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ABSTRACT OF THE DISSERTATION

Integration of Biogenic Emissions in Environmental Fate, Transport,

and Exposure Systems

by Christos I. Efstathiou

Dissertation Director: Dr. Panos G. Georgopoulos

Biogenic emissions make a significant contribution to the levels of aeroallergens and secondary
air pollutants such as ozone. Understanding major factors contributing to allergic airway dis-
eases requires accurate characterization of emissions and transport/transformation of biogenic
emissions. However, biogenic emission estimates are laden with large uncertainties. Further-
more, the current biogenic emission estimation models use low-resolution data for estimating
land use, vegetation biomass and VOC emissions. Furthermore, there are currently no estab-
lished methods for estimating bioaerosol emissions over continental or regional scale, which can
impact the ambient levels of pollent that have synergestic effects with other gaseous pollutants.

In the first part of the thesis, an detailed review of different approaches and available
databases for estimating biogenic emissions was conducted, and multiple geodatabases and satel-
lite imagery were used in a consistent manner to improve the estimates of biogenic emissions
over the continental United States. These emissions represent more realistic, higher resolution
estimates of biogenic emissions (including those of highly reactive species such as isoprene). The
impact of these emissions on tropospheric ozone levels was studied at a regional scale through
the application of the USEPA’s Community Multiscale Air Quality (CMAQ) model. Minor, but
significant differences in the levels of ambient ozone were observed,

In the second part of the thesis, an algorithm for estimating emissions of pollen particles
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from major allergenic tree and plant families in the United States was developed, extending the
approach for modeling biogenic gas emissions in the Biogenic Emission Inventory System (BEIS).
A spatio-temporal vegetation map was constructed from different remote sensing sources and
local surveys, and was coupled with a meteorological model to develop pollen emissions rates.
This model overcomes limitations posed by the lack of temporally resolved dynamic vegetation
mapping in traditional pollen emission estimation methods. The pollen emissions model was
applied to study the pollen emissions for North East US at 12 km resolution for comparison
with ground level tree pollen data. A pollen transport model that simulates complex dispersion
and deposition was developed through modifications to the USEPA’s Community Multiscale
Air Quality (CMAQ) model. The peak pollen emission predictions were within a day of peak
pollen counts measured, thus corroborating independent model verification. Furthermore, the
peak predicted pollen concentration estimates were within two days of the peak measured pollen
counts, thus providing independent corroboration. The models for emissions and dispersion allow
data-independent estimation of pollen levels, and provide an important component in assessing

exposures of populations to pollen, especially under different climate change scenarios.
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Chapter 1

Introduction

Aside from accidental releases, extreme air pollution episodes during which the concentration
of air pollutants, in particular around urban-industrial areas, can reach excessively high levels
for periods of several hours to several days, can cause extreme discomfort, diseases, and even
deaths among the most vulnerable part of the population (children, elderly, and sensitive groups
like asthmatics). Industrialized and developing countries experience such conditions in various
environmental settings, and from both anthropogenic and biogenic emission sources. The various
sources of air pollution can be divided into three broad categories: (1) urban and industrial
sources; (2) agricultural and other rural sources; (3) natural emissions. Each of these categories
can further be subdivided into several subcategories (Figure 1.1). With respect to their potential
as either direct or indirect health stressors, they can be organized in the following two main

groups of interest:

1. Volatile organic compounds whose predominant source of biogenic origin is the growth

and death of vegetation;

2. Bioaerosols, that contain a number of aeroallergens such as pollen spores and fungi.

1.1 Background and significance

1.1.1 Health impacts of allergenic air pollutants

The American Academy of Allergy, Asthma and Immunology (AAAAT) estimates that 36 million
Americans suffer from seasonal allergy and 20 to 30% of the population suffers from seasonal
allergic rhinitis (also known as “hay fever”) [Knowlton et al., 2007]. Allergies are among a
host of factors that can trigger an asthma attack. Asthma is a chronic and potentially life-

threatening lung disease characterized by difficulty breathing [A.L.A., 2007]. Worldwide asthma



rates doubled between 1998 and 2003 and self-reported cases in the U.S. rose by 75% between
1980 and 1994. In addition to an increase in prevalence, there has also been an increase in the
severity of asthma. Between 1986 and 1993, the number of hospitalized children in California
who experienced a negative outcome, such as intubation or cardiopulmonary arrest, doubled.
At the same time, a number of epidemiological and chamber exposure studies including
asthmatics have demonstrated associations between several individual air contaminants and in-
creased frequency or severity of diseases of the upper respiratory tract. Air contaminants includ-
ing: ozone, sulfur dioxide, nitrogen oxides, acid particulates (hydrogen ion), sulfates, fine and
coarse particulate matter, total particulates and wood smoke, in addition to a varying spectrum
of bioaerosols such as pollen and fungal spores have all been strongly associated with respira-
tory diseases. These studies have also suggested that particulate air contaminants can cause
an increase in both acute respiratory effects, and long-term cardiovascular effects as measured
by emergency room visits [for review see Dockery, 2001; Dockery and Pope, 1994; Peterson and
Saxon, 1996]. However, the temporal correlation among air contaminants (and even temperature
in warm weather) makes it tough to pinpoint associations between individual contaminants and
broad exposure endpoints such as asthma or other common diseases of the respiratory tract.
Many of the studies investigating relationships between ambient air quality and acute asthmatic
attacks are based on evaluation of only a few contaminants or markers (e.g. PMyg). Further-
more, particulate matter is composed of many compounds and only a limited number of studies
have explored which components might be the most important for certain effects like asthma
exacerbations [Bernstein et al., 2004; Thurston et al., 1992, 1994; Tolbert et al., 2000]. A growing
number of studies provide evidence that climate-induced changes in temperature, concentration
of atmospheric CO4 and pollen seasons will increase the production and allergenicity of airborne
allergens, effectively compounding the threat of deteriorating air quality [D’Amato and Cecchi,
2008]. While more studies need to confirm this link, substantial evidence correlates the global
rise in asthma with climate-induced changes in air pollution and aeroallergens, such as ragweed

[Knowlton et al., 2007].



1.1.2 Biogenic emissions of ozone precursors

The presence and effects of vegetative growth in the interaction layer of the lower troposphere
can contribute significantly to the reactive organic gas (ROG) inventory in both rural and
urban areas. The significance of this contribution from biogenic sources is enhanced by the
greater atmospheric reactivity of many biogenic hydrocarbons in comparison to anthropogenic
byproducts. As a result, volatile organic compounds (VOCs) emitted by growing vegetation
are important chemical species that affect the oxidative capacity of the troposphere [National
Research Council, 1991; Seinfeld and Pandis, 2006], as well as the levels of other species (e.g.
carbon monoxide, methane, aerosols) that are known to play an important role in climate forcing
[Collins et al., 2002; Shallcross and Monks, 2000]. Biogenic VOCs (BVOCs) are also precursors
to surface-level ozone (O3), which has a well-documented impact on human health [Reeser et al.,
2005], and agricultural productivity [Felzer et al., 2004; Fuhrer and Booker, 2003]. On the global
level, the BVOC emissions are estimated to be close to an order of magnitude greater than the
global total anthropogenic source [Guenther et al., 1995; Wang and Shallcross, 2000; Wang
et al., 1998a,b,c]. Their impact is complicated by the fact that the interactions between ozone
precursors are highly nonlinear [Jacob, 2000; Kang et al., 2003; Roselle, 1994; Sillman et al.,
2002], and are affected by transport processes, meteorology, and the differential reactivity of
individual VOC species [National Research Council, 1991; Seinfeld and Pandis, 2006]. O3 levels
are also dependent on the regional background component that is known to be affected by
long-range transport (LRT) of O3 and its precursors [Fiore et al., 2002].

Grid-based photochemical air-quality simulation models (PAQSMs) offer computerized rep-
resentations of the atmospheric processes responsible for air pollution, including ozone and
secondary aerosol formation. These models simulate the atmosphere in varying degrees of de-
tail by mathematically representing emissions; initial and boundary concentrations of chemical
species; the chemical reactions of the emitted species and their products; and the effect of local
meteorology (sunlight, wind, and temperature). In this way, an understanding of atmospheric
chemistry and meteorology is combined with estimates of source emissions to predict possible
control strategy effects.

The development and success of specific emissions control strategies is expected to be greatly

dependent on the estimated fluxes of biogenic hydrocarbon species. Considerable attention has



be given to determining BVOC emission rates in past research. However, biomass and leaf
mass quantification and plant species composition and dominance are believed to be the weaker
links in the development of BVOC emission estimates, both for plants in urban settings and for
regional-level inventories [Karlik et al., 2002]. Therefore, most biogenic emissions models belong
to the broad class of methods that involve the use of phenomenological, i.e. “observation-based”
approaches in which empirical relationships are deduced from smog chamber experiments or
open-field atmospheric measurements. In order to ensure that land-surface processes are ac-
counted for in these models, surface characteristics such as soil and vegetation properties have
to be specified as accurately as possible. Experimental and modeling studies on an area-wide
basis have demonstrated that biogenic hydrocarbons can constitute a significant contribution
to the overall VOC inventories of both urban and rural regions [Chameides et al., 1988; Lamb
et al., 1993; Pierce et al., 1990; Winer et al., 1983; Zimmerman, 1979a]. In the eastern US, the
total annual amount of BVOC emissions has been estimated to exceed the corresponding an-
thropogenic releases [Fuentes et al., 2000; Guenther et al., 2000; Kinnee et al., 1997; Pierce et al.,
1998]. Consequently, incorporating BVOC emissions into existing air quality models results in
substantial increases in predicted ozone concentrations, although areas with low nitrogen oxide
levels can exhibit the opposite effect [Horowitz et al., 1998; Liang et al., 1998; Pierce et al., 1998;
Roselle, 1994]. On average, BVOCs are estimated to be 2-3 times more reactive than emissions
from mobile sources, a major anthropogenic VOC (AVOC) contributor [Atkinson, 1987, 1990,
2000; Atkinson and Arey, 1998; Atkinson and Carter, 1984; Atkinson et al., 1995; Carter, 1994;

Carter et al., 1995; Corchnoy and Atkinson, 1990].

1.1.3 Emissions and transport of biogenic emissions

As mentioned before, the representation of the land-surface processes is an important compo-
nent of atmospheric and environmental models since it has a direct impact on precipitation and
on the evolution of the atmospheric boundary layer (ABL). A key question addressed here is
whether the same general modeling framework that has been developed for simulating regional
photochemical episodes, can cover a variety of sources of biogenic origin that can be important
in human population-based exposure modeling. There is a clear need for modeling tools that

can associate background emissions from biogenic sources which follow the natural growth and



seasonality of the local ecosystems. BVOC and bioaerosol emissions with occasional episodes
(forest fires, volcanic eruptions) that release pollutants, frequently involved in long-range trans-
port (LRT) due to their slow removal from the atmosphere (e.g. PMaj5). Recent studies have
shed light on the complexity of interactions between gas-phase pollutants (Figure 1.2), and have
highlighted the importance of studying the co-occurrence of such contaminants. It is also well
established that atmospheric pollen allergens are not carried only by intact pollen grains, but
also by smaller particles measuring just a few microns (paucimicronic particles) [Emberlin, 1995;
Spieksma and Nikkels, 1999]. Furthermore, it has been suggested that the pollen component of
urban aerosols may undergo chemical transformations, described by the mechanism of protein
nitration, upon contact with pollutants such as nitrogen dioxide and ozone, and in this way
acquire enhanced allergy-inducing properties [Franze et al., 2005]. This interaction of photo-
chemical smog constituents and bioaerosols has been also verified in highly polluted areas of
India and Iran [Bist et al., 2004; Chehregani et al., 2004].

The main problem associated with regional modeling studies of BVOC emissions is that they
are assumed to be static on the timescales relevant to the air pollution policies. The predicted
changes in emissions for recent decades have been small, because the equilibrium vegetation
models used in such studies inherit the assumption that current vegetation has reached a steady-
state with respect to the current climate. However, climate change can affect emissions both
directly, since plant-level emission rates depend on the surrounding environmental conditions,
and indirectly, due to the evolution of vegetation at the ecosystem level.

This framework can be extended for population exposure assessment applications and a
number of additional processes can be incorporated. For example, application of pesticides
to croplands by spraying from aircrafts may result in transport and exposure to residential
areas. The soil may also naturally emit contaminants (e.g. Radon), or be contaminated by
radionuclides or heavy metals which in turn can be taken up by plants and become airborne
again during fire events. These situations can be modeled by using the same land use/cover,
geological, elevation, and vegetation-related geodatabases. More in-depth modeling tools can be
used by applying allocation methodologies [see the related USGS report Thelin and Gianessi,
2000] and in some cases direct coupling with transport models (atmospheric, groundwater, etc.)

that follow the pollutant(s) of concern and relate to a potential pathway of exposure. Increasing



interest has been shown in assessing the impact of genetically modified (GM) plants in such
scenarios. Evidence presented in a recent project funded by the European Environment Agency,
suggest that there is a clear risk that GM plants of various species would cross-pollinate non-GM
plants, up to and beyond their recommended isolation distance under favorable meteorological
conditions [Eastham and Sweet, 2002].

Hence, there is a clear need not only for broader and more versatile ambient monitoring
networks, but also for the development of a framework for multi-pollutant exposure modeling
applications by taking advantage of the existing state-of-the-art computer-based methods and

environmental information databases.

1.2 Background on air quality modeling components

1.2.1 Chemical transport models

The principal objective of a chemical transport model is to mathematically reproduce a variety
of air pollution phenomena. In this way, CTMs have been used to simulate air quality (concen-
tration levels of each pollutant) in time and space. It is clear though, that in order to benefit
from CTMs and to perform comprehensive air quality assessments, a combination of air quality
measurements and CTMs should be employed [De Leeuw et al., 2001]. To use such models,
some information intrinsic to the chemical transport model is needed, such as grid structure,
resolution, and initial and boundary conditions. Inputs to CTMs can be broadly grouped as

those dealing with meteorology and emissions:

1. Meteorological inputs: Usually CTMs require hourly, vertically and horizontally resolved
wind fields, as well as hourly temperature, humidity, mixing depth, and solar insolation
fields. Some also use the vertical diffusivities, cloud characteristics and rainfall as simulated
by meteorological models. Meteorological inputs are typically developed de-coupled from
the chemical transport model. The data sparsity is the main reason of preference towards

the usage of dynamic or prognostic meteorological models.

2. Emissions: As previously discussed, accurate emission inputs are key to good model per-
formance. Emission inputs are developed to be compatible with the chemical mechanism

and the model’s spatiotemporal resolution. Detailed, speciated VOC emissions are usually



lumped into the appropriate chemical mechanism categories. Typically, this would include
gridded, hourly estimates of the emissions of CO, NOy, SO2, and various primary VOCs.
For particulate matter modeling, primary emissions of SO3, NH3, PMs 5, and PM;¢ should

be included.

CTMs, in relationship to the coordinate system can be classified into Lagrangian or Eulerian
models. Lagrangian models consider a mobile coordinate system, which in the case of atmo-
spheric phenomena, follows a defined air parcel. Conversely, the Fulerian approach is based on
a fixed coordinate system. Box models are the simplest air pollution models, and a particular
category of Fulerian photochemical dispersion model. They are based on the mass conservation
of a pollutant inside a single cell, or box, inside which emissions are considered homogeneous
[Jacobson, 1999]. The ground as defined by land cover/type characteristics bounds this cell on
the bottom, the inversion base (or some other upper limit to mixing) on the top, while there are
east-west and north-south boundaries on the sides. Box models can be applied for both inert
and reactive pollutants. Fundamental to the model concept is the assumption that the pollutant
concentrations in a volume of air are spatially homogeneous and instantaneously mixed. Under
this condition, pollutant concentrations can be described by the simple balance among the rates
at which they are transported in and out of the air volume, their rates of emission from sources
within the volume, the rate at which the volume expands or contracts, and the rates at which
pollutants react chemically or decay.

Trajectory models use a moving-coordinate approach to describe the atmospheric diffusion
and pollutant transport. A hypothetical column of air is defined, which given a specified starting
point, moves under the influence of the prevailing winds, passing over emission sources which
inject primary pollutant species in the column [Seinfeld, 1988]. Chemical reactions may also
be simulated in the column which can be partitioned horizontally or vertically in many layers
or cells. The formulation employed by trajectory models to describe atmospheric process is
based on the mass conservation, approximated by the atmospheric diffusion equation (ADE)
in a moving coordinate system. The air parcel of interest is assumed to travel solely with the

horizontal wind.



Grid models employ a fixed Cartesian reference system within which the atmospheric dy-
namics are described. The region to be modeled is bounded on the bottom by the ground,
on the top by the inversion base (or some other maximum height), and on the sides by the
desired east-west and north-south boundaries. This space is then subdivided into a two- or
three-dimensional array of grid cells. Most global scale models assume vertically well-mixed
cells extending from the ground surface to the base of the inversion layer: others subdivide the
modeled region into a number of layers in the vertical direction. The basis for grid models is
the solution of the atmospheric reaction diffusion equation using an Fulerian coordinate system
[Dabdub and Manohar, 1997]. Most common applications of grid models to date have been re-
lated to photochemical ozone and aerosol dynamics, because grid models provide the only means
to predict three-dimensional concentration distributions over a specified region. Their limita-
tions emerge in principal from the considerable information database needed as input [Seinfeld,
1988].

One of the most important components of chemical transport models is the photochemical
mechanism. A mechanism for tropospheric chemistry is a mathematical description of the pho-
tochemical processes of low atmosphere through a series of chemical reactions involving primary
and secondary pollutants. Divergence points between different chemical schemes are [Kuhn
et al., 1998]: (1) formulation of the reaction mechanism, (2) rate constants for the reactions and
their temperature and pressure dependencies, and (3) temporal integration of the reaction rates
by a chemical solver. Chemicals considered in a photochemical mechanism distinguish between
inorganic compounds (NOy, Oy, and SOy) and organic compounds, mainly VOCs. The vari-
ety of VOCs emitted to the atmosphere is wide, and its speciation and determination through
emission inventories is very complicated. A more detailed comparison of the existing tools and

databases will be presented in Chapter 3.

1.2.2 Meteorological models

Meteorological models provide the necessary information regarding the atmospheric state
to the chemical transport model. The dispersion of atmospheric pollutants is based on the
advection transport, mixing by eddy diffusion and dry or wet deposition. These phenomena

depend on the meteorological state of the atmosphere, leading to the minimal need for wind



patterns and information regarding the atmospheric turbulence. Meteorological models can be

classified as either prognostic or diagnostic:

e Prognostic models are based on the solution of the time-dependent hydrodynamic and ther-
modynamic equations, appropriately modified for atmospheric application. These models

are also known as dynamic or primitive equation models [Pielke, 1984];

e Diagnostic models provide information about the wind fields and other meteorological
parameters, via satisfying established physical constraints. By imposing the continuity
equation to the meteorological variables measured in fixed locations, they describe the
state of the field of interest providing a diagnostic of the variable. These models are also

called mass consistent or kinematic models.

The predominant tendency in air quality modeling evolves towards the use of prognostic
models as pre-processor meteorological packages to extract and reformat the variables needed
by the CTM. Prognostic models used in photochemical modeling employ the same algorithms
that are used in the Numerical Weather Prediction (NWP) models. The main differences lay
in the meteorological scale of the study and the related strength of the processes that drive the
model. Usually, chemical transport models are applied over regions with dimensions less than
1,000 km (mesoscale) with a spatial resolution of a few kilometers. Models used for weather
prediction work on more extensive regions (macroscale). However, both types are based on the

same primitive equations to resolve the physics of the atmosphere [Seaman, 2000].

1.2.3 Emission models

An atmospheric emission inventory is a compilation of the estimates of pollutant emissions into
the atmosphere, distributed over a determined geographical area, during an established period of
time. In practice, atmospheric emissions are estimated on the basis of selected or representative
in situ measurements. Models can also be used to relate the activity of that source with the
amount of any kind of substances that are emitted to the atmosphere. The basic model for
an emission estimate is the product of at least two variables: (1) an activity statistic; and (2)
a typical average emission factor for the activity. Emission estimates are gathered together to

compile inventories or databases which also contain a variety of supporting information including:
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location of the source of emissions, emission measurements, emission factors, temporal profiles,
production or activity rates in the various source sectors, external conditions, etc.

An atmospheric emission model can be defined as a set of mathematical submodels of dif-
fering degrees of complexity that are integrated. They are useful for estimating atmospheric
emissions within an “airshed” of concern, from different sources in the spatial extend it covers,
during an established period of time. The varying complexity can result in a spectrum of esti-
mates; from simple resume tables specifying the type of pollutant and nature of the source, to
more complicated allocation schemes that assign information about the flux of pollutants in the
different cells that divide the domain of interest. Two distinct approaches to emission modeling

have been developed in recent years:

1. Top-down approach: Emissions are estimated for the entire geographical area under study
and then are distributed to the individual cells proportionately to certain parameters asso-
ciated with the source type and properties (e.g. traffic, demographics, industrial density,

biomass density).

2. Bottom-up approach: Emissions are estimated at an individual cell-level, by means of es-
tablishing every parameter for that cell in particular. The total emission value is obtained

by aggregation of estimates carried out for all the cells within the area of interest.

1.2.4 Modeling exposures to co-occurring pollutants

Human exposures to atmospheric pollutants can be extremely complex due to the spatial and
temporal nature of emissions, meteorology, and human activities. Variations in both the ambi-
ent pollution concentrations and behavioral factors influence individuals contact with pollutants
found indoors and outdoors. Traditionally different types of models have been used to pro-
vide the critical linkages between pollutant emissions from natural and anthropogenic sources,
concentrations in various media, human exposures to indoor and outdoor pollutants and the de-
livered dose to the body resulting from contact with these pollutants. The U.S. Environmental
Protection Agency (US EPA) uses a wide range of models in linking air pollution emissions to
ambient concentrations to human exposures and to delivered pollutant dose to human respiratory

system. However, each modeling component within the source-to-dose continuum (Figure 1.3)
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contributes imprecision to predictions depending on the complexity of the underlying environ-
mental, personal exposure or biological condition represented by each model. Furthermore, new
maps resulting from analysis by the Natural Resources Defense Council (NRDC) suggest that
regions most affected by ragweed and smog substantially overlap with one another (Figure 1.4),
leaving these regions particularly vulnerable to the effects of global warming. As global warm-
ing boosts levels of both ragweed and smog, the risk of asthma and allergic reactions for people

living in these overlapping regions will likely increase.

1.3 Objectives

Photochemical episodes are associated with meteorological conditions that favor both the trans-
formation and transport of chemicals and require a broad and rigorous analysis of the fluxes
of pollutants involved in the region. The effective characterization of biogenic emission fluxes
and sources can have a significant influence on control strategies developed by policy-makers. In
addition, there is a strong linkage on the source-to-dose population exposure continuum (Fig-
ure 1.3) that remains unexplored when biogenic sources and the associated uncertainties are
lumped in broader pollutant groups. The utilization of multi-scale, multi-dimensional databases
and geodatabases, despite its complexity, can be a beneficial tool for assessing air quality via
environmental transport/fate models. Incorporating the vegetative characteristics of a particu-
lar region into the model can enhance the estimation of the potential contribution to population
exposure. In addition to this main hypothesis, a variety of related biogenic emissions (aeroaller-
gens, forest fires) can be studied in a unified manner in the same modeling framework. Keeping
in mind the role of vegetation as the underlying information base, the objectives of this thesis

can be defined as:

Objective A

e Improve biogenic VOC emission inventories by incorporating additional land use/land

cover and vegetation databases;

e Study the impact of refined estimates on regional surface ozone levels.
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Objective B

e Improve the characterization of pollen emissions;
e Develop modules for studying the transport of pollen particles;

e Implement modules in a framework that allows for studying co-exposures.

1.4 Outline of the thesis

e Chapter 1 presents a brief introduction to the major atmospheric processes relevant to
biogenic emissions, their transport, and transformation. It also discusses the steps involved
in air quality modeling applications that have been currently used in exposure systems,
and the associated limitations. Additionally, Chapter 1 summarizes the objectives and

presents a brief overview of this thesis.

e Chapter 2 presents the relevant background information on the biogenic processes and
released agents that accompany them. The focus of the chapter will be on emissions,
transport, and transformation of such pollutants and aeroallergens. In addition, Chapter
2 provides a link to the major model formulation and emission parameter development for

each of the involved species.

e Chapter 3 reviews and aggregates geodatabases and modeling tools to support biogenic

emissions modeling.

e Chapter 4 presents the application of integrated emissions-chemistry-transport modeling
of biogenic VOC species relevant to the Northeast region. In Chapter 4, the effect of the
aggregate geodatabase that includes recent satellite data for the area of interest will be

also discussed.

e Chapter 5 presents the development and application of a module that incorporates emission
and transport processes of aeroallergens at the regional scale. The main focus of Chapter
5 will be pollen particles and more specifically Birch and Ragweed, a set of very significant

allergenic particles that affect most of the population of the Northeast.
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e Finally, Chapter 6 presents the conclusions of this thesis, and recommendations for future

work. This is followed by bibliography.
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Figure 1.1: Grouping of the various sources of air pollution [Source: Finlayson-Pitts and Pitts,

2000].
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Figure 1.2: A schematic of interactions between chemical species and particulate matter leading
to the formation of secondary pollutants [Source: Franze et al., 2005].
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Chapter 2

Background on the emission, transport and
transformation of major biogenic releases

Chemical compounds and bioaerosols in the surface interaction layer between the biosphere and
atmosphere are released from vegetation via a number of natural processes. The purpose of this
chapter is to review the current approaches for modeling these processes on the regional scale.
The releases that are covered in this study fall into the two main categories mentioned before:
(1) biogenic non-methane volatile organic compounds (NMVOCs), and (2) bioaerosols. Volatile
organic compounds (VOCs), nitrogen oxides (NOy), and greenhouse gases such as methane
(CHy), nitrous oxide (N2O), ozone (O3) and carbon dioxide (CO3z) may originate from a variety
of biogenic sources. Bioaerosols can be found in the atmosphere in the form of pollens, fungal
spores, bacteria, viruses, and a number of fragments coming from plants and animals. The
focus of this study for the group of bioaerosols concentrates on pollen particles. These two
main groups of biogenic emissions may significantly impact air quality on the local scale during
periods of adverse meteorological conditions. The following sections present information on the
production, release, and transport processes for the major representatives of the first two groups

of interest: BVOCs and pollen particles.

2.1 Biogenic Volatile Organic Compounds

It was first recognized over 40 years ago that isoprene [2-methyl-1,3-butadiene] is emitted into the
atmosphere from plants [Rasmussen and Went, 1965; Sanadze and Dolidze, 1961]. Since then,
numerous studies have revealed that a wide variety of NMVOCs are produced and emitted from
certain parts of vegetation (see Figure 2.1) [Arey et al., 1991a,b, 1995; Ciccioli et al., 1993; Evans
et al., 1982; Fuentes et al., 2000; Geron et al., 2000b; Hewitt, 1999; Isidorov et al., 1985; Konig

et al., 1995; MacDonald and Fall, 1993; Rasmussen, 1970]. Table 2.1 provides a subset of the total
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number of NMVOCs observed in literature as plant emissions along with their reaction products,
chosen to be representative of the organic compound classes involved. The group of compounds
referred to as isoprenoids or terpenoids, is of great importance and consists of isoprene (CsHg),
monoterpenes (two isoprene units), and sesquiterpenes (three isoprene units). They are usually
characterized as volatile, poorly water soluble, and very reactive compounds with a strong scent.
The structures of some terpenoids and common oxygen-containing compounds, also considered
to belong to the terpenoids group, are illustrated in Figure 2.2.

