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With medical advances through the past half century, survival rates 

following trauma have risen.  Along with this rise has come an increase in the 

number of survivors with amputated limbs.  Many of these survivors are Soldiers, 

Airmen, and Marines, who are relatively young and could benefit from 

sophisticated prostheses to replace the lost function. 

These prostheses would be very maneuverable and able to better mimic 

the natural human motions.  Such devices would likely be high degree of freedom 

with many actuators.  Control of prostheses with intelligent algorithms may 

provide improved performance for the user. 

 To this end, a novel experimental transmission for driving the several 

joints of such a device has been developed and tested.  Also, it has been used in 

the design, production, and testing of a 3 DOF digit actuator for use in a 

prosthetic hand. 

 Embedding the control hardware would make such a prosthesis more 

compact and portable.  Using custom printed circuit boards, Microchip PIC 

microcontrollers have been used to control the digit actuator.  Taking advantage 

of surface mount packages, control boards have been developed which integrate 
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motor drivers with microcontrollers, and fit into a space comparable to that of 

the aforementioned prosthesis.  Furthermore, the networking capability of these 

controllers has been demonstrated, presenting an extensible framework for 

addition of processing power as technology develops. 

 Given the non-linear nature of the several joints in the system, intelligent 

controls have been explored.  Model reference adaptive control (MRAC) was used 

in simulation of digit models.  Also, coupling MRAC with artificial neural 

networks yields ANN-MRAC (artificial neural network model reference adaptive 

control).  Training these ANN control systems using ALOPEX yields good 

tracking performance across the non-linear range of the system.  Such control 

logic may prove effective in a time varying non-linear system such as a hand 

prosthesis 

 Human machine interfacing is key in the use of prostheses.  Since a 

minimal amount of training is most desirable for the user, adaptive and 

intelligent methods may provide a control interface framework that reduces 

learning time for the user.  To accomplish this, an algorithm for optimization of 

large dimensionality sensor grids was developed.  This algorithm uses several 

template matrices to optimize the gain of each sensor in the grid.  This both 

identifies a region of activity, and reduces the signal-to-noise ration of the sensor 

grid output by reducing gain on channels not containing information.  The 

desired region is identified through enhancement of the signal gain on the 

sensors above the region.  This would allow the placement of sensors on the body 

in an inexact fashion and instead let the computer optimize the sensor network 

gains for regions of activity associated with a given motion.  Such an adaptive 
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system reduces learning time for the user, thus reducing human error and easing 

use. 
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Overview and Objectives 

1.1 Introduction 

Those of us who have full use of our hands may take for granted the value of our 

dexterity.  We do not think twice about how to open a door, open a bottle, shake a 

hand, or pick up a cup of coffee.  For those who have lost a hand, these can be 

very frustrating tasks, especially for those who lost the hand suddenly and 

traumatically. 

 

Technology has progressed to the point where devices that have the dexterity of 

the hand, measured in degrees of freedom (DOF), can be artificially produced.  

Also, electronics have progressed to the point where major processing power can 

be packed into increasingly smaller spaces.  These combine to provide the 

platform for the development of an artificial prosthesis capable of mimicking the 

natural human hand (Pons, et al, 1999 & Craelius, 2002). 

1.2 Motivation 

1.2.1 General Motivation 

Amputations have been a medical practice since the middle ages (Mitchell, 

2004).  Over time, the understanding of the human forearm has allowed for neat 

surgical procedures that effectively form the residuum to a shape that can be 

accepted by a prosthesis.  That device, however, had been rather archaic until 

recently, usually resembling a hook or a purely cosmetic hand.  The end actuators 

typically needed to be specially designed for individual tasks.  As a result, the 
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prosthetics that amputees received either were pleasing to the eye or functional, 

but rarely both. 

 

The late 20th century brought advancements in prosthetic technology.  Gone were 

the hooks and clamps of earlier times, replaced with hands that were both 

cosmetic and functional.  These hands, while offering more dexterity than 

previous devices, still did not approach the dexterity of the natural hand.  This 

project seeks to develop a prosthesis that approaches the performance, force 

generation, and dexterity of the natural human hand. 

1.2.2 Implications of Modern Warfare 

Though many groups of people are subject to amputation, there are a few groups 

that are especially prone to needing the procedure.  Power line workers can 

literally have their hands vaporized by electricity, factory workers can have their 

hands traumatically amputated by machinery, and soldiers can lose entire limbs 

to battlefield injury. 

 

Ironically, the development of more effective weapons has been accompanied by 

better medical technology (Hartcup, 2000) and logistics (Lynch et al, 2005) in 

the military.  In World War II, battlefield medicine took on a new sophistication 

with the large scale training of medics for immediate medical care (Andersen, 

2003).  However, depending on the theater, a wounded soldier could find himself 

laying on a cot near the front for many days before being transported by air, 

truck, or ship to rear hospitals (Cowdrey, 1994).  During the Vietnam and Korean 
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Wars, the use of the UH-1 “Huey”, HH-3 “Jolly Green”, CH-53, and HH-53 

helicopters brought fast evacuation from the front line (Wetterhahn, 2001), but 

still left most casualties in country for many days and perhaps weeks.   

 

The conflicts of the past decade have brought a heretofore unseen speed to 

military medical treatment.  Helicopters, namely the HH-60 Pave Hawk, 

continue to be used in Iraq for evacuation (Boyne, 2003).  Rather than even 

staying on the continent the soldier was wounded on, many of those wounded 

find themselves in the continental United States within a week.  Casualties are 

almost immediately evacuated from the fighting, are on a medical ship by the end 

of the day, and are in Germany or the United States by the end of the week, 

sometimes sooner.  Typically this is done by fixed wing jet (Boyne, 2003).  As a 

result, the ratio of casualties to deaths has risen; more people injured in combat 

are surviving (see Table 1.1).  This has generated added demand for effective 

dexterous prosthetics so our surviving Purple Heart recipients may lead 

productive lives after their discharge. 

Table 1.1: United States Battlefield Casualties 1941-2008.   

 WWII Korea Vietnam War on 
Terror 

Iraq 

KIA 292,131 33,629 47,072 358 3609 

WIA 671,801 103,284 155,419 
(303,704) 

2330 30,324 

WCIR* 69.7% 75.4% 76.7% 
(86.6%) 

86.7% 89.4% 

For Vietnam data, numbers in parentheses refer to total WIA, numbers without parentheses 
refer to hospitalized WIA.  “War on Terror” refers to conflicts in the Global War on Terror, 

including Afghanistan, but excluding Iraq.   
*WCIR: Wounded to Combat Injured Ratio (WIA/(WIA+KIA)).   

WWII (p. 956), Korea (p.1216), and Vietnam (p.1322) data from Codfelter, 1992.  War on 
Terror and Iraq War data from Wikipedia (2008) and United States Department of Defense 

(2008). 
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1.3 Literature Review 

1.3.1 Existing Prostheses 

Prosthetic devices have existed for centuries, brought to popular attention by 

Captain Hook, of Peter Pan fame.  Indeed, early prosthetics were simple devices 

that were either purely functional, like hooks, or purely cosmetic, like a 

mannequin’s hand.  Otto-Bock is a well known manufacturer of such hands, 

including a simple grasp actuator.  However, there are more advanced prostheses 

in existence or in development, ranging from the simple and ultra light design of 

the VA Rehabilitation and Research and Development Center in Palo Alto, CA 

(Doshi et al, 1998) to the extremely dexterous (but heavy) design of the Shadow 

Robot Company in England. 

1.3.1.1 The Southampton Hand 

Calling any one particular device “The Southampton Hand” is actually a 

misnomer.  There have been several hands developed at the University of 

Southampton, England since the first in 1967.  The Southampton Team prefers to 

describe “The Southampton Hand” as a general philosophy regarding prosthetic 

hands, the design targets, and the extraction of volition from patient data.  The 

core of this principle is the Southampton Adaptive Manipulation Scheme (SAMS) 

(Light et al, 2002), the method of data extraction.  

 

In terms of the physical device, the most recent hand appeared in the literature in 

2000 (Light and Chappell, 2000).  It uses SAMS as the core of the control 
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system.  The digits are actuated using DC motors with capstans, for force 

amplification (Figure 1.1(a)).  There are five independent digits, but the digits are 

internally coupled using wires and linkages in each digit, and fold with consistent 

trajectory (Figure 1.1(b)).  In 

addition, the thumb has a 

circumduction (a combination 

of axial rotation and abduction-

adduction) actuator (Light and 

Chappell, 2000).   

 

This system, the Southampton-

Remedi hand, weighs 400g, has 

6 DOF, and has a total grip 

force of about 40N.  Each of the 

four digits actuate with a peak 

active grip force of 9.2N, while 

the thumb has a peak active grip force of 3.7N.  At peak utilization, the device 

draws 10.5W of electrical power (Light and Chappell, 2000).  This design gained 

much press, through the BBC, in 2005. 

1.3.1.2 The Hydraulic FZK Hand 

In 2001, Schulz et al reported on their development of a hydraulically actuated 

hand.    The system is biomimetic, based on the activity of insects.  Small 

hydraulic balloons were placed in the vertex of each joint, and inflated to open 

 

(a) 

 

(b) 

Figure 0.1: Capstan drive used in the 
Southampton Hand (a) and linkage detail (b). 
(Kyberd et al, 2005) 
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the joint (Figure 2-2).  This is essentially the same principle arachnids use to 

move their appendages.   

 

In 2004, the same group at 

Forschungszentrum Karlsruhe (FZK) 

in Germany expanded the scope of 

their hydraulically driven hand, and 

applied it to prosthetics (Pylatiuk, et 

al, 2004).  One key aspect of the 

design is a preshaping step to prepare 

the hand for the activity.  This 

required initial user input.   

 

The physical device weighed 891g, with 15 DOF, and a maximum grip force of 

65N.  Each digit contributed approximately 8N, provided by 15 independent 

flexible fluidic actuators, the hydraulic balloons described above (Schulz et al, 

2005).  Data on the compressor, the fluid used, and the power consumption were 

not provided. 

1.3.1.3  The MANUS Hand 

Although also used to describe a hand developed at MIT, this MANUS hand is 

attributed to a European and Asian consortium in Spain, Belgium, and Israel.  

Like the aforementioned hands, it uses EMG data to control the system.  This 

hand, along with Dextra and the Southampton Hand, was developed in the late 

 

Figure 0-2: Conceptual schematic of 
the inflatable hydraulic balloon 
mechanism (Schulz et al, 2001). 
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1990’s, and reflects the technology of the time.   Only the first two digits and the 

thumb are independently actuated.  The digits use a crossed pulley system to 

approximate a tendon.  The thumb uses a Geneva Wheel mechanism to allow for 

4 degrees of freedom.  In addition, rotation about the wrist is possible through 

the use of thin ultrasonic motors (Pons et al, 2005(a)).  This gives the MANUS 

device a total of 6 DOF in the hand (driven by 10 brushless DC motors), and 1 

DOF (pronation-supination) in the wrist (through high torque ultrasonic 

motors), for a total of 7 DOF (Pons et al 2005(a)). 

1.3.1.4 The Dextra Hand 

Dextra was developed by Dr. William Craelius at Rutgers University in the late 

1990’s.  The hand itself is actuated using commercially available servo motors.  

All five digits are independent of one another, but curl with consistent trajectory.  

The novelty of the Dextra system lies in the detection method.  Rather than using 

EMG signals, pressure information from the residuum is used to detect volition.  

 

Figure 0.3: "Crossed Tendon Mechanism" schematic (Pons et al, 2005). 
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This overcomes the noise susceptibility of EMG, bypasses the cost of implanted 

sensors, and demodulates the inherently frequency modulated information from 

the nervous system.  Formally, the method is referred to as “Residual Kinetic 

Imaging” or a “Myo-Kinetic Interface” (Curcie, et al, 2001 & Phillips and Craelius, 

2005).  These signals are then used to construct drive signals for the prosthesis 

itself, which is driven by servomotors, as mentioned.  Application of this system 

to actual amputees has proven successful, insofar as an amputee can play simple 

tunes on a piano with minimal practice. 

 

Figure 0.4: The Dextra Prosthesis System (Craelius, 2002).  The top piece is the sleeve for 
the residuum; at middle right is the rigid socket; at middle left is the microcontroller; the 

bottom is the hand with servo actuators.  
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1.3.1.5 The Shadow Dexterous Hand 

The Shadow Hand is a commercially produced hand from England.  The 

developers used pneumatic artificial muscles to give each digit 4 DOF.  The 

thumb is enhanced with another joint 

and muscle, giving it 5 DOF.  Further, 

the wrist is actuated with two motors 

(Shadow, 2005).  These many degrees 

of freedom very closely approximate 

the DOF of the natural human hand, 

making Shadow the robotic hand 

design to beat.  Unfortunately, the 

system weighs 3.5kg, and the 

compressor, controls, and actuator 

take up too much space in the palm 

and forearm to allow a socket for the 

residuum. 

 

The system has, however, found research applications in academia, and 

applications for climbing and walking robots (Shadow, 2003).   Speaking strictly 

in terms of functionality, the Shadow hand meets and surpasses the criteria for a 

prosthetic.  Further, the controller for the hand is compliant with standard IEEE 

protocols, namely IEEE 1394 “Firewire” (Shadow, 2004).  This standardization 

 

Figure 0.5: The Shadow Dexterous 
Hand (Shadow, 2005). 

 



 

 

10 

makes the product marketable to a wide audience.  However, the high weight 

prohibits its use as a viable prosthetic.  

1.3.1.6 Cyberhand 

A group at the Scuola Superiore Sant’Anna in Pisa,Italy has also developed a high 

degree of freedom manipulator for use as a prosthesis, which they dub the  

“Cyberhand.”  The approach of this design is to maximize the degrees of freedom 

available in each digit by using a 

separate actuator for each joint.  Using 

linear precision microdrivers based on 

brushless DC motors with planetary 

transmissions and lead screw drive 

(Smoovy), the actuators can be placed 

within the digit’s links.  The system 

also employs several sensors, 

including Hall Effect sensors for 

position, and force sensors on the 

digits (Carrozza et al, 2002).  In a 

separate report (Carrozza, et al, 2006), Cyberhand’s actuation is described as one 

similar to the Southampton hand (above), driven by pulleys along with actuators 

by Minimotor, similar to the Smoovy unit with an added incremental encoder.  It 

is important to note that the Cyberhand digits are “underactuated” (Cipriani, 

2006).  This is to say that the number of actuators is less than the number of 

 

Figure 1.6: Cyberhand grasping a plastic 
cup.  
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degrees of freedom, to simplify control for the human wearer of the device 

(Micera, et al, 2006). 

 

In terms of the control method, the Cyberhand group uses pulse width 

modulation (PWM) to drive the DC motors they use.  These signals are generated 

by Microchip PIC18F2431 processors, and employ supervisory control via 

computer (Cipriani, et al, 2008).  Communication between the PIC and the 

supervisory computer is handled by RS-232 serial protocol (Cipriani, et al, 2006). 

1.3.1.7 University of Victoria Biomimetic Artificial Finger 

Bundhoo’s group at the University of Victoria (British Columbia, Canada) have 

investigated and developed a biomimetic digit.  This device features 4-bar 

 

Figure 1.7: The biomimetic finger actuator developed by Bundhoo et al at the University of 
Victoria (British Columbia).  The white lines indicate the path of the shape memory alloy 
actuators through the structure. 
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linkages for the joint construction, and shape memory alloy actuators.  In 

addition, they used what they term “PWM-PD” control, or pulse-width-

modulated proportional derivative control.   

 

Using the linkage at each joint allows the finger joints to articulate properly, and 

the shape memory alloy mimics tendons.  The shape memory alloy material is 

compliant, and springs are used to provide tension.  Using PWM shows a direct 

route for the control of the digit, as many processors, including those available 

from Microchip (2008), have pulse width modulated output features.  The 

structure of the digit was constructed using solid modeling and rapid 

prototyping, namely stereolithography (SLA). 

1.3.2 Dynamic System Control 

Broadly looking at control systems simplifies the discussion of the theories 

behind them.  Rather than classifying the actuators into their output categories 

(force, motion, etc.), separating them based on internal characteristics (linear vs. 

non-linear) allows for a more orderly coverage of the topic.  Below, traditional 

and modern control of linear systems is covered, as well as the use of adaptive 

mechanisms, including neural networks and model reference adaptive control. 

1.3.2.1 “Traditional” Control of Linear Time Invariant (LTI) Systems 

Unfortunately, very few real world systems are linear.  Many of these non-

linearities can be modeled through approximations as linear systems.  If a system 

can be modeled as a linear combination of inputs and outputs, and the 
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derivatives of the inputs and outputs, of the system, it is considered linear time 

invariant (LTI).  This linear model must take the form: 

(1.3.1) 

 

That is, the general form of an LTI system is a differential equation that is a sum 

of the inputs and outputs and their derivatives.  The solution of this differential 

equation is best found using the Laplace transform.  Particularly with regard to 

derivatives, the Laplace Transform has the following property: 

(1.3.2) 

 

So, the Laplace Transform makes a differential equation in the time domain a 

polynomial equation in the s-domain. 

 

Transforming the model 1.3.1 from the time domain to the s-domain yields the 

following result: 

(1.3.3) 

 

This is the general form of a polynomial of order M on the left side, and a 

polynomial of order N on the right side.  M is the “order” of the system, and the 

difference (M-N) is the “degree” of the system.  Factoring these polynomials 

restates 1.3.3 as products rather than sums: 

(1.3.4) 
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Mainpulating 1.3.4 to isolate the product terms is considered the canonical form 

for this equation: 

 

(1.3.5) 

 

 

Where the pi are the poles of the system, and the zj are the zeros of the system.  In 

this form, the quotient in 1.3.5 is the Transfer Function of the system.  By 

definition, the transform function is the Laplace transform of the impulse 

response of the system. 

 

The location of the poles and zeros of the transfer function are important in the 

analysis of the system.  If all the poles are in the left-half plane of the s-plane 

(Re{s}<0), then the system is considered “stable,” meaning that for a bounded 

input, the system will have a bounded output.  If all the zeros of the system are in 

the left half plane (Re{s}<0), then the system is invertible.  Further, if all of the 

poles and all of the zeros of the system are stable (i.e. in the left half plane), then 

the system is said to be “minimum phase” (Porat, 1997, pp.262-263). 

 

Fortunately, the control of linear time invariant systems is analytical, well 

studied, and well established.  Further, there are many methods for controlling 

linear systems:  Root Locus, Lead/Lag, PID, and State Space (Franklin et al, 

2002).       
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For the following examples, consider the second order system model: 

(1.3.6) 

 

And, following the procedure above, the corresponding transfer function is: 

(1.3.7) 

 

Which, according to the above equations has zeros at s=-5 and poles at s=-

0.5±j3.1225. 

 

The root locus is a plot of pole and zero trajectories on the s-plane (Laplace 

Transform space) as a proportional feedback gain, K, varies.  By specifying the 

desired damping ratio and natural frequency or time constant and damped 

frequency, one can choose the regions on the s-plane that satisfy the 

specification, and choose K so the pole trajectory is in the desired section of the s-

plane. 
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The Lead/Lag controller uses bode analysis to design filters to alter the phase 

margin and gain margin of the system.   Phase margin is approximated as 100 

times the damping ratio, and gain margin is an indication of stability.  A lagging 

system has a low frequency pole and a high frequency zero, and changes the 0dB 

crossing in the bode magnitude plot, which in turn alters the phase margin.  A 

leading system has a low frequency zero and a high frequency pole, and changes 

the -180° crossing in the bode phase plot, which in turn alters the gain margin.  

