
SOME PROBLEMS IN EXTREMAL GRAPH THEORY
AVOIDING THE USE OF THE REGULARITY LEMMA

by

IAN MARC LEVITT

A dissertation submitted to

The Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Endre Szemerédi
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ABSTRACT OF THE DISSERTATION

Some problems in Extremal Graph Theory avoiding the use

of the Regularity Lemma

by Ian Marc Levitt

Dissertation Director: Endre Szemerédi

In this thesis we present two results in Extremal Graph Theory. The first result is a new

proof of a conjecture of Bollobás on embedding trees of bounded degree. The second result

is a new proof of the Pósa conjecture.

Let G = (W,E) be a graph on n vertices having minimum degree δ(G) ≥ n/2+ c log n,

where c is a constant. Béla Bollobás conjectured that every tree on n vertices with

bounded degree can be embedded into G. We show that this conjecture is true. In fact

we show more, that unless G is very close to either the union of two complete graphs on

n/2 vertices, or the complement, then a minimum degree of n/2 is sufficient to embed any

tree of bounded degree.

The kth power of C is the graph obtained from C by joining every pair of vertices at

a distance at most k in C. In 1962 Pósa conjectured that any graph G of order n and

minimum degree at least 2
3n contains the square of a Hamiltonian cycle. The conjecture

was proven for n > n0 by Komlós, Sárközy and Szemerédi in [17] using the Regularity

Lemma and Blow-up Lemma. The new proof removes the use of the Regularity Lemma

and establishes the Pósa conjecture using combinatorial arguments, thus vastly reducing

n0.
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Chapter 1

Introduction

1.1 A New Proof of the Bollóbas Conjecture on Embedding Trees

An easy folklore result is that any graph G with minimum degree d contains every tree

on d edges. This result is tight in the sense that Kd+1 does not contain any tree on more

edges. The well-known Erdős-Sós Conjecture weakens the statement: any graph G of

average degree d contains all trees with d edges. This has proven to be far more difficult.

In both these cases G is allowed to be arbitrarily large. The related problem, where G

and the tree to be embedded have the same size, was conjectured by Bollóbas:

Conjecture 1 For any δ > 0 there exists a constant c such that if T is a tree of order n

and maximum degree at most cn/ log n, and G is a graph of order n and minimum degree

at least (1/2 + δ)n, then T is a subgraph of G.

In [22], Komlós, Sárközy and Szemerédi proved this conjecture for n > n0 with the use

of the Regularity Lemma. Here we prove the following

Theorem 1 For any K there exists a c and a n0 such that if G is a graph of order n > n0

with minimum degree n/2 + c log n and T is a tree of order n with minimum degree K,

then T ⊂ G.

Our proof establishes embedding procedures that rely on elementary arguments, avoid-

ing the use of the Regularity Lemma. The n0 so obtained is therefore much smaller. In

fact the proof presented in this thesis implies a stronger result, that unless G or its com-

plement is very close to either the union of two complete graphs on n/2 vertices each then

a minimum degree of n/2 is sufficient to embed every tree of bounded degree.
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The proof of Theorem 1 is divided into cases. If G is not an extremal graph then

we consider separately when T has many leaves and when T has few leaves. Then we

consider the two extremal cases. In every case there is the general theme that we reserve

a constant proportion of the vertices of T to be embedded last. This reduces the problem

to embedding a smaller tree T ′ into G where the difference in their orders provides some

freedom. In each case, before the embedding we identify random subsets in G that we

use both for the embedding of T ′ and for embedding the remainder of T by a matching

argument.

1.1.1 G is not Extremal

In both subcases, we need only that the minimum degree in G is n/2.

T has Many Leaves

In this case we first identify a small but constant-sized subtree T0 which contains many

leaves and identify a subset S of constant proportion of leaves of T0. We then take 3

random subsets D1, D2, and M with |D1| = |D2| = |S|. The plan is to embed the vertices

of S into D2 at the end. We use D2 for the parents of the vertices of S which are matched

to D1 in the final step. The random subset M plays an important role throughout the

embedding process. We begin by embedding T0 − S greedily, but making sure that the

parents of the vertices of S end up in D2.

The next step is to decompose T − T0 into subtrees that are exponentially large in

K. We embed these subtrees breadth-first, establishing their inter-connections via the

random set M . Let Q be the set of vertices of G that are not yet covered. When we

connect through M , we use only polynomially in K many vertices of M , thus embedding

into exponentially in K many vertices of Q. This ensures that the vertices of M are

never exhausted. Here again is a common theme throughout the proof, of covering certain

vertices of G at a proper rate.

If we get to a point where we can no longer greedily map any subtrees of the decom-

position because Q is sparse, then we find a subset of Q which is densely connected to
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subtrees that have already been embedded. We rearrange the mapping in such a way that

we return a dense subset to Q and can continue mapping the subtrees. Here again M plays

an important role. When we rearrange the mapping of an already-embedded subtree, we

have to ensure that it is properly connected to the rest of the embedding.

Finally, when Q is small enough, we greedily map the rest of T − T0 into D2. While

the vertices of D2 were reserved for S, this sacrifice is small enough so that by mapping a

portion of S to Q we can still find the desired matching.

T has Few Leaves

In this case we have an easier time. We define a stem of a tree T to be a path P such that

every vertex on P apart from possibly the endpoints has degree 2 in T . When T has only

a few leaves it has many stems. We find many (a constant proportion of n) disjoint long

stems in T and define a new tree T ′ obtained by contracting the middle edge of each stem.

As T ′ is smaller than G it is easy to embed. We begin by embedding the contracted stems

in such a way that most of their edges are randomly selected. At the end, the remaining

|G| − |T ′| vertices of G are easily matched to the embedded stems, where a vertex is

matched to a stem only if it contains an edge of the stem in its neighborhood in G. Thus

we can insert the vertices into their assigned stems, which finishes the embedding. The

randomness of the embedding of the contracted stems is used for the matching.

1.1.2 G is Extremal

G is Close to Kn/2 ∪Kn/2

Note that here we need the full degree condition from the conjecture since Kn/2 ∪Kn/2 is

not even connected. An extremal G is one for which there is a bipartition of its vertex set

into two classes, A and B, such that |A| = |B| and the induced graph on each part has

n2/4− γn edges. The basic plan in this case is to find a subset S ⊂ T of size O(log n) so

that the components T − S can be grouped in such a way that the number of vertices in

each group is |A| − |S| and |B|. We will map S into A and the components of T − S into

their assigned parts. It is important that S = O(log n) as we may need as many as KS
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edges going from A to B in order to connect the components. To acheive this we use the

following folklore result

Lemma 2 Let J be any tree on m vertices. Then J has a vertex u ∈ V (J) such that

it is possible to group the vertices of J − u into two forests, J1 and J2 such that m/3 ≤

|J1|, |J2| ≤ 2m/3 and there is no edge connecting J1 and J2 in J − u.

We first divide T into many subtrees of roughly equal size by splitting a constant number of

times, then recursively split trees to reduce the error in packing the vertices by a constant

factor.

Before splitting T , we first identify two large subtrees TX and TY of size around n/100

each, and two smaller subtrees, T1 ⊂ TX and T2 ⊂ TY . We embed TX − T1 into A and

TY − T2 into B by a greedy algorithm which covers one minimum degree vertex of each

class for every O(K) vertices mapped. Thus, when we are finished with embedding these

trees the minimum degree in its class of every uncovered vertex is very close to n/2. As

we map T1 and T2 last, the uncovered vertices always induce a subgraph of large degree,

and so mapping the components in the decomposition is always possible. Again, for the

connections between components and for mapping T1 and T2 at the end we use random

subsets that were set aside at the beginning of the procedure. We map T1 and T2 in the

final step by a matching argument.

G is Close to Kn/2,n/2

This case is similar to the previous extremal case in that we begin by mapping a large

subtree via a greedy algorithm that covers the vertices with lowest degree across the

partition and we leave a smaller subtree to embed by a matching argument at the end. The

decomposition of T into subtrees in this case is such that we can 2-color the components

so that the union of the red color classes and the union of the blue color classes are the

right size. We embed the edges connecting the colored components first, then embed the

components, taking care of their connections through random subsets that were set aside

at the beginning. We finish again by a matching argument to map the large subtree held

in reserve.
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1.2 A New Proof of the Pósa Conjecture

The kth power of C is the graph obtained from C by joining every pair of vertices at

a distance at most k in C. Let G be a graph on n ≥ 3 vertices. A classical result of

Dirac [4] asserts that if δ(G) ≥ n/2, then G contains a Hamiltonian cycle. As a natural

generalization of Dirac’s theorem, in 1962 Pósa (see Erdős [5]) conjectured the following:

Conjecture 2 (Pósa). Let G be a graph on n vertices. If δ(G) ≥ 2
3n, then G contains

the square of a Hamiltonian cycle.

Later in 1974 Seymour [25] generalized this conjecture:

Conjecture 3 (Seymour). Let G be a graph on n vertices. If δ(G) ≥ k
k+1n, then G

contains the kth power of a Hamiltonian cycle.

Seymour indicated the difficulty of the conjecture by observing that the truth of this

conjecture would imply the remarkably difficult Hajnal-Szemerédi Theorem [14], namely

that if ∆(G) < r, then G is r colorable such that the sizes of the color classes are all bnr c

or dnr e.

These problems received significant attention. In the direction of Conjecture 2, first

Jacobson (unpublished) showed that if δ(G) ≥ 5n/6, then the conclusion of the conjecture

holds.

Faudree, Gould, Jacobson and Schelp [12] confirmed the conclusion with δ(G) ≥ (3/4+

ε)n+C(ε). Later the same authors improved this to δ(G) ≥ 3n/4. By using a result in [13],

Häggkvist (unpublished) gave a very simple proof in the case δ(G) ≥ 1 + 3n/4 and n ≡ 0

(mod 4). Fan and Häggkvist in [6] lowered the bound to δ(G) ≥ 5n/7. Fan and Kierstead

improved this further to δ(G) ≥ (17n + 9)/24 in [7], and Faudree, Gould and Jacobson

[11] to δ(G) ≥ 7n/10. Then Fan and Kierstead [8] improved the condition to the almost

optimal δ(G) ≥
(

2
3 + ε

)
n + C(ε). They also proved [9] that already δ(G) ≥ (2n − 1)/3

is sufficient for the existence of the square of a Hamiltonian path. Furthermore, they also

proved [10] that if δ(G) ≥ 2n/3 and G contains the square of a cycle with length greater

than 2n/3, then G contains the square of a Hamiltonian cycle. Finally, Kierstead and
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Quintana [16] proved that if δ(G) ≥ 2n/3 and G contains a maximal 4-clique, then G

contains the square of a Hamiltonian cycle.

For Conjecture 3, in the above mentioned paper of Faudree et al in [12], it is proved

that for any ε > 0 and positive integer k there is a C such that if an n-graph G satisfies

δ(G) ≥
(

2k − 1
2k

+ ε

)
n+ C,

then G contains the kth power of a Hamiltonian cycle.

Using the Regularity Lemma-Blow-up Lemma method first in [19], J. Komlós, G.N.

Sárközy and E. Szemerédi, proved Conjecture 3 in asymptotic form, then in [17] and [20]

they proved both conjectures for n ≥ n0. The proofs used the Regularity Lemma [26], the

Blow-up Lemma [18], [21] and the Hajnal-Szemerédi Theorem [14]. Since the proofs used

the Regularity Lemma the resulting n0 is very large (it involves a tower function). The

new result presented in this thesis is another proof for k = 2 that avoids the use of the

Regularity Lemma.

Theorem 3. There exists a natural number n0 such that if a graph G has order n with

n ≥ n0 and δ(G) ≥ 2
3n, then G contains the square of a Hamiltonian cycle.

This new proof employs two lemmas which, conceptually, could be used to remove

the Regularity Lemma from other extremal graph theoretical proofs. The first lemma,

more specific to the case of embedding kth powers of cycles, is the Reservoir-Connecting

Lemma. It states simply that any two ending edges of a square path can be connected

through a random set (the reservoir) by a short square path. The second lemma, the

Absorbing Lemma, states that there exists a square path PA such that any sufficiently

small set of vertices can be inserted into PA without destroying the property of being a

square path. The structure of the proof is to extend PA to a maximal square path P ,

and then by combinatorial arguments show that we can rearrange P such that we either

increase its length or we can find a long square path which we connect to P via the

Reservoir-Connecting Lemma. The arguments hold until there is a small set of vertices

not covered by P . At that point we connect the endpoints of P and absorb the remaining
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vertices by the Absorbing Lemma. It is this last step that provides quite a bit of power

in removing the Regularity Lemma.

As in [20], the proof makes use of the assumption that G is not extremal. For the case

of k = 2, the extremal graph G is one in which there is a set of roughly 1
3n vertices which

induce a subgraph with very low density. It is easy to find a square path in the particular

extremal graph comprised of an independent set S of size 1
3n, implying that G − S has

minimum degree |G− S|/2. Dirac’s theorem ensures that there is a Hamiltonian cycle C

in G − S, and the vertices of S are easily inserted into C to extend it to a square cycle.

The full extremal case is not far from this.

In fact the combinatorial methods developed can be extended and generalized to prove

Conjecture 3 for k ≥ 3, but the details become considerably more complicated. We have

identified another way to remove the Regularity lemma from the proof of Conjecture 3

which applies for k ≥ 2 and is similar to the arguments in [21]. We are able to cover most

of the vertices of G with a collection of Kk(t)s by Kővári-Sós type arguments. We can

easily convert the Kk(t)s to disjoint kth powers of cycles and then connect them via the

Connecting Lemma. Some elementary arguments are then used to insert the remaining

vertices of G. In the case of k = 2 the Connecting-Absorbing method yields the smallest

n0 and it is this argument that we present in full detail.

We have also identified an alternate Lemma for connecting square paths to replace the

costly Reservoir-Connecting Lemma. This new Connecting Lemma can also be generalized

for k ≥ 3. While the is work ongoing, the expectation is that this will allow us to push

n0 down far enough to develop a program to check the conjecture for the remaining n. In

this, the combinatorial structure identified in the proof will prove useful as it lends itself

to fast algorithms. It is our hope to establish the truth of Conjecture 2 for every n.
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Chapter 2

Proof of the Bollobás Conjecture on

Embedding Trees

2.1 Introduction

Let G = (W,E(G)) be a graph on n vertices. Assume that its minimum degree, δ(G) ≥

n/2 + c log n. Let T = (V,E(T )) be a bounded degree tree on n vertices. We denote

its maximum degree by K. Our goal is to prove that T ⊂ G if n ≥ n0. We will show

that there exists a bijective adjacency preserving mapping I : V → W by the help of a

randomized embedding algorithm.