Published emission inventories of biogenic and anthropogenic NMVOCs imply that in re-
gional and global scales the emissions of biogenic NMVOCs are comparable to, or exceed, those
of anthropogenic origin [Guenther et al., 1995; Lamb et al., 1987, 1993]. On a global scale, it
is estimated that 1150 Tg of carbon are released annually in the form of NMVOCs (1 Tg = 106
metric tons) [Guenther et al., 1995]. Although there are large uncertainties in the emission rates
of total biogenic NMVOCs and of individual compounds, 44% and 11% of biogenic VOC emis-
sions have been attributed to isoprene and monoterpenes, respectively [Guenther et al., 1995].
Recent annual estimates for the North America suggest that of the 86 T'g of biogenic NMVOCs,
30% is isoprene, 30% is methanol, 20% are monoterpenes and sesquiterpenes, 8% are hexene
derivatives, and 5% is 2-methyl-3-buten-2-0l, with the remainder being relatively nonreactive

species [Guenther et al., 2000].

2.1.1 Biosynthetic pathways for the isoprenoid group

The biochemical pathways involved in the synthesis of biogenic hydrocarbons have been the
subject of extensive recent research [Ajikumar et al., 2008; Calfapietra et al., 2008; Illarionova
et al., 2006; Lopes et al., 2007; Rohdich et al., 2002; Sharkey et al., 2005, 2008; Weathers
et al., 2006]. Estimating biogenic hydrocarbon emissions relies on empirical models of emissions
based on observations. Whenever possible, mechanisms involved in the synthesis and emission
of biogenic hydrocarbons are used to compare and improve models. Mechanistic models are
further improved when the season and location of emissions is well understood. However useful
such models can be, a fundamental understanding of the pathways and chemistry of BVOC
synthesis is necessary. The biosynthetic pathways of the isoprenoid group (see Figure 2.3) share

a common precursor compound, dimethylallyl pyrophosphate (DMAPP). This precursor and its
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isomer, isopentenyl pyrophosphate (IPP), are also precursors for important biological molecules
such as the carotenoids and cholesterol. Although the pathways of this group are not completely
known, initial thoughts pointed to the well known mevalonic acid (MVA) pathway [McGarvey
and Croteau, 1995]. However, later research revealed that higher plants have two distinct routes
for the biosynthesis of DMAPP; the MVA pathway and the 2-deoxyxylulose 5-phosphate/2-
methylerythitol 4-phosphate (MEP) pathway [Lichtenthaler et al., 1997]. In the MEP route,
DMAPP is formed from glyceraldehyde 3-phosphate and pyruvate, as opposed to the mevalonate
precursor [Sharkey and Yeh, 2001]. The mevalonate-independent isoprenoids (such as isoprene,
carotenoids, and phytol) are those formed in the chloroplasts. Sesquiterpenes and triterpenes
are synthesized from mevalonic acid in nonplastid compartments and isoprene, monoterpenes,
phytol (Cyp) and carotenoids (Cyp) are synthesized from IPP generated from the MEP pathway
[Lichtenthaler et al., 1997; Zeidler et al., 1997]. The IPP is isomerized into DMAPP, which is
the precursor for synthesis of isoprene, in a pathway that is not well understood. The final step
of isoprene synthesis is the elimination of pyrophosphate from DMAPP by the enzyme isoprene
synthase, which appears to be a membrane-bound, light-activated enzyme [Wildermuth and
Fall, 1996]. Additionally, changes with this enzyme’s activity are well correlated with changes
in isoprene emission. Isoprene synthase is one of the reasons that light is a primary factor in
controlling isoprene emissions.

It is also clear that the “energy currency” (Adenosine triphosphate - ATP) of the cellular
level is produced during photosynthesis and is required for the synthesis of isoprene [Monson
and Fall, 1989]. This is in agreement with the experimental evidence that isoprene production
and emission are closely linked to photosynthesis [Loreto and Sharkey, 1990; Monson and Fall,
1989; Tingey et al., 1981]. With a better understanding of the biosynthetic pathway, the energy
cost associated with isoprene emission can also be determined. The MEP pathway is reported
to be more efficient than the MVA pathway, but it is still substantial, and benefits associated
with isoprene emission must be compared to the cost of carbon and energy given up by the plant
[Sharkey and Yeh, 2001]. This way, the primary requirements for isoprene synthesis are light,

warm temperatures, and availability of MEP pathway precursors from photosynthetic processes.
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2.1.2 Environmental factors affecting biogenic VOC emissions

The factors affecting biogenic VOC emissions at the single-leaf level have been reviewed by
a number of authors [Fuentes et al., 2000; Guenther et al., 1993; Hewitt, 1999]. As described
above, the biosynthetic pathway for the group of isoprenoids has revealed the full effect of the
environmental driving forces. It is known that, for compounds such as monoterpenes that are
released from resin ducts or glands, temperature is the dominant control factor [Tingey et al.,
1980]. The increasing vapor pressure of these compounds with temperature explains the tem-
perature response of the emission (Figure 2.4-a). On the contrary, some plants have been found
to emit monoterpenes that are not stored in the plant, directly after a light-dependent synthesis
(e.g. Pinus densiflora, Picea Abies, Quercus ilex, Pinus Pinea, Sunflower and Beech [Bertin
et al., 1997; Loreto et al., 1996; Schuh et al., 1997; Schurmann et al., 1993; Staudt et al., 1997,
2000; Yokouchi and Ambe, 1984]). Plants are believed to emitt monoterpenes for a variety of
reasons, including defense against insects and other herbivores, and attraction of pollinators and
enemies of herbivores [Hewitt, 1999]. Singsaas [2000] suggested that the emission of isoprene
benefits plants by increasing their thermotolerance.

Isoprene emission does not follow the relationship of monoterpenes to volatility; it is instead
related to metabolism [Monson et al., 1994]. In other words, isoprene and a part of the plant
monoterpene emissions do not come from preexisting pools. The temperature effects are in-
stead enzymatic, with two distinct phases of increase in the emission. For small temperature
rate changes, the isoprene emissions change as quickly as the leaf temperature (average time
constant 8.2s). For larger rate changes, the plant will make metabolic adjustments and activate
enzymes to increase isoprene emissions (average time constant of 116s) [Singsaas and Sharkey,
1998, 2000]. The activation energy for isoprene emission is relatively constant across a wide
range of conditions, and most investigators have reported similar values ranging from 60 to
90kJmol~! [Guenther et al., 1993]. Although the activation energy is relatively constant, the
leaf’s capacity to emit isoprene has been found to vary. The base emission capacity (or basal
emission rate) is defined as the rate of emission at 30 °C and 1000 umol m~2s~! of photosynthet-
ically active radiation (PAR). Figure 2.4-b shows the variation of the emission rate of isoprene as
a function of leaf temperature, a curve that was found to vary within a growing season [Fuentes

et al., 2000]. The dependence on temperature is very different for isoprene emissions versus
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photosynthesis. A maximum photosynthesis rate for most plants occurs around 30 °C, whereas
isoprene emissions continue at temperatures above 30 °C. Most plants studied, cease to emit iso-
prene at temperatures above 40 °C where it is assumed that biosynthetic enzymes are denatured
[Guenther et al., 1993; Hewitt, 1999]. Another effect of this temperature dependence is that the
ratio of fixed carbon emitted as isoprene increases rapidly with temperature, in particular when
they exceed 30 °C.

Isoprene and some monoterpene emissions are also dependent upon light. The light de-
pendence is often similar to that of photosynthesis, but many reports have shown that isoprene
emission can continue to respond to increasing light after photosynthesis is saturated (Figure 2.4~
c¢) [Harley et al., 1996]. Plants do have the capability to draw on carbon reserves for isoprene
production. This is usually experienced as long term drought stress, during which photosynthesis
shuts down and stomata are closed, but isoprene continues to be emitted. When drought stress
is relieved, isoprene emission exceeds prestress rates [Sharkey and Loreto, 1993]. Not only have
short-term effects of temperature and light intensity on isoprene emission rates been observed,
but also leaves that develop in full sun emit isoprene at a higher rate than leaves that develop
in the shade (Figure 2.4 -d) [Harley et al., 1996]. For example, isoprene emissions measured in
deciduous oak canopy at two heights, were found to be significantly higher for sun leaves com-
pared to shade leaves when expressed on a leaf area basis (51 and 31nmolm~2s~! ; P < 0.01)
[Harley et al., 1997]. Recent studies have shown that the light and/or temperature environment
over several days can influence the isoprene emission rate. One approach to characterize these
variations in isoprene emissions is to determine emissions as a function of thermal degree units

[Fuentes and Wang, 1999; Geron et al., 2000a; Hakola et al., 2000; Monson et al., 1994].

2.1.3 Tropospheric photochemistry and biogenic VOCs

The gas-phase chemistry of the troposphere involves the oxidation of organic species in the
presence of oxides of nitrogen under the action of sunlight. Atmospheric oxidation proceeds
via chains of radical reactions, which for the case of organic compounds can be long and com-
plex. A key process in atmospheric formation is photolysis of species such as NOs, HCHO,
and HONO. On the other side, heterogeneous or aqueous-phase chemistry involving reactions

in aerosol particles and cloud droplets may affect ozone concentrations in a number of ways
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including production and loss of OH radicals and nitrogen oxides, direct loss of ozone, and pro-
duction of halogen radicals [Jacob, 2000]. Both direct and indirect measurements of photolysis
rates in the atmosphere can be a difficult task. To calculate the photolysis rate of a chemical
compound, one has to consider: the fraction of solar radiation it absorbs, the distribution of

wavelengths and intensity of solar radiation. The photolysis rate of a biogenic chemical, A, in

the troposphere, given in molecules cm~2s71, can be expressed in the following way [Roselle
et al., 1999]:
A
K= [ o0iImemiaax (2.1)
A=290 nm
where,

A — wavelength (nm)

2

[

A) — actinic flux (photons cm™2nm~!s7!)

)

A) — primary quantum yield of A (molecules/photons)

¢

(A)
(\) — absorption cross-section in base e (cm~2 molecules™!)
(A)

[A] — concentration of A

This rate can be considered as a first-order rate constant K.=K,[A], and the integral can be
substituted by a summation in an interval of wavelengths, where a mean value takes the place
of the variable’s value within that interval. Absorption cross-sections and quantum yields are
functions of wavelength, and may also be a function of temperature and pressure, something that
is unique to species and reactions [Jacobson, 1999]. The actinic flux is usually estimated with
radiative transfer models, depending on the solar zenith angle [Roselle et al., 1999]. Another
approach is to measure the light intensity and convert this to an actinic flux. Photolysis of a
molecule may produce one or more sets of products, and the probability of each set of products is
embodied in the quantum yield term. The production of excess ozone in the atmosphere requires
NOy, VOCs, and sunlight. Under normal atmospheric conditions, the photolysis of NOy (at
wavelengths < 424 nm), leads to the formation of ozone through reactions 2.2 and 2.3, and the

cycle is balanced, because NO and Ogs react to regenerate NOg (Eq. 2.4).

NO, ™, NO + 0. (2.2)
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0-+0, L 04 (2.3)

The above three reactions occur rapidly, establishing a steady-state ozone concentration:

(03] = (2.5)

where k is the rate constant for reaction 2.4, and J[NOo] is the photolysis rate of NO2. How-
ever, if NO can be converted to NOsy without scavenging O3, excess Oz will be generated. The
conversion of NO to NOs can occur with biogenic VOCs as the fuel as illustrated in Figure 2.5.
The primary removal for the major BVOCs is oxidation by the OH radical, but similar reac-
tions can occur by Oz and NOg oxidation. Various reviews describe in great detail the reaction
pathways for the degradation of VOCs, both biogenic and anthropogenic [Atkinson, 1997, 2000;
Finlayson-Pitts and Pitts, 2000]. The right portion of Figure 2.5 shows the generalized reaction
pathway for VOCs in the atmosphere, where the important intermediate products are alkyl
radicals (R-), which quickly combine with Og to form alkyl peroxy radicals (RO2-), and alkoxy
radicals (RO-). Regions with low NOy levels (typically less than 5-10 pptv) are termed “clean”
atmospheres, and those with significant NOy (in the ppb range) are termed “dirty” [Finlayson-
Pitts and Pitts, 2000]. The rates of reactions are related to the concentration of NOy in a very
complex manner. When NOy is low, nitric acid (HNOs3) and hydrogen peroxide are formed, both
playing an important role in the formation of acid rain [Gaffney and Marley, 1991]. However,
when NOy levels are high, the reaction steps outlined above occur creating excess Os. The
formation of O3 is a non-linear process that is a function of the (HC/NOy) ratio, temperature,

and sunlight [Fehsenfeld et al., 1992; Logan, 1985].
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Lifetimes and reaction mechanisms of biogenic VOCs

Rate constants for the gas-phase reactions of many of the NMVOCs emitted from vegetation
with OH radicals, NOg radicals and Og have been measured and reported in recent literature.
These rate constants can be combined with assumed ambient tropospheric concentrations of OH
radicals, NOg3 radicals and O3 to calculate the biogenic VOC lifetimes with respect to each of
these loss processes (Table 2.1). Considering both day and night, the half-life of isoprene ranges
from 1.5 to 3 hours. Since it has such a short lifetime, the amount of isoprene that escapes
from the boundary layer can be considered negligible. Kesselmeier et al. [2000] measured vertical
profiles of isoprene and some monoterpenes over a pristine forest in Amazonia. The lowest mixing
ratios were found at the highest altitudes (500m), and the highest at the surface (Figure 2.6).
A diurnal variation is also noticed at a considerable degree as we get closer to the surface.
Monoterpenes generally contain at least one unsaturated carbon-carbon bond and often have
one or more rings in their structure. For a-pinene, an important monoterpene, the lifetime may
range from as little as 5 minutes to 3 hours, while other monoterpenes have even shorter lifetimes
[Kesselmeier and Staudt, 1999]. Plants also emit a wide range of other highly reactive VOCs,
including many oxygenated species [Winer et al., 1992]. Although many of these fluxes are small
when compared to those of isoprene and monoterpenes, they are often of similar magnitude to
the anthropogenic sources.

During the past two decades, a lot of research has tried to shed light into the chemical mecha-
nisms and the identification and quantification of the oxidation products involved. Several prod-
uct studies under atmospheric conditions have faced difficulties due to analytical problems in
detecting multifunctional groups, as well as the lack of commercial standards for the anticipated
products. The reactions and products have been reviewed by a number of researchers [Atkin-
son, 1990, 1997, 2000; Atkinson and Arey, 1998, 2003a,b; Calogirou et al., 1995; Fuentes et al.,
2000]. Two general mechanisms can be identified: (1) addition to C=C bonds by OH radi-
cals, NOg3 radicals and Og, and (2) H-atom abstraction from C-H bonds (and to a much lesser
extent, from O-H bonds) by OH radicals, and NOg3 radicals. Ozone reacts only by addition to
the C=C bonds, and for such BVOCs, addition of OH and NOgs will generally dominate over
H-atom abstraction by these radicals and will lead to hydroxy- or nitrooxy- substituted alkyl

radicals, respectively. H-atom abstraction by OH radicals and NOgs radicals occurs from the
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various C-H bonds in alkanes, ethers, alcohols, carbonyls and esters. This reaction pathway
is of minor importance for isoprenoids, alcohols, ethers, esters, and ketones containing C=C
bonds, but is important for aldehydes with C=C bonds (e.g. methacrolein). The reactions of
the alkyl or substituted alkyl radicals (R-) formed after H-atom abstraction from C-H bonds or
after OH or NO3 radical addition to the C=C bonds are illustrated in Scheme 1 of Figure 2.7,
with the reactions proceeding through the intermediary of organic peroxy and alcoxy radicals.
In the atmosphere, alkoxy radicals can decompose by C-C bond scission, isomerize by a 1,5-H
shift through a six-membered transition state and react with oxygen. Scheme 2 in Figure 2.7
shows details for the OH radical initiated reactions of isoprene as a representative mechanism.
In this scheme, the reactions are followed for only one of the six possible hydroxyalkyl radicals
[Atkinson, 1997]. The same source of research provides us with a summary table of the products
observed when isoprene reacts as an alkane with OH radicals, NO3 radicals and ozone (see Table
2.2). Recent studies provide new constraints on the chemistry of the poorly understood isoprene
resonance channels, which account for more than one third of the total isoprene carbon flux and
a larger fraction of the nitrate yields [Paulot et al., 2008]. The same study indicates that the
cis branch dominates the chemistry of the isoprene resonance channel with less than 5% of the
carbon following the trans branch. The yield of isoprene nitrates, which when oxidized release
nearly 50% of the NOy, was found to be approximately 11%. The large molar yields of formic
acid during chamber experiments suggest a novel mechanism describing its formation from the
organic nitrates [Paulot et al., 2008].

Initial studies attempting to quantify an isoprene-initiated secondary organic aerosol (SOA)
suggested that isoprene was not a significant precursor of SOA [Pandis et al., 1991]. Claeys et al.
[2004a,b] analyzed aerosol samples from the Amazonian forest and proposed that isoprene oxi-
dation could provide an additional source of SOA via multiphase acid-catalyzed reactions with
hydrogen peroxide. Recent laboratory chamber studies found a yield of 1-2% at high NOy levels
[Kroll et al., 2005], and 3% at low NOy levels [Kroll et al., 2006]. The presence of SO2 has been
found to attribute around 2.8% to the yield of SOA due to ozone [Edney et al., 2005]. An in-
cloud process for SOA formation from isoprene has also been identified [Lim et al., 2005]. Field
experiments provide evidence that the isoprene oxidation products hydroxyacetone, methylgly-

oxal, and glycoaldehyde contribute between 10 and 120 Tg of organic aerosol to the troposphere
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[Matsunaga et al., 2005]. Terpenes are oxidized in the atmosphere during the day by both OH
radicals and ozone, at night by NOj radicals and Og, while the reaction with O3 leads to the
formation of additional OH radicals [Aschmann et al., 2001]. While reaction rate coefficients
for many of these reactions have been determined [Atkinson and Carter, 1984], there is a lack
of data regarding their products [Hakola et al., 2000, 2003]. A number of researchers observed
particle formation in the chemistry of terpenes, revealing that the mass-based aerosol yields were
strongly associated with the structure of the hydrocarbon, the initial hydrocarbon-to-NOy ratio
and the amount of seed aerosol initially present [Koch et al., 2000]. Kanakidou et al. [2005] review

the current understanding of organic aerosol sources and sinks.

Measurement of BVOCs and development of standardized emission factors

The research agenda on biogenic hydrocarbons is driven, to a large extent, by the need to
derive accurate emission inventories so that assessments can be made on the contribution of
hydrocarbons upon regional and global atmospheric chemistry. Ambient concentration lev-
els of biogenic NMVOCs, even in heavily forested rural areas, rarely exceed 5% of the to-
tal NMVOCs [Arnts and Meeks, 1981]. This caused a great deal of confusion, leading many
researchers to erroneously conclude that biogenic NMVOCs do not contribute significantly to
the formation of Og or aerosols in the troposphere [Altshuller, 1983; Arnts and Meeks, 1981].
The development and application of measurement techniques, capable of identifying the variety
of biogenic species and determining emission fluxes at very low ambient levels, and the result-
ing discovery of different associated reaction pathways, have been the main reasons to think
otherwise.

Depending on the scale, such measurement techniques range from enclosures and environ-
mentally controlled gas exchange systems to measuring hydrocarbon fluxes from individual fo-
liage elements, branches, or entire plants, to micrometeorological methods to derive emissions
at the plant ecosystem level. Enclosure systems were based on the first conceptual design for
BVOC sampling, being particularly useful for defining the forcing variables controlling their
emission. Such systems range from whole-plant enclosings to controlled-environment cuvette
systems. Canopy-level flux estimation methods were also developed to overcome the limitations

of leaf-based fluxes and allow us to measure BVOC for many seasons without interfering with
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environmental conditions. Additionally, canopy-level measurements provide direct spatial aver-
ages of BVOC fluxes entering the atmospheric environment. The methods applied to determine
hydrocarbon fluxes at the canopy level by simultaneously analyzing micrometeorological pa-
rameters are: (a) gradient diffusion approach, (b) modified Bowen-ratio technique!, (c) relaxed
eddy accumulation technique, and (d) eddy covariance approach. Several authors discuss the
experimental techniques used for quantifying: (a) leaf, (b) canopy, or (c) landscape level fluxes
[Fuentes et al., 2000; Guenther et al., 1996]. Kaharabata et al. [1999] found that under similar
temperature and light levels canopy fluxes derived from the gradient diffusion approach varied
by 27% when compared against their leaf-level equivalent. Their analysis demonstrated that the
variability observed in measured hydrocarbon fluxes could be accounted for by varying numbers
of heterogeneously distributed clumps of emitter species within a varying footprint. Also, they
confirmed previous analysis [Lamb et al., 1996] in that the heterogeneous source distribution of
hydrocarbons has to be explicitly considered when estimating and comparing emissions based
on above-canopy measurements.

The variation of isoprene emissions primarily occurs at the genera level, with no real tax-
onomic pattern [Martin et al., 1991]. The developmental stage of the leafy biomass is also
expected to affect the isoprene emission rate. Most plants do not reach their basal emission
rates until full leaf development and expansion [Fuentes and Wang, 1999; Monson et al., 1994].
Ambient concentrations of isoprene above a central Pennsylvania deciduous forest have been
found to range from 0 to more than 30 ppbv during daytime, while typical midday levels were
between 5-10 ppbv [Martin et al., 1991]. In other ecosystems such as the tropical forests of
Brazil, inside-canopy isoprene levels of 8 ppbv have been reported [Martin et al., 1991]. As a
result, the compilation of a database with standardized emission factors factors is an extremely
difficult task, and a very important link between modeling algorithms and land cover/vegetation
databases. The Environmental Protection Agency (US EPA) has undertaken the task of devel-
oping and maintaining a database for the entire U.S., which is a part of the standard modeling

tools and supporting databases for regulatory applications [Kinnee et al., 1997; Lamb et al.,

!The modified Bowen-ratio (MBR) technique is a micrometeorological method that can be used to estimate air-
surface exchange rates, providing differences in concentrations between two heights can be resolved. Application
of the MBR method requires that fluxes and gradients for at least one scalar entity be measured in order to
directly compute the exchange coefficient k, which is assumed to be applicable for all scalars.
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1993).

2.2 Bioaerosols

Bioaerosols are defined as airborne particles that are living, contain living organisms or were
released from living organisms, including plants. Until recently, the atmospheric fate and trans-
port of bioaerosols has not been thoroughly studied in relation to peacetime society. Yet, modern
societies have been experiencing a continuous increase in allergic diseases, as a result of elevated
levels of aeroallergens and pollutants in metropolitan settings that are considered to be “dirty”.
Bioaerosol emissions in the atmosphere are also highlighted by another “modern Pandora’s box”,
the problem of cross-pollination and the control of the pollen dispersal from genetically modified
(GM) crops [Aylor et al., 2003]. Recent worldwide events, such as epidemics, call for new tools
to assess, predict and manage the aerial spread and associated risk of such aerosols. The first
step in assessing the risks of bioaerosols is determining their source, composition, and geograph-
ically specific behavior as atmospheric aerosols. It is suggested that the volumetric total of the
airborne particulates made up by biological material in remote continental, populated continen-
tal, and remote maritime environments is 28, 22, and 10% , respectively [Matthias-Maser et al.,
2000]. In some regions of the earth, biological material may comprise a substantial proportion
of the total aerosol mass concentration (e.g. in tropics, the range can be from 55 to 95%). The
size of a bioaerosol particle may vary from 100 um to 0.01 pm. Assuming spherical equivalent
particles, pollens from anemophilous plants have typical diameters of 17-58 pm [Stanley and
Linskens, 1974], fungal spores are typically 1-30 pm in diameter [Gregory, 1973|, bacteria are
typically 0.25-8 pm in diameter [Thomson, 1981], while viruses have diameters which are usually
less than 0.3 um [Taylor, 2007]. Table 2.3 contains information regarding pollen size, volume,
and weight for several different species. The fragments from plants and animals may also be
of various sizes. In addition to size, an important characteristic of biological material is that it
does not necessarily occur in the air as independent particles. Past research identified the ma-
jority of bacteria at inland sites as being associated with particles of an aerodynamic diameter
greater than 3 um. Unexpectedly, new scientific findings document that in the natural envi-
ronment, bacterial dispersal is faster and occurs over longer distances than previously assumed

[Lighthart and Shaffer, 1997]. The magnitude of this new potential risk is extremely difficult
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to assess, because there are insufficient data on quantity, identity, viability, and dispersal of

airborne microorganisms [Jones and Harrison, 2004].

2.2.1 Aeroallergen production and release

In this section, several environmental (external) and ecological (internal) factors related to
aeroallergen production are discussed. Phenology is a state within a sequence of growth stages
in the development process of vegetation or any organism. The general phenological stages that
most plants transition through include emergence, early vegetation, late vegetation, flowering,
fructification, and senescence (Figure 2.8). Plant communities within a spatial unit at any mo-
ment in time are at different developmental stages. Pollen is the male gametophyte, the structure
responsible for the production and storage of the gametes of seed-producing plants. There are
two main types of seed-producing plants, the angiosperms and the gymnosperms. Most of the
plants producing allergic pollen belong to the angiosperms. Gymnosperms, the group just be-
low the angiosperms on the evolutionary scale are of minor allergological importance [Falagiani,
1990]. The pollen particles and fragments develop in the pollen sacs (gymnosperm) or anthers
(angiosperms) which open when ripe, exposing it to the air. The majority of the plants have not
evolved like the anemophilous angiosperms but have maintained a vector-mediated pollinator
system. Yet some animal-polinated (zoophilus) species produce abundant pollen and are par-
tially adapted to wind-dispersal as a secondary mode of pollination [Faegri et al., 1989; Lewis
et al., 1983]. Because of such cases of either facultative anemophily or incidental release of pollen,
it is fallacious to ignore all zoophilus species as potential offenders in localized cases of inhalant
allergy. Pollen is released once the mechanism of dehiscence, opening of anthers or microstrobili
and release of pollen is initiated. The process and product properties vary in the different plant
families, and has been well described for the anemophilous species [Keijzer, 1987a,b; Keijzer
et al., 1987]. The onset and duration of dehiscence depends in part on meteorological conditions
which change from day to day. Under identical conditions, every species has its specific time of
anther dehiscence [Ogden et al., 1974]. Animals that depend on vegetation during their lifetime
have evolved in such way that their phenological stages are synchronized with those of the plants
they exploit.