These two system types (leading and lagging) can be used individually or in 

combination, leading to the general Lead/Lag controller philosophy.   
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Figure 0.8: Root Locus of the above transfer function. 
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Proportional-Integral-Derivative (PID) control is an approximation of Lead/Lag 

control where the proportional gain (P) alters the gain characteristics, and the 

integral (I) and derivative (D) gains alter the phase characteristics.  Intuitively, 

PID control can be seen as a three step process: 1. alter P to make the system 

stable, 2. alter I to reduce steady state error, 3. alter D to improve the system time 

response.  The major pitfall in this method is that the value of the integral gain (I) 

can make the system unstable, so there is usually a trade off between steady state 

error and system time response. 
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Figure 0.10: Bode Plot of the above transfer function. 
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1.3.2.2  “Modern” Control of Linear Systems 

The above methods are considered “traditional” control, in that they use 

frequency or Laplace data to design the controller.  In both cases, an 

approximation is made to move the poles and zeros of a “black box” system to 

desired positions on the s-plane, or on the jω-axis.  However, an algebraic 

solution to deterministically and accurately place the poles would be preferred. 

 

In addition to this desired pole placement, robust modeling of the discrete time 

systems and development of associated controllers is also desirable.  This 

problem arose in the second half of the 20th century, and lead to the development 

of the z-Transform, a corollary to the Laplace Transform, but for discrete time 

systems.  Jury provides the background mathematics, including the stability and 

causality criteria in his work (Jury, 1964).   

 

Converting from the continuous time models to the discrete time models can be 

done by several methods (Phillips and Nagle, 1998).  Among this are the bilinear 

transform and pole reassignment.  Bilinear transformation approximates the zero 

order hold (ZOH) typically encountered in computer outputs.  Pole reassignment 

uses conformal mapping to translate the s-plane into the z-plane.  The function 

for this mapping is z = exp(sT), where z is the complex value of the pole on the z-

plane, s is the complex value of the pole on the s-plane, and T is the sampling 

time in seconds.  Essentially, this takes the stable poles in the s-plane (Re{s}<0), 

and assigns them to the stable region in the z-plane (|z|<1), while incorporating 
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the sample time in the conversion.  A graphical depiction of this property is 

shown in figure 1.10. 

 

State Space Controllers exist for both continuous and discrete time control 

design.  Rather than describing the outputs of the system (like a transfer function 

or impulse response), the State Space describes the internal state of the system 

through an input law (B) and an update law (A).  The output is determined by an 

output law (C).  These matrices are used to form the continuous and discrete 

state equations. 

 

For continuous time systems, the state equations are: 

(1.3.8) 

(1.3.9) 

For discrete time systems , the state equations are: 

(1.3.10) 

(1.3.11) 
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Figure 1.10: Illustration of the conformal mapping z=exp(sT), showing the conversion of 
the left half plane in the s-domain (left) to the unit circle in the z-domain (right).  Green 
areas indicate stability, red areas indicate instability.  Adapted from Greenberg, 1998, 
p.1280 #7. 
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The size of these matrices are determined by the system properties.  For a system 

of order N with V inputs and W outputs, the matrix properties are: 

(1.3.12) 

In other words, A is a square NxN matrix, B is a matrix with V columns and N 

rows, C is a matrix with N columns and W rows, and q is a column vector with N 

elements. 

 

The members of these matrices can be found in at least two ways.  First is to 

generate the matrix members from the differential or difference equations 

directly, specifying the state as a column vector of system variables and their 

derivatives (for continuous time) or previous variable values (for discrete time).  

Another method is to specify the members from the transfer function.  Several 

canonical forms for this exist, and methods for translating the s-domain and z-

domain values to the state space are known (Phillips and Nagle, 1998). 

 

Restating equation 1.3.6 from above, and isolating the highest order term yields: 

(1.3.13) 

The dot notation indicates differentiation in time.  From this form of the system 

model, we can choose a state vector q and hence its derivative: 

(1.3.14) 

 

(1.3.15) 
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The update law (A) describes the characteristic equation of the system and is 

found through evaluation of 1.3.13, disregarding the input terms.   

(1.3.16) 

Restating this differential equation through a matrix-vector representation 

yields: 

(1.3.17) 

 

Where the top row of the matrix in 1.3.17 follows from 1.3.16, and the bottom row 

is an identity for the first derivative of y. 

 

Note that the left hand side of 1.3.17 is the derivative of the state, and the column 

vector in the right multiply on the right hand side is the state.  The equation 

1.3.17 can therefore be restated in matrix form as: 

(1.3.18) 

 

(1.3.19) 

The determinant of A is the system’s characteristic function.  So, knowing the A 

matrix also specifies the denominator of the transfer function.  A relationship 

between the state space and the transfer function is given by: 

(1.3.20) 

For the example system, the center term of 1.3.20 evaluates as: 

(1.3.21) 
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The input and output laws (B and C, respectively) specify the numerator of the 

transfer function.  The choice of B and C are not necessarily unique, and in the 

model system, the following vectors satisfy the requirement for 1.3.20 to evaluate 

to the transfer function: 

(1.3.22) 

 

(1.3.23) 

 

Note that the result in 1.3.23 corresponds to the transfer function in 1.3.7. 

 

Jürgen Ackermann first published detailed work on discrete control systems in 

1972, with an English translation published in 1985 (Ackermann, 1985).  His 

work provides the mathematical foundation and proof for deterministic pole 

placement.  The methods he describes include pole placement for both 

controllers and observers, given desired characteristic equations for each, 

respectively. 

 

The characteristic equation can be altered by applying a control law K.  The 

control law is a vector which selectively feeds back a sum the states and subtracts 

the sum from the input.  This so called “full state feedback” alters the 

characteristic equation:   

(1.3.24) 
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Such an alteration is only possible if the system is “controllable.”  A system is 

controllable if and only if: 

(1.3.25) 

In other words, the controllability matrix must be invertible in order for the 

system to be controlled using the control law K. 

 

The method for finding K is Ackerman’s Method.  Given the state matrices A, B, 

C, and a desired characteristic equation (transfer function denominator) αc(s), 

the control law can be found:   

(1.3.26) 

 

This method relies on having access to the internal state of the system.  In the 

case of a DC motor, for example, the state is the angular position and angular 

velocity of the shaft.  If the state cannot be directly measured, the state space 

representation has the advantage of a construct called the estimator.  Estimators 

(also called observers) either estimate the current state or predict a future state. 

 

Fundamentally, the observer approximates (estimates) the current state q: 

(1.3.27) 

(1.3.28) 

Where A, B, C are the state space matrices, K is the control law, chosen as given 

above, and G is an estimation matrix chosen such that: 

(1.3.29) 
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There are several methods for designing estimators, including Ackerman’s 

Method, Least Squares Method, and the Kalman Filter (Phillips and Nagle, 1995). 

 

In Ackermann’s method, the G matrix can be chosen if the system controllability 

matrix is invertible: 

(1.3.30) 

 

 

 

If the controllability matrix is invertible, and given A, B, C, and a desired 

characteristic estimation function αe(s), the control law can be found using 

Ackermann’s method for observers, which is a corollary to Ackermann’s method 

for controllers: 

(1.3.31) 

 

 

 

Ackerman’s Method is of special importance, because for a controllable 

observable system, Ackerman’s method for pole placement allows the design to 

use a specified characteristic equation, αc(z). Assuming that the control gains are 

realizable by the control processor (or other controlling device), Ackerman’s 

method will move the poles of the system to the desired location through an 

analytical method.  
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The Kalman Filter is also of special importance, as it creates the optimal 

observer.  This does not necessarily mean the optimal response, but it is a 

method to find the optimal controller in high noise or high interference 

environments, taking into account stochastic phenomena.  The goal in both these 

methods, and for any other estimator, is to approximate the internal state of the 

system based on the inputs, outputs, and previous estimation(s).  

 

Control can also be accomplished through adaptive and intelligent systems.  

Adaptive systems have the advantage of being able to compensate for unknown 

or changing system parameters.  Intelligent systems are a class of adaptive 

systems that are often biologically inspired, and tend to have increased ability to 

adapt to a variety of problems. 

1.3.3 Adaptive Systems 

1.3.3.1 Artificial Neural Networks 

An artificial neural network (ANN) is a biologically inspired computing method 

that mimics the operation of biological neural systems.  Further, it exhibits 

adaptation, connectionism, and high parallelism.   

 

An ANN is comprised of many similar computing units sometimes referred to as 

perceptrons, which typically have very similar response and operational 

characteristics.  The way in which these perceptrons are connected is referred to 

as the network topology.  After the network is implemented, it must be optimized 
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for the particular application at hand, generally referred to as the training phase.  

Following the training phase, the network is ready for testing and operation. 

 

In short, a neural network is fully specified by: 

(a) the characteristics of the processing units 

(b) the network topology 

(c) the training rules. 

1.3.3.2 ALOPEX – A Correlative Optimization Algorithm 

Among several existing machine learning algorithms, ALOPEX, an acronym for 

either the Algorithm for Pattern Extraction (Cooley & Micheli-Tzanakou, 1999)  

or Algorithmic Logic of Pattern Extracting Crosscorrelations (Harth & Tzanakou, 

1974), has been used in several applications of adaptive systems and machine 

learning problems.  At least four versions of ALOPEX exist.  In 2004, Haykin, 

Chen, and Becker surveyed several implementations of the ALOPEX algorithm, 

describing it as the basis for several correlative machine learning algorithms they 

classify as the “ALOPEX Class [of algorithms]” (Haykin, et al., 2004). 

1.3.3.2.1 The “Original” ALOPEX (ALOPEX-74) 

The original ALOPEX (Harth & Tzanakou, 1974, also Tzanakou & Harth, 1973) 

was developed to determine visual receptive fields.  This algorithm adjusts the 

weights (or biases, as used in the 1974 article) based on the performance from the 

previous weight change: 

(1.3.32) )()( nPnw jj β∆=∆
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Where β is an adjustable constant, and Pj(n) is determined by the previous 

change in global response and previous change in the local intensity.  If the 

direction of change of the global and local values are the same direction, then P is 

1.  If the direction of changes are opposite, then P is -1.  If there is no change  in 

either the global or local response, then P is 0.  This form of ALOPEX shall 

hereinafter be referred to as ALOPEX-74. 

1.3.3.2.2 ALOPEX-90 

Another version of ALOPEX (which shall be referred to as ALOPEX-90) 

developed in the early 1990’s uses the cross-correlation of the last weight change 

to the last change in response to update the weights in the next iteration.  Much 

like ALOPEX-74, if the last weight change improved the response, then ALOPEX 

continues changing the weights in the same direction, scaled by a learning rate 

parameter (Cooley & Micheli-Tzanakou, 1998).  In addition, additive noise is 

used to prevent the optimization from settling in a local minimum, and push the 

system to, ideally, the global minimum).  Unlike ALOPEX-74, however, this 

change is not discrete, but is calculated as the product of the last change in weight 

with the last change in response.  This accomplishes the same result, in terms of 

direction, as ALOPEX-74.  In ALOPEX-90, the magnitude of these changes 

influences the change in weight.  Rather than having discrete possible 

magnitudes (in the case of ALOPEX-74 the magnitudes were -1, 0, or 1), the 

magnitude is determined from the actual values, limited only by the 

computational accuracy of the platform the optimization is run on.  
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Symbolically, ALOPEX-90 can be expressed as: 

(1.3.33) 

Where ∆Wi(k) is the change in weight Wi to be calculated, ∆Wi(k-1) is the last 

change in that weight, ∆R(k) is the change in the global system response, γ is the 

learning rate parameter, ri(k) is a zero mean unit variance stochastic process, and 

σ is the standard deviation of the noise.  ALOPEX will attempt to maximize R(k) 

if γ is positive, and will attempt to minimize R(k) if γ is negative.  

1.3.3.2.3 ALOPEX-94 

In 1994, Unnikrishnan and Venugopal reported on development of an ALOPEX 

algorithm (referred to here as ALOPEX-94) which combines the stochastic 

aspects of ALOPEX with simulated annealing.  In ALOPEX-94, rather than 

update the weights using deterministic information as in ALOPEX-74 or 

ALOPEX-90, the weight change is stochastically determined.  The next change in 

weight is simply: 

(1.3.34) 

Where δj(n) is an non-stationary random variable, with two possible values +δ 

(with probability Pj(n)), and –δ (with probability 1-Pj(n)).   The probability 

measure Pj(n) is given by a sigmoid function: 

(1.3.35) 

 

Where T is a “temperature” parameter for the simulated annealing aspect of the 

algorithm.  The numerator in the exponential is given by: 

(1.3.36) 
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By inspection, 1.3.36 is a cross-correlation.  The average of the cross-correlation 

over all j is used to normalize T for each iteration, by setting T to the average 

correlation.  However, unlike ALOPEX-90, where the cross-correlation provides 

a deterministic influence on the change in weight, in ALOPEX-94, the cross-

correlation influences the change in weight indirectly, by setting the probability 

for the non-stationary random variable’s result. 

1.3.3.2.4 ALOPEX-99 

In 1999, Bia developed 4 additional forms of ALOPEX.  First is a simplified form 

of ALOPEX-94 which eliminates the T parameter all together, and is invariant to 

the number of elements to be optimized.  This variant on ALOPEX-94 uses a 

different correlation function that eliminates the simulated annealing.  Also, 

rather than influence the correlation by the magnitude of the last weight change, 

only the sign of the weight change is used.  This correlation is given by: 

(1.3.37) 

 

The other three forms, denoted here and by Bia as ALOPEX-99/A, ALOPEX-

99/B, and ALOPEX-99/C, integrate a “forgetting” influence which reduces the 

dependency as time passes.  This means that the influence of a previous weight 

update upon the previous weight updates decreases with time.  This “forgetting” 

function (Bia, 2000) is: 

 

(1.3.38)  
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Where λ is a parameter that describes the rate of “forgetting.”   

 

ALOPEX-99/A applies this to the numerator of 1.3.37, ALOPEX-99/B applies this 

to the denominator of 1.3.37, and ALOPEX-99/C applies this to both the 

numerator and the denominator of 1.3.37.  Both ALOPEX-99/B and -99/C 

showed improved performance over ALOPEX-94, but ALOPEX-99/B had a larger 

decrease in training time. 

1.3.3.2.5 PSO-ALOPEX 

An alternative optimization algorithm, particle swarm optimization (PSO) was 

integrated with ALOPEX-94 in an effort to find an improved algorithm (Li, et al, 

2005).  The PSO algorithm is similar to ALOPEX, in that it has stochastic 

components.  However, where ALOPEX has no momentum (the weights changes 

can vary greatly from one iteration to the next), the PSO algorithm has a 

momentum term which smoothes the changes in weights.  Symbolically, PSO can 

be written as: 

(1.3.39) 

Where ω is an inertia term conferring momentum, the r terms are uniform 

random variables, the c terms are constants, wj(n) is the value of the weight at 

iteration n, Lj is the best response for wj, and G is the best global response.  

Essentially, PSO modifies a given weight given the previous value of the weight, 

scaled by the momentum term.  Then, a randomly weighted sum of the error 

between the current weight value and the best local weight value and the error 
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between the current weight value and the weight value associated with the best 

global response is added to the result of the momentum term. 

 

PSO-ALOPEX combines PSO with ALOPEX by interleaving the two procedures.  

Following initialization, the weights are moved according to the PSO algorithm.  

Then, in an effort to direct the system to the global minimum, ALOPEX-94 is 

applied to update the weights.  This scheme improves PSO by using the features 

of ALOPEX to escape local minima. 

1.3.3.2.6 Applications of ALOPEX 

Though ALOPEX can be used to optimize any system, it is generally used in 

conjunction with an artificial neural network.  When used to train a neural 

network, ALOPEX is used as the training rule, which updates the connection 

weights in an effort to minimize the error. 

 

ALOPEX has been used for adaptive control (Venugopal, 1992).  In this particular 

application, the neural network used the desired position and actual position as 

inputs, was optimized by the error between the desired and actual values, and 

produced an output for input to the system dynamics.  This implementation is 

identified by the authors as direct MRAC using a neural network. 

1.3.3.3 Model Reference Adaptive Control 

Model Reference Adaptive Control (MRAC) is an adaptive method for controlling 

a system, and is based on an instantaneous comparison of the system output to a 

model output reference.  Using this error, the feedback gains are modified to, 
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ideally, have the system track the model response.  These approaches to adaptive 

control first appear in the literature in the 1970’s (Goodwin, et al, 1979 and 

Landau, 1979).  Landau covers the mathematics of MRAC, sometimes referred to 

in his work as MRAS (Model Reference Adaptive Systems), extensively, including 

some period case studies.  

 

MRAC also has the additional advantage of compensating for uncertain or 

unknown system parameters.  Tao (1993 & 1997) holds from Narendra (1989) 

that given a stable system of known degree, MRAC control can provide closed 

loop tracking.  Miller (2003) states this concept somewhat differently, stating 

that the assumptions for successful MRAC control require that the system to be 

controlled is minimum phase (all poles and zeros of the system transfer function 

are stable in the appropriate transform space)(Porat, 1997), at least an upper 

bound on the plant order is known (as in Tao, 1997), and an upper bound on the 

relative degree is known.  Application to compensate for such unknown and time 

varying parameters in DC motor drives specifically has also been proven 

successful (Crnosija, et al, 2002).  For non-linear systems with uncertain 

parameters, MRAC is also applicable, and guarantees stability (Hayakawa, et al, 

2008). 

 

Sunwoo, et al (1991) used MRAC for control of vehicle suspension.  The problem 

the confronted was control of an active suspension system for improved ride 

comfort and vehicle handling.  By using MRAC, they simulated a quarter car 

suspension.  The controller caused the system to track a reference model, chosen 
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in accordance with desired suspension parameters and performance 

characteristics. 

 

MRAC control of manipulators (Stoten, 1990), and servo control (Ehsani, 2007) 

are numerous.  In addition to these “direct” MRAC methods, additional methods 

incorporating artificial neural networks and fuzzy systems (Cheung, Cheng, and 

Kamal, 1996) have also been used. 

 

Also, additional implementations of MRAC include the use of Fuzzy Systems in 

MRAC (Al-Olimat, et al, 2003), Fuzzy Systems with Neural Networks (so called 

NeuroFuzzy Systems) for polymerization process control (Frayman and Wang, 

1999), and use of Neural Networks to control non-linear systems within the 

MRAC framework (Yamanaka, et al, 1997). 

1.3.3.4 Neural Network Adaptive Control not of the MRAC Class 

In addition to modification of the MRAC principle, several adaptive systems have 

been successfully employed that utilize Neural Networks but do not operate on 

the MRAC principle.  Artificial Neural Networks (ANN) lend themselves to this 

application given their parallelism, adaptability, and interconnected nature.  A 

thorough treatment of the subject with regard to robotic manipulators is 

provided by Ge, et al (1998).  Also, application case studies using a variety of 

computational intelligence techniques, including pH control in chemical reactor 

systems, has been collected by Karr (1999).   Approaches within this class include 

use of the neural network within the signal path as the adaptive element 
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(Bertoluzzo, et al, 1994), use of a neural network to modify controller parameters 

(Hu, et al, 1992).  Applications include the control of aircraft (Scott & Collins, 

1990) and 2 degree of freedom planar robots (Meng and Lu, 1993).  Also, spiking 

neural networks have been used for control of a 2-D robot arm mimicking the 

action of the human arm (Rowcliffe & Feng, 2008). 