We divide the problem into two subproblems: we make distinctions depending on G

being extremal or non-extremal. We call G η-extremal, if either G or its complement G

contains a subgraph on n/2 vertices with at most ηn2 induced edges for η > 0. It will be

η-non-extremal otherwise. Let γ = K−20. First we prove the statement for γ-non-extremal

graphs, then for γ-extremal graphs.

2.2 Definitions and Notation

For a graph G, we denote by v(G) the number of vertices of G and by e(G) the number

of edges in G. If H ⊂ G, we let G − H denote the subgraph of G obtained by deleting

the vertices of H from G. In the case of a single vertex v of G, we let G − v denote the

graph obtained by deleting v. For sets A and B, we let A \B = {a : a ∈ A, a /∈ B}. The

minimum degree of G is denoted by δ(G). For v ∈ G, we denote by N(v) the neighborhood

of v. For a subset of vertices A, we will sometimes write NA(v) for N(v) ∩A.

Assume that we are given a rooted tree F with root ρ. Let x and y be any two vertices

of F. We say that y is below x if the only path connecting y with ρ goes through x. F (x)
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denotes the subtree rooted at x containing every vertex which is below x. For a tree F

with root r, the depth of a vertex x ∈ T is the length of the unique path from x to r.

2.3 The non-extremal case

The case of a non-extremal G is divided into two subcases depending on the structure of

T . The first case is when T has at least γ2n leaves, the second is when the number of its

leaves is smaller than γ2n.

2.3.1 Proof sketch

Since we have many leaves, we are able to find a subtree T0 ⊂ T of size at most γ5n which

has about γ8n distinguished leaves, each of distance at least 12 from each other. While

we map most of T0 in the beginning, the set of the distinguished leaves will be taken care

of at the end of the embedding process, giving us some freedom.

Let T∗ = T − T0. We find a decomposition of T∗ such that most of its vertices belong

to certain subtrees of bounded size. We map the subtrees of the decomposition one at a

time with the help of the Main Mapping Procedure. As this procedures requires that the

vertices of G not yet covered contains a large subgraph with a non-negligible minimum

degree, we may have to stop before all of the subtrees are mapped. If the set of uncovered

vertices of G is too sparse, we rethink the way we mapped certain subtrees. We rearrange

the mapping of some subtrees in such a way that we use many uncovered vertices and the

new set of uncovered vertices contains a large dense bipartite graph. This dense bipartite

subgraph will then help us to continue the embedding of T . When we arrive at the point

that at most γ10n vertices of T are left to be mapped (plus the set of distinguished leaves

of T0), we can easily finish the embedding.

2.3.2 Some tools for the proof

We will need the following remark:

Remark 1 If G is not γ-extremal then, since δ(G) > n/2, there are at least γn2 edges in

the neighborhood of every vertex. In particular, every vertex is in at least γn2 triangles.
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We make another simple statement which is also used throughout the proof:

Lemma 4 Let H be a tree of size m. If J is a graph with δ(J) ≥ m, then there is an

embedding of H into J. If J ′ = J ′(A,B) is a bipartite graph such that every b ∈ B has at

least m/2 neighbors in A and every a ∈ A has at least m neighbors in B then H ⊂ J ′.

Proof: We leave the proof of the first part to the reader. For the second part we remark

that H is 2-colorable, and one of its color classes has size at most m/2. �

The following standard lemma can be found in, e.g., [3].

Lemma 5 Every graph H has a subgraph H ′ such that δ(H ′) ≥ e(H)/v(H).

Proof: Omitted. �

Let F = F (A,B) be a bipartite graph satisfying the following requirements:

• |A| = t and |B| = t2,

• γ−3 � t,

• every b ∈ B has at least (1/2 + γ3)t neighbors in A.

Then we have the following Cleaning Lemma.

Lemma 6 (Cleaning lemma - first version) F has a subgraph F ′ = F ′(A′, B′) such

that A′ ⊂ A, B′ ⊂ B, every b ∈ B′ has at least (1/2 + γ3/2)t neighbors in A′ and every

a ∈ A′ has at least t neighbors in B′.

Proof: We may assume that every vertex in B has exactly (1/2 + γ3)t neighbors in A—if

necessary, we discard edges from those vertices of B which have larger degrees. Then we

have |E(F )| = (1/2 + γ3)t3. Step by step we find the desired subgraph of F.

Let A1 = {a ∈ A : |N(a) ∩B| < t}, and let B1 = {b ∈ B : |N(b) ∩ A1| ≥ γ3t/2}. We

delete the vertices of A1 from A and the vertices of B1 from B. This is what we call the

cleaning step—getting rid of vertices from both color classes which obviously violate the

requirements of the lemma. In the cleaning step we lose at most |A1|t+2|A1|t(1/2+γ3)/γ3

edges from F.
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Assume that we have performed k cleaning steps, identifying the sets A1, A2, . . . Ak ⊂ A

and B1, B2, . . . Bk ⊂ B. In the next step we set

Ak+1 = {a ∈ A \
k⋃
i=1

Ai : |N(a) ∩ (B \
k⋃
i=1

B1)| < t}

and

Bk+1 = {b ∈ B \
k⋃
i=1

Bi : |N(b) ∩ (
k⋃
i=1

Ak)| ≥ γ3t/2}.

By deleting the vertices of Ak+1 and Bk+1 we lose at most |Ak+1|t+2|Ak+1|t(1/2+γ3)/γ3

edges.

After k cleaning steps, the number of edges we lose is at most

∑
1≤i≤k

|Ai|(t+ 2t(1/2 + γ3))/γ3 < t2(3 + 1/γ3)� t3/2.

At some point the procedure will stop, say at step k0. After the kth0 cleaning step

either every vertex satisfies the degree requirements of the lemma or there is no vertex

left. As at most t3/2 < (1/2 + γ2)t3 edges have been lost, we must have the former case.

Setting A′ = A \
⋃k0
i=1Ai and B′ = B \

⋃k0
i=1Bi, the induced bipartite graph F ′ = (A′, B′)

is easily seen to satisfy the lemma. �

We will need another version. For that we assume that F satisfies the following:

• |A| = t and |B| = t2,

• γ−4 � t,

• every b ∈ B has at least (1/2− γ4)t neighbors in A.

Then we have the second version of the Cleaning Lemma:

Lemma 7 (Cleaning lemma - second version) F has a subgraph F ′ = F ′(A′, B′)

such that A′ ⊂ A, B′ ⊂ B, every b ∈ B′ has at least (1/2 − 2γ4)t neighbors in A′

and every a ∈ A′ has at least t neighbors in B′.

Proof: Very similar to the proof of the first version, we omit the details. �
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We choose three disjoint subsets randomly from W . Let D1, D2 and M, be randomly

chosen such that they are disjoint, |D1| = |D2| = γ8n, and |M | = γ10n. The common size

of the Dis will be denoted by s. Applying the Chernoff bound one can conclude that every

u ∈W will have at least s/2−O(
√
n log n) neighbors in the Dis and |M |/2−O(

√
n log n)

neighbors in M with high probability. If G is γ-non-extremal, then the subgraphs induced

by D1, D2 and M will be γ/3-non-extremal with high probability. Moreover, the bipartite

subgraph induced by D1 and D2 will be γ/3-non-extremal with high probability, i.e., if

A ⊂ D1, B ⊂ D2, both having size s/2, then there are at least γs2/3 edges in between

A and B with high probability. The proofs of these statements are straightforward. We

sketch a proof of the non-extremality of Di. We will show that the induced subgraph on

D1 cannot have a sparse subset of size s/2. The analogous statement, that the complement

of the above induced subgraph cannot have a large subset with a few edges can be proved

similarly.

It is a simple exercise that if G is not extremal, then any set U for which ∀a, b ∈ U ,

|N(a) ∪ N(b)| ≤ (1/2 + γ)n cannot contain more than (1/2 − γ)n vertices. Thus, with

high probability, a set A ⊂ D1 of size s/2 will have the property that for many pairs of

vertices a, b ∈ A,

|(N(a) ∪N(b)) ∩D1| ≥ (1/2 + γ)s+O(
√
n log n).

It follows that for many pairs of vertices, |(N(a) ∪N(b)) ∩A| ≥ γs. Thus A is dense.

We will need the following Lemma:

Lemma 8 Let G be a non-extremal graph, and D1, D2 be as above. Then there is a perfect

matching in the bipartite subgraph of G induced by D1 and D2.

Proof: We will check the König-Hall conditions in order to prove the existence of a perfect

matching. Since every u ∈W has at least s/2− o(n) neighbors in D2, every H ⊂ D1 such

that |H| ≤ s/2− γ2s will have a neighborhood of size at least |H| in D2. Let us assume,

that |H| > s/2− γ2s. If D2 had a subset Ĥ of size s/2− γ2s such that e(H, Ĥ) = 0, then

the induced bipartite subgraph on D1 and D2 would be extremal – if we complete H and

Ĥ by adding at most γ2s new vertices to both, the number of newly added edges is not
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more than 2γ2s2 < γs2/3. Hence, every H ⊂ D1 having size s/2−γ2s has a neighborhood

of size at least s/2+γ2s in D2. We finish by noticing that every vertex in D2 has s/2−o(n)

neighbors, therefore, if H ⊂ D1 is larger than s/2 + o(n) then it is neighboring with the

whole D2. �

Corollary 9 Let us modify the bipartite subgraph of the previous lemma: we discard at

most γ2s vertices from D2, and substitute those with arbitrary vertices which all have at

least |D1|/2− o(n) neighbors in D1. Then the resulting new graph has a perfect matching.

Proof: The proof of Lemma 8 works with a minor change, we omit the details. �

Lemma 10 Assume that G is non-extremal and u, v ∈ W . Then there are at least γn/5

vertex disjoint paths of length 3 connecting u and v.

Proof: Set a = |N(u)∩N(v)|. If a ≥ n/2−γn/2, then by the non-extremality of G there

are at least γn2/2 edges in N(u) ∩N(v). One can choose γn/2 vertex disjoint edges from

these, and every such edge with u and v forms a path of length 3 between u and v. The

other extreme is when a ≤ γn/2. Then there are at least γn2 edges in N(u) induced by

G, since G is non-extremal. If v′ is the endpoint of such an edge, then it has a neighbor

in N(v). This overall means at least γn2 edges between N(u) and N(v), and as before, we

can find the vertex disjoint path of length 3 between u and v.

Assume now that γn/2 ≤ a ≤ n/2 − γn/2. Then the number of edges connecting

N(u)∩N(v) with N(u)∪N(v) is at least a(n/2−a) ≥ γn2/5. One can choose γn/5 vertex

disjoint edges from these, which give us the desired vertex disjoint paths of length 3. �

2.3.3 Preparations

Finding T0 and the distinguished leaves

We need to prepare T for the embedding. We begin by choosing an arbitrary root ρ

for T , which will be changed later. Our main goal is to determine a subtree T0 with size

at most γ5n/4 and number of leaves at least γ7n/K2.

To find T0 we employ a simple algorithm. First color every vertex of T red. Then pick

an arbitrary red leaf x ∈ T, and consider a vertex y1 with the property that x ∈ T (y1),
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v(T (y1)) ≤ γ5n/4 and if z is any other vertex on the path connecting y1 with ρ, then

v(T (z)) > γ5n/4. Erase the color of the vertices of T (y1) and repeat the procedure with

another red leaf, if it exists. The algorithms terminates when every leaf of T is contained

in a subtree T (yi).

We need a good upper bound on the number of subtrees we have found this way.

Consider a related collection of subtrees, whose roots are obtained by moving one vertex

in the direction of ρ from every yi. All of these new subtrees will have size at least γ5n/4,

hence, the number of them is at most 4γ−5. Since every subtree in this new collection

contains at most K subtrees output by the algorithm, we get an upper bound of 4Kγ−5

on the number of subtrees T (yi).

There are at least γ2n leaves in T and so there is a subtree T (yi) of size at most γ5n/4

having at least γ7n/K2 leaves. We denote this subtree by T0, and take its root r to be

the root of T throughout.

By the properties of T0, we can easily find s = γ8n subtrees of T0, denoted by

{F1, F2, . . . , Fs}, such that each Fi has depth 4, and for each i, j, the distance between Fi

and Fj is at least 4. For each 1 ≤ i ≤ s, distinguish a leaf of Fi which is at depth 4 and

denote it by ai. The immediate ancestor of ai is denoted by P (ai) and the root of Fi is

called A(ai). By construction, P (ai) is distance three from A(ai). Denote the set of distin-

guished leaves by S = {a1, a2, . . . , as}. We will map P (a1), P (a2), . . . , P (as), a1, a2, . . . , as

in a special way. In particular, we will map the P (ai)s to the vertices of D1, and most of

the ais to D2.

Embedding T0

We start the embedding of T by that of T0. Denote by T ′0 = T0 − ∪(Fi − A(ai) the

subtree of T0 obtained by removing each Fi but leaving its root. We map T ′0 greedily into

W \ (M ∪D1 ∪D2). When we are done, all of the A(ai) will have been mapped. We then

map the P (ai) into D1 arbitrarily. By Lemma 10 we find vertex disjoint paths of length

3 connecting I(A(ai)) with I(P (ai)), such that these paths avoid D2 and M , and contain

vertices from D1 only as an endpoint. We finish the embedding of the Fi greedily into

W \M ∪D1 ∪D2).
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We set T∗ = T − T0.

2.3.4 Decomposition of T∗

We find a decomposition of T∗ into subtrees T1, T2, . . . , Tk such that for every 1 ≤ j ≤ k,

ec < |Tj | < Kec (c will be chosen later). Choose a maximal path P from r such that

(i) for every x ∈ P , |T∗(x)| ≥ Kec

(ii) for x, y ∈ P with x the parent of y, T∗(y) is the largest subtree rooted at a child of

x

If x is the last vertex on P , let x1 be such that T∗(x1) is the largest subtree rooted at a child

of x. We define T1 = T∗(x1), easily seen to be of the desired size. Let T (1)
∗ = T∗− (T1−x1)

be the remainder of T∗ after deleting all but the root of T1 from T∗.

