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This dissertation consists of three essays with each essay forming a chapter. The 

regression models in these three chapters are different but share the same feature: the 

error terms of the models all follow ARMA-GARCH error processes generated either 

from normal or exponential power distributions. 

    In the first chapter I present a spot asset pricing model that is known as the CKLS 

model. Two CKLS models are compared. In one model the ARMA-GARCH error 

process is generated by the exponential power distribution while in the other model the 

error process is generated by the normal distribution. Using monthly U.S. federal funds 

rate I estimate the parameters of the CKLS models. From the predictive densities I obtain 

the distributions of the mean squared errors of forecast (MSEF) and the predictive 

deviance information criterion (PDIC). In addition I use the Bayes factor and the 

deviance information criterion (DIC). Markov Chain Monte Carlo (MCMC) algorithms, 

which are stochastic numerical integration methods, are used. I find that in general the 

CKLS model with the error term generated by the exponential power distribution is 

chosen over the model with the normal error term. 
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    In the second chapter I first compare two MCMC algorithms: random walk draw and 

non-random walk draw for a Markov switching regression model. Two Markov switching 

models are compared: one with the variance of the normal distribution generated by the 

state space variable and the other with the constant variance. The realized volatilities of 

MMM Company are used to estimate and compare the models. The mean squared errors 

(MSE) and mean squared errors of forecast (MSEF) are used as the model selection 

criteria. I find that the model with the constant variance is chosen over the model with the 

state space variance by the MSE but the latter is chosen over the former by the MSEF. 

    In the third chapter I estimate a bivariate copula model. Each of the two regressions is 

generated by the exponential power distribution. I use monthly data on SP500 and 

FTSE100. Results show that the correlation parameter for SP500 and FTSE100 is .6893. 
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1 Introduction

Better modeling and forecasting macroeconomic variables and �nancial time

series such as interest rates, stock index returns and volatility are important

issues in both �nance and economics. In my dissertation, I focus on model

designing, model comparison and model selection. My objective is to apply

econometrics to �nancial economics. Bayesian inference is used to analyze

time series in economics. The three chapters in my dissertation are as follows.

In the 1st chapter, I create a CKLS-ARMA-GARCH-EPD model for

short-term interest rate. This model adds some new features to the CKLS

model suggested by Chan, Karolyi, Longsta¤ and Sanders (1992). Firstly,

the di¤usion parameter follows a GARCH process to capture the high degree

of volatility persistence (see Engle (1982) and Bollerslev (1987)). Secondly,

exponential power distribution (EPD) (see Subbotin (1923)) is assumed for

the error term to better model the fat tail property of interest rate.

Markov Chain Monte Carlo algorithm (MCMC) is used to estimate this

model. Then, the predictability of this model is compared with other model.

Bayes Factor (see Gelfand and Dey (1994)), Deviance Information Criterion

(DIC) (see Spiegelhalter(2002)), Predictive Deviance Information Criterion

(PDIC) andMean Squared Error of Forecast are generated within the MCMC

algorithms and used as model selection criteria.

The DIC shows CKLS-ARMA-GARCH-EPD has better in-sample �t.

The long-run equilibrium value for short-term interest is 1.53% calculated
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from the CKLS-ARMA-GARCH-EPD. And out-of-sample forecast compar-

ison shows the model with better in-sample �t is not necessary the one

with better forecastibility. Rolling estimation scheme shows CKLS-ARMA-

GARCH-EPD predicts long-run better.

One of the future extensions for chapter 1 is to add some macro variables

of Bernake et al. (2005)) into CKLS-ARMA-GARCH-EPD model and then

compare its forecastibility with other models. Another extension could add a

regime switch parameter in CKLS-ARMA-GARCH-EPD model (see Dueker

et al. (2007)). One can also add 2 or 3 latent factors in this model (see

Sorwar(2005)). CKLS-ARMA-GARCH-EPD model can be used to price

derivatives. Or we can perform some non-nested model comparison. Last

but not the least, we can add jump components into this model.

In the 2nd chapter, we study Markov switching models by Bayesian infer-

ence. Markov switching model (hereafter denoted as MSW ) was introduced

to economics by Hamilton (1989) . We �rst compare two MCMC algorithms:

random walk draw and non-random walk draw for a Markov switching model

with state variable in the variance(i.e., MSW-ARMA-GARCH-NORMAL-

St-in-variance, see Das and Yoo(2004)). Then, we compare this Markov

switching model with other model (i.e., MSW-ARMA-GARCH-NORMAL-

St-in-mean, see Yoo(2006)) by MSE and MSEF for the realized volatility of

MMM stock prices. For realized volatility, one can refer to Andersen and

Bollerslev (1997).

Results show algorithm of non-random walk draw is better. And MSW-
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ARMA-GARCH-NORMAL-St-in-mean has better in-sample �t, but MSW-

ARMA-GARCH-NORMAL-St-in-variance has better out-of-sample forecastibil-

ity. Future extensions for chapter 2 could be follows. First, we can compare

Markov switching model with other nonlinear models such as TARMA. Sec-

ondly, we can consider other model selection criteria. Thirdly, we can also

extend previous Markov switching models by assuming other error distrib-

utions such as the exponential power distribution. Last but not least, we

can design a new model which includes two regime switching variables: one

regime switching variable in the mean component, another regime switching

variable in the variance component.

In chapter 3, we design a Gaussian copula model with ARMA-GARCH-

EPD error terms (i.e., Copula-ARMA-GARCH-EPD). Copulas are conve-

nient tools to construct multivariate joint distributions from margins. In

�nancial risk assessment and actuarial analysis, dependence modeling with

copula functions is widely used. Li (2000) introduces Gaussian copula model

into pricing Collateralized Debt Obligations (CDOs). We design Markov

Chain Monte Carlo (MCMC) algorithms to estimate the Copula-ARMA-

GARCH-EPD model. Monthly data on SP500 and FTSE100 are analyzed.

Results show the MCMC algorithm is convergent. The correlation pa-

rameter � for SP500 and FTSE100 is :6893. One of the future extensions

for chapter 3 is to compare Copula-ARMA-GARCH-EPD model with other

nonlinear models. Another extension could add a regime switch parameter

in Copula-ARMA-GARCH-EPD model (see Dueker et al. (2007)). Or we
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can add some macro variables of Bernake et al.(2005)) into Copula-ARMA-

GARCH-EPD model and then compare its forecastibility with other models.

Last but not the least, one may use Copula-ARMA-GARCH-EPD to price

CDOs.
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2 CKLS models for US short-term interest

rate

2.1 Motivation

A short term interest rate is one of the most important economic indicators.

Better modeling and forecasting the short term interest rate are crucial for

risk management, derivatives pricing and monetary policy.

Since the mid 1970�s, asset prices have been modeled by di¤usion processes.

In 1977, Vasicek(1977) applied an Ornstein�Uhlenbeck process to model the

short term interest rate. Since the Vasicek model can generate negative in-

terest rates, Cox, Ingersoll and Ross(1985) suggested a square root process.

Chan, Karolyi, Longsta¤ and Sanders(1992) proposed a more �exible model

now known as the CKLS model. The CKLS model nests a class of asset

pricing models as shown in Table 1.

In CKLS formula, rt is the asset price at time t or interest rate level. Wt

CKLS(1992) drt= (�+ �rt)dt+ �r


t dW t

Merton(1973) drt= �dt+ �dW t � = 0 
 = 0
Black and Scholes(1973) drt= �rtdt+ �rtdW t � = 0 
 = 1
Cox (1975) drt= �rtdt+ �r



t dW t � = 0

Vasicek(1977) drt= (�+ �rt)dt+ �dW t 
 = 0
Dothan(1978) drt= �rtdW t � = 0 � = 0 
 = 1
Brennan and Schwartz(1980) drt= (�+ �rt)dt+ �rtdW t 
 = 1
Cox et al.(1980) drt= �r

1:5
t dW t � = 0 � = 0 
 = 1:5

Cox et al.(1985) drt= (�+ �rt)dt+ �r
1=2
t dW t 
 = :5

Table 1: Asset Pricing Models Nested in the CKLS Model
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is a Wiener Process (or Brownian motion), �; �; � and 
 are parameters.

� measures the speed of mean reversion. rt mean-reverts towards the level

�=�: � is the di¤usion parameter. 
 is the constant elasticity of variance

with respect to interest rate level.

The CKLS model has been used in many studies. For example, San-

ford(2006) studied Australia interest rate using CKLS. And Antoniou et

al.(2006) compared di¤erent models for UK interest rate. Other studies

that use the CKLS model are Tse(1995), Dahlquist(1996), Gray(1996), Now-

man(1997), Jiang and Knight(1997), Hiraki and Takezwa(1997), Byers and

Nowman(1998), Brailsford and Maheswaran(1998), Ball and Torous(1999),

Dennis et al.(1999), Salto¼glu(2003), Nowman(2003), Treepongkaruna and

Gray(2003), Rodrigues(2005), Goldman(2005), Sorwar(2007), Qian et. al.(2008)

and Nowman(2008).

There are two limitations of the CKLS model. One is the di¤usion pa-

rameter1 � of the CKLS model is a constant, which may not capture the

extremely high degrees of volatility in the asset prices. The other limitation

is the CKLS model discretized by Euler-Maruyama scheme assumes normal

distribution for the error term. The discrete time speci�cation of the CKLS

1For discrete-time speci�cation of the CKLS model, � is also the parameter in variance
if variance exists or is �nite.
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model by Euler-Maruyama scheme2 is

rt � rt�1=�+ �rt+�r


t "t ; "t � N(0; 1) (1)

To overcome the limitations of CKLS model and better model the high de-

grees of volatility persistence, we estimate the CKLS model with an ARMA-

GARCH error term that follows an exponential power distribution (denoted

as CKLS-ARMA-GARCH-EPD or Model 1). The reasons we use GARCH

for conditional variance are 1) in the literature of �nance and economics,

the ARCH model of Engle(1982) and the GARCH model of Bollerslev(1986)

have been used widely to model the high degrees of volatility persistence. 2)

Brenner et al.(1996) and Koedijk et al.(1997) show the CKLS-GARCHmodel

performs much better statistically than either the CKLS or the GARCHmod-

els with white noise errors.

Even though normal distribution assumption has been widely used in

many models, there are non-normal distributions used in literature. For

example, Mandelbrot(1963) and Fama(1963) used the stable Paretian family

of distribution. Bollerslev(1987) extended the GARCH model to allow for

conditionally t-distributed errors. Liu and Brorsen(1995) assumed a stable

distribution for the error term of a GARCHmodel with application to foreign

currency returns. Nelson(1991) and Bali and Wu(2006) used the generalized

2To discretize a continuous-time model, we can use Euler-Maruyama scheme, Mil-
stein scheme or other more sophisticated approximation techniques. We choose Euler-
Maruyama scheme for simplicity.
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error distribution( or exponential power distribution, i.e., EPD3) for the error

term4. We employ the exponential power distribution (EPD) for the error

in our model. In addition, we specify that the error term follows an ARMA-

GARCH model.

There are three ways to estimate the di¤usion models: GMM, MLE,

and Bayesian. Aït-Sahalia(1996) estimated the di¤usion interest rate model

using GMM. Conley, Hansen, Luttmer, and Scheinkman(1997) estimated

the parameter 
 by 2-step GMM. For more information about GMM or

other nonparametric estimations, please see Chan et al.(1992), Longsta¤

and Schwartz(1992), Aït-Sahalia(1996), Bates(1996), Conley et al.(1997),

Andersen and Lund(1997), Stanton(1997), Jiang(1998), Ahn(1999), Ahn and

Gao(1999), Singleton(2001), Cont and Tankov(2002), Bandi and Nguyen(2003),

Chernov et al.(2003), Fan(2003), Bhardwaj(2005), Renò(2005), and Fa¤ and

Gray(2006). One disadvantage of the GMM is it may not allow the esti-

mation of the unobserved volatility dynamics. Also, researches show some

problems with GMM. Eom(1998) found that the choice of moment conditions

in GMM have great impacts on the parameter estimates. Broze, Scaillet and

Zakoian (1995) showed when 
 > 1 in the CKLS model, the GMM estimator

is not well behaved. Fa¤ and Gray(2006) found out there are severely biased

3EPD is also known as the generalized error distribution. The EPD is proposed by
Subbotin (1923). For more information about EPD, please see Box and Tiao (1973), and
Tsurumi and Shimizu (2008).

4For more information about other error distribution assumptions, see Praetz(1972),
Blattberg and Gonedes(1974), Press(1967), Clark(1973), Kon(1984), Fielitz and
Rozelle(1983) and Boothe and Glassman(1985).
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in the GMM estimates of the speed of mean reversion � in CKLS model.

Qian et al.(2005) showed the Bayesian and MLE perform better than GMM.

The second is the maximum likelihood method (MLE) including quasi

MLE. Aït-Sahalia(2002) used a closed-form approximation for the likelihood

function and then used maximum likelihood method to estimate the dis-

cretely sampled di¤usion. For more information about MLE, see Marsh and

Rosenfeld(1982), Nelson(1991), Brenner et al. (1996), Koedijk et al.(1997),

Aït-Sahalia(1999, 2002), Bali(2000), Das(2002), Jagannathan et al.(2003),

Demirtas(2006), Bali andWu(2006), Dueker et al.(2007), and Christiansen(2008).

The disadvantage of MLE is this method is restrictive because few short term

interest rate models have known or simple likelihood functions.

The third is the Bayesian method, i.e. Markov Chain Monte Carlo

method (MCMC), see Elerian et al.(2001), Eraker(2001, 2004), Jones(2003),

Hong(2005), Goldman(2005), Sorwar (2005), Gri¢ n and Steel (2006), San-

ford et al.(2006), Li et al.(2006) and Qian et al.(2005). The advantages of

MCMC are that it can estimate the posterior distributions of the parameters

easily; it can estimate the unobserved volatility; it can be used to estimate

models with complicate posterior distributions and it can also estimate the

predictive density for the forecast value.

In this paper, we use Bayesian method (MCMC). The in-sample �t of this

newmodel is analyzed by comparing with CKLS-ARMA-GARCH-NORMAL.

Bayes Factor (see Gelfand and Dey (1994)) and Deviance Information Cri-

terion (DIC, see Spiegelhalter(2002)) are used as in-sample �t criteria. The
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long run equilibrium of short-term interest rate is calculated.

Lastly, we also test one hypothesis: if one model has better in-sample

�t, will it also be the model with better forecastibility? Predictive Deviance

Information Criterion (PDIC) and the distributions of Mean Squared Error

of Forecast (MSEF) are generated within the Markov Chain Monte Carlo

algorithms and used as out-of-sample model selection criteria.

Simulation results show that the MCMC algorithms used to estimate and

forecast CKLS-ARMA-GARCH-EPD and CKLS-ARMA-GARCH-NORMAL

are e¢ cient since the �ltered Fluctuation test (FT) or the �ltered Kolmogorov

Smirnov test (KS) (see Ploberger, Kramer and Kontrus(1989), Smirnov(1939)

and Goldman et.al. (2007)) indicates convergence.

The results of in-sample model comparison are as follows. DIC shows

CKLS-ARMA-GARCH-EPD model �ts in-sample data better since its DIC

value is smaller. However, Bayes Factor has decisive evidence supporting

Model 2. DIC uses e¤ective number of parameters instead of the true number

of parameters to compare models. So, we prefer to use the DIC criterion and

pick CKLS-ARMA-GARCH-EPD model as the one with better in-sample

�t. And the long-run equilibrium short-term interest rate is 1.53%, which

is calculated using the posterior means of parameter estimates from CKLS-

ARMA-GARCH-EPD model.

The results of forecast show a model with better in-sample �t does not

necessary have better out-of-sample forecastibility. One-period ahead PDIC

shows CKLS-ARMA-GARCH-NORMAL has better out-of-sample forecast
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since its PDIC value is smaller. If we use one-period ahead Mean Squared Er-

ror of Forecast(MSEF), CKLS-ARMA-GARCH-EPD is better. Since MSEF

criterion comes from sample theory and PDIC criterion comes from Bayesian

theory, we prefer the results of PDIC.

To test the robustness of previous results, 3-period, 6-period and 9-period

ahead forecast values (�xed estimation scheme) are also calculated. The re-

sults of one-period ahead PDIC and MSEF are robust. For PDIC, CKLS-

ARMA-GARCH-NORMAL model always has better forecastibility since its

PDICs are smaller. For MSEF, CKLS-ARMA-GARCH-EPD model has bet-

ter forecastibility since its MSEFs are smaller. When out-of-sample period

increases from 1 to 9, the MSEF of CKLS-ARMA-GARCH-NORMAL in-

creases greatly.

To check the robustness of the results for PDIC from previous �xed es-

timation scheme, we use rolling estimation scheme to derive PDIC for 10-

period, 15-period, 20-period and half-sample ahead data. The results of

rolling estimation scheme show CKLS-ARMA-GARCH-EPD model has bet-

ter forecastibility. The PDIC for CKLS-ARMA-GARCH-EPD model be-

comes smaller as the forecast period increases from 10 to half-sample.

This paper is organized as follows. Section 2 introduces the models and

methodology. The e¤ectiveness of the MCMC algorithms is shown in section

3. Section 4 shows the empirical results for model estimation and predictabil-

ity. Conclusions are given in section 5.
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2.2 CKLS-ARMA-GARCH models and MCMC algo-

rithms

We specify the CKLS-ARMA-GARCH model as:

rt = a+ brt�1 + r
c
t�1ut (2)

where

ut =
pP
j=1

�jut�j +
qP
j=1

�jet�j + et (3)

et = �t"t (4)

�2t = �0 +
rP
i=1

�ie
2
t�i +

sP
i=1

�i�
2
t�i (5)

�0 > 0; �i � 0; i = 1; :::; r. �i � 0 ; i = 1; :::; s. (6)

1 �
max(r;s)P
i=1

(�i + �i) (7)

rt is spot rate. The error term "t follows the exponential power distrib-

ution (EPD) with variance normalized to be unity. The probability density

function of "t is given by

f("tjY;X) =
1

�21+1=� �(1 + 1=�)
exp

�
�1
2
j"t
�
j�
�

(8)

� =

s
2�2=��(1=�)

�(3=�)
(9)
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� is the constant to make the variance of "t unity. The EPD distribution

has been used in many studies (see Box and Tiao(1973), Nelson(1991) and

Tsurumi and Shimizu(2008), among others). Let us call equation 2 with the

EPD error term as Model 1 or CKLS-ARMA-GARCH-EPD model.

Majority of the CKLS models in the literature employ the normal error

term: "t � N(0; 1): Let us label the model with the normal error term Model

2 or CKLS-ARMA-GARCH-NORMAL model. We shall compare the perfor-

mance of Model 1 and Model 2 to see which model �ts in-sample data better

and which one performs better judged by forecast performance.

2.2.1 Densities of CKLS-ARMA-GARCH models

We use the posterior density as our target density in the MCMC algorithms to

draw the parameter estimates. After we estimate these models, we compare

these models using in-sample selection criteria such as Bayes Factor and

Deviance Information Criterion. Also, we calculate the forecast values using

the posterior means of parameters. Out-of-sample comparisons are made by

Predictive Deviance Information Criterion (PDIC) and Mean Squared Error

of Forecast (MSEF).

Assume� = fa; b; c; f�igi=1:::p; f�igi=1:::q; f�igi=0:::r; f�igi=1:::s; �g for Model

1, the posterior distribution for Y is:

p(�jY;X) /
TY
t=1

r�ct�1�
�1
t

�21+1=� �(1 + 1=�)
exp

�
�1
2
j"t
�
j�
�
p(�) (10)
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where

"t =
et
�t

(11)

et =
rt � (a+ brt�1)

rct�1
�

pP
j=1

�jut�j �
qP
j=1

�jet�j (12)

� =

s
2(�2=�)�(1=�)

�(3=�)
(13)

And

p(�) = pfa; b; c; f�igi=1:::p; f�igi=1:::q; f�igi=0:::r; f�igi=1:::s; �g (14)

= p(a)p(b)p(c)

pY
i=1

p(�i)

qY
i=1

p(�i)
rY
i=0

p(�i)
sY
i=1

p(�i)p(�)

= Na(0; :1)Nb(0; :1)Nc(0; :1)

pY
i=1

N�i(0; :1)

qY
i=1

N�i(0; :1)

rY
i=0

N�i(0; :1)

sY
i=1

N�i(0; :1)N�(0; :1)

is the prior. We assume priors for each parameters are independent. For

model 2, we set parameter � = 2:

2.2.2 MCMC algorithms

In order to implement this model, for parameter (�i; �i), we follow the ap-

proximation of Nakatsuma(1998) to get proposal density:

"2t = �0 +
lP
i=1

(�i + �i)"
2
t�i �

sP
i=1

�iwt�i + wt; wt � N(0; 2�2t ) (15)
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Where wt = "2t � �2t ; l = max(r; s), �i = 0 for i > r, �i = 0 for i > s, "2t = 0

and wt = 0 for t � 0:

Nakatsuma(1998) used nonlinear least square estimation to draw para-

meters in the MA and GARCH processes. Qian et al.(2005) used random

walk draws for all parameters. We follows Qian et al.(2005)�s modi�cations.

Di¤erent from Nakatsuma(1998), we need to draw both parameter c in the

CKLS model and the parameter � in EPD. Di¤erent from Qian et al.(2005),

we use E¢ cient Jump Algorithms to draw parameter f�igi=1:::q and f�igi=1:::s;

and we need to draw parameter � in EPD.

Nakatsuma(1998) and Qian et al.(2005) focus on parameter estimation.

However, we not only estimate parameters in � but also calculate the pre-

dictive values eY using the posterior means of parameters. In addition, we

focus on model selection.

In our MCMC algorithm, we also compare following two algorithms for

drawing parameter �:

1) E¢ cient Jump Algorithm.

2) Modi�ed E¢ cient Jump Algorithm with Inverse Gaussian as the pro-

posal density.
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2.3 Simulation results

Simulation data we used are:

a = :2; b = :4; c = :5

�1 = :4; �1 = :4

�0 = :4; �1 = :7; �1 = :1

� = 1

The sample size is T=1000. We run 18000 MCMC iterations. And we

discard the �rst 3000 draws and keep every 10th draws. All acceptance rates

are higher than 0.28.

We check the convergence of the draws by plotting the draws, by the

�ltered Fluctuation test or �ltered Kolmogorov-Smirnov test (see Ploberger,

Kramer and Kontrus(1989), Smirnov(1939) and Goldman et.al.(2007)). We

judge convergence by 3 criteria: 1) eye rolling convergence. i.e., the draws

plotted in graphs are convergent. 2) P-value of �ltered Fluctuation test is no

less than 5% signi�cance level. 3) or P-value of �ltered Kolmogorov-Smirnov

test is no less than 5% signi�cance level. If any one of these 3 criteria is

satis�ed, we conclude the draws are convergent.

