <0.005 s 0.02 s 1.2 s 4.3 s 8.3 s 3.4 s 8.8 s 15.6 s
200 1000 <0.005 s 0.04 s 2.2 s 7.7 s 15.5 s 6.4 s 17.5 s 32.0 s

?Computed on computer system I (see Table 8.1).
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nowadays computer. There are several examples of LPs solved to optimality, involving

tens of millions of nonzero elements, hundreds of thousands of constraints, and few

millions of variables.

In Chapter 9 we shall demonstrate that LP in combination with branch–and–bound

is an effective method to solve relatively sparse problems of large dimensions. The con-

cept of sparsity that we use here is related to problems of low density and in particular

to problems whose variables are typically not involved in too many (nonzero) quadratic

terms. In this section, we study various families of well defined cuts and show that

they can be characterized by a relatively small number of cuts for those sparse QUBO

problems.

We start by providing a simple result that can potentially reduce considerably the

size of certain (CUBIC DUAL) LPs.

Let

D[2] =





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−yij 6 0, cij > 0,

−xi +yij 6 0, cij < 0,

−xj +yij 6 0, cij < 0,

xi +xj −yij 6 1, cij > 0,

(1 6 i < j 6 n)





.

Clearly, D[2] ⊆ S[2].

Lemma 8.9 ([54]).

C2 (f) = min
{
Lf (x,y)

∣∣∣(x,y) ∈ D[2],x ∈ Un
}
.

The above lemma raises the question about the possibility of ignoring certain sets of

constraints, especially from S[3], depending on the quadratic coefficients of the function

being zero or not. If this is true then the size of the LP problems can be reduced

substantially, and in particular if the problem is sparse. The following result gives a

positive indication into this direction.
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Theorem 8.2. Let f be quadratic pseudo–Boolean function given as (1.5) and

D[3] = S[2]∪





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

xi +xj +xk −yi,j − yi,k − yj,k 6 1,

−xi +yi,j + yi,k − yj,k 6 0,

−xj +yi,j − yi,k + yj,k 6 0,

−xk −yi,j + yi,k + yj,k 6 0,




1 6 i < j < k 6 n

cij 6= 0 or

cik 6= 0 or

cjk 6= 0








.

Then,

C3 (f) = min
{
Lf (x,y)

∣∣∣(x,y) ∈ D[3],x ∈ Un
}
.

Proof. The result follows from the fact that C3 = ω(TP) (see Proposition 8.5). (TP)

is a triangle packing problem that considers all negative triangles for packing. Linear

combinations of negative triangles are feasible solutions within (TP). Since every neg-

ative triangle is linked to at least one edge of Gf (the balancing graph of f) then the

result follows readily.

We shall consider next other LP models that further reduce the size of the number

of triangle cuts to be added to the roof dual LP formulation. The bound obtained in

this way is between the roof–dual and the cubic–dual bounds.

First we consider

W[2] =





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−yij 6 0,

−xi +yij 6 0,

−xj +yij 6 0,

xi +xj −yij 6 1,


 1 6 i < j 6 n

cij 6= 0








and

W[3] (S) = W[2]∪





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

xi +xj +xk −yi,j − yi,k − yj,k 6 1,

−xi +yi,j + yi,k − yj,k 6 0,

−xj +yi,j − yi,k + yj,k 6 0,

−xk −yi,j + yi,k + yj,k 6 0,


 1 6 i < j < k 6 n

(i, j, k) ∈ S








.

(8.13)
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S in (8.13) represents the set of triplets (i, j, k) corresponding to the triangle in-

equalities involving variables xi, xj and xk. In this study we consider three cases:

• S0 =
{
(i, j, k) ∈ V 3 |cijcikcjk 6= 0

}
;

• S1 =
{
(i, j, k) ∈ V 3 |cij 6= 0 and (cik 6= 0 or cjk 6= 0)

}
;

• S2 =
{
(i, j, k) ∈ V 3 |cij 6= 0

}
.

Let us define

κ (f,S)
def
= min

{
Lf (x,y)

∣∣∣(x,y) ∈W[3] (S) ,x ∈ Un
}
.

Lemma 8.10. Let f be quadratic pseudo–Boolean function given as (1.5). Then,

C2 (f) = κ (f, ∅) 6 κ (f,S0) 6 κ (f,S1) 6 κ (f,S2) 6 C3 (f) .

Proof. The result follows trivially from the fact that S0 ⊆ S1 ⊆ S2.

All the computational experiments that we have carried out suggest the following

strong claim that we were unable to demonstrate.

Conjecture 8.2.

C3 (f) = κ (f,S2) .

The above result is in accordance to the squeezing scheme presented previously

in this chapter. We believe that there is a maximum possible iterated roof–dual im-

provement per variable, and that in subsequent iterations it is not necessary to squeeze

further terms from variables whose terms were already squeezed out. Also we think

that the variables sequencing order for the iterated procedure does not matter and that

any sequence will return C3 after at most n iterations.

8.7.1 Computational results

The conclusions of the following computational experiments will clearly demonstrate

that LP can “quickly” provide good results for many sparse QUBOs, which are typical
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in many real problems.

The LP solver that we used is Xpress-Barrier from the 2007B release of Xpress–MP.

In our tests we also consider the time of finding an optimal basic feasible solution by

using the Xpress crossover algorithm. This step is important when the studied linear

program bounds are used during the B&B search (see Chapter 9). Additionally, the

finding of such basis allows us to determine what cuts are binding at the LP extreme

point solution. This information can be used to reduce the size of the problem (by

removing non-binding cuts) while keeping the same bound. Typically, the problem

reduction makes the MIP solver to run faster and saves in memory consumption.

We start by analyzing the bounds in the test set of Bonami and Minoux [46] about

MAX-2-SAT. It should be remarked that we considered the standard linearization model

in what follows, but it should be mentioned that MAX-2-SAT can be solved by a more

compacted linear program, which does not required additional variables (see [46]).

The results carried out on these problems are given on Tables 8.9(a) and 8.9(b), and

cover the iterated roof duality, its P&L version, the L&P bound proposed in [46], and

the linear programming bounds κ (S0), κ (S1) and κ (S2).

Table 8.9(a) includes the average relative gap of the studied lower bounds to the

minimum possible number of unsatisfied clauses. First, L&P and κ (S2) are remarkably

close to each other. Second, these two bounds are clearly superior to the iterated

roof-dual versions.

The computing times seem to favor the P&L iterated roof dual bound, especially

when the number of variables increases. This result gives some indication to the fact

that as the size of the problem increases the combinatorial approaches may have a better

chance to succeed in solving them. We also remark that the solve times of PLIRDA

can be somewhat improved simply by adopting better algorithm data structures and

implementations.

Another interesting point to discuss is the fact that linear programming may take

longer to compute the bound for those larger instances, but when the non-binding cuts

are removed from the formulation, then this approach becomes attractive to be solved

by the current MIP technology (see Chapter 9).
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Table 8.9: Linear programming bounds of MAX–2–SAT (Bonami and Minoux [46]).

(a) Average relative gap to the minimum number of unsatisfied clauses.

Average Relative Gap of some Lower Bounds to the Minimum (ν)

Variables Clauses Iter. Roof Project–and–Lift Iterated Roof–Dual Lift & Project Linear Programming

(n) (m) Dual
(

ν−

�

ρ
ν

) (
ν−

�

ρ
ν

; r = 1
) (

ν−

�

ρ
ν

; r = 2
) (

ν−

�

ρ
ν

; r = 3
)

(L&Pfrom[46])
(

ν−κ(S0)
ν

) (
ν−κ(S1)

ν

) (
ν−κ(S2)

ν

)

75 525 23.3% 12.6% 9.4% 8.1% 2.7% 17.1% 3.4% 2.7%
75 550 23.1% 11.3% 8.2% 7.1% 2.0% 14.6% 2.4% 2.0%
75 600 21.7% 12.3% 9.1% 8.0% 2.9% 14.1% 3.4% 2.9%
100 700 26.2% 14.8% 11.3% 10.2% 4.6% 24.6% 5.6% 4.6%
150 850 30.7% 16.8% 13.6% 12.3% 5.1% 46.3% 10.0% 5.1%
200 1000 35.9% 20.6% 17.3% 16.2% 8.9% 61.1% 17.2% 8.5%

(b) Computing times.

Average Computing Time

PLIRDA∗ XPRESS–Barrier∗∗

Variables Clauses
IRDA∗

(r = 1) (r = 2) (r = 3) (κ (S0)) (κ (S1)) (κ (S2))

75 525 0.01 s 0.8 s 1.7 s 2.8 s 0.1 s 1.0 s 5.9 s
75 550 0.02 s 0.8 s 1.8 s 2.8 s 0.2 s 1.3 s 6.6 s
75 600 0.02 s 0.8 s 1.8 s 3.0 s 0.1 s 1.3 s 5.9 s
100 700 0.02 s 1.4 s 3.4 s 5.6 s 0.1 s 1.9 s 13.7 s
150 850 0.02 s 3.4 s 8.8 s 15.6 s 0.1 s 2.8 s 47.0 s
200 1000 0.04 s 6.4 s 17.5 s 32.0 s 0.1 s 3.2 s 102.4 s

?Computed on computer system I (see Table 8.1).
??Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
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The usefulness of the 3 linear programming models proposed in this section is mostly

a property of sparse QUBOs. The concept of sparsity used here is different from the

density property used along this dissertation. Here we consider that each variable is not

involved in more than a constant k quadratic terms of the multilinear representation

of the function. In a private conversation, Endre Boros called these functions as ultra–

sparse, which have the interesting property that the density approaches zero (i.e. d← 0)

as the number of variables increases (i.e as n← inf).

We have already seen that ultra–sparse functions are common in many real world

applications (e.g. 2D/3D Ising models, planar vertex covers, via minimization, biomed-

ical imaging).

Next we consider a ultra–sparse family that we have randomly generated for MAX–

CUT. We called this family as the Hamilton family (see Section 3.4.2). It consists of

weighted graphs with a m Hamiltonian cycles. Here we analyze the case where m is 2

and the graphs have 250 or 500 variables. Because m = 2 then every vertex has at most

four neighbors for any instance. In this case k = 4 for the above sparsity definition.

Table 8.10(a) shows the average relative gaps to the best known weighted cuts of

graphs having 250 and 500 vertices. The bounds (κ (S0)) and (κ (S1)) are very close to

each other. They are clearly inferior to the bound (κ (S2)), whose relative gap varies

from 0.0% to 3.5%, whereas the other bounds have gaps varying between 4.5% and

21%.

It is also interesting to see that the relative gap varies substantially for different

weight schemes. The easiest group corresponds to graphs with weights [−50, 50], for

which XPRESS-Barrier with the S2–cuts returns near optimal solutions for the 250

vertices instances, and returns around 1%–to–2% relative gaps for the 500 vertices

instances. The hardest group corresponds to the graphs having weights [50, 100] and

negative exterior field.

The computing times are substantially larger for the case that uses the S2–cuts.

The longest XPRESS–Barrier run time was 1 182 seconds for the 500 graphs instances

having [−50, 50] weights.
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Table 8.10: Upper bounds based on linear programming for MAX–CUT graphs from
the Hamilton family.

(a) Average relative gap to the best known cuts with average weight (w).

Exterior Edge’s Weights Vertices Linear Programming

Field (h) ([w−, w+]) (|V |)
(

κ(S0)−w

w

) (
κ(S1)−w

w

) (
κ(S2)−w

w

)

0 [1, 1] 250 14.6% 14.6% 1.1%
500 15.3% 15.3% 2.2%

0 [−50, 50] 250 21.0% 19.6% 0.0%
500 20.8% 20.3% 1.0%

25 [−50, 50] 250 4.5% 4.0% 0.0%
500 3.6% 3.4% 1.8%

-75 [50, 100] 250 16.2% 16.2% 1.5%
500 17.5% 17.5% 3.5%

75 [50, 100] 250 9.3% 9.3% 1.1%
500 9.6% 9.6% 1.8%

(b) Computing times obtained from XPRESS-Barrier.

Exterior Edge’s Weights Vertices Linear Programming
Field (h) ([w−, w+]) (|V |) (κ (S0)) (κ (S1)) (κ (S2))

0 [1, 1] 250 0.1 s 0.3 s 63.2 s
500 0.3 s 0.9 s 914.5 s

0 [−50, 50] 250 0.1 s 0.3 s 108.6 s
500 0.3 s 0.8 s 1039.4 s

25 [−50, 50] 250 0.1 s 0.3 s 91.8 s
500 0.3 s 0.9 s 1182.1 s

-75 [50, 100] 250 0.1 s 0.3 s 50.1 s
500 0.3 s 0.8 s 656.7 s

75 [50, 100] 250 0.1 s 0.3 s 54.0 s
500 0.3 s 0.9 s 619.7 s

?Computed on an AMD Athlon 64 X2 Dual Core 4800+,

2.41 GHz, 4GB RAM and runs XP.
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8.8 A closer look at C4

C4 (f) is a lower bound to the minimum of the quadratic pseudo–Boolean function f ,

and belongs to the fourth level of the hierarchy of bounds proposed by Boros et al. [49],

following its immediate level C3 (f) bound. There is not much work in the literature

about what properties characterize this bound, as well as its usefulness is not known

in practical applications. In this section we provide a characterization of C4 in terms

of cones of positive functions and in terms of LP. At the end, we will show an example

derived from the minimum 3–partition minimization for which C3 provides weak bounds

but C4 gives remarkably better results.

In what follows we shall consider quadratic pseudo–Boolean functions in n = |V |

variables as vectors of the 1+n+
(n
2

)
multilinear coefficients of their unique polynomial

representation.

For a subset S ⊆ V of the variables, we denote by FS the family of quadratic

pseudo–Boolean functions only depending on variables from S. Let F+
S ⊆ FS the sub-

family of nonnegative ones. It is simple to verify that FS is a subspace of dimension

1+|S|+
(S
2

)
. of R1+|S|+(S

2), and that F+
S is a convex cone in this subset. F+

S is described

by the 2|S| inequalities requiring the nonnegativity of its elements. Therefore it is a

polyhedral cone and consequently it is finitely generated. Let

Qk =
{
F+
S |S ⊆ V, |S| 6 k

}

be a convex cone in R1+|S|+(S
2) for 2 6 k 6 n, which is generated by the above cones

that correspond to at most k variables.

Proposition 8.9 ([49, 54]).

Q2 ⊆ Q3 ⊆ Q4 ⊆ · · · ⊆ Qn,

and all of these cones are finitely generated.

We denote the generators of cone Qk (k = 2, · · · , n) as the set B (Qk). The charac-

terization of the extremal elements of the above cones is important but difficult to be



276

fully understood ([54]). It is well defined for cone Q3 and we provide here for the first

time a characterization of the generators of Q4.

Before showing this result, let us first consider a special family of functions proposed

by Boros et al. [49]:

bU,α
def
=

(∑
u∈U u− α

2

)
(8.14)

where U ⊆ L is a subset of the literals with not complemented pairs, and where α ∈ Z.

It is clear that (8.14) defines a pseudo–Boolean function and that by using the

identity u2 = u, a quadratic polynomial representation of it can be computed.

Example 8.12.

b{u,v,w,z},1 = (u+v+w+z−1)(u+v+w+z−2)
2

= 1− u− v −w − z + uv + uw + uz + vw + vz + wz.

Proposition 8.10 ([49]). If U ⊆ L is a subset of the literals containing no comple-

mented pairs, and α is an integer such that 1 6 α 6 |U | − 2 for |U | > 3, and α = 1 for

|U | = 2, then bU,α ∈ B (Qk) for k > |U |.

Proposition 8.11 ([50]). Let

B2 = {uv |u, v ∈ L, u 6= v, u 6= v}

= {bU,1 |U ⊆ L containing no complemented literals, |U | = 2} ,

B3 = {uvw + u v w |u, v,w ∈ L, u /∈ {v, v, w,w} , v /∈ {w,w}}

= {bU,1 |U ⊆ L containing no complemented literals, |U | = 3} ,

Then, we have B (Q2) = B2 and B (Q3) = B2 ∪ B3.

Ahead, we will characterize B (Q4) which also has generators of the form (8.14). To

be remarked that not every generator of the cones Qk is a function of the form (8.14).

Boros and Hammer [53] provided several families of extremal elements of Qk that are

not of this form.

From the comments of the previous sections it is also not a big surprise to see that

the “cubic” generators of the cone Q3 are precisely the mated cubic terms. So, one
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immediately guesses that there is a strong connection between Q3 and the cubic dual

C3. To see this, let us define

Ck (f) = max {C ∈ R |f − C ∈ Qk }

for all k = 2, · · · , n. Since f has finite possible values and since Qk is a closed convex

cone in R1+n+(n
2) then the maximum of the above definition exists. From the definition

of the cones Qk then it is clear that

C2 (f) 6 C3 (f) 6 C4 (f) 6 · · · 6 Cn (f) = min
x∈Bn

f (x) .

Using the basis generators B (Qk) of cone Qk, then the lower bound Ck (f) can be

expressed as the optimum of the linear programming problem

Ck (f) = max



C ∈ R

∣∣∣∣∣∣
f − C =

∑

b∈B(Qk)

αbb, αb ∈ B (Qk)



 ,

where the equations correspond to the 1 + n+
(
n
2

)
coefficients of f .

From Proposition 8.11 it is easy to see that C2 (f) corresponds to the roof–dual and

C3 (f) corresponds to the cubic–dual.

Let us show next some preliminary results that will lead to show how to find the

basis generators of Q4.

Lemma 8.11. Let λu, λv , λw, λz ∈ [0, 1] and λu + λv + λw + λz = 1. Then b{u,v,w,z},1

has the following quartic posiform representation:

b{u,v,w,z},1 = u v w z

+λuu (vwz) + (1− λu) vwz

+λvv (uwz) + (1− λv) uwz

+λww (uvz) + (1− λw)uvz

+λzz (vwz) + (1− λz) vwz.
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Proof. To see this result we apply the following trivial steps:

bU,1 = u v w z − uvwz + uvw + uvz + uwz + vwz

= u v w z − (λu + λv + λw + λz) uvwz + uvw + uvz + uwz + vwz

= u v w z

+λuuvwz − λuvwz + vwz

+λvuvwz − λuuwz + uwz

+λwuvwz − λwuvz + uvz

+λzuvwz − λzuvw + uvw.

Lemma 8.12. Let φ =
∑

T⊆{u,v,w,z,u,v,w,z} αT
∏
a∈T a be a posiform representing a

quadratic pseudo–Boolean function f : B{u,v,w,z} → R. Then, there is a posiform θ =
∑

T⊆{u,v,w,z,u,v,w,z} βT
∏
a∈T a representing f , which satisfies the following conditions

on its terms of degree 4:

β{u,v,w,z} = α{u,v,w,z} + αchu,v,w,z + α{u,v,w,z} + α{u,v,w,z}

β{u,v,w,z} = α{u,v,w,z}

β{u,v,w,z} = α{u,v,w,z}

β{u,v,w,z} = α{u,v,w,z}

β{u,v,w,z} = α{u,v,w,z}

βT = 0, |T | = 4,

T ∈ A
def
=





{u, v,w, z} , {u, v,w, z} , {u, v,w, z} , {u, v,w, z} , {u, v,w, z} ,

{u, v,w, z} , {u, v,w, z} , {u, v,w, z} , {u, v,w, z} , {u, v,w, z} , {u, v,w, z}



 .

Proof. If the quartic term only differs in one literal (say {u, v,w, z}) from {u, v,w, z}
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then we apply the relation:

α{u,v,w,z}uvwz + α{u,v,w,z}uvwz

=
(
α{u,v,w,z} − α{u,v,w,z}

)
uvwz + α{u,v,w,z}vwz.

If the quartic term differs in two literals (say {u, v,w, z}) from {u, v,w, z} then we apply

the relation:

α{u,v,w,z}uvwz + α{u,v,w,z}u vwz

=
(
α{u,v,w,z} + α{u,v,w,z}

)
uvwz − α{u,v,w,z} (uwz + vwz) + α{u,v,w,z}wz.

If the quartic term differs in all literals from {u, v,w, z} then we apply the relation:

α{u,v,w,z}uvwz + α{u,v,w,z}uvwz

=
(
α{u,v,w,z} + α{u,v,w,z}

)
uvwz − α{u,v,w,z} (uvw + uvz + uwz + vwz)

+α{u,v,w,z} (uv + uw + uz + vw + vz + wz)− α{u,v,w,z}.

Obviously, it is always possible to find a posiform of the resulting expression. Also,

it is clear that βT = 0, |T | = 4, T ∈ A and the quartic terms differing in 3 literals

from {a, b, c, d} have the same coefficient. Since φ is a quadratic pseudo–Boolean func-

tion then all corresponding quartic terms must vanish when all terms of degree 4 are

combined. Therefore,

0 = α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

−
(
α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

)

+
(
α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

)
− α{u,v,w,z}.

and using the coefficients obtained in the previous sequence of relations we get

0 = −β{u,v,w,z} +
(
α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

)
.
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Theorem 8.3. Let

B4 =





λuu (vwz + v w z) + (1− λu) (vwz) +

λvv (uwz + uw z) + (1− λv) (uwz) +

λww (uvz + u v z) + (1− λw) (uvz) +

λzz (uvw + u v w) + (1− λz) (uvz)

|u, v,w, z ∈ L, u /∈ {v, v, w,w, z, z} , v /∈ {w,w, z, z} , w /∈ {z, z}





,

λu, λv, λw, λz ∈ [0, 1] , λu + λv + λw + λz = 1

= {bU,1 |U ⊆ L containing no complemented literals, |U | = 4} .

Then, we have B (Q4) ⊆ B2 ∪ B3 ∪ B4.

Proof. Since b{u,v,w,z},1 = 1 − u − v − w − z + uv + uw + uz + vw + vz + wz, then B4

is contained in Q4. Consider now a posiform φ and assume that φ ∈ Q4. We want

to show that the posiform θ ∈ Q4 obtained from φ, according to Lemma 8.12, can be

written as a nonnegative combination of posiforms from B2 ∪ B3 ∪ B4. To check this,

we express θ in the form

θ =
∑

b∈B2∪B3∪B4

λbb+
∑

T∈Λ

αT
∏

u∈T

u,

where λb > 0 (b ∈ B2 ∪ B3 ∪ B4), αT > 0, |T | ∈ {3, 4} (T ∈ Λ), and Λ having the

smallest number of quartic terms. Trivially, θ can always be expressed in this form.

Say |Λ| > 0 and that at least a term of length 4 exists. Note that if there is no such

term (B4 = ∅) then according to Boros et al. [50] B2 ∪ B3 ∪ B4 is a basis for Q3 ⊆ Q4.

So, let us assume that a quartic term exists and let us call it Tn = {u, v,w, z} ∈ Λ.

Since θ is a quartic form of a quadratic pseudo–Boolean function, the quartic part of

αTnuvwz must be cancelled by some other quartic terms in Λ, which can only be of the

form T2 = {u, v,w, z}. From lemma 8.12, we may assume that αTn > αT2 . Then

αTnuvwz+αT2u v wz = (αTn − αT4)uvwz+αT4z (uv + uw + vw)−αT4z (u+ v + w)+αT4z

(8.15)
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These simple algebraic transformations contradict our initial assumption that Λ con-

tains the smallest number of quartic terms. So, what it is left to prove is the case when

Λ consists only of terms of length 3. So, let us assume that Λ consists of the smallest

number of cubic terms and that at least one cubic term exists. We call this term as

Cn = {v,w, z} ∈ Λ. Since θ is a quadratic pseudo–Boolean function, the cubic part of

αCnvwx must be cancelled by some other cubic terms in Λ, which can only be of the

form C2 = {v,w, z}. We may assume without loss of generality that αCn > αC2 . Then,

αCnvwz+αC2vwz = (αCn − αC2) vwz+αT2wz. If αCn > αC2 , then the only possibility

to cancel the (αCn − αC2) vwz term is by having in Λ the cubic term (αCn − αC2) v w z.

But, this situation would imply that (αCn − αC2) (vwz + v w z) belong to Λ and not

B3 as we have assumed. Therefore, the cubic terms originally existent in Λ must be

cancelled by the new cubic terms defined in (8.15). Let cT be the coefficient of the cubic

term T ({u, v,w},{u, v, z}, {u,w, z}, {v,w, z}) generated by (8.15). According to these

algebraic transformations, if there is a quartic term Tn in Λ with a positive coefficient,

then we must have the following system of equations satisfied:





c{u,v,w} = α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

c{u,v,z} = α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

c{u,w,z} = α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

c{v,w,z} = α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z}

(8.16)

Now, recalling from lemma 8.12 that

αTn = α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z} + α{u,v,w,z},

and letting

(λu, λv, λw, λz) =

(
α{u,v,w,z}

αTn

,
α{u,v,w,z}

αTn

,
α{u,v,w,z}

αTn

,
α{u,v,w,z}

αTn

)
.
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Then (8.15) and (8.16) imply that


 αTnuvwz + α{u,v,w,z}uv w z + α{u,v,w,z}uvw z + α{u,v,w,z}u vwz + α{u,v,w,z}u v wz

+
(
c{u,v,w}u v w + c{u,v,z}u v z + c{u,w,z}uw z + c{v,w,z}v w z

)




= αTn




uvwz + λuuv w z + λvuvw z + λwu vwz + λzu v wz

+ (λu + λv + λw) u v w + (λu + λv + λz)u v z

+ (λu + λw + λz)uw z + (λv + λw + λz) v w z




= αTn


 uvwz + λuuv w z + λvuvw z + λuu vwz + λzu v wz

+ (1− λz) u v w + (1− λw)u v z + (1− λv) uw z + (1− λu) v w z




= αTn


 λuu (vwz + v w z) + λvv (uwz + uw z) + λuw (uvz + u v z) + λzz (uvw + u v w)

(1− λz) u v w + (1− λw)u v z + (1− λv)uw z + (1− λu) v w z




must be a partial sum contained in the sum of θ defined by Λ. Because there is a

element of B4 with terms in Λ with positive coefficients we got a contradiction as the

size of Λ can be reduced.

Note that b{u,v,w},1 has a unique cubic posiform representation in the literals u, v

and w. However, b{u,v,w,z},1 has several quartic posiforms representing it. On example

is for instance

bU{u,v,w,z},1 = u v w z − uvwz + uvw + uvz + uwz + vwz

= u v w z + uvwz + uvw + uvz + uwz

= u (vwz + vwz) + u (vw + vz + wz) .

A consequence of the previous observation is that to compute C4 (f) be means of

linear programming we need to consider 16 valid inequalities (out of possible 16) in the

traditional linearization in order to assure that all the generators of B4 are contemplated.

Theorem 8.4. Let us define
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W[4] def
= W[3] ∪





(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi +xj +xk +xr −yi,j − yi,k − yi,r − yj,k − yj,r − yk,r 6 1,

xi +xj +xk −2xr −yi,j − yi,k + yi,r − yj,k + yj,r + yk,r 6 1,

xi +xj −2xk +xr −yi,j + yi,k − yi,r + yj,k − yj,r + yk,r 6 1,

xi −2xj +xk +xr +yi,j − yi,k − yi,r + yj,k + yj,r − yk,r 6 1,

−2xi+ xj +xk +xr +yi,j + yi,k + yi,r − yj,k − yj,r − yk,r 6 1,

−xi +yi,j + yi,k + yi,r − yj,k − yj,r − yk,r 6 0,

−xj +yi,j − yi,k − yi,r + yj,k + yj,r − yk,r 6 0,

−xk −yi,j + yi,k − yi,r + yj,k − yj,r + yk,r 6 0,

−xr −yi,j − yi,k + yi,r − yj,k + yj,r + yk,r 6 0,

−xk −xr −yi,j + yi,k + yi,r + yj,k + yj,r − yk,r 6 0,

−xj −xr +yi,j − yi,k + yi,r + yj,k − yj,r + yk,r 6 0,

−xj −xk +yi,j + yi,k − yi,r − yj,k + yj,r + yk,r 6 0,

−xi −xr +yi,j + yi,k − yi,r − yj,k + yj,r + yk,r 6 0,

−xi −xk +yi,j − yi,k + yi,r + yj,k − yj,r + yk,r 6 0,

−xi −xj −yi,j + yi,k + yi,r + yj,k + yj,r − yk,r 6 0,

2xi +2xj +2xk +2xr −yi,j − yi,k − yi,r − yj,k − yj,r − yk,r 6 3,

(1 6 i < j < k < r 6 n)





.

(8.17)

Then

C4 (f) = min
{
Lf (x,y)

∣∣∣(x,y) ∈W[4],x ∈ Un
}
.

A final idea that we would like to bring to this discussion is the possibility of

improving the bounds by applying the arithmetic consensus repeatedly to a posiform,

resulting possibly in an equivalent posiform with larger degree.

Example 8.13. This example exemplifies how to apply the arithmetic consensus to

transform a posiform of degree 4 into a posiform of degree 5:

xyuv + xyvz = xy (uv + vz)

= xy (uz + uvz + u vz)

= xyuz + xyuvz + xyu vz.

8.8.1 Computational results

The experiments shown in this section consider the Minimum k–Partition (MkP) prob-

lem. Given a weighted graph G = (V,E,w), the MkP problem is the problem of
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partitioning the set of vertices V into k disjoint subsets such that the total weight of

the edges joining vertices of the same partition is minimum.

The MkP problem can be formulated as 0–1 LP (see [87]) or alternatively as a Semi-

definite Program (see [20]). On a private communication Boros et al. [19] formulated

the MkP problems as a QUBO as follows.

For each vertex i of G we associate k binary variables xir such that:

(i)
k∑
r=1

xir = 1 and

(ii)
k∑
r=1

xirxjr = 0 ⇐⇒ i and j are in different partitions.

If vertices i and j are grouped together on the same partition then the objective is

penalized by the weight wij . Given a feasible assignment according to (i) and (ii), then

the quadratic pseudo–Boolean function

fk (x) =
∑

i∈V




∑

j∈V |i<j

wij

k∑

r=1

xirxjr +M

(
k∑

r=1

xir − 1

)2



represents the total weight of a k–partition ofG. IfM is large enough (M =
∑

i,j∈V |i<j |wij |

is enough), then the minimizers of fk are characteristic vectors of weighted minimum

k-partitions of graph G.

For k = 3 this approach can be specialized further, since





xi3 = 1− xi1 − xi2,

xi3 ∈ B

⇐⇒ xi1xi2 = 0.

for any vertex i ∈ V . Thus, the minimizers of the quadratic pseudo–Boolean function

g (x) =
∑
i∈V

(
∑

j∈V |i<j

wij (xi1xj1 + xi2xj2 + (1− xi1 − xi2) (1− xj1 − xj2)) +Mxi1xi2

)

=
∑
i∈V

(
∑

j∈V |i<j

wij (2xi1xj1 + 2xi2xj2 + xi1xj2 + xi2xj1 − 1) +Mxi1xi2

)
,

are characteristic vectors of minimum weighted 3–partitions of G. To be noted that g

is only defined by 2 |V | vertices.
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Since the number of inequalities required to compute C4 is very large, in the next

experiments we consider only a subset of the cuts. Instead of considering the 16 cuts of

(8.17) for all cases in (1 6 i < j < k < r 6 n) we only consider a subset of these cases

Z such that every element (i, j, k, r) ∈ Z satisfies

cikcijckrcjr 6= 0 or cijcircjkckr 6= 0. (8.18)

Condition (8.18) defines a tuple associated to 16 cuts not available in W[3] that

due to its shape in the nonzero coefficients space, we named as the “pure square”

inequalities. We denote this reduced subspace as W[4] (Z).

In this section we investigate some M3P problems considered by Anjos et al. [20].

The graphs in question where generated by the software RUDY ([211]) and consist

of 2-dimensional and 3-dimensional randomly generated Ising instances, some having

Gaussian distributed weights and the others having +1 or -1 weights with 50% proba-

bility.

Using Xpress, under the same conditions of Section 8.7.1, we analyzed 4 bounds:

κ (f,S1), κ (f,S2), z (f,S1) and z (f,S2), where

z (f,S) = min
{
Lf (x,y)

∣∣∣(x,y) ∈W[3] (S) ∪W[4] (Z) ,x ∈ Un
}
. (8.19)

Table 8.11(a) includes the values of the four bounds, and Table 8.11(b) shows the

corresponding computing times. There are two aspects to be emphasized:

• z (f,S1) provides almost the same bounds as z (f,S2), but it is much less com-

puting demanding;

• The pure square cuts make the most difference with respect to how close the

bound is from the minimum.

M3P is the (only) problem that we are aware of for which C4 is clearly superior than

C3, and therefore making possible to solve them in practice by using linear programming

together with square inequalities (see Chapter 9).
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Table 8.11: Lower bounds for M3P problems proposed by Anjos et al. [20].

(a) Lower bounds.

Without Pure Square Cuts With Pure Square Cuts

Instance Weights M3P κ (S1) κ (S2) z (S1) z (S2)

4×4 -954 077 -1,222,806.7 -1,222,806.7 -954,077.0 -954,077.0
5×5 -1 484 348 -2,104,102.3 -2,078,937.0 -1,535,693.0 -1,496,165.6
6×6 -2 865 560 -3,724,596.0 -3,704,117.0 -2,952,370.3 -2,932,387.9
7×7 Gaussian -3 282 435 -4,750,640.0 -4,750,640.0 -3,353,935.1 -3,350,514.6
8×8 -5 935 339 -7,186,373.7 -7,186,373.7 -6,004,188.1 -6,002,920.4
4×4 -13 -18.0 -17.5 -13.8 -13.6
5×5 -20 -29.3 -29.3 -22.3 -22.1
6×6 ±1 -29 -42.3 -42.0 -31.9 -31.7
7×7 -40 -57.7 -57.7 -43.2 -43.1
8×8 -55 -77.7 -77.7 -58.4 -58.3
9×9 -65 -95.0 -95.0 -70.3 -70.3

2× 3× 4 -20 -32.5 -32.4 -23.1 -23.1
2× 4× 4 -28 -44.5 -44.2 -32.7 -32.7
3× 3× 3 -26 -42.3 -42.3 -30.0 -30.0
3× 3× 4 ±1 -36 -58.8 -58.8 -42.1 -41.9
3× 4× 4 -48 -79.2 -79.2 -56.7 -56.7
3× 4× 5 -65 -101.7 -101.7 -73.5 -73.4
4× 4× 4 -65 -108.7 -108.3 -79.1 -78.9

(b) XPRESS–Barrier computing times?.

Without Pure Square Cuts With Pure Square Cuts

Instance Weights κ (S1) κ (S2) z (S1) z (S2)

4×4 0.1 s 0.3 s 0.9 s 1.1 s
5×5 0.2 s 0.9 s 1.3 s 2.3 s
6×6 0.3 s 2.5 s 1.9 s 5.7 s
7×7 Gaussian 0.5 s 6.7 s 2.9 s 11.1 s
8×8 0.7 s 14.9 s 3.9 s 29.2 s
4×4 0.1 s 0.3 s 0.8 s 1.1 s
5×5 0.2 s 0.9 s 1.4 s 2.7 s
6×6 ±1 0.3 s 2.6 s 1.8 s 5.2 s
7×7 0.5 s 7.0 s 2.6 s 10.6 s
8×8 0.7 s 15.9 s 3.4 s 26.0 s
9×9 0.8 s 29.4 s 4.8 s 59.1 s

2× 3× 4 0.2 s 0.8 s 1.4 s 2.4 s
2× 4× 4 0.4 s 2.1 s 2.3 s 5.5 s
3× 3× 3 0.5 s 1.9 s 3.0 s 5.3 s
3× 3× 4 ±1 0.9 s 4.5 s 5.3 s 11.4 s
3× 4× 4 1.3 s 12.2 s 8.0 s 26.0 s
3× 4× 5 1.8 s 23.5 s 9.9 s 61.7 s
4× 4× 4 2.2 s 31.5 s 12.5 s 66.0 s

?Computed on an AMD Athlon 64 X2 Dual Core 4800+,

2.41 GHz, 4GB RAM and runs XP.
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Chapter 9

Exact Methods

Let us start by considering the family N of quadratic pseudo–Boolean functions

N =




f : Bn 7→ R

∣∣∣∣∣∣∣
n ∈ Z+, f (x1, · · · , xn) = −n (n− 1)

n∑

i=1

xi −

bn
2 c∑

i=1

xi + 2n
∑

16i<j6n

xixj




,

proposed by Pardalos [191].

