
Integration of Hardware and Optimization Control for
Robotic and Prosthetic Systems

A Dissertation

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

Submitted to

Rutgers, The State University of New Jersey
and

The University of Medicine and Dentistry of New Jersey

Graduate Program in Biomedical Engineering

by

Jeffrey Edward Erickson

Under the direction of

Evangelia Micheli-Tzanakou, Ph.D.

And with approval of

New Brunswick, New Jersey
May, 2009

© 2009

Jeffrey Edward Erickson

ALL RIGHTS RESERVED

 ii

ABSTRACT OF THE DISSERTATION

Integration of Hardware and Optimization Control in
Robotic and Prosthetic Systems

by JEFFREY EDWARD ERICKSON

Dissertation Director:

Evangelia Micheli-Tzanakou, PhD

With medical advances through the past half century, survival rates

following trauma have risen. Along with this rise has come an increase in the

number of survivors with amputated limbs. Many of these survivors are Soldiers,

Airmen, and Marines, who are relatively young and could benefit from

sophisticated prostheses to replace the lost function.

These prostheses would be very maneuverable and able to better mimic

the natural human motions. Such devices would likely be high degree of freedom

with many actuators. Control of prostheses with intelligent algorithms may

provide improved performance for the user.

 To this end, a novel experimental transmission for driving the several

joints of such a device has been developed and tested. Also, it has been used in

the design, production, and testing of a 3 DOF digit actuator for use in a

prosthetic hand.

 Embedding the control hardware would make such a prosthesis more

compact and portable. Using custom printed circuit boards, Microchip PIC

microcontrollers have been used to control the digit actuator. Taking advantage

of surface mount packages, control boards have been developed which integrate

 iii

motor drivers with microcontrollers, and fit into a space comparable to that of

the aforementioned prosthesis. Furthermore, the networking capability of these

controllers has been demonstrated, presenting an extensible framework for

addition of processing power as technology develops.

 Given the non-linear nature of the several joints in the system, intelligent

controls have been explored. Model reference adaptive control (MRAC) was used

in simulation of digit models. Also, coupling MRAC with artificial neural

networks yields ANN-MRAC (artificial neural network model reference adaptive

control). Training these ANN control systems using ALOPEX yields good

tracking performance across the non-linear range of the system. Such control

logic may prove effective in a time varying non-linear system such as a hand

prosthesis

 Human machine interfacing is key in the use of prostheses. Since a

minimal amount of training is most desirable for the user, adaptive and

intelligent methods may provide a control interface framework that reduces

learning time for the user. To accomplish this, an algorithm for optimization of

large dimensionality sensor grids was developed. This algorithm uses several

template matrices to optimize the gain of each sensor in the grid. This both

identifies a region of activity, and reduces the signal-to-noise ration of the sensor

grid output by reducing gain on channels not containing information. The

desired region is identified through enhancement of the signal gain on the

sensors above the region. This would allow the placement of sensors on the body

in an inexact fashion and instead let the computer optimize the sensor network

gains for regions of activity associated with a given motion. Such an adaptive

 iv

system reduces learning time for the user, thus reducing human error and easing

use.

 v

Acknowledgement

As with any work, there are a number of people who made this possible.

First, I must thank my two advisors, Mourad Bouzit, Ph.D. and Evangelia

Micheli-Tzanakou, Ph.D. for guiding and supporting this work.

John Petrowski, with the Rutgers University Mechanical Engineering

Department, was instrumental in fabrication of parts, both in the machine shop

and the rapid prototyping facility.

Earlier in my graduate education, I was supported by the United States

Department of Education via a Graduate Assistance in Areas of National Need

fellowship.

FIRST Robotics Competition Team 41, to whom I taught controls and

programming. “You don’t truly comprehend a subject until you teach it.”

ANADIGICS, the company that has employed me for the past two years.

In particular, William Tompkins, Ha Tran, Ruddy Ostin, Ken Casterline, and

others who made available their expertise, advice, and equipment to help me

complete this work.

Kevin P. Granata, a professor of mine at the University of Virginia who was

slain in the Virginia Tech Massacre in 2007. He was the first professor of mine to

bring research into the classroom and gave me the foundation for model

development used in this dissertation.

Of course to my parents and family, who have supported me in many ways

to complete this project.

 vi

Perhaps most importantly, the past and present members of the United

States Military and State National Guards I know who inspired me to undertake

the project:

Alan D. Marrero, United States Marine Corps

Michael E. Eagan, United States Army

James Giacchi, New Jersey National Guard

Carl J. Heim, United States Marine Corps

Duane Mantle, United States Army

Hunter Birckhead, United States Army

Joseph Bartnicki, Pennsylvania National Guard

Edward E. Erickson, United States Army

William A. Erickson, United States Army

Thomas E. Donato, United States Army

Wilhelm A. Erickson, United States Army

Salvatore Sacco, United States Army Air Corps

 vii

Table of Contents

ABSTRACT OF THE DISSERTATION..ii

Acknowledgement ...v

Table of Contents...vii

List of Figures.. x

List of Tables ..xiii

Glossary of Terms .. xiv

Overview and Objectives ... 1

1.1 Introduction .. 1

1.2 Motivation ... 1
1.2.1 General Motivation.. 1
1.2.2 Implications of Modern Warfare...2

1.3 Literature Review ..4
1.3.1 Existing Prostheses..4
1.3.2 Dynamic System Control ... 12
1.3.3 Adaptive Systems... 25
1.3.4 Sensors ...34
1.3.5 Detecting Volition.. 37

1.4 Objectives, Goals, and Problem Statement............................. 41
1.4.1 Problem Statement .. 41
1.4.2 Objectives...42
1.4.3 Goals ..42
1.4.4 Chapter Summary..43

Chapter 2: Materials and Methods ...44

2.1 Design Approach ...44
2.1.1 Mechanical Design...44
2.1.2 Actuation..46
2.1.3 Control System... 47
2.1.4 Fabrication...49
2.1.5 Uniqueness ..50

2.2 Design Results ...50
2.2.1 Mechanical Design...50
2.2.2 Motors.. 53
2.2.3 Sensor Tests and Physical Model .. 55
2.2.4 Embedded Platform Single Joint Control ... 56
2.2.5 Device Hardware Architecture .. 61

 viii

2.2.6 Software Architecture..63

2.3 Mechanical Assembly... 70
2.3.1 Novel Method for Right Angle Transmission71
2.3.2 Transmission Results .. 74
2.3.3 Mounting of Position Sensors ... 75

2.4 Electronic Hardware Platform... 75
2.4.1 Local Processing .. 76
2.4.2 Electrical Characteristics and Board Design....................................... 77

Chapter 3: Control Modeling .. 81

3.1 Single Joint Control Model .. 81
3.1.1 Derivation of the Equations of Motion..82
3.1.2 Extraction of the DC Motor Model..83
3.1.3 Model Implementation and Verification...86
3.1.4 Commentary on the Non-Linearity ...88

3.2 Linear Control of the Non-Linear Single Joint System89

Chapter 4: Model Reference Adaptive Control 91

4.1 With Linear Model Reference Error Feedback93

4.2 With Squared Model Reference Error Feedback94

4.3 ANN-MRAC: Artificial Neural Network – MRAC 95
4.3.1 Matrix Implementation of Neural Networks in MATLAB..................96
4.3.2 ANN-MRAC Using a 2-3-2 Feed Forward ANN98
4.3.3 Use of a 2-4-2 Feed Forward Artificial Neural Network................... 103

4.4 Variation of the Training Parameters 105

Chapter 5: ALOPEX Optimization of Sensor Networks 108

5.1 Rationale of Optimization.. 108

5.2 Optimization Algorithm... 109

5.3 Response Function ... 111

5.4 Optimization...114

5.5 Computational Efficiency and Application 121

Chapter 6: Conclusions and Future Work................................... 122

6.1 Conclusion..125

6.2 Future Work.. 126
6.2.1 Extension to Multi-Joint Control .. 126
6.2.2 Construction and Testing of a Complete Artificial Hand...................127
6.2.3 Extension of the Electronic Hardware ...127

References ... 129

 ix

Curriculum Vita ...137

 x

List of Figures

Figure 1.1: Southampton Capstan Drive .. 5

Figure 1.2: Schematic of the FZK Hydraulic Balloon Mechanism6

Figure 1.3: MANUS Crossed Tendon Mechanism Schematic 7

Figure 1.4: The Dextra Prosthesis System ...8

Figure 1.5: The Shadow Dexterous Hand ..9

Figure 1.6: Cyberhand .. 10

Figure 1.7: The University of Victoria Biomimetic Finger Actuator11

Figure 1.8: Root Locus of Example Transfer Function ... 16

Figure 1.9: Bode Plot of Example Transfer Function ...17

Figure 1.10: Illustration of the Conformal Mapping z=exp(sT) 19

Figure 1.11: Detail of the Southampton Integrated Force Slip Sensor36

Figure 1.12: Example of EMG Time Course for Control of the MANUS Device ...38

Figure 1.13: State Machine Diagram for Control of the FZK Hand.......................39

Figure 1.14: MKI Concept Illustration ...40

Figure 2.1: Proposed Mechanical Configuration of the Digits44

Figure 2.2: MRF Piston.. 47

Figure 2.3: Initial and 5th Evolution Finger Designs.. 51

Figure 2.4: Example of Detail Available Through Solid Modeling 52

Figure 2.5: Sanyo 12GN-0348 Motor .. 54

Figure 2.6: Kinetic Model for Testing of Control System...................................... 55

Figure 2.7: Hall Effect Sensor Linearity .. 56

Figure 2.8: The Effect of Filtering on Data..58

Figure 2.9: Constant Velocity Control Data Plots ... 59

 xi

Figure 2.10: Proportional Feedback Control Data Plots60

Figure 2.11: Block Diagram of Hardware and Software Architecture...................62

Figure 2.12: Overview of Controller Test Platform..62

Figure 2.13: Block Diagram of Coordinating Processor Software.........................66

Figure 2.14: Block Diagram of Embedded Controller Software............................ 67

Figure 2.15: USB Packet Structure...69

Figure 2.16: Block Diagram of High Level Processor Software.............................70

Figure 2.17: Right Angle Transmission Test Platform and Miniaturized Form ... 72

Figure 2.18: Joint in Assembly Jig... 73

Figure 2.19: Completed Finger in Testing Mount ... 75

Figure 2.20: Embedded Processor Printed Circuit Boards 78

Figure 3.1: Schematic of Forces and Intertia Acting on Single Joint86

Figure 3.2: Simulink Model of the DC Motor ..87

Figure 3.3: Output of DC Motor Modeling After Adjustment of the Back EMF

Constant ...87

Figure 3.4: Graph of Linearity Measure of Sine Function88

Figure 3.5: Model Trajectory Under Linear PI Control...90

Figure 4.1: Simulink Model for MRAC ..92

Figure 4.2: MRAC Output Using Linear MR Error Adjustment93

Figure 4.3: MRAC Output Using Squared MR Error for Adjustment...................94

Figure 4.4: Simulink Model for ANN-MRAC ..95

Figure 4.5: 2-3-2 ANN-MRAC Results Using Last 500 Error Points as Response

..99

 xii

Figure 4.6: 2-3-2 ANN-MRAC Result Using Last 500 and First 500 Error Points

as Response .. 100

Figure 4.7: 2-3-2 ANN-MRAC Response Using Gain Scheduling........................101

Figure 4.8: 2-3-2 ANN-MRAC Results Using Full RMS Error 102

Figure 4.9: 2-4-2 ANN-MRAC Result During Training 103

Figure 4.10: 2-4-2 ANN-MRAC Result After Full Training Time 105

Figure 4.11: Results for the High Learning Rate Parameter Case....................... 106

Figure 4.12:Results for the High Training Noise Case .. 107

Figure 5.1: Plot of Field Intensity vs Distance ..110

Figure 5.2: Results of Sensor Optimization for the Center Case..........................115

Figure 5.3: Response vs. Iteration plot for the Center Case.................................116

Figure 5,4: Field Optimization Result for the Edge Case118

Figure 5.5: Response vs Iteration plot for the Edge Case.....................................119

Figure 5.6: Field Optimization and Response vs. Iteration Plot for the Corner

Case..121

 xiii

List of Tables

Table 1.1: United States Battlefield Casualties 1941-2008…………………………………3

Table 3.1: Motor Electrical Characteristics………………………………………………….. 83

 xiv

Glossary of Terms

ADC – Analog to Digital Converter. Electronic hardware, found often in
embedded processors, that converts analog signal values to digital numbers for
use in the processor.

ALOPEX – Algorithm for Pattern Extraction or Algorithmic Logic of Pattern
Extracting Crosscorrelations. A correlation based optimization algorithm that
uses previous changes in local weights correlated with changes in global response
to determine future values.

ANN – Artificial Neural Network. A biologically inspired computational method
using multiple interconnected nodes exhibiting high parallelism, like that of the
brain.

Computational Intelligence – A subset of adaptive algorithms that exhibit
adaptation based on biological intelligence.

Embedded System – A special purpose processor or network of processors
that perform a specific task with high computational efficiency. Ethernet devices,
GPS receivers, and portable digital music players are examples of embedded
systems.

FDM – Fused Deposition Modeling. A three dimensional printing technique that
uses a melted filament of plastic to generate parts from computer solid modeling
data.

Hall Effect Sensor – A sensor that detects magnetic field. Coupled with
specialized magnets, Hall Effect sensors can be used to detect position.

I2C – Inter Integrated Circuit Bus. A two wire bus for serial communication
between processors and peripheral devices.

MRAC – Model Reference Adaptive Control. An adaptive control approach that
uses a computed reference model response as a target for system tracking.

PCB – Printed Circuit Board. A planar board with selected regions of copper
plating used to connect integrated circuits without the need to wire each
individual pin.

PIC – Peripherical Interface Controller. A series of embedded processors used
for acquisition and control. Being application specific, they do not have an
operating system and are typically programmed in either C or assembly.

PWM – Pulse Width Modulation. A method for communicating output voltages,
particularly to a motor, using a pulse at regular intervals. The length of the pulse
corresponds to voltage.

Prosthesis – A specialized device, sometimes robotic, for the replacement or
enhancement of human function.

 xv

Surface Mount Technology – An integrated circuit packaging technology that
mounts devices to the surface of a circuit board rather than through holes in the
board.

Through Hole Technology – An integrated circuit packaging technology that
mounts devices via regularly spaced holes in a circuit board. Generally regarded
as legacy.

USB – Universal Serial Bus. An industry standard serial communication bus for
communication between general purpose processors and peripheral devices

WCIR – Wounded to Combat Injured Ratio. The ratio of wounded in action to
the sum of wounded in action to killed in action. An indication of survivability
following a battlefield injury.

1

Overview and Objectives

1.1 Introduction

Those of us who have full use of our hands may take for granted the value of our

dexterity. We do not think twice about how to open a door, open a bottle, shake a

hand, or pick up a cup of coffee. For those who have lost a hand, these can be

very frustrating tasks, especially for those who lost the hand suddenly and

traumatically.

Technology has progressed to the point where devices that have the dexterity of

the hand, measured in degrees of freedom (DOF), can be artificially produced.

Also, electronics have progressed to the point where major processing power can

be packed into increasingly smaller spaces. These combine to provide the

platform for the development of an artificial prosthesis capable of mimicking the

natural human hand (Pons, et al, 1999 & Craelius, 2002).

1.2 Motivation

1.2.1 General Motivation

Amputations have been a medical practice since the middle ages (Mitchell,

2004). Over time, the understanding of the human forearm has allowed for neat

surgical procedures that effectively form the residuum to a shape that can be

accepted by a prosthesis. That device, however, had been rather archaic until

recently, usually resembling a hook or a purely cosmetic hand. The end actuators

typically needed to be specially designed for individual tasks. As a result, the

2

prosthetics that amputees received either were pleasing to the eye or functional,

but rarely both.

The late 20th century brought advancements in prosthetic technology. Gone were

the hooks and clamps of earlier times, replaced with hands that were both

cosmetic and functional. These hands, while offering more dexterity than

previous devices, still did not approach the dexterity of the natural hand. This

project seeks to develop a prosthesis that approaches the performance, force

generation, and dexterity of the natural human hand.

1.2.2 Implications of Modern Warfare

Though many groups of people are subject to amputation, there are a few groups

that are especially prone to needing the procedure. Power line workers can

literally have their hands vaporized by electricity, factory workers can have their

hands traumatically amputated by machinery, and soldiers can lose entire limbs

to battlefield injury.

Ironically, the development of more effective weapons has been accompanied by

better medical technology (Hartcup, 2000) and logistics (Lynch et al, 2005) in

the military. In World War II, battlefield medicine took on a new sophistication

with the large scale training of medics for immediate medical care (Andersen,

2003). However, depending on the theater, a wounded soldier could find himself

laying on a cot near the front for many days before being transported by air,

truck, or ship to rear hospitals (Cowdrey, 1994). During the Vietnam and Korean

3

Wars, the use of the UH-1 “Huey”, HH-3 “Jolly Green”, CH-53, and HH-53

helicopters brought fast evacuation from the front line (Wetterhahn, 2001), but

still left most casualties in country for many days and perhaps weeks.

The conflicts of the past decade have brought a heretofore unseen speed to

military medical treatment. Helicopters, namely the HH-60 Pave Hawk,

continue to be used in Iraq for evacuation (Boyne, 2003). Rather than even

staying on the continent the soldier was wounded on, many of those wounded

find themselves in the continental United States within a week. Casualties are

almost immediately evacuated from the fighting, are on a medical ship by the end

of the day, and are in Germany or the United States by the end of the week,

sometimes sooner. Typically this is done by fixed wing jet (Boyne, 2003). As a

result, the ratio of casualties to deaths has risen; more people injured in combat

are surviving (see Table 1.1). This has generated added demand for effective

dexterous prosthetics so our surviving Purple Heart recipients may lead

productive lives after their discharge.

Table 1.1: United States Battlefield Casualties 1941-2008.

 WWII Korea Vietnam War on
Terror

Iraq

KIA 292,131 33,629 47,072 358 3609

WIA 671,801 103,284 155,419
(303,704)

2330 30,324

WCIR* 69.7% 75.4% 76.7%
(86.6%)

86.7% 89.4%

For Vietnam data, numbers in parentheses refer to total WIA, numbers without parentheses
refer to hospitalized WIA. “War on Terror” refers to conflicts in the Global War on Terror,

including Afghanistan, but excluding Iraq.
*WCIR: Wounded to Combat Injured Ratio (WIA/(WIA+KIA)).

WWII (p. 956), Korea (p.1216), and Vietnam (p.1322) data from Codfelter, 1992. War on
Terror and Iraq War data from Wikipedia (2008) and United States Department of Defense

(2008).

4

1.3 Literature Review

1.3.1 Existing Prostheses

Prosthetic devices have existed for centuries, brought to popular attention by

Captain Hook, of Peter Pan fame. Indeed, early prosthetics were simple devices

that were either purely functional, like hooks, or purely cosmetic, like a

mannequin’s hand. Otto-Bock is a well known manufacturer of such hands,

including a simple grasp actuator. However, there are more advanced prostheses

in existence or in development, ranging from the simple and ultra light design of

the VA Rehabilitation and Research and Development Center in Palo Alto, CA

(Doshi et al, 1998) to the extremely dexterous (but heavy) design of the Shadow

Robot Company in England.

1.3.1.1 The Southampton Hand

Calling any one particular device “The Southampton Hand” is actually a

misnomer. There have been several hands developed at the University of

Southampton, England since the first in 1967. The Southampton Team prefers to

describe “The Southampton Hand” as a general philosophy regarding prosthetic

hands, the design targets, and the extraction of volition from patient data. The

core of this principle is the Southampton Adaptive Manipulation Scheme (SAMS)

(Light et al, 2002), the method of data extraction.

In terms of the physical device, the most recent hand appeared in the literature in

2000 (Light and Chappell, 2000). It uses SAMS as the core of the control

5

system. The digits are actuated using DC motors with capstans, for force

amplification (Figure 1.1(a)). There are five independent digits, but the digits are

internally coupled using wires and linkages in each digit, and fold with consistent

trajectory (Figure 1.1(b)). In

addition, the thumb has a

circumduction (a combination

of axial rotation and abduction-

adduction) actuator (Light and

Chappell, 2000).

This system, the Southampton-

Remedi hand, weighs 400g, has

6 DOF, and has a total grip

force of about 40N. Each of the

four digits actuate with a peak

active grip force of 9.2N, while

the thumb has a peak active grip force of 3.7N. At peak utilization, the device

draws 10.5W of electrical power (Light and Chappell, 2000). This design gained

much press, through the BBC, in 2005.

1.3.1.2 The Hydraulic FZK Hand

In 2001, Schulz et al reported on their development of a hydraulically actuated

hand. The system is biomimetic, based on the activity of insects. Small

hydraulic balloons were placed in the vertex of each joint, and inflated to open

(a)

(b)

Figure 0.1: Capstan drive used in the
Southampton Hand (a) and linkage detail (b).
(Kyberd et al, 2005)

6

the joint (Figure 2-2). This is essentially the same principle arachnids use to

move their appendages.