1.3.4 Sensors 

1.3.4.1 Position Sensors 

Detecting position is absolutely necessary for closed loop control of any type of 

prosthetic.  Rotational linear potentiometers have been used for decades as 

reliable position sensors.  However, they can be noisy or bulky and introduce 

mechanical resistance to the system.  Optical encoders operate like 

potentiometers without the added mechanical resistance.  Also, the encoder can 

be shrunk to very small sizes through machining or micro-fabrication.   

 

A third option is the Hall Effect sensor, which detects misalignment of magnetic 

fields.  A static magnet creates a B-field, and the movable sensor sheet, carrying a 

small electric current, detects its position relative to the static B-field through the 

“Hall Effect.”  The Hall Effect describes the disruption of current flow in the 

sensor due to the B-field.  The result is a potential difference across the sheet: the 

Hall Voltage.  This voltage peaks when the current flow is perpendicular to the B-

field, and is zero when the current flow is parallel to the B-field.  Such sensors 

have been proposed for use in prosthetics by the MANUS group (Pons et al, 
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2005(a)), the Cyberhand group, and for a broader position sensor by several 

others, including DeLaurentis (2004). 

1.3.4.2 Force Sensors 

There are several methods for detecting the force on a surface.  The 

aforementioned FSRs (Wininger, 2008) and pneumatic sensors (Phillips & 

Craelius, 2005 and Abboudi, et al, 1999) used by Craelius are both viable options, 

as are ultrasonic sensors and strain gauges.  A couple minor issues arise, 

however.  FSRs have non-linear response, which introduces problems for 

feedback control design.  Strain gauges are linear in response, but are subject to 

hysteresis.  Ultrasonic sensors are not passive (they need to generate an 

ultrasonic signal) and are also not linear (Burdea, 1996).  Also, the Hall effect can 

be used to detect force (Pons et al, 2005(a)). 

 

As mentioned above in the controls section, very few real world devices are 

actually linear.  This sample of sensors is an illustration of that.  However, these 

non-linear phenomena are in the measurement values, not in time response.  The 

sensors can be linearized through computation or lookup tables in the control 

processor (Medrano-Marques & Martin-del-Brio, 2001).  Depending on the non-

linearity to be compensated for, sometimes the computation approach is favored 

over look up tables, and vice versa in other cases.   

 

Sensor non-linearities can also be compensated without a priori information 

about the sensor through neural networks (Dempsey, et al, 1996).  This is due to 
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the adaptive nature, high information capacity, and non-linear features of neural 

networks, as outlined above.  Often these networks are multi-layered perceptrons 

with few computational units to minimize the program space the neural network 

occupies in the memory of an embedded processor Medrano-Marques & Martin-

del-Brio, 2001). 

1.3.4.3 Slip Sensors 

When considering an automated grasp, knowing the force in the grasp is not 

enough information.  The control system also needs to know something about the 

object’s response to the force, either through the rate that the force is changing, 

or the motion of the object against the grasp.  Piezoelectric sensors are very good 

at measuring force rates, and this information can be used to infer slip (Burdea, 

1996).  More recently, however, a 

more direct integrated device was 

fabricated by the Southampton 

group. 

 

The concept is rather 

straightforward.  Rather than 

measuring force and slip with 

separate sensors, the Southampton 

group integrated the two onto a 

single silicon chip.  Also, rather than 

measuring through a bulky piezoelectric sensor, the slip is sensed through a 

 

Figure 0.11: Detail of Southampton 
integrated slip sensor.  The three vertical bars 
are thick film force sensors, the rectangle to the 
right is the slip sensor. (Cranny et al, 2005). 
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MEMS (MicroElectroMechanical System) device (Cranny et al, 2005).  Further, 

this small device included a temperature sensor for haptic feedback to the user.  

1.3.4.4  Feedback 

The above force and slip information can be fed back into the automated control 

system to provide additional information to control the grasp (Burdea, 1996 and 

Pons et al, 2005(a)).  This can lead to automated grasping, which the 

Southampton group highlighted as a feature of SAMS (Kyberd et al, 1998 and 

Kyberd et al, 2002).  The user would not have to consciously control the grasp 

because the automated controller would simply change the hand’s configuration 

or apply additional force to the target object to prevent slip. 

 

However, some feedback to the user would be desirable.  This has been done in 

virtual reality applications (Burdea, 1996), including a force feedback glove for 

interaction with a virtual environment (Winter & Bouzit, 2007). To a lesser 

extent, such feedback has been used in prosthetic applications (Pons et al, 

2005(a)).  The MANUS group used vibration devices to feed the user frequency 

modulated tactile feedback on the force generated by the hand. 

1.3.5 Detecting Volition 

Detecting the will of the user is central to the design and use of the prosthetic.  

Unlike robotic systems, prosthetic systems need to be intuitive so a non-expert 

user can command the device.  Ideally, this would involve direct sourcing from 

either the motor neurons or muscles that control the hand.  Though this has 
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never been done successfully, several methods involving the muscles have been 

previously implemented (Hudgins and Parker, 1993). 

 

In addition, sufficient processing power needs to be on board such a device to 

handle the detection of volition, along with control of the actuators.  Generally 

speaking, the slower 8-bit architectures previously available were sufficient for 

control of the actuators, but were overtasked if required to handle volition 

detection.  Recent advances in microcontroller/microprocessor technology have 

made them increasingly adaptable and customizable, which opens new options in 

prosthetic control design (Heim, 2005).  

1.3.5.1 Detection through EMG 

Detection by electromyography (EMG) is 

by far the most common.  The MANUS 

prosthesis (Pons et al, 1999, 2005(a),(b)), 

the hydraulic FZK hand (Schulz et al, 

2005), and the Southampton Adaptive 

Manipulation Scheme (Kyberd et al, 1998) 

all use EMG information to discern what 

the user wishes to do.  The MANUS 

method, in particular, uses pseudo-

interleaved EMG samples to determine 

which motion the hand should perform.  

The user activates muscles in simple patterns to control the device (Figure 1-13).  

 

Figure 0.12: Example EMG time 
course for control of the MANUS 
device.  This code "121" activates a grip 
mode with initial pressure of 251 
grams, and grips up to 500 grams total 
pressure or until the user commands a 
stop (Pons et al, 2005(b)). 
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This requires extensive training, and loses some of the natural information the 

body communicates, replacing it with a machine “language” to control the device 

(Pons et al, 2005(b)).  

 

Not all EMG systems use this very specific command method.  Some have been 

proposed, that use classifiers to perform pattern recognition on the data to 

extract information.  Hudgins and Parker used an artificial neural network in 

1993.  Also, the Southampton Adaptive Manipulation Scheme uses untrained 

EMG data as an input and Artificial Neural Networks as a classifier (Light et al, 

2002). 

 

The FZK control system used EMG data from two sensors and a Bayesian 

classifier to control the grasp (Figure 1.12).  As mentioned above, the hand has 15 

degrees of freedom, making it one of the models to be outdone in prosthetic 

development (Schulz et al, 2005).  A similar hand has also been applied to 

assistive robotics by the FZK group (Kargov et al, 2004). 

 

Figure 0.13: State machine diagram for control of the hydraulic FZK hand (Schulz et al, 
2005). 
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1.3.5.2 Detection through Imaging 

The other major class of schema for detecting volition is to “image” the residuum.  

This image is constructed from a map of the pressures exerted on the surface of 

the limb, which is a projection of the muscle activity beneath the skin. The 

Craelius group has had much success with this method, beginning with a 

pneumatic sensor system in 1999 (Abboudi et al, 1999).  This system was 

specialized to detect simple 

motions, tapping and grasping, 

and was robust enough that an 

amputee could play a few notes 

on a piano with the device.  In 

2001, Flint and Curcie with 

Craelius reported on a method 

for developing linear operators 

for control using the pneumatic 

sensors (Curcie et al, 2001).  

More recently, the pneumatic 

sensors were replaced with force sensitive resistors (FSR) (Flint et al, 2003).   

 

The FSR based devices performed comparably to the pneumatic device.  In 2005, 

the validity of the sensor data was verified using MRI data in conjunction with 

the placement of the FSR sensors.  This showed that the areas where the FSR 

detected movement coincided with the location of the corresponding muscles in 

 

Figure 0.14: The imaging sensor concept, 
whereby the sensor detects the subcutaneous 
motion (Abboudi et al, 1999). 
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the residuum (Phillips and Craelius, 2005).  In all of the Craelius group’s work, 

linear operators were used to classify the pneumatic or FSR information.  

1.4 Objectives, Goals, and Problem Statement 

1.4.1 Problem Statement 

While the existing technology does provide more functionality than the hooks 

and claws that preceeded them, there are several improvements that can be 

made.   

 

In terms of mechanics, development of manipulators with each joint actuated 

may provide better gripping ability and more potential hand configurations.  

While the FZK and Shadow devices do actuate all joints, they are too heavy for 

use as prostheses  Also, a low cost method of actuating each of these joints with a 

low replacement cost transmission would make hardware more accessable. 

 

Specification of the trajectory of motion would allow for varying of the closing 

rate of the hand.  Many of the existing prosthetic hands do specify the trajectory 

via the mechanics.  However, ability to vary the trajectory of each digit via 

programming would customize each device and each motion for the user. 

 

Use of sensor fields, optimized by algorithms, would allow for adaptive sensing of 

user input or surface force features.  This would allow for updating of the system 

to detect volition or sense force even with variations over time.  These variations 

include changes in the positions of the sensors, changes in user behavior 
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patterns, and changes in user physiology (e.g. muscle atrophy).  Such 

computationally intelligent methods would make a more robust system, which 

would in turn reduce the need for maintenance and adjustment of the system 

hardware and software. 

1.4.2 Objectives 

The following are the objectives of the project: 

1. Develop a high degree of freedom device, to mimic the functionality of an 

in vivo natural human digit. 

2. Develop a method to control the device given the angles of the several 

joints as inputs. 

3. Investigate methods for varying the response of the device to allow for 

specification of the trajectory, desired position, and/or speed of response.   

4. Develop a method for optimization of high dimensionality sensor grids 

over spatial EMG fields. 

1.4.3 Goals 

Since this device is intended to be used as a manipulator in a prosthetic system, 

certain size and weight restrictions come into play.   Principally, these are: 

1. Sufficient degrees of freedom to accomplish performance comparable to 

the hand.   

2. Weight commensurate with use on an amputee.   

3. Force generation sufficient to mimic the hand.   
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Given these three restrictions, the full hand device will have the following 

constraints: 

Weight <1kg (target 850g) 

Degrees of Freedom >15 

Minimum Total Grip Force 50N 

 

For a single digit, these values are: 

Weight <100g 

Degrees of Freedom 3 

Minimum Total Grip Force 10N 

 

1.4.4 Chapter Summary 

The following chapters present work in pursuit of the goals mentioned above.  

Chapter 2 presents the development of a single digit manipulator along with the 

associated electronic control hardware.  In Chapter 3, the reader will find the 

development of models for the motor and a single joint, which is shown to be 

non-linear.  Application of Model Reference Adaptive Control and Artificial 

Neural Network Model Reference Adaptive Control to the non-linear single joint 

model is covered in Chapter 4.  A method for adaptive optimization of sensor 

arrays is presented in Chapter 5.  Finally, conclusions from the work and 

suggestions for future topics can be found in Chapter 6. 
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Chapter 2: Materials and Methods 

2.1 Design Approach 

2.1.1 Mechanical Design 

The device itself is a high degree of freedom (DOF) device, approaching the 

natural present in vivo.  In addition to the three degrees of freedom in the wrist, 

Shadow Robot Company specifies 4 degrees of freedom for a digit: the distal 

joint, the medial joint, the proximal joint, and the left-to-right (abduction-

adduction) of the digit at the proximal joint (Shadow, 2003).  Each digit in this 

design has 3 joints (distal-medial, medial-proximal, proximal-metacarpal).  

When applied to the complete artificial hand, abduction-adduction of the digits 

could be achieved through a single actuator for all 4 digits.  A thumb would have 

4 joints (distal-medial, medial-metacarpal, metacarpal-carpal abduction-

adduction, and metacarpal-carpal rotation), though this particular design has not 

be explored in depth.  The wrist would have 2 motions (flexion-extension and 

rotation).  Each of these joints in the digits are actuated independently.  

 Position Sensor 

(Potentiometer) 

Force Brake 

Extension tendon 

Flexion tendon 
Phalanx DC Motor 

Worm Gear 

Drive 
 

Figure 2.1: Proposed Mechanical Configuration of the Digits. 
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Similarly, for the thumb, palm, and wrist applications, independent actuators 

should be used.  This provides for a total of 19 degrees of freedom (DOF). 

 

Such a high DOF device may not be absolutely necessary to reproduce the 

motions of the hand.  However, it does allow for a wide variety of hand positions, 

which allows for flexibility in programming and control in future investigations.  

It is prudent to design with additional DOF and later discover that less freedom is 

needed than to under-design and over-restrict the device.   

 

This is why each joint is actuated.  While performance comparable to that of the 

human hand could be achieved using fewer actuators, by actuating each joint 

many conformational options are made available.  For example, gripping of a 

square object with an under actuated hand would cause areas on the palmar 

surface of the digit to lose contact with the object.   

 

This, however, is not what happens in biology.  Rather, since each joint in a 

biological hand is actuated, the digit conforms to the square object by having one 

sharply angled joint at the corner of the square with other straighter joints on the 

sides of the square.  This means that actuating each joint, allowing for the 

maximum degrees of freedom, offers potentially better grip than an under 

actuated device. 
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2.1.2 Actuation 

Our device design uses separate actuators for force and motion.  Many, if not all, 

of the existing devices use single actuators to generate both motion and force at 

the same time.  However, there are times when the system is generating a lot of 

force when only motion is required, such as closing against air.  Conversely, there 

are times when force is needed with little motion, for grasping heavier objects.  

This results in two disadvantages: energy loss and increased bulk. 

 

Energy is not truly “lost” of course.  Rather, instead of consuming energy to 

produce a productive and useful action, the actuator draws excess energy.  For 

example, if DC motors were used as the sole actuator type, they would have to be 

fairly large to supply the necessary torques.  However, this means that the motors 

would draw excess current to overcome the internal resistance of the motor. 

 

These large motors would be heavy, possibly too heavy for a human to 

comfortably use.  There is also a possibility that the DC motors capable of 

generating the necessary torque would simply be too large to fit in an 

anthropomorphic hand.  The size and weight restrictions on a biomimetic 

prosthetic also rule out other actuators, such as the pneumatics used by Shadow 

(Shadow, 2004), and the hydraulics used by the FZK group (Kargov, 2005).  In 

both cases, the valve manifolds and compressors simply weigh too much and take 

up too much space to make them viable options for prosthetic actuation. 
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To solve these two issues, the force and motion actuation is separated.  Motion in 

the hand is driven by low power, low cost 

(~$20) DC motors with a novel wire-

based transmission.   Force would be 

driven through high power force brakes in 

future studies.  The small, low power, low 

torque DC motors position the hand.  

When force is needed, as in a grasp, force 

brakes, separate from the DC motor 

positioning system, will apply tension to 

artificial tendons along the axis of each digit.   

 

These force brakes could be one of several types.  A particularly attractive option 

is magneto-rheological fluids (MRF), which have been used in automobiles and 

are available in packages appropriate for this prosthetic application.  Previous 

work makes these smart material actuators a promising option for this 

application.  One tested MRF piston has been able to support a weight of 8.85N 

drawing 400mW (330 mA@1.2V) of electrical power (Winter, 2006). 

2.1.3 Control System 

In order to provide for closed-loop feedback control, sensors to detect position of 

the joints are necessary.  Further, for task-level control, force and slip sensors are 

necessary.  This means that the device has two separate sensor systems that will 

 

Figure 2.2: MRF Piston.  Piston 
cavity and mount (larger section to the 
left) is ~1.5” in length. 
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be integrated when task-level control commands the feedback control to position 

the hand. 

2.1.3.1 Position Sensors 

For basic state space control of a second-order system, like a DC motor, the states 

are the position and velocity of the joint.  Position values are obtained through 

ratiometric Hall Effect Sensors (Allegro Microsystems model A1301).  Detecting 

velocity is substantially more difficult, as a tachometer of some sort would have 

to be mounted on each joint.  This is space prohibitive.  Rather than measure the 

velocity, an observer/estimator would be used to estimate the position and 

velocity of the system, knowing only the position. 

2.1.3.2 Task Level Sensors 

Although prehensile positioning of the hand can be done through open-loop 

commands, the actual grasp needs to be a much more controlled motion.  Ideally, 

the prosthetic device should be able to crush cardboard or aluminum cans, while 

still being able to hold an egg without cracking it.  Previous proposals suggested 

commanded user inputs, like EMG (Pons, et al, 1999, 2005(a),(b)), switches 

located under the foot (Carrozza, et al, 2005), or other devices to control the force 

produced.  Also, vocal commands could conceivably be used to provide command 

information.  In the current approach, rather than deal with these extra inputs, 

the Task Level Control System grips the object so there is no slip when force is 

present.   
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Force can be sensed through Force Sensitive Resistors or strain gauges mounted 

on the fingers and palm of the device, and slip can be inferred by analyzing the 

changes in force patterns.  Analysis involves detection of the change in the force 

pattern, which may be detected through automated feature extraction and 

pattern recognition.  This will automate the application of grip force and apply 

the minimal force necessary to prevent slip.  Control of the level of force, and the 

pattern of force application will be done using computational intelligence 

methods, including fuzzy systems and possibly neural networks. 

 

Should the user want to apply more force (to crush the can or egg, for example) 

additional user input is required.  This is another part of the computational 

intelligence methods mentioned above.  However, for simple grasping, turning, 

lifting, and hand shaking, the force application would be certainly automated.  

2.1.4 Fabrication 

The hand itself has been fabricated using modern techniques.  Initial designs 

were made in solid modeling programs, namely Autodesk Inventor and Autodesk 

Mechanical Desktop, to allow for easy alterations during the design phase.  These 

designs were then fabricated using Rapid Prototyping technology (available 

through the Rutgers University Mechanical Engineering Department).  Fused 

deposition modeling (FDM) was used to produce the several links for each digit.  

However, technologies, namely stereolithography, have the ability to produce a 

complete hand, perhaps fully assembled.  Actuators and control sensors (covered 
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above) have been mounted to the device and integrated with a control system in a 

self contained microcontroller to control a digit.   

2.1.5 Uniqueness 

Though each of the above technologies: separation of force and motion actuation, 

use of MRF as a force brake, state space feedback control, force feedback control, 

adaptive control, and automated grasp have been used successfully for other 

applications, they have not been integrated into a single device.  As was 

discovered in the literature review, no prosthetic device for the hand has the 

dexterity of the proposed device nor do they exhibit the aforementioned actuation 

and control paradigm. 

2.2 Design Results 

This work has been developed, beginning in October 2005 and ending August 

2008.  Rather than spend money and material on physical prototypes, much of 

the initial design was done in virtual environments and simulators. 

2.2.1 Mechanical Design 

To date, there have been 5 evolutions of the finger link designs, beginning with a 

center jointed finger and concluding with the current modified hinge jointed 

finger.  The hinge joint is advantageous because it allows room for the motor and 

drive train above the joint, and mimics the joint of the biological hand more 

effectively.  Although the natural human hand is roughly center jointed, it has fat 

pads on the palmar surface.  Viewing the closing of a digit around an object not 

from the perspective of bone position, but rather from the surface conformation 
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Figure 2.3:  Initial Finger design (left) and fifth evolution of the digit design (right).  
Mechanical simplification and relocation of the axis of rotation lead to the current hinge like 
device. 