Assume that we have performed i iterations. Repeat the procedure on T
(i)
∗ , finding

xi+1 and defining Ti+1 = T
(i)
∗ (xi+1) and T (i+1)

∗ = T
(i)
∗ − (Ti+1 − xi+1). Let k be such that

|T (k)
∗ | < Kec, at which point the procedure stops. We set Tk+1 = T

(k)
∗ and note that Tk+1

has r as its root. Throughout the proof, we let ti = |Ti|

We remark that in this decomposition, Ti and Tj may have at most one vertex in

common, and this common vertex is a leaf of one of the subtrees, say Ti, and the root of

the other, Tj . If a leaf of a subtree Ti is the root of another, we call this a connecting leaf

of Ti. For technical reasons, we have to avoid certain conflicts between connecting leaves

of the same subtree. If two connecting leaves of Ti are such that their paths of length 3

towards the root intersect, we call these connecting leaves “conflicting”. We adjust the

decomposition so that there are no conflicting connecting leaves by adding a check at the

end of each iteration. If at the completion of the ith iteration the root xi found is such

that it is distance less than 3 from xj for j < i we choose the child x′i of xi such that T∗(x′i)

is the largest subtree rooted at a child of x. If x′i is still in potential conflict with the root

of another subtree, we repeat. After at most 3 corrections, we arrive at a Ti whose root

will not conflict as a connecting leaf. Thus, the sizes of the subtrees in the decomposition

may be as small as ec

K3 , but this will not cause any difficulties.
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2.3.5 Finishing the embedding of T

Let us assume that we have already mapped most of T∗, only the vertices of S and a small

forest F are left out such that |F | ≤ γ2s. Let T ′∗ = T∗ − (F ∪ S). We embed F into D2,

connecting through M . This is easily done as D2 is a randomly chosen subset of W and

|D2| = s� γ2s. We map all but |F | vertices of S arbitrarily to D2 \ I(F ). The remainder

of S we map to W \ (I(T ′∗)∪D2). The embedding will be finished if we can find a perfect

matching between D1 and I(S). As I(S) = D2 \ I(F ) ∪ (W \ (I(T ′∗) ∪D2)), Corollary 9

applies and so such a perfect matching exists. Hence, if we can map most of T∗ such that

we avoid D2, we can finish the embedding of T. The goal of the rest of this section is to

achieve this mapping.

2.3.6 The Main Mapping Procedure

Here we define the method for mapping the subtrees of the decomposition. We start with

Tm+1, which we map greedily into W \ (I(T0) ∪M ∪D1 ∪D2). This is the first step.

After the kth step, denote the mapped portion of T∗ by T ′∗ and set Q = W \ (I(T ′∗) ∪

M ∪ D1 ∪ D2), the set of vertices of W that we will use for the embedding. Choose a

connecting leaf y that is a leaf of T ′∗, and let Ti be the subtree which has y as its root.

Assume that there is a subset Q′ ⊂ Q with minimum degree γ10n. Denote y’s children by

y1, y2, . . . , yk, and the children of the yis by r1, r2, . . . , r`.

Assume that M has at least (1−γ/20)|M | vacant vertices and denote the set of already

covered vertices of M by X. Since M is a randomly chosen set, |N(I(y)) ∩ (M \ X)| ≥

(1/2− γ/19)|M |. Define the set

U = {u : u ∈M \X, |N(u) ∩Q′| ≥
√
n}.

Since M is randomly chosen, every vertex of Q′ has at least (1/2 − γ/19)|M | neighbors

in M \X, which in turn implies that |U | ≥ (1/2− γ/18)|M |. Since the induced subgraph

on M is γ/3-non-extremal, there are at least γ/3|M |2 − γ/9|M |2 edges in between U and

N(I(y)) ∩ (M \ X). We map the yis to such vertices in N(I(y)) ∩ (M \ X) which have

at least K2 neighbors in U. If {yi, rj} is an edge in T , then I(rj) is chosen among the
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neighbors of I(yi) ∩ U . It is possible to embed the rest of Ti in Q′ greedily since |Ti| is

constant and Q′ is dense.

The general notion of connecting pieces of the embedding through M will be used

throughout the proof. To this end, we make the following remark:

Remark 2 In the procedure described above, we cover less than K2 vertices from M while

we embedded into at least ec−K2 vertices of Q. In general, when an embedding procedure

is applied, if the ratio of the number of vertices of M to the number of vertices of Q

covered in the procedure is always less than γ12 ≤ γ|M |
20n , then we will be assured that less

than γ|M |/20 vertices of M are covered at the end. We choose c so that this holds.

2.3.7 The Second Mapping Method

Let us again denote by Q the set of those vertices of W \ (M ∪D1 ∪D2) which have not

yet been covered by a vertex of T∗. In the Main Mapping Procedure we used that there

was a dense subset Q′ ⊂ Q. This time we allow Q to be very sparse. Our goal now is to

rearrange the embedding so that we return a dense subgraph to Q.

We call a subtree of the decomposition of Section 2.3.4 “good” if it contains less than

γ−6 connecting leaves. As there are at most k connecting leaves overall, it follows that all

but at most γ6k subtrees are good, and so all but at most γ6n vertices of T∗ are in the

union of the good subtrees. Without loss of generality, we assume that the good subtrees

are T1, T2, . . . , Tm.

Again denote by T ′∗ the portion of T∗ that is already embedded. Assume that one of

the subtrees of the decomposition Ti ⊂ T ′∗ is such that Q has at least t2i vertices all of

which have at least (1/2 + γ3)ti neighbors in Ti. If this condition is satisfied, we call Ti a

remappable subtree. By the first version of the Cleaning Lemma we find a bipartite graph

(A′, B′) such that A′ ⊂ I(Ti), B′ ⊂ Q, every b ∈ B′ has at least (1 + γ3)ti/2 neighbors in

A′ and every a ∈ A′ has at least ti neighbors in B′.

We embed Ti via the bipartite graph F ′ and Lemma 4, connecting to I(T ′∗ − Ti)

through M as in the Main Mapping Procedure with some minor modifications. We need

to be careful with the embedding of the at most γ−6 connecting leaves of Ti, and so we
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precondition Ti before the remapping. Let l1, l2, . . . , ld be the connecting leaves of Ti and

for each connecting leaf lj , let the path of length 3 towards the root beginning with lj

be (lj , wj , uj , vj). We will let T ′i be the result of trimming off the subtrees rooted at li,

leaving the roots. More precisely, we set T ′i = Ti−
⋃d
j=1(Ti(lj)−lj). We will embed T ′i first,

and finish with the trimmed subtrees, ensuring that the newly embedded Ti is properly

connected into the rest of the embedding.

First, using the notation from the previous section, we assume that the ri, the vertices

at distance 2 from the root of Ti, are in the smaller color class of Ti. If this assumption

does not hold, then we embed the children of the ri into U ⊂ M rather than the ri.

This is easily done using the degree conditions and non-extremality of M . The second

modification is in the definition of U . For the Second Mapping Method, we define

U = {u : u ∈M \X, |N(u) ∩B′| ≥
√
ti}.

The rest of the procedure goes through: e.g. in the case that ri is in the small color

class, we map the yi to N(I(y))∩ (M \X), we map the ri appropriately in U , and map the

children of ri into B′. At that point, Lemma 4 applies, and we greedily map the remainder

of T ′i into F ′. Finally we take care of the subtrees containing the connecting leaves lj by

first mapping the path (lj , wj , uj , vj) through M respecting the fact that lj and vj are

already mapped. Then we map the remainder of Ti which lies below the path through U ,

into B′, and then via F ′. Note that we must be careful to respect the parity so that we

use less than ti/2 vertices of A′ overall, mapping an extra generation in M if necessary.

As the subtrees below the vj are all disjoint by construction, this last step is possible.

As Ti may have γ−6 connecting leaves, we have used up a polynomial in K number

of vertices from M without mapping any new subtrees. On the other hand, we have

rearranged the mapping such that a dense bipartite graph F ′′(A′′, B′′) ⊂ F (A′, B′) is

moved to Q, where A′′ ⊂ A′ and B′′ ⊂ B′. As every vertex in B′′ has degree to A′′

at least γ3

2 ti, there are at least γ3

2 t|B
′′| edges in F ′′. The number of vertices in F ′′ is

|A′′|+ |B′′| ≤ 2|B′′|. Therefore F ′′ has a subgraph of minimum degree at least γ3

4 ti ≥ γ
4tj

for any unmapped tree Tj .
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Assume that we are able to find γ−4 remappable subtrees. We rearrange their map-

pings, returning a dense subgraph as above to Q for each one. Then we take an unmapped

tree Tj whose root is already mapped and decompose it into subtrees of size at most Kγ4tj

but at least γ4tj in a similar manner to section 2.3.4. Starting with the already mapped

root, we connect through M and into one of the dense bipartite subgraphs in Q generated

by the remapping. We map this piece greedily witin the dense bipartite graph and then

repeat with another piece whose root is now mapped. As the decomposition of Tj is into

at most γ4 pieces, we use at most a polynomial in K number of vertices of M to connect

the decomposed pieces of Tj .

We cover overall a polynomial in K number of vertices in M by this procedure, but

map a new subtree which is of size at least ec

K3 so we do not use up the vertices of M

too quickly. Again, c is chosen such that the ratio of newly-mapped vertices of M to

newly-mapped vertices of Q is favorable.

2.3.8 The Third Mapping Method

As in the second mapping method we assume that Q is very sparse and |Q| > γ10n. The

sparsity of Q is made precise. As the Main Mapping Procedure can not be applied, there

is no subgraph of Q with minimum degree at least γ10n. Thus, the number of edges in

Q is at most γ10nq, where q = |Q|. We further assume that we cannot apply the Second

Mapping Method. That is, for all but at most γ−4 good subtrees Ti, there are less than

t2i vertices having at least (1/2 + γ3)ti neighbors in Ti. We remark that it follows easily

that most of T∗ has been already embedded.

As we cannot find enough good remappable subtrees to extend the embedding, we will

look for a weakly remappable subtree. A weakly remappable subtree is a good subtree Ti

for which there are at least t2i vertices in Q each having at least (1/2− γ2)ti neighbors in

Ti.

We claim that most of the embedded subtrees are weakly remappable if we cannot

apply the Second Mapping Method. More precisely:
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Lemma 11 In the above setup if none of the good Ti subtrees are remappable then at least

(1− γ/2)n vertices are in weakly remappable good subtrees.

Proof: If Ti is not a weakly remappable subtree, then as Ti is not remappable, there are

at most t2i vertices in Q which have more than (1/2 + γ3)ti neighbors in Ti. As it is not

weakly remappable, the rest of the vertices of Q have less than (1/2− γ2)ti neighbors. If

Ti is weakly remappable then again, as it is not remappable, at most t2i vertices of Q have

ti neighbors in Ti, and the remaining vertices of Q have at most (1/2 + γ3)ti neighbors in

Ti.

On the other hand, |T0| ≤ γ5n/4, there are at most γ−4Kec vertices in I(T ′∗) that are

in remappable subtrees, there are at most γ6n vertices in bad subtrees, and e(Q) ≤
√
nq,

and |D1 ∪ D2 ∪ M | < 3γ8n. It follows that the number of edges from Q to the good

embedded subtrees which are not remappable is at least

(n/2− γ5n/4− γ−4Kec − γ6n− 3γ8n− γ10n)q ≥ (1/2− γ5/3)nq.

Let I1 = {i : Ti is good, not remappable, and not weakly remappable} and I2 = {i : Ti

is good and weakly remappable}. We have the following inequality:

(
1
2
− γ5

3
)nq ≤

∑
i∈I1

(
t3i + (

1
2
− γ2)tiq

)
+
∑
i∈I2

(
t3i + (

1
2

+ γ3)tiq
)
≤

n

ec/K3
(Kec)3 + (

1
2
− γ2)dq + (

1
2

+ γ3)(n− d)q

where d denotes the number of vertices in subtrees which are not weakly remappable. A

simple calculation shows that d < γn/2. �

If Ti is weakly remappable then there is a subset of Q having size at least t2i such that

all of its vertices have at least (1/2 − γ2)ti neighbors in Ti. By the second version of the

Cleaning Lemma we can remap most of Ti, leaving at most Kγ2ti vertices unmapped. If

this partial remapping of Ti is such that we gain a large dense subgraph in Q, then we

can use that subgraph to build T∗ further. Denote by Ri the part of I(Ti) that is not used

in the remapping. Let ri = |Ri|. By the above | ∪i Ri| =
∑

i ri ≥ n(1/2− 2γ/3). Since G
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is non-extremal, ∪iRi has many edges, at least γn2/3. We will show that there are many

pairs (Ri, Rj) which have many edges between them.

Lemma 12 There exist at least γ−2 disjoint pairs (Ri, Rj) such that e(Ri, Rj) ≥ γrirj.

Proof: Let us assume that, on the contrary, every pair has density less than γ. Then

e(∪Ri) = 1/2
∑
i 6=j

e(Ri, Rj) +
∑
i

e(Ri).

The sum
∑

i e(Ri) = o(n2), so we concentrate on the first part.

1/2
∑
i 6=j

e(Ri, Rj) ≤ γ/2
∑
i 6=j

rirj ≤ γ/2
∑
i

ri(n/2− ri).

This last expression is at most γ(n/4
∑

i ri −
∑

i r
2
i ) ≤ γn2/4 − o(n2), a contradiction.

Thus for some positive (but small) constant α, we can find at least αn2 dense pairs. In

particular there are at least γ−2 disjoint dense pairs. �

If most of the subtrees are weakly remappable and less than γ−4 are remappable, then

we do the following. Apply Lemma 12 to find γ−2 disjoint dense pairs. For one such pair

(Ri, Rj) remap Ti and Tj . After the remapping at most Kγ2ti and Kγ2tj vertices are

left unmapped from these subtrees. As (Ri, Rj) is a dense pair, there are at least γrirj

edges between them. By Lemma 5 we can find a subgraph of this dense pair in which the

minimum degree is at least γ rirj
ri+rj

. Using that ec/K3 ≤ ti ≤ Kec and ri ≥ ti/2, it can be

shown that the minimum degree in this subgraph is enough to map the leftover portions

of Ti and Tj of size Kγ2ti and Kγ2tj and still have minimum degree in this subgraph of

at least γ2Kec. Thus, if we remap such that at least γ−2 such subgraphs are returned to

Q, then in a manner similar to the Second Mapping Method, we can map a new subtree

by way of these subgraphs. We end with the remark that the we use at most a polynomial

in K number of vertices from M while we map an exponential number of vertices from Q.

2.3.9 Description of the Embedding Algorithm

We are now ready to give the embedding method in case G is non-extremal and T has

many leaves. After we are done with the mapping of the vertices of T0 except the vertices
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of S, we decompose teh remainder of T , T∗, and apply the Main Mapping Procedure to

map the subtrees of the decomposition starting from the root. It is possible to do so until

Q drops below n/2, at which point we are not guaranteed to have the necessary minimum

degree in Q. We look for at least γ−4 remappable subtrees that we can remap and use

the resulting dense subgraphs to map a new tree from the decomposition. If there are not

enough remappable subtrees then most of T∗ has been mapped, and most of the embedded

good subtrees are weakly remappable. It follows that the set comprised of those vertices of

the weakly remappable subtrees which are not used in the potential (partial) remappings

is nearly n/2, and so contains many edges. This in turn implies that, there are many

disjoint pairs of weakly remappable subtrees for which remapping them would return a

dense bipartite subgraph to Q. Again, we can use these dense subgraphs to map a new

unmapped tree of the decomposition. We proceed in this manner until the size of Q drops

below γ10n. Then we apply the matching method of Section 2.3.5, and find the embedding

of T into G.

2.3.10 T has at most γ2n leaves

In this section we will discuss the case of embedding T with at most γ2n leaves. We first

give a sketch of the procedure.

A stem in a tree T is a path P such that every vertex on P apart from possibly the

endpoints has degree 2 in T . In the case that T has only γ2n leaves, it must contain

many long stems. We find a set of stems {P1, . . . , Pk′} where each Pi has 1/(4γ2) vertices,

and k′ is around γ14n. These stems are chosen from the good subtrees (recall the tree

decomposition of the previous case). We remove one vertex from every Pi and glue the

two new endpoints together. We denote the resulting new stems by P̂i and the resulting

tree by T̂ , which has roughly (1− γ14)n vertices.

We prepare G for the embedding of T̂ by first embedding the stems P̂i by way of a

randomized procedure. Then we apply the Main, Second, and Third embedding proce-

dures of the previous section to embed the rest of T̂ . Note that we will have no problem

embedding T̂ as it is sufficiently smaller than G and the applicability conditions for at
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least one of the procedures will always apply. Then we handle the vertices which were

removed from the stems by inserting one vertex into each P̂i. This will be done by finding

a perfect matching between the unmapped vertices of G and the P̂i such that a vertex v

matched to a stem P̂i implies that v is adjacent to two consecutive vertices on I(P̂i).

We first show that if F is a tree having only a few leaves then we can find many long

stems.

Lemma 13 Let F be a tree on t vertices with dt leaves for some 0 < d � 1. Then it is

possible to find dt/10 vertex disjoint stems in F , each of size 1/(2d).

Proof: Choose a root ρ. Substitute every maximal stem in F by one edge (we keep ρ).

Then every vertex in the new tree F ′ will have degree 1 or at least 3 except possibly the

root. We have at most 2dt vertices in F ′, and at least dt edges. We had t − 1 edges in

F , hence an average edge of F ′ corresponds to a stem of length a least 1/(2d). Cut out

a part of this stem of length 1/(2d), and then glue together the resulting two endpints.

Repeat this procedure: construct a new F ′ as before, and then find a long stem again by

an averaging argument. We can continue this way, and find many stems of length 1/(2d),

until the leftover number of edges in F is at least t/2. �

Apply the decomposition of Section 2.3.4, and find the good subtrees. Call a good

subtree long if it has size t and has at most 2γ2t leaves. It is easy to see that almost

half of the vertices are in long subtrees. Then we will find k stems of length 1/(4γ2) by

choosing less than 10K
4

ec γ
12n long subtrees and finding γ2ti/10 long stems in subtree Ti

by the help of Lemma 13. Note that in Lemma 13 if d� γ2 we find fewer stems of much

greater length. In these cases, of course, we divide the stems into the appropriate length.

Finally, for each stem that we obtain we trim two edges off of the end before choosing it

as one of the stems that we embed. This is to ensure that they are all at distance at least

three from each other. We denote by P1, P2, . . . , Pk these long chosen stems.

We prepare G for the embedding by picking a random subset M ⊂ W (G) with size

γ10n. This will be the random set M that we need when performing the mapping proce-

dures of the previous sections. We begin with the following Randomized Path Embedding

procedure.
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Step 1. Pick randomly, independently k
16γ2 edges from G−M , with replacement.

Step 2. Form randomly subsets of these edges each having size 1
16γ2 and discard

those subsets which contain repeated vertices. Connect the edges in every remaining

subset into a path of length 1
4γ2 − 1.

Step 3. Remove a vertex from each stem of the long subtrees that will be mapped

onto the surviving random paths. Map the long subtrees such that the modified

long stems map to the random paths.

Step 1 is obvious.

We analyze the edge sets that we found in Step 1. Let v be any vertex in G. The

expected number of occurrences of v in the randomly chosen edges is proportional to γ12.

This number is a random variable which follows a Poisson distribution. Therefore, the

probability that v has at least two occurrences in the random edge set is at most

∑
i≥2

γ12ie−γ
12

i!
< γ20.

A subset of 1
16γ2 edges will contain a vertex which occurs multiple times in the original

draw with probability at most γ20

8γ2 . Therefore, with high probability, k′ = (1 − γ18)k

subsets will contain vertices not repeated in any other subset. To complete Step 2, for

each subset of 1
16γ2 edges, we use Lemma 10 to connect the endpoints of the edges of each

subset in series by paths of length 3. We need to extend the resulting paths by 2 edges to

ensure that they are of length exactly 1
4γ2 − 1.

Identify k′ of the stems, say P1, P2, . . . , Pk′ , to be mapped onto the randomly con-

structed paths. For each 1 ≤ i ≤ k′, take three consecutive vertices on Pi—xi, yi and

zi. We remove yi from the path and add the edge {xi, zi}. We get a new path P̂i and a

deleted vertex yi. We denote the resulting tree on (1− k′)n vertices by T̂ .

Finally, for building the long subtrees we map greedily, connecting the endpoints of

the Pi to their respective long subtrees through M . As we will need to perform less

than 2γ12n connections through M , we will not violate the requirement that at most

(γ/20)|M | vertices may be mapped for the mapping procedures that follow. Notice also
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that the condition that the stems are distance 3 from each other is used to be sure that

the connections go through.

We say that we can insert a vertex u into I(P̂i) if u has two consecutive neighbors

on the stem. Let us estimate the probability that u cannot be inserted to a given path

I(P̂i). There are at least γn2 edges in the neighborhood of u, since G is non-extremal.

The probability that none of the 1
16γ2 randomly chosen edges is in the neighborhood of u

is at most

(1− γ)
1

16γ2 ≈ e−
1

16γ .

Since we choose the edges and then form the edge sets randomly, by Chernoff’s inequality

every vertex u can be inserted to at least (1 − e
− 1

16γ )k′ − o(n) stems with probability

tending to 1. Similarly, we get that the image of every mapped stem has many neighbors,

i.e. vertices that can be inserted into it—at least (1 − e−
1

16γ )n − o(n) with probability

tending to 1. Let A ⊂ W (G) be arbitrary, such that |A| = k′. Construct the following

bipartite graph F (A,B) : the vertices of A are identified by the vertices removed from the

embedded stems, and the vertices of B are identified by the randomly embedded stems.

We connect a ∈ A and b ∈ B if the vertex corresponding to a can be inserted into the

the image of the stem corresponding to b. As |A| = |B| = k′, the discussion above implies

that the König-Hall conditions are satisfied with high probability. Therefore, we can find

a perfect matching in F.

Now we are ready to discuss the embedding of T in case it has only a few leaves. First

we choose M ⊂W (G) randomly of size γ10n. We find paths of length 1/(4γ2)−1 randomly

by the help of the Randomized Path Embedding procedure. We discard the bad paths,

then correspond the remaining paths to the stems identified in the long subtrees. We cut

out the middle vertex of these stems and embed the long subtrees containing them such

that the stems map to the random paths.

Next we proceed to map the rest of the subtrees. All of the arguments go through for

the Main Mapping Procedure, the Second Mapping Procedure, and the Third Mapping

Procedure, with a single caveat. When mapping a new subtree into G, we may find that

it contains a connecting leaf which is the root of one of the long subtrees that has already
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been embedded. Thus we will need to make an extra connection through M . This will not

present a problem as there are at most 10K
4

ec γ
12n extra connections to make throughout

the embedding process.

The embedding goes smoothly as long as there are enough unmapped vertices left. As

v(T̂ ) = (1− k′)n ≤ (1− γ12/2)n, there are always enough unmapped vertices, and so we

map all of T̂ . Finally, the remaining unmapped vertices are matched and then insterted

into the modified stems, completing the embedding.

2.4 The Extremal Case

In this case we embed a tree T into an extremal graph G. An extremal graph G is either

very close to being a complete bipartite graph on color classes having size n/2 with some

edges in each part, or it is the union of two complete graphs on n/2 vertices each with

some edges going between the parts. This two cases, while being very similar, will be

handled separately.

We haven’t used the full strength of the minimum degree of G in the non-extremal

case. Even a minimum degree of (1/2−ε)n for some small ε is sufficiently large if G is not

extremal. On the other hand, if G = Kn/2∪Kn/2, then it is not even connected. Likewise,

if G = Kbn/2c,dn/2e, then embedding T is only possible if there exists a two-coloring whose

color classes are both of size n/2.

We assume that δ(G) ≥ n/2+K4C log3/2 n, where C is an absolute constant that does

not depend on any other parameters.

In both extremal cases we will make use of a folklore result concerning trees.

Proposition 14 Let J be any tree on m vertices. Then J has a vertex u ∈ V (J) such

that it is possible to group the vertices of J − u into two forests, J1 and J2 such that

m/3 ≤ |J1|, |J2| ≤ 2m/3 and there is no edge connecting J1 and J2 in J − u.

We will call the vertex u a split vertex. We will repeatedly apply the above proposition,

and get smaller and smaller subtrees.

The following embedding lemma will be applied in both cases:
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Lemma 15 Let F be a tree with maximum degree K and color classes QF and RF . Let

H = (QH , RH) be a bipartite graph such that

1. q = |QF | = |QH | and r = |RF | = |RH |;

2. if u ∈ QH then deg(u) ≥ (1− 1
2K )r;

3. if v ∈ RH then deg(v) ≥ (1− 1
2K )q.

Then F is a spanning tree of H.

Proof: First we pick a random bijective mapping φ : QF → QH , then map every x ∈ QF

onto φ(x) ∈ QH . We will extend φ to an embedding of F by a matching argument.

Next we construct the auxiliary bipartite graph L(RF , RH). Let x ∈ RF and y1, y2, . . . , yk

be the neighbors of x in F . We connect u ∈ RH with x ∈ RF if u is adjacent to

φ(y1), φ(y2), . . . , φ(yk) in H. Obviously, if we can find a perfect matching in L then we

have the claimed extension of φ to an embedding of F into H. For proving the existence

of the perfect matching we will check the König-Hall conditions. In particular, we will

show that every u ∈ RH is adjacent to at least r/2 vertices in RF and that every x ∈ RF

is adjacent to at least r/2 vertices in RH with high probability.

Let u ∈ RH and x ∈ RF be arbitrary. As K is constant, the probability that {u, x} ∈

E(L) is approximately

(
1− 1

2K

)K
> 0.56

By Azuma’s inequality we get that every u ∈ RH is adjacent to more than r/2 vertices of

RF with very high probability.

We show that every x ∈ RF has at least r/2 neighbors in RF . Let the neighbors of

x ∈ RF be y1, y2, . . . , yK ∈ QF . By the minimum degree condition in H, every set of size

K in QF has a common neighborhood of size at least r/2 in RF , and so x is adjacent to

at least r/2 vertices of RF in L. �

Remark 3 Observe, that if there are o(r) vertices of RH such that these don’t have many

neighbors in RF , but still connected to a constant proportion, we still can find the perfect

matching in L, hence, find the embedding of F into H.
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2.4.1 G is close to Kdn/2e ∪Kbn/2c

In this case we find the vertex classes A and B such that A,B ⊂ W (G), A ∩ B = ∅ and

|A| = |B| = n/2, and e(G|A), e(G|B) ≥
(
n/2
2

)
− γn2.

First we state a simple lemma on the degrees of the vertices of A and B :

Lemma 16 Let 0 < η < 1/2. Then the number of vertices of A having less than n/2− ηn

neighbors in A is at most 2γn
η . The analogue is true for B.

Proof: Obvious. �

Preparations for the embedding – Step 1: Switching

We perform the following switching procedure: Let A′ ⊂ A contain those vertices

which have at most n/4 neighbors in A, and let B′ ⊂ B contain those vertices which have

at most n/4 neighbors in B. By Lemma 16 we have that |A′|, |B′| ≤ 8γn.

Redefine A := (A \A′)∪B′ and B := (B \B′)∪A′. Assume without loss of generality

that after this switching |B| ≥ |A|. We note that, despite rearranging edges, Lemma 16

still holds.

We will call a vertex v ∈ A “heavy” if deg(v,A) ≥ n/2− 100γn. We define the heavy

vertices in B similarly. We denote by HA the heavy vertices of A, and HB those of B.

Note that the HA and HB comprise more than 97% of the vertices of A and B respectively

by Lemma 16.

Preparations for the embedding – Step 2: Decomposition of T

Our next goal is to find a bipartition of the vertex set of T into two sets, X and Y

such that |X| = |A|, |Y | = |B| and e(X,Y ) = O(log n). We begin by finding two subtrees

of T , TX and TY , such that each subtree contains every descendant of some vertex in T ,

and n/81 ≤ |TX |, |TY | ≤ n/27. To find TX and TY , first apply Proposition 14 yielding the

two forests T (1) and and T (2), along with the split vertex u. To each tree T (i)∪{u}, apply

Proposition 14 and keep the split vertex with the forest that does not include u, thus

joining the forest into a rooted subtree of T . Repeat the procedure on the rooted subtree

containing the last split vertex, keeping the new split vertex in the component that does
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not include the previous root. Stop when the subtree so obtained is of the prescribed size.

Let the roots of TX and TY be rX and rY respectively.

Next we find two vertices r1 ∈ TX and r2 ∈ TY such that the subtrees T1 := TX(r1)

and T2 := TY (r2) have sizes K10γn ≤ |T1|, |T2| ≤ K11γn. These subtrees can be found in

a a manner similar to Section 2.3.3. For a leaf x of TX , let y be the ancestor of x for which

|TX(y)| ≥ K6γn but if z is a child of y then |TX(z)| < K6γn. Choose a leaf x for which

such a y is at the maximum depth over all leaves. Then |TX(y)| ≤ K7γn. Set r1 = y and

repeat on TY to find r2.

We denote the rest of T by T ∗ = T − TX − TY Beginning with the set S = {rX , rY },

recursively apply Proposition 14 to T ∗ a constant number of times, putting the split

vertices into S such that T ∗−S is comprised of subtrees of size at most γ2n. For technical

reasons, if when we add a split vertex to S there are two components of S which are at

distance less than 9 from each other, we add the vertices of the path of length at most 8

to S.

We try to divide vertices of T into an (X,Y )-partition such that |X| = |A|, |Y | = |B|,

and the number of edges between X and Y is O(log n). We begin by putting V (TX) and

S into X and V (TY ) into Y . We then pack the components of T ∗ − S into X and Y

in such a way that that ||X| − |A|| is minimized. This minimum is at most γ2n. If the

error is not zero, then we split a component of T ∗−S by Proposition 14, updating S with

the split vertex and any short paths connecting two components of S. We again divide

the components of T ∗ − S optimally, reducing the error by a constant factor. Because

of the resizing of S at each step, when the error is less than, say, 10, we simply split by

brute force. We can achieve an (X,Y )−bipartition with |X| = |A| with at most O(log n)

applications of Proposition 14, and so as the degree of T is bounded by a constant, the

number of edges across the partition is O(log n). Set s = |S|.

For a component F of T ∗ − S, denote the “connection points” of F as those vertices

which have a neighbor in S. As F can have at most one connection point to a single

component of S, the condition that the components of S are distance at least 9 from each

other ensures that the distance between any two connection points of F is at least 7.
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Preparations for the embedding – Step 4: Choosing random subsets from A

and B

Consider a proper two-coloring of T1 and T2. Denote the size of the color class con-

taining r1 by m1, and the size of the color class containing r2 by m2. We choose MA ⊂ A

of size m1 randomly from HA and MB of size m2 randomly from HB. By the degree

condition on T , a color class of Ti contains at least K9γn vertices, so |MA|, |MB| ≥ K9γn.

We note that as |HA| > n/2− n/50 and δ(A) ≥ n/4− 8γn, any vertex v ∈ A has at least

n/5 heavy vertices in its neighborhood. We also note that for any v ∈ A and any u ∈ HA,

|NA(v) ∩NA(u)| ≥ n/4− 108γn. Similar remarks hold for B.

Observe that every vertex in A has at least 0.45|MA| neighbors in MA and every vertex

in B has at least 0.45|MB| neighbors in MB with high probability. This follows from the

fact that the minimum degree in A and B is around |A|/2 and |B|/2 respectively, and that

MA and MB are chosen from the majority of the vertices from their respective super-sets.

Sketch of the embedding algorithm

First, we embed the forest induced on S into A \MA This is easy to do greedily since

S is very small. We follow by embedding TX−T1 and TY −T2 in such a way that we cover

the lowest-degree vertices. The sizes of TX and TY are such that we have no problem

with embedding greedily, but we have enough time to cover many low degree vertices.

Then we continue with the other subtrees in arbitrary order, leaving T1 and T2 for last.

This ensures that at each step the uncovered vertices induce a subgraph with high enough

degree to continue the embedding.

At the end there will be two subtrees left unmapped, T1 and T2. Perhaps K2s vertices

will have be covered in MB and a subset of size at least K9γn in A \MA and B \MB will

be left uncovered. For embedding T1 and T2 we will find a perfect matching in an auxiliary

bipartite graph, where we use the randomness of MA and MB and the large degrees of the

uncovered vertices.

Details of the embedding algorithm - mapping most of T

We begin by embedding S greedily into A \MA. Then for each vertex x ∈ S we map
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the neighborhood of x into the neighborhood of I(x), where vertices of NT (x) assigned to

A map to N(I(x)) ∩ (HA \MA) and vertices assigned to B map to N(I(x)) ∩ (B \MA).

This is possible by the remarks on the connectivity of the heavy vertices, and as every

vertex in A has O(log n) neighbors in B.

Next we embed TX−T1 into A and TY −T2 into B. The embedding will be done almost

greedily, however, we employ a technique to use the vertices with small degrees fast. First

we discuss the case of TY − T2

Lemma 17 We can embed TY − T2 into B \MB in such a way that after the embedding

there will be no uncovered vertex in B which has less than n/2−K8γn neighbors in B.

Proof:

We provide an simple embedding algorithm that embeds at most 2K vertices at each

iteration and covers an uncovered vertex of minimum degree. Suppose that we are in the

process of embedding TY −T2 into B and that x ∈ V (TY −T2) is a vertex which has been

mapped, but for which there is a child z that is unmapped. Assume further that z is not

a leaf and that x is mapped onto a heavy vertex, say I(x) = u. Let the children of z be

z1, z2, . . . , zk.

Then we perform the following iteration. Let w ∈ B be an uncovered vertex of mini-

mum degree in B and let (u, v, w) be a path from u = I(x) to w. We map I(z) = v and

I(z1) = w. We map z2, z3, . . . , zk to uncovered heavy vertices in NB(v), and we map the

children of z1 (if there are any) to uncovered heavy vertices in NB(w).

During the embedding procedure, we define a mapped vertex as “active” if at the end

of an iteration it has children that are not yet mapped. Note that at the end of an iteration

all active vertices are mapped onto heavy vertices. We have mapped at most 2K vertices

and have covered a vertex of minimum degree.

Now we can describe the embedding of TY −T2. We note that rY ∈ S and has already

been embedded in A and the children of rY , x1, x2, . . . , xk, are embedded into B\MH . Let

y1, y2, . . . , yell be the children of the x1. By the previous remark, we can map the yi into

HB \MB. At this point, all active vertices are mapped onto heavy vertices. We iterate

the embedding procedure breadth-first. Note that by the remarks on the connectivity of
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the heavy vertices and the size of TY − T2, we can always perform the iteration as long as

there is an active vertex whose children are not all leaves. When we can no longer iterate,

we finish the procedure by mapping the unmapped leaves greedily. Assuming that none

of the leaves are mapped onto low-degree vertices by the procedure, we are able to cover

the |Ty−T2|/K
2K ≥ n

200K2 lowest-degree vertices. By Lemma 16 every vertex left uncovered

has degree at least n/2−K8γn for K ≥ 3. �

As long as T2 remains unmapped, there will be at least K9γn uncovered vertices in B.

By Lemma 17 the minimum degree in the graph induced on the uncovered vertices is at

least K9γn−K8γn� γ2n

We embed TX−T1 just as we did TY −T2 except that we have to avoid the vertices that

have already been mapped by the vertices of S and their neighbors. This set of vertices is

O(log n) and so does not cause a problem. We can assume similarly that after embedding

TX − T1 but before embedding T1, the graph induced by the uncovered vertices of A has

minimum degree much bigger than γ2n

Then we are in a position to embed the components of T ∗−S into A and B according

to the (X,Y )-bipartition. We describe embedding the components assigned to A, the

procedure for B is identical. Note that for a component F so assigned, its connection

points have already been mapped into A. Starting at an arbitrary connection point, we

map greedily until we get to a vertex x ∈ F that is at distance 2 from another connection

point y. Similar to the Main Mapping Procedure, as the neighborhoods of x and y intersect

in a constant percentage of MA, we can connect x to y through MA. Because MA ⊂ HA,

every vertex of MA is adjacent to at least K9γn − 100γn uncovered vertices. Hence, the

children of the vertex in MA used for the connection can be mapped greedily into the

uncovered vertices and we use only one vertex of MA for each connection. The distance

conditions on the connection points ensures that we can continue greedily mapping F ,

taking care to properly establish the connections.

Finishing the embedding

Now we are in the position to finish the embedding. Only the vertices of T1 and T2

are left out. The embedding algorithms for these two subtrees are slightly different. We
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present the details of embedding T1. Recall that the root of T1 is denoted by r1, and that

one neighbor of r1 is already embedded, say, onto the vertex v. Let A′ be the unmapped

vertices of A \MA.

It is easy to check that H = (MA, A
′) satisfies the conditions of Lemma 15 with the

exception that the mapping of r1 is restricted to N(v) ∩MA. This restriction does not

affect the proof of the lemma significantly, as |N(v) ∩MA| is large.

Embedding T2 is similar, except that a set M ′ of O(log n) vertices of MB have been

covered already. Letting B′ be the unmapped vertices of B \MB and arbitrarily taking

a subset B′′ ⊂ B′ of size |M ′|, by Remark 3 we can embed T2 into the bipartite graph

H = ((MB \M ′) ∪B′, B \B′).

2.4.2 G is close to Kn/2,n/2

This case is very similar to the previous one, so the emphasis will be on the differences.

Let us sketch the embedding algorithm.

Sketch of the embedding algorithm

G has two vertex classes A and B of size n/2 such that the number of edges inside

each class is at most γn2. By the minimum degree condition, every vertex will have at

least K4C log3/2 n neighbors in its vertex class, where C is an absolute constant.

First we prepare G for the embedding by repeatedly perform a switching procedure

whenever it is possible. If we identify a vertex v ∈ A and a vertex u ∈ B such that

e(A,B) < e(A− v+u,B−u+ v), then redefine A := A− v+u and B := B−u+ v. Since

the number of edges in between A and B increases at every step of the switching, this is

a finite process. When the process terminates, there is not a pair of vertices v ∈ A, u ∈ B

such that |N(v)∩B| ≤ n/4 and |N(u)∩A| ≤ n/4. Therefore, in one of the vertex classes,

say A, every vertex has at least n/4 neighbors in B.

Next we find a decomposition of the tree T into a set of subtrees T1, T2, . . . , Ts such

that (1) s = O(log n) and (2) there is a proper two-coloring of the subtrees such that the

sum of the sizes of the red vertices is |A| and the sum of the sizes of the blue vertices is

|B|. We stress that the two-colorings are only proper within a subtree—the vertices of
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an edge connecting two subtrees may have the same color. We require that the largest

subtree of this decomposition, T1 has at least n/(3K) vertices, but not larger than n/9,

and that Ti has size less than γ2n for i ≥ 2. Finally, we find a subtree T0 ⊂ T1 of size

about K10γn such that the leaves of T0 are that of T , and set it aside until the end of the

embedding. This decomposition can be found in a manner similar to the previous case.

Again, we need to make sure that the connecting points are at a sufficient distance from

each other. During the decomposition process if we find two connecting points in the same

component that are too close, we move one of them into the neighboring component. This

may increase the number of components by at most a constant factor.

Given such a decomposition of T, we collect the edges connecting the trees T1, . . . , Ts.

into a set S. The vertices of S are colored by the coloring of the decomposition. We embed

S into A ∪ B such that whenever a vertex is red, we place it into A, and otherwise we

place it into B. The size of S and the degree conditions on A and B ensure that this is

easily accomplished. Every vertex in A has many neighbors in B, but it is possible that

B has vertices with only a few neighbors in A. We set aside a subset A′ ⊂ A which is the

union of disjoint neighborhoods of size K, one for each vertex of S in B.

Then we choose two random subsets as in the previous extremal case: MA ⊂ A − A′

and MB ⊂ B among those which have at least n/2− 100γn neighbors in the other vertex

class. We choose |MA| to be the number of red vertices of T0 and |MB| is the number of

blue vertices of T0.

We start the embedding process by first embedding T1 − T0, again eating up vertices

with small degree into the opposite class. Afterwards, the uncovered vertices will all have

large degree into the other class. Then we begin embedding T2, . . . , Ts, connecting to S

through MA ∪MB. We may need at most K2 vertices from MA ∪MB when connecting a

new subtree, overall using at most O(log n) vertices. Again, this will not cause problems

for the final matching. Since a large subset of T is left to be embedded into MA ∪MB at

the end, there is always a sufficient minimum degree in the uncovered vertices to complete.

Finally, we embed T0 into the remaining uncovered vertices by the help of a matching

procedure (see Lemma 15) similar to the previous extremal case.
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Chapter 3

How to avoid using the Regularity Lemma; Pósa’s

Conjecture revisited

3.1 Notations and definitions

V (G) and E(G) denote the vertex-set and the edge-set of the graph G. (A,B,E) denotes

a bipartite graph G = (V,E), where V = A + B, and E ⊂ A × B. For a graph G

and a subset U of its vertices, G|U is the restriction of G to U . N(v) is the set of

neighbors of v ∈ V , and NS(v) is the set of neghbors of v ∈ V ∩ S. Hence the size

of N(v) is |N(v)| = deg(v) = degG(v), the degree of v. δ(G) stands for the minimum,

∆(G) for the maximum and d(G) = 1
|V (G)|

∑
v∈V (G) deg(v) for the average degree in G.

Kr(t) is the balanced complete r-partite graph with color classes of size t. We write

N(p1, p2, . . .) = ∩iN(pi), the set of common neighbors. When A,B are subsets of V (G),

we denote by e(A,B) the number of edges of G with one endpoint in A and the other in

B. In particular, we write deg(v, U) = e({v}, U) for the number of edges from v to U . For

non-empty A and B,

d(A,B) =
e(A,B)
|A||B|

is the density of the graph between A and B. In particular, we write d(A) = d(A,A) =

2|E(G|A)|/|A|2.

3.2 Outline of the proof

We will follow the same rough outline (connecting-absorbing-reservoir) as in [24]; however,

the main ingredient there, the Regularity Lemma, will be replaced with more elementary

arguments here.
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We will use the following main parameter

α =
1
10
.(3.1)

We assume throughout that n is sufficiently large.

Let us consider a graph G of order n with

δ(G) ≥ 2
3
n.(3.2)

We must show that G contains the square of a Hamiltonian cycle.

In [17] the proof was divided into two main cases, the extremal case when G satisfies

the following so-called extremal condition and the non-extremal case when this condition

is not satisfied.

Extremal Condition (EC) with parameter α: There exist (not necessarily dis-

joint) A,B ⊂ V (G) such that

•
(

1
3 − α

)
n ≤ |A|, |B| ≤ 1

3n, and

• d(A,B) < α.

In the extremal case in [17] the proof did not use the Regularity Lemma, thus we can

use that part of the proof here again.

Lemma 18 (Lemma 12 in [17]). There exists a natural number n1 such that if a graph

G has order n with n ≥ n1, δ(G) ≥ 2
3n and G satisfies the extremal condition EC with

parameter α, then G contains the square of a Hamiltonian cycle.

Hence we may assume that our graph G does not satisfy the extremal condition EC

with parameter α. In this case our proof technique will follow the same outline (and

notation) as in [24]. First in Section 3 we will prove the auxiliary Connecting Lemma that

claims that any two disjoint ordered pairs of vertices can be connected by a short square-

path. Then using the Connecting Lemma and the probabilistic method in Section 4 we

will construct a “not too long” absorbing square-path PA that will have the remarkable

property that every “not too large” subset of vertices can be absorbed into this square-

path. Thus if this PA will be a part of a square-cycle C that contains “most” of the
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vertices already, then immediately PA (and thus C) absorbs the leftover vertices and we

have a Hamiltonian square-cycle. This is a significant simplification of the proof technique

from [17], where the corresponding step in Section 6 was quite complicated.

Thus our goal is to construct a square-cycle C that contains the absorbing path PA

and most of the other vertices. For this purpose we will need another technical lemma in

Section 5, the Reservoir Lemma, which allows us to use the Connecting Lemma (through

the reservoir) even if some of the vertices are already occupied by the square-cycle we are

building. Finally in the main part of the proof in Section 6 we will show that unless C

contains most of the vertices already, we can extend it by using leftover vertices that are

not from the reservoir or the absorbing path. This is where, in contrary to the proof in [24],

we are able to achieve this goal without the use of the Regularity Lemma, but using more

elementary arguments. Thus the main point of the chapter is that the proof method of [24]

can be adapted into a method that avoids the use of the Regularity Lemma. We believe

that this new approach (although some of the arguments are problem-specific) could be

successful for other well-known extremal problems where the Regularity Lemma-Blow-up

Lemma method has been used (e.g. Conjecture 3 for k > 2 or the main Dirac-type result

of [24] itself).

3.3 Connecting

A k-square-path (or simply a k-path) in G is a sequence of vertices {v1, v2, . . . , vk} such

that {vi, vi+1} ∈ E(G) for each 1 ≤ i ≤ k−1 and {vi, vi+2} ∈ E(G) for each 1 ≤ i ≤ k−2.

We say that P connects the ordered pairs (v1, v2) and (vk, vk−1) and these will be called

the endpairs of P . Thus an endpair (a, b) is an ordered pair, a is the first (or the last)

vertex on the path, and b is the second (or the second-to-last) vertex on the path. We will

often call a square-path simply a path.

For two paths P and Q, let (a, b) be an endpair of P and (b, a) be an endpair of Q, and

assume that V (P ) ∩ V (Q) = {a, b}. By P ◦Q we denote the path obtained (in a unique

way) as a concatenation of P and Q. We can extend this definition to more than two

paths. The Connecting Lemma claims that two disjoint ordered pairs can be connected
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by a short path.

Lemma 19 (Connecting Lemma). For every two disjoint ordered edges of G, (a, b)

and (c, d), there is a k-path, k ≤ 10
α4 , which connects (a, b) and (c, d). Furthermore, this

statement remains true even if at most α9n vertices are forbidden to be used on this

connecting path.

Proof: We will build a similar cascade structure as in the proof of the Connecting

Lemma in [24]. We construct sets A0, A1, A2, . . . and bipartite graphs G1, G2, . . ., where

V (Gi) = Ai−1 ∪ Ai, as follows. Let A0 = {b} and A1 = {x | (a, x), (b, x) ∈ E(G)} and let

G1 be the star with b as the center and A1 as the set of its leaves. Note that |A1| ≥ n/3.

Further, let

A′2 = {y | ∃x ∈ A1 such that (b, y), (x, y) ∈ E(G)}

and

G′2 = {(x, y) | x ∈ A1, y ∈ A′2, (b, y), (x, y) ∈ E(G)}.

Then for every edge (x, y) ∈ G′2 that is disjoint from (a, b) the vertices (a, b, x, y) form a

4-path in G. Furthermore, for each x ∈ A1, we have degG′
2
(x) ≥ n/3. Let

A0
2 = {y ∈ A′2 | degG′

2
(y) < α4n}, A2 = A′2 \A0

2 and G2 = G′2[A1 ∪A2].

Assume that we have constructed A0, A1, . . . , Aj and G1, . . . , Gj , j ≥ 2 already. To

construct Aj+1 and Gj+1 we do the following. First for every y ∈ Aj we consider the

auxiliary bipartite graph Bj
y between NGj (y) and V (G), where a pair (x, z) ∈ E(Bj

y) for

x ∈ NGj (y), z ∈ V (G) if (x, z), (y, z) ∈ E(G). Define

A′j+1 = {z | ∃y ∈ Aj such that deg
Bjy

(z,NGj (y)) ≥ α8n}

and

G′j+1 = {(y, z) | y ∈ Aj , degBjy(z,NGj (y)) ≥ α8n}.

Finally, let

A0
j+1 = {z ∈ A′j+1 | degG′

j+1
(z) < α4n},

Aj+1 = A′j+1 \A0
j+1 and Gj+1 = G′j+1[Aj ∪Aj+1].
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We call the entire structure A0, A1, A2, . . . along with the bipartite graphs G1, G2, . . .

an (a, b)-cascade. Notice that some of the sets Aj may intersect. For the sake of the

construction we treat them as disjoint. Note also that we had to change the construction

slightly for j ≥ 3 and require deg
Bjy

(z) ≥ α8n to make sure that we can always return

from any edge of Gj back to (a, b) by a legitimate square-path on which all the vertices

are distinct, even if at most α9n vertices are forbidden.

A vertex y ∈ Aj is called heavy if degGj (y) ≥ (1/3 + α4)n.

Claim 20. There exists an index j ≤ j0 = d 4
α4 e + 2 such that Aj contains at least α4n

heavy vertices.

For the proof of this claim, first we prove that for every j ≥ 2 and for every y ∈ Aj we

have

degG′
j+1

(y) ≥ (1/3− α4)n.(3.3)

Indeed, let s be the number of vertices z ∈ V (G) with deg
Bjy

(z) < α8n. Then

sα8n+ (n− s)|NGj (y)| ≥ |E(Bj
y)| ≥ |NGj (y)|n/3.

From this using |NGj (y)| = degGj (y) ≥ α4n and s ≤ n, we get

n− s ≥ n/3− sα8n

|NGj (y)|
≥ n/3− α4n,

proving (3.3). Note also that the total number of edges of G′j+1 incident to the exceptional

vertices in A0
j+1 is smaller than α4n2.

Let us look at the sequence of sets A1, A2, . . ., where we have |A1| ≥ n/3. Clearly we

must have a j ≤ d 4
α4 e for which

|Aj+1|, |Aj+2| ≤ (1 + α4)|Aj |.(3.4)

Indeed, if j = 1 does not satisfy (3.4), then either A2 or A3 (say A3) has size at least

(1 + α4)|A1| ≥ (1 + α4)n/3. If j = 3 does not satisfy (3.4), then either A4 or A5 (say A5)

has size at least (1 + α4)|A3| ≥ (1 + α4)n/3. Continuing in this fashion, in each step we

add at least α4n/3 new vertices to A1, so in at most d 2n/3
α4n/3

e = d 2
α4 e steps we get a set Aj

with more than n vertices, a contradiction.
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Furthermore, we may assume that for this j in addition to (3.4) the following holds as

well

|Aj+1| ≥ (1− α3)|Aj |.(3.5)

Otherwise Aj+1 would contain at least α4n heavy vertices and we would be finished with

the proof of Claim 20. Indeed, suppose not. On one hand from the above we have

|E(Gj+1)| ≥ |Aj |n/3− 2α4n2,(3.6)

but on the other hand using (3.5) we would get

|E(Gj+1)| ≤ α4n|Aj |+ |Aj+1|(1/3 + α4)n ≤

≤ α4n|Aj |+ (1− α3)(1/3 + α4)|Aj |n ≤ |Aj |n/3− α3|Aj |n/3 + 2α4|Aj |n,

a contradiction (using (3.1)).

Thus we may assume that there is a j ≤ d 4
α4 e for which both (3.4) and (3.5) hold.

We fix this j. We will show that Aj+2 contains at least α4n heavy vertices as desired in

the claim. For this purpose first we show that Aj+1 contains at least αn/2 vertices z for

which

degGj+1(z) ≥ (1/3− α)n.(3.7)

Otherwise, similarly as above using (3.4) we would get

|E(Gj+1)| ≤ αn|Aj |/2 + |Aj+1|(1/3− α)n ≤

≤ αn|Aj |/2 + (1 + α4)(1/3− α)|Aj |n ≤ |Aj |n/3− α|Aj |n/2 + α4|Aj |n/3,

a contradiction with (3.6) (using (3.1)).

Consider a vertex z ∈ Aj+1 satisfying (3.7). Next we show that

degG′
j+2

(z) ≥ (1/3 + α)n.(3.8)

Indeed, otherwise let A ⊂ NGj+1(z), B ⊂ NG(z) \ NG′
j+2

(z) be arbitrary subsets with

sizes (1/3 − α)n ≤ |A|, |B| ≤ n/3 (this is possible as both of these sets have size at least

(1/3 − α)n). Since G does not satisfy EC with parameter α, we have d(A,B) ≥ α. In
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particular, we can pick a vertex w ∈ B with degG(w,A) ≥ α|A| � α8n, a contradiction,

since in this case w would belong to NG′
j+2

(z) by definition.

Thus we get from (3.3) and (3.8)

|E(Gj+2)| ≥ |Aj+1|n/3 + α2n2/2− 2α4n2.(3.9)

However, this implies that in Aj+2 we must have at least α4n heavy vertices, and thus

proving the claim. Indeed, otherwise using (3.1), (3.4) and (3.5) we would get

|E(Gj+2)| ≤ α4n|Aj+1|+ |Aj+2|(1/3 + α4)n ≤

≤ α4n|Aj+1|+ (1 + 2α3)(1 + α4)(1/3 + α4)|Aj+1|n ≤ |Aj+1|n/3 + α3|Aj+1|n,

a contradiction with (3.9).

Now to finish the proof of the Connecting Lemma, given two disjoint ordered edges

of G, (a, b) and (c, d), we consider the (a, b)-cascade (A(1)
j , G

(1)
j ) and the (c, d)-cascade

(A(2)
j , G

(2)
j ). For i = 1, 2, let A(i)

j(i) be the set that contains many (≥ α4n) heavy vertices

as guaranteed by Claim 20. An easy averaging argument shows that there must be many

(≥ αn) vertices u ∈ V (G) such that u has many (≥ α5n) heavy neighbors in both A
(i)
j(i),

i = 1, 2. Consider one such a u, a heavy neighbor h(1) of u in A
(1)
j(1) and a heavy neighbor

h(2) of u in A
(2)
j(2). It is easy to see from the definition that we have

degG′
j(1)+1

(h(1)), degG′
j(2)+1

(h(2)) ≥ 2n/3,

since h(1) and h(2) are heavy vertices.

Let A ⊂ NG(u)∩NG′
j(1)+1

(h(1)), B ⊂ NG(u)∩NG′
j(2)+1

(h(2)) be arbitrary subsets with

sizes bn/3c (this is possible as both of these sets have size at least n/3). Since G does

not satisfy EC with parameter α, we have d(A,B) ≥ α. In particular, we can pick an

edge (v(1), v(2)) with v(1) ∈ A and v(2) ∈ B. By the definition of the (a, b)-cascade, there

is a (j(1) + 3)-path P (1) connecting (a, b) and (v(1), h(1)) and by the definition of the

(c, d)-cascade, there is a (j(2) + 3)-path P (2) connecting (c, d) and (v(2), h(2)). By putting

together P (1) and P (2) and including u in the middle we get a k-path connecting (a, b)

and (c, d) with

k = (j(1) + 3) + (j(2) + 3) + 2 ≤ 2(j0 + 4) ≤ 10
α4
.
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Furthermore, the condition deg
Bjy

(z) ≥ α8n guarantees that the proof goes through (and

we can find a connecting path) even if we have a set of at most α9n forbidden vertices. �

3.4 Absorbing

Again we follow the method of [24], we just have to adapt the ideas to square-cycles

in graphs instead of tight cycles in hypergraphs. For the sake of completeness we give

the details here again. As we sketched above the Absorbing Lemma claims that we can

construct a “not too long” absorbing path A that absorbs every “not too large” subset of

vertices.

Lemma 21 (Absorbing Lemma). There is an l-path PA in G with l ≤ α9n, such that

for every subset U ⊂ V (G) \ V (PA) of size at most α20n there is a path PAU in G with

V (PAU ) = V (PA) ∪ U and such that PAU has the same endpairs as PA.

Proof: Given a vertex v ∈ V (G) we say that an ordered 5-tuple of vertices (x, a, b, c, d)

absorbs v if these 5 vertices are all neighbors of v, the vertices {a, b, c, d} are all neighbors of

x and (a, b, c, d) is a (simple) path in G. Indeed, in this case the (square-)path (a, b, x, c, d)

may absorb v to get the extended path (a, b, v, x, c, d). Note that both paths have the

same endpairs. First we show that for every v ∈ V (G) there are many 5-tuples absorbing

v.

Claim 22. For every v ∈ V (G) there are at least 1
2(64)

α4n5 5-tuples absorbing v.

Indeed, let us consider an arbitrary v ∈ V (G). We can choose x as an arbitrary

neighbor of v. SinceG satisfies (3.2) we can choose x in at least 2
3n different ways. Consider

the common neighbors of v and x, N(v, x). We know from (3.2) that |N(v, x)| ≥ n
3 . Keep

a subset N ⊆ N(v, x) with |N | = bn3 c. Since G does not satisfy the extremal condition

EC with parameter α, we know that d(N) = d(N,N) ≥ α. Then we have d(G|N ) ≥ α|N |,

and so we can choose a subgraph H of G|N with δ(H) > α
2 |N |. In particular, we also have

|V (H)| ≥ α
2 |N |. Let a be an arbitrary vertex of H (at least α

2 |N | different choices), let b

be an arbitrary neighbor of a in H (at least α
2 |N | different choices), let c be an arbitrary
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neighbor of b in H that is different from a (at least α
2 |N |− 1 different choices), and finally

let d be an arbitrary neighbor of c in H that is different from a and b (at least α
2 |N | − 2

different choices). Then (x, a, b, c, d) is a good 5-tuple that absorbs v. The number of ways

we can select (x, a, b, c, d) from the above is at least

2
3
n
α

2
|N |α

2
|N |

(α
2
|N | − 1

)(α
2
N − 2

)
≥ 1

2(64)
α4n5

(for sufficiently large n), finishing the proof of the claim.

For each v ∈ V (G), let Av be the family of all 5-tuples absorbing v. The next claim

can be proved by an application of the probabilistic method.

Claim 23. There exists a family F of at most 2α14n disjoint, absorbing 5-tuples of

vertices of G such that for every v ∈ V (G) we have |Av ∩ F| > α20n.

For this purpose we first select a family F ′ of 5-tuples at random by including each of

n(n− 1)(n− 2)(n− 3)(n− 4) ∼ n5 of them independently with probability α14n−4 (some

of the selected 5-tuples may not be absorbing at all). Using Chernoff’s inequality (see,

e.g. [15]) with probability 1− o(1), as n→∞, we have

• |F ′| < 2α14n,

• for each v ∈ V (G), |Av ∩ F ′| ≥ 1
3(64)

α18n.

Furthermore, the expected number of intersecting pairs of 5-tuples in F ′ is at most

n5 × 5× 5× n4 × (α14n−4)2 = 25α28n,

and thus, by Markov’s inequality, with probability at least 1/26,

• there are at most 26α28n pairs of intersecting 5-tuples in F ′.

Thus with positive probability, a random family F ′ satisfies all the three properties above.

Thus there exists one such a family, for simplicity, we also denote this family by F ′.

From F ′ we delete all 5-tuples that intersect other 5-tuples and all 5-tuples that are not

absorbing at all. Let us denote by F the remaining subfamily. Then F consists of disjoint,

absorbing 5-tuples such that for each v ∈ V (G) we have using (3.1)

|Av ∩ F| ≥
1

3(64)
α18n− 52α28n >

1
4(64)

α18n > α20n,
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proving Claim 23.

Let f = |F|, let F1, . . . , Ff be the 5-tuples in F and let F = ∪fi=1Fi. Since for each

i = 1, . . . , f , Fi is absorbing for at least one vertex v ∈ V (G), Fi spans a 5-path. Our

next task is to connect all these 5-paths into one, not too long absorbing path PA. For

this purpose, we will apply the Connecting Lemma (Lemma 19) repeatedly, and for each

i = 1, . . . , f − 1 we will connect the endpairs of Fi and Fi+1 by a short path. Thus we get

the following claim.

Claim 24. There exists a path PA in G of the form

PA = F1 ◦ C1 ◦ . . . ◦ Ff−1 ◦ Cf−1 ◦ Ff ,

where the paths C1, . . . , Cf−1 each have at most 10
α4 vertices.

Indeed, we apply Lemma 19 to connect F1 and F2, we apply Lemma 19 again to

connect F2 and F3, etc. finally we apply Lemma 19 to connect Ff−1 and Ff . Note that

Lemma 19 can always be applied as the set of forbidden vertices (vertices on the part of

PA that is constructed already and vertices in F ) has size at most

f(
10
α4

+ 5) ≤ 2α14 11
α4
n ≤ α9n.

Thus we connected all paths in F into one path of length at most α9n. It remains to

show that PA has the absorbing property. Let U ⊂ V \V (PA) of size at most α20n. Since

for every v ∈ U we have |Av ∩ F| > α20n, we can insert all vertices of U into PA one by

one, each time using a new absorbing 5-tuple.

3.5 The reservoir

In the Reservoir Lemma we will set aside some vertices that we can always use for con-

necting even if the other vertices are occupied already.

Lemma 25 (Reservoir Lemma). For every subset W ⊂ V (G), |W | ≤ α9n, there exists

a subset R ⊂ V (G) \W (a reservoir) such that |R| = bα20n/2c and

degG(x,R) ≥ (2/3− α10)|R| for every x ∈ V (G).(3.10)
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Proof: Set r = bα20n/2c. We choose R randomly out of all
(
n−|W |
r

)
possibilities and

apply the probabilistic method again. By Chernoff’s bound again, for sufficiently large n,

(3.10) will be true for R with high probability. Then we can fix a choice of R for which

(3.10) is true. �

Then indeed, we can connect through the reservoir.

Lemma 26 (Reservoir-Connecting Lemma). For every two disjoint ordered edges of

G, (a, b) and (c, d), there is a k-path in R ∪ {a, b, c, d}, k ≤ 10
α4 , which connects (a, b) and

(c, d). Furthermore, this statement remains true even if at most α9|R| vertices of R are

forbidden to be used on this connecting path.

Proof: Indeed, since by (3.10) inside R we have almost the same degree condition as

in G, the proof of the Connecting Lemma goes through inside R, the slight loss in the

minimum degree is not going to create any problems. Note also that we may assume that

G|R does not satisfy the EC with parameter α as this is true with high probability. �

3.6 The proof of Theorem 1

We start with the outline of the proof.

Step 1: By applying the Absorbing Lemma (Lemma 21), we find an absorbing path

PA with |PA| ≤ α9n.

Step 2: By applying the Reservoir Lemma (Lemma 25), we set aside a reservoir

R ⊂ V (G) \ V (PA) with |R| = bα20n/2c.

Step 3: We find a (square-)cycle C in G that contains PA as a subpath, all but at

most α20n/2 vertices of V (G) \ (V (PA) ∪ R) (denote the set of these missing vertices by

T ) and some vertices of R (denote the set of remaining vertices in R by R′). Note that

|R′ ∪ T | ≤ α20n.

Step 4: Using the absorbing property of PA, insert R′ ∪ T into C, resulting in a

Hamiltonian cycle of G.

It remains to explain Step 3 in the outline above. The rest of the chapter contains

the construction of this C. We start with an arbitrary path P in G that starts with
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PA as a subpath. Then we will gradually extend this P (sometimes with the use of the

Reservoir-Connecting Lemma, so using vertices from the reservoir R) until it contains all

but at most α20n/2 vertices of V (G) \ (V (A) ∪ R). We connect the two endpairs of P

through the reservoir by applying the Reservoir-Connecting Lemma one more time to get

the cycle C that is desired in Step 3. Thus we only have to show how to extend P until

it contains all but at most α20n/2 vertices of V (G) \ (V (PA) ∪R).

Denote by P ′ the square-path without the absorbing path, V (P ′) = V (P ) \ V (PA),

and set m := |V (P ′)|. Throughout the chapter, we will represent the neighborhood on P ′

of a vertex a ∈ T by a bitstring of length |P ′|, indexed by the vertices of P ′ in their order

along the path. For a ∈ T , denote this bitstring by Ia, and write Ia(S) for the substring

on the vertices S ⊂ P , retaining the original order. In the case that S = {v} we will write

simply Ia(v). For v ∈ P ′, Ia(v) is a one iff v ∈ NP ′(a).

A general observation is that for any a ∈ T , there can be no run of ones longer than 3

in Ia, otherwise we could easily extend P by inserting a between the vertices of any run

of length 4. Call a zero followed by a maximal run of ones a 3-, 2-, or 1-block, depending

on the length of the maximal run. Call a zero that is followed by another zero a 0-block.

Thus Ia is comprised of disjoint 3-, 2-, 1-, and 0-blocks. We note that only the 3-blocks

have a density of ones that is greater than 2/3.

For any given a ∈ T , we will often make use of a partition of Ia into substrings (and

thus, a partition of P ′ into subpaths) according to the 3-blocks. We denote the substrings,

which we refer to as intervals, by I0
a , I

1
a , I

2
a . . . , I

l
a. The interval Ija is defined to begin after

the jth 3-block and end with the (j + 1)th 3-block. Of course, I la may not end with a

3-block. Our first case is when T is large compared to the absorbing path.

3.6.1 T is larger than α8n

An interval Ija comprised of a (possibly empty) run of 2-blocks followed by a 3-block is

called a “heavy” interval. Note that only the heavy intervals have a density of ones greater

than 2/3.

We begin by defining an operation, HEAVY SWAP, which exchanges vertices of T with
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vertices of P ′ in such a way as to extend P ′. We will identify the conditions necessary for

the operation to take place.

1. There exists a vertex x1 ∈ P ′ such that H = {a ∈ T | a has a heavy interval

beginning at x1} is nonempty

2. The minimum length of the heavy intervals beginning at x1 is less than 3|H| − 2.

With these conditions in place, we define the operation. Let a ∈ H be a vertex whose

heavy interval beginning at x1 is of minimum length, say 3k + 1. Define the subpath

Q ⊂ P ′ of length 3k + 4 comprised of the 3 vertices preceeding x1 and the vertices along

the heavy interval in Ia,

Q = (o1, o2, o3, x1, o4, o5, x2, o6, o7, . . . , xk−1, o2k, o2k+1, xk, o2k+2, o2k+3, o2k+4).

We have oi ∈ NP ′(a) and xi /∈ NP ′(a), and the substring

Ia(Q) = (1, 1, 1, 0, 1, 1, 0, 1, 1, . . . , 0, 1, 1, 0, 1, 1, 1).

In fact, by the minimality of a, for every b ∈ H,

Ib(Q \ {o2k+4}) = Ia(Q \ {o2k+4}).

The conditions ensure that |H| ≥ k + 1, and so we can find k vertices b1, b2, . . . , bk from

H \ {a}. The path

Q′ = (o1, o2, b1, o3, o4, b2, o5, o6, b3, o7, . . . , o2k, bk, o2k+1, o2k+2, a, o2k+3, o2k+4)

is a legitimate square path, with which we replace Q in P ′. This defines the operation,

which extends P ′ by one.

Claim 27. If there exists a subset H0 ⊂ T of size n3/4 such that for all a ∈ H0, Ia

contains at least 3n3/4 heavy intervals, then we can extend P .

We will demonstrate that the conditions necessary for HEAVY SWAP are satisfied. Call

a heavy interval “short” if it is of length less than n1/4. Then for each a ∈ H0, there are at
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least 2n3/4 short heavy intervals in Ia. Indeed, otherwise we get for the size of the union

of the long heavy intervals strictly more than n3/4n1/4 = n vertices, a contradiction. By

the pigeonhole principle, there is a vertex x1 ∈ P ′ where at least

2n3/4n3/4

m
≥ 2n1/2

short heavy intervals begin. Let H ⊂ H0 be those vertices which all have a short heavy

interval beginning at the vertex x1. As |H| ≥ 2n1/2 and for every a ∈ H the length of

the heavy interval of Ia beginning at x1 is less than n1/4 � 2n1/2, we can perform the

operation HEAVY SWAP. �

A simple calculation shows that if deg(a, P ′) ≥ 2
3m + n3/4, then Ia contains at least

3n3/4 heavy intervals. Otherwise, with s the size of the union of the heavy intervals,

recalling the observation on the density of the heavy intervials,

deg(a, P ′) <
2
3

(s− 3n3/4) + 3n3/4 +
2
3

(m− s) =
2
3
m+ n3/4,

a contradiction. Setting T ′ = {a ∈ T | deg(a, P ′) ≥ 2
3m+n3/4}, assuming that the premise

of Claim 27 fails, it follows that |T ′| ≤ n3/4. Letting |T | = t, we have in this case that for

every a ∈ T \ T ′,

degT (a) ≥ 1
2
t+

1
2

(αt+ n3/4).(3.11)

Indeed, for a ∈ T \ T ′, using deg(a, P ′) ≤ 2
3m+ n3/4, |R| ≤ α20n, |P | ≤ α9n,

degT (a) ≥ 2
3
n− (

2
3
m+ n2/4)− α9n− α20n ≥ 2

3
t− α9n+ α20n

3
− n3/4

≥ 1
2
t+

αt+ n3/4

2

if t ≥ 1
1−α(2α9n+ 2α20n+ 7n3/4), which is true for large enough n when t ≥ α8n.

With degree condition (3.11), we are guaranteed to find a square-path in T \T ′ of length

at least αt. Indeed, as any two vertices in T \ T ′ have degree in T of 1
2 t + 1

2(αt + n3/4),

they have a common neighborhood in T of size at least αt + n3/4. Hence, the greedy

algorithm is guaranteed to be able to extend any square path of length less than αt in T

by a vertex not in T ′ and not on the path being extended. In this case, we can extend P

by connecting a square path of length αt through the reservoir.

Thus, we may assume that T is close to the size of the absorbing path.
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3.6.2 T is smaller than α8n

The outline of the proof in this case is as follows: assuming that the premise of Claim

27 does not hold, we find a large matching in P ′ that can be moved out of the path by

exchanging with vertices of T without disturbing P . Then we can either extend P or there

is a large set of disjoint triangles in P ′ that can be moved out without disturbing P . If

we still are unable to extend P then we can find a long square path in P ′ which we move

out and then connect through Lemma 25.

We call an interval Ija ”even” if it contains no 0-blocks and exactly one 1-block. Note

that the even intervals have a density of ones exactly 2/3.

As in the case of the heavy intervals, we will define the operation EVEN SWAP that

exchanges vertices of T with vertices of P ′, taking advantage of a certain alignment of

even intervals. In this case we will not be able to extend P ′, but rather we will identify

vertices of P ′ and vertices of T which can be exchanged for the purpose of guaranteeing a

certain structure in T . We first identify the conditions necessary to perform the operation

EVEN SWAP:

1. There exists a vertex x1 ∈ P ′ such that D = {a ∈ T | a has an even interval whose

1-block begins at x1} is non-empty

2. The minimum length of the even intervals whose 1-blocks begin at x1 is less than

3|D|.