Proposition 9.1 ([146, 191, 195]). A quadratic pseudo–Boolean function f ∈ N having

a number n ∈ Z+ of even variables satisfies the following properties:

(i)

ν (f) = min
(x1,··· ,xn)∈Bn

f (x1, · · · , xn) = −
n

2

(
n2

2
+ 1

)

(ii) The unique global minimum x? of f in Bn is x? = (1, · · · , 1, 0, · · · , 0), having

exactly n
2 ones followed by n

2 zeros;

(iii) f has an exponential number of local minima. More precisely, every point with n
2

ones is a local minimum of f , and therefore there are
( n
n/2

)
local minima.

In the case where n is odd, it is also known ([146, 193]) that there is a global

minimum x? = (1, · · · , 1, 0, · · · , 0), having exactly
⌊
n
2

⌋
ones followed by

⌊
n+1

2

⌋
zeros.

Class N demonstrates that there are functions with an exponential number of local

minima ([191]) in the parameter n. Due to this property, this family of quadratic

pseudo–Boolean functions has been mentioned to be a “difficult class of test problems”

([146, 195]) for finding their minimum using exact algorithmic approaches.

We shall present next, a different proof of the previous results that leads to a good

algorithm to solve any function in N .
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Lemma 9.1. Let f be a quadratic pseudo–Boolean function belonging to family N , then

x?ix
?
j = 0 is a strong quadratic persistency in every minimizer

(
x1, · · · , x

?
i , · · · , x

?
j , · · · , xn

)
∈

ArgminBn (f), for all 1 6 i 6
⌊
n
2

⌋
and

⌈
n+1

2

⌉
6 j 6 n.

Proof. Let U =
{
1, · · · ,

⌊
n
2

⌋}
and Z =

{⌈
n+1

2

⌉
, · · · , n

}
respectively denote the set of

first
⌊
n
2

⌋
and last remaining indices from the n-vector. Then, the first order derivatives

of f are

∆i (x1, · · · , xn) =





−1− n (n− 1) + 2n

(
i−1∑
j=1

xj +
n∑

j=i+1
xj

)
, i ∈ U,

−n (n− 1) + 2n

(
i−1∑
j=1

xj +
n∑

j=i+1
xj

)
, i ∈ Z.

Let us consider now the (i, j)th second order derivative of f

∆ij = ∆i (x)−∆j (x) + 2n
(
x?i − x

?
j

)

=





0, i ∈ U, j ∈ U,

−1, i ∈ U, j ∈ Z,

0, i ∈ Z, j ∈ Z.

The claimed result follows immediately from Theorem 4.1 since ∆ij < 0 (i ∈ U, j ∈

Z).

Theorem 9.1. Let f be a quadratic pseudo–Boolean function belonging to family N ,

then

(i) If i ∈ U , then x?i = 1 is a strong persistency in every minimizer (x1, · · · , x
?
i , · · · , xn) ∈

ArgminBn (f);

(ii) If i ∈ Z and n is even, then x?i = 0 is a strong persistency in every minimizer

(x1, · · · , x
?
i , · · · , xn) ∈ ArgminBn (f);

(iii) If i ∈ Z and n is odd, then x?i = 0 is a weak persistency in a minimizer

(x1, · · · , x
?
i , · · · , xn) ∈ ArgminBn (f).
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Proof. Let us consider a positive constant M > 2n and define the quadratic pseudo–

Boolean function

g (x1, · · · , xn) = f (x1, · · · , xn) +M
∑

i∈U

∑

j∈Z

xixj .

First, it is trivial to see that g (x1, · · · , xn) > f (x1, · · · , xn) for any binary vector

(x1, · · · , xn) ∈ Bn. Second, Lemma 9.1 implies that g (x1, · · · , xn) = f (x1, · · · , xn) in

every (x1, · · · , xn) ∈ ArgminBn (f). Thus, f and g have the same minima.

The partial derivatives of g are given by

∆g
i (x1, · · · , xn) =





−1− n (n− 1) + 2n
∑

j∈U\{i}

xj + (2n−M)
∑
j∈Z

xj, i ∈ U,

M
⌊
n
2

⌋
− n (n− 1) + 2n

∑
j∈U

xj + (2n−M)
n∑

j∈Z\{i}

xj, i ∈ Z.

SinceM > 2n, then the maximum of the linear pseudo–Boolean function ∆g
i (x1, · · · , xn)

(i ∈ U) is

Ugi = −1− n (n− 1) + 2n (|U \ {i}|)

= −1− n (n− 1) + 2n
(⌊

n
2

⌋
− 1
)

=




−1− n, n even,

−1− 2n, n odd.

Since Ugi < 0 (i ∈ U), then the necessary conditions of optimality established by

Corollary 4.1 imply that x?i = 1 (i ∈ U) in every minima of g, or equivalently in every

minimizer (x1, · · · , x
?
i , · · · , xn) ∈ ArgminBn (f).

SinceM > 2n, then the minimum of the linear pseudo–Boolean function ∆g
i (x1, · · · , xn)

(i ∈ Z) is

Lgi = M
⌊
n
2

⌋
− n (n− 1) + (2n−M) (|Z \ {i}|)

=





M n
2 − n (n− 1) + (2n −M)

(
n− n

2 − 1
)
, n even,

M n−1
2 − n (n− 1) + (2n−M)

(
n− n−1

2 − 1
)
, n odd.

=





M − n, n even,

0, n odd.
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Since for n even we have Lgi > 0 (i ∈ Z), then the necessary conditions of optimality

imply that x?i = 0 (i ∈ Z) in every minima of g, or equivalently in every minimizer

(x1, · · · , x
?
i , · · · , xn) ∈ ArgminBn (f). Since for n odd we have Lgi > 0 (i ∈ Z), then

the necessary conditions of optimality established by Proposition 4.1 imply that there

are minima of g having x?i = 0 (i ∈ Z), or equivalently there exists a minimizer

(x1, · · · , x
?
i , · · · , xn) ∈ ArgminBn (f).

Corollary 9.1. A quadratic pseudo–Boolean function f ∈ N having a number n ∈ Z+

of odd variables satisfies the following properties:

(i)

ν (f) = min
(x1,··· ,xn)∈Bn

f (x1, · · · , xn) = −
n− 1

4

(
n2 + n+ 2

)
;

(ii) f has exactly n+1
2 minima given by ArgminBn (f) =

{
(x1, · · · , xn) ∈ Bn

∣∣∣∣
∑
i∈Z

xi 6 1

}
.

Proof. By Theorem 9.1 there exists a minimizer (x?1, · · · , x
?
n) of f satisfying x?i = 1 for

every i ∈ U , and x?j = 0 for every j ∈ Z. Thus, part (i) follows from the evaluation of

f (x?1, · · · , x
?
n).

By the strong persistency result of Theorem 9.1 then one can simplify function f

by fixing all the variables xi with indices i ∈ U , and use the resulting function to find

the optimal values of the remaining variables xj with indices j ∈ Z. Since for n odd we

derive

f (U ← {1, · · · , 1})
(
xZ
)

= −
n− 1

4

(
n2 + n+ 2

)
+ 2n

∑

i,j∈Z:i<j

xixj ,

then part (i) implies that all minimizers of f must satisfy the condition
∑

i,j∈Z:i<j

xixj = 0,

which proves part (ii) of the claim.

The previous results show clearly that optimizing quadratic pseudo–Boolean func-

tions in class N is an easy task. This family of problems has however been used

([146, 195]) to demonstrate that certain exact approaches for QUBO will remain diffi-

cult.
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The point in presenting this example in the beginning of this chapter about exact

methods is to remark the fact that even if certain approaches have some difficulties

solving a specific class of problems, when coupled with additional tools, may result in

the efficient computation of optimal solutions for those problems.

When we started investigating this class of problems using exact approaches, we

have also encountered difficulties. However, as soon as the second order derivatives

preprocessing tool (see Section 7.1.2) has been used during the presolve stage, then

every problem in class N could be solved to optimality during the preprocessing stage.

Table 9.1(a) shows the computing times of PrePro to find the minimum of several

functions from family N , with the number of variables n varying between 25 and 250.

Table 9.1: Exact solutions of some quadratic pseudo–Boolean functions from family N .

(a) Found by PrePro .

f ∈ N Minimum PrePro

(n) (ν (f)) Computing Time?

25 -3 912 <0.1 s
50 -31 275 0.8 s
75 -105 487 5.7 s
100 -250 050 23.4 s
125 -488 312 54.1 s
150 -843 825 124.7 s
175 -1 339 887 217.8 s
200 -2 000 100 414.4 s
225 -2 847 712 595.6 s
250 -3 906 375 977.5 s

?Obtained on a P4 2.8 GHz running XP.

(b) Found by BiqMac.

f ∈ N Lower Upper Number of BiqMac

(n) Bound B&B Nodes Computing Time?

25 3916 -3 912 91 519 >10 800 s
50 -31 275 -31 275 1 0.1 s
75 -105 506 -105 487 23 837 >10 800 s
100 -250 050 -250 050 1 0.2 s

?Obtained on a P4 3.6 GHz.

The Pardalos and Rodgers [195] depth first search method is only capable to handle

problems in this class and in the period of 15-20 minutes having up to 25 variables. We

have also tested a standard MIP linearization model for QUBO using a state–of–the–art

MIP solver (in this case XPRESS-MP). This solver also struggled in proving optimality
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for problems derived from N , for both cases where the number of variables was either

odd or even.

Table 9.1(b) presents the computing times of some problems in N found by the

solver BiqMac, a binary quadratic and MAX–CUT solver developed by Rendl et al.

[206]. The results indicate that BiqMac can solve problems in N having an even

number of variables very efficiently, without requiring branching. However, BiqMac

could not solve to optimality the instances having 25 and 75 variables in 3 hours of

computing time and after branching on several thousands of nodes. We recall here that

BiqMac considers a relaxation based on the intersection of the semidefinite relaxation

with a subset of the triangle inequalities. Contrary to the conclusion presented in [206],

these results indicate that there are QUBOs with less than 100 variables that BiqMac

can not handle efficiently.

The idea of applying very specific algorithms to better handle QUBO problems of

specific classes is somehow illustrated throughout this dissertation. One such example

is the problem of finding minimum vertex cover of planar graphs. This problem is

covered in detail in Section 10.1.6.

In this chapter, we also provide practical evidence of this claim on MAX–CUT

problems derived from the one-dimensional Ising chain problem (see Section 9.3.1.5).

When comparing the results on some of these problems using one of the proposed

algorithms against those published recently, we get solve times in the order of seconds,

whereas the methods proposed in the literature solve the same problems running for

several hours, and using similar computer technology.

The next section will introduce some background about the past research done on

solving QUBOs to optimality. In this dissertation we propose three exact approaches for

QUBO. We found for each type of solver at least an application that make it very com-

petitive with other state–of–the–art solvers for QUBO. The first approach presented in

Section 9.2 is based on a simple enumerative approach. The second approach described

in Section 9.3 is based on a generic branch–and–bound code whose basic construct is

roof–duality implemented in the network model. Several strengthened bounds can be

used to cutoff the search tree as much as possible. These bounds can be based on
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the semidefinite relaxation for MAX–CUT or on any of the improved iterated roof–

duality bounds introduced in Chapter 8. The last method analyzed is based on linear

programming and mixed 0-1 integer programming.

An extensive evaluation of the proposed methods is given across many different

applications related to QUBO (e.g., Ising model, MAX–2–SAT, MAX–CUT).

9.1 Background

Most of the exact approaches that have been considered to solve general QUBOs, are

of the divide–and–conquer type, where branch–and–bound is the predominant adopted

method, with some earlier approaches proposing an enumerative depth first search

scheme. The research effort is usually put in the analysis and definition of lower bounds

for the sub–problems, giving less importance to other important questions, like for

instance the definition of the branching strategy and the sub–problem selection. Some

of these exact algorithms are briefly described next:

• Pardalos and Rodgers [195] proposed a depth first search for QUBO. The bound-

ing method used in [195] is (at most) the sum of the negative coefficients. The

variable select for branching in a sub–problem is the one having the largest range

of values (in terms of both minimum and maximum) for the corresponding gra-

dient. A variant of a depth-first branch and bound algorithm is described and its

numerical performance is presented in a more recent work of Pardalos et al. [146].

• An improved enumerative approach to [195] was proposed by Hansen et al. [135].

The bound adopted at the root node is the roof dual. The associated roof dual

posiform is used for variable fixation and to obtain lower bounds in the interior

of the search tree.

• Williams [235] proposed and analyzed a branch–and–bound method for QUBO,

using the LP formulation that leads to the roof dual bound.

• Billionnet and Sutter [44] presented a branch-and-bound algorithm for QUBO

minimization. At each node of the search tree the lower bound is computed in
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three phases and is equal to C2 +C ′3 +C ′4. C2 corresponds to the roof–dual. The

computation of C ′3 uses the characterization of some positive quadratic posiforms

associated with the directed cycles of the implication network. C ′4 is computed

by searching in a posiform of degree 4, which leads to an algorithm that derives

some generators of B (Q4) (see [44] and Theorem 8.3).

• Chardaire and Sutter [82] proposed a decomposition method to compute a lower

bound QUBO minimization. First, they show that any quadratic function can

be expressed as a sum of particular quadratic functions whose minima can be

computed by a simple branch and bound algorithm. Then, they demonstrate that

among all possible decompositions, the best one can be found by a Lagrangian

decomposition method. The proposed decomposition gives at least the roof dual

bound.

• Helmberg and Rendl [139] present an approach for QUBO that combines a semi-

definite relaxation with a cutting plane technique, and is applied in a branch-and-

bound setting.

• Billionnet and Elloumi [41] proposed a Mixed Integer Quadratic Programming

solver (MIQP) for QUBO. The main idea is to disregard the multi-linearity prop-

erty and second to convexify the quadratic function in 0–1 variables. To do this

one could use a classical trick that simply raises up the entries of the x2 terms

until the Q matrix associated to the quadratic function becomes positive semidef-

inite. Then using the fact that x (1− x) = 0, they obtain an equivalent convex

objective function, which can then be handled by the MIQP solver. They propose

two methods to convexify the quadratic function: one is based in the determi-

nation of the smallest eigenvalue of the Q matrix, and a stronger approach that

leads to the semidefinite program associated to a MAX–CUT equivalent of the

QUBO problem.

• Fischer et al. [98] proposed a dynamic version of the bundle method to get ap-

proximate solutions to semidefinite programs with a nearly arbitrary number of
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linear inequalities. The suggested approach leads to function evaluations requir-

ing to solve a relatively simple semidefinite program. This method provided exact

solutions to semidefinite relaxations of the MAX–CUT problem, which was not

achievable by approaches based only on interior-point methods.

• Rendl et al. [206] proposed a method for finding exact solutions to QUBO based

on a semidefinite relaxation combined with a subset of triangle inequalities, which

is solved using the bundle method. The expensive part of the bounding procedure

is solving the basic semidefinite programming relaxation of the Max-Cut problem.

As a result of this work, Rendl et al. [207] introduced the online solver called

BiqMac.

• Ibaraki et al. [147] proposed efficient heuristics to get solutions for the cycle

packing problem (NP). They use two approaches: one is based on network

algorithms and the other is based on column generation and linear programming.

The implementation of [147] was developed to solve MAX–2–SAT problems, which

is well known to be equivalent to QUBO.

• Barahona and L. Ladányi [34] present a branch-and-cut algorithm where the vol-

ume algorithm is applied to the linear programs arising at each node of the search

tree. This fact results in the fast approximate solutions to these linear programs,

making possible to explore many more search tree nodes and having larger LPs

than if the standard dual simplex algorithm would be employed.

Other exact approaches for solving QUBO include ([33, 80, 116, 153, 185, 236]).

9.2 Enumerative approaches

Pardalos and Rodgers [195] Depth-First Search (DFS) approach was one of the earliest

attempts at finding an optimal solution to QUBO. The fact that a simple bound has

been considered by [195] as well as the adoption of DFS made possible to create a

program that is able to process the various sub-problems very quickly.
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Given a quadratic pseudo–Boolean function f represented as in (1.5), then the sum

of the constant c0 with all the negative terms

Nf = c0 +
∑

i∈V

min (0, ci) +
∑

16i<j6n

min (0, cij)

is an obvious lower bound to ν (f).

Given a partial assignment y ∈ BS of f , Pardalos and Rodgers [195] bound for

f (x [S ← y]) in this assignment is

Pf (x [S ← y]) = Nf +
∑

i,j∈S|i<j

max (0, cij) xixj

+
∑
i∈S

(max (0, ci)xi −min (0, ci)xi)

−
∑

16i<j6n|i∈S,j /∈S

min (0, cij)xi

−
∑

16i<j6n|i/∈S,j∈S

min (0, cij)xj .

(9.1)

When S = ∅ then the bound of [195] coincides with Nf . However when S 6= ∅ then

Pf (x [S ← y]) is typically strictly dominated by Nf(x[S←y]). The reason for this fact is

due to (9.1) not considering the “new” linear terms originated after fixing one variable

to one on a nonzero quadratic term, as the following example illustrates.

Example 9.1. Consider the quadratic pseudo–Boolean function f (x1, x2) = −2x1 +

3x1x2. It is trivial to verify that Nf = −2. If the partial assignment (1){2} (i.e. x2 = 1)

is considered, then Nf|x2=1
= 0, but Pf (x [{2} ← (1)]) = −2.

To be able to calculate the Nf(x[S←y]) bound quickly, the DFS approach proposed

here requires an additional vector structure (called v) to contain the linear coefficients

of the variables not yet fixed by a partial assignment, i.e the coefficients of the linear

terms that belong to the quadratic pseudo–Boolean function f (x [S ← y]).

Figure 9.1 describes our proposed DFS algorithm (called Depth-First) whose

bound is based on the sum of negative coefficients as has been explained previously.

The process flow of the algorithm is identical to the approach proposed in [195].

For a given partial assignment the algorithm requires the knowledge of the minimum
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Depth-First(f,x?)

Input: A quadratic pseudo–Boolean function f represented as in (1.5).

Initialization: Let bound ← c0 + C− +Q−, v← (c1, · · · , cn),
l← (L1, · · · , Ln), u← (U1, · · · , Un).
Push({[∅ ← ()] ,v, l,u,bound} , stack).

Step 1: If Empty(stack)=true then STOP.

Step 2: Let {[S ← y] ,v, l,u,bound} ←Pop(stack).

Step 3: If bound> f (x?) then go to Step 1.

Step 4: If S = V and f (y) < f (x?) then x? ← y and go to Step 1.

Step 5: If S = V and f (y) > f (x?) then go to Step 1.

Step 6: Find-Persistencies([P ← x] , [S ← y] , l,u).

For all j ∈ P do

Update-Bound&Vectors(j, xj , [S ← y] ,v, l,u,bound).

Go to Step 3.

Step 7: k ←Branching-Variable([S ← y] , l,u).

Let [S′ ← y′]← [S ← y], v′ ← v, l′ ← l,u′ ← u
and bound′←bound.

Update-Bound&Vectors
(
f, k, 0, [S′ ← y′] ,v′, l′,u′,bound′

)
.

If bound′ 6 f (x?) then Push
({

[S′ ← y′] ,v′, l′,u′,bound′
}
, stack

)
.

Update-Bound&Vectors(f, k, 1, [S ← y] ,v, l,u,bound).

Go to Step 3.

Output: It returns a minimizer x? of f .

Figure 9.1: Depth-First algorithm.
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Find-Persistencies(f, [P ← x] , [S ← y] , l,u)

Input: A quadratic pseudo–Boolean function f represented as in (1.5).

Initialization: Let P ← ∅, x← ().

Step 1: For k ∈ (V \ S),

If uk 6 0 then Let P ← P ∪ {k}, x|P | ← 1.

Else if lk > 0 then Let P ← P ∪ {k}, x|P | ← 0.

Output: It returns a partial assignment x ∈ BP , which represents a
subset of persistencies associated to a minimum of f .

Figure 9.2: Find-Persistencies algorithm.

and maximum of the partial derivatives of the variables (respectively called l and u) not

yet fixed by the method. The l and u vectors are used to determine persistencies based

on first derivative information (see Section 4.2). The pseudo–code of the algorithm used

to find these persistencies is given in Figure 9.2.

Given an existent sub-problem (that corresponds to a partial assignment y|S|) then

a branching variable xk is selected using the same approach as that one considered by

[195], i.e. k = arg max
i∈(V \S)

(−li, uj). We note the fact that li < 0 and ui > 0 for all i /∈ S,

since otherwise they would be fixed first by persistency.

After selecting a variable xk then 2 sub-problems are created, one corresponds to the

assignment xk = 0 and the other to xk = 1. At this point, the vectors v, l and u, and

the lower bound associated to these two sub-problems are updated using n iterations.

This procedure is specified by algorithm Update-Bound&Vectors of Figure 9.3.

An enumerative DFS procedure based on the quadratic posiform representation has

been analyzed and proposed by Hansen et al. [135]. The method starts by computing a

roof-dual quadratic posiform representation of the function. Thus, at the top node the

lower bound coincides with the roof–dual value. Strong persistency is also applied at the

top node. Given a partial assignment, then the lower bound is updated by calculating

the resulting standard posiform. The various sub-problems will have a lower bound that

is typically inferior to the corresponding roof–dual. This bound is however superior to

the sum of negative coefficients bound considered by the Depth-First algorithm.
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Update-Bound&Vectors(f, k, b, [S ← y] ,v, l,u)

Input: A quadratic pseudo–Boolean function f represented as in (1.5), an
index k of variable xk which will be fixed to value b, a n-vector v containing
the linear coefficients of f [S ← y], for all entries in V \ S, a n-vector l
(respectively u) containing the minimum (respectively maximum) values
of ∆i [S ← y] (i ∈ V \S), and the sum of negative coefficients in bound of
f [S ← y].

Step 1: If b = 0 then

Let bound ← bound + max (0, vk)− lk.

For all {j ∈ V \ S |j < k} do

Let lj ← lj −min (0, cjk) ,
Let uj ← uj −max (0, cjk) , and

For all {j ∈ V \ S |j > k} do

Let lj ← lj −min (0, ckj) ,
Let uj ← uj −max (0, ckj) .

Step 2: If b = 1 then

For all {j ∈ V \ S |j < k} do

Let bound ← bound−min (0, vj)−min (0, cjk) + min (0, vj + cjk) ,
Let vj ← vj + cjk,
Let lj ← lj + max (0, cjk) ,
Let uj ← uj + min (0, cjk) , and

For all {j ∈ V \ S |j > k} do

Let bound ← bound−min (0, vj)−min (0, ckj) + min (0, vj + ckj) ,
Let vj ← vj + ckj,
Let lj ← lj + max (0, ckj) ,
Let uj ← uj + min (0, ckj) .

Output: Using xk = b, it updates the lower bound in bound, the linear coeffi-
cients in v, and the minimum and the maximum values, respectively in l
and u, of the partial derivatives of function f

[
S ∪ {k} ←

(
y1, · · · , y|S|, b

)]
.

Figure 9.3: Update-Bound&Vectors algorithm.
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9.2.1 Computational results

In the class of enumerative methods for QUBO we implemented the 3 approaches

described previously. For their identification in the text, we shall call to the Pardalos

and Rodgers [195] procedure as P&R–DFS, while Hansen et al. [135] method will be

called as Roof–DFS, and our proposed enumerative as Depth-First (outlined in

Figure 9.1).

Table 9.2: Computing times to find the optimum values of some F2 and G2 problems
of Kochenberger et al. [158].

Computing Time?

Problem Density P&R–DFS Roof–DFS

Family Name (d) ([195]) ([135]) Depth-First

F2a 10% n/a n/a n/a
F2 F2b 25% n/a n/a n/a

(n = 500) F2c 50% n/a n/a 13 716.6 s
F2d 75% 1042.8 s 554.8 s 65.8 s
F2e 100% 19.5 s 32.8 s 2.8 s
G2a 10% n/a n/a n/a

G2 G2b 25% n/a n/a n/a
(n = 1000) G2c 50% n/a n/a n/a

G2d 75% n/a n/a 16 332.3 s
G2e 100% 766.3 s 1155.4 s 108.3 s

?Found on a P4 2.8 GHz, 512 MB RAM and running Windows XP.

For the first time, Table 9.2 presents the optimal solutions of the denser graphs from

the F2 and G2 sub–families. These families were randomly generated by Kochenberger

et al. [158] and every instance is a sub-modular maximization function.

The Depth-First enumerative approach outperforms the other two approaches in

computing time. For instance, for the 500-variable instance F2d it is 8 times faster

than the Roof–DFS algorithm and 16 times faster than the original PR procedure.

Pardalos and Rodgers [195] have already claimed that P&R would exhibit in practice

a time of O
(
n3
)

for the 100% dense cases (sometimes these problems are called Pos-Neg

instances). Here we have seen that Depth-First is substantially faster than the P&R

approach for these problems, and that it is able to solve relative large instances (up to

1 000 variables) with high density (from 75%).

To understand the power of the enumerative approaches, Table 9.3 shows some
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Table 9.3: Statistics of Depth-First to find optimal solutions of some F2 and G2

problems of Kochenberger et al. [158].

Number of Sub–Problems To

Problem Maximum Persistencies Backtrackings Best Solution Optimality

F2c 1 094 5 223 119 119 1 268 246 250 178 793 210 242 255 974
F2d 685 33 723 443 5 693 103 880 248 894 967
F2e 418 1 429 788 160 553 16 698 17 334
G2d 866 5 772 194 364 917 769 049 109 484 508 125 967 506
G2e 452 28 443 883 2 622 488 222 229 249 794

numbers about the Depth-First algorithm. It can be seen that the number of sub-

problems created can be in the order of hundreds of millions and that all of them can

be processed in a few hours. The number of persistencies and backtrackings that can

be applied during this period of time is in the order of billions for these problems.

To further compare the three methods, we shall analyze the 3 enumerative ap-

proaches in the C family of QUBO problems (see Table 3.2). This family has been

originally proposed and analyzed by Pardalos and Rodgers [195]. Subsequently, Hansen

et al. [135] used this family to compare their approach with that one of [195].

Table 9.4(a) contains the computing times of the 3 studied approaches on these

problems. The Roof–DFS is the fastest approach, only slightly surpassed in the 4c

and 5c instances. It is also evident that P&R–DFS is the slowest of the 3 methods.

Table 9.4(b) contains the number of iterations and the number of sub-problems gen-

erated during the enumerative stage. As expected, Roof–DFS requires fewer branching

steps as well as number of iterations (which includes all persistencies and backtracks),

and is followed by the Depth–First algorithm which requires substantially more nodes

and iterations to solve these problems.

The results that were presented in this section illustrate that enumerative ap-

proaches can be used to effectively solve certain classes of QUBOS. In particular, (i) if

the number of variables is small, (ii) if the problem is very sparse and (iii) the prob-

lem is a dense Pos–Neg instance, then these simple methods are good choices to solve

these problems. These results also confirm that the fastest speed to prove optimality to

QUBO (and many other optimization problems) is frequently determined by carefully
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selecting what type of lower bounds to consider and the time required to computing

them.

Table 9.4: Optimal solutions of the family C problems proposed by Pardalos and
Rodgers [195].

(a) Computing Time.

Computing Time?

Problem Variables Density P&R–DFS Roof–DFS

Name (n)
(
d
)

([195]) ([135]) Depth-First

1c 40 80% 5.8 s 0.2 s 1.3 s
2c 50 60% 95.8 s 4.5 s 29.3 s
3c 60 40% 184.9 s 6.0 s 46.6 s
4c 70 30% 53.0 s 42.5 s 14.0 s
5c 80 20% 42.9 s 10.8 s 10.4 s
6c 90 10% 0.4 s <0.05 s 0.06 s
7c 100 10% 0.8 s <0.05 s 0.06 s

?Found on a P4 2.8 GHz, 512 MB RAM and running Windows XP.

(b) Number of iterations and sub-problems.

Number of Iterations Number of Sub–Problems

Problem P&R–DFS Roof–DFS P&R–DFS Roof–DFS
Name ([195]) ([135]) Depth-First ([195]) ([135]) Depth-First

1c 5 193 612 62 831 1 115 332 425 591 12 179 187 415
2c 76 952 702 1 221 654 21 762 024 4 471 714 197 103 2 845 176
3c 135 518 792 1 411 172 33 366 286 6 799 039 210 084 3 821 273
4c 36 930 288 9 001 633 9 944 560 1 744 814 995 040 846 691
5c 28 354 124 2 098 639 7 718 570 1 600 352 194 445 544 847
6c 275 918 5 060 67 822 32 527 284 5 068
7c 463 112 0 52 417 58 190 0 3 934

9.3 Branch-and-bound with network flows

A Branch–and–Bound (B&B) algorithm has been implemented to test the various

bounds and persistent results derived in the previous chapters. Given a quadratic

pseudo–Boolean function f , B&B attempts at finding the minimum value ν (f) and a

minimizer x?.

Along its execution, B&B maintains a list of active nodes A. Each active node is

a QUBO problem itself represented as a capacitated network (see Section 5.3), which

is associated to a quadratic function derived from a partial assignment of f . Initially
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A = {f}.

At any point in time, B&B records information about a lower (LB) and an upper

(UB) bound to ν (f). Clearly, the minimum lower bound of any active node is a lower

bound to ν (f).

B&B executes the following steps to process an active node:

• Preprocess – Apply roof–duality and remove week and strong persistencies;

Apply any other tools specified by the user (e.g. probing, one–pass heuristics,

2nd order derivatives); If there is a decomposition of the function (see Section

7.2.3), then B&B optimizes separately each component.

• Check–Bounds – If a node has a roof-dual bound worse than the upper bound

UB then this node can be cutoff and B&B proceeds to processing the next active

node;

• Update–Lower–Bound – An enhanced lower bound (e.g., SDP, IRDA, SIRDA,

PLIRDA) specified by the user is computed. The bounds are checked again for

possible pruning;

• Update–Upper–Bound – If the problem of the active node is simply a constant

then the UB and x? are updated accordingly;

• Branch – If the problem of the active node is still non-trivial then a variable y is

selected for branching and the current active node is replaced by two new active

nodes, one having an assignment y = 0 and the other one having an assignment

y = 1.

In this implementation we did not consider strong branching at its full extent, i.e.

the possibility of testing a certain number of partial assignments to increase the chances

of finding a branch that is more likely to produce fewer nodes in the future. We remark

that our preprocessing code considers probing (optionally) and therefore we can easily

get the 1-level branching information and incorporate it in the branching decisions.

We remark that after preprocessing every node (even at its basic usage) every re-

maining variable must have partial derivative that range between the negative and
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positive values. Since, our representation of choice is the network model Gφ, or equiv-

alently a quadratic posiform φ, then after preprocessing every literal u ∈ L belongs to

the same strong component as its complement u. The purely quadratic posiform φ can

be decomposed into three parts

φ = xi (α1u1 + · · ·+ αrur) + xi (β1v1 + · · ·+ βsvs) + Ψi,

for all i = 1, · · · , n.

To reduce the complexity of the branches as much as possible, B&B estimates the

contribution of each branching b = (b1, · · · , bm) by computing a positive real number

π (b), which is the real root p of the corresponding “tree polynomial”
∑s

i=1 p
−bi = 1.

B&B considers only 2-branches (i.e. m = 2), one for the assignment 0 and the other

for the assignment 1 of the variable selected. The branching estimates that we consider

for xi (i = 1, · · · , n) is b =
(∑r

j=1 αj ,
∑s

j=1 βj

)
. The intent of this branching strategy

is to improve the lower bound as quickly as possible.

The estimation based on the tree polynomial roots for a branching purpose is not

new and has been considered previously to solve satisfiability problems (see e.g. [163]).

In these other studies, the branching estimates usually include information about the

number of persistencies obtained on a given branching. We did not consider this addi-

tional piece of information, since we did not apply strong branching to be able to obtain

a good measure about the number of persistencies that certain branches would infer.

The root of the tree polynomial can be easily determined by using the Newton’s ap-

proximation method. In practice, only 5 iterations of the Newton method are required

to compute the root with a good numerical precision.

To hold the active nodes, B&B uses a map structure whose keys are integers repre-

senting the closest integer from above to the lower bound of the optimization problems

belonging to its elements. Every element of the map is a list of QUBOs. The first

element of the map includes the problems having the smallest lower bounds, and the

last element of the map contains the problems having the largest lower bounds. In this

way, B&B can quickly select a node either with a small or a large lower bound to the
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minimum.

Indeed, the code supports 3 possible node selections: (i) selects the sub-problem

with the smallest lower bound, and if more than one is found then select the one with

the fewest variables; (ii) select the sub-problem with the largest lower bound, and if

more than one is found then select the node with the fewest variables; and (iii) uses (i)

if the number of active nodes is below a certain limit (provided) by the user, otherwise

uses (ii). Basically strategy (i) attempts at raising the bound quickly, (ii) is best at

finding initial solutions and at not increasing the number of nodes substantially, and (iii)

is a mix between the other 2 approaches that attempts at raising the bound quickly,

while not using excessively the memory resource. In the computational experiments

that follow we will always consider option (iii) with a “limit” number selected by the

user.

In QUBO there is no reason to not apply any heuristic or meta–heuristic to pro-

vide a “good” incumbent to the exact approach. In the B&B implementation, the

preprocessing PrePro routine will compute one–pass heuristics (see Section 6.1) at

certain stages and frequencies determined by the user.

9.3.1 Computational results

The analyzes of the experiments that we have carried out with the B&B exact solver will

be focused on the impact of using the various lower bounds that we have proposed in

Chapter 8. The roof–dual bound (and persistency) determined by the RDA algorithm

is always applied by default. A strengthened bound can then be applied at certain or

all nodes. The list of improved lower bounds include six algorithms: IRDA, SIRDA

(we test it with 1 and 2 rounds), PLIRDA (with test it with 1 and 2 rounds) and SDP.

B&B has been implemented in C++ and linked using the Windows libraries. The

following sub-sections illustrates the application of B&B to different types of QUBO

functions and applications.

9.3.1.1 MIN–VC of planar graphs

We start by providing practical evidence of two facts.
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First, from the various tools and options that the user has at hand, the one choice

selected on B&B can be determinant in solving the problem at hand in the following

ways: very quickly, very slowly or even to not solving it at all. In this section we will

see how the various tools available in PrePro could affect the speed and quality of the

end results.

Second, decomposition is something that occurs frequently on certain classes of

problems (e.g., MIN–VC of planar graphs). B&B detects this decomposition of the

problem and solves them independently using result (7.5).

Table 9.5: Using B&B to find minimum vertex covers of planar graphs.

B&B Computing Time?

(B&B Nodes)

Preprocessing 10 000 vertices 20 000 vertices 50 000 vertices
Strategy Tools 26 994 edges 53 994 edges 134 994 edges

I roof–dual & 6.2 s 18.0 s 145.9 s
decomposition (1 974 nodes) (3 986 nodes) (9 997 nodes)

II I+probing 6.7 s 19.2 s 146.2 s
(no weak persist.) (1 160 nodes) (2 232 nodes) (5 560 nodes)

III I+probing 3.4 s 12.4 s 126.5 s
(with weak persist.) (25 nodes) (29 nodes) (85 nodes)

IV III & 3.2 s 11.7 s 125.3 s
coordinance (1 node) (1 node) (1 node)

?Computed on computer system I (see Table 8.1).

Table 9.5 presents results of B&B to find minimum vertex covers of planar graphs

(randomly generated using RUDY). Alternative ways of preprocessing are considered

by B&B. It is evident that the choice of the preprocessing strategy is determinant in

terms of solving the problem faster and also in terms of the number of branching nodes

required. It is interesting that strategy IV can solve the example graph problem without

any branching.

9.3.1.2 Benchmarks with prescribed density

In this section we analyze the application of B&B to solve some QUBO instances

randomly generated in such a way that all variables participate in about the same of

number of quadratic terms. These instances were previously called as problems of fixed

prescribed density (see Section 3.1.2).
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We shall focus on the family D proposed by Glover et al. [108] whose instances have

100 variables per problem, and densities varying from 10% to 100%. These problems

are maximization problems and where previously considered for testing various upper

bounds (see Tables 8.3(a), 8.5(a) and 8.7(a)).

Table 9.6: Proving optimality to Beasley [37] QUBO problems with 250 variables.

(a) Relative gap to the maximum.

B&B Relative Gap to the Maximum after Running B&B for 1 Hour?

SDR IRDA SIRDA PLIRDA
Problem Density Semidefinite Iter. Roof Squeezed Iterated Roof P&L Iterated Roof
Name (d) Relaxation Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2)

1d 10% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2d 20% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3d 30% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4d 40% 0.0% 1.5% 2.1% 0.8% 3.9% 2.0%

?Computed on computer system I (see Table 8.1).

(b) Computing time to optimality.

B&B Computing Time? to Optimality

SDR IRDA SIRDA PLIRDA
Problem Density Semidefinite Iter. Roof Squeezed Iterated Roof P&L Iterated Roof
Name (d) Relaxation Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2)

1d 10% 4.4 s 0.1 s 1.6 s 2.2 s 3.1 s 5.2 s
2d 20% 1194.0 s 122.1 s 261.0 s 324.2 s 1 079.6 s 1 067.2 s
3d 30% 1334.6 s 369.3 s 815.9 s 871.6 s 6 329.6 s 3 969.3 s
4d 40% 1482.8 s >7 200.0 s >7 200.0 s >7 200.0 s >7 200.0 s >7 200.0 s

?Computed on computer system I (see Table 8.1).

(c) Branching nodes.

B&B Nodes

SDR IRDA SIRDA PLIRDA
Problem Density Semidefinite Iter. Roof Squeezed Iterated Roof P&L Iterated Roof
Name (d) Relaxation Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2)

1d 10% 24 10 10 10 10 9
2d 20% 2607 1 666 247 127 333 166
3d 30% 2695 2 940 700 320 1 342 481
4d 40% 2711 16 566 3 455 1 757 1 618 821

Table 9.6(a) shows that B&B can solve problems in this family having up to 30%

density. If the iterated roof–dual algorithm is used for bounding (using IRDA) then

the 30% dense instance takes about 5 minutes to solve to optimality. The other bounds
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seem to not be so effective, but all of them were able to solve these 3 instances.

The number of branching nodes gives an idea about the scalability of the exact

approaches. As the size of the problem increases then the number of nodes can become

exponentially large in the number of variables. A given bound can be computed very

quickly, but the number of nodes required to achieve a certain value may be very large,

and hence resulting in a total non-polynomial computing time.

It is interesting to note that the squeezed and project-and-lift iterated roof–duality

versions are clearly superior to the simple iterated roof–duality and the semidefinite

bounds (see Table 9.6(c)) for instances having up to 30% density.

The iterated roof–dual bounds are clearly superior to the semidefinite relaxation

bound in speed performance for those problems that are “sparse”.

The results of Table 9.6(b) clear indicate that B&B with the SDP bound is not highly

dependent on the density parameter. Consequently, to be able to find the optimum

of QUBOs of very large density and having up to 200 or so variables it is strongly

recommended to use exact approaches based on semidefinite relaxations. This fact has

been proposed and studied by Billionet and Elloumi [41, 43] for the type of QUBOs

analyzed in this section. B&B with SDR was able to prove optimality for all the 10

instances from family D in a reasonable amount of time. B&B with IRDA was able to

prove optimality for the instances having up to 40% density, the longest case requiring

slightly over two hours of computing time.

Rendl et al. [208] proposed the use of a semidefinite relaxation combined with a

subset of the triangle inequalities, which is then solved with the bundle method. An

implementation of this algorithm is publicly accessible through the Internet ([207]) and

is called the BiqMac solver. Clearly this algorithm is trying to get the best out of the

iterated roof–duality (which is indirectly associated to a subset of triangle inequalities)

and the semidefinite approaches. The results of BiqMac are very impressive for dense

QUBOs of up to 200 or so variables, but the computation of the semidefinite bound

makes it impractible to solve QUBOs with many hundreds and especially thousands of

variables (even if they are sparse).

The next family analyzed consists of 10 problems having 250 variables and 10%
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densities. This family (called as B–250) was proposed by Beasley [37] (see Section

3.1.1). All the problems in family B–250 have a maximum value known (see Rendl et

al. [208]).

The relative gap to the maximum value of these problems is the ratio between the

absolute gap (equal to the difference between the B&B upper bound and the optimum)

and the optimum. Table 9.7(a) lists the relative gaps of the 10 problems computed by

B&B with various upper bounds (SDR, IRDA, SIRDA), after 1 hour of solve time. SDR

provides the best relative gaps for this family varying between 3.6% and 9.8%. If IRDA

is considered instead, then the relative gap varies between 6.2% and 21.2%. SIRDA

with the 1 round option returns relative gaps varying between 3.6% and 15.8%. Except

for instances 3 and 5, any of the implemented approaches analyzed here, requires a

substantial large amount of computing time to prove optimality for problems belonging

to this family (see also Section 9.4.1.1).

We close this section by suggesting to the interested researchers that they should

focus in improving the existing implementations of the improved iterated roof–duality

bounds. This work can be achieved by using improved algorithms (e.g. new theory and

max-flow implementations) or by applying improved or customized data structures.

These improvements will allow the exact approaches to process far more nodes than

before, and hence, the chances of solving harder sparse QUBOs, previously unsolved,

will increase substantially.

9.3.1.3 MAX–2–SAT

The application of B&B to solve (weighted) MAX–2–SAT problems is presented in this

section. Two families of problems are considered in the experiments.

First we tested the code in the Borchers and Furman [47] instances. The results

are shown in Tables 9.8(a) and 9.8(b). The B&B implementation is compared to the

MaxSolver solver of Xing and Zhang [236], and to the solvers (BB C, BB P, BB HP)

developed by Ibaraki et al. [148]. The solvers of [148] are methods based on packing

cycles on the network (BB C) or LP (BB P and BB HP) models. Therefore the bounds

considered by [148] are closely related to those considered by B&B.
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Table 9.7: Proving optimality to Beasley [37] QUBO problems with 250 variables.

(a) Relative gap to the maximum.

B&B Relative Gap to the Maximum

after Running B&B for 1 Hour?

SDR IRDA SIRDA
Problem Density Semidefinite Iter. Roof Squeezed Iterated Roof
Name (d) Relaxation Dual (ρ̂) (ρ; r = 1) (ρ; r = 2)

1 4.9% 8.7% 5.8% 5.3%
2 5.0% 11.0% 7.6% n/a
3 3.6% 6.2% 3.6% 3.1%
4 5.3% 11.7% 8.2% 7.5%
5 10% 3.6% 6.2% 3.8% 3.2%
6 6.6% 15.5% 11.1% 10.8%
7 4.3% 9.1% 6.0% 5.2%
8 9.8% 21.2% 15.8% n/a
9 4.7% 8.2% 6.0% 5.4%
10 6.6% 14.3% 10.1% 9.5%

?Dual Xeon 3.0 GHz, 4GB of RAM and running XP.

(b) Branching nodes.

B&B Nodes

SDR IRDA SIRDA
Problem Density Semidefinite Iter. Roof Squeezed Iterated Roof
Name (d) Relaxation Dual (ρ̂) (ρ; r = 1) (ρ; r = 2)

1 423 5 825 599 189
2 435 5 945 621 n/a
3 417 5 846 655 231
4 419 5 624 591 175
5 10% 411 5 646 607 205
6 433 5 482 615 171
7 415 5 799 599 189
8 451 6 087 631 n/a
9 417 5 991 621 203
10 447 5 711 611 173
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For similar formulas, the solver that should be used to find the fastest proofs is

algorithm BB C. B&B with the IRDA bound produces optimal solutions for this family

in reasonable time.

The B&B with the squeezed or P&L iterated roof–duality based bounds is the

method producing the fewer branching nodes to prove optimality, thus indicating that

most likely these approaches are computing bounds closer to C3 than those proposed by

Ibaraki et al. [148]. As in the previous section conclusions, these results indicate that

the improvement of the SIRDA and PLIRDA algorithms will make B&B competitive

(if not faster) than the other solvers for many “larger instances”.

B&B with the IRDA bound is comparable to the BB C method in the way the

bounds are determined. A key difference is the fact that IRDA considers the bi–form

representation whereas BB C does not. Maybe in part because of this reason (others

may be preprocessing), it is interesting to note that the B&B version requires sub-

stantially fewer branching nodes (about half less nodes) to solve these MAX–2–SAT

instances.

The second type of MAX–2–SAT formulas that we have analyzed are based on the

break minimization problems created by Ibaraki et al. [148]. These problems arise from

sports scheduling. Given a set of teams the problem is to determine a schedule that

minimizes the total consecutive home or away games, both of which are called breaks.

The MAX–2–SAT formulation requires
(n
2

)
variables and n (n− 2) clauses, where n is

the number of teams. Ever literal appears at most twice in the formulas.

The trend of results given in Tables 9.9(a) and 9.9(b) for certain break minimization

instances is somewhat similar to the ones of the previous family. The linear program-

ming based approaches BB P and BB HP are the fastest implementations in this case.

B&B with SIRDA with 2 rounds produces overall the least number of nodes (on

average). The number of branching nodes processed by B&B with IRDA is many times

smaller than those required by BB C. In this group of problems the difference is in the

ten–fold order of magnitude.
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Table 9.8: Proving optimality to the Borchers and Furman [47] MAX–2–SAT instances.

(a) Computing time.

B&B with IRDA? B&B with SIRDA? B&B with PLIRDA? Other Computing Times
Variables Clauses Iter. Roof Squeezed Iterated Roof P&L Iterated Roof MaxSolver?? BB C † BB P† BB HP†

Sub-Family (n) A (φ) Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2) ([236]) Ibaraki et al. [148]

400 1.5 s 5.2 s 8.4 s 10.2 s 25.3 s 0.3 s 0.4 s 1.4 s 0.6 s
BF-100 100 500 18.9 s 48.3 s 62.9 s 106.0 s 116.0 s 11.8 s 1.1 s 6.0 s 3.5 s

600 78.7 s 194.0 s 254.4 s 348.2 s 382.9 s 106.2 s 3.4 s 36.8 s 9.0 s
300 <0.05 s 0.1 s 0.1 s 0.5 s 0.6 s 0.1 s 0.3 s 0.3 s 0.3 s

BF-150 150 450 3.1 s 9.8 s 12.7 s 12.9 s 22.1 s 1.9 s 0.5 s 2.4 s 0.8 s
600 14.6 s 41.5 s 54.1 s 72.9 s 135.4 s 10.4 s 0.8 s 4.5 s 2.2 s
400 1.9 s 10.2 s 15.8 s 21.3 s 37.0 s 6.9 s 0.5 s 1.8 s 1.0 s

BFW-100 100 500 10.4 s 27.6 s 29.6 s 43.0 s 66.0 s 532.4 s 0.8 s 7.1 s 1.4 s
600 5.6 s 17.9 s 22.7 s 56.2 s 68.4 s 289.8 s 0.9 s 7.9 s 4.9 s
300 0.1 s 0.8 s 0.8 s 0.8 s 1.5 s 0.2 s 0.3 s 0.3 s 0.3 s

BFW-150 150 450 1.0 s 5.0 s 10.3 s 13.5 s 25.0 s 53.5 s 0.5 s 1.7 s 0.5 s
600 17.2 s 103.0 s 129.0 s 186.2 s 276.3 s 3 527.5 s 1.3 s 9.7 s 3.6 s

?Computed on computer system I (see Table 8.1). ??Computed on Pentium 2.4 GHz with 1 GB memory.
†Computed on Xeon (NetBurst) 3.06 GHz, 1 GB memory, 32–bit mode.

(b) Branching nodes.

Branching Nodes

B&B with IRDA B&B with SIRDA B&B with PLIRDA Other Solvers
Variables Clauses Iter. Roof Squeezed Iterated Roof P&L Iterated Roof BB C BB P BB HP

Sub-Family (n) A (φ) Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2) Ibaraki et al. [148]

400 98 54 25 21 22 284 254 257
BF-100 100 500 1024 172 72 102 52 2 185 255 1 427

600 2770 519 205 270 146 7 891 295 6 571
300 6 6 5 5 5 11 11 5

BF-150 150 450 144 25 16 13 13 339 255 63
600 545 69 40 37 28 813 255 25
400 108 29 23 34 25 333 255 57

BFW-100 100 500 333 56 31 42 32 581 255 411
600 179 35 25 42 35 479 255 51
300 12 7 6 6 6 47 47 11

BFW-150 150 450 52 15 15 17 15 277 255 49
600 582 105 51 75 53 857 255 673
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Table 9.9: Proving optimality to the Ibaraki et al. [148] break minimization (MAX–2–SAT) problems.

(a) Computing time.

B&B with IRDA? B&B with SIRDA? B&B with PLIRDA? Other Computing Times

Variables Clauses Iter. Roof Squeezed Iterated Roof P&L Iterated Roof BB C † BB P† BB HP†

(n) A (φ) Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2) Ibaraki et al. [148]

120 224 2.2 s 14.8 s 20.0 s 4.2 s 4.7 s 0.7 s 1.7 s 0.7 s
153 288 14.1 s 55.3 s 78.5 s 36.4 s 24.6 s 4.7 s 3.3 s 1.3 s
190 360 91.0 s 146.0 s 136.4 s 931.5 s 110.8 s 47.2 s 11.0 s 14.4 s
231 440 4 057.3 s 930.2 s 885.9 s 2 836.6 s 337.3 s 452.0 s 25.7 s 6.6 s

?Computed on computer system I (see Table 8.1).
†Computed on Xeon (NetBurst) 3.06 GHz, 1 GB memory, 32–bit mode.

(b) Branching nodes.

Branching Nodes

B&B with IRDA B&B with SIRDA B&B with PLIRDA Other Solvers
Variables Clauses Iter. Roof Squeezed Iterated Roof P&L Iterated Roof BB C BB P BB HP

(n) A (φ) Dual (ρ̂) (ρ; r = 1) (ρ; r = 2) (ρ̃; r = 1) (ρ̃; r = 2) Ibaraki et al. [148]

120 224 356 36 28 92 71 3 225 255 25
153 288 1 391 66 64 322 156 22 477 255 25
190 360 4 038 82 51 2 708 157 169 037 255 3467
231 440 110 377 276 132 3 858 228 1 102 333 255 25
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9.3.1.4 MAX–CUT

This section will show some results concerning the MAX–CUT problem. The graphs

considered here were proposed by Resende [209], and are relative sparse instances.

Table 9.10: Proving optimality to some Resende [209] MAX–CUT problems.

Upper Bounds B&B with IRDA

Graphs MAX Value Computing Time

Vertices Edges CUT SDR IRDA SDR† IRDA? Nodes Time?

10 26 17 18.17 20.00 0.01 s 0.00 s 5 0.03 s
20 47 37 38.48 39.00 0.04 s 0.00 s 5 0.01 s
25 51 42 43.04 43.00 0.05 s 0.00 s 3 0.02 s
30 77 61 63.22 63.00 0.06 s 0.00 s 8 0.05 s
50 131 105 109.99 109.75 0.21 s 0.02 s 18 0.11 s
100 269 214 226.16 227.50 1.00 s 0.02 s 2 006 24.25 s
150 355 294 308.63 309.50 3.38 s 0.05 s 2 017 51.96 s
200 495 405 427.30 436.32 7.95 s 0.06 s 114 402 5 161.98 s
250 331 305 317.26 310.25 17.81 s 0.03 s 165 3.62 s
500 625 574 598.15 590.50 276.48 s 0.11 s 39 794 2 946.03 s

?Computed on computer system I (see Table 8.1).
†Computed on an Alpha CPU 21264 500MHz running Linux.

A comparative analysis between the IRDA and SDP bounds is given in Table 9.10.

Traditionally the semidefinite bounds (due to its excellent performance guarantees) has

been selected as the bound of choice to attach the optimal solution for MAX–CUT. The

results (both in value and time) are indicative that the iterated roof–duality versions

should be not disregarded especially if the graphs are very sparse or simply ultra–sparse

(see Section 8.7.1), even in the case where the number of vertices is large. B&B with

IRDA could handle the graph having 500 vertices in less than one hour of computing

time.

9.3.1.5 One dimensional Ising chains

The one dimensional Ising chain consists of n spins lying equally spaced on a circle

of perimeter n. Every pair of spins (i, j) is connected with each other by a coupling

strength of

Ji,j =
εi,j
rσi,j

,
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where εi,j is chosen according to a standard Gaussian distribution, ri,j is the Euclidean

distance between nodes i and j and σ is the power of strengthness.

The exact ground states of the spins Si ∈ {−1, 1} (i = 1, · · · , n) are found by

minimizing the Hamiltonian

H = −
n−1∑

i=1

n∑

j=i+1

Ji,jSiSj . (9.2)

Making the substitutions Si = 2xi − 1 (i = 1, · · · , n) in (9.2), then the minimum

energy state can be found by solving the QUBO problem

max
x∈Bn

(−H (x1, · · · , xn)) =

n−1∑

i=1

n∑

j=i+1

Ji,jSiSj+max
x∈Bn

n−1∑

i=1

n∑

j=i+1

Ji,j (−2Ji,j) (xixj + xixj) .

(9.3)

From (9.3) it is simple to see that the energy minimization problem can be formu-

lated as a MAX–CUT problem of a dense graph having L vertices and a weight −2Ji,j

for every edge (i, j).

Katzgraber and Young [156] indicate that the one–dimensional Ising chain model

inherits several features that makes the study of its physical properties interesting (see

also [172]).

Table 9.11 gives three methods and corresponding computing times necessary to find

the minimum energy state of several one–dimensional Ising chains proposed by Rendl

et al. [206, 208]. The 3 exact approaches analyzed here include a branch–and–cut

model proposed by Liers [172], the BiqMac solver developed by Rendl et al. [206, 208]

and B&B. B&B was configured to use roof–duality as a bound and more important to

consider the preprocessing routine PrePro with the probing option. Branch–and–cut

is traditionally one of the best approaches to solve the classical Ising models ([223]),

however B&B is clearly faster over the other two methods. For example, for the hardest

instance (σ = 2.5 and n = 300) branch–and–cut does not have a known solve time and

the proposed method is about than 2 000 times faster than the BiqMac solver.

The key to solve these Ising problems (for these σ values) is the application of

the preprocessing method with the probing option (see Chapter 7). From the Ising
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Table 9.11: Computing times to find the minimum energy state of the one-dimensional
Ising chains proposed by Rendl et al. [206, 208].

Computing Time
Number of Problem MAX–CUT Branch-Cut & BiqMac?? B&B

σ Spins (n) Instance
(
W
(
S, S

))
Price? ([172]) ([206, 208]) PrePro +probing??

5555 2 460 049 1 102 s 92 s 1.4 s
100 6666 2 031 217 387 s 66 s 1.4 s

7777 3 363 230 608 s 47 s 0.9 s
5555 4 363 532 77 319 s 265 s 3.9 s

150 6666 4 057 153 84 911 s 339 s 3.3 s
7777 4 243 269 114 007 s 559 s 3.3 s
5555 6 294 701 n/a 605 s 8.8 s

2.5 200 6666 6 795 365 n/a 1 075 s 8.6 s
7777 5 568 272 n/a 1 298 s 8.6 s
5555 7 919 449 n/a 10 828 s 12.7 s

250 6666 6 925 717 n/a 4 624 s 13.9 s
7777 6 596 797 n/a 4 250 s 16.0 s
5555 8 579 363 n/a 24 227 s 23.6 s

300 6666 9 102 033 n/a 32 678 s 17.8 s
7777 8 323 804 n/a 46 810 s 20.7 s
5555 2 448 189 292 s 96 s 0.8 s

100 6666 1 984 099 24 s 34 s 0.6 s
7777 3 335 814 451 s 48 s 0.5 s
5555 4 279 261 9 406 s 278 s 1.7 s

150 6666 3 949 317 17 345 s 235 s 1.8 s
7777 4 211 158 13 721 s 366 s 1.7 s
5555 6 215 531 33 723 s 607 s 3.1 s

3.0 200 6666 6 756 263 118 083 s 1 133 s 2.9 s
7777 5 560 824 32 006 s 1 362 s 3.0 s
5555 7 823 791 76 627 s 6 389 s 3.8 s

250 6666 6 903 351 27 745 s 949 s 3.7 s
7777 6 418 276 63 013 s 3 444 s 4.7 s
5555 8 493 173 62 454 s 8 414 s 4.3 s

300 6666 8 915 110 37 300 s 5 542 s 4.8 s
7777 8 242 904 66 829 s 11 533 s 5.1 s

?1.8 GHz computer ([206]) .
??Pentium IV, 3.6 GHz .
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instances listed in Table 9.11 only one instance (σ = 2.5, n = 150, instance 7777) could

not be entirely solved by PrePro, our proposed preprocessing routine for QUBOs.

The residual QUBO problem of this particular instance consists of 7 variables, thus

even making possible to solve it by simply enumerating the 27 possible values of the 7

unknowns.

Table 9.12: Average computing times to find the minimum energy state of larger one-
dimensional Ising chains.

Average over 3 Graphs
Number of Variables Left B&B with

σ Spins (n) After PrePro PrePro +probing?

500 5 13 s
2.5 1 000 24 53 s

1 500 32 124 s
5 000 54 1 941 s
500 0 4 s

3.0 1 000 0 23 s
1 500 0 59 s
5 000 0 1 248 s

?Pentium M 1.6 GHz, 760MB RAM. .

To investigate the scalability of our method we tested it on larger instances having

the same σ values as before, but having up to 5 000 spins. PrePro with probing could

solve to optimality all cases having σ = 3.0. PrePro with probing returns some resid-

ual QUBOs for the other case, the largest residual having 54 variables. These results

show that most likely for smaller values of σ our approach will encounter difficulties.

This simply means that as power-law component becomes less effective our method will

take longer to find the true ground states. For example, some experiments on randomly

generated instances with σ = 2.0 indicate that PrePro reduces the size of the problem

to only about half of the number of spins.

9.4 Linearization enhanced with logical cuts

The last exact approach for QUBO relies on the power of the LP and MIP technology.

This power has origin in two key factors.

First, linear programming is able to determine the various bounds considered in this

work, and especially the C3 bound. LP is the only known polynomial time algorithm
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to compute C3 ([50]). The C3 bound is computed by using the standard linearization

for QUBO (8.1) plus a set of triangle inequalities (see (8.2)). In Chapter 8 we have also

analyzed several lower bounds which include certain subsets of the triangle inequalities

(see Section 8.7). These bounds could be computed very efficiently and are of very good

quality for many “sparse” benchmarks.

Second, the computer hardware and the LP and MIP technology (of the state–of–

the–art solvers) has evolved to a state where previously unprovable problems can now

be handled by the MIP technology (see e.g. [168]).

As we shall see in practice, these two factors can contribute to solving many of the

“sparse” benchmarks and it especially scales well for certain families of QUBOs.

Xpress-QUBO(f,S,P)

Input: A quadratic pseudo–Boolean function f represented as in (1.5). S is
the set of triplets considered to define the triangle inequalities. P is the
set of 4-tuples considered to define the square inequalities.

Step 1: Find an incumbent x+ for f using the tabu search implementation of
Palubeckis [187].

Step 2: Solve the LP

z (f,S,P) = min
{
Lf (x,y)

∣∣∣(x,y) ∈W[3] (S) ∪W[4] (P) ,x ∈ Un
}
.

(9.4)
Save the optimal basic feasible solution B.

Step 3: Remove all triangle and square cuts from (9.4) that have zero dual
values, i.e. remove those cuts that are non-binding. The resulting problem
is a 0–1 MIP.

Step 4: Solve the LP relaxation of the MIP by warm starting it with the basis
B. Load the incumbent x+ as a solution of the MIP and then solve it.

Output: The minimum value of f (i.e. ν (f)) is equal to the optimum of the
MIP, and every minimizer x? of the MIP is also a minimizer of f .

Figure 9.4: Xpress-QUBO algorithm.

The MIP solver considered is part of Xpress-MP software (see e.g. [21]). The

Xpress-QUBO algorithm to solve QUBOs is described in Figure 9.4. It has been
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implemented using the Xpress-Mosel modeling language, and contains 3 input parame-

ters: the quadratic pseudo–Boolean function f , the set of triples S that determines the

subset of triangle cuts considered, and the set of tuples P that determines the subset

of square cuts to be added to the mathematical model. The MIP solver consists of four

main steps:

1. Find an incumbent solution to QUBO by using a multi–start tabu search routine

developed by Palubeckis [187].

2. Define the LP problem by adding the family of cuts specified by the user, and

then solving the LP using the Xpress-Barrier algorithm. Save the optimal basic

feasible solution for warm start in step 4.

3. Remove all non-binding cuts. Enforce integrality on the decisions, thus creating

a 0–1 MIP.

4. Solve the MIP problem by using the incumbent found on step 1 and the optimal

basic feasible solution found on step 2. The optimal solution x of the problem is

also a minimizer of the associated QUBO problem.

9.4.1 Computational results

9.4.1.1 Benchmarks with prescribed density

In this section we consider the application of the Xpress-QUBO Mosel model to solve

QUBOs belonging to the B–250 family. This test set has already been used to test the

B&B code under the use of different bounds (see Table 9.7(a)). Table 9.13 lists the

results obtained.

Xpress-QUBO has been considered with two options: one where the cuts added

to the model are a set of triangle inequalities defined by S1, and another where the cuts

added to the model are a set of triangle inequalities defined by S2.

Table 9.13 also lists the computing times and branching nodes to optimality required

by the BiqMac solver (see [206, 208]). Using very little branching, this solver was able

to prove optimality to all cases taking between 4 523 seconds (instance 4) for the easiest
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Table 9.13: Maximum of QUBO problems with 250 variables and 10% density (Beasley [37]).

BiqMac ([207]) XPRESS-QUBO with S = S1 and P = ∅ XPRESS-QUBO with S = S2 and P = ∅

Time to Computing Time Computing Time

Instance Nodes
Maximum

Maximum Nodes
Incumbent Relaxation MIP†

Maximum Nodes
Incumbent Relaxation MIP†

1 37 9 271 s [45 607,46064] 357 3.2 s 107.6 s 3 600.0 s [45 607,45 992] 287 3.2 s 1 243.3 s 3 600.0 s
2 19 4 823 s [44 810,46312] 375 3.2 s 90.6 s 3 600.0 s [44 810,46 275] 313 3.3 s 1 202.7 s 3 600.0 s
3 19 4 873 s 49 037 117 3.1 s 113.9 s 1 266.3 s 49 037 51 3.3 s 1 287.3 s 792.8 s
4 17 4 523 s [41 274,42696] 340 3.3 s 101.4 s 3 600.0 s [41 274,42 579] 282 3.2 s 1 458.0 s 3 600.0 s
5 21 5 364 s 47 961 37 3.1 s 134.7 s 524.3 s 47 961 9 3.1 s 1 548.6 s 224.2 s
6 223 52 502 s [41 014,43629] 317 3.2 s 146.0 s 3 600.0 s [41 014,43 568] 276 3.3 s 1 203.5 s 3 600.0 s
7 37 9 072 s [46 757,47510] 344 3.1 s 102.4 s 3 600.0 s [46 757,47 426] 280 3.1 s 1 342.2 s 3 600.0 s
8 4 553 320 105 s [35 726,39594] 384 3.1 s 86.2 s 3 600.0 s [35 726,39 517] 381 3.1 s 1 053.4 s 3 600.0 s
9 47 11 577 s [48 916,49738] 319 3.1 s 111.4 s 3 600.0 s [48 916,49 674] 265 3.2 s 1 406.0 s 3 600.0 s
10 63 16 480 s [40 442,42597] 355 3.2 s 89.0 s 3 600.0 s [40 442,42 442] 311 3.2 s 1 008.4 s 3 600.0 s

?Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
†The MIP solver stage was set to run at most 3 600 sec.
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case and 320 105 seconds for the hardest case (instance 8). Comparing these results

with those of Xpress-QUBO we can identify a larger number of branching nodes

required for the later solver. Xpress-QUBO can however process these nodes more

quickly. Hence, our proposed method is faster for two instances (number 3 and 5) than

BiqMac.

As expected, the linear programming stage of solver Xpress-QUBO(S1) is shorter

than that of Xpress-QUBO(S2), but for the MIP stage the later procedure is faster

(at least for instances 3 and 5).

9.4.1.2 MAX–2–SAT

In this section we compare the Xpress-QUBO implementation with the lift–and–

project decomposition approach developed by Bonami and Minoux [46].

In Section 8.7.1 we have already compared the iterated roof–duality bounds and its

improved versions with that one returned by lift–and–project. We were intrigued then

by the fact that the lift–and–project bound is near-identical to the bound κ (f,S2).

Table 9.14 compares Xpress-QUBO(S1) to the approach of [46]. The two methods

have similar results, both in solution time and in the number of branching nodes. A one

to one comparison between the two solvers may be not fair, since different computer

systems and different MIP solvers were used by each one of the approaches.

9.4.1.3 MAX–CUT

This section investigates the application of Xpress-QUBO to solve the classical 2D and

3D Ising models. Traditionally, branch–and–cut have been very successful in computing

the minimum state ground of 2D Ising models with Gaussian interactions ([34, 223]).

It is well known that the standard Ising problem can be formulated as a MAX–CUT

problem on a graph whose vertex set is the set of spins and whose edge set is determined

by the set of non-empty interactions between any two spins. The interactions can be

positive or negative.

In what follows, we will show that Xpress-QUBO is a reasonable alternative to
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Table 9.14: Optimal solutions for the Bonami and Minoux [46] MAX–2–SAT formulas.

Bonami and Minoux [46] XPRESS-QUBO

Variables Clauses Instance Nodes Time? Optimum Nodes Time??

1 1 36.2 s 57 1 7.2 s
2 50 39.7 s 61 49 14.2 s

75 525 3 14 44.2 s 59 6 11.8 s
4 8 41.8 s 56 1 7.5 s
5 276 57.0 s 65 241 28.0 s
1 11 46.4 s 62 1 8.5 s
2 7 48.6 s 60 1 7.6 s

75 550 3 1 21.1 s 59 1 10.3 s
4 9 41.3 s 62 1 8.4 s
5 231 62.1 s 70 398 44.5 s
1 55 66.2 s 77 35 16.9 s
2 11 55.1 s 73 4 12.0 s

75 600 3 19 57.8 s 71 8 14.7 s
4 8 62.4 s 69 1 9.1 s
5 246 63.5 s 75 274 31.6 s
1 344 128.0 s 83 399 80.8 s
2 43 102.0 s 78 71 40.2 s

100 700 3 17 90.3 s 74 6 25.7 s
4 260 106.2 s 80 322 64.5 s
5 764 155.4 s 86 1 130 150.5 s
1 41 177.0 s 75 14 77.4 s
2 991 336.5 s 86 2 043 608.6 s

150 850 3 21 180.5 s 75 6 72.5 s
4 568 262.4 s 85 1 036 277.0 s
5 307 220.9 s 83 403 151.7 s
1 13 786 3 030.0 s [92, 94] 22 218 >7 200.0 s
2 606 451.5 s 86 793 406.3 s

200 1 000 3 18 726 4 189.0 s [94, 96] 18 894 >7 200.0 s
4 4 570 1 150.0 s 92 11 172 3 874.1 s
5 713 445.7 s 81 502 367.3 s

?Sun Sparc 1200 MHz.
??Intel Core 2 CPU T7200, 2.0GHz, 2 GB RAM and running XP.
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solve 2D and 3D Ising problems. Table 9.15 lists the results obtained by Xpress-

QUBO(S1) and Xpress-QUBO(S2) to find the MAX–CUT of 5 × 5 × 5 spin glass

Ising models proposed by Burer et al. [74].

The most important result of Table 9.15 is that five of the problems could be solved

by Xpress-QUBO(S2) without any branching. Xpress-QUBO(S1) is able to solve all

the instances in efficient time but it required more branching nodes to prove optimality.

As in previous cases, Xpress-QUBO(S1) takes longer time during the MIP stage, and

Xpress-QUBO(S2) takes longer time during the LP relaxation stage.

The next set of test problems includes the broadly investigated torus graphs con-

sidered in the DIMACS library of mixed semidefinite-quadratic-linear programs. The

torus graphs are 3D-toroidal graphs, originated from the Ising model (see Table 3.15).

Two graphs have ±1 interactions and the other two have Gaussian interactions. For

each of the above types of interactions there is a graph with 512 spins and a larger

graph having 3 375 spins. Next we will show that Xpress-QUBO was able to find the

MAX–CUT of graph pm3-8-50 for the first time. pm3-8-50 consists of 512 vertices and

the edges interactions are ±1. The MAX–CUT of the smaller graph with Gaussian

interactions (i.e. g3-8) was already known.

Table 9.16 provides the results obtained using XPRESS-QUBO(S1). The instance

having Gaussian interactions can be solved in about one hour and half. To best of our

knowledge the instance with ±1 interactions was solved for the first time by computing

nearly 1.9 million nodes during a period of almost 22 days.

The final set of benchmarks considered in this section is derived from 2D toroidal

graphs with ±1 interactions. These problems were created by Helmberg and Rendl

[140] and have been described in Table 3.13. The solver XPRESS-QUBO(S1) was also

considered in this case. The MIP stage was set to run for a maximum computing time

of 10 000 seconds. At this point, XPRESS-QUBO will return an upper bound and a

lower bound for the MAX–CUT weight. The results can be seen in Table 9.17.

The largest relative gap returned by XPRESS-QUBO(S1) on these Ising instances is

0.7% and corresponds to the largest instance G67. More interesting than being able to
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Table 9.15: MAX–CUT of 5× 5× 5 spin glass Ising models (Burer et al. [74]).

XPRESS-QUBO with S = S1 and P = ∅ XPRESS-QUBO with S = S2 and P = ∅

Computing Time Computing Time

Instance MAX–CUT Nodes
Incumbent Relaxation MIP

Nodes
Incumbent Relaxation MIP

sg3dl051000 110 77 1.8 s 0.5 s 10.9 s 10 1.8 s 19.1 s 9.0 s
sg3dl052000 112 279 1.8 s 0.6 s 23.0 s 6 1.8 s 19.9 s 6.9 s
sg3dl053000 106 918 1.8 s 0.5 s 62.1 s 459 1.8 s 16.6 s 57.8 s
sg3dl054000 114 8 1.8 s 0.6 s 5.9 s 1 1.8 s 25.4 s 0.3 s
sg3dl055000 112 6 1.8 s 0.5 s 5.0 s 1 1.8 s 18.3 s 0.4 s
sg3dl056000 110 138 1.8 s 0.5 s 15.2 s 8 1.8 s 16.6 s 9.0 s
sg3dl057000 112 54 1.8 s 0.5 s 11.4 s 1 1.8 s 27.5 s 0.3 s
sg3dl058000 108 298 1.8 s 0.5 s 25.0 s 77 1.8 s 16.2 s 19.9 s
sg3dl059000 110 12 1.8 s 0.6 s 5.6 s 1 1.8 s 20.3 s 0.3 s
sg3dl0510000 112 20 1.8 s 0.6 s 7.2 s 1 1.8 s 24.6 s 0.3 s

?Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
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Table 9.16: Finding the MAX–CUT for the DIMACS torus graphs.

XPRESS-QUBO(S1)

Graph Spins Interactions MAX–CUT Nodes Time?

g3-8
512

Gaussian 41 684 814 3 919 5 809 s

pm3-8-50 ±1 458 302 156 1 871 155 s
?Computed on an AMD Athlon 64 X2 Dual Core 4800+,

2.41 GHz, 4GB RAM and runs XP.

compute near optimal solutions is the fact that XPRESS-QUBO(S1) can find very large

cuts quickly. We have improved in this way the best known solutions to these problems

to all the unsolved instances. It is remarkable that this procedure is able to find much

better solutions in about the same computing time than several meta-heuristic methods,

which have also studied these problems (see e.g. [188]).

Table 9.17: MAX–CUT of the toroidal G±1–graphs of Helmberg and Rendl [140].

XPRESS-QUBO with S = S1 and P = ∅

Computing Time?

Instance Vertices MAX–CUT Nodes
Incumbent Relaxation MIP†

G11 100×8 564 30 8.5 s 1.6 s 12.2 s
G12 50×16 556 39 8.4 s 1.8 s 17.7 s
G13 25×32 582 36 8.5 s 1.8 s 22.7 s
G32 100×20 [1 410,1 412] 83 837 35.2 s 5.3 s 10 000.0 s
G33 80×25 [1 382,1 383] 134 133 35.6 s 6.0 s 10 000.0 s
G34 50×40 [1 384,1 388] 66 149 35.2 s 5.9 s 10 000.0 s
G57 100×50 [3 492,3 505] 20 598 111.4 s 21.7 s 10 000.0 s
G62 100×70 [4 862,4 886] 10 109 178.7 s 36.9 s 10 000.0 s
G65 100×80 [5 550,5 581] 4 199 217.4 s 47.1 s 10 000.0 s
G66 90×100 [6 352,6 387] 5 065 258.8 s 159.7 s 10 000.0 s
G67 100×100 [6 932,6 981] 7 683 303.7 s 323.8 s 10 000.0 s

?Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
†The MIP solver stage was set to run at most 10 000 sec.

9.4.1.4 Minimum 3–partition

The Minimum 3–Partition (M3P) problem has been introduced in Section 8.8.1. M3P

as been formulated as a QUBO problem by introducing a pair of 0–1 variables for every

vertex.

In this section, we investigate how XPRESS-QUBO handles the M3P problem of



326

certain sparse graphs created by Anjos et al. [20]. Two versions of this approach are

considered: XPRESS-QUBO(S1,Z) and XPRESS-QUBO(S2,Z). Z is a set of tuples

that identifies the set of square inequalities to be added to the LP as cuts (see (8.19)).

The overall results are listed in Table 9.18. This table includes the computing times

of the Anjos et al. [20] method (called SBC), which is a branch–and–cut algorithm

based on semidefinite programming. Clearly, both XPRESS-QUBO methods require

the computation of far more branching nodes, but the relaxations can be computed

substantially faster than the computation of the SBC bounds. In conclusion, the QUBO

approach seems to be an effective tool to solve the M3P of 2D and 3D toroidal graphs.

Table 9.18: Optimal solutions for the M3P problems proposed by Anjos et al. [20].

SBC [20] XPRESS-QUBO(S1,Z) XPRESS-QUBO(S2,Z)

Instance Weights M3P Nodes Time? Nodes Time?? Nodes Time??

4×4 -954 077 1 16 s 1 1.7 s 1 2.1 s
5×5 -1 484 348 2 23 s 5 2.7 s 13 5.3 s
6×6 Gaussian -2 865 560 1 312 s 1 4.4 s 9 10.4 s
7×7 -3 282 435 1 3 128 s 9 8.2 s 13 20.9 s
8×8 -5 935 339 1 8 503 s 27 12.7 s 45 43.9 s
4×4 -13 1 < 0.005 s 1 1.8 s 1 2.4 s
5×5 -20 1 4 s 28 4.4 s 14 5.6 s
6×6 ±1 -29 1 22 s 107 7.5 s 68 10.8 s
7×7 -40 1 112 s 277 13.8 s 170 25.8 s
8×8 -55 1 1 598 s 243 22.6 s 330 50.1 s
9×9 -64 1 27 349 s 50 175 1 116.5 s 25 794 1 256.4 s

2× 3× 4 -20 1 3 s 8 5.6 s 8 6.9 s
2× 4× 4 -28 4 234 s 522 19.1 s 592 25.4 s
3× 3× 3 -26 1 11 s 20 8.0 s 53 11.9 s
3× 3× 4 ±1 -36 1 50 s 453 30.0 s 1 222 60.5 s
3× 4× 4 -48 1 719 s 17 499 862.9 s 15 629 639.7 s
3× 4× 5 -63 16 32 133 s 13 123 1 126.5 s 32 709 2 657.1 s
4× 4× 4 -65 19 30 975 s 171 846 15 247.2 s 136 671 11 157.3 s

?Sun Sparc 1200 MHz.
??Computed on an AMD Athlon 64 X2 Dual Core 4800+, 2.41 GHz, 4GB RAM and runs XP.
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Chapter 10

Applications

Three applications related to the optimization of quadratic pseudo–Boolean functions

are given in this chapter.

The first section discusses how to solve the minimum vertex cover problem in more

detail, both theoretically and in practice.

The next application is related to clustering. We propose two approaches: first

wee show how QUBO can determine clusters in the classical sense, by proposing a

hierarchical clustering approach; and secondly we show how to find subsets of vertices

“highly” connected on a given graph.

The last section presents a simple QUBO approach to the image binarization prob-

lem.

10.1 Minimum vertex cover problem

Let G = (V,E) be a finite, undirected, simple and loopless graph, where V and E

respectively denote the vertex and edge sets. Let us define a weight function w : V 7→

R+ on the set of vertices, and denote the weight of set S ⊆ V as w [S]
def
=
∑

i∈C wi. For

any S ⊆ V we define the neighbors of S to be the vertex set

N (S)
def
= {i ∈ V \ S |(i, j) ∈ E for some j ∈ S } .

To simplify the notation, the set of nodes adjacent to vertex i (i ∈ V ) will be sometimes

denoted as N (i), instead of N ({i}).

A vertex cover C ⊆ V of graph G is a set of vertices that has an endpoint in every

edge of G. Naturally, the minimum vertex cover (or MIN-VC) problem seeks for a
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vertex cover of minimum size.

MIN-VC is a classical NP-hard optimization problem ([104]) arising in many appli-

cations (see e.g. [11, 45, 169]).

The minimum weight vertex cover problem (or MIN-WVC) seeks for a vertex cover

of minimum total weight w (C). MIN-WVC can be related to many hard combinatorial

optimization problems, and in particular with QUBO by solving the mathematical

problem (5.6). Thus, in theory every QUBO can be transformed to a MIN-WVC in

polynomial time and size, and find the optimum by determining the optimal vertex

packing problem.

A stable set S ⊆ V of graph G is a set of pairwise nonadjacent vertices, i.e. such that

(i, j) /∈ E, for all i, j ∈ S. The maximum stable set is a stable set S with maximum

cardinality |S|. The maximum weighted stable set is a stable set S with maximum

weight w [S].

A stable set is also called as an independent set or as a vertex packing. The size of

the maximum stable set of graph G is called the stability number of G and is denoted

by α (G). If weights w are assigned to the vertices, then the maximum weighted stable

set of g is denoted by αw (G).

It is not difficult to verify that the complement C = V \ S of a stable set S is a

vertex cover C of graph G. Thus, finding a minimum vertex cover of a graph G is as

difficult as finding a maximum stable set on the same graph, and the knowledge of one

solution to one problem directly implies a solution to the other problem.

It is well known that a maximum weighted stable set can be found by solving the

0–1 linear programming problem

max
∑
u∈V

wuxu

subject to

xu + xv 6 1, (u, v) ∈ E,

xu ∈ B, u ∈ V.

(SIP)
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Each feasible solution x of (SIP) correspond to the 0–1 characteristic vector asso-

ciated to a stable set of G, i.e. xu = 1 if and only if u ∈ V belongs to a stable set of

G.

The fractional maximum stable set problem is obtained from (SIP) by relaxing the

integrality constraints to xu > 0,∀u ∈ V , and is denoted by (SLIP).

The following result is due to Balinski [30, 29] and arises from the fact that all basic

feasible solutions of (SLIP) are half-integral.

Proposition 10.1 ([30]). Every optimal solution x? to (SLIP) is x?i = 0, 1
2 , or 1 for

all i = 1, · · · , n.

Nemhauser and Trotter [182] have shown that those variables assuming binary values

in an optimal solution of (SLIP), retain the same values in an optimal solution of (SIP).

Proposition 10.2 ([182]). Suppose x? is an optimal
(
0, 1

2 , 1
)
-valued solution to (SLIP)

and U = {i ∈ V |x?i = 1}. There exists an optimal stable set in G that contains U .

The significance of the previous proposition results from the possibility of reducing

the size of graph G to a graph G′ = (V ′, E′), such that V ′ ⊆ V , and αw (G) =

αw (G′) + w [U ], where U is a subset of vertices belonging to a stable set of G, and

which is determined by the set of variables with value one in an optimal solution of

(SLIP).

Nemhauser and Trotter [182] have also characterized the set of irreducible graphs

for which there is no 0–1 value for any variable and any optimal solution to (SLIP).

Proposition 10.3 ([182]). The solution x? =
(

1
2 , · · · ,

1
2

)
is the unique optimal solution

to (SLIP) if and only if w [S] < w [N (S)] for all non-empty stable sets S of G.

Given a graph G = (V,E) we shall propose an efficient algorithm based on QUBO

to find an irreducible graph G?, such that αw (G) = αw (G?) + w [U ], where U is a

set of vertices with value 1 in an optimal solution to (SLIP). Nemhauser and Trotter

[182] have already proposed an algorithm for this procedure whose time complexity is

O (|V |max-flow (|V | , |E|)).
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The procedure proposed in this section consists of a 2-stage procedure. In the first

stage a maximum flow is found in a network having 2 |V | + 2 nodes and 2 (|E|+ |V |)

arcs. In the second stage the strong components of the residual network are found, and

this information leads to finding an irreducible graph, which may be characterized by

the union of disjoint and irreducible (smaller) graphs.

The combined complexity of the proposed method is thereforeO (|E|+ max-flow (|V | , |E|)).

Definition 10.1. For x ∈ Un, let us define the integral set I (x) as the set of indices

i (i = 1, · · · , n) such that xi has a binary value.

Proposition 10.4 ([199]). If x? and x?? are two minima to (SLIP), then there exists

a minimizer x+ to (SLIP) such that

I
(
x+
)

= I (x?) ∪ I (x??) .

The previous result due to Picard and Queyranne [199] implies that a solution to

(SLIP) having a maximum number of variables with 0–1 values can be found simply by

finding an irreducible graph of the original graph associated to (SLIP).

Proposition 10.5 ([199]). There is a unique maximal set of variables which are integral

in optimal (SLIP) solutions.

The proposed reduction algorithm will therefore find the unique irreducible graph G′

of graph G. In practice, this reduction technique enhanced with some other preprocess-

ing tools (e.g., probing and second order derivatives) can result in large simplifications

for MIN-WVC (or similarly for weighted graph stability) problems of certain classes

of graphs. We have tested the proposed algorithm in numerous classes of graphs. We

shall give particular attention to finding the minimum vertex cover of power-law and

certain classes of planar graphs.
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10.1.1 Solving MIN-WVC using QUBO

The minimum weighted vertex cover of graph G = (V,E) can be found by solving the

QUBO problem (see Section 2.2.2)

min
x∈BV



∑

i∈V

wixi +
∑

(i,j)∈E

max (wi, wj)xixj


 . (10.1)

If an optimal solution x? to (10.1) is the characteristic vector of a vertex cover C?

of G, then its optimal weight is w (C?). If x? has however two entries (say xi and xj,

i 6= j) with value 0, and G has an edge (i, j), then clearly x? does not represent a vertex

cover. In this case it is possible to find another optimal solution x?? of problem (10.1)

which covers all edges covered by C? and edge (i, j).

To verify this fact, let us define E? as the set of edges not covered by the vertex

set C?, i.e. E? =
{
(i, j) ∈ E

∣∣∣x?i = x?j = 0
}

. Thus, the optimum of problem (10.1) is

ν (G) =
∑

i∈C? wi +
∑

(i,j)∈E? max (wi, wj).

Let us consider an edge (u, v) ∈ E? (assuming that E? 6= ∅). We shall show next

that we can add u (or v) to C? and get an objective value not larger than ν (G). Let

x??i =





x?i , k 6= u,

1, k = u.

The total weight of C?? = C? ∪ {u}, provided by the value of (10.1) in x??, is

∑
i∈C?∪{u}

wi +
∑

(i,j)∈E?

max (wi, wj)−
∑

(u,j)∈E?

max (wu, wj)

= ν (G) +wu −
∑

(u,j)∈E?

max (wu, wj)

6 ν (G) +wu − wu |E
?|

= ν (G) +wu (1− |E?|)

6 ν (G) .

Since C?? does not increase the total weight, then x?? is also an optimal solution

of problem (10.1). By iteratively applying the previous procedure (at most |V | times)
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eventually one will obtain an optimal solution, which corresponds to a minimum vertex

cover of G.

In what follows we consider the implication network model corresponding to the

QUBO problem (10.1), described in Section 5.3. The network has a source x0, a sink

x0, a pair of nodes corresponding to each variable xi and its complement xi (i ∈ V ),

has an arc with capacity wi

2 from the source to every node of a complemented variable,

has an arc with capacity wi

2 from every node of a simple variable to the sink, has two

arcs with capacity
max(wi,wj)

2 for every edge (i, j), one from the xi node to the xj node

and another from the xj node to the xi node.

Example 10.1. Consider the graph G of Figure 10.1(a), which has 6 vertices and 9

edges. There exists a unique minimum vertex cover C = {v1, v3, v5}. It is also trivial to

verify that S = {v2, v4, v6} is the unique stable set of G of maximum cardinality. The

optimum value of (SLIP) is 3 and it has an optimal solution given by
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
.

Figure 10.1(b) provides the implication network associated to problem (10.1).

The main results derived in Chapters 5 and 7 for QUBO are specialized in the

following proposition for MIN-WVC.

Proposition 10.6.

(i) The optimal value of (SLIP) coincides with the roof-dual of problem (10.1) (see

Section 5.2).

(ii) The roof-dual of problem (10.1) coincides with the value of maximum flow ϕ?

between the source x0 and the sink x0 of the associated implication network N

(see Proposition 5.8).

(iii) The set P of nodes reachable from the source of the residual network N [ϕ?] defines

the set of strong persistencies, i.e. if xi ∈ P then vertex i belongs to all minimum

weighted vertex covers of graph G, and if xj ∈ P then vertex j does not belong

to any minimum weighted vertex cover of G (or similarly, vertex j belongs to all

stable sets of G) (see Proposition 5.9).
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v1
v2

v3

v4

v5

v6

(a) Graph G with 6 vertices and 9 edges.
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x5 x5

x6 x6
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0.50.5

0.50.5

0.50.5

0.50.5

0.50.5

(b) Implication network associated to problem (10.1) of graph G.

Figure 10.1: Representing a MIN-WVC problem using the implication network model.
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(iv) If a strong component K of the residual network N [ϕ?] contains both a node xi

and its complement xi, then vertex i is irreducible, i.e. x?i = 1
2 for all optimal

solutions x? of (SLIP). All other nodes xj of K (i 6= j) must have a complement

node xj and consequently are all irreducible too (see Proposition 5.5).

(v) If the residual network N [ϕ?] contains dual components K and K ′, then there

exists a solution to (SLIP) with integral values for all vertices of G which appear

in literals of K. Namely, if there exists a directed path from K ′ to K and there is

no directed path from x0 to K ′, then xi ∈ K implies that there exists a minimum

weighted vertex cover of G containing vertex i, and xi ∈ K implies that there exists

a minimum weighted vertex cover which does not include vertex i (see Theorem

7.1).

Proof. Only point (iv) does not follow trivially from the results presented in the previous

chapters. Let us show this result, which applies to any quadratic pseudo–Boolean func-

tion f , by using a network flows argument. Since K is a strong component, then there

exists a path from xi to its complement xi, and hence the roof dual of f (x [{i} ← {1}])

is strictly larger than the roof–dual of f . In addition, there exists a path from xi to its

complement xi, and hence the roof–dual of f (x [{i} ← {0}]) is strictly larger than the

roof–dual of f . So, a 0-1 assignment to xi for f would imply a larger roof–dual bound

than the bound obtained by fixing xi in f to the only possible value left by Proposition

10.1, i.e. xi = 1
2 .

Example 10.2. Consider again graph G of Figure 10.1(a). The maximum flow ϕ

of the implication network N [ϕ] associated to this graph (see Figure 10.2) has value

3. The residual network (which is not uniquely defined) is given in Figure 10.2 and

corresponds to the quadratic posiform

φG = x2x3 + x5x6 + x1x4 + x1x2 + x1x3 + x1x5 + x1x6 + x3x4 + x4x5.

The minimum of φG in B6 is 0, and corresponds to the solution x+ = (1, 0, 1, 0, 1, 0),

which is a characteristic vector associated to a minimum vertex cover C = {1, 3, 5} of
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x0 x0

x1 x1
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0.5 0.5
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0.5 0.5

0.5 0.5

0.5 0.5
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0.50.5
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Figure 10.2: Residual network of the implication network model of a MIN-WVC prob-
lem.

G. This solution could be found using property (v) of Proposition 10.6. The strong

components of N [ϕ] are K = {x1, x2, x3, x4, x5, x6} and K ′ = {x1, x2, x3, x4, x5, x6}.

There exists a directed path (e.g., {(x5, x1)}) from K ′ to K and there is no directed path

from x0 to K ′. Thus C = {i |xi ∈ K } is a minimum vertex cover of G, and since there

exists a directed arc from K ′ to K then C is also the unique minimum vertex cover of

G by Theorem 7.1.

Theorem 10.1. Given a graph G (V,E) with vertex weights w, a set of disjoint and

irreducible graphs G(k)
(
V (k), E(k)

)
, k = 1, · · · , l, of G can be found in

O (max-flow (|V | , |E|) + strong-components (|V | , |E|)) .

Proof. Clearly, the implication network N can be built in linear time of the size of the

graph G. A maximal set of persistencies of (SLIP) can be derived from the residual

network obtained by applying a max-flow algorithm toN [ϕ]. By (iii) of Proposition 10.6



336

a set of strong persistencies can be obtained from the source side of the residual network.

After removing the nodes of N [ϕ] associated to the strong persistencies, we apply a

strong components algorithm and use (v) of Proposition 10.6 to establish the remaining

persistencies for (SLIP). After removing all nodes of the residual network N [ϕ] which

have a persistency associated to it, the remaining network consists of a set of disjoint

networks Nk, one for each strong component Kk left (k = 1, · · · , l). Note that by (iv)

of Proposition 10.6 all strong components Kk (k = 1, · · · , l) must contain both a node

associated to a variable xi and a node associated to the complement xi. This property

implies that the strong components must be disjoint. So, V (k) = {i |xi, xi ∈ Nk } and

E(k) =
{
(i, j) ∈ E

∣∣i, j ∈ V (k)
}

(k = 1, · · · , l).

Theorem 10.2. Given a graph G (V,E) with vertex weights w, the set of disjoint and

irreducible graphs G(k)
(
V (k), E(k)

)
, k = 1, · · · , l, of G is uniquely defined.

Proof. This result is an immediate consequence of Proposition 10.4, or it can be ob-

tained directly from the more general result established by Corollary 5.1 given in Section

5.2.1.

In the literature there are two other approaches for identifying data reductions. One

is based on the so called critical independent sets (see e.g. [77]) and the other one is

based on the identification of crown structures followed by their removal from the graph

(see e.g. [86]). Comparing these 2 approaches with roof-duality is an interesting topic

of further research. We did not pursue a deep investigation of the other two approaches

since we believe that roof–duality (including both strong and weak persistency) is not

weaker in the data reduction sense than any of the other two approaches.

10.1.2 Struction

Hammer [120] has shown that posiform maximization is equivalent to the maximum

weighted stable set problem on a graph. Using a different approach than that of [120],

we have already seen in Section 5.2.1 that this claim is true using a certain type of
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graph. Hammer [120] has shown this result differently through the concept of conflict

graph.

Let us consider a pseudo–Boolean function f represented by posiform

φf (x1, · · · , cn) = K +

m∑

i=1

wiTi,

whereK is a constant, wi is a positive coefficient (i = 1, · · · ,m), and Ti =
∏
j∈Ai

xi
∏
j∈Bi

xi,

with Ai, Bi ⊆ {1, · · · , n} and Ai ∩Bi = ∅ (i = 1, · · · ,m).

To posiform ψ = φf −K we associate a conflict graph Gf = (V,E) with the set of

vertices V = {1, · · · ,m} and the set of edges E = {(i, j) |(Ai ∩Bj) ∪ (Aj ∩Bi) 6= ∅}.

In other words, an edge (i, j) in Gf represents the fact the terms Ti and Tj are in

conflict, i.e. TiTj = 0. To complete the construction, a positive weight wi is associated

to every vertex i ∈ V .

From the way Gf has been defined it is clear that

max
x∈Bn

f (x) = αw (Gf ) ,

i.e. the total weight of the maximum weighted stable set of Gf is equivalent to the

maximum of the pseudo–Boolean function f .

The inverse reduction is also true ([120]), i.e. to every maximum weighted graph

stability problem there is a pseudo–Boolean function whose maximum has the same

value has the total weight of the optimal stable set.

The 1-to-1 correspondence between these two combinatorial optimization problems

made possible the use of Boolean identities to derive useful graph transformations, which

preserve the stability number or change it by a constant (see e.g. [124, 142, 143]).

This study will concentrate on such a method derived by Ebenegger et al. [94]

and named by Hammer et al. [126] as the struction of a graph. This interesting ap-

proach for determining α (G), consists in transforming a graph G into a graph G′ with

α (G′) = α (G)− 1. By repeated applications of such an operation, one eventually gets
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a clique (whose stability number is 1) and the determination of α (G) follows by count-

ing the number of transformations applied during this process. By using the struction

repeatedly, the size of the resulting graph may increase exponentially in the number

of vertices (and edges). However, specialized versions of this algorithm have provided

polynomial algorithms for the stability number of some classes of graphs (see e.g. [141]).

Struction(G, i)

Input: A graph G = (V,E) and a vertex i ∈ V .

Step 1: W ← {vj,k |j < k and j, k ∈ N (i) and (j, k) /∈ E }.

Step 2: R← V \N (i).

Step 3: V ′ ← R ∪W .

Step 4: E′′ ← {(vj1,k1, vj2,k2) |j1 6= j2 or (k1, k2) ∈ E }.

Step 5: E′′′ ← {(vj,k, u) ∈W ×R |(j, u) ∈ E or (k, u) ∈ E }.

Step 6: E′ ← E′′ ∪ E′′′ ∪ {(u, v) ∈ E |u, v ∈ R}.

Step 6: G← G′ (V ′, E′).

Output: It returns transformed graph G having a stability number re-
duced by one.

Figure 10.3: On iteration of struction of a graph.

Given a graph G = (V,E) (with all weights w = (1, · · · , 1) and a vertex i (called

the center of struction) the method proceeds by transforming G as indicated in Figure

10.3. The resulting graph has a stability number reduced by one when compared with

the stability number of the original graph. This result can easily be established by

using the pseudo–Boolean relation indicated above (see e.g. [14, 94, 126]).

10.1.3 Simplified reduction techniques for MIN-VC

In this subsection we shall provide simple rules to detect cases that can automatically

simplify the MIN-VC problem.

Rule 1. If vertex i of graph G = (V,E) belongs to a single edge (i, j) ∈ E, then there

is a minimum vertex cover of G that includes vertex j (but that does not include vertex
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i).

Rule 2. If vertex i of graph G = (V,E) is adjacent to exactly two vertices j and k, and

(i) if j and k are non-adjacent, then there is a minimum vertex cover of G that (1)

either includes both vertices j and k or none and that (2) includes vertex i if and

only if vertices j and k are not in a minimum vertex cover;

(ii) if j and k are adjacent, then there is a minimum vertex cover that includes both

vertices j and k (but that does not include vertex i).

Rule 3. If the induced subgraph defined by the set of adjacent vertices N (i) of vertex i

of graph G = (V,E) is a clique C, then there is a minimum vertex cover that includes

all vertices C (but that does not include vertex i).

A vertex in a graph is called simplicial if its neighborhood is a clique. Rule 3 applies

therefore to simplicial vertices.

Definition 10.2 ([124]). A magnet in a weighted graph G = (V,E) is a pair [i, j] of

adjacent vertices with the same weight and such that every vertex in N (i)\(N (j) ∪ {j})

is linked to all vertices in N (j) \ (N (i) ∪ {i}).

Consider the following transformation which, given a graph G = (V,E) and a mag-

net [i, j] in G, builds a new graph G′ = T (G, [i, j]) such that

1. remove all the edges between vertex i and the vertices in N (i) \N (j); and

2. remove vertex j (together with all edges incident to it).

Rule 4 ([124]). If [i, j] is a magnet in a weighted graph G = (V,E), then there is a

minimum vertex cover of G that contains vertex j, i.e.

νw (G) = 1 + νw (T (G, [i, j])) .

Definition 10.3. A vertex i is dominated by vertex j in a graph G = (V,E) if N (i) ⊆

(N (j) ∪ {j}).
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Rule 5. If a graph G = (V,E) contains two adjacent vertices i and j such that i is

dominated by j, then there is a minimum vertex cover of G that contains vertex i.

Definition 10.4. A magnet (C,S) in a graph G is a d–magnet if every vertex i ∈ C

is dominated by some vertex j ∈ S.

Definition 10.5. A graph H is a demagnetization (respectively d–demagnetization) of

a graph G if

(i) H does not contain any magnet (respectively d–magnet); and

(ii) there exists a sequence G = G1, · · · , Gq = H of graphs such that Gi+1 = T (Gi, [xi, yi])

for a magnet (respectively d–magnet) [xi, yi] in Gi (i = 1, · · · , q).

The concept of removing vertices is a helpful tool for reducing the dimension of the

minimum vertex cover problem, and clearly one would like to use it as often as possible.

If none of the previous simplification rules applies, there is still a chance that inserting

or deleting new edges might yield a graph which does allow some of the above rules to

apply. Butz et al. [78] provided some conditions under which inserting (or deleting) a

new edge does not change the size of the minimum vertex cover of the graph.

Rule 6 ([78]). If a graph G = (V,E) contains a vertex k which is adjacent to i, but not

to j, such that the neighborhood of k is part of the union of the neighborhoods of i and

j and possibly {i} (i.e. N (k) ⊆ {i} ∪N (i)∪N (j)), then the insertion of edge (i, j) (if

is absent in G), or the removal of this edge (if it is present in G), does not alter the

size of the minimum vertex cover of the graph G.

An ordered triple (k, i, j), whose vertices k, i and j satisfy the conditions of Rule

6, has been called a switching triple ([14]). Clearly, Rule 6 allows us to perform edge

removal and edge insertion to a switching triple as additional preserving graph stability

transformations, which in its turn may make possible some of the other reduction rules

to apply further simplifications.
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10.1.4 Implementation algorithms

In this section we describe two basic approaches to find the size of the minimum vertex

cover of graphs (with weights being disregarded). One approach uses roof-duality (see

Section 10.1.1) and the other uses struction (see Section 10.1.2).

Both approaches use data reduction rules to simplify as much as possible the problem

before attempting the more time consuming techniques (i.e. roof-dual and struction).

Figure 10.4 describes the sequence of rules that we have considered to speedup the

computing times. Each one of these rules was previously described in Section 10.1.3.

This algorithm has been called Apply-Rules-VC and it has 3 input parameters: a

simple loopless graph G, the total number of attempts t to simplify along the rules

sequence, and the maximum size clique c to be searched for in the neighborhood of

each vertex.

The sequence of rules that is defined by Apply-Rules-VC starts by applying com-

putationally less time consuming rules, gradually applying more expensive rules along

the sequence. Apply-Rules-VC repeats this sequence whenever any simplification has

been identified by the rules, up to a limit of t iterations.

Apply-Rules-VC applies Rule 3 only to simplicial vertices with at most c neigh-

bors. If c and t are large enough, then the transformed graph is a demagnetization at

the end of the procedure.

Figure 10.5 describes the algorithm of the roof-dual based algorithm to find a mini-

mum vertex cover C of a given graph G. This method has been called Min-VC-Using-

Roof-Duality, and it contains three input parameters like routine Apply-Rules-VC.

It will apply any data reduction rules followed by roof-duality strong persistencies re-

duction as much as possible and as established by parameters t and c.

After this stage, if necessary Min-VC-Using-Roof-Duality applies the PrePro

routine to the transformed graph as explained before in Section 7.7.1. If the problem is

not completely solved after applying all the simplification and preprocessing tools, then

an enumerative exact procedure is applied to solve the residual problem. A minimum

vertex cover is finally computed by extending the partial covering obtained from the
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Apply-Rules-VC(G, (V0, V1, P ) , t, c)

Input: A graph G, the total number of iterations t, and the maximum
size clique c to be searched for in the neighborhood of vertices.

Step 1: For k=1 to t do

(i) Apply Rule 1 to every vertex of G having |N (v)| = 1.

Update G and (V0, V1) accordingly.

(ii) Apply Rule 2 (i-ii) to every vertex of G having |N (v)| = 2.

Update G and (V0, V1, P ) accordingly.

(iii) For j=3 to c do

Apply Rule 3 to every vertex v of G having |N (v)| = j.

Update G and (V0, V1) accordingly.

(iv) Apply Rule 4 to a pair of vertices u, v of G
having |N (u)| > 3 and |N (v)| > 3.

Update G and (V0, V1) accordingly.

(v) If G has not been simplified by any of the rules then STOP.

Output: It returns a triple (V0, V1, P ) such that:

V0 – Is a set of vertices not belonging to C,

V1 – Is a set of vertices belonging to C, and

P – Is a set of equality relations xi = xj (i.e. i ∈ C ⇐⇒ j ∈ C),
where C is a minimum vertex cover of G.

Figure 10.4: Data reduction algorithm for MIN-VC.
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solution of the residual problem (see Corollary 7.1). The routine that includes PrePro,

enumeration and vertex cover expansion has been named in Section 7.7.3 as PrePro?.

Min-VC-Using-Roof-Duality(G, t, c, C)

Input: A graph G, the total number of iterations t, and the maximum
size clique c to be searched for in the neighborhood of a vertex.

Step 1: Remove loops and remove duplicate edges of G.

Step 2: Call Apply-Rules-VC(G, (V0, V1, P ) , t, c).

Step 3: Find strong persistencies S in NG.

Let V1 ← V1 ∪ {i |xi ∈ S } and V0 ← V0 ∪ {i |xi ∈ S }.

If S 6= ∅ then Go to Step 2.

Step 4: If V (G) 6= ∅ then Call PrePro? (φNG
, (V0, V1, P ) ,Θ).

Output: It returns a minimum vertex cover C of graph G:

V0 – A set of vertices not belonging to C,

V1 – A set of vertices belonging to C, and

P – A set of equality relations xi = xj (i.e. i ∈ C ⇐⇒ j ∈ C) or
xi = xj (i.e. i ∈ C ⇐⇒ j /∈ C).

Figure 10.5: Exact method for MIN-VC using data reduction techniques and roof-
duality.

Figure 10.6 describes the algorithm of the struction based algorithm to find the

size ν of the minimum vertex covers of graph G. At every step, this algorithm applies

simplification rules as much as possible (by calling routine Apply-Rules-VC), and

(when required) is followed by an iteration of the struction algorithm (by calling routine

Struction). This sequence is repeated until the reduced graph has no vertices left.

The size of the minimum vertex cover c is updated along this iterative process.

The implementation of each iteration of the struction algorithm is similar in nature

to that algorithm proposed by Alexe et al. [14], and which was named the compact-

ification+guided struction method. Select-Center(G) will return a vertex i of G

for which the application of struction has i as the central vertex having either (i) any

non-increasing transformation of the vertex set or (ii) a minimum increase of the vertex

set size after the transformation.
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Min-VC-Using-Struction(G, t, c, ν)

Input: A graph G, the total number of iterations t, and the maximum
size clique c to be searched for in the neighborhood of a vertex.

Initialization: Let ν ← 0.

Step 1: Remove loops and remove duplicate edges of G.

Step 2: Let V0 = ∅, V1 = ∅ and P = ∅.

Call Apply-Rules-VC(G, (V0, V1, P ) , t, c).

Update ν according to (V0, V1, P ).

Step 3: Call Struction(G,Select-Center (G)). Let ν ← ν − 1

Step 4: If V (G) 6= ∅ then Go to Step 2.

Output: It returns in ν the size of the minimum vertex cover of G.

Figure 10.6: Exact method for MIN-VC using data reduction techniques and struction.

The data structure adopted in the implementation of both routines Min-VC-Using-

Roof-Duality and Min-VC-Using-Struction is based on a ordered vector of ver-

tices, where each entry i is a pointer to another ordered vector, which contains the

neighbors N (i).

The algorithms were implemented in C++, compiled using the Microsoft Windows

32-bit C/C++ Optimizing Compiler (version 12) for 80x86, and linked with the Mi-

crosoft Incremental Linker (version 6).

10.1.5 QUBO solvers considered for testing

In the sections that follow we shall analyze the computing times obtained with our

algorithm implementations to find minimum vertex covers.

To compare different alternative approaches based on QUBO to solve MIN-VC we

have considered several solvers, some of which are publicly available and have been

considered top solvers for MAX–2–SAT and MAX–CUT.

The names of the solvers and their brief description are the following:

• MaxSatZ – A branch-and-bound solver for MAX–SAT developed by LI, Manya

and Planes (see [170]). At each node of the proof tree it transforms the formula
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into an equivalent formula that preserves the number of unsatisfied clauses by

applying some efficient refinements of unit resolution. It implements a lower

bound computation method that consists of incrementing the lower bound by one

for every disjoint inconsistent subset that can be detected by unit propagation.

Moreover, the lower bound computation method is enhanced with failed literal

detection. The variable selection heuristics takes into account the number of

positive and negative occurrences in binary and ternary clauses. MaxSatZ and

its variants are the best performing solvers in the un-weighted MAX–SAT category

in the 2006 and 2007 MAX–SAT solvers evaluation.

• ToolBar – A branch-and-bound algorithm for Constraint Satisfaction Problems

(CSP) developed by Givry, Heras, Larrosa and Schiex (see [92, 165]). The method

maintains the state-of-the-art soft local consistency property EDAC* during the

search. The local consistency enforcement procedure is described in Larrosa and

Schiex [165]. It uses specific data structures for efficient binary constraint updat-

ing. The min domain/max degree dynamic variable ordering heuristic is employed

during the search. Domain values are dynamically ordered by increasing associ-

ated unary costs for value enumeration at each node of the search tree.

• BiqMac – An SDP based branch-and-bound code that computes relaxations

based on the intersection of the semidefinite relaxation with the set of triangle in-

equalities developed by Rendl, Rinaldi and Wiegele (see [206, 207]). It is publicly

available online at [207].

Except for BiqMac that runs on a Pentium 4, 3.6 GHz computer, all the other tests

have run on the same computer system, which is based on an Intel Xeon 3.06 GHz, 3.5

GB RAM (operating system was Linux or Windows XP depending on the solver).

10.1.6 Minimum vertex cover of planar graphs

In view of the outstanding results obtained by applying QUBO preprocessing techniques

to the minimum vertex cover problem in random planar graphs (see Section 7.7), we

have tried to analyze the computational impact of using the new proposed methods
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Min-VC-Using-Roof-Duality and Min-VC-Using-Struction, on this class and

on various other classes of planar graphs.

Although the vertex cover problem is known to be NP–hard in the class of planar

graphs ([105]), our computational experiments with a large collection of benchmark

planar graphs indicate that finding minimum vertex covers in planar graphs is frequently

tractable.

10.1.6.1 Randomly generated planar graphs

In the computational experiments of this section we considered 36 random planar graphs

generated by Rinaldi’s ([211]) generator called RUDY. These planar graphs which have

between 50 000 and 500 000 vertices, and planar densities varying between 10% and

90%. This group of problems has been called PVC RUDY (see Section 3.3).

The RUDY generator creates random planar graphs using three parameters: the

number of vertices (n), the planar density (d), and a seed to initiate the pseudo-random

generator. It is well known that any planar graph with n > 3 must have m 6 3 (n− 2),

where m is the number of edges. Therefore, RUDY will create a planar graph having

m = b3 (n− 2) dc edges.

In a first step, RUDY creates a random planar graph with maximum number of

edges using an inductive procedure: for n = 3 a triangle is created; for n > 3 a random

maximal planar graph of order n− 1 is generated, and an additional vertex v is added

to a random face f , and all edges from v to the extreme points of f are drawn. In a

second step, all but m edges are removed randomly. An illustrative example of a planar

graph having 50 vertices and 140 edges (97.2% planar density) generated in this way is

given in Figure 10.7.

Table 10.1 presents the average computing times (over 3 experiments) for routine

Min-VC-Using-Roof-Duality (with parameters set to i = 5 and c = 4) applied to

the PVC RUDY benchmark. The largest planar graphs having 500 000 vertices and

90% planar density can be solved in 1.64 seconds on an average case. This result is

significant faster when compared to the computing time needed by PrePro? to solve
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Figure 10.7: Planar graph with 50 vertices and 140 edges, generated by Gengraph using
LEDA. The MIN-VC size is 34. A minimum vertex cover is indicated by the set of nodes
with white color.

the same problems, without the simplification step (see Table 7.5). For instance, the

largest planar graphs mentioned above are solved by PrePro? in 195.3 minutes on an

average case. The differences observed in the computing times are explained by two

factors:

(i) The data structure used by Min-VC-Using-Roof-Duality is simple and can

handle problems with sparse structure (i.e. having small density) much faster;

(ii) The data reduction techniques employed in the routine Apply-Rules-VC detect

and apply problem simplifications at a much faster rate.

Table 10.1: Average computing times of Min-VC-Using-Roof-Duality applied to
the PVC RUDY benchmark.

Planar Density
Vertices 10% 50% 90%

50 000 0.02 s 0.06 s 0.13 s
100 000 0.03 s 0.14 s 0.29 s
250 000 0.08 s 0.37 s 0.79 s
500 000 0.18 s 0.79 s 1.64 s
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Table 10.2 demonstrates that the PVC RUDY problems are almost completely

solved by the simplification routine Apply-Rules-VC since the residual graphs are

minuscule on an average case.

Table 10.2: Average number of variables of QUBOs solved by PrePro∗ within Min-

VC-Using-Roof-Duality, when applied to the PVC RUDY benchmark.
Planar Density

Vertices 10% 50% 90%

50000 0 3 39
100 000 0 0 30
250 000 0 57 0
500 000 0 54 4

The important conclusion of the previous experiments is the fact that the combina-

tion of a specialized data structure to a graph optimization problem, and subsequent

application of fast data reduction techniques, can solve almost entirely the minimum

vertex cover problem (and consequently the stability number) of the family of random

planar graphs generated by RUDY.

It should be remarked the fact that the LEDA software package, introduced earlier

in Section 3.3, also generates random planar graphs using the same approach to that

one described above for the RUDY generator.

To further compare the computing times returned by the proposed algorithms (see

also Section 7.7.2), we have used several state-of-the-art exact solvers for QUBO to

verify how efficiently could they handle these particular problems. The results of Table

10.3 clearly indicate that the existent QUBO solvers can only efficiently solve minimum

vertex cover problems of planar random graphs having up to a few hundred nodes. This

fact is in clear contrast with the computing times of the proposed algorithms that can

handle in few seconds problems of hundreds of thousands of vertices.

In an anonymous letter, it was called to our attention that the solver Cplex 10.01

([9]) for Mixed Integer Programs (MIP) is also able to solve (SIP) efficiently for planar

graphs generated by RUDY or LEDA. For transparency of results, we remark the

following points included in the letter:

• Cplex was able to find the optimum for all the considered planar graphs at the

root node.
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Table 10.3: Minimum vertex covers of planar graphs randomly generated by LEDA.

(a) Graph details.

Graph Vertices Edges Planar MIN-VC
G = (V,E) (|V |) (|E|) Density (ν (G))

planar-rnd-100 100 284 97.3% 67
planar-rnd-150 150 435 98.0% 95
planar-rnd-200 200 582 98.0% 132

(b) Computing Times†.

MIN-VC Solver planar-rnd-100 planar-rnd-150 planar-rnd-200

Optimality? yes yes no
MaxSatZ Comp. Time 2.3 s 94.2 s >3 600 s

Branching Nodes 444 974 12 131 399 n/a
Optimality? yes yes no (best is 132)

ToolBar Comp. Time 5.9 s 72.4 s 1 802.6 s
Branching Nodes 166 570 932 275 28 922 630
Optimality? no (best is 67) n/a n/a

BiqMac Comp. Time 10 800 s n/a n/a
Branching Nodes 3 037 n/a n/a
Optimality? yes yes yes

PrePro? Comp. Time 0.1 s 0.1 s 0.2 s
Branching Nodes 0 0 0
Optimality? yes yes yes

RoofDualVC Comp. Time <0.01 s <0.01 s 0.02 s
Branching Nodes 0 0 0
Optimality? yes yes yes

Struction Comp. Time 0.02 s 0.02 s <0.01 s
Struction Calls 4 2 5
†Obtained on an Intel Xeon 3.06GHz.
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• The planar graphs having 250 000 vertices and planar density of 90% (50%) could

be solved by CPLEX to optimality in 38 (9) seconds on an average case using a

AMD 3100+ computer system;

• The planar graphs having 500 000 vertices and planar density of 90% (50%) could

be solved by CPLEX to optimality in 85 (20) seconds on an average case using a

AMD 3100+ computer system.

There is a time speedup improvement clearly favorable to Cplex 10.01 for this class

of problems when compared to the PrePro? approach (see Table 7.5). It should be

noted that this speedup difference may be due to the fact that Cplex applies “simpler”

reduction techniques before solving the residual problem using the simplex method.

The performance of RoofDualVC , as illustrated in Table 10.1, finds the minimum

vertex covers of planar graphs having 500 000 vertices and planar density of 90% (50%)

in 1.6 (0.8) seconds on average, representing therefore a clear speed improvement over

that returned by Cplex 10.01. The set of simple data reduction rules was able to

remarkably reduce the size of the planar graphs to minuscule graphs before PrePro

being called.

10.1.6.2 Two dimensional grid graphs

In this subsection, we consider the family of two dimensional grid graphs Gm,n =

(Vm,n, Em,n) (m,n ∈ Z+), such that

Vm,n = {(i, j) |1 6 i 6 m, 1 6 j 6 n}

Em,n = {(i, j, u, v) |(i, j) ∈ Vm,n, (u, v) ∈ Vm,n, |i− u|+ |j − v| = 1}

The number of vertices in graph Gm,n is mn and the number of edges is 2mn −

(m+ n) (see an example in Figure 10.8).

Theorem 10.3. The minimum vertex cover size of graph Gm,n is
⌊
mn
2

⌋
.

Proof. It is simple to verify that Sm,n = {(i, j) ∈ Vm,n |(i mod 2) + (j mod 2) = 1}

is a vertex cover of Gm,n having |Sm,n| =
⌊
mn
2

⌋
. Let us show that Sm,n is also a
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Figure 10.8: Graph G20,10. The MIN-VC size is 100. A minimum vertex cover is
indicated by the set of nodes with white (black) color.

minimum size vertex cover by using the fact that every vertex of graph Gm,n belongs

to a cycle graph C4 (or square graph). Gm,n has mn − (m+ n) such square graphs.

Sm,n only requires that each square is covered exactly by 2 vertices. This result used

together with the fact that each square graph needs at least 2 vertices to cover its four

edges proves the claim.

Vm,n \ Sm,n is also a vertex cover of Gm,n, whose size is mn−
⌊
m
2

⌋
.

Whenever both m and n are odd then Sm,n is the unique minimum vertex cover of

Gm,n. If either m or n is even then Vm,n \Sm,n is also a minimum vertex cover of Gm,n.

Both Sm,n and Vm,n \ Sm,n are minimum and stable sets of graph Gm,n. Thus, any

graph Gm,n is 2-colorable.

Table 10.4(b) contains the running times of the several solvers tested for finding

the minimum vertex cover of graphs in Gm,n for small m and n values. Clearly, the

roof–duality based algorithms are able to run much faster than the MaxSatZ or the

BiqMac solvers. ToolBar performs well in this family as well.
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Table 10.4: Minimum vertex covers of 2 dimensional grid graphs.

(a) Graph details.

Graph Vertices Edges Planar MIN-VC
Gm,n m n (|Vm,n|) (|Em,n|) Density (ν (G))

2d-x10-y20 10 20 200 370 62.3% 100
2d-x10-y21 10 21 210 389 62.3% 105
2d-x11-y20 11 20 220 409 62.5% 110
2d-x11-y21 11 21 231 430 62.6% 115

(b) Computing Times†.

MIN-VC Solver 2d-x10-y20 2d-x10-y21 2d-x11-y20 2d-x11-y21

Optimality? yes yes yes yes
MaxSatZ Comp. Time 24.2 s 48.8 s 75.4 s 157.2 s

Branching Nodes 1 867 089 3 492 333 5 065 394 10 128 770
Optimality? yes yes yes yes

ToolBar Comp. Time 0.3 s 0.3 s 0.4 s 0.4 s
Branching Nodes 400 420 440 462
Optimality? yes no (best is 105) n/a yes

BiqMac Comp. Time 8 990.0 s 10 810.3 s n/a 6399.5 s
Branching Nodes 527 519 n/a 463
Optimality? yes yes yes yes

PrePro? Comp. Time <0.01 s <0.01 s <0.01 s <0.01 s
Branching Nodes 0 0 0 0
Optimality? yes yes yes yes

RoofDualVC Comp. Time <0.01 s 0.02 s 0.02 s 0.02 s
Branching Nodes 0 0 0 0
Optimality? yes yes yes yes

Struction Comp. Time <0.01 s <0.01 s <0.01 s <0.01 s
Struction Calls 0 0 0 0
†Obtained on an Intel Xeon 3.06GHz.

Table 10.5: Min-VC-Using-Roof-Duality computing times of minimum vertex cov-
ers of some Gm,n graphs.

Graph Gm,n Vertices Edges MIN-VC Min-VC-Using-Roof-Duality

m n (|Vm,n|) (|Em,n|) ν (Gm,n) Rules+PrePro Time Total Time

333 333 110 889 221 112 55 444 2.6 s 2.6 s
333 666 221 778 442 557 110 889 22.1 s 709.5 s
333 1 000 333 000 664 667 166 500 35.2 s 1 575.3 s
666 666 443 556 885 780 221 778 51.2 s 2 782.3 s
666 1 000 666 000 1 330 334 333 000 85.6 s 6 185.3 s
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In Table 10.5 we perform a scalability test for larger graphs in this family by using

the algorithm Min-VC-Using-Roof-Duality. The results show that roof–duality is

determinant in solving this type of problems efficiently.

10.1.6.3 Regular graphs consisting of hexagons

A family of regular graphs Hm,n (m,n ∈ Z+) consisting of a grid of m× n hexagons is

considered in this subsection. The number of vertices in graph Hm,n is 2 (mn+m+ n)

and the number of edges is 3mn+ 2 (m+ n)− 1 (see an example in Figure 10.8).

Figure 10.9: Graph H15,10, generated by Gengraph. The MIN-VC size is 175. A
minimum vertex cover is indicated by the set of nodes with white color.

Theorem 10.4. The minimum vertex cover size of graph Hm,n is mn+m+ n.

Proof. Hm,n consists of contiguous hexagons. Every vertex cover ofHm,n must therefore

include three vertices to cover all edges of each hexagon. Let us build a minimum vertex

cover Sm,n by including on it all vertices in even positions of each hexagon, considering

that the first position is the top node, while the other positions are determined clockwise
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in increments of one (see MIN-VC of Figure 10.8). Since each hexagon is covered exactly

by three vertices, then Sm,n is a the minimum size vertex cover of Hm,n.

The complement set V (Hm,n) \ Sm,n is also a vertex cover of Hm,n, whose size is

also mn+m+ n. Therefore, the complement set of Sm,n is a minimum vertex cover of

Hm,n as well. Both Sm,n and V (Hm,n)\Sm,n are minimum vertex covers and maximum

stable sets of graph Hm,n. Any graph Hm,n is therefore 2-colorable.

Table 10.6: Minimum vertex covers of regular planar graphs consisting of hexagons
(generated by GenGraph).

(a) Graph details.

Graph Vertices Edges Planar MIN-VC
Hm,n m n (|V (Hm,n)|) (|E (Hm,n)|) Density (ν (G))

c6-x10-y11 10 11 262 371 47.6% 131
c6-x10-y12 10 12 284 403 47.6% 142
c6-x11-y11 11 11 286 406 47.7% 143
c6-x11-y12 11 12 310 441 47.7% 155

(b) Computing Times†.

MIN-VC Solver c6-x10-y11 c6-x10-y12 c6-x11-y11 c6-x11-y12

Optimality? yes yes yes no (best is 155)
MaxSatZ Comp. Time 436.1 s 1 962.7 s 2 416.4 s 10456.4 s

Branching Nodes 29 719 730 102 836 185 146 499 053 603 106 724
Optimality? yes yes yes yes

ToolBar Comp. Time 0.4 s 0.5 s 0.5 s 0.7 s
Branching Nodes 524 568 572 620
Optimality? no (best is 131) n/a n/a n/a

BiqMac Comp. Time 10 861.3 s n/a n/a n/a
Branching Nodes 65 n/a n/a n/a
Optimality? yes yes yes yes

PrePro? Comp. Time <0.01 s 0.02 s 0.02 s <0.01 s
Branching Nodes 0 0 0 0
Optimality? yes yes yes yes

RoofDualVC Comp. Time <0.01 <0.01 s 0.02 s <0.01 s
Branching Nodes 0 0 0 0
Optimality? yes yes yes yes

Struction Comp. Time 0.02 s 0.02 s 0.02 s 0.02 s
Struction Calls 0 0 0 0
†Obtained on an Intel Xeon 3.06GHz.

The key to solve the minimum vertex cover of this type of graphs is to apply weak

persistency from roof–duality. Table 10.7 shows that Min-VC-Using-Roof-Duality

can compute MIN–VC for very large graphs. As in the previous example, MaxSatZ

and BiqMac struggle to find the minimum vertex cover in this family (see Table 10.6).
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Table 10.7: Min-VC-Using-Roof-Duality computating times of minimum vertex
covers of some Hm,n graphs.

Graph Gm,n Vertices Edges MIN-VC Min-VC-Using-Roof-Duality

m n (|Vm,n|) (|Em,n|) ν (Hm,n) Computing Time?

111 111 25 086 37 406 12 543 0.7 s
111 222 49 950 74 591 24 975 2.4 s
222 111 49 950 74 591 24 975 2.3 s
222 222 99 456 148 739 49 728 6.7 s

10.1.6.4 Regular graphs consisting of triangles

A family of regular graphs Ts (s ∈ Z+, s > 2) consisting of a grid of triangles (see Figure

10.10). The overall shape of the planar straight-line embedding of graph Ts is close to

an equilateral triangle whose base (line) is defined by s + 1 C3 cycles. The number of

vertices in graph Ts is (s+ 1) s2 and the number of edges is 3 (s− 1) s2 .

From the computational experiments that were carried out on this family, we con-

jecture that the minimum vertex cover size of graph Ts is

ν (Ts) ∼=




−1 +

⌊
(s+ 1) s3

⌋
, s = 3, 5,

⌊
(s+ 1) s3

⌋
, s ∈ {2, 4} ∪ {i ∈ Z+ |i > 6} ,

which corresponds to about 2
3 of the number of nodes.

(a) T2. (b) T3. (c) T4. (d) T5.

(e) T6. (f) T7.

Figure 10.10: Family of regular graphs Ts (s = 2, · · · , 7) consisting of triangles generated
by Gengraph. A minimum vertex cover is indicated by the set of nodes with white color.
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Table 10.8: Minimum vertex covers of regular planar graphs consisting of triangles
(generated by GenGraph).

(a) Graph details.

Graph Vertices Edges Planar MIN-VC
Ts s (|V (Ts)|) (|E (Ts)|) Density (ν (G))

triangle-13 13 91 234 87.6% 60
triangle-14 14 105 273 88.3% 70
triangle-15 15 120 315 89.0% 80

(b) Computing Times†.

MIN-VC Solver triangle-13 triangle-14 triangle-15

Optimality? yes yes yes
MaxSatZ Comp. Time 9.4 s 88.0 s 867.8 s

Branching Nodes 1 788 452 14 716 869 125 051 145
Optimality? yes yes no (best is 80)

ToolBar Comp. Time 32.4 s 83.4 s 1 800 s
Branching Nodes 1 059 826 2 984 400 41 578 397
Optimality? yes yes yes

PrePro? Comp. Time 1.1 s 4.9 s 24.7 s
Branching Nodes 1 480 6 792 30 287
Optimality? yes yes yes

RoofDualVC Comp. Time 0.8 s 5.5 s 21.2 s
Branching Nodes 1 292 9 540 29 788
Optimality? yes yes yes

Struction Comp. Time 0.1 s 0.4 s 0.6 s
Struction Calls 4 4 6
†Obtained on an Intel Xeon 3.06GHz.

Table 10.8 indicates that Struction is the fastest approach to solve problems in

the triangles family. MaxSatZ and ToolBar clearly take considerably longer time

to solve these problems than the roof–duality based solvers.

10.1.6.5 A family of planar graphs with small diameter

The diameter of a graph is the length of the longest shortest path distance between

any two vertices of the graph.

A family of regular planar graphs Dk (k ∈ Z+) having low diameter and consisting

of a “long” grid of triangles is considered in this subsection (see Figure 10.12; note that

the straight-line embedding is not planar). The number of vertices in graph Dk is 3k+1

and the number of edges is 9k − 3.

Theorem 10.5. The minimum vertex cover size of graph Dk is 2k + 1.
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Figure 10.11: Regular graph T44 consisting of triangles with 990 vertices and 2 838
edges, generated by Gengraph. The MIN-VC size is 660. A minimum vertex cover is
indicated by the set of nodes with white color.
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(a) D1. (b) D2. (c) D3.

(d) D4. (e) D5.

Figure 10.12: Family of regular graphs Ds (s = 1, · · · , 5) with small diameter generated
by Gengraph. A minimum vertex cover is indicated by the set of nodes with white color.

Proof. We shall prove this result by induction. Clearly, ν (D1) = 3. Also, from the

construction procedure of this family of problems, the size of the maximum stable sets

of Dk and Dk+1 differ exactly by one. Assuming that ν (Dk) = 2k+1, or similarly that

α (Dk) = (3k + 1)− ν (Dk) = k, then α (Dk+1) = α (Dk) + 1 = k+ 1, thus proving that

the induction step is also true.

It is not difficult to show that there are at least two vertex covers of minimum size

for each of the Dk (k ∈ Z+) graphs.

Struction and RoofDualVC have again better performance than the other con-

tenders for this special family of MIN–VC. BiqMac cannot handle the minimum vertex

cover problem of the diameter graphs well.

10.1.6.6 Planar graphs with Delaunay triangulations

Next we consider planar graphs with Delaunay triangulations. In this graph nodes are

positioned at random in a unit square and the Delaunay triangulation is computed. To
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Table 10.9: Minimum vertex covers of regular dense planar graphs with low diameter
(generated by GenGraph).

(a) Graph details.

Graph Vertices Edges Planar MIN-VC
Ts s (|V (Ts)|) (|E (Ts)|) Density (ν (G))

diameter-25 25 76 222 100% 51
diameter-30 30 91 267 100% 61
diameter-35 35 106 312 100% 71
diameter-40 40 121 357 100% 81

(b) Computing Times†.

MIN-VC Solver diameter-25 diameter-30 diameter-35 diameter-40

Optimality? yes yes yes yes
MaxSatZ Comp. Time 0.2 s 1.6 s 12.0 s 84.9 s

Branching Nodes 40 002 255 699 1 633 003 10 446 094
Optimality? yes yes yes yes

ToolBar Comp. Time 1.1 s 6.9 s 76.8 s 337.6 s
Branching Nodes 41 428 198 113 1 851 856 7 467 758
Optimality? yes yes no (best is 71) n/a

BiqMac Comp. Time 6 374.2 s 10 131.7 s 10 818.5 s n/a
Branching Nodes 3 465 4 189 759 n/a
Optimality? yes yes yes yes

PrePro? Comp. Time 0.02 s 0.03 s 0.03 s 0.05 s
Branching Nodes 0 0 0 0
Optimality? yes yes yes yes

RoofDualVC Comp. Time <0.01 s <0.01 s <0.01 s <0.01 s
Branching Nodes 0 0 0 0
Optimality? yes yes yes yes

Struction Comp. Time <0.01 s <0.01 s <0.01 s <0.01 s
Struction Calls 0 0 0 0
†Obtained on an Intel Xeon 3.06GHz.
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obtain a smaller number of edges, edges are deleted at random. Examples of Delaunay

graphs are given in Figures 10.13 and 10.14.

The minimum vertex cover of graphs in this family are traditionally difficult to be

found by any known approach. To our surprise one method clearly stand out in solving

problems in this class.

Figure 10.13: Planar graph with Delaunay triangulations having 100 vertices and 285
edges, generated by Gengraph. The MIN-VC size is 68. A minimum vertex cover is
indicated by the set of nodes with white color.

The Struction algorithm is by far the best approach to solve the MIN–VC problem

of Delaunay graphs.

To see how Struction scales well in solving graphs minimum vertex covers of

planar graphs with Delaunay triangulations we have generated graphs (using program

GenGraph) having up to 5 000 vertices. The results are listed in Table 10.11. For the

larger graphs Struction required 628 seconds and around 400 elementary struction

calls to find an optimal minimum vertex cover.

To end this section we should emphasize the fact that all the other solvers including

the commercial solvers for MIP would require hours to solve the 1 000 vertices problem.
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Table 10.10: Minimum vertex covers of planar graphs with Delaunay triangulations
(generated by GenGraph).

(a) Graph details.

Graph Vertices Edges Planar MIN-VC
G = (V,E) (|V |) (|E|) Density (ν (G))

Delaunay-100 100 285 96.9% 68
Delaunay-110 110 313 96.6% 75
Delaunay-120 120 343 96.9% 82

(b) Computing Times†.

MIN-VC Solver Delaunay-100 Delaunay-110 Delaunay-120

Optimality? yes yes no
MaxSatZ Comp. Time 18.7 s 37.4 s 231.6 s

Branching Nodes 3 100 866 6 157 790 33 639 395
Optimality? yes yes yes

ToolBar Comp. Time 89.7 s 231.4 s 1 347.0 s
Branching Nodes 3 552 148 8 763 289 42 847 188
Optimality? no (best is 68) n/a n/a

BiqMac Comp. Time 10800 s n/a n/a
Branching Nodes 1 663 n/a n/a
Optimality? yes yes yes

PrePro? Comp. Time 31.3 s 3.9 s 1.5 s
Branching Nodes 43 644 5 988 1 873
Optimality? yes yes yes

RoofDualVC Comp. Time 31.7 s 0.9 s 1.2 s
Branching Nodes 43 644 1 522 1 925
Optimality? yes yes yes

Struction Comp. Time 0.03 s 0.03 s 0.05 s
Struction Calls 15 9 12
†Obtained on an Intel Xeon 3.06GHz.

Table 10.11: Minimum vertex covers of planar graphs with Delaunay triangulations
(generated by GenGraph).

Graph Vertices Edges Planar MIN-VC Struction

G = (V,E) (|V |) (|E|) Density (ν (G)) Operations Calls Comp. Time

Delaunay-1000-1 2 979 99.5% 681 9 645 69 4.2 s
Delaunay-1000-2 1 000 2 978 99.5% 685 11494 76 6.3 s
Delaunay-1000-3 2 978 99.5% 682 8 847 70 3.3 s
Delaunay-2000-1 5 976 99.7% 1 368 42 461 145 33.6 s
Delaunay-2000-2 2 000 5 975 99.7% 1 371 48 400 157 48.0 s
Delaunay-2000-3 5 979 99.7% 1 369 41 446 142 44.4 s
Delaunay-3000-1 8 976 99.8% 2 055 112 906 249 151.3 s
Delaunay-3000-2 3 000 8 975 99.8% 2 047 91 850 206 91.9 s
Delaunay-3000-3 8 975 99.8% 2 052 99 339 232 124.4 s
Delaunay-4000-1 11 976 99.8% 2 736 184 865 314 312.7 s
Delaunay-4000-2 4 000 11 975 99.8% 2 742 181 064 315 467.2 s
Delaunay-4000-3 11 972 99.8% 2 742 191 246 318 194.2 s
Delaunay-5000-1 14 976 99.9% 3 425 319 541 427 783.4 s
Delaunay-5000-2 5 000 14 981 99.9% 3 422 285 799 374 485.7 s
Delaunay-5000-3 14 972 99.9% 3 423 294 430 408 615.5 s
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Figure 10.14: Planar graph with Delaunay triangulations having 1 000 vertices and
2 979 edges, generated by Gengraph. The MIN-VC size is 686. A minimum vertex
cover is indicated by the set of nodes with white color.
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10.1.7 Preventing Internet DDoS attacks

A Denial of Service (DoS) attack aims at disrupting services by consuming resources

in networks, servers and hosts, with the malicious objective of preventing or degrading

service. Resources that are typically depleted and clogged in such attacks include

network bandwidth and computer CPU cycles.

The DoS attack is executed by sending bogus work in the form of junk traffic and

service requests that tie up resources preventing a network system from operating in

its normal mode. Distributed DoS (or DDoS in short) attacks, which forge the IP

addresses source (called spoofing), are particularly severe, due to their concentrated

force and difficulty to timely reestablish the normal operating status.

10.1.7.1 Route-based distributed packet filtering

Route-based Distributed Packet Filtering (DPF) is a novel approach proposed by Lee

and Park[169] which aims at preventing DDoS attacks with two goals. The first goal is

to proactively preventing the spoofed IP packets from reaching their destination. The

second goal is to reactively identifying the source of spoofed IP flows. The efficacy of

their proposed method is evaluated in Internet Autonomous Systems (AS) topologies.

Route-based DPF uses routing information to determine if a packet arriving at a

router is valid with respect to its inscribed source and destination addresses, given the

constraints of reachability associated to the routing and network topology.

A single AS can only have a limited impact with respect to identifying and discarding

forged IP flows. On the other extreme case, if all ASs implement route-based DPF then

no spoofed IP flows can escape, but this case is not much different from that system

which uses perfect ingress filtering.

The main strength of route-based DPF lies in the fact that with partial coverage or

deployment (about 18% of the Internet AS topologies according to [169]) a synergistic

filtering effect is achieved whose collective filtering action proactively prevents spoofed

IP flows from reaching other ASs.
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Table 10.12: Minimum ASes covers of NLANR routing data ([10]).
Number 735

Graphs Avg. Vertices 4180.2
Avg. Edges 7777.8

Total 1920 s
Average 2.6 s

Computing St. Dev. 1.9 s
Time to Find Minimum 0.0 s
the Minimum Maximum 10.2 s
Vertex Covers 1st Quartile 0.8 s

Median 2.3 s
3rd Quartile 3.7 s
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Figure 10.15: Minimum ASes cover for 15 months of daily NLANR routing data.
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The NLANR [10] goal was to characterize the behavior of High Performance Connec-

tion (HPC) networks. Network measurements are essential for assessing performance

issues, identifying and locating problems (malfunctions, bottlenecks, inefficiencies, in-

compatibilities, etc.) in ultrafast research networks and in high-speed international

links NLANR created the Network Analysis Infrastructure (NAI) that establish tools

and methods for the collection of network measurement data and multiple analyzes.

NLANR gathers routing data that includes data from Border Gateway Protocol

(BGP) routing tables, which reflect the transit relationships between individual Au-

tonomous Systems (ASes) at a given point in time. We have obtained daily routing data

from NLANR [10] to analyze the minimum ASes cover sizes of the routing network. The

base routing data was retrieved from route-views.oregon-ix.net (Oregon Exchange BGP

Route Viewer), and extends from 8 November 1997 (ASmap.19971108.879009857.gz) to

16 March 2001 (ASmap.20010316.984735601.gz), which corresponds to 735 days.

Table 10.12 lists the results. The RoofDualVC algorithm is able to find the

optimum in every case taking a total time of 1 920 seconds. The average running

time was 2.6 seconds per network. The daily time evolution of the minimum ASes

cover comparison with the total number of ASes available is given in Figure 10.15(a).

Clearly the number of ASes is increasing exponentially, while the minimum ASes cover

is increasing at a linear rate. Figure 10.15(b) gives the percentage of ASes required

for the minimum vertex cover (which are those ASes where the filter will be assigned).

Towards the end, the filtering coverage required for this dataset was of about 16%.

10.1.8 Maximum independent set of real world graphs

Network models are frequently used to study and describe many practical situations

arising in the society or in the nature. There is a clear inter-relationship between

the social and the infrastructure networks. Some examples of such problems include

the analysis of social networks, the analysis of the Internet topology, the analysis of

telecommunications traffic, the analysis of proteins interactions, etc.

An important result just recently discovered is the fact that many graph models

arising from practical problems have the common property of following a power law
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degree distribution.

Let us consider an undirected graph G = (V,E) with vertex set V and edge set E.

The vertex degree dG (v) of a given vertex v is the number of edges incident to it. The

probability that a vertex v has degree k (k = 0, · · · , n) is

Prob [dG = k] =
|{v ∈ V |dG (v) = k}|

n
.

Power law graphs have a probability degree distribution given as

Prob [dG = k] ∼ k−λ,

where λ is a positive parameter intrinsically associated to the graph.

Combinatorial optimization is an important field used to study the properties of

power-law graphs. Some examples of this fact include the finding of minimum vertex

covers to prevent internet worm attacks (see Section 10.1.7), and the finding of “large”

clusters of proteins (which have a strong interaction between each other) to study which

proteins are more relevant for the cells survival (see Section 10.2.2.1).

There is some practical evidence that combinatorial optimization in power law

graphs originated from real-world applications (where typically 1 < λ < 4) is easier

than in the case of general graphs. Ferrant et al. [96] shown however that the mini-

mum vertex cover and the minimum dominating set problems are NP–hard for graphs

having λ > 0, and MAX–Clique is NP-hard for graphs with λ > 1.

Table 10.13 lists a series of graphs that exhibit power–law degrees. The vertices and

edges information is listed in this table, as well as a reference to the location where the

graph was obtained from.

Table 10.14 gives the minimum vertex cover size and the maximum clique size for

each one of the power-law graph examples. All the computing times of Table 10.14

were obtained on an Pentium M 1.6 GHz, 760 MB of RAM that runs Windows XP.

The minimum vertex cover has been determined by the B B solver (see Section 9.3)

with the probing and coordinance option turned on for heavily presolving the problem
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Table 10.13: Real world graphs.
Vertices Edges

Graph References Number Designation Number Designation

itdk0304 rlinks [5] 192 244 Internet routers 609 066 links between routers

bgp tables [4, 93] 17 446 ASes from BGP tables 40 805 links between ASes

bgp updates [4, 93] 17 417 ASes from BGP updates 42 484 links between ASes

skitter [4, 93] 9 204 ASes from skitter measurements 28 959 links between ASes

whois [4, 93] 7 485 ASes from RIPE WHOIS 56 949 links between ASes

yeast [6, 31] 1 870 proteins of yeast Saccharomyces cerevisiae 2 203 protein-protein interactions

hpy2000 [8] 1 570 proteins of pathogen Helicobacter Pylori 1 403 protein-protein interactions

geom [181, 35] 7 343 co-authors in comp. geometry 11 898 author’s collaborations

DEAauthors [228] 1 853 co-authors in DEA papers 2 717 author’s collaborations

Erdos1 [7] 509 co-authors of Paul Erdös 1 551 author’s collaborations

UsPowerGrid [225] 4 941 generators, transformers, etc. 6 594 power lines

USAir97 [35] 332 airports 2 126 air traffic links
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Table 10.14: Combinatorics of real world graphs.
Minimum Vertex Cover MAX-Clique

Graph Size B&B Comp. Time Size Depth-First Comp. Time

itdk0304 rlinks 75 094 14 419.3 s 17 9 774.37 s
bgp tables 2 648 114.7 s 17 0.6 s
bgp updates 2 744 133.4 s 17 0.7 s
skitter 1 830 12.3 s 24 204.6 s
whois 2 289 6.7 s 58 244.8 s
yeast 626 0.1 s 6 2.4 s
hpy2000 204 <0.1 s 3 0.6 s
DEAauthors 927 0.1 s 10 1.6 s
Erdos1 237 <0.1 s 7 0.2 s
geom 3 083 0.8 s 22 175.6 s
UsPowerGrid 2 203 0.4 s 6 9.3 s
USAir97 149 0.1 s 22 <0.1 s

at the root node. The MIN–VC of the largest graph itdk0304 rlinks can be found

much faster if the solver RoofDualVC is used instead. The initial data reduction by

method Apply-Rules-VC reduces the number of vertices (resp. edges) from 192 244

(resp. 609 066) to 2 074 vertices (resp. 5 392 edges) in 2.3 seconds. Then the PrePro?

method is applied to this reduced graph. The number of variables of this QUBO reduces

further from 2074 variables to 279 vertices in 3.0 seconds. This residual problem of

279 vertices is then solved in 1 617 seconds (using simply roof–duality as a bound for

cutoff the search tree). The overall time of RoofDualVC was therefore considerably

smaller than the 9 774 s required by BB.

The maximum clique size has been determined by the enumerative Depth-First

solver after presolving the problem (i.e. by removing first those vertices belonging to

small cliques).

10.2 Clustering

The models considered in this section consider the problem of partitioning a given set of

objects into several groups so that objects belonging to the same set have some affinity

property. This process is frequently called Clustering, where the property used for

grouping (or dividing) is traditionally based on a similarity (or dissimilarity) function

between any two objects.
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Clustering based on graph cuts has already been applied (see e.g. [99, 171]). A 2–

parameter hierarchical clustering approach based on graph balancing is proposed and

tested in Section 10.2.1.

Section 10.2.2 considers the use of QUBO to greedly partition a graph into either

maximum independent sets (which leads to a graph coloring) or maximum cliques.

10.2.1 A QUBO model to 2–partitioning

A set of n objects is partitioned into 2 groups in such a way that penalties are imposed

for 2 objects if they are:

(i) Similar but assigned to different groups;

(ii) Non-similar but assigned to the same group.

Let us define xi = 1 (respectively 0) if object i is assigned to partition 1 (respectively

0). Objects i and j are in the same group if and only if xixj + xixj = 0 (equivalently

xi = xj). Objects i and j are in different groups if and only if xixj + xi xj = 0

(equivalently xi 6= xj).

It is assumed that the “distance” d (i, j) between objects i and j is known, and that

this closeness metric is used to measure “similarity” between pairs of objects.

The threshold parameter δ+ characterizes the maximum distance between objects

so that those objects are considered similar. The threshold parameter δ− (> δ+)

characterizes the minimum distance between objects so that those objects are considered

different (i.e. non-similar).

On the one hand, if d (i, j) 6 δ+ and objects i and j are assigned to different groups

then a penalty cost term c+ (i, j) is associated to this assignment. On the other hand

if d (i, j) > δ− and objects i and j are assigned to the same group then a penalty cost

term c− (i, j) is associated to this assignment.

There is however no penalizing term for any type of assignment of objects (i and j)

which are within distance δ+ < d (i, j) < δ−.
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Given these parameters and penalty terms, a 2–partitioning penalty cost function

f (x1, · · · , xn) =
∑

16i<j6n
d(i,j)6δ+

c+ (i, j) (xixj + xixj) +
∑

16i<j6n
d(i,j)>δ−

c− (i, j) (xixj + xi xj)

is defined to quantify the sum of penalties (i) and (ii) associated to the partition of n

objects into 2 groups.

The n objects are assigned into one of the two groups by minimizing the penalty

cost function f (x1, · · · , xn). This is a graph balancing QUBO problem. Cartwright and

Harary [81] characterized a signed graph as balanced if and only if its vertices could

be separated into two mutually exclusive subsets such that each positive edge joins to

vertices of the same subset and each negative edge joins points from different subsets.

This theorem shows that our idea of clustering is related to the structural balance

problem in signed graphs, since positive links between two objects represent objects

that are close to each other, and negative links between to objects represent objects

that are distant from each other.

10.2.1.1 Hierarchical clustering

We have seen a graph balancing approach to partition the set of objects into two

clusters. If we keep partitioning each one of these clusters using the same approach

until some defined stopping criteria is met, then we have characterized a hierarchical

clustering algorithm. Possible examples of stopping criteria for this method are:

• Minimum average distance between any two objects in the cluster;

• Minimum maximum distance between any two objects in the cluster;

• Maximum number of clusters;

• Minimum number of objects in the cluster.

An example with 6 000 objects has been randomly generated. Each object i has

a know position (xi,1, xi,2) in the Euclidean space (see Figure 10.16). The distance
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Figure 10.16: QUBO hierarchical clustering in the Euclidean space of 6 000 objects.

between any two objects i and j is simply the Euclidean distance, i.e.

d (i, j) =

√
(xi,1 − xj,1)

2 + (xi,2 − xj,2)
2.

The average distance between any two points is 488 and the corresponding standard

deviation is 236.

The Hierarchical Clustering Algorithm (HCA) based on QUBO has been imple-

mented and tested on this example. The stopping criterion that we use in this example

is the minimum average distance requirement of 200 within the cluster. The parameters

and the penalty coefficients of the cost function are

δ+ = 100,

δ− = 500,

c+ (i, j) = δ+ − d (i, j) for all pairs (i, j) and

c− (i, j) = d (i, j) − δ− for all pairs (i, j) .
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HCA found four clusters displayed with different colors if Figure 10.16. The QUBO

method used to 2–partitioning (i.e. to minimize the total penalty) was a steepest-

descent heuristic introduced in Section 6.3. Using a Pentium M, 1.6 GHz, 760 MB of

RAM and running Windows XP the total time to find the clusters was 12 seconds.

10.2.2 Greedy graph coloring and partitioning

In this section we consider the problem of clustering a set of objects V represented as

a graph G = (V,E). We consider two basic alternative algorithms:

• The Greedy Graph Coloring Algorithm (GGCA) recursively applies the following

2 steps:

1 Find a maximum stable set S of graph G and assign a color to its elements;

2 Remove the subgraph of G induced by S. Repeat 1 if G 6= ∅.

• The Greedy Clique Partitioning Algorithm (GCPA) recursively applies the follow-

ing 2 steps:

1 Find a Maximum Clique C of graph G and assign a group to its elements;

2 Remove the subgraph of G induced by C. Repeat 1 if G 6= ∅.

Given graph G = (V,E) and its complement graph G, it is well known that

MAX-Clique (G) = MAX-Stability
(
G
)

and

MAX-Stability (G) = |V | −MIN-VC (G) .

Thus, finding a greedy graph coloring in G is equivalent to find a greedy clique parti-

tioning in G.

We have implemented these two algorithms, each one adopting a different algorith-

mic approach:

• GGCA uses the Min-VC-Using-Roof-Duality algorithm described in Figure

10.5 as a basic solver to find a maximum stable set of the residual graph;
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• GCPA uses the Depth-First enumerative approach described in Figure 9.1 as a

basic solver to find a maximum clique of the residual graph.

In spite of the fact that both algorithms are greedy, it should be noted that at every

step either a maximum stable set (in GGCA is used) or a maximum clique (in GCPA

is used) will be computed.

10.2.2.1 The protein–protein interaction map of Helicobacter Pylori

According to Jeong et al. [31], the most highly connected proteins in the cell are the

most important for its survival. Finding large groups of proteins with a large number

of interacting between each other is therefore an important question to address.

Figure 10.17: The protein–protein interaction map of the H. Pylori produced by Bala-
sundaram et al. [28].
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Table 10.15: Combinatorics of the H. Pylori map.
Vertices 859
Edges 1403

MIN-VC 204 < 1 sec
MAX-Clique 3 < 1 sec
MAX-2-distance-Clique 56 < 1 sec
MAX-3-distance-Clique 101 13 min
MAX-4-distance-Clique 290 2 min

Table 10.16: Large stable sets of the H. Pylori map.
Color Type Stable Set Vertices Edges Time Cumulative Time

1 Optimal 655 179 333 < 0.01 s < 0.01 s
2 Optimal 130 65 112 < 0.01 s < 0.01 s
3 Optimal 44 28 34 < 0.01 s < 0.01 s
4 Optimal 18 7 5 < 0.01 s < 0.01 s
5 Optimal 10 0 0 < 0.01 s < 0.01 s

Figure 10.17 shows the protein–protein interaction map of the H. Pylori obtained

from Balasundaram et al. [28]. How to find highly connected proteins in this map? One

approach is to compute a k–distance clique, i.e. a set of vertices which are at most at

distance k of each other. Obviously, a 1–distance clique is a clique.

Table 10.15 lists several combinatorial numbers for the H. Pylori map. Namely,

MIN–VC is 204 and the MAX–Clique size is simply 3. The maximum 2–distance clique

size is 56 and therefore far more interesting as far as protein connectivity concerns.

All the computing times given in this section were obtained by an Pentium M, 1.6

GHz, 760 MB of RAM and running Windows XP.

The maximum 3–distance clique (of size 101) has been found using the enumerative

procedure for the first time (see [28]). It took about 13 minutes of computing time

to find this set. The maximum 4-distance clique has been found for the 1st time as

well, but by using the B&B solver (with roof–duality and heavy preprocessing) to find

a maximum stable set in the complement graph. It took about 2 minutes to find this

set.

The next question that we address is how to find large clusters of non-interacting

proteins within the H. Pylori map. Table 10.16 lists the results of our implementation

of GGCA, which gives a partition of the proteins into five stable sets. The largest stable

set has 655 proteins. After removing this set, the largest stable set left contains 130
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Table 10.17: Large 2–distance cliques of the H. Pylori map.
Order Type 2D–Clique Vertices Edges Time Cumulative Time

1 Optimal 56 667 11 327 1.0 s 1.0 s
2 Optimal 51 616 7 851 0.5 s 1.5 s
3 Optimal 32 584 6 345 0.5 s 1.9 s
4 Optimal 25 559 5 560 0.4 s 2.3 s
5 Optimal 24 535 4 518 0.3 s 2.6 s
6 Optimal 24 511 3 930 0.2 s 2.9 s
7 Optimal 18 492 3 474 0.3 s 3.1 s
· · · · · · · · · · · · · · · · · · · · ·
106 Optimal 2 0 0 0.0 s 5.3 s

Table 10.18: Large 3–distance cliques of the H. Pylori map.
Order Type 3D–Clique Vertices Edges Time Cumulative Time

1 Optimal 101 622 30 800 803.2 s 803.4 s
2 Optimal 70 552 18 349 12.2 s 815.6 s
3 Optimal 41 511 13 314 1.4 s 817.0 s
4 Optimal 36 474 10 836 0.7 s 817.7 s
5 Optimal 34 440 7 944 0.5 s 818.2 s
6 Optimal 31 409 6 275 0.3 s 818.5 s
7 Optimal 26 383 4 609 0.2 s 818.7 s
· · · · · · · · · · · · · · · · · · · · ·
80 Optimal 2 0 0 0.0 s 819.9 s

proteins and son on. The total time required for this calculation was minuscule.

The next point of discussion is how to find large clusters of interacting proteins

for the H. Pylori map. Table 10.17 lists the outcome of GCPA to find 2–distance

cliques. This method was able to decompose the initial set into 106 2–distance cliques

of proteins. The first (and therefore largest) 2–distance clique has 56 elements. During

the 2nd iteration, the largest possible 2–distance clique has 51 proteins. During the first

6 iterations, the method is able to identify 2–distance cliques of more than 20 elements.

The total time required for GCPA was 5.3 seconds.

Table 10.18 lists the outcome of GCPA to find 3–distance cliques. During the first

iteration the maximum 3–distance clique of size 101 is found after around 803 seconds.

The second iteration finds a 3–distance clique of size 70 and it took approximately 12

seconds to show that this was the maximum possible. Overall, GCPA took 820 seconds

to compute a proteins partition into 80 3–distance cliques.

Table 10.19 lists the outcome of GGCA to find 4–distance cliques for the H. Pylori

map. Note that GGCA was run in the complement of the graph determined by the
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Table 10.19: Large 4–distance cliques of the H. Pylori map.
Order Type 4D–Clique Vertices Edges Time CumulativeTime

1 Optimal 290 434 62 185 125.9 s 126.4 s
2 Optimal 91 343 40 814 86.5 s 213.0 s
3 Optimal 57 286 29 618 34.2 s 247.3 s
4 Optimal 51 235 22 206 16.9 s 264.3 s
5 Optimal 35 200 16 842 8.0 s 272.5 s
6 Optimal 23 177 13 666 4.0 s 276.5 s
7 Optimal 18 159 11 229 2.1 s 278.8 s
· · · · · · · · · · · · · · · · · · · · ·
51 Optimal 2 0 0 0.0 s 285.3 s

proteins within distance four of each other in the map. It found 51 4–distance cliques the

largest having 290 members. The total time required by the method was 285 seconds.

10.3 A QUBO approach to image binarization

There is a large and growing interest in the field of document image analysis ([84, 230,

239, 238]), in order to acquire some relevant information for high level image processing.

One such method is the so-called image binarization or thresholding. This proce-

dure segments an image into two classes: the foreground and the background. The

foreground contains objects of interest, such as text, symbols, lines, or networks. Sub-

sequently, human experts or symbol recognition and line vectorization programs are

used to characterize those objects.

A possible application of this method occurs in the medical field, where a doctor

with expertise in a given disease (e.g. lung cancer), could improve the accuracy of its

diagnosis and prognosis by getting improved quality x-rays.

In this section a possible image binarization method is formulated as a QUBO,

which provides an “optimal” binary image that minimizes the squared errors of every

pixel with respect to the immediate neighbor pixels. Our method will only incorporate

local information and therefore it only addresses part of the approach to solve these

problems.

Before getting into further details on this specific problem, we should emphasize

the fact that QUBO has been recently used as a very successful tool to solve certain
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problems from vision (see e.g. [69, 70, 160, 203]). It is remarkable to see that roof–

duality, persistency and probing together can provide in real time answers to many of

these problems. Our preprocessing routine (i.e PrePro) has been recently compared

against another implementation, especially entailed for vision problems, developed by

Kolmogorov et al. [159]. The preprocessing results on the report [159] were quite

exciting for researchers interested in QUBO as well for researchers from the vision

community.

Given a gray-scale image, represented as an m × n array g, such that 0 6 gi,j 6 1

(i = 1, · · · ,m, j = 1, · · · , n) we formulate a quadratic pseudo–Boolean function f by

taking the L2-norm of the difference between gi,j (i = 1, · · · ,m, j = 1, · · · , n) from

itself and the immediate eight neighbor weighted average assignment.

γ

γ

γ

γ

ββ

β

β

β

α

Figure 10.18: Image binarization weights used to define the neighborhood average as-
signment.

Figure 10.18 displays the nonnegative weights used to get the neighborhood average

assignment for the pixel in the center. The pixel in the center has weight α, its four

immediate neighbors have the same weight β, and the four diagonal pixels have the

same weight γ. If the center pixel corresponds to pixel (i, j), then its neighborhood

error is

eα,β,γ (i, j) =
(
αxi,j+β(xi−1,j+xi,j−1+xi+1,j+xi,j+1)+γ(xi−1,j−1+xi+1,j−1+xi−1,j+1+xi+1,j+1)

α+4β+4γ − gi,j
)
,

(10.2)

where xr,c = 1 if and only if the pixel (r, c) belongs to the foreground of the resulting

binary image.
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The sum of the squared-errors of all pixels in the image is provided by the quadratic

function in binary variables

fα,β,γ (x) =
m−1∑
i=2

n−1∑
j=2

e2α,β,γ (i, j) +

n−1∑
j=2

(
αx1,j+β(x1,j−1+x2,j+x1,j+1)+γ(x2,j−1+x2,j+1)

α+3β+2γ − g1,j
)2

+

m−1∑
i=2

(
αxi,1+β(xi−1,1+xi,2+xi+1,1)+γ(xi−1,2+xi+1,2)

α+3β+2γ − gi,1
)2

+

n−1∑
j=2

(
αxm−1,j+β(xm−2,j+xm−1,j−1+xm−1,j+1)+γ(xm−2,j−1+xm−2,j+1)

α+3β+2γ − gm,j
)2

+

m−1∑
i=2

(
αxi,n−1+β(xi,n−2+xi−1,n−1+xi+1,n−1)+γ(xi−1,n−2+xi+1,n+2)

α+3β+2γ − gi,n
)2

+

(
αx1,1+β(x1,2+x2,1)+γx2,2

α+2β+γ − g1,1
)2

+
(
αxm,1+β(xm−1,1+xm,2)+γxm−1,2

α+2β+γ − gm,1
)2

+
(
αx1,n+β(x1,n−1+x2,n)+γx2,n−1

α+2β+γ − g1,n
)2

+
(
αxm,n+β(xm,n−1+xm−1,n)+γxm−1,n−1

α+2β+γ − gm,n
)2
.

(10.3)

Note that the four pixels in the four corners of the image, and the pixels appearing

in the first and last rows and columns have different set sizes of neighbors, and hence

their error function is somewhat different of the error (10.2), which corresponds to the

pixels in the interior of the image.

Let us consider function

hi,j
def
=





α+ 4β + 4γ, 2 6 i 6 m− 1, 2 6 j 6 n− 1,

α+ 2β + γ, i = 1, j = 1 ∨ i = m, j = 1 ∨ i = 1, j = n ∨ i = m, j = n,

α+ 3β + 2γ, otherwise,

which returns the sum of the weights of the neighborhood of every pixel (i, j).

Let us also also define the sets

N
(v)
i,j

def
=



(r, c) ∈ {i− 1, · · · , i+ 1} × {j − 1, · · · , j + 1}

∣∣∣∣∣∣
1 6 r 6 m, 1 6 c 6 n,

|i− r|+ |j − c| = v,
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which contains the neighborhood pixels that are side-by-side to pixel (i, j) if v = 1, and

that are contiguous in the same diagonal as pixel (i, j) if v = 2.

If the x2 (i, j) terms in (10.3) are linearized then we obtain the multilinear repre-

sentation

fα,β,γ (x) =
m∑
i=1

n∑
j=1

g2
i,j

m∑
i=1

n∑
j=1


α(α−2gi,jhi,j)

h2
i,j

+
∑

(r,c)∈N
(1)
i,j

β(β−2gr,chr,c)
h2

r,c
+

∑

(r,c)∈N
(2)
i,j

γ(γ−2gr,chr,c)
h2

r,c


xi,j+

m∑
i=1

n−1∑
j=1

2


 ∑

(r,c)∈N
(1)
i,j :c>j

αβ
h2

r,c
+

∑

(r,c)∈N
(1)
i,j+1:c6j+1

αβ
h2

r,c


xi,jxi,j+1+

m∑
i=1

n−2∑
j=1

2


 β2

h2
i,j+1

+
∑

(r,c)∈N
(2)
i,j ∩N

(2)
i,j+2

γ2

h2
r,c


xi,jxi,j+2+

m−1∑
i=1

n∑
j=1

2


 ∑

(r,c)∈N
(1)
i,j :r>i

αβ
h2

r,c
+

∑

(r,c)∈N
(1)
i+1,j :r6i+1

αβ
h2

r,c


xi,jxi+1,j+

m−2∑
i=1

n∑
j=1

2


 β2

h2
i+1,j

+
∑

(r,c)∈N
(2)
i,j ∩N

(2)
i+2,j

γ2

h2
r,c


xi,jxi+2,j+

m−1∑
i=1

n−1∑
j=1

2


 ∑

(r,c)∈N
(1)
i,j+1∩N

(1)
i+1,j

αγ
h2

r,c
+

∑

(r,c)∈N
(1)
i,j ∩N

(1)
i+1,j+1

β2

h2
r,c


xi,jxi+1,j+1+

m−1∑
i=1

n−1∑
j=1

2


 ∑

(r,c)∈N
(1)
i,j+1∩N

(1)
i+1,j

β2

h2
r,c

+
∑

(r,c)∈N
(1)
i,j ∩N

(1)
i+1,j+1

αγ
h2

r,c


xi+1,jxi,j+1+

m−2∑
i=1

n−2∑
j=1

2 γ2

h2
i+1,j+1

(xi,jxi+2,j+2 + xi+2,jxi,j+2) +

m−1∑
i=1

n−2∑
j=1

2

(
βγ

h2
i,j+1

+ βγ
h2

i+1,j+1

)
(xi,jxi+1,j+2 + xi,j+2xi+1,j)+

m−2∑
i=1

n−1∑
j=1

2

(
βγ

h2
i+1,j

+ βγ
h2

i+1,j+1

)
(xi,jxi+2,j+1 + xi,j+1xi+2,j)

(10.4)

corresponding to the quadratic pseudo–Boolean function fα,β,γ .

Since fα,β,γ (x) represents the sum of squared errors for a given binary “image” x

with respect to the original image g, then an optimal binarized image x? is one that
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minimizes the total error, i.e.

f (x?) ≡ min
x∈Bm×n

fα,β,γ (x) . (10.5)

10.3.1 Computational results

In this section, we consider a one-pass heuristic approach to solve problem (10.5), i.e

the problem of finding a binary image x that is reasonable close to a image x? that

minimizes the total error to the original image defined by array g.

We have also tried some of the exact approaches presented in Chapter 9. The

computing times obtained seemed however to not scale well for large size images in

general.

The one-pass procedure adopted here is a probabilistic based method (see Section

6.1.2.2), i.e. a heuristic that at every iteration fixes the variable having the closest

value in probability to a binary assignment of a local minimum of the function. In

particular, the One-Pass-P-U algorithm was considered, which assumes that the partial

derivatives ∆i,j of pixel (i, j) in f are uniformly distributed between Li,j and Ui,j, which

correspond respectively to the minimum and maximum of the 0–1 linear function ∆i,j.

A sparse data structure based on the network flow model has been adopted to

provide the heuristic solution. It should be noted that fα,β,γ has mn binary variables

and at most 24 nonzero quadratic terms per variable in its multilinear representation

(10.4), thus fα,β,γ has at most 24mn nonzero quadratic terms.

We considered 3 images for testing. The original images are shown respectively in

option (a) of Figures 10.19, 10.20 and 10.21. The binarized image versions are shown

on the same figures using different values for α, β and γ.

The tests were run on an Xeon 3.06 GHz, 3.5 GB RAM and Windows 32bit XP.

The heuristic average computing times were 271 seconds, 41 085 seconds and 70 seconds,

respectively for the image problems in Figures 10.19, 10.20 and Figure 10.21.

The computing times of the heuristics clear indicate that fast data structures spe-

cialized for this purpose are required. However, it is interesting to see visually the

impact of the α, β and γ parameters in the binarized image.
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(a) Original image. (b) α = β = γ = 1. (c) α = β = 1, γ = 0.5.

(d) α = β = 1, γ = 0.25. (e) α = β = 1, γ = 0. (f) α = 1, β = 0.5, γ = 1.

(g) α = 1, β = 0.5, γ = 0.5. (h) α = 1, β = 0.5, γ = 0.25. (i) α = 1, β = 0.5, γ = 0.

Figure 10.19: Image binarizations found by the one-pass heuristic applied to fα,β,γ.
Original image is a 24-bit bitmap 254 × 300 image of a child with a dark background.
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(a) Original image. (b) α = 1, β = 0, γ = 0.

(c) α = 1, β = 0.1, γ = 0. (d) α = 1, β = 0.2, γ = 0.

(e) α = 1, β = 0.3, γ = 0. (f) α = 1, β = 0.5, γ = 0.

(g) α = 1, β = 0.8, γ = 0. (h) α = 1, β = 1, γ = 0.

Figure 10.20: Image binarizations found by the one-pass heuristic applied to fα,β,γ.
Original image is a 24-bit 1280 × 755 bitmap image of a project design of a house.
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(a) Original image. (b) α = β = γ = 1. (c) α = β = 1, γ = 0.5.

(d) α = β = 1, γ = 0.25. (e) α = β = 1, γ = 0. (f) α = 1, β = 0.5, γ = 1.

(g) α = 1, β = 0.5, γ = 0.5. (h) α = 1, β = 0.5, γ = 0.25. (i) α = 1, β = 0.5, γ = 0.

Figure 10.21: Image binarizations found by the one-pass heuristic applied to fα,β,γ.
Original image is a 24-bit 200 × 199 bitmap image of an x-ray.
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Finally, we would like to mention that preprocessing (especially with the probing

option) is in practice very effective in finding persistencies for these types of quadratic

functions. In the future we plan to do a more detailed analysis of the various data re-

ductions achieved by employing various preprocessing techniques (including PrePro),

as well as by looking at specialized data structures that enable the method to find

solutions in real time.
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Chapter 11

Conclusions

We have seen that QUBO is a suitable model to solve many different types of combina-

torial optimization applications. In general, the current technology and algorithmic ad-

vances can routinely solve to optimality QUBO problems that have up to 100 variables.

The proposed preprocessing techniques, together with the improved bounding methods

can be determinant to solve to optimality special classes of optimization problems that

have tens and hundreds of thousands of binary variables (e.g., via minimization from

VLSI, MIN–VC of planar or power-law graphs, 2D Ising models, one–dimensional Ising

chains, problems from vision).

The analysis of persistencies for pseudo–Boolean optimization in general is an inter-

esting topic. We hope to investigate new algorithms to find further persistencies within

higher degree representations (e.g. cubic posiforms) of the QUBO problem.

The focus of this dissertation was mostly driven to find the optimum of the QUBO

problem. Heuristics should not be diminished since they are determinant to get good

solutions for very large problems. The challenge in the future is (i) to define heuristics

that have certain performance guarantees, and (ii) to propose very fast heuristics of

good quality that can be used in other algorithms (e.g. for preprocessing). Soon

enough, QUBOs of millions of variables will be created and the only possible way to

handle those problems is by having efficient and effective heuristics at hand. These

methods will require special fast data structures and probably even specific to the class

of problem being solved (e.g. imaging problem).

In practice, we have demonstrated that bounding is still the most determining factor

to solve QUBO efficiently. Improving the existent algorithms for bounding, and in

particular the “squeezed” iterated roof–duality versions, can be crucial in solving a
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wider range of problems.

The cubic–dual (i.e. C3) is an excellent bound for many classes of problems derived

from real applications. In this dissertation we provided certain hints that were an

attempt at computing C3 by means of combinatorial algorithms. We will continue to

pursue the search of a combinatorial algorithm to compute C3, which is going to be

determinant to solve “super”–sparse QUBO (e.g. large 2D or 3D Ising models, problems

from vision, combinatorics of large graphs).

C4 gives a good bound for the minimum 3–partition problem. It is probably the

first time where we have seen that C4 is clear advantageous over the C3 bound. This

motivates us at studying further C4 and also to attempt at characterizing the next

bound of the hierarchy, i.e. C5.

Computationally, it is also a challenge to implement new network flow algorithms,

and in particular if one would like to preprocess QUBO problems having hundreds of

thousands of variables.

With this dissertation, we also hope that the researchers from other related fields

(e.g. MAX–2–SAT, MAX–CUT, vision) realize that QUBO is a common framework

that has been active for many years now. We will continue working with people with

expertise in other fields to make sure that we both learn with each other, so that real

problems can be solved in real time, if that can be possible.

Roof–duality is a key algorithm to solve many QUBOs derived from real world

applications. Its success is due to several fronts. First it provides a bound computed

by a maximum flow algorithm. Second it detects a unique maximal set of persistencies,

making it possible to reduce the size of the problems. Third it is able to detect a well

characterized decomposition, which can potentially result in the optimization of several

smaller size independent QUBOs.
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Appendix A

Test Problems Characteristics

Table A.1: QUBO problems of Beasley [37].

(a) Problems with 50, 100 and 250 variables.

Problem Variables Density Maximum
Sub-Family Number (n) (d%) ρ% p% (τ (f))

B-50 1 50 8.82 35.72 1.86 2 098
2 50 9.80 52.59 0.73 3 702
3 50 10.78 57.11 1.44 4 626
4 50 9.06 50.90 2.16 3 544
5 50 10.69 51.46 1.78 4 012
6 50 8.24 57.97 7.41 3 693
7 50 10.12 57.75 1.83 4 520
8 50 11.18 55.28 3.65 4 216
9 50 9.96 53.44 3.63 3 780
10 50 8.82 53.29 2.10 3 507

B-100 1 100 9.37 45.76 1.40 7 970
2 100 9.74 51.51 1.17 11 036
3 100 9.90 56.18 1.46 12 723
4 100 9.60 49.77 1.49 10 368
5 100 9.27 47.99 1.54 9 083
6 100 10.30 50.74 1.89 10 210
7 100 9.47 50.74 0.86 10 125
8 100 9.94 49.51 0.60 11 435
9 100 10.14 50.93 0.94 11 455
10 100 9.80 53.72 1.54 12 565

B-250 1 250 9.92 49.81 0.47 45 607
2 250 9.75 50.94 0.54 44 810
3 250 9.84 52.70 0.49 49 037
4 250 10.11 48.72 0.49 41 274
5 250 10.00 50.74 0.32 47 961
6 250 10.23 49.54 0.47 >41 014
7 250 9.92 51.40 0.43 46 757
8 250 9.69 47.81 0.39 >35 726
9 250 10.10 51.91 0.34 48 916
10 250 9.78 49.73 0.40 40 442
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(b) Problems with with 500, 1000 and 2500 variables.

Problem Variables Density Maximum
Sub-Family Number (n) (d%) ρ% p% (τ (f))

B-500 1 500 9.92 49.87 0.23 >116586
2 500 9.84 50.44 0.16 >128 339‡

3 500 10.04 50.92 0.12 >130812
4 500 9.84 51.54 0.18 >130097
5 500 9.88 50.23 0.21 >125487
6 500 9.87 50.09 0.22 >121 772‡

7 500 9.94 49.99 0.21 >122201
8 500 9.84 51.23 0.14 >123559
9 500 9.91 50.38 0.18 >120798
10 500 9.95 50.81 0.18 >130619

B-1000 1 1 000 9.90 50.76 0.21 >371438
2 1 000 9.90 50.44 0.19 >354932
3 1 000 9.95 50.55 0.21 >371 236‡

4 1 000 9.93 50.77 0.19 >370 675‡

5 1 000 9.91 50.53 0.20 >352 760?

6 1 000 9.98 50.21 0.19 >359 629‡

7 1 000 9.89 50.58 0.19 >371 193‡

8 1 000 9.90 50.52 0.22 >351 994‡

9 1 000 9.91 50.29 0.17 >349 337†

10 1 000 9.82 50.32 0.24 >351415

B-2500 1 2 500 9.94 50.57 0.04 >1 515 944†

2 2 500 9.90 50.53 0.04 >1 471 392†

3 2 500 9.89 50.24 0.04 >1 414 192†

4 2 500 9.90 50.55 0.04 >1 507 701‡

5 2 500 9.90 50.53 0.04 >1 491 816†

6 2 500 9.88 50.46 0.04 >1 469 162†

7 2 500 9.92 50.48 0.04 >1 479 040†

8 2 500 9.89 50.43 0.04 >1 484 199
9 2 500 9.92 50.45 0.04 >1 482 413‡

10 2 500 9.90 50.51 0.04 >1 483 355†
†Solution reported first by Katayama and Narihisa [155].

‡Solution reported first by Merz and Freisleben [177].
?Solution reported first by Palubeckis [187].



389

Table A.2: QUBO problems of Glover, Kochenberger and Alidaee [108].
Problem Variables Density Starting Maximum

Sub-Family Number (n) (d%) ρ% p% Seed (τ (f))

A 1 50 8.65 50.65 26.89 10 3 414
2 60 9.21 56.02 20.25 10 6 063
3 70 9.23 52.62 15.23 10 6 037
4 80 9.62 54.51 13.12 10 8 598
5 50 18.86 53.62 9.93 10 5 737
6 30 40.00 53.48 8.10 10 3 980
7 30 48.51 53.46 8.71 10 4 541
8 100 6.14 53.23 16.53 10 11 109

B 1 20 98.42 4.09 4.26 10 133
2 30 98.62 2.41 2.47 10 121
3 40 98.97 1.62 1.65 10 118
4 50 98.69 1.32 1.34 10 129
5 60 98.93 1.06 1.07 10 150
6 70 98.88 0.93 0.93 10 146
7 80 98.89 0.79 0.80 10 160
8 90 98.95 0.71 0.72 10 145
9 100 99.05 0.66 0.67 10 137
10 125 98.92 0.50 0.51 10 154

C 1 40 80.13 52.43 6.01 10 5 058
2 50 62.29 52.84 7.00 70 6 213
3 60 39.60 53.24 7.83 31 6 665
4 70 29.81 52.67 9.48 34 7 398
5 80 20.28 54.96 13.11 8 7 362
6 90 9.99 53.92 21.65 80 5 824
7 100 10.00 53.03 22.39 142 7 225

D 1 100 9.98 53.17 13.64 31 6 333
2 100 20.53 47.87 6.84 37 6 579
3 100 28.79 48.81 5.04 143 9 261
4 100 40.40 49.32 3.82 47 10 727
5 100 48.77 49.96 3.19 31 11 626
6 100 59.56 50.41 2.21 47 14 207
7 100 69.37 50.87 2.20 97 14 476
8 100 78.93 50.12 1.88 133 16 352
9 100 87.80 49.12 1.72 307 15 656
10 100 98.93 51.05 1.56 1 311 19 102

E 1 200 9.67 49.42 11.06 51 16 464
2 200 19.73 50.76 4.70 43 >23 395
3 200 29.40 49.28 3.40 34 >25 243
4 200 39.78 50.71 2.44 73 >35 594
5 200 49.53 50.67 1.96 89 >35 154

F1 1 500 9.96 49.76 2.99 137 >61 194
2 500 24.86 50.18 1.20 137 >100 161
3 500 49.62 50.17 0.57 137 >138 035
4 500 74.35 50.16 0.40 137 >172 771
5 500 99.01 50.10 0.31 137 >190 507
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Table A.3: QUBO problems of Glover, Kochenberger, Alidaee and Amini [109].
Problem Variables Density Maximum

Sub-Family Number (n) (d%) ρ% p% (τ (f))

G1 1 1 000 9.89 47.69 1.50 >131 456
2 1 000 19.82 47.92 0.73 >172 788
3 1 000 29.64 47.85 0.51 >192 565
4 1 000 39.52 47.84 0.39 >215 679
5 1 000 49.49 47.91 0.30 >242 367
6 1 000 59.50 47.98 0.25 >243 293
7 1 000 69.38 47.97 0.22 >253 590†

8 1 000 79.23 47.93 0.19 >264 268†

9 1 000 89.10 47.92 0.17 >262 658
10 1 000 98.99 47.95 0.14 >274 375†

†Solution reported first by Amini et al. [18].

Table A.4: QUBO submodular problems of Glover, Alidaee, Rego and Kochenberger
[107].

Problem Variables Density Maximum
Sub-Family Number (n) (d%) ρ% p% (τ (f))

F2 1 500 9.82 3.82 3.97 >4 029
2 500 24.55 1.54 1.56 >2 010
3 500 49.07 0.80 0.80 1 094
4 500 73.72 0.52 0.52 685
5 500 98.04 0.38 0.38 418

G2 1 1 000 9.79 2.01 2.05 >5 216
2 1 000 29.36 0.66 0.67 >2 122
3 1 000 49.04 0.39 0.40 >1 272
4 1 000 68.75 0.28 0.29 866
5 1 000 98.04 0.20 0.20 452
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Table A.5: QUBO problems of Palubeckis and Tomkevièius [189].
Problem Variables Density Starting Maximum

Sub-Family Number (n) (d %) ρ % p % Seed (τ (f))

P-3000 1 3 000 49.76 50.01 0.07 31 000 >3 931 583†

2 3 000 79.58 50.03 0.04 32 000 >5 193 073†

3 3 000 79.60 50.01 0.04 33 000 >5 111 533†

4 3 000 99.50 50.02 0.03 34 000 >5 761 822†

5 3 000 99.50 49.99 0.03 35 000 >5 675 625‡

P-4000 1 4 000 49.73 50.01 0.05 41 000 >6 181 830†

2 4 000 79.60 49.99 0.03 42 000 >7 801 355†

3 4 000 79.60 49.98 0.03 43 000 >7 741 685†

4 4 000 99.50 49.99 0.03 44 000 >8 711 822†

5 4 000 99.50 50.03 0.03 45 000 >8 908 979‡

P-5000 1 5 000 49.74 50.01 0.04 51 000 >8 559 355
2 5 000 79.60 50.02 0.03 52 000 >10 836 019
3 5 000 79.61 49.96 0.02 53 000 >10 489 137
4 5 000 99.50 50.00 0.02 54 000 >12 251 874
5 5 000 99.50 50.03 0.02 55 000 >12 731 803

P-6000 1 6 000 49.75 50.01 0.03 61 000 >11 384 976
2 6 000 79.59 49.99 0.02 62 000 >14 333 855
3 6 000 99.50 50.00 0.02 64 000 >16 132 915

†Solution reported first by Palubeckis and Tomkevièius [189].
‡Solution reported first by Palubeckis [187].
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Table A.6: Minimum values of the Small family QUBO problems.
Group Variables Minimum Values (ν (f))

(k) ρ (n) d = 20% d = 40% d = 60% d = 80% d = 100%

0.40 25 -1 762 -1 567 -2 962 -6 314 -4 692
50 -3 277 -10 118 -10 967 -17 383 -13 702
75 -7 794 -16 368 -18 404 -27 004 -32 653
100 -16 401 -24 763 -32 714 -47 654 -52 053

0.55 25 -1 066 -748 -1 361 -2 800 -1 777
50 -1 623 -3 920 -3 993 -5 459 -3 244
75 -3 734 -5 842 -4 931 -6 626 -6 683

1 100 -6 359 -6 615 -7 372 -10 296 6-7 899
0.70 25 -674 -407 -711 -1 035 -686

50 -917 -1 645 -1 444 -1 595 -1 083
75 -1 682 -2 234 -1 678 -1 821 -1 764
100 -2 640 6-2 157 6-2 154 -2 627 6-1 979

0.85 25 -401 -241 -340 -358 -261
50 -485 -660 -574 -548 -396
75 -791 -901 -585 -553 -561
100 -1 100 -815 -742 -847 -525

0.40 25 -998 -1 688 -3 224 -3 933 -3 556
50 -4 634 -7 672 -13 405 -11 914 -13 234
75 -10 944 -17 131 -19 358 -25 152 -33 169
100 -13 277 -22 719 -37 422 -47 166 -63 481

0.55 25 -616 -967 -1 478 -1 804 -1 019
50 -2 294 -3 004 -5 092 -3 761 -3 637
75 -5 025 -5 879 -5 686 -5 243 -6 422

2 100 -5 028 -6 760 -8 243 6-9 601 6-11 556
0.70 25 -384 -463 -657 -656 -363

50 -1 198 -1 387 -1 834 -1 288 -1 256
75 -2 347 -2 026 -1 692 -1 603 -1 616
100 -1 948 6-2 626 6-2 241 -2 486 6-2 312

0.85 25 -283 -299 -355 -279 -177
50 -642 -629 -691 -448 -486
75 -1 165 -732 -524 -527 -585
100 -837 -997 -838 -710 -669

0.40 25 -589 -2 199 -3 683 -5 682 -5 177
50 -3 690 -6 038 -9 230 -11 694 -16 734
75 -7 874 -12 975 -22 579 -26 725 -32 181
100 -14 731 -24 089 -36 633 -42 728 -61 757

0.55 25 -368 -1 064 -1 743 -2 583 -2 068
50 -1 944 -2 585 -3 369 -3 277 -3 870
75 -3 349 -4 227 -6 082 -6 629 -6 122

3 100 -5 566 -6 856 -8 997 6-9 147 6-12 177
0.70 25 -230 -497 -746 -954 -830

50 -1 139 -1 207 -1 092 -1 078 -1 089
75 -1 635 -1 511 -1 915 -1 999 -1 672
100 -2 231 6-2 244 6-2 502 6-2 168 6-2 803

0.85 25 -155 -244 -376 -268 -259
50 -709 -624 -461 -360 -341
75 -878 -629 -808 -595 -499
100 -848 -815 -802 -595 -717
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Table A.7: Best known values of the Large family QUBO problems.

(a) Problems with ρ = 0.0.

Variables Instance Maximum Values (τ (f))

(n) (k) d = 25% d = 50% d = 75% d = 100%

1 >1 896 1 010 602 335
2 >1 975 1 026 657 322
3 >1 912 1 008 603 319
4 >1 977 1 041 631 309

500 5 >1 943 988 636 331
6 >1 888 998 648 359
7 >1 951 1 009 623 322
8 >1 899 1 056 601 321
9 >1 890 1 077 642 323
10 >2 005 1 022 641 324
1 >2 278 >1 211 733 371
2 >2 320 >1 194 703 369
3 >2 307 >1 238 695 344
4 >2 321 >1 125 702 349

1 000 5 >2 252 >1 149 705 383
6 >2 301 >1 161 686 341
7 >2 300 >1 113 695 372
8 >2 359 >1 194 714 341
9 >2 313 >1 201 700 345
10 >2 341 >1 163 666 342
1 >2 720 >1 337 >786 406
2 >2 626 >1 340 >786 395
3 >2 735 >1 353 >828 389
4 >2 757 >1 355 >802 394

2 500 5 >2 772 >1 284 >802 399
6 >2 701 >1 336 >762 391
7 >2 654 >1 288 >788 392
8 >2 696 >1 336 >811 392
9 >2 788 >1 322 >802 401
10 >2 722 >1 315 >796 396
1 >3 042 >1 428 >830 >412
2 >2 953 >1 400 >829 >428
3 >3 003 >1 421 >826 >409
4 >3 018 >1 386 >820 >421

5 000 5 >2 957 >1 419 >867 >414
6 >3 003 >1 446 >810 >423
7 >2 938 >1 448 >847 >411
8 >2 956 >1 434 >855 >416
9 >2 929 >1 425 >832 >415
10 >3 122 >1 440 >875 >412
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(b) Problems with ρ = 0.2.