 

demonstrates why the hinged design more closely reproduces the in vivo 

mechanics. 

 

Dimensioning of the hand was based on measurements from one experimenter’s 

hand.  This was used as a starting point for the overall dimensioning.  

Manipulation in solid modeling environments (namely Autodesk Mechanical 

Desktop) allowed adjustments to these initial dimensions without rebuilding a 

physical prototype.   
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Through this manipulation, and some analysis, we discovered that the length of 

the medial link of the digit is the critical dimension for the design of the hand.  In 

fact, this digit had to be lengthened from the anatomical measurements to 

accommodate the length of the motor and drive system.  In the initial designs, 

this made the medial link longer than 32 mm.  In the final design, the medial link 

is 27 mm long. 

 

The cross section was also modified from the original designs.  Rather than use 

an intuitively neat oval shape, the final design uses arced sides with flats on the 

  

 

Figure 2.4:  Examples of Detail Available Through Solid Modeling.  Above are renderings 
and detail of the drive system from the first design, which has been reproduced in the final 
design.  Left is the view from  the palmar surface.  Center is detail of the fork mechanism 
and spindle on the proximal link.  Right is detail of both spindles and the axle holes on the 
distal link. 
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palmar and opposing surface.  This more closely resembles the cross section of 

the anatomical digit, with a wider palmar surface than top surface. 

 

Once this new first digit design was complete, it was replicated with alterations to 

the length of each link to form the phalanges.  The cross sections of the digit were 

not changed.  Although the cross sections of the digits of the natural hand do vary 

slightly, the cross section was reused to simplify design.  The variations are so 

small that the benefit from using identical cross sections outweighs the loss of 

replication.  Further extrusions to the distal link of each digit will make the tips of 

the mechanical finger more rounded like a natural human finger. 

2.2.2 Motors 

The device itself, as well as the kinetic models discussed below, is driven by 

Solarbotics geared DC motors manufactured by Sanyo.  These motors are 

sufficiently small to fit inside the shaft of the modeled digit, yet strong enough to 

provide up to 800 g-cm (or 7.84 N-cm) of torque.  In addition, a higher torque 

model, the GM-14a with nearly 5 times the torque of the GM11 is available from 

Solarbotics.  Both motors have the same outline and dimensions.  The GM11 was 

used for the distal joint, while the GM14a motors were used for the other joints.   

 

Although the complete transfer function of the motor could not be found from 

measurements alone, approximations can be used to determine an estimate of 

the motor transfer function.  The motor torque constant, armature resistance, 
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and damping constant are specified by the manufacturer on their data sheet.  

This allows for a partial determination of the time constant for the motor. 

 

The generic transfer function of a DC motor is well known and given by several 

sources, including Phillips and Nagle (1995).  A DC motor exhibits an exponential 

rise in speed, meaning it can be fully 

characterized by a time constant alone, if the 

inductance of the armature can be considered 

negligable.  Obtaining position from this transfer 

function is done through simple integration, or 

multiplication by 1/s in the Laplace domain.  For 

both speed and position, the motor can be completely described by a time 

constant.  The formula for this time constant is 

BTa

a

KKBR

JR

+
=τ  

where J is the total rotational inertia, B is the total damping due to friction, Ra is 

the armature resistance, KT is the motor’s torque constant, and KB is the motor 

damping constant (which converts speed to torque based on motor 

characteristics).  Calculations yield an approximate time constant of 16.3 

milliseconds, without load or significant drag (i.e. a free turning motor).  As can 

be seen from the formula for the time constant, the total rotational inertia and 

damping friction are significant factors in the calculation.  These values have not 

been empirically determined for our model. 

 

Figure 2.5: The Sanyo 12GN-
0348 geared DC motor.  Type 
NA1S has 76:1 reduction. 
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2.2.3 Sensor Tests and Physical Model 

A kinetic model was developed in Mechanical Desktop and then fabricated using 

Fused Deposition Modeling (FDM).  These parts are self similar links in a system, 

making fabrication very straight forward and efficient.  Using a motor to drive the 

rotation of the model, and a Hall Effect sensor to track the position allowed the 

demonstration of motor control. 

 

The single joint FDM kinetic model (discussed further below) has a range of 

motion of 120 degrees.  The digital acquisition values range from 130 to 170 with 

8-bit A/D conversion.  These digital values can be proportionally aligned to 

analog values.  Viewing the digital values as a linear quantization of the supply 

voltage, calculations show that the theoretical output voltage range from the 

sensor is 2.549V to 3.334V.  Observations of the sensor output voltage showed a 

range of 2.427V to 3.134V, indicating a non-linearity in the A/D converter.  This 

non-linearity is possibly a constant offset intrinsic to the sensor.  It has not 

impacted the ability to control the system. 

   

Figure 2.6: Kinetic model for testing the control system.  Left is a side view, center is a top 
view, right is detail of the Hall Effect sensor.  The Hall Effect magnet is the brown circle, the 
small SIP package is the sensor itself. 
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2.2.4 Embedded Platform Single Joint Control 

Fundamentally, the problem at hand is one of replication.  The ability to control 

one joint is central to the control of the entire device.  A USB-enabled 

microcontroller, specifically a PIC18F4550, was programmed to control a single 

motor.  A Hall Effect sensor provided an analog angular position signal, while a 

pulse-width modulation (PWM) module was used for motor drive. 

 

The processor was programmed for 

two modes of operation: constant 

velocity drive and proportional 

feedback control.  The constant 

velocity drive moved the joint to 

the desired angular position and 

then stopped.  The proportional 

feedback control used a traditional 

feedback, where the drive signal 

was generated through proportional amplification of the error signal.   

 

Control commands were provided by a C++ program running on a laptop (Dell 

Latitude D620, Core Duo Processor, 512MB Ram).  The laptop communicated via 

USB to command the PIC18F4550 to control the motor in a specified way.  The 

PIC processor then recorded 1 second of data, sampled at 180Hz (determined by 

calculation).  This sampling rate was specified by setting an internal timer’s width 

(in bits) and the associated prescaling hardware to cause an overflow 180 times 
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Figure 2.7: Hall Effect sensor linearity.  Top 
line is theoretical output, bottom line is observed 
voltage. 
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per second.  Upon overflow, a hardware flag is set by the processor.  Then, on the 

next program loop, a conditional statement branches the program to store a data 

point.  Polling in this way, rather than interrupting the program on each timer 

overflow, does lead to a potential variation in the sample rate.  However, the 

potential variation is much smaller than the sample interval, and can be assumed 

to be negligible.   

 

Each data point was the MSB of the A/D conversion result (the PIC18F4550 has 

10-bit A/D resolution; the two LSbs were ignored).  This 180 byte array was then 

retrieved by the laptop for plotting and analysis.  Upon the user’s USB command, 

the processor, using the Microchip USB framework, packages the data into a 

standardized packet (covered below in 2.2.6).  A USB-standard ping-pong 

communication protocol is used to return the data, ensuring no collisions occur 

and the data is not corrupted.  Three such packets are used to transfer all 180 

bytes of data.  The PC then stores the data in a text file, for later plotting and 

analysis. 

 

In both cases, data was collected, converted from digital values to real position 

values (in degrees) by scaling the A/D result based on the observed positions.  

Using linear interpolation, defining the clockwise-most position as 0 degrees, and 

the counterclockwise most position as a maximum, the corresponding A/D 

results are used as the scaling parameters. The data were then digitally filtered at 

45Hz.  This was done through a 16 tap low pass FIR filter specified by MATLAB 

function 'fir1’ with cutoff frequency 0.5π, where π is the Nyquist Rate, or one 
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half of the sampling rate.  While ‘fir1’ has a windowing option to reduce 

stopband ripple, no windowing function was used.   

 

The filter values were then 

zero padded out to the 

length of the data, and 

filtering was performed 

using FFT multiplication.  

The first 25 points of the 

filtered data were zeroed to 

compensate for filter “start 

up” effects and the phase 

shift of the filter.  Using an FIR filter limited distortion because FIR filters 

generated by fir1 are RCSR-GLP: Real Causal Stable Reversible with 

Generalized Linear Phase (Porat, 1997).  The linear phase shift can be seen by 

observing the x-axis shift of noise around 60 degrees at times 0.2sec and 0.35sec.  

Prior to filtering, in all cases the signal to noise ratio was at or below -60dB. 
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Figure 2.8: The Effect of Filtering Data.  Line to the 
left is unfiltered, line to the right is filtered.  Note the 
linear phase shift. 
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Figure 2.9: Constant Velocity data plots.  Left is unfiltered raw data, right is filtered data with the 
first 25 data points removed for clarity.  Legend at right shows digital values of drive. 
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Figure 2.10: Proportional Feedback Gain Plots.  Left is unfiltered raw data, right is filtered data 
with the first 25 data points removed for clarity.  Legends indicate values of Kp, the proportional 
gain constant. 
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2.2.5 Device Hardware Architecture 

A single processor with the 20+ inputs necessary for controlling the proposed 

device may exist.  However, one also with 20+ PWM outputs probably does not.  

This restriction, in addition to limitations on processing power, has lead to the 

development of a distributed control method.  The use of several processors for 

the lower level feedback control, communicating through a central coordinating 

processor allows for modularity of the control system.  In addition, the use of 

several smaller PIC18 series processors rather than one large processor helped to 

reduce the cost of the control system hardware. 

 

Another microcontroller made by Microchip, the PIC18F2431, does not have USB 

functionality but does have sufficient A/D inputs and PWM outputs to control 

three joints, or a single digit.  Both the 2431 and 4550 have I2C modules.  I2C is 

shorthand for Inter-Integrated Circuit, a synchronous protocol for chip to chip 

communication.  It is a byte-wise method, sending 8 bits at a time.  Microchip 

also supplies framework code for interfacing with the I2C module. 
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The goal is to make the system expandable without a complete rewiring of the 

circuitry or complete reprogramming of every processor.  Using a bus method, 

like I2C, allows additional processors to be added with minimal wiring (the new 

processor just needs to be hooked up to the existing bus) and minimal 

reprogramming (only the master processor’s program needs to be updated).  

 

The device is controlled by several processors coordinating and communicating 

over the I2C bus.  Each section of the hand, a finger in this instance, is controlled 

by its own local processor.  These local processors receive position data from a 

central coordinating processor.  The central coordinating processor handles the 

“high level control” or “task level control” spoken of above.  Commands can also 

be fed to the coordinating processor over USB from a PC or other suitable USB-

enabled device. 
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Figure 2-11: Block Diagram of hardware (rectangles) and software (ovals) architecture. 
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2.2.6 Software Architecture 

The software for the system is broken down into several modules, so each can be 

assigned to an appropriate processor when the above described distributed 

architecture is implemented.  Though the ANSI C language does not have classes, 

like C++ does, an object-oriented approach can still be taken using separate 

functions for each major section of the system. 

 

 

Figure 2.12: An overview of the controller test platform.  To the left is the kinetic model 
discussed above, with motor, hall effect sensor, and supports.  In the center is a breadboard.  
The long chip toward the top is a PIC18F2431.  The bottom half of the breadboard is a PWM 
motor driver (On the red PCB) , a buffer, and a header to interface with the development board.  
On the right is the PIC18F4550 full-speed USB development board.  The processor itself is under 
the grey ribbon cable.  The smaller grey ribbon cable running from the development board to the 
PIC18F2431 is the I2C bus. On the far right is the USB cable to the commanding PC.   At the 
back is the DC power supply for motor drive. 
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As mentioned above, this device is a multi-processor system.  The programs for 

the coordinating processor and the slave (or local) processors are markedly 

different, because the purpose of each processor is different.  However, each of 

the local processors has essentially the same program architecture.  This is not to 

say that the programs are identical, however, as joint and controller specific 

information will be altered for each processor.  Further, there is host software on 

the PC that allows interfacing with the device.  

 

Each of the microcontrollers is programmed using Microchip’s MPLAB 

development environment and either a USB-based programmer or Microchip’s 

ICD2 In Circuit Debugger and Programmer.  Microchip also supplies the 

compiler, linker, I2C firmware and USB firmware. 

2.2.6.1 Analog-to-Digital Conversion 

For all of the Microchip embedded processors used herein, user configured 

timers are used for ADC conversion control and other timed operations, such as 

the LED indicators and motor drive time out.  The ADC conversion method is a 

modification of code developed by Space Exploration Technologies’ Senior 

Avionics Engineer R. Kevin Watson (Watson, 2008) (used with permission).  

Motor drive is calculated using a proportional feedback control method, and 

output values are updated asynchronously with respect to ADC conversions.  This 

is possible due to buffering of the ADC result provided by Watson’s code. 
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2.2.6.2  Coordinating Processor Software Architecture 

There are three (3) major sections of the coordination program:   

(a) An interface method for communicating with the PC.   

(b) A maintenance process.   

(c) A communications method for the I2C bus. 

 

The program centers around an infinite while loop, a common programming 

convention for microcontrollers.  Each time through the loop a set of three 

functions is called.   

 

First, the USB bus status is checked.  If there is information waiting on the bus, it 

is handled.  The processor updates its internal information based on information 

received over USB.  The USB information can include position and response 

information for one or more processors, or a direct I2C command to be sent to a 

particular device. 

 

Second, the maintenance process is performed.  This performs any parsing, 

calculation, or other method mandated by the current or previous data received 

by the processor over USB.  Also, if necessary, this function updates data in the 

processor. 

 

Third, if needed, an I2C handling function distributes information to each of the 

low level processors.  Again, if necessary, the processor’s data is updated. 
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From instance to instance of the while loop, global variables are used to hold data 

and parameters that would otherwise be lost when a function returned or another 

instance of the loop was initiated.  These variables include I2C read and write 

buffers, indices for arrays, previous position values, etc.  These structures can be 

considered an abstract state of the processor. 

2.2.6.3 Embedded (Local) Controller Software 

The several slave processors on the I2C bus could be referred to as slave 

processors, embedded controllers, or local controllers.  Regardless of the 

terminology, these are the terminal processors that drive the actuators of the 

device. 

 

These processors share many features of the coordinating processor, but also 

have additional modules for motor control.  They use the infinite while loop 

Figure 2.13: Block Diagram of Coordinating Processor’s Software 

USB Handler 

Maint. Process 

I2C Handler 

Abstract State 

I2C 
Hardware 

USB 
Hardware 

I2C Bus 

USB Bus 

while(1) loop 



 

 

67 

described for the coordinating processor.  However, they do not have USB 

functionality and they are slaves on the I2C bus.  In addition, they hold 

information for the kinetic models of the systems they control, use analog to 

digital (A/D) conversion modules, and pulse width modulation (PWM) modules. 

 

Like the coordinating processor, the program is divided into two functions: one to 

handle the I2C communication, and another to handle the motor control.  For 

these processors, the abstract state is the desired positions, control method, and 

any previous pertinent control information (the last state in a state space model, 

for instance) for each motor. 

 

I2C is handled by interrupt.  The I2C hardware determines if there is an I2C 

request for that particular processor’s address.  If the address for the request and 

the processor’s address match, a processor interrupt occurs, which calls a 

Figure 2.14: Block Diagram of Embedded Controller Software 
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handling function.  The handling function reads the data off the bus, stores it in a 

buffer, and changes the state of a flag to indicate that new data has been received. 

 

The motor handler reads the abstract state to determine the desired position and 

other control information.  This position is compared with a new A/D sample.  If 

an error exists, a drive signal is produced using a control method.  This drive 

signal is then passed to the PWM module for output to the motor.  The PWM 

module continues generating output based on the duty cycle value stored in the 

PWM registers between loop instances, so constant updating is not necessary.  

This method is repeated for each motor the processor controls 

2.2.6.4 USB Packet Structure 

The Microchip USB module meets the USB 2.0 specification, and uses a “ping-

pong buffer” with 64 byte packets.  The first four of the bytes in the custom 

packet for this project contain the packet command, packet type, packet number, 

and packet length.  The packet length is used as a checksum to verify a complete 

transmission.  The bytes following these four common bytes hold data up to 60 

bytes in length per packet.  For control of the device, commands for up to 20 

actuators can be sent in a single packet.    

 

Command Type ID length   DATA (60 bytes) 
0  1 2 3 4                       64 

Figure 2.15:  USB Packet Structure.  Numbers indicate byte index. 
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2.2.6.5 Host Computer Software 

In addition to the device programming, the controlling host is currently a PC with 

a program developed using C#.NET.  This program handles all the commanded 

test inputs to the device, the USB communication, and data retrieval functions.   

 

Using the .NET Framework allows the development of a smooth neat efficient 

application with clean user interface.  Further, .NET has methods to load DLL 

files, write to files, and produce clean professional looking windows for the UI. 

 

The host program is far more complex than the controller programs.  Thankfully, 

it is simpler to program because Microsoft Visual Studio automates the 

generation of many files and functions, so little alteration is necessary.  Also, 

Microchip provides a USB driver and interface library, so extensive low-level USB 

programming is not necessary.   

 

The host program is, in large part, a conversion method, taking the byte stream 

that enters over USB and converting it to usable types in the host controller.  

Each USB packet is parsed, and functions are called based on the information in 

the USB packet.  Also, the user interface allows input by an experimenter.  These 

inputs are translated into USB packets for transmission to the controller(s). 

 

Further advantages are gained using C++/C# rather than C on the PC.  Since the 

application has been developed on C++/C#.NET, the Microsoft .NET framework 

provides common language runtime, allowing future cross-language development 
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in Visual Basic, C++, C#, and J#.  Also, C++.NET supports SQL queries on both 

Microsoft SQL and MySQL.  This opens possibilities for database support, web-

based interaction, and further development by other researchers after the project 

is complete. 

 

The ideal situation, however, is one where the host used here is an embedded 

USB-enabled processor.  This would make the device fully mobile, and a more 

effective prosthesis system.  The PC serves as a placeholder for this embedded 

processor, which detects the user’s volition.  Such a system is outside the scope of 

this project.  

2.3 Mechanical Assembly 

Following some aesthetic modification of the above mentioned digit design, 

including rounding of the finger tips, several sets of the four links required for 

Figure 2.16: Block Diagram of Embedded Controller Software.  Notations 
on arrows indicate types being passed.  No notation indicates function call. 
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each digit were produced using Fused Deposition Modeling (FDM) through the 

Rutgers University Mechanical Engineering Department. 

 

Due to characteristics of the FDM process, several post-fabrication modifications 

were necessary.  Principal among these was a failure to account for the width of 

the FDM filament.  This resulted in an undersizing of all inside dimensions by 

approximately 0.5mm. 

 

Holes for axles were drilled out using a 2.1mm drill using a Bridgeport Mill, along 

with necessary shims, vices, etc.  Internal faces of the hinge joints were similarly 

machined on the mill, using a small end mill.  Cavities for the motor and gearbox 

were adjusted using a Dremel tool with the appropriate bit, as well as small round 

and square files. 

2.3.1 Novel Method for Right Angle Transmission 

One key hurdle to overcome is the right angle transmission of motion from the 

motor, which is con-axial with the shaft of the digit, to the axis of rotation, which 

is perpendicular to the shaft of the digit.  While bevel or worm gears could be 

used to accomplish this, a test platform for an experimental wire-driven system 

was designed and fabricated.  This design has several advantages, including low 

failure cost and mechanical compliance.  The low failure cost is due to the use of 

low cost steel wire for the transmission mechanism.  This wire also provides 

mechanical compliance, meaning that driving the system backwards will not 

necessarily cause damage to the transmission.  Following preliminary testing 
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using the experimental platform, suitable parts were made for use in the finger 

itself. 

 

2.3.1.1 Application to Joint Drive 

One end of the transmission, the output spindle for rotation of the joint, is 

integrated into the link and fabricated by FDM, however, an input to the 

transmission is not created in this step.  Therefore, a suitable method for 

mounting a spindle on the motor output shaft was necessary.  

 

For this part of the transmission, steel threaded rod (1/4”-20) was used for the 

spindle.  The rod was trimmed to 1cm length using a band saw followed by a 

metalworking lathe.  After the part was trimmed, a 1/8” hole was drilled down the 

axis of the rod to accommodate the motor shaft.  A hole was then drilled through 

the side of the rod, and tapped for a #4-40 setscrew.  This setscrew secured the 

rod on the motor shaft by contacting the flat on the motor shaft. 

Figure 2.17:  Pictures of the test bed (large white object) and miniaturized design 
(smaller yellow translucent object.  Diameter of the large spindles is 1cm, the small 
spindles are 6mm. 
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2.3.1.2 Transmission Assembly 

Following the mounting of the drive spindle to the motor, adjacent links were 

connected using 2mm diameter stainless steel dowels.  These dowels were 

pressed into the ABS plastic in each link to secure the axis of rotation.  The end of 

this dowel could be 

secured using Loctite 

480 adhesive, 

however, this step 

was not taken during 

the testing phase. 

 

Prior to the insertion 

of the stainless steel 

dowel, 24ga nylon-

coated steel wire was wrapped around the spindle of the distal link.  This wire 

was then wrapped around the steel spindle mounted to the shaft of the motor in 

the proximal link.  Following a settling period of 12-24 hours to relax the wire and 

give it “memory”, the nylon near the intersection of the two ends of the wire was 

melted using a soldering iron.  These sites were then cleaned using soldering flux, 

and were realigned on the spindle.  The ends of the steel wire were then joined 

using solder, and the loose ends removed.  This completed assembly of the 

transmission. 

 

Figure 2-18: A digit joint in the assembly jig. 
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2.3.2 Transmission Results 

Though the exact tension in the wires in each spindle are unknown, force 

transmission is significant.  Since there is no observed slip in the transmission 

when a joint driven by the GM 14a high torque motor is stalled, it can be inferred 

that the torque transmission of this method is at least 212 mN•m, or 2160 g•cm, 

the stall torque of the motor.  The wire tension, and therefore the friction forces 

on the spindle, is unknown because no accurate way of determining this is 

available after assembly, nor was a means of measuring the tension during 

assembly. 

 

Compared to the Smoovy 

actuators used in the Cyberhand 

drive, this transmission has many 

comparable features.  It does 

achieve the rotation of each joint 

within the profile of the digit.  

Also, this design is significantly 

lower cost than the Cyberhand 

actuator and is not as susceptible to damage as a rigid transmission.  However, 

the lead screw drive in the Cyberhand device prevents any back driving of the 

digit and has integral sensors which this design does not.  Overall, this design 

offers a lower cost alternative for digit drive.   

 

Figure 2.19: Completed finger in testing mount. 
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2.3.3 Mounting of Position Sensors 

Position feedback from the joints is provided by Hall Effect sensors, Allegro 

Microsytems model A1301.  These small integrated circuits are mounted next to 

magnets (provided by Dexter Magnetic Technologies), polarized to detect the 

position of the joint, and convert the magnetic field intensity to voltage, for 

reading by the processor’s ADC channels.  The Hall Effect magnet was mounted 

in a cylindrical mounting hole, produced during FDM, and secured with hot glue.  

The Hall Effect Sensor IC was similarly mounted next to the magnet, and 

similarly secured with hot glue.  

 

The polarization of the magnets is radial rather than the more common axial 

polarization.  This means that the left hemi-cylinder of the magnet is one pole, 

and the right hemi-cylinder is the other pole.  Therefore, the intensity of the 

magnetic field at a fixed point near the magnet changes with rotation of the 

magnet about its axis.  It is this change that the Hall Effect sensor detects and 

converts to voltage.  The voltage is then related to position in the processor.  

2.4 Electronic Hardware Platform 

For the control system approach, a networked modular method was preferred, 

using several slave processors for local control, coupled with a master processor 

with higher computational power for coordination and intelligent control.  These 

several processors are networked via the Inter-Integrated Circuit (I2C) bus.  In 

addition, the master processor has Universal Serial Bus capability.  These two 
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busses allow for extensibility of this architecture to applications beyond 

prostheses. 

2.4.1 Local Processing 

In this application, a Microchip PIC18F2431 processor for embedded applications 

is used to control each digit.  The processor has 5 pulse-width-modulated (PWM) 

outputs for motor drive, and 5 analog-to-digital conversion (ADC) channels for 

sensor feedback (Microchip, 2008).  As previously mentioned, each processor 

also has an I2C module for communication.  For diagnostic purposes, two light 

emitting diodes each with 2N7000 MOSFET driver allow for visual indication of 

the processor’s operating state. 

 

Pulse Width Modulated (PWM) signals are used to control the motors.  The input 

voltage to the motor determines the motor speed.  However, in order to specify a 

range of voltages at resolution necessary to control the digit, a wide (8-bit or 

more) digital to analog converter would be necessary.  This would require many 

processor pins, and may not have current capacity necessary to drive the motor at 

stall.  

 

To reduce the number of output pins necessary on the processor, most embedded 

processors use PWM to communicate output voltage.  If the time constant of the 

motor is significantly longer than the PWM pulse interval, then the motor 

behaves as a low pass filter on the PWM signal.  Then, the width of the PWM 

pulse becomes the determining factor in motor voltage, since the motor’s low 
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pass characteristics essentially smooth the pulse train into a relatively constant 

voltage, and hence a constant speed. 

 

Processor pin current ratings are generally low.  The PWM signal from the 

processor does not directly power the motor.  Rather, motor driver circuitry 

receives the PWM signal.   These drivers allow the motors to draw their current 

directly from a power supply, bypassing the processor.  This means that motor 

power is independent of the processor, and relies on the power supply, and the 

wiring between the motor and the power supply.  Also, it means that a given 

processor can drive and control different motor loads, so long as the driver 

circuitry is able to supply the current necessary for the load.  Specifically for this 

project, L293D motor drivers, available in chip form from ST Microelectronics 

(ST Microelectronics, 2008) or on an application board from Solarbotics 

(Solarbotics, 2008), are used to provide power to the motor.   

2.4.2 Electrical Characteristics and Board Design 

This modular finger actuator is capable of delivering 16 W of electrical power at 

peak usage, 275 mW of which powers the processor.  The actuator itself achieves 

the expected full range of motion.  The processor operates with a clock speed of 

20 MHz, running at half its rated 40 MHz speed.  This oscillator was chosen 

partially due to availability of parts and partly to reduce power consumption.  

Though underclocked, the processor is capable of the sensing, feedback control, 

and PWM drive generation without processing delays.   
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The processor, PWM output drivers, indicators, and interfaces are mounted on 

custom printed circuit boards (see Figure 2.20a for the processor motherboard, 

and Figure 2.20b for the Motor Control and Feedback Board).  Oscillator 

compensation is provided through an RC pi-network and in-board ground 

planes.  In the event of processor failure, remote reset via 2N7000 MOSFET 

driver is provided (see caption).  Also, an external interrupt pin is available on the 

PIC18F2431 processor, which allows for remote interrupt of program execution.   

The circuit board is 2.5” by 2” in size, with a similarly sized daughter board for 

the motor drivers and sensor input headers, used for development and debugging 

   
(a) (b) 

 
Figure 2.20: Embedded processor printed circuit boards.  (a) Processor motherboard.  The 
28-pin DIP package at center is the PIC18F2431 embedded processor.  At upper left is the 
processor reset button, with 2N7000 MOSFET for remote reset.  At top center is the ICD 
programming header.  At top right is the daughter board interface header.  The TO-220 case 
at center right is a 5 volt regulator.  At lower right, the transistors, LEDs and resistors form 2 
transistor driven circuits for visual indication of the processor state.  The three wires at 
bottom center is the I2C interface.  Finally, at lower left is the oscillator with compensation 
network.  Additional capacitors and resistors in the image are for power supply stability.  (b) 
Motor Driver daughter board.  The three red board are motor driver circuits available from 
Solarbotics.  Unseen below the red boards are 5 pin header/socket pairs connecting the 
motor drivers to the daughter board.  At bottom are headers for connection with position 
sensors.  Left of center between the two white blocks is the interface to the mother board.  
The socket is on the underside of the board, unseen. 
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purposes.  In future designs, using surface mounted components, we expect both 

of the boards to be integrated within the 2.5” by 2” mother board footprint. 

 

To improve performance, the motor drivers were integrated onto the processor 

board.  This provides two advantages.  First, there is less resistance in the current 

path to the motors since contact resistance in the headers has been eliminated.  

Second, the integration of all the circuitry on a single board simplifies use of the 

device.  Circuit layout for the L293 driver adapted from the Solarbotics design 

(Solarbotics, 2003).  Though this board is slightly larger than the first board 

footprint, when the design is adapted using surface mount components, it meets 

the above mentioned footprint criteria. 

Figure 2.21: The integrated control board (left) and surface mount version (right).  On the 
left board, three L293D motor drivers are at the top, with the processor at the lower center, 
power supply at right, and oscillator with compensation network at left.  On the surface mount 
version, this hardware is reproduced with fewer headers.  The processor is the 28-SOIC 
package near the center.  The smaller 20-SOIC packages at right are the motor drivers, with 
the third driver on the underside of the board.  
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Figure 2.21 shows the results with the two integrated controller boards.  The two 

boards are functionally identical.  The large scale DIP package board was 

produced with indicator lights and the 12 pin header from the non-integrated 

version.  The surface mount version does not have the indicator lights, but uses 

an identical processor in a surface mount package.  To conserve space, a motor 

driver is located on the underside of the board.  In this configuration, the 

circuitry is sized to fit inside a potential prosthesis, either in the forearm portion 

or in the palm. 

2.4.2.1 Supervisory High Level Processor 

The high level processor is a PIC18F4550 on a Microchip supplied development 

board.  Like the PIC18F2431, this processor has an I2C module and acts as the 

master controller on the bus.  Also, this processor has a USB module for 

communication with a USB host.  Supervisory control that this processor 

provides allows for the coordination of several of the processors in the modular 

finger actuator mentioned above (Erickson, et al, 2007). 



 

 

81 

Chapter 3: Control Modeling 

Rather than immediately implementing everything on the hardware, simulation 

was used both to reduce costs and minimize the risk of damage.  By developing a 

model for the digit joint from the physics of the motor and joint, several versions 

of the control methods can be evaluated with no additional hardware cost.  

Ultimately, the algorithms tested in simulation would be implemented on the 

embedded controller described above. 

 

Inherent in the control problem faced in development of a manipulator for 

prosthetic purposes is the non-linearity of the system configuration.  A system 

with non-linearities presents several problems when designing a controller.  

First, in many cases, use of linear control methods with a non-linear system tend 

to yield less than satisfactory results.  Second, if a linear control method is used 

and can control the system, this tends to apply only to a small set of conditions, 

such as a limited range of motion.  Third, if some non-linear control approach is 

used, the stability of the system must be scrutinized not only for the short term 

dynamics, but for long term stability at the target position. 

3.1 Single Joint Control Model 

To study potential approaches to the aforementioned control problem, a 

mathematical model of the single joint was developed for use in computer 

simulation.  This model was derived from the equations of motion for the joint, 

simplified to a point mass rotating about a center of rotation.  The DC motor used 
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as the actuator was also modeled, with values based on the manufacturer’s data 

sheet as well as laboratory measurements.  Following this first pass at model 

extraction, verification was attained by running the simulation as a free turning 

frictionless motor. 

3.1.1 Derivation of the Equations of Motion 

Viewing the single joint as a sum of all torques about the center of rotation, there 

are four terms that appear in the balance of torques: 

(3.1) 

First, the rotational inertia term is expressed as the moment of inertia times the 

angular acceleration:   

(3.2) 

The moment of inertia was calculated assuming a point mass equivalent to the 

weight of the arm being rotated at a radial distance one half the length of the arm.   

 

Second, the kinematic or dynamic friction 

term is expressed as a friction coefficient 

times the angular velocity: 

(3.3) 

This friction coefficient is a constant 

chosen based on assumptions of the 

materials and construction of the joint.   

 

∑ =−++ 0: mgbJ τττττ

θτ &&JJ =

θτ &bb =

 M 

Fg bω 

rmg•sinθ 

Jα 

 

Figure 3.1: Schematic of forces and 
inertial acting on the single joint.  Inertia 
is Jα, friction force is bω, force due to 
gravity is Fg, and torque due to gravity is 
rmg•sinθ. 
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Third, the torque due to gravity is the dot product of the force due to gravity (mg) 

with the horizontal distance to the center of rotation (r sin θ): 

(3.4) 

Finally, the fourth term is motor torque, expressed as a transmission constant 

times the torque generated by the motor: 

(3.5) 

Combining equations 3.1 through 3.5 yields a non-linear differential equation 

governing the model system: 

(3.6) 

3.1.2 Extraction of the DC Motor Model 

The standard model for a brushless 

DC motor applies to the miniature 

motors used as the actuators.  

Modeling the motor requires the 

description of essentially two 

separate systems.   

 

The time course of current given an applied voltage is modeled as an LR circuit.  

Values for the inductance and resistance were measured using an HP 4284A 

precision LCR meter (see table 3.1).  The meter was calibrated using an open 

circuit before operation, and used a 1kHz sinusoid with no DC bias as the input to 

the motor. During testing, all values observed were steady and no rotation or 

vibration of the motor was noted. 

Table 3.1: Motor Electrical Characteristics 
 

Motor Type Inductance Resistance 
GM11 
(Low Torque) 

2.81 mH 20.1 Ω 

GM14a 
(High Torque) 

2.09 mH 12.90 Ω 

 

)sin(θτ rmgg =

motorm kττ =

motorkrmgbJ τθθθτ =++∑ )sin(: &&&
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Output torque of the motor can be expressed as proportional to the current 

through the motor.  The proportionality constant is the motor’s torque constant, 

which relates the motor torque to motor current, and is denoted below as Kτ.  

The value of this constant is calculated by dividing the stall torque by the short 

circuit current, as specified on the manufacturer’s data sheet. 

 

Therefore, the torque generated by the motor is: 

(3.7) 

Where Kτ is the motor torque constant, calculated as described above, and 

evaluated to be 0.4 N•m/A. 

 

The internal dynamics of the motor are modeled as an RL circuit, using the 

inductance and resistance at the motor terminals, with values given in Table 3.1.  

The input is the voltage applied to the motor terminals: 

(3.8) 

 

This differential equation relates the time course of current to the applied 

voltage.  Current response is not instantaneous due to effects of the motor’s 

magnetic field.  Starting with a stopped shaft, energy must be put into the 

magnetic field as the shaft begins to turn.  After the shaft is turning, the magnetic 

field induces electromotive force (EMF), which limits the rate of change of 

current.  This induced EMF also appears as a voltage across the coil, which is 

iKmotor ττ =

appliedVRi
dt

di
L =+
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subtracted from the terminal voltage to give the applied voltage mentioned in 

equation 3.8: 

(3.9) 

The back EMF voltage can be expressed as a constant times the motor shaft 

speed: 

(3.10) 

The constant, Ke, determines the motor’s free-running speed for a given voltage.  

By inspecting equations 3.9 and 3.10, it can be seen at a certain speed, the back 

EMF will equal the terminal voltage.  That shaft speed is the free-running speed 

of the motor.  Calculation of this value began with an estimate, found by dividing 

the free running back EMF by the manufacturer’s specified free-running speed.  

The free-running voltage was found by multiplying the motor resistance, 

measured above, by the motor’s rated free-running current, specified by the 

manufacturer.  This yielded a back EMF constant of 0.717 V•s/rad. 

 

Combining equations 3.9 and 3.10 yields a differential equation for applied 

voltage: 

(3.11) 

Substituting this result into equation 3.8 yields: 

(3.12) 

 

EMFtermapplied VVV −=

θ&eEMF KV =

θ&etermapplied KVV −=

θ&eterm KVRi
dt

di
L −=+
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Figure 3.2: Simulink Model of the DC Motor.  At upper left is Vin, the voltage applied to 
the terminals.  The back EMF is subtracted from this, and the result is used as the input to 
an RL network.  The resulting current is then multiplied by the motor torque constant and 
fed to the sum of torques.  The result of the sum of torques is divided by J, the inertia, to 
yield the angular acceleration.  The angular acceleration is then integrated to calculate 
angular velocity, and again for angular position.  Angular position is fed back to the sum of 
torques as a term in the torque due to gravity.  Angular velocity is fed back to the sum of 
torques via the friction term, and is also used to calculate back EMF. 

3.1.3 Model Implementation and Verification 

Using MATLAB with Simulink, this model has been implemented by summing all 

torques to calculate the torque influencing the rotation of the arm.  This result is 

divided by the rotational moment of inertia to find the angular acceleration.  

Integrating the angular acceleration yields the angular velocity, and integrating 

angular velocity yields angular position.  These intermediate values are used for 

calculation of the friction and torque due to gravity terms, as well as the back 

EMF of the motor. 
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Figure 3.3: Output of DC Motor Model following 
adjustment of back EMF constant.  The step input to supply 
voltage occurs at 0 seconds. 

For determining the motor torque, the back EMF of the motor is calculated, as 

mentioned.  This voltage is subtracted from the motor terminal voltage, and the 

result is the input to the RL model of the motor windings.  Current is the result of 

this RL model, and is multiplied by the motor torque constant to calculate the 

output torque of the motor. 

 

Verification of the model is performed using a free running case, and verifying 

the motor steady state speed.  As the angular velocity of the motor increases, the 

back EMF increases, this 

in turn decreases the 

effective voltage applied 

to the motor terminals.  

This decreases current, 

and hence torque, and 

causes the motor to turn 

at a constant steady state 

speed.  To simulate this, 

the friction and torque 

due to gravity terms 

were removed from the model, leaving only the motor model and the (small) 

rotational inertia.  Calculation of the sum of torques, angular acceleration, and 

angular velocity were performed as above.  The first pass of verification yielded 

an error in the steady state speed of the motor.   
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Following empirical trial and error adjustment of the motor back EMF constant 

from 0.717 to 0.8115, the proper steady state velocity of 76 rpm at 6 volts, as 

specified by the manufacturer’s data sheet, was attained.  As noted above, in 

equation 3.10, the motor’s back EMF constant is the determining factor for 

steady state speed.  Calculations based on the data sheet yielded the value of 

0.717.  However, simulation with this value yielded a steady state speed that was 

higher than the manufacturer’s specification.  Through trial and error, increasing 

the value to 0.8115 yielded the proper steady state speed. 

3.1.4 Commentary on the Non-Linearity 

From the perspective of a single joint, the non-linearity caused by the 

gravitational force on the lever arm needs to be accounted for.  When the joint 

moves from a horizontal to vertical angular position, the torque due to gravity 

varies according to the sine of the angle relative to the horizontal.  Since the sine 

function is linear for much of this range of motion, the system behaves well with a 

linear feedback control system.   

 

This linearity can be shown algebraically.  If approximated at 0, the linearization 

of sine is a linear function with slope 1, since the derivative of sine at 0 is 1.  The 

y-intercept of this function is 0, since sine is 0 at the origin.  Using these 

formulae, we can define a percent linearity function: 

(2.5.13) 
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Using this linearity measure, and 

plotting it, it can be seen that the 

sine function is linear for small 

values.  Note that sine is linear 

±10% from 0° to roughly 48°. 

However, if the joint is oriented 

in a way that contains more of the 

non-linear range of motion, this 

poses a substantially more 

difficult control problem. 

3.2 Linear Control of the Non-Linear Single Joint System 

As a first attempt, the single joint model was simulated using closed loop 

proportional control.  Following several adjustments of the feedback gain, a small 

integral control term was added, to reduce steady state error.  Use of integral gain 

0.1 and proportional gain 2, a steady state error of <1% was achieved with rise 

time 0.02 seconds and 30% overshoot.  This performance is certainly less than 

optimal. (See Figure 3.5)   
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Figure 3.4: Graphical Linearity of the Sine 
Function.  Note the linearity is within 10% from 0 
to 0.84 radians (48 degrees) 
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This demonstrates what control theory also shows: a non-linear system cannot be 

controlled by a linear controller.  This is not to state that for a bounded input to 

the non-linear system that a linear controller will necessarily cause instability.  

However, the control system performance parameters, like overshoot, rise time, 

and steady state error, cannot be met using a linear controller on a non-linear 

plant.  Therefore, some non linear, time varying, or adaptive controller is 

necessary to control a non-linear system reliably. 
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Figure 3.5: Model Trajectory Under Linear PI Feedback Control.  The top (green) trace is the 
non-linear response, with increased overshoot and tracking error.  The bottom (blue) trace is a 
linear response, substituting θ for sinθ.  Both are in response to a step input at 0.2 seconds. 
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Figure 4.1: Simulink model for MRAC.  The ‘Single Joint’ block is the model from above, at 
upper left is the reference mode, with the indicated error calculation.  Blocks near the center 
compute the control signals.  The lower path is the integral path, which is static.  The upper 
path multiplies the model reference error with the current system error, to implement MRAC. 

 

Chapter 4: Model Reference Adaptive Control 

Model Reference Adaptive Control (MRAC) was used as an adaptive non-linear 

controller to solve the control problem.  The MRAC approach uses a reference 

model and compares the model response to the system (plant) response.  The 

instantaneous error between the model and plant is used as an adaptation 

mechanism, altering the controller characteristics. 

 

Use of MRAC requires the specification of the model to be tracked.  An added 

benefit of MRAC is the ability to specify the trajectory of the joint through the 

model paramters.  Returning to the whole hand scenario, many different paths 

and speeds can be envisioned in the operation of the hand.  For example, should 

PI Controller 

Reference Model 

Model Reference 

Error Generator 
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the hand respond quickly, as when snatching a bug, or slowly as when gripping a 

soft object.  Concieveably, this performance data could be specified by a position 

time course for each joint.  This, however, would require a great deal of 

communication between controllers during operation of the hand.  Alternatively, 

the speed of the motor could be limited in software.  Speed limiting would limit 

the number of trajectories available. 

 

By using MRAC, the trajectory is specified by the model.  This means that the 

trajectory information can be communicated as the model parameters.  As a 

result, rather than using hundreds of data points per second in the time course 

approach, the MRAC approach would communicate similar information using 

fewer than 10 numbers, depending on the order of the model used.  All that 

would need to be communicated are the coefficients of the model transfer 

function and the target position. 

 

The model response to be tracked was a second order system, implemented as an 

integrated exponential impulse response with time constant 0.1 sec under unit 

proportional feedback control.  Further analysis of this model yields a second 

order damped system with damping constant 0.5 and natural frequency 10 

rad/sec.  The model reference error was calculated as the difference between the 

model response and the system response at each time point in the simulation. 
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For testing purposes, the system was implemented in Simulink, using the single 

joint model from above as the plant.  The input used is a variable amplitude step 

function, with amplitude corresponding to degrees from horizontal. 

System error is calculated by subtracting the system position value from this 

target value.  Error is then fed to a proportional-integral (PI) controller, which 

generates the control signal for the plant.  This control signal is limited to a user 

specified supply voltage range before being sent to the input of the plant.  

 

The input is additionally used as the input to a model system, which is under 

unity proportional feedback control.  This output is subtracted from the system 

response at each time point to provide tracking error.  Below, this error will be 

referred to as MRAC error or MRAC tracking error.    

4.1 With Linear Model Reference Error Feedback 

This error was used to vary the proportional feedback control gain.  This 

adjustment caused an increase of the gain while the system lags the model, and a 

decrease of the gain if the system leads the model.  While this approach does 

blunt the curve, preventing overshoot, if the gain is decreased enough, the 

proportional gain becomes negative.  When this occurs, the feedback control loop 

becomes unstable, as established by feedback control theory.  The observational 

result in the simulation is a dip in the response as the model output becomes less 

than the current system output. 
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The resulting response does 

achieve acceptable model 

tracking on the rising portion 

of the response.  This 

demonstrates the 

specification of trajectory via 

specification of the reference 

model parameters.  However, 

the instability which causes 

the dip in response is less 

than desireable.  Also, the 

ideal scenario would be proper tracking of the model continuously throughout 

the response.   

 

4.2 With Squared Model Reference Error Feedback 

To prevent the instability using linear feedback, the square of the model reference 

error was used in an additional study.  By using squared error, the variation of 

the proportional feedback control gain cannot be driven negative, which prevents 

instability in the system.  However, upon implementation, initial oscillations 

negate the theoretical benefit.  These oscillations most likely occur due to the 

squaring of the oscillating errors observed during the initial seconds of linear 

MRAC control. 
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Figure 4.2: Model Reference Adaptive Control using 
linear gain of model reference error as the adjustment 
mechanism.  Step input to 45 degrees occurs at 0 
seconds. 
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Rather than continue testing other a priori defined functions, an adaptive 

approach was pursued.  Artificial neural networks (ANN), with their high 

parallelism and adaptability, 

have been used previously 

for adaptively learning 

functions, linear and non-

linear, without a priori 

knowledge of the function 

itself (Bia, 2000).   Given 

these features, the use of an 

ANN to learn the function 

necessary to optimize the 

controller was pursued.  The 

reference model was retained, as it represents the “function” to be learned, or 

alternatively adapted to, by the ANN. 

4.3 ANN-MRAC: Artificial Neural Network – MRAC 

In an effort to improve the tracking performance of MRAC, a neural network was 

inserted into the model as the adjustment mechanism for the controller.  A 2-3-2 

feed forward neural network was used.  The output values were the proportional 

and integral gains for the system.  These outputs were computed using the model 

reference tracking error as well as the current system error as inputs.   
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Figure 4.3: Model Reference Adaptive Control using 
square of the model reference area as the adjustment 
mechanism.  Step input to 45 degrees occurs at 0 
seconds. 
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Figure 4.4: Simulink model for ANN-MRAC simulations.  The control and model systems 
are as above, with the added Neural Network function.  This block is the matrix 
implementation of an artificial neural network trained using ALOPEX. 

 

4.3.1 Matrix Implementation of Neural Networks in MATLAB 

The weights were held in two matrices, one for the input layer-hidden layer 

weights (WIH) and another for the hidden layer-output layer weights (WHO).  This 

allowed for reduced coding in the MATLAB environment.  This also allowed the 

weight updating to be done without the use of iterative for loops.   

 

Begin by defining two matrices, one for the input-hidden layer weights, and one 

for the hidden-output layer weights: 

(4.1) 

(4.2) 

{ } nm

ijw
×ℜ∈= IHIH WW ,

{ } pn

jkw ×ℜ∈= HOHO WW ,
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Where the neural network has m input units, n hidden units, and p output units.  

Using this matrix approach, the output vector is calculated through matrix 

multiplication: 

(4.3) 

With regard to the specific application dealt with here, this equation becomes: 

 

(4.4) 

Where eMRAC is the instantaneous model reference tracking error, esys is the 

instantaneous system error to target, qp is the proportional control gain 

adjustment, and qi is the integral control gain adjustment.  These two ‘q’ values 

are used to adapt the control path, through multiplication with the current 

system error values. 

 

Training of the network was conducted using the ALOPEX optimization 

algorithm: 

(4.5) 

In this representation, k is the iteration number, wij is the i-jth weight, R(k) is the 

global response function at iteration k, σ is the standard deviation of the noise, 

r(k) is a zero mean real stochastic process at time step k with unit standard 

deviation, and γ is the learning rate parameter.  Applying the matrix form given 

above, ALOPEX becomes: 

(4.6) 

(4.7) 
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   (a)     (b) 

Figure 4.5: (a) Time Course response following training of the ANN-MRAC.  System input 
begins at 0 degrees, then has a step change to 45 degrees at 0 seconds. (b) Change in error vs. 
iteration. 

Parameters used were learning rate parameter 0.4, and standard deviation of 

noise 0.001.  The response function to be minimized was the root-mean-square 

error in degrees between the target value and the system response for the final 

500 ms.   

(4.8) 

 

With a sample rate/step size of 0.001 seconds, this corresponds to the final 500 

data points.    

 

4.3.2 ANN-MRAC Using a 2-3-2 Feed Forward ANN 

Training was conducted for a planned 200 iterations, with the actual training 

time being 213 iterations.  The weights corresponding to the minimum of error 

were used to produce the trained response. 
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Figure 4.6: (a) System output time course and 
MRAC model time course after ANN training 
using modified error function.  Step input to 45 
degrees occurs at 0 seconds (b) Error function 
value versus iteration during training.  The 
minimum error was achieved at iteration 1264. 

 

To improve the response during early tracking just after the system begins to 

respond to the step input, the error function was modified to include the tracking 

error for 200 ms after turn on.  This modified error function was the RMS error 

of the system relative to target at the last 500 ms, plus the RMS MRAC tracking 

error for the first 200 ms (200 ms to 400 ms on the plots).  Following more 

extensive training, to more than 

1300 iterations, a minimum was 

found at 1264 iterations (Figure 

4.6b).  The system response 

corresponding to this set of 

weights yielded decreased 

oscillation early in system 

response, while maintaining a 

similar steady state error. (Figure 

4.6a)  

 

During training for this response, 

the error function decreased 

toward an apparent global 

minimum for approximately 900 

iterations.  After this first period, 

the error function briefly, for 
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roughly 250 iterations, found a local minimum with increased error.  Following 

this second period, the algorithm returned the error function back toward the 

apparent global minimum.  In this third period, the minimum was found 

(iteration 1264), 

demonstrating the ability of 

ALOPEX to track to the global 

minimum (Figure 4.6b).  This 

behavior is akin to the 

oscillations observed in 

previous ALOPEX training 

scenarios (Micheli-Tzanakou, 

2000 pp.252-254), and in the 

colloquial is sometimes 

referred to as the “catastrophe 

effect.” 

 

In an additional study, the 

RMS value of the noise in the 

ALOPEX process, and the 

learning rate parameter were 

varied.  Prior to iteration 10, 

the noise amplitude was set at 

0.01 and the learning rate parameter was set at 1.0.  Between iteration 10 and 

iteration 300, the noise was set at 0.005 and learning rate at 1.5.  After iteration 
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Figure 4.7: 2-3-2 ANN-MRAC Results, using 
scheduled values for noise and learning rate.  (a) the 
system and model responses for the best case scenario, 
with 80 degree step input at 0 seconds, (b) the training 
error vs. iteration plot.  Training was stopped after 328 
iterations. 
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300, the learning rate parameter rose to 2.0.  Noise at this iteration was 

decreased to 0.001, and further decreased at iteration 500 to 0.0005.   

 

Noise was maintained at low values due to observed sensitivity of the system to 

changes in the MRAC gains.  Keeping the noise low provided for a more stable 

training scheme.  This scheduling scheme yielded added variability, but an 

improved response with tighter tracking characteristics.  However, there was 

marked oscillation later in the training iterations, which is, as with the 

observations in figure 4.6, similar to the “catastrophe effect” oscillations 

previously associated with ALOPEX training (Micheli-Tzanakou, 2000 pp.252-

254).  

 

Also, to test the ability of the network to operate in a more non-linear range, the 

target value for the system and model was set to 75 degrees, instead of the 

previously used 45 degrees.  Testing at this increased target value showed 

performance comparable to the lower target value.   

 

Unlike the linear system, no increase in overshoot was observed.  This indicates 

that the neural network was able to adapt to the new control condition.  Also, 

since the 75 degree target is solidly within the non-linear range of the sine 

function, this also shows the neural network’s adaptive ability to overcome the 

non-linear control problem. 
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In an effort to simplify the control scheme, the RMS error of the full time course 

was used in another set of simulations.  Using the error over the full system 

response is computationally easier, since the start of the system response does 

not need to be detected. 

 

Training in this way proved more stable over many iterations, allowing a more 

complete training to be conducted.  The parameter scheduling scheme above was 

used in this case as well.  Complete training to 1000 iterations was possible using 

this method, which yielded results similar to the shorter training case.  The 

system did not train to the global minimum, but the weight values for this best 

case scenario were stored, as in the previous simulations, and used to generate 

the best case response of the simulation. 

 

The variability of the training response is notable since the RMS error of the 

output is not directly tied to the performance of the ANN.  It was noted during 

training that oscillations often occurred in the error graph.  This may be a 

demonstration of the sensitivity of the control system to the MRAC gain values.  

This lead to difficulty maintaining the training algorithm for many iterations 

without causing divergence of the system response. 
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Also, noting figure 4.8b, the apparent noisiness of the error over iterations seems 

to be correlated to the changes in the ALOPEX noise amplitude.  Recall from 

above that the changes occurred at 10, 300, and 500 iterations.  The changes in 

noise of the error function correspond to these iteration times.   Note in the 

figure, the marked decrease in volatility of the error plot beyond these points.  

Sharp changes in the error plot are noted at these positions as well, indicating a 

system adjustment to the new training parameters. 

4.3.3 Use of a 2-4-2 Feed Forward Artificial Neural Network 

As a further examination, the use of additional hidden units was implemented, 

specifically a modification of the network used above that uses 4 hidden units 

instead of three.  Results from this test used the enhanced error function 

described for the 2-3-2 topology.  Also, to test the effectiveness of the network, 
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   (a)     (b) 
Figure 4.8: 2-3-2 ANN-MRAC simulation results using RMS error of the full response.  (a)  
best case system response and model response to step input at 0 seconds. (b) the error vs. 
iteration plot.  Note that the training was conducted for 1000 iterations, the planned training 
period, but did not reach the global minimum in training.  The best case weights were stored. 
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(a) (b) 
Figure 4.9: 2-4-2 ANN-MRAC during training.  Note the improved tracking response, and 
the lack of blunting if the response curve, as occurred in previous trials.  System input is a 
step from 0 degrees to 75 degrees at 0 seconds. 

the step input target was increased from 45 to 75 degrees.  This placed the target 

value well within the non-linear range of the sine term. 

 

Training was conducted for 1000 iterations.  At iteration 51, improved tracking 

performance was noted (see Fig. 4.9), and the model weights were stored.  

Following this point, the best training performance occurred at iteration 65, with 

response similar to that of iteration 51.  Further training resulted in a loss of 

performance, with the system being caught in an apparent local minimum. 
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As with the 2-3-2 system, the simplified error function using the RMS error of the 

complete response was used in another set of simulations for the 2-4-2 network.  

Though response as good as that in figure 2.31 was not achieved, the 2-4-2 

network did demonstrate improved tracking performance using the full RMS 

error. 

 

4.4 Variation of the Training Parameters 

To complete the study of ANN-MRAC with ALOPEX, the training parameters 

were varied.  Using 10 times the learning rate parameter in the scheduling listed 

above yields a satisfactory result without converging.  Intuitively, one might 

expect faster convergence in this scenario.  However, the simulation showed what 

could be described as confusion of the algorithm, where the training error value 

remains stable, but does not settle at a final value within the 1000 iterations of 
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Figure 4.10: 2-4-2 ANN-MRAC Training using RMS error over the full response time. (a) The 
system and model best case response to a 45 degree step input at 0 seconds. Note the tracking 
improvement over the 2-3-2 networks. (b) The error vs iteration plot.  Though this training is 
more desirable, and the error is lower than in previous simulations, the observed minimum does 
not occur at the end of training.  Best case weights were stored during training, and used to 
generate the best case response plot. 
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training used in the previous simulations.  Extending this training time to 10,000 

iterations does not improve the convergence, but maintains a stable system 

response. 

 

Noise, however, was shown to be a critical and sensitive parameter.  The 

simulation was repeated using the gain scheduling, but with the standard 

deviation of the ALOPEX process noise multiplied by 5.  This caused instability in 

the simulation, where the controller itself became unstable.  This yielded wild 

oscillations from the previous RMS error values near 4 or 5 to a value near 45.  

This value indicates that the system either did not respond, or immediately 

moved to the limit of the range of motion.  In either case, the RMS Error would 

be very large.   

 

0 2000 4000 6000 8000 10000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Training Error vs Iterations

Iterations

R
M
S
 E
rr
o
r

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

10

20

30

40

50

60

Time (seconds)

P
o
s
it
io
n
 (
d
e
g
re
e
s
)

Best Case Response

 
           (a)       (b) 
 
Figure 4.11: Results for the high learning rate parameter case.  Note that the system does 
not converge, even after 10000 iterations, but the system does have an acceptable response.  
Input is a 45 degree step at 0 seconds. 
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However, the simulation did return to an acceptable error range.  This 

observation is like the catastrophe effect previously mentioned.  As with the 

above 2-4-2 topologies, this result showed improved tracking error over the 2-3-2 

case.  The deduction here is that increasing the noise in the ALOPEX process may 

cause volatility, but does not necessarily affect the resulting simulation.     
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Figure 4.12: Results for the High Noise training case.  
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Chapter 5: ALOPEX Optimization of Sensor Networks 

When considering the detection of volition of a user, it is apparent from the 

configuration of the forearm that sensor placement, be it for EMG or MKI, is 

critical to the performance of the system.  This holds if a small number of sensors 

is used.  However, if a large number of sensors is used and the resulting grid is 

optimized, then the performance of the detection algorithm is less dependent on 

sensor position. 

5.1 Rationale of Optimization 

This grid optimization selects the sensors associated with areas of high activity.  

In doing so, the sensor information returned by the network of sensors can be 

weighted to importance.  The areas of more activity would be enhanced, with the 

areas of less activity suppressed.  This adaptation is a framework for automated 

selection of sensors in the network, the result of which is the most pertinent 

information returned. 

 

Assuming that this area of activity contains mostly information, and the areas 

elsewhere contain principally noise, then the reduction of gains over the noisy 

areas improves the information content returned by the network.  If the weights 

are optimized to favor the information containing areas over the noisy areas, then 

the results returned by the optimization have substantially increased signal-to-

noise ratio (SNR) relative to a network which samples each sensor with equal 

weight.   
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Adaptive optimization is at the core of this algorithm.  Like any optimization, a 

target is required, which shall be denoted as a focus.  The focus is the activity that 

causes a response in the sensor network, and an optimization of sensor network 

gains would be specific to each focus.  Several optimizations could be conducted 

for different foci, each resulting in a different array of sensor gains, indicating the 

areas of greatest interest in the field’s response to the focus.  In all cases, the goal 

of the optimization shall be to find a cluster of sensors that best aligns with the 

field center, enhance the associated gains, and suppress the gains of other 

sensors. 

5.2 Optimization Algorithm 

Consider a field of activity intensities with normalized maximum value 1 at a 

single point, which shall be referred to hereinafter as the “center,” which is 

monotonically decreasing radially with respect to distance from the central point.  

The determination of these activity values can be by arbitrary means and can 

correspond to any physical quantity.  Denote this field as: 

  (5.1) 

For purposes of demonstration, define this activity field with an inverse-square 

relationship, while disallowing an infinity and preserving the condition that the 

field maximum be 1: 

(5.2) 
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Where the center of activity of the field described by equation 5.2 occurs at 

(xc,yc).  Equation 5.2 can also be re-expressed as: 

(5.3) 

 

Where: 

(5.4) 

 

Here, equation 5.4 expresses the distance from center.  Therefore, equation 5.3 

describes the field as radially 

symmetric about the center, and 

decreasing from the maximum 

value of 1 to 0 in an inverse 

square fashion. 

 

  Upon this field, overlay a sensor 

grid with m rows and n columns, 

along a coordinate system that 

need not be Cartesian.   To 

sample the field, the i,j-th sensor is placed at position (xi,yj) and observes the 

value of the field at that point: 

(5.5) 

Where A(i,j) denotes the amplitude observed at the sensor. 
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Figure 5.1: Plot of field intensity versus distance 
from center 
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Associate with each sensor a gain weight, denoted by Wij, where W is the size of 

the sensor network: 

(5.6) 

Where the members of W are static within an interation.  This gain weight is used 

to generate the output, G, of the sensors in the network, through element-wise 

multiplication. 

(5.7) 

The W matrix are the gains to be optimized by ALOPEX, in the methods outlined 

in equations 4.5-4.7.   

5.3 Response Function 

Recall that the updating method for ALOPEX is: 

(5.8) 

The response function, R(k), must be specified for each training iteration k.  

Since the goal of this optimization is to find a cluster of 4 sensors which best 

aligns with the field center, the response function must be chosen to reflect this 

clustering.  For purposes of demonstration, the sensors shall be laid out on a 

Cartesian coordinate plane. 

 

Observing that ALOPEX is a cross-correlation algorithm inspired the use of 

correlation to choose the sensor cluster nearest the center.  By correlating the 

gain weight matrix with a template matrix and maximizing the correlation 

between the elements of these matrices, the desired result can be achieved. 
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Choice of this template matrix is important.  Combining the correlation 

inspiration mentioned earlier with the logic of edge detection has lead to the 

specification of a template with four positive members, with the remaining 

members negative.  Using such a template enhances the correlation when the 

cluster is located under the four positive members, and reduces the correlation if 

the cluster is not at that location. 

 

Dimensionality of the template matrix must match that of the gain matrix.  

Therefore, consider a matrix: 

 (5.9) 

This is to say that the template matrix is the size of the sensor matrix, and the 

template matrix element values are always in [-1,+1].  While zero is included in 

this range, negative values of the template matrix serve to decrease correlation.  A 

negative number implies an undesired region, where zero values would imply a 

region of indifference.  Using negative values instead of zeros ensures that only 

the desired clusters have good correlation, with undesired clusters having 

negative correlation. 

 

This number range can also be seen in a biological context, namely neural units.  

The positive regions in the template matrix can be thought of as excitatory.  

Inhibitory regions would be those with negative values.  The zero valued regions 

are essentially “don’t care” areas.  In this way, the template matrix can be thought 

of as a sensory network that exhibits the excitatory and inhibitory effects found in 

the visual system.  In human vision in particular, these excitatory and inhibitory 

jijiWA nmnm ,1),(,, ∀≤ℜ∈→ℜ∈ ××
TT



 

 

113 

effects lead to edge detection in sight.  Use of the template matrix allows for 

shape detection in the information field as describe above. 

 

Since the clustering of 4 sensors is the goal, then a cluster of 4 members of T shall 

be +1, and the remaining members shall be negative.  This design shall enhance 

the correlation of a set of gains near each other are similar, and will reduce the 

correlation of such a cluster does not exist or is not located at the template’s 

positive region.  For the matrix T defined in equation 5.9, this negative value, 

which shall be denoted by α is: 

(5.10) 

 

Such a definition ensures that the sum of the members of T shall be 0, and that T 

is symmetric about the cluster.  The symmetry of T means that T is zero phase 

about the cluster center.  Since the sum of the members of T is zero, if the values 

defined above are used, then T introduces no gain into the correlation 

calculation. 

 

Therefore, the template matrix takes the form: 

(5.10) 

 

 

 

 

Where α is defined above. 
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Note T is defined for any size sensor field, and equation 5.10 does not specify the 

location or size of the cluster.  For a cluster that is u wide by v high, this yields 

(m-u-1) by (n-v-1) possible templates, each describing a potential cluster in the 

sensor field. 

 

The response function is defined given the output matrix, which includes the 

weights to be optimized, and the template matrix: 

(5.11) 

 

Equation 5.11 says that the response function is the sum of the elements in the 

result of the element-wise multiplication of the weight matrix with the template 

matrix. 

5.4 Optimization 

To optimize the weights, (m-1) by (n-1) solutions are simultaneously simulated, 

one for each candidate cluster T.  Following 1000 training iterations, results 

below a user-defined threshold are rejected.  This approach is similar to that of 

evolutionary computing, but is strictly speaking not an evolutionary algorithm. 
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For the following example, a 5x5 sensor grid was overlaid on the field described 

above.    With no a priori knowledge of the field values, the sensor outputs were 

optimized using ALOPEX in approximately 8000 iterations.  Notable among the 

changes necessary for field convergence is the target response definition, and 

scheduling of the learning rate parameter.  The target definition is dependent on 

the location of the activity center relative to the sensor clusters.  Since this 

optimization looks for a cluster of 4 sensors, there are 4 principal possible 

locations for the center. 
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Figure 5.2: Result of the sensor optimization using ALOPEX.  The field activity center is 
at (1,1).  Rectangles denote sensor positions.  Lighter colored rectangles indicate higher 
gain values.  Note the clustering of the 4 sensors about the center. 
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  If the center is equidistant from the four corners of the square the sensors 

define, then the target value is 4/3.  This can be found by evaluating the field 

intensities under each sensor.  Using the same logic, if the center is located 

equidistant between 2 sensors (i.e. on the side of the square), then the target 

remains 4/3.  If the center is directly under a sensor, then the result is slightly 

different: (4/3 + 1/9).  Given these target possibilities, 1.3 was used as the 

training target in all simulations. 

 

The value of the learning rate parameter was initially defined using the gain 

scheduling mentioned above.  However, under this condition the system did not 

converge.  By using smooth transitions between values for the learning rate 
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Figure 5.3: Response versus iteration plots for each of the candidate clusters.  Note the 
maximum value generated by the plot corresponding to the position of the center. 
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parameter, and having it increase linearly after training iteration 1000, the 

system did converge.  It is assumed that this high learning rate parameter was 

necessary to have sufficient changes late in the training time course to support 

convergence.  The equation governing this parameter is: 

(5.12) 

 

 

 

An additional constraint must be mentioned.  The range of the weights must be 

restricted to [0,1] for the correlation logic discussed above to operate properly.  

Under these conditions, the target of 1.3 and the constraint on the weights, 

training occurred in 8000 iterations, as mentioned above, with the other center 

locations training in markedly shorter times. 

 

Locating the center of activity on the “edge” of a square is direction independent.  

This is to say that the training setup and performance are not different for centers 

located between two sensors horizonally versus one located between two sensors 

vertically.  This is most likely due to the orthogonal rotation invariance of the 

template field, since the field is same if rotated multiples of 90 degrees about the 

template center.   
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Optimizing for this scenario, the two sensor edge case, showed markedly shorter 

training time, as mentioned above.    Training was achieved in roughly 7100 

iterations, or about 10% less than the above case.  Since these two sensors nearest 

the activity center see a large field value, the response function changes more 

rapidly.  Also, this scenario has two possible optimization solutions, the left and 

right squares formed by the sensor locations, as opposed to the single possible 

solution above. 

 

The training course versus iterations was similar to the previous result.  As 

before, the catastrophe effect can be seen late in training by noting the sharp drop 

in response just before the target is met.  This artifact is due in part to the high 
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Figure 5.4: Field optimization result for a center located equidistant from two sensors.  As 
above, rectangles denote sensor locations and the whiter the sensor color, the higher the gain. 
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optimization target.  In an effort to optimize to the target this sharp change 

occurs, but ALOPEX compensates due to the change in sign of the response 

function change, and returns to the previous training levels. 

 

  Continuing with the final case in the sensor to field relationship, simulations 

were conducted placing the activity center directly under the sensor at position 

(0,0).  In this alignment, there are four potential solutions, one for each square 

that has a corner at the sensor located above the sensor.  This leads to four 

“corner” solutions: upper left, lower left, upper right, and lower right.  Each of 
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Figure 5.5: Training vs. Iterations for the 2 sensor vertical edge case in Fig. 5.3.  Note the 
two solutions at lower right that both approach the threshold value.  These represent the two 
sensor “squares” that share the edge on which the activity center lies.  Note the catastrophe 
effect artifact in the (3,3) plot just before training completed. 
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Electric Field and Sensor Position
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Figure 5.6:  Field optimization for single sensor directly over the sensor. Note the cluster of 
four candidate solutions at the center and some catastrophe effect artifacts in the training.  
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  these sensor clusters has equal exposure to the field activity, and thus an equal 

chance at being the chosen solution.  As expected, this scenario trained much 

faster, in about 680 iterations, with the four “corner” solutions showing 

comparable performace.  The sensor over the activity sensor always has high 

gain, with the other three sensors in the square having varying gains. 

5.5 Computational Efficiency and Application 

These simulations were conducted in MATLAB both for programming 

convenience and for display of the data.  Since MATLAB is designed for matrix 

mathematics and since the optimization approach is matrix based, it was the 

logical choice.  Though optimization here took several minutes, the lags were 

mostly due to MATLAB’s background and display overhead.  Efficiently coded on 

an embedded processor, this optimization would occur in near real time, on the 

order of seconds. 

 

The intent of this optimization is to compensate for changes in the system.  For 

example, if the location of the sensors changed, this algorithm would compensate 

by selecting the proper set of sensors.  Also, if the user’s activity, for example 

EMG intensities, changed due to use of the device or muscle atrophy, such 

changes would again be compensated for by this optimization. 
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Chapter 6: Conclusions and Future Work 

The above chapters present a study of the development of robotic manipulators 

for prosthetic hand applications, from design, to assembly, control, 

programming, and simulation.  Previous work, namely DeLaurentis (2004) dealt 

with the design and manufacture of such mechanisms.  In addition to mechanical 

exploration via the development of the aforementioned novel right angle 

transmission, herein, the focus has been on the control algorithms and hardware 

to be used with the associated systems. 

 

Further, the combination of virtual solid modeling environments with the 

capabilities of fused deposition modeling (FDM) allowed for the integration of 

the transmission output shaft at the proximal end of the several digit links.   

 

The Microchip controllers combined to provide a bridge from USB to I2C, 

allowing the control of the system via PC.  Internally, the programs on the 

controllers handle proportional feedback control of the joints.  This combined 

with motor drivers shows the viability of low level control board production in a 

space comparable to that available in a potential prosthetic device. 

 

While similar to previous approaches using similar hardware (Carrozza, et al. 

2008), the hardware herein takes advantage of bus architectures for 

expandability and standardization.  Rather than using RS-232 serial 

communication, for which one port is needed for each target processor, the use of 
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the I2C bus allows for “tacking on” of additional control units.  Also, the use of 

USB standardizes the interface with computers.  Rather than needing specific 

hardware, like the National Instruments cards used by Carrozza et al, any USB 

capable computer with proper software can be used to control this architecture.  

Further, it should be noted, that the use of surface mounted components, the 

elimination of redundant power supply circuitry used for modularity in testing, 

and development of 4-layer PCB layouts for the circuits leads to the potential of 

embedding this controller in a space comparable to that of a human palm in vivo. 

 

Control of the device has been demonstrated to be non-linear, since torque due to 

gravity varies with the sine of the angle from horizontal.  The use of model 

reference adaptive control (MRAC) shows that the system parameters need not 

be known to control the system presented above.  Further, incorporation of 

computational intelligence methods, namely artificial neural networks (ANN), 

provides a more desirable response when incorporated with MRAC (ANN-

MRAC).  In both of the above cases, MRAC and ANN-MRAC, following the 

initialization of the system, the simulated controller was able to make the system 

track the model presented to the controller without knowledge of the system 

parameters and compensating for the non-linearity in gravitational torque.  

 

ANN-MRAC carries an additional benefit.  While most control solutions deal with 

achieving a target, the performance of a biomimetic system, like that of an 

artificial hand prosthesis, depends not only on reaching the target, but also the 

trajectory taken to reach it.  Consider for example, a slow grasp and a fast grasp.  
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The use of MRAC reduces the communication overhead between the processors 

since a complete time course for the joint need not be sent.  These data may be 

several hundred values for even short lived motions.  Rather, the parameters for 

the reference model, which can be as few as 2 numbers, are all the information 

needed to define a trajectory to present to the controller. 

 

The combination of the above three aspects: mechanical design and fabrication, 

electronic hardware design and fabrication, and control system design and 

simulation, gives a framework for the development of an integrated system for 

use as a prosthetic hand.  Rapid mechanical prototyping, herein through FDM, 

provides a mechanism for custom fabrication of mechanical parts of nearly 

arbitrary shape and dimension.  The rapid production of complex circuitry, 

including surface mount technology is possible with the use of PCB technology.  

The simulation of controls shows the feasibility of intelligent control schemes for 

use in an artificial hand.  All these, combined with the low cost and modularity of 

the manipulator developed here lends to the use of this design and architecture in 

a full hand scenario. 

 

In addition, the sensor network optimization, while considered herein as a 

general case, is directly applicable to detection of volition by a prosthesis user.  

The ability to neglect the exact sensor positions in favor of higher dimensional 

data makes application of sensors for such detection less dependent on the 

individuals using or applying the system.  An added benefit is the rejection of 

human error, as the interface is designed adaptively based on the user’s 
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performance.  Since the attention paid to each sensor is determined through 

optimization, the evolution of the user’s inputs (think, for example, of changes in 

writing habits) could be compensated for through the adaptation of the network.   

This leads to a more robust interface, and reduced costs from the ease of 

application. 

6.1 Conclusion 

Compared to the existing technologies, this work offers several new approaches 

to problems facing prosthetic technology.  A key factor in design of such a device 

is the availability.  Reduction of cost necessarily increases the pool of patients 

able to afford and use a prosthesis.  While the Smoovy actuators used in 

Cyberhand are more compact than the DC motor and transmission developed 

here, the presented alternative costs less than $100 per joint, depending on the 

fabrication method for the digit links.  Also, the electronic hardware developed 

for control of those joints is very low cost, an estimated $50 per local controller, 

and $20 per supervisory controller. 

 

Sophistication in the control algorithms would improve the efficacy of a 

prosthesis.  Variation of the trajectory to cause different closing rates has not 

previously been considered.  However, control of the path of each digit may 

provide more life-like motions and make the device a more effective replacement 

for lost function.  The MRAC methods described here allow for specification of 

the trajectory with minimal communication overhead. 
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Maintenance is also a factor in the life cycle of a prosthesis.  The less the system 

needs to be adjusted, the more uninterrupted use would be and thus the user 

would realize more benefit from the device.  Using adaptive methods to 

compensate for changes in sensor locations and signal characteristics over time 

allows the controller to update itself.  Since this does not require human 

intervention, adding such intelligence improves the performance of the device 

automatically.  Also, by training the system to the user, less patient learning time 

is necessary, and thus the patient realizes the benefit of the replaced function 

sooner.  

6.2 Future Work 

6.2.1 Extension to Multi-Joint Control 

As noted in the above commentary on adaptive control of the digit, the torque 

due to gravity is a significant non-linear term in the mathematical model of the 

digit.  Using the above model for a single joint, extension of the control 

simulations to a multi-joint configuration is possible.  Deriving the relationship 

between the several joint angles would allow for complete modeling of the digit, 

taking into account gravity and changes in rotational inertia as the configuration 

of the digit changes.  This full model provides a test platform for higher level 

computational intelligence methods, for coordination and perhaps more optimal 

control given the additional information. 
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6.2.2 Construction and Testing of a Complete Artificial Hand 

Perhaps the most obvious future work derived from this project is the replication 

of the manipulator presented here for use in an artificial hand.  Some 

modification would be necessary for the development of an artificial thumb, but 

the above designs would be usable for the other 4 digits, with some modification 

in length. 

 

A key consideration in such a design would be the control of it.  As mentioned 

above in 3.1, the changes of the system parameters with changes in joint angles 

would have to be evaluated.  The simulations of MRAC and ANN-MRAC 

presented in the work may prove useful in the design of the embedded controllers 

necessary for this application.  Also, additional processing power may be 

necessary to handle the several tasks and processes within a period suitable for 

control of the several digits and joints therein. 

6.2.3 Extension of the Electronic Hardware 

Although the above mentioned circuitry was developed specifically to control the 

modular finger actuator, we foresee use of this architecture in several extensible 

scenarios.  Before modification to the architecture is made, improvements to the 

circuitry itself would be desirable.  Most apparent among the potential changes 

would be the use of surface mount technology, and possibly 4 layer (instead of 2 

layer) boards in order to shrink the control circuitry further.  However, a major 

problem to overcome is the assembly of such a circuit without a reflow oven. 
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Since so little of the high level or master processor’s input/output functionality is 

used, additional sensing or interface options present themselves.  As alluded to 

earlier, with the remote reset and remote interrupt options on the low level 

processors, the master processor could remotely reset a processor having 

difficulty, or interrupt a processor if an error occurred or another change needed 

to be made.   

 

Also, we mentioned above a USB host, without specifying it.  This USB host could 

be a personal computer, as we used in testing, or an embedded processor.  

Several ARMs and xScale processors with USB host functionality are available to 

handle embedded high level processing.  Also, some of these come with Bluetooth 

capability.  This wireless avenue presents many potential applications, including 

wireless monitoring and higher level networking. 



 

 

129 

References 

[1] Abboudi, R., Class, C.A., Newby, N.A., Flint, J.A., & Craelius, W. (1999) A 
Biomimetic Controller for a Multifinger Prosthesis. IEEE Transactions on 
Rehabilitation Engineering. 7:121-129. 

 
[2] *Ackermann, J. (1985) Sampled Data Control Systems: Analysis and 

Synthesis, Robust System Design. Springer-Verlag, Berlin. 
 
[3] Al-Olimat, K.S., Girman, G., Kurtz, E.J., and Swarthout, H.J. (2003) 

Transfer Function Evaluation in MRAC for Synchronous Machine Speed. 
Proceedings of the 2003 IEEE Conference on Control Applications: 920-924. 

 
[4] Andersen, D.W. (2003) Praise the Lord and Pass the Penicillin: Memoir of a 

Combat Medic in the Pacific in World War II. McFarland, London. 
 
[5] Bertoluzzo, M., Buja, G.S., and Todesco, F. (1994) Neural Network Adaptive 

Control of a DC Drive. 20th International Conference on Inducstrial 
Electronics, Control, and Instrumentation, pp. 1232-1236. 

 
[6] Bia, A. (2000) A Study of Possible Improvements to the Alopex Training 

Algorithm.  Proceedings of the 6th Brazilian Symposium on Neural Networks. 
pp. 125-130. 

 
[7] Burdea, G. C. (1996) Force and Touch Feedback for Virtual Reality; John 

Wiley and Sons, New York. 
 
[8] Boyne, W.J. (2003) Operation Iraqi Freedom; Forge, New York. 
 
[9] Bundhoo, V., Haslam, E., Birch, B., and Park, E.J. (2008) A Shape Memory 

Alloy Based Tendon Driven Actuation System for Biomimetic Artificial 
Fingers, Part I: Design and Evaluation. Robotica First View article. 

 
[10] Carrozza, M.C., Cappiello, G., Micera, S., Edin, B.B., Beccai, L., & Cipriani, C. 

(2006) Design of a Cybernetic Hand for Perception and Action. Biological 
Cybernetics. 95:629-644. 

 
[11] Carrozza, M.C., Persichetti, A., Laschi, C., Vecchi, F., Vacalebri, P., 

Tamburrelli, V., Lazzarini, R., & Dario, P. (2005) A Novel Wearable Foot 
Interface for Controlling Robotic Hands. 2005 IEEE/RSJ International 
Conference on Intelligent Robots and Systems. pp. 2010-2015. 

 
[12] Cheung, J.Y.M., Cheng, K.W.E., and Kamal, A.S. (1996) Motor Speed 

Control by Using a Fuzzy Logic Model Reference Adaptive Controller.  Power 
Electronics and Variable Speed Drives, September 23-25, 1996. 

 



 

 

130 

[13] Cipriani, C., Zaccone, F., Micera, S., & Carrozza, M.C. (2008) On the Shared 
Control of an EMG-Controlled Prosthetic Hand: Analysis of User-Prosthesis 
Interaction. IEEE Transactions on Robotics. 24:170-184. 

 
[14] Cipriani, C., Zaccone, F., Stellin, G., Beccai, L., Cappiello, G., Carrozza, M.C., 

& Dario, P. (2006) Closed-loop Controller for a Bio-inspired Multi-fingered 
Underactuated Prosthesis. Proceedings of the 2006 IEEE International Conf 
on Robotics and Automation. pp. 2111-2116. 

 
[15] Cranny, A., Cotton, D.P.J., Chappell, P.H., Beeby, S.P., & White, N.M. (2005) 

Thick Film force and slip sensors for a prosthetic hand.  Sensors and 
Actuators A: Physical 123-124:pp. 162-171. 

 
[16] Crnosija, P., Ban, Z., & Krishnan, R. (2002) Application of Model Reference 

Adaptive Control to PM Brushless DC Motor Drives. Proceedings of the 2002 
IEEE International Symposium on Industrial Electronics. pp. 689-694. 

 
[17] Codfelter, M.D. (1992) Warfare and Armed Conflicts: A Statistical Reference 

to Casualty and Other Figures 1618-1991; McFarland & Co., Jefferson, NC. 
 
[18] Cooley, T. & Micheli-Tzanakou, E. (1998) Classification of Mammograms 

Using a Modular Neural Network. Journal of Intelligent Systems. 8:1-53. 
 
[19] Cowdrey, A.E. (1994) Fighting for Life: American Military Medicine in 

World War II; The Free Press, New York. 
 
[20] Craelius, W (2002) The Bionic Man: Restoring Mobility. Science 295:1018-

1021 
 
[21] Curcie, D.J., Flint, J.A., Craelius, W. (2001) Biomimetic Finger Control by 

Filtering of Distributed Forelimb Pressures. IEEE Transactions on Neural 
Systems and Rehabiliation Engineering. 9:69-75. 

 
[22] DeLaurentis, K.J. (2004) “Development of New Methodologies for the 

Fabrication and Actuation of Robotic Systems;” Doctoral Dissertation, 
Rutgers University, May 2004. 

 
[23] Dempsey, G.L., Alig, J.S., & Redfield, D.E. (1996) Using Analog Neural 

Networks for Control Sensor Linearization. Proceedings of the 38th Midwest 
Symposium on Circuits and Systems. pp. 73-76. 

 
[24] Doshi, R., Yeh, C., & LeBlanc, M. (1998) The design and development of a 

gloveless endoskeletal prosthetic hand. Journal of Rehabilitation Research 
and Development. 35:388-395. 

 
[25] Ehsani, M.S. (2007) Adaptive Control of Servo Motor by MRAC Method.  

2007 Vehicle Power and Propulsion Conference. pp. 78-83. 



 

 

131 

 
[26] Erickson, J.E., DeLaurentis, K.J., and Bouzit, M. (2007a) A Novel Single 

Digit Manipulator for Prosthetic Hand Applications. 2007 IEEE Systems and 
Information Engineering Design Symposium, Charlottesville, VA, April 
2007. 

 
[27] Erickson, J.E., DeLaurentis, K.J., and Bouzit, M. (2007b) A Novel Method of 

Transmission of Rotational Motion Between Non-Parallel Axes. 2007 ASME 
Applied Mechanics and Materials Conference, Austin, TX, June 2007. 

 
[28] Flint J.A., Phillips, S.L., & Craelius, W. (2003) Myo-Kinetic Interface For A 

Virtual Limb. 2nd  International Workshop on Virtual Rehabilitation.  pp. 
113-118. 

 
[29] Franklin, G.F., Powell, D.J., and Emami-Naeini, A. (2002) Feedback Control 

of Dynamic Systems; Prentice Hall, New York. 
 
[30] Frayman, Y. and Wang, L. (1999) Direct MRAC with Dynamically 

Constructed Neural Controllers. 1999 International Joint Conference on 
Neural Networks. IJCNN99:  2236-2240.  

 
[31] Ge, S.S., Lee, T.H., & Harris, C.J. (1998) Adaptive Neural Network Control of 

Robotic Manipulators. World Scientific Publishing, Singapore. 
 
[32] Goodwin, G.C., Ramadge, P.J., Caines, P.E. (1979) Discrete Time 

Multivariable Adaptive Control.  18th IEEE Conference on Decision and 
Control including the Symposium on Adaptive Processes. pp. 335-340. 

 
[33] Greenberg, M.D. (1998) Advanced Engineering Mathematics, 2nd Edition. 

Prentice Hall, Upper Saddle River, NJ. 
 
[34] Hartcup, Guy. (2000) The Effect of Science on the Second World War; St. 

Martin’s Press, New York. 
 
[35] Harth, E. and Pandya, A.S. (1988) “Dynamics of ALOPEX Process: 

Application to Optimization Problems.” in Biomathematics and related 
Computational Problems, Ricciardi, L.M., Ed. Kluwer, Boston, pp. 459-471. 

 
[36] Harth, E. and Tzanakou, E. (1974) ALOPEX: A Stochastic Method for 

Determining Visual Receptive Fields. Vision Research 14:1475-1482. 
 
[37] Hayakawa, T., Haddad, W.M., Hovakimyan, N. (2008) Neural Network 

Adaptive Control for a Class of Nonlinear Uncertain Dynamical Systems with 
Asymptotic Stability Guarantees. IEEE Transactions on Neural Networks. 
19:80-89. 

 



 

 

132 

[38] Haykin, S. Chen, Z., and Becker, S. (2004) Stochastic Correlative Learning 
Algorithms. IEEE Transactions on Signal Processing. 52:2200-2209. 

 
[39] Heim, W. (2005) Microprocessor Technology for Powered Upper Extremity 

Prosthetic Control Systems. Robotica. 23:275-276. 
 
[40] Hu, J., Hwang, X., and Chen, J. (1992) Neural Networks Adaptive Control. 

Proceedings of the 1992 IEEE International Symposium on Industrial 
Electronics. 

 
[41] Hudgins, B. and Parker, P. (1993) A New Strategy for Multifunction 

Myoelectric Control. IEEE Transactions on Biomedical Engineering. 40:82-
94. 

 
[42] Jury, E.I. (1964) Theory and Application of the z-Transform Method. John 

Wiley & Sons. New York. 
 
[43] Kargov, A., Asfour, T., Pylatiuk, C., Oberle, H., Klosek, H., Schulz, S., 

Regenstein, K., & Bretthauer, G. (2005) Development of an Antropomorphic 
Hand for a Mobile Assistive Robot. 9th International Conference on 
Rehabilitation Robotics. ICRR:182-186. 

 
[44] Karr, C.L. (1999) Practical Applications of Computational Intelligence for 

Adaptive Control. CRC Press. New York. 
 
[45] Kyberd, P.J., Evans, M., and te Winkel, S. (1998) An Intelligent 

Anthropomorphic Hand, with Automatic Grasp. Robotica 16:531-536. 
 
[46] Kyberd, P.J., Light, C.M., Chappell, P.H., Nightingale, J.M., Whatley, D., & 

Evans, M. (2001) The design of anthropomorphic prosthetic hands: a study of 
the Southampton Hand. Robotica 19:593-600. 

 
[47] †Landau, Y.D. (1979) Adaptive Control: The Model Reference Approach. 

Marcel Dekker. New York. 
 
[48] Li, S-J., Zhang, X-J., Qian, F. (2005) Soft Sensing Modeling via Artificial 

Neural Network Based on PSO-ALOPEX. Proceedings of the 4th Int’l Conf on 
Machine Learning and Cybernetics. Guangzhou. 

 
[49] Light, C.M. and Chappel, P.H. (2000) Development of a lightweight and 

adaptable multiple-axis hand prosthesis. Medical Engineering and Physics 
22:679-684. 

 
[50] Light, C.M., Chappell, P.H., Hudgins, B., & Engelhart, K. (2002) Intelligent 

multifunction myoelectric control of hand prosthesis. Journal of Medical 
Engineering Technology. 26:139-146. 

 



 

 

133 

[51] Lynch, K.F., Drew, J.G., Tripp, R.S., Roll, C.R. (2005) Lessons from 
Operation Iraqi Freedom; RAND, Arlington, VA. 

 
[52] Medrano-Marques, N.J. & Martin-del-Brio, B. (2001) Sensor Linearization 

with Neural Networks. IEEE Transactions on Industrial Electronics. 
48:1288-1290. 

 
[53] Meng, Q.H.M. and Lu, W.S. (1993) A Neural Network Adaptive Control 

Scheme for Robot Manipulators.  1993 IEEE Conference of the Pacific Rim: 
606-609. 

 
[54] Micera, S., Carrozza, M., Beccai, L., Vecchi, F., Dario, P. (2006) Hybrid 

Bionic Systems for the Replacement of Hand Function. Proceedings of the 
IEEE. 94:1752-1762. 

 
[55] Micheli-Tzanakou, E. (2000) Supervised and Unsupervised Pattern 

Recognition: Feature Extraction and Computational Intelligence; CRC Press, 
Boca Raton, FL. 

 
[56] Microchip, “PIC18F2450/2550/4450/4550 Data Sheet”, Retrived from  

microchip.com July 10, 2008. 
 
[57] Microchip, “PIC18F2331/2431/4331/4431 Data Sheet”, Retrieved from 

microchip.com July 10, 2008. 
 
[58] Miller, D.E. (2003) A New Approach to Model Reference Adaptive Control. 

IEEE Transactions on Automatic Control. 48:743-757. 
 
[59] Mitchell, P.D. (2004) Medicine in the Crusades: Warfare, Wounds, and the 

Medieval Surgeon; Cambridge University Press, New York. 
 
[60] Ohka, M. and Kondo, S. (2008) Stochastic Resonance Aided Tactile Sensing. 

Robotica First View Article. 
 
[61] Phillips, C.L. and Nagle, H.T. (1994) Digital Control System Design and 

Analysis; Prentice Hall, New York. 
 
[62] Phillips, S.L. and Craelius, W. (2005) Residual Kinetic Imaging: a Versatile 

Interface for Prosthetic Control.  Robotica 23:277-282. 
 
[63] Pons, J.L., Ceres, R., Rocon, E., Reynaerts, D., Saro, B., Levin, S., & Van 

Moorleghem, W. (2005a) Objectives and technological approach to the 
development of the multifunctional MANUS upper limb prosthesis. Robotica 
23:301-310. 

 



 

 

134 

[64] Pons, J.L., Ceres, R., Rocon, E., Levin, S., Markovitz, I., Saro, B., Reynaerts, 
D., & Van Moorleghem, W.  (2005b) Virtual reality training and EMG control 
of the MANUS hand prosthesis. Robotica 23:311-317. 

 
[65] Pons, J.L., Ceres, R., and Pfeiffer, , F. (1999) Multifingered dextrous robotics 

hand design and control: a review. Robotica 17:661-674. 
 
[66] Porat, B. (1997) A Course in Digital Signal Processing. John Wiley and Sons, 

New York. 
 
[67] Pylatiuk, C., Mournier, S., Kargov, A., Schulz, S., & Bretthauer, G. (2004) 

Progress in the Development of a Multifunctional Hand Prosthesis. 
Proceedings of the 26th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. pp. 4260-4263. 

 
[68] Rowcliffe, P. and Feng, J. (2008) Training Spiking Neuronal Networks with 

Applications in Engineering Tasks. IEEE Transactions on Neural Networks 
19:1626-1640. 

 
[69] Schulz, S., Pylatiuk, C., & Bretthauer, G. (2001) A New Ultralight 

Anthropomorphic Hand. Proceedings of the 2001 IEEE International 
Conference on Robotics and Automation: 2437-2441 

 
[70] Schulz, S., Pylatiuk, C., Reischl, M., Martin, J., Mikut, R., & Bretthauer, G. 

(2005) A hydraulically driven multifunctional prosthetic hand. Robotica 
23:293-299. 

 
[71] Scott, R.W. and Collins, D.J. (1990) Neural Network Adaptive Controllers. 

The 1990 International Joint Conference on Neural Networks. 
 
[72] Shadow Robot Company. (2005) “Shadow Dexterous Hand C3 Technical 

Specification,” draft received December 2005. 
 
[73] Shadow Robot Company. (2004) “Developments in Dexterous Hands for 

Advanced Robotic Applications,” copy provided by the company December 
2005.  

 
[74] Shadow Robot Company. (2003) Design of a Dexterous Hand for Advanced 

CLAWAR Applications. Proceedings of the 6th Int’l Conf on Climbing and 
Walking Robots (CLAWAR): Catania, Italy; September 17-19, 2003.  
(Provided by Shadow Robot Company, December 2005) 

 
[75] Solarbotics, Ltd. (2003) “The ‘Secret’ L293D Motor Driver.”  Solarbotics, 

Ltd. Calgary, Alberta. 
 
[76] ST Microelectronics (2003) “L293D/L293DD Datasheet.” Retrieved from 

digikey.com August 23, 2008. 



 

 

135 

 
[77] Stoten, D.P. (1990) Model Reference Adaptive Control of Manipulators.  

John Wiley and Sons. New York. 
 
[78] Sunwoo, M., Cheok, K.C., and Huang, N.J. (1991) Model Reference Adaptive 

Control for Vehicle Active Suspension Systems. IEEE Transactions on 
Industrial Electronics.  38:217-222. 

 
[79] Tao, G. (1997) Robustness of MRAC Schemes. Proceedings of the American 

Control Conference: 744-745. 
 
[80] Tao, G. & Ioannou, P.A. (1993) Model Reference Adaptive Control of Plants 

with Unknown Relative Degree. IEEE Transactions on Automatic Control. 
38:976-982. 

 
[81] Tzanakou, E., & Harth, E. (1973) Determination of Visual Receptive Fields 

by Stochastic Methods. Biophysical Society Abstracts. 13:42a. 
 
[82] United States Department of Defense (2008) “Casualty Update.”  Retrieved 

from http://www.defenselink.mil/news/casualty.pdf, December 8, 2008. 
 
[83] Unnikrishnan, K.P. & Venugopal, K.P. (1992) Learning in Connectionist 

Networks Using the ALOPEX Algorithm. 1992 International Joint Conference 
on Neural Networks. pp. 926-931. 

 
[84] Venugopal, K.P., Pandya, A.S., and Sudhakar, R. (1992) ALOPEX Algorithm 

for Adaptive Control of Dynamical Systems. The 1992 International Joint 
Conference on Neural Networks, pp. 875-880. 

 
[85] Watson, R.K. (2008) “2008 FRC-RC Example Code and Utilities.” Available 

at www.kevin.org/frc/.  Retrieved July 10, 2008.  
 
[86] Wetterhahn, R. (2001) The Last Battle: The Mayaguez Incident and the End 

of the Vietnam War; Carroll and Graf, New York. 
 
[87] Wikipedia: The Free Encyclopedia “United States Casualties of War.” 

Accessed August 12, 2008: 
http://en.wikipedia.org/wiki/United_States_casualties_of_war. 

 
[88] Wininger, M., Kim, N-H., & Craelius, W. (2008) Pressure Signature of 

Forearm as Predictor of Grip Force. Journal of Rehabilitation Research and 
Development. 45:883-892. 

 
[89] Winter, S.H. (2006) A Haptic Force Feedback Glove Using 

Magnetorheologic Fluid.  Unpublished Master’s Thesis. Rutgers University. 
 



 

 

136 

[90] Winter, S.H. & Bouzit, M. (2007) Use of Magnetorheological Fluid in a Force 
Feedback Glove. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering. 15:2-8. 

 
[91] Yamanaka, O., Yoshizawa, N., Ohmori, H. and Sano, A. (1997) Adaptive 

Control and Stability Analysis of Nonlinear Systems Using Neural Networks.  
1997 International Conference on Neural Networks.  

 
Bibliographical Notes: 
 
* This work by Jürgen Ackermann is an English translation of the German 
Language work Abtastregelung by the same author in 1972. 
 
† Landau, Y.D. sometimes cites as Landau, I.D. in the literature. 



 

 

137 

Curriculum Vita 

Jeffrey Edward Erickson 
 
August 2000 - May 2004 University of Virginia 
    Bachelor of Science, Electrical Engineering 
    Minor, Biomedical Engineering 
 
April 2007 – May 2009 ANADIGICS, Inc. 
    Test Instrumentation & Data Acquisition Engineer 
 
August 2004 – May 2009 Rutgers, The State University of New Jersey 
    University of Medicine and Dentistry of New Jersey 
    Graduate Program in Biomedical Engineering 
    Doctor of Philosophy 
Publications: 
Erickson, J.E. & Bouzit, M. (2006) "Development of a high degree of 
freedom hand prosthesis."  2006 Annual Meeting of the BMES 
 
Erickson, J.E., DeLaurentis, K.J. & Bouzit, M. (2007) "A Novel Single 
Digit Manipulator for Prosthetic Hand Applications," 2007 IEEE Systems 
and Information Engineering Design Symposium, Charlottesville, VA. 
 
Dicken, G., Butler, N., Kutch, M.E., & Erickson, J.E. (2007) 
"Application of Intelligent Control to the 2007 FIRST Robotics 
Competition," 2007 IEEE Systems and Information Engineering Design 
Symposium, Charlottesville, VA. 
 
Erickson, J.E., DeLaurentis, K.J. & Bouzit, M. (2007) "A Novel Method 
for Transmission of Rotational Motion Between Non-Parallel Axes," 2007 
ASME Applied Mechanics and Materials Conference, Austin, TX. 
 
Dicken, G., Frank, R., Wasser, B., Kutch, M.E., Tompkins, W., & 
Erickson, J.E. (2008) "Data Collection for Performance Analysis and 
Fault Detection in the 2008 FIRST Robotics Competition," 2008 IEEE 
Systems and Information Engineering Design Symposium, Charlottesville, 
VA. 
 
Papers submitted for review: 
Erickson, J.E. & Micheli-Tzanakou, E. “Electronic Hardware for Embedded 
Control of Multiactuator Robotic Systems” IEEE Transactions on Circuits and 
Systems. 
 
Erickson, J.E. & Micheli-Tzanakou, E. “Adaptive Optimization of High 
Dimensionality Sensor Arrays using ALOPEX ” IEEE Transactions on Neural 
Systems and Rehabilitation Engineering. 