With these conditions in place, we define the operation. Let a ∈ D be a vertex whose

even interval aligned with x1 is of minimum length, say 3k. Define the subpath Q ⊂ P ′ of

length 3k+2 comprised of the 2 vertices preceding x1 and the vertices of the even interval

of Ia containing the position of x1,

Q = (o1, o2, x1, o3, x2, o4, o5, . . . , xk−1, o2k−2, o2k−1, xk, o2k, o2k+1, o2k+2).

We have oi ∈ NP ′(a) and xi /∈ NP ′(a), and the substring

Ia(Q) = (1, 1, 0, 1, 0, 1, 1, . . . , 0, 1, 1, 0, 1, 1, 1).
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As |D| ≥ k we can find distinct vertices b1, b2, . . . , bk−1 from D \ {a}, and the path

Q′ = (o1, o2, b1, o3, o4, b2, o5, . . . , o2k−2, bk−1, o2k−1, o2k, a, o2k+1, o2k+2)

is a legitimate subpath of P ′ of length 3k+ 2 with which Q can be replaced. This defines

the operation.

For a ∈ T and Ija an even interval for a, referring to the notation defined above, we

consider x1 and x2 to be “swappable” with a via the operation EVEN SWAP. Unfortunately,

in order to bring either x1 or x2 from the path into T , we are forced to swap every xi.

For this reason, we will only consider the zero vertices surrounding the 1-block of an even

interval swappable if the interval is of length less than 1
α2 . We define a “short” even

interval to be one whose length is less than 1
α2 .

There is one other class of vertex which is swappable with a. Let x be any vertex whose

position is a zero in Ia. If the two positions preceding x and the two positions succeeding

x are all ones in Ia, then a and x can be exchanged. More precisely, if the subpath

Q = (o1, o2, x, o3, o4)

is such that oi ∈ NP ′(a) and x /∈ NP ′(a), then

Q′ = (o1, o2, a, o3, o4)

is a legitimate subpath of P ′.

We are now prepared to define Sa, the set of swappable vertices for a. For a ∈ T , we

define v ∈ Sa iff Ia(v) = 0 and v is either

(a) preceded and succeeded by two ones in Ia, or

(b) the zero of a 1-block in a short even interval for Ia, or

(c) the zero following a 1-block in a short even interval for Ia.

We observe that in the case of small T , since |R| ≤ α20n, |P | ≤ α9n, |T | ≤ α8n, for

every a ∈ T ,

deg(a, P ′) ≥ 2
3
m− 2α8n.
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Again, define H0 = {a ∈ T | Ia contains at least 3n3/4 heavy intervals}. Claim 27 holds

regardless of the size of T , and so we may assume |H0| ≤ n3/4. It follows by the remark

following Claim 27 that for a ∈ T \H0, deg(a, P ′) ≤ 2
3m+ n3/4.

For a ∈ T \H0, we provide a lower bound on the size of Sa, the main consequence of

which is that Sa is α-dense for every a ∈ T \H0.

Claim 28. For a ∈ T \H0, |Sa| > (1
3 − 3α2)n

By the last two remarks, as a ∈ T \H0,

2
3
n− 2α8n ≤ deg(a, P ′) ≤ 2

3
m+ n3/4.(3.12)

Define a counting function on bitstrings as follows: to each zero assign a value of −2 and

to each one a +1 and sum the values over the length of the bitstring. Thus a bitstring

with a density of ones exactly 2/3 has a count of 0. By (3.12) the number of ones in Ia is

at least (2
3 − 2α8)n, and thus the number of zeros is at most m− (2

3 − 2α8)n. Hence, the

count for Ia is at least

2
3
n− 2α8n− 2(m− 2

3
n+ 2α8n) = 2n− 2m− 6α8n ≥ −6α8n.

Consider the intervals Ija. At most 3n3/4 are heavy, each with a count of +1, and thus

the total contribution to the count from the heavy intervals is at most 3n3/4. The rest of

the Ija include at least a 1-block or a 0-block. For each Ija containing at least one 1-block,

distinguish an arbitrary 1-block of Ija, and denote by bi1 the number of undistinguished

1-blocks.. For any Ija, denote by bi0 the number of 0-blocks in Ija, if any. If Ija contains at

least one 1-block, the count on Ija is −bj1 − 2bj0. If Ija contains only 0-blocks, the count is

−2bj0 + 1 < bj0. Let b0 =
∑

j b
j
0 and b1 =

∑
j b
j
1. Summing over the intervals, the count on

Ia is at most −b1 − b0 + 3n3/4. It follows that b0 + b1 ≤ 6α8n+ 3n3/4 ≤ 7α8n.

As m ≥ n− 2α8n, using (3.12), the number of zeros in Ia is at least

m− (
2
3
n+ n3/4) ≥ 1

3
n− 2α8n− n3/4.

For each 0-block or undistinguished 1-block in the interval Ija, the zero belonging to the

block, the zero following the block, and the 2 zeros surrounding the distinguished 1-block
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(if it exists), are not in positions corresponding to vertices of Sa. There are at most 2α2n

zeros surrounding the 1-blocks of long even intervals. The rest of the zeros correspond to

positions of vertices in Sa. Thus, the total number of vertices of P ′ in Sa is at least

1
3
n− 2α8n− n3/4 − 4(b0 + b1)− 2α2n ≥ 1

3
n− 3α2n,

proving the claim. �

Let |T \ H0| = t. From Claim 28, an easy calculation shows that there is a set

S ⊂
⋃
a Sa ⊂ P ′ such that |S| ≥ (1

3 − 4α2)n and ∀v ∈ S, we have v ∈ Sa for at least α2t

vertices a ∈ T \H0.

Let S′ ⊂ S be such that

1. |S′| ≤ α4t, and

2. for any u, v ∈ S′, the distance from u to v along the path P ′ is at least 1
α2 .

Then we can move S′ from the path to T by exchanging the vertices of S′ with vertices of

T \H0. To see this, let S′ ⊂ S be as described. For any v ∈ S′, and for each a for which

v ∈ Sa, it is either of type (a), (b), or (c) by definition of Sa. By the pigeonhole principle

there is a set of at least α2t/3 vertices a ∈ T \H0 for which v is of the same type in Sa.

If this is type (a) then v can be exchanged directly. If it is type (b) or (c), then we have

short even intervals for at least α2t/3 � 1/α2 vertices a ∈ T \ H0, all of whose whose

1-blocks are aligned. The conditions for EVEN SWAP are satisfied and we can exchange v

with a vertex of T \ H0, but we may have to perform as many as 1/3α2 exchanges of

other vertices in the short even interval. The distance condition on u, v ∈ S′ precludes

the possibility that exchanging vertices within an interval of length 1
α2 in order to move u

from P ′ to T destroys the conditions necessary to move v out–it ensures that exchanging

u does not diminish our ability to exchange v apart from simply using up vertices of T .

From these observations, each exchange from S′ to T may use up to 1
3α2 vertices of T .

When trying to exchange u ∈ S′, as long as there are 1
α2 vertices a ∈ T for which u ∈ Sa,

we are able to perform the operation. With fewer than

α2t/3
1/3α2

= α4t
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exchanges, this condition is guaranteed.

By the extremal condition, as |S| ≥ (1
3 − 4α2)n, S has density α. We can easily

find a matching M with α4t/2 edges such that every two vertices of V (M) are separated

by constant distance on P ′. By the previous remark, we can exchange these vertices

of M without disturbing P ′. Therefore, we assume that V (M) ⊂ T . We define H0 as

before, and let M ′ be the set of edges of M that are disjoint from H0. Then we have

|M ′| ≥ α4t
2 − n

3/4 ≥ α4t
3 .

For (a, b) ∈ M ′, define the “overlap” of (a, b) to be Sa,b = Sa ∩ Sb. We have the

following claim:

Claim 29. If |Sa,b| > n1/2 for at least 3n1/2 edges (a, b) ∈M ′, then we can extend P .

For any edge (a, b) ∈ M and x ∈ Sa,b, we classify x as being of one of two types

with respect to (a, b). If the two vertices following x on P ′ are both in NP ′(a) and the

two vertices preceding x are both in NP ′(b), (or vice versa) we say that it is of type (1).

Otherwise it is of type (2).

If the premise of the claim holds, then by the pigeonhole principle there is a vertex

x ∈ P ′ such that for at least n1/23n1/2/m > 3 edges (a, b), (c, d), and (e, f), x is in the

overlap for all three edges. We study two cases. In Case 1, x is of type (1) with respect

to one of these three edges. In Case 2, x is of type (2) for all three edges.

The vertices along P ′ around x are relevant. Specifically, we focus on the subpath of

length 10 on P ′,

Q = (u0, u1, u2, u3, u4, u5, u6, x, u7, u8).

When specifying a substring we will let a “∗” denote that the value of the substring in

that position is unrestricted. Of course, the value in position x is a zero for all strings.

Case 1: In this case, x is of type (1) with respect to one of the edges, say (a, b).

Without loss of generality, the substrings on Q for a and b are

Ia(Q) = (∗, ∗, ∗, ∗, ∗, 1, 1, 0, 1, ∗),

and

Ib(Q) = (∗, ∗, ∗, ∗, ∗, ∗, 1, 0, 1, 1).



54

In this case we define the subpath

Q′ = (u0, u1, u2, u3, u4, u5, u6, a, b, u7, u8).

Replacing Q by Q′ results in a legitimate square path, where we have replaced the subpath

Q of length 10 by Q′ of length 11, and thus extended P .

Case 2: In this case x of type (2) with respect to all three edges. By definition of Sa,

whenever x ∈ Sa either the two vertices which follow x on the path or the two vertices

which precede x on the path are in NP ′(a). It follows without loss of generality that

there are two edges, say (a, b) and (c, d), for which the two vertices following x are in the

neighborhoods of a, b, c, and d. Because x is not of type (1) for any edge, and because x

is in an even interval for every vertex a, b, and c, their substrings on Q are all of the form

Ia(Q) = Ib(Q) = Ic(Q) = (∗, ∗, ∗, 1, 1, 0, 1, 0, 1, 1).

If u2 is not in the neighborhood of a or b, then the substrings on Q for a and b are both

exactly

Ia(Q) = Ib(Q) = (1, 1, 0, 1, 1, 0, 1, 0, 1, 1),

in which case we are back to Case 1, with u2 taking the place of x. Otherwise u2 is in the

neighborhood of, say, a, and so the substrings of a and b on Q are

Ia(Q) = (∗, 0, 1, 1, 1, 0, 1, 0, 1, 1),

and

Ib(Q) = (∗, ∗, ∗, 1, 1, 0, 1, 0, 1, 1).

In this case, we define the subpath

Q′ = (u0, u1, u2, u3, a, b, u4, u6, c, u7, u8).

Replacing the subpath Q of length 10 by Q′ of length 12 results in a legitimate square

path, extending P ′ by 2. These cases are exhaustive, and thus the claim is established. �
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Thus we may assume that there exists a set M ′′ ⊂M ′ of at least α4t/3−3n1/2 ≥ α4t/4

edges such that each edge of M ′′ has an overlap of less than n1/2. From Claim 28 it follows

that for each edge (a, b) ∈M ′′, we have

|Sa ∪ Sb| ≥ 2(
1
3
− 4α2)n− n1/2 ≥ (

2
3
− 9α2)n.

Again, we conclude that there is a set S ⊂
⋃
a Sa ⊂ P such that |S| ≥ (2

3 − 10α2)n and

∀v ∈ S we have v ∈ Sa ∪ Sb for at least α2|M ′′| ≥ α6t/4 edges (a, b) of M ′′. The reader

may check that any set S′ ⊂ S satisfying

1. |S′| ≤ α8t/4, and

2. ∀u, v,∈ S′, the distance from u to v along P ′ is less than 1
α2

can be exchanged for vertices from distinct edges of M ′′.

By (3.2), for any v ∈ S,

NS(v) ≥ 2
3
n−

(
n− (

2
3
− 10α2)n

)
= (

1
3
− 10α2)n.

As G is not extremal, the density of NS(v) is at least α. It follows that every vertex in

S is contained in many triangles within S. Let Z ⊂ S be a set of α8t/12 vertex-disjoint

triangles whose vertex set V (Z) satisfies the above two conditions. By the observation

we can exchange V (Z) with vertices of M ′′ without disturbing P , and so we assume that

there is a set of α8t/12 vertex-disjoint triangles Z ⊂ T . As before, we let Z ′ = Z \H0 be

the set of at least α8t/12− n3/4 ≥ α8t/24 triangles all of whose vertices satisfy (3.12).

As Claim 29 applies to any set of disjoint edges from Z ′, we can assume that there is

a set Z ′′ containing at least α8t/24 − 3n1/2 ≥ α8t/48 vertex-disjoint triangles such that

any edge (a, b) of any triangle of Z ′′ has |Sa,b| < n1/2. By this bound and Claim 28, it

follows that for every triangle (a, b, c) ∈ Z ′′, |Sa ∪ Sb ∪ Sc| ≥ (1− α)n. Again, we can find

a set S ⊂
⋃
a∈V (Z′′) Sa such that |S| ≥ (1 − 2α)n and for every v ∈ S there are at least

α|U ′′| ≥ α9t/48 triangles (a, b, c) ∈ Z ′′ such that v ∈ Sa ∪ Sb ∪ Sc. For any set S′ ⊂ S of

size α11t/48 all of whose vertices are distance 1
α2 apart on P ′, we can exchange at once

each vertex of S′ with vertices of V (Z ′′). With degS(v) ≥ (2/3− 2α)n, we can easily find
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a square path of length α13t < α11t/48 satisfying the distance condition. Exchanging this

path into T and connecting through the reservoir extends P .

In every case we either extend P directly or find a square path of length at least

α13t ≥ α24n which we connect through the reservoir. The allowance for forbidden vertices

in Lemma 25 ensures that we can continue to perform connections until T is small enough

that R ∪ T can be absorbed by PA. As in the program outlined at the beginning of the

section, at this point we connect the endpairs of P through the reservoir to form a cycle

containing PA, and finally absorb R ∪ T .

3.7 Conclusion

In order to solve the Pósa problem for every n in the case of k = 2, we plan to replace

the costly Connecting Lemma with an alternative which we are developing. It is our hope

that we will be able to push down n0 to around 100 at which point we will be able to

develop a computer program, taking advantage of much of the structure identified in this

thesis to solve the conjecture for every n. This is a work in progress.
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