Variables Instance Maximum Values (τ (f))

(n) (k) d = 25% d = 50% d = 75% d = 100%

1 >10 596 >7 807 >6 190 >5 633
2 >10 541 >8 026 >6 224 >5 286
3 >10 385 >8 376 >6 267 >5 154
4 >10 483 >7 783 >6 403 >5 362

500 5 >11 135 >7 887 >6 116 >5 208
6 >10 336 >8 171 >6 302 >5 454
7 >11 107 >7 768 >6 565 >5 363
8 >11 250 >7 611 >6 497 >4 953
9 >10 894 >7 740 >6 292 >5 611
10 >12 090 >7 824 >6 360 >5 380
1 >16 831 >11 646 >8 881 >7 179
2 >15 834 >11 119 >8 699 >7 681
3 >15 864 >11 214 >8 616 >7 037
4 >16 004 >11 160 >8 818 >7 514

1 000 5 >16 248 >10 996 >8 605 >7 239
6 >15 818 >10 958 >8 687 >7 228
7 >16 233 >11 287 >8 451 >7 179
8 >16 723 >11 133 >8 621 >7 393
9 >16 021 >11 015 >8 592 >7 232
10 >16 553 >11 097 >8 705 >7 161
1 >25 276 >15 689 >12 094 >9 784
2 >25 085 >16 130 >12 144 >9 502
3 >25 277 >16 173 >12 358 >9 858
4 >24 934 >16 235 >12 072 >10 114

2 500 5 >24 884 >16 247 >12 051 >9 784
6 >25 206 >16 062 >12 223 >9 835
7 >25 319 >16 316 >12 321 >10 315
8 >24 953 >15 863 >12 218 >9 821
9 >24 881 >15 747 >12 093 >9 654
10 >24 799 >16 271 >12 109 >10 130
1 >32 102 >19 832 >14 422 >11 688
2 >31 220 >19 790 >14 291 >11 843
3 >31 645 >19 938 >14 402 >11 310
4 >31 553 >19 644 >14 583 >12 079

5 000 5 >30 862 >19 636 >14 205 >11 680
6 >31 516 >19 440 >14 499 >11 330
7 >31 721 >19 260 >14 512 >11 514
8 >32 005 >20 171 >14 443 >11 771
9 >31 542 >19 413 >14 336 >11 588
10 >30 815 >19 632 >15 336 >11 656
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(c) Problems with ρ = 0.5.

Variables Instance Maximum Values (τ (f))

(n) (k) d = 25% d = 50% d = 75% d = 100%

1 >193 720 >279 570 >303 504 >388 093
2 >188 081 >267 860 >335 519 >393 598
3 >195 303 >249 201 >331 281 >370 484
4 >190 422 >268 906 >347 094 >429 240

500 5 >201 675 >282 127 >344 228 >420 516
6 >196 179 >271 222 >313 344 >352 323
7 >181 627 >310 386 >327 042 >372 387
8 >187 568 >273 350 >348 639 >390 844
9 >211 365 >295 870 >301 635 >388 741
10 >194 761 >269 929 >355 210 >377 461
1 >552 555 >767 581 >903 348 >1 083 464
2 >565 454 >788 852 >968 276 >1 026 577
3 >528 104 >788 089 >960 572 >1 073 194
4 >542 066 >763 249 >938 678 >1 085 743

1 000 5 >571 010 >829 640 >982 533 >1 089 956
6 >563 361 >791 024 >915 896 >1 085 129
7 >543 531 >777 923 >955 619 >1 054 291
8 >552 963 >773 215 >930 066 >1 051 310
9 >558 924 >804 173 >966 388 >1 132 824
10 >579 971 >748 120 >933 109 >1 107 758
1 >2 117 885 >2 921 232 >3 748 994 >4 244 425
2 >2 206 568 >3 159 973 >3 750 561 >4 302 240
3 >2 179 960 >3 085 238 >3 742 426 >4 556 506
4 >2 061 958 >3 095 310 >3 753 850 >4 237 821

2 500 5 >2 063 035 >3 094 166 >3 776 627 >4 326 133
6 >2 150 995 >3 067 753 >3 766 020 >4 435 310
7 >2 152 229 >3 023 673 >3 826 756 >4 303 320
8 >2 182 669 >3 067 367 >3 673 748 >4 343 147
9 >2 161 980 >3 073 944 >3 627 131 >4 331 541
10 >2 136 842 >2 968 921 >3 883 188 >4 294 991
1 >5 965 812 >8 658 526 >10 885 506 >12 265 662
2 >5 990 057 >8 771 424 >10 947 831 >12 131 166
3 >6 148 221 >8 679 817 >10 734 928 >12 180 956
4 >5 963 305 >8 633 975 >10 485 856 >12 073 331

5 000 5 >6 133 071 >8 573 093 >10 460 969 >12 356 295
6 >6 079 756 >8 533 052 >10 637 130 >12 206 640
7 >6 116 353 >8 670 991 >10 538 428 >12 030 678
8 >6 117 382 >8 772 400 >10 797 015 >11 815 372
9 >6 178 704 >8 513 475 >10 439 669 >12 273 264
10 >6 176 659 >8 518 653 >10 238 785 >12 249 156
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Table A.8: Best known cuts of the Hamilton graphs.

(a) Group number one (k = 1).

Exterior Edge’s Weights Vertices Weighted MAX–CUT (τ (f))
Field (h) ([w−, w+]) (|V |) 2 cycles 4 cycles 6 cycles 8 cycles

0 1 250 >432 >762 >1 072 >1 370
500 >862 >1 524 >2 156 >2 746
1 000 >1 730 >3 056 >4 298 >5 500
2 000 >3 458 >6 106 >8 606 >11 010

0 [−50, 50] 250 5 066 >7 161 >8 832 >11 807
500 >10 645 >15 556 >19 599 >22 802
1 000 >19 618 >28 792 >38 054 >47 412
2 000 >40 920 >61 500 >74 248 >88 216

25 [−50, 50] 250 9 214 >11 286 >12 988 >15 035
500 >18 170 >21 037 >26 618 >29 143
1 000 >37 080 >45 208 >53 728 >58 431
2 000 >72 726 >89 568 >102 105 >113604

-75 [50, 100] 250 >23 999 >48 771 >71 787 >93 689
500 >47 300 >96 926 >143 087 >187871
1 000 >94 895 >195 912 >288 124 >378970
2 000 >190 347 >388 399 >575 993 >753810

75 [50, 100] 250 >42 866 >67 629 >90 684 >112618
500 >85 259 >135 183 >181 214 >226677
1 000 >170 633 >270 547 >362 323 >453210
2 000 >339 274 >538 610 >726 052 >906275

(b) Group number two (k = 2).

Exterior Edge’s Weights Vertices Weighted MAX–CUT (τ (f))
Field (h) ([w−, w+]) (|V |) 2 cycles 4 cycles 6 cycles 8 cycles

0 1 250 >432 >766 >1 078 >1 368
500 >866 >1 526 >2 154 >2 750
1 000 >1 728 >3 050 >4 306 >5 510
2 000 >3 458 >6 104 >8 600 >11 010

0 [−50, 50] 250 5 294 >7 905 >9 616 >11 187
500 >10 646 >15 080 >19 259 >21 889
1 000 >20 429 >31 360 >36 794 >44 499
2 000 >41 320 >60 689 >72 583 >87 528

25 [−50, 50] 250 8 889 >11 289 >12 619 >14 590
500 17 871 >22 606 >24 946 >28 826
1 000 >35 371 >46 124 >52 950 >57 618
2 000 >71 112 >89 317 >105 612 >114356

-75 [50, 100] 250 >23 609 >48 150 >71 550 >95 059
500 >47 659 >96 798 >143 424 >190579
1 000 >95 238 >194 868 >289 076 >378579
2 000 >189 262 >389 692 >576 861 >753951

75 [50, 100] 250 >42 786 >67 277 >91 074 >112563
500 >85 469 >133 994 >181 180 >227791
1 000 >170 473 >269 941 >362 123 >453730
2 000 >341 075 >537 083 >724 955 >905677
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(c) Group number three (k = 3).

Exterior Edge’s Weights Vertices Weighted MAX–CUT (τ (f))
Field (h) ([w−, w+]) (|V |) 2 cycles 4 cycles 6 cycles 8 cycles

0 1 250 >428 >758 >1,076 >1,378
500 >864 >1 524 >2 152 >2 750
1 000 >1 732 >3 056 >4 306 >5 498
2 000 >3 464 >6 114 >8 596 >11 000

0 [−50, 50] 250 4 880 >7 437 >9 707 >10 984
500 >9 936 >15 893 >18 685 >21 482
1 000 >20 123 >30 601 >38 188 >43 714
2 000 >41 427 >61 183 >76 649 >85 448

25 [−50, 50] 250 9 401 >10 722 >12 970 >14 915
500 17 066 >21 669 >25 188 >28 524
1 000 >34 798 >44 328 >49 428 >56 768
2 000 >71 957 >89 353 >103 163 >112632

-75 [50, 100] 250 >24 421 >48 712 >71 442 >93 877
500 >47 398 >97 304 >143 755 >189146
1 000 >95 736 >192 805 >289 256 >378515
2 000 >190 735 >387 780 >575 452 >755498

75 [50, 100] 250 >42 674 >67 436 >90 052 >112631
500 >84 391 >134 772 >181 278 >227221
1 000 >170 709 >270 208 >362 367 >453514
2 000 >337 682 >537 761 >723 906 >908119
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Table A.9: Best known values of the randomly generated MAX–2–SAT problems.

(a) SAT subfamily.

Profile Instance Minimum False Clauses (ν (f))
ID (k) n = 50 n = 100 n = 200 n = 400

1 169 720 2 905 12 085
2 182 793 3 023 12 164

1 3 188 748 2 935 12 138
4 177 723 3 036 11 993
5 184 772 2 973 11 952
1 86 360 1 397 5 605
2 83 324 1 451 5 655

2 3 86 346 1 396 5 743
4 86 351 1 375 5 692
5 85 338 1 377 5 705
1 233 6982 64 235 617 907
2 218 6975 64 258 617 905

3 3 226 61 016 64 258 617 873
4 217 61 000 64 259 617 889
5 227 61 006 64 282 617 898
1 121 565 62 523 610 472
2 125 568 62 393 610 342

4 3 122 566 62 476 610 408
4 116 6557 62 405 610 345
5 133 535 62 441 610 446
1 36 175 6834 63 804
2 43 180 6855 63 792

5 3 40 192 6864 63 801
4 39 195 6864 63 812
5 37 185 6858 63 790
1 53 260 61 211 65 280
2 50 284 61 209 65 273

6 3 54 252 61 171 65 160
4 55 266 61 243 65 264
5 55 280 61 214 65 267
1 200 6871 63 765 615 787
2 191 6912 63 819 615 698

7 3 196 6899 63 794 615 765
4 208 6887 63 815 615 833
5 202 6866 63 717 615 873
1 105 470 61 981 68 555
2 102 6464 62 044 68 587

8 3 104 6486 61 988 68 613
4 96 6453 62 008 68 599
5 112 6458 61 990 68 537
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(b) WSAT-[1,10] subfamily.

Profile Instance Minimum False Clauses (ν (f))
ID (k) n = 50 n = 100 n = 200 n = 400

1 1 078 4 130 16 478 66 431
2 1 018 4 125 16 008 66 401

1 3 929 4 224 16 578 66 095
4 978 4 253 16 263 65 780
5 1 000 4 105 16 047 65 918
1 421 2 005 7 966 31 313
2 463 1 812 8 074 31 071

2 3 448 2 027 7 842 31 403
4 449 1 882 7 832 31 009
5 522 2 018 7 936 31 247
1 1 176 65 305 622 797 696 101
2 1 206 65 076 622 786 697 147

3 3 1 214 65 227 622 711 696 421
4 1 214 65 199 622 836 696 970
5 1 165 65 140 623 299 695 920
1 729 2 883 613 050 656 515
2 632 62 851 612 710 656 177

4 3 597 63 052 613 273 655 938
4 554 62 974 613 251 656 664
5 641 62 961 612 977 655 737
1 178 919 64 417 620 677
2 209 1 008 64 530 619 893

5 3 225 1 017 64 217 620 200
4 247 995 64 514 620 570
5 222 968 64 327 619 844
1 274 1 461 66 401 627 981
2 233 1 315 66 318 628 200

6 3 261 1 451 66 605 628 003
4 250 1 346 66 147 627 721
5 264 1 340 66 432 627 813
1 1 045 64 763 620 320 685 630
2 1 087 64 694 620 521 684 484

7 3 1 056 64 693 620 458 685 968
4 942 64 650 620 373 686 340
5 1 045 64 802 620 435 686 317
1 447 62 528 610 552 645 986
2 505 62 595 610 636 645 532

8 3 561 2 126 610 558 645 956
4 450 62 329 610 542 645 909
5 441 2 269 610 372 646 578
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(c) WSAT-[1,100] subfamily.

Profile Instance Minimum False Clauses (ν (f))
ID (k) n = 50 n = 100 n = 200 n = 400

1 9 419 37 500 151 086 607 061
2 8 917 36 193 146 401 614 767

1 3 8 765 35 686 148 810 612 242
4 8 422 37 616 151 897 601 632
5 8 932 38 640 150 880 608 370
1 4 283 18 783 69 314 282 480
2 4 395 17 045 73 054 285 126

2 3 4 513 18 659 70 779 286 189
4 3 671 20 014 71 461 285 728
5 4 442 17 372 68 558 285 748
1 9 910 648 151 6209 851 6879 814
2 10 945 647 719 6211 381 6886 390

3 3 10 675 646 486 6208 549 6883 307
4 9 553 647 905 6209 637 6888 593
5 9 918 647 149 6210 136 6887 649
1 5 737 26 982 6118 651 6508 048
2 5 396 26 791 6117 795 6507 736

4 3 5 469 26 310 6115 447 6512 393
4 5 614 25 694 6118 758 6512 348
5 5 438 627 848 6118 207 6512 381
1 1 674 8 094 640 145 6183 267
2 1 646 9 147 641 567 6183 940

5 3 1 628 8 998 641 648 6182 193
4 1 414 7 850 640 131 6187 085
5 1 808 8 776 640 195 6183 009
1 2 727 12 609 658 569 6256 252
2 2 324 12 731 657 005 6256 466

6 3 2 630 13 490 656 487 6260 561
4 2 963 13 444 659 273 6254 874
5 2 653 11 809 660 888 6262 830
1 9 238 643 985 6188 313 6784 089
2 9 333 643 023 6189 879 6788 164

7 3 8 255 641 023 6185 516 6778 369
4 9 782 642 204 6188 299 6785 689
5 8 941 642 636 6185 158 6785 042
1 4 594 621 495 696 609 6420 688
2 4 775 21 326 698 571 6418 497

8 3 4 436 21 163 697 878 6414 141
4 4 956 20 788 697 544 6422 297
5 4 345 621 308 697 808 6420 553
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(d) WSAT-[90,100] subfamily.

Profile Instance Minimum False Clauses (ν (f))
ID (k) n = 50 n = 100 n = 200 n = 400

1 18 101 76 763 287 294 1 142 997
2 17 048 71 122 289 869 1 169 220

1 3 17 714 71 183 288 847 1 146 747
4 17 764 72 169 288 639 1 149 711
5 17 622 72 557 279 593 1 149 335
1 7 103 34 777 135 249 534 493
2 9 482 35 700 131 482 539 314

2 3 7 862 32 484 137 411 541 226
4 8 248 35 493 133 072 537 420
5 7 209 34 973 137 376 531 988
1 21 784 694 016 6404 845 61 692 809
2 20 610 692 533 6406 774 61 690 477

3 3 22 277 694 139 6406 902 61 702 333
4 22 279 695 507 6408 499 61 697 074
5 20 710 694 944 6406 305 61 695 128
1 12 033 49 973 6229 164 6980 318
2 12 711 55 079 6231 308 6981 967

4 3 11 760 54 834 6230 894 6982 992
4 11 260 653 853 6230 990 6987 019
5 11 919 652 703 6230 842 6992 394
1 3 907 17 280 684 354 6362 540
2 3 689 18 356 682 811 6360 733

5 3 3 983 17 391 681 687 6362 398
4 4 353 18 659 682 243 6367 793
5 3 433 18 668 679 091 6367 033
1 5 145 24 351 6115 599 6506 993
2 4 844 23 675 6114 335 6498 561

6 3 4 616 24 749 6114 243 6497 285
4 5 108 24 612 6115 770 6496 892
5 5 022 26 204 6114 638 6496 572
1 18 433 684 856 6361 069 61 505 424
2 17 928 684 670 6355 410 61 496 948

7 3 18 896 686 320 6360 624 61 502 605
4 19 582 679 947 6361 107 61 488 725
5 18 498 684 859 6362 244 61 500 950
1 10 229 643 426 6188 321 6804 306
2 8 444 642 100 6188 230 6814 102

8 3 9 568 642 491 6194 599 6806 611
4 10 246 643 267 6189 896 6814 702
5 9 447 39 857 6194 276 6820 735
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Appendix B

Heuristics Statistics

Table B.1: Least squares fitting of performance ratios (rACSIOM) in the medium test
problems with ρ 6 0.525.

(a) Model ANOVA.

Sum of Mean
Squares df Square F sign.-F

Regression 35.3429 3 11.7810 3217.4483 0.0000
Residual 9.5055 2596 0.0037
Total 44.8484 2599

(b) Model summary.

Multiple Adjusted Standard Number
R R2 R2 Error Observations

0.8877 0.7881 0.7878 0.0605 2600

(c) Model coefficients.

Unstandardized 95% Confidence
Coefficients Interval for Coefficients

Regressor Value Std. Err. t-stat. sign.-t Low. Bound Up. Bound
intercept a0 = 6.8725E − 01 0.0044 155.7904 0.0000 6.7860E − 01 6.9590E − 01

n an = −2.9132E − 05 0.0000 −13.7230 0.0000 −3.3295E − 05 −2.4970E − 05
d ad = −7.9109E − 02 0.0042 −18.8547 0.0000 −8.7336E − 02 −7.0881E − 02
ρ aρ = 7.5261E − 01 0.0079 95.4015 0.0000 7.3714E − 01 7.6808E − 01
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Table B.2: Number of variables (n) versus density (d) analysis on the performance
ratios values (rACSIOM) for the medium problems.

(a) F = Mediumρ60.15.

ρ 6 0.15 d = 20% d = 40% d = 60% d = 80% d = 100%
61.4% 56.1% 54.5% 48.1% 38.3%

n = 500 75.8% ± 6.9% 71.5% ± 9.0% 71.1% ± 8.5% 67.5% ± 10.3% 64.0% ± 13.7%
87.7% 91.9% 87.9% 92.1% 100.0%

59.1% 53.5% 47.1% 42.0% 44.8%
n = 1000 71.2% ± 5.2% 68.8% ± 8.5% 66.0% ± 9.0% 60.9% ± 10.3% 66.0% ± 11.3%

81.9% 87.4% 81.0% 83.2% 91.4%
54.3% 47.6% 46.6% 45.2% 43.2%

n = 1500 67.8% ± 6.5% 66.7% ± 7.4% 64.7% ± 7.9% 67.6% ± 9.6% 64.4% ± 9.8%
78.3% 81.3% 80.5% 88.1% 85.9%

53.1% 53.1% 45.8% 53.9% 45.3%
n = 2000 68.7% ± 6.5% 68.0% ± 7.1% 66.0% ± 6.5% 68.2% ± 9.1% 63.1% ± 9.9%

86.7% 82.5% 75.5% 90.5% 85.8%

(b) F =Medium0.15<ρ60.3.

0.15 < ρ 6 0.3 d = 20% d = 40% d = 60% d = 80% d = 100%
68.5% 67.9% 61.5% 56.5% 56.7%

n = 500 84.0% ± 5.9% 81.9% ± 5.6% 78.9% ± 6.9% 76.6% ± 9.0% 76.3% ± 9.8%
94.1% 90.4% 92.0% 97.9% 94.8%

66.9% 68.6% 60.8% 52.3% 51.8%
n = 1000 81.2% ± 5.7% 78.3% ± 6.5% 76.4% ± 7.4% 74.7% ± 7.5% 71.8% ± 8.3%

91.6% 91.5% 92.5% 85.8% 85.4%
64.4% 62.0% 56.4% 58.7% 49.2%

n = 1500 79.5% ± 4.7% 76.4% ± 6.2% 74.0% ± 6.5% 74.3% ± 7.2% 69.5% ± 8.4%
87.4% 89.3% 87.2% 87.4% 83.0%

65.7% 63.9% 64.1% 57.8% 52.5%
n = 2000 78.5% ± 4.9% 75.7% ± 5.3% 72.5% ± 5.6% 71.5% ± 5.9% 68.8% ± 6.6%

87.1% 85.1% 81.9% 85.8% 80.9%

(c) F =Medium0.3<ρ60.45.

0.3 < ρ 6 0.45 d = 20% d = 40% d = 60% d = 80% d = 100%
85.5% 78.7% 80.1% 73.7% 73.1%

n = 500 95.0% ± 3.4% 92.5% ± 5.2% 91.6% ± 5.0% 89.8% ± 5.9% 87.4% ± 7.3%
100.0% 99.7% 99.6% 100.0% 99.0%

87.9% 78.9% 77.3% 72.4% 72.3%
n = 1000 92.9% ± 3.1% 89.8% ± 5.0% 88.9% ± 5.4% 87.5% ± 6.0% 86.3% ± 5.8%

97.4% 98.6% 98.3% 96.0% 96.3%
78.9% 79.1% 68.9% 72.4% 70.4%

n = 1500 91.4% ± 4.3% 88.4% ± 4.8% 86.0% ± 6.4% 84.1% ± 6.1% 84.0% ± 6.1%
98.1% 96.4% 94.3% 96.8% 94.4%

82.0% 75.3% 69.4% 72.3% 68.4%
n = 2000 89.7% ± 4.1% 86.7% ± 5.2% 84.6% ± 6.7% 83.2% ± 6.2% 82.7% ± 6.5%

96.3% 95.6% 93.9% 93.2% 94.6%

(d) F =Medium0.45<ρ60.6.

0.45 < ρ 6 0.6 d = 20% d = 40% d = 60% d = 80% d = 100%
97.9% 96.7% 96.1% 95.5% 96.0%

n = 500 99.6% ± 0.6% 99.4% ± 0.8% 99.5% ± 0.9% 99.4% ± 1.1% 99.3% ± 1.1%
100.0% 100.0% 100.0% 100.0% 100.0%

97.8% 95.8% 95.7% 95.0% 94.5%
n = 1000 99.5% ± 0.6% 99.2% ± 1.2% 99.2% ± 1.2% 99.1% ± 1.4% 99.2% ± 1.5%

100.0% 100.0% 100.0% 100.0% 100.0%
97.0% 95.7% 94.7% 92.0% 93.2%

n = 1500 99.4% ± 0.8% 99.3% ± 1.1% 98.9% ± 1.7% 98.8% ± 2.0% 98.9% ± 1.9%
100.0% 100.0% 100.0% 100.0% 100.0%

96.6% 94.6% 93.4% 93.0% 92.7%
n = 2000 99.3% ± 1.0% 99.2% ± 1.3% 99.0% ± 1.8% 98.7% ± 2.2% 98.6% ± 2.2%

100.0% 100.0% 100.0% 100.0% 100.0%
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Table B.3: Number of variables (n) versus density (d) analysis of number of roundings
per variable necessary by AACSIOM in the problems of the medium family.

(a) F = Mediumρ60.15.

ρ 6 0.15 d = 20% d = 40% d = 60% d = 80% d = 100%
1.00600 1.00400 1.00400 1.00200 1.00200

n = 500 1.01977 ± 0.00703 1.01331 ± 0.00649 1.01217 ± 0.00459 1.00971 ± 0.00527 1.00714 ± 0.00344
1.04200 1.03400 1.02400 1.03000 1.01800

1.00500 1.00300 1.00200 1.00200 1.00200
n = 1000 1.01414 ± 0.00508 1.01003 ± 0.00383 1.00769 ± 0.00289 1.00589 ± 0.00275 1.00571 ± 0.00333

1.02400 1.02000 1.01500 1.01400 1.02000
1.00600 1.00400 1.00333 1.00267 1.00133

n = 1500 1.01095 ± 0.00302 1.00741 ± 0.00268 1.00623 ± 0.00184 1.00486 ± 0.00147 1.00360 ± 0.00159
1.01800 1.01600 1.01000 1.00933 1.00733

1.00600 1.00350 1.00200 1.00200 1.00150
n = 2000 1.01030 ± 0.00249 1.00644 ± 0.00176 1.00467 ± 0.00176 1.00404 ± 0.00166 1.00326 ± 0.00149

1.01600 1.01050 1.01050 1.00850 1.00800

(b) F =Medium0.15<ρ60.3.

0.15 < ρ 6 0.3 d = 20% d = 40% d = 60% d = 80% d = 100%
1.01000 1.00800 1.00800 1.00400 1.00400

n = 500 1.02543 ± 0.01074 1.02069 ± 0.00803 1.01789 ± 0.00755 1.01497 ± 0.00626 1.01429 ± 0.00629
1.05600 1.03800 1.03200 1.03400 1.02800

1.01100 1.00700 1.00500 1.00400 1.00200
n = 1000 1.01974 ± 0.00637 1.01706 ± 0.00712 1.01394 ± 0.00654 1.01274 ± 0.00515 1.01097 ± 0.00485

1.04400 1.03600 1.03900 1.02600 1.02100
1.00600 1.00667 1.00467 1.00467 1.00200

n = 1500 1.01838 ± 0.00568 1.01571 ± 0.00576 1.01091 ± 0.00425 1.01038 ± 0.00408 1.00709 ± 0.00306
1.03000 1.02933 1.02200 1.02133 1.01533

1.00750 1.00550 1.00450 1.00400 1.00250
n = 2000 1.01967 ± 0.00611 1.01233 ± 0.00448 1.01019 ± 0.00387 1.00813 ± 0.00217 1.00696 ± 0.00314

1.03500 1.02500 1.02200 1.01350 1.01500

(c) F =Medium0.3<ρ60.45.

0.3 < ρ 6 0.45 d = 20% d = 40% d = 60% d = 80% d = 100%
1.00600 1.00800 1.00600 1.00800 1.00800

n = 500 1.03190 ± 0.01235 1.02875 ± 0.01122 1.02790 ± 0.01279 1.03085 ± 0.01594 1.03035 ± 0.01661
1.07400 1.05600 1.06200 1.08600 1.09600

1.01600 1.01000 1.00900 1.01100 1.00600
n = 1000 1.03280 ± 0.01111 1.03090 ± 0.01249 1.02913 ± 0.01208 1.02905 ± 0.01127 1.02693 ± 0.01252

1.05900 1.06700 1.06000 1.05800 1.06100
1.01133 1.01400 1.00933 1.00933 1.00867

n = 1500 1.03167 ± 0.01115 1.03278 ± 0.01247 1.02755 ± 0.01199 1.02415 ± 0.01049 1.02170 ± 0.00964
1.05867 1.06667 1.05133 1.05800 1.06000

1.01600 1.01250 1.00950 1.00850 1.00800
n = 2000 1.03231 ± 0.00884 1.02859 ± 0.01001 1.02711 ± 0.01309 1.02230 ± 0.01096 1.02316 ± 0.01272

1.05700 1.05800 1.06550 1.04950 1.06100

(d) F =Medium0.45<ρ60.6.

0.45 < ρ 6 0.6 d = 20% d = 40% d = 60% d = 80% d = 100%
1.00200 1.00200 1.00200 1.00200 1.00200

n = 500 1.01389 ± 0.01148 1.01257 ± 0.01104 1.01286 ± 0.01136 1.01046 ± 0.01048 1.01566 ± 0.01783
1.04800 1.04400 1.04000 1.04000 1.08400

1.00100 1.00100 1.00100 1.00100 1.00100
n = 1000 1.01291 ± 0.01338 1.01231 ± 0.01390 1.01169 ± 0.01193 1.01386 ± 0.01690 1.01386 ± 0.01709

1.05300 1.05200 1.03800 1.05900 1.06900
1.00067 1.00067 1.00067 1.00067 1.00067

n = 1500 1.01364 ± 0.01298 1.01307 ± 0.01590 1.01331 ± 0.01562 1.01411 ± 0.01726 1.01320 ± 0.01639
1.04000 1.06200 1.04667 1.05733 1.05067

1.00050 1.00050 1.00050 1.00050 1.00050
n = 2000 1.01344 ± 0.01452 1.01336 ± 0.01529 1.01353 ± 0.01583 1.01647 ± 0.01984 1.01303 ± 0.01574

1.04800 1.05200 1.04950 1.06200 1.04900
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Appendix C

Preprocessing Statistics

Several statistical counters were included in the algorithm PrePro. Let us remark

that all the computing times presented in this Appendix include the time needed for

this statistical gathering. Next, we describe the statistical counters that we have placed

in PrePro:

• tn – Time in seconds used by Network;

• ns – Number of strong persistencies found by Network;

• nw – Number of weak persistencies found by Network;

• tp – Time used by Probing in seconds;

• nb – Number of persistencies found by bounding in Probing;

• nf – Number of linear persistencies found by quadratic consensus in Probing;

• ne – Number of equality relations found by quadratic consensus in Probing;

• tc – Time used by Coordination in seconds;

• nc – Number of equality relations found in Coordination;

We have also obtained several statistics immediately after the execution of PrePro.

Namely:

• t – Total computing time of PrePro in seconds;

• q – Number of quadratic persistencies of the resulting posiform;
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• g – Relative gap |U−L||U | between the upper bound U and the lower bound L

returned by PrePro;

• c – Number of strong components of the resulting posiform;

• s – Number of variables of the largest strong component of the resulting posiform;

• r – Relative percentage of the number of variables fixed by PrePro.
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Table C.1: PrePro statistical report on the QUBO problems of Glover, Kochenberger and Alidaee [108].
Preprocessing Tools Statistics After Preprocessing

Roof-Duality Probing Coordination Total Quad. Relat. Comp. Left Variab.

Problem Time Strong Weak Time Bound. Fix. Eq. Time Eq. Time Rel. Gap Num. Larg. Reduc.

Family Numb. (tn) (ns) (nw) (tp) (nb)

�

nf

�

(ne) (tc) (nc) (t) (q) (g) (c) (s) (r)

A 1 0.0 48 2 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
2 0.0 60 0 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
3 0.0 17 0 0.0 3 31 19 0.1 0 0.1 0 0.0% 0 0 100.0%
4 0.0 78 0 0.0 0 0 0 0.0 2 0.0 0 0.0% 0 0 100.0%
5 0.0 5 1 0.0 0 0 0 0.0 0 0.0 4 8.7% 1 44 12.0%
6 0.0 0 0 0.0 0 0 0 0.0 0 0.0 2 15.9% 1 30 0.0%
7 0.0 0 0 0.0 0 0 0 0.0 0 0.0 0 16.4% 1 30 0.0%
8 0.0 100 0 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%

B 1 0.0 8 0 0.0 11 0 0 0.0 1 0.0 0 0.0% 0 0 100.0%
2 0.0 9 0 0.0 18 0 1 0.0 2 0.1 0 0.0% 0 0 100.0%
3 0.0 6 1 0.0 28 0 3 0.1 2 0.1 0 0.0% 0 0 100.0%
4 0.0 1 1 0.2 13 1 0 0.2 0 0.4 466 77.9% 1 34 32.0%
5 0.0 1 0 0.2 39 0 0 0.4 0 0.6 141 66.3% 1 20 66.7%
6 0.1 6 0 0.3 62 0 1 0.8 1 1.2 0 0.0% 0 0 100.0%
7 0.1 4 0 0.7 67 5 4 1.5 0 2.4 0 0.0% 0 0 100.0%
8 0.1 0 1 1.8 31 0 0 2.2 0 4.2 1325 90.0% 1 58 35.6%
9 0.1 0 1 2.8 20 0 0 2.8 0 5.8 2585 92.0% 1 79 21.0%
10 0.3 0 3 6.1 30 0 0 7.5 0 14.0 3495 93.1% 1 92 26.4%

C 1 0.0 0 0 0.1 0 0 0 0.0 0 0.1 0 36.0% 1 40 0.0%
2 0.0 0 0 0.1 0 0 0 0.0 0 0.1 0 36.5% 1 50 0.0%
3 0.0 0 0 0.1 0 0 0 0.0 0 0.1 0 27.7% 1 60 0.0%
4 0.0 0 0 0.1 0 0 0 0.0 0 0.1 2 24.1% 1 70 0.0%
5 0.0 6 0 0.4 2 0 1 0.0 0 0.4 5 14.7% 1 71 11.3%
6 0.0 87 0 0.0 3 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
7 0.0 100 0 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%

D 1 0.0 8 0 0.6 6 0 2 0.1 0 0.8 19 6.6% 1 84 16.0%
2 0.0 0 0 0.3 0 0 0 0.0 0 0.3 14 45.7% 1 100 0.0%
3 0.0 0 0 0.4 0 0 0 0.0 0 0.4 0 47.5% 1 100 0.0%
4 0.0 0 0 0.7 0 0 0 0.0 0 0.7 0 56.1% 1 100 0.0%
5 0.0 0 0 0.9 0 0 0 0.0 0 0.9 0 62.1% 1 100 0.0%
6 0.0 0 0 1.2 0 0 0 0.0 0 1.3 0 61.3% 1 100 0.0%
7 0.0 0 0 1.5 0 0 0 0.0 0 1.5 0 66.8% 1 100 0.0%
8 0.0 0 0 1.8 0 0 0 0.0 0 1.8 0 67.0% 1 100 0.0%
9 0.0 0 0 2.0 0 0 0 0.0 0 2.1 0 71.2% 1 100 0.0%
10 0.0 0 0 2.4 0 0 0 0.0 0 2.4 0 69.4% 1 100 0.0%

E 1 0.0 0 0 1.5 0 0 0 0.0 0 1.6 32 29.6% 1 200 0.0%
2 0.0 0 0 3.3 0 0 0 0.0 0 3.4 0 53.8% 1 200 0.0%
3 0.0 0 0 5.1 0 0 0 0.0 0 5.2 0 65.2% 1 200 0.0%
4 0.1 0 0 7.0 0 0 0 0.1 0 7.1 0 64.8% 1 200 0.0%
5 0.1 0 0 8.9 0 0 0 0.1 0 9.0 0 72.6% 1 200 0.0%

F1 a 0.1 0 0 28.2 0 0 0 0.3 0 28.6 0 61.4% 1 500 0.0%
b 0.3 0 0 66.3 0 0 0 0.4 0 67.0 0 75.0% 1 500 0.0%
c 0.9 0 0 132.8 0 0 0 0.5 0 134.1 0 82.7% 1 500 0.0%
d 1.6 0 0 211.1 0 0 0 0.5 0 213.4 0 85.6% 1 500 0.0%
e 2.6 0 0 304.1 0 0 0 0.7 0 307.5 0 88.1% 1 500 0.0%
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Table C.2: PrePro statistical report on the QUBO problems of Beasley [37].
Preprocessing Tools Statistics After Preprocessing

Roof-Duality Probing Coordination Total Quad. Relat. Comp. Left Variab.

Problem Time Strong Weak Time Bound. Fix. Eq. Time Eq. Time Rel. Gap Num. Larg. Reduc.

Family Numb. (tn) (ns) (nw) (tp) (nb)

�

nf

�

(ne) (tc) (nc) (t) (q) (g) (c) (s) (r)

ORL 50 1 0.0 46 4 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
2 0.0 45 5 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
3 0.0 50 0 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
4 0.0 48 2 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
5 0.0 49 1 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
6 0.0 49 0 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
7 0.0 49 1 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
8 0.0 50 0 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
9 0.0 48 0 0.0 2 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
10 0.0 45 3 0.0 2 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%

ORL 100 1 0.0 4 0 0.3 0 0 4 0.1 0 0.4 45 19.3% 1 92 8.0%
2 0.0 0 1 0.4 2 1 2 0.0 0 0.5 37 6.4% 1 94 6.0%
3 0.0 85 0 0.3 8 6 1 0.1 0 0.4 0 0.0% 0 0 100.0%
4 0.0 1 0 0.2 0 0 0 0.0 0 0.2 43 11.3% 1 99 1.0%
5 0.0 3 2 0.4 2 1 0 0.0 0 0.4 39 11.1% 1 92 8.0%
6 0.0 5 0 0.3 0 0 1 0.0 0 0.3 24 19.6% 1 94 6.0%
7 0.0 0 2 0.2 0 0 0 0.0 0 0.2 44 14.1% 1 98 2.0%
8 0.0 23 2 0.2 5 1 1 0.1 0 0.3 25 6.3% 1 68 32.0%
9 0.0 81 1 0.2 14 0 0 0.1 4 0.3 0 0.0% 0 0 100.0%
10 0.0 7 1 0.5 17 74 1 0.2 0 0.7 0 0.0% 0 0 100.0%

ORL 250 1 0.0 0 0 3.4 0 0 0 0.0 0 3.4 8 41.5% 1 250 0.0%
2 0.0 0 0 3.2 0 0 0 0.1 0 3.3 1 42.9% 1 250 0.0%
3 0.0 0 0 3.2 0 0 0 0.1 0 3.3 0 38.8% 1 250 0.0%
4 0.0 0 0 3.4 0 0 0 0.0 0 3.4 0 45.1% 1 250 0.0%
5 0.0 0 0 3.3 0 0 0 0.0 0 3.4 0 39.7% 1 250 0.0%
6 0.0 0 0 3.4 0 0 0 0.0 0 3.5 0 47.8% 1 250 0.0%
7 0.0 0 0 3.3 0 0 0 0.0 0 3.4 0 41.1% 1 250 0.0%
8 0.0 0 0 3.2 0 0 0 0.0 0 3.3 0 51.5% 1 250 0.0%
9 0.0 0 0 3.4 0 0 0 0.0 0 3.4 0 40.0% 1 250 0.0%
10 0.0 0 0 3.2 0 0 0 0.0 0 3.3 0 46.2% 1 250 0.0%

ORL 500 1 0.1 0 0 28.2 0 0 0 0.2 0 28.5 0 62.9% 1 500 0.0%
2 0.1 0 0 27.9 0 0 0 0.2 0 28.2 0 58.5% 1 500 0.0%
3 0.1 0 0 28.8 0 0 0 0.3 0 29.2 0 58.8% 1 500 0.0%
4 0.1 0 0 27.9 0 0 0 0.2 0 28.3 0 58.8% 1 500 0.0%
5 0.1 0 0 28.3 0 0 0 0.2 0 28.6 0 60.0% 1 500 0.0%
6 0.1 0 0 28.0 0 0 0 0.2 0 28.3 0 61.1% 1 500 0.0%
7 0.1 0 0 28.3 0 0 0 0.2 0 28.6 0 61.2% 1 500 0.0%
8 0.1 0 0 28.0 0 0 0 0.2 0 28.4 0 60.8% 1 500 0.0%
9 0.1 0 0 28.1 0 0 0 0.2 0 28.5 0 62.0% 1 500 0.0%
10 0.1 0 0 28.1 0 0 0 0.2 0 28.5 0 59.1% 1 500 0.0%



409

Table C.3: PrePro statistical report on the c–fat and Hamming graphs.
Preprocessing Tools Statistics After Preprocessing

Roof-Duality Probing Coordination Total Quad. Relat. Comp. Left Variab.

Problem Time Strong Weak Time Bound. Fix. Eq. Time Eq. Time Rel. Gap Num. Larg. Reduc.

Family Name (tn) (ns) (nw) (tp) (nb)

�

nf

�

(ne) (tc) (nc) (t) (q) (g) (c) (s) (r)

c–fat c-fat200-1 0.5 17 3 0.9 5 40 134 19.6 1 21.1 0 0.0% 0 0 100.0%
c-fat200-2 0.3 53 1 0.8 13 20 113 16.1 0 17.4 0 0.0% 0 0 100.0%
c-fat200-5 0.0 1 0 0.2 0 30 169 3.3 0 3.7 0 0.0% 0 0 100.0%
c-fat500-1 6.4 9 3 12.3 12 106 369 655.3 1 677.0 0 0.0% 0 0 100.0%
c-fat500-2 3.2 29 5 7.9 5 51 409 364.1 1 377.1 0 0.0% 0 0 100.0%
c-fat500-5 1.3 35 0 4.8 26 11 428 159.1 0 166.2 0 0.0% 0 0 100.0%
c-fat500-10 0.6 1 0 3.0 0 126 373 85.5 0 89.5 0 0.0% 0 0 100.0%

Hamming hamming6-2 0.0 0 64 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
hamming8-2 0.0 0 256 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
hamming10-2 0.1 0 1024 0.0 0 0 0 0.0 0 0.1 0 0.0% 0 0 100.0%
hamming6-4 0.0 0 0 0.1 0 0 0 0.0 0 0.1 0 84.6% 1 64 0.0%
hamming8-4 0.0 0 0 7.8 0 0 0 1.2 0 8.9 0 86.8% 1 256 0.0%
hamming10-4 0.1 0 0 229.0 0 0 0 36.2 0 265.4 0 93.6% 1 1024 0.0%
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Table C.4: PrePro statistical report on the minimum vertex cover of the RUDY planar graphs.
Preprocessing Tools Statistics After Preprocessing

Roof-Duality Probing Coordination Total Quad. Relat. Comp. Left Variab.

Problem Time Strong Weak Time Bound. Fix. Eq. Time Eq. Time Rel. Gap Num. Larg. Reduc.

Family Name (tn) (ns) (nw) (tp) (nb)

�

nf

�

(ne) (tc) (nc) (t) (q) (g) (c) (s) (r)

50 000 50000-10-1 26.2 9581 40419 0.0 0 0 0 0.0 0 65.7 0 0.0% 0 0 100.0%
(10%) 50000-10-2 23.7 9377 40619 0.0 0 0 4 0.0 0 63.3 0 0.0% 0 0 100.0%

50000-10-3 23.3 9311 40689 0.0 0 0 0 0.0 0 62.5 0 0.0% 0 0 100.0%
50 000 50000-50-1 194.9 23591 26295 0.0 0 24 86 0.0 4 206.3 0 0.0% 0 0 100.0%
(50%) 50000-50-2 197.3 23560 26342 0.0 0 23 73 0.0 2 209.0 0 0.0% 0 0 100.0%

50000-50-3 204.4 23673 26208 0.0 0 30 88 0.0 1 216.2 0 0.0% 0 0 100.0%
50 000 50000-90-1 85.3 8120 41871 0.0 0 0 4 0.0 5 94.0 0 0.0% 0 0 100.0%
(90%) 50000-90-2 85.2 8338 41639 0.0 0 6 12 0.1 5 94.6 0 0.0% 0 0 100.0%

50000-90-3 86.2 8575 41408 0.0 0 4 10 0.1 3 94.8 0 0.0% 0 0 100.0%

100 000 100000-10-1 109.0 18986 81002 0.0 0 2 10 0.0 0 266.5 0 0.0% 0 0 100.0%
(10%) 100000-10-2 99.5 19138 80858 0.0 0 0 4 0.0 0 256.4 0 0.0% 0 0 100.0%

100000-10-3 105.4 18929 81067 0.0 0 0 4 0.0 0 263.1 0 0.0% 0 0 100.0%
100 000 100000-50-1 836.7 47472 52358 0.0 0 39 126 0.0 5 883.3 0 0.0% 0 0 100.0%
(50%) 100000-50-2 871.4 47671 52145 0.0 0 40 141 0.0 3 917.2 0 0.0% 0 0 100.0%

100000-50-3 887.8 47900 51974 0.0 1 32 93 0.0 0 933.5 0 0.0% 0 0 100.0%
100 000 100000-90-1 354.5 16065 83897 0.0 1 4 20 0.2 13 386.8 0 0.0% 0 0 100.0%
(90%) 100000-90-2 360.0 16517 83426 0.0 1 9 32 0.2 15 392.7 0 0.0% 0 0 100.0%

100000-90-3 358.0 16675 83286 0.0 0 4 20 0.2 15 391.7 0 0.0% 0 0 100.0%

250 000 250000-10-1 634.6 47140 202852 0.0 0 1 7 0.0 0 1619.8 0 0.0% 0 0 100.0%
(10%) 250000-10-2 671.5 47175 202817 0.0 0 1 7 0.0 0 1655.7 0 0.0% 0 0 100.0%

250000-10-3 689.2 47367 202625 0.0 0 1 7 0.0 0 1669.5 0 0.0% 0 0 100.0%
250 000 250000-50-1 5754.9 119519 129972 0.0 0 109 392 0.0 8 6047.3 0 0.0% 0 0 100.0%
(50%) 250000-50-2 5612.8 119704 129840 0.0 1 111 335 0.2 9 5906.4 0 0.0% 0 0 100.0%

250000-50-3 6054.2 120021 129512 0.0 1 102 356 0.1 8 6346.9 0 0.0% 0 0 100.0%
250 000 250000-90-1 2304.1 42022 207847 0.0 1 31 75 0.6 24 2507.9 0 0.0% 0 0 100.0%
(90%) 250000-90-2 2370.9 43822 206093 0.0 0 15 57 0.5 13 2574.0 0 0.0% 0 0 100.0%

250000-90-3 2318.8 41872 207970 0.0 0 59 77 0.6 22 2528.4 0 0.0% 0 0 100.0%

500 000 500000-10-1 3026.0 94462 405510 0.0 0 5 23 0.0 0 6943.9 0 0.0% 0 0 100.0%
(10%) 500000-10-2 2850.7 94371 405609 0.0 0 4 16 0.0 0 6767.6 0 0.0% 0 0 100.0%

500000-10-3 2680.8 95190 404798 0.0 0 2 10 0.0 0 6601.3 0 0.0% 0 0 100.0%
500 000 500000-50-1 22013.2 240672 258449 0.0 1 205 656 0.2 17 23175.5 0 0.0% 0 0 100.0%
(50%) 500000-50-2 24020.2 238932 260334 0.0 1 163 543 0.2 27 25188.5 0 0.0% 0 0 100.0%

500000-50-3 22178.5 239687 259501 0.1 0 165 632 0.3 15 23340.3 0 0.0% 0 0 100.0%
500 000 500000-90-1 9564.2 86359 413422 0.0 1 46 108 1.3 64 10363.3 0 0.0% 0 0 100.0%
(90%) 500000-90-2 9427.4 83741 416025 0.0 1 40 136 1.3 57 10219.4 0 0.0% 0 0 100.0%

500000-90-3 9547.5 84980 414793 0.0 0 47 134 1.4 46 10364.0 0 0.0% 0 0 100.0%
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Table C.5: PrePro statistical report on the MAX–CUT graphs.
Preprocessing Tools Statistics After Preprocessing

Roof-Duality Probing Coordination Total Quad. Relat. Comp. Left Variab.

Problem Time Strong Weak Time Bound. Fix. Eq. Time Eq. Time Rel. Gap Num. Larg. Reduc.

Family Name (tn) (ns) (nw) (tp) (nb)

�

nf

�

(ne) (tc) (nc) (t) (q) (g) (c) (s) (r)

Torus pm3-8-50 0.0 0 0 3.7 0 0 0 0.2 0 4.0 0 43.6% 1 511 0.2%
pm3-15-50 0.1 0 0 267.0 0 0 0 11.8 0 279.3 0 45.5% 1 3374 0.0%

g3-8 0.1 1 0 7.1 0 0 31 7.2 0 14.7 3 31.2% 1 479 6.4%
g3-15 6.7 0 0 509.7 0 0 196 2513.8 0 3115.0 4 33.0% 1 3178 5.8%

R R1000 0.1 0 0 46.8 0 0 1 5.7 0 52.7 0 29.0% 1 998 0.2%
R2000 0.3 0 0 224.3 0 0 4 64.7 0 290.1 0 28.6% 1 1995 0.2%
R3000 0.6 0 0 525.9 0 0 7 247.8 0 777.4 6 28.8% 1 2992 0.3%
R4000 0.7 0 0 1205.3 0 0 7 436.1 0 1647.5 0 28.7% 1 3992 0.2%
R5000 1.3 0 0 1697.1 0 0 12 1150.6 0 2862.9 0 28.6% 1 4987 0.3%
R6000 1.7 0 0 2152.8 0 0 12 1625.3 0 3799.1 0 28.8% 1 5987 0.2%
R7000 2.6 0 2 3784.1 0 0 16 2952.4 0 6773.9 0 28.8% 1 6981 0.3%
R8000 3.5 0 0 4752.3 0 0 19 4489.5 0 9298.4 3 28.7% 1 7980 0.2%

Via via.c1n 0.1 455 115 0.3 4 84 169 1.0 0 1.5 0 0.0% 0 0 100.0%
via.c2n 0.4 102 67 3.3 3 18 789 45.5 0 52.6 0 0.0% 0 0 100.0%
via.c3n 0.9 147 18 10.2 3 9 1149 76.3 0 94.5 0 0.0% 0 0 100.0%
via.c4n 1.1 151 18 10.2 0 5 1191 185.8 0 208.9 0 0.0% 0 0 100.0%
via.c5n 0.9 21 23 6.8 1 66 1090 129.4 0 145.1 0 0.0% 0 0 100.0%
via.c1y 0.0 775 53 0.0 0 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
via.c2y 0.1 928 52 0.0 0 0 0 0.0 0 0.1 0 0.0% 0 0 100.0%
via.c3y 0.1 1256 71 0.0 0 0 0 0.0 0 0.1 0 0.0% 0 0 100.0%
via.c4y 0.1 1317 49 0.0 0 0 0 0.0 0 0.1 0 0.0% 0 0 100.0%
via.c5y 0.1 1119 83 0.0 0 0 0 0.0 0 0.1 0 0.0% 0 0 100.0%

G–500 G500.2.5 0.1 0 72 1.0 0 0 235 7.6 0 9.8 12 7.7% 1 192 61.6%
G500.05 0.2 0 7 4.9 0 0 60 13.1 0 18.8 9 19.1% 1 432 13.6%
G500.10 0.0 0 0 5.9 0 0 1 1.0 0 6.9 0 27.2% 1 498 0.4%
G500.20 0.0 0 0 10.8 0 0 0 1.0 0 11.9 0 35.2% 1 499 0.2%

G–1000 G1000.2.5 0.6 1 95 6.3 0 0 521 91.2 0 108.5 18 8.3% 1 382 61.8%
G1000.05 1.0 0 6 30.7 0 0 121 154.6 0 191.0 9 19.8% 1 872 12.8%
G1000.10 0.1 0 0 40.0 0 0 2 8.8 0 49.0 0 29.1% 1 997 0.3%
G1000.20 0.1 0 0 50.4 0 0 0 4.3 0 54.8 0 35.0% 1 999 0.1%

U–500 U500.05 0.1 14 39 1.1 0 8 150 4.9 0 7.3 59 20.2% 4 151 42.4%
U500.10 0.1 0 4 12.0 0 0 11 7.5 0 20.1 37 34.0% 1 484 3.2%
U500.20 0.2 0 0 8.0 0 0 0 2.4 0 10.9 25 39.1% 1 499 0.2%
U500.40 0.1 0 0 14.5 0 0 0 4.2 0 18.9 7 41.7% 1 499 0.2%

U–1000 U1000.05 0.9 16 89 8.3 0 6 264 57.5 0 74.5 160 21.6% 3 316 37.6%
U1000.10 0.7 0 6 43.7 0 0 12 43.0 0 91.3 96 34.4% 1 981 1.9%
U1000.20 0.7 0 0 36.5 0 0 0 12.0 0 51.7 44 38.8% 1 999 0.1%
U1000.40 0.8 0 0 63.0 0 0 0 21.8 0 87.2 30 41.9% 1 999 0.1%
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Table C.6: PrePro statistical report on the MAX–2-SAT formulas of Borchers and Furman [47].
Preprocessing Tools Statistics After Preprocessing

Roof-Duality Probing Coordination Total Quad. Relat. Comp. Left Variab.

Problem Time Strong Weak Time Bound. Fix. Eq. Time Eq. Time Rel. Gap Num. Larg. Reduc.

Family Name (tn) (ns) (nw) (tp) (nb)

�

nf

�

(ne) (tc) (nc) (t) (q) (g) (c) (s) (r)

BF-50 BF-50-100 0.0 2 38 0.0 0 0 6 0.0 4 0.0 0 0.0% 0 0 100.0%
BF-50-150 0.0 1 18 0.0 4 15 12 0.0 0 0.0 0 0.0% 0 0 100.0%
BF-50-200 0.0 1 5 0.0 0 0 2 0.0 0 0.0 15 100.0% 1 42 16.0%
BF-50-250 0.0 0 1 0.1 2 0 2 0.0 0 0.2 14 109.5% 1 45 10.0%
BF-50-300 0.0 0 0 0.0 0 0 0 0.0 0 0.0 14 204.8% 1 50 0.0%
BF-50-350 0.0 0 0 0.1 1 0 0 0.0 0 0.1 13 186.7% 1 49 2.0%
BF-50-400 0.0 1 0 0.1 1 0 0 0.0 0 0.1 14 141.0% 1 48 4.0%
BF-50-450 0.0 0 0 0.0 0 0 0 0.0 0 0.1 3 190.9% 1 50 0.0%
BF-50-500 0.0 0 0 0.0 0 0 0 0.0 0 0.0 0 157.7% 1 50 0.0%

BF–100 BF-100-200 0.0 2 50 0.0 0 17 31 0.0 0 0.0 0 0.0% 0 0 100.0%
BF-100-300 0.0 0 14 0.2 0 0 9 0.1 0 0.2 49 328.6% 1 77 23.0%
BF-100-400 0.0 0 10 0.2 0 0 1 0.0 0 0.2 43 215.8% 1 89 11.0%
BF-100-500 0.0 0 3 0.1 0 0 0 0.0 0 0.1 25 475.0% 1 97 3.0%
BF-100-600 0.0 0 1 0.1 0 0 0 0.0 0 0.1 6 340.0% 1 99 1.0%

BF–150 BF-150-300 0.0 1 79 0.1 0 31 34 0.1 5 0.2 0 0.0% 0 0 100.0%
BF-150-450 0.0 0 22 0.4 0 0 5 0.1 0 0.5 85 475.0% 1 123 18.0%
BF-150-600 0.0 0 4 0.6 0 3 6 0.2 0 0.8 80 300.0% 1 137 8.7%

BFW–50 BFW-50-100 0.0 4 13 0.0 2 14 17 0.0 0 0.0 0 0.0% 0 0 100.0%
BFW-50-150 0.0 11 28 0.1 5 1 4 0.0 1 0.1 0 0.0% 0 0 100.0%
BFW-50-200 0.0 1 3 0.1 1 0 1 0.0 0 0.1 14 102.8% 1 44 12.0%
BFW-50-250 0.0 0 0 0.1 0 0 0 0.0 0 0.1 32 209.1% 1 50 0.0%
BFW-50-300 0.0 0 1 0.1 0 0 0 0.0 0 0.1 12 149.1% 1 49 2.0%
BFW-50-350 0.0 0 0 0.1 0 0 0 0.0 0 0.1 6 236.2% 1 50 0.0%
BFW-50-400 0.0 0 0 0.1 2 0 0 0.0 0 0.1 4 126.5% 1 48 4.0%
BFW-50-450 0.0 0 0 0.1 0 0 0 0.0 0 0.1 1 169.1% 1 50 0.0%
BFW-50-500 0.0 0 0 0.1 0 0 0 0.0 0 0.1 0 205.7% 1 50 0.0%

BFW–100 BFW-100-200 0.0 54 45 0.0 1 0 0 0.0 0 0.0 0 0.0% 0 0 100.0%
BFW-100-300 0.0 1 10 0.4 1 0 10 0.1 0 0.4 69 193.6% 1 78 22.0%
BFW-100-400 0.0 0 2 0.4 0 1 5 0.1 0 0.5 81 476.7% 1 92 8.0%
BFW-100-500 0.0 0 1 0.1 0 0 0 0.0 0 0.2 25 557.1% 1 99 1.0%
BFW-100-600 0.0 0 0 0.2 0 0 0 0.0 0 0.2 18 450.0% 1 100 0.0%

BFW–150 BFW-150-300 0.0 39 55 0.5 4 7 44 0.3 1 0.8 0 0.0% 0 0 100.0%
BFW-150-450 0.0 1 24 0.9 2 2 15 0.3 0 1.2 142 175.0% 1 106 29.3%
BFW-150-600 0.0 0 6 0.6 0 3 3 0.1 0 0.7 59 620.7% 1 138 8.0%
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Appendix D

Iterated Roof–Duality Experiments
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Table D.1: MAX–CUT (Kim et al. [157]).

(a) Upper bounds.

Upper Bounds to the Maximum
Problem Vert. Edges Max. Semidefinite Roof Iter. Roof

Family Name (n) Cut Relaxation Dual (ρ) Dual (ρ̂)

Gn,d G500.2.5 500 625 574 598.15 620.5 590.50
G500.05 1 223 > 1 008 1070.06 1 217.0 1 086.00
G500.10 2 355 > 1 735 1847.97 2 346.0 1 960.64
G500.20 5 120 > 3 390 3566.74 5 103.0 4 006.70
G1000.2.5 1 000 1 272 > 1 173 1 223.01 1268.5 1212.91
G1000.05 2 496 > 2 053 2191.80 2 490.5 2 232.66
G1000.10 5 064 > 3 705 3954.67 5 052.5 4 245.18
G1000.20 10 107 > 6 729 7105.60 10 090.0 8 059.02

Un,d U500.05 500 1 282 900 922.42 1 274.0 962.00
U500.10 2 355 > 1 546 1587.86 2 345.0 1 716.09
U500.20 4 549 > 2 783 2864.27 4 534.0 3 229.47
U500.40 8 793 > 5 181 5303.45 8 765.0 6 164.78
U1000.05 1 000 2 394 > 1 711 1752.76 2 388.5 1 830.25
U1000.10 4 696 > 3 073 3158.95 4 686.5 3 424.81
U1000.20 9 339 > 5 737 5890.78 9 319.5 6 617.69
U1000.40 18 015 > 10 560 10851.01 17 986.0 12 593.03

(b) Computing times.

Semidefinite Programs Roof–Dual Algorithms
Problem DSDP∗∗ SBM∗∗ SDPA∗ RDA∗ IRDA∗

G500.2.5 3.35 s 1 279.20 s 85.84 s <0.005 s 0.05 s
G500.05 3.72 s 70.67 s 105.98 s <0.005 s 0.09 s
G500.10 4.80 s 4.28 s 104.16 s <0.005 s 0.31 s
G500.20 8.54 s 4.64 s 106.08 s <0.005 s 0.84 s
G1000.2.5 17.85 s 4 056.78 s 694.05 s <0.005 s 0.23 s
G1000.05 29.56 s 138.02 s 843.69 s <0.005 s 0.53 s
G1000.10 47.80 s 11.37 s 871.16 s <0.005 s 1.47 s
G1000.20 69.98 s 15.00 s 826.34 s 0.02 s 3.36 s
U500.05 3.71 s 2179.61 s 2179.61 s <0.005 s 0.17 s
U500.10 3.15 s 52.15 s 107.58 s <0.005 s 0.38 s
U500.20 3.74 s 6.32 s 111.56 s <0.005 s 0.89 s
U500.40 4.41 s 3.85 s 106.80 s <0.005 s 1.81 s
U1000.05 21.96 s 3596.08 s 794.62 s <0.005 s 0.82 s
U1000.10 20.79 s 403.90 s 837.03 s <0.005 s 1.88 s
U1000.20 22.87 s 22.24 s 871.67 s <0.005 s 3.91 s
U1000.40 29.90 s 13.87 s 941.30 s 0.02 s 7.66 s
?Computed on computer system I.

??Computed on computer system II.
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Table D.2: MAX–CUT (Homer and Peinado [145]).

(a) Upper bounds.

Upper Bounds to the Maximum
Problem Vertices Edges Max. Semidefinite Roof Iter. Roof

Family Name (n) Cut Relaxation Dual (ρ) Dual (ρ̂)

R R1000 1 000 5 033 >3 687 3934.5 5 021.5 4 220.96
R2000 2 000 9 943 >7 308 7820.0 9 932.5 8 454.98
R3000 3 000 14 965 >10 997 11790.6 14 953.5 12 800.36
R4000 4 000 19 939 >14 684 15729.2 19 927.0 17 118.74
R5000 5 000 24 794 >18 225 19587.1 24 783.0 21 362.02
R6000 6 000 29 862 >21 937 23602.7 29 849.0 25 798.04
R7000 7 000 35 110 >25 763 27730.6 35 097.0 30 363.51
R8000 8 000 39 642 >29 140 31382.1 39 629.5 34 375.45

via via.c1n 828 1 389 6 150 6 182.42 6 339.0 6150.00
via.c2n 980 1 712 7 098 7 117.75 7 473.0 7098.00
via.c3n 1 327 2 393 6 898 6 943.72 7 282.0 6906.25
via.c4n 1 366 2 539 10 098 10 110.59 10 437.0 10098.00
via.c5n 1 202 2 129 7 956 8 003.15 8 427.0 7962.00
via.c1y 829 1 693 7 746 7 795.87 7746.0 7746.00
via.c2y 981 2 039 8 226 8 276.36 8226.0 8226.00
via.c3y 1 328 2 757 9 502 9 572.56 9502.0 9502.00
via.c4y 1 367 2 848 12 516 12 556.58 12516.0 12516.00
via.c5y 1 203 2 452 10 248 10 327.99 10248.0 10248.00

(b) Computing times.

Semidefinite Programs Roof–Dual Algorithms
Problem DSDP∗∗ SBM∗∗ SDPA∗ RDA∗ IRDA∗

R1000 43.15 s 13.09 s 815.81 s 0.02 s 1.47 s
R2000 389.74 s 55.28 s 8 053.94 s 0.02 s 5.75 s
R3000 8 751.11 s 102.93 s n/a† 0.02 s 13.00 s
R4000 2 492.46 s 244.18 s n/a† 0.02 s 22.74 s
R5000 4 625.69 s 352.35 s n/a† 0.02 s 35.59 s
R6000 9 055.98 s 472.75 s n/a† 0.03 s 50.50 s
R7000 13 566.78 s 1 725.05 s n/a† 0.03 s 69.23 s
R8000 18 212.75 s 853.85 s n/a† 0.05 s 87.92 s
via.c1n 14.23 s 92.94 s 506.45 s 0.02 s 0.09 s
via.c2n 20.02 s 133.56 s 825.53 s 0.02 s 0.39 s
via.c3n 47.97 s 376.64 s 2 242.39 s 0.02 s 0.16 s
via.c4n 51.55 s 239.53 s 2 431.20 s 0.03 s 0.19 s
via.c5n 34.69 s 227.62 s 1 644.06 s 0.00 s 0.13 s
via.c1y 19.97 s 493.52 s 576.74 s 0.03 s 0.05 s
via.c2y 28.83 s 636.06 s 944.25 s 0.03 s 0.05 s
via.c3y 70.66 s 2 502.97 s 2 363.20 s 0.05 s 0.08 s
via.c4y 77.51 s 1,098.55 s 2 849.97 s 0.05 s 0.06 s
via.c5y 54.55 s 3716.97 s 1 759.91 s 0.03 s 0.06 s
?Computed on computer system I.

??Computed on computer system II.
†Memory exceeded.
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Table D.3: MAX–CUT on cubic lattice graphs (Burer et al. [74]).

(a) Upper bounds.

Upper Bounds to the Maximum
Problem Vert. Edges Max. Semidefinite Roof Iter. Roof

Family Name (n) Cut Relaxation Dual (ρ) Dual (ρ̂)

sg3dl05 sg3dl051000 125 375 110 126.53 185 126.38
sg3dl052000 125 375 112 128.20 185 127.73
sg3dl053000 125 375 106 123.98 185 126.50
sg3dl054000 125 375 114 128.18 185 124.09
sg3dl055000 125 375 112 127.06 185 129.13
sg3dl056000 125 375 110 126.88 185 128.25
sg3dl057000 125 375 112 126.81 185 126.00
sg3dl058000 125 375 108 125.48 185 123.38
sg3dl059000 125 375 110 126.00 185 127.25

sg3dl0510000 125 375 112 127.68 185 124.31
sg3dl10 sg3dl101000 1 000 3 000 >896 1 025.91 1 497 1001.31

sg3dl102000 1 000 3 000 >900 1 036.47 1 497 1008.46
sg3dl103000 1 000 3 000 >892 1 021.92 1 497 1003.93
sg3dl104000 1 000 3 000 >898 1 031.34 1 497 1011.13
sg3dl105000 1 000 3 000 >886 1 021.29 1 497 1001.17
sg3dl106000 1 000 3 000 >888 1 023.34 1 497 1001.66
sg3dl107000 1 000 3 000 >900 1 030.06 1 497 1014.06
sg3dl108000 1 000 3 000 >882 1 023.74 1 497 1006.17
sg3dl109000 1 000 3 000 >902 1 029.24 1 497 1010.40

sg3dl1010000 1 000 3 000 >894 1 027.65 1 497 1005.20
sg3dl14 sg3dl141000 2 744 8 232 >2 446 2816.90 4 113 2773.56

sg3dl142000 2 744 8 232 >2 458 2825.79 4 113 2762.61
sg3dl143000 2 744 8 232 >2 442 2815.40 4 113 2762.61
sg3dl144000 2 744 8 232 >2 450 2817.45 4 113 2764.10
sg3dl145000 2 744 8 232 >2 446 2809.86 4 113 2772.49
sg3dl146000 2 744 8 232 >2 450 2822.92 4 113 2765.19
sg3dl147000 2 744 8 232 >2 444 2813.08 4 113 2757.21
sg3dl148000 2 744 8 232 >2 446 2818.70 4 113 2771.18
sg3dl149000 2 744 8 232 >2 424 2793.42 4 113 2744.38

sg3dl1410000 2 744 8 232 >2 458 2826.35 4 113 2763.24

(b) Average computing times.

Semidefinite Programs Roof–Dual Algorithms
Family DSDP∗∗ SBM∗∗ SDPA∗ RDA∗ IRDA∗

sg3dl05 0.19 s 0.87 s 1.72 s <0.005 s 0.01 s
sg3dl10 25.29 s 14.07 s 871.23 s <0.005 s 0.91 s
sg3dl14 431.17 s 113.09 s n/a† 0.01 s 7.16 s
?Computed on computer system I.

??Computed on computer system II.
†Memory exceeded.
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Table D.4: MAX–CUT for torus graphs (7th DIMACS Implementation Challenge).

(a) Upper bounds.

Upper Bounds to the Maximum

Problem Vert. Edges Max. Semidefinite Roof Iter. Roof
Name (n) Cut Relaxation Dual (ρ) Dual (

�

ρ)

toruspm3-8-50 512 1 536 458 527.81 765.0 523.05
toruspm3-15-50 3 375 10 125 >3 016 3 475.13 5 060.0 3414.49

torusg3-8 512 1 536 41 684 814 45 735 854.8 58 921 474.5 45100733.03
torusg3-15 3 375 10 125 >285 790 637 313 457 107.3 402 667 673.0 308433472.25

(b) Computing times.

Semidefinite Programs Roof–Dual Algorithms
Problem DSDP∗∗ SBM∗∗ SDPA∗ RDA∗ IRDA∗

toruspm3-8-50 4.16 s 5.00 s 114.78 s <0.005 s 0.22 s
toruspm3-15-50 763.58 s 226.89 s n/a† 0.02 s 10.92 s
torusg3-8 8.03 s 6.35 s 186.98 s <0.005 s 0.14 s
torusg3-15 1301.45 s 224.62 s n/a† 0.02 s 6.70 s
?Computed on computer system I.

??Computed on computer system II.
†Memory exceeded.
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Table D.5: Upper bounds of 10% dense QUBO maximization problems (Beasley [37]).

Upper Bounds to the Maximum

Family Problem Semidefinite Roof Iter. Roof
(n) Number Maximum Relaxation Dual (ρ) Dual (

�

ρ)

ORL–100 1 7 970 8721.11 10 160.5 8 725.50
2 11 036 11 704.18 12 285.5 11245.50
3 12 723 13 336.70 13 664.5 12864.00
4 10 368 10 927.93 12 099.0 10656.00

(100) 5 9 083 9 736.93 10 617.0 9339.50
6 10 210 11 073.07 13 086.5 11042.00
7 10 125 10 906.86 12 016.5 10489.00
8 11 435 12 078.48 12 638.0 11542.06
9 11 455 11 926.97 12 235.0 11581.00
10 12 565 13 151.28 13 686.0 12749.00

ORL–250 1 45 607 48732.37 78 321.0 52 528.63
2 44 810 48093.50 78 258.5 52 728.61
3 49 037 51745.40 80 919.0 55 145.06
4 41 274 44391.58 75 411.0 49 577.34

(250) 5 47 961 50803.63 79 972.5 54 165.75
6 >41 014 44547.53 78 452.5 50 704.70
7 46 757 49709.76 80 040.0 54 096.54
8 >35 726 40005.60 72 599.5 46 508.41
9 48 916 52330.23 81 838.5 56 244.03
10 40 442 44026.14 75 752.5 49 320.57

ORL–500 1 >116 586 128402.72 308 706.5 171 327.46
2 >128 339 138237.20 309 825.5 175 209.92
3 >130 812 140738.05 317 653.5 181 089.10
4 >130 097 141602.11 315 733.0 180 490.21

(500) 5 >125 487 136578.72 311 891.5 176 444.61
6 >121 772 132960.20 310 139.5 173 953.18
7 >122 201 134273.56 312 285.5 175 700.29
8 >123 559 135438.79 313 878.5 177 959.90
9 >120 798 132615.73 312 183.0 175 938.65
10 >130 619 141076.28 317 514.5 180 860.23

ORL–1000 1 >371 438 403684.0 1 256 488.0 627 769.04
2 >354 932 390028.8 1 251 578.0 619 465.32
3 >371 236 404445.7 1 263 836.0 628 844.76
4 >370 675 403911.4 1 269 344.0 633 482.54

(1 000) 5 >352 760 388304.0 1 260 413.5 622 233.15
6 >359 629 392175.5 1 257 474.5 620 005.81
7 >371 193 405621.7 1 259 282.5 628 620.56
8 >351 994 388940.6 1 253 255.0 620 828.19
9 >349 337 385204.7 1 254 976.0 617 834.57
10 >351 415 385664.6 1 240 515.5 613 573.00

ORL–2500 1 >1 515 944 1652473.3 7 886 424.0 3 417 034.96
2 >1 471 392 1614710.7 7 843 106.0 3 384 231.31
3 >1 414 192 1558172.2 7 810 572.5 3 354 353.86
4 >1 507 701 1642588.4 7 860 349.5 3 408 753.16

(2 500) 5 >1 491 816 1626210.5 7 858 834.0 3 390 133.74
6 >1 469 162 1608890.8 7 827 394.0 3 377 820.75
7 >1 479 040 1619037.2 7 852 577.0 3 386 395.44
8 >1 484 199 1616263.5 7 831 767.5 3 381 058.32
9 >1 482 413 1622399.3 7 868 242.0 3 400 093.17
10 >1 483 355 1625693.3 7 840 749.5 3 392 232.40
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University (2004).

[25] Badics, T. Approximation of some nonlinear binary optimization problems. Ph.D.
thesis, RUTCOR, Rutgers University (1996).

[26] Badics, T. and E. Boros. Minimization of half-products. Mathematics of Opera-
tions Research 23, (1998), pp. 649–660.

[27] Balas, E. and J.B. Mazzola. Nonlinear 0-1 programming: I. Linearization tech-
niques and ii. Dominance relations and algorithms. Mathematical Programming
30, (1984), pp. 1–45.



421

[28] Balasundaram, B., S. Butenko and S. Trukhanov. Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization 10(1), (2005), pp.
23–39.

[29] Balinski, M.L. On maximum matching, minimum covering and their connection.
In Proceedings of the Princeton symposium on mathematical programming (H.W.
Kuhn, ed.) (Princeton University Press, Princeton, NJ, 1970).

[30] Balinski, M.L. Integer Programming: Methods, uses, computation (W. H. Free-
man, San Francisco, 1979).

[31] Barabási, A.L., H. Jeong, S.P. Mason and Z.N. Oltvai. Centrality and lethality
of protein networks. Nature 411, (2001), pp. 41–42.
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