In 2004, the same group at

Forschungszentrum Karlsruhe (FZK)

in Germany expanded the scope of

their hydraulically driven hand, and

applied it to prosthetics (Pylatiuk, et

al, 2004). One key aspect of the

design is a preshaping step to prepare

the hand for the activity. This

required initial user input.

The physical device weighed 891g, with 15 DOF, and a maximum grip force of

65N. Each digit contributed approximately 8N, provided by 15 independent

flexible fluidic actuators, the hydraulic balloons described above (Schulz et al,

2005). Data on the compressor, the fluid used, and the power consumption were

not provided.

1.3.1.3 The MANUS Hand

Although also used to describe a hand developed at MIT, this MANUS hand is

attributed to a European and Asian consortium in Spain, Belgium, and Israel.

Like the aforementioned hands, it uses EMG data to control the system. This

hand, along with Dextra and the Southampton Hand, was developed in the late

Figure 0-2: Conceptual schematic of
the inflatable hydraulic balloon
mechanism (Schulz et al, 2001).

7

1990’s, and reflects the technology of the time. Only the first two digits and the

thumb are independently actuated. The digits use a crossed pulley system to

approximate a tendon. The thumb uses a Geneva Wheel mechanism to allow for

4 degrees of freedom. In addition, rotation about the wrist is possible through

the use of thin ultrasonic motors (Pons et al, 2005(a)). This gives the MANUS

device a total of 6 DOF in the hand (driven by 10 brushless DC motors), and 1

DOF (pronation-supination) in the wrist (through high torque ultrasonic

motors), for a total of 7 DOF (Pons et al 2005(a)).

1.3.1.4 The Dextra Hand

Dextra was developed by Dr. William Craelius at Rutgers University in the late

1990’s. The hand itself is actuated using commercially available servo motors.

All five digits are independent of one another, but curl with consistent trajectory.

The novelty of the Dextra system lies in the detection method. Rather than using

EMG signals, pressure information from the residuum is used to detect volition.

Figure 0.3: "Crossed Tendon Mechanism" schematic (Pons et al, 2005).

8

This overcomes the noise susceptibility of EMG, bypasses the cost of implanted

sensors, and demodulates the inherently frequency modulated information from

the nervous system. Formally, the method is referred to as “Residual Kinetic

Imaging” or a “Myo-Kinetic Interface” (Curcie, et al, 2001 & Phillips and Craelius,

2005). These signals are then used to construct drive signals for the prosthesis

itself, which is driven by servomotors, as mentioned. Application of this system

to actual amputees has proven successful, insofar as an amputee can play simple

tunes on a piano with minimal practice.

Figure 0.4: The Dextra Prosthesis System (Craelius, 2002). The top piece is the sleeve for
the residuum; at middle right is the rigid socket; at middle left is the microcontroller; the

bottom is the hand with servo actuators.

9

1.3.1.5 The Shadow Dexterous Hand

The Shadow Hand is a commercially produced hand from England. The

developers used pneumatic artificial muscles to give each digit 4 DOF. The

thumb is enhanced with another joint

and muscle, giving it 5 DOF. Further,

the wrist is actuated with two motors

(Shadow, 2005). These many degrees

of freedom very closely approximate

the DOF of the natural human hand,

making Shadow the robotic hand

design to beat. Unfortunately, the

system weighs 3.5kg, and the

compressor, controls, and actuator

take up too much space in the palm

and forearm to allow a socket for the

residuum.

The system has, however, found research applications in academia, and

applications for climbing and walking robots (Shadow, 2003). Speaking strictly

in terms of functionality, the Shadow hand meets and surpasses the criteria for a

prosthetic. Further, the controller for the hand is compliant with standard IEEE

protocols, namely IEEE 1394 “Firewire” (Shadow, 2004). This standardization

Figure 0.5: The Shadow Dexterous
Hand (Shadow, 2005).

10

makes the product marketable to a wide audience. However, the high weight

prohibits its use as a viable prosthetic.

1.3.1.6 Cyberhand

A group at the Scuola Superiore Sant’Anna in Pisa,Italy has also developed a high

degree of freedom manipulator for use as a prosthesis, which they dub the

“Cyberhand.” The approach of this design is to maximize the degrees of freedom

available in each digit by using a

separate actuator for each joint. Using

linear precision microdrivers based on

brushless DC motors with planetary

transmissions and lead screw drive

(Smoovy), the actuators can be placed

within the digit’s links. The system

also employs several sensors,

including Hall Effect sensors for

position, and force sensors on the

digits (Carrozza et al, 2002). In a

separate report (Carrozza, et al, 2006), Cyberhand’s actuation is described as one

similar to the Southampton hand (above), driven by pulleys along with actuators

by Minimotor, similar to the Smoovy unit with an added incremental encoder. It

is important to note that the Cyberhand digits are “underactuated” (Cipriani,

2006). This is to say that the number of actuators is less than the number of

Figure 1.6: Cyberhand grasping a plastic
cup.

11

degrees of freedom, to simplify control for the human wearer of the device

(Micera, et al, 2006).

In terms of the control method, the Cyberhand group uses pulse width

modulation (PWM) to drive the DC motors they use. These signals are generated

by Microchip PIC18F2431 processors, and employ supervisory control via

computer (Cipriani, et al, 2008). Communication between the PIC and the

supervisory computer is handled by RS-232 serial protocol (Cipriani, et al, 2006).

1.3.1.7 University of Victoria Biomimetic Artificial Finger

Bundhoo’s group at the University of Victoria (British Columbia, Canada) have

investigated and developed a biomimetic digit. This device features 4-bar

Figure 1.7: The biomimetic finger actuator developed by Bundhoo et al at the University of
Victoria (British Columbia). The white lines indicate the path of the shape memory alloy
actuators through the structure.

12

linkages for the joint construction, and shape memory alloy actuators. In

addition, they used what they term “PWM-PD” control, or pulse-width-

modulated proportional derivative control.

Using the linkage at each joint allows the finger joints to articulate properly, and

the shape memory alloy mimics tendons. The shape memory alloy material is

compliant, and springs are used to provide tension. Using PWM shows a direct

route for the control of the digit, as many processors, including those available

from Microchip (2008), have pulse width modulated output features. The

structure of the digit was constructed using solid modeling and rapid

prototyping, namely stereolithography (SLA).

1.3.2 Dynamic System Control

Broadly looking at control systems simplifies the discussion of the theories

behind them. Rather than classifying the actuators into their output categories

(force, motion, etc.), separating them based on internal characteristics (linear vs.

non-linear) allows for a more orderly coverage of the topic. Below, traditional

and modern control of linear systems is covered, as well as the use of adaptive

mechanisms, including neural networks and model reference adaptive control.

1.3.2.1 “Traditional” Control of Linear Time Invariant (LTI) Systems

Unfortunately, very few real world systems are linear. Many of these non-

linearities can be modeled through approximations as linear systems. If a system

can be modeled as a linear combination of inputs and outputs, and the

13

derivatives of the inputs and outputs, of the system, it is considered linear time

invariant (LTI). This linear model must take the form:

(1.3.1)

That is, the general form of an LTI system is a differential equation that is a sum

of the inputs and outputs and their derivatives. The solution of this differential

equation is best found using the Laplace transform. Particularly with regard to

derivatives, the Laplace Transform has the following property:

(1.3.2)

So, the Laplace Transform makes a differential equation in the time domain a

polynomial equation in the s-domain.

Transforming the model 1.3.1 from the time domain to the s-domain yields the

following result:

(1.3.3)

This is the general form of a polynomial of order M on the left side, and a

polynomial of order N on the right side. M is the “order” of the system, and the

difference (M-N) is the “degree” of the system. Factoring these polynomials

restates 1.3.3 as products rather than sums:

(1.3.4)

)0()()(yssYty
dt

d LT −→

∑∑
==

=
N

n

n

n

M

m

m

m sXsbsYsa
00

)()(

∏∏
==

−=−
N

j

j

M

i

i zssXpssY
00

)()()()(

∑ ∑
= =

=
M

m

N

n
n

n

nm

m

m tx
dt

d
bty

dt

d
a

0 0

)()(

14

Mainpulating 1.3.4 to isolate the product terms is considered the canonical form

for this equation:

(1.3.5)

Where the pi are the poles of the system, and the zj are the zeros of the system. In

this form, the quotient in 1.3.5 is the Transfer Function of the system. By

definition, the transform function is the Laplace transform of the impulse

response of the system.

The location of the poles and zeros of the transfer function are important in the

analysis of the system. If all the poles are in the left-half plane of the s-plane

(Re{s}<0), then the system is considered “stable,” meaning that for a bounded

input, the system will have a bounded output. If all the zeros of the system are in

the left half plane (Re{s}<0), then the system is invertible. Further, if all of the

poles and all of the zeros of the system are stable (i.e. in the left half plane), then

the system is said to be “minimum phase” (Porat, 1997, pp.262-263).

Fortunately, the control of linear time invariant systems is analytical, well

studied, and well established. Further, there are many methods for controlling

linear systems: Root Locus, Lead/Lag, PID, and State Space (Franklin et al,

2002).

∏

∏

=

=

−

−

=
M

i

i

N

j

j

ps

zs

sX

sY

0

0

)(

)(

)(

)(

15

For the following examples, consider the second order system model:

(1.3.6)

And, following the procedure above, the corresponding transfer function is:

(1.3.7)

Which, according to the above equations has zeros at s=-5 and poles at s=-

0.5±j3.1225.

The root locus is a plot of pole and zero trajectories on the s-plane (Laplace

Transform space) as a proportional feedback gain, K, varies. By specifying the

desired damping ratio and natural frequency or time constant and damped

frequency, one can choose the regions on the s-plane that satisfy the

specification, and choose K so the pole trajectory is in the desired section of the s-

plane.

)(5)()(10)()(
2

2

txtx
dt

d
tyty

dt

d
ty

dt

d
+=++

10

5
)(

2 ++
+

=
ss

s
sG

16

The Lead/Lag controller uses bode analysis to design filters to alter the phase

margin and gain margin of the system. Phase margin is approximated as 100

times the damping ratio, and gain margin is an indication of stability. A lagging

system has a low frequency pole and a high frequency zero, and changes the 0dB

crossing in the bode magnitude plot, which in turn alters the phase margin. A

leading system has a low frequency zero and a high frequency pole, and changes

the -180° crossing in the bode phase plot, which in turn alters the gain margin.

These two system types (leading and lagging) can be used individually or in

combination, leading to the general Lead/Lag controller philosophy.

-20 -15 -10 -5 0 5
-6

-4

-2

0

2

4

6
Root Locus of Sample Transfer Function

Real Axis

Im
a
g
in
a
ry
 A
x
is

Figure 0.8: Root Locus of the above transfer function.

17

Proportional-Integral-Derivative (PID) control is an approximation of Lead/Lag

control where the proportional gain (P) alters the gain characteristics, and the

integral (I) and derivative (D) gains alter the phase characteristics. Intuitively,

PID control can be seen as a three step process: 1. alter P to make the system

stable, 2. alter I to reduce steady state error, 3. alter D to improve the system time

response. The major pitfall in this method is that the value of the integral gain (I)

can make the system unstable, so there is usually a trade off between steady state

error and system time response.

-40

-30

-20

-10

0

10

M
a
g
n
itu
d
e
 (
d
B
)

10
-1

10
0

10
1

10
2

-135

-90

-45

0

45

P
h
a
s
e
 (
d
e
g
)

Bode Diagram of Sample Transfer Function

Frequency (rad/sec)

Figure 0.10: Bode Plot of the above transfer function.

18

1.3.2.2 “Modern” Control of Linear Systems

The above methods are considered “traditional” control, in that they use

frequency or Laplace data to design the controller. In both cases, an

approximation is made to move the poles and zeros of a “black box” system to

desired positions on the s-plane, or on the jω-axis. However, an algebraic

solution to deterministically and accurately place the poles would be preferred.

In addition to this desired pole placement, robust modeling of the discrete time

systems and development of associated controllers is also desirable. This

problem arose in the second half of the 20th century, and lead to the development

of the z-Transform, a corollary to the Laplace Transform, but for discrete time

systems. Jury provides the background mathematics, including the stability and

causality criteria in his work (Jury, 1964).

Converting from the continuous time models to the discrete time models can be

done by several methods (Phillips and Nagle, 1998). Among this are the bilinear

transform and pole reassignment. Bilinear transformation approximates the zero

order hold (ZOH) typically encountered in computer outputs. Pole reassignment

uses conformal mapping to translate the s-plane into the z-plane. The function

for this mapping is z = exp(sT), where z is the complex value of the pole on the z-

plane, s is the complex value of the pole on the s-plane, and T is the sampling

time in seconds. Essentially, this takes the stable poles in the s-plane (Re{s}<0),

and assigns them to the stable region in the z-plane (|z|<1), while incorporating

19

the sample time in the conversion. A graphical depiction of this property is

shown in figure 1.10.

State Space Controllers exist for both continuous and discrete time control

design. Rather than describing the outputs of the system (like a transfer function

or impulse response), the State Space describes the internal state of the system

through an input law (B) and an update law (A). The output is determined by an

output law (C). These matrices are used to form the continuous and discrete

state equations.

For continuous time systems, the state equations are:

(1.3.8)

(1.3.9)

For discrete time systems , the state equations are:

(1.3.10)

(1.3.11)

uBqAq +=&

qC=y

ukk B)q(A)q(+−= 1

)q(C kky =)(

Figure 1.10: Illustration of the conformal mapping z=exp(sT), showing the conversion of
the left half plane in the s-domain (left) to the unit circle in the z-domain (right). Green
areas indicate stability, red areas indicate instability. Adapted from Greenberg, 1998,
p.1280 #7.

|z|=1

z=exp(sT)

s z

20

The size of these matrices are determined by the system properties. For a system

of order N with V inputs and W outputs, the matrix properties are:

(1.3.12)

In other words, A is a square NxN matrix, B is a matrix with V columns and N

rows, C is a matrix with N columns and W rows, and q is a column vector with N

elements.

The members of these matrices can be found in at least two ways. First is to

generate the matrix members from the differential or difference equations

directly, specifying the state as a column vector of system variables and their

derivatives (for continuous time) or previous variable values (for discrete time).

Another method is to specify the members from the transfer function. Several

canonical forms for this exist, and methods for translating the s-domain and z-

domain values to the state space are known (Phillips and Nagle, 1998).

Restating equation 1.3.6 from above, and isolating the highest order term yields:

(1.3.13)

The dot notation indicates differentiation in time. From this form of the system

model, we can choose a state vector q and hence its derivative:

(1.3.14)

(1.3.15)

1NWNNVNN q,C,B,A ×××× ℜ∈ℜ∈ℜ∈ℜ∈

)(5)()(10)()(txtxtytyty ++−−= &&&&









=

)(

)(
)(

ty

ty
t

&
q









=

)(

)(
)(

ty

ty
t

&

&&
&q

21

The update law (A) describes the characteristic equation of the system and is

found through evaluation of 1.3.13, disregarding the input terms.

(1.3.16)

Restating this differential equation through a matrix-vector representation

yields:

(1.3.17)

Where the top row of the matrix in 1.3.17 follows from 1.3.16, and the bottom row

is an identity for the first derivative of y.

Note that the left hand side of 1.3.17 is the derivative of the state, and the column

vector in the right multiply on the right hand side is the state. The equation

1.3.17 can therefore be restated in matrix form as:

(1.3.18)

(1.3.19)

The determinant of A is the system’s characteristic function. So, knowing the A

matrix also specifies the denominator of the transfer function. A relationship

between the state space and the transfer function is given by:

(1.3.20)

For the example system, the center term of 1.3.20 evaluates as:

(1.3.21)

yyy 10−−= &&&
















 −−
=









y

y

y

y &

&

&&

01

101

x







+







 −−
=

1

4

01

101
qq

[]q10=y

BA)IC(1−−= ssG)(










+

−

++
=









−

+
=−

−

−

11

10

10

1

1

101
2

1

s

s

sss

s
s 1

A)I(

22

The input and output laws (B and C, respectively) specify the numerator of the

transfer function. The choice of B and C are not necessarily unique, and in the

model system, the following vectors satisfy the requirement for 1.3.20 to evaluate

to the transfer function:

(1.3.22)

(1.3.23)

Note that the result in 1.3.23 corresponds to the transfer function in 1.3.7.

Jürgen Ackermann first published detailed work on discrete control systems in

1972, with an English translation published in 1985 (Ackermann, 1985). His

work provides the mathematical foundation and proof for deterministic pole

placement. The methods he describes include pole placement for both

controllers and observers, given desired characteristic equations for each,

respectively.

The characteristic equation can be altered by applying a control law K. The

control law is a vector which selectively feeds back a sum the states and subtracts

the sum from the input. This so called “full state feedback” alters the

characteristic equation:

(1.3.24)

[]10,
1

4
=








= CB

[]
10

5

1

4

11

10
10

10

1
22 ++

+
=

























+

−

++ ss

s

s

s

ss

BBK)AIC(1−+−= ssG)(

23

Such an alteration is only possible if the system is “controllable.” A system is

controllable if and only if:

(1.3.25)

In other words, the controllability matrix must be invertible in order for the

system to be controlled using the control law K.

The method for finding K is Ackerman’s Method. Given the state matrices A, B,

C, and a desired characteristic equation (transfer function denominator) αc(s),

the control law can be found:

(1.3.26)

This method relies on having access to the internal state of the system. In the

case of a DC motor, for example, the state is the angular position and angular

velocity of the shaft. If the state cannot be directly measured, the state space

representation has the advantage of a construct called the estimator. Estimators

(also called observers) either estimate the current state or predict a future state.

Fundamentally, the observer approximates (estimates) the current state q:

(1.3.27)

(1.3.28)

Where A, B, C are the state space matrices, K is the control law, chosen as given

above, and G is an estimation matrix chosen such that:

(1.3.29)

[] 0BABAABB
1N2 ≠−

L

[][] (A)BABAABB100K
1N2

cα
1−−= LL

qq ~≈

yu GBqGC)BK(A1)(nq −+−−=+ ~~

() 0qq
t

=−
∞→

~lim

24

There are several methods for designing estimators, including Ackerman’s

Method, Least Squares Method, and the Kalman Filter (Phillips and Nagle, 1995).

In Ackermann’s method, the G matrix can be chosen if the system controllability

matrix is invertible:

(1.3.30)

If the controllability matrix is invertible, and given A, B, C, and a desired

characteristic estimation function αe(s), the control law can be found using

Ackermann’s method for observers, which is a corollary to Ackermann’s method

for controllers:

(1.3.31)

Ackerman’s Method is of special importance, because for a controllable

observable system, Ackerman’s method for pole placement allows the design to

use a specified characteristic equation, αc(z). Assuming that the control gains are

realizable by the control processor (or other controlling device), Ackerman’s

method will move the poles of the system to the desired location through an

analytical method.

0

CA

CA

CA

C

≠























−1

2

N

M









































=

−

− 1

0

0

CA

CA

CA

C

(A)G

1

1N

2
M

M

eα

25

The Kalman Filter is also of special importance, as it creates the optimal

observer. This does not necessarily mean the optimal response, but it is a

method to find the optimal controller in high noise or high interference

environments, taking into account stochastic phenomena. The goal in both these

methods, and for any other estimator, is to approximate the internal state of the

system based on the inputs, outputs, and previous estimation(s).

Control can also be accomplished through adaptive and intelligent systems.

Adaptive systems have the advantage of being able to compensate for unknown

or changing system parameters. Intelligent systems are a class of adaptive

systems that are often biologically inspired, and tend to have increased ability to

adapt to a variety of problems.

1.3.3 Adaptive Systems

1.3.3.1 Artificial Neural Networks

An artificial neural network (ANN) is a biologically inspired computing method

that mimics the operation of biological neural systems. Further, it exhibits

adaptation, connectionism, and high parallelism.

An ANN is comprised of many similar computing units sometimes referred to as

perceptrons, which typically have very similar response and operational

characteristics. The way in which these perceptrons are connected is referred to

as the network topology. After the network is implemented, it must be optimized

26

for the particular application at hand, generally referred to as the training phase.

Following the training phase, the network is ready for testing and operation.

In short, a neural network is fully specified by:

(a) the characteristics of the processing units

(b) the network topology

(c) the training rules.

1.3.3.2 ALOPEX – A Correlative Optimization Algorithm

Among several existing machine learning algorithms, ALOPEX, an acronym for

either the Algorithm for Pattern Extraction (Cooley & Micheli-Tzanakou, 1999)

or Algorithmic Logic of Pattern Extracting Crosscorrelations (Harth & Tzanakou,

1974), has been used in several applications of adaptive systems and machine

learning problems. At least four versions of ALOPEX exist. In 2004, Haykin,

Chen, and Becker surveyed several implementations of the ALOPEX algorithm,

describing it as the basis for several correlative machine learning algorithms they

classify as the “ALOPEX Class [of algorithms]” (Haykin, et al., 2004).

