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This dissertation consists of three essays on Bayesian inference in financial eco-

nomics. The first essay explores the impact of discretization errors on the paramet-

ric estimation of continuous-time financial models. Euler and other discretization

schemes cause discretization errors in solving stochastic differential equations. The

empirical impact of these discretization errors on estimating two continuous-time fi-

nancial models is investigated by using Monte Carlo experiments to compare the

“exact” estimator and “Euler” estimator for the Euler scheme. The primary finding

is that reducing the discretization interval to reduce the discretization error does not

necessarily improve the performance of the estimators. This implies that discretiza-

tion schemes may yield reliable results when the sampling interval is regularly small

and shortening the discretization intervals or using data augmentation techniques

may be redundant in practice.

The second essay examines the identification problem in state-space models under

the Bayesian framework. Underidentifiability causes no real difficulty in the Bayesian

approach in that a legitimate posterior distribution might be achieved for unidentified

parameters when appropriate priors are imposed. When estimating unidentified pa-
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rameters, Markov chain Monte Carlo algorithms may yield misleading results even if

the algorithms seem to converge successfully. In addition, the identification problem

does really not matter when the prediction of state-space models instead of parameter

estimation is concerned.

The third essay extensively studies credit risk models using Bayesian inference.

Bayesian inference is conducted and Markov chain Monte Carlo (MCMC) algorithms

are developed for three popular credit risk models. Empirical results show that these

three models in which the same PD (probability of default) can be estimated using

different information may yield quite different results. Motivated by the empirical re-

sults about credit risk model uncertainty, I propose a “combined” Bayesian estimation

method to incorporate information from different datasets and model structure for es-

timating the PD. This new approach provides an insight in dealing with two practical

problems, model uncertainty and data insufficiency, in credit risk management.
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Introduction

Financial economics has become one of the most challenging areas in modern eco-

nomics. The complexity of financial modeling problems leaves many unanswered

questions for researchers to explore. Bayesian inference equipped with Markov chain

Monte Carlo (MCMC) algorithms has been shown to be very useful to deal with

complicated financial models and their statistical inference. My dissertation aims to

investigate some issues related to the application of Bayesian inference in financial

economics and provide some insights about the usefulness of Bayesian inference and

MCMC methods in this area.

Motivated by my research in the last chapter, the first two chapters discuss two

important fundamental topics in financial econometrics: discretization and identifi-

cation. First, discretization is a popular way to deal with continuous-time financial

models. Although researchers have been aware of the discretization errors brought

by the discretization schemes, there has been little literature about the impact of

the discretization errors on parameter estimation of continuous-time models. The

main contribution of this chapter is the empirical investigation on the magnitude of

the impact. Some important findings of the empirical analysis based on some Monte

carlo experiments indicate that this impact is often less significant than expected for

some regular cases and it is redundant and even harmful for parameter estimation
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to try to reduce the discretization errors by increasing the sampling frequency and

decreasing the sampling interval. These results may be explained by Florens-Zmirou

(1989) and Yoshida (1992) while they are likely to be neglected in practice.

Identification is also a very important topic in econometrics. The chapter first

reviews the literature on this topic in the perspective of classical and Bayesian econo-

metrics. Bayesians have different treatments to the identification problem as Lindly

(1971) claim that “underidentifiability causes no real difficulty in the Bayesian ap-

proach”. This chapter is focused on discussing the impact of the identification prob-

lem on the estimation of state-space models that become very popular in financial

modeling. It is not unusual that financial practioners are not aware that state-space

models are generally unidentified. The main purpose of this chapter is to find what

happen to parameter estimation, model prediction and MCMC convergency if the

state-space model is unidentified. A main conclusion based on some simulation anal-

ysis is that unidentified parameters do not always stop the MCMC algorithms for

estimating these parameters from converging. However, the converged values could

be misleading estimation results if unidentified parameters exist. This result has very

useful implication for the practical use of MCMC algorithms. An additional result

from this chapter is that identification really does not have impact on the model

prediction of state-space models.

Credit risk modeling and estimation is an exploding research area for these years.

Its importance has been evidenced by the recent financial crisis. Its attractiveness

lies in the fact that default behaviors are so difficult to characterize that there is

no agreement about the “perfect” credit risk models and a large amount of varied

statistical models are competing. In this paper I first want to show the usefulness of



3

Bayesian inference and MCMC methods in the estimation of a variety of credit risk

models. Credit risk models inherit the complexity of preceding financial models and

their statistical inference. It is natural to consider the MCMC methods to deal with

those difficulties as before. An empirical study using real data shows different credit

risk models may yield widely different results. Instead of selecting the “best” as in

the traditional statistical inference, I propose a way to combine the estimation results

from different models to incorporate information from different data sources and

model structures. This new approach can be very useful when we face some practical

issues such as data insufficiency and model uncertainty in credit risk analysis, and

may shred some light on the future development of credit risk management.



Chapter 1

Discretization Errors in Estimating

Continuous-Time Financial Models

via MCMC Methods

1.1 Introduction

Continuous-time models have become inevitable in the field of modern financial the-

ory. Relative to the discrete counterparts, which were developed earlier, continuous-

time models are mathematically elegant, but computationally complicated. Generally

an Ito process is used to model the continuous path of a financial variable X(t) as:

dX(t; θ) = µ(X(t); θ)dt + σ(X(t); θ)dW (t), (1.1)

where µ(X(t); θ) is the drift term, σ(X(t); θ) is the diffusion term, W (t) is a standard

Brownian motion (or Wiener process) and θ is the parameter vector defined on a

compact set Θ. A renowned example is the Black-Scholes (1973)’s geometric Brownian



5

motion model, which is applied to model stock prices. The term structure theory of

interest rates is another field where various continuous-time stochastic processes are

assumed to be the true driver underlying the dynamics of the instantaneous interest

rate (or spot rate). Vasicek (1977) and Cox, Ingersoll and Ross (1985) (hereafter CIR)

are two most popular single-factor term structure models of interest rates. In the

two models, the spot rate is modelled to follow continuous-time Ornstein-Uhlenbeck

process and square-root diffusion (Bessel) process respectively.

In single-factor models, the asset return is uniquely determined by one state vari-

able. Recent empirical evidences including Longstaff and Schwartz (1992) and Pear-

son and Sun (1994) show that a single factor model is not sufficient to model the

dynamics of interest rates and adding more factors will dramatically improve the fit

of the term structure model to real data. Two- or three-factor models (even with

jumps in both return and volatility processes) have replaced single-factor models in

modelling equity return and term structure of interest rates. One of the most recent

developments in continuous-time financial models is the affine jump-diffusion model,

which assumes the drift, diffusion and jump intensity have affine structure to yield a

closed-form solution for some asset price, by Kan and Duffie (1996) and Duffie, Pan

and Singleton (2002).

The common feature of above models is that the evolution of the financial variables

has a continuous path, although this assumption is never evidenced in the real world.

Concerning statistical inference on these continuous-time models, the first problem

arising is that only discretely sampled data can be obtained in practice. Lo (1988)

discusses the maximum likelihood estimation (MLE) of continuous-time models with

discretely sampled data. To obtain the likelihood function of the samples, a closed-
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form solution of the transition density function of the continuous-time stochastic

process is indispensable. Following the statement of Lo (1988), suppose the data

X = (X0, X1, . . . , Xn) are sampled at n + 1 discrete time points t0, t1, . . . , tn, where

Xi = X(ti). Then, from the Markovian property of the Ito process (1), the likelihood

function of the parameter vector θ can be written as:

l(θ;X) = f(X0, X1, . . . , Xn)

= f(X0)
n∏

i=1

f(Xi|Xi−1), (1.2)

where f(Xi|Xi−1) is the transition density function, which satisfies the Fokker-Planck

partial differential equation (PDE). For instance, transition densities of the Ornstein-

Uhlenbeck process in Vasicek’s model can be solved to be Gaussian. Then the likeli-

hood function of discrete samples is fully analytically specified.

Unfortunately, Vasicek’s model is only one of few exceptions and most stochastic

differential equations (SDE) are not explicitly solvable. In those cases, MLE is not

straightly feasible. To solve this problem, econometricians generally consider two ap-

proaches: the first is to adopt some distribution-free estimation methods. A popular

method used in financial econometrics is the method of moments, particularly Gener-

alized Method of Moments (GMM) proposed by Hansen (1982). For example, Chan,

Karolyi, Longstaff and Sanders (CKLS) (1992) use GMM to empirically estimate

and compare available constant elasticity of volatility models of the term structure

of interest rates. Some extended moments methods including Efficient Method of

Moments (EMM) by Gallant and Tauchen (1996) and Simulated Method of Moments

(SMM) by Duffie and Singleton (1993) are quite popular in this field now. In another

track, Aı̈t-Sahalia (1996) considers nonparametric approaches to the estimation of

diffusion processes, which allows flexible, nonparametric estimation of the drift and
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diffusion functions.

The second approach is to approximate the transition densities of continuous-time

processes. Kloeden and Platen (1992) provide an excellent overview on the discretiza-

tion schemes for SDEs. The simplest discretization method is the Euler scheme, which

is just the first-order stochastic Taylor expansion of an Ito process. The Milstein

scheme, the second-order stochastic Taylor expansion and other higher-order expan-

sions are also discussed in the book. These discretization schemes all approximate the

transition densities by appropriate Gaussian distributions. The higher-order schemes

generally provide more accurate approximation or faster convergence to the exact

solution of the SDE. It can be shown that the approximation schemes will converge

to the diffusion processes when the discrete time intervals converge to zero and other

conditions are satisfied. Discretization errors exist when the intervals are nonzero

in practice. There is a large amount of literature including Kloeden and Platen

(1992) on the magnitude of discretization errors on approximating the continuous-

time stochastic process with the discretization schemes. However, there is relatively

less research about the impact of these discretization errors on the parameter esti-

mation of continuous-time models. Florens-Zmirou (1989) presents the conditions

under which the estimator of the drift parameters in a diffusion process converges to

the true value when the discretization schemes are used. He also finds the analytical

forms for the asymptotical bias of the estimators for a fixed discretization interval.

In this paper, I aim to investigate the effect of discretization schemes, particular

the first-order Euler scheme on the estimation of popular continuous-time financial

models such as Vasicek’s model and CIR model. Although the sizes of discretization

errors can be studied analytically, the magnitude of the empirical effect of discretiza-
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tion on parameter estimation in diffusion processes has rarely been explored. Fur-

thermore, this paper specializes in the effect of discretization errors on the Bayesian

estimation. Bayesian inference associated with the MCMC sampling methods now

is widely applied to the estimation of financial models. Bayesian inference is equiva-

lent to MLE approach in the case of non-informative priors, while MCMC methods

have been shown to be a powerful tool to deal with high-dimensional parameters

and non-standard distributions, which are often common settings in financial mod-

els. Johannes and Polson (2002) present an overview of the general procedures to

estimate the diffusion processes using the MCMC approach in application to finance.

Due to the restriction of the Bayesian methodology, the joint density function of

discretely sampled data have to be fully specified before the posterior densities are

obtained. Thus, discretization schemes are often used in the Bayesian estimation of

financial models when the associated SDEs have no closed-form solutions. Eraker

(2001) and Elerian, Chib, Shephard (2001) use the Euler scheme to estimate single-

factor diffusion models using MCMC methods. Eraker, Johannnes and Polson (2003)

and Eraker (2004) estimate affine jump-diffusion models using MCMC methods. The

models they use are actually Euler discretization of continuous-time models. To re-

duce the discretization error, Elerian, Chib and Shephard (2001) suggest using data

augmentation to “fill in” the intervals between discrete observations. They show

that the data augmentation technique dramatically improve the performance of the

parameter estimators when the original sampling interval is large.

The paper is organized as follows: In the second section, the overview of stochas-

tic Taylor expansion and Euler scheme is provided, and the impact of Euler approx-

imation on estimating continuous-time models is also studied analytically. In the
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following two sections, Monte Carlo experiments are conducted under single-factor

Vasicek’s model and CIR model. In Vasicek’s model, a Gibbs sampler can provide

the “exact” estimates. For CIR model, the Metropolis-Hastings (MH) algorithm has

to be used to sampled from a posterior density comprising of non-central χ2 density

functions. The reason why only these two single-factor models are chosen is that the

exact transition densities in these models have closed-form. Not only the exact data

generation from the continuous-time model can be done, but also the “exact” esti-

mation is feasible so that we can compare it with the result of Euler approximation.

The last section concludes.