Simulation results show the draws from our MCMC algorithms are con-

vergent. The plots of the draws indicate convergence5. And the convergence

tests also indicate convergence(see Table 2 ). In Table 2, for each parameter,

5Graphs will be availabe upon request.
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either the P-value of �ltered Fluctuation test or �ltered Kolmogorov-Smirnov

test is no less than 5% signi�cance level.

The summary statistics of the MCMC draws are given in Table 3. We

can see the posterior means of parameters drawn from our MCMC algorithm

are very close to the true values.

The � draws from model 1 using simulated data are plotted in Figure 1,

2, 3 and 4. We can see the draws of � are convergent and the mean of � is

around 1; which is the true simulation parameter for Laplace distribution.

The results from E¢ cient Jump Algorithm (see Figure 3 and 4) are similar

to those from the Modi�ed E¢ cient Jump with Inverse Gaussian as proposal

density (see Figure 1 and 2).

2.4 Application to US federal funds rate

In the literature, there are many proxies for short-term interest rates. Some

use monthly data (see Longsta¤ and Schwartz(1992), Chan et al.(1992),

Ahn(1999), Nowman(1997), Aït-Sahalia(1999), Ahn and Gao(1999), and

Brenner et al.(1996)). Others use weekly data (see Andersen and Lund(1997),

Bali(2000), Eraker(2001), Jagannathan et al.(2003), Jones(2003), Andersen

et al. (2005), Bhardwaj(2005), Demirtas(2006), Bali and Wu(2006), and

Christiansen(2008)). Daily data are used in Conley et al.(1997), Das(2002),
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Parameters P-value of FT P-value of KST
Model 1: CKLS-ARMA-GARCH-EPD
a 0 :84
b :52 :26
�1 :46 0
�1 :35 :03
�0 :27 0
�1 :19 :72
�1 :12 :93
c :31 :17
� :05 :98

Model 2: CKLS-ARMA-GARCH-NORMAL
a 0 :87
b :44 0
�1 :43 0
�1 :34 :95
�0 :11 :67
�1 :26 :42
�1 :12 :84
c :19 :54

Table 2: P-values of Filtered Fluctuation Tests and Filtered Komogorov-
Smirnov Tests
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True Value Mean St.Dev.
Model 1: CKLS-ARMA-GARCH-EPD
a :2 :1984 :03
b :4 :4182 :11
�1 :4 :2182 :14
�1 :4 :4889 :26
�0 :4 :5042 :09
�1 :7 :8499 :08
�1 :1 :0768 :07
c :5 :4020 :18
� 1 :8843 :19
Model 2 : CKLS-ARMA-GARCH-NORMAL
a :2 :2288 :05
b :4 :5360 :10
�1 :4 :2289 :06
�1 :4 :5065 :25
�0 :4 :4051 :06
�1 :7 :6320 :10
�1 :1 :1934 :12
c :5 :4448 :16

Table 3: Posterior Summaries
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Figure 1: MCMC Draws of Parameter � Using Algorithm of Modi�ed E¢ -
cient Jump with Inverse Gaussian as Proposal Density

Figure 2: PDF of MCMC Draws of � Using Algorithm of Modi�ed E¢ cient
Jump with Inverse Gaussian as Proposal Density
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Figure 3: MCMC Draw of Parameter � Using Algorithm of E¤ecient Jump

Figure 4: PDF of MCMC Draws of � Using Algorithm of E¢ cient Jump



22

Eraker et al.(2003), Fan(2003), and Qian et al.(2008). Quarterly data are

used in Dueker et al.(2007).

2.4.1 Descriptive statistics

Monthly US E¤ective Federal Funds Rate is used to estimate the CKLS-

ARMA-GARCH-EPD model6. And the results are compared with those

from the CKLS-ARMA-GARCH-NORMAL model. The data are got from

Board of Governors of the Federal Reserve System. The in-sample data

consist of monthly Federal funds rate between Jan. 1963 �Dec. 2007. The

out-of-sample data consist of monthly Federal funds rate between Jan. 2008

�Oct. 2008.

The descriptive statistics are listed in Table 4. The kurtosis is 5.2, which

is greater than 3. And the skewness is 1.22, which is skewed to the right.

We also plot the unconditional density of the Federal funds rate in Figure

5. Compared to standard normal density, the unconditional density of the

Federal funds rate is leptokurtic.

2.4.2 Parameter estimates and long-run equilibrium interest rate

The posterior means and standard deviations of the parameters are given in

Table 5 for all models. The density for � is plotted in Figure 6. We can see

the posterior mean of � is approximately :8424; far from Normal case � = 2:

6Chan et al.(1992) use monthly US Treasury bill yield between June, 1964 and Decem-
ber, 1989 (306 observations) in their paper to estimate the CKLS model by GMM.
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R
Mean 6:30
Min 0:98
Max 19:10
Std.Dev. 3:26
Skewness 1:22
Kurtosis 5:20

Table 4: Descriptive Statistics for Federal Funds Rate

­8 ­6 ­4 ­2 0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fed Funds Rates
Standard Normal

Figure 5: Unconditional Density of Federal Funds Rate
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Mean St. Dev.
Model 1: CKLS-ARMA-GARCH-EPD

a 2:8913 :15
b �:8882 1:15
�1 :9980 :01
�1 :4593 :28
�0 :0066 0
�1 :7159 :15
�1 :1479 :11
c :6788 :34
� :8424 :23
Model 2: CKLS-ARMA-GARCH-NORMAL
a 2:9169 :13
b �:5145 1:15
�1 :9888 :01
�1 :4994 :26
�0 :0060 0
�1 :5572 :18
�1 :2194 :15
c :6178 :27

Table 5: Posterior Means and Standard Deviations of the Parameters
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Figure 6: PDF of � Draws Using Interest Rate Data and E¢ cient Jump
Algorithm
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And the long-run equilibrium short-term interest rate is 1:53%; which

is calculated using the posterior means of parameters a and b by following

formula:
a

�(b� 1) =
2:8913

�(�:8882� 1) = 1:53

In the paper of CKLS(1992), the long-run equilibrium short-term interest

rate is 6:89%; which is calculated using the data in Table III of their paper

(page 1218 of CKLS(1992)). We think the di¤erence is caused by di¤erent

models, di¤erent estimation techniques, and di¤erent data sets. Chan et

al.(1992) use monthly US Treasury bill yield between June, 1964 and De-

cember, 1989 (306 observations) in their paper to estimate the CKLS model

by GMM. But we use monthly US e¤ective federal funds rate to estimate the

CKLS-ARMA-GARCH-EPD model by MCMC.

2.4.3 In-sample-�t model selection criteria and results

To compare CKLS-ARMA-GARCH-EPDwith CKLS-ARMA-GARCH-NORMAL,

we �rst want to see which model has better in-sample �t. The model selection

criteria are the Bayes Factor (see Gelfand and Dey (1994)) and the Deviance

Information Criterion (see Spiegelhalter(2002)).

For Bayes Factor, the formula can be simpli�ed as follows (see Gelfand
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and Dey (1994), equation 21 on page 510):

logPSBF � log �n +
p2 � p1
2

(16)

= log
L(b�1;Y;M1)�1(b�1)
L(b�2;Y;M2)�2(b�2) + p2 � p12

We get Bayes Factor by following implementation:

dlogPSBF = log

1
nrep

nrepP
i=1

bL(b�(i)1 ;Y;M1)�1(b�(i)1 )
1

nrep

nrepP
i=1

bL(b�(i)2 ;Y;M2)�2(b�(i)2 ) +
p2 � p1
2

(17)

where bL(b�(i)1 ;Y;M1) is the estimated likelihood function at ith draw for all

parameter �(i)1 in Model 1. bL(b�(i)2 ;Y;M2) is the estimated likelihood function

at the ith draw for all parameter �(i)2 in Model 2. �1(:) and �2(:) are priors. pi

is the number of parameters to be estimated in model i. nrep is the number

of accepted draws.

The Deviance Information Criterion (DIC) is suggested by Spiegelhal-

ter(2002). The formula of DIC is as follows (see Spiegelhalter(2002), page

603, equation 36, 37):

DIC � D(�) + 2PD = D(�)� PD (18)
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We calculate DIC by following implementation 7:

dDIC � d
D(�)� cPD (19)d

D(�) � �2 � 1

nrep

nrepX
i=1

logL(yj�(i))

dD(�) � �2 � logL(yj�)

cPD � d
D(�)� dD(�)

Where � is the posterior mean of parameters. Y = frtgTt=1 ; and X are in-

sample data. PD is the e¤ective number of parameters. D(�) is the deviance

information. L(:) is the likelihood function:

L(�jY;X) = f(Y j�; X) (20)

/
TY
t=1

r�ct�1�
�1
t

�21+1=� �(1 + 1=�)
exp

�
�1
2
j"t
�
j�
�

(21)

"t =
et
�t

et =
rt � (a+ brt�1)

rct�1
�

pP
j=1

�jut�j �
qP
j=1

�jet�j

� =

s
2(�2=�)�(1=�)

�(3=�)

The values of in-sample model selection criteria are listed in Table 6. DIC

criterion shows CKLS-ARMA-GARCH-EPD (i.e., Model 1) �ts in-sample

data better since its DIC value is smaller. But Bayes Factor shows Model 2

is decisively better than Model 1. DIC uses e¤ective number of parameters

7For more information about DIC implementation, one can also refer to Chen(2008).
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PD instead of the true number of parameters pi to compare models. So, we

prefer to use DIC criterion and pick CKLS-ARMA-GARCH-EPD model as

the model with better in-sample �t.

2.4.4 Out-of-sample forecast model selection criteria and results

To see which model has better out-of-sample forecastibility, we use the Pre-

dictive Deviance Information Criterion (PDIC) and Mean Squared Errors of

Forecast (MSEF).

We calculate the Predictive Deviance Information Criterion (PDIC) by

the same formula of DIC using forecast values by. The formula of PDIC is as
follows

dDIC � d
D(�)� cPD (22)d

D(�) � �2 � 1

nrep

nrepX
i=1

logL(byj�(i))
dD(�) � �2 � logL(byj�)
cPD � d

D(�)� dD(�)
Where � is the posterior mean of parameters. by = fbrtgMt=1 is the forecast

values. ex is out-of-sample data. b� is the forecast values for conditional
standard deviation. PD is the e¤ective number of parameters. D(�) is the
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deviance information. L(:) is the likelihood function:

L(�jbY ; eX) = f(bY j�; eX) (23)

/
MY
t=1

br�ct�1b��1t
�21+1=� �(1 + 1=�)

exp

�
�1
2
jb"t
�
j�
�

(24)

b"t =
betb�tbet =
brt � (a+ bbrt�1)brct�1 �

pP
j=1

�jbut�j � qP
j=1

�jbet�j
� =

s
2(�2=�)�(1=�)

�(3=�)

We also calculate Mean Squared Errors of Forecast (MSEF):

MSEF =
1

m

mX
i=1

(ey(j)n+i � yn+i)2 (25)

wherem is the number of forecast period beyond the end of the sample period;

ey(j)n+i is the forecast value for period n+ i generated by Model j; j = 1; 2: yn+i
is the actually realized value in period n+ i . In sample theory we have one

ey(j)n+i: In Bayesian analysis we can generate ey(j)n+i and obtain the distribution of
the MSEF given the actually realized yn+i �s. For one period ahead forecast

(i.e., m = 1), the MSEF becomes the squared errors of forecast (SEF):

SEF = (ey(j)n+1 � yn+1)2 (26)

1-period ahead PDIC shows CKLS-ARMA-GARCH-NORMAL (i.e., Model
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2) has better out-of-sample predictive power since its PDIC value is smaller

(see Table 7). 1-period aheadMSEF (i.e. SEF) shows CKLS-ARMA-GARCH-

EPD (i.e., Model 1) is better since its MSEF is smaller. The densities and

cumulative densities of the 1-period ahead MSEF (i.e., SEF)�s are given in

Figure 7, 8, 9 and 10. We see that the cumulative density of the SEF�s for

Model 1 clearly dominates that for Model 2. That is, CDF of the SEF for

model 1 goes to 1 more quickly than that of model 2.
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Figure 7: PDF of SEF( Model 1: CKLS-ARMA-GARCH-EPD)
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Figure 8: PDF of SEF( Model 2: CKLS-ARMA-GARCH-NORMAL)
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Figure 9: CDF of SEF( Model 1: CKLS-ARMA-GARCH-EPD)
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Figure 10: CDF of SEF ( Model 2: CKLS-ARMA-GARCH-NORMAL)
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2.4.4.1 Check robustness (�xed estimation scheme) To test the ro-

bustness of previous results for 1-period ahead forecast, 3-period, 6-period

and 9-period ahead values of PDIC and MSEF are also calculated (see

Table 7). Table 7 shows the results of 1-period ahead PDIC and MSEF

are robust. That is, PDIC shows CKLS-ARMA-GARCH-NORMAL (i.e.,

Model 2) always has better forecastibility since its PDICs are smaller. And

MSEF shows CKLS-ARMA-GARCH-EPD (i.e., Model 1) always has better

forecastibility since its MSEFs are smaller. The MSEF of CKLS-ARMA-

GARCH-NORMAL increases greatly when out-of-sample period increases.

Since MSEF comes from sample theory and PDIC comes from Bayesian the-

ory, we prefer the results coming from PDIC. The results of forecast show

the model with better in-sample �t is not necessary the one with better

forecastibility.

2.4.4.2 Check robustness (rolling estimation scheme) To test the

robustness of PDIC results from �xed estimation scheme, we use rolling esti-

mation scheme to derive PDIC for 10-period, 15-period, 20-period and half-

sample ahead data. The results are listed in Table 8. The results of rolling

estimation scheme show CKLS-ARMA-GARCH-EPD model has better fore-

castibility. From Table 8, we can see the PDIC for CKLS-ARMA-GARCH-

EPD model becomes smaller as the forecast period increases from 10 to half-

sample. For the half sample case, we plot the PDICs of both models in Figure

11. The graph in Figure 11 shows the PDICs of CKLS-ARMA-GARCH-EPD
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are always smaller than those of CKLS-ARMA-GARCH-NORMAL, and the

di¤erence between them is bigger when out-of-sample period increases.
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Figure 11: Half-sample PDICs Comparison

2.5 Chapter conclusions

In this paper, we �rstly propose a short-term interest rate model. The model

is the CKLS-ARMA-GARCH model with error terms distributed as expo-

nential power distribution (EPD). We denote this model as CKLS-ARMA-

GARCH-EPD (or Model 1).
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BF21 DIC
Model 1: CKLS-ARMA-GARCH-EPD 7:52 165:76
Model 2: CKLS-ARMA-GARCH-NORMAL � 245:94

Table 6: In-sample Fit (Jan. 63 - Dec. 07)

PDIC MSEF
Model 1 Model 2 Model 1 Model 2

1-period ahead 13:07 9:78 3:16(3:91) 4:41(4:33)
3-period ahead 21:98 17:54 4:12(3:92) 5:84(5:97)
6-period ahead 24:11 19:93 3:92(3:73) 35:67(50:93)
9-period ahead 20:31 16:16 3:93(3:74) 145:86(167:46)

Note: Model 1 is CKLS-ARMA-GARCH-EPD.
Model 2 is CKLS-ARMA-GARCH-NORMAL.

Table 7: Multi-period ahead Out-of-Sample Model Selection Using the Esti-
mates from Period Jan. 63 - Dec. 07(Fixed Estimation Scheme)

PDIC
Model 1 Model 2

10-period ahead - Smaller
15-period ahead Smaller -
20-period ahead Smaller except the �rst 10 periods -
Half sample ahead Smaller -

Note: Model 1 is CKLS-ARMA-GARCH-EPD.
Model 2 is CKLS-ARMA-GARCH-NORMAL.

Table 8: Multi-period ahead Out-of-Sample Model Selection (Rolling Esti-
mation Scheme)
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Bayesian MCMC algorithms are developed to estimate this model. Then,

both in-sample �t and out-of-sample forecastability of this model are com-

pared with CKLS-ARMA-GARCH-NORMAL(or Model 2). Bayes Factor(see

Gelfand and Dey (1994)) and Deviance Information Criterion(DIC, see Spiegel-

halter(2002)) are used as in-sample �t criteria. Predictive Deviance Infor-

mation Criterion (PDIC) and Mean Squared Error of Forecast (MSEF) are

used as criteria for out-of-sample forecast. Empirical data of US Federal

funds rates are analyzed.

Simulation results show that the MCMC algorithms used to estimate

Model 1 and 2 are e¢ cient since the �ltered Fluctuation test (FT) and �ltered

Kolmogorov Smirnov test (KS) (see Ploberger, Kramer and Kontrus(1989),

Smirnov(1939) and Goldman et al.(2007)) indicate convergence.

We �gure out the long-run equilibrium short-term interest rate is 1.53%

calculated by the posterior means of CKLS-ARMA-GARCH-EPD. In the

paper of CKLS(1992), their long-run equilibrium short-term interest rate

is 6:89%. We think the di¤erence is caused by di¤erent models, di¤erent

estimation techniques and di¤erent data sets.

The results of in-sample model selection are as follows. DIC shows

CKLS-ARMA-GARCH-EPD �ts in-sample data better since its DIC value

is smaller. However, Bayes Factor has decisive evidence supporting Model

2. DIC uses e¤ective number of parameters instead of the true number of

parameters to compare models. So, we prefer the result of DIC criterion and

pick CKLS-ARMA-GARCH-EPD model as the one with better in-sample �t.
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By �xed estimation scheme, both 1-period and multi-period ahead PDICs

show CKLS-ARMA-GARCH-NORMALmodel has better out-of-sample fore-

castibility since its PDIC values are smaller. However, if we use criterion of

Mean Squared Error of Forecast(MSEF), then CKLS-ARMA-GARCH-EPD

is better. Since MSEF comes from sample theory and PDIC comes from

Bayesian theory, we prefer the results coming from PDIC.

Results from both in-sample �t and out-of-sample forecast via �xed es-

timation scheme show a model with better in-sample �t does not necessary

have better out-of-sample forecastibility. Results from out-of-sample fore-

cast via rolling estimation scheme show CKLS-ARMA-GARCH-EPD model

can predict long run better since its PDICs are smaller as forecast period

increases.

Future extensions include but not limit to follows. We can add macro

variables of Bernake et al.(2005) into the CKLS-ARMA-GARCH-EPDmodel

(see Bernake et al.(2005) for the Factor-Augmented (FAVAR) model). One

can also introduce a regime switching variable in CKLS-ARMA-GARCH-

EPD model (see Dueker et al.(2007)). 2 or 3 latent factors can also be

added to CKLS-ARMA-GARCH-EPDmodel (see Andersen and Lund(1997),

Jones(2003), Bali(2000) and Sorwar (2005)). Or one can use our model to

price derivatives. Last but not the least, one can check the robustness of our

model using international data.



40

3 Markov switching models for realized volatil-

ity

3.1 Motivation

Many �nancial time series display asymmetric behavior. For example, large

negative returns appear more frequently than large positive returns and sud-

den dramatic political events have big e¤ects on �nancial time series. In

order to capture such asymmetric behavior, nonlinear time series models are

developed8.

A lot of attempts try to model this kind of nonlinearity explicitly. One

approach is to de�ne di¤erent regimes, i.e., state of the world, and allow

the dynamic behavior of economic variable to depend on the regimes (see

Priestly (1980, 1988)). That means certain properties of the time series such

as its mean, variance or autocorrelation are di¤erent in di¤erent regimes. In

this case, we call this time series state-dependent or regime-switching.

Regime-switching process can be deterministic or stochastic (see Figure

12). One example of deterministic regime process is the seasonal e¤ect.

Stochastic regime can be found in LeBaron (1992), Kräger and Kugler (1993)

8Various statistical tests have been used to detect the nonlinearity in stock prices and
exchange rates (see Hinich and Patterson (1985), Scheinkmann and LeBaron (1989), Hsieh
(1989,1991), Crato and de Lima (1994), and Brooks (1996)).
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and Chappell et al. (1996).

Stochastic regime-switching models can be divided into two categories

(see Figure 12). The �rst category assumes that the regimes can be charac-

terized or determined by an observable variable, i.e., the regimes that have

occurred in the past and present are known with certainty, and can be cal-

culated by statistical tools. Examples are Threshold Autoregressive model

(TAR)9, Self-Exciting TAR (SETAR) model with threshold value determined

by the time series itself, or Smooth Transition AR (STAR) model including

Logistic STAR (LSTAR)10.

The second category assumes that the regimes are unobserved or hidden,

and they are determined by an underlying unobservable stochastic process,

which we denote as st . We can not be sure that a particular regime will

occur at a particular point of time, but can only assign probabilities to the

occurrence of the di¤erent regimes. When the property of st in a model is

speci�ed to be a �rst order Markov-process, i.e. the current regime only

depends on the regime one period ahead , then this kind of model is called

Markov switching model(MSW).

Markov switching model (hereafter denoted as MSW ) was introduced

to economics by Hamilton (1989) . Since then, many extensions of Markov

switching model are developed11. For example, Cai(1994), and Hamilton and

9See Tong (1978), Tong and Lim (1980), and Tong (1990).
10See Bacon and Watts (1971), Chan and Tong (1986), Granger and Terävirta (1993),

and Teräsvirta (1994, 1998))
11See Kim(1994), Cai (1994), Hamilton and Susmel (1994), Gray(1996), Dueker(1996),

Kaufman and Fruhwirth-Schnatter (2000), Das and Y00(2004), Yoo(2006), Henneke,
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Susmel (1994) extended MSW-AR to MSW-ARCH by adding the Markov

switching variable st into the ARCH equation. Gray(1996) and Dueker(1997)

studied a MSW-GARCH model. Das and Yoo (2004), and Yoo (2006) ana-

lyzed MSW-ARMA-GARCH models.

TAR; SETAR; STAR; LSTAR Markov­Switching models

Deterministic Regime­
Switching models

Stochastic Regime­
Switching models

Regime­Switching models Other nonlinear models

Financial time series models

Linear models Nonlinear models

Figure 12: Financial Time Series Models

At the beginning of development of Markov switching models, most of

the researches are used maximum likelihood estimation (MLE) to estimate

the parameters in the models12.

However, as the Markov switching models are extended to be more and

more complicated, MLE becomes computationally unfeasible. For example,

Rachev and Fabozzi(2006).
12See Hamilton (1989), Cai(1994), Hamilton and Susmek (1994), Gray (1996),

Dueker(1997), and Klaassen(2002).
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when the MA(q) error terms are added into the models, then the likelihood

function depends on all previous q periods of the past history of the state

variables, which makes the joint process become a non-Markovian process

and is hard to be estimated by MLE. In addition, for MSW-GARCH, if

there are only 2 states with N sample size, then there will be 2N cases of the

likelihood function to be consider.

There are two ways to deal with previous problem of MLE. One is to

use reparameterization to recover a Markovian frame work from the non-

Markovian models (see Jones(1987) and Barnett et.al.(1996)). Another is to

use Markov Chain Monte Carlo (MCMC) to deal with the non-Markovian

structure directly 13 ( see Billio et.al.(1999), Kaufmann et.al.(2000), Das and

Yoo(2004), Yoo(2006), and Henneke, Rachev and Fabozzi(2006)). MCMC is

a very powerful tool for the numerical computation of integrals, which can

be used easily to estimate complicated models.

Markov switching models have been widely applied to GDP, T-bill rates,

exchange rates and stock prices14, but there is little application to the real-

ized volatility, a new measure of volatility �rst introduced by Andersen and

Bollerslev (1997). There are a lot of researches done to model and forecast the

realized volatility 15 because of the importance of volatility in �nance. How-

13For more discussion of MCMC, please refer to Robert and Casella (1999).
14See Hamilton (1998) for GDP, Cai(1994) and Gray (1996) for T-bill rate, Hamilton

and Susmel (1994), and Dueker (1997) for stock prices, Klaassen (2002) for exchange rate.
15see Andersen, Bollerslev, Diebold, and Labys(2001, 2003), Andersen, Bollerslev,

Diebold and Ebens(2001), Fleming, Kirby and Ostdiek(2003), Maheu and McCurdy(2002),
Goldman, Nam and Wang(2005).
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ever, most researches use linear models, GARCH, RiskMetrics, FIEGARCH

or TARMA.

The �rst contribution of this paper is to design a random walk draw algo-

rithm for a Markov switching model (MSW-ARMA-GARCH-St-in-variance).

And then the estimates from this algorithm are compared with those of non-

random walk draw (see Das and Yoo(2004)).

The 2nd contribution of this paper is to compare two Markov switch-

ing models by MSE and MSEF. We try to test one hypothesis: is the

model with st in variance better than the one with st in mean? A Markov-

switching model with state variable in variance (i.e., MSW-ARMA-GARCH-

St-in-variance) is estimated by MCMC algorithm of Das and Yoo(2004). And

another Markov-switching model with state variable in mean (i.e., MSW-

ARMA-GARCH-St-in-mean) is estimated byMCMC algorithm of Yoo(2006).

Metropolis Hasting algorithm and Gibbs samplers are used. In order to gen-

erate latent variable st, single-move method 16 is used.

The 3rd contribution is to study the realized volatility using Markov

switching models. Even though there is few research on realized volatility

using Markov-switching models, these MSW models are di¤erent from ours.

For example, Maheu and McCurdy(2002) found that a duration dependent

Markov-switching ARMA model is better than other linear models for the

realized volatility of the DM/$ exchange rate. Di¤erent from us, their model

16For single-move method, see Carlin, Polson, and Sto¤er (1992), and Albert and Chib
(1993). For multi-move, see Carter and Kohn (1994),and Kim and Nelson (1999).
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has no GARCH term.

This paper is organized as follows. Section 2 provides details about

the Markov switching ARMA-GARCH models. Bayesian inference and the

MCMC algorithm for the estimation are given in section 3 and 4. Section

5 explains the e¤ectiveness of the MCMC algorithm using numerical exam-

ples. In section 6, the estimation results from the realized volatility of MMM

company are presented. Conclusions are given in section 7.

3.2 Markov switching models

The Markov switching models with ARMA-GARCH errors are as follows:

3.2.1 Model 1: MSW-ARMA-GARCH-St-in-variance

yt = xt
 + ut; (27)

ut =

pX
i=1

�iut�i + et +

qX
i=1

�iet�i; et � N(0; �2t ); (28)

�2t = �0 + st�+
rX
i=1

�ie
2
t�i +

sX
i=1

�i�
2
t�i; (29)

�0 > 0; �0 + � > 0; �i � 0; i = 1; 2; :::r; �i � 0; i = 1; 2; :::s;

1 �
max(r;s)X
i=1

(�i + �i) (30)

For model 1, the Markov switching variable st is in conditional variance

(i.e., GARCH term, equation 29).
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3.2.2 Model 2: MSW-ARMA-GARCH-St-in-mean

yt = xt
1 + st�+ ut; (31)

ut =

pX
i=1

�iut�i + et +

qX
i=1

�iet�i; et � N(0; �2t ); (32)

�2t = �0 +
rX
i=1

�ie
2
t�i +

sX
i=1

�i�
2
t�i; (33)

�0 > 0; �i � 0; i = 1; 2; :::r; �i � 0; i = 1; 2; :::s;
max(r;s)X
i=1

(�i + �i) � 1: (34)

For model 2, the Markov switching variable st is in the mean component

of dependent variable (equation 31).

For both models, we assume the state variable st is a two- state, �rst

order Markov switching process. The hidden transition probabilities for this

Markov switching process are :

Pr[st = 0jst�1 = 0] = p00; P r[st = 1jst�1 = 0] = p01: (35)

Pr[st = 0jst�1 = 1] = p10; P r[st = 1jst�1 = 1] = p11

We also impose constraints (30) and (34) on the coe¢ cients of GARCH

to guarantee that the conditional variance is positive.

For notation simplicity, we use following parameter de�nitions for model
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1:

� = [�1; :::�p]
0; � = [�1; :::�q]

0; � = [�0; �; �1; :::�r]
0; � = [�1; :::; �s]

0;

� = [
; �; �; �; �; p00; p11]
0; S = [s1; :::; sT ]

0; Y = [y1; :::; yT ]
0:

For model 2, in addition to previous de�nitions, we de�ne two more no-

tations: � = [�0; �1; :::�r]0; 
 = [
1; �]
0:

3.3 Bayesian inference

For Bayesian inference17, we need to derive the posterior distribution of all

parameters and the state variables S = [s1; :::; sT ]
0 conditional on the ob-

served data Y . According to Bayes�rule, the posterior distribution of model

1 or model 2 is:

p(�; SjY ) = p(�; S; Y )=p(Y ) (property of conditional density) (36)

= p(�; S)p(Y j�; S)=p(Y ) (property of conditional density) (37)

/ p(�; S)p(Y j�; S) (p(Y ) is known) (38)

/ p(�)p(Sj�)p(Y j�; S) (property of conditional density) (39)

The �rst term of equation (39) is the prior distribution for all parameters.

17In the classical framework, inference on Markov-switching models �rst estimates the
models�s unknown parameters, then makes inferences on the unobserved Markov switching
variables st; t = 1; :::; T . In the Bayesian analysis, both the parameters and the Markov-
switching variable st; t = 1; :::; T are treated as random variables.
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This prior p(�)is assumed to be:

p(�) = p(
; �; �; �; �; p00; p11) (40)

= p(
)p(�)p(�)p(�)p(�)p(p00)p(p11) (41)

= N(�
;�
) �N(��;��) �N(��;��) (42)

�N(��;��) �N(��;��)

�Beta(u00; u01) �Beta(u11; u10)

The equal sign in (41) comes from the assumption of independence, i.e., we

assume the prior distributions of parameters are independent. N(:) is the

normal density function, and Beta(:) is the beta density function.

The second term of equation (39) is :

p(Sj�) = p(Sj
; �; �; �; �; p00; p11) (43)

= p(Sjp00; p11) Since the independence assumption.

=
TY
t=1

p(st+1jst; p00; p11) Since Markov property.

= pn0000 (1� p00)n01pn1111 (1� p11)n10

where nij is the number of the transitions from state i to state j.
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The third term in equation (39) is :

p(Y j�; S) =
T�1Y
t=1

p(ytjyt�1; �; S) (44)

=
T�1Y
t=1

1p
2��2t

exp[� e2t
2�2t

]

3.4 MCMC implementation

Markov Chain Monte Carlo(MCMC) algorithm is used to estimate the pa-

rameters. MCMC is one way of the numerical integrations based on the

Cli¤ord-Hammersley theorem. This theorem shows that a joint distribution

can be characterized by its complete conditional distributions. When applied

in Bayesian, that means the posterior distributions, p(�; SjY ); can be char-

acterized by its complete conditional distributions: p(�jS; Y ) and p(Sj�; Y ).

In the MCMC algorithm, both Gibbs Samplers (GS) andMetropolis Hast-

ing (MH) are used. Gibbs Samplers are used to draw p00; p11 since its com-

plete conditional distribution is assumed to be beta distribution, which is

known. Metropolis Hasting (MH) algorithms are used to draw other para-

meters such as 
; �; �; �; and �, since the complete conditional distributions

of these parameters are unknown.
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3.4.1 Algorithm using non-random walk draw

We draw parameters such as 
; �; �; �; and � using non-randomwalk draw(see

Appendix i), the probability to accept a proposal value is

� = minfp(�̂jY; S) � f(�
(j�1))

p(�(j�1)jY; S) � f(�̂)
; 1g (45)

Where f(:) is the proposal distribution function. �j�1 is the j � 1 draw. �̂ is

a generated value for �. We use the method of Nakatsuma(2000) to choose

the proposal distribution f(:)18.

3.4.2 Algorithm using random walk draw

We also use random walk draw in the MCMC algorithm to draw parame-

ters 
; �; �; �; and � for model 1 (see Appendix ii). In the random walk

draw, the probability to accept a proposal value is � = minf p(�̂jY;S)
p(�(j�1)jY;S) ; 1g,

since the proposal distribution function f(:) in equation 45 is symmetric,

i.e.,f(�(j�1); �̂) = f(�̂; �(j�1)).

Since S = [s1; :::; sT ] are latent variables, data augmentation are used.

That is, the paramenter � is augmented with the states S. Single move

method is used to generate S since the process is non-Markovian and multi-

move method is infeasible.

Parameters in � are divided into 3 groups: �1 = (p00; p11); �2 = (
; �; �); �3 =

18Almost any distribution can be chosen as the proposal distribution. However, for the
speed of the convergence, it is crucial to select a proper proposal distribution. See Robert
and Casella(1999).
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(�; �): Then, the MCMC algorithm is :

1. Draw st from p(stjS�t; Y; �) for all t = 1; 2; :::T by single-move GS

method.

2. Draw �1 from p(�1jS; Y; �2; �3) = p(�1jS), the Beta distribution, by GS.

3. Draw �2 from p(�2jS; Y; �3; �1) = p(�2jS; Y; �3) by MH algorithm.

4. Draw �3 from p(�3jS; Y; �2; �1) = p(�3jS; Y; �2) by MH algorithm.

We use equations (27), (28) for model 1 (or equations (31), (32) for model

2) to draw proposal density for �2 = (
; �; �). The corresponding likelihood

function is:

p(Y jS; �2; �3) =
TY
t=1

1p
2��2t

exp[� e2t
2�2t

] (46)

For �3 = (�; �), we follow the approximation of Nakatsuma (2000) to get

proposal densities:

e2t = �0 +
lX
i=1

(�i + �i)e
2
t�i + wt �

sX
i=1

�iwt�j; wt � N(0; 2�2t ); (47)

where: l = maxfr; sg; �i = 0 for i > r; �i = 0 for i > s;

e2t = 0; wt = 0 for t � 0
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The corresponding likelihood function is :

p(e2jY; S; �2; �3) =
TY
t=1

1p
2�(2�4t )

exp[� w2t
2(2�4t )

] (48)

where e2 = [e21; :::; e
2
T ]
0:

For more detailed of MCMC implementation, please refer to the Appendix i

& ii.

3.5 Simulation results

In this section, we use simulation examples to show the e¤ectiveness of the

MCMC algorithms. We estimate model 1 and model 2 while setting p =

1; q = 1; r = 1; s = 1, i.e., two Markov switching models with ARMA(1,1)

-GARCH(1,1) error term.

We �rst design an algorithm using random walk draws to estimate model

1 (see Appendix ii). The results19 are listed in Table 9. The sample size

is 1000, the draws discarded are 1000 and every 5th draw is kept. It takes

about 6 hours to run the program. In Table 9, all parameters are close to true

value except �; �1 and p11. The parameter � has an opposite sign compared

with the true parameter. The mean of �1 is double of the true parameter.

For p11, the value is just a little bit higher than 0.5, which is far away from

true value 0.98.

19We try di¤erent parameters and sample size to see the results.
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Then, we estimate model 1 using non-random walk draw with the pro-

posal densities listed in Appendix i. The results for model 1 are in Table

10. Sample size is 500, 100 draws are discarded and every 1 draw of 500 is

used. It takes 44 minutes to get the result. In Table 10, every posterior mean

is closed to its true value. Compared with Table 9, the results are obvious

better than that. So we choose this algorithm for model 1 to estimate the

realized volatility in next section20.

The simulation results for model 2 are in Table 1121. Sample size is 200,

draws discarded are 8000 and every 2 draws from 3000 are used. It takes one

and a half hour to get the result. In Table 11, every posterior mean is closed

to its true value.

In Figure 13 and 14, we can see that the estimated state variable ŝt from

the simulations are very similar to the true state variable st. So, the MCMC

algorithm in Appendix i estimates both the parameters and the states very

well.
20Note: MSW-ARMA-GARCH-St-in-variance is estimated by MCMC algorithm of Das

and Yoo(2004).
21Note: MSW-ARMA-GARCH-St-in-mean is estimated by MCMC algorithm of

Yoo(2006).
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True Mean St.Dev.

1 0 �:036 :013
� :05 �:407 2:724
�1 :7 :673 :026
�1 :3 :313 :045
�0 :001 :001 :000
�1 :3 :615 :073
�1 :5 :532 :034
P00 :98 :997 :002
P11 :95 :562 :179

�1 + �1 :80 1:148 :049

Table 9: Simulation Results for Model 1 ( Random Walk Draw)

True Mean St.Dev.

1 0 :014 :066
� :05 :074 :024
�1 :70 :764 :046
�1 :30 :248 :074
�0 :01 :037 :039
�1 :30 :291 :067
�1 :50 :469 :113
P00 :98 :976 :019
P11 :95 :960 :032

�1 + �1 :80 :760 :089

Table 10: Simulation Results for Model 1 (Non-Random Walk Draw)
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True Mean St.Dev.

1 0 :015 :027
� :4 :408 :034
�1 :7 :571 :084
�1 :2 :307 :096
�0 :005 :007 :002
�1 :4 :300 :133
�1 :3 :238 :158
P00 :95 :922 :025
P11 :90 :858 :046

�1 + �1 :70 :539 :157

Table 11: Simulation Results for Model 2 (Non-random Walk Draw)

Figure 13: S(t) and Estimated S(t) for Model 1 (Note: The bold line is the
estimated value. )
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Figure 14: S(t) and Estimated S(t) for Model 2 (Note: The bold line is the
estimated value.)

3.6 Application to realized volatility

In this section, we apply the algorithms for model 1 and model 2 to the

realized volatility of MMM company. The data are 5-minute returns from

TAQ database. The sample period is from January 4, 1993 to December 31,

2004. We use 600 observations. The �rst 500 data are used for estimation

and in-sample �t evaluation. And the last 100 observations are used for

out-of-sample forecast evaluation.

The results are listed in Table 12. From these estimates, it is hard to

tell which model is better. So we calculate in-sample Mean Squared Errors

(MSE) and Mean Squared Error of Forecast (MSEF) for out-of sample fore-
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cast evaluation (see Table 13). Model 2 has better in-sample �t since its

MSE value is smaller. But model 1 has better out-of-sample forecastability

since it has lower MSEF.

3.7 Chapter conclusions

Markov switching models have been widely applied to GDP, T-bill rates,

exchange rates and stock prices22. In this paper, we design a random walk

algorithm for a Markov switching model with regime switching in variance

(i.e., MSW-ARMA-GARCH-St-in-variance). Then, the estimates from this

algorithm are compared with those of Das and Yoo(2004).

Also, we compare two Markov switching models by MSE and MSEF. A

Markov-switching model with state variable in variance (i.e., MSW-ARMA-

GARCH-St-in-variance) is estimated byMCMC algorithm of Das and Yoo(2004).

And another Markov-switching model with state variable in mean (i.e., MSW-

ARMA-GARCH-St-in-mean) is estimated byMCMC algorithm of Yoo(2006).

Metropolis Hasting algorithm and Gibbs Samplers are used. In order to gen-

erate latent variable st, single-move method23 is used.

Lastly, we use previous two Markov switching models to analyze the re-

alized volatility of MMM. The realized volatility is a new measure of volatil-
22See Hamilton (1998) for GDP case. See Cai(1994) and Gray (1996) for T-bill rate

case, Hamilton and Susmel (1994), and Dueker (1997) for stock prices cases, Klaassen
(2002) for exchange rate case.
23For single-move method, see Carlin, Polson, and Sto¤er (1992), and Albert and Chib

(1993). For multi-move, see Carter and Kohn (1994),and Kim and Nelson (1999).
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Model 1 Model 2
Mean St.Dev. Mean St.Dev.


1 �:0006 :022 :041 :002
� :981 :008 :093 :223
�1 �:115 :000 :984 :008
�1 0 :000 �:249 :000
�0 :411 :000 :000 :000
�1 :033 :000 :525 :088
�1 :084 :000 :652 :034
P00 :997 :002 :994 :004
P11 :897 :086 :244 :196

�1 + �1 :444 :000 1:177 :067

Note:Model 1: MSW-ARMA-GARCH-St-in-variance
Model 2: MSW-ARMA-GARCH-St-in-mean

Table 12: Estimation Results for the Realized Volatility of MMM Company

Models MSE MSEF
Model 1: MSW-ARMA-GARCH-St-in-variance .0019 .0006
Model 2: MSW-ARMA-GARCH-St-in-mean .0009 .9678

Table 13: MSE and MSEF for the Realized Volatility of MMM Company
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ity, �rst introduced by Andersen and Bollerslev (1997). There are a lot of

researches being done to model and forecast the realized volatility. Most

of these researches are analyzed the realized volatility by linear models,

GARCH, RiskMetrics, FIEGARCH or TARMA models. However, using

MSW-ARMA-GARCH models to model the realized volatility is new.

The conclusions of this paper are as follows. Algorithm of random walk

draw for model 1 is not better than the algorithm of non-random walk draw

in Das and Yoo(2004). According to MSE, we �nd out model 2 has better

in-sample �t. However, MSEF shows model 1 has better forecastibility.

Future extension could be follows. First, we can compare Markov switch-

ing model with other nonlinear models such as TARMA. Secondly, we can

consider other model selection criteria. Thirdly, we can also extend previ-

ous Markov switching models by assuming other error distributions such as

the exponential power distribution. Last but not least, we can design a new

model which includes two regime switching variables: one regime switching

variable in the mean component, another regime switching variable in the

variance component.



60

4 Bayesian analysis of SP500 and FTSE100

using a Gaussian Copula model

4.1 Motivation

In this paper, we �rst design a Gaussian copula model with ARMA-GARCH-

EPD error terms (i.e., Copula-ARMA-GARCH-EPD). Then, we designMarkov

Chain Monte Carlo (MCMC) algorithms to estimate this model. Monthly

data on SP500 and FTSE100 are analyzed.

Copulas (see Sklar(1959)) are convenient tools to construct multivariate

joint distributions from margins. In �nancial risk assessment and actuar-

ial analysis, dependence modeling with copula functions is widely used. Li

(2000) introduces Gaussian copula model into pricing Collateralized Debt

Obligations (CDOs).

Researches on copulas have been fast growing for the following reasons:

(1) As shown in Blyth (1996), Shaw (1997), and Embrechts et.al. (1999), cop-

ulas can handle nonlinear dependence measures such as Kendall�s � , Spear-

man�s �, and Gini indice 
 that may be more appropriate for measuring

dependence among data.24 (2) The empirical distributions of many �nancial

time series data are skewed and leptokurtic. This implies that models with

normal error distribution may be inadequate. Copulas allow us to build mul-

tivariate distributions from leptokurtic and/or skewed marginal distributions,

24Additional references are Karolyi and Stultz (1996), Forbes and Rigobon (1999),
Straetmans (2000), Login and Solnik (2001), and Ang and Bekaert (2002).
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and thus we can �nd dependence among data.25

Papers applying copulas are many and the application of copulas spreads

across various �elds. For example, in health economics, Zimmer and Trivedi

(2006) applied a trivariate copula to analyze family health care demand.

Romeo et.al. (2006) used bivariate copula models to study multivariate sur-

vival data. Li et.al. (2006) used a copula variance-components method for

genetic studies.26 In �nance, Meucci (2006) used copula-opinion pooling

methodology to extend the Black-Litterman model for portfolio manage-

ment. Arakelian and Dellaportas (2006) studied a threshold model using

copulas. Patton (2006) used copulas to model �ve Asian stock indices to

measure �nancial contagion.27

Bayesian and maximum likelihood procedures have been used to esti-

mate copula models. For example, Xu (2004) designed an MCMC algo-

rithm to estimate a mixed copula model. Chen et.al. (2004) developed two

goodness-of-�t tests for copula models. Chen et.al. (2005) proposed a sieve

maximum likelihood estimation (MLE) to e¢ ciently estimate copula models.

An e¢ cient Bayesian approach for estimating a Gaussian copula model was

presented by Pitt, Chan and Kohn (2006).

In this paper we combine the Gaussian copula with ARMA-GARCH-EPD

25See Mandelbrot (1963), Fama (1965), Praetz (1972), Blattberg and Gonedes (1974).
26See Shih and Louis (1995), Andersen (2004, 2005), Cameron et.al. (2004), Andersen

et.al. (2005), Trivedi and Zimmer (2006) for more copula application in health economics.
27See Li (2000), Longin and Solnik (2001), Dias and Embrechts (2004), Rodriguez (2003),

Ausin and Lopes (2006), Hu (2006), Bartram et.al. (2006), Patton (2006a), and Jondeau
and Rockinger (2006) for more copula application in �nance.
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marginal distributions. Results show the MCMC algorithm is convergent

by the �ltered Fluctuation test and Kolmogorov-Smirnov test in Goldman

et.al.(2007). Using monthly data on SP500 and FTSE100, we estimate the

Gaussian copula model with ARMA-GARCH-EPD margins.

The organization of the paper is as follows. Section 2 discusses the model:

Gaussian copula with ARMA-GARCH-EPD margins. Section 3 presents the

posterior density for Copula-ARMA-GARCH-EPD. MCMC algorithm and a

numerical example are showed in section 4. Section 5 illustrates an empirical

analysis of SP500 and FTSE100. Concluding remarks are given in section 6.

4.2 Copula-ARMA-GARCH-EPD model

The Copula-ARMA-GARCH-EPD is a multivariate regression model:

Y = Xb+ u (49)

where Y =

266664
Y1

:::

YM

377775 ; X =

266666664

X1 0 ::: 0

0 X2 :: 0

::: :::

0 0 ::: XM

377777775
; b =

266664
b1

:::

bM

377775 ; u =
266664
u1

:::

u
M

377775 :
Or,

Yi = Xibi + ui; i = 1; :::;M: (50)
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where

uit =
pP
j=1

�ijuit�j +
qP
j=1

�ijeit�j + eit (51)

eit = �it"it; "it � EPD(1; � i) (52)

�2it = �i0 +
rP
j=1

�ije
2
it�j +

sP
j=1

�ij�
2
it�j (53)

�i0 > 0; �ij � 0; j = 1; :::; r, �j � 0; j = 1; :::; s. (54)

1 �
max(r;s)P
j=1

(�j + �j) (55)

Yi = (y1i; :::; yTi)
0 is a T � 1 vector, Xi = (x

0
1i; :::; x

0
Ti)

0 is a T � ki matrix

of regressors, bi is a ki � 1 vector of regression coe¢ cients, and ui is a T � 1

vector of error terms. The sample size is T andM is the number of equations.

And f
i
("it) is the PDF of exponential power distribution (EPD)28:

fi("it) =
1

21+1=�i�it �(1 + 1=� i)
exp

�
�1
2
j "it
�it
j�i
�

(56)

0 < �it <1; 0 < � i <1; i = 1; :::;M:

EPD(�it; � i) becomes the normal distribution when � i = 2 :

fi("it) =
1p
2��it

exp

�
�1
2
j "it
�it
j2
�
; 0 < �it <1; i = 1; :::;M: (57)

28For density of EPD , please refer to Tsurumi and Shimizu(2006).
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4.3 Posterior density

4.3.1 Joint density through copula

Let X1; :::; XM be the random variables. Their joint density through copula29

is given by

h(X1; :::; XM) = c(F1(x1); :::; FM(xM); �)
M

�
i=1
fi(Xi) (58)

where c(F1(x1); :::; FM(xM); �) is the density of copula; Fi(xi) is the cumula-

tive function and Fi(xi) =
R xi
�1 fi(Xi)dXi; fi(Xi) is the marginal density

of random variable Xi; xi is the realized value for random variable Xi;

i = 1; ::;M:

If all the marginal distributions fi(Xi) �s are normal, then the joint density

in equation 58 is the multivariate normal PDF. If Xi is not normal, then

the joint density h(X1; :::; XM) is not multivariate normal even if we use the

Gaussian copula (see Appendix iv). We can construct a non-normal joint

distribution from margins, and then we can estimate the correlation matrix

�:

29For de�nition of copula, please see Sklar�s Theorem on page 18 of Nelsen (2005).



65

4.3.2 Gaussian copula density

The density of Gaussian copula30 is given by

c(F1(e1); :::; FM(eM); �) = j�j�
1
2 exp

�
�1
2
A0(��1 � I)A

�
(59)

where

A = (a1; :::; aM)
0 (60)

ai = �
�1(Fi(ei)) (61)

Fi(ei) =

Z ei

�1
f
i
("i)d"i (62)

And f
i
("i) is the PDF of "i. Fi(ei) is the CDF of "i. � is a positive de�nite

matrix with diagonal elements being unity. �(:)is the standardized normal

CDF. And I is the identity matrix.

4.3.3 Posterior density for Copula-ARMA-GARCH-EPD

We de�ne�i � fbi; f�ijgj=1:::p; f�ijgj=1:::q; f�ijgj=0:::r; f�ijgj=1:::s; � ig and� �

(�1; :::;�M ; �): The posterior density of � for Copula-ARMA-GARCH-EPD

is

p(�jY;X)=
TY
t=1

c(F1(e1t):::FM(eMt); �)f1("1t):::fM("Mt) � p(�)

30For density of copula , please refer to page 8 of Bouyé (2000).
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where

c(F1(e1t):::FM(eMt); �) = j�j�
1
2 exp

�
�1
2
A0t(�

�1 � I)At
�

(63)

At = (a1t; :::; aMt)
0 (64)

ait = ��1(Fit(eit)) (65)

Fit(eit) =

Z eit

�1
f
i
("it)d"it (66)

fi("it) =
1

21+1=�i�it �(1 + 1=� i)
exp

�
�1
2
j "it
�it
j�i
�
(67)

0 < �it <1; 0 < � i <1; i = 1; :::;M: (68)

"it = eit=�it (69)

�2it = �i0 +
rP
j=1

�ije
2
it�j +

sP
j=1

�ij�
2
it�j (70)

eit = uit �
pP
j=1

�ijuit�j �
qP
j=1

�ijeit�j (71)

uit = Yit �Xitbit; i = 1; :::;M: t = 1; :::; T:(72)

p(�) is the prior density for �: We use prior: p(�) = 1:

4.4 MCMC algorithms and simulation results

We estimate the parameters � of Copula-ARMA-GARCH-EPD by theMCMC

algorithms that are explained in the Appendix iii. The sample size is 300.

We run 18000MCMC iterations and discard the �rst 3000 draws. Every 10th

draw is kept. All acceptance rates are higher than :31. It takes 16 hours to

get the results.
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Parameters P-values of FT P-values of KS

1 :28 1
�1 1 :87
�1 1 :76
$1 :15 :00
�1 :99 :01
�1 :59 :00
�1 :96 :05

2 :44 :63
�2 1 :21
�2 1 :72
$2 :28 :00
�2 :92 :59
�2 :88 :02
�2 1 :39
� 1 :54

Table 14: P-values of Filtered Fluctuation Tests and Filtered Komogorov-
Smirnov Tests

We check the convergence of the draws by plotting the draws and by

the �ltered Fluctuation test and Kolmogorov-Smirnov test that are given

in Goldman et.al.(2007). The plots of the draws indicate convergence (see

Figure 15 and 16). And the convergence tests also indicate convergence since

the p-value of �ltered Fluctuation test or �ltered Kolmogorov-Smirnov test

is no less than 5% signi�cance level31(see Table 14).

The summary statistics of the MCMC draws are given in Table 15. The

31We judge convergence by 3 criteria: 1) eye rolling convergence. i.e., the draws plotted
in a graph are convergent, 2) P-value of Fluctuation test is no less than 5% signi�cance
level, 3) or P-value of Kolmogrov-Smirnov test is no less than 5% signi�cance level. If one
of these 3 criteria is satis�ed, we conclude the draws are convergent.
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Figure 15: MCMC Draws for Parameters (in the order of Table 14)

Figure 16: PDFs of Accepted MCMC Draws (in the oder of Table 14)
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Parameters True Mean St.Dev.

1 3 3:19 :27
�1 :7 :66 :05
�1 :5 :55 :08
$1 :3 :36 :14
�1 :3 :27 :08
�1 :6 :56 :10
�1 2 1:85 :20

2 :8 1:06 :29
�2 :65 :67 :06
�2 :6 :52 :08
$2 :2 :24 :11
�2 :2 :17 :07
�2 :7 :69 :10
�2 2 2:16 :21
� :5 :44 :06

Table 15: Posterior Summaries

summary statistics are posterior means and standard deviations. We see that

the posterior means are close to the true values.

4.5 Empirical application: SP500 and FTSE100

With increasing globalization of the �nancial markets around the world, we

would expect that the returns of the �nancial instruments in di¤erent markets

are correlated. If we incorporate such correlation into the prediction of the

�nancial returns in di¤erent markets, we may improve the predictability of

the returns. Let us take up SP500 and FTSE100 that are two leading stock

indicators in U.S. and in Europe, respectively.
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As are the cases of many �nancial return data, the returns on SP500 and

on FTSE100 are leptokurtic with robust tails, and thus a bivariate normal

distribution may not be appropriate to model the returns.

There have been many empirical studies on the stock indices such as

SP500 and FTSE100. For example, Amendola and Stort (2006) studied

asymmetries in the conditional mean and variance of the returns on SP500,

FTSE100 and NASDAQ, one stock index at a time32. Using the EPD dis-

tributions, Liu, Wu, and Lee (2004) obtained the maximum likelihood esti-

mates of VaR models of Dow Jones Industrial Average (DJIA), Taiwan Stock

Exchange index (TAIEX) and FTSE100, one stock index at a time. Also,

there are studies on the correlation structure of stock indices. For example,

using Skewed Student-t distribution and quasi-maximum likelihood estima-

tion, Jondeau and Rockinger (2006) estimated a Copula-GARCH model for

the four major stock indices in the US, UK, Germany, and France (SP500,

FTSE100, DAX and CAC-40). Di¤erent from their study, we use a Copula-

ARMA-GARCH-EPD model.

We use the monthly data from January 1981 to October 2006 with a total

of 319 observations. The data are taken from Global Financial Data. We use

these observations to estimate the parameters of Copula-ARMA-GARCH-

EPD. The returns are calculated as the monthly rates of change.

The descriptive statistics of these data are shown in Table 16. The means

32For more research on SP 500 and/or FTSE100, see Taylor(2004), Bhardwaj and Swan-
son (2005), Savva et.al. (2005), Bao et. al. (2006), Hu(2006), and Li et. al.(2006) .
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FTSE100 SP500
Mean :0085 :0086
St.Dev. :0462 :0431
Skewness �:9050 �:5895
Kurtosis 6:6729 5:4560
Min :0121 :0102
Max :1443 :1318

Correlation :7058

Table 16: Descriptive Statistics for FTSE100 and SP500

are close to 0. The returns on SP500 and FTSE100 are slightly skewed to the

left and they are leptokurtic indicating that the tails of the distributions are

fatter than those of the normal distribution. The correlation is about :7058.

The posterior means and standard deviations of the parameters are given

in Table 17. We observe that the posterior mean of the correlation parameter

is around :6893.

4.6 Chapter Conclusions

A copula is a convenient vehicle to obtain a joint distribution from marginal

distributions. In this chapter, we �rst design a Gaussian copula model with

ARMA-GARCH-EPD error terms (i.e., Copula-ARMA-GARCH-EPD). And

then, we design Markov Chain Monte Carlo (MCMC) algorithms to estimate

this model. Monthly data on SP500 and FTSE100 are analyzed. Results

show MCMC algorithm is convergent. The correlation parameter � for SP500
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Parameters Mean St.Dev.

1 �:0231 :0000
�1 �:9853 :0170
�1 :9893 :0109
$1 :0024 :0005
�1 :0527 :0416
�1 :1734 :1297
�1 2:2455 :1312

2 :0033 :0032
�2 :9134 :0484
�2 �:9205 :0533
$2 :0016 :0003
�2 :0893 :0635
�2 :1276 :0938
�2 1:6710 :0675
� :6893 :0422

Table 17: Posterior Means and Standard Deviations of the Parameters

and FTSE100 is :6893.

One of the future extensions is to compare Copula-ARMA-GARCH-EPD

model with other nonlinear models. Another extension could add a regime

switch parameter in Copula-ARMA-GARCH-EPD model (see Dueker et al.

(2007)). Or we can add some macro variables of Bernake et al.(2005)) into

Copula-ARMA-GARCH-EPD model and then compare its forecastibility

with other models. Last but not the least, one may use Copula-ARMA-

GARCH-EPD to price Collateralized Debt Obligations (CDOs).
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5 Appendices

Appendix i shows the MCMC algorithm with non-random walk draw for

model 1 (MSW-ARMA-GARCH-St-in-variance). In Appendix ii, the MCMC

algorithm with random walk draw for model 1 is given. Appendix iii shows

theMCMC algorithm for Copula-ARMA-GARCH-EPD. Appendix iv presents

the simulation results for Copula-EPD and Copula-NORMAL.

5.1 Appendix i: MCMC algorithm using non-random

walk draw

Generate S

S is generated by single move method. The distribution of p(stjY; S�t; �)

can be derived as follows33:

p(stjY; S�t; �) / p(st+1jst; �1)p(stjst�1; �1) (73)

� p(ytjYt�1; S; �):::p(yT jYT�1; S; �)

/ p(st+1jst; �1)p(stjst�1; �1)

�
TY
s=t

[(�2s)
�1=2exp[� e2s

2�2s
]]

After we calculate the p(st = 1jY; S�t; �),we compare it with a random

number from the uniform distribution. If this probability is greater than the

33For more details of derivation for equation (73), please refer to the proof of the Lemma
on page 11 of Yoo 2006.
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random number , then we set st = 1, otherwise 0.

Generate �1 = (p00; p11)

The posterior conditional distribution of p00 is :

p(p00jY; S; ��p00) / p(p00) � p(Sj�1) (74)

/ pu00�100 (1� p00)u01�1pn0000 (1� p00)n01

/ pu00+n00�100 (1� p00)u01+n01�1

That is, we generate p00 by Beta distribution,i.e., p00jS � Beta(u00 +

n00; u01+n01). Same reasoning, we generate p11jS from Beta(u11+n11; u10+

n10).

Generate 


By proper transformation34, we use following proposal distribution to

draw 
:


jY;X;�; ��
 � N(�̂
; �̂
); (75)

Where:

�̂
 = �̂
(X
0


�
�1Y
 + �

�1

 �
); �̂
 = (X

0


�
�1X
 + �

�1

 )

�1;

� = diagf�21; :::; �2Tg; Y
 = [y
�
1; :::y

�
n]
0; X
 = [x

�0
1 ; :::x

�0
n ]
0:

y�t = yt �
pX
i=1

�iyt�i �
qX
i=1

�iy
�
t�i; x�t = xt �

pX
i=1

�ixt�i �
qX
i=1

�ix
�
t�i

et � y�t � x�t
; y�t = 0; x�t = 0 for all t � 0:

34See Chib and Greenberg(1994), Yoo (2006), and Das and Yoo (2005).
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Generate �

By proper transformation, we draw � using the following proposal distri-

bution:

�jY;X;�; ��� � N(�̂�; �̂�); (76)

Where:

�̂� = �̂�(X
0

��
�1Y� + �

�1
� ��); �̂� = (X

0

��
�1X� + �

�1
� )

�1;

� = diagf�21; :::; �2Tg; Y� = [~y1; :::~yn]
0; X� = [~x1; :::~xn]

0:

~yt = yt � xt
 �
qX
i=1

�i~yt�i; ~xt = [~yt�1; :::; ~yt�p]

et = 0; yt = 0; ~yt = 0; fort � 0:

Generate �

We use the following proposal density to draw �.

�jY;X;�; ��� � N(�̂�; �̂�); (77)

where:

�̂� = �̂�(X
0

��
�1Y� + �

�1
� ��); �̂� = (X

0

��
�1X� + �

�1
� )

�1;

� = diagf�21; :::; �2Tg; Y� = [r1�
� � e1(��); :::;rn�

� � en(��)]
0
;

X� = [r
0

1; :::;r
0

n]
0
; rt = [r1t; :::rqt];

rit = �et�i(��)�
qX
i=1

��irjt�i; j = 1; :::; q; �� = argmin
�

nX
t=1

[et(�)]
2=�2t :

Generate �
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Same transformation method used for AR coe¢ cient �, we can rewrite

(47). The proposal density used to draw � is:

�jY;X;�; ��� � N(�̂�; �̂�); (78)

where:

�̂� = �̂�(X
0

� ^�1 Y� + ��1� ��); �̂� = (X
0

� ^�1 X� + �
�1
� )

�1;

^ = diagf2�41; :::; 2�4Tg; Y� = [e
2
1; :::; e

2
n]
0
; X� = [�

0

1; :::; �
0

n];

�t = [�t; ~e
2
t�1; :::; ~e

2
t�r]; �t = 1 +

nX
i=1

�i�t�i; ~e2t = e
2
t +

nX
i=1

�i~e
2
t�i:

Generate �

Similar transformation method as MA coe¢ cient �, the proposal density

to draw � is:

�jY;X;�; ��� � N(�̂�; �̂�); (79)

where:

�̂� = �̂�(X
0

� ^�1 Y� + ��1� ��); �̂� = (X� ^�1 X� + �
�1
� )

�1;

^ = diagf2�41; :::; 2�4Tg; Y� = [w1(�
�) + _r1�

�; :::; wn(�
�) + _rn�

�]
0
;

X� = [ _r
0

1; :::; _r
0

n]
0; _rt = [ _r1t; :::; _rqt];

_rit = �e2t�i + wt�i(��) +
sX
i=1

��j
_ri;t�j; i = 1; :::s; �

� = argmin
�

TX
t=1

[wt(�)]
2=2�4t :
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5.2 Appendix ii: MCMC algorithm using randomwalk

draw

Appendix ii gives the proposal density for random walk draw35. For S and

p00; p11, they are the same as that in Appendix i.

Generate 


We use following proposal distribution to draw 
:


(j)jY;X;�; ��
 � N(
(j�1); �̂
(j�1)); (80)

where:

�̂
(j�1) = (X
0


(j�1)�
�1
(j�1)X
(j�1) + �

�1

 )

�1;

�(j�1) = diagf�21; :::; �2Tg;

Y
 = [y
�
1; :::y

�
n]
0; X
 = [x

�0
1 ; :::x

�0
n ]
0:

y�t = yt �
pX
i=1

�iyt�i �
qX
i=1

�iy
�
t�i; x�t = xt �

pX
i=1

�ixt�i �
qX
i=1

�ix
�
t�i

et � y�t � x�t
; y�t = 0; x�t = 0for all t � 0:

Generate �
35See Qian, Ashizawa and Tsurumi(2004)
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We draw � using following proposal distribution:

�(j)jY;X;�; ��� � N(�(j�1); �̂�(j�1)); (81)

where:

�̂�(j�1) = (X
0

�(j�1)
��1(j�1)X�(j�1) + �

�1
� )

�1;

�(j�1) = diagf�21; :::; �2Tg

Y� = [~y1; :::~yn]
0; X� = [~x1; :::~xn]

0;

~yt = yt � xt
 �
qX
i=1

�i~yt�i; ~xt = [~yt�1; :::; ~yt�p]

et = 0; yt = 0; ~yt = 0; fort � 0:

Generate �

The proposal density used to draw � is:

�(j)jY;X;�; ��� � N(�(j�1); �̂�(j�1)); (82)

where:

�̂�(j�1) = (X�(j�1)�
�1
(j�1)X�(j�1) + �

�1
� )

�1;

�(j�1) = diagf�21; :::; �2Tg;

X� = [�x1; :::; �xn]; �x = [�yt�1; :::; �yt�q];

�yt = yt � xt
 +
pX
i=1

�i(yt�j � xt�j
)�
qX
i=1

�i�yt�i

yt = 0; �yt = 0; fort � 0:
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Generate �

The proposal density used to draw � is :

�(j)jY;X;�; ��� � N(�(j�1); �̂�(j�1)); (83)

where:

�̂�(j�1) = (X�(j�1) ^�1(j�1) X�(j�1) + �
�1
� )

�1;

^(j�1) = diagf2�41; :::; 2�4Tg;

X� = [�1; :::; �n]; �t = 1 +
nX
i=1

�i�t�i:

Generate �

We use following proposal density to draw �.

�(j)jY;X;�; ��� � N(�(j�1); �̂�(j�1)); (84)

where:

�̂�(j�1) = (X�(j�1) ^�1(j�1) X�(j�1) + �
�1
� )

�1;

^(j�1) = diagf2�41; :::; 2�4Tg;

X� = [x
>
1 ; :::; x

>
n ]; x>t = �[y>t�1; :::; y>t�s];

y>t = e
2
t � �0 �

lX
i=1

(�i + �i)e
2
t�i +

sX
i=1

�iy
>
t ;

y>t = 0; for t � 0:
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5.3 Appendix iii: MCMC algorithm for Copula-ARMA-

GARCH-EPD

To draw parameter � = (�1; :::;�M ; �) in Copula-ARMA-GARCH-EPD

model, we use following posterior distribution:

h(�jY; X) = p(�) �
n+mY
i=1

c(F1(ei1):::FM(eiM); �)f1("i1):::fM("iM)

Parameters in � = (�1; :::;�M ; �) are �i = fbi; f�ijgj=1:::p; f�ijgj=1:::q;

f�ijgj=0:::r; f�ijgj=1:::s; � ig, i = 1; :::;M . We divide parameters� = (�1; :::;�M ; �)

into M + 1 blocks: �i (i = 1; :::;M) and �.

Then, for each parameter �i; the MCMC algorithm is36:

1. Draw bi from independent multivariate Normal by the MH algorithm

using the method of random walk draw .

2. Draw each parameter in f�ijgj=1:::p by MH algorithm using random

walk draw.

3. Draw each parameter in f�ijgj=1:::q by MH algorithm using random

walk draw.

4. Draw each parameter in f�ijgj=0:::r by MH algorithm using random

walk draw.
36For more detailed information, one can refer to the algorithm for ARMA-GARCH

error term in Nakatsuma(1998) and Qian et al.(2005).



81

5. Draw each parameter in f�ijgj=1:::s by E¢ cient Jump algorithm.

6. Draw each parameter in � i by E¢ cient Jump algorithm.

For parameter �; the algorithm is:

Draw covariance matrix � =

266664
�11; :::; �1M

:::

�M1; :::; �MM

377775 from Inverted Wishart by

Gibbs Sampling and calculate �4 = � = D�1�D�1; whereD =

266664
p
�11; :::; 0

:::

0; :::;
p
�MM

377775 :
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5.4 Appendix iv: Simulation results for Copula-EPD

and Copula-NORMAL

Setting M = 2 we run following simulation:

Y1 = X1�1 + "1 (85)

Y2 = X2�2 + "2

"1 � EPD(�1; �1); "2 � EPD(�2; �2):

T = 200

Xi = [1; :::; 1]
0, i = 1; 2:

�1 = :8; �2 = :7; �1 = �2 = 1; �1 = �2 = 1

� =

264 1 :2

:2 1

375
The surface graph of the joint density of Gaussian copula with EPD37

margins is presented in Figure 17. This density is di¤erent from the density

of the multivariate EPD distribution in Figure 1 of Gòmez et.al. (1998). In

Gòmez et.al. (1998), the multivariate EPD distribution has only one shape

37For density of EPD , please refer to Tsurumi and Shimizu(2006). EPD(�i; �i) be-
comes the normal distribution when �i = 2: If "i is distributed as EPD(�i; �i), then the
PDF of f

i
("i) is:

fi("it) =
1

21+1=�i�i �(1 + 1=�i)
exp

�
�1
2
j"it
�i
j�i
�

(86)

0 < �i <1; 0 < �i <1; i = 1; :::;M:
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Figure 17: Density of Gaussian Copula with EPD Margins

parameter � , whereas in the Gaussian copula with EPD margins the shape

parameter can be di¤erent for each marginal distribution.

To verify that the joint density of Gaussian copula with normal margins is

multivariate normal, we generated data by setting �1 = �2 = 2 while keeping

the other parameter settings as the same as before: The surface of the joint

density of the Gaussian copula with normal margins is presented in Figure

18.

In conclusion, simulation results show that the joint density is far from

normal even if we use Gaussian copula with error term "i (i = 1; 2) drawn
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Figure 18: Density of Gaussian Copula with Normal Margins
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from exponential power distribution (i.e., Copula-EPD). If the "i (i = 1; 2)

are drawn from normal distributions (i.e., Copula-NORMAL) then Gaussian

copula yields the bivariate normal distribution.
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