1.3.3.2.1 The “Original” ALOPEX (ALOPEX-74)

The original ALOPEX (Harth & Tzanakou, 1974, also Tzanakou & Harth, 1973)

was developed to determine visual receptive fields. This algorithm adjusts the

weights (or biases, as used in the 1974 article) based on the performance from the

previous weight change:

(1.3.32))()(nPnw jj β∆=∆

27

Where β is an adjustable constant, and Pj(n) is determined by the previous

change in global response and previous change in the local intensity. If the

direction of change of the global and local values are the same direction, then P is

1. If the direction of changes are opposite, then P is -1. If there is no change in

either the global or local response, then P is 0. This form of ALOPEX shall

hereinafter be referred to as ALOPEX-74.

1.3.3.2.2 ALOPEX-90

Another version of ALOPEX (which shall be referred to as ALOPEX-90)

developed in the early 1990’s uses the cross-correlation of the last weight change

to the last change in response to update the weights in the next iteration. Much

like ALOPEX-74, if the last weight change improved the response, then ALOPEX

continues changing the weights in the same direction, scaled by a learning rate

parameter (Cooley & Micheli-Tzanakou, 1998). In addition, additive noise is

used to prevent the optimization from settling in a local minimum, and push the

system to, ideally, the global minimum). Unlike ALOPEX-74, however, this

change is not discrete, but is calculated as the product of the last change in weight

with the last change in response. This accomplishes the same result, in terms of

direction, as ALOPEX-74. In ALOPEX-90, the magnitude of these changes

influences the change in weight. Rather than having discrete possible

magnitudes (in the case of ALOPEX-74 the magnitudes were -1, 0, or 1), the

magnitude is determined from the actual values, limited only by the

computational accuracy of the platform the optimization is run on.

28

Symbolically, ALOPEX-90 can be expressed as:

(1.3.33)

Where ∆Wi(k) is the change in weight Wi to be calculated, ∆Wi(k-1) is the last

change in that weight, ∆R(k) is the change in the global system response, γ is the

learning rate parameter, ri(k) is a zero mean unit variance stochastic process, and

σ is the standard deviation of the noise. ALOPEX will attempt to maximize R(k)

if γ is positive, and will attempt to minimize R(k) if γ is negative.

1.3.3.2.3 ALOPEX-94

In 1994, Unnikrishnan and Venugopal reported on development of an ALOPEX

algorithm (referred to here as ALOPEX-94) which combines the stochastic

aspects of ALOPEX with simulated annealing. In ALOPEX-94, rather than

update the weights using deterministic information as in ALOPEX-74 or

ALOPEX-90, the weight change is stochastically determined. The next change in

weight is simply:

(1.3.34)

Where δj(n) is an non-stationary random variable, with two possible values +δ

(with probability Pj(n)), and –δ (with probability 1-Pj(n)). The probability

measure Pj(n) is given by a sigmoid function:

(1.3.35)

Where T is a “temperature” parameter for the simulated annealing aspect of the

algorithm. The numerator in the exponential is given by:

(1.3.36)

)()1()1()(krkRkWkW iii ⋅+−∆−∆=∆ σγ

)()(nnw jj δ=∆

)/)(exp(1

1
)(

Tn
nP

j

j ∆−+
=

)()()(nRnwn jj ∆⋅∆=∆

29

By inspection, 1.3.36 is a cross-correlation. The average of the cross-correlation

over all j is used to normalize T for each iteration, by setting T to the average

correlation. However, unlike ALOPEX-90, where the cross-correlation provides

a deterministic influence on the change in weight, in ALOPEX-94, the cross-

correlation influences the change in weight indirectly, by setting the probability

for the non-stationary random variable’s result.

1.3.3.2.4 ALOPEX-99

In 1999, Bia developed 4 additional forms of ALOPEX. First is a simplified form

of ALOPEX-94 which eliminates the T parameter all together, and is invariant to

the number of elements to be optimized. This variant on ALOPEX-94 uses a

different correlation function that eliminates the simulated annealing. Also,

rather than influence the correlation by the magnitude of the last weight change,

only the sign of the weight change is used. This correlation is given by:

(1.3.37)

The other three forms, denoted here and by Bia as ALOPEX-99/A, ALOPEX-

99/B, and ALOPEX-99/C, integrate a “forgetting” influence which reduces the

dependency as time passes. This means that the influence of a previous weight

update upon the previous weight updates decreases with time. This “forgetting”

function (Bia, 2000) is:

(1.3.38)

∑
=′

=′

′− −′−=
nn

n

nn nXnS
2

)1()1()(λλλ

)1(

)(
))(sgn()(

−∆
∆

∆=
nR

nR
nwnC jj

30

Where λ is a parameter that describes the rate of “forgetting.”

ALOPEX-99/A applies this to the numerator of 1.3.37, ALOPEX-99/B applies this

to the denominator of 1.3.37, and ALOPEX-99/C applies this to both the

numerator and the denominator of 1.3.37. Both ALOPEX-99/B and -99/C

showed improved performance over ALOPEX-94, but ALOPEX-99/B had a larger

decrease in training time.

1.3.3.2.5 PSO-ALOPEX

An alternative optimization algorithm, particle swarm optimization (PSO) was

integrated with ALOPEX-94 in an effort to find an improved algorithm (Li, et al,

2005). The PSO algorithm is similar to ALOPEX, in that it has stochastic

components. However, where ALOPEX has no momentum (the weights changes

can vary greatly from one iteration to the next), the PSO algorithm has a

momentum term which smoothes the changes in weights. Symbolically, PSO can

be written as:

(1.3.39)

Where ω is an inertia term conferring momentum, the r terms are uniform

random variables, the c terms are constants, wj(n) is the value of the weight at

iteration n, Lj is the best response for wj, and G is the best global response.

Essentially, PSO modifies a given weight given the previous value of the weight,

scaled by the momentum term. Then, a randomly weighted sum of the error

between the current weight value and the best local weight value and the error

)]([)()]([)()()1(2211 nwGnrcnwLnrcnwnw jjjjj −⋅+−⋅+=+ ω

31

between the current weight value and the weight value associated with the best

global response is added to the result of the momentum term.

PSO-ALOPEX combines PSO with ALOPEX by interleaving the two procedures.

Following initialization, the weights are moved according to the PSO algorithm.

Then, in an effort to direct the system to the global minimum, ALOPEX-94 is

applied to update the weights. This scheme improves PSO by using the features

of ALOPEX to escape local minima.

1.3.3.2.6 Applications of ALOPEX

Though ALOPEX can be used to optimize any system, it is generally used in

conjunction with an artificial neural network. When used to train a neural

network, ALOPEX is used as the training rule, which updates the connection

weights in an effort to minimize the error.

ALOPEX has been used for adaptive control (Venugopal, 1992). In this particular

application, the neural network used the desired position and actual position as

inputs, was optimized by the error between the desired and actual values, and

produced an output for input to the system dynamics. This implementation is

identified by the authors as direct MRAC using a neural network.

1.3.3.3 Model Reference Adaptive Control

Model Reference Adaptive Control (MRAC) is an adaptive method for controlling

a system, and is based on an instantaneous comparison of the system output to a

model output reference. Using this error, the feedback gains are modified to,

32

ideally, have the system track the model response. These approaches to adaptive

control first appear in the literature in the 1970’s (Goodwin, et al, 1979 and

Landau, 1979). Landau covers the mathematics of MRAC, sometimes referred to

in his work as MRAS (Model Reference Adaptive Systems), extensively, including

some period case studies.

MRAC also has the additional advantage of compensating for uncertain or

unknown system parameters. Tao (1993 & 1997) holds from Narendra (1989)

that given a stable system of known degree, MRAC control can provide closed

loop tracking. Miller (2003) states this concept somewhat differently, stating

that the assumptions for successful MRAC control require that the system to be

controlled is minimum phase (all poles and zeros of the system transfer function

are stable in the appropriate transform space)(Porat, 1997), at least an upper

bound on the plant order is known (as in Tao, 1997), and an upper bound on the

relative degree is known. Application to compensate for such unknown and time

varying parameters in DC motor drives specifically has also been proven

successful (Crnosija, et al, 2002). For non-linear systems with uncertain

parameters, MRAC is also applicable, and guarantees stability (Hayakawa, et al,

2008).

Sunwoo, et al (1991) used MRAC for control of vehicle suspension. The problem

the confronted was control of an active suspension system for improved ride

comfort and vehicle handling. By using MRAC, they simulated a quarter car

suspension. The controller caused the system to track a reference model, chosen

33

in accordance with desired suspension parameters and performance

characteristics.

MRAC control of manipulators (Stoten, 1990), and servo control (Ehsani, 2007)

are numerous. In addition to these “direct” MRAC methods, additional methods

incorporating artificial neural networks and fuzzy systems (Cheung, Cheng, and

Kamal, 1996) have also been used.

Also, additional implementations of MRAC include the use of Fuzzy Systems in

MRAC (Al-Olimat, et al, 2003), Fuzzy Systems with Neural Networks (so called

NeuroFuzzy Systems) for polymerization process control (Frayman and Wang,

1999), and use of Neural Networks to control non-linear systems within the

MRAC framework (Yamanaka, et al, 1997).

1.3.3.4 Neural Network Adaptive Control not of the MRAC Class

In addition to modification of the MRAC principle, several adaptive systems have

been successfully employed that utilize Neural Networks but do not operate on

the MRAC principle. Artificial Neural Networks (ANN) lend themselves to this

application given their parallelism, adaptability, and interconnected nature. A

thorough treatment of the subject with regard to robotic manipulators is

provided by Ge, et al (1998). Also, application case studies using a variety of

computational intelligence techniques, including pH control in chemical reactor

systems, has been collected by Karr (1999). Approaches within this class include

use of the neural network within the signal path as the adaptive element

34

(Bertoluzzo, et al, 1994), use of a neural network to modify controller parameters

(Hu, et al, 1992). Applications include the control of aircraft (Scott & Collins,

1990) and 2 degree of freedom planar robots (Meng and Lu, 1993). Also, spiking

neural networks have been used for control of a 2-D robot arm mimicking the

action of the human arm (Rowcliffe & Feng, 2008).

1.3.4 Sensors

1.3.4.1 Position Sensors

Detecting position is absolutely necessary for closed loop control of any type of

prosthetic. Rotational linear potentiometers have been used for decades as

reliable position sensors. However, they can be noisy or bulky and introduce

mechanical resistance to the system. Optical encoders operate like

potentiometers without the added mechanical resistance. Also, the encoder can

be shrunk to very small sizes through machining or micro-fabrication.

A third option is the Hall Effect sensor, which detects misalignment of magnetic

fields. A static magnet creates a B-field, and the movable sensor sheet, carrying a

small electric current, detects its position relative to the static B-field through the

“Hall Effect.” The Hall Effect describes the disruption of current flow in the

sensor due to the B-field. The result is a potential difference across the sheet: the

Hall Voltage. This voltage peaks when the current flow is perpendicular to the B-

field, and is zero when the current flow is parallel to the B-field. Such sensors

have been proposed for use in prosthetics by the MANUS group (Pons et al,

35

2005(a)), the Cyberhand group, and for a broader position sensor by several

others, including DeLaurentis (2004).

1.3.4.2 Force Sensors

There are several methods for detecting the force on a surface. The

aforementioned FSRs (Wininger, 2008) and pneumatic sensors (Phillips &

Craelius, 2005 and Abboudi, et al, 1999) used by Craelius are both viable options,

as are ultrasonic sensors and strain gauges. A couple minor issues arise,

however. FSRs have non-linear response, which introduces problems for

feedback control design. Strain gauges are linear in response, but are subject to

hysteresis. Ultrasonic sensors are not passive (they need to generate an

ultrasonic signal) and are also not linear (Burdea, 1996). Also, the Hall effect can

be used to detect force (Pons et al, 2005(a)).

As mentioned above in the controls section, very few real world devices are

actually linear. This sample of sensors is an illustration of that. However, these

non-linear phenomena are in the measurement values, not in time response. The

sensors can be linearized through computation or lookup tables in the control

processor (Medrano-Marques & Martin-del-Brio, 2001). Depending on the non-

linearity to be compensated for, sometimes the computation approach is favored

over look up tables, and vice versa in other cases.

Sensor non-linearities can also be compensated without a priori information

about the sensor through neural networks (Dempsey, et al, 1996). This is due to

36

the adaptive nature, high information capacity, and non-linear features of neural

networks, as outlined above. Often these networks are multi-layered perceptrons

with few computational units to minimize the program space the neural network

occupies in the memory of an embedded processor Medrano-Marques & Martin-

del-Brio, 2001).

1.3.4.3 Slip Sensors

When considering an automated grasp, knowing the force in the grasp is not

enough information. The control system also needs to know something about the

object’s response to the force, either through the rate that the force is changing,

or the motion of the object against the grasp. Piezoelectric sensors are very good

at measuring force rates, and this information can be used to infer slip (Burdea,

1996). More recently, however, a

more direct integrated device was

fabricated by the Southampton

group.

The concept is rather

straightforward. Rather than

measuring force and slip with

separate sensors, the Southampton

group integrated the two onto a

single silicon chip. Also, rather than

measuring through a bulky piezoelectric sensor, the slip is sensed through a

Figure 0.11: Detail of Southampton
integrated slip sensor. The three vertical bars
are thick film force sensors, the rectangle to the
right is the slip sensor. (Cranny et al, 2005).

37

MEMS (MicroElectroMechanical System) device (Cranny et al, 2005). Further,

this small device included a temperature sensor for haptic feedback to the user.

1.3.4.4 Feedback

The above force and slip information can be fed back into the automated control

system to provide additional information to control the grasp (Burdea, 1996 and

Pons et al, 2005(a)). This can lead to automated grasping, which the

Southampton group highlighted as a feature of SAMS (Kyberd et al, 1998 and

Kyberd et al, 2002). The user would not have to consciously control the grasp

because the automated controller would simply change the hand’s configuration

or apply additional force to the target object to prevent slip.

However, some feedback to the user would be desirable. This has been done in

virtual reality applications (Burdea, 1996), including a force feedback glove for

interaction with a virtual environment (Winter & Bouzit, 2007). To a lesser

extent, such feedback has been used in prosthetic applications (Pons et al,

2005(a)). The MANUS group used vibration devices to feed the user frequency

modulated tactile feedback on the force generated by the hand.

1.3.5 Detecting Volition

Detecting the will of the user is central to the design and use of the prosthetic.

Unlike robotic systems, prosthetic systems need to be intuitive so a non-expert

user can command the device. Ideally, this would involve direct sourcing from

either the motor neurons or muscles that control the hand. Though this has

38

never been done successfully, several methods involving the muscles have been

previously implemented (Hudgins and Parker, 1993).

In addition, sufficient processing power needs to be on board such a device to

handle the detection of volition, along with control of the actuators. Generally

speaking, the slower 8-bit architectures previously available were sufficient for

control of the actuators, but were overtasked if required to handle volition

detection. Recent advances in microcontroller/microprocessor technology have

made them increasingly adaptable and customizable, which opens new options in

prosthetic control design (Heim, 2005).

1.3.5.1 Detection through EMG

Detection by electromyography (EMG) is

by far the most common. The MANUS

prosthesis (Pons et al, 1999, 2005(a),(b)),

the hydraulic FZK hand (Schulz et al,

2005), and the Southampton Adaptive

Manipulation Scheme (Kyberd et al, 1998)

all use EMG information to discern what

the user wishes to do. The MANUS

method, in particular, uses pseudo-

interleaved EMG samples to determine

which motion the hand should perform.

The user activates muscles in simple patterns to control the device (Figure 1-13).

Figure 0.12: Example EMG time
course for control of the MANUS
device. This code "121" activates a grip
mode with initial pressure of 251
grams, and grips up to 500 grams total
pressure or until the user commands a
stop (Pons et al, 2005(b)).

39

This requires extensive training, and loses some of the natural information the

body communicates, replacing it with a machine “language” to control the device

(Pons et al, 2005(b)).

Not all EMG systems use this very specific command method. Some have been

proposed, that use classifiers to perform pattern recognition on the data to

extract information. Hudgins and Parker used an artificial neural network in

1993. Also, the Southampton Adaptive Manipulation Scheme uses untrained

EMG data as an input and Artificial Neural Networks as a classifier (Light et al,

2002).

The FZK control system used EMG data from two sensors and a Bayesian

classifier to control the grasp (Figure 1.12). As mentioned above, the hand has 15

degrees of freedom, making it one of the models to be outdone in prosthetic

development (Schulz et al, 2005). A similar hand has also been applied to

assistive robotics by the FZK group (Kargov et al, 2004).

Figure 0.13: State machine diagram for control of the hydraulic FZK hand (Schulz et al,
2005).

40

1.3.5.2 Detection through Imaging

The other major class of schema for detecting volition is to “image” the residuum.

This image is constructed from a map of the pressures exerted on the surface of

the limb, which is a projection of the muscle activity beneath the skin. The

Craelius group has had much success with this method, beginning with a

pneumatic sensor system in 1999 (Abboudi et al, 1999). This system was

specialized to detect simple

motions, tapping and grasping,

and was robust enough that an

amputee could play a few notes

on a piano with the device. In

2001, Flint and Curcie with

Craelius reported on a method

for developing linear operators

for control using the pneumatic

sensors (Curcie et al, 2001).

More recently, the pneumatic

sensors were replaced with force sensitive resistors (FSR) (Flint et al, 2003).

The FSR based devices performed comparably to the pneumatic device. In 2005,

the validity of the sensor data was verified using MRI data in conjunction with

the placement of the FSR sensors. This showed that the areas where the FSR

detected movement coincided with the location of the corresponding muscles in

Figure 0.14: The imaging sensor concept,
whereby the sensor detects the subcutaneous
motion (Abboudi et al, 1999).

41

the residuum (Phillips and Craelius, 2005). In all of the Craelius group’s work,

linear operators were used to classify the pneumatic or FSR information.

1.4 Objectives, Goals, and Problem Statement

1.4.1 Problem Statement

While the existing technology does provide more functionality than the hooks

and claws that preceeded them, there are several improvements that can be

made.

In terms of mechanics, development of manipulators with each joint actuated

may provide better gripping ability and more potential hand configurations.

While the FZK and Shadow devices do actuate all joints, they are too heavy for

use as prostheses Also, a low cost method of actuating each of these joints with a

low replacement cost transmission would make hardware more accessable.

Specification of the trajectory of motion would allow for varying of the closing

rate of the hand. Many of the existing prosthetic hands do specify the trajectory

via the mechanics. However, ability to vary the trajectory of each digit via

programming would customize each device and each motion for the user.

Use of sensor fields, optimized by algorithms, would allow for adaptive sensing of

user input or surface force features. This would allow for updating of the system

to detect volition or sense force even with variations over time. These variations

include changes in the positions of the sensors, changes in user behavior

42

patterns, and changes in user physiology (e.g. muscle atrophy). Such

computationally intelligent methods would make a more robust system, which

would in turn reduce the need for maintenance and adjustment of the system

hardware and software.

1.4.2 Objectives

The following are the objectives of the project:

1. Develop a high degree of freedom device, to mimic the functionality of an

in vivo natural human digit.

2. Develop a method to control the device given the angles of the several

joints as inputs.

3. Investigate methods for varying the response of the device to allow for

specification of the trajectory, desired position, and/or speed of response.

4. Develop a method for optimization of high dimensionality sensor grids

over spatial EMG fields.

1.4.3 Goals

Since this device is intended to be used as a manipulator in a prosthetic system,

certain size and weight restrictions come into play. Principally, these are:

1. Sufficient degrees of freedom to accomplish performance comparable to

the hand.

2. Weight commensurate with use on an amputee.

3. Force generation sufficient to mimic the hand.

43

Given these three restrictions, the full hand device will have the following

constraints:

Weight <1kg (target 850g)

Degrees of Freedom >15

Minimum Total Grip Force 50N

For a single digit, these values are:

Weight <100g

Degrees of Freedom 3

Minimum Total Grip Force 10N

1.4.4 Chapter Summary

The following chapters present work in pursuit of the goals mentioned above.

Chapter 2 presents the development of a single digit manipulator along with the

associated electronic control hardware. In Chapter 3, the reader will find the

development of models for the motor and a single joint, which is shown to be

non-linear. Application of Model Reference Adaptive Control and Artificial

Neural Network Model Reference Adaptive Control to the non-linear single joint

model is covered in Chapter 4. A method for adaptive optimization of sensor

arrays is presented in Chapter 5. Finally, conclusions from the work and

suggestions for future topics can be found in Chapter 6.

44

Chapter 2: Materials and Methods

2.1 Design Approach

2.1.1 Mechanical Design

The device itself is a high degree of freedom (DOF) device, approaching the

natural present in vivo. In addition to the three degrees of freedom in the wrist,

Shadow Robot Company specifies 4 degrees of freedom for a digit: the distal

joint, the medial joint, the proximal joint, and the left-to-right (abduction-

adduction) of the digit at the proximal joint (Shadow, 2003). Each digit in this

design has 3 joints (distal-medial, medial-proximal, proximal-metacarpal).

When applied to the complete artificial hand, abduction-adduction of the digits

could be achieved through a single actuator for all 4 digits. A thumb would have

4 joints (distal-medial, medial-metacarpal, metacarpal-carpal abduction-

adduction, and metacarpal-carpal rotation), though this particular design has not

be explored in depth. The wrist would have 2 motions (flexion-extension and

rotation). Each of these joints in the digits are actuated independently.

 Position Sensor

(Potentiometer)

Force Brake

Extension tendon

Flexion tendon
Phalanx DC Motor

Worm Gear

Drive

Figure 2.1: Proposed Mechanical Configuration of the Digits.

45

Similarly, for the thumb, palm, and wrist applications, independent actuators

should be used. This provides for a total of 19 degrees of freedom (DOF).

Such a high DOF device may not be absolutely necessary to reproduce the

motions of the hand. However, it does allow for a wide variety of hand positions,

which allows for flexibility in programming and control in future investigations.

It is prudent to design with additional DOF and later discover that less freedom is

needed than to under-design and over-restrict the device.

This is why each joint is actuated. While performance comparable to that of the

human hand could be achieved using fewer actuators, by actuating each joint

many conformational options are made available. For example, gripping of a

square object with an under actuated hand would cause areas on the palmar

surface of the digit to lose contact with the object.

This, however, is not what happens in biology. Rather, since each joint in a

biological hand is actuated, the digit conforms to the square object by having one

sharply angled joint at the corner of the square with other straighter joints on the

sides of the square. This means that actuating each joint, allowing for the

maximum degrees of freedom, offers potentially better grip than an under

actuated device.

46

2.1.2 Actuation

Our device design uses separate actuators for force and motion. Many, if not all,

of the existing devices use single actuators to generate both motion and force at

the same time. However, there are times when the system is generating a lot of

force when only motion is required, such as closing against air. Conversely, there

are times when force is needed with little motion, for grasping heavier objects.

This results in two disadvantages: energy loss and increased bulk.

Energy is not truly “lost” of course. Rather, instead of consuming energy to

produce a productive and useful action, the actuator draws excess energy. For

example, if DC motors were used as the sole actuator type, they would have to be

fairly large to supply the necessary torques. However, this means that the motors

would draw excess current to overcome the internal resistance of the motor.

These large motors would be heavy, possibly too heavy for a human to

comfortably use. There is also a possibility that the DC motors capable of

generating the necessary torque would simply be too large to fit in an

anthropomorphic hand. The size and weight restrictions on a biomimetic

prosthetic also rule out other actuators, such as the pneumatics used by Shadow

(Shadow, 2004), and the hydraulics used by the FZK group (Kargov, 2005). In

both cases, the valve manifolds and compressors simply weigh too much and take

up too much space to make them viable options for prosthetic actuation.

47

To solve these two issues, the force and motion actuation is separated. Motion in

the hand is driven by low power, low cost

(~$20) DC motors with a novel wire-

based transmission. Force would be

driven through high power force brakes in

future studies. The small, low power, low

torque DC motors position the hand.

When force is needed, as in a grasp, force

brakes, separate from the DC motor

positioning system, will apply tension to

artificial tendons along the axis of each digit.

These force brakes could be one of several types. A particularly attractive option

is magneto-rheological fluids (MRF), which have been used in automobiles and

are available in packages appropriate for this prosthetic application. Previous

work makes these smart material actuators a promising option for this

application. One tested MRF piston has been able to support a weight of 8.85N

drawing 400mW (330 mA@1.2V) of electrical power (Winter, 2006).

2.1.3 Control System

In order to provide for closed-loop feedback control, sensors to detect position of

the joints are necessary. Further, for task-level control, force and slip sensors are

necessary. This means that the device has two separate sensor systems that will

Figure 2.2: MRF Piston. Piston
cavity and mount (larger section to the
left) is ~1.5” in length.

48

be integrated when task-level control commands the feedback control to position

the hand.

2.1.3.1 Position Sensors

For basic state space control of a second-order system, like a DC motor, the states

are the position and velocity of the joint. Position values are obtained through

ratiometric Hall Effect Sensors (Allegro Microsystems model A1301). Detecting

velocity is substantially more difficult, as a tachometer of some sort would have

to be mounted on each joint. This is space prohibitive. Rather than measure the

velocity, an observer/estimator would be used to estimate the position and

velocity of the system, knowing only the position.

2.1.3.2 Task Level Sensors

Although prehensile positioning of the hand can be done through open-loop

commands, the actual grasp needs to be a much more controlled motion. Ideally,

the prosthetic device should be able to crush cardboard or aluminum cans, while

still being able to hold an egg without cracking it. Previous proposals suggested

commanded user inputs, like EMG (Pons, et al, 1999, 2005(a),(b)), switches

located under the foot (Carrozza, et al, 2005), or other devices to control the force

produced. Also, vocal commands could conceivably be used to provide command

information. In the current approach, rather than deal with these extra inputs,

the Task Level Control System grips the object so there is no slip when force is

present.

49

Force can be sensed through Force Sensitive Resistors or strain gauges mounted

on the fingers and palm of the device, and slip can be inferred by analyzing the

changes in force patterns. Analysis involves detection of the change in the force

pattern, which may be detected through automated feature extraction and

pattern recognition. This will automate the application of grip force and apply

the minimal force necessary to prevent slip. Control of the level of force, and the

pattern of force application will be done using computational intelligence

methods, including fuzzy systems and possibly neural networks.

Should the user want to apply more force (to crush the can or egg, for example)

additional user input is required. This is another part of the computational

intelligence methods mentioned above. However, for simple grasping, turning,

lifting, and hand shaking, the force application would be certainly automated.

2.1.4 Fabrication

The hand itself has been fabricated using modern techniques. Initial designs

were made in solid modeling programs, namely Autodesk Inventor and Autodesk

Mechanical Desktop, to allow for easy alterations during the design phase. These

designs were then fabricated using Rapid Prototyping technology (available

through the Rutgers University Mechanical Engineering Department). Fused

deposition modeling (FDM) was used to produce the several links for each digit.

However, technologies, namely stereolithography, have the ability to produce a

complete hand, perhaps fully assembled. Actuators and control sensors (covered

50

above) have been mounted to the device and integrated with a control system in a

self contained microcontroller to control a digit.

2.1.5 Uniqueness

Though each of the above technologies: separation of force and motion actuation,

use of MRF as a force brake, state space feedback control, force feedback control,

adaptive control, and automated grasp have been used successfully for other

applications, they have not been integrated into a single device. As was

discovered in the literature review, no prosthetic device for the hand has the

dexterity of the proposed device nor do they exhibit the aforementioned actuation

and control paradigm.

2.2 Design Results

This work has been developed, beginning in October 2005 and ending August

2008. Rather than spend money and material on physical prototypes, much of

the initial design was done in virtual environments and simulators.

2.2.1 Mechanical Design

To date, there have been 5 evolutions of the finger link designs, beginning with a

center jointed finger and concluding with the current modified hinge jointed

finger. The hinge joint is advantageous because it allows room for the motor and

drive train above the joint, and mimics the joint of the biological hand more

effectively. Although the natural human hand is roughly center jointed, it has fat

pads on the palmar surface. Viewing the closing of a digit around an object not

from the perspective of bone position, but rather from the surface conformation

51

Figure 2.3: Initial Finger design (left) and fifth evolution of the digit design (right).
Mechanical simplification and relocation of the axis of rotation lead to the current hinge like
device.

demonstrates why the hinged design more closely reproduces the in vivo

mechanics.

Dimensioning of the hand was based on measurements from one experimenter’s

hand. This was used as a starting point for the overall dimensioning.

Manipulation in solid modeling environments (namely Autodesk Mechanical

Desktop) allowed adjustments to these initial dimensions without rebuilding a

physical prototype.

52

Through this manipulation, and some analysis, we discovered that the length of

the medial link of the digit is the critical dimension for the design of the hand. In

fact, this digit had to be lengthened from the anatomical measurements to

accommodate the length of the motor and drive system. In the initial designs,

this made the medial link longer than 32 mm. In the final design, the medial link

is 27 mm long.

The cross section was also modified from the original designs. Rather than use

an intuitively neat oval shape, the final design uses arced sides with flats on the

Figure 2.4: Examples of Detail Available Through Solid Modeling. Above are renderings
and detail of the drive system from the first design, which has been reproduced in the final
design. Left is the view from the palmar surface. Center is detail of the fork mechanism
and spindle on the proximal link. Right is detail of both spindles and the axle holes on the
distal link.

53

palmar and opposing surface. This more closely resembles the cross section of

the anatomical digit, with a wider palmar surface than top surface.

Once this new first digit design was complete, it was replicated with alterations to

the length of each link to form the phalanges. The cross sections of the digit were

not changed. Although the cross sections of the digits of the natural hand do vary

slightly, the cross section was reused to simplify design. The variations are so

small that the benefit from using identical cross sections outweighs the loss of

replication. Further extrusions to the distal link of each digit will make the tips of

the mechanical finger more rounded like a natural human finger.

2.2.2 Motors

The device itself, as well as the kinetic models discussed below, is driven by

Solarbotics geared DC motors manufactured by Sanyo. These motors are

sufficiently small to fit inside the shaft of the modeled digit, yet strong enough to

provide up to 800 g-cm (or 7.84 N-cm) of torque. In addition, a higher torque

model, the GM-14a with nearly 5 times the torque of the GM11 is available from

Solarbotics. Both motors have the same outline and dimensions. The GM11 was

used for the distal joint, while the GM14a motors were used for the other joints.

Although the complete transfer function of the motor could not be found from

measurements alone, approximations can be used to determine an estimate of

the motor transfer function. The motor torque constant, armature resistance,

54

and damping constant are specified by the manufacturer on their data sheet.

This allows for a partial determination of the time constant for the motor.

The generic transfer function of a DC motor is well known and given by several

sources, including Phillips and Nagle (1995). A DC motor exhibits an exponential

rise in speed, meaning it can be fully

characterized by a time constant alone, if the

inductance of the armature can be considered

negligable. Obtaining position from this transfer

function is done through simple integration, or

multiplication by 1/s in the Laplace domain. For

both speed and position, the motor can be completely described by a time

constant. The formula for this time constant is

BTa

a

KKBR

JR

+
=τ

where J is the total rotational inertia, B is the total damping due to friction, Ra is

the armature resistance, KT is the motor’s torque constant, and KB is the motor

damping constant (which converts speed to torque based on motor

characteristics). Calculations yield an approximate time constant of 16.3

milliseconds, without load or significant drag (i.e. a free turning motor). As can

be seen from the formula for the time constant, the total rotational inertia and

damping friction are significant factors in the calculation. These values have not

been empirically determined for our model.

Figure 2.5: The Sanyo 12GN-
0348 geared DC motor. Type
NA1S has 76:1 reduction.

55

2.2.3 Sensor Tests and Physical Model

A kinetic model was developed in Mechanical Desktop and then fabricated using

Fused Deposition Modeling (FDM). These parts are self similar links in a system,

making fabrication very straight forward and efficient. Using a motor to drive the

rotation of the model, and a Hall Effect sensor to track the position allowed the

demonstration of motor control.

The single joint FDM kinetic model (discussed further below) has a range of

motion of 120 degrees. The digital acquisition values range from 130 to 170 with

8-bit A/D conversion. These digital values can be proportionally aligned to

analog values. Viewing the digital values as a linear quantization of the supply

voltage, calculations show that the theoretical output voltage range from the

sensor is 2.549V to 3.334V. Observations of the sensor output voltage showed a

range of 2.427V to 3.134V, indicating a non-linearity in the A/D converter. This

non-linearity is possibly a constant offset intrinsic to the sensor. It has not

impacted the ability to control the system.

Figure 2.6: Kinetic model for testing the control system. Left is a side view, center is a top
view, right is detail of the Hall Effect sensor. The Hall Effect magnet is the brown circle, the
small SIP package is the sensor itself.

56

2.2.4 Embedded Platform Single Joint Control

Fundamentally, the problem at hand is one of replication. The ability to control

one joint is central to the control of the entire device. A USB-enabled

microcontroller, specifically a PIC18F4550, was programmed to control a single

motor. A Hall Effect sensor provided an analog angular position signal, while a

pulse-width modulation (PWM) module was used for motor drive.

The processor was programmed for

two modes of operation: constant

velocity drive and proportional

feedback control. The constant

velocity drive moved the joint to

the desired angular position and

then stopped. The proportional

feedback control used a traditional

feedback, where the drive signal

was generated through proportional amplification of the error signal.

Control commands were provided by a C++ program running on a laptop (Dell

Latitude D620, Core Duo Processor, 512MB Ram). The laptop communicated via

USB to command the PIC18F4550 to control the motor in a specified way. The

PIC processor then recorded 1 second of data, sampled at 180Hz (determined by

calculation). This sampling rate was specified by setting an internal timer’s width

(in bits) and the associated prescaling hardware to cause an overflow 180 times

0 20 40 60 80 100 120
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Hall Effect Sensor Linearity

Position (degrees)

S
e
n
s
o
r
O
u
tp
u
t
(V
o
lt
s
)

Observed

Calculated

Figure 2.7: Hall Effect sensor linearity. Top
line is theoretical output, bottom line is observed
voltage.

57

per second. Upon overflow, a hardware flag is set by the processor. Then, on the

next program loop, a conditional statement branches the program to store a data

point. Polling in this way, rather than interrupting the program on each timer

overflow, does lead to a potential variation in the sample rate. However, the

potential variation is much smaller than the sample interval, and can be assumed

to be negligible.

Each data point was the MSB of the A/D conversion result (the PIC18F4550 has

10-bit A/D resolution; the two LSbs were ignored). This 180 byte array was then

retrieved by the laptop for plotting and analysis. Upon the user’s USB command,

the processor, using the Microchip USB framework, packages the data into a

standardized packet (covered below in 2.2.6). A USB-standard ping-pong

communication protocol is used to return the data, ensuring no collisions occur

and the data is not corrupted. Three such packets are used to transfer all 180

bytes of data. The PC then stores the data in a text file, for later plotting and

analysis.

In both cases, data was collected, converted from digital values to real position

values (in degrees) by scaling the A/D result based on the observed positions.

Using linear interpolation, defining the clockwise-most position as 0 degrees, and

the counterclockwise most position as a maximum, the corresponding A/D

results are used as the scaling parameters. The data were then digitally filtered at

45Hz. This was done through a 16 tap low pass FIR filter specified by MATLAB

function 'fir1’ with cutoff frequency 0.5π, where π is the Nyquist Rate, or one

58

half of the sampling rate. While ‘fir1’ has a windowing option to reduce

stopband ripple, no windowing function was used.

The filter values were then

zero padded out to the

length of the data, and

filtering was performed

using FFT multiplication.

The first 25 points of the

filtered data were zeroed to

compensate for filter “start

up” effects and the phase

shift of the filter. Using an FIR filter limited distortion because FIR filters

generated by fir1 are RCSR-GLP: Real Causal Stable Reversible with

Generalized Linear Phase (Porat, 1997). The linear phase shift can be seen by

observing the x-axis shift of noise around 60 degrees at times 0.2sec and 0.35sec.

Prior to filtering, in all cases the signal to noise ratio was at or below -60dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

time (seconds)

p
o
s
it
io
n
 (
d
e
g
re
e
s
)

Comparison of Fitlered and Unfiltered Data, Proportional Control (Kp = 24)

Raw Data

Filtered Data

Figure 2.8: The Effect of Filtering Data. Line to the
left is unfiltered, line to the right is filtered. Note the
linear phase shift.

59

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Constant Velocity Data (Raw)

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

105

110

120

130

140

160

180

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Constant Velocity Data (Filtered)

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

105

110

120

130

140

160

180

Figure 2.9: Constant Velocity data plots. Left is unfiltered raw data, right is filtered data with the
first 25 data points removed for clarity. Legend at right shows digital values of drive.

60

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

80

100

120

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

Proportional Control Data (Raw)

k16

k20

k30

k50

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

80

100

120

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

Proportional Control Data (Filtered)

k16

k20

k30

k50

Figure 2.10: Proportional Feedback Gain Plots. Left is unfiltered raw data, right is filtered data
with the first 25 data points removed for clarity. Legends indicate values of Kp, the proportional
gain constant.

61

2.2.5 Device Hardware Architecture

A single processor with the 20+ inputs necessary for controlling the proposed

device may exist. However, one also with 20+ PWM outputs probably does not.

This restriction, in addition to limitations on processing power, has lead to the

development of a distributed control method. The use of several processors for

the lower level feedback control, communicating through a central coordinating

processor allows for modularity of the control system. In addition, the use of

several smaller PIC18 series processors rather than one large processor helped to

reduce the cost of the control system hardware.

Another microcontroller made by Microchip, the PIC18F2431, does not have USB

functionality but does have sufficient A/D inputs and PWM outputs to control

three joints, or a single digit. Both the 2431 and 4550 have I2C modules. I2C is

shorthand for Inter-Integrated Circuit, a synchronous protocol for chip to chip

communication. It is a byte-wise method, sending 8 bits at a time. Microchip

also supplies framework code for interfacing with the I2C module.

62

The goal is to make the system expandable without a complete rewiring of the

circuitry or complete reprogramming of every processor. Using a bus method,

like I2C, allows additional processors to be added with minimal wiring (the new

processor just needs to be hooked up to the existing bus) and minimal

reprogramming (only the master processor’s program needs to be updated).

The device is controlled by several processors coordinating and communicating

over the I2C bus. Each section of the hand, a finger in this instance, is controlled

by its own local processor. These local processors receive position data from a

central coordinating processor. The central coordinating processor handles the

“high level control” or “task level control” spoken of above. Commands can also

be fed to the coordinating processor over USB from a PC or other suitable USB-

enabled device.

USB Interface

I2C Interface

PC
USB

I2
C
 B
u
s

E
m
b
ed

d
ed

 C
o
n
tro

llers
I2
C
 S
la
v
es

PIC 18F4550
I2C Master, USB device

Figure 2-11: Block Diagram of hardware (rectangles) and software (ovals) architecture.

63

2.2.6 Software Architecture

The software for the system is broken down into several modules, so each can be

assigned to an appropriate processor when the above described distributed

architecture is implemented. Though the ANSI C language does not have classes,

like C++ does, an object-oriented approach can still be taken using separate

functions for each major section of the system.

Figure 2.12: An overview of the controller test platform. To the left is the kinetic model
discussed above, with motor, hall effect sensor, and supports. In the center is a breadboard.
The long chip toward the top is a PIC18F2431. The bottom half of the breadboard is a PWM
motor driver (On the red PCB) , a buffer, and a header to interface with the development board.
On the right is the PIC18F4550 full-speed USB development board. The processor itself is under
the grey ribbon cable. The smaller grey ribbon cable running from the development board to the
PIC18F2431 is the I2C bus. On the far right is the USB cable to the commanding PC. At the
back is the DC power supply for motor drive.

Embedded Controller
I2C Slave

PWM Motor Driver

I2C Bus

USB
to
PC

Coordinating Processor w/USB
I2C Master

Controlled Plant: Motor and Sensor

64

As mentioned above, this device is a multi-processor system. The programs for

the coordinating processor and the slave (or local) processors are markedly

different, because the purpose of each processor is different. However, each of

the local processors has essentially the same program architecture. This is not to

say that the programs are identical, however, as joint and controller specific

information will be altered for each processor. Further, there is host software on

the PC that allows interfacing with the device.

Each of the microcontrollers is programmed using Microchip’s MPLAB

development environment and either a USB-based programmer or Microchip’s

ICD2 In Circuit Debugger and Programmer. Microchip also supplies the

compiler, linker, I2C firmware and USB firmware.

2.2.6.1 Analog-to-Digital Conversion

For all of the Microchip embedded processors used herein, user configured

timers are used for ADC conversion control and other timed operations, such as

the LED indicators and motor drive time out. The ADC conversion method is a

modification of code developed by Space Exploration Technologies’ Senior

Avionics Engineer R. Kevin Watson (Watson, 2008) (used with permission).

Motor drive is calculated using a proportional feedback control method, and

output values are updated asynchronously with respect to ADC conversions. This

is possible due to buffering of the ADC result provided by Watson’s code.

65

2.2.6.2 Coordinating Processor Software Architecture

There are three (3) major sections of the coordination program:

(a) An interface method for communicating with the PC.

(b) A maintenance process.

(c) A communications method for the I2C bus.

The program centers around an infinite while loop, a common programming

convention for microcontrollers. Each time through the loop a set of three

functions is called.

First, the USB bus status is checked. If there is information waiting on the bus, it

is handled. The processor updates its internal information based on information

received over USB. The USB information can include position and response

information for one or more processors, or a direct I2C command to be sent to a

particular device.

Second, the maintenance process is performed. This performs any parsing,

calculation, or other method mandated by the current or previous data received

by the processor over USB. Also, if necessary, this function updates data in the

processor.

Third, if needed, an I2C handling function distributes information to each of the

low level processors. Again, if necessary, the processor’s data is updated.

66

From instance to instance of the while loop, global variables are used to hold data

and parameters that would otherwise be lost when a function returned or another

instance of the loop was initiated. These variables include I2C read and write

buffers, indices for arrays, previous position values, etc. These structures can be

considered an abstract state of the processor.

2.2.6.3 Embedded (Local) Controller Software

The several slave processors on the I2C bus could be referred to as slave

processors, embedded controllers, or local controllers. Regardless of the

terminology, these are the terminal processors that drive the actuators of the

device.

These processors share many features of the coordinating processor, but also

have additional modules for motor control. They use the infinite while loop

Figure 2.13: Block Diagram of Coordinating Processor’s Software

USB Handler

Maint. Process

I2C Handler

Abstract State

I2C
Hardware

USB
Hardware

I2C Bus

USB Bus

while(1) loop

67

described for the coordinating processor. However, they do not have USB

functionality and they are slaves on the I2C bus. In addition, they hold

information for the kinetic models of the systems they control, use analog to

digital (A/D) conversion modules, and pulse width modulation (PWM) modules.

Like the coordinating processor, the program is divided into two functions: one to

handle the I2C communication, and another to handle the motor control. For

these processors, the abstract state is the desired positions, control method, and

any previous pertinent control information (the last state in a state space model,

for instance) for each motor.

I2C is handled by interrupt. The I2C hardware determines if there is an I2C

request for that particular processor’s address. If the address for the request and

the processor’s address match, a processor interrupt occurs, which calls a

Figure 2.14: Block Diagram of Embedded Controller Software

I2C Handler

Motor Handler

Abstract State

I2C
Slave

Module
I2C Bus

while(1) loop

PWM

A/D

Control Information:

(a) PID Gains

(b) State Space
Observer/Controller

Kinetic Model

Sensors

Motors

68

handling function. The handling function reads the data off the bus, stores it in a

buffer, and changes the state of a flag to indicate that new data has been received.

The motor handler reads the abstract state to determine the desired position and

other control information. This position is compared with a new A/D sample. If

an error exists, a drive signal is produced using a control method. This drive

signal is then passed to the PWM module for output to the motor. The PWM

module continues generating output based on the duty cycle value stored in the

PWM registers between loop instances, so constant updating is not necessary.

This method is repeated for each motor the processor controls

2.2.6.4 USB Packet Structure

The Microchip USB module meets the USB 2.0 specification, and uses a “ping-

pong buffer” with 64 byte packets. The first four of the bytes in the custom

packet for this project contain the packet command, packet type, packet number,

and packet length. The packet length is used as a checksum to verify a complete

transmission. The bytes following these four common bytes hold data up to 60

bytes in length per packet. For control of the device, commands for up to 20

actuators can be sent in a single packet.

Command Type ID length DATA (60 bytes)
0 1 2 3 4 64

Figure 2.15: USB Packet Structure. Numbers indicate byte index.

69

2.2.6.5 Host Computer Software

In addition to the device programming, the controlling host is currently a PC with

a program developed using C#.NET. This program handles all the commanded

test inputs to the device, the USB communication, and data retrieval functions.

Using the .NET Framework allows the development of a smooth neat efficient

application with clean user interface. Further, .NET has methods to load DLL

files, write to files, and produce clean professional looking windows for the UI.

The host program is far more complex than the controller programs. Thankfully,

it is simpler to program because Microsoft Visual Studio automates the

generation of many files and functions, so little alteration is necessary. Also,

Microchip provides a USB driver and interface library, so extensive low-level USB

programming is not necessary.

The host program is, in large part, a conversion method, taking the byte stream

that enters over USB and converting it to usable types in the host controller.

Each USB packet is parsed, and functions are called based on the information in

the USB packet. Also, the user interface allows input by an experimenter. These

inputs are translated into USB packets for transmission to the controller(s).

Further advantages are gained using C++/C# rather than C on the PC. Since the

application has been developed on C++/C#.NET, the Microsoft .NET framework

provides common language runtime, allowing future cross-language development

70

in Visual Basic, C++, C#, and J#. Also, C++.NET supports SQL queries on both

Microsoft SQL and MySQL. This opens possibilities for database support, web-

based interaction, and further development by other researchers after the project

is complete.

The ideal situation, however, is one where the host used here is an embedded

USB-enabled processor. This would make the device fully mobile, and a more

effective prosthesis system. The PC serves as a placeholder for this embedded

processor, which detects the user’s volition. Such a system is outside the scope of

this project.

2.3 Mechanical Assembly

Following some aesthetic modification of the above mentioned digit design,

including rounding of the finger tips, several sets of the four links required for

Figure 2.16: Block Diagram of Embedded Controller Software. Notations
on arrows indicate types being passed. No notation indicates function call.

USB DLL USB Handler

User Interface

USB
Bus Ctrl USB Bus

Logging
Handler

Packet Processor / Parser

Files

Action
Handler

byte[] char[]

o
st
ri
n
g
st
re
a
m

ofstream

cin/cout
CEvent

71

each digit were produced using Fused Deposition Modeling (FDM) through the

Rutgers University Mechanical Engineering Department.

Due to characteristics of the FDM process, several post-fabrication modifications

were necessary. Principal among these was a failure to account for the width of

the FDM filament. This resulted in an undersizing of all inside dimensions by

approximately 0.5mm.

Holes for axles were drilled out using a 2.1mm drill using a Bridgeport Mill, along

with necessary shims, vices, etc. Internal faces of the hinge joints were similarly

machined on the mill, using a small end mill. Cavities for the motor and gearbox

were adjusted using a Dremel tool with the appropriate bit, as well as small round

and square files.

2.3.1 Novel Method for Right Angle Transmission

One key hurdle to overcome is the right angle transmission of motion from the

motor, which is con-axial with the shaft of the digit, to the axis of rotation, which

is perpendicular to the shaft of the digit. While bevel or worm gears could be

used to accomplish this, a test platform for an experimental wire-driven system

was designed and fabricated. This design has several advantages, including low

failure cost and mechanical compliance. The low failure cost is due to the use of

low cost steel wire for the transmission mechanism. This wire also provides

mechanical compliance, meaning that driving the system backwards will not

necessarily cause damage to the transmission. Following preliminary testing

72

using the experimental platform, suitable parts were made for use in the finger

itself.

2.3.1.1 Application to Joint Drive

One end of the transmission, the output spindle for rotation of the joint, is

integrated into the link and fabricated by FDM, however, an input to the

transmission is not created in this step. Therefore, a suitable method for

mounting a spindle on the motor output shaft was necessary.

For this part of the transmission, steel threaded rod (1/4”-20) was used for the

spindle. The rod was trimmed to 1cm length using a band saw followed by a

metalworking lathe. After the part was trimmed, a 1/8” hole was drilled down the

axis of the rod to accommodate the motor shaft. A hole was then drilled through

the side of the rod, and tapped for a #4-40 setscrew. This setscrew secured the

rod on the motor shaft by contacting the flat on the motor shaft.

Figure 2.17: Pictures of the test bed (large white object) and miniaturized design
(smaller yellow translucent object. Diameter of the large spindles is 1cm, the small
spindles are 6mm.

73

2.3.1.2 Transmission Assembly

Following the mounting of the drive spindle to the motor, adjacent links were

connected using 2mm diameter stainless steel dowels. These dowels were

pressed into the ABS plastic in each link to secure the axis of rotation. The end of

this dowel could be

secured using Loctite

480 adhesive,

however, this step

was not taken during

the testing phase.

Prior to the insertion

of the stainless steel

dowel, 24ga nylon-

coated steel wire was wrapped around the spindle of the distal link. This wire

was then wrapped around the steel spindle mounted to the shaft of the motor in

the proximal link. Following a settling period of 12-24 hours to relax the wire and

give it “memory”, the nylon near the intersection of the two ends of the wire was

melted using a soldering iron. These sites were then cleaned using soldering flux,

and were realigned on the spindle. The ends of the steel wire were then joined

using solder, and the loose ends removed. This completed assembly of the

transmission.

Figure 2-18: A digit joint in the assembly jig.

74

2.3.2 Transmission Results

Though the exact tension in the wires in each spindle are unknown, force

transmission is significant. Since there is no observed slip in the transmission

when a joint driven by the GM 14a high torque motor is stalled, it can be inferred

that the torque transmission of this method is at least 212 mN•m, or 2160 g•cm,

the stall torque of the motor. The wire tension, and therefore the friction forces

on the spindle, is unknown because no accurate way of determining this is

available after assembly, nor was a means of measuring the tension during

assembly.

Compared to the Smoovy

actuators used in the Cyberhand

drive, this transmission has many

comparable features. It does

achieve the rotation of each joint

within the profile of the digit.

Also, this design is significantly

lower cost than the Cyberhand

actuator and is not as susceptible to damage as a rigid transmission. However,

the lead screw drive in the Cyberhand device prevents any back driving of the

digit and has integral sensors which this design does not. Overall, this design

offers a lower cost alternative for digit drive.

Figure 2.19: Completed finger in testing mount.

75

2.3.3 Mounting of Position Sensors

Position feedback from the joints is provided by Hall Effect sensors, Allegro

Microsytems model A1301. These small integrated circuits are mounted next to

magnets (provided by Dexter Magnetic Technologies), polarized to detect the

position of the joint, and convert the magnetic field intensity to voltage, for

reading by the processor’s ADC channels. The Hall Effect magnet was mounted

in a cylindrical mounting hole, produced during FDM, and secured with hot glue.

The Hall Effect Sensor IC was similarly mounted next to the magnet, and

similarly secured with hot glue.

The polarization of the magnets is radial rather than the more common axial

polarization. This means that the left hemi-cylinder of the magnet is one pole,

and the right hemi-cylinder is the other pole. Therefore, the intensity of the

magnetic field at a fixed point near the magnet changes with rotation of the

magnet about its axis. It is this change that the Hall Effect sensor detects and

converts to voltage. The voltage is then related to position in the processor.

2.4 Electronic Hardware Platform

For the control system approach, a networked modular method was preferred,

using several slave processors for local control, coupled with a master processor

with higher computational power for coordination and intelligent control. These

several processors are networked via the Inter-Integrated Circuit (I2C) bus. In

addition, the master processor has Universal Serial Bus capability. These two

76

busses allow for extensibility of this architecture to applications beyond

prostheses.

2.4.1 Local Processing

In this application, a Microchip PIC18F2431 processor for embedded applications

is used to control each digit. The processor has 5 pulse-width-modulated (PWM)

outputs for motor drive, and 5 analog-to-digital conversion (ADC) channels for

sensor feedback (Microchip, 2008). As previously mentioned, each processor

also has an I2C module for communication. For diagnostic purposes, two light

emitting diodes each with 2N7000 MOSFET driver allow for visual indication of

the processor’s operating state.

Pulse Width Modulated (PWM) signals are used to control the motors. The input

voltage to the motor determines the motor speed. However, in order to specify a

range of voltages at resolution necessary to control the digit, a wide (8-bit or

more) digital to analog converter would be necessary. This would require many

processor pins, and may not have current capacity necessary to drive the motor at

stall.

To reduce the number of output pins necessary on the processor, most embedded

processors use PWM to communicate output voltage. If the time constant of the

motor is significantly longer than the PWM pulse interval, then the motor

behaves as a low pass filter on the PWM signal. Then, the width of the PWM

pulse becomes the determining factor in motor voltage, since the motor’s low

77

pass characteristics essentially smooth the pulse train into a relatively constant

voltage, and hence a constant speed.

Processor pin current ratings are generally low. The PWM signal from the

processor does not directly power the motor. Rather, motor driver circuitry

receives the PWM signal. These drivers allow the motors to draw their current

directly from a power supply, bypassing the processor. This means that motor

power is independent of the processor, and relies on the power supply, and the

wiring between the motor and the power supply. Also, it means that a given

processor can drive and control different motor loads, so long as the driver

circuitry is able to supply the current necessary for the load. Specifically for this

project, L293D motor drivers, available in chip form from ST Microelectronics

(ST Microelectronics, 2008) or on an application board from Solarbotics

(Solarbotics, 2008), are used to provide power to the motor.

2.4.2 Electrical Characteristics and Board Design

This modular finger actuator is capable of delivering 16 W of electrical power at

peak usage, 275 mW of which powers the processor. The actuator itself achieves

the expected full range of motion. The processor operates with a clock speed of

20 MHz, running at half its rated 40 MHz speed. This oscillator was chosen

partially due to availability of parts and partly to reduce power consumption.

Though underclocked, the processor is capable of the sensing, feedback control,

and PWM drive generation without processing delays.

78

The processor, PWM output drivers, indicators, and interfaces are mounted on

custom printed circuit boards (see Figure 2.20a for the processor motherboard,

and Figure 2.20b for the Motor Control and Feedback Board). Oscillator

compensation is provided through an RC pi-network and in-board ground

planes. In the event of processor failure, remote reset via 2N7000 MOSFET

driver is provided (see caption). Also, an external interrupt pin is available on the

PIC18F2431 processor, which allows for remote interrupt of program execution.

The circuit board is 2.5” by 2” in size, with a similarly sized daughter board for

the motor drivers and sensor input headers, used for development and debugging

(a) (b)

Figure 2.20: Embedded processor printed circuit boards. (a) Processor motherboard. The
28-pin DIP package at center is the PIC18F2431 embedded processor. At upper left is the
processor reset button, with 2N7000 MOSFET for remote reset. At top center is the ICD
programming header. At top right is the daughter board interface header. The TO-220 case
at center right is a 5 volt regulator. At lower right, the transistors, LEDs and resistors form 2
transistor driven circuits for visual indication of the processor state. The three wires at
bottom center is the I2C interface. Finally, at lower left is the oscillator with compensation
network. Additional capacitors and resistors in the image are for power supply stability. (b)
Motor Driver daughter board. The three red board are motor driver circuits available from
Solarbotics. Unseen below the red boards are 5 pin header/socket pairs connecting the
motor drivers to the daughter board. At bottom are headers for connection with position
sensors. Left of center between the two white blocks is the interface to the mother board.
The socket is on the underside of the board, unseen.

79

purposes. In future designs, using surface mounted components, we expect both

of the boards to be integrated within the 2.5” by 2” mother board footprint.

To improve performance, the motor drivers were integrated onto the processor

board. This provides two advantages. First, there is less resistance in the current

path to the motors since contact resistance in the headers has been eliminated.

Second, the integration of all the circuitry on a single board simplifies use of the

device. Circuit layout for the L293 driver adapted from the Solarbotics design

(Solarbotics, 2003). Though this board is slightly larger than the first board

footprint, when the design is adapted using surface mount components, it meets

the above mentioned footprint criteria.

Figure 2.21: The integrated control board (left) and surface mount version (right). On the
left board, three L293D motor drivers are at the top, with the processor at the lower center,
power supply at right, and oscillator with compensation network at left. On the surface mount
version, this hardware is reproduced with fewer headers. The processor is the 28-SOIC
package near the center. The smaller 20-SOIC packages at right are the motor drivers, with
the third driver on the underside of the board.

80

Figure 2.21 shows the results with the two integrated controller boards. The two

boards are functionally identical. The large scale DIP package board was

produced with indicator lights and the 12 pin header from the non-integrated

version. The surface mount version does not have the indicator lights, but uses

an identical processor in a surface mount package. To conserve space, a motor

driver is located on the underside of the board. In this configuration, the

circuitry is sized to fit inside a potential prosthesis, either in the forearm portion

or in the palm.

2.4.2.1 Supervisory High Level Processor

The high level processor is a PIC18F4550 on a Microchip supplied development

board. Like the PIC18F2431, this processor has an I2C module and acts as the

master controller on the bus. Also, this processor has a USB module for

communication with a USB host. Supervisory control that this processor

provides allows for the coordination of several of the processors in the modular

finger actuator mentioned above (Erickson, et al, 2007).

81

Chapter 3: Control Modeling

Rather than immediately implementing everything on the hardware, simulation

was used both to reduce costs and minimize the risk of damage. By developing a

model for the digit joint from the physics of the motor and joint, several versions

of the control methods can be evaluated with no additional hardware cost.

Ultimately, the algorithms tested in simulation would be implemented on the

embedded controller described above.

Inherent in the control problem faced in development of a manipulator for

prosthetic purposes is the non-linearity of the system configuration. A system

with non-linearities presents several problems when designing a controller.

First, in many cases, use of linear control methods with a non-linear system tend

to yield less than satisfactory results. Second, if a linear control method is used

and can control the system, this tends to apply only to a small set of conditions,

such as a limited range of motion. Third, if some non-linear control approach is

used, the stability of the system must be scrutinized not only for the short term

dynamics, but for long term stability at the target position.

3.1 Single Joint Control Model

To study potential approaches to the aforementioned control problem, a

mathematical model of the single joint was developed for use in computer

simulation. This model was derived from the equations of motion for the joint,

simplified to a point mass rotating about a center of rotation. The DC motor used

82

as the actuator was also modeled, with values based on the manufacturer’s data

sheet as well as laboratory measurements. Following this first pass at model

extraction, verification was attained by running the simulation as a free turning

frictionless motor.

3.1.1 Derivation of the Equations of Motion

Viewing the single joint as a sum of all torques about the center of rotation, there

are four terms that appear in the balance of torques:

(3.1)

First, the rotational inertia term is expressed as the moment of inertia times the

angular acceleration:

(3.2)

The moment of inertia was calculated assuming a point mass equivalent to the

weight of the arm being rotated at a radial distance one half the length of the arm.

Second, the kinematic or dynamic friction

term is expressed as a friction coefficient

times the angular velocity:

(3.3)

This friction coefficient is a constant

chosen based on assumptions of the

materials and construction of the joint.

∑ =−++ 0: mgbJ τττττ

θτ &&JJ =

θτ &bb =

 M

Fg bω

rmg•sinθ

Jα

Figure 3.1: Schematic of forces and
inertial acting on the single joint. Inertia
is Jα, friction force is bω, force due to
gravity is Fg, and torque due to gravity is
rmg•sinθ.

83

Third, the torque due to gravity is the dot product of the force due to gravity (mg)

with the horizontal distance to the center of rotation (r sin θ):

(3.4)

Finally, the fourth term is motor torque, expressed as a transmission constant

times the torque generated by the motor:

(3.5)

Combining equations 3.1 through 3.5 yields a non-linear differential equation

governing the model system:

(3.6)

3.1.2 Extraction of the DC Motor Model

The standard model for a brushless

DC motor applies to the miniature

motors used as the actuators.

Modeling the motor requires the

description of essentially two

separate systems.

The time course of current given an applied voltage is modeled as an LR circuit.

Values for the inductance and resistance were measured using an HP 4284A

precision LCR meter (see table 3.1). The meter was calibrated using an open

circuit before operation, and used a 1kHz sinusoid with no DC bias as the input to

the motor. During testing, all values observed were steady and no rotation or

vibration of the motor was noted.

Table 3.1: Motor Electrical Characteristics

Motor Type Inductance Resistance
GM11
(Low Torque)

2.81 mH 20.1 Ω

GM14a
(High Torque)

2.09 mH 12.90 Ω

)sin(θτ rmgg =

motorm kττ =

motorkrmgbJ τθθθτ =++∑)sin(: &&&

84

Output torque of the motor can be expressed as proportional to the current

through the motor. The proportionality constant is the motor’s torque constant,

which relates the motor torque to motor current, and is denoted below as Kτ.

The value of this constant is calculated by dividing the stall torque by the short

circuit current, as specified on the manufacturer’s data sheet.

Therefore, the torque generated by the motor is:

(3.7)

Where Kτ is the motor torque constant, calculated as described above, and

evaluated to be 0.4 N•m/A.

The internal dynamics of the motor are modeled as an RL circuit, using the

inductance and resistance at the motor terminals, with values given in Table 3.1.

The input is the voltage applied to the motor terminals:

(3.8)

This differential equation relates the time course of current to the applied

voltage. Current response is not instantaneous due to effects of the motor’s

magnetic field. Starting with a stopped shaft, energy must be put into the

magnetic field as the shaft begins to turn. After the shaft is turning, the magnetic

field induces electromotive force (EMF), which limits the rate of change of

current. This induced EMF also appears as a voltage across the coil, which is

iKmotor ττ =

appliedVRi
dt

di
L =+

85

subtracted from the terminal voltage to give the applied voltage mentioned in

equation 3.8:

(3.9)

The back EMF voltage can be expressed as a constant times the motor shaft

speed:

(3.10)

The constant, Ke, determines the motor’s free-running speed for a given voltage.

By inspecting equations 3.9 and 3.10, it can be seen at a certain speed, the back

EMF will equal the terminal voltage. That shaft speed is the free-running speed

of the motor. Calculation of this value began with an estimate, found by dividing

the free running back EMF by the manufacturer’s specified free-running speed.

The free-running voltage was found by multiplying the motor resistance,

measured above, by the motor’s rated free-running current, specified by the

manufacturer. This yielded a back EMF constant of 0.717 V•s/rad.

Combining equations 3.9 and 3.10 yields a differential equation for applied

voltage:

(3.11)

Substituting this result into equation 3.8 yields:

(3.12)

EMFtermapplied VVV −=

θ&eEMF KV =

θ&etermapplied KVV −=

θ&eterm KVRi
dt

di
L −=+

86

Sum of Torques

Acceleration

Velocity

Position

Torque due to Gravity

Coil Voltage

Theta _dot _dot

3

Theta _dot

2

Th

1

rmg

-K-

radians to degrees

-K-

Torque Constant

0.4

Subtract

Motor Inductance

1

0.00209 s+12.90

Moment of Inerita

1/(4*10^-4)

Integrator 2

1

s

Integrator 1

1

s

Friction

-K-
Dot Product

sin

Back EMF

-K-

0 to 90 degree limit

Vin

1

Figure 3.2: Simulink Model of the DC Motor. At upper left is Vin, the voltage applied to
the terminals. The back EMF is subtracted from this, and the result is used as the input to
an RL network. The resulting current is then multiplied by the motor torque constant and
fed to the sum of torques. The result of the sum of torques is divided by J, the inertia, to
yield the angular acceleration. The angular acceleration is then integrated to calculate
angular velocity, and again for angular position. Angular position is fed back to the sum of
torques as a term in the torque due to gravity. Angular velocity is fed back to the sum of
torques via the friction term, and is also used to calculate back EMF.

3.1.3 Model Implementation and Verification

Using MATLAB with Simulink, this model has been implemented by summing all

torques to calculate the torque influencing the rotation of the arm. This result is

divided by the rotational moment of inertia to find the angular acceleration.

Integrating the angular acceleration yields the angular velocity, and integrating

angular velocity yields angular position. These intermediate values are used for

calculation of the friction and torque due to gravity terms, as well as the back

EMF of the motor.

87

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

80
DC Motor Model Verification

Time (seconds)

P
o
s
iti
o
n
 (
d
e
g
re
e
s
)

Figure 3.3: Output of DC Motor Model following
adjustment of back EMF constant. The step input to supply
voltage occurs at 0 seconds.

For determining the motor torque, the back EMF of the motor is calculated, as

mentioned. This voltage is subtracted from the motor terminal voltage, and the

result is the input to the RL model of the motor windings. Current is the result of

this RL model, and is multiplied by the motor torque constant to calculate the

output torque of the motor.

Verification of the model is performed using a free running case, and verifying

the motor steady state speed. As the angular velocity of the motor increases, the

back EMF increases, this

in turn decreases the

effective voltage applied

to the motor terminals.

This decreases current,

and hence torque, and

causes the motor to turn

at a constant steady state

speed. To simulate this,

the friction and torque

due to gravity terms

were removed from the model, leaving only the motor model and the (small)

rotational inertia. Calculation of the sum of torques, angular acceleration, and

angular velocity were performed as above. The first pass of verification yielded

an error in the steady state speed of the motor.

88

Following empirical trial and error adjustment of the motor back EMF constant

from 0.717 to 0.8115, the proper steady state velocity of 76 rpm at 6 volts, as

specified by the manufacturer’s data sheet, was attained. As noted above, in

equation 3.10, the motor’s back EMF constant is the determining factor for

steady state speed. Calculations based on the data sheet yielded the value of

0.717. However, simulation with this value yielded a steady state speed that was

higher than the manufacturer’s specification. Through trial and error, increasing

the value to 0.8115 yielded the proper steady state speed.

3.1.4 Commentary on the Non-Linearity

From the perspective of a single joint, the non-linearity caused by the

gravitational force on the lever arm needs to be accounted for. When the joint

moves from a horizontal to vertical angular position, the torque due to gravity

varies according to the sine of the angle relative to the horizontal. Since the sine

function is linear for much of this range of motion, the system behaves well with a

linear feedback control system.

This linearity can be shown algebraically. If approximated at 0, the linearization

of sine is a linear function with slope 1, since the derivative of sine at 0 is 1. The

y-intercept of this function is 0, since sine is 0 at the origin. Using these

formulae, we can define a percent linearity function:

(2.5.13)

100
)sin(

)(sin ×
−

=
x

xx
xL

89

Using this linearity measure, and

plotting it, it can be seen that the

sine function is linear for small

values. Note that sine is linear

±10% from 0° to roughly 48°.

However, if the joint is oriented

in a way that contains more of the

non-linear range of motion, this

poses a substantially more

difficult control problem.

3.2 Linear Control of the Non-Linear Single Joint System

As a first attempt, the single joint model was simulated using closed loop

proportional control. Following several adjustments of the feedback gain, a small

integral control term was added, to reduce steady state error. Use of integral gain

0.1 and proportional gain 2, a steady state error of <1% was achieved with rise

time 0.02 seconds and 30% overshoot. This performance is certainly less than

optimal. (See Figure 3.5)

0.1 0.35 0.59 0.84 1.08 1.33 1.57
0

10

20

30

40
Linearity of Sine Function

Rotation (Radians)

E
rr
o
r
o
f
L
in
ea
ri
ty
 (
p
er
ce
n
t)

f x()

x

Figure 3.4: Graphical Linearity of the Sine
Function. Note the linearity is within 10% from 0
to 0.84 radians (48 degrees)

90

This demonstrates what control theory also shows: a non-linear system cannot be

controlled by a linear controller. This is not to state that for a bounded input to

the non-linear system that a linear controller will necessarily cause instability.

However, the control system performance parameters, like overshoot, rise time,

and steady state error, cannot be met using a linear controller on a non-linear

plant. Therefore, some non linear, time varying, or adaptive controller is

necessary to control a non-linear system reliably.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

Time (seconds)

P
o
s
iti
o
n
 (
d
e
g
re
e
s
)

Linear and Non-Linear Response Comparison

Linear Response

Non-Linear Response

Figure 3.5: Model Trajectory Under Linear PI Feedback Control. The top (green) trace is the
non-linear response, with increased overshoot and tracking error. The bottom (blue) trace is a
linear response, substituting θ for sinθ. Both are in response to a step input at 0.2 seconds.

91

Reference Model

MR Out

2

System Position Out

1

Supply Limit

Subtract 1

Subtract
Step

Scope 1

Scope

Product

Model

SingleJoint

Vin

Th

Th _dot

Th _2dot

MR Error GenerationLTI System

tf(100 ,[1 10 0])

Ki Gain

0.1

Integrator

1

s

Gain
2

Constant

1

Add1

Add

Figure 4.1: Simulink model for MRAC. The ‘Single Joint’ block is the model from above, at
upper left is the reference mode, with the indicated error calculation. Blocks near the center
compute the control signals. The lower path is the integral path, which is static. The upper
path multiplies the model reference error with the current system error, to implement MRAC.

Chapter 4: Model Reference Adaptive Control

Model Reference Adaptive Control (MRAC) was used as an adaptive non-linear

controller to solve the control problem. The MRAC approach uses a reference

model and compares the model response to the system (plant) response. The

instantaneous error between the model and plant is used as an adaptation

mechanism, altering the controller characteristics.

Use of MRAC requires the specification of the model to be tracked. An added

benefit of MRAC is the ability to specify the trajectory of the joint through the

model paramters. Returning to the whole hand scenario, many different paths

and speeds can be envisioned in the operation of the hand. For example, should

PI Controller

Reference Model

Model Reference

Error Generator

92

the hand respond quickly, as when snatching a bug, or slowly as when gripping a

soft object. Concieveably, this performance data could be specified by a position

time course for each joint. This, however, would require a great deal of

communication between controllers during operation of the hand. Alternatively,

the speed of the motor could be limited in software. Speed limiting would limit

the number of trajectories available.

By using MRAC, the trajectory is specified by the model. This means that the

trajectory information can be communicated as the model parameters. As a

result, rather than using hundreds of data points per second in the time course

approach, the MRAC approach would communicate similar information using

fewer than 10 numbers, depending on the order of the model used. All that

would need to be communicated are the coefficients of the model transfer

function and the target position.

The model response to be tracked was a second order system, implemented as an

integrated exponential impulse response with time constant 0.1 sec under unit

proportional feedback control. Further analysis of this model yields a second

order damped system with damping constant 0.5 and natural frequency 10

rad/sec. The model reference error was calculated as the difference between the

model response and the system response at each time point in the simulation.

93

For testing purposes, the system was implemented in Simulink, using the single

joint model from above as the plant. The input used is a variable amplitude step

function, with amplitude corresponding to degrees from horizontal.

System error is calculated by subtracting the system position value from this

target value. Error is then fed to a proportional-integral (PI) controller, which

generates the control signal for the plant. This control signal is limited to a user

specified supply voltage range before being sent to the input of the plant.

The input is additionally used as the input to a model system, which is under

unity proportional feedback control. This output is subtracted from the system

response at each time point to provide tracking error. Below, this error will be

referred to as MRAC error or MRAC tracking error.

4.1 With Linear Model Reference Error Feedback

This error was used to vary the proportional feedback control gain. This

adjustment caused an increase of the gain while the system lags the model, and a

decrease of the gain if the system leads the model. While this approach does

blunt the curve, preventing overshoot, if the gain is decreased enough, the

proportional gain becomes negative. When this occurs, the feedback control loop

becomes unstable, as established by feedback control theory. The observational

result in the simulation is a dip in the response as the model output becomes less

than the current system output.

94

The resulting response does

achieve acceptable model

tracking on the rising portion

of the response. This

demonstrates the

specification of trajectory via

specification of the reference

model parameters. However,

the instability which causes

the dip in response is less

than desireable. Also, the

ideal scenario would be proper tracking of the model continuously throughout

the response.

4.2 With Squared Model Reference Error Feedback

To prevent the instability using linear feedback, the square of the model reference

error was used in an additional study. By using squared error, the variation of

the proportional feedback control gain cannot be driven negative, which prevents

instability in the system. However, upon implementation, initial oscillations

negate the theoretical benefit. These oscillations most likely occur due to the

squaring of the oscillating errors observed during the initial seconds of linear

MRAC control.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

Time (seconds)

P
o
s
iti
o
n
 (
d
e
g
re
e
s
)

Linear MRAC Control

Figure 4.2: Model Reference Adaptive Control using
linear gain of model reference error as the adjustment
mechanism. Step input to 45 degrees occurs at 0
seconds.

95

Rather than continue testing other a priori defined functions, an adaptive

approach was pursued. Artificial neural networks (ANN), with their high

parallelism and adaptability,

have been used previously

for adaptively learning

functions, linear and non-

linear, without a priori

knowledge of the function

itself (Bia, 2000). Given

these features, the use of an

ANN to learn the function

necessary to optimize the

controller was pursued. The

reference model was retained, as it represents the “function” to be learned, or

alternatively adapted to, by the ANN.

4.3 ANN-MRAC: Artificial Neural Network – MRAC

In an effort to improve the tracking performance of MRAC, a neural network was

inserted into the model as the adjustment mechanism for the controller. A 2-3-2

feed forward neural network was used. The output values were the proportional

and integral gains for the system. These outputs were computed using the model

reference tracking error as well as the current system error as inputs.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

70
Squared MRAC Control

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

Figure 4.3: Model Reference Adaptive Control using
square of the model reference area as the adjustment
mechanism. Step input to 45 degrees occurs at 0
seconds.

96

Reference Model

Model Out

2

System Output

1

supply limits

Subtract 1

Subtract
Step

Scope 1

Scope

Product 1

Product

Neural Network

w1

w2

um

ue

yp

yi

fcn

Model

SingleJoint

Vin

Th

Th _dot

Th _2dot

MR Error GenerationLTI System

tf(100 ,[1 10 0])

Integrator

1

s

Get W2

MATLAB

Function Get W1

MATLAB

Function

Constant

1

Add1

Figure 4.4: Simulink model for ANN-MRAC simulations. The control and model systems
are as above, with the added Neural Network function. This block is the matrix
implementation of an artificial neural network trained using ALOPEX.

4.3.1 Matrix Implementation of Neural Networks in MATLAB

The weights were held in two matrices, one for the input layer-hidden layer

weights (WIH) and another for the hidden layer-output layer weights (WHO). This

allowed for reduced coding in the MATLAB environment. This also allowed the

weight updating to be done without the use of iterative for loops.

Begin by defining two matrices, one for the input-hidden layer weights, and one

for the hidden-output layer weights:

(4.1)

(4.2)

{ } nm

ijw
×ℜ∈= IHIH WW ,

{ } pn

jkw ×ℜ∈= HOHO WW ,

97

Where the neural network has m input units, n hidden units, and p output units.

Using this matrix approach, the output vector is calculated through matrix

multiplication:

(4.3)

With regard to the specific application dealt with here, this equation becomes:

(4.4)

Where eMRAC is the instantaneous model reference tracking error, esys is the

instantaneous system error to target, qp is the proportional control gain

adjustment, and qi is the integral control gain adjustment. These two ‘q’ values

are used to adapt the control path, through multiplication with the current

system error values.

Training of the network was conducted using the ALOPEX optimization

algorithm:

(4.5)

In this representation, k is the iteration number, wij is the i-jth weight, R(k) is the

global response function at iteration k, σ is the standard deviation of the noise,

r(k) is a zero mean real stochastic process at time step k with unit standard

deviation, and γ is the learning rate parameter. Applying the matrix form given

above, ALOPEX becomes:

(4.6)

(4.7)

pn ℜ∈ℜ∈= outininIHHOout v,v,vWWv

3223 ,, ×× ℜ∈ℜ∈







=








IHHOIHHO WWWW

sys

MRAC

i

p

e

e

q

q

)()()1()(krkRkwkw ijij ⋅+∆−∆=∆ σγ

)()())2()1(()(kkRkkk rWWW ⋅+∆−−−=∆ σγ
1)(,)(,)(ℜ∈ℜ∈ℜ∈ ×× kRkk tsts rW

98

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

ANN-MRAC Control Output

0 20 40 60 80 100 120 140 160 180 200
0.55

0.551

0.552

0.553

0.554

0.555

0.556

0.557

0.558
RMS Error vs. Iteration

Iteration

R
M
S
 E
rr
o
r
(d
e
g
re
e
s
)

 (a) (b)

Figure 4.5: (a) Time Course response following training of the ANN-MRAC. System input
begins at 0 degrees, then has a step change to 45 degrees at 0 seconds. (b) Change in error vs.
iteration.

Parameters used were learning rate parameter 0.4, and standard deviation of

noise 0.001. The response function to be minimized was the root-mean-square

error in degrees between the target value and the system response for the final

500 ms.

(4.8)

With a sample rate/step size of 0.001 seconds, this corresponds to the final 500

data points.

4.3.2 ANN-MRAC Using a 2-3-2 Feed Forward ANN

Training was conducted for a planned 200 iterations, with the actual training

time being 213 iterations. The weights corresponding to the minimum of error

were used to produce the trained response.

∑
−

=
final

final

n

n

sys tekR
500

2)]([
500

1
)(

99

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60
ANN-MRAC Control Output with Enhanced Error Function

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

(a)

0 200 400 600 800 1000 1200 1400
5

10

15

20

25

30

35

40

45

50

55
Modified Error Function vs Iteration

Iteration

M
o
d
if
ie
d
 E

rr
o
r
F
u
n
c
ti
o
n

(b)

Figure 4.6: (a) System output time course and
MRAC model time course after ANN training
using modified error function. Step input to 45
degrees occurs at 0 seconds (b) Error function
value versus iteration during training. The
minimum error was achieved at iteration 1264.

To improve the response during early tracking just after the system begins to

respond to the step input, the error function was modified to include the tracking

error for 200 ms after turn on. This modified error function was the RMS error

of the system relative to target at the last 500 ms, plus the RMS MRAC tracking

error for the first 200 ms (200 ms to 400 ms on the plots). Following more

extensive training, to more than

1300 iterations, a minimum was

found at 1264 iterations (Figure

4.6b). The system response

corresponding to this set of

weights yielded decreased

oscillation early in system

response, while maintaining a

similar steady state error. (Figure

4.6a)

During training for this response,

the error function decreased

toward an apparent global

minimum for approximately 900

iterations. After this first period,

the error function briefly, for

100

roughly 250 iterations, found a local minimum with increased error. Following

this second period, the algorithm returned the error function back toward the

apparent global minimum. In this third period, the minimum was found

(iteration 1264),

demonstrating the ability of

ALOPEX to track to the global

minimum (Figure 4.6b). This

behavior is akin to the

oscillations observed in

previous ALOPEX training

scenarios (Micheli-Tzanakou,

2000 pp.252-254), and in the

colloquial is sometimes

referred to as the “catastrophe

effect.”

In an additional study, the

RMS value of the noise in the

ALOPEX process, and the

learning rate parameter were

varied. Prior to iteration 10,

the noise amplitude was set at

0.01 and the learning rate parameter was set at 1.0. Between iteration 10 and

iteration 300, the noise was set at 0.005 and learning rate at 1.5. After iteration

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

70

80

90

100
2-3-2 ANN-MRAC Response

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80
Error vs Iteration

iterations

e
rr
o
r

Figure 4.7: 2-3-2 ANN-MRAC Results, using
scheduled values for noise and learning rate. (a) the
system and model responses for the best case scenario,
with 80 degree step input at 0 seconds, (b) the training
error vs. iteration plot. Training was stopped after 328
iterations.

101

300, the learning rate parameter rose to 2.0. Noise at this iteration was

decreased to 0.001, and further decreased at iteration 500 to 0.0005.

Noise was maintained at low values due to observed sensitivity of the system to

changes in the MRAC gains. Keeping the noise low provided for a more stable

training scheme. This scheduling scheme yielded added variability, but an

improved response with tighter tracking characteristics. However, there was

marked oscillation later in the training iterations, which is, as with the

observations in figure 4.6, similar to the “catastrophe effect” oscillations

previously associated with ALOPEX training (Micheli-Tzanakou, 2000 pp.252-

254).

Also, to test the ability of the network to operate in a more non-linear range, the

target value for the system and model was set to 75 degrees, instead of the

previously used 45 degrees. Testing at this increased target value showed

performance comparable to the lower target value.

Unlike the linear system, no increase in overshoot was observed. This indicates

that the neural network was able to adapt to the new control condition. Also,

since the 75 degree target is solidly within the non-linear range of the sine

function, this also shows the neural network’s adaptive ability to overcome the

non-linear control problem.

102

In an effort to simplify the control scheme, the RMS error of the full time course

was used in another set of simulations. Using the error over the full system

response is computationally easier, since the start of the system response does

not need to be detected.

Training in this way proved more stable over many iterations, allowing a more

complete training to be conducted. The parameter scheduling scheme above was

used in this case as well. Complete training to 1000 iterations was possible using

this method, which yielded results similar to the shorter training case. The

system did not train to the global minimum, but the weight values for this best

case scenario were stored, as in the previous simulations, and used to generate

the best case response of the simulation.

The variability of the training response is notable since the RMS error of the

output is not directly tied to the performance of the ANN. It was noted during

training that oscillations often occurred in the error graph. This may be a

demonstration of the sensitivity of the control system to the MRAC gain values.

This lead to difficulty maintaining the training algorithm for many iterations

without causing divergence of the system response.

103

Also, noting figure 4.8b, the apparent noisiness of the error over iterations seems

to be correlated to the changes in the ALOPEX noise amplitude. Recall from

above that the changes occurred at 10, 300, and 500 iterations. The changes in

noise of the error function correspond to these iteration times. Note in the

figure, the marked decrease in volatility of the error plot beyond these points.

Sharp changes in the error plot are noted at these positions as well, indicating a

system adjustment to the new training parameters.

4.3.3 Use of a 2-4-2 Feed Forward Artificial Neural Network

As a further examination, the use of additional hidden units was implemented,

specifically a modification of the network used above that uses 4 hidden units

instead of three. Results from this test used the enhanced error function

described for the 2-3-2 topology. Also, to test the effectiveness of the network,

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60
2-3-2 ANN-MRAC Response

Time (seconds)

P
o
s
iti
o
n
 (
d
e
g
re
e
s
)

0 200 400 600 800 1000

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65
Error vs Iteration

iterations

e
rr
o
r

 (a) (b)
Figure 4.8: 2-3-2 ANN-MRAC simulation results using RMS error of the full response. (a)
best case system response and model response to step input at 0 seconds. (b) the error vs.
iteration plot. Note that the training was conducted for 1000 iterations, the planned training
period, but did not reach the global minimum in training. The best case weights were stored.

104

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60

70

80

90
2-4-2 ANN MRAC Response

Time (seconds)

P
o
s
iti
o
n
 (
d
e
g
re
e
s
)

0 10 20 30 40 50 60

0

5

10

15

20

25
Error vs Iteration

iterations

e
rr
o
r

(a) (b)
Figure 4.9: 2-4-2 ANN-MRAC during training. Note the improved tracking response, and
the lack of blunting if the response curve, as occurred in previous trials. System input is a
step from 0 degrees to 75 degrees at 0 seconds.

the step input target was increased from 45 to 75 degrees. This placed the target

value well within the non-linear range of the sine term.

Training was conducted for 1000 iterations. At iteration 51, improved tracking

performance was noted (see Fig. 4.9), and the model weights were stored.

Following this point, the best training performance occurred at iteration 65, with

response similar to that of iteration 51. Further training resulted in a loss of

performance, with the system being caught in an apparent local minimum.

105

As with the 2-3-2 system, the simplified error function using the RMS error of the

complete response was used in another set of simulations for the 2-4-2 network.

Though response as good as that in figure 2.31 was not achieved, the 2-4-2

network did demonstrate improved tracking performance using the full RMS

error.

4.4 Variation of the Training Parameters

To complete the study of ANN-MRAC with ALOPEX, the training parameters

were varied. Using 10 times the learning rate parameter in the scheduling listed

above yields a satisfactory result without converging. Intuitively, one might

expect faster convergence in this scenario. However, the simulation showed what

could be described as confusion of the algorithm, where the training error value

remains stable, but does not settle at a final value within the 1000 iterations of

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

50

60
2-4-2 ANN MRAC Response

Time (seconds)

P
o
s
iti
o
n
 (
d
e
g
re
e
s
)

0 200 400 600 800 1000

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

iterations

e
rr
o
r

Error vs Iteration

Figure 4.10: 2-4-2 ANN-MRAC Training using RMS error over the full response time. (a) The
system and model best case response to a 45 degree step input at 0 seconds. Note the tracking
improvement over the 2-3-2 networks. (b) The error vs iteration plot. Though this training is
more desirable, and the error is lower than in previous simulations, the observed minimum does
not occur at the end of training. Best case weights were stored during training, and used to
generate the best case response plot.

106

training used in the previous simulations. Extending this training time to 10,000

iterations does not improve the convergence, but maintains a stable system

response.

Noise, however, was shown to be a critical and sensitive parameter. The

simulation was repeated using the gain scheduling, but with the standard

deviation of the ALOPEX process noise multiplied by 5. This caused instability in

the simulation, where the controller itself became unstable. This yielded wild

oscillations from the previous RMS error values near 4 or 5 to a value near 45.

This value indicates that the system either did not respond, or immediately

moved to the limit of the range of motion. In either case, the RMS Error would

be very large.

0 2000 4000 6000 8000 10000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Training Error vs Iterations

Iterations

R
M
S
 E
rr
o
r

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

Best Case Response

 (a) (b)

Figure 4.11: Results for the high learning rate parameter case. Note that the system does
not converge, even after 10000 iterations, but the system does have an acceptable response.
Input is a 45 degree step at 0 seconds.

107

However, the simulation did return to an acceptable error range. This

observation is like the catastrophe effect previously mentioned. As with the

above 2-4-2 topologies, this result showed improved tracking error over the 2-3-2

case. The deduction here is that increasing the noise in the ALOPEX process may

cause volatility, but does not necessarily affect the resulting simulation.

0 200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50
Training Error vs Iterations

Iterations

R
M
S
 E
rr
o
r

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

Best Case Response

Figure 4.12: Results for the High Noise training case.

108

Chapter 5: ALOPEX Optimization of Sensor Networks

When considering the detection of volition of a user, it is apparent from the

configuration of the forearm that sensor placement, be it for EMG or MKI, is

critical to the performance of the system. This holds if a small number of sensors

is used. However, if a large number of sensors is used and the resulting grid is

optimized, then the performance of the detection algorithm is less dependent on

sensor position.

5.1 Rationale of Optimization

This grid optimization selects the sensors associated with areas of high activity.

In doing so, the sensor information returned by the network of sensors can be

weighted to importance. The areas of more activity would be enhanced, with the

areas of less activity suppressed. This adaptation is a framework for automated

selection of sensors in the network, the result of which is the most pertinent

information returned.

Assuming that this area of activity contains mostly information, and the areas

elsewhere contain principally noise, then the reduction of gains over the noisy

areas improves the information content returned by the network. If the weights

are optimized to favor the information containing areas over the noisy areas, then

the results returned by the optimization have substantially increased signal-to-

noise ratio (SNR) relative to a network which samples each sensor with equal

weight.

109

Adaptive optimization is at the core of this algorithm. Like any optimization, a

target is required, which shall be denoted as a focus. The focus is the activity that

causes a response in the sensor network, and an optimization of sensor network

gains would be specific to each focus. Several optimizations could be conducted

for different foci, each resulting in a different array of sensor gains, indicating the

areas of greatest interest in the field’s response to the focus. In all cases, the goal

of the optimization shall be to find a cluster of sensors that best aligns with the

field center, enhance the associated gains, and suppress the gains of other

sensors.

5.2 Optimization Algorithm

Consider a field of activity intensities with normalized maximum value 1 at a

single point, which shall be referred to hereinafter as the “center,” which is

monotonically decreasing radially with respect to distance from the central point.

The determination of these activity values can be by arbitrary means and can

correspond to any physical quantity. Denote this field as:

 (5.1)

For purposes of demonstration, define this activity field with an inverse-square

relationship, while disallowing an infinity and preserving the condition that the

field maximum be 1:

(5.2)

ℜ∈),Φ(yx

22)()(1

1
),Φ(

cc yyxx
yx

−+−+
=

110

Where the center of activity of the field described by equation 5.2 occurs at

(xc,yc). Equation 5.2 can also be re-expressed as:

(5.3)

Where:

(5.4)

Here, equation 5.4 expresses the distance from center. Therefore, equation 5.3

describes the field as radially

symmetric about the center, and

decreasing from the maximum

value of 1 to 0 in an inverse

square fashion.

 Upon this field, overlay a sensor

grid with m rows and n columns,

along a coordinate system that

need not be Cartesian. To

sample the field, the i,j-th sensor is placed at position (xi,yj) and observes the

value of the field at that point:

(5.5)

Where A(i,j) denotes the amplitude observed at the sensor.

21

1
),(

d
yx

+
=Φ

22)()(cc yyxxd −+−=

),Φ(),A(ji yxji =

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Plot of Field Intensity vs Distance

Distance from Center

M
ag
n
it
u
d
e

Figure 5.1: Plot of field intensity versus distance
from center

111

Associate with each sensor a gain weight, denoted by Wij, where W is the size of

the sensor network:

(5.6)

Where the members of W are static within an interation. This gain weight is used

to generate the output, G, of the sensors in the network, through element-wise

multiplication.

(5.7)

The W matrix are the gains to be optimized by ALOPEX, in the methods outlined

in equations 4.5-4.7.

5.3 Response Function

Recall that the updating method for ALOPEX is:

(5.8)

The response function, R(k), must be specified for each training iteration k.

Since the goal of this optimization is to find a cluster of 4 sensors which best

aligns with the field center, the response function must be chosen to reflect this

clustering. For purposes of demonstration, the sensors shall be laid out on a

Cartesian coordinate plane.

Observing that ALOPEX is a cross-correlation algorithm inspired the use of

correlation to choose the sensor cluster nearest the center. By correlating the

gain weight matrix with a template matrix and maximizing the correlation

between the elements of these matrices, the desired result can be achieved.

nmnm WA ×× ℜ∈→ℜ∈

),(),(),(jiWjiAjiG ×=

)()R()()1(krkkk ⋅+∆∆=+ σγ WW

112

Choice of this template matrix is important. Combining the correlation

inspiration mentioned earlier with the logic of edge detection has lead to the

specification of a template with four positive members, with the remaining

members negative. Using such a template enhances the correlation when the

cluster is located under the four positive members, and reduces the correlation if

the cluster is not at that location.

Dimensionality of the template matrix must match that of the gain matrix.

Therefore, consider a matrix:

 (5.9)

This is to say that the template matrix is the size of the sensor matrix, and the

template matrix element values are always in [-1,+1]. While zero is included in

this range, negative values of the template matrix serve to decrease correlation. A

negative number implies an undesired region, where zero values would imply a

region of indifference. Using negative values instead of zeros ensures that only

the desired clusters have good correlation, with undesired clusters having

negative correlation.

This number range can also be seen in a biological context, namely neural units.

The positive regions in the template matrix can be thought of as excitatory.

Inhibitory regions would be those with negative values. The zero valued regions

are essentially “don’t care” areas. In this way, the template matrix can be thought

of as a sensory network that exhibits the excitatory and inhibitory effects found in

the visual system. In human vision in particular, these excitatory and inhibitory

jijiWA nmnm ,1),(,, ∀≤ℜ∈→ℜ∈ ××
TT

113

effects lead to edge detection in sight. Use of the template matrix allows for

shape detection in the information field as describe above.

Since the clustering of 4 sensors is the goal, then a cluster of 4 members of T shall

be +1, and the remaining members shall be negative. This design shall enhance

the correlation of a set of gains near each other are similar, and will reduce the

correlation of such a cluster does not exist or is not located at the template’s

positive region. For the matrix T defined in equation 5.9, this negative value,

which shall be denoted by α is:

(5.10)

Such a definition ensures that the sum of the members of T shall be 0, and that T

is symmetric about the cluster. The symmetry of T means that T is zero phase

about the cluster center. Since the sum of the members of T is zero, if the values

defined above are used, then T introduces no gain into the correlation

calculation.

Therefore, the template matrix takes the form:

(5.10)

Where α is defined above.



























=

OMMN

LL

LL

NMMO

αααα
αα
αα
αααα

11

11
T

4

4

−⋅
−

=
nm

α

114

Note T is defined for any size sensor field, and equation 5.10 does not specify the

location or size of the cluster. For a cluster that is u wide by v high, this yields

(m-u-1) by (n-v-1) possible templates, each describing a potential cluster in the

sensor field.

The response function is defined given the output matrix, which includes the

weights to be optimized, and the template matrix:

(5.11)

Equation 5.11 says that the response function is the sum of the elements in the

result of the element-wise multiplication of the weight matrix with the template

matrix.

5.4 Optimization

To optimize the weights, (m-1) by (n-1) solutions are simultaneously simulated,

one for each candidate cluster T. Following 1000 training iterations, results

below a user-defined threshold are rejected. This approach is similar to that of

evolutionary computing, but is strictly speaking not an evolutionary algorithm.

∑ ⋅=),(),()(jiTjiGkR

115

For the following example, a 5x5 sensor grid was overlaid on the field described

above. With no a priori knowledge of the field values, the sensor outputs were

optimized using ALOPEX in approximately 8000 iterations. Notable among the

changes necessary for field convergence is the target response definition, and

scheduling of the learning rate parameter. The target definition is dependent on

the location of the activity center relative to the sensor clusters. Since this

optimization looks for a cluster of 4 sensors, there are 4 principal possible

locations for the center.

Electric Field and Sensor Position

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 5.2: Result of the sensor optimization using ALOPEX. The field activity center is
at (1,1). Rectangles denote sensor positions. Lighter colored rectangles indicate higher
gain values. Note the clustering of the 4 sensors about the center.

116

 If the center is equidistant from the four corners of the square the sensors

define, then the target value is 4/3. This can be found by evaluating the field

intensities under each sensor. Using the same logic, if the center is located

equidistant between 2 sensors (i.e. on the side of the square), then the target

remains 4/3. If the center is directly under a sensor, then the result is slightly

different: (4/3 + 1/9). Given these target possibilities, 1.3 was used as the

training target in all simulations.

The value of the learning rate parameter was initially defined using the gain

scheduling mentioned above. However, under this condition the system did not

converge. By using smooth transitions between values for the learning rate

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5
M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

0 5000 10000
0

0.5

1

1.5

M
S
V

Epochs

Figure 5.3: Response versus iteration plots for each of the candidate clusters. Note the
maximum value generated by the plot corresponding to the position of the center.

117

parameter, and having it increase linearly after training iteration 1000, the

system did converge. It is assumed that this high learning rate parameter was

necessary to have sufficient changes late in the training time course to support

convergence. The equation governing this parameter is:

(5.12)

An additional constraint must be mentioned. The range of the weights must be

restricted to [0,1] for the correlation logic discussed above to operate properly.

Under these conditions, the target of 1.3 and the constraint on the weights,

training occurred in 8000 iterations, as mentioned above, with the other center

locations training in markedly shorter times.

Locating the center of activity on the “edge” of a square is direction independent.

This is to say that the training setup and performance are not different for centers

located between two sensors horizonally versus one located between two sensors

vertically. This is most likely due to the orthogonal rotation invariance of the

template field, since the field is same if rotated multiples of 90 degrees about the

template center.













≥+









−







 −

<









−

=
−

−

1000,51
1000

1000
20

1000,15

)(

500

1000

10

ke
k

ke

k
k

k

γ

118

Optimizing for this scenario, the two sensor edge case, showed markedly shorter

training time, as mentioned above. Training was achieved in roughly 7100

iterations, or about 10% less than the above case. Since these two sensors nearest

the activity center see a large field value, the response function changes more

rapidly. Also, this scenario has two possible optimization solutions, the left and

right squares formed by the sensor locations, as opposed to the single possible

solution above.

The training course versus iterations was similar to the previous result. As

before, the catastrophe effect can be seen late in training by noting the sharp drop

in response just before the target is met. This artifact is due in part to the high

Electric Field and Sensor Position

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 5.4: Field optimization result for a center located equidistant from two sensors. As
above, rectangles denote sensor locations and the whiter the sensor color, the higher the gain.

119

optimization target. In an effort to optimize to the target this sharp change

occurs, but ALOPEX compensates due to the change in sign of the response

function change, and returns to the previous training levels.

 Continuing with the final case in the sensor to field relationship, simulations

were conducted placing the activity center directly under the sensor at position

(0,0). In this alignment, there are four potential solutions, one for each square

that has a corner at the sensor located above the sensor. This leads to four

“corner” solutions: upper left, lower left, upper right, and lower right. Each of

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5
M
S
V

Epochs

0 2000 4000 6000 8000
0

0.5

1

1.5

M
S
V

Epochs

Figure 5.5: Training vs. Iterations for the 2 sensor vertical edge case in Fig. 5.3. Note the
two solutions at lower right that both approach the threshold value. These represent the two
sensor “squares” that share the edge on which the activity center lies. Note the catastrophe
effect artifact in the (3,3) plot just before training completed.

120

Electric Field and Sensor Position

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

0 200 400 600 800
0

0.5

1

1.5

M
S
V

Epochs

Figure 5.6: Field optimization for single sensor directly over the sensor. Note the cluster of
four candidate solutions at the center and some catastrophe effect artifacts in the training.

121

 these sensor clusters has equal exposure to the field activity, and thus an equal

chance at being the chosen solution. As expected, this scenario trained much

faster, in about 680 iterations, with the four “corner” solutions showing

comparable performace. The sensor over the activity sensor always has high

gain, with the other three sensors in the square having varying gains.

5.5 Computational Efficiency and Application

These simulations were conducted in MATLAB both for programming

convenience and for display of the data. Since MATLAB is designed for matrix

mathematics and since the optimization approach is matrix based, it was the

logical choice. Though optimization here took several minutes, the lags were

mostly due to MATLAB’s background and display overhead. Efficiently coded on

an embedded processor, this optimization would occur in near real time, on the

order of seconds.

The intent of this optimization is to compensate for changes in the system. For

example, if the location of the sensors changed, this algorithm would compensate

by selecting the proper set of sensors. Also, if the user’s activity, for example

EMG intensities, changed due to use of the device or muscle atrophy, such

changes would again be compensated for by this optimization.

122

Chapter 6: Conclusions and Future Work

The above chapters present a study of the development of robotic manipulators

for prosthetic hand applications, from design, to assembly, control,

programming, and simulation. Previous work, namely DeLaurentis (2004) dealt

with the design and manufacture of such mechanisms. In addition to mechanical

exploration via the development of the aforementioned novel right angle

transmission, herein, the focus has been on the control algorithms and hardware

to be used with the associated systems.

Further, the combination of virtual solid modeling environments with the

capabilities of fused deposition modeling (FDM) allowed for the integration of

the transmission output shaft at the proximal end of the several digit links.

The Microchip controllers combined to provide a bridge from USB to I2C,

allowing the control of the system via PC. Internally, the programs on the

controllers handle proportional feedback control of the joints. This combined

with motor drivers shows the viability of low level control board production in a

space comparable to that available in a potential prosthetic device.

While similar to previous approaches using similar hardware (Carrozza, et al.

2008), the hardware herein takes advantage of bus architectures for

expandability and standardization. Rather than using RS-232 serial

communication, for which one port is needed for each target processor, the use of

123

the I2C bus allows for “tacking on” of additional control units. Also, the use of

USB standardizes the interface with computers. Rather than needing specific

hardware, like the National Instruments cards used by Carrozza et al, any USB

capable computer with proper software can be used to control this architecture.

Further, it should be noted, that the use of surface mounted components, the

elimination of redundant power supply circuitry used for modularity in testing,

and development of 4-layer PCB layouts for the circuits leads to the potential of

embedding this controller in a space comparable to that of a human palm in vivo.

Control of the device has been demonstrated to be non-linear, since torque due to

gravity varies with the sine of the angle from horizontal. The use of model

reference adaptive control (MRAC) shows that the system parameters need not

be known to control the system presented above. Further, incorporation of

computational intelligence methods, namely artificial neural networks (ANN),

provides a more desirable response when incorporated with MRAC (ANN-

MRAC). In both of the above cases, MRAC and ANN-MRAC, following the

initialization of the system, the simulated controller was able to make the system

track the model presented to the controller without knowledge of the system

parameters and compensating for the non-linearity in gravitational torque.

ANN-MRAC carries an additional benefit. While most control solutions deal with

achieving a target, the performance of a biomimetic system, like that of an

artificial hand prosthesis, depends not only on reaching the target, but also the

trajectory taken to reach it. Consider for example, a slow grasp and a fast grasp.

124

The use of MRAC reduces the communication overhead between the processors

since a complete time course for the joint need not be sent. These data may be

several hundred values for even short lived motions. Rather, the parameters for

the reference model, which can be as few as 2 numbers, are all the information

needed to define a trajectory to present to the controller.

The combination of the above three aspects: mechanical design and fabrication,

electronic hardware design and fabrication, and control system design and

simulation, gives a framework for the development of an integrated system for

use as a prosthetic hand. Rapid mechanical prototyping, herein through FDM,

provides a mechanism for custom fabrication of mechanical parts of nearly

arbitrary shape and dimension. The rapid production of complex circuitry,

including surface mount technology is possible with the use of PCB technology.

The simulation of controls shows the feasibility of intelligent control schemes for

use in an artificial hand. All these, combined with the low cost and modularity of

the manipulator developed here lends to the use of this design and architecture in

a full hand scenario.

In addition, the sensor network optimization, while considered herein as a

general case, is directly applicable to detection of volition by a prosthesis user.

The ability to neglect the exact sensor positions in favor of higher dimensional

data makes application of sensors for such detection less dependent on the

individuals using or applying the system. An added benefit is the rejection of

human error, as the interface is designed adaptively based on the user’s

125

performance. Since the attention paid to each sensor is determined through

optimization, the evolution of the user’s inputs (think, for example, of changes in

writing habits) could be compensated for through the adaptation of the network.

This leads to a more robust interface, and reduced costs from the ease of

application.

6.1 Conclusion

Compared to the existing technologies, this work offers several new approaches

to problems facing prosthetic technology. A key factor in design of such a device

is the availability. Reduction of cost necessarily increases the pool of patients

able to afford and use a prosthesis. While the Smoovy actuators used in

Cyberhand are more compact than the DC motor and transmission developed

here, the presented alternative costs less than $100 per joint, depending on the

fabrication method for the digit links. Also, the electronic hardware developed

for control of those joints is very low cost, an estimated $50 per local controller,

and $20 per supervisory controller.

Sophistication in the control algorithms would improve the efficacy of a

prosthesis. Variation of the trajectory to cause different closing rates has not

previously been considered. However, control of the path of each digit may

provide more life-like motions and make the device a more effective replacement

for lost function. The MRAC methods described here allow for specification of

the trajectory with minimal communication overhead.

126

Maintenance is also a factor in the life cycle of a prosthesis. The less the system

needs to be adjusted, the more uninterrupted use would be and thus the user

would realize more benefit from the device. Using adaptive methods to

compensate for changes in sensor locations and signal characteristics over time

allows the controller to update itself. Since this does not require human

intervention, adding such intelligence improves the performance of the device

automatically. Also, by training the system to the user, less patient learning time

is necessary, and thus the patient realizes the benefit of the replaced function

sooner.

6.2 Future Work

6.2.1 Extension to Multi-Joint Control

As noted in the above commentary on adaptive control of the digit, the torque

due to gravity is a significant non-linear term in the mathematical model of the

digit. Using the above model for a single joint, extension of the control

simulations to a multi-joint configuration is possible. Deriving the relationship

between the several joint angles would allow for complete modeling of the digit,

taking into account gravity and changes in rotational inertia as the configuration

of the digit changes. This full model provides a test platform for higher level

computational intelligence methods, for coordination and perhaps more optimal

control given the additional information.

127

6.2.2 Construction and Testing of a Complete Artificial Hand

Perhaps the most obvious future work derived from this project is the replication

of the manipulator presented here for use in an artificial hand. Some

modification would be necessary for the development of an artificial thumb, but

the above designs would be usable for the other 4 digits, with some modification

in length.

A key consideration in such a design would be the control of it. As mentioned

above in 3.1, the changes of the system parameters with changes in joint angles

would have to be evaluated. The simulations of MRAC and ANN-MRAC

presented in the work may prove useful in the design of the embedded controllers

necessary for this application. Also, additional processing power may be

necessary to handle the several tasks and processes within a period suitable for

control of the several digits and joints therein.

6.2.3 Extension of the Electronic Hardware

Although the above mentioned circuitry was developed specifically to control the

modular finger actuator, we foresee use of this architecture in several extensible

scenarios. Before modification to the architecture is made, improvements to the

circuitry itself would be desirable. Most apparent among the potential changes

would be the use of surface mount technology, and possibly 4 layer (instead of 2

layer) boards in order to shrink the control circuitry further. However, a major

problem to overcome is the assembly of such a circuit without a reflow oven.

128

Since so little of the high level or master processor’s input/output functionality is

used, additional sensing or interface options present themselves. As alluded to

earlier, with the remote reset and remote interrupt options on the low level

processors, the master processor could remotely reset a processor having

difficulty, or interrupt a processor if an error occurred or another change needed

to be made.

Also, we mentioned above a USB host, without specifying it. This USB host could

be a personal computer, as we used in testing, or an embedded processor.

Several ARMs and xScale processors with USB host functionality are available to

handle embedded high level processing. Also, some of these come with Bluetooth

capability. This wireless avenue presents many potential applications, including

wireless monitoring and higher level networking.

129

References

[1] Abboudi, R., Class, C.A., Newby, N.A., Flint, J.A., & Craelius, W. (1999) A
Biomimetic Controller for a Multifinger Prosthesis. IEEE Transactions on
Rehabilitation Engineering. 7:121-129.

[2] *Ackermann, J. (1985) Sampled Data Control Systems: Analysis and

Synthesis, Robust System Design. Springer-Verlag, Berlin.

[3] Al-Olimat, K.S., Girman, G., Kurtz, E.J., and Swarthout, H.J. (2003)

Transfer Function Evaluation in MRAC for Synchronous Machine Speed.
Proceedings of the 2003 IEEE Conference on Control Applications: 920-924.

[4] Andersen, D.W. (2003) Praise the Lord and Pass the Penicillin: Memoir of a

Combat Medic in the Pacific in World War II. McFarland, London.

[5] Bertoluzzo, M., Buja, G.S., and Todesco, F. (1994) Neural Network Adaptive

Control of a DC Drive. 20th International Conference on Inducstrial
Electronics, Control, and Instrumentation, pp. 1232-1236.

[6] Bia, A. (2000) A Study of Possible Improvements to the Alopex Training

Algorithm. Proceedings of the 6th Brazilian Symposium on Neural Networks.
pp. 125-130.

[7] Burdea, G. C. (1996) Force and Touch Feedback for Virtual Reality; John

Wiley and Sons, New York.

[8] Boyne, W.J. (2003) Operation Iraqi Freedom; Forge, New York.

[9] Bundhoo, V., Haslam, E., Birch, B., and Park, E.J. (2008) A Shape Memory

Alloy Based Tendon Driven Actuation System for Biomimetic Artificial
Fingers, Part I: Design and Evaluation. Robotica First View article.

[10] Carrozza, M.C., Cappiello, G., Micera, S., Edin, B.B., Beccai, L., & Cipriani, C.

(2006) Design of a Cybernetic Hand for Perception and Action. Biological
Cybernetics. 95:629-644.

[11] Carrozza, M.C., Persichetti, A., Laschi, C., Vecchi, F., Vacalebri, P.,

Tamburrelli, V., Lazzarini, R., & Dario, P. (2005) A Novel Wearable Foot
Interface for Controlling Robotic Hands. 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 2010-2015.

[12] Cheung, J.Y.M., Cheng, K.W.E., and Kamal, A.S. (1996) Motor Speed

Control by Using a Fuzzy Logic Model Reference Adaptive Controller. Power
Electronics and Variable Speed Drives, September 23-25, 1996.

130

[13] Cipriani, C., Zaccone, F., Micera, S., & Carrozza, M.C. (2008) On the Shared
Control of an EMG-Controlled Prosthetic Hand: Analysis of User-Prosthesis
Interaction. IEEE Transactions on Robotics. 24:170-184.

[14] Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G., Carrozza, M.C.,

& Dario, P. (2006) Closed-loop Controller for a Bio-inspired Multi-fingered
Underactuated Prosthesis. Proceedings of the 2006 IEEE International Conf
on Robotics and Automation. pp. 2111-2116.

[15] Cranny, A., Cotton, D.P.J., Chappell, P.H., Beeby, S.P., & White, N.M. (2005)

Thick Film force and slip sensors for a prosthetic hand. Sensors and
Actuators A: Physical 123-124:pp. 162-171.

[16] Crnosija, P., Ban, Z., & Krishnan, R. (2002) Application of Model Reference

Adaptive Control to PM Brushless DC Motor Drives. Proceedings of the 2002
IEEE International Symposium on Industrial Electronics. pp. 689-694.

[17] Codfelter, M.D. (1992) Warfare and Armed Conflicts: A Statistical Reference

to Casualty and Other Figures 1618-1991; McFarland & Co., Jefferson, NC.

[18] Cooley, T. & Micheli-Tzanakou, E. (1998) Classification of Mammograms

Using a Modular Neural Network. Journal of Intelligent Systems. 8:1-53.

[19] Cowdrey, A.E. (1994) Fighting for Life: American Military Medicine in

World War II; The Free Press, New York.

[20] Craelius, W (2002) The Bionic Man: Restoring Mobility. Science 295:1018-

1021

[21] Curcie, D.J., Flint, J.A., Craelius, W. (2001) Biomimetic Finger Control by

Filtering of Distributed Forelimb Pressures. IEEE Transactions on Neural
Systems and Rehabiliation Engineering. 9:69-75.

[22] DeLaurentis, K.J. (2004) “Development of New Methodologies for the

Fabrication and Actuation of Robotic Systems;” Doctoral Dissertation,
Rutgers University, May 2004.

[23] Dempsey, G.L., Alig, J.S., & Redfield, D.E. (1996) Using Analog Neural

Networks for Control Sensor Linearization. Proceedings of the 38th Midwest
Symposium on Circuits and Systems. pp. 73-76.

[24] Doshi, R., Yeh, C., & LeBlanc, M. (1998) The design and development of a

gloveless endoskeletal prosthetic hand. Journal of Rehabilitation Research
and Development. 35:388-395.

[25] Ehsani, M.S. (2007) Adaptive Control of Servo Motor by MRAC Method.

2007 Vehicle Power and Propulsion Conference. pp. 78-83.

131

[26] Erickson, J.E., DeLaurentis, K.J., and Bouzit, M. (2007a) A Novel Single

Digit Manipulator for Prosthetic Hand Applications. 2007 IEEE Systems and
Information Engineering Design Symposium, Charlottesville, VA, April
2007.

[27] Erickson, J.E., DeLaurentis, K.J., and Bouzit, M. (2007b) A Novel Method of

Transmission of Rotational Motion Between Non-Parallel Axes. 2007 ASME
Applied Mechanics and Materials Conference, Austin, TX, June 2007.

[28] Flint J.A., Phillips, S.L., & Craelius, W. (2003) Myo-Kinetic Interface For A

Virtual Limb. 2nd International Workshop on Virtual Rehabilitation. pp.
113-118.

[29] Franklin, G.F., Powell, D.J., and Emami-Naeini, A. (2002) Feedback Control

of Dynamic Systems; Prentice Hall, New York.

[30] Frayman, Y. and Wang, L. (1999) Direct MRAC with Dynamically

Constructed Neural Controllers. 1999 International Joint Conference on
Neural Networks. IJCNN99: 2236-2240.

[31] Ge, S.S., Lee, T.H., & Harris, C.J. (1998) Adaptive Neural Network Control of

Robotic Manipulators. World Scientific Publishing, Singapore.

[32] Goodwin, G.C., Ramadge, P.J., Caines, P.E. (1979) Discrete Time

Multivariable Adaptive Control. 18th IEEE Conference on Decision and
Control including the Symposium on Adaptive Processes. pp. 335-340.

[33] Greenberg, M.D. (1998) Advanced Engineering Mathematics, 2nd Edition.

Prentice Hall, Upper Saddle River, NJ.

[34] Hartcup, Guy. (2000) The Effect of Science on the Second World War; St.

Martin’s Press, New York.

[35] Harth, E. and Pandya, A.S. (1988) “Dynamics of ALOPEX Process:

Application to Optimization Problems.” in Biomathematics and related
Computational Problems, Ricciardi, L.M., Ed. Kluwer, Boston, pp. 459-471.

[36] Harth, E. and Tzanakou, E. (1974) ALOPEX: A Stochastic Method for

Determining Visual Receptive Fields. Vision Research 14:1475-1482.

[37] Hayakawa, T., Haddad, W.M., Hovakimyan, N. (2008) Neural Network

Adaptive Control for a Class of Nonlinear Uncertain Dynamical Systems with
Asymptotic Stability Guarantees. IEEE Transactions on Neural Networks.
19:80-89.

132

[38] Haykin, S. Chen, Z., and Becker, S. (2004) Stochastic Correlative Learning
Algorithms. IEEE Transactions on Signal Processing. 52:2200-2209.

[39] Heim, W. (2005) Microprocessor Technology for Powered Upper Extremity

Prosthetic Control Systems. Robotica. 23:275-276.

[40] Hu, J., Hwang, X., and Chen, J. (1992) Neural Networks Adaptive Control.

Proceedings of the 1992 IEEE International Symposium on Industrial
Electronics.

[41] Hudgins, B. and Parker, P. (1993) A New Strategy for Multifunction

Myoelectric Control. IEEE Transactions on Biomedical Engineering. 40:82-
94.

[42] Jury, E.I. (1964) Theory and Application of the z-Transform Method. John

Wiley & Sons. New York.

[43] Kargov, A., Asfour, T., Pylatiuk, C., Oberle, H., Klosek, H., Schulz, S.,

Regenstein, K., & Bretthauer, G. (2005) Development of an Antropomorphic
Hand for a Mobile Assistive Robot. 9th International Conference on
Rehabilitation Robotics. ICRR:182-186.

[44] Karr, C.L. (1999) Practical Applications of Computational Intelligence for

Adaptive Control. CRC Press. New York.

[45] Kyberd, P.J., Evans, M., and te Winkel, S. (1998) An Intelligent

Anthropomorphic Hand, with Automatic Grasp. Robotica 16:531-536.

[46] Kyberd, P.J., Light, C.M., Chappell, P.H., Nightingale, J.M., Whatley, D., &

Evans, M. (2001) The design of anthropomorphic prosthetic hands: a study of
the Southampton Hand. Robotica 19:593-600.

[47] †Landau, Y.D. (1979) Adaptive Control: The Model Reference Approach.

Marcel Dekker. New York.

[48] Li, S-J., Zhang, X-J., Qian, F. (2005) Soft Sensing Modeling via Artificial

Neural Network Based on PSO-ALOPEX. Proceedings of the 4th Int’l Conf on
Machine Learning and Cybernetics. Guangzhou.

[49] Light, C.M. and Chappel, P.H. (2000) Development of a lightweight and

adaptable multiple-axis hand prosthesis. Medical Engineering and Physics
22:679-684.

[50] Light, C.M., Chappell, P.H., Hudgins, B., & Engelhart, K. (2002) Intelligent

multifunction myoelectric control of hand prosthesis. Journal of Medical
Engineering Technology. 26:139-146.

133

[51] Lynch, K.F., Drew, J.G., Tripp, R.S., Roll, C.R. (2005) Lessons from
Operation Iraqi Freedom; RAND, Arlington, VA.

[52] Medrano-Marques, N.J. & Martin-del-Brio, B. (2001) Sensor Linearization

with Neural Networks. IEEE Transactions on Industrial Electronics.
48:1288-1290.

[53] Meng, Q.H.M. and Lu, W.S. (1993) A Neural Network Adaptive Control

Scheme for Robot Manipulators. 1993 IEEE Conference of the Pacific Rim:
606-609.

[54] Micera, S., Carrozza, M., Beccai, L., Vecchi, F., Dario, P. (2006) Hybrid

Bionic Systems for the Replacement of Hand Function. Proceedings of the
IEEE. 94:1752-1762.

[55] Micheli-Tzanakou, E. (2000) Supervised and Unsupervised Pattern

Recognition: Feature Extraction and Computational Intelligence; CRC Press,
Boca Raton, FL.

[56] Microchip, “PIC18F2450/2550/4450/4550 Data Sheet”, Retrived from

microchip.com July 10, 2008.

[57] Microchip, “PIC18F2331/2431/4331/4431 Data Sheet”, Retrieved from

microchip.com July 10, 2008.

[58] Miller, D.E. (2003) A New Approach to Model Reference Adaptive Control.

IEEE Transactions on Automatic Control. 48:743-757.

[59] Mitchell, P.D. (2004) Medicine in the Crusades: Warfare, Wounds, and the

Medieval Surgeon; Cambridge University Press, New York.

[60] Ohka, M. and Kondo, S. (2008) Stochastic Resonance Aided Tactile Sensing.

Robotica First View Article.

[61] Phillips, C.L. and Nagle, H.T. (1994) Digital Control System Design and

Analysis; Prentice Hall, New York.

[62] Phillips, S.L. and Craelius, W. (2005) Residual Kinetic Imaging: a Versatile

Interface for Prosthetic Control. Robotica 23:277-282.

[63] Pons, J.L., Ceres, R., Rocon, E., Reynaerts, D., Saro, B., Levin, S., & Van

Moorleghem, W. (2005a) Objectives and technological approach to the
development of the multifunctional MANUS upper limb prosthesis. Robotica
23:301-310.

134

[64] Pons, J.L., Ceres, R., Rocon, E., Levin, S., Markovitz, I., Saro, B., Reynaerts,
D., & Van Moorleghem, W. (2005b) Virtual reality training and EMG control
of the MANUS hand prosthesis. Robotica 23:311-317.

[65] Pons, J.L., Ceres, R., and Pfeiffer, , F. (1999) Multifingered dextrous robotics

hand design and control: a review. Robotica 17:661-674.

[66] Porat, B. (1997) A Course in Digital Signal Processing. John Wiley and Sons,

New York.

[67] Pylatiuk, C., Mournier, S., Kargov, A., Schulz, S., & Bretthauer, G. (2004)

Progress in the Development of a Multifunctional Hand Prosthesis.
Proceedings of the 26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. pp. 4260-4263.

[68] Rowcliffe, P. and Feng, J. (2008) Training Spiking Neuronal Networks with

Applications in Engineering Tasks. IEEE Transactions on Neural Networks
19:1626-1640.

[69] Schulz, S., Pylatiuk, C., & Bretthauer, G. (2001) A New Ultralight

Anthropomorphic Hand. Proceedings of the 2001 IEEE International
Conference on Robotics and Automation: 2437-2441

[70] Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R., & Bretthauer, G.

(2005) A hydraulically driven multifunctional prosthetic hand. Robotica
23:293-299.

[71] Scott, R.W. and Collins, D.J. (1990) Neural Network Adaptive Controllers.

The 1990 International Joint Conference on Neural Networks.

[72] Shadow Robot Company. (2005) “Shadow Dexterous Hand C3 Technical

Specification,” draft received December 2005.

[73] Shadow Robot Company. (2004) “Developments in Dexterous Hands for

Advanced Robotic Applications,” copy provided by the company December
2005.

[74] Shadow Robot Company. (2003) Design of a Dexterous Hand for Advanced

CLAWAR Applications. Proceedings of the 6th Int’l Conf on Climbing and
Walking Robots (CLAWAR): Catania, Italy; September 17-19, 2003.
(Provided by Shadow Robot Company, December 2005)

[75] Solarbotics, Ltd. (2003) “The ‘Secret’ L293D Motor Driver.” Solarbotics,

Ltd. Calgary, Alberta.

[76] ST Microelectronics (2003) “L293D/L293DD Datasheet.” Retrieved from

digikey.com August 23, 2008.

135

[77] Stoten, D.P. (1990) Model Reference Adaptive Control of Manipulators.

John Wiley and Sons. New York.

[78] Sunwoo, M., Cheok, K.C., and Huang, N.J. (1991) Model Reference Adaptive

Control for Vehicle Active Suspension Systems. IEEE Transactions on
Industrial Electronics. 38:217-222.

[79] Tao, G. (1997) Robustness of MRAC Schemes. Proceedings of the American

Control Conference: 744-745.

[80] Tao, G. & Ioannou, P.A. (1993) Model Reference Adaptive Control of Plants

with Unknown Relative Degree. IEEE Transactions on Automatic Control.
38:976-982.

[81] Tzanakou, E., & Harth, E. (1973) Determination of Visual Receptive Fields

by Stochastic Methods. Biophysical Society Abstracts. 13:42a.

[82] United States Department of Defense (2008) “Casualty Update.” Retrieved

from http://www.defenselink.mil/news/casualty.pdf, December 8, 2008.

[83] Unnikrishnan, K.P. & Venugopal, K.P. (1992) Learning in Connectionist

Networks Using the ALOPEX Algorithm. 1992 International Joint Conference
on Neural Networks. pp. 926-931.

[84] Venugopal, K.P., Pandya, A.S., and Sudhakar, R. (1992) ALOPEX Algorithm

for Adaptive Control of Dynamical Systems. The 1992 International Joint
Conference on Neural Networks, pp. 875-880.

[85] Watson, R.K. (2008) “2008 FRC-RC Example Code and Utilities.” Available

at www.kevin.org/frc/. Retrieved July 10, 2008.

[86] Wetterhahn, R. (2001) The Last Battle: The Mayaguez Incident and the End

of the Vietnam War; Carroll and Graf, New York.

[87] Wikipedia: The Free Encyclopedia “United States Casualties of War.”

Accessed August 12, 2008:
http://en.wikipedia.org/wiki/United_States_casualties_of_war.

[88] Wininger, M., Kim, N-H., & Craelius, W. (2008) Pressure Signature of

Forearm as Predictor of Grip Force. Journal of Rehabilitation Research and
Development. 45:883-892.

[89] Winter, S.H. (2006) A Haptic Force Feedback Glove Using

Magnetorheologic Fluid. Unpublished Master’s Thesis. Rutgers University.

136

[90] Winter, S.H. & Bouzit, M. (2007) Use of Magnetorheological Fluid in a Force
Feedback Glove. IEEE Transactions on Neural Systems and Rehabilitation
Engineering. 15:2-8.

[91] Yamanaka, O., Yoshizawa, N., Ohmori, H. and Sano, A. (1997) Adaptive

Control and Stability Analysis of Nonlinear Systems Using Neural Networks.
1997 International Conference on Neural Networks.

Bibliographical Notes:

* This work by Jürgen Ackermann is an English translation of the German
Language work Abtastregelung by the same author in 1972.

† Landau, Y.D. sometimes cites as Landau, I.D. in the literature.

137

Curriculum Vita

Jeffrey Edward Erickson

August 2000 - May 2004 University of Virginia
 Bachelor of Science, Electrical Engineering
 Minor, Biomedical Engineering

April 2007 – May 2009 ANADIGICS, Inc.
 Test Instrumentation & Data Acquisition Engineer

August 2004 – May 2009 Rutgers, The State University of New Jersey
 University of Medicine and Dentistry of New Jersey
 Graduate Program in Biomedical Engineering
 Doctor of Philosophy
Publications:
Erickson, J.E. & Bouzit, M. (2006) "Development of a high degree of
freedom hand prosthesis." 2006 Annual Meeting of the BMES

Erickson, J.E., DeLaurentis, K.J. & Bouzit, M. (2007) "A Novel Single
Digit Manipulator for Prosthetic Hand Applications," 2007 IEEE Systems
and Information Engineering Design Symposium, Charlottesville, VA.

Dicken, G., Butler, N., Kutch, M.E., & Erickson, J.E. (2007)
"Application of Intelligent Control to the 2007 FIRST Robotics
Competition," 2007 IEEE Systems and Information Engineering Design
Symposium, Charlottesville, VA.

Erickson, J.E., DeLaurentis, K.J. & Bouzit, M. (2007) "A Novel Method
for Transmission of Rotational Motion Between Non-Parallel Axes," 2007
ASME Applied Mechanics and Materials Conference, Austin, TX.

Dicken, G., Frank, R., Wasser, B., Kutch, M.E., Tompkins, W., &
Erickson, J.E. (2008) "Data Collection for Performance Analysis and
Fault Detection in the 2008 FIRST Robotics Competition," 2008 IEEE
Systems and Information Engineering Design Symposium, Charlottesville,
VA.

Papers submitted for review:
Erickson, J.E. & Micheli-Tzanakou, E. “Electronic Hardware for Embedded
Control of Multiactuator Robotic Systems” IEEE Transactions on Circuits and
Systems.

Erickson, J.E. & Micheli-Tzanakou, E. “Adaptive Optimization of High
Dimensionality Sensor Arrays using ALOPEX ” IEEE Transactions on Neural
Systems and Rehabilitation Engineering.