Pollen production depends on different factors, such as the climate of the preceding year,
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the weather of summer and autumn, or simply on biological rhythms [Stanley and Linskens,
1974]. Distribution patterns of aeroallergens primarily reflect size, density, quantity of pollen
available and environmental conditions during dehiscence. The quantity of pollen produced
per plant unit is usually measured volumetrically and is found to vary significantly within dif-
ferent species. Anemophilus species almost always outproduce entomophilus species while the
hydrophilus species produce only a few grains per plant. Reddi [1986] noticed a great indi-
vidual variation in anemophilus species, with the grains released per anther to be between 32
(Bothriochloa) and 89,000 (Phoeniz dactylifera). Quantities of 107 grains per plant are typ-
ical in Zea mays, while Vallisneria produces 72 to 144 grains per plant. Table 2.4 contains
information regarding pollen volume production for several different species on an annual and
50-year basis. In a more detailed approach, Molina et al. [1996] determined the number of pollen
grains produced at the branch, tree or crown level for different anemophilus species. However,
when modeling vegetation as a source of pollen, the chief interest concerns the number of grains
produced per area unit. Understanding the temporal component of the pollen flux is equally
important. In previous attempts to calculate the amount of pollen released from a specified
area, the numbers tended to be overestimated at the beginning and end of the season since the
variations in flowering time within the area of interest were not taken into account [Kawashima
and Takahashi, 1999]. Bringing these components together results in the concept of the spa-
tiotemporal flowering map, which is consisted of the land use/land cover database along with
a pollen release module that describes the availability of pollen particles. More information on
the development and restrictions of this map, along with the related datasets will be provided

in the following chapters.

2.2.2 Fate and transport of allergenic pollen grains

The effects of meteorological factors on atmospheric bioaerosol levels have been discussed in
several publications [Aylor, 1999; Aylor and Irwin, 1999; Jones and Harrison, 2004; Li and

Kendrick, 1994]. Major points from these reviews include the following facts regarding pollen:

e they are of irregular shape and diameter [Gregory, 1973; Stanley and Linskens, 1974];

e they can hydrate and dehydrate [Aylor, 2002, 2003];
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they may build up aggregates (entomophilous species have a pollen kit on their surface

[Keijzer, 1987b]);

they have different densities and settling velocities [Jarosz et al., 2003];

they have species-specific, limited, and mostly unknown viability [Aylor, 2004];

the concentration thresholds that cause allergic symptoms at the exposure endpoint depend

on the species [Reponen et al., 2001].

Pollen occurs in a number of shapes, mostly variations of spheres with a geometry determined
to some extent by the number and position of the germinal apertures. The pollen of certain
conifer trees contains an air sac resulting in a low density particle, which will behave like a smaller
higher density one [Jones and Harrison, 2004]. The size of pollen is related to the following
list of factors [Stanley and Linskens, 1974] : (1) chromosome numbers, (2) heteranthery?, (3)
temperature, (4) individual flower character, (5) mineral nutrition, (6) water conditions and (7)
number of germination pores. The rate at which particles are deposited from the atmosphere
by turbulent deposition can be presented in terms of a deposition velocity, which is a function
of the aerodynamic diameter [Nicholson, 1988b].

The upper limit of the convective ascent of air during the daytime is given by the thermal
inversion over which cumulus clouds indicate the position of actual updrafts. The horizontal
air speed within this layer for a medium wind is 5-10ms~!, almost two orders of magnitude
greater than the free fall velocity of the grains. According to Stoke’s law, a pollen grain of size
25 pmwould have a free fall velocity of 7.5cms™!. Assuming a horizontal wind speed of 5ms™1!,
the pollen is capable of traveling 67 m when released from a height of 1 m. However, if released
from a height of 20m, it would travel 1333 m. A parameterization methodology of the pollen
settling velocity, which is necessary to determine the sedimentation flux, has been discussed
in the literature [Aylor, 2002; Helbig et al., 2004]. Deposition of the grains is assumed to be
negligible compared to their sedimentation. Coagulation is neglected as well, since the typical

atmospheric number densities of the pollen grains are quite low. Particle size will also affect

2Heteranthery, the production of two or more stamen types by individual flowers reduces this conflict by
allowing different stamens to specialize in “pollinating” and “feeding” functions.
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the likelihood of entering the atmosphere, depending on the deposition surface characteristics
[Reynolds, 2000]. Nicholson [1988a,b] provides an extensive review of the pollen re-suspension
processes.

The vertical profile of the wind along with the average height of the vegetation have an
important role in the large-scale transport of pollen. The nighttime temperature inversion is
accompanied by still air, and after sunrise, the solar heat flux affects the convection currents in
the anther microenvironment. Under the influence of such currents, pollen can reach a relatively
high altitude. Independent of the pollen species and size, the highest density during field ex-
periments has be found to occur at heights between 250-650 m [Stanley and Linskens, 1974]. In
the same experiment, particle sedimentation is noticed when the night-time convection currents
are reduced significantly. This return of the pollen grains to the lower air strata at nighttime is

demonstrated in ragweed pollen trapping studies [Ogden et al., 1974].

Long distance dispersal of pollen

Long-distance dispersal (LDD) of pollen is important due to several reasons: (1) species ex-
pansion following climate change, (2) recolonization of disturbed areas and (3) control of pests.
Current knowledge suggests that the frequency and the spatial extent of LDD events are ex-
tremely difficult to predict. Researchers agree that mechanistic models coupling seed release and
aerodynamics with turbulent transport processes provide accurate probabilistic descriptions of
LDD of seeds by the wind [Kuparinen, 2006; Nathan et al., 2002]. Nathan et al. [2002] showed
that uplifting above the forest canopy is necessary and sufficient for LDD, setting an upper
bound on the probability of long-distance colonization. Most seeds were not uplifted and are
predicted to travel only up to several hundred meters, with a modal distance of roughly the
canopy height. On the contrary, the few seeds that were uplifted are predicted to travel at least
several hundred meters, and perhaps tens of kilometers. This suggests that the pollen escape
fraction, or the uplifting probability, or equivalently the frequency of LDD, is predictable from
the statistical distributions of seed release height, seed terminal velocity, and turbulent flow at
the time of release [Nathan et al., 2002]. Further experiments indicate that foliage shedding
from deciduous forests can also significantly increase the uplifting probability of pollen grains

[Nathan and Katul, 2005]. Keeping in mind these findings, release height was considered a key
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parameter for the dispersion output at coarse spatial resolution (12km). Results from further
investigation will be presented in the relevant aeroallergen modeling implementation section of

Chapter 5.
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Chapter 2: Figures
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Figure 2.1: Mechanisms and location of production for the major biogenically emitted VOCs. In
this scheme a hypothetical tree emits all known major plant VOCs plus floral scents. The prob-
able plant tissues and compartments are indicated. Major uncertainties, indicated by question
marks, and the various VOC pathways are discussed in the text [Source: Hewitt, 1999].
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Figure 2.2: Chemical structures of major terpenoids and common oxygen-containing com-
pounds, also considered to belong to this broad biogenic VOC group.
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Figure 2.3: The general biosynthetic pathway for isoprene and monoterpene production in
plants. Uncertainties in the pathway process are indicated by question marks. [Source: Fuentes

et al., 2000].
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Figure 2.5: Generalized reaction pathway for VOCs in the atmosphere (right) and the NO to
NOgconversion in the presence of O3 (left).
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Table 2.1: Selected biogenic NMVOCs emitted from vegetation and calculated tropospheric
lifetimes with respect to Gas-Phase reaction with OH radicals, NO3 radicals, and Os.

lifetimes for reaction with

VOC class Compound Chemical Formula OH NOg O3
Alkanes n-butane C4Hqo 5.7d 2.8 yrs | -
n-hexane CH3(CHs)4CHjs 4.95h 10 d -
Cq9-Cqralkanes CpHapto (n=10-17) - - -
Alkenes Propene CsHg 6.6 h 49d 1.6 d
Benzene CgHg 12 d - -
Toluene CrHg 2.4 d 1.9 yrs | -
Isoprene CsHg 1.4 h 1.6 h 1.3d
Camphene C10H16 monoterpenes | 2.6 h 1.7 h 18 d
3-carene 1.6 h 7 min 11h
Limonene 50 min 5 min 2 h
Myrcene 40 min | 6 min 50 min
Terpinolene 49 min | 7 min 17 min
b-phellandrene 50 min | 8 min 8 h
a-pinene 2.6 h 11 min | 46 h
(-pinene 1.8 h 25 min | 1.1d
(-ocimene 2.2 h 7.6 min | 0.7 h
Sabinene 1.2 h 7 min 4.6 h
(-caryophyllene Ci15Ha4 sesquiterpenes | 40 min | 4 min 2 min
Longifolene 3.0h 1.6 h >33 d
Alcohols methanol CH3;0OH 12 days | 1 year >4.5 yrs
2-methyl-3-buten-2-ol see Figure 2.2 2.1h 8d 1.7d
cis-3-hexen-1-ol 1.3 h 4.1h 6 h

Continued on next page
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VOC class Compound Chemical Formula OH NOg O3
Linalool 50 min | 6 min 55 min
Aldehydes | Formaldehyde CH>0O 1.5d 80 d -
Acetaldehyde CoH40 11h 17d -
n-hexanal CH3(CH2)4CH2,CHO | - - -
trans-2-hexenal CsH100 - - -
Ketones Acetone CH3C(O)CHs 66 d - -
6-methyl-5-hepten-2-one | CgH140 55 min | 9 min 1.0h
Camphor see Figure 2.2 - - -
Ethers 1,8-cineole see Figure 2.2 1 day 1.5 yr >4.5 yrs
Esters 3-hexenyl acetate see Figure 2.2 1.8 h 45h 7h
Bornyl acetate see Figure 2.2 - - -
Biogenic Methyl Vinyl Ketone - 6.8 h >1yr | 3.6d
Reaction Methacrolein - 4.1h 14 d 15d
Products 3-methylfuran - 1.5h 3 min 19 h
Pinonaldehyde - 29h 2.3d > 2.3 yrs
Sabinaketone - 2.3 days | 130 d > 0.9 yr
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Table 2.2: Reaction products of isoprene and yields with respect to Gas-Phase reaction with
OH radicals, NOg radicals, and Osg.

Product Yield (percentage)
OH radical reactions
methyl vinyl ketone + HCHO 32
methacrolein + HCHO 23
3-methylfuran 4-5
HOCH,C(CH3)=CHCHO and/or HOCH,CH=C(CH3)CHO observed
CH2=C(CH2OH)CHO observed
organic nitrates 8-14
NOj3 radical reactions
methyl vinyl ketone 3.5
methacrolein 3.5
HCHO 11
02NOCH,C(CH3)=CHCHO and isomers observed
02NOCH,C(CH3)=CHCH2OH and isomers observed
02NOCH,C(CH3)=CHCH;OOH and isomers observed
Ozone reactions
methyl vinyl ketone 16
methacrolein 39
HCHO 90
epoxides 5
OH 27

O(3P) <10
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Table 2.3: Variation in pollen size, volume, and weight [Source: Stanley and Linskens, 1974]

Dimensions in pm) Volume Weight
Species Length  Width Height (107%cm?) (107%g)
Abies alba 97.8 102.9 62.7 499.4 251.6
Abies cephalonica 97.1 98.6 86.2 422.6 212.2
Picea abies 85.8 80.5 66.3 278.2 110.8
Pinus silvestris 41.5 45.9 36.0 35.5 37.0
Lariz decidua 76.0 72.0 50.0 180.2 176.3
Pseudotsuga tazifolia 84.8 81.1 54.8 219.2 188.8
Acer saccharum 32.5 23.6 24.6 16.5 6.6
Aesculus hippocastanum — 31.0 16.4 18.2 4.8 0.9
Alnus glutinosa 26.4 22.8 13.7 4.4 1.4
Betula verrucosa 10.1 10.1 16.8 2.9 0.8
Fagus silvatica 55.1 40.5 41.1 50.3 26.0
Quercus robur 40.8 26.1 21.5 13.3 5.7
Tilia platyphyllos 40.5 40.1 20.6 15.0 6.5
Ulmus laevis 33.4 32.7 17.7 12.8 6.8
Zea mays 116.3 107.3  107.3 702.4 247.0
Cucurbita pepo 213.8 213.8  213.8 5,117.0 1,068.0

Table 2.4: Seasonal and average lifetime pollen yields per genus and species [Source: Schopmeyer,

1974]

Genus Approximate  Species kg of pollen/tree
Volume (cm?) produced in 50 yrs

Larix 0.3 Picea abies 20

Pinus 150 Fagus sylvatica 7.6

Pseudotsyga 2 Pinus sylvestris 6

Alnus 4 Corylus avellana 2.8

Betula 12 Alnus sp. 2.5

Fagus 1.3 Betula verrucosa 1.7

Liquidambar 25

Populus 75

Ulmus 0.3
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Chapter 3

Aggregation of databases and modeling tools to support
biogenic emission modeling

The accuracy of meteorological fields is of primary importance in the development and applica-
tion of air quality modeling systems. In addition to transport, meteorological variables play a
major role in determining chemical reaction and mass emission rates, as well as the spatial and
temporal distribution of emissions from anthropogenic and biogenic sources. Land Use/Land
Cover (LULC) inputs are a critical part of both the meteorological modeling system and the
air quality /emissions models. In the absence of synoptic-scale forcing, the role of the land sur-
face is particularly important in driving boundary layer evolution and ultimately precipitation
patterns. Inaccurate LULC information often leads to very large errors in surface energy fluxes
and thus errors in boundary layer states. Within such models, many land surface variables are
commonly defined as a function of LULC via a “lookup table”. Variables frequently specified
in this way include leaf area index (LAI), fractional vegetation cover, canopy height, emissivity,
albedo, surface roughness, rooting depth and parameters related to stomatal resistance. These
vegetation-related variables exert significant control on the surface temperature energy balance
and subsequently on boundary layer processes and states, most importantly moisture and tem-
perature profiles. The lookup table approach assumes a one-to-one relationship between the
surface variable and the LULC category, with no variability represented within a LULC cate-
gory. In many model applications, seasonal or monthly parameter values are defined, providing
an annual cycle of vegetation phenology. In some applications, satellite observations can be used

to define a subset of these variables, primarily albedo, LAI and fractional vegetation cover.
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3.1 Topography, land cover, and vegetation databases

When considering elevation, LULC, and vegetation data for regional air quality modeling ap-
plications, an understanding of the optimal resolutions and formats is necessary. The National
Aeronautics and Space Administration (NASA), other U.S. government agencies, and private
industry offer a variety of remotely sensed data and LULC products that are relevant to air qual-
ity modeling and biogenic emissions. A brief description of the terrain, LULC, and vegetation

databases of interest is provided in the following subsections.

3.1.1 Terrain height and digital elevation model data

With respect to meteorological modeling applications, there are six types of terrain height data
with geographical resolutions of 1 degree, 30, 10, 5, and 2 minutes, and 30 seconds. The
majority of these datasets cover the entire globe (see Table 3.1). The 1-degree and 30-minute
data are from PSU/NCAR combined terrain/land-use tapes [Dudhia and Bresch, 2002] and
contain land elevation data where the ocean depth is set to be zero. The 5-minute data are
from the National Data Center. Both the ocean depth and the land elevation are provided at
a vertical resolution of 1 meter. Because of the cavities of 10-minute data in the PSU/NCAR
tapes, the 10-minute data are created by a 9-point weighted average method from the 5-minute
data. The highest resolution, 30-second terrain height data, is from the Defense Mapping Agency
and has a vertical resolution of 1/20 feet. This dataset includes North America as the contiguous
United States and a small portion of Canada. GTOPO30! is a global digital elevation model
(DEM) with a horizontal grid spacing of 30 arc seconds (approximately 1km) [Systems and
USGS, 2002]. GTOPO30 was derived from several raster and vector sources of topographic
information [Systems and USGS, 2002]. For easier distribution, GTOPO30 has been divided
into tiles which can be selected from an online mapping interface. GTOPO30, completed in
late 1996, was developed over a three year period through a collaborative effort led by the U.S.
Geological Survey’s Center for Earth Resources Observation and Science (EROS) and a variety

of collaborating US and foreign agencies and institutes?.

!GTOPO30 website: (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html)

2The following organizations participated by contributing funding or source data: the National Aeronautics
and Space Administration (NASA), the United Nations Environment Programme/Global Resource Information
Database (UNEP/GRID), the U.S. Agency for International Development (USAID), the Instituto Nacional de
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3.1.2 Land Use and Land Cover data

USGS Land Use and Land Cover (LULC) data consists of historical land use and land cover
classification data that was based primarily on the manual interpretation of 1970’s and 1980’s
aerial photography [U.S.G.S., 1994]. Secondary sources included land use maps and surveys.
Twenty one possible categories of cover type are included in the classification scheme. The
LULC files are included along with their associated maps which provide additional information
on political units, hydrologic units, census county subdivisions, and Federal and State land
ownership. USGS LULC data is available for the conterminous U.S. and Hawaii, but coverage is
not complete for all areas. The data is based on 1:100,000- and 1:250,000-scale USGS topographic
quadrangles. Files in GIRAS format will have a minimum polygon area of 10 acres (4 hectares)
with a minimum width of 660 feet (200 m) for man made features. Non-urban or natural features
have a minimum polygon area of 40 acres (16 hectares) with a minimum width of 1320 feet
(400m). Files in CTG format will have a resolution of 30m. Coarser LULC data can be
obtained from PSU/NCAR at resolutions of 1 degree, 30 and 10-minute global datasets. The

sources and characteristics of these products are summarized in Table 3.2.

3.1.3 Vegetation characterization databases

A number of vegetation characterization databases have been developed in the recent years
for use with general circulation or regional/mesoscale models. In the past decades, the simple
biosphere model (SIB) [Sellers et al., 1986] and its revision [Sellers et al., 1996] have been the
standard approach applied for global scale modeling. This section describes vegetation products
capable of being used with meteorological and air quality models focusing on regional scale

applications.

Biogenic Emissions and Landuse Database

The Biogenic Emissions Landuse Database in its latest version (BELD3) offers a classification
scheme that incorporates 230 vegetation types, resolved to 1km [Kinnee et al., 1997]. It is a
combinatorial database of the USGS EROS (Earth Resources Observation System) Data Cen-

ter’s 1-km datasets with surveys conducted by various agencies. The EDC data are used for the

Estadistica Geografica e Informatica (INEGI) of Mexico, the Geographical Survey Institute (GSI) of Japan,
Manaaki Whenua Landcare Research of New Zealand, and the Scientific Committee on Antarctic Research (SCAR)
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western US, while other sources such as the US Department of Agriculture’s Census of Agricul-
ture and the US Forest Service Eastwide Forest Inventory and Analysis Database (EWDB), are
used for the Eastern US [Kinnee et al., 1997; Pierce et al., 1998]. Constructed by the means of
a remote sensing model, this database inherits the warning of the parent datasets when used
to describe heterogeneous areas. Among its strengths are the number of vegetation species in-
cluded, and the fact that it uses a combination of county agricultural and forestry data along
with remote sensing information [Pierce et al., 2002]. The database was created for estimating
emissions of BVOC from vegetation and NO from soil using the standard EPA biogenic and air
quality tools included in the Models-3 framework [Pierce et al., 1990]. Its structure includes a
lookup table with the emission factors, Leaf Area Index (LAI), biomass density, a summer/winter

emission switch, and a leaf correction factor for each vegetation class.

National Land Cover Dataset

The National Land Cover Characterization Project resulted in the development of a nation-
ally consistent land cover data set from Multi-Resolution Land Characterization (MRLC) data
called National Land Cover Data (NLCD) [Vogelmann et al., 1998]. In addition to mid-1990s
Landsat Thematic Mapper satellite data, a variety of supporting information including topogra-
phy, census, agricultural statistics, soil characteristics, other land cover maps and wetlands data
were used to determine and label the land cover type at a 30 m resolution [Vogelmann et al.,
2001]. Twenty-one classes of land cover along with four classes of urban/suburban cover type
were mapped, using consistent procedures for the entire U.S. Further information on the remote
sensing algorithms and the subsequent accuracy assessment that was performed by USGS can
be found in the scientific literature[Vogelmann et al., 2001]. Compared to the BELD3 inventory,
the NLCD dataset offers a much finer resolution in exchange for a much broader classification
scheme. This dataset is currently being revised based on Landsat Enhanced Thematic Mapper
(ETM+) data collected from the early 2000’s [Wardlow and Egbert, 2003]. ETM+ is a multi-
spectral scanning radiometer that is carried on board of the Landsat 7 satellite. The sensor has
provided nearly continuous acquisitions since July 1999, with a 16-day repeat cycle. Among its
characteristics, its spatial resolution is 30 m for five visible and one near-infrared bands. The

instrument resolution for the panchromatic band is 15m, and for the thermal infrared band
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60 m.

NASA Earth Observing System vegetation products

The NASA Earth Observing System (EOS) provides a variety of platforms and instruments that
produce both LULC and vegetation products [Dwyer, 2006]. The MODerate-resolution Imaging
Spectroradiometer (MODIS) Land Cover Classification products contain multiple classification
schemes describing land cover properties [Cover and Change, 1999; Sulla-Menashe and Friedl,
2007]. The primary land cover scheme (Land Cover Type 1) identifies 17 classes of land cover
defined by the International Geosphere-Biosphere Programme (IGBP) which include 11 natural
vegetation classes, 3 developed land classes (one of which is a mosaic with natural vegetation),
permanent snow or ice, barren or sparsely vegetated, and water. The MOD12 classification
schemes are multitemporal classes describing land cover properties as observed during the year
(12 months of input data) [Hodges, 2001]. Successive production at quarterly intervals of this
“annual” product creates new land cover maps with increasing accuracies as both classification
techniques and the training site database mature [Friedl et al., 2002; Myneni et al., 2002].
Additional Science Data Set layers for other classification schemes include the University of
Maryland modification of the IGBP scheme (Land Cover Type 2), the MODIS LAI/fPAR (Land
Cover Type 3) scheme, the MODIS Net Primary Production (Land Cover Type 4) scheme, and
the Plant Functional Types (PFT) (Land Cover Type 5). These were provided to support the
Community Land Model (CLM) used in climate modeling. Land Cover Type 5 includes 12
classes, however, only one is an urban class. Four forest and two crop classes are also provided.
These data are provided on an annual basis at a 1-km resolution, which are attractive features
for use in air quality modeling systems.

The MODIS Global Vegetation Phenology product (MOD12Q2) provides estimates of the
timing of vegetation phenology at global scales [Soudani et al., 2008; Zhang et al., 2006]. As
such, MOD12Q2 identifies the vegetation growth, maturity, and senescence marking seasonal
cycles. The product is produced twice per year using 24 months of data as input (i.e., the
12 months of interest, bracketed by six months on either side) at a 1-km resolution. The
first production period highlights July through June, and the second run focuses on January

through December. This production schedule accounts for hemispheric differences in the timing
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of growing seasons, and enables the product to catch 2 growth cycles if necessary. The 1-km
resolution, timely updates, and seasonality features are characteristics that may be beneficial to

air quality modeling systems.

3.2 Components of air quality modeling systems for biogenic releases

The current paradigm in the application of air quality modeling systems (AQMS’s) in the United
States involves their coupling with a mesoscale meteorological model such as the MM5 [Grell
et al., 1994] or RAMS [Pielke, 1984]. Including MM5 which is reviewed in the following sub-
sections, this study utilizes a variety of models commonly available for research and regulatory
assessment applications: (1) American Meteorological Society/EPA Regulatory Model (AER-
MOD); (2) HYbrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and (3)
Models-3 or the Community Multi-scale Air Quality Chemical Transport Model (CMAQ-CTM).
A brief description of these models, the meteorological processors and the LULC datasets that

they employ is provided in the following sections.

3.2.1 PSU/NCAR Mesoscale meteorological model

The fifth-Generation PSU/NCAR [Dudhia and Bresch, 2002; Grell et al., 1994] MM5? system
is the most recent in a series of models first developed at Penn State University in the early
1970’s [Anthes and Warner, 1978|. Supported by NCAR since its inception, MM5 went through
a significant amount of change aimed at broadening its usage. Its use in air quality model
applications became common after incorporation of four-dimensional data-assimilation (FDDA)
capability. While no further development of MMS5 is planned at NCAR, it continues to be the
most commonly used meteorological model for air quality applications. As can be seen from the
model flowchart (Figure 3.1), MM5 requires a significant amount of geophysical data. These
data are interpolated on a user-specified modeling grid through a special processor capable of
handling different types of vegetation/LULC and soil datasets (TERRAIN). The output file

generated by the processor contains grid-cell average surface elevation, fractional and dominant

SMMS5 website: (http://www.mmm.ucar.edu/mm5,/)
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LULC, fractional vegetation, and soil type. Physical parameters (e.g., albedo®*, surface roughness
length®, moisture availability, emissivity, thermal inertia) for each vegetation/LULC category
are defined within the Land Surface Model (LSM). In an MM5 model run without LSM, the

physical parameters are assigned with the help of a look-up table (Table 3.3).

3.2.2 AMS/EPA Regulatory Model

AERMODS is a steady-state dispersion modeling system developed by U.S. EPA for estimating
near-field (50-km or less) impacts from surface and elevated sources [Cimorelli et al., 2005; Perry
et al., 2005]. The model flowchart (Figure 3.2) shows an integrated system that includes three
modules [Prater and Midgley, 2006]:

e A steady-state dispersion model designed for short-range (up to 50 kilometers) dispersion

of air pollutant emissions from stationary industrial sources ;

e A meteorological data preprocessor (AERMET) that accepts surface meteorological data,
upper air soundings, and optionally data from on-site instrument towers. It then calculates

atmospheric parameters needed by the dispersion model,;

e A terrain preprocessor (AERMAP) whose main purpose is to provide a physical relation-

ship between terrain features and the behavior of air pollution plumes.

AERMET, the meteorological preprocessor, calculates and provides parameters such as
the modified Bowen ratio”, surface roughness length, surface friction velocity, convective scaling

velocity, surface heat flux, and convective and mechanical mixed layer heights to describe the

4Albedo is a term derived from the Latin word Albus meaning “white”, is a measure of reflectivity of a surface.
Typical values ranges from about 0.1 for water to 0.6 or higher for full snow cover, while most land areas are in
an albedo range of 0.1 to 0.4

5Roughness length is a parameter which is a measure of terrain roughness as “seen by” surface wind. It is
formally the height (in meters) at which the wind speed becomes zero when the logarithmic wind profile above
the roughness sub-layer is extrapolated to zero wind speed. In fact, the roughness length lies within the roughness
sub-layer, where the wind speed deviates from the logarithmic wind profile. This parameter represents the bulk
effect of roughness elements in the surface layer and very approximately has a value of around 0.1 times the height
of the roughness elements.

SAERMOD website: (http://www.epa.gov/scram001/dispersion_prefrec.htm#taermod)

"The modified Bowen-ratio (MBR) technique is a micrometeorological method that can be used to estimate air-
surface exchange rates, providing differences in concentrations between two heights can be resolved. Application
of the MBR method requires that fluxes and gradients for at least one scalar entity be measured in order to
directly compute the exchange coefficient k, which is assumed to be applicable for all scalars.
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AERMOD Planetary Boundary Layer (PBL) . AERMOD uses the computed PBL parameters to
generate vertical profiles of needed meteorological variables. AERMET requires meteorological
observations and LULC-related surface properties, preferably at the source location (Figure 3.2).
Observations include morning upper air sounding, either a single surface measurement of wind
speed, wind direction, temperature, and cloud cover, or two measurements of temperature (at 1.5
and 10m), together with a single measurement of solar radiation. Surface properties required by
AERMET are surface roughness length, Bowen ratio®, and albedo. Appropriate values of these
variables are a function of eight LULC categories (Water, Deciduous Forest, Coniferous Forest,
Swamp, Cultivated Land, Grassland, Urban, and Desert Shrub Land), four seasons (Spring,
Summer, Autumn, and Winter) and surface moisture (dry, wet and average moisture) are pro-
vided in the AERMET user manual (Tables 3.4 - 3.6). The precise characteristics of the eight
LULC categories, seasons and surface moisture conditions have not been defined in the manual.
Generally, users specify these values based on LULC properties surrounding the closest National
Weather Service (NWS) station. Finally, AERMAP generates location and height data for each
receptor location. It also provides information that allows the dispersion model to simulate the

effects of air flowing over hills or splitting to flow around hills.

3.2.3 Hybrid Single-Particle Lagrangian Integrated Trajectory Model

The National Oceanic and Atmospheric Administration (NOAA) and Air Resources Laboratory
(ARL) developed HYSPLIT4 [Draxler and Hess, 1998], which is used in this project. The
HYSPLIT4 model? is a system for modeling trajectories, dispersion, and deposition of pollutants
that has been under development since 1982. Demonstrated in the flowchart (Figure 3.3), this
model uses gridded model output or a series of gridded analyses, such as Eta Data Analysis
Systems (EDAS), or output of a forecast model such as MM5/PSU, Eta, and others. The
model uses a hybrid between the Eulerian and Lagrangian coordinates to calculate trajectories
and dispersion of air parcels. Particle advection and diffusion calculations are performed in a

Lagrangian framework, while concentrations are calculated on a fixed grid. Air concentration

8A Bowen ratio is the ratio of energy fluxes from one medium to another by sensible and latent heating
respectively. It is used to determine how much solar heating goes to evaporation of surface moisture and typical
values range from about 0.1 (very wet) to 10 (very dry.

YHYSPLIT website: (http://www.arl.noaa.gov/ready/hysplit4.html)
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calculations associate the mass of airborne particulates with the release of puffs, particles, or a
combination of both which can be specified by the user. The dispersion rate is calculated from
the vertical diffusivity profile, wind shear, and horizontal deformation of the wind field. Air
concentrations are calculated at a specific grid point for puffs and as cell-average concentrations
for particles [Draxler and Hess, 1998]. One of three assumptions can be used for the case of
computing air concentrations along the parcels trajectory: a puff model, a particle model, and a
combination of puff and particle model (called PARTPUF). Other options in HYSPLIT4 allow
for gravitational settling, wet and dry deposition, and re-suspension of the pollutants [Draxler
and Hess, 1998]. The introduction of a half-life term can be a very useful tool for connecting the
pollen viability parameter with a decay rate due to the oxidative properties of the atmosphere.
These options give further flexibility to this model to replicate realistic conditions. The accuracy
of trajectories has been tested in large-scale experiments, where overall results indicated that
no significant differences were seen when compared with the meteorological data sets, with the

average error rate in the 20% to 30% range [Draxler et al., 1991].

3.2.4 Community Multi-scale Air Quality Chemical Transport Model

CMAQ-CTM is a component of Models-3 air quality modeling system [Byun and Schere,
2006; Byun and Ching, 1999; Dennis et al., 1996], with state-of-the-science parameterizations of
atmospheric processes affecting transport, transformation, and deposition of such pollutants as
ozone, particulate matter, airborne toxics, mercury, and acidic and nutrient pollutant species. It
is being extensively used for air quality forecasting and emission control strategy development.
The model was developed by the Atmospheric Modeling Division of U.S. EPA based in Research
Triangle Park, NC, in collaboration with various groups. It was first released to the public
in 1998. Support from the U.S. EPA and active participation of the scientific community has
facilitated its continued development. The CMAQ-CTM modeling system is currently being
maintained by the Center for Environmental Modeling for Policy Development (CEMPD)! at
the University of North Carolina at Chapel Hill.

CMAQ is an Eulerian air quality model, and solves the discretized form of the Advection-

Diffusion Equation (Figure 3.4). Meteorological fields for CMAQ are generally obtained from

Y CEMPD website: (http://cf.unc.edu/cep/empd/index.cfm)
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dynamical data assimilating meteorological models (also referred to as mesoscale models). A
processor called MCIP (Meteorology Chemistry Interface Processor) [Otte, 2004] is used to
create input files for CMAQ. Its main function is to read in meteorological fields simulated by a
mesoscale model, compute dry deposition velocities and other variables that CMAQ needs but
are not available from the meteorological model, and output data in Models-3 Input/Output
Applications Programming Interface (IOAPI) format. Currently, MCIP is capable of processing
meteorological fields simulated by PSU/NCAR MMS5 [Dudhia and Bresch, 2002; Grell et al.,
1994].

3.3 Biogenic VOC emissions algorithms and models

The development of biogenic emission estimates for air quality modeling in the United States
received special attention in the late 70’s with the release of the first VOC emission factors from
Zimmerman’s Tampa Bay study in 1979 [Zimmerman, 1979b]. The most detailed modeling
scheme has been developed by Guenther et al. [1993] and subsequent improvements have been
implemented in later versions of the BEIS and other models. This set of emission models for
isoprene, monoterpenes, and other VOCs have been commonly used in the scientific community
and are supported by several studies [Lehning et al., 2001; Petron et al., 2001; Pier and McDuffie,
1997; Street et al., 1996; Wang and Shallcross, 2000]. An example of a finer resolution application
of Guenther’s algorithm is reported in the study of Wiedinmyer et al. [2001] for the State of
Texas, USA. The detailed formulation of Guenther’s algorithm has been covered extensively
in literature and is provided in Appendix A for both the BEIS!! [Pierce, 2001] and the revised
Guenther’s version [Guenther et al., 2000]. In the following section, one can find brief description
of the individual BVOC models that incorporate Guenther’s algorithm along with some key
characteristics that have been improved over time. A complete listing and comparison of BEIS

with the rest of the models is summarized in Table 3.7.

"Biogenic Emissions Inventory System website: http://www.epa.gov/asmdnerl/biogen.html
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3.3.1 BEIS3 (Authors: Vukovich/Pierce)

The BEIS (Biogenic Emissions Inventory System) [Pierce and Waldruff, 1991; Pierce, 2001;
Pierce et al., 1990; Schwede et al., 2005] is a computer algorithm used widely to generate emis-
sions for air quality simulation models such as EPA’s CMAQ/Models-3 and the Regional Acid
Deposition Model (RADM). The model’s framework is presented in Figure 3.5. The FORTRAN
code is publicly available through the EPA’s website. BEIS was introduced in 1988 to esti-
mate VOC emissions from vegetation and NO emissions from soils. Since 2001, BEIS3.09 is
the default version in SMOKE (Sparse Matrix Operator Kernel Emissions) that is capable of
generating emission inventories for four species (Isoprene, monoterpenes, Other VOCs or OVOC
and NO). BEIS3.13 is the latest research version capable of estimating spatially and temporally

resolved emissions of the following;:

e Isoprene, monoterpenes, oxygenated and other volatile organic compounds for a total of

34 species, including 14 monoterpenes and methanol;

e Carbon monoxide (CO) induced by photochemical transformation on or in vegetative

species; and

e Biogenic nitric oxide (BNO) due to microbial, predominantly from the genera pseudomonas

and bacillus, denitrification processes in soils.

In BEIS Pierce [2001] uses a slightly modified form of the Guenther et al. [1993] formulations
to estimate isoprene emissions based on leaf temperature and photosynthetically active radiation
(PAR) fluxes. The light correction factor v, = Cy, follows the same formula (Equation A-29),
with improvements on the empirical coefficients « and Cp; suggested by Harley et al. [1996,
1997], who showed that they will vary with past PAR levels experienced by the leaf. Incorpora-
tion of these additional extensions results in a light correction factor of about one for the top of
the canopy, to less than 0.30 for a leaf in the bottom of it while keeping PAR equal [Guenther
et al., 1999b]. Because these extensions are missing from the previous versions of BEIS, it is
likely that the newest implementation slightly overestimates the isoprene emissions, though no

study has been conducted to examine this issue. BEIS uses a big-leaf canopy model rather than
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a multilayer model that includes a simple sunlit/shaded solar radiation model (Equations A-
3 - A-28). A recent review of the updated BEIS3.13 model comparing a multilayer against one
that utilizes uniform vertical LAI profiles, found comparable results in the calculations of the
affected PAR adjustment factor [Schwede et al., 2005]. Since version 3.11 the model comes with
a revised BNO algorithm (Equations A-35 - A-37) to better distinguish between agricultural
and non-agricultural land, and to limit adjustments from temperature, precipitation, fertilizer
application and crop canopy to the growing season and to areas of agriculture [Williams et al.,
1992]. Finally, BEIS3 output can be directly linked with the CMAQ model, while previous
versions were being used with RADM (Regional Acid Deposition Model), UAM (Urban Airshed
Model) and ROM (Regional Oxidant Model). The Package for Analysis and Visualization of
Environmental data (PAVE) is the main tool that has been used for the visualization of the

model’s results.

3.3.2 GIoBEIS2 (Authors: Yarwood/Estes)

The Global Biosphere Emissions and Interactions System (GloBEIS) was developed by NCAR
and ENVIRON International Corporation under funding from the Texas Natural Resources
Conservation Commission (TNRCC) [Yarwood et al., 1999, 2002]. It is written in Microsoft
Access and is fully menu-driven. The code allows users to estimate biogenic emissions of volatile
organic compounds, carbon monoxide, and soil NOy. It includes several isoprene algorithms:
BEIS2, BEIS2 with leaf angle correction for estimating PAR, and BEIS99. This option gives
the ability to compare different emission factor algorithms (BEIS2, GloBEIS3) in the same
model. The model’s emission algorithm reflects the method proposed by Guenther et al. [1995,
1993]. Seasonal adjustment of VOC is available as an option in GloBEIS. The model’s input is
comprised of the domain definition and the land cover/vegetation data, while PAR is calculated
externally. Sesquiterpene emissions and secondary aerosol formation have been incorporated
for a case study of Southeast Texas [Vizuete et al., 2004]. The canopy can be resolved in a
number of layers ranging from 2 to 99. The set of visualization/output capabilities is limited
within the Microsoft Access environment. Finally, there is no option for direct output to certain

photochemical models such as the SMOKE/CMAQ.
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3.3.3 BIOME3 (Authors: Janssen/Wilkinson)

The third generation Biogenic Model for Emissions (BIOME3) is developed by LADCO and
Alpine Geophysics. Sensitivity analyses have been conducted to determine the impacts to
biogenic emissions predictions over the Midwest United States [Wilkinson and Janssen, 2001].
BIOMES includes a revised canopy model as well as a revised algorithm to estimate isoprene
emissions; however, the monoterpene, oxygenated VOCs, and biogenic nitric oxide formulations
remain unchanged. BIOMES is an equilibrium terrestrial biosphere model that has been imple-
mented globally using a minimal set of just five woody and two grass plant types. The code is
written in the SAS environment. In BIOME3, leaf area is expressed as leaf area index (LAI).
A small number of ecophysiological constraints are used to select the plant types that may be
present in a particular climate. The model then calculates a maximum sustainable LAI and net
primary productivity (NPP) for each plant type.

BIOMES3 contains the revised isoprene emissions algorithm based on the work of Guenther
et al. [1995, 2000, 1993]. Three sets of factors are available within BIOME3: the previous
BEIS2 bare factors, additional MEOH (methanol) and MBO (2-methyl-3-butenol) factors, and
a new alternative scheme for 34 explicit species. The second improvement is the inclusion
of the BEIS3 canopy model as derived from GloBEIS [Yarwood et al., 1999, 2002]. Unlike
the BEIS2 formulation which had only a five-type, fixed-canopy model based on forest type
(e.g. pine, coniferous, deciduous), the new canopy model is more general and more rigorous
in its treatment of energy transfer through a leaf canopy. Leaf-level estimates of temperature
and photosynthetically active radiation (PAR) are required in the biogenic isoprene emissions
algorithms. In BIOMES, the revised version of the BEIS leaf energy balance is used to adjust
PAR levels for sun and shaded leaves as a function of height in the canopy [Guenther et al.,
2000]. The third key characteristic of BIOMES3 is the inclusion of a user-specified “isoprene
ratio” which is a global adjustment factor. In GloBEIS, this value is set to 1.43 which is
close to the ratio of isoprene rates determined from cuvette measurements versus leaf enclosure
measurements. Guenther suggests using a value of the range between 1.0 and 1.4, although
the exact reasoning is not well documented. Model output consists of a quantitative vegetation
state description in terms of the dominant plant type, secondary plant types present and the

total LAI and NPP for the ecosystem. As in BIOME2, this basic model output is classified
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into biomes for comparison with vegetation maps. Output comes as a day specific emissions
estimate. These emission estimates can then be speciated and converted to the appropriate
format for use with the UAMV/CAMX models, using the available post-processor that comes
with BEIS. Additionally, the post-processor can be used to convert those files into IOAPI files
for use in CMAQ and Models3.

3.3.4 BEIGIS (Authors: Scott/Benjamin)

The Biogenic Emission Inventory Geographic Information System (BEIGIS) is a spatially and
temporally resolved biogenic hydrocarbon emissions inventory model developed by the Califor-
nia Air Resources Board (CARB) [Scott and Benjamin, 2003]. BEIGIS is a model developed
specifically for the State of California and is structured in such way that allows for incorpo-
ration of best available California-specific data. It is the only model that is structured with a
geodatabase procedure (like the Environmental Systems Research Institute’s ArcGIS) in mind.
A very detailed model description and the accompanying results from the California study are
available in scientific literature [Scott and Benjamin, 2003]. Land use and land cover data were
derived from special field studies, the GAP database, and county agricultural offices. The leaf
mass database (or Leaf Area Index-LAI) is derived from satellite data. BEIGIS simulates hourly
emissions for three species: isoprene, monoterpenes, and MBO (2-methyl-3-butenol) at a 1x1 km
resolution. Emission factors are based on UCLA estimates [Benjamin and Winer, 1998; Karlik
and Winer, 2001; Winer et al., 1983, 1992]. Since those factors used are branch emissions factors
(as opposed to leaf factors used by the previous models), the canopy light extinction is not taken
into account in this model. PAR is generated from observed solar radiation data. Similarly to
BEIS, the BEIGIS model assumes that 42% of the total solar radiation belongs to the PAR
range. Leaf temperatures can be obtained from the first layer of a mesoscale meteorological

model such as the MM5 (surface layer height 30m).

3.3.5 Environmental variables of interest in modeling BVOC emissions

The environmental adjustment factors are clearly the backbone of biogenic VOC modeling.
As mentioned before for the case of BEIS, improvements have been implemented for the em-

pirical coefficients « and Cr; that determine the light adjustment factor (Equation A-29) for
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isoprene according to Harley et al. [1996, 1997]. The region has nearly constant C; at PAR
values exceeding what would be found during daytime mostly cloudy conditions (i.e., PAR
>1000 pmolm~—2s~! or total radiation flux [I] of about 435 Wm™2). When compared to the
previous versions, it is likely that the newest implementation slightly overestimates the isoprene
emissions. The canopy model in BEIS is based on a leaf energy balance and knowledge of the
LAI Campbell and Norman [1998] developed an empirical relationship for sunlit and shaded
leaves that requires the calculation of the amount of PAR reaching them, depending on the
position of the sun (Equation A-3). Pierce [2001] computes the solar zenith angle from equation
A-7 that requires the calculation of the parameter d5 based on equation A-10, which describes
the earth’s declination to the solar plane [Duffie and Beckman, 1980]. Although this formulation
takes into account the time of the day, it ignores the the day of the year, treating radiation reach-
ing the earth as if every day were the summer solstice in the northern hemisphere. By excluding
the effect of the day of the year, BEIS will overestimate the amount of radiation reaching the
canopy, resulting in a overestimate of the isoprene emissions. Though the overestimate will be
small for most of the summer, it will be noticeably large during warm winter days [Russell et al.,
2001]. In the past, the most popular way to estimate PAR for use in the emissions model was
the application of the meteorological input preprocessor for BEIS. Currently, there are several

approaches for estimating the photosynthetically active radiation (PAR):

EPA’s Biogenic Emissions Inventory System (BEIS) preprocessor calculates PAR based on

cloud cover and pressure;
e surface observations from the SURFRAD! network;
e using the Community Multiscale Air Quality (CMAQ/MCIP) code;

e using shortwave downward radiation calculated by the PSU/NCAR mesoscale atmospheric

circulation model MMJ5.

The BEIS preprocessor calculates PAR based on the angle of the sun, time of the day,

atmospheric pressure, and horizontal cloud fraction. A limitation of BEIS is that it does not take

12SURFRAD monitoring network is a part of NOAA’s Earth System Research Laboratory (Global Monitoring
Division) and U.S. Department of Commerce (http://www.srrb.noaa.gov/surfrad/)
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into consideration the vertical cloud position. More recent methods include the application of a
conversion factor applied to the short-wave downward radiation calculated by a meteorological
model and use of satellite PAR data. The advantage of this approach is that the attenuating
effects of the clouds have already been accounted for in the the meteorological model (MMS5).
Baker et al. [2001] published a preliminary comparison of the different approaches for the Ozark
Isoprene Experiment (OZIE) regional photochemical episode on July 18" of 1998. The results of
this study indicate that the MM5 methodology produces values which best match both satellite
and ground-based observations. The CMAQ/MCIP code appears to generate unrealistically
high values of PAR (daily maxima greater than 500 W m~2). The ability to use layer 1 (surface
layer, ranging 2-30 m depending on the project) MMS5 calculated temperatures, supports the idea
of coupling MM5 with the emissions model described above. In addition, a surface radiation
monitoring network, SURFRAD, provides surface measurements of PAR for 8 locations of the
U.S. at 3-minute intervals. Satellite data may also be a useful tool for capturing the spatial
characteristics of PAR [Van Laake and Sanchez-Azofeifa, 2005]. Due to their limited temporal
availability, they are mainly applied to assure the quality of meteorological model estimates of
cloud cover.

Though Pierce [2001] accounts for canopy attenuation of PAR in his formulations, there is
still some debate in the literature about how to account for canopy effects not only for PAR, but
also for temperature. Lamb and Coordinating Research [1999] summarize the issues surrounding
the debate, pointing to the well-known discrepancies that exist between the higher measured leaf-
level isoprene emissions and the lower measured above-canopy levels. Even with the application
of isoprene canopy escape efficiency, coupled with a canopy attenuation model [Goudriaan and
van Laar, 1994], in a modified version of GloBEIS [Yarwood et al., 2002], that is more rigorous
than that used by Pierce [2001], Guenther et al. [1999a,b] calculated a difference between the
two of the order of 5%. Incorporating such a model could be critical when dealing with forested
areas with dense and high canopy. In addition, canopy adjusted temperature will also affect the
total monoterpene emissions. However, our knowledge of canopy effects is still incomplete and
requires further investigation so that these effects can be modeled in an improved way.

Several scientific groups (EPA/OAQPS, IL EPA, MCNC, and LADCO) have conducted vari-

ous tests to assess the sensitivity of air quality model results to biogenic inputs. The conclusions
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of these studies can be used as key-characteristics for establishing the current biogenic modeling

framework:
e BIOMES takes a full advantage of the PAR output from MMS5;

e A multi-layer canopy model may have insignificant effects (difference of 5%) in national

scale studies, but can be important for regional assessments;

e BEIS2 to BEIS3 comparison showed increased values on the order of 5 ppb or more, and

model to monitor comparisons showed better agreement when using BEIS3;

e The model’s uncertainties are associated with emission factors that need continued updat-

ing, and land cover/vegetation data that are of limited resolution;
e Only few biogenic models provided output for use with certain photochemical models;

e BEIGIS is the only example that used high-resolution data and provided output through

a Geographical Information System (ArcGIS).

3.4 Models for the pollen release and dispersal

The dispersal of seeds is directly connected to the ability of a population to spread, invade,
and migrate, whereas genetic information is transmitted by pollen flow. This way many plant
diseases are also dispersed along with the pollen particles. Kuparinen [2006] reviews several
types of models that have been developed for modeling airborne particle dispersion. The author

lists these models in four categories in increasing order of complexity:

e The simplest dispersal models are used as sub-models in models describing a larger process,
such as in a spatially explicit metapopulation model. They are based on a simplified and
computationally easy description of the shape of the particle dispersal pattern with only

a few model parameters;

e Empirical models with varying numbers of model parameters have been used for modeling
observed dispersal patterns. The parameters of the traditional empirical dispersal models
are shape parameters of the mathematical curves, describing for example, the density of

the tail of the dispersal pattern;
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e Quasi-mechanistic models have been recently developed for pollen applications. These
models have descriptive parameters that are estimated by statistical methods from disper-

sal data;

e Fully mechanistic models incorporate the description of the physical factors affecting par-
ticle dispersal and are able to predict the dispersal process based on measurements of the

environmental conditions during the dispersal period.

The development of realistic emission inventories is a very important area in all cases of
dispersion modeling, including the release of pollen particles. One problem arises from the fact
that currently no detailed maps of the spatial distribution of the relevant plants are available.
As described in the previous chapter, the emission of pollen particles is determined by several
factors. Phenological observations indicate that pollen emissions depend on the start and the
intensity of the flowering season. Modeling the state of vegetation over time and space scales
of our interest can be an extremely uncertainty-bound task. For example, it is well known that
the birch pollen flowering shows inter-annual variations [Clot, 2001; Estrella et al., 2006], and
long-term trends [Dose and Menzel, 2004; Rousi and Heinonen, 2007; Schleip et al., 2006]. The
emission of pollen depends on meteorological variables, such as temperature, wind gusts and
longer-term temperature and drought stresses [Mullins and Emberlin, 1997; Puls, 1987; Rempe,
1938]. Helbig et al. [2004] proposed a parameterization that was modified for the needs of this
and takes into account these individual factors. The authors applied their parameterization to an
isolated field in the Rhine Valley, Germany showing that pollen grains can travel large distances,
especially in inhomogeneous terrain where secondary circulation systems are generating vertical
velocities substantially greater than zero. In the relevant pollen modeling section significant
attention will be paid to the numerous issues faced in such pollen studies, along with the fact

that the lack of observational data does not allow for any comparison with real-time results.

3.4.1 Phenological modeling applications

There are several semi-empirical models for predicting the start and duration of the flowering
season at the species-level. Descriptions of the flowering start time are based on three main

principles:
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e climatological averaging of long-term observations;
e heat sums, such as the growing degree-days, and period units;
e dynamic models (i.e. promoter-inhibitor model of Schaber and Badeck [2003]

The estimates based on climatological averages are not suitable for performing dynamical
short-term simulations, in which conditions can be substantially different from climatic averages
[Adams-Groom et al., 2002; Emberlin et al., 2002]. However, the climate-based values are
available or can be easily developed for the entire U.S., while the other methods mentioned
above are usually based on local or, at best state-wide observations. Therefore, their application
for the case of nation-wide modeling is a difficult task. The description of other parameters of
flowering such as its intensity and the total amount of released pollen also require the use of
semi-empirical models that predict the next-year flowering features, based on conditions of the

previous growing season [Masaka and Maguchi, 2001; Ranta et al., 2005].
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Figure 3.2: Schematic flowchart of the AMS-EPA Regulatory Model (AERMOD)[Source: Prater

and Midgley, 2006].
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Table 3.1: Terrain height and elevation model products

Resolution Data source Coverage | Size(bytes)
1 deg. (111.0 km) USGS Global 129,600
30 min. (55.0 km) USGS Global 518,400
10 min. (18.5 km) USGS Global 4,665,600
5 min. (9.25 km) USGS Global 18,662,400
2 min. (3.70 km) USGS Global 116,640,000
30 sec. (0.925 km) USGS Global | 1,866,240,000
Tiled 30 sec. GTOPO30 by USGS | Global 57,600,000
(0.925 km) EROS Data Center | (33tiles) | or 51,840,000
in 1996 for each tile

Table 3.2: Land Use and Land Cover (LULC) mapping products

Resolution Data source | Coverage | Size(bytes)
1 deg. (111.0 km) | PSU/NCAR | Global | 842,400
30 min. (55.0 km) | PSU/NCAR | Global | 3,369,600
10 min. (18.5 km) | PSU/NCAR | Global | 30,326,400
200 and USGS Global varying
30 meters
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Table 3.3: Description of the 13 categories involved in the PSU/NCAR classification scheme for
MMS5 and the physical parameters for the North Hemisphere seasons [Source: Grell et al., 1994]

Land use Albedo Moisture Emissivity | Roughness length | Thermal inertia
Sum | Win | Sum | Win | Sum | Win | Sum Win Sum Win
Urban land 18 18 5 10 88 88 50 50 0.03 0.03
Agriculture 17 23 30 60 92 92 15 5 0.04 0.04
Range-grassland 19 23 15 30 92 92 12 10 0.03 0.04
Deciduous forest 16 17 30 60 93 93 50 50 0.04 0.05
Coniferous forest 12 12 30 60 95 95 50 50 0.04 0.05
Mixed forest 14 14 35 70 95 95 40 40 0.05 0.06
Water 8 8 100 100 98 98 0.01 .01 .06 0.06
Wetland 14 14 50 75 95 95 20 20 0.06 0.06
Desert 25 25 2 5 85 85 10 10 0.02 0.02
Tundra 15 70 50 90 92 92 10 10 0.05 0.05
Permanent ice 80 82 95 95 95 95 .01 .01 0.05 0.05
Sub/Tropical forest 12 12 50 50 95 95 50 50 0.05 0.05
Savannah 20 20 15 15 92 92 15 15 0.03 0.03

Table 3.4: Albedo as a function of season and LULC as specified in the AERMOD modeling
system [Source: U.S.E.P.A, 1998]

Land use Spring Summer Autumn Winter
Water (fresh and sea) 0.12 0.10 0.14 0.20
Deciduous Forest 0.12 0.12 0.12 0.50
Coniferous Forest 0.12 0.12 0.12 0.35
Swamp 0.12 0.14 0.16 0.30
Cultivated Land 0.14 0.20 0.18 0.60
Grassland 0.18 0.18 0.20 0.60
Urban 0.14 0.16 0.18 0.35

Desert Shrubland 0.30 0.28 0.28 0.45
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Table 3.5: Surface roughness length as a function of season and LULC as specified in the
AERMOD modeling system [Source: U.S.E.P.A, 1998]

Land use Spring  Summer Autumn Winter

Water (fresh and sea) 0.0001 0.0001 0.0001 0.0001

Deciduous Forest 1.00 1.30 0.80 0.50
Coniferous Forest 1.30 1.30 1.30 1.30
Swamp 0.20 0.20 0.20 0.05
Cultivated Land 0.03 0.20 0.05 0.01
Grassland 0.05 0.10 0.01 0.001
Urban 1.00 1.00 1.00 1.00
Desert Shrubland 0.30 0.30 0.30 0.15

Table 3.6: Bowen ratio as a function of season, LULC and moisture levels as specified in the
AERMOD modeling system [Source: U.S.E.P.A, 1998]

Land use Spring Summer Autumn Winter

Moisture levels Dry Avg Wet Dry Avg Wet Dry Avg Wet Dry Avg Wet

Water (fresh andsea) 01 01 01 01 01 01 01 01 01 20 15 03

Deciduous Forest 1.5 0.7 0.3 0.6 0.3 0.2 2.0 1.0 0.4 2.0 1.5 0.5
Coniferous Forest 1.5 0.7 0.3 0.6 0.3 0.2 1.5 0.8 0.3 2.0 1.5 0.3
Swamp 0.2 01 0.1 0.2 0.1 0.1 0.2 0.1 0.1 2.0 1.5 0.5
Cultivated Land 1.0 0.3 0.2 1.5 0.5 0.3 2.0 0.7 04 2.0 1.5 0.5
Grassland 1.0 04 0.3 2.0 0.8 0.4 2.0 1.0 0.5 2.0 1.5 0.5
Urban 20 1.0 0.5 4.0 2.0 1.0 4.0 2.0 1.0 2.0 1.5 0.5

Desert Shrubland 5.0 3.0 1.0 6.0 4.0 1.5 10.0 6.0 2.0 10.0 6.0 2.0
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Table 3.7: Biogenic emission models - attribute comparison table

Model BEIGIS BEIS3 BIOME3 GloBEIS
Sponsors CARB EPA LADCO/ TNRCC
MCNC Alpine Geophysics | Environ
Programming ArcView FORTRAN SAS Microsoft
Language Access
Canopy Model | BEIS2 (No light | BEIS2 (No light | BEIS2 or Guenther
Attenuation) Attenuation) Guenther
Canopy layers 5 5 2 to 99 2 to 99
PAR calculation | Read in Calculated Read in Read in
Isoprene ratio none none variable 1.43 (variable)
Primary California BELD3 BELD3 TNRCC
Landuse State-specific Specific
Visualization ArcView PAVE SAS commands Microsoft
FSVIEW/GRAPH | Access
Photochemical Not Available CMAQ CMAQ UAM-V
model output CMAQ
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Chapter 4

Modeling emissions of biogenic VOCs and their effect on
tropospheric ozone levels

Despite significant progress in photochemical modeling science in the last decades, large uncer-
tainties still remain associated with the role of biogenic emissions in the formation of surface
ozone. While it is extremely difficult to quantify the uncertainty levels of biogenic emission
estimates due to insufficient monitoring data, an uncertainty factor of three has been suggested
as a reasonable estimate for total VOCs nationwide [National Research Council, 1991]. The
objective of this chapter is to evaluate the impacts of using biogenic emission estimates from the
BEIS modeling system on ozone predictions for the Northeastern United States. For the area
of interest as defined by the Ozone Transport Committee (OTC domain), biogenic emissions
account for about 5% of the total NOy emissions. During the summertime months, biogenic
VOCs including isoprene and monoterpenes account for 64%, 88%, and 91% of the domain-wide
emissions of paraffinic carbons (PAR), higher aldehydes (ALD2), and olefins (OLE), respec-
tively, when BEIS model output is converted to chemical mechanism species (Table 4.1). In
order to estimate the effect of biogenic emissions, the standard biogenic modeling methodology
will be compared against a set of standard and modified vegetation databases, performing a

basic sensitivity analysis for the domain of interest.

4.1 Description of the BVOC sensitivity studies

Several approaches have been used to estimate the contribution of biogenic emissions to O3z based
on modeling studies. In the first approach, the current situation and modeling methodology are
treated as a “base case”. Then biogenic emissions are removed to calculate their contribution
to Os. Here, the contribution of biogenic emissions to O3 concentrations under current condi-

tions can be estimated. It should be noted, however, that this contribution estimate may vary
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according to the degree of perturbation (e.g. -10% slightly, -100% totally). By selecting a total
perturbation, one can address the “global” sensitivity and bypass the possible issue of nonlin-
earity in the effect of biogenic emissions on O3 and particulates. A second approach consists of
simulating the natural atmosphere with no human influence. The O3 concentrations calculated
in such a simulation would represent the absolute contribution from biogenic emissions. There

are, however, two major issues associated with this approach:

e Current urban-to-regional scale air quality models have never been evaluated under such
conditions and the validity of those models in such applications is uncertain (e.g. in a
similar manner that global models systematically underestimate O3 concentrations by 5

to 10 ppb [Wang et al., 1998c]);

e Biogenic emissions interact with anthropogenic emissions to produce ozone and particulate

matter.

Due to the above reasons, simulating an atmosphere with only biogenic emissions may not
be of relevance, a point particularly valid for the densely populated Northeast United States.
A third general category of approaches includes techniques that can “tag” each molecule to a
specific source, or calculate the sensitivity coefficient of O3 to biogenic emissions. However, the
non-linearity of the response of O3 and particulates to changes in biogenic and anthropogenic
emissions will lead to different results depending on the source attribution, or the local sensitivity
techniques being used. In this study, we elected to bound the problem by applying the first
approach along with extensive testing and modification of the spatial allocation methodology
of the BEIS model. The contribution of biogenic emissions and natural boundary conditions
(BC) to O3 and particulates deduced by removing these components from the base case is
expected to be different from the concentrations of O3 and particulates in a simulation with
natural BC and only biogenic emissions. This is due to non-linearity in the chemical production
of secondary air pollutants. The range of values predicted in these simulations for biogenic
influences on Og should, therefore, provide reasonable bounds for this study.

The first step in the modeling approach involves testing the model’s spatial components and
allocation methodology under standardized environmental conditions in order to exclude the ef-

fect of meteorology. The latest emission factors for the United States and Canada produce small
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differences in emissions that affect mostly the Canadian forests. Coupling these factors with the
CBM-1V [Gery et al., 1989] chemical mechanism gives very close results in surface O3z concen-
trations within the United States. Most chemical mechanisms include a number of aggregate
biogenic stable species, established to attend different criteria (Table 4.2). CACM for example,
classifies biogenics attending to the potential to generate secondary organic aerosols [Griffin
et al.,, 2002]. On the other hand, LCC [Lurmann et al., 1987] and RACM [Stockwell et al.,
1997] treat individual species explicitly as pinene, limonene, myrcene, and carene. CBM-IV
has been widely used for O3 studies, and therefore is selected for the sensitivity studies that
will be presented in this chapter. The second step focuses on comparing the intermediate phe-
nological variables (biomass density, leaf area index) calculated in BEIS, with relevant remote
sensing products from the MODIS instrument. The biogenic emission estimates were adjusted
to account for the difference between the static and dynamic approach in obtaining these vari-
ables, and a new set of simulations were performed with the CMAQ model. Based on these

improvements, the following three sensitivity cases will be considered:

e Lower limit sensitivity case with no biogenic emissions, but with base case BC that include

the contribution of natural species;

e Best estimate sensitivity case A with (a) standard, and (b) updated biogenic emissions

calculated using BEIS, and natural contribution to BC;

e Best estimate sensitivity case B using remote sensing products for leaf area index adjust-

ments on (a) isoprene, and (b) total biogenic emissions.

4.2 Application of the Models-3 system with refinements to the BEIS

module

4.2.1 Meteorological data preprocessing - MM5 simulation description

The MM5 mesoscale atmospheric model has been widely used to generate meteorological data
for air quality studies in the United States. Meteorological fields generated by the University of
Maryland for MANE-VU/OTC modeling, featured two nested domains with a grid spacing of

36 and 12 km respectively (see Figure 4.1). A modified Blackadar PBL scheme uses a first-order
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diffusivity formulation suitable for stable and neutral environments and a nonlocal closure for
unstable regimes. MM5b was resolved vertically into twenty-nine variably spaced full sigma levels.
While the first layer had a height of 28 m, 11 layers were used in the lowest kilometer of the PBL.
The chosen model physics options included the rapid radiative transfer model (RRTM, [Mlawer
et al., 1997], Kain-Fritsch cumulus parameterization [Kain, 2004], medium range forecast (MRF)
boundary layer parameterization [Hong and Pan, 1996], and simple ice microphysics scheme
[Dudhia, 1989]. The initial and boundary conditions for the outer grid of the MM5 simulation
were provided by the National Center for Environmental Prediction (NCEP spatial resolution:
2.5°). The USGS elevation and LULC databases that were utilized in the MM5 setup are
presented in Figures 4.2 and 4.3. The standard USGS database is sufficient for the purpose of
our study and consistent with the BEIS methodology. It should be noted that modifications in
the LULC component of the meteorological model should be always encompassed in the biogenic
model. A bridge between the microphysics modules of the meteorology model and the biogenic
model itself, is a missing component that would be extremely useful in air quality modeling
studies.

The MM5 simulated period covered the entire year of 2002, and the MCIP preprocessor was
used to convert monthly output for the Models-3 system. As described in the previous chapter,
temperature and incoming radiation at the top of the canopy are the critical variables being
passed from the meteorological output to the biogenic emissions model. MCIP calculates the
temperature for the surface layer at both its bottom and top. Since leaf temperature is such
a critical variable, the BEIS formulation provides with the option to choose from two different
heights (1.5 and 10 m respectively). This decision should be based on the domain characteristics
and the final MM5 performance at each level. In addition, total incoming radiation for the top
of the layer is passed from MMJ5 output, and half of this amount is assumed to be equal to
the fraction of photosynthetically active radiation (fPAR). As a quality assurance test of the
meteorological output for biogenic modeling, the modeled variables were compared against the
U.S. surface radiation (SURFRAD) monitoring network. Time series plots of these variables
for the cells that enclose the three SURFRAD monitors found within the 12 km OTC domain,
are presented for the month of August in Figures 4.4 - 4.6. A good correlation to the monitor

values can be observed in the resulting comparison scatter plots of each individual variable and
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SURFRAD station involved in this study (Figure 4.7). Additional MCIP variables used in the
BEIS model include surface pressure, convective and non-convective precipitation. The basic
set of variables handled by BEIS was considered enough for the purpose of our study, when the
employed chemical mechanism is considered (CB-IV). More information on the mechanism will

be provided in the following subsection.

4.2.2 Application of improved BEIS modules for the Northeast United States

Biogenic emissions were calculated using versions 3.09, 3.12, and the experimental 3.13 of the
BEIS model along with MCIP meteorology fields for the entire 2002. As described in the
previous chapter, the general processing approach has not changed significantly in the most
recent versions. Version 3.09 involves a simplified method that uses only the USGS part of the
BELD database, leaving out the high-detail species-level component. The updated methodology
(versions 3.1x) is used to estimate emission fluxes for each one or a group of the 34 biogenic
species/compounds based on individual vegetation densities mapped using the BELD database.
Those species are then subsequently assigned to the species covered by each chemical mechanism.
For the case of the CBM-IV chemical mechanism it results to 12 species (Table 4.1 with the
addition of CO, NR), while using the older 3.09 version would produce only 4 CBM-IV species.
In total, CBM-IV includes 37 chemical species (12 of which are photolytic) and 78 reactions.
Additionally, BEIS treats natural emissions of NO from soils, biomass burning, and lightnings.
The Campbell and Norman methodology was incorporated in order to calculate appropriate
light correction factors for isoprene and methyl butenol (MBO) [Campbell and Norman, 1998].
An analysis of each step followed in the BEIS modeling approach will be the subject of the

following subsections.

Spatial allocation of the BVOC emission potential using the BEIS model

The spatial allocation of the biogenic VOC emission potential under the BEIS modeling frame-
work is determined by the function Normbeis. Normbeis utilizes the BELD vegetation database
in conjunction with the standardized emission factor look-up table that corresponds to the spe-
ciation profiles described before. For some plant species, emission factors for specific terpenes,
sesquiterpenes, and oxygenated compounds remain to be investigated [Lamb and Coordinat-

ing Research, 1999]. Since for the majority of these species the factors are based on taxonomical
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assignment of the plant species whose emission factors are relatively well defined, the emission
factor lookup table is under continuous review [Benjamin and Winer, 1998]. Table 4.3 lists a
lumped version of the BEIS lookup table for the 10 most abundant tree families that are present
within the OTC domain based on the BELD vegetation database. In addition to the the emission
factors for the major biogenic VOCs, the vegetation emission database contains the associated
leaf area index and dry leaf biomass factors that are used in phenological modeling. As it is
well known for the Northeast U.S. and Canada, the density of the oak trees ranks among the
highest. This, along with the fact that oak is one of the strong isoprene emitters, identifies them
as a very significant family for regional air quality modeling. In contrast to the Southern U.S.,
monoterpene emitters have a weak presence in the MANE-VU/OTC domain. For the rest of the
biogenic emission factors (OVOC and NO), uncertainties involved in quantification are obvious
from the almost uniform emission potential.

The current version of BEIS (3.13) features an updated emission factor table along with
minor modifications in the environmental correction factor formulation. In earlier versions of
BEIS-3, standardized isoprene emission factors for black spruce, blue spruce, white spruce, and
Englemann spruce were assumed to be 14 pg C/g/h. Based on detailed measurements of spruce
emissions, this emission factor has been lowered to 7ugC/g/h (Isebrands et al. [1999], Pat-
tey et al. [1999], and Westberg et al. [2000] report a range of 6-8 ugC/g/h. Assuming a leaf
biomass of 1500gm™2, this translates into an area flux of 10.500g C/km?/h%. A map show-
ing the spatial distribution of the total spruce species density for the OTC domain is provided
in Figure 4.8. The reduction in the isoprene emission factor for all the spruce species has
consequently resulted in reductions in the emission fluxes for USGS-defined coniferous forests
(from 11.383¢C/km?/h? to 7.918 g C/km?/h? and for USGS-defined deciduous forests (from
8.232 ¢ C/km?/h? to 6.707 g C/km?/h%. USGS-defined forest data are used for estimating bio-
genic emissions from Canada (Figure 4.9), where species-specific densities are not available for
the BELD3 database. Additionally, the USGS portion of BELD3 is used in the standard version
of BEIS (3.09). Comparison of the Normbeis (Figures 4.10 - 4.12) output suggests that the
isoprene changes are expected to affect emissions from Canada and slightly the Northeast United
States.

The standardized emission factors for monoterpenes were also updated. In earlier versions of
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BEIS-3, the emission factor for Douglas fir was 1.41 ug C/g/h. Based on extensive measurements
of Pressley et al. [2004], this factor was reduced to 0.39 ug C/g/h in BEIS-3.13. Assuming a leaf
biomass of 1500 gm ™2, it translates into an area flux of 585g C/km?/h?. In the same manner,
the emission for hemlock was changed from0.18 ug C/g/h to 0.95 ug C/g/h. With a leaf biomass
of 700 gm~2, the monoterpene area flux for hemlock is assumed to be 665gC/km?/h%. A map
showing the spatial distribution of the total Douglas fir and hemlock species density for the
OTC domain is provided in Figure 4.13. Comparison of the Normbeis output reveals that
the monoterpene changes are expected to have barely noticeable effect in the Northeast United

States (Figures 4.14 - 4.16).

Phenology modeling using BEIS-3: Leaf Area Index modifications

Leaf biomass provides the energy that drives the growth of the tree stand and is therefore the
subject of several models [Makela, 1986; Valentine, 1985]. It is also possible to describe changes
in the leaf biomass using less formal techniques including expert knowledge, which is subject to
verification using visual estimation or photogrammetric techniques. The leaf biomass values that
are listed in Table 4.3 reflect peak foliar density (e.g. these values are the maximum leaf biomass
factors that occur during the growing season). Leaf area index (LAI) is defined as the total one-
sided green leaf area per unit ground surface area. LAI describes a fundamental property of
the plant canopy in its interaction with atmosphere, especially concerning radiation, energy,
momentum, and gas exchange [Monteith and Unsworth, 1990]. Leaf area plays an important
role in the absorption of radiation, in the deposition of photosynthates during the diurnal and
seasonal cycles, and in the pathways and rates of biogeochemical cycling within the canopy-soil
system [Bonan, 1995].

BEIS-3 calculates summer and winter LAI for each cell within the modeling domain based
on the lookup table for emissions processing (Table 4.3) along with a wintertime adjustment
factor. This factor indicates the fraction of the emissions factors to use when estimating bio-
genic emissions in the winter months (e.g. zero indicates that the plant species does not emit
in the winter months). It is unclear how this factor was determined, therefore is likely to be
highly uncertain. The resulting map for the OTC domain based on the BEIS model is presented

in Figure 4.17. The methodology developed for the study of the biogenic VOCs was based on
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incorporating a satellite leaf area index product (MODIS), in order to calculate the intermedi-
ates to the biogenic emissions variables. The MODIS instrument has been used in monitoring
of canopy phenology from the perspective of examining potential effects of climate change [Ahl
et al., 2006; Myneni et al., 1997]. Computational limitations along with known satellite issues
during the winter months (e.g. cloud/snow coverage affects 4 out of 5 days), restricted our
application to the month of August. Algorithms to convert the geographical coordinate system
and resample to the 12 km grid for the OTC domain were developed. The final result for the
area of interest during the first week of August is provided in Figure 4.18. Comparison against
the MODIS 8-day LAI product for the first acquisition period of August 2007 reveals signifi-
cant differences between the calculated and the remotely sensed vegetative stage (Figure 4.19).
Since it is well established that most of the monoterpenes are not emitted by the leafy part of
the vegetation, two separate scenarios were developed. In the first scenario, only the isoprene
emissions were adjusted according to MODIS LAI product. In the final scenario, a “worst case”
approach with all biogenic emissions (except soil NO and CO) adjusted according to MODIS
LAT was implemented. Results from the comparison of the strength of emission source, and its

effect on Og levels, will be presented in the following section.

4.3 Biogenic emissions and photochemical modeling simulation re-
sults

This section provides modeling results for the OTC/MANEVU domain for the scenarios estab-
lished before. It is separated into two areas of interest: the improvement of the Biogenic Emis-
sion Inventory System (BEIS) implementation in the Sparse Matrix Operator Kernel Emissions
(SMOKE) model, and the application of the Community Multiscale Air Quality model (CMAQ)
using the relative emission inventories. A Geographical Information System (GIS) was estab-
lished for the relative inputs and output of each step of the modeling procedure for better
visualization purposes. Additionally, relevant portions of the USEPA air quality system (AQS)
database were incorporated in the GIS database along with the location of each monitoring
station. For verification purposes CMAQ output was compared against the USEPA monitoring

stations that were operating in the domain and period of interest.
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4.3.1 Emissions comparison with different BEIS formulations

Emissions inputs for the CMAQ model are typically developed using the Sparse Matrix Operator
Kernel Emissions (SMOKE) processing system. A schematic overview of the data collection
processing that includes both anthropogenic and biogenic emissions from the OTC domain is
provided in Figure 4.20. Total biogenic emission estimates for the OTC domain during the
month of August 2002 were calculated for each scenario. Figure 4.21 shows the total emission
for each biogenic species included in the CBM-IV mechanism, with individual LAT adjustments
(excluding NO and CO emissions). Detailed time series plots of the isoprene and monoterpene
emissions in the domain were created using hourly BEIS output for the simulated scenarios
(Figure 4.22). The domain-wide contribution of the biogenic emissions to their anthropogenic
counterparts for the simulations performed in this study is summarized in Table 4.4. From data
above, it can be concluded that the BEIS emission factor updates do not have a significant
contribution to the total biogenic emissions assigned to the OTC domain. On the other hand,
leaf area index adjustments seem to have a quite significant effect on the emissions of isoprene
and the rest of the biogenic groups involved in the CBM-IV mechanism.

In order to examine the spatial effect of the emission model modifications, August 12" of
2002 was selected as a day with strong biogenic influence, suitable for further investigation.
A set of maps showing the allocation of these emission totals during the morning hours of
August 12t is provided for the domain of interest. Figure 4.23 and 4.24 show a comparison
of the LAI-adjusted and the updated BEIS allocation of isoprene emissions respectively, as
calculated for the morning of August 12" of 2002. Similar comparison maps are presented for
the case of monoterpene emissions in figure 4.25 and 4.26. For both cases a significant increase
can be noticed in the Southwest portion of the OTC/MANEVU domain and in Northern areas
covered by dense Canadian forests. Densely populated areas that are classified under urban land
cover are, as expected, associated with decreased biogenic emissions when the MODIS-adjusted

scenario is applied.

4.3.2 Surface ozone levels during the August 2002 scenarios

In the sensitivity simulations with biogenic influences adjusted or removed, both the spatial and

temporal distribution of O3 changed following the changes in emissions and BC. The response,
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in terms of absolute and relative changes in Os, also varies as a function of time and location.
We first analyze the response as a function of location. Hourly surface ozone concentrations
were obtained for each modeling scenario across the entire OTC/MANEVU domain. The four
time periods considered are 0800-0900, 1200-1300, 1600-1700, and 2000-2100 EST. Briefly these
four periods can be characterized as follows. During the early morning period, there is injection
of fresh emissions in the surface layer, and the mixing layer starts to grow rapidly. The 1200-
1300 EST period reflects the time during which, photochemical reactions, vertical mixing, and
advection processes dominate. During the 1600-1700 EST period, the mixed layer starts to
collapse with decreasing solar insolation. The 2000-2100 EST period is characterized by the
dominance of nighttime chemical and removal processes. It should be noted that the relative
roles of different atmospheric processes are not constrained to these specific time periods since
they can overlap; these periods are considered here for examining the overall temporal response
of the modeling systems in relation to the spatial effect of the biogenic emissions.

Figures 4.27-4.30, 4.31-4.34, 4.35-4.38, and 4.39-4.42 provide hourly ozone maps for each
computational scenario for 8 am, 12 pm, 4 pm, and 8 pm EST during the 12" of August,
respectively. From this set of figures, we can observe the strong influence that biogenic emissions
impose on the East Coast, and more specifically along the northeastern urban corridor region.
The importance of the southeastern states is apparent when O3 maps that include biogenic
emissions are compared against the anthropogenic-only scenario. More specifically, this effect can
be demonstrated in Figures 4.31-4.34, where the Southeast areas that experience concentrations
above 50 ppb have greatly expanded when compared against the Northeast, where the effect has
a smaller spatial extent.

Finally, the temporal distribution of ozone was examined for the duration of the entire
modeled period. Figure 4.43 shows the response of Oz to different emission and BC scenarios
using two spatially aggregated metrics: domain maximum Os and domain average Os. The
daily time series reveal that the simulation maximum and average was strongly influenced by the
biogenic emissions and for some days by the overwhelming anthropogenic component (August
237%). As a result, the overall modeled domain maximum was not affected by the inclusion
of biogenic emissions. Domain-wide average daytime and nighttime ozone concentration time

series were created from the CMAQ output and can be found in Figure 4.44. As expected, the
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observed daytime effect of biogenic emission results to an increase of 5 ppb or more of O3, while

the reduced nighttime influence is less significant (around 2-3 ppb).

4.3.3 Statistical analysis of model performance

The map presented in Figure 4.45 shows a subset of the AQS monitoring database, more specif-
ically the ozone monitoring station network, established and maintained by the USEPA. The
database was processed for all monitors within the OTC/MANEVU domain, and each of them
was compared against cell-specific model output. Daily maximum ozone concentration plots are
provided for a subset of O3 monitors within the State of New Jersey (Figure 4.46). In order to
have a direct comparison against the NAAQS standards, time series plots for the hourly and
8-hour average O3 concentration are shown in Figures 4.47 and 4.48. Tesche and McNally [1997];
Tesche et al. [1990] and the E.P.A. [1991] recommended several statistical measures to perform
evaluation of the grid-based urban-scale photochemical models. A number of investigators have
applied some of these measures in the evaluation of urban and regional-scale photochemical mod-
els. In this study, we applied a total of four statistical measures, the first three of which have
been recommended by the EPA to assess model performance; these are (i) unpaired accuracy, (ii)
normalized bias, (iii) normalized absolute gross error, and (iv) correlation coefficient, as defined
in the list presented in Appendix B. The database used in this section of the study, consists
of the predicted and measured hourly ozone concentrations at all monitoring stations for each
episode day, and as such these data are paired in both space and time. In other words, for the
duration of the episode there is one set of measured and predicted maximum ozone, providing
744 pairs for the modeled month (spin-up time was also allowed) for each monitoring location
within the data analysis grid. The statistical metrics have been calculated taking in account all
the ozone monitors located within the State of New Jersey, and the results are summarized in

table 4.5.

4.3.4 Ozone response to increasing biogenic emissions

Several investigators focused on the policy-making aspect of issue - by answering the question
of the different emission reduction options applied uniformly throughout the entire domain. In

such simulations, a metric - the index of improvement, or relative change factor- is defined as:
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(03)base - (03)control
(03)base

Relative Change Factor = - 100% (4.1)

where Oz is the hourly ozone concentration at each grid cell.

Previous studies showed have showed differences in the temporal and spatial ozone patterns
when biogenic emissions were “perturbed” [Sistla et al., 2001]. The index of improvement was
calculated at each monitor location and at each grid cell of the analysis domain, averaged over
the entire simulation period. For the case of the Northeast United States, a summary table with
the calculated relative change factor is provided in Table 4.6. As we can see from this table the
increase in BVOC emission, as it was described in the two major scenarios, resulted in a relative
change factor that ranged from 1.01 to 1.05. This change is considered to be important for the
summertime months when an increase of 5 ppb can move an area to non-attainment standards

for ozone.
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Figures

Grid 2: 12 x 12 km

[ 250 500 1,000 1,500
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GCS: Lambert Conformal Conic Grid 1: 36 x 36 km

Figure 4.1: The OTC domain with the inner (12 km resolution) and outer (36 km resolution)
grids used in meteorological /photochemical modeling.

Figure 4.2: A three dimensional view of the OTC domain and topography provided by the
USGS elevation data (GCS: NADS3).
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Figure 4.3: Dominant land use classification scheme for the OTC domain according to the USGS
database that was used in meteorological modeling with MM5 (GCS: NADS83)
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Figure 4.4: Comparison of meteorological variables of interest (Temperature and fPAR) cal-
culated by MM5 (solid lines) and measured at the Penn State University (PA) SURFRAD

agro-meteorological station (circles) for the month of August 2002.
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Figure 4.8: Total Spruce species density based on the individual tree species included in the
BELD3 geodatabase (GCS: NADS3).
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Figure 4.9: Combined deciduous and coniferous forest density based on the USGS forest classi-

fication of the BELD3 geodatabase (GCS: NADS83).
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Figure 4.10: Temperature and light normalized isoprene emission using the BEIS allocation
methodology and the standard (3.12) emission factors (GCS: NADS83).
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Figure 4.11: Temperature and light normalized isoprene emission using the BEIS allocation
methodology and the updated (3.13) emission factors (GCS: NADS3).
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Figure 4.12: Difference between the standard BEIS (3.12) and the updated BEIS (3.13) tem-
perature and light normalized isoprene emission potential (GCS: NADS3).
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Figure 4.13: Combined Douglas Fir and Hemlock density based on the individual tree species
included in BELD3 (GCS: NADS3).
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Figure 4.14: Temperature normalized monoterpene emission from the BEIS allocation method-
ology using the standard (3.12) emission factors (GCS: NADS83).
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Figure 4.15: Temperature normalized monoterpene emission from the BEIS allocation method-

ology using the updated (3.13) emission factors (GCS: NADS83).
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Figure 4.16: Difference between the standard BEIS (3.12) and the updated BEIS (3.13) tem-
perature normalized monoterpene emission potential (GCS: NADS3).
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Figure 4.17: Leaf area index calculated based on the BEIS model (GCS: NADS3).
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Figure 4.18: Leaf area index obtained from resampling the 8-day composite MODIS satellite
product for the first acquisition period of August 2007 (GCS: NADS3).
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Figure 4.19: Map showing the ratio of the MODIS over the BEIS leaf area index estimate for

each cell of the OTC domain (GCS: NADS3).
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Figure 4.20: Overview of the data collection processing for the OTC/MANEVU domain under
the SMOKE /Models-3 framework.
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Figure 4.21: Total biogenic emissions during the month of August 2002, mapped according
to the CB-IV chemical mechanism species, for the 3 major scenarios developed for the OTC
domain.



100

(4u) B [e007
vb. 02L 969 2.9 8v9 29 009 9/G 2SS 825 YOS 08y 957 2Ev 80F +8E 09€ 9£€ 2ZLE 882 ¥92 OvZ 912 26+ 89l ¥yl 02l 96 2L 87 P2

00¢

T T T T T T T

Ov43 MAN —e—

r~r-r~r-—r 1 -rTrrTrTTTd

Frr T T T

I

T

;,
00
009
008
000}
002}

oovk

ov43 a10 ——
paisnipe v
\Co_mm_C._m_ mcwhagwuoco_\c 0094
I R R B 0081
1y/suoy
(4u) B [e007
Yy, 02/ 969 ¢/9 8¥9 ¥c9 009 9/S ¢SS 8¢S ¥0S 08y 99v cE¥ 80F ¥8E 09€ 9€€ ClE€ 88¢ ¥9¢ 0vc 9lc c6F 89L vl 02k 96 <L 8F Ve 0
T T b T b T T T T T T T T T T T4 T4 T T T T T T T T b T T T T T
E <0
aidY
— 90
—8°0
E I
- et
— V43 MeN —e— —v't
. ovdadio—— g
pasnipe |y ——
— uolssiwg mcw._QOm_ —8}
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | g

L0k X Jy/suoy

Figure 4.22: Hourly isoprene and monoterpene emission time series for the entire OTC domain,

during the three simulated scenarios for the month of August 2002.
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Figure 4.23: Hourly isoprene emission between 10 and 11 am of August 12" calculated with

the updated BEIS (3.13) (GCS: NADS3).
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Figure 4.24: Hourly isoprene emission between 10 and 11 am of August 12" calculated with

the MODIS adjusted BEIS (GCS: NADS3).
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Figure 4.25: Hourly total monoterpene emission between 10 and 11 am of August 12¢" calculated
with the updated BEIS (3.13) (GCS: NADS83).
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Figure 4.26: Hourly total monoterpene emission between 10 and 11 am of August 12¢" calculated
with the MODIS adjusted BEIS (GCS: NADS3).
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Figure 4.27: Surface ozone concentration calculated with the CMAQ model between 8 and 9

2th

am of August 12" using no biogenic emissions (Scenario 1) (GCS: NADS3).
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Figure 4.28: Surface ozone concentration calculated with the CMAQ model between 8 and 9
am of August 12*" using the updated BEIS 3.13 emission factors (Scenario 2) (GCS: NADS3).
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Figure 4.29: Surface ozone concentration calculated with the CMAQ model between 8 and 9 am
of August 12" using MODIS adjusted LAI for isoprene emissions (Scenario 3) (GCS: NADS3).



108

"\ X Legend
{ Wi . W@'E [ state Boundary

A s CMAQ Surface Ozone
. B Concentration (ppmV)
Q R \ 0.0000 - 0.0001
B [ 0.0002 - 0.0050
[ 0.0051-0.0100
, 0.0101 - 0.0200
777 0.0201-0.0500

0 50100 200 300 400 y: N 0.0501 - 0.1000
T——— ilometers I 0.1001 - 0.2000

Figure 4.30: Surface ozone concentration calculated with the CMAQ model between 8 and 9
am of August 12" using MODIS adjusted LAI for all biogenic emissions (Scenario 4) (GCS:
NADS83).
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Figure 4.31: Surface ozone concentration calculated with the CMAQ model between 12 and 1
pm of August 12" using no biogenic emissions (Scenario 1) (GCS: NADS3).
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Figure 4.32: Surface ozone concentration calculated with the CMAQ model between 12 and 1
pm of August 12" using the updated BEIS 3.13 emission factors (Scenario 2) (GCS: NADS83).
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Figure 4.33: Surface ozone concentration calculated with the CMAQ model between 12 and
1 pm of August 12" using MODIS adjusted LAI for isoprene emissions (Scenario 3) (GCS:
NADS83).
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Figure 4.34: Surface ozone concentration calculated with the CMAQ model between 12 and 1
pm of August 12¢" using MODIS adjusted LAI for all biogenic emissions (Scenario 4) (GCS:
NADS83).
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Figure 4.35: Surface ozone concentration calculated with the CMAQ model between 4 and 5
pm of August 12" using no biogenic emissions (Scenario 1) (GCS: NADS3).
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Figure 4.36: Surface ozone concentration calculated with the CMAQ model between 4 and 5
pm of August 12" using the updated BEIS 3.13 emission factors (Scenario 2) (GCS: NADS83).
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Figure 4.37: Surface ozone concentration calculated with the CMAQ model between 4 and 5 pm
of August 12" using MODIS adjusted LAI for isoprene emissions (Scenario 3) (GCS: NADS3).



116

"\ x_Legend
{ Wi . W@'E [ state Boundary

A s CMAQ Surface Ozone
. B Concentration (ppmV)
Q R \ 0.0000 - 0.0001
B [ 0.0002 - 0.0050
[ 0.0051-0.0100
, 0.0101 - 0.0200
777 0.0201-0.0500

0 50100 200 300 400 2 [ 0.0501 - 0.1000
———— tilometers I 0.1001 - 0.2000

Figure 4.38: Surface ozone concentration calculated with the CMAQ model between 4 and 5
pm of August 12! using MODIS adjusted LAI for all biogenic emissions (Scenario 4) (GCS:
NADS83).
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Figure 4.39: Surface ozone concentration calculated with the CMAQ model between 8 and 9
pm of August 12" using no biogenic emissions (Scenario 1) (GCS: NADS3).
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Figure 4.40: Surface ozone concentration calculated with the CMAQ model between 8 and 9
pm of August 12" using the updated BEIS 3.13 emission factors (Scenario 2) (GCS: NADS83).
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Figure 4.41: Surface ozone concentration calculated with the CMAQ model between 8 and 9 pm
of August 12" using MODIS adjusted LAI for isoprene emissions (Scenario 3) (GCS: NADS3).
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Figure 4.42: Surface ozone concentration calculated with the CMAQ model between 8 and 9
pm of August 12! using MODIS adjusted LAI for all biogenic emissions (Scenario 4) (GCS:
NADS83).
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Figure 4.43: Maximum (top) and daily averaged (bottom) domain-wide ozone concentration
calculated with the CMAQ model for the biogenic scenarios developed for the OTC/MANEVU
domain.
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Figure 4.44: Averaged daytime (noon-7 pm, top figure) and nighttime (midnight-7am, bottom
figure) domain-wide ozone concentration calculated with the CMAQ model for the biogenic
scenarios developed for the OTC/MANEVU domain.
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Figure 4.45: Selection of ozone monitors from the PAMS EPA network situated in the modeling

region (GCS:NADS3.
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Figure 4.46: Daily maximum ozone concentration comparison between CMAQ simulations using
BEIS and MODIS adjusted leaf area index for a selection of PAMS monitors within the OTC
domain (340273001 (top), 340190001 (middle), 340150002 (bottom)) during the month August

2002.
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Figure 4.47: Hourly ozone concentration comparison between CMAQ simulations using BEIS
and MODIS adjusted leaf area index for a selection of PAMS monitors within the OTC domain
(340273001 (top), 340190001 (middle), 340150002 (bottom)) during the month of August 2002.
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Figure 4.48: 8-hour average ozone concentration comparison between CMAQ simulations using
standard and updated biogenic emissions and a selection of PAMS monitors within the OTC
domain (340273001 (top), 340190001 (middle), 340150002 (bottom)) for August 2002.



Tables

127

Table 4.1: Description of major species with biogenic significance under the CBM-IV chemical mecha-

nism.

CBM-1IV Species

Description of the lumped structure

ISOP Isoprene
TERPB [ terpene surrogate species

FORM Formaldehyde

ETH Ethene

PAR The single bonded one-carbon-atom surrogate is used to
represent the chemistry of alkanes and most of the alkyl
groups found in other organics

OLE The double bonded two-carbon-atom surrogate is used to
represent the chemistry of alkanes whose carbon-carbon
double bonds are found in 1-alkenes

ALD2 The two-carbon-atom surrogate is used to represent the
chemistry of acetaldehyde and higher aldehydes that
contain the -CHO group and adjacent carbon atoms.
Used also to represent 2-alkenes that react very rapidly
in the atmosphere to produce aldehyde products

TOL The seven-carbon-atom surrogate is used to categorize
monoalkylbenzene structures

XYL The eight-carbon-atom surrogate is used to categorize
dialkylbenzene and trialkylbenzene structures

NO Nitrogen oxide surrogate
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Table 4.2: Reactions of biogenic stable species included in chemical mechanisms for the Models-3 system.

Reaction LCC | CBM-IV | RADM2 | EMEP | RACM | SAPRC99 | CACM
Isoprene + OH X X X X X b'e X
Isoprene + NOgs X X X X X X X
Isoprene + O3 X X b X X X X

Isoprene + O X X X X X
a - Pinene' 4+ OH X X
« - Pinene + NOg3 X b'e
o - Pinene + Os3 b'e b'e
8 - Pinene? + OH X
0B - Pinene + NOs e
B - Pinene + Og3 X
Limonene® + OH X X
Limonene + NOs3 X X
Limonene + O3 X X
Myrcene + OH X
Myrcene + NO3 bie
Myrcene + O3 X
~ - Carene + OH X
7 - Carene 4+ NO3 X
~ - Carene + O3 X
BIO-Low" + OH x
BIO-Low + NOs X
BIO-Low + O3 X
BIO-Low + O X
BIO-High® + OH
BIO-High + NO3 b'e
BIO-High + Os b'e
BIO-High + O X

1

23 - pinene

3d-limonene and other cyclic diene-terpenes

“Low SOA monoterpene species (« - terpineol)

SHigh SOA monoterpene species (7 - terpinene)

« - pinene and other cyclic terpenes with one double bond
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Table 4.3: Predominant tree families in the OTC domain along with the associated leaf area index

(LAI), dry leaf biomass factor, and major biogenic VOC emission factors.

Tree Major BELD Leaf Biogenic Emission Factors
Family Species Density | LAI | Biomass | Isoprene | Monotrpene | OVOC | NO
Quercus Oaks 32.35 5 375 26250 66 311 2
Aceraceae Maples 13.90 5 375 38 529 311 2
Pinaceae Pines 9.44 3 700 70 1853 581 2
Fagaceae Beech 4.8 5 375 38 192 311 2
Cupressaceae Cypress 3.64 3-5 375 38-70 33-609 311 2
Carya Hickory 3.64 5 375 38 530 311 2
Betulaceae Birch 3.42 5 375 38 66 311 2
Oleaceae Ashes 3.15 5 375 38 33 311 2
Moraceae Mulberries 1 ) 375 38 66 311 2

Table 4.4: Biogenic contribution (percentage) to the total CBM-IV species emissions for the month of
August 2002 in the OTC domain.

CBM-1V Species | BEIS 3.12 | BEIS 3.13 | LAI adjusted
NO 5.3 5.3 5.3
CO 7.3 7.3 7.3
TOL 35.8 35.8 44.5
FORM 84 84 88.3
ETH 67.6 67.6 75
XYL 0.8 6.3 8.7
ALD2 87.9 87.9 91.2
PAR 64 63.8 71.5
OLE 91.3 91.1 93.6




Parameter BEIS 3.13 modeled | MODIS & BEIS3.13 model
Sample size 9,672 9,672
Unpaired accuracy(%) 10.86 10.45
Ratio of the means 0.9403 0.9676
Normalized bias 1.0704 1.1451
Normalized gross error 1.5596 1.6150
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Table 4.5: Summary of statistical measures for the analysis grid compared with ozone monitoring
stations in New Jersey.

Table 4.6: Relative change factor between the MODIS-adjusted and BEIS 3.13 scenarios calculated

using CMAQ output for the cells that contain ozone monitoring stations in the State of New Jersey.

Monitor ID Relative Change Factor
34—041—0005 1.0516
34—043—0005 1.027
34—045—0002 1.0264
34—053—0006 1.0321
34—055—1004 1.0328
34—063—1006 1.0134
34—065—0004 1.031
34—067—1015 1.0351
34—081—0124 1.0126
34—083—0004 1.0133
34—085—0067 1.0332
34—091—0004 1.0369
34—093—0003 1.0355
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Chapter 5

Modeling the emission and transport of aeroallergens at
a regional scale

5.1 Background

There is significant evidence that air pollution may contribute to the increase in pollen allergies
and asthma in densely populated areas [Aberg, 1989; Asher et al., 1995; Ishizaki et al., 1987;
Kogevinas et al., 1999]. However, no direct correlation between pollen release and emission peaks
of common pollutants (including fine particulates) has been identified in the literature [Behrendt
et al., 1991; Ring et al., 2001]. Modeling the emission and the dispersion of allergenic particles
has not been considered in previous air quality modeling studies for criteria pollutants, as most
implementations ignore the coexistence of chemicals or other particles. One of the objectives of
this chapter is to demonstrate the addition of the most significant aeroallergens in a regional
air quality model framework. This allows for studying exposures to co-occuring pollutants and
aeroallergens and can be an extremely useful tool for sub-populations of concern (asthmatics,
children, etc.).

As described in the first section of Chapter 1, techniques for modeling particle dispersal
can be roughly grouped into two modeling approaches: Eulerian and Lagrangian. The Eulerian
modeling approach focuses on the density of the particle pattern and, thus, explains the dispersal
of an individual particle by modeling the probability of finding it in a given area. The Lagrangian
approach models the movement of the particle itself, typically by simulating trajectories for
dispersing particles. Before proceeding with analyzing the study design, a brief review of the

most significant efforts in modeling pollen particles is presented.
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5.1.1 Eulerian modeling approach: analytical models for the dispersal pattern

A characteristic type of a model formulated under the Eulerian framework is based on the theory
of atmospheric diffusion. Dupont et al. [2006] reviews the Eulerian framework for pollen dispersal
over heterogeneous vegetation canopies. If it is assumed that particle movement can be defined
by an uncorrelated, homogeneous random walk (diffusion) around deterministic drift (advection),
then the particle dispersal pattern can be described by an advection-diffusion equation (ADE)
[Di-Giovanni et al., 1989; Loos et al., 2003; McCartney and Lacey, 1991; Turchin, 1998]. This
equation can be considered as describing the random movement of particles around the mean
airflow. The ADE can be solved analytically by making several simplifying assumptions [Turchin,
1998]. The simplest solution for the equation is the classical Gaussian plume model [Di-Giovanni
and Beckett, 1990; Loos et al., 2003; Turchin, 1998|, which is found by omitting the effects of
gravity, deposition and spatiotemporal variation on particle movement. The effect of gravity
can be incorporated by using an extended version of the Gaussian plume model - a solution
called the ’tilted plume’ [Andersen, 1991; Di-Giovanni and Beckett, 1990; Di-Giovanni et al.,
1989; Okubo and Levin, 1989]. However, some of the parameters needed for these models are
not easily measurable [Di-Giovanni and Beckett, 1990; Loos et al., 2003]. At the microscale, it
might be justified to use the Gaussian type of models as developed by Walklate et al. [2004] for
oilseed rape and by Jarosz et al. [2004] for maize. Such models, however, can only be applied
close to the pollen source and are optimized for smaller plants with a shorter release height (i.e.
a few meters/feet).

The general problem with dispersal models based on the advection-diffusion equation is that
all attempts to add realistic features have led to severe modeling difficulties. Modeling deposition
at the ground level and within the canopy is complicated [Di-Giovanni and Beckett, 1990; Okubo
and Levin, 1989]. A further increase in realism adding vertical variation in horizontal wind and
vertical movement leads to difficult boundary-value problems with only non-closed form solutions
[Andersen, 1991; Okubo and Levin, 1989]. The effect of the canopy on particle movement - even
though it is considered an important factor - has to be omitted because of technical difficulties in
solving the equation numerically, and because of several simplifications required for an analytical
solution [Andersen, 1991; Di-Giovanni and Beckett, 1990; Loos et al., 2003; Okubo and Levin,

1989]. Because of the difficulties in finding models that include the major biological components
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affecting dispersal - but are still simple enough to be analytically tractable - a Lagrangian
modeling approach using simulation techniques rather than analytical solutions for determining
the particle dispersal pattern is the current preferred method [Andersen, 1991; Di-Giovanni et al.,

1989; Nathan et al., 2001].

5.1.2 Lagrangian modeling approach: trajectory models

The simplest way to obtain a straight-line trajectory for an airborne particle is to calculate its
landing point based on fixed horizontal and vertical wind speeds [Di-Giovanni et al., 1989; Nathan
et al., 2001; Soons et al., 2004]. An important increase in realism is obtained by simulating a
particle trajectory so that temporary airflows, particularly vertical airflow, affect the dispersing
particle during its flight [Andersen, 1991; Soons et al., 2004; Tackenberg, 2003]. The simplest way
to obtain the temporary wind fluctuations is to measure them empirically [Tackenberg, 2003],
or to simulate them [Soons et al., 2004]. However, autocorrelation between wind conditions
during subsequent moments is an important factor affecting particle dispersal. Therefore, for
modeling such airflows, empirical wind measurements collected at a fixed point are not ideal
because they might not fully capture the autocorrelation [Soons et al., 2004]. Over the past few
years the Lagrangian stochastic (LS) turbulence model has frequently been suggested as a way
of producing realistic descriptions of temporary airflows [Aylor and Flesch, 2001; Jarosz et al.,
2004; Nathan et al., 2002; Soons et al., 2004]. The LS turbulence model simulates the airflow by
estimating the acceleration of an air parcel at given atmospheric conditions [Aylor and Flesch,
2001; Jarosz et al., 2004; Soons et al., 2004]. The LS model has been used in a cross-wind
integrated form [Aylor and Flesch, 2001; Jarosz et al., 2004], or in a fully 3D form [Nathan
et al., 2002; Soons et al., 2004]. Typically, the canopy has been assumed to be horizontally
homogeneous [Aylor and Flesch, 2001; Nathan et al., 2002; Soons et al., 2004], but local changes
in ground surface roughness have also been accounted for [Jarosz et al., 2004]. The models have
been modified to describe particle dispersal from forest canopies [Nathan et al., 2002], as well
as from lower canopies, such as fields or grasslands [Aylor and Flesch, 2001; Jarosz et al., 2004;
Soons et al., 2004]. To increase the realism of the dispersal mechanisms, the reduction in particle
trajectory autocorrelation time due to a particle falling from one airflow into another because

of gravity, has also been added to the LS models [Aylor and Flesch, 2001; Boehm and Aylor,
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2005; Jarosz et al., 2004].

5.1.3 Identifying dispersal mechanisms for pollen particles

A comparison between empirical data has shown that analytical models incorporating only the
main features of atmospheric transport can predict the average dispersal distances [Bullock and
Clarke, 2000; Greene and Johnson, 1995; Loos et al., 2003; Okubo and Levin, 1989; Skarpaas
et al., 2003], but they tend to underestimate the tail of the dispersal curve [Bullock and Clarke,
2000; Greene and Johnson, 1989, 1995; Loos et al., 2003; Skarpaas et al., 2003]. As described
in the previous chapter, there is convincing evidence that the long-range transport of pollen
from remote regions can significantly affect pollinating seasons. That is particularly important
for regions on the Northern hemisphere, where the flowering takes place later in spring. This
transport causes sudden increases of concentrations of pollen that can occur up to a month
before the start of the local pollen season [Siljamo et al., 2004]. Standard mechanisms describ-
ing the movement of seeds do not provide information about events such as temporary gusts
and updrafts that cause long distance dispersal (LDD) [Higgins et al., 2003]. Because recent
attention has been focused in particular on modeling LDD, simple models that only focus on the
average environmental conditions have been considered inadequate [Bullock and Clarke, 2000;
Higgins et al., 2003; Nathan et al., 2001, 2002; Soons et al., 2004; Tackenberg, 2003]. Simplified
attempts to include upward fluctuations in dispersal models have been able to improve the pre-
dictions of LDD [Andersen, 1991; Nathan et al., 2001; Skarpaas et al., 2003]. However, irregular,
autocorrelated, turbulent fluctuations, such as temporary updrafts, have turned out to be key
mechanisms causing LDD [Nathan and Katul, 2005; Nathan et al., 2002; Soons et al., 2004;
Tackenberg, 2003], and explaining the shape of the dispersal curve [Nathan and Katul, 2005;
Nathan et al., 2002]. Therefore the description of the turbulent fluctuations in the model is at
least as important as the description of the mean airflow [Nathan and Katul, 2005].

In our study, we will focus on the dispersion of allergenic pollen grains on the regional scale.
Schueler and Schliinzen [2006] used a non-hydrostatic mesoscale model to simulate the dispersion
of oak pollen in an area of 200x200 km?. The proposed parameterization of the emission flux
mainly depends on the estimated annual production and the vapor pressure deficit. The pollen

grain viability was taken into account according to a function of the particle exposure to sunlight.
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Due to a lack of observations, the authors were not able to test and compare their modeling
results. Sofiev et al. [2006a] presented a feasibility study of the use of a modeling system originally
designed for emergency modeling Siljamo et al. [2004]. Their model was used to study the long
range transport of Birch pollen to Finland and subsequently extended to included most of Europe
[Sofiev et al., 2006b]. This model includes parameterizations of the settling velocity and of the
dry and wet deposition. In order to prescribe the pollen emissions, a detailed Birch forest map
in conjunction with climatological values for the pollen emissions were used. Comparison with a
limited number of observational data indicated the possibilities and limitations of the modeled
pollen distributions. The authors were able to demonstrate that pollen can be transported
over quite large distances in the order of several kilometers. Pasken and Pietrowicz [2005] used
the HYSPLIT4 model coupled with MM5 meteorology to simulate oak pollen concentrations
during a pollen episode that was observed at Clayton, MO. The author used pollen counts to
provide with thresholds for a constant source emission model for oak species. Besides the rough
assumptions employed in the emission source characterization, oak pollen is a larger particle with
lesser allergenic potential when compared to other species found in the Northeast. Comparisons
of the above modeling studies have indicated that there are still large discrepancies between

observations and simulation results.

5.2 Study design and allergenic species selection for the Northeast

The complex landscape and the wide range of climatic conditions in the Northeast United States
are accompanied by a broad spectrum of vegetation species. Pollen calendars differ from one
area to the other, however the entire pollination period for the majority of the species starts in
late winter and ends in autumn. In typical pollen emission and dispersion simulations, the period
of interest is defined by the individual phenology of the major species involved. Grass pollen
induced pollinosis has been identified as the most frequent pollen allergy in Europe [Huynen
et al., 2003]. The difficulty in modeling pollen emissions from such a source results from the fact
that the grass pollen family (Poaceae) is comprised of more than 600 genera and over 10,000
species. Ragweed (Ambrosia) is the etiologic agent in about half of all cases of pollinosis in
the United States. The height of release and particle properties of the average grass pollen

family can be approximated by the typical characteristics of the ragweed species. Although the
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grass flowering season spans late spring and the entire summer, ragweed is predominant during
the late summer to autumn transition period. For trees, one of the most allergenic pollen is
produced from birch (Betula). However, the phenology of Birch trees is complicated and it
remains a challenge to predict the total amount of pollen or the emission rate for a given season.
In general, pollen calendars reveal that birch pollen values usually peak one to three weeks after
the start of the tree season.

With the above species in mind, a prototype approach for aerobiological applications us-
ing existing air quality models (CMAQ/Models-3) along with a variety of supporting databases
(BELD3, PLANTS) was developed. The modeled processes under this framework are sum-
marized in Figure 5.1. The resulting methodology can divided in two approaches, the reverse
analysis of the pollen release through local pollen counts (pollen calendars) and backward trajec-
tory modeling, and the forward analysis which relies on modeling of the emission and dispersion
processes. In order to verify the abundance of the selected vegetation, a number of databases
were investigated for their application suitability. The underlying vegetation database that was
utilized was the BELD dataset, which provided the species-level spatial density for the domain of
interest. Table 5.1 provides a list of the most abundant species in the OTC/MANEVU domain,
along with a compilation of species-specific information that includes size, flowering period, and
the characteristic allergens they contain. It is easy to identify that the most abundant tree
species such as the oaks and pines are not the most important allergen carriers. Furthermore,
the particles produced by those species are larger and heavier, and as a result expected to de-
posit at a smaller distance from their source. Most of the satellite products are expected to
face difficulties in identifying ragweed densities, mainly due to the plant size and population
dynamics. The BELD 3.1 database does not contain species-level information for ragweed. As
a result, the PLANTS database was used as an alternative in order to incorporate county-level
ragweed occurrence information. Since ragweed is a rather invasive species, it is expected to be

present in most of the area of interest.
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5.3 Forward modeling of allergenic pollen aerosol emission and dis-
persion

Kawashima and Takahashi [1995] presented a method to estimate the distribution of airborne
pollen of Japanese cedar by developing a modeling framework using a meteorological model as
the basis for predicting the wind fields. One of its drawbacks was related to the flowering time of
Japanese cedar, as the calculated pollen numbers tended to be overestimated at the beginning
and the end of the season. As the authors reported, the simulation did not take into account the
variations in flowering time in the study area, a problem which was later corrected in a revised
version of the model [Kawashima and Takahashi, 1999]. A similar method to estimate the
detailed mesoscale distribution of airborne pollen, by using a separate simulation to synthesize
weather and vegetation data, is incorporated in this study. The methods developed for the
Northeast United States will be discussed in the following subsections. A list of the parameters
and values used as inputs in the pollen module simulations that will be presented and discussed

in later sections is summarized in Table 5.2.

5.3.1 Species phenology and spatiotemporal flowering map development

The pollen emission source has been parameterized by several authors as a function of the
total pollen production during a flowering period of n days, with the actual pollen production
dependent on the dynamic meteorological conditions [Hilaire, 2007]. Using pollen counts and
their statistical interpretations to drive the pollen emission module for forward modeling of the
dispersal can be misleading. For the case of total tree pollen the counts are the result of multiple
species with overlapping emissions (can be viewed as species-specific distributions), along with
the effects of the transport processes involved until the final deposition and particle trapping.
The onset of the pollen shedding period can be predicted with simple phenological models
utilizing heat degree days along with appropriate species-specific thresholds. Heat degree days
are calculated as a cumulative function of the daytime temperatures above a threshold value

characterized in the following manner:
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de
Z (T;—T;) , when Ty > Ty
d=ds

0 , otherwise

where, Ty is the mean temperature of the current day, T, is a species-specific threshold
temperature, and d is the day between the start (ds) and end (d¢) of the calculations. As a
result, the number of degree days applied to any particular day of the week is determined by
calculating the mean temperature for the day and then comparing the mean temperature to a
base value (typically 65 degrees Fahrenheit). For calculating degree hours the concept remains
the same, utilizing hours instead of days. In such a case, the temperature threshold for the same
species will be different. Selecting thresholds and starting date for the calculations depend on
the definition of the heat sum and the geographical location. A heat degree map for the United
States calculated with a 50 degree Fahrenheit base is presented in Figure 5.2. Based on the
cumulative heat degree days observed at the Newark meteorological station, a time series plot
with the evolution of this variable, indicating the emission threshold developed for the case of
Birch phenology is provided in Figure 5.3. The cutoff value that was assigned for this case was
selected to be 2000 heat degree days (since Jan 1** of the selected year. Temperature threshold

values that have been used in literature for the case of Birch range from 2.3 t03.5 °C.

5.3.2 Pollen emission model formulation

Due to the numerous uncertainty sources, most authors involved in modeling the pollen emission
suggest developing very general source parameterizations. For most of the cases, the maximum
occurring pollen grains in a season, the pollen production term is the starting point. In this
study a modified version of the emission parameterization according to Helbig et al. [2004] and
Sofiev et al. [2006a] was implemented. A similar methodology has been followed by a number of
mesoscale modeling groups in Europe [Vogel et al., 2008]. The vertical pollen emission Fjojer, at
the top of the canopy is proportional to the product of a characteristic concentration and a series

of meteorological resistances that define the fraction of pollen that can finally be uplifted:
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Fpollen =ce- K- (52)

The characteristic concentration ¢* is calculated using the following parameterization:

* qP
= TAL h. (5.3)

where, q, describes the pollen grains produced in one season in grains per square meter, LAI

represents the leaf area index and h. the canopy height of the corresponding species. In this
manner, q, is reduced by the previously emitted amount of pollen grains. Molina et al. [1996] de-
termined the number of pollen grains for 10 different species. However, pollen grain numbers
are traditionally reported per branches, trees, and crown diameter. In this study, a typically
suggested area source for birch species and ragweed has been incorporated (Table 5.2). The
remaining factor, c. is considered to be a plant-specific function that describes the likelihood
to bloom. This factor takes into account that not all flowers are blooming at the same time,
although the meteorological conditions can be ideal for pollen release. To achieve that, the num-
ber of flowers increases with time until a maximum is reached. Afterward, the number decreases

until we reach the end of the pollen-shedding period:

d d*
—4

where, d is the actual day of the pollen season lasting for the interval S. Outside of the pollen
season, C. is set to zero. The initiation of the pollen period is calculated based on a phenology
module that utilizes heat degree days. The simulation result is a spatiotemporal flowering map
that will cover the entire period and domain of interest that will be reviewed in the results
section.

It is obvious that the available pollen grains cannot be emitted into the atmosphere, if the
meteorological conditions are unfavorable. At this point, a daily profile for each of the species

of interest (Birch, Ragweed) was compiled from various literature sources at similar latitudes.
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This was established in our case with a meteorological trigger system that could optimally assign
pollen emission rates. For example, recent literature sources suggest that periods with high
tree pollen count are characterized by high maximum temperature, low rainfall and an absolute
humidity of around 6 gm™3. In general, the strongest positive correlation was with temperature,
as described also before for the case of Alder [Gonzalez Parrado et al., 2009]. In other cases that
involve extensive databases that run for decades such that of Basel, Switzerland, it was shown
that due to a temperature increase, the start of flowering in the case of Birch occurred about 15
days earlier [Frei and Gassner, 2008]. Finally, the meteorological triggers that will be examined

involve the following parameterization for each of the variables of interest:

K. =K}, K}, - Ky (5.5)
where:

e Humidity: For levels below 50, there is full release of pollen. For humidity above 80, there

is no pollen release. For intermediate humidity between 50 and 80, the release of pollen is

given by:
80— h
K, = 5.6
h =080 50 (56)
e Wind:
W10m + Uconw
Ky=e|[b—e 1.5 (5.7)
e Precipitation:
p
K, — (1 - —) 5.8
0 0.5 (58)

where, ey stands for the current value of emission, h represents the relative humidity, wigy, is
the wind at 10 m above ground (ms™1), e, is the convective wind (ms~!), and p represents
precipitation in (mmh~1).
5.3.3 Pollen grain as an atmospheric pollutant

The existing methodology for calculating deposition velocities in the CMAQ environment
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was reviewed in order to determine its applicability for the case of pollen particles. The deposi-
tion velocity calculations under the CMAQ framework (Figure 5.4) are based on the approach
described by Seinfeld and Pandis [2006]. As a comparison step, the pollen particle specific formu-
lations of the deposition velocity are presented in the following section, along with experimental
results that were obtained from various literature studies and will be included for reference in
Appendix C.

The large size of pollen grains, some 5-50 times larger in linear dimensions than conventional
atmospheric aerosols, raises a whole set of questions related to the applicability of existing
atmospheric dispersion models to the evaluation of atmospheric transport and deposition. There
are several ways to check the assumptions underlying virtually all dispersion models. Here we
use the Navier-Stokes equation as the basis for such an analysis. In its general form, the Navier-

Stokes equation that describes the motion of a small volume of air can be written as follows:

ov

1
G T VT=— gradp+gA17 (5.9)

where 7/ is a velocity of the volume of air (Lagrangian velocity), p is the density of air, p is

pressure, and 7 is the dynamical viscosity (a typical value for air: 74, = 1.8 x 1072 kgs~tm™1).
For slow laminar motion in the (psedo-)stationary case, one may write:
nAV — grad p=0 (5.10)
Here the stationary condition is:
ov;
=0 5.11
ot (5.11)

Slow motion means that the Reynolds number is small, i.e., Re =| 7 | d/v < 1, where d is
a linear dimension (diameter) of the moving object and v = n/p is the kinematical viscosity.
The air viscosity can be calculated by the equation C-1 which is derived from the Suther-
land’s equation (Discussed in relevant Appendix 3, valid between 0 <T <555 K). From Equa-
tions 5.9 and 5.10, it can be shown that the total force applied to a spherical object moving

through the air is:
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3ruy
Fstokes = 6mrnu <1 + 81/> (512)

where r is a radius of the sphere and u is its velocity relative to the surrounding air. The
correction term in brackets is small when Re <« 1. Using the above equations and the physical
characteristics of pollen grains, one can quantify their behavior in an atmospheric flow and

evaluate the applicability of existing dispersion modeling approaches to this type of pollutant.

Transport with air masses

A key assumption in all dispersion models is that the pollutant is transported together with the
air masses, and follows the airflow, including small turbulent eddies, which means that its inertia
is negligible. To check this assumption, it is enough to estimate the relaxation time and distance
of the pollen grain in air and compare them with characteristic scales in the troposphere. Below
we use the parameters of Birch and Ragweed pollen as one because: (1) most allergic people
are sensitive to these species; (2) are the types of pollen that can be classified as one of the
furthest-transported class of pollen grain; and (3) both grain shapes are almost spherical, which
considerably simplifies the analysis. However, the methodology is applicable for other species,
too, as long as the shape-related correction terms are taken into account.

If a particle enters an airflow with its own velocity different from that of the surrounding air,

it is forced to follow the main movement with a force represented by Equation 5.9.

dv

mo = —Fitores = —3mdnp (5.13)

where m is the mass of the particle. The relaxation time ¢ for Birch pollen will then be:

d? - Ppart
= — 5.14

Here we have used as a characteristic density of Birch pollen p,q+=800kg m~? and diameter

d=20 um. Assuming a velocity fluctuation scale of 1ms~' mm™', one can see that the grain

inertia results in a relaxation distance of the scale of mm, the characteristic path, after which
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the grain motion has become adjusted to that of the surrounding air. Therefore, for velocity

'mm™", the grain can be considered as noninertial. Since in the

gradients smaller than 1ms™
real atmosphere the gradients are much smaller, this assumption seems to be well fulfilled. The
only comparable spatial scale is the near-surface laminar scale, which can be about several
mm thick. However, near the surface, the intensity of turbulence decreases, together with small
scale velocity variations, which means that even this layer cannot be penetrated by the pollen
grains due to their inertia [Sofiev et al., 2006a]. The above semi-qualitative analysis shows that:
(a) for typical atmospheric conditions, the pollen particles (at least Birch and Ragweed particles)
do follow the air flows, including turbulent eddies; (b) inertia of grains is also insufficient to
penetrate the near-surface laminar layer. Therefore, pollen transport in the atmosphere can be
treated via existing advection-diffusion and deposition schemes, which entirely neglect the inertia

of the transported species. In addition, the above equations allow straightforward evaluation of

dry deposition fluxes, as shown below.

Dry deposition evaluation

The classical scheme for the near-surface dry deposition fluxes includes at least two parallel chains
of resistances (see Figure 5.4): one represents gravitational settling; the other consists of aero-
dynamic, molecular diffusion and surface resistances. Despite the inherently self-contradicting
definition of gravitational resistance, this scheme can be used (with clear understanding) to
estimate the relative importance of the fluxes through both chains. Considering the stationary
motion of a grain due to gravitational force, from equation 5.12 one can derive the particle’s

terminal settling velocity:

. d? Ppartd

= 5.15
Us 187 ( )

where g is gravitational acceleration. This is the same expression used by Sofiev et al. [2006a].
The two assumptions behind this formula are: (1) that the correction term in Eq. 5.12 is small,
and (2) the Reynolds number is small. For Birch and Ragweed grains, these assumptions are

fulfilled:

d
w~12cms ! i’6—“ ~32-1073; Re~1.7-1072 (5.16)
12
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The gravitational resistance is the inverse of the settling velocity:

Ryray = 1/u ~85sm™* (5.17)

The aerodynamic resistance R4 is independent of particle features and has typical values of
1-100scm ™!, depending on the efficiency of the turbulence. The surface resistance for particles
is usually assumed to be zero, which is quite reasonable for the case of pollen grains. The laminar
layer resistance Rp representing the process of diffusion through the near-surface thin laminar

sublayer is usually computed as:

2/3
Ry = —— (SC) ,Se=v/D (5.18)

rkux \ Pr

where u* is a friction velocity, x = 0.4 is the von Karman constant, Pr=0.72 is the Prandtl
number, and Sc is the Schmidt number. The diffusivity D of the grain due to molecular-scale
processes can be computed from Brownian diffusion and the Einstein formula that connects D

with kinematical Navier-Stokes considerations:

kT
D=— 5.19
3mdn ( )
where k is the Stefan-Boltzman constant (k=1.38 x 10723 JK~1), and T is the temperature of

the air. For Birch and Ragweed pollen, we get approximately:

D~10"2m2s ! Rp~35x10°sm™! (5.20)

Comparison of these values and the gravitational settling velocity shows that diffusion plays
a negligible role in (Birch and Ragweed) pollen dry deposition from the atmosphere. Since the
laminar layer also cannot be penetrated by grains due to their inertia (as described above),
the overall dry deposition velocity for this type of pollen will be about 1cms™!. This estimate
is comparable with the values for classical long-range transported species and corresponds to
half-lifetime of ~ 1 day in the atmosphere due to dry deposition. This implies that about half of
the emitted mass will be transported over a distance greater than 10 x 103 km. In reality part

of the grains can stay in the atmosphere considerably longer due to turbulent vertical mixing,
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which will oppose the downward motion. A more experimental approach to the estimation of
the settling velocity of corn pollen can be found in Aylor [2002] and in applications to other
species, in Helbig et al. [2004]. The application of the deposition velocity formula as described
in the above literature (excluding the effects of water content on the particle size) is presented
in Figure 5.5 on appendix 3. Typical pollen settling velocities calculated with this experimental
method are in accordance with the CMAQ methodology (See summary literature values for a

spectrum of species on Table 5.3).

5.4 Simulation results for Birch and Ragweed species

5.4.1 Local pollen counts and backward modeling of the pollen dispersion

There are various devices for air sampling for both viable and total spore counts (also referred
to as non-viable) analysis [Macher and Macher, 1999]. All these devices operate on only few
basic principles: deposition, impaction, and suction. The most common device in the United
States, the Rotorod impaction sampler, is present in more than 300 different locations [Frenz,
1999]. A private aerobiological network (Airborne Allergen Network - Multidata Inc.) gathers
data collected from each Rotorod monitor after being analyzed according to a common protocol
[Frenz et al., 1997]. The mechanism consists of a rotating arm-impactor that collects pollen
grains on two plastic rods that the device’s motor rotates through the atmosphere (Figure 5.6).
The sampling surface is usually analyzed microscopically on a daily basis (excluding the weekends
and holidays) to include the following pollen categories with respect to the grain’s origin: trees,
grasses, total weeds (divided into ragweed and non-ragweed grains).

The Rotorod device used in this study is located in the roof of the UMDNJ building, in
Newark, New Jersey. Daily averages were available for the years 1990-2003, excluding the spring
of 2000 and some sporadic missing values for tree counts during 1991 and 1998. The annual
time series plots for total tree and ragweed counts provided in Figure 5.7 indicate that tree
pollen emerges during the late March/early May, while ragweed starts during late August/early
September. During 2002 the counts demonstrate a mid-March peak while most of the tree pollen
is trapped during late March (Figure 5.8). It is clear that the predominant pollen in the region

during the spring is coming from trees, with a study maximum of 9301 grains/m? observed during
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2002. The spring pollen period of 2002 appears earlier and stronger than usual, comparable only
to the 9118 grains/m> observed during 1994. Ragweed counts indicated substantially smaller
atmospheric levels when compared with the tree component. The year with the maximum
counts remained the same with the total tree pollen counts. The study maximum was found to
be 690 grains/m? during 1994, while the maximum daily counts for 2002 were 187 grains/m?).
Comparison of total pollen counts obtained by two different Rotorod devices located 5.6 km
apart has revealed monthly and daily differences [Frenz et al., 1997]. The same study concludes
that differences were most pronounced for counts exceeding 100 pollen grains/m?>.

An in-depth analysis of the pollen counts can be provided by including the effect of simulated
meteorology along with backward trajectory modeling and pollen source mapping tools that
utilize vegetation geodatabases. Independently of the employed methodology, weather conditions
should be examined closely as they drive both emission and dispersion of the allergenic particles.
For our case, local meteorological data were obtained for the years of interest from the station
located in Newark International Airport. The windrose plot presented in Figure 5.9 provides an
illustration of the wind component for the entire year of 2002. Representative time series plots
of the local meteorological parameters of interest versus the pollen counts for 2002 are presented
in Figure 5.10 for total tree pollen and in Figure 5.12 for ragweed pollen particles. Windroses
relevant to each pollen season of the same year are presented in Figure 5.11, and Figure 5.13,
respectively.

Two modeling scenarios were developed based on the intricacies of 2002, as described above
in terms of pollen counts. A period that was carefully examined was the month of April of
2002 which, during the third week, exhibits a strong tree component reaching the monitor
location. The second scenario refers to the ragweed simulation for the month of September. The
HYSPLIT model offers a computational environment for a variety of transport options, from
simple air parcel trajectories, to complex dispersion and deposition simulations. An application
of simple 8-hour backward trajectory that reaches 20 m above the surface of UMDNJ location,
at 11 am of April 17*" is visualized in Figure 5.14. In a more complex setup for the months
and species of interest (Figures 5.15 and 5.16), multiple backward trajectories on days with
low and high pollen levels can combine to produce a backward plume. April 18" and 19"

2th

along with August 5" and 12" were selected as representative days with high pollen counts.
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In the same manner, April 15" and 24" along with August 7" and 18" were selected as
representative days with high pollen counts. The backward trajectories can be also used to
identify and locate clusters of significant pollen sources in the regional scale. In order to achieve
that an underlying vegetation information layer was created in a GIS framework based on the
tree density map developed by the USGS/USFS/EPA (BELD3). A comparison of the NLCD
and USGS databases, as incorporated for the area of interest in the GIS software (ArcGIS), is
presented in Figure 5.17. Plumes from 8-hour backward trajectories reaching the device location
every two hours are illustrated in Figure 5.18. From these figures we can conclude that high
tree pollen counts do not necessarily correspond to trajectories above densely forested areas.
This can be potentially due to the fact that the trajectories are outside the “emission window”
for specific species-emitters within the area of the air parcel. The only clear finding that can
be seen from this analysis is that high counts are correlated positively with winds following the
direction of east. A daily vegetation index, characteristic of the pattern of the backward pollen
trajectory and the association with the underlying vegetation density, can be a useful metric
for such applications. An example of this metric is presented in a raw and distance-weighted
manner in Figure 5.19. Further cluster analysis options are available with the use of TrajStat,

an external program developed for HYSPLIT [Wang et al., 2009].

5.4.2 Evaluation of pollen emission timing and intensity

One of the most difficult problems in pollen-dispersion forecasting is to evaluate the emission flux
of grains and its time evolution. At this point, it has to be pointed that the system developed
for “proof of concept” simulations during the Spring of 2002 used an additional “climatological”
emission term, which was based on the results of long-term mean observed birch and ragweed
flowering dates. The underlying spatial database was BELD3.1 for the case of Birch, and a
modified version of the P.L.A.N.T.S. database developed and maintained at the U.S. Department
of Agriculture for the case of Ragweed simulations. The result of the emission model for the
case of Birch (April 2002) are presented in a set of maps in Figure 5.20. The maps show a good
agreement with the monthly temporal profile, as it was recorded in the UMDNJ Rotorod device

during the Spring of 2002.
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5.4.3 Pollen dispersion results

During the trial reanalysis simulations of 2002, the CMAQ model run once per monthly scenario
in order to capture the effects of the entire “emission window” and to allow for certain initial
spin-up time for better performance. In the first step of the result analysis, the main focus
was on the dispersion comparison of the two modeling options (CMAQ versus HYSPLIT). The
patterns observed for a similar area source by each model are provided in Figures 5.21-5.22. As
we can see, the entire day was dominated by constant-direction winds that transported particles
throughout the Long Island. This flow was consistent throughout the day, as maps with the
hourly output (ending at 8 am, 12 pm, 4 pm and 8 pm) indicate. The two models showed
significant resemblance in capturing the pattern and intensity of the Birch pollen transport.
HYSPLIT calculated plumes covered larger areas than CMAQ output for a variety of dispersion
parameterizations (options under the dispersion module).

In the next modeling step, the full month simulations for the case of Birch and Ragweed were
explored. Mapped simulation output for Birch and Ragweed pollen is presented in Figures 5.23-
5.26 and 5.27-5.30. A different release height was investigated for the case of Birch, with the
emission being assigned (to a smaller percentage, usually 20%) in the second layer. The dispersal
pattern revealed to be almost identical with some additional area covered by higher atmospheric
levels around the 12 by 12km emission cell. In the same manner, simulations with extended
heigh were performed in HYSPLIT and the results of trajectory paths agree to this small increase
in longer transport probability. Finally, concentration timeseries plots of the modeled months
during 2002 are presented in Figures 5.31-5.32. These plots indicate a good correlation of the
modeled pollen source with the observed values of pollen counts at the same cell location as the

UMDNJ Rotorod device (Figures 5.15-5.16).

5.5 Discussion

The general attitude towards coarse atmospheric aerosols is that its influence is primarily local
or, at most, regional. This study, along with others in the field of aerobiology, shows that from
the point of view of atmospheric dispersion modeling, birch pollen grains resemble the behavior

of anthropogenic aerosols with a diameter smaller than 10 um (PMjp). In particular, pollen
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has a similar gravitational settling velocity close to 1cms™!.

A general explanation for this
similarity (although pollen is more than twice the size) is that pollen is a low-density particle,
which makes it more susceptible to air currents and drastically reduces gravitational settling.
There are also several important differences that bring birch pollen grains into the scale of
large-scale transported pollutants. Firstly, the grains are hydrophobic, which significantly re-
duces the intensity of both in-cloud processes and subcloud scavenging, by far the most intensive
sinks of atmospheric aerosol. Secondly, anthropogenic pollutants with concentration levels of
5 — 10% near the source are often negligible, or at least is not treated as a major problem.
In the case of pollen, the opposite situation occurs: concentrations of 100 grains/m? of air are
considered “high level” while the near-source levels are typically an order of magnitude greater.
Therefore, even if dilution and removal of pollen during transport reaches 90% the remaining
amount is still considered significant enough to cause health problems. Thirdly, birch forests are
abundant over large areas of both Europe and the United States, thus representing an uniquely
extensive source area that allows even for transatlantic transport. Finally, pollen emission takes
place under conditions that favor large-scale distribution: sunny days in late Spring, no precip-
itation, moderate wind, and an emission height of more than 10 m. These conditions lead to a
quick mixing of the emitted mass over a deep layer due to turbulence. All the above-mentioned
factors induce a large-scale dispersion of pollen and confirm at a qualitative level the conclu-
sions derived from formal computations of pollen behavior based on the physical characteristics
of the grain. The above factors are reasonably well reproduced by existing meteorological and

dispersion models, therefore simplifying their application to pollen dispersion simulations.
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Figure 5.1: Atmospheric processes relevant to the fate and transport of allergenic pollen grains
[Source: Helbig et al., 2004].

Degr

=ince Jan
(50 F thresholdl

10220

Figure 5.2: Calculated heat degree days for the entire United States during 2002 (50 degrees
Fahrenheit threshold).
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Figure 5.3: Calculated heat degree days for the Newark International Airport meteorological
station during 2002 (50 degrees Fahrenheit threshold) using NCDC data.
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Figure 5.4: Schematic depiction of the processes that influence deposition velocity calculations
in the CMAQ model using land-use specific resistances [Source: Seinfeld and Pandis, 2006].
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Figure 5.5: Deposition velocity calculations using the method described in Aylor [2002] for a
range of pollen sizes and densities, assuming typical temperature and wind speed.

Figure 5.6: The Rotorod device along with a depiction of the sampling principle: air and particle
trajectories around an impaction cylinder - only the black particle will impact [Source: Falagiani,
1990].
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Figure 5.7: Annual tree and ragweed pollen counts in Newark, NJ for the years 1990-2003. Data

for UMDNJ Newark were provided by Dr. Bielory.
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Figure 5.8: Tree and ragweed pollen counts in Newark, NJ for the modeled year of 2002. Data
for UMDNJ Newark were provided by Dr. Bielory.
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Figure 5.9: Windrose for the Newark International Airport meteorological station during the

entire year of 2002.
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Figure 5.10: Time series plot of the tree pollen counts against the meteorological variables
recorded at Newark, NJ during 2002.
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Figure 5.12: Time series plot of the ragweed pollen counts against the meteorological variables
recorded at Newark, NJ during 2002.
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Figure 5.13: Windrose for Newark Meteorological Station - Autumn of 2002 (ragweed pollen).
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Figure 5.14: 6-hour HYSPLIT backward trajectory that ends at the UMDNJ location at 11AM
local time, April 17%" of 2002.
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Figure 5.15: Tree pollen counts for the month of April 2002. Data for UMDNJ Newark were

provided by Dr. Bielory.
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Figure 5.16: Ragweed pollen counts for the month of August 2002. Data for UMDNJ Newark

were provided by Dr. Bielory.
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Figure 5.18: Plumes from backward trajectories corresponding to low pollen counts (Top figure:
May 5-7) and high pollen counts (Bottom figure: May 21-23) reaching the Newark monitoring

location.
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Figure 5.20: Hourly Birch pollen emissions for the 5

April (GCS: NADS3).
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(Continued...) Hourly Birch pollen emissions for the 5%, 10", 15", 20", 25" and 30*" day of
April (GCS: NADS3).
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Figure 5.21: Plume comparison plots utilizing CMAQ (left) and HYSPLIT (right) models for
a single cell Birch emission during 07:00 - 08:00 and 11:00 -12:00 on April 16 of 2002. The two
models closely capture the direction and spread of the plume (GCS: NADS3).
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Figure 5.22: Plume comparison plots utilizing CMAQ (left) and HYSPLIT (right) models for
a single cell Birch emission during 15:00-16:00 and 19:00-20:00 on April 16" of 2002.
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Figure 5.23: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Birch emissions for 8am of April 16" 2002 (GCS: NADS83).
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Figure 5.24: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Birch emissions for 12pm of April 16'" 2002 (GCS: NADS3).
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Figure 5.25: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Birch emissions for 4pm of April 16" 2002 (GCS: NADS3).
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Figure 5.26: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Birch emissions for 8 pm of April 16" 2002 (GCS: NADS3).
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Figure 5.27: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Ragweed emissions for 8am of August 15 2002 (GCS: NADS3).
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Figure 5.28: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Ragweed emissions for 12pm of August 15 2002 (GCS: NADS3).
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Figure 5.29: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Ragweed emissions for 4pm of August 15" 2002 (GCS: NADS3).
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Figure 5.30: Hourly averaged surface pollen concentration calculated with the CMAQ model
using Ragweed emissions for 8 pm of April 16"* 2002 (GCS: NADS3).
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Figure 5.31: Daily averaged surface pollen concentration calculated with the CMAQ model
using Birch emissions for the modeled month of April 2002 (GCS: NADS83).
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Figure 5.32: Daily averaged surface pollen concentration calculated with the CMAQ model
using Ragweed emissions for the modeled month of August 2002 (GCS: NADS83).
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Tables

Table 5.1: Predominant pollen shedding species of allergenic potential in the OTC domain
(Source: BELD3 database).

Dp POLLEN OTC BELD3

FAMILY MAJOR SPECIES (um) PERIOD ALLERGEN density (%)
Quercus Oaks 19-39 | March - June t7 32.35
Pinaceae Pines 53-73 | May - June t16, t73 9.44

Cupressaceae | Cypress, Juniper, Cedar | 20-36 | April - May |6, t17, t23 3.64

Moraceae Mulberries 11-25 | March - June t70 <1
Betulaceae| Alder, Birch, Hazel | 19-32 | April - May t2,t2t?;,ot4, 3.42
Oleaceae Ashes 26-33 | March -May | t9,t15 3.15
fagaceae Beech 40-44 | May-June t5 4.80
Aceraceae Maples 23-38 | April - May t1 13.90
Carya Hickory, Pecan 35-55 | May - June 122 3.64

Table 5.2: Species-specific input parameters for the pollen emission module.

Property Birch | Ragweed
qp in pollen grains/m? 1-10° | 2.1-10°
S in days 15 15
LAI 5 3
he in m 20 2
Emission height in m 2 20
Particle size (diameter in pm) | 20 20
Particle density (kg/m?) 1080 800
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Table 5.3: Estimated settling velocity for typical pollen grains (cm/s). Adapted from Knox and

Inst [1979]
Species Bodmer (1927) Knoll (1932) Dyakowska (1937) Eisenhut (1961)
Abies alba 38.7 12.0
Larixz decidua 12.5 - 22 9.9 12.3 12.6
Picea abies 8.7 6.8 5.6
Pinus silvestris 29-44 2.5 3.7 3.7
Taxus baccata 1.1-1.3 2.3 1.6
Abies incana 1.7-2.2 2.1
Betula verrucosa 1.3-1.7 2.4 2.9 2.6
Carpinus betulus 4.5 6.8 4.2

Quercus robur 2.9 4.0 3.5
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Chapter 6

Conclusions and discussion

Biogenic emissions make a significant contribution to the levels of aeroallergens and secondary
air pollutants such as ozone, and understanding the major factors contributing to allergic airway
diseases requires accurate characterization of emissions and transport/transformation of biogenic
emissions. However, biogenic emission estimates are laden with large uncertainties. Furthermore,
the current biogenic emission estimation models use low-resolution data for estimating land use,
vegetation biomass and VOC emissions. Furthermore, there are currently no established methods
for estimating bioaerosol emissions over continental or regional scale. Therefore, there is a need
for improvements in the methods for estimating the emissions and transport/transformation of

biogenic VOCs and bioaerosols.

6.1 Refinements and Application of the BVOC modules

In the first part of the thesis, an detailed review of different approaches and available databases
for estimating biogenic emissions was conducted, and multiple geodatabases and satellite im-
agery were used in a consistent manner to improve the estimates of biogenic emissions over the
continental United States. These emissions represent more realistic, higher resolution estimates
of biogenic emissions (including those of highly reactive species such as isoprene). The impact of
these emissions on tropospheric ozone levels was studied at a regional scale through the applica-
tion of the USEPA’s Community Multiscale Air Quality (CMAQ) model. Minor, but significant

differences in the levels of ambient ozone were observed,

6.2 Development and Application of the pollen modules

In the second part of the thesis, an algorithm for estimating emissions of pollen particles from

major allergenic tree and plant families in the United States was developed, extending the
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approach for modeling biogenic gas emissions in the Biogenic Emission Inventory System (BEIS).
A spatio-temporal vegetation map was constructed from different remote sensing sources and
local surveys, and was coupled with a meteorological model to develop pollen emissions rates.
This model overcomes limitations posed by the lack of temporally resolved dynamic vegetation
mapping in traditional pollen emission estimation methods. The pollen emissions model was
applied to study the pollen emissions for North East US at 12 km resolution for comparison
with ground level tree pollen data. A pollen transport model that simulates complex dispersion
and deposition was developed through modifications to the USEPA’s Community Multiscale
Air Quality (CMAQ) model. The peak pollen emission predictions were within a day of peak
pollen counts measured, thus corroborating independent model verification. Furthermore, the
peak predicted pollen concentration estimates were within two days of the peak measured pollen
counts, thus providing independent corroboration. The models for emissions and dispersion allow
data-independent estimation of pollen levels, and provide an important component in assessing

exposures of populations to pollen, especially under different climate change scenarios.

6.3 Discussion: Direct health effects of biogenic emissions

6.3.1 Health effects related to BVOC emissions

Several studies on the inhalation pharmacokinetics of the isoprenoid group have been conducted
for a number of species including rats, mice, and monkeys [Dahl et al., 1990; Melnick et al., 1996;
Peter et al., 1990]. The major representative, isoprene, is showing no significant relationship
to carcinogenesis [Cox et al., 1996]. Toxicological studies on human lung cells suggest that
once isoprene is released in the atmosphere, it reacts to form products that induce potentially
greater adverse health effects than isoprene itself [Doyle et al., 2004]. Since the ambient levels
of isoprene are very low, occupational exposure studies targeted wood-processing environments
where the compound can be abundant [Martin et al., 1991]. Other authors emphasized on
the formation of strong airway irritants in isoprene mixtures with Oz and NO2 [Wilkins et al.,
2001]. Nevertheless, biogenic VOCs are important ozone precursors and therefore are of great

significance when trying to derive air pollution-related health indicators.
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6.3.2 Health effects related to aeroallergens

Allergic diseases represent a major health problem of most modern societies [Ring, 1997]. Pollen
allergens are integral pollen constituents. They have to be released during a process of activation
in order to become bioavailable [Behrendt and Becker, 2001]. The main pathway of exposure
to allergenic pollen grains is through inhalation, while ingestion and dermal exposure are of
lessen importance. The two main symptoms of exposure are seasonal allergic rhinitis (hay fever)
and asthma. They often coexist and share a genetic background [Braunstahl et al., 2000].
Epidemiologic, pathophysiologic and clinical studies strongly suggest a link between rhinitis and
asthma. The reason why pollen causes asthma in some persons and allergic rhinitis in others are
obscure. Allergic rhinitis is induced by pollen grains when they make contact with the upper
respiratory tract (nostrils, oral cavity, and eyes). A patient may suffer irritation when grains are
impacted on the eye at relatively low speeds [Knox and Inst, 1979]. Asthma is an inflammatory
disease of the airways, mainly associated with high levels of air pollution [Hiltermann et al.,
1997]. If inhaled, pollen may be deposited in the uppermost ciliated portion of the respiratory
tract. During an asthmatic reaction, symptoms develop in the deeper, non-ciliated parts of the
lung which show accumulation of fluid and secretions in the terminal bronchioles. Symptoms
may appear immediately following pollen exposure or be delayed for some hours. The entry
of pollen to the lungs depends on the size of pollen and the diameter of the airways. Inhaled
particles with a diameter greater than 30 wum which includes pollens and most fungal spores,
are deposited in the trachea and upper bronchi (See Figure 6.1). Any particles deposited in
the lungs are removed by alveolar fluid and by macrophages. Experimental inhalation of pollen
grains labeled with radioactive technetium (**"T'c), showed that most of the pollen was deposited
in the oropharynx and did not reach trachea [Knox and Inst, 1979]. A portion was swallowed
and through the process of persorption, passed directly from the stomach to the bloodstream
within 45 minutes. The significance of persorption in the initiation of allergic reactions remains
to be assessed.

Exposure requires the occurrence of the presence of a potential environmental agent at a
particular point in space and time, and the presence of a person or persons at the same location
and time. A significant population fraction, with estimates that vary from 2 to 25% [Cookson and

Hopkin, 1988; Marsh et al., 1981; Raeburn and Webber, 1994], consists of susceptible individuals,
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who, after exposed to a similar mix of environmental stimuli as all others become sensitized and
on subsequent contact, develop allergic symptoms. This, is in fact implied in the term allergy
meaning “expression of a different response”. An interesting observation, confirmed by medical
history records, is that even in the susceptible group there is a wide patient-to-patient and
family-to-family variability with respect to the spectrum of sensitizing agents (single allergen or
effect of a series of unrelated substances) and the clinical presentation (rhinitis, asthma, eczema,
alone or associated with each other). Individual liability might depend on both genetic and
non-genetic causes. In the presence of a similar reactive background, susceptibility of different
target organs may vary under the effect of sex, age, actual environmental exposure, life style,
and other associated diseases [Falagiani, 1990].

The term allergen does not refer to pollen itself, but factors that are located on or within
it that may induce allergic disease. Allergens are proteins or glycoproteins that are capable
of eliciting the formation of specific skin-sensitizing or reaginic antibodies through the body’s
immune system. The nature of allergic response was first defined as ”"the acquired, specific,
altered capacity to react” [Knox and Inst, 1979]. Acquired means that there must have been
previous exposure to the allergen to stimulate the immune system and develop hypersensitiv-
ity. It also means that once identified, steps can be taken to avoid unnecessary exposure to
allergen. Specific, refers to the precise molecular relationship that exists between the allergen
and the corresponding antibodies produced in response. Related allergens may carry common
determinants, allowing in this way for a degree of cross-reaction between them. Altered capacity
to react describes the different response induced by the same allergen after antibodies have been
produced against it. The allergic response may be increased as hypersensitivity, or it may be
decreased as a result of increased immunity. Two types of allergic response have been identi-
fied: immediate or delayed hypersensitivity (taking place several hours after contact with the
allergen).

An allergen is an antigen capable of binding human IgE antibodies. The IgE antibody was
first isolated and characterized by [Ishizaka et al., 1970] and shares the particular property of
binding to basophils and mast cells. The interaction of allergen and cell-bound IgE induces
degranulation of the cells, and at the same time several mediators like histamine are released.

Figure 6.2 presents the sequence of events in the production of allergic response. Only a few
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molecules of allergen and IgE are required to cause an allergic reaction since the amplification
obtained by the release of several molecules of histamine is quite high [Falagiani, 1990]. Recently,
an involvement of IgE during the mammalian embryo implantation in the maternal uterus has

been described [Cocchiara et al., 1992, 1996].

6.3.3 Populations and microenvironments of concern - synergistic effects of pollen

and gaseous air pollutants

Millions of people worldwide are periodically exposed to air pollution levels that exceed health-
based air quality guidelines. Epidemiologic studies have demonstrated consistent associations
between exacerbations of respiratory disease and air pollution [Bascom et al., 1996]. These
associations are most often noted with particulate matter smaller than 10 pm (PM;g) or with
ozone. Harmful effects of air pollution may predominate in the most sensitive subjects of the
population, such as asthmatics or patients with chronic obstructive pulmonary disease. A recent
study indicates that there is no consistent evidence that children with wheeze, positive histamine
challenge, and doctor diagnosis of asthma reacted differently to air pollution from children
with wheeze and doctor diagnosis of asthma and children with wheeze only [Jalaludin et al.,
2004]. Recent studies also indicate that it is not certain whether factors encountered in a farm
environment may protect against the development of allergy or not. A study, conducted in
several countries of the E.U. found that living on a farm in childhood was associated with a
reduced risk of atopic sensitization in adulthood [Leynaert et al., 2001]. Compared with other
adults, those who had lived on a farm as a child were less frequently sensitized to cat and to
Timothy grass, and were at lower risk of having nasal symptoms in the presence of pollen. There
are two more subpopulations of concern, florists and pregnant women. An epidemiological study
among 111,702 children born in Stockholm [Forsberg et al., 1998] between 1988 and 1995 suggests
that there is a strong connection between maternal pollen exposure and asthmatic children. The
last 12 weeks of pregnancy and the corresponding pollen were pointed as the most significant
parameters.

There is also a strong suggestion that certain pollutants that can be found in the urban air
can influence the bioavailability of pollen allergen [Behrendt and Becker, 2001]. By the use of

fluidized bed reactors, the influence of both gaseous and particulate upon allergen release from
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pollen can be studied in a dose-, time-, and humidity- dependent fashion [Behrendt et al., 1997;
Risse et al., 2000]. The scanning electron micrographs (SEM) seen in Figure 6.3, show that
birch pollen found in urban microenvironment interacts with airborne matter that sticks to the
grain coating in a greater degree compared to rural sites [Behrendt et al., 1997]. Exposure of
P.Pratense pollen to high concentrations of SO induces a significant reduction of liberation of
a major allergen. This leads to the assumption that the bioavailability of major grass pollen
allergens might be grossly reduced in regions polluted with SOy as compared with non-polluted
areas. This observation is associated with the well-known paradoxic finding of low asthma and
hay fever rates in 5-6 year old children from areas with heavy SOs2 pollution in the former East
Germany compared with children living in the West part [Ring et al., 2001; von Mutius et al.,
1992]. For the case of NOg, no change in bioavailability was observed under identical conditions.
Binding of Lol p 1, a major grass pollen allergen, to diesel-exhaust particles under experimental
conditions has been observed by Knox [Knox and Inst, 1979]. Furthermore, airborne particles
agglomerate onto pollen surfaces in heavy-traffic areas, but not in park regions that are devoid
of high concentrations of air pollution [Behrendt et al., 1997].

A very interesting part, in terms of modeling the pollen levels and the potential exposure, is
the indoor environment. In the indoor environment there are pollutants like NOo, that can be
found in concentrations that approach outdoor levels (due to emission from pilot lights and gas
stoves [Gauderman et al., 2000]. In order to investigate the factors affecting indoor and outdoor
microenvironmental concentrations of aeroallergens, and the relationships between them, Stock
[Stock et al., 1985] took 12-hour samples of airborne pollens and spores from two fixed ambient
air monitoring stations and inside and directly outside of 12 houses during the period June to
October in Houston. Outdoor concentrations of pollen were spatially less heterogeneous than
those of spores, and showed greater seasonal and diurnal variation. Indoor levels of both pollen
and spores were uniformly lower than outdoor levels for all 12 air-conditioned homes, with
indoor pollen counts on average 30% of outdoor values, and indoor spore counts on average
20% of outdoor values. Indoor levels of both aeroallergens in most homes were not significantly
correlated with simultaneous outdoor levels. Variation in exposure to aeroallergens indoors
appears largely determined by variations in both infiltration of outdoor air and activities of the

household. A study, using dust wipes in order to estimate the level of pollen in residences,
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concluded that higher concentrations can be encountered close to the entrance and windows
[Forsberg et al., 1998]. The level of humidity is one of the indoor parameters that can also affect

the bioavailability of pollen.

6.4 Future work: Biogenic emissions and climatic change

Climate change may increase the frequency and intensity of ozone episodes in future summers in
the United States. A warming climate is believed to result in increased morbidity and mortality
related to ozone, an impact that is often overshadowed by concerns about the direct effects
of increased heat stress. Peak ambient Os concentrations are typically observed in summer
months, when higher temperatures and increased sunlight enhance O3 formation and also lead
to increased emission of biogenic and fugitive anthropogenic hydrocarbons, important precursors
of O3 formation. Numerous epidemiology studies have reported associations between Os and
hospital admissions or emergency visits for respiratory conditions, diminished lung function,
and a variety of other health outcomes. A relatively recent but growing body of literature has
also documented acute effects on mortality in large cities, in many cases while controlling for

particulate matter and other pollutants.
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Figure 6.1: Anterior view of the human respiratory system (Source: Stedman’s Medical Dictio-
nary).
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Figure 6.2: Sequence of events in the production of allergic response.

Figure 6.3: Scanning Electron Microscopy image of a ragweed pollen in a polluted and clean
atmosphere [Adapted with permission from Behrendt et al., 1997].
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Appendix A

Equations for the estimation of biogenic emissions

A.1 Isoprene Emissions

Isoprene is emitted only during daylight hours from specific deciduous species, such as
oak, willow, aspen, and poplar, and only from spruce for the group of coniferous species. In
BEIS3, Pierce [2001] uses a slightly modified form of the Guenther et al. [1993] formulation. The

emission flux can be defined as:
E=¢ E,-C{-Cr-A (A-1)

where,

E — total emission rate of isoprene (ugha='h=1!)
— seasonal adjustment coefficient (dimensionless)
E, — species-specific emission rate of isoprene at 30°C and 1000 pmol m~—2s~!
Cf — ratio of the canopy-adjusted PAR to the PAR above the canopy (dimensionless)

Cr — temperature correction factor (dimensionless)

A — areal extend of the species in the modeled location (ha)

However, Guenther et al. [1995, 1999b, 2000] have refined their model to estimate isoprene

emission according to the following formula:

E=¢-Dyp-Di-yp-yr-7a-p- A (A-2)

where,
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¢ — landscape average emission capacity (ugg~'h™!)
D, — annual peak foliar density (gha~lg- ha™!)
Dy — fraction of foliage present at a particular time of year
Yp, YT, YA — emission activity factors for PPFD, temperature, and leaf age (dimensionless)
p — canopy escape efficiency (dimensionless)

A — areal extend of the species in the modeled location (ha)

In the revised Guenther formulation [Guenther et al., 2000], € - D, is equivalent to E, in
BEIS3, v is equivalent to Cr, and ~yp is equivalent to Cf. However, though the parameters are
equivalent, the formulation of the parameters may be slightly different. This leaves the Guenther
et al. [2000] terms Dy, 74, and p unaccounted for in the Pierce [2001] BEIS3 formulation.

The canopy adjusted PAR, Cf, is computed via a simple canopy model that accounts for
the effects of variations of PAR with height in the leaf canopy. Cf approaches the value of 1.0
for the case of thin canopies. The canopy model in BEIS3 is based on a leaf energy balance
and knowledge of the Leaf Area Index (LAI). C4, or the ratio of the canopy-adjusted PAR. to
the PAR above the canopy, is calculated for the sunlit and shaded leaves using an empirical

expression derived by Campbell and Norman [1998]:

Cf = LL-CL(PARs) + L, - CL(PARD) (A-3)

where,

E — total emission rate of isoprene (ugh=!)
Lg — fraction of sunlit leaves (dimensionless)
L{) — fraction of shaded leaves (dimensionless)
Cr — light correction factor (dimensionless)
PARp — the amount of PAR on shaded leaves (umolm—2s1)

PARgs — the amount of PAR on sunlit leaves (umolm~2s~1)

The fractions of sunlit and shaded leaves, Lé and L{) are estimated as:
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§ 1l—exp(—K-LAI)

Ls = K- LAI (A-4)
L =1-c! (A-5)
where K (dimensionless) is the direct beam solar radiation extinction coefficient:
1+ [tan(9)]?
= VIF ) (A6)

where 9 is the solar zenith angle, calculated according to the equation developed by ?]:

¥ = accos [53 - sin (%) + /1.0 — 62 - cos (%) - cos ng : tlg):| (A-7)

ty = t~|—%—0.123470 sin (£,)+0.004289 cos (t,) —0.153809 sin (¢, + t,)—0.060783 sin (¢, + ¢,)—12
(A-8)
where ¢ is the latitude (°C), A is the longitude (in degrees), t is local time converted to
Greenwich Mean Time (hours), t, is the terrestrial rotation angle (rad) defined by equation A-9,
and &, is a parameter of the earth’s declination to the solar plane defined by equation A-10.
it

tp = — A9
180 (4-9)

) : 7r
ds = sin (180> -sin <tr + 180 tp) (A-10)

tp = 279.9348 +1.914827 sin (¢,) — 0.079525 cos (t,) +0.019938 sin (¢, + ¢,) —0.00162 cos (t, + t,)
(A-11)
where  is the fraction of complete rotation per day (360/365.242); and ¢ is the earth’s

declination to the solar plane (23.443833°C). Note that though the formulation of A-10 takes
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into account the time of the day, it does not take into account the day of the year. To account

for the day of the year, the first term of the equation A-10 should read:

. [ ™. T 284 +n
sin <180 sin {180 (360 T >]) (A-12)

where n is the Julian day of the year (i.e. 1 to 365). The PAR for shaded and sunlit leaves

is computed via the following two equations:

PAR4[1 —exp (—0.61- LAI)] n PARy[exp (—0.894 - LAI) —exp (—K - LAI)]

PARp =
Fp 0.61 - LAI 2

(A-13)

PARs = K - (PARy, + PAR,) - PARp (A-14)

where PAR, is the amount of PAR from diffuse visible solar radiation defined by equation
A-15, and PARy is the amount of PAR from direct beam, visible radiation defined by equation
A-16:

PARy=1,-I'- 1} - f (A-15)

PAR,=1,-1° IV - f (A-16)

where I, is the ratio of the observed, or modeled, solar radiation to the clear sky total solar
radiation defined by equation A-23; I} is the fraction of visible solar radiation that is from direct
beam solar radiation defined by equation A-17; I is the fraction of visible solar radiation that
is from diffuse beam solar radiation defined in equation A-18; IV is the clear sky total visible
solar radiation defined by equation A-19; and f=4.6 is an empirical factor that converts solar

radiation in terms of energy to solar radiation in terms of photon flux.



190

I’U
0.009550-1_%’ , for I, < 0.21
C
09— 1,\*?| Iy
IV = [1.0— < o ) I—j , for 0.21<I,<0.89 (A-17)
Iy ’
0.941124-1%7 , for I, > 0.89
C
IN=1-1} (A-18)
Ig = I+ Iy (A-19)

where 1Y is the clear sky, direct beam visible solar radiation defined by equation A-20; and

I, is the clear sky, diffuse visible solar radiation defined by equation ?7.

o =600 - exp (—0.185m) - cos ¥ (A-20)

o =0.42- (600 — I%) - cos (A-21)

where m is the atmospheric optical thickness defined by the following equation:

P

- Py - cost (A-22)

m

where P is the observed pressure (mbar); and Py is the standard pressure (1013.25 mbar).

I, = (A-23)

1
I
where I is the observed, or modeled incoming solar radiation; and I. is the clear sky total

solar radiation defined in the following manner:

Io=1I+ Iy + 15+ 1 (A-24)
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where If;b is the clear sky, direct beam near infrared solar radiation defined by equation A-25;

and I’ is the clear sky, diffuse near-infrared solar radiation defined by equation A-26.

i = (720 - exp (—0.06m) — w) - cos ¥ (A-25)

Il =065 (720 —w — I}}) - cosd (A-26)

where w is absorption by water of solar radiation in the near-infrared spectrum defined by

the following relationship:

w =101.64 - (2m)®? (A-27)

Note that in some references, PAR is expressed in umolm~2s~!, while in others PAR is
expressed in units of W m™2. Rather than convert the units in equation A-1, and related isoprene
equations, the units in the original references are retained. The approximate conversion factor
between PAR (pumolm~=2s71)and total solar radiation I (RGRND from MM5 model output is
defined in Wm™2 is:

PAR=05-46-1 (A-28)

where, 0.5 is an empirical coefficient that indicates approximately 50% of the total incoming

solar radiation is PAR, and 4.6 is an empirical conversion factor from Wm™2 to pmolm—2s71.

The light correction factor, Cy, in equation A-3 is calculated as:
- Cr1 e PAR

Cy = A-29
L v1+a?. PAR? ( )

where,

a — 0.0027 (1000 pmolm—2s71)
cr1 — 1.06 (dimensionless)

PAR — photosynthetically active radiation (umolm=2s71)

BEIS3.12 uses constant values for the above coefficients as in Guenther et al. [1993]. More
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recent work by ?] describes an approach with updated coefficients « and cy; varying with canopy

height. Values for o and cy; are calculated as follows:

o = 0.001 + 0.0085 - LAI (A-30)

cr1 = 1.42exp—0.3- LAl (A-31)

where LAI is the cumulative leaf area index above the leaf. The PAR adjustment factor
is calculated at each level in the canopy, using the photosynthetic photon flux density at that
level, and then integrated to get a whole canopy value. BEIS3 uses the methodology described
by Guenther et al. [1993] to estimate the dimensionless temperature correction factor, Cr, ap-
pearing in equation A — 1:

Ccr1 (T — Ts)

exp ( )
Cp = CR : T(ST TT ) (A-32)
1+ exp (—T1 M

R-Ts-T )

where,

cr1 —  95000Jmol™!
cr2  — 230000 Jmol ™!
Ty — 314K
Ts — normalizing ambient temperature (303 K)

R — Ideal gas constant (8.314JK~'mol 1)

A.2 Monoterpene Emissions

The sum of monoterpene emissions can estimated following the approach suggested by Guenther

et al. [1993]:

E=¢ B -Cr-A (A-33)

where,
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E — total emission rate of monoterpenes (pugha=th=1)

— seasonal adjustment coefficient (dimensionless)

E, — species-specific emission rate of total monoterpenes at 30°C and 1000 umolm =2 s~

Cr — temperature correction factor (dimensionless)

A — areal extend of the species in the modeled location (ha)

The temperature correction factor, Cp, for monoterpenes is dimensionless and is estimated

based on leaf temperature, which is assumed to equal ambient temperature, T:

Cr = exp (BT — T4)) (A-34)

where f = 0.09 K~! is an empirical coefficient that can also be thought as an inverse
temperature scale. The monoterpene emissions temperature factor monotonically increases with
increasing temperature. This same Cr formula is used by BEIS3 as the OVOC temperature
correction factor. The exponential form of equation A-34 is based purely on a statistical fit of

measured emission rates [Guenther et al., 1993].

A.3 Biogenic Nitric Oxide Emissions

Biogenic nitric oxide (BNO) is emitted as a result of microbial nitrification-denitrification activ-
ities in soil and is enhanced through nitrogen-based fertilizer application [Williams et al., 1992].
BEIS3 uses the empirical model developed by Williams et al. [1992] to estimate BNO emissions

E, from soils:

E=E,-Cr-A (A-35)

where,

E — total emission rate of BNO emissions (ugha='h=1!)
E, — species-specific emission rate of BNO at 30°C and 1000 pmolm~2s~!
Cr — temperature correction factor (dimensionless)

A — areal extend of the species in the modeled location (ha)

1
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Cr is the dimensionless temperature conversion factor, which is estimated based on soil

temperature, T,

CT = exp (Tg . [T - TS]) (A—36)

where T3 = 0.071 C~! is an empirical scaling parameter that describes the rate of in-
crease of BNO emissions with soil temperature; 30°C is a constant identical o the tempera-
ture scale Ts (expressed as 303K in equations A-32 and A-34); Ty, is the soil temperature,
parameterized based on ambient air temperature with the following equation [Williams et al.,

1992]:

Teoil = Tl(T - 27315K) + T (A—37)

where 77 = 0.72 and T> = 5.8 °C are empirical model parameters that relate soil temperature to
ambient temperature; T(C) is the leaf temperature which is assumed to be equal to the ambient

temperature.
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Appendix B

Definitions for statistical measures of model performance

B.1 Unpaired accuracy

This statistical measure compares the accuracy of the maximum measured and predicted
ozone concentrations unpaired in time or in space. It should be noted that this statistical measure
may not be very meaningful given the large areal extend of the modeling domain. However, it
was included in the study since it is one of the recommended metrics in the regulatory analysis

[E.P.A., 1991].

Pz - O
Unpaired accuracy = w - 100% (B-1)
max

where, Py and Oyng, are the maximum predicted and observed values, respectively, of all the

stations.

B.2 Normalized bias

This statistical measure provides for an estimate of bias in the models. The E.P.A. [1991] rec-
ommends a range of +5% — 15% for this statistic as an acceptable level of model performance.

The statistic is defined as:

1 P -0
Normalized Bias = > ( Oi)O (B-2)

where, P; and O; are the predicted and observed values, respectively, at station i, and N is the

total number of stations.
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B.3 Normalized Average Absolute Gross Error

This metric reflects an overall bias between predicted and measured ozone concentrations
in contrast to the normalized bias in which the over- or under-predictions could cancel each
other out. The E.P.A. [1991] suggested a range of 30% - 35% as an acceptable level of model

performance for this metric.

. 1 | P, — O; |
Normalized Average Absolute Gross Error = — —_—
8 N 2 (0;)

where, P; and O; are the predicted and observed values, respectively, at station i, and N is the

(B-3)

total number of stations.
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Appendix C

Parameterization of the deposition velocity for typical
pollen particles

The air viscosity can be calculated by the following equation which is derived from the Suther-

land’s equation (valid between 0 <T <555K):

3
To+C [ T\?
e e —1
M=o <T0> (C-1)

where,

C — Sutherland’s constant [120 K]
Ty — Reference temperature [291.15 K]

no — viscosity [18.27 x 1076 Pa]

With particle diameter assumed to be 20 um and the density estimated at 800 K g/m?, for a range

of temperature values between 0 and 20 °C, itappearsthatthevalueo f pollensettlingvelocityisaboutl cm s~ . Typic

2 _ _2ppPVpg (C-2)
S

PaCd(Us)AP
where, p, and p, are the density are the density of air and of the pollen grain, respectively, Vp and Ap are
the volume and cross-sectional area of the pollen grain, ¢4 is a drag coefficient, and g is gravita-

tional acceleration.

For a spherical particle with diameter Dp, equation C' — 2 becomes:

o 4ppDpg

U= S pcalus) ()

which reduces to a well known result for a spherical particle small enough to obey Stokes law.
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Over a wide range of Reynolds numbers (including the Re ~ 0.5-2.5 of interest here), the drag

coefficient can be represented well by the formulation of Fuchs [1964] and Friedlander [1977]:

cq = R—ep(l +0.158 Re?/?) (C-4)

where Re,, is the particle Reynolds number based on the characteristic diameter of the pollen
grain. For the spheroidal corn pollen grains, Dp in Eq.C —3 was replaced by a volume-equivalent

diameter, D., given by:

D, = {/11L3 (C-5)

applied to a prolate grain with the major and minor principal radiusL; and Lo. The ratio
Ly /Ly for the corn pollen has been found to be around 1.1 for freshly collected pollen, but in
most cases investigators assume it is reasonable to take the dynamical shape factor equal to 1.0
[Aylor, 2002; Fuchs, 1964].

A complicated factor is the increase in density of pollen grains that occurs during drying
(since water has a smaller density than the solid material). In changing from a fresh, fully
hydrated state to a dehydrated state, the density pP of corn pollen increases from about 1.25
to 1.45gcm™3, so that the density must be expressed as a function of D, and equation C' — 3
becomes:

o _ 4pp(De)gDe

" aealu) o

where,

pp(De) = pH,0 (1 - (gi>3> + Psolid <g:l)3 (C-7)

where Dy is the diameter of a pollen grain in the dried state. Over the range of diameters
encountered here, Eq. C'— 7 can be replaced by a linear function with a maximum error of < 2%.
The application of the deposition velocity formula as described above (excluding the effects of

water content on the particle size) is presented in Figure 5.5.
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