1.2 Overview of Discretization Schemes

1.2.1 Stochastic Taylor Expansion

Kloeden and Platen (1992) provide a comprehensive treatment on the numerical so-

lutions of SDEs. In essence, the discretization schemes on diffusion processes are

the stochastic Taylor expansion with different orders. The Ito process in (1.1) has a

formal expression as

X(t) = X(0) +

∫ t

0

µ(X(s))ds +

∫ t

0

σ(X(s))dW (s). (1.3)

A general stochastic Taylor expansion formula for a functional of the Ito process is

f(X(t)) = f(X(0)) + c1(X(0))

∫ t

0

ds + c2(X(0))

∫ t

0

dW (s)

+ c3(X(0))

∫ t

0

∫ s1

0

dW (s2)dW (s1) + R (1.4)
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with coefficients

c1(X(0)) = µ(X(0))f ′(X(0)) +
1

2
σ2(X(0))f

′′
(X(0))

c2(X(0)) = σ(X(0))f ′(X(0))

c3(X(0)) = σ(X(0))[σ(X(0))f
′′
(X(0)) + σ′(X(0))f ′(X(0))].

Here the remainder R consists of higher order multiple stochastic integrals. The

stochastic Taylor formula can be thought of a generalization of both the deterministic

Taylor formula and the Ito lemma. A proof is provided in Appendix A.

If we let f(x) = x and consider a time interval from t to t + ∆ 1 , then the

stochastic Taylor formula is reduced to

X(t + ∆) = X(t) + µ(X(t))

∫ t+∆

t

ds + σ(X(t))

∫ t+∆

t

dW (s)

+ σ2(X(t))

∫ t+∆

t

∫ s2

t

dW (s1)dW (s2) + R, (1.5)

where R is the expansion reminder consisting of higher order multiple stochastic in-

tegrals. By truncating the stochastic Taylor expansion, we can form discretization

schemes for a SDE. Keeping only the first-order terms in the stochastic Taylor ex-

pansion, we can obtain the Euler approximation, the simplest Taylor approximation

of an Ito process:

X̂t+∆ = X̂t + µ(X̂t)∆ + σ(X̂t)∆Wt+∆ (1.6)

where X̂t denotes the discrete approximation of the continuous-time process X(t).

Furthermore, if we include the second-order terms, we obtain the Milstein scheme

X̂t+∆ = X̂t + µ(X̂t)∆ + σ(X̂t)∆Wt+∆ +
1

2
σ2(X̂t)(∆W 2

t+∆ −∆). (1.7)

1we only consider the case of equal interval for simplicity
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Note that the additional term is from the double Wiener integral, which can be

computed from the Wiener increment ∆Wt+∆ since∫ t+∆

t

∫ s1

t

dW (s2)dW (s1) =
1

2
(∆W 2

t+∆ −∆),

using the Ito’s Lemma. (The proof is also referred to Appendix A.)

1.2.2 Discretization Bias and Convergency

Suppose that {X̂t}T
t=0 is the Euler discretization of a continuous-time path {X(t)}T

t=0,

the discretization bias of Euler approximation can be defined as

E(|X̂T −X(T )|) = E(|
∫ T

0

µ(X̂s)ds− µ(X(T ))

∫ T

0

ds)

+ E(

∫ T

0

σ(X̂s)dW (s)− σ(X(T ))

∫ T

0

dW (s)|), (1.8)

at the final time instance T , given X̂0 = X(0). A nonzero bias generally exists when

the drift and diffusion terms are not constant.

It is clear that the discretization bias converges to zero when the discretization

interval goes to zero. In the other hand, we often want to show the discretized process

X̂t converges in the strong sense with order γ (γ > 0) if there exists a finite constant

K such that

E(|X̂t −X(t)|) ≤ K∆γ (1.9)

for any discretization interval ∆.

It can be shown that the Euler approximation converges with strong order of 0.5,

which means the discretization bias is O(∆0.5), under Lipschitz and bounded growth

conditions on the drift and diffusion. And the Milstein scheme converges with strong

order of 1.0 under the similar assumptions. Generally speaking, we can obtain more
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accurate approximation by adding additional integrals from the stochastic Taylor

expansion. Such integrals contain additional information about the sample paths

of the Wiener process over the discretization intervals. For example, the Taylor

approximation with strong convergence order of 1.5 can be obtained by including

four more complicated integrals.

1.2.3 Impact of Euler Discretization on Statistical Inference

When the discretization interval converges to zero, the discretization schemes will

converges to the “true” continuous-time stochastic processes. Thus, it is natural to

preclude that the impact of discretization errors on parameter estimation will also

decay. Florens-Zmirou (1989) and Yoshida (1992) show that the MLE θ̂ of the drift

parameