
A PROGRAMMING SYSTEM FOR SENSOR-DRIVEN
SCIENTIFIC APPLICATIONS

BY NANYAN JIANG

A dissertation submitted to the

Graduate School – New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

May, 2009

ABSTRACT OF THE DISSERTATION

A Programming System for Sensor-driven Scientific Applications

by Nanyan Jiang

Dissertation Director: Professor Manish Parashar

Technical advances are leading to a pervasive computational ecosystem that integrates com-

puting infrastructures with embedded sensors and actuators, and giving rise to a new paradigm

for monitoring, understanding, and managing natural and engineered systems – one that is

information/data-driven.

This research investigates a programming system that can support such end-to-end sensor-

based dynamic data-driven applications. Specifically, it enables these applications at two levels.

First, it provides programming abstractions for integrating sensor systems with computational

models for scientific and engineering processes and with other application components in an

end-to-end experiment. Second, it provides programming abstractions and system software

support for developing in-network data processing mechanisms. The former supports complex

querying of the sensor system, while the latter enables development of in-network data process-

ing mechanisms such as aggregation, adaptive interpolation and assimilation, both via seman-

tically meaningful abstractions. For the latter, we explore the temporal and spatial correlation

of sensor measurements in the targeted application domains to tradeoff between the complexity

of coordination among sensor clusters and the savings that result from having fewer sensors for

in-network processing, while maintaining an acceptable error threshold. Experimental results

show that the proposed in-network mechanisms can facilitate the efficient usage of constraint

resources and satisfy data requirement in the presence of dynamics and uncertainty.

The research presented in this thesis is evaluated using two application scenarios: (1) the

management and optimization of an instrumented oil field and (2) the management and opti-

mization of an instrumented data center. In the first scenario, the programming abstractions and

ii

systems software solutions enable end-to-end management processes for detecting and tracking

reservoir changes, assimilating and inverting data for determining reservoir properties, and pro-

viding feedback to enhance temporal and spatial resolutions and track other specific processes

in the subsurface. The overall goal is to ensure near optimal operation of the reservoir in terms

of profitability, safety and/or environmental impact. In the second scenario, the autonomic in-

strumented data center management system addresses power consumption, heat generation and

cooling requirements of the data center, which are critical concerns especially as the scales of

these computing environments grow. Experimental results show that the provided programming

system reduces overheads while achieving near optimal and timely management and control in

both application scenarios.

iii

Acknowledgements

This dissertation is the culmination of a lot of effort, and much of it would not have been

possible if it were not for the guidance, support, help and friendship of many people.

First and foremost, I would like to express my utmost gratitude to my advisor Prof. Manish

Parashar, for his willingness to challenge and encourage me. This journey would not have been

so rewarding and memorable without his vision, resolve, enthusiasm, inspiration, wisdom, and

guidance during the course of my studies. He always knew how to improve a paper or project

with his innate understanding of any subject matter! I also thank him for the opportunity to

present my research at various forums as well as demonstrating prototypes of research ideas on

the testbeds. The experiences gained through these research activities with his guidance will

undoubtedly be beneficial in my future career.

I must also thank the many professors and researchers that provided me advice and helped

my research development during my studies at Rutgers. In particular, I am grateful to Prof.

Yanyong Zhang for sharing her invaluable experiences and providing insightful suggestions

with me. I would like to thank Prof. Dario Pompili for stimulating in-depth discussions with

me. I would also like to thank Prof. Ivan Marsic and Prof. Hoang Pham for their valuable

advice and feedback throughout different stages of my study.

I would like to thank many of my colleagues who helped me along the way. In particular,

I have had the good fortune to work with other members of our research group, The Applied

Software and System Laboratory (TASSL) and Center for Autonomic Computing (CAC). There

were many occasions where discussions with them helped me make progress with my research.

Special thanks to Andres Quiroz for many research discussions and kind help. I would like to

thank the staff at the Center for Advanced Information Processing (CAIP), Department of Elec-

trical and Computer Engineering, Ivan Seskar and ORBIT team/WINLAB for their assistance

and support.

iv

Outside of Rutgers, I would like to thank Guofei Jiang, Haifeng Chen and Kenji Yohsihira

of NEC Laboratories America, Princeton, New Jersey. The summer that I spent with them

really helped expand my horizons as a researcher. I thank Hector Klie from University of Texas

at Austin, Texas, for his collaboration on the application of oil reservoir. I would also like to

thank Eliot Feibush from the Princeton Plasma Physics Laboratory (PPPL) at Princeton, New

Jersey, for his help and collaboration.

My parents who worked hard to give me the opportunities I had and who encouraged me

to live up to my potential; I sincerely thank them for their perseverance and love. My sister’s

encouragement, enthusiasm and friendship have been invaluable to me.

Finally, I wish to express my love and gratitude to my husband for his infinite patience,

support, and encouragement throughout my graduate school career. I could not have reached

this milestone without them.

The research presented in this thesis was supported in part by National Science Foundation

via grants numbers IIP 0758566, CCF-0833039, DMS-0835436, CNS 0426354, IIS 0430826,

and CNS 0723594, and by Department of Energy via the grant number DE-FG02-06ER54857,

and was conducted as part of the NSF Center for Autonomic Computing at Rutgers University.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Tables . x

List of Figures . xi

1. Introduction . 1

1.1. Motivation . 1

1.2. Problem Description . 2

1.3. Approach . 3

1.4. Overview of the Programming System . 3

1.5. Contributions . 4

1.5.1. Impacts . 6

1.6. Outline of the Dissertation . 6

2. Background and Related Work . 8

2.1. Programming Abstractions and Support . 8

2.1.1. Programming Support and Abstractions for Sensor Networks 8

2.1.2. Resource Aware Programming System 10

2.1.3. In-network Processing and Virtual Sensors 11

2.1.4. End-to-end Sensor-based Applications and Systems 12

2.2. Content-based Middleware Infrastructure . 12

2.3. Sensor System Management Technologies . 15

3. The GridMap/iZone Programming System . 18

vi

3.1. Introduction . 18

3.2. A Programming System for Sensor-based, Dynamic Data-Driven Applications . 19

3.3. The GridMap/iZone Approach . 21

3.4. System Architecture . 22

3.5. The GridMap & iZone Programming Abstractions 23

The GridMap Abstraction . 23

The iZone Abstraction . 25

3.6. Implementation Overview . 26

3.7. Summary . 27

4. In-network Data Estimation for Sensor-driven Scientific Applications 28

4.1. Introduction . 28

4.2. In-network Data Estimation . 29

4.2.1. The iZone Abstraction . 30

4.3. STaR: SPace, Time and Resource Aware Optimization 31

4.3.1. Saving Energy Using iSets . 31

4.3.2. Generating iSets . 32

Determining the Sizes of iSets . 32

Selecting Members of the iSets . 33

4.3.3. Maintaining iSets at Runtime . 35

4.4. Experimental Evaluation . 36

4.4.1. Communication Costs . 37

4.4.2. Effectiveness of Generating iSets . 38

4.4.3. Tradeoffs between Accuracy and Energy Consumption 41

4.4.4. Cost of Maintaining iSets . 41

4.5. Summary . 43

5. A Decentralized Content-based Aggregation Service for Pervasive Grid Environ-

ments . 44

5.1. Introduction . 44

vii

5.2. The Content-based Aggregation Service . 47

5.2.1. Associative Rendezvous Messaging 47

5.2.2. Opportunistic Application Flows in Pervasive Environments 49

5.2.3. Information Aggregation using Associative Rendezvous 51

5.3. Decentralize In-network Aggregation . 53

5.3.1. The Overlay Network Layer . 53

5.3.2. Content-based Routing Layer . 54

5.3.3. Trie-based In-Network Aggregation 58

5.3.4. Associative Rendezvous Messaging Substrate 64

5.3.5. Implementation Overview . 64

5.4. Experimental Evaluation . 65

5.4.1. Scalability of Aggregation Services 66

5.4.2. Simulation Results . 70

5.5. Summary . 73

6. Enabling End-to-end Sensor-driven Scientific and Engineering Applications . . 74

6.1. Introduction . 74

6.2. An End-to-end Oil Reservoir Application Using GridMap/iZone Abstractions . 76

6.3. Experimental Evaluation . 79

6.4. Summary . 83

7. Enabling Autonomic Power-Aware Management of Instrumented Data Centers 85

7.1. Introduction . 85

7.2. Architecture of a Two-level Autonomic Data Center Management System . . . 88

7.2.1. Two level Autonomic Data Center Management 90

7.3. Enabling Instrumented Data Center Management with GridMap/iZone Pro-

gramming System . 91

7.3.1. Using GridMap/iZone Programming System for Data Center Manage-

ment . 92

7.3.2. Programming In-network Policies . 92

viii

7.4. Simulation and Results . 94

7.5. Related Work . 96

7.6. Summary . 98

8. Summary, Conclusion and Future Work . 100

8.1. Summary . 100

8.2. Conclusion and Contributions . 101

The GridMap/iZone Programming System 102

A Decentralized Content-based Aggregation Service for Pervasive Grid

Environments . 103

Enabling End-to-end Sensor-driven Scientific and Engineering Appli-

cations . 104

8.3. Future Work . 104

References . 106

Vita . 117

ix

List of Tables

3.1. The GridMap operators. 24

3.2. The iZone operators . 25

5.1. Basic reactive behaviors. 48

x

List of Figures

3.1. Overview of the programming system for sensor-driven applications. 20

3.2. A schematic overview of the programming system. 23

3.3. Use of GridMap/iZone operators . 26

4.1. An overview of generating and maintaining iSets. 32

4.2. Communication cost in the presence of sensor dynamics. 37

4.3. Adaptive temporal interpolation. 38

4.4. Histograms of interpolation errors of generated iSets 39

4.5. Histograms of variation of interpolation errors of generated iSets 39

4.6. Effectiveness of random-based algorithm . 40

4.7. Interpolation errors of algorithms generating iSets 41

4.8. Tradeoff between interpolation error vs. energy consumption 42

4.9. Cost of maintaining iSets . 42

5.1. Sample message profiles: (a) a data profile for a temperature sensor; (b) an

interest profile for a client. 48

5.2. Basic reactive behaviors: (a) for message issued by data producers; (b) for

messages issued by data consumers. 49

5.3. Defining local behaviors. 50

5.4. Cascading local behaviors - an illustrative example. 51

5.5. Meteor stack - schematic overview. 53

5.6. The Meteor overlay network layer. 54

5.7. Routing using a simple query (a) query (2, 1) is a point in a 2D space; (b) the

query is mapped to SFC index 7; (c) the data is routed to peer 13 (in an overlay

with 5 peer nodes and an identifier space from 0 to 26-1), the successor of the

index 7. 56

xi

5.8. Routing using complex query (2-3, 1-5): (a) the query defines a rectangular

region in the 2D space, and 2 clusters on the SFC curve; (b) the clusters (the

solid part of the circle) are stored at peers 13 and 32. 56

5.9. Trie construction: (a) the complex query (011, 010-110) - the first, second and

third SFC refinement; (b) the trie associated with the query. 57

5.10. Embedding the tree from Figure 5.9 (b) into the overlay network. Node 100001

is responsible for storing the subtree routed at 011*. 58

5.11. (a) The trie constructed while resolving the query (011, 010-110) as presented

in Figure 5.10; (b) The list of prefixes accumulated by the query at the leaf peer

node. 60

5.12. In-network, trie-based aggregation. Each peer node performs a partial aggre-

gation, and sends the result to the peer node corresponding to its parent in the

query trie. 61

5.13. The pseudocode for in-network trie-based aggregation. 61

5.14. Profile manager and matching engine at a rendezvous point. 64

5.15. Scalability of aggregation service in term of overlay size for Orbit testbed, Plan-

etLab testbed, as well as LAN . 67

5.16. Average runtime for complex messages for LAN, ORBIT and PlanetLab 68

5.17. Robustness for single peer failure: (a) time to recover the ongoing aggregation,

(b) number of aggregated results during peer node failure. 69

5.18. Simulation results for large scale system . 70

5.19. Simulation result of the aggregation service on larger systems. The number of

nodes processing aggregates before normalized to system size is also shown on

the curve. 71

5.20. Effectiveness of in-network aggregation service: (a) average number of mes-

sages per peer with and without in-network aggregation; (b) actual number of

messages per peer for a query aggregated in-network, for a 500 peers system. . 72

6.1. Overview of an end-to-end oil reservoir application. 76

6.2. Using GridMap/iZone abstractions to program the sensor-driven application. . . 78

xii

6.3. Overall dataflow of the end-to-end oil reservoir management/optimization pro-

cess. 80

6.4. The components of performance evaluation 81

6.5. Communication costs of querying all the sensors associated with a GridMap as

a function of the size of the GridMap and the radio range of the sensors. 82

6.6. Tradeoff between accuracy and communication costs for different sizes of the

GridMap. 83

7.1. A sensor-driven data center management scenario. 86

7.2. A two-level autonomic data center management system. 88

7.3. Enabling autonomic management of instrumented data centers using the GridMap/iZone

programming system. 90

7.4. Example of in-network analysis of sorting n minimal grid point values at each

node using GridMap/iZone. 93

7.5. Example of an in-network algorithm for computing average and variance in the

neighborhood of each grid point. 94

7.6. Maximal temperatures at the data center over time with global centralized man-

agement. 95

7.7. A comparison of the impact (in terms of node temperatures) of global central-

ized management, in-network management and no management. 96

7.8. Maximum temperatures in the data center over time with and without in-network

management and job migration. 97

7.9. Communication overheads, in terms of number of messages, when using global

centralized and in-network management. 97

xiii

1

Chapter 1

Introduction

1.1 Motivation

Technical advances are rapidly leading to a revolution in the type and level of instrumenta-

tion of natural and engineered systems, and are resulting in a pervasive computation ecosystem

that integrates computers, networks, data archives, instruments, observatories, experiments,

and embedded sensors and actuators. This in turn is enabling a new paradigm for monitoring,

understanding, and managing natural and engineered systems – one that is information/data-

driven and that symbiotically and opportunistically combines computations, experiments, ob-

servations, and real-time information to model, manage, control, adapt, and optimize.

Several application domains, such as waste management [92], volcano monitoring [119],

city-wide structural monitoring [63], habitat and environmental monitoring [81], and end-to-

end soil monitoring system [109], are already experiencing this revolution in instrumentation,

and can potentially allow new quantitative synthesis and hypothesis testing in near real time

as data streams in from distributed instruments. However, (1) the data volume and rates, (2)

the uncertainty in this data and the need to characterize and manage this uncertainty, and (3)

the need to assimilate and transport required data (often from remote sites over low bandwidth

wide area networks) in near real-time so that it can be effectively integrated with computational

models and analysis systems, present significant challenges. As a result, data in most existing

instrumented systems is used in a post-processing manner where data acquisition is a separate

offline process.

2

1.2 Problem Description

In many current scientific and engineering applications, modeling to predict system behavior

is largely done using static historical data. This approach makes it impossible for such models

to accurately predict temporal and spatial variations in the real-world. With advances in sensor

technology, it now becomes possible to feed in near real time measurements data from di-

verse, complex, distributed sensor networks, enabling more accurate modeling, prediction and

control. This research investigates conceptual as well as systems software issues for enabling

the integration of sensor systems with computational applications. Specifically, the research is

driven by the management and control of subsurface geosystems, such as managing subsurface

contaminants at the Ruby Gulch waste repository [92] and management and optimization of oil

reservoirs [61]; and by the management and optimization of an instrumented data center [53].

Crosscutting requirements of these applications include:

Multi-scale, multi-resolution data access: Spatial and temporal variations in the phe-

nomenon being understood and managed by the application requires data at multiple scales and

resolutions at different locations of the monitored field. This requires online (near real-time)

spatial and temporal interpolation of the data from sensors before it can be integrated with

executing simulations.

Data quality and uncertainty estimation. Scientific investigation present strict require-

ments on data quality, uncertainty estimation and management. Further, the data assimilation

and uncertainty estimation mechanisms should be near real-time and managed within the sensor

system to be able to respond adequately and opportunistically to anomalous events.

Predictable temporal response to varying application characteristics. Ensuring robust

sense-evaluate-actuate cycles of scientific/engineering processes requires low and predictable

information (not just data) generation latencies. These requirements may differ from applica-

tion to application and for different phases of the same application. For example, applications

involving aerodynamic stabilization and neural control may require millisecond level response

while geosystem management (such as the applications described above) may require responses

in seconds, hours, days or weeks depending on the nature of the control task.

In addition to the above application requirements, there are a number of challenging system

3

level requirements including scheduling and adaptive runtime management of in-network data

processing, load balancing, quality of service management, resource management and compu-

tation/communication/energy tradeoffs. Furthermore, integrating sensors system with applica-

tions requires sufficiently high-level and easy-to-use programming abstractions and systems.

1.3 Approach

Addressing the issues outlined above requires a middleware infrastructure that can effectively

extract and abstract desired information from the huge amounts of data present in sensor based

systems, despite their scale, heterogeneity and dynamism. Further, it should automate some of

the decision processes associated with the computation in the network. This research devel-

ops a programming system to support the development of in-network data processing mech-

anisms, and enable scientific/engineering applications to discover, query, interact with, and

control instrumented physical systems using semantically meaningful abstractions. The pro-

gramming systems enables sensor-driven applications at two levels. First, it provides pro-

gramming abstractions for integrating sensor systems with computational models for scientific

processes (e.g. biophysical, geophysical processes) and with other application components in

an end-to-end experiment. Second, it supports programming models and systems for develop-

ing in-network data processing mechanisms. The former should support complex querying of

the sensor system, while the latter should enable development of in-network data processing

mechanisms such as aggregation, adaptive interpolation and assimilations, both via semanti-

cally meaningful abstractions. A key requirement here is being able to specify and enforce

dynamic data requirements and quality of data and service constraints, as well as investigate

tradeoffs between data quality, resource consumptions and performance.

1.4 Overview of the Programming System

The overall goal of this research is to develop sensor system middleware and programming sup-

port that will enable distributed networks of sensors to function, not only as passive measure-

ment devices, but as intelligent data processing instruments, capable of data quality assurance,

statistical synthesis and hypotheses testing as they stream data from the physical environment

4

to the computational world. Further, application should be able to interact with the sensor sys-

tem to control sensing and data processing behaviors. The system software consists of three

key components described below.

• Programming System: We will investigate a programming system that will support

the development of in-network data processing mechanisms, and will enable scientific

and engineering applications to discover, query, interact with, and control instrumented

physical systems using semantically meaningful abstractions. The former will be based

on content/location-based messaging, while the latter will provide associative querying

services. The programming system will build on existing service and component-based

programming models.

• Data Processing Middleware: We will investigate services for active in-network data

processing that will generate appropriate data/information to drive novel algorithms for

modeling, interpretation of phenomenon, and decision making. We will also investigate

algorithms and mechanisms to enable the acquisition of this data/information with dy-

namic qualities and properties from streams of data from the physical environment, and

address issues of data quality assurance, statistical synthesis and hypotheses testing, and

in-network data assimilation. Finally, we will explore how applications can interact with

sensors to control data acquisition.

• Sensor System Management Services: We will investigate middleware services for

the application-driven dynamic management of sensor systems for physical instrumenta-

tion, including overlay management, runtime management of data processing including

adaptations for computation/communication/power tradeoffs, dynamic load-balancing,

system resource management, and sensor system adaptations for application driven data

acquisition. The key idea will be to use application domain information to optimize

adaptations and make appropriate tradeoffs.

1.5 Contributions

The key contribution of this work is that it provides a conceptual architecture model and sensor

system middleware and programming support that will enable distributed networks of sensors

5

to function, not only as passive measurement devices, but as intelligent data processing instru-

ments, capable of data quality assurance, statistical synthesis and hypotheses testing as they

stream data from the physical environment to the computational world.

• The GridMap/iZone Programming System. This programming system includes abstrac-

tions and runtime mechanisms for integrating sensor systems with applications processes,

as well as for in-network data processing such as aggregation, adaptive interpolation and

assimilation. Specifically, the end-to-end abstractions provided by programming sys-

tem is to enable scientific/engineering applications to discover, query, interact with, and

control instrumented physical systems in a semantically meaningful way. For the latter,

we explore the temporal and spatial correlation of sensor measurements in the targeted

application domains to tradeoff between the complexity of coordination among sensor

clusters. Experimental results show that the proposed in-network mechanisms can fa-

cilitate the efficient usage of resources and satisfy data requirement in the presence of

dynamics and uncertainty.

• A Decentralized Content-based Aggregation Services for Pervasive Grid Environments.

This research presents the aggregation service that builds on the Meteor content-based

middleware infrastructure [55] for content-based information discovery and decoupled

interactions. Specifically, it extends Meteor to enable content-based aggregation queries

to be flexibly specified using keywords, partial keywords and ranges. Further, it builds

on a self-organizing overlay network and the Squid content-based routing infrastructure

to construct aggregation tries so that query propagation routes can be used for back-

propagating and aggregating matching data elements. The deployment and experimen-

tal evaluation of the aggregation service are conducted on a LAN, the wireless OR-

BIT testbed [2] at Rutgers University, and the PlanetLab wide-area testbed [93], which

demonstrates the scalability, effectiveness of the system.

• Enabling End-to-end Sensor-driven Scientific and Engineering Applications. The re-

search presented in this thesis is evaluated using two application scenarios: (1) the man-

agement and optimization of an instrumented oil field and (2) the management and op-

timization of an instrumented data center. Experimental results show that the provided

6

programming system reduces overheads while achieving near optimal and timely man-

agement and control in both application scenarios.

1.5.1 Impacts

While there has been extensive research in sensor networks, the infrastructure required for

closing the loop and integrating sensor systems with computational applications, where the

sensor information can be used for near real-time analysis, understanding, decision making

and actuation, is largely missing. We believe that such an infrastructure is critical and will

lead to the development of a new generation of dynamic sensor driven ad hoc control systems

that use sensor data to accurately predict the behavior of large scale natural and engineered

systems, and proactively manage and control their operation. Such a dynamic data-driven and

knowledge-based approach will increase productivity, reduce cost and improve safety.

1.6 Outline of the Dissertation

The rest of the thesis is organized as follows.

Chapter 2 gives an overview of existing programming support and abstractions for sensor

networks. It discusses the limitations of these existing systems with respect to the requirements

of sensor driven scientific and engineering applications. Furthermore, this chapter compares

the key differences between GridMap/iZone with the related systems.

Chapter 3 presents the GridMap/iZone programming systems that enable sensor-driven ap-

plications at two levels. First, it provides programming abstractions for integrating sensor sys-

tems with computational models for scientific and engineering processes and with other appli-

cation components in an end-to-end experiment. Second, it provides programming abstractions

and system software support for developing in-network data processing mechanisms.

Chapter 4 investigates a programming system to support the development of in-network

data processing mechanisms, which includes abstractions and runtime mechanisms for in-

network data processing such as aggregation, adaptive interpolation and assimilation.

Chapter 5 describes a decentralized content-based aggregation service for pervasive grid

environments. The deployment and experimental evaluation of the aggregation service are

7

conducted on local area networks (LANs), the wireless ORBIT testbed [2] at Rutgers Univer-

sity, and the PlanetLab wide-area testbed [93], which demonstrate the scalability, effectiveness

of the system.

The research presented in this thesis is evaluated using two application scenarios: (1) the

management and optimization of an instrumented oil field and (2) the management and op-

timization of an instrumented data center. In Chapter 6, the programming abstractions and

systems software solutions enable end-to-end management processes of an instrumented oil

field consisting of detecting and tracking reservoir changes, assimilating and inverting data for

determining reservoir properties, and providing feedback to enhance temporal and spatial res-

olutions and track other specific processes in the subsurface. The overall goal is to ensure near

optimal operation of the reservoir in terms of profitability, safety and/or environmental impact.

In Chapter 7, the autonomic instrumented data center management system addresses power

consumption, heat generation and cooling requirements of the data center, which are critical

concerns especially as the scales of these computing environments grow. Sensor networks

monitor temperature, humidity, and airflow in real time, and provide non-intrusive and fine-

grained data collection, and enable real-time processing. These sensors are integrated with

computational processes and job schedulers to take phenomenon, such as heat distribution and

air flows into consideration, and to optimize data center performance in terms of energy con-

sumption and throughput. Experimental results show that the provided programming system

reduces overheads while achieving near optimal and timely management and control in both

application scenarios.

Chapter 8 concludes the thesis and presents future research directions.

8

Chapter 2

Background and Related Work

This chapter investigates the current programming systems for sensor networks and pervasive

grid systems. An overview of existing programming abstractions and support for sensor net-

works is presented in Section 2.1. We discuss these existing programming systems with respect

to the requirements of sensor driven scientific and engineering applications. In-network pro-

cessing mechanisms are discussed and compared with our work. Furthermore, we compare

the key differences between GridMap/iZone programming system with the related systems. In

Section 2.2, content-based middleware is presented and compared with the Meteor middleware

infrastructure and the aggregation service. Finally, Section 2.3 introduces the sensor system

management technologies that enable application-driven dynamic management of sensor sys-

tems for physical instrumentation.

2.1 Programming Abstractions and Support

2.1.1 Programming Support and Abstractions for Sensor Networks

There has been a significant body of research on programming support for sensor networks, for

both, interfacing with them and developing application that run on them. Early approaches were

relatively low-level where application mechanisms were hard coded into the devices [6], or

were based on specialized device operating systems (e.g., TinyOS [70], SOS [43], Contiki [23]),

languages (e.g., NesC [35]) or virtual machines (e.g., Mate [67], Deluge [48], Trickle [71],

Tofu [68]). Other efforts such as MiLan [46] and Impala [76] specifically addressed sev-

eral challenges of wireless sensor networks, focusing on the long-lived nature and resource-

constrained, dynamic and heterogeneous environment of sensor applications. TOSSIM [69]

and Emstar [37] provide simulation environments for developing and deploying wireless sensor

9

networks. Trio [25] provides tools for deploying sensor networks. TinyGals [19] is an event-

driven programming model for embedded system through synchronous method calls to form

modules and asynchronous message passing between modules to separate control of flows.

Recent programming systems can be classified based on the abstractions they provide.

Messaging-oriented approaches primarily provide communication abstractions that can be used

to build sensor applications. This category includes system providing low level abstraction

(e.g., Directed diffusion [49] and Dfuse [64]) as well as higher level abstraction (e.g., publish-

subscribe and content-based rendezvous [55]). Mobile agent-based approaches allow in-network

reprogramming through mobile agent migration. Systems in this category include Agilla [28]

and Agimone [42]. The latter targets the integration of sensor and IP networks across hetero-

geneous devices.

Several systems [73,78,117,121] provide abstractions for specifying local behaviors of sen-

sors. EnviroSuite [78], state programming [73] and CLB [56] are based on emergence, where

the programmer specifies local sensor behaviors the global behaviors emerge. For example, En-

viroSuite is targeted at tracking applications. Abstract region [117] and Hood [121] support a

neighborhood-based programming models in a sensor network. These systems are particularly

relevant to the requirements addressed in this research.

In the alternate macroprogramming approach, global behaviors are specified and the pro-

gramming system generates the local behaviors and interactions necessary, such as Regiment [88],

TML [87], Semantic Streams [120], Kairos [40] and ATaG [7]. For example, Semantic Streams

provides a logic-based language for composing distributed data-processing services. Database-

oriented approaches provide abstractions that view the sensor network as a virtual database

system and provide SQL-like interfaces for querying the networks, including Cougar [124] and

TinyDB [80]. The related data streaming approach supported by TelegraphCQ [17] views data

as information data streams, and applications monitor and react to them as they pass through

the network.

The programming systems discussed above have to be extended to support end-to-end

sensor-driven applications and the interactions between computational models and the sensor

system, and address requirements discussed in Section 1.2. Ideally, a scientist should only have

to specify application data requirements using high-level abstractions, and the system should

10

transform these requirements into appropriate operations, interactions and coordination within

the sensor system. The GridMap/iZone is such programming system to provide semantically

meaningful abstractions and runtime mechanisms for integrating sensor systems with com-

putational models for scientific processes, as well as for in-network data processing such as

aggregation, adaptive interpolation and assimilations.

2.1.2 Resource Aware Programming System

Resource aware programming [85] is an important aspect of system software, especially for re-

source constraint sensor networks. The GridMap/iZone programming system is closely related

to a range of primitives for resource management in sensor networks, and resource adaptivity

for mobile and pervasive computing systems.

Many approaches have relied on hardware support for energy estimation, such as Eon [105],

iCount [24] and Triage [9]. For example, Triage [9] allows application logic to be parti-

tioned across coupled hardware platforms based on energy availability. The driver architectures

ICEM [62] and configurational software kit SNACK [38] automate some aspects of energy sav-

ings by coordinating access to hardware resources across multiple components and concurrent

tasks. Adaptive duty-cycling algorithms [59,116] tune the duty cycle of a sensor network appli-

cation according to energy availability. The iZone software is orthogonal to these approaches

and manage the energy for a set of sensors and take the quality of estimation into consideration.

The GridMap/iZone system is related to several systems by taking resource-aware appli-

cation design into consideration. TinyDBs queries [80] target a given lifetime by (statically)

setting the query duty cycle. Levels [65], Eon [105] and Pixie [77] provides programming mod-

els for adapting energy availability. Pixie is an operating system and a dataflow programming

model that permits high-level, reusable resource management policies via resource tickets and

brokers [77]. Eon provides a dataflow model similar to Pixie and automatically tunes timer

rates and dataflow paths based on energy availability. Levels allows application components

to define multiple fidelity levels, which are configured in response to energy availability. Con-

tiki [23] uses a model to track hardware states in software.

The GridMap/iZone system focuses coordinated resource management of sensor nodes

11

across the network and quality of service specified by the applications by providing exten-

sive runtime adaptation. Specifically, the GridMap/iZone programming system allows such

policies to be expressed through a unified programming model that can permit domain scien-

tists and other non-expert users to build adaptive, efficient, and self-tuning sensor networks by

specifying and implementing resource management with quality of service as a core aspect of

the programming abstraction.

The sensor selection schemes are also closely related to our work. The sensor selection

approach described in [22] uses approximation algorithms to select near-optimal subsets of

k sensors that minimize the worst-case prediction error. Entropy-based approaches [126] are

used for the sensor selection problems of target tracking and localization applications. The

goal of our proposed algorithms is to find a “best” collection of subsets, all of which satisfy

the error tolerance rate (and minimize aggregated errors), while saving and balancing the energy

consumptions among sensors in the long run.

2.1.3 In-network Processing and Virtual Sensors

Data aggregation is an essential functionality in sensor networks, and has been addressed by a

number of research efforts [79, 124]. Optimizations techniques such as aggregation trees are

used to resolve queries efficiently. Homogeneous aggregation operations are supported. The

approach presented in this research supports used-defined functions using in-network coordi-

nation and optimization mechanisms.

Other related efforts include spatial interpolation and aggregation [30, 33, 103] and redun-

dant sensor sampling [72]. The focus of this work is different in that it develops programming

abstractions to facilitate programming the in-network algorithms (e.g. varied interpolation al-

gorithms), as well as runtime mechanisms to investigate trade offs between dynamic coordina-

tion costs and data quality. The Lance [118] is used to optimize collecting raw sensor data from

large networks under varying energy and bandwidth constraints. This system is complementary

to GridMap/iZone system, although our focus is on trading energy consumptions and quality

requirements in a long run.

There are some recent research efforts [3, 14, 58, 86, 91] that use the concept of virtual

12

sensors to support sensor applications. VNLayer [14] provides abstraction layers that mask un-

certainty of underlying sensor networks through consistency management. Virtual sensor [58]

provides a virtual sensor model and application APIs to support heterogeneous aggregation and

hierarchical specifications. However, the underlying concepts and implementation of the sys-

tem described in this thesis is quite different from these approaches in that it uses virtualization

to address the mismatch between the instrumentation of the physical domain and its discretiza-

tion in the computational model, rather than to create, for example, a virtual sensor for a derived

data type.

2.1.4 End-to-end Sensor-based Applications and Systems

The soil ecology monitoring system [109] is an end-to-end data collection prototype that uses

wireless sensor systems as the first component of an end-to-end system. The ring buffer net-

work bus (RBNB) DataTurbine is a streaming middleware system [113], of which the key com-

ponents are the ring buffers and network bus objects for managing, archiving and accessing data

from local and remote produces (e.g., instruments, users). Que [20] provides a scripting-based

exploration environment to support simulation and emulation of multi-platform tiered systems

including sensor network for real time data acquisition.

The GridMap/iZone system provides programming abstractions and runtime support to in-

tegrate the different components of sensor-driven applications. The system provides end-to-end

and in-network support for integrating sensor systems with computational process by essen-

tially virtualizing the sensor field to match its representation used by the computational model.

2.2 Content-based Middleware Infrastructure

The growing ubiquity of sophisticated sensor/actuator devices with embedded computing and

communications capabilities, and the emergence of Grids are resulting in a pervasive infor-

mation infrastructure that combines computational, storage and information resources [26,36].

This pervasive infrastructure is, in turn, enabling new generations of information/data-driven

applications that are based on seamless access, aggregation and integration.

Content-based Interaction: Content-based decoupled interactions have been addressed

13

by publish-subscribe-notify (PSN) models [27]. PSN based systems include Sienna [16] and

Gryphon [39]. The associative rendezvous model differs from PSN systems in that individual

interests (subscriptions) are not used for routing and do not have to be synchronized - they can

be locally modified at a rendezvous node at anytime.

The i3 [107] provides a similar rendezvous-based abstraction and has influenced this work.

However, an i3 identifier is opaque and must be globally known. Associative rendezvous uses

semantic identifiers that are more expressive and only require the existence of agreement upon

information spaces (ontologies). Besides, its dynamic binding semantics enables profiles to be

added, deleted or changed on-the-fly.

The associative broadcast [12] paradigm has also influenced this effort. The key difference

between this model and associative rendezvous is that the binding of profiles takes place at

intermediate nodes instead of the broadcast medium. As a result, associative broadcast only

supports transient interactions. Further, its scalability over wide areas is a concern.

The rendezvous-based communication is conceptually similar to tuple space research in

distributed systems [50, 89, 123]. A tuple space is a shared space that can be associatively

accessed by all nodes in the system. While tuple space is a powerful model for interactions

and coordination, efficient and large-scale implementations of pure tuple space based systems

is a challenge. Associative rendezvous maintains the conceptual expressiveness of tuple spaces

while providing an implementation model that is scalable.

Unlike other rendezvous-based models [34], associative rendezvous enables programmable

reactive behaviors at rendezvous points using the action field within a message. In addition,

associative rendezvous is able to realize a variety of basic communication services without the

need for mobile code [112], or any heavy duty protocols. Further, interactions in the associa-

tive rendezvous model are symmetric allowing participants to simultaneously be information

producers and consumers.

Narada Brokering [29] is a distributed middleware framework that supports peer-to-peer

systems and content-based publish/subscribe interactions. It manages a network of brokers

through which end systems can interact, providing scalability, location independence, and ef-

ficient content-based querying and routing. However, Narada brokers are organized in a hi-

erarchical structure, which is maintained through tighter coupling and control mechanisms,

14

focusing on persistence and reliable message delivery. In contrast, Meteor is meant to support

more dynamic and opportunistic interactions in a peer-to-peer network.

Content-based publish/subscribe over DHT is a topic for which there is much current work.

DHT functionality is usually built using some sort of a structured overlay network, the most

popular of which are Chord [108], used here, Pastry [98], and CAN [96], because they provide

scalability, search guarantees and bounds on messaging within the network, as well as some

degree of self-management and fault tolerance with respect to the addition/removal of nodes.

With this foundation, designing content-based publish/subscribe systems requires an efficient

mapping between content descriptors and nodes in the overlay network, as well as efficient

techniques for routing and matching based on these content descriptors, which can contain

wildcards and ranges for complex queries. The work in [4, 8, 41, 110] addresses these issues to

some extent. Meteor and Squid differ from these approaches mainly in the locality-preserving

mapping used.

The Meteor framework has recently been used to support a Web Services based notifica-

tion broker service for content-based subscription management and notification dissemination

targeting highly dynamic pervasive Grid environments that adopt the Web service notification

(WSN) standards [94]. This service makes use of Meteor’s AR messaging and reactive behav-

iors to provide a distributed and decentralized implementation of the operations defined by the

WSN interfaces.

Programming Models for Sensor-based Pervasive Systems The Cornell Cougar [124],

TinyDB [80] and Tiny Aggregation (TAG) [79] systems provide high level programming ab-

stractions that view the sensor network as a distributed database, and provides SQL-like inter-

faces for querying the networks. Optimizations techniques such as aggregation trees are used

to resolve queries efficiently. Only single tasking with homogeneous aggregation operations is

supported. The approach presented in this research defines the aggregation operations as pro-

grammable reactive behaviors and can associate different aggregation operators with different

data scopes and properties.

Other related work include TelegraphCQ [17], which uses window-based query semantics

for continuous queries; it uses an efficient filtering mechanism corresponding to the desired

end-to-end application behavior. The original design is primarily a single node system. Our

15

system, on the other hand, distributes queries in the network. Songs [75] provides service-

oriented architecture to convert declarative user queries into a service composition graph, for

sensor-based pervasive system.

Aggregation in Peer-to-Peer (P2P) Environments: Aggregation in large P2P distributed

systems is often based on a hierarchical architecture. The Astrolabe [114] project at Cornell

is designed to provide a DNS-like distributed management service to allow nodes to aggre-

gate information by dividing the network into (non-overlapping) zones arranged hierarchically.

Similarly, the effort presented in [11] formulates the Node Aggregation problem in P2P sys-

tems and presents a number of approaches to address the problem, including approaches based

on spanning tree induction and using redundant topologies. While these approaches are sim-

ilar to the one presented in this research, the key difference is the support for content-based

aggregation query formulations and the aggregation guarantees provided. Cone [13] augments

a DHT with a trie to support heap functions, which provide an aggregation operator at the root

of every subtree. For different aggregate operators and applications, different independent tries

and/or overlay structures can be formed. In this research, a generic prefix trie-based aggrega-

tion protocol is provided, which supports content-based in-network aggregations using different

application-specific operators or functions using the same trie structure. Sharing the same trie

structure among multiple queries and applications amortized maintenance costs.

PHT [18] is based on a trie data structure, which requires explicit periodic maintenance of

the underlying trie structure. Our approach presented in this research also usess a trie-based

approach; however, unlike PHT, our approach maintains no persistent state about the aggregate

trie in the overlay.

2.3 Sensor System Management Technologies

In this section, we will investigate the related work of middleware services for the application-

driven dynamic management of sensor systems for physical instrumentation, including over-

lay management, runtime management of data processing including adaptations for computa-

tion/communication/power tradeoffs, dynamic load-balancing, system resource management,

and sensor system adaptations for application driven data acquisition. The key idea is to use

16

application domain information to optimize adaptations and make appropriate tradeoffs.

The structure of the logical topology that connects and organizes sensors can have signif-

icant impact on the efficiency of communication and computations, especially in the presence

of large data volumes and constrained resources.

Overlay networks have been addressed extensively in wired networks, and several unstruc-

tured (e.g., Gnutella Network, Freenet [21]) and structured solutions (e.g., (SINA [106]), DHT-

based (CAN [96], Chord [108], SquidTON [102], Willow [115]), such as distributed data struc-

ture based (SkipNet [44], Cone [13]) and attribute based (e.g. Direct Diffusion [49])), have

been proposed with tradeoff between management overheads and communication guarantees.

However, these effort are not directly applicable to wireless sensor networks, primarily due to

resource (connectivity, bandwidth, energy) constraints.

The communication costs as well as error rates in wireless sensors networks depends on the

physical distances between sensors, and as a result, an ideal sensor topology must be aware of

the physical topology of the sensor network while at the same time providing the expressiveness

of a structured overlay. Cluster-based topologies have been widely used in sensor networks, for

the design and implementation of network protocols and collaborative signal processing appli-

cations for WSNs (e.g., [104,125]), primarily due to their simplicity, flexibility, and robustness.

For example, the Low-Energy Adaptive Clustering Hierarchy (LEACH) [45] randomly divides

the sensor network into several clusters, each cluster being managed by a cluster head. A more

recent approach, which is based on ideas from structured overlays, is the virtual routing ring

(VRR) [15]. VRR is inspired by Tapestry ring overlay, and takes advantage of the physical

paths in addition to logical paths for routing. Setup and maintenance costs still have to be ad-

dressed in this work. Multi-scale overlay [90] designs a self-organizing hierarchical overlay

that scales to a large number of sensors and enables multi-resolution collaboration. Another re-

lated effort is multi-resolution storage [32], which addresses in-network storage and distributed

search in sensor networks.

In this project, we build on these existing solutions and sensors network topologies and ad-

dress the challenges of in-network processing, storage and query resolution. A key issue is the

maintenance of locality, both physical locality in the instrumented region, and logical locality

in the application information space. This means that data is stored and processed at or close

17

to the location where it is produced. Further, application queries should also, as far as possible,

map to localized regions of the sensor network. As mentioned above, the developed solutions

will try to use domain knowledge if available. For example, in most scientific simulations

are based on a discretization of the physical domain and communication and computations are

based on and demonstrate locality within this discretized domain. By indexing the sensor data

so as to take this locality into account, e.g., using SFC’s, the routing and querying behaviors can

be optimized [57], which is presented with Meteor infrastructure and the aggregation services.

Another key issue is the adaptive runtime management of the querying and data processing

operations so as to meet application performance requirements. The selection and scheduling of

these operations should be system-sensitive, i.e., aware of the state and capabilities of the sensor

nodes and communication system. Several existing sensor infrastructures (e.g., [31,46,76]) are

designed to constrain the active components for achieving performance/resource tradeoffs. We

extend this approach by using information about the domain, for example, many measured

properties are relatively smoothly distributed and do not change abruptly. As a result, sensors

in homogeneous regions (with respect to such properties) can be selectively adaptively activated

to better manage energy based on desired performance/energy/communication tradeoffs.

18

Chapter 3

The GridMap/iZone Programming System

Technical advances are leading to a pervasive computational infrastructure that integrates com-

putational processes with embedded sensors and actuators, and giving rise to a new paradigm

for monitoring, understanding, and managing natural and engineered systems - one that is

information/data-driven. However, developing and deploying these applications remains a chal-

lenge, primarily due to the lack of programming and runtime support. This chapter addresses

these challenges and presents a programming system for end-to-end sensor/actuator-based sci-

entific and engineering applications. The programming system provides semantically mean-

ingful abstractions and runtime mechanisms for integrating sensor systems with computational

models for scientific processes, and for in-network data processing such as aggregation, adap-

tive interpolation and assimilations. The overall architecture of the programming system and

the design of its key components, as well as its prototype implementation are described.

3.1 Introduction

Sensor system middleware and programming support will enable distributed networks of sen-

sors to function, not only as passive measurement devices, but as intelligent data processing

instruments, capable of data quality assurance, statistical synthesis and hypotheses testing as

they stream data from the physical environment to the computational world [52]. Further, appli-

cation should be able to interact with the sensor system to control sensing and data processing

behaviors. The programming systems enables sensor-driven applications at two levels. First, it

provides programming abstractions for integrating sensor systems with computational models

for scientific processes (e.g. biophysical, geophysical processes) and with other application

components in an end-to-end experiment. Second, it supports programming models and sys-

tems for developing in-network data processing mechanisms. The former supports complex

19

querying of the sensor system, while the latter enables development of in-network data pro-

cessing mechanisms such as aggregation, adaptive interpolation and assimilations, both via

semantically meaningful abstractions. The research is driven by the management and control

of subsurface geosystems, such as managing subsurface contaminants at the Ruby Gulch waste

repository [92] and management and optimization of oil reservoirs [61], and by the manage-

ment and optimization of an instrumented data center [53]. Crosscutting requirements of these

applications include multi-scale, multi-resolution data access, data quality and uncertainty es-

timation, and predictable temporal response to varying application characteristics.

The focus of this chapter is on the end-to-end abstractions provided by programming sys-

tem, and on how they can be used to enable scientific/engineering applications to discover,

query, interact with, and control instrumented physical systems in a semantically meaningful

way. Specifically, this chapter describes the design and operation of the GridMap/iZone ab-

stractions.

The rest of the chapter is organized as follows. Section 3.2 gives and overview of the sys-

tem. Section 3.3 introduces the GridMap/iZone approach for enabling end-to-end scientific

and engineering applications. Section 3.4 presents the programming system architecture. Sec-

tion 3.5 describes the design and operation of the GridMap/iZone programming abstractions.

Section 3.6 presents an overview of the implementations. Section 3.7 summarizes the chapter.

3.2 A Programming System for Sensor-based, Dynamic Data-Driven Applica-

tions

A conceptual overview of the overall approach is illustrated in Figure 3.1. The goal of the

programming system being developed as part of this research is to provide abstractions and

mechanisms to seamlessly access and integrate remote and distributed sensor data into compu-

tational models and support scalable in-network data processing. The underlying approach is to

virtualize the physical sensor grid to match the representation of the physical domain used by

the models, and dynamically discover and access sensor data independent of any change to the

sensor network itself. The sensor network periodically estimates data at the grid points spec-

ified by the application using available physical data values. The estimation mechanisms are

20

Kriging

(Err<0.01)

Sensor

data

Sensor

data
 Simulation grid
Simulation grid

X
 R
X
 R

Observation

data

Scientific

Application/

Computational

Model

Simulation

model

Figure 3.1: Overview of the programming system for sensor-driven applications.

specified by the applications and are implemented within the sensors network in a decentralized

and scalable manner.

The abstractions provided enable applications to query the sensor system for data/information

using flexible content descriptors that are semantically meaningful. For example, in a simula-

tion defined on a regular catesian grid, a computational model looking for data in a particular

region may specify this query using the coordinates that define the region in the computational

grid and details about the data required (i.e., type, resolution, etc.).

Related Work in Programming Systems for Sensor Networks There has been a signif-

icant body of research focused on programming support for sensor networks, for both, inter-

facing with them and developing applications that run on them. Recent efforts are broadly

classified below. Several systems [73, 78, 117, 121] provide abstractions for specifying the lo-

cal behaviors of sensors. EnviroSuite [78], state programming [73], and CLB [56] are based

on emergence, where the programmer specifies local sensor behaviors and global behaviors

emerge from local behaviors and interactions. Abstract region [117] and Hood [121] provide

neighborhood-based programming models for sensor networks.

In the macroprogramming approach, global behaviors are specified and the programming

system generates the local behaviors and necessary interactions, e.g., Kairos [40] and ATaG [7].

Database-oriented approaches provide abstractions that view the sensor network as a virtual

database system and provide SQL-like interfaces for querying the networks, e.g., Cougar [124]

and TinyDB [80]. The related data streaming approach, supported by TelegraphCQ [17],

views data as information data streams, and applications monitor and react to them as they

pass through the network.

21

3.3 The GridMap/iZone Approach

The programming systems discussed above have to be extended to support end-to-end sensor-

driven applications and the interactions between computational models and the sensor system.

They must address the mismatch between the locations of the sensors and the data require-

ments of the computational models, the dynamic nature of application requirements and of the

sensor system, data uncertainty and application constraints on quality of data and service. Fur-

thermore, the system software should be able to actively support intelligent processing, such

as adaptive interpolations, assimilations, which are needed by the models. Ideally, a scientist

should only have to specify application data requirements using high-level abstractions, and the

system should transform these requirements into appropriate operations, interactions and coor-

dination within the sensor system to transform the sensed data to match these requirements.

While systems such as Kiaros [40] and TelegraphCQ [17] address some aspects of these re-

quirements, the key difference is in the type of querying and processing supported. A key aspect

of the GridMap approach presented in this research, is the indexing of data in the sensor system

in a domain and locality aware manner using meaningful content descriptors. The descriptors

are derived from the application domain and are used to define a semantically specified infor-

mation space [100], which is the basis for all interactions with and within the sensor system.

Note that many such information spaces can co-exist corresponding to different applications.

This enables applications to query the sensor system for data/information using flexible content

descriptors that are meaningful. For example, an oil reservoir simulation looking for well data

in a particular region may specify this query using the coordinates that define the region, the

type of well (production or injection) and details of the data required (i.e., type, resolution,

etc.). Note that the content descriptors may also include ranges and wildcards. This abstraction

can also specify data processing operations such as aggregations and interpolations and these

operations can also be localized to specific regions in the sensor field.

There also exist recent research efforts that are similar to the presented approach in their

use of virtual sensors [3, 14, 58, 86, 91] to support sensor-based applications. However, the un-

derlying concepts and implementation of the system described in this research is quite different

22

from these approaches in that it uses virtualization to address the mismatch between the instru-

mentation of the physical domain and its discretization in the computational model, rather than

to create, for example, a virtual sensor for a derived data type. Other related efforts include

spatial interpolation and aggregation [30, 33, 103], and redundant sensor sampling [72]. The

focus of this work is different in that it addresses programming abstractions to facilitate imple-

mentations of in-network data estimation algorithms (e.g. various interpolation algorithms), as

well as runtime mechanisms to investigate tradeoffs between dynamic coordination costs and

data quality.

3.4 System Architecture

Key requirements for programming systems for enabling end-to-end sensor-driven applications

and supporting the interactions between computational models and the sensor system include

addressing the mismatch between the locations of the sensors and the data requirements of the

computational models, the dynamic nature of application requirements and of the sensor sys-

tem, data uncertainty and application constraints on quality of data and service. Furthermore,

the system software should be able to actively support intelligent processing, such as adaptive

interpolations, assimilations, which are needed by the models. Ideally, a scientist should only

have to specify application data requirements using high-level abstractions, and the system

should transform these requirements into appropriate operations, interactions and coordination

within the sensor system to transform the sensed data to match these requirements.

The overall goal of the programming system developed as part of this research is to pro-

vide abstractions and mechanisms to address the above requirements and enable computational

models to seamlessly access and integrate remote sensor data.

A schematic overview of the overall programming system architecture is presented in Fig-

ure 3.2. It consists of a two-level programming abstraction, the end-to-end GridMap program-

ming abstraction that enables computational applications to access and integrate sensor data

into their models, and the in-network iZone programming abstraction to enable the develop-

ment of scalable in-network data processing mechanisms.

The underlying middleware provides an in-network data processing engine, which supports

23

GridMap
Programming Abstraction

Location aware

Content
-
based Middleware

Discovery, Associative

Rendezvous Messaging

Clustering/Geo
-
routing

Wireless overlay, mesh, etc.

In
-
network Data Processing

Dissemination, aggregation, collaboration

Content Overlay

Content
-
based routing engine

Self
-
organized overlay

CyberPhysical
Applications

In
-
network algorithms

IDW,
Kriging
, regression, etc.

Programming Abstraction

iZone

GridMap
Programming Abstraction

Location aware

Content
-
based Middleware

Discovery, Associative

Rendezvous Messaging

Clustering/Geo
-
routing

Wireless overlay, mesh, etc.

In
-
network Data Processing

Dissemination, aggregation, collaboration

Content Overlay

Content
-
based routing engine

Self
-
organized overlay

CyberPhysical
Applications

In
-
network algorithms

IDW,
Kriging
, regression, etc.

Programming Abstraction

iZone

Figure 3.2: A schematic overview of the programming system.

efficient data dissemination, aggregation and collaboration in dynamics, resource-constraint

heterogeneous sensor networks, and a location-aware content-based middleware, for wide-area

decentralized content-based discovery, associative rendezvous messaging and aggregation ser-

vices for pervasive environments

3.5 The GridMap & iZone Programming Abstractions

Scientific applications often require measurements at pre-defined grid points, which are often

different from the locations of the raw data provided directly by the sensor network. As a

result, the sensor-driven scientific and engineering applications require a virtual layer, where

the logical representation of the state of the environment provided to the applications may be

different from the physical representation of raw measurements from sensor network. The

abstractions described in this section enable applications to specify such a virtual layer and the

models (e.g. regression models, interpolation functions, etc.) that should be used to estimate

data on the virtual layer from sensor readings, as well to develop in-network implementations

of the data estimation mechanisms.

The GridMap Abstraction

The GridMap abstraction consists of two operators. The first operator allows the application

to construct a virtual grid (a GridMap), corresponding to the computational grid used by the

computational models, on the instrumented domain. Once this virtual grid has been overlayed

on the sensor system, the application can use the second operator to query data corresponding

to a region of interest on this virtual grid. The interface of this second operator includes a

24

Operator Semantics
query Send query of GridMap
notify Notify the status of GridMap
retrieve Retrieve values of GridMap
init Initialize grid points of GridMap
delete Delete GridMap
refine Refine the GridMap without reconstruction
coarsen Coarsen the GridMap without reconstruction

Table 3.1: The GridMap operators.

specification of the method (e.g., interpolator) that should be used to estimate data at a grid

point in the region of interest using physical data from sensors that are in the neighborhood of

the point. The operator also includes parameters such as the size of neighborhood that should be

used in the estimation, and what are the constraints on the accuracy and cost of the estimation.

The GridMap operators include end-to-end query operations, i.e., query, notify, retrieve as

well as operators to construct, modify and delete the GridMap , i.e., init, delete, refine and

coarsen. These operators are summarized in Table 3.1.

The parameters of the query operator include a specification of the region of interest within

the GridMap and the interpolation function that should be used to compute values at the grid

points of interest form the sensor values. The execution of this operator results in a query

message being routed to relevant nodes (i.e., cluster heads) in the sensor network. The query

specification is then matched against existing profiles, and if required, appropriate in-network

operators are invoked. The notify operator is used to register notification requests, for example,

and application may be interested in be notified if the maximum sensor reading in a region

of the GridMap exceeds a certain threshold. The application can retrieve previously queried

values using the retrieve operator.

The init operator is used to initialize the grid points associated with GridMap. The ac-

tual initialization steps are implementation specific. However, the initialization should return

whether each grid point of the GridMap would be able to be constructed successfully. The suc-

cess of init is an aggregation of successful construction of each grid point. If partial GridMap

cannot be constructed successfully due to the unsuccessful construction of individual grid point,

either a best-effort construction is rendered by the application or a failure flag is reported to the

25

application. The refine operator modifies an existing GridMap by adding more grid points to

increase the resolution of the GridMap. The coarsen operator modifies an existing GridMap by

suspending some of the virtual grid points to effectively reduce the resolution of the GridMap.

Note that, both refine and coarsen operators do not re-construct of the entire GridMap which

makes them more efficient in dynamically changing physical environments.

Operator Semantics
discover Discover sensors of iZone specification
expand Add more sensors to expand iZone coverage
shrink Remove sensors to shrink iZone coverage
get Return data from sensor(s) in the iZone
put Send data to sensor(s) in the iZone
aggregate Aggregate sensor data with

MAX, MIN, WEIGHTED SUM, etc.

Table 3.2: The iZone operators

The iZone Abstraction

The iZone abstraction in turn, enables the implementation of the estimation functions. Note

that, user-defined functions can be implemented using iZone operators, which can then be ap-

plied in a straightforward fashion as a function operator on the actual running environment with

GridMap operators as shown in Figure 3.3.

The iZone itself is a representation of the neighborhood that is used to compute a grid point,

and may be specified using a range of coordinates, a function, etc. The iZone abstraction also

provides operators, such as discover, expand and shrink for obtaining sensors corresponding

to the region of interest as well as for defining in-network processing operators, such as get,

put and aggregate, to compute a desired grid point from sensor values from this region as

summarized in Table 3.2. The discover operator initially identifies and discovers sensors to

manage the estimation. The operators such as expand and shrink identify, discover and update

the participation of sensors at runtime. The expand operator increases the iZone by discovering

more sensors without flooding the whole iZone. The shrink operator reduces the iZone by

remove sensors that does not match the updated specification of iZone without re-discovering

the whole iZone. The get(p) operator returns data matching profile p from the iZone. For

26

example, the profile p can be specified as measurements whose locations are in the region of

northeast from given grid point in the iZone. The put(p) operator sends the data to destination(s)

matching profile p in the iZone. The aggregate operator collect relevant data and aggregate the

partial results in the path to the destination.

iZone
operators

GridMap
operators

Applications

E.g. estimation

function implemented

with
iZone
operator
iZone
operators

GridMap
operators

Applications

E.g. estimation

function implemented

with
iZone
operator

Figure 3.3: Use of GridMap/iZone operators

The GridMap and iZone abstractions thus abstract away the details of the underlying mea-

surement infrastructure and hide the irregularities in the data by using a virtualization of the

sensor field and estimation methods, to present a consistent representation, over time and space,

to applications using the data. Once an iZone is defined, computing the data value at a grid point

consists of (1) identifying a coordinator, which could be the sensor node that is closest to the

grid point and has the required capabilities, (2) discovering the sensors in the iZone that will

be used in the estimation, (3) planning the in-network estimation strategy based on desired

cost/accuracy/energy tradeoffs, and (4) executing the estimation and returned the computed

data value at the grid point. These are described in more details in the next chapter.

3.6 Implementation Overview

The current prototype implementation of GridMap/iZone programming system consists of two

key parts. The sensor network component is implemented using the 802.11 protocol and stan-

dard location based clustering to construct a two level self-organizing overlay of sensor. This

component implements the mechanisms for sensor discovery, query dissemination, data gath-

ering and aggregation and in-network data processing. It has been prototyped using sensors

emulated on the Orbit wireless testbed [2]. The wide-area component is built using Java and

on top of the JXTA peer-to-peer substrate [1] and deployed on the Rutgers campus Grid. This

27

component integrates computations processes (i.e. simulations), data archives and user subsys-

tem to the sensor system through gateway nodes. Queries issued by the computational process

are routed to the appropriate sensor nodes (and aggregated and interpolated data values routed)

via the gateway and cluster heads.

The operation of the sensor network component of the GridMap/iZone programming sys-

tem consists of bootstrap and running phases. The bootstrap phase is used to setup the sensor

overlay. During this phase, sensor nodes form clusters and exchange information to setup rou-

tines tables, etc. The running phase consists of stabilization and user modes. In the stabilization

mode, sensor nodes manage the structure of the clusters, and respond to periodic queries from

other clusters to ensure that the routing tables are up-to-date, and to verify that sensor nodes

have not failed or left the system. In the user mode, nodes respond to application requests. Fur-

ther details of the operations of the two components as well as their evaluations can be found

with subsequent chapters.

3.7 Summary

This chapter presented a programming system, that enables sensor-driven applications at two

levels. First, it provides programming abstractions for integrating sensor systems with com-

putational models for scientific processes (e.g. biophysical, geophysical processes) and with

other application components in an end-to-end experiment. Second, it provides programming

abstractions and system software support for developing in-network data processing mecha-

nisms. The overall architecture of the programming system and the design of its key com-

ponents, as well as its prototype implementation were also described. In the next chapter, we

investigate in-network data processing mechanisms with dynamic data requirements in resource

constrained heterogeneous sensor networks.

28

Chapter 4

In-network Data Estimation for Sensor-driven Scientific
Applications

Sensor networks employed by scientific applications often need to support localized collabo-

ration of sensor nodes to perform in-network data processing. This includes new quantitative

synthesis and hypothesis testing in near real time, as data streaming from distributed instru-

ments, to transform raw data into high level domain-dependent information. This chapter in-

vestigates in-network data processing mechanisms with dynamic data requirements in resource

constrained heterogeneous sensor networks. Particularly, we explore how the temporal and

spatial correlation of sensor measurements can be used to trade off between the complexity

of coordination among sensor clusters and the savings that result from having fewer sensors

involved in in-network processing, while maintaining an acceptable error threshold. Experi-

mental results show that the proposed in-network mechanisms can facilitate the efficient usage

of resources and satisfy data requirement in the presence of dynamics and uncertainty.

4.1 Introduction

The sensing technologies are rapidly leading to a revolution in the type and level of instrumenta-

tion of natural and engineered systems, and is resulting in pervasive computational ecosystems

that integrate computational systems with these physical systems through sensors and actuators.

This instrumentation can also potentially support new paradigms for scientific investigations by

enabling new levels of monitoring, understanding and near real-time control of these systems.

However, enabling sensor-based dynamic data-driven applications presents several challenges,

primarily due to the data volume and rates, the uncertainty in this data, and the need to charac-

terize and manage this uncertainty. Furthermore, the required data needs to be assimilated and

transported (often from remote sites over low bandwidth wide area networks) in near real-time

29

so that it can be effectively integrated with computational models and analysis systems. As a

result, data in most existing instrumented systems is used in a post-processing manner, where

data acquisition is a separate offline process.

In this chapter, we develop sensor system middleware and programming support that will

enable distributed networks of sensors to function, not only as passive measurement devices,

but as intelligent data processing instruments, capable of data quality assurance, statistical syn-

thesis and hypotheses testing, as they stream data from the physical environment to the com-

putational world [52]. This chapter specifically investigates abstractions and mechanisms for

in-network data processing that can effectively satisfy dynamic data requirements and quality

of data and service constraints, as well as investigate tradeoffs between data quality, resource

consumptions and performance. We first present the iZone programming abstractions for im-

plementing in-network data estimation mechanisms. We then explore optimizations that can

use the spatial and temporal correlation in sensor measurements to reduce estimation costs and

handle sensor dynamics, while bounding estimation errors. For example, an appropriate subset

of sensors might be sufficient to satisfy the desired error bounds, while reducing the energy

consumed. The optimized in-network data estimation mechanisms are evaluated using a sim-

ulator. The evaluations show that these mechanisms can enable more efficient usage of the

constrained sensor resources while satisfying the applications requirements for data quality, in

spite of sensor dynamics.

The rest of this chapter is organized as follows. Section 4.2 describes the iZone program-

ming abstraction and in-network data estimation mechanisms. Section 4.3 presents space, time

and resource aware optimizations for in-network interpolation. Section 4.4 presents an experi-

mental evaluation. Finally, Section 4.5 summarizes this chapter.

4.2 In-network Data Estimation

Scientific applications often require data measurements at pre-defined grid points, which are

often different from the locations of the raw data provided directly by the sensor network. As

a result, a sensor-driven scientific/engineering application requires a virtual layer, where the

30

logical representation of the state of the environment provided to the applications may be dif-

ferent from the raw measurements obtained from the sensor network. The iZone abstractions

described in this section enables applications to specify such a virtual layer as well as imple-

ment the models (e.g., regression models, interpolation functions, etc.) that should be used to

estimate data on the virtual layer from sensor readings.

4.2.1 The iZone Abstraction

As mentioned above, there is often a mismatch between the discretization of the physical do-

main used by the application and the physical data measured by the sensor network and as a

result, data from the sensors has to be processed before it can be coupled with simulations. The

goal of the iZone abstraction is to support such an integration. It essentially abstracts away the

details of the underlying measurement infrastructure and hides the irregularities in the sensor

data by virtualizing the sensor field. The result is a consistent representation over time and

space to match what is used by the simulations.

The iZone itself is thus a representation of the neighborhood that is used to compute a grid

point of the virtual layer, and can be specified using a range of coordinates, functions, etc. The

iZone abstraction enables the implementation of the estimation mechanisms within the sensor

network. For example, interpolation algorithms, such as regressions, inverse distance weighing

(IDW), and kriging, require the definition of an interpolation zone, an iZone, which defines the

neighborhood around the grid point to be estimated, and such neighborhood is then used to

compute that interpolation point. Note that for several interpolation algorithms, this zone may

change on the fly based on the constraints provided by the application. The iZone abstraction

provides operators for obtaining sensor measurements corresponding to the region of interest,

as well as for defining in-network processing operators to compute a desired grid point from

sensor values of this region. The semantics of operators of discover, expand, shrink, get, put

and aggregate are discussed in detail with Chapter 3.

Once an iZone is defined, computing the data value at a grid point consists of (1) identifying

a master node that coordinates the estimation process, which could be the sensor node that is

closest to the grid point and has the required capabilities and resources, (2) discovering the

sensors in the iZone that will be used in the estimation, (3) planning the in-network estimation

31

strategy based on desired cost/accuracy/energy tradeoffs, and (4) performing the estimation and

returning the computed data value at the desired grid point.

4.3 STaR: SPace, Time and Resource Aware Optimization

This section explores temporal and spatial correlations in the sensor measurements to reduce

costs and handle sensor dynamics, while bounding estimation errors for a given iZone. For

example, a subset of the sensors in an iZone may be sufficient to satisfy the desired error

bounds while reducing the energy consumed. Further, temporal regression models can be used

to handle transient data unavailability, which may otherwise lead to a significant increase in

costs and energy consumption [52].

4.3.1 Saving Energy Using iSets

Typically, for a densely deployed sensor network, a subset of sensors across an iZone may be

sufficient to meet the quality requirements for in-network data estimation. In this case, sensors

in the iZone are divided into multiple interpolation sets, iSets, each of which can be used to

estimate the data points while still satisfying the error bounds, and reducing costs and energy

consumed. The iSets are generated and maintained at runtime to balance cost and energy as

well as to tolerate failures.

The problem of generating the iSets can be formalized as follows: assume that an iZone Z is

divided into m exclusive subsets {S1, S2, ..., Sm} (such that Si∩Sj = ∅ and S1∪S2, ...,∪Sm =

Z), and each subset k (k = 1, 2, ...m) contains Nak
number of sensors. The objective is to find

“best” collection of iSets that satisfies data quality requirements.

The iSets should satisfy three requirements: (1) the interpolation error for each iSet should

be less than the specified error tolerance; (2) the average number of sensor measurements for

each iSet should be minimized in order to reduce the energy consumed; (3) the average ag-

gregated error (i.e., 1/m
∑

k err(Sk)) should be minimized in order to achieve data quality

whenever possible. In addition to these basic requirements, further constraints may be added to

satisfy additional resource consumption and scheduling requirements. For example, the sizes

32

of the iSets should be similar to make resource consumption more balanced and the schedul-

ing easier. Similarly, the variance of interpolation errors across the iSets should be as small as

possible.

The iZone is thus divided into m iSets, only one iSet of which needs to be active at a time.

These iSets can now be scheduled in a round-robin fashion. Note that, as the number of iSets

increases (i.e., the average size of iSets decreases), the efficiency of the approach increases

as well. The generation and maintenance of iSets is illustrated in Figure 4.1 and is described

below.

Determine

Sizes of
iSets

Select

members of
 iSets

Generate
iSets

Maintain
iSets

Detect

interpolation errors

Update

members of
 iSet

E.g. greedy algorithm
--

Remove one at a time
Selection algorithms:

Random selection or

Semi
-
random or

Greedy algorithms

Yes

>
Qth
?

Criteria:

1.
 err(
iSet
k
)<
Qth

2.
 Min
1/m
sum(
N
ak
)

3.
 Min
1/m
sum(err(
iSet
k
))

4.
 ……

Generated

iSets

If still exceeding error threshold, regenerate
 iSets

Qth
: error threshold

Determine

Sizes of
iSets

Select

members of
 iSets

Generate
iSets

Maintain
iSets

Detect

interpolation errors

Update

members of
 iSet

E.g. greedy algorithm
--

Remove one at a time
Selection algorithms:

Random selection or

Semi
-
random or

Greedy algorithms

Yes

>
Qth
?

Criteria:

1.
 err(
iSet
k
)<
Qth

2.
 Min
1/m
sum(
N
ak
)

3.
 Min
1/m
sum(err(
iSet
k
))

4.
 ……

Generated

iSets

If still exceeding error threshold, regenerate
 iSets

Qth
: error threshold

Figure 4.1: An overview of generating and maintaining iSets.

4.3.2 Generating iSets

Determining the Sizes of iSets

The appropriate size of the iSets used for interpolation is determined based on the specifications

provided by the application, and computed (offline or online) using a stochastic approach as fol-

lows. The size of an iSet is first initialized to 3 (i.e., k = 3). The sensors used for interpolation

tests are randomly selected, and the number of tests is set to some reasonable number (i.e.,

Ntr = 50). If the interpolation error is within the error tolerance threshold Qth, the successful

interpolation counter succ is incremented. If the success rate (i.e., succ/Ntr) is greater than a

specified percentage θ, the algorithm terminates and the current size of the iSet is returned as

the desired iSet size. If the success rate is less than θ after all the tests are completed, the size

of iSet is incremented and the procedure is repeated until the size equals the size of the iZone.

Note that this is only done once.

33

Selecting Members of the iSets

Once the size of an iSet is determined, the members of each iSet are selected so as to satisfy the

criteria discussed earlier. A straightforward approach is to use an exhaustive search to find the

optimal collection of iSets. This approach is obviously expensive for reasonably sized iZones,

and as a result, we propose approximate algorithms, i.e., the random, semi-random and greedy

algorithms, for finding near optimal iSets, as described below.

Random algorithm Given N sensors in an iZone, this algorithm randomly generates m

mutually exclusive iSets, each approximately of size k (i.e., Nak
≈ k), and

∑m
k=1 Nak

= N .

The interpolation error of each iSet is then evaluated. If the error for every iSet is below the error

threshold, Qth, the aggregated error across all the iSets is computed and saved. This process

is repeated several times. The collection of iSets that leads to the smallest aggregated error is

finally selected as the initial collection of iSets. The number of trials Ntr may be explicitly

specified or computed based on observed (or historical) data. The actual value depends on the

characteristics of sensor data. For example, for the dataset used in the experiments in the paper

(see Section 4.4), a suitable value is between 50 and 100.

Semi-random algorithm This algorithm is based on the heuristic that if the sensors in an

iSet is more uniformly distributed across the iZone, the estimation has higher chance to be

more accurate. This algorithm attempts to assign neighboring nodes to different iSets. This is

done using locality preserved space filling curves [99] as the indexing mechanism. First, each

sensor is indexed using the Hilbert space filling curve (SFC) based on their locations. Within

a given iZone, sensors with neighboring identifiers are then virtually grouped based on their

SFC indices, so that the size of each virtual group is equal to the number of iSets required.

For example, if m iSets are needed, each group would have m members. The iSets are now

constructed by selecting one sensor from each of the virtual groups. Note that the selection of

sensors from each of the virtual groups is random.

Greedy algorithms Three of greedy algorithms are also devised to select appropriate sensors

for the iSets. These algorithms are described below.

Greedy Algorithm 1 – “Remove one node at a time”: In this algorithm, we start with one

iSet containing all sensors in the iZone. Sensors are then removed one at a time. The removed

34

sensor is the one that leads to minimal interpolation error at each step, until desired iSet size is

achieved. That is, given the iSet k, sensor node j such that

j = arg min
i∈Sk

err(Sk − i)

is removed from the iSet. We then use a random algorithm to select the appropriate members of

the last two iSets. This is because, if all iSets were generated using “remove one at a time”, the

last iSet would come up together with the (m− 1)th one without any chance to make any local

optimal selection to minimize estimation errors as other iSets, and thus usually cannot meet

quality requirements. As a result, the last two iSets are chosen with another methods, such as

random algorithm or the second greedy algorithm.

Greedy Algorithm 2 – “Add one node at a time”: The second algorithm starts with a single

sensor node in the initial iSet, and adds one node at a time while maintaining the interpola-

tion error constraints. That is, given the iSet k, node j is added to the iSet to minimize the

interpolation error, such that

j = arg min
i∈Z\Sk

err(Sk ∪ i).

This process is repeated until all nodes are assigned to iSets.

Greedy Algorithm 3: This algorithm uses the heuristic that nodes which are far from each

other are less correlated and as a result are good candidates to add into the existing iSets. The

idea is to select sensors that far from the last selected sensor. To implement this algorithm, we

used the SFC-based indexing method described as part of the semi-random algorithm. Sensor

nodes are first indexed using the Hilbert SFC. Virtual groups with sizes equal to number of

iSets are then formed base on their SFC indices.

The algorithm is initialized by assigning sensors of one virtual group to each iSet. Next,

sensors are permutated from one of remaining virtual groups, and are mapped to each of m

iSets. The permutation leading to the least aggregated interpolation error is added to each of

them respectively at a time. This step is repeated until all the sensors are assigned to the iSets.

As stated with the heuristic, the sequence of which virtual group to be added to the iSets has

the impact on the accuracy of estimations using the iSets. As a result, a pre-processing step is

used to find such good sequence(s) either online or using historical data. Note that this only

needs to be done once.

35

Once sensors are assigned to iSets, interpolation are performed. Next, we describe how to

maintain iSets when the underlying system changes at runtime.

4.3.3 Maintaining iSets at Runtime

Due to the dynamics of underlying physical environment and the sensor system, currently valid

iSets may not satisfy data quality requirements in the future. As a result, mechanisms are

needed to maintain iSets to ensure that they continue to meet data quality requirements. In

this section, we describe how to maintain iSets. We also assume that the sensor network is

clustered to construct a two level self-organizing overlay of sensors, in which cluster heads

perform coordination of the iZone.

Our approach is as follows. First, interpolation errors are tracked by using localized error

models at each individual cluster. The error models are localized so that a violation of error

thresholds can be detected locally without communicating with other clusters. When a thresh-

old violation is detected, a greedy algorithm is used to update the involved iSet to improve

estimation quality whenever possible.

Generating models for interpolation errors: It is noted that interpolation errors are often

correlated with relevant sensor measurements. As a result, regression models can be used to

describe the relationship e(t) = f(vk(t)) between interpolation errors e(t) and the current

measurement vk(t) of sensor k. A combination of offline and online estimation methods can

be used to learn such a relationship, in which the coarse trends of error models are learned

using offline methods using historical data, while specific local parameters can be learned at

runtime. For example, an offline study may suggest that a regression model with degree one,

i.e., a1vk + b1, should be used. The model parameters a1 and b1 are estimated using previous

values of sensor k and the corresponding interpolation errors at runtime at individual cluster

heads. These models can then be used to estimate interpolation errors using measurement of

sensor k from local cluster.

Maintaining iSets using a greedy algorithm: When an iSet only temporarily exceeds

error thresholds, the greedy “remove one at a time” algorithm can be used at each cluster to

temporarily remove sensor measurements from that iSet. Each cluster makes recommendation

of which node(s) to remove, and the recommendation that provides the least interpolation error

36

is enforced. Note that if the interpolation error still exceeds error threshold, the iSets needs to

be regenerated.

Transient unavailability using temporal estimation: Since unavailability of scheduled

sensors requires re-collection of raw data and thus resulting in expensive communication and

energy consumption, temporal models are used to estimate the missing sensor measurement.

The idea is to use the fact that neighboring sensor nodes would experience similar changes. As

a result, samples from neighboring sensors can be used to facilitate the estimation of temporal

model parameters, such as degree of regression model, length of time-series. Note that these

parameters would change as the underlying physical characteristics vary. The actual coeffi-

cients of temporal model are determined based on previous values of the missing sensor data.

The evaluations of these optimized in-network mechanisms are presented next in Section 4.4.

4.4 Experimental Evaluation

In this chapter a simulator is used to evaluate the performance of in-network data estima-

tion mechanisms. The simulator implements the space, time, and resource aware optimization

mechanisms for realistic scenarios. The scenarios in the experiments are driven by a real-world

sensor dataset obtained from an instrumented oil field with 500 to 2000 sensors, and consisting

of pressure measurements sampled 96 time per day. A two-tiered overlay with about 80 clusters

is initialized. More powerful nodes are elected as cluster heads and also perform the in-network

estimations.

In each experiment, about 500 instances of in-network interpolations are performed on

pressure values obtained from simulated sensor nodes. Communication costs are evaluated

with and without optimizations. The accuracy and costs are also evaluated in the presence of

dynamics of physical environments and sensor systems. Finally, the cost of generating iSets is

examined using the random, semi-random and greedy algorithms. The primary metrics used in

the evaluation are communication cost, measured in terms of number of messages transmitted

within the network, and accuracy, measured in terms of relative or absolute interpolation errors.

37

Ratio of number of messages to centralized approach

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

60
 80
 100
 120
 140

Radius of range

p=0, distributed

p=0.005, distributed

p=0.015, distributed

p=0.005, distributed with

opt

centralized

Figure 4.2: Communication cost in the presence of sensor dynamics.

4.4.1 Communication Costs

The current iZone prototype implements a distributed in-network mechanism, in which param-

eters corresponding to the estimation model are first computed at the cluster heads. The cluster

heads coordinate the estimation process, and distribute those parameters to the selected iZone

sensors. A decentralized energy-efficient aggregation scheme is then used to estimate the data.

To simulate transient unavailability of sensors, each sensors are given the same unavailability

rates, which are the frequencies that scheduled sensors are not available at the time of interpola-

tion. The communication costs are normalized to the cost of the baseline centralized approach,

where a coordinator sensor collects raw measurement from selected iZone sensors and does the

estimation. As plotted in Figure 4.2, the distributed approach performs best when the sensor

system is static. With a small unavailability rate of 0.5%, the communication cost increases by

over 50% for an iZone radius of 60, and over 4 times for a radius of 140. The cost also increases

as the unavailability rate increases.

Effectiveness of temporal estimation: In this experiment, the performance of using tem-

poral estimation for temporarily unavailable sensor data is evaluated. Model parameters such

as the order of regression functions, and the length of historical data used for the estimation,

are chosen at runtime. The estimation parameters varies over time. For example, the length

of used historical data is changed from 8 to 6 after interpolation time 6, and the degree of

regression models is changed from 3 to 2 after interpolation time 5. The adaptive temporal es-

timation using spatial-temporal information from neighboring nodes (i.e., circles in Figure 4.3)

38

0 5 10 15
1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

time

P
re

ss
ur

e

Actual value
Adaptive temporal estimation
Single time−series estimation only

Figure 4.3: Adaptive temporal interpolation.

is much closer to the actual values (i.e., solid line) than that using only historical measurements

from sensors with temporally unavailable data (i.e., crosses in Figure 4.3). This is because

the spatial-temporal models of neighboring nodes can better catch the changes of the underly-

ing physical characteristics than that only using the model from temporally unavailable sensor.

Furthermore, as plotted in Figure 4.2, by using adaptive temporal estimations for temporarily

unavailable sensor measurements when possible, the communication cost is reduced by about

25% for a radius of 60, and about 60% for a radius of 140.

4.4.2 Effectiveness of Generating iSets

In these experiments, the effectiveness of using random, semi-random and greedy algorithms

to generate iSets for in-network interpolation tasks are investigated, and three iSets are formed

within the given iZones for this set of experiments.

Effectiveness of random-based algorithms The histograms of average interpolation errors

for each of three generated iSets are plotted in Figure 4.4 using random and semi-random

algorithms respectively. The probability of smaller average interpolation errors using the semi-

random algorithm is much higher than that using the random algorithm. For example, for an

average interpolation error less than 0.2%, the semi-random algorithms (e.g., with probability

about 32%) have higher probability to generate iSets meeting quality requirements than that

using the random algorithms (e.g., with probability about 12%).

39

In Figure 4.5, the standard deviation of interpolation errors is examined for the two algo-

rithms. The random algorithm gives much larger variation than the semi-random algorithm.

For the random-based algorithms, within the same range of interpolation error (i.e., 0.62%),

the standard deviation of random method is still much larger than that of semi-random algo-

rithm. This tells us that the semi-random algorithm is generally more effective in finding the

collections of iSets having both small interpolation errors and a small variation of such errors.

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.01

0.02

0.03

0.04

0.05

0.06

Average relative error

P
ro

ba
bi

lit
y

de
ns

ity

Random
Semi−random

Figure 4.4: Histograms of interpolation errors of generated iSets

0 1 2 3 4 5 6 7 8

x 10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Standard Deviation

P
ro

ba
bi

lit
y

de
ns

ity

Semi−random

Random

Random, avg<0.62%

Random
Semi−random
Random, avg<0.62%

Figure 4.5: Histograms of variation of interpolation errors of generated iSets

In Figure 4.6, the number of collections of iSets is counted in terms of the absolute average

40

1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

120

140

160

180

Average Iinterpolation error

N
um

be
r

of
 q

ua
lif

ie
d

iS
et

s
δ=1

δ=1.5δ=2

random, δ=1
semi−random, δ=1
random, δ=1.5
semi−random, δ=1.5
random, δ=2
semi−random, δ=2

Figure 4.6: Effectiveness of random-based algorithm

interpolation errors and deviations (i.e., δ) among iSets. More candidates meeting those re-

quirements are available using semi-random algorithm than that using random algorithm. For

example, with small variance 1 (i.e., δ = 1), the available number of collections using semi-

random algorithm is five more times than that using random algorithm, which indicates the

effectiveness using the semi-random algorithm especially with higher quality requirements.

Effectiveness of greedy algorithms First the three greedy algorithms, as well as random

and semi-random algorithms are compared in terms of interpolation errors. Three iSets are

generated in this example. As shown in Figure 4.7, the first greedy algorithm, “remove one at

a time”, behaves well for most of the generated iSets except the last one. For this algorithm,

the last iSet exhibits high error since it has no chance to exploit local optimization. The last

two iSets are thus chosen using other algorithms, such as random algorithms or “add one at a

time” greedy algorithm. The second algorithm, “add one at a time” may give relative balanced

results, however, the overall error rates could be higher than that of random and semi-random

algorithms. The third greedy algorithm gives good accuracy performance comparing to random

and semi-random algorithms. The tradeoff is that it needs pre-processing to find good sequence

of the next explored sensors. However, the pre-processing could be performed offline and its

cost is much less than that of random and semi-random algorithms.

41

10
−5

10
−4

10
−3

10
−2

R
el

at
iv

e
in

te
rp

ol
at

io
n

er
ro

r

ra
nd

om

se
m

i−r
an

gr
ee

dy
 1

gr
ee

dy
 2

gr
ee

dy
 3

iSet 1
iSet 2
iSet 3

Figure 4.7: Interpolation errors of algorithms generating iSets

4.4.3 Tradeoffs between Accuracy and Energy Consumption

In this section, the tradeoff of accuracy and energy consumption is examined. The energy con-

sumption is normalized to one when all sensors in an iZone are active at each time. As shown in

Figure 4.8, as the sizes of iSets becomes smaller, less energy is consumed and the interpolation

errors become greater. For example, when half of the nodes are active, approximately half of

the energy can be saved, and the range of interpolation errors of selected iSets are greater. In

addition, the maximum error is slightly greater than when using all nodes. When only one third

or one fourth of nodes are active, the maximum error is similar to that of using only half of all

nodes. This means that only a portion of active sensors may be able to meet accuracy require-

ments while saving additional energy. However, when only one fifth of nodes are active, the

errors (both maximum and average) become much larger and not meet application requirements

anymore.

4.4.4 Cost of Maintaining iSets

In this experiment, the communication cost of maintaining iSets at local cluster heads is exam-

ined. The cost primarily consists of exchanging information, such as calibration information,

identifiers of temporarily removed sensors between cluster heads. As shown in Figure 4.9,

the cost of maintaining iSets at cluster head introduces much less communication overhead

42

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

Normalized energy consumption

R
el

at
iv

e
in

te
rp

ol
at

io
n

er
ro

r

Figure 4.8: Tradeoff between interpolation error vs. energy consumption

0

10

20

30

40

50

60

70

maintaining iSets
 re-generating iSets

C
o

m
m

u
n

ic
at

io
n

 C
o

st

(n
u

m
b

er
 o

f
m

es
sa

g
es

)

Figure 4.9: Cost of maintaining iSets

than regenerating iSets. Furthermore, the original error before removing a sensor is .06069%

(threshold is .06%), and after removing one of them using greedy algorithm, the result becomes

.00922%, which is far lower than the threshold. This method is quite effective when the change

of physical phenomenon is just temporary. After this, the original iSet can be used again with

the error rate lowered to .04681%. As a result, this method significantly reduced the frequency

to re-generate the whole iSets in the iZone.

43

4.5 Summary

This chapter investigated abstractions and mechanisms for in-network data processing that can

effectively satisfy dynamic data requirements and quality of data and service constraints, as

well as investigate tradeoffs between data quality, resource consumptions and performance.

Specifically, the proposed mechanisms (i) allow flexibility in the specification of relevant sub-

sets of a sensor network with iZones and iSets; (ii) explore space, time and resource aware

optimizations that utilize the spatial and temporal correlation among sensor measurements to

reduce costs while bounding estimations errors; (iii) are robust with respect to network dynam-

ics; and (iv) provide a virtualization of the physical sensor grid to match the representation of

the physical domain used by the models, and can dynamically discover and access sensor data

independent of any change to the sensor network itself. Experimental results show that the

proposed in-network mechanisms can facilitate the efficient usage of constraint resources and

satisfy data requirement in the presence of dynamics and uncertainty.

44

Chapter 5

A Decentralized Content-based Aggregation Service for Pervasive
Grid Environments

This chapter presents a content-based decentralized information aggregation service for perva-

sive environments. The service provides a uniform query interface where aggregation queries

are specified using content descriptors in the form of keywords, partial keywords, wildcards and

ranges. The service guarantees that all data that matches a complex/range query will be located

and aggregated in an efficient and scalable way. The design of the aggregation service uses

a decentralized aggregation trie along with a distributed and decentralized query engine. The

deployment and experimental evaluation of the aggregation service are also presented. Eval-

uations include simulations as well as experiments using deployments on local-area network,

the wireless ORBIT testbed [2] at Rutgers and wide-area PlanetLab testbed [93]. Evaluation

results demonstrate the scalability, effectiveness and performance of this content-based aggre-

gation service to support pervasive grid applications.

5.1 Introduction

Emerging pervasive information and computational Grids are enabling a new generation of ap-

plications that are based on seamless “anytime-anywhere” access to and aggregation of perva-

sive information, and the interactions between the information sources and distributed services

and resources. These applications are context-aware, and use pervasive information about the

environment and user’s preferences and actions to tailor services and applications to the user’s

needs, and to automate tasks in a transparent manner. Applications range from everyday ac-

tivities (applications that use sensors to monitor and manage an office building or a home) to

emergencies and crisis management (response to an accident or fighting a fire).

45

Illustrative scenarios that leverage pervasive environments integrating sensor/actuator de-

vices with distributed services and resources include scientific/engineering applications that

symbiotically and opportunistically combine computations, experiments, observations, and

real-time data to manage and optimize its objectives (e.g. oil production, weather prediction),

pervasive applications that leverage the pervasive/ubiquitous information Grid to continuously

manage, adapt, and optimize our living context (e.g. your clock estimates drive time to your

next appointment based on current traffic/weather and warns you appropriately), crisis man-

agement applications that use pervasive conventional and unconventional information for crisis

prevention and response, medical applications that use in-vivo and in-vitro sensors and actu-

ators for patient management, ad hoc distributed control systems for automated highway sys-

tems, manufacturing systems or unmanned airborne vehicles, and business applications that use

pervasive information access to optimize profits.

A key application driving this research is the sensor-driven management of subsurface

geosystems and specifically the dynamic data-driven management and optimization of oil reser-

voirs [61,82]. In this application sensor data is used dynamically and opportunistically to detect

suboptimal or anomalous behavior, by optimization-based strategies for parameter estimation,

and to provide initial conditions to dynamically adaptive forward simulation models.

Another potential class of application is crisis management. For example, one can conceive

of a fire management application where computational models use streaming information from

sensors embedded in the building along with real time and predicted weather information (tem-

perature, wind speed and direction, humidity) and archived history data to predict the spread

of the fire and to guide firefighters, warning of potential threats (blowback if a door is opened)

and indicating most effective options. This information can also be used to control actuators in

the building to manage the fire and reduce damage.

While recent technical advances and cost dynamics in computing and communication tech-

nologies are rapidly enabling the realization of the pervasive grid computing vision, these en-

vironments and applications continue to present several significant challenges. In addition to

the challenges of distribution, large scale and system heterogeneity, pervasive computing envi-

ronments are inherently dynamic. For example, sensors are often resource/energy limited and

mobile, and may dynamically join, leave, or fail. As a result pervasive applications must adapt

46

to the unreliability and uncertainty of information and services. Further, interactions between

devices, services and resources in a pervasive application are also dynamic and typically ad-

hoc and opportunistic. Similarly, due to the heterogeneity and complexity of phenomena being

monitored and modeled, applications may require different aggregations in different regions of

the domain.

Addressing the issues outlined above requires a middleware infrastructure that can effec-

tively extract and abstract desired information from the huge amounts of data present in sensor-

based systems, despite their scale, heterogeneity and dynamism. Further, it should automate

some of the decision processes associated with the computation in the network. This chapter

presents a decentralized content-based aggregation service to support applications with het-

erogeneous in-network aggregation requirements in dynamic and widely distributed pervasive

environments. Key characteristics of the aggregation service are as follows. (1) It seamlessly in-

tegrates pervasive information sources (e.g., sensor devices) with networked services, resources

and applications; (2) A uniform query interface where aggregation queries are specified using

content descriptors and an action descriptor. The content descriptors may be keywords, partial

keywords, wildcards and ranges derived from a semantic space, and the action descriptor de-

fine aggregation operations; (3) The service guarantees that all data matching a complex/range

query will be located and efficiently and scalably aggregated.

The aggregation service builds on the Meteor content-based middleware infrastructure and

extends the Associative Rendezvous (AR) model for content-based information discovery and

decoupled interactions. Specifically, it extends the AR abstractions to enable content-based

aggregation queries to be flexibly specified using keywords, partial keywords and ranges. This

also includes specification of recurrent and spatially constrained queries. Further, it builds on a

self-organizing overlay network and the Squid content-based routing infrastructure to construct

aggregation tries so that query propagation routes can be used for back-propagating and aggre-

gating matching data elements. The design, implementation and evaluation of the aggregation

services are presented. Evaluations include experiments using deployments on a local area net-

work, a wireless network testbed ORBIT [2], the wide-area PlanetLab testbed [93], as well as

simulations of systems with thousands of nodes.

47

The rest of the chapter is structured as follows. Section 5.2 reviews the associative ren-

dezvous (AR) model and describes the abstractions and semantics of the content-based aggre-

gation service using the AR model. Section 5.3 introduces the Meteor middleware infrastruc-

ture and presents the design of the aggregation service. Section 5.4 presents the experimental

evaluation. Section 5.5 concludes the chapter.

5.2 The Content-based Aggregation Service

The content-based aggregation service provides a uniform query interface where aggregation

queries are specified using content descriptors from a semantic space in the form of keywords,

partial keywords, wildcards and ranges, and the type of aggregation desired. Spatial attributes

of a data item, e.g., the location of the sensor producing the data can be specified along with

the other attributes in a query. The service extends the Associative Rendezvous (AR) [55]

abstraction for content-based information discovery and decoupled interactions. In this section,

we first introduce the associative rendezvous model and then describe the semantics of the

aggregation service.

5.2.1 Associative Rendezvous Messaging

The AR interaction model [55,56] consists of three elements: Messages, Associative Selection,

and Reactive Behaviors, which are described below.

AR Messages: An AR message is defined as the triplet: (header, action, data). The data

field may be empty or may contain the message payload. The header includes a semantic profile

in addition to the credentials of the sender, a message context and the TTL (time-to-live) of the

message. The profile is a set of attributes and/or attribute-value pairs, and defines the recipients

of the message. The attribute field must be a keyword from a defined information space while

the value field may be a keyword, partial keyword, wildcard, or range from the same space.

At the Rendezvous Point (RP), a profile is classified as a data profile or an interest profile

depending on the action field of the message. The action field of the AR message defines the

reactive behavior at the RP as described below.

Associative Selection: Profiles in AR are represented using a hierarchical schema that can

48

(location = [120, 23])

(temperature = 110)

(unit = Fahrenheit)

(error <= 0.01)

(alarm)

(location [100-130, 20-50])

(temperature > 80)

(unit = Fa*)

(error <= 0.1)

(alarm)

(a)
 (b)

Figure 5.1: Sample message profiles: (a) a data profile for a temperature sensor; (b) an interest
profile for a client.

Actions Semantics
store Store data profile and data in the system at the RPs.

Match the data profile with existing interest profiles with “notify data” action.
Execute action associated with a matched profile.

retrieve Match interest profile with existing data profiles;
Send data associated with the matched profiles to the requester.

notify data Store the interest profile and the action in the system at the RPs.
Match the interest profile with:
1) existing data profiles, and send back a notification if a match occurs. and
2) existing interest profiles with “notify interest” action,
Send a notification to the data producer if a match occurs.

notify interest Store the interest profile and the action in the system at the RP.
Match the interest profile with existing interest profiles with “notify data”
action.
Send a notification to the data producer if a match occurs.

delete data Match the profile with existing data profiles.
Delete all matching data profiles with appropriate credentials,
and the data associated with them.

delete interest Match the interest profile with existing interest profiles.
Delete all matching interest profiles with appropriate credentials.

Table 5.1: Basic reactive behaviors.

be efficiently stored and evaluated by the selection engine at runtime. For example, the profile

in Figure 5.1 (a) is associatively selected by the profile in Figure 5.1 (b), since (1) the location

[120, 23] of the data is within the region of interest defined by the ranges [100-130, 20-50], (2)

the attribute temperature matches and its value 100 > 80, which satisfies the binary relation, (3)

the attribute unit matches, and its value Fahrenheit matches wildcard Fa∗, (4) error < 0.01

satisfies the request error¡0.1, and (5) the attribute alarm matches. A key characteristic of

the selection process is that it does not differentiate between interest and data profiles. This

allows all messages to be symmetric where data profiles can trigger the reactive behaviors

of interest messages and vice versa. The matching system combines selective information

dissemination with reactive behaviors. Further, both data and interest message are persistent,

with their persistence defined by the TTL field.

49

Data

producer

Data

consumer

notify_interest

store

delete_date

delete_interest

notify_data

retrieve

delete_interest

notify(interest)
 notify(data)
data

Figure 5.2: Basic reactive behaviors: (a) for message issued by data producers; (b) for messages
issued by data consumers.

Reactive Behaviors: The action field of the message defines the reactive behavior at the

rendezvous point. Basic reactive behaviors currently defined include store, retrieve, notify, and

delete as listed in Table 5.1. These reactive behaviors are used by data producers and consumers

to store/retrieve data as illustrated in Figure 5.2. Note that a client in the system can be a data

producer, a data consumer, or both.

The notify and delete actions are explicitly invoked on a data or an interest profile. The

store action stores the data and data profile at the rendezvous point. It also causes the message

profile to be matched against existing interest profiles with notify data action, and the data to

be sent to the data consumers that requested it in case of a positive match.

The retrieve action retrieves data corresponding to each matching data profile. The notify

action matches the message profile against existing interest/data profile, and notifies the sender

if there is at least one positive match. The notify action comes in two flavors: notify data

and notify interest. Notify data is used by data consumers, who want to be notified when data

matching their interest profile is stored in the system. Notify interest can be used by data

producers, who want to be notified when there is interest in the data they produce, so they can

start sending data into the system.

Finally, the delete action deletes all matching interest/data profiles. Note that the actions

will only be executed if the message header contains an appropriate credential. Also note that

each message is stored at the rendezvous for a period corresponding to the lifetime defined in

its header. In case of multiple matches, the profiles matching are processed in random order.

5.2.2 Opportunistic Application Flows in Pervasive Environments

In this section, we describe the Cascading Local Behavior (CLB) programming model, in which

the behaviors of individual application elements (i.e., sensors, actuators, services) are locally

50

defined in terms of local state, and context and content events, and result in data and inter-

est messages being produced. Interactions, compositions and application flows emerge as a

consequence of the cascading effect of such local behaviors, without having to be explicitly

programmed.

A(t
i
)

B(t
i
)
 B(t
i+1
)

Context

parameters

(e.g. message

(Interest/Data))

Interface (I)

Action (A)

Message (M)

Internal state

Content

Method

Opportunistic Element

Figure 5.3: Defining local behaviors.

Cascading Local Behaviors (CLB) is a model for realizing opportunistic applications flows

in pervasive sensor/actuator-based environments. It builds on a common semantic basis (i.e.,

ontology and taxonomy) for describing content and context. In the CLB model only the local

behaviors for each element (i.e., sensor, actuator, resources, services) are programmed. These

behaviors can be viewed as a state machine where the local state is defined in terms of a local

actions (A), active interfaces (I) and active data and/or interest messages (M), as illustrated

in Figure 5.3. Local state transitions are triggered by context and/or content events and may

results in local actions (e.g., update database or turn on an indicator) and the generation of

data/interest messages. Note that the definition of the local behavior are independent of the

rest of the pervasive system. Now, messages generated during local state transitions may trig-

ger transitions in other element, which in turn may generate further messages. The resulting

cascading local transitions cause applications flows to opportunistically emerge.

For example, consider very simple smart home scenario with device sensors and actua-

tors shown in Figure 5.4. The local behaviors of these sensors/acutators are illustrated as

if-then rules in the figure. The temperature sensor monitors local temperature and gen-

erates a post(temp = 91, store) data message when the temperature rises above some threshold.

This causes AR to generate a notification to the thermostat actuator which then turns the air

conditioning on and generates a temp-control message. Now other sensors/actutors that are

subscribed will be notified and can react, for example, a window could shut itself or a fan could

51

turn itself off. The devices need not know other each other as long as they use a common

semantic basis for describing content and context.

M
et

eo
r

/ A
R

M
et

eo
r

/ A
R

Temperature sensor
 Thermostat
 Window Actuator

T
im

e

T
 Th
 W

T

Th

W

post(temp = 91, store)

notify(thermostat)

post(temp_control, store)

retrieve(temp_control)

If temp_control==on

then close windows

Turn temp_control on

If temp > 85

then temp_control=on;

 publish temp_control

Close window

post (temp > 85, notify_data)

Th

post(<temp*>, retrieve_data)

W

Th

Figure 5.4: Cascading local behaviors - an illustrative example.

Note that CLB differs from traditional composition-based programming approaches, where

the desired end-to-end behavior is known a priori and is used to define the local behaviors of

the elements as well as their interactions. In CLB, the behaviors of elements can be indepen-

dently defined without knowledge of the functionality or existence of other elements. Further,

elements in the system can spatially and temporally decoupled, i.e., an element entering the

system at a later time (for example, the window actuator in Figure 5.4) can still be part of an

emerging flow. A key requirement for CLB is a communication/interaction infrastructure that:

(a) is scalable and self-managing, (b) is based on content rather than names and/or addresses,

(c) supports asynchronous and decoupled interactions rather than forcing synchronization, and

(d) provides some interaction guarantees. Such an abstraction is provided by AR.

5.2.3 Information Aggregation using Associative Rendezvous

The aggregation service extends the retrieve reactive behavior to specify aggregation opera-

tors, i.e., the AR message for an interest profile includes the aggregation operation as follows:

(< {attr} >, retrieve(A)), where attr is the set of content attributes of the interest profile

within the AR message header, and retrieve(A) specifies aggregation using the aggregation

52

operator A. Note that aggregations can be constrained to data-elements within a specific spa-

tial region. The location attributes of a data element for an aggregation query are specified as

part of the semantic profile of the message header, similar to other content attributes, i.e., loca-

tion descriptors form (typically leading) dimensions of the semantic information space, based

on which data and interest profiles are defined. The data profile becomes (< L, {attr} >

, store, data) and the corresponding interest profile becomes (< L, {attr} >, retrieve(A)),

where L specifies the location of the data producer in the data profile and the region of interest

in the interest profile. L may use latitude/longitude or any other specification of location. For

example, in Figure 5.1, the data profile includes the location of the sensors, while the interest

profile includes ranges specifying the region of interest. Aggregation queries may also be re-

current in time. In such a query, an additional parameter is required to specify the frequency of

evaluation of the persistent query; (< L, {attr}, TTL >, retrieve(A, Ta)), where Ta is the

time interval between repeated aggregates.

Semantics of Aggregation: The semantics of the aggregation query are as follows. When

an aggregation query is posted, the query is routed to all rendezvous peers with data profiles

that match the query’s interest profile. All data items at all peers that match the interest profile

specification are aggregated according to the specified aggregation operator and are returned.

In case of recurrent aggregation queries, the interest profile is registered at each rendezvous

peer for the duration of its TTL, and is repeatedly evaluated at the specified frequency. The

aggregation operation is repeated each time the query is evaluated and the aggregate is returned.

Note that each aggregation operation is independent.

An Illustrative Example: To illustrate the operation of the aggregation service, consider

a traffic monitoring system with deployed vehicle speed sensors. An example of an aggregate

query for such a system is find the average speed in the stretch of road specified by region L ev-

ery 5 minutes for the next 1 hour. An aggregation query would be realized using the aggregation

service described above as follows: the client connects to any rendezvous peer in the system

and posts an aggregate query with profile < L, p1 >, and retrieves information using the ag-

gregator AVG defined over region L, with an aggregation frequency of 5 minutes and a TTL of 1

hour. Such an aggregate query can be written as post(< L, p1, 3600 >, retrieve(AV G, 300)),

where the time is measured in seconds. This query is routed to, and registered at every peer

53

that stores data elements matching this query. In response, every matching data-elements in the

system are aggregated and returned to the client.

Associative Rendezvous Messaging

Content-based Routing

Self-organizing Overlay

Wireless/Wired substrate

Pervasive Applications

e.g. sensors, wireless network, internet, etc.

M
et

eo
r

S
ta

ck

A
g

g
re

g
at

io
n

Figure 5.5: Meteor stack - schematic overview.

5.3 Decentralize In-network Aggregation

Meteor is a middleware infrastructure for content-based decoupled interactions in pervasive

environments. It is essentially a peer-to-peer network of Rendezvous Points (RP), where each

RP is a peer and may be a broadband access point, a forwarding node in a sensor network or a

server node in a wired network. To use Meteor, applications must connect to a RP. A schematic

overview of the Meteor stack is presented in Figure 3.2. It consists of 3 key components: (1)

a self-organizing overlay, (2) a content-based routing infrastructure (Squid), and (3) the As-

sociative Rendezvous Messaging Substrate (ARMS). The aggregation service [57] specifically

builds on the Squid CBR infrastructure to construct aggregation trie structures on top of the

routes used by the queries, and use them to back-propagate matching data while performing

aggregations at intermediate nodes in the trie. Further, it extends the ARMS layer to provide

a unified content-based abstraction to specify aggregation operations as reactive behaviors of

content-based queries.

5.3.1 The Overlay Network Layer

The Meteor overlay network is a one-dimensional self-organizing structured overlay composed

of RP nodes. Peers in the overlay can join or leave the network at any time. While the design

of Meteor is not tied to any specific overlay topology, the current Meteor prototype builds

54

Finger
= the successor of (this

node id + 2
i
-
1
) mod 2
m
, 0 <= i <= m

5 + 1
8

5 + 2
8

5 + 4
10

5 + 8 0

5 + 1
8

5 + 2
8

5 + 4
10

5 + 8 0

5 + 1
8

5 + 2
8

5 + 4
10

5 + 8 0

0
 5

8

10

11

lookup

identifier

Figure 5.6: The Meteor overlay network layer.

on Chord [108]. Advantages of Chord include its guaranteed performance, logarithmic in the

number of messages (e.g. data lookup requires O(log N) messages, where N is the number of

RP nodes in the system). However, this overlay could be replaced by other structured overlays.

Peer nodes in the Chord overlay form a ring topology. Every node in the Chord overlay

is assigned a unique identifier ranging from 0 to 2m − 1. Each data item stored in the system

is associated with a key and mapped to an identifier from the same interval. The identifiers

are arranged as a circle modulo 2m. Each node stores the keys that map to the segment of the

curve between itself and its predecessor node. Figure 5.6 shows an example of a Chord overlay

network with five nodes and an identifier space from 0 to 64.

The overlay network layer provides a simple abstraction to the layers above, consisting of

a single operation: lookup(identifier). Given a numerical identifier, the node responsible for it

will be located in O(log N) hops, where N is the number of nodes in the system.

5.3.2 Content-based Routing Layer

Squid builds on top of the Chord overlay to enable flexible content-based routing. As mentioned

above, the lookup operator provided by the Chord overlay requires an exact identifier. Squid

effectively maps complex message profiles, consisting of keyword tuples made up of complete

keywords, partial keywords, wildcards, and ranges, onto clusters of identifiers. It guarantees

that all peers responsible for identifiers in these clusters will be found with bounded costs in

terms of the number of messages and the number of intermediate RP nodes involved.

Tuples of d keywords, wildcards, and/or ranges represent points or regions in a d-dimensional

information space. A point corresponds to a keyword tuple that contains only complete key-

words, and is called simple, as shown in Figure 5.7 (a). If a tuple contains partial keywords,

wildcards and/or ranges it is called complex and defines a region in the information space, as

55

shown in Figure 5.8 (a).

Squid uses the Hilbert Space Filling Curve (SFC) [99] to map the multidimensional infor-

mation space to the 1-dimensional identifier space of the peer overlay. Figure 5.7 (b) shows

an example of Hilbert SFC for a 2-dimensional space. The Hilbert SFC is a locality preserv-

ing continuous and recursive mapping from a k-dimensional space to a 1-dimensional space.

It is locality preserving in that points close on the curve are mapped from close points in the

k-dimensional space. The Hilbert curve readily extends to any number of dimensions, though

for practical purposes its locality preserving property can best be exploited with under 6 dimen-

sions. Further, its locality preserving and recursive nature enables the index space to maintain

content locality and efficiently resolve content-based lookups [101].

Content-based routing in Squid is achieved as follows: SFCs are used to generate the 1-

dimensional index space from the multi-dimensional keyword space. Applying the Hilbert

mapping to this multi-dimensional space, each profile consisting of a simple keyword tuple

can be mapped to a point on the SFC. Further, any complex keyword tuple can be mapped

to regions in the keyword space and the corresponding clusters (segments of the curve) in the

SFC (see Figure 5.8 (a) and (b)). The 1-dimensional index space generated corresponds to the

1-dimensional identifier space used by the Chord overlay. Thus, using this mapping, RP nodes

corresponding to any simple or complex keyword tuple can be located. The Squid layer of the

Meteor stack provides a simple abstraction to the layer above consisting of a single operation:

deliver(keyword tuple, data), where data is the message payload provided by the messaging

layer above. The routing process is described below.

Routing using Simple Keyword Tuples

The routing process for a simple keyword tuple is illustrated in Figure 5.7. It consists of two

steps: first, the SFC-mapping is used to construct the index of the destination peer node from

the simple keyword tuple, and then, the overlay network lookup mechanism is used to route to

the appropriate peer node in the overlay.

56

H
u

m
id

it
y

Temperature
(a)

0

13

32

40

51

(c)

H
u

m
id

it
y

(b)
Temperature2

1

Simple query

7
0 63

7

Figure 5.7: Routing using a simple query (a) query (2, 1) is a point in a 2D space; (b) the query
is mapped to SFC index 7; (c) the data is routed to peer 13 (in an overlay with 5 peer nodes and
an identifier space from 0 to 26-1), the successor of the index 7.

Routing using Complex Keyword Tuples

The complex keyword tuple identifies a region in the keyword space, which in turn corresponds

to clusters of points in the index space. For example, in Figure 5.8 (a), the complex keyword

tuple (2-3, 1-5) representing data read by a sensor (temperature between 2 and 3 units and

humidity between 1 and 5 units) identifies 2 clusters with 6 and 4 points respectively.

Complex

query

0

13

32

40

51

H
u

m
id

it
y

Temperature2 3

1

5
Destination

nodes

(a) (b)

6

11

28

31

Figure 5.8: Routing using complex query (2-3, 1-5): (a) the query defines a rectangular region
in the 2D space, and 2 clusters on the SFC curve; (b) the clusters (the solid part of the circle)
are stored at peers 13 and 32.

Thus a complex keyword tuple is mapped by the Hilbert SFC to clusters of SFC indices

and correspondingly, multiple destination identifiers. Once the clusters associated with the

complex keyword tuple are identified, a straightforward approach consists of using the overlay

lookup mechanism to route individually to each RP node. Figure 5.8 (b) illustrates this process.

However, as the originating RP node cannot know how the clusters are distributed in the overlay

network, the above approach can lead to inefficiencies and redundant messages, especially

when there are a large number of clusters. The routing process can be optimized by using the

recursive nature of the SFC to distribute the list of clusters to be routed. This optimization is

presented in detail as trie construction and trie-based routing as follows.

57

Trie Construction

Since SFCs are infinitely self-similar recursive data structures, their construction process can

be regarded as a tree. Because of their digital causality property 1, the tree is a prefix tree, i.e., a

trie. A query defines a sub-space in the multidimensional space and segments (called clusters)

on the SFC curve. The construction of these clusters corresponds to the construction of a trie.

000 001 010 011 100 101 110 111

111

110

101

100

011

010

001

000

(011, 010 -110)

speed

lo
n
g
it

u
d
e

0 1

0

1

1100

01 10

00

00 01 10 11

01

10

11

0000 0001

0011

0100

0101 0110

0111 1000

1001 1010

1011

1100
1101

1110 1111

0010
001010

001011

011111

011100

011011

(a)

0010*

0111*

001010

011*

0*

001001

011011

011100 011111

(b)

Figure 5.9: Trie construction: (a) the complex query (011, 010-110) - the first, second and third
SFC refinement; (b) the trie associated with the query.

Figure 5.9 (a) illustrates the recursive resolutions of the query (011, 010-110) in a 2-

dimensional keyword space, with base-2 digits as coordinates. Figure 5.9 (b) shows the con-

struction of the corresponding trie. At each recursion step the discretized space is refined,

resulting in a longer curve. The query defines 2 points on the first SFC refinement (prefix 0);

3 points on the second SFC refinement, grouped based on prefixes 011 and 0010; and 5 points

on the third SFC refinement, with prefixes 011, 0111 and 0010.

Trie-based Routing

The trie constructed by resolving the query is embedded into the overlay as follows. Each node

in the trie is mapped to a peer node in the overlay based on its identifier. The leaf nodes have the

SFC index as their identifiers. For intermediate nodes, the identifier is constructed by padding

1SFC digital causality: Each step of recursion transforms a point on the SFC curve in multiple points, by
extending its identifier with d digits, where d is the dimensionality of the space mapped by the curve.

58

the prefix with zeroes until the maximum bit-length is reached (i.e. the length that corresponds

to the SFC index at the maximum level of refinement allowed). The peers responsible for the

identifiers are then located using the lookup mechanism provided by the overlay network.

000000

000100

001001

001111

100001

111000
0*

011*
0010*

011011

0111*

001010

001001

Figure 5.10: Embedding the tree from Figure 5.9 (b) into the overlay network. Node 100001 is
responsible for storing the subtree routed at 011*.

Figure 5.10 illustrates the process. In the figure, the overlay network uses an identifier

space from 0 to 26, and binary node identifiers. The source node, 111000, refines the query

at the first recursion level, which results in a cluster with prefix 0. The node then uses the

prefix 0 to construct an identifier, by padding the prefix with zeroes, and sends a message to

node 000000. At node 000000, the query is refined to generate the second level of recursion,

which result in two clusters, one with prefix 011 and the other with prefix 0010. Node 000000

constructs a sub-query identifier for each cluster, and sends the messages to appropriate nodes

in the overlay. The nodes that receive the sub-queries refine them to generate the next level of

recursion, and so on. Note that node 100001 does not need to refine its sub-query since the sub-

query prefix, 011, is smaller than the node’s prefix of the same length, i.e., 100, meaning that

the entire subtree routed at 011* is stored at this node. As a result, entire sub-trees of the trie

associated with the query can be pruned, saving communication and computational resources.

The example presented above has been simplified for ease of illustration. In reality each

node performs multiple query refinements (e.g. 5), which result in a large set of sub-queries,

each with a longer prefix.

5.3.3 Trie-based In-Network Aggregation

The design of the aggregation service builds on the trie structure constructed by the routing

engine. An aggregation query is routed to the appropriate peer nodes with data that matches

59

the query in the usual way. Further, recurrent aggregation queries are stored at the peer node

for the duration of their TTLs and are periodically evaluated based on the specified frequency.

Conceptually aggregation consists of propagating data matching the query back up the trie,

with partial aggregation performed at intermediate peer nodes and the final aggregate being

computed at the peer node that issued the query.

A straightforward implementation of the service, which assumes that the overlay is static

and stable with no peer nodes joining, leaving or failing, consists of maintaining state about

each query (e.g., the query operation, the parent and children node for the associated trie) at

each peer node that forms the trie. The leaf nodes of the trie evaluate the query, perform the first

aggregation, and send the result to their parent peer nodes. Each intermediate node wait until all

their children report their partial aggregates, aggregate these results, and forward them to their

parents. However such a simple implementation has two problem. First, the overlay is typically

dynamic with peers joining, leaving and failing relatively often, and maintaining state about

queries can be expensive or infeasible. Second, the number of aggregation queries can be very

large and storing state for each query will require significant resources. The approach presented

in this chapter does not require explicitly storing query state at the peer nodes. Instead, the

prefixes of the nodes in the path of the query along the trie are maintained within the query

itself, and the query is only stored at the leaf nodes in case of a recurrent query. This list of

prefixes can then be used to back propagate and aggregate data to the source peer node - each

peer uses the prefix that precedes its own in the list to route to its parent in the trie.

To illustrate the process, consider the query (011, 010-110) presented in Section 5.3.2. The

trie associated with this query was presented in Figure 5.9. Further, as show in Figure 5.10,

only a part of the trie is actually constructed while resolving the query. The constructed trie is

shown in Figure 5.11 (a). Figure 5.11 (b) shows the list of prefixes accumulated by the query

as it reaches different leaf nodes of the query trie. The in-network aggregation process is show

in Figure 5.12, and the pseudocode for the aggregation algorithm is presented in Figure 5.13.

The leaf nodes evaluate the query and locally aggregate matching data elements. These partial

aggregates are then sent to the overlay peer responsible for the parent node in the query trie.

This peer is located using the prefix of the parent trie node, by padding it with zeroes to obtain a

valid identifier, and performing a lookup for this identifier. Note that the lead node includes the

60

0010*

001010

011*

0* at peer 000000

at peer 100001

at peer 001001

at peer 001111

(a)

0010*

001010

011*

0*

000000

100001001001

001111

111000

<query_entry>

 <query> (011, 010-110) </query>

 <TTL> 20 </TTL>

 <source> 111000 </source>

 <prefix_list>

 <prefix> 0 </prefix>

 <prefix> 011 </prefix>

 </prefix_list>

</query_entry>

<query_entry>

 <query> (011, 010-110) </query>

 <TTL> 20 </TTL>

 <source> 111000 </source>

 <prefix_list>

 <prefix> 0 </prefix>

 <prefix> 0010 </prefix>

 <prefix> 001010 </prefix>

 </prefix_list>

</query_entry>

<query_entry>

 <query> (011, 010-110) </query>

 <TTL> 20 </TTL>

 <source> 111000 </source>

 <prefix_list>

 <prefix> 0 </prefix>

 <prefix> 0010 </prefix>

 </prefix_list>

</query_entry>

trie node

overlay peer

(b)

Figure 5.11: (a) The trie constructed while resolving the query (011, 010-110) as presented in
Figure 5.10; (b) The list of prefixes accumulated by the query at the leaf peer node.

prefix list in the result message. Each intermediate node in the query trie aggregates all partial

results it receives for a query form its children in the query trie and periodically forwards these

to its parent in the query trie using the same process. Every time a peer node forwards a result

up the trie, it remove its prefix from the prefix list.

Dealing with varied link latencies

Each intermediate peer node in the trie that forwards a query also gathers the partial aggregates

from its children peer nodes in the trie. This node waits for a predefined time interval, ag-

gregates all partial aggregates that it has received for a query during the interval and forwards

them to its parent peer node in the trie. However, since link latencies between peer nodes can

vary significantly, it is very difficult, if not impossible, to chose the right duration of the time

interval. To address this issue, each partial aggregation message is stamped with a sequence

number. Messages associated with the same query and the same sequence number are aggre-

gated. Each intermediate peer node registers the first partial aggregate message it receives in a

61

0*

0010*

0*

000000

100001

001001

001111

111000

<message>

 <query>(011, 010-110) />

 <aggr_val> </aggr_val>

 <seq_no> 1 </seq_no>

 <source> 111000 </source>

 <prefix_list>

 <prefix> 0 </prefix>

 <prefix> 0010 </prefix>

 </prefix_list>

</message>

<message>

 <query>(011, 010-110) />

 <aggr_val> </aggr_val>

 <seq_no> 1 </seq_no>

 <source> 111000 </source>

 <prefix_list>

 <prefix> 0 </prefix>

 </prefix_list>

</message>

<message>

 <query (011, 010-110) />

 <aggr_val> </aggr_val>

 <seq_no> 1 </seq_no>

 <source> 111000 </source>

 <prefix_list>

 <prefix> 0 </prefix>

 </prefix_list>

</message>

<message>

 <query>(011, 010-110) />

 <aggr_val> </aggr_val>

 <seq_no> 1 </seq_no>

 <source> 111000 </source>

</message>

Figure 5.12: In-network, trie-based aggregation. Each peer node performs a partial aggregation,
and sends the result to the peer node corresponding to its parent in the query trie.

temporary table, and waits for time T for other partial aggregates to arrive. A new aggregation

is computed, and a message is sent to the next prefix corresponding to its parent in the query

trie, which should be common to all the messages aggregated. If additional messages for the

same query and with the same sequence number arrive after time T, the process is repeated.

The source peer node will perform the final aggregation.

if(thisNode is a trie leaf node)

 results = evaluateQuery(q); //evaluate query q

 aggrVal = aggregate(results); //constructs the aggregate

 prefixListMsg = q.prefixList; //copy the prefix list

 q.sequenceNumber = q.sequenceNumber + 1;

else //this peer is an intermediate node in the trie

 //wait for the chidren nodes to report partial aggregates

 while (waitTime not expired)

 aggrMsg = receive();

 aggrMsgList.add(aggrMsg);

 aggrVal = aggregate(aggrMsgList);

 //the prefix lists are identical for all children

 prefixListMsg = aggrMsg.getPrefixList();

prefixListMsg.removeLast(); //remove the prefix of this node

//retrieves the prefix of the parent node

parentPrefix = prefixListMsg().getLast();

message = constructMessage(q, aggrVal, q.sequenceNumber,

 q.sourceNode, prefixListMsg);

if (parentPrefix != null) //the prefix list is not empty

 parentID = constructID(parentPrefix);

 parentPeer = lookup(parentID);

 //send the message to the parent peer

 sendMessage(parentPeer, message);

else //this is the root of the trie (or one of them)

 //send the message to the node that issued the query

 sendMessage(q.sourceNode, message);

Figure 5.13: The pseudocode for in-network trie-based aggregation.

62

Caching to Improve Routing Latencies

The intermediate peer nodes in the query trie do not maintain state about the queries. As a

result, every time an aggregation message is forwarded up the trie, the node has to perform

a lookup, which involves multiple nodes in the overlay. To improve the performance of the

system, each peer node maintains a small cache containing the most recently used prefixes, and

the destination peer nodes corresponding to these prefixes.

Managing system dynamics

A new peer joining the system will take a part of another peer’s load (i.e. its logical successor

on the ring). A part of the recurrent queries stored locally at the peer will also be transferred

to the joining peer, based on the longest prefix in their prefix lists. If the two peer identifiers

share a prefix, and there are queries with that prefix, they will be copied to the new node and

not moved, since there is not enough information to make a decision as to which node the query

should be stored. A background algorithm then refines the queries until a prefix is obtained that

is long enough to make a decision as to where the query belongs. An alternative solution is to

do nothing and remove such queries when their TTL expires.

When a peer leaves the system it will send its data (including the recurrent queries and

partial aggregates) to its successor. The lookup mechanism will identify the successor peer as

the new intermediate node for ongoing partial aggregates.

Finally, peer failures affect the aggregation process in three ways: (1) the recurrent queries

stored at the failed peer are lost, (2) the ongoing partial aggregates at the failed peer are lost,

and (3) the queries that have been initiated at the failed peer (i.e. their source node) should be

deleted from the system. The following paragraphs briefly discuss each situation. Note that the

solutions proposed below have not been implemented in the current version of the system.

• Stored Queries: This problem occurs when the peer that failed was a trie leaf node for a

recurrent query. In this case, the aggregates for that recurrent query will be incomplete.

This problem is solved by replicating the recurrent query, along with the data, at the next

k successors of this peer. The peers storing replicas are passive, they do not perform

aggregates for that recurrent query. When the active peer fails, its successor becomes the

63

active peer for that recurrent query.

• Ongoing Partial Aggregates: If the failed peer is an intermediate trie node performing

partial aggregates for a query, these partial aggregates may be lost. This problem affects

only the current aggregation process for that recurrent query. The identity of the failed

node is known by the children peers (since they cache their parent node). The children

peers monitor the health of the parent peer, and if the parent peer fails within a predefined

time interval, a new parent is found and the partial aggregate is resubmitted. This is done

by performing a lookup using the prefix of the parent trie node.

• Query Source: If the peer that submitted a recurrent query fails, that query has to be

removed from the system. The failure of the query source node is detected by its children

during the aggregation process. The children initiate a query invalidation process, similar

to the query resolution process.

Load Balancing

The trie-based aggregation scheme may result in load imbalance. The peer nodes corresponding

to trie nodes with short prefixes will be shared between multiple recurrent queries, and may

experience heavier traffic and workloads. The solution is to distribute the query processing into

the overlay such that the peer nodes near the root of the trie have a larger number of children

than the ones at the bottom. This is based on the observation that, as the number of refinements

increases, the sub-queries prefixes are longer, and the chances to have a large number of query

trie nodes sharing the same prefix decrease. This way, the peers at the top of the query tries

will be shared by fewer queries, reducing both the traffic and workload per node.

Building Geographical Awareness Into the Overlay

The SFC-based indexing scheme preserves data locality, which means that data stored at neigh-

boring peers may come from the same region of the multidimensional space. Further, the repli-

cation scheme, in case of node failures, replicates data at successors of the peer node that stores

it. It would be very efficient to form the overlay such that neighboring peers in the overlay are

neighbors in the physical network as well. If all peers know their location (e.g. longitude and

64

Associative Rendezvous

post(<p
1
, p
2
, p
3
>, store)

AR message

post
(header, action, data)

profile

 action

 data

action

 data

execute action

Profile Manager

Matching Engine

Action Dispatcher

RP

AR message

Figure 5.14: Profile manager and matching engine at a rendezvous point.

latitude), a SFC-based indexing scheme can be used to create node identifiers from the node’s

location descriptors, i.e., coordinates. As a result, geographical locality is preserved to some

extent.

5.3.4 Associative Rendezvous Messaging Substrate

The AR messaging layer builds on top of content-based routing layer and provides the abstrac-

tions to enable decoupled interactions and reactive behaviors between peer elements using the

unified interface: post(profile, action, data).

The ARMS layer implements the Associative Rendezvous interaction model. At each RP,

ARMS consists of two components: the profile manager and the matching engine. The match-

ing engine component is essentially responsible for matching profiles. An incoming message

profile is matched against existing interest and/or data profiles depending on the desired reac-

tive behavior. If the result of the match is positive, then the action field of the incoming message

is executed first, followed by the evaluation of the action field for matched profiles. The pro-

file manager manages locally stored profiles, and monitors message credentials and contexts to

ensure that related constraints are satisfied. For example, a client cannot retrieve or delete data

that it is not authorized to. The profile manager is also responsible for garbage collection. It

maintains a local timer and purges interest and data profiles when their TTL fields have expired.

Finally, the profile manager executes the action corresponding to a positive match.

5.3.5 Implementation Overview

Meteor builds on Chord (or our two-level extension to Chord). Chord, Squid, the ARMS lay-

ers, and the in-network aggregation service of the Meteor stack are currently implemented as

65

event-driven JXTA services, so that each layer registers itself as a listener for specific messages,

and gets notified when a corresponding event is raised. Project JXTA (http://www.jxta.org) is

a general-purpose peer-to-peer framework that provides basic peer-to-peer messaging services.

Since Meteor is designed as an overlay network of rendezvous peers, it is incrementally deploy-

able. A joining RP uses the Chord overlay protocol and becomes responsible for an interval in

the identifier space. In this way, the addition of a new rendezvous node is transparent to the

end-hosts.

The overall operation of the Meteor overlay consists of two phases: bootstrap and running.

During the bootstrap phase (or join phase) messages are exchanged between a joining RP and

the rest of the group. During this phase, the RP attempts to discover an already existing RP

in the system to build its routing table. The joining RP sends a discovery message to the

group. If the message unanswered after a set duration (in the order of seconds), the RP assumes

that it is the first in the system. If a RP responds to the message, the joining RP queries this

bootstrapping RP according to the Chord join protocol and updates its routing tables to reflect

the join.

The running phase consists of stabilization and user modes. In the stabilization mode, an

RP responds to queries issued by other RPs in the system. The purpose of the stabilization

mode is to ensure that routing tables are up to date, and to verify that other RPs in the system

have not failed or left the system. In the user mode, each RP interacts at the Squid and ARMS

layers.

5.4 Experimental Evaluation

A prototype of Meteor has been deployed on (1) a local-area network of 64 Intel Pentium-

4 1.70GHz computers with 512MB RAM Linux2.4.20-8 (kernel version) and an 100 Mbps

Ethernet interconnect, (2) the PlanetLab [93] wide area testbed, which is a global scale het-

erogeneous distributed environment composed of interconnected sites with various resources,

and (3) the ORBIT [2] wireless testbed, which is composed of hundreds of wireless nodes, and

is used to test wireless environments for pervasive applications. In these deployments, each

peer node serves as a Rendezvous Point (RP) and executes an instance of the Meteor stack.

66

An experimental evaluation of the average performance of Meteor with aggregation service on

up to hundreds of nodes using these deployments is presented below. Further, an evaluation

of the scalability of the aggregation service on up to thousands of nodes using simulations is

presented.

The system was populated with randomly generated data, resulting in a uniform distribu-

tion. The data items used were regular XML profiles, consisting of location attributes (e.g.

RP’s longitude and latitude), content descriptors (keywords) and a TTL field. A set of recurrent

queries was stored into the system, typically at multiple RP nodes (e.g. the queries contained

ranges, wildcards, partial keywords). Each recurrent query had associated a TTL and a field

indicating the evaluation frequency. The queries were evaluated as they reached the destination

nodes, and the results were aggregated and propagated towards the requesting RPs.

The metrics used in the evaluation included query dissemination time and query aggregation

time. Query dissemination time is the time it takes for a query to reach all its destination nodes.

Query aggregation time is the query dissemination time plus the time it takes to perform the

aggregations and back propagate them.

Two sets of experiments were performed. The first one measured the performance of the

aggregation service, considering a stable system, with no nodes joining, leaving or failing.

The second experiment measured the robustness of the aggregation service in the presence of

failures.

The experiments performed over different environments are based on a single Chord ring

overlay unless explicitly stated. The results presented in the following section demonstrate that

Meteor can effectively scale to large number of peers while maintaining acceptable execution

time for messages.

5.4.1 Scalability of Aggregation Services

This experiment examines the scalability and efficiency of the aggregation service on ORBIT,

PlanetLab and local LAN environments. Meteor has been deployed on up to 250 nodes on the

ORBIT wireless testbed. The ORBIT large-scale radio grid emulator [2,97] consists of an array

of 20x20 open-access programmable nodes each with multiple 802.11a,b,g or other (Bluetooth,

Zigbee, GNU) radio cards. The overlay used in this deployment was constructed as follows.

67

Messaging with complex queries

0

500

1000

1500

2000

2500

4
 8
 16
 32
 64

Number of peers

T

im
e

(m
s)

LAN
 ORBIT
 PlanetLab

Figure 5.15: Scalability of aggregation service in term of overlay size for Orbit testbed, Plan-
etLab testbed, as well as LAN

The wireless nodes were divided into groups of up to 64 nodes. Each group was associated

with an access point (AP). The APs were connected using a wired interconnect via Chord ring

overlay. Nodes were allowed to randomly join or leave a group. Note that communication

latencies varied significantly with time and location within a group.

Meteor has been deployed on over 60 nodes on the PlanetLab wide area testbed. Since

PlanetLab nodes are distributed across the globe, communication latencies can vary signifi-

cantly with time and node location [66]. In each of the experiments presented below, at least

one node was selected from each continent, including Asia, Europe, Australia, and North Amer-

ica. Nodes randomly joined the Meteor system during bootstrap phase, resulting in a different

physical construction of the ring overlay in each run. The experiments were conducted at dif-

ferent times of the day during a 4-week period. Once again, three sets of experiments were

performed, one for each messages type. The average runtime for these experiments are plotted

in Figure 5.15.

The aggregation queries used included ranges to specify the location of interest, (e.g., 15-

37) and wildcards such as temp*. The aggregation operator used was COUNT. The aggre-

gation time for different network sizes on different deployment environments are plotted in

Figure 5.15. As shown in the figure, the aggregation time scales well in terms of system size

on these three different environments. Note that, the average aggregation time in the wireless

environments is in between of the wide-area environments and more stable LAN environments.

68

0

200

400

600

800

1000

1200

1400

1600

LAN
 ORBIT
 PLANETLAB

ti
m

e
(m

ill
is

ec
o

n
d

)

Figure 5.16: Average runtime for complex messages for LAN, ORBIT and PlanetLab

The aggregation time includes overheads such as routing table lookup and aggregate computa-

tion. The overall latency shows that our system can provide near real-time pervasive services

for complex queries required by scientific applications.

Figure 5.16 plots the average runtime for complex messages for LAN, ORBIT and Planet-

Lab environments. The average runtime for LAN is about two to three times smaller than for

ORBIT, and five times smaller than for PlanetLab, which is expected due to the wireless con-

nectivity and higher wide-area latencies, respectively. To summarize the experiments, in case

of LAN environments, the overall runtime is dominated by content routine overheads of the

content routing layer, while for the PlanetLab testbed, the overall runtime dominated by laten-

cies at the network layer, and for the ORBIT testbed, the overall runtime is mainly composed

of both network latency and content routing layer. The overhead of the AR layer is almost the

same in all cases. Further, while the runtime in all three cases does increase with system size,

its rate of increase much slower indicating the scalability of Meteor.

Robustness

The next experiment explores the behavior of the aggregation service in the presence of RP

failures. More specifically, the experiment measured the time needed to recover the ongoing

aggregation operation when the RP performing it fails. This includes the time it takes to detect

the failure (the children peers use a timeout to detect the parent’s failure), the lookup time for

the current logical parent (based on the trie prefix), and the time to re-send the partial aggregates

69

to the new parent peer. Also, the local cache was updated with the new peer responsible for the

trie prefix. Figure 5.17 shows that the time needed to recover partial aggregates is scalable in

terms of system size.

0

20

40

60

80

100

120

140

160

4 8 16 32 48 64

Number of nodes

M
il
li
s
e
c
o

n
d

s

(a)

(b)

0

10

20

30

40

50

60

70

20 60 10
0

14
0

18
0

22
0

26
0

30
0

34
0

38
0

Time (milliseconds)

N
u

m
b

e
r

o
f

in
c
lu

d
e
d

 r
e
s
u

lt
s

Time to aggregate all

Single node failure

Aggregate trie

reconstruction

Reconstructed trie

Figure 5.17: Robustness for single peer failure: (a) time to recover the ongoing aggregation,
(b) number of aggregated results during peer node failure.

Figure 5.17 (b) shows how a peer node failure affects the aggregation process. In this exper-

iment the same query is evaluated at regular intervals of time, over a period of 400 milliseconds.

The aggregation results are propagated up the trie to the requestor. The size of the system is

constant, and the quantity of data stored is also constant during this experiment. The expected

result of the COUNT aggregation operation is 67. The first two aggregation operations result in

a smaller COUNT value. This is because, even if the system is stable, not all peers will begin

evaluating the query and aggregating the results at the same time. Also, the latencies between

nodes vary. The next three aggregation operations are successful. As the picture shows, the

system experiences a peer node failure at time 205. The on-going aggregates at this node are

lost, and it takes about 100 milliseconds to detect the failure and correct the aggregation trie.

70

0

20

40

60

80

100

120

1000
 2000
 3000
 4000
 5000

number of nodes

N
u

m
b

er
 o

f
C

h
o

rd
 L

o
o

ku
p

s

AR-1/AR-2 messages
 AR-3 messages

Figure 5.18: Simulation results for large scale system

5.4.2 Simulation Results

The performance of the Meteor infrastructure is also evaluated using a simulator. The simulator

implements the Associative Rendezvous messaging, SFC-based mapping and the Chord-based

overlay network for a network of up to about 5000 nodes. The simulator models wide-area

network latencies between RPs using network delays statistics collected from the PlanetLab

deployment. The resulting execution time of AR messages consists of overhead for AR mes-

saging, Squid content-based routing and Chord overlay network delay including network de-

lays. As the overlay network configuration and operations are based on Chord, its maintenance

costs are of the same order as in Chord.

As shown in Figure 5.18, the average execution time for AR-1 and AR-2 messages is about

750 milliseconds for an overlay of 1000 RPs and becomes about 850 milliseconds for about

5000 RPs. This illustrates the scalability of Meteor infrastructure for system of over thousands

of nodes. For AR-3 and AR-4 messages the runtime is about 3.5 seconds in a 1000 overlay

network and becomes about 6 seconds for a network with 5000 RPs. The increase of runtime

is mainly due to the underlying multi-hop network delays, which represents approximately

85% for AR-1/AR-2 messages for thousands of RPs. For AR-3 messages the network latency

represents 88% of overall overhead. As the overlay network configuration and operations are

based on Chord, its maintenance costs are of the same order as in Chord. From Figure 5.18, we

can conclude that Meteor scales well to large systems of thousands of RPs.

71

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

400
 800
 1200
 1600

Number of nodes

F

ra
ct

io
n

 o
f

n
o

d
es

 p
ro

ce
ss

in
g

 A

R
 m

es
sa

g
es

post(<*, *, temp>, retrieve)

post(<100-290, *, temp>, retrieve)

post(<100-290, 10-90, temp>, retrieve)

1.45

1.70
 1.90
 2.00

3.85

4.70

8.00

5.10
 5.60

6.55

7.20

7.60

Figure 5.19: Simulation result of the aggregation service on larger systems. The number of
nodes processing aggregates before normalized to system size is also shown on the curve.

Effect of specifying location attributes for AR aggregation

The simulator was also used to evaluate the operation of the aggregation service for systems

with up to 1600 RP nodes. This simulation used three sets of AR messages with complex

profiles:

• no specification of location, e.g., < ∗, ∗, temp >

• specifying location range in one dimension, e.g., < 100− 290, ∗, temp >

• specifying location range in two dimensions, e.g., < 100− 290, 10− 90, temp >

The number of peer nodes that processed the aggregates was measured for each AR mes-

sage. The fraction of peer nodes processing each type of aggregation message, function of

system size, is plotted in Figure 5.19.

The figure shows that the number of nodes that process a message is a small fraction of the

system size. Further, while the number of nodes processing a specific message increases with

the system size, it increases at a slower rate than the system size, indicating the scalability of the

system. Finally, the results demonstrates that as the specification of the profile become more

specific, the fraction of nodes involved decreases, indicating the effectiveness of the Meteor

routing mechanism.

72

Effectiveness of In-network Aggregation Service

This experiment measured the effectiveness of in-network aggregation when compared with

the straightforward approach (e.g. the local aggregates are sent directly to the requestor, which

performs the final aggregation). The experiment was conducted using a simulator with up to

2000 RPs. A set of aggregation queries (i.e. range queries) were used for the measurements.

For each query we measured the number of aggregation messages per node, with and with-

out in-network aggregation. The results were aggregated and presented in Figure 5.20 (a). Fig-

ure 5.20 (b) shows the actual number of messages for one query, with in-network aggregation,

evaluated in a system with 500 nodes.

As it can be seen in Figure 5.20 (b), by distributing the aggregation process in the network,

each node handles a small number of messages. Also, the processing load is distributed. The

number of messages per node grows slowly with the size of the system, demonstrating the

scalability of in-network aggregation.

(a)

(b)

0

1

2

3

4

5

6

7

8
9

Nodes

N
u

m
b

er
 o

f
m

es
sa

g
es

0

20

40

60

80

100

120

500 1000 1500 2000

Number of nodes

N
u

m
b

er
 o

f
m

es
sa

g
es

with in-network aggregation

without in-network aggregation

Figure 5.20: Effectiveness of in-network aggregation service: (a) average number of messages
per peer with and without in-network aggregation; (b) actual number of messages per peer for
a query aggregated in-network, for a 500 peers system.

73

5.5 Summary

As the scale, complexity, heterogeneity and dynamism of pervasive grid environments increase,

interaction paradigms based on static names (addresses, identifiers) and on synchronous or

strictly coupled interactions are quickly becoming insufficient. This has lead researchers to

consider alternative paradigms that are decoupled and content-based. This chapter presented

a content-based decentralized information aggregation service for sensor-based pervasive en-

vironments. The service provides a uniform query interface where aggregation queries are

specified using content descriptors from a semantic space in the form of keywords, partial key-

words, wildcards and ranges, and an action descriptor defining the aggregate operation. The

service guarantees that all data that matches a query will be located and aggregated. Further, ag-

gregation queries may be recurrent, i.e., they can be defined to execute repeatedly at predefined

constant intervals.

The aggregation service was built on the Meteor content-based middleware infrastructure

and extended the Associative Rendezvous (AR) model for content-based information discov-

ery and decoupled interactions. Specifically, it extended the AR abstractions to enable content-

based aggregation queries to be flexibly specified using keywords, partial keywords and ranges.

Further, it used the Squid content-based routing infrastructure to construct aggregation tries so

that query propagation routes can be used for back-propagating and aggregating matching data

elements. The deployment and experimental evaluation of the aggregation service were also

presented. The evaluations included simulations as well as experiments using deployments

on local-area network at Rutgers and wide area PlanetLab testbed. The experiments demon-

strated the scalability, effectiveness and robustness of the aggregation service in distributed and

dynamic pervasive environments.

74

Chapter 6

Enabling End-to-end Sensor-driven Scientific and Engineering
Applications

Technologies in surveillance and and sensing are becoming available in an increasing number of

scientific and engineering applications. The deployment of sensors is offering unlimited possi-

bilities to monitor and obtain a dynamic understanding of the different processes taking place at

different spatial and temporal scales. In spite of the enormous potential benefits, the effective

and efficient integration of this data into the management process presents significant chal-

lenges in data acquisition, assimilation and its integration in the computational models and the

decision making process. The previous chapters presented a programming system for end-to-

end sensor/actuator-based scientific and engineering applications, which provided semantically

meaningful abstractions and runtime mechanisms for integrating sensor systems with computa-

tional models for scientific processes, and for in-network data processing such as aggregation,

adaptive interpolation and assimilations. In this chapter, an end-to-end oil reservoir application

that combines reservoir simulation models with sensors/actuators in an instrumented oilfield is

used as a case study to demonstrate the operation of the programming system, as well as to

experimentally demonstrate its effectiveness and performance.

6.1 Introduction

In many current scientific and engineering applications, modeling to predict system behavior

is largely done using static historical data. This approach makes it impossible for such models

to accurately predict temporal and spatial variations in the real-world. With advances in sensor

technology, it now becomes possible to feed in near real time measurements data from diverse,

complex, distributed sensor networks, enabling more accurate modeling, prediction and con-

trol. The effective and efficient integration of this data into the scientific applications, such

75

as the management and control of subsurface geosystems, presents significant challenges in

data acquisition, assimilation and its integration in the computational models and the decision

making process.

The overall goal of the research effort is to investigate sensor system middleware and pro-

gramming support that will enable distributed networks of sensors to function, not only as

passive measurement devices, but as intelligent data processing instruments, capable of data

quality assurance, statistical synthesis and hypotheses testing as they stream data from the

physical environment to the computational world [52]. Further, application should be able to

interact with the sensor system to control sensing and data processing behaviors. The program-

ming systems enables sensor-driven applications at two levels. First, it provides programming

abstractions for integrating sensor systems with computational models for scientific processes

(e.g. biophysical, geophysical processes) and with other application components in an end-

to-end experiment. Second, it supports programming models and systems for developing in-

network data processing mechanisms. The former supports complex querying of the sensor

system, while the latter enables development of in-network data processing mechanisms such

as aggregation, adaptive interpolation and assimilations, both via semantically meaningful ab-

stractions. The research is driven by the management and control of subsurface geosystems,

such as managing subsurface contaminants at the Ruby Gulch waste repository [92] and man-

agement and optimization of oil reservoirs [61]. Crosscutting requirements of these applica-

tions include multi-scale, multi-resolution data access, data quality and uncertainty estimation,

and predictable temporal response to varying application characteristics.

The focus of this chapter is on the end-to-end abstractions provided by the programming

system, and on how they can be used to enable scientific/engineering applications to discover,

query, interact with, and control instrumented physical systems in a semantically meaningful

way. Specifically, this chapter describes the usage and effectiveness of the GridMap/iZone

abstractions using an Instrumented Oilfield application as a case study. A prototype program-

ming system has been implemented. An experimental evaluation using this prototype is also

presented.

The rest of the chapter is organized as follows. Section 6.2 demonstrates how to use the

GridMap/iZone abstractions to implement such an end-to-end oil reservoir application that

76

Instrumented

oil reservoir
 (2) request application

specified sensor data

Data

Archive

(3a) Retrieve real
-
time

interpolated pressures

Sensor data
 Simulation grid

(3b) Retrieve production

rates

(3c) Retrieve historical

information

(4) Optimize oil reservoir

production with

simulation process

Pressure

models

(7) Update data archive

Three oil well production

distribution

(5) Adjust gas ingestion

places/pressures

Before
 After adjustment

Water/gas ingestion

placements

(6) Production rates
’

update

Before
 After adjustment

(1) Start simulation

processes

Instrumented

oil reservoir
 (2) request application

specified sensor data

Data

Archive

Data

Archive

(3a) Retrieve real
-
time

interpolated pressures

Sensor data
 Simulation grid
Sensor data
 Simulation grid

(3b) Retrieve production

rates

(3c) Retrieve historical

information

(4) Optimize oil reservoir

production with

simulation process

Pressure

models

(7) Update data archive

Three oil well production

distribution

(5) Adjust gas ingestion

places/pressures

Before
 After adjustment

Water/gas ingestion

placements

(6) Production rates
’

update

Before
 After adjustment

(1) Start simulation

processes

Figure 6.1: Overview of an end-to-end oil reservoir application.

combines reservoir simulation models with sensors/actuators in an instrumented oilfield. Sec-

tion 6.3 presents an experimental evaluation of the programming system. Section 6.4 summa-

rizes the chapter.

6.2 An End-to-end Oil Reservoir Application Using GridMap/iZone Abstrac-

tions

Scientific applications often require measurements at pre-defied grid points, which are often

different from the locations of the raw data provided directly by the sensor network. As a

result, the sensor-driven scientific and engineering applications require a virtual layer, where

the logical representation of the state of the environment provided to the applications may

be different from the physical representation of raw measurements from sensor network. The

abstractions described in the previous chapters (see Figure 3.2 in Chapter 3) enable applications

to specify such a virtual layer and the models (e.g. regression models, interpolation functions,

etc.) that should be used to estimate data on the virtual layer from sensor readings, as well to

develop in-network implementations of the data estimation mechanisms.

In this section, we demonstrate how the GridMap/iZone abstractions can be used to imple-

ment an end-to-end oil reservoir application that combines reservoir simulation models with

sensors/actuators in an instrumented oilfield.

77

Subsurface behavioral surveillance and sensing is becoming available in an increasing num-

ber of environmental and energy reservoir applications. The deployment of sensors is offering

unlimited possibilities to monitor and obtain a dynamic understanding of the different processes

taking place at different spatial and temporal scales. Understanding and controlling these pro-

cesses will certainly allow a better quantification of uncertainties and an up-to-date assessment

of resources in these subsurface applications. A dynamic data driven management [61, 92]

process can complete the feedback loop between measured data and computational models to

provide more efficient, cost-effective and environmentally safer production of oil reservoirs

as well as management and optimization of other subsurface geosystems, which can result in

enormous strategic and economic benefits. Consequently, the oil industry is increasingly using

instrumentation and online monitoring to increase productivity, reduce accidents and enable

decision making during planning and operation.

However, in spite of the enormous potential benefits, the effective and efficient integration

of this data into the reservoir management process presents significant challenges in data ac-

quisition, assimilation and its integration in the computational models and the decision making

process. Reservoir data is disparate, sparse and subject to different subjective interpretations,

and the derivation of knowledge from reservoir data involves merging different sources and

scales of data into a single consistent characterization unit, their geological and engineering

interpretations, and the concatenated utilization of different simulation models.

The programming abstractions and systems software solutions can help address these chal-

lenges and enable end-to-end management processes of an instrumented oil field consisting of

detecting and tracking reservoir changes, assimilating and inverting data for determining reser-

voir properties, and providing feedback to enhance temporal and spatial resolutions and track

other specific processes in the subsurface. The overall goal is to ensure near optimal operation

of the reservoir in terms of profitability, safety and/or environmental impact.

For example, the productivity of an oilfield can be predicted based on the current physi-

cal characteristics of oilfield. The productivity index and the reservoir pressure determine the

oil production rate from a well for a given time period, and the latter is nonlinearly related

to the cumulative oil produced. The well is usually capped when the GOR (gas to oil ratio)

exceeds a certain threshold limit or when the pressure of the reservoir is lower than a minimum

78

Deployed sensor

network in the oil field

An end
-
to
-
end

simulation process

(a) init

(c) retrieve

Update production

policy

(b) query

Figure 6.2: Using GridMap/iZone abstractions to program the sensor-driven application.

pressure. In this example, the pressures and concentrations are modeled as dynamic fluids and

are measured and simulated in the region of interest for well management. An overview of

this application scenario is shown in Figure 6.1. The figure illustrates the steps involved in

constructing a closed control loop for optimal reservoir management, including computational

processes for issuing queries to instrumented oil reservoir, retrieving the relevant data and in-

tegrating it with the simulation processes, and making appropriate decisions for updating oil

production policy.

The evolution of pressure and concentration in the oil field during production are simulated

using comprehensive mathematical models of the subsurface. As the simulations evolve, these

models periodically update pressure and concentration distributions in particular regions (e.g.,

regions requiring adaptive refinement due to high errors) from the oil field. Sensors deployed in

the oil field monitor and retrieve current pressures and/or concentrations in regions of interest.

The results of the simulations are then used by the production optimization process to generate

optimal configuration (i.e. production rate, gas, water pressures, etc.). The realization of these

steps using the GridMap/iZone abstractions are briefly described below:

The application first uses the GridMap init operator to construct a virtual sensor grid over-

layed on the oilfield, to match the grid used by the simulations models. For example, a GridMap

instance constructed using the specification <xlb:δx:xub, ylb:δy:yub> represents a two dimen-

sional rectangular virtual grid with its left bottom corner at (xlb, ylb) and top right corner at

79

(xub, yub), and with a spacing of δx and δy along the x and y dimension respectively. The ap-

plication can also specify the interpolation method, for example, “closest neighbor”, “IDW” or

“Kriging”, to be used to compute data values at the virtual grid points using sensor values.

The application can now “query” the sensor system using regions of the virtual grid. The

application query specifies the data types of interest (e.g., pressure, concentration), error thresh-

olds, etc., using the syntax described in Section 3.5. The queries are forwarded by the runtime

system to appropriate sensors nodes as shown in Figure 6.2 (b). For each virtual grid point,

iZones are constructed by discovering all relevant sensors. The data retrieved from these sen-

sors is then interpolated onto the required virtual grid points using the specified interpolation

method and the in-networks mechanisms provide by iZone. The resulting data values on the

virtual grid are then returned to the application.

The application can now continue the simulations using the updated data, and along with

current production rate, historical data, etc, to, for example, predict changes in oil reservoir,

evaluate different configurations, and optimize desired objective functions such as maximizing

production rate and/or minimizing cost (e.g. gas ingestion cost). The overall data flow of the

end-to-end oil reservoir management/optimization process is illustrated in Figure 6.3.

6.3 Experimental Evaluation

The parameter estimation and oil reservoir optimization scenarios in an instrumented oilfield

(described in Section 6.2) is implemented using the prototype of the GridMap/iZone program-

ming system described above and is used for the experiments presented in this section. The

objectives of the experiments are not only to demonstrate the ability of GridMap/iZone to sup-

port the integration of computational processes with run-time in-network processing of sensor

data, but also to evaluate the effectiveness and efficiency of the prototype implementation for

realistic scenarios. The scenarios in the experiments are driven by a real-world sensor dataset

obtained from an instrumented oil field with 2000 sensors, and consisting of pressure measure-

ments sampled 96 time per day. A two-tiered sensor overlay with 40 clusters was emulated on

40 nodes of the Orbit wireless testbed so that each cluster ran on a single node of the testbed.

The sensors are assumed to be randomly distributed in the sensors field. The computational

80

start

Finished?

initialize

simulation

Query sensor

network

wait

start

Finished?

end
 end

Initialize sensor

network

GridMap
.init

wait

Results

Simulation

models with

sensor data

Execute

simulation

iZone.
get & put

iZone.
aggregate

interpolation

wait

Finished?

end

GridMap
.query

GridMap
.notify

GridMap
.retrieve

No

No

No

simulation process
 in-network computation

iZone
.discovery

Figure 6.3: Overall dataflow of the end-to-end oil reservoir management/optimization process.

processes ran on compute cluster located at a different campus at Rutgers.

The end-to-end cost of an interaction between a computational process and the sensor sys-

tem consists of 5 parts as illustrated in Figure 6.4: (1) the cost of issuing the GridMap query

by a computational process, and routing it through the network to the sensor network gateway;

(2) the cost of forwarding the query from the gateway to all relevant sensors associated with

the GridMap; (3) cost of in-sensor-network computations (e.g., interpolation) associated with

a query; (4) the cost of aggregating the data and forwarding it to the gateway; and (5) the cost

returning the results back to the computational process. The experimental evaluation in this

chapter focuses on the in-sensor-network costs, i.e., (2), (3) and (4). These costs are measured

in terms of the number of messages, the number of hops per message and the volume of data

81

Deployed sensor

network

In
-
network

computation

An end
-
to
-
end

simulation process

1
 2

3

4
5

Figure 6.4: The components of performance evaluation

transferred, and the impact of overall size of the GridMap. The tradeoffs between the accuracy

of data estimation and associated costs are also evaluated.

Communication Costs

This experiment measures the communication costs, in terms of average number of hops, of

querying all the sensors associated with a GridMap. The first set of experiments keep the size

of the GridMap fixed at 40ft x 175ft, and varies the radio range of the sensors. The results

are plotted in Figure 6.5(a). As expected, as the radio range increases, the average number of

hops decrease. The next set of experiments measured the impact of increasing the size of the

GridMap on the average number of messages between clusters in the sensor network for two

different radio ranges. The results are plotted in Figure 6.5(b). As the size of the GridMap

increases, so does the average number of messages required per update. For example, when the

size of GridMap is doubled,e.g., from 20ft x 175ft to 40ft x 175ft in the experiment, the average

number of messages increase by about 1.5 times. Additionally, as the size of the GridMap

becomes smaller (e.g. 40ft x 75ft, 20ft x 75ft and 20ft x 35ft for a radio range of 120ft), the

number of messages does not change much, partially because almost all of the involved clusters

of the given GridMap are within a single hop of each other.

Tradeoff between accuracy and communication costs

In this experiment, we examine the tradeoff between accuracy and communication costs for

cases where the data processing (i.e., interpolation) is done within the sensors system and ex-

ternal to the sensor system (for example, at a remote server). The latter case represents the

conventional approach where raw data is collected from the sensor network and transferred to

a server where required processing is performed in an offline manner. In this case the costs

82

GridMap
 size: 40X175

0

1

2

3

4

5

6

7

8

80
 100
 120

Radio ranges

N
u

m
b

er
 o

f
h

o
p

s

(a)

0

2

4

6

8

10

12

14

16

40X175
 20X175
 40X75
 20X75
 20X35

GridMap

size

A
vg

 n
o

. o
f

m
es

sa
g

es

b
et

w
ee

n
 c

lu
st

er
s

Radio range: 120
 Radio range: 80

(b)

Figure 6.5: Communication costs of querying all the sensors associated with a GridMap as a
function of the size of the GridMap and the radio range of the sensors.

measured in terms of the data volume that is transferred to the gateway. The accuracy of in-

terpolation is determined in terms of the interpolation error and depends on the interpolation

mechanism used. To ensure a fair comparison, the same data processing is used in both cases.

The results are plotted in Figure 6.6. As seen in the plots, increasing the required accuracy

increase the volume of communication. For in-network interpolation, this is because more data

is required for each iZone. Furthermore, as the size of the GridMap increases, the volume

of communication also increases. Note that the communication cost does not grow linearly

with the number of grid points over the same GridMap. This is partially because part of the

data is shared between neighboring iZones, therefore eliminating the need for some of the

83

0

200

400

600

800

1000

1200

1400

1600

0.0001
 0.0002
 0.0003
 0.0004
 0.0005

Avg error

N
u

m
b

er
 o

f
d

at
a

it
em

s

tr
as

fe
rr

ed
 p

er
 u

p
d

at
e

Interpolation outside

sensor network

In-network Interpolation

of GridMap

GridMap
 size: 60 X 175

126 grid points

60 grid points

36 grid points

Figure 6.6: Tradeoff between accuracy and communication costs for different sizes of the
GridMap.

communications when computing the grid points.

For the case where the interpolation is performed outside the sensor network, the data

volume does not change significantly with increasing accuracy since only a small additional

amount of data is needed.

A key observation is that for the same level of accuracy, the communication volume is

significantly large when the interpolation is performed outside the sensor network, which also

implies increased bandwidth consumption, latencies as well as energy costs. This demonstrate

a key benefit of in-network data processing, specially in the case of application requiring near

real-time analysis of and reaction to sensed data.

6.4 Summary

This research presented a programming system for end-to-end sensor/actuator-based scien-

tific and engineering applications, which provided semantically meaningful abstractions and

runtime mechanisms for integrating sensor systems with computational models for scientific

processes, and for in-network data processing such as aggregation, adaptive interpolation and

assimilations. Specifically, the programming system provides the end-to-end GridMap ab-

straction that enables computational applications to access and integrate sensor data into their

84

models, and the in-network iZone abstraction to enable the development of scalable in-network

data processing mechanisms. The underlying middleware provides an in-network data pro-

cessing engine, which supports efficient data dissemination, aggregation and collaboration in

dynamics, resource-constraint heterogeneous sensor networks. In this chapter, an end-to-end

oil reservoir application that combines reservoir simulation models with sensors/actuators in an

instrumented oilfield was used as a case study to demonstrate the operation of the programming

system, as well as to experimentally demonstrate its effectiveness and performance.

85

Chapter 7

Enabling Autonomic Power-Aware Management of Instrumented
Data Centers

Sensor networks support flexible, non-intrusive and fine-grained data collection and processing

and can enable online monitoring of data center operating conditions as well as autonomic data

center management. This chapter describes the architecture and implementation of an auto-

nomic power aware data center management framework, which is based on the integration of

embedded sensors with computational models and workload schedulers to improve data center

performance in terms of energy consumption and throughput. Specifically, workload sched-

ulers use online information about data center operating conditions obtained from the sensors

to generate appropriate management policies. Furthermore, local processing within the sensor

network is used to enable timely responses to changes in operating conditions and determine

job migration strategies. Experimental results demonstrate that the framework achieves near

optimal management, and in-network analysis enables timely response while reducing over-

heads.

7.1 Introduction

Computing and communications are an integral part of society’s IT infrastructure, affecting

every aspect of life, including services related to health, banking, commerce, defense, education

and entertainment. The increasing demands for computing and storage, and as a result, the

growing scales of enterprise computing environments and data centers have made issues related

to power consumption, heat generation and cooling requirements of critical concern – both in

terms of the growing operating costs (power and cooling) as well as their environmental and

societal impacts. In fact, the Environmental Protection Agency (EPA) recently reported that

the energy used by datacenters by the year 2011 is estimated to cost $7.4 B (15 power plants,

86

15 Gwatts/hour peak) [5]. Furthermore, power and cooling rates are increasing by an alarming

8 fold every year and are becoming the dominant part of IT budgets. Clearly addressing this

problem is an important and immediate problem for enterprise data centers.

This chapter addresses the autonomic management of instrumented data centers, which is

based on the integration of online data from sensor networks with the computational processes

that model physical phenomena in the data center as illustrated in Figure 7.1, with the overall

goal of optimizing data center performance in terms of energy consumption and throughput.

Specifically, this chapter focuses on the architecture and programming/runtime system required

to facilitate the interactions between computational models and the sensor system and support

such an integrated management approach. The key challenges and requirements addressed are

as follows [54].

Simulation Model:

optimize power

consumption and

job processing

throughput

Sensor data
 Simulation grid
Sensor data
 Simulation grid

Wide
-
area network

Data Archive

Job requests
Job requests

Power

models

Job allocation policy

Job requests
Job requests

X

Instrumented

Data Center

Figure 7.1: A sensor-driven data center management scenario.

Real-time end-to-end sensing and control: Traditionally, the configuration of a data cen-

ter is based on a snapshot of thermal conditions, which is often derived from spatially dense

measurements obtained using an sensing system. Such a representation presents an accurate

snapshot of the thermal conditions in a data center only at the time of measurement. Over

time, however, the configuration of a data center’s computing devices, including networking

and storage devices, as well as as the air flow conditions and associated cooling system, are all

subject to changes. A more dynamic measurement and modeling approach is thus needed to

provide real-time status data, and possibly to enable a predictive evaluation of dynamic scenar-

ios. This can be achieved by deploying real-time sensors, which deliver measured data either at

regular intervals or upon occurrence of predefined events. Thus, by combining data from com-

putational models, for example, air recirculation and/or heat distribution models, with real-time

87

sensor data, an autonomic data center management system can be constructed.

Timely response to dynamics using in-network processing: The computational models,

for example, those used to predict the heat/temperature distribution in the data center, can often

have long run-times due to the complexity of the model themselves as well as the large volume

of the data involved. By combining local processing within the sensor network with these

longer time scale computational processes, a more timely response to critical events can be

achieved.

Enhanced efficiency and finer granularity of control: The deployment of sensors enables

a finer granularity of control. For example, sensors can monitor temperature and humidity,

which are inversely correlated, and can watch for “hotspots” to improve the overall efficiency

of the cooling system. Sensors can also be used to identify which systems are overheating and

need to be powered down, or which servers are being overcooled and wasting energy.

To address above challenges and requirements, we propose a two-level framework to sup-

port the autonomic management and control of instrumented data centers. Specifically, the

overall goal of the framework is to enable the effective integration of densely deployed sen-

sors with optimization and computational processes to improve power consumption, efficiency

of the cooling system and job throughput. Sensor networks monitor temperature, humidity,

airflow, etc., in real time, provide non-intrusive and fine-grained data collection, and enable

real-time processing. The sensor data is integrated with computational processes and mid-

dleware services such as job schedulers, to take phenomena such as heat distribution and air

flow into account. For example, workload schedulers use online information about data center

operating conditions obtained from the sensors to generate appropriate scheduling strategies.

Furthermore, local processing within the sensor network is used to enable timely responses to

changes in operating conditions and determine job migration strategies. Experimental results

demonstrate that the framework achieves near optimal management, and in-network analysis

enables timely response while reducing overheads.

88

Note that the objective of this chapter is not to present new data center management poli-

cies or mechanisms, but rather to demonstrate how such policies and mechanism can be imple-

mented with an integrated end-to-end management process using the GridMap/iZone program-

ming system, as well as highlight the advantages of such an integrated process. The program-

ming system provides end-to-end abstractions and enables scientific/engineering applications

to discover, query, interact with, and control instrumented physical systems in a semantically

meaningful way.

The rest of the chapter is organized as follows. Section 7.2 describes the architecture

of the autonomic data center management framework. Section 7.3 presents the use of the

Gridmap/iZone programming system for integrating sensor systems with computational pro-

cesses. An experimental evaluation is presented 7.4. Section 7.5 discusses related work. Sec-

tion 7.6 concludes this chapter.

Simulation Model

Real
-
time

Sensor Data

Online Cooling &

Job allocation strategies

Temperature

Model

Current job

distribution

Power

models

Cooling

models

Local temperature

distributions

In
-
network Possessor &

Dynamic Job

allocation scheduler
Localized job migration

Data

Archive

Local in
-
network

adaptation/scheduling loop

Centralized global

management loop

Figure 7.2: A two-level autonomic data center management system.

7.2 Architecture of a Two-level Autonomic Data Center Management System

Recent trends toward dense blade computing, server virtualization as well as unbalanced load

distributions contribute to increased rack power densities and introduce dynamic hot spots in

the data center, and as a result, dense online monitoring systems are necessary to avoid poten-

tial consequences. For example, the collected data can facilitate online troubleshooting (e.g.,

hotspot alarms, uneven load distributions) and trigger preventive maintenance. In the data

89

center management scenario addressed in this research, sensors monitor data center operating

conditions such as temperature, humidity and airflow in real time, provide non-intrusive and

fine-grained data collection, and enable online processing. The data collected from sensors and

the derived data computed within the sensor network are then transported to compute servers

where this data is integrated with computational processes and workload schedulers, which use

this data to take issues such as heat distribution, air flow and cooling into account while making

management decisions.

In this section, we present an autonomic data center management framework that supports

the above scenario at two levels as illustrated in Figure 7.2. Reactive online management is

supported through local processing and decision making within the sensor network. Proactive

management is achieved using computational processes that use the data from the sensors and

model the physical phenomena in the data center, evaluate different managements strategies

and define longer term management policies. In the rest of this section, we describe the main

components of the framework as well as its operation in more detail.

Sensor Data Collection and In-network Processing: The sensor network monitors and

collects data about the operating conditions. Data can be directly collected from the sensor

nodes or computed using in-network computations, e.g., interpolation. The collected sensor

data is transported to the compute servers and used by the computational processes that, for

example, model the thermodynamic phenomenon in the data center, or make mapping and

scheduling decisions. Sensor data can also be locally processed within the sensor network to

detect and possibly respond to events of interest, e.g., a hotspot.

Simulation and Computational Processes: The simulation models and computational

processes often need global information about the data center in order to optimize its opera-

tions and make management and control decisions. The required information includes the data

center operating conditions monitored by sensors, for example, to provide an initial temper-

ature distribution to a thermodynamics model [10, 84, 111], or to provide inputs to learning

models and/or prediction processes [84]. Models are also useful for correlating current opera-

tional data (e.g., temperature distributions) with historical data for data center under different

job allocation policies.

90

Policy Selection and Workload Allocation: The results of the data analysis and computa-

tional processes are used to select appropriate data center operation policies as well as mapping

and scheduling strategies, so as to optimize the overall operation of the data center in terms

of energy consumptions, costs, throughputs, etc. For example, polices proposed in literature

include “coolest inlet temperatures with lower number of localized hotspots” [84], “minimal

power consumption at machines”, “uniform outlet temperatures” and “minimal heat recircula-

tion” [111]. Note, the focus of this research is not defining new polices but using online sensor

data to select appropriate policies as well as mapping and scheduling strategies.

Instrumented

Data Center

(2) Request application

specified sensor data
 Data

Archive

Data

Archive
(3a) Retrieve real
-
time

interpolated data

Job requests
Job requests

(3b) Retrieve current

load distribution

(3c) Retrieve historical

information

(4) Simulation processes: e.g.,

optimize power usage and job

throughput

(5a) update temperature control

policy, e.g., cooling configuration

(5b) Update job allocation policy

Job requests
Job requests

(1) Job requests

Power

models

(7) Update data archive

Job migration
Job migration

(6) In
-
network Analysis,

e.g., hotspots

Sensor data
 Simulation grid
Sensor data
 Simulation grid

Figure 7.3: Enabling autonomic management of instrumented data centers using the
GridMap/iZone programming system.

7.2.1 Two level Autonomic Data Center Management

The above architecture is used to enable autonomic data center management at two levels. At

the local level, sensor data is analyzed within the sensor-network to identify and enable a timely

response to policy violations or undesirable changes in the data center’s operating conditions.

For example, local sensor data may be used to detect a developing hot spot or a violation of

current energy consumption policies, and as a result, adjust the workload allocation by migrat-

ing jobs. Note that the objective of management at this level is to make local adaptation to

ensure that current policies are not violated. More global adaptation as well as policy changes

are made in the more expensive (and less frequent) global management loop.

91

The global management loop operates at the data center level. It uses data about the entire

data center and the applications, along with historical data and simulation models to generate

longer-term policies and allocation strategies, for example, based on load distributions, tem-

peratures, air flow and recirculation, response time, throughput, etc. The overall process is

illustrated in Figure 7.2.

A key advantage of such a two-level approach is that the frequency of expensive data col-

lection and global decision making can be reduced using local management. Furthermore, the

local management can also react more quickly to undesirable change and policy violations.

These advantages are demonstrated in the Section 7.4.

7.3 Enabling Instrumented Data Center Management with GridMap/iZone Pro-

gramming System

As described above, the autonomic sensor-driven data center management strategy combines

sensor systems, simulation processes, and online schedulers to improve energy efficiency and

workload performance. This requires a programming system to integrate the sensor systems and

models, as well as in network support to enable applications to discover, query, interact with,

and control the instrumented physical system using semantically meaningful abstractions. The

GridMap/iZone [51, 52] programming system addresses these requirements and includes ab-

stractions and runtime mechanisms for integrating sensor systems with applications processes,

as well as for in-network data processing such as aggregation, adaptive interpolation, event

detections, and assimilation.

The GridMap/iZone programming system enables the two level instrumented data center

management outlined above as follows. First, it provides programming abstractions for inte-

grating sensor systems with computational models for application processes and with other ap-

plication components in an end-to-end manner. Second, it provides programming abstractions

and system software support for developing in-network data processing mechanisms. Specif-

ically, the temporal and spatial correlation of sensor measurements are leveraged to tradeoff

between the complexity of coordination among sensors and the savings that result from having

fewer sensors for in-network processing, while maintaining the data quality required by the

92

applications.

7.3.1 Using GridMap/iZone Programming System for Data Center Management

The use of the GridMap/iZone programming system for data center management is illustrated

using a autonomic power aware instrumented data center scenario where the heat distribution

model queries temperature sensors using the GridMap operator as illustrated in Figure 7.3. The

query is routed to appropriate regions of the sensor network and the interpolated values at each

grid point of the GridMap are computed using the iZone abstraction and its in-network mech-

anisms [51], either periodically or on-demand. Current workloads are also retrieved. This data

is used by the simulation processes to correlate CPU utilization and power consumption mod-

els, and to generate energy consumption and workload allocation policies in order to optimize

data center usage. This online monitoring of operating conditions together with simulation

and computational processes adapt to changes in the data center environment to complete the

end-to-end management and control loop.

To illustrate the use of the programming system, consider a scenario where in-network pro-

cesses compute operating parameters such as local temperatures or differences of the temper-

atures within a neighborhood specified by the application and/or management process. When

hotspots are detected, an event is triggered, for example, to locate a resource with the lowest

temperature for job re-allocation. As illustrated in Figure 7.3, a part of the workloads (e.g., jobs

at the hotspot) may be migrated to keep the operating conditions within the desired constraints

for a longer time without requiring a complete re-allocation. Note that the region of interest that

is monitored as well as the density of sensing can be changed at runtime to adapt to the dynam-

ics of the data center operating conditions using the abstractions provided by GridMap/iZone.

7.3.2 Programming In-network Policies

This section discusses how different in-network polices can be implemented using in-network

mechanisms and the GridMap/iZone programming system. As discussed earlier, the initial job

allocation policies (e.g., a baseline uniform job allocation policy) are generated by simulation

processes. When this policy is generated, it is also communicated to the sensor system and

triggers reactive behaviors corresponding to the policy. For example, a simple behavior could

93

IN-NETWORK ANALYSIS:
query(GridMap, radius, FindMinimals (n))
1 GridMap = [<100:10:200, 50:5,100>]
2 For each sensor/cluster
3 compute associated grid point
4 get(data, radius)
5 interpolate at the grid point
6 receive the n minimal grid point

values from neighbors
7 compute the n new minimal values
8 send(loc_1,loc_2,...,loc_n)

Figure 7.4: Example of in-network analysis of sorting n minimal grid point values at each node
using GridMap/iZone.

be that if the average temperature measured is greater than the redline value, migrate part of

job from that computer to other computing nodes where the temperature and/or the utilization

rate is less than a threshold. The sensor network continues monitoring temperatures, and when

machine temperature is higher than the redline value, an in-network job management/control

action is activated. Other allocation policies, such as uniform outlet profiling, maximize mini-

mal inlet temperature, can be selected and the corresponding in-network policies and algorithms

can be implemented using the GridMap/iZone programming system. We discuss two examples

of such in-network policies using GridMap/iZone below.

Move to machine with lowest inlet temperature: This is one of the most straightforward

in-network policies. Under this policy, when the inlet temperature is greater than the redline

temperature (e.g., external machine temperature is greater than 25 oC), the tasks on the machine

need to move to other machines. One of the intuitive algorithms is to move tasks to machines

with the lowest inlet temperature. In this case, the continuous sensor monitoring can be used

to detect the lowest temperature. With this in-network policy, the in-network processing task

is to find the lowest inlet temperatures from time to time. An in-network sorting algorithm is

used to maintain a list of a few (usually 1 - 4) machines with the lowest inlet temperatures from

time to time, as shown in Figure 7.4. The task is then migrated to a machine from this list. As

a result, inlet temperature is maintained below the redline threshold in the data center without

requiring expensive global scheduling across the whole data center.

Move to machine generating lowest recirculation: In unbalanced heat recirculation envi-

ronments, minimizing maximal inlet temperature [111] can be used as centralized scheduling

94

IN-NETWORK ANALYSIS:
1 - 5 same as Figure 4
find lowest average and variance

around neighbors: avgvar(n)
6 receive(res_k, loc_k) from neighbor k
7 compute avgvar(n neigb grid points)

res = a x avg + b x var
8 (res, i) = min(res_k)
9 send(res_i, loc_i)

Figure 7.5: Example of an in-network algorithm for computing average and variance in the
neighborhood of each grid point.

policy. That is, tasks are allocated to nodes generating lowest recirculation. The corresponding

in-network algorithm can be designed so as to find the region that has a low inlet temperature

and also has a neighborhood with a relatively low inlet temperature, i.e., for which low recircu-

lation is indicated. The corresponding in-network policy is listed in Figure 7.5, and computes

the weighted average and variance in the neighborhood of each grid point of the GridMap from

time to time, and the region with the lowest average and variance is selected for re-assigning

tasks at runtime.

Other in-network policies can be developed and implemented with the GridMap/iZone pro-

gramming abstractions to adapt to the change of the operating conditions.

7.4 Simulation and Results

The effectiveness of in-network data processing for the autonomic management of instrumented

data centers is evaluated using a simulated instrumented data center environment where cooling

and energy consumptions models presented in [10] are used for simulating the operation of the

data center with two rows of racks arranged in a physical cold aisle and hot aisle layout, and

synthetic sensor data is obtained using the heat distribution equations [84, 111, 122]. Cold air

is assumed to be supplied by a central air conditioner. The synthetic sensor data is integrated

with simulation processes, data archives and a user subsystem through gateway nodes. Queries

issued by the computational process are routed to appropriate sensor nodes via the gateway and

cluster heads of the sensor network, and data values are aggregated and interpolated as they are

routed back. The rest of this section focuses on an evaluation of the effectiveness and benefits

95

of the proposed management approach, and especially the use of local in-network adaptations,

using end-to-end application scenarios.

0 t_10 t_20 t_30 t_40 t_50
24.6

24.8

25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

time

T
em

pe
ra

tu
re

 (
C

)

threshold

invoking collection of raw data for simulation processes

Figure 7.6: Maximal temperatures at the data center over time with global centralized manage-
ment.

In a typical scenario, temperature values are collected from the sensor network, and are

integrated with simulation processes offline to predict temperature distribution and determine

appropriate job allocation policies. The plot in Figure 7.6 illustrates the maximal tempera-

tures in the data center over time after running such an global management process. The plot

demonstrates that the process has to be repeated often, which is expensive, and as a result, this

approach cannot respond quickly to changes.

On the other hand, in-network analysis can be used to trigger local adaptations, so that,

for example, when temperature increases above a certain threshold, a corresponding job in-

stance can be migrated. This can achieved by appropriately specifying the reaction field of the

GridMap operators, and locally collecting and processing (temperature) measurements, evalu-

ating reaction rules and performing the required runtime job reallocation/migration.

The plot in Figure 7.7 compares the effect (in terms of the temperature at individual nodes)

of using global (centralized) management, in-network local management, no management. It

can be seen from this plot that with no management, the temperature of node with id 59 exceeds

the redline threshold (i.e., 25 oC in this example). Furthermore, the effect of using in-network

adaptations and the resulting temperature distribution (shown using the dotted line with circles)

is comparable to using global centralized management (shown using the dotted line with stars).

96

0 20 40 60 80 100
22

22.5

23

23.5

24

24.5

25

25.5

26

26.5

27

Node Id

T
em

pe
ra

tu
re

 (
C

)

No action
In−network analysis
Centralized analysis

Figure 7.7: A comparison of the impact (in terms of node temperatures) of global centralized
management, in-network management and no management.

Figure 7.8 plots the maximum temperatures in data center over a period of time with and

without in-network adaptations. This plot demonstrates the effectiveness of using in-network

management and its ability to response quickly to increases in the temperature. Figure 7.9 plots

the communication overheads, in terms of number of messages, when using global centralized

management versus in-network local management. The plot show that in-network management

only uses 1/5th the number of messages (and consequently much less bandwidth).

The above results demonstrate the effectiveness of in-network local management, both in

terms of reducing the costs of management and make it more responsive. These results validate

our premise that it can be effectively used in conjunction with global management to achieve

end-to-end autonomic management of instrumented data centers. We are currently continuing

our experiments to further evaluate more realistic end-to-end scenarios.

7.5 Related Work

There exist three general ways of improving the energy consumptions and job management at

the data center level. The first, which is the focus of this work, is to improve and optimize the

cost from an end-to-end management point of view with the help of online data from the sensor

network. The second is to improve and optimize the cooling costs, and especially the temper-

ature distribution, during the operation of a data center. Finally, approaches for improving the

97

1 2 3 4 5 6 7 8 9
23.5

24

24.5

25

25.5

26

time

T
em

pe
ra

tu
re

 (
C

)

Maximal temperature

Without in−network adaptation
In−network adaptation

Figure 7.8: Maximum temperatures in the data center over time with and without in-network
management and job migration.

power efficiency of application using various tradeoffs have been developed.

0

1000

2000

3000

4000

5000

6000

7000

100
 200
 300
 400
 500
 600
 700
 800

Number of sensor nodes

N
u

m
b

er
 o

f
m

es
sa

g
es

Central Analysis
 In-network Analysis

Figure 7.9: Communication overheads, in terms of number of messages, when using global
centralized and in-network management.

Sensor networks for data center management. In [74], wireless sensor networks are

deployed within a data center to collect data to understand heat distributions as a first step

toward improving data center energy efficiency. Que [20] is a general rapid prototyping tool,

and is developed to offer a scripting-based exploration environment and provide a simulation

and emulation environment for a multi-platform tiered system. Our work is complementary to

these approaches. After determining a centralized scheduling policy, we configure the sensor

network with in-network policies as part of an end-to-end data center management system. Our

goal to use local in-network management in conjunction with global management to reduce

98

computation and communications overheads.

Making cooling more effective. Thermal-aware scheduling, proposed in [83], used simula-

tion to conduct thermal evaluation. Machine learning methods are presented [84] to predict the

effects of workload, cooling and airflow on the data center temperature distribution. In [111],

a new policy called minimizing maximal inlet temperature is proposed to increase cooling ef-

ficiency for homogeneous datacenter management. However, an infrastructure for reacting to

dynamically changing environments and managing emergencies also needs to model the ther-

mal management policy itself at a fine grain, in terms of both temperature and performance,

which is not considered in this work. This chapter used in-network policies to react to the

dynamics in data center operation as part of a end-to-end autonomic management system.

Improving power efficiency using different tradeoffs. Several research efforts propose

methods to jointly manage power and performance. Dynamic Voltage Scaling (DVS) [47]

scales a processorś frequency, thereby reducing CPU performance and conserving system

power. Another approach is to power-on only the minimal amount of server capacity as re-

quired for interactive applications [84]. A utility function is used in [60] to trade off response

time with power saving for connection intensive web-based applications. C-Oracle [95] is a

software prediction infrastructure that makes online predictions for a major class of data center-

based systems, i.e., Internet services. Our work provides a two-level autonomic management

system where at the higher level, global physical properties such as air flows and power con-

sumption and utilization are used, and the at the lower level, a localized fast prediction model

(e.g., with in-network policies) is used to adapt to changes when necessary. This differs from

related efforts where global computations and predictions are required all the time.

7.6 Summary

This chapter proposed a two-level autonomic data center management system for instrumented

data centers, described how it can be implemented using the GridMap/iZone programming sys-

tem. Sensor networks monitor data center operating conditions such as temperature, humidity,

and airflow, in real time, provide non-intrusive and fine-grained data collection, and enable on-

line processing. The sensor data is integrated with computational processes and job schedulers

99

to take phenomena such as heat distribution and air flows into consideration, and to optimize

overall data center performance it terms of power consumption and job throughput. Experi-

mental results show that the in-network analysis with the programming system achieve timely

response and maintain near optimal management and control while reducing overheads.

100

Chapter 8

Summary, Conclusion and Future Work

8.1 Summary

The overall goal of this research is to develop sensor system middleware and programming sup-

port that will enable distributed networks of sensors to function, not only as passive measure-

ment devices, but as intelligent data processing instruments, capable of data quality assurance,

statistical synthesis and hypotheses testing as they stream data from the physical environment to

the computational world. Further, application should be able to interact with the sensor system

to control sensing and data processing behaviors.

The programming system enable sensor-driven applications at two levels. First, it provides

programming abstractions for integrating sensor systems with computational models for sci-

entific processes (e.g. biophysical, geophysical processes) and with other application compo-

nents in an end-to-end experiment. Second, it provides programming abstractions and system

software support for developing in-network data processing mechanisms. The former supports

complex querying of the sensor system, while the latter enables development of in-network data

processing mechanisms such as aggregation, adaptive interpolation and assimilations, both via

semantically meaningful abstractions. Specifically for the latter, we explore the temporal and

spatial correlation of sensor measurements in the targeted application domains to tradeoff be-

tween the complexity of coordination among sensor clusters and the savings that result from

having fewer sensors for in-network processing, while maintaining an acceptable error thresh-

old. Experimental results show that the proposed in-network mechanisms can facilitate the

efficient usage of constraint resources and satisfy data requirement in the presence of dynamics

and uncertainty.

The research presented in this thesis is evaluated using two application scenarios: (1) the

101

management and optimization of an instrumented oil field and (2) the management and opti-

mization of an instrumented data center. In the first scenario, the programming abstractions

and systems software solutions enable end-to-end management processes consisting of detect-

ing and tracking reservoir changes, assimilating and inverting data for determining reservoir

properties, and providing feedback to enhance temporal and spatial resolutions and track other

specific processes in the subsurface. The overall goal is to ensure near optimal operation of

the reservoir in terms of profitability, safety and/or environmental impact. In the second sce-

nario, the autonomic instrumented data center management system addresses power consump-

tion, heat generation and cooling requirements of the data center, which are critical concerns

especially as the scales of these computing environments grow. Sensor networks monitor tem-

perature, humidity, and airflow in real time, and provide non-intrusive and fine-grained data

collection, and enable real-time processing. And these sensors are integrated with computa-

tional processes and job schedulers to take phenomenon, such as heat distribution and air flows

into consideration, and to optimize data center performance in terms of energy consumption and

throughput. Experimental results show that the provided programming system reduces over-

heads while achieving near optimal and timely management and control in both application

scenarios.

In summary, this research investigated a programming system for sensor/actuate-driven

applications by providing semantically meaningful abstractions and runtime mechanisms to

seamlessly access and integrate a wide area sensor data into computational models and support

scalable in-network data processing, such as aggregation, adaptive interpolation and assimila-

tions.

8.2 Conclusion and Contributions

Technical advances are leading to a pervasive computational ecosystem that integrates com-

puting infrastructures with embedded sensors and actuators, and giving rise to a new paradigm

for monitoring, understanding, and managing natural and engineered systems – one that is

102

information/data-driven. This research investigates a programming system to support the de-

velopment of in-network data processing mechanisms, and enable scientific/engineering ap-

plications to discover, query, interact with, and control instrumented physical systems using

semantically meaningful abstractions. This includes abstractions and runtime mechanisms for

integrating sensor systems with computational models for scientific processes, as well as for

in-network data processing such as aggregation, adaptive interpolation and assimilations.

This research provided a software infrastructure that enables experts to experiments with

different aspects of end-to-end dynamic data-driven autonomic application and systems, in-

cluding data acquisition, data assimilation and uncertainty management, data transport, and

dynamic data injection. Specifically, the research is driven by the management and control of

subsurface geosystems, such as the management and optimization of instrumented oil reser-

voirs. The programming abstractions and systems software solutions can enable the end-to-end

management process for detecting and tracking reservoir changes, assimilating and inverting

data for determining reservoir properties, and providing feedback to enhance temporal and spa-

tial resolutions and track other specific processes in the subsurface, so as to ensure new optimal

operation (in terms of profitability, safety or environmental impact). Another example is the au-

tonomic instrumented data center management system for green computing. Sensor networks

are used to monitor temperature, humidity, airflow, and energy-related data, computational pro-

cesses and job schedulers in order to optimally manage energy and performance of data center.

Such data center energy and performance management processes integrate real time monitor-

ing data from sensor networks, computational processes of physics phenomenon to correlate

and profile real-time input with end-user applications to optimize data center performance in

terms of energy consumption and throughput. Experimental results show that the provided pro-

gramming system reduces overheads while achieving near optimal and timely management and

control in both application scenarios.

Key contributions of this research are summarized below.

The GridMap/iZone Programming System

The GridMap/iZone programming systems enable sensor-driven applications at two levels.

First, it provides programming abstractions for integrating sensor systems with computational

103

models for scientific processes (e.g. biophysical, geophysical processes) and with other appli-

cation components in an end-to-end experiment. Second, it provides programming abstractions

and system software support for developing in-network data processing mechanisms. The for-

mer supports complex querying of the sensor system, while the latter enables development of

in-network data processing mechanisms such as aggregation, adaptive interpolation and assimi-

lations, both via semantically meaningful abstractions. Specifically, the end-to-end abstractions

provided by programming system is to enable scientific/engineering applications to discover,

query, interact with, and control instrumented physical systems in a semantically meaningful

way. For the latter, we explore the temporal and spatial correlation of sensor measurements

in the targeted application domains to tradeoff between the complexity of coordination among

sensor clusters. Experimental results show that the proposed in-network mechanisms can facil-

itate the efficient usage of resources and satisfy data requirement in the presence of dynamics

and uncertainty.

A Decentralized Content-based Aggregation Service for Pervasive Grid Environments

Associative Rendezvous (AR) was as a paradigm for content-based decoupled interactions for

pervasive grid applications. We also present Meteor, a content-based middleware infrastructure

to support AR interactions. The aggregation service builds on the Meteor content-based mid-

dleware infrastructure and extends the Associative Rendezvous (AR) model for content-based

information discovery and decoupled interactions. Specifically, it extends the AR abstractions

to enable content-based aggregation queries to be flexibly specified using keywords, partial

keywords and ranges. This also includes specification of recurrent and spatially constrained

queries. Further, it builds on a self-organizing overlay network and the Squid content-based

routing infrastructure to construct aggregation tries so that query propagation routes can be

used for back-propagating and aggregating matching data elements. The deployment and ex-

perimental evaluation of the aggregation service are also presented. Evaluations include exper-

iments using deployments on a LAN, the wireless ORBIT testbed [2] at Rutgers University,

and the PlanetLab wide-area testbed [93], as well as simulations. Evaluation results demon-

strate the scalability, effectiveness and performance of this decentralized aggregation service to

support pervasive grid applications.

104

Enabling End-to-end Sensor-driven Scientific and Engineering Applications

The research presented in this thesis is evaluated using two application scenarios: (1) the man-

agement and optimization of an instrumented oil field and (2) the management and optimization

of an instrumented data center. In the first scenario, the programming abstractions and systems

software solutions enable end-to-end management processes consisting of detecting and track-

ing reservoir changes, assimilating and inverting data for determining reservoir properties, and

providing feedback to enhance temporal and spatial resolutions and track other specific pro-

cesses in the subsurface. The overall goal is to ensure near optimal operation of the reservoir

in terms of profitability, safety and/or environmental impact. In the second scenario, the auto-

nomic instrumented data center management system addresses power consumption, heat gener-

ation and cooling requirements of the data center, which are critical concerns especially as the

scales of these computing environments grow. Sensor networks monitor temperature, humidity,

and airflow in real time, and provide non-intrusive and fine-grained data collection, and enable

real-time processing. And these sensors are integrated with computational processes and job

schedulers to take phenomenon, such as heat distribution and air flows into consideration, and

to optimize data center performance in terms of energy consumption and throughput. Experi-

mental results show that the provided programming system reduces overheads while achieving

near optimal and timely management and control in both application scenarios.

8.3 Future Work

The next decade of scientific discovery must be driven by advances in information technology.

The sciences are fundamentally computational, which is also the essential challenges addressed

by this research. The directions for future extensions of this research are envisioned as below.

Resource aware in-network computation in the presence of mobility. A range of in-network

estimation mechanisms have been proposed with this research for aggregation, adaptive in-

terpolation and assimilations in the presence of available resources and required quality. One

extension is to develop resource aware mechanisms in the presence with mobility. For example,

by using location aware infrastructure provided by the GridMap/iZone, in-network processing

can make use of the changed location information and resource capability of mobile sensors

105

around target area (e.g., due to the varied members and available resources of an iZone). Fur-

thermore, the system should also address the challenge of the mobility, such as synchronization

with in-network computation.

New application domains that use GridMap/iZone end-to-end programming system. The

GridMap/iZone system can be used to develop, deploy, and experiment with sensor networks

at scale in complex real-world outdoor urban environment. For example, for the city wide

data-intensive, sensor-driven applications, an vehicle traffic and emergency surveillance sys-

tem is useful for traffic control. The programming system for such applications should be

location aware and mobility friendly to estimate traffic conditions from time to time. Our pro-

gramming and runtime system can integrate the real-time monitoring system with advanced

models and simulations to enable online data analysis and control with an end-to-end con-

troller via feedback for vehicular traffic surveillance. Such controller can be implemented with

by GridMap/iZone programming abstractions to enable the detection of natural or man-made

events. Another example application domain is the aquatic observing systems, which can use

GridMap/iZone programming for adaptive sampling based on application specific observations.

106

References

[1] Project JXTA. Internet: http://www.jxta.org.

[2] ORBIT testbed. Internet: http://www.orbit-lab.org/.

[3] Karl Aberer, Manfred Hauswirth, and Ali Saleh. Zero-programming sensor network
deployment. Next Generation Service Platforms for Future Mobile Systems (SPMS),
January 2007.

[4] Ioannis Aekaterinidis and Peter Triantafillou. Internet scale string attribute pub-
lish/subscribe data networks. In Proceedings of the ACM 14th Conference on Infor-
mation and Knowledge Management (CIKM), Bremen, Germany, October 2005.

[5] United States Environmental Protection Agency. Report to congress on server and data
center energy efficiency, 2007.

[6] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, and W. J. Kaiser. Wireless inte-
grated network sensors: Low power systems on a chip. Proceedings of the 24th Euro-
pean Solid State Circuits Conference, 1999.

[7] Amol Bakshi, Viktor K. Prasanna, Jim Reich, and Daniel Larner. The abstract task
graph: A methodology for architecture-independent programming of networked sensor
systems. Workshop on End-to-End, Sense-and-Respond Systems, Applications, and Ser-
vices, EESR 05, 2005.

[8] Roberto Baldoni, Carlo Marchetti, Antonino Virgillito, and Roman Vitenberg. Content-
based publish-subscribe over structured overlay networks. In Proceedings of the 25th
International Conference on Distributed Computing Systems (ICDCS ’05), Columbus,
OH, June 2005.

[9] Nilanjan Banerjee, Jacob Sorber, Mark D. Corner, Sami Rollins, and Deepak Ganesan.
Triage: Balancing energy and quality of service in a microserver. In Proceedings of the
5th International Conference on Mobile Systems, Applications, and Services (MobiSys
2007), June 2007.

[10] Cullen Bash and George Forman. Cool job allocation: Measuring the power savings of
placing jobs at cooling-efficient locations in the data center. USENIX Annual Technical
Conference 2007, June 2007.

[11] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and Rajeev Motwani. Estimat-
ing aggregates on a peer-to-peer network. Technical Report, Computer Science Depart-
ment, Stanford University, 2003.

[12] Bryan Bayerdorffer. Distributed programming with associative broadcast. In Proceed-
ings of the 27th Annual Hawaii International Conference on System Sciences, Volume 2:
Software Technology (HICSS94-2), Wailea, HW, USA, pages 353–362, 1994.

107

[13] Ranjita Bhagwan, George Varghese, and Geoffrey M. Voelker. Cone: Augmenting dhts
to support distributed resource discovery. Technical Report, UCSD, CS2003-0755, 2003.

[14] Matthew Brown, Seth Gilbert, Nancy Lynch, Calvin Newport, Tina Nolte, and Michael
Spindel. The virtual node layer: A programming abstraction for wireless sensor net-
works. ACM SIGBED Review, 4(3):7–12, 2007.

[15] Matthew Caesar, Miguel Castro, Edmund B. Nightingale, Greg O’Shea, and Antony
Rowstron. Virtual ring routing: network routing inspired by DHTs. ACM SIGCOMM
Computer Communication Review, 36(4):351–362, September 2006.

[16] Antonio Carzaniga and Alexander L. Wolf. Content-based networking: A new commu-
nication infrastructure. In NSF Workshop on an Infrastructure for Mobile and Wireless
Systems, October 2001.

[17] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J. Fanklin, Joseph M.
Hellerstein, Wei Hong, Sailesh Krishnamurthy, Sam Madden, Vijayshankar Raman, Fred
Reiss, and Mehul Shah. TelegraphCQ: Continuous dataflow processing for an uncertain
world. In Proceedings of CIDR Conference, 2003.

[18] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca, Scott
Shenker, and Joseph Hellerstein. A case study in building layered DHT applications.
In Proceedings of the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 97–108, 2005.

[19] Elaine Cheong, Judy Liebman, Jie Liu, , and Feng Zhao. TinyGALS: A programming
model for event-driven embedded systems. Proceedings of the 18th Annual ACM Sym-
posium on Applied Computing (SAC’03), 2003.

[20] David Chu, Feng Zhao, Jie Liu, and Michel Goraczko. Que: A sensor netowrk rapid
prototyping tool with application experiences from a data center deployment. The 5th
European Conference on Wireless Sensor Networks (EWSN 2008), 2008.

[21] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A dis-
tributed anonymous information storage and retrieval system. International Workshop
Design Issues in Anonymity and Unobservability, 2001.

[22] Abhimanyu Das and David Kempe. Sensor selection for minimizing worst-case pre-
diction error. International Conference on Information Processing in Sensor Networks
(IPSN’08), April 2008.

[23] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA, November 2004.

[24] Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and David Culler. Energy metering for
free: Augmenting switching regulators for real-time monitoring. In Proceedings of Sev-
enth International Conference on Information Processing in Sensor Networks (IPSN’08),
April 2008.

[25] Prabal Dutta, Jonathan Hui, Jaein Jeong, Sukun Kim, Cory Sharp, Jay Taneja, Gilman
Tolle, Kamin Whitehouse, and David Culler. Trio: Enabling sustainable and scalable

108

outdoor wireless sensor network deployments. The Fifth International Conference on
Information Processing in Sensor Networks: Special Track on Sensor Platform, Tools,
and Design Methods for Network Embedded Systems (IPSN/SPOTS ’06), April 2006.

[26] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme. Connecting the phys-
ical world with pervasive networks. IEEE Pervasive Computing, 1(1):59–69, January
2002.

[27] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

[28] Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Rapid development and
flexible deployment of adaptive wireless sensor network applications. Proceddings
of the 24th International Conference on Distributed Computing Systems (ICDCS’05),
pages 653–662, 2005.

[29] Geoffrey Fox, Shrideep Pallickara, and Xi Rao. A Scaleable Event Infrastructure for
Peer to Peer Grids. In Proceedings of the 2002 joint ACM-ISCOPE conference on Java
Grande, pages 66–75, Seattle, Washington, USA, 2002. ACM Press.

[30] Saurabh Ganeriwal, Chih-Chieh Han, and Mani Srivastava. Poster abstract: Spatial
average of a continuous physical process in sensor networks. Proceedings of the First
ACM Conference on Embedded Networked Sensor Systems (SenSys), 2003.

[31] Deepak Ganesan, Deborah Estrin, and John Heidemann. DIMENSIONS: Why do we
need a new data handling architecture for sensor networks? In Proceedings of the ACM
Workshop on Hot Topics in Networks, pages 143–148, Princeton, NJ, USA, October
2002. ACM.

[32] Deepak Ganesan, Ben Greenstein, Deborah Estrin, John heidemann, and Ramesh Govin-
dan. Multiresolution storage and search in sensor networks. ACM Transactions on Stor-
age (TOS), 1(3):277–315, August 2005.

[33] Deepak Ganesan, Sylvia Ratnasamy, Hanbiao Wang, and Deborah Estrin. Coping with
irregular spatio-temporal sampling in sensor networks. 2nd Workshop on Hot Topics in
Networks (HotNets-II), 2003.

[34] Jun Gao and Peter Steenkiste. Rendezvous points-based scalable content discovery with
load balancing. In Proceedings of the Fourth International Workshop on Networked
Group Communication (NGC’02), Boston, MA, pages 71–78, October 2002.

[35] David Gay, Philip David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesC language: A holistic approach to networked embedded
systems. In Proceedings of the ACM SIGPLAN 2003 conference on Programming Lan-
guage Design and Implementation, pages 1–11, 2003.

[36] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srinivasan Seshan. IrisNet:
An architecture for a worldwide sensor web. IEEE Pervasive Computing, 2(4):22–33,
2003.

[37] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya Ramanathan,
and Deborah Estrin. EmStar: a software environment for developing and deploying
wireless sensor networks. CENS Technical Report 34, December 2003.

109

[38] Ben Greenstein, Eddie Kohler, , and Deborah Estrin. A sensor network application con-
struction kit (SNACK). Proceedings of 2nd ACM Conference on Embedded Networked
Sensor Systems (SenSys ’04), November 2004.

[39] Gryphon: publish/subscribe over public networks. http://www.research.ibm.com/
gryphon/papers/Gryphon-Overview.pdf.

[40] Ramakrishna Gummadi, Omprakash Gnawali, and Ramesh Govindan. Macro-
programmingwireless sensor networks using Kairos. Proceedings of the International
Conference on Distributed Computing in Sensor Systems (DCOSS), pages 126–140, June
2005.

[41] Abhishel Gupta, Ozgur D. Sahin, Divyakant Agrawal, and Amr El Abbadi. Meghdoot:
Content-based publish/subscribe over p2p networks. Lecture Notes in Computer Sci-
ence, 3231:254–273, 2004.

[42] Gregory Hackmann, Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu. Ag-
imone: Middleware support for seamless integration of sensor and ip networks. Pro-
ceedings of 2006 International Conference on Distributed Computing in Sensor Systems
(DCOSS ’06), 2006.

[43] Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler, and Mani Srivastava. A dy-
namic operating system for sensor nodes. In Proceedings of 3rd International Confer-
ence on Mobile Systems, Applications, and Services (MobiSys ’05), pages 163–176, June
2005.

[44] Nicholas J.A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, and Alec Wol-
man. Skipnet: A scalable overlay network with practical locality properties. Proceed-
ings of Fourth USENIX Symposium on Internet Technologies and Systems (USITS ’03),
2003.

[45] Wendi Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan. Energy-efficient
communication protocols for wireless microsensor networks. Proceedings of the Hawaii
International Conference on System Sciences, January 2000.

[46] Wendi B. Heinzelman, Amy L. Murphy, Hervaldo S. Carvalhos, and Mark A. Perillo.
Middleware to support sensor network applications. IEEE Network Magazine Special
Issue, January 2004.

[47] Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a
compiler algorithm for CPU energy reduction. Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 38–48, 2003.

[48] Jonathan W. Hui and David Culler. The dynamic behavior of a data dissemination pro-
tocol for network programming at scale. In Proceedings of the 2nd international confer-
ence on Embedded networked sensor systems, pages 81–94. ACM Press, 2004.

[49] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks. Proceedings of the
Sixth Annual International Conference on Mobile Computing and Networking (Mobi-
COM ’00), August 2000.

110

[50] JavaSpaces. http://www.javaspaces.homestead.com/.

[51] Nanyan Jiang and Manish Parashar. In-network data estimation mechanisms for sensor-
driven scientific applications. Proceedings of the 15th International Conference on High
Performance Computing (HiPC), December 2008.

[52] Nanyan Jiang and Manish Parashar. Programming support for sensor-based scientific
applications. Proceedings of the Next Generation Software (NGS) Workshop in conjunc-
tion with the 22nd IEEE International Parallel and Distributed Processing Symposium
(IPDPS), April 2008.

[53] Nanyan Jiang and Manish Parashar. Enabling autonomic power-aware management of
instrumented data centers. In Proceedings of the Fifth Workshop on High-Performance,
Power-Aware Computing in conjunction with the 23nd IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2009.

[54] Nanyan Jiang and Manish Parashar. Enabling end-to-end data-driven sensor-based sci-
entific and engineering applications. In Proceedings of the Dynamic Data Driven Ap-
plication Systems (DDDAS 2009), in conjunction with the International Conference on
Computational Science (ICCS 2009), May 2009.

[55] Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar. Content-
based middleware for decoupled interactions in pervasive environments. Technical Re-
port Number 252, Wireless Information Network Laboratory (WINLAB), Rutgers Uni-
versity, April 2004.

[56] Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar. Enabling
applications in sensor-based pervasive environments. In Proceedings of the 1st Work-
shop on Broadband Advanced Sensor Networks (BaseNets), San Jose, CA, USA, October
2004.

[57] Nanyan Jiang, Cristina Schmidt, and Manish Parashar. A decentralized content-based
aggregation service for pervasive environments. 2006 ACS/IEEE International Confer-
ence of Pervasive Services (ICPS), pages 203–212, June 2006.

[58] Sanem Kabadayi, Adam Pridgen, and Christine Julien. Virtual sensors: abstracting data
from physical sensors. Proceedings of the 2006 International Symposium on World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pages 587 – 592, 2006.

[59] Aman Kansal, Jason Hsu, Mani Srivastava, and Vijay Raghunathan. Harvesting aware
power management for sensor networks. In Proceedings of 43rd Design Automation
Conference (DAC), July 2006.

[60] Jeffrey O. Kephart, Hoi Chan, Rajarshi Das, David W. Levine, Gerald Tesauro, Freeman
Rawson, and Charles Lefurgy. Coordinating multiple autonomic managers to achieve
specified power-performance tradeoffs. The 4th IEEE Conference on Autonomic Com-
puting, June 2007.

[61] Hector Klie, W. Bangerth, X. Gai, Mary F. Wheeler, P.L. Stoffa, Mrinal Sen, Man-
ish Parashar, U. Catalyurek, J. Saltz, and T. Kurc. Models, methods and middleware
for grid-enable multiphysics oil reservoir management. Engineering with Computers,
Springer-Verlag, 22:349–370, 2006.

111

[62] Kevin Klues, Vlado Handziski, Chenyang Lu, Adam Wolisz, David Culler, David Gay,
and Philip Levis. Integrating concurrency control and energy management in device
drivers. In Proceedings of 21st ACM Symposium on Operating Systems Principles
(SOSP 2007), October 2007.

[63] Venkata A. Kottapalli, Anne S. Kiremidjiana, Jerome P. Lyncha, Ed Carryerb,
Thomas W. Kennyb, Kincho H. Lawa, and Ying Lei. Two-tiered wireless sensor net-
work architecture for structural health monitoring. SPIEs 10th Annual International
Symposium on Smart Structures and Materials, 2003.

[64] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Phillip Hutto,
Arnab Paul, and Umakishore Ramachandran. DFuse: A framework for distributed data
fusion. Proceedings of the 1st international conference on Embedded networked sensor
systems (SenSys’03), pages 114–125, November 2003.

[65] Andreas Lachenmann, Pedro Jose Marron, Daniel Minder, and Kurt Rothermel. Meet-
ing lifetime goals with energy levels. In Proceedings of the 5th ACM Conference on
Embedded Networked Sensor Systems (SenSys’07), November 2007.

[66] Sung-Ju Lee, Puneet Sharma, Sujata Banerjee, Sujoy Basu, and Rodrigo Fonseca. Mea-
suring bandwidth between planetlab nodes. In Proceedings of Passive and Active Mea-
surement Workshop (PAM 2005), pages 292–305, Boston, MA, USA, March 2005.

[67] Philip Levis and David Culler. Mate: A tiny virtual machine for sensor networks. Pro-
ceedings of the 10th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS X), 2002.

[68] Philip Levis, David Gay, and David Culler. Active sensor networks. In Proceedings of
the Second USENIX/ACM Symposium on Networked Systems Design and Implementa-
tion (NSDI 2005), 2005.

[69] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and scal-
able simulation of entire TinyOS applications. Proceedings of the First ACM Conference
on Embedded Networked Sensor Systems (SenSys 2003), 2003.

[70] Philip Levis, Sam Madden, David Gay, Joe Polastre, Robert Szewczyk, Alec Woo, Eric
Brewer, and David Culler. The emergence of networking abstractions and techniques
in TinyOS. Proceedings of the First USENIX/ACM Symposium on Networked Systems
Design and Implementation, 2004.

[71] Philip Levis, Neil Patel, David Culler, and Scott Shenker. Trickle: A self-regulating al-
gorithm for code propagation and maintenance in wireless sensor networks. Proceedings
of the First USENIX/ACM Symposium on Networked Systems Design and Implementa-
tion (NSDI 2004), 2004.

[72] Periklis Liaskovits1 and Curt Schurgers. Leveraging redundancy in sampling-
interpolation applications for sensor networks. Proceedings of the third International
Conference on Distributed Computing on Sensor Systems (DCOSS), pages 324–337,
2007.

[73] Jie Liu, Maurice Chu, Juan Liu, James Reich, and Feng Zhao. State-centric program-
ming for sensor-actuator network systems. IEEE Pervasive Computing, 2(4):50–62,
2003.

112

[74] Jie Liu, Bodhi Priyantha, Feng Zhao, Chieh-Jan Mike Liang, Qiang Wang, and Sean
James. Towards discovering data center genome using sensor nets. In Proceedings of
The Fifth Workshop on Embedded Networked Sensors (HotEmNets’08), March 2008.

[75] Jie Liu and Feng Zhao. Towards semantic services for sensor-rich information systems.
Second IEEE/CreateNet International Workshop on Broadband Advanced Sensor Net-
works (Basenets 2005), 2005.

[76] Ting Liu and Margaret Martonosi. Impala: A middleware system for managing auto-
nomic, parallel sensor systems. ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP’03), June 2003.

[77] Konrad Lorincz, Bor rong Chen, Jason Waterman, Geoff Werner-Allen, and Matt Welsh.
Resource aware programming in the pixie os. In Proceedings of the 6th ACM Conference
on Embedded Networked Sensor Systems (SenSys’08), November 2008.

[78] Liqian Luo, Tarek F. Abdelzaher, Tian He, and John A. Stankovic. EnviroSuite: An
environmentally immersive programming framework for sensor networks. ACM Trans-
actions on Computational Logic, 5(3):543 – 576, 2005.

[79] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TAG: a
Tiny AGgregation service for Ad-Hoc sensor networks. in Proceedins of the USENIX
Symposium on Operating Systems Design and Implementation, 2002.

[80] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. TinyDB:
an acquisitional query processing system for sensor networks. ACM Transactions on
Database System, 30(1):122–173, 2005.

[81] Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John Anderson.
Wireless sensor networks for habitat monitoring. Proceedings of the 1st ACM interna-
tional workshop on Wireless sensor networks and applications, pages 88–97, 2002.

[82] Vincent Matossian, Viraj Bhat, Manish Parashar, Malgorzata Peszynska, Mrinal Sen,
Paul Stoffa, and Mary F. Wheeler. Autonomic oil reservoir optimization on the grid.
Concurrency and Computation: Practice and Experience, John Wiley and Sons, 17(1):1–
26, 2005.

[83] Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh Sharma. Making
scheduling “cool”: Temperature-aware workload placement in data centers. In the 2005
Usenix Annual Technical Conference, April 2005.

[84] Justin Moore, Jeff Chase, and Parthsarathy Ranganathan. Weatherman: Automated,
online, and predictive thermal mapping and management for data centers. Third IEEE
International Conference on Autonomic Computing, June 2006.

[85] Luc Moreau and Christian Queinnec. Resource aware programming. ACM Transactions
on Programming Languages and Systems (TOPLAS), 27(3):441–476, May 2005.

[86] Luca Mottola and Gian Pietro Picco. Logical neighborhoods: A programming abstrac-
tion for wireless sensor networks. Proceedings of the second International Conference
on Distributed Computing on Sensor Systems (DCOSS), pages 150–168, 2006.

113

[87] Ryan Newton, Arvind, and Matt Welsh. Building up to macroprogramming: An inter-
mediate language for sensor networks. Proceedings of the Fourth International Confer-
ence on Information Processing in Sensor Networks (IPSN’05), April 2005.

[88] Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for
sensor networks. Proceedings of the First International Workshop on Data Management
for Sensor Networks (DMSN), August 2004.

[89] Andrea Omicini and Enrico Denti. From tuple spaces to tuple centers. Science of Com-
puter Programming, 41:277–294, 2001.

[90] Santashil PalChaudhuri, Rajnish Kumar, Richard G. Baraniuk, and David B. Johnson.
Design of adaptive overlays for multi-scale communication in sensor networks. IEEE
Conference on Distributed Computing in Sensor Systems (DCOSS), June 2006.

[91] Paolo Masci Paolo Corsini and Alessio Vecchio. Virtus: a configurable layer for post-
deployment adaptation of sensor networks. International Conference on Wireless and
Mobile Communications, ICWMC ’06, 2006.

[92] Manish Parashar, Vincent Matossian, Hector Klie, Sunil G. Thomas, Mary F. Wheeler,
Tahsin Kurc, Joel Saltz, and Roelof Versteeg. Towards dynamic data-driven manage-
ment of the ruby gulch waste repository. Proceedings of the Workshop on Dynamic Data
Driven Applications and Systems, International Conference on Computational Science
(ICCS), 2006.

[93] PlanetLab. Internet: http://www.planet-lab.org/.

[94] Andres Quiroz and Manish Parashar. Design and implementation of a distributed
content-based notification broker for ws-notification. In Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing, pages 207–214, Barcelona,
Spain, September 2006.

[95] Luiz Ramos and Ricardo Bianchini. C-Oracle: Predictive thermal management for data
centers. Proceedings of the Fourteenth International Symposium on High-Performance
Computer Architecture (HPCA’08), October 2008.

[96] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A
scalable content-addressable network. In Proceedings of the 2001 conference on Appli-
cations, technologies, architectures, and protocols for computer communications, pages
161–172, San Diego, California, United States, 2001. ACM Press.

[97] Dipankar Raychaudhuri, Ivan Seskar, Max Ott, Sachin Ganu, Kishore Ramachandran,
Haris Kremo, Robert Siracusa, Hang Liu, and M. Singh. Overview of the ORBIT ra-
dio grid testbed for evaluation of next-generation wireless network protocols. In Pro-
ceedings of the IEEE Wireless Communications and Networking Conference (WCNC),
volume 3, pages 1664– 1669, 2005.

[98] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. International Conference on Distributed
Systems Platforms (Middleware), pages 329–350, November 2001.

[99] Hans Sagan. Space-Filling Curve. Springer Verlag, May 1995.

114

[100] Cristina Schmidt and Manish Parashar. Flexible information discovery in decentralized
distributed systems. In Proceedings of the 12th High Performance Distributed Comput-
ing (HPDC), pages 226–235. IEEE Press, June 2003.

[101] Cristina Schmidt and Manish Parashar. Enabling flexible queries with guarantees in p2p
systems. Internet Computing Journal, 8(3):19–26, 2004.

[102] Cristina S. Schmidt. Flexible Information Discovery with Guarantees in Decentralized
Distributed Systems. PhD thesis, Rutgers, the State University of New Jersey, October
2005.

[103] Mehdi Sharifzadeh and Cyrus Shahabi. Utilizing voronoi cells of location data streams
for accurate computation of aggregate functions in sensor networks. GeoInformatica,
10(1):9–36, March 2006.

[104] Mitali Singh and Viktor K. Prasanna. A hierarchical model for distributed collaborative
computation in wireless sensor networks. Proceedings of the 17th International Sympo-
sium on Parallel and Distributed Processing, 2003.

[105] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D. Cor-
ner, and Emery D. Berger. Eon: A language and runtime system for perpetual systems.
In Proceedings of the 5th ACM Conference on Embedded Networked Sensor Systems
(SenSys’07), November 2007.

[106] Chavalit Srisathapornphat, Chaiporn Jaikaeo, and Chien-Chung Shen. Sensor infor-
mation networking architecture and applications. International Workshop on Pervasive
Computing, 2000.

[107] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet
indirection infrastructure. In Proceedings of ACM SIGCOMM’02, Pittsburgh, PA, pages
73–86, August 2002.

[108] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings
of the ACM SIGCOMM’01 Conference, pages 149–160, San Diego, California, August
2001.

[109] Katalin Szlavecz, Andreas Terzis, Razvan Musaloiu-E., Joshua Cogan, Sam Small, Stu-
art Ozer, Randal Burns, Jim Gray, and Alexander S. Szalay. Life under your feet:
An end-to-end soil ecology sensor network, database, web server, and analysis service.
MSR-TR-2006-90, 2006.

[110] David Tam, Reza Azimi, and Hans-Arno Jacobsen. Building content-based pub-
lish/subscribe systems with distributed hash tables. Lecture Notes in Computer Science,
2944:138–152, 2004.

[111] Qinghui Tang, Sandeep Kumar S. Gupta, and Georgios Varsamopoulos. Energy-efficient
thermal-aware task scheduling for homogeneous high-performance computing data cen-
ters: A cyber-physical approach. IEEE Transctions On Parallel and Distributed Systems,
19(11):1458–1472, November 2008.

115

[112] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, and
Gary J. Minden. A survey of active network research. IEEE Communications Magazine,
35(1):80–86, 1997.

[113] Sameer Tilak, Paul Hubbard, Matt Miller, and Tony Fountain. The ring buffer network
bus (RBNB) dataturbine streaming data middleware for environmental observing sys-
tems. The 3rd IEEE International Conference on e-Science, 2007.

[114] Robbert van Renesse, Kenneth P. Birman, and Werner Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management, and data mining.
ACM Transactions on Computer Systems, 21(2), May 2003.

[115] Robbert van Renesse and Adrian Bozdog. Willow: DHT, aggregation, and pub-
lish/subscribe in one protocol. The third international workshop on Peer-to-Peer sys-
tems, 2004.

[116] Christopher M. Vigorito, Deepak Ganesan, and Andrew G. Barto. Adaptive control of
duty cycling in energy-harvesting wireless sensor networks. In Proceedings of IEEE
Sensor, Mesh and Ad Hoc Communications and Networks (SECON 2007), pages 21–30,
June 2007.

[117] Matt Welsh and Geoff Mainland. Programming sensor networks using abstract regions.
in Proceedings of the First USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI ’04), 2004.

[118] Geoff Werner-Allen, Stephen Dawson-Haggerty, and Matt Welsh. Lance: Optimizing
high-resolution signal collection in wireless sensor networks. In Proceedings of the
6th ACM Conference on Embedded Networked Sensor Systems (SenSys’08), November
2008.

[119] Geoff Werner-Allen, Konrad Lorincz, Mario Ruiz, Omar Marcillo, Jeff Johnson,
Jonathan Lees, and Matt Welsh. Monitoring volcanic eruptions with a wireless sensor
network. Second European Workshop on Wireless Sensor Networks, 2005.

[120] Kamin Whitehouse, Jie Liu, and Feng Zhao. Semantic streams: a framework for com-
posable inference over sensor data. The Third European Workshop on Wireless Sensor
Networks (EWSN), February 2006.

[121] Kamin Whitehouse, Cory Sharp, Eric Brewer, and David Culler. Hood: A neighborhood
abstraction for sensor networks. Proceedings of the International Conference on Mobile
Systems, Applications, and Services (MOBISYS’04), pages 99–110, June 2004.

[122] Barry Wilkinson and Michael Allen. Parallel Programming: Techniques and Applica-
tions Using Networked Workstations and Parallel Computers. Prentice-Hall, Inc., Upper
Saddle River, New Jersey, U.S.A., 1999.

[123] Peter Wyckoff. T Spaces. IBM Systems Journal, 37(3):454–478, 2001.

[124] Yong Yao and Johannes E. Gehrke. The cougar approach to in-network query processing
in sensor networks. ACM SIGMOD Record, 31(3):9–18, September 2002.

116

[125] Mohamed Younis, Moustafa Youssef, and Khaled Arisha. Energy-aware routing in clus-
terbased sensor networks. International Symposium on Modeling, Anaysis and Simula-
tionof Computer and Telecommunication Systems, 2002.

[126] Feng Zhao, Jaewon Shin, and James Reich. Information-driven dynamic sensor collabo-
ration for tracking applications. IEEE Signal Processing Magazine, 19(2):61–72, March
2002.

117

Vita

Nanyan Jiang

2009 Ph.D. in Electrical and Computer Engineering; Rutgers University, NJ, USA.

2002 M.S. in Electrical and Computer Engineering; Rutgers University, NJ, USA.

1997 B.S. Beijing University of Posts & Telecommunications, Beijing, China.

2003-2008 Graduate Assistant, Center of Autonomic Computing & The Applied Software Sys-
tem Laboratory, Rutgers University, NJ, USA.

2006-2006 Summer Researcher, NEC Laboratories America, Princenton, NJ, USA.

1999-2002 Graduate Assistant, Winlab, Rutgers University, NJ, USA.

Selected Publications

Nanyan Jiang and Manish Parashar. Enabling end-to-end data-driven sensor-based scien-
tific and engineering applications. Proceedings of the Dynamic Data Driven Application
Systems (DDDAS 2009), in conjunction with the International Conference on Computa-
tional Science (ICCS 2009), Baton Rouge, Louisiana, May 2009.

Nanyan Jiang and Manish Parashar. Enabling autonomic power-aware management
of instrumented data centers. Proceedings of the 5th Workshop on High-Performance,
Power-Aware Computing (HPPAC), in conjunction with the 23rd IEEE International Par-
allel and Distributed Processing Symposium (IPDPS 2009), Rome, Italy, IEEE Computer
Society Press, May 2009.

Nanyan Jiang and Manish Parashar. In-network data estimation for sensor-driven sci-
entific applications. Proceedings of the 15th International Conference on High Perfor-
mance Computing (HiPC), 2008.

Nanyan Jiang and Manish Parashar. Programming support for sensor-based scientific
applications. Proceedings of the Next Generation Software (NGS) Workshop in conjunc-
tion with the 22nd IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Miami, Fl, IEEE Computer Society Press, April 2008.

Nanyan Jiang, Andres Quiroz, Cristina Schmidt and Manish Parashar. Meteor: A Mid-
dleware Infrastructure for Content-based Decoupled Interactions in Pervasive Grid En-
vironments. Concurrency and Computation: Practice and Experience, John Wiley and
Sons, (Online: DOI: 10.1002/cpe.1278), November 2007.

118

Nanyan Jiang, Cristina Schmidt, and Manish Parashar. A decentralized content-based
aggregation service for pervasive environments. In International Conference of Pervasive
Services (ICPS), pages 203 - 212, 2006.

Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar. Enabling
applications in sensor-based pervasive environments. In Proceedings of the 1st Work-
shop on Broadband Advanced Sensor Networks (BaseNets), San Jose, CA, USA, October
2004.

Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar. Content-
based middleware for decoupled interactions in pervasive environments. Technical Re-
port Number 252, Wireless Information Network Laboratory (WINLAB), Rutgers Uni-
versity, April 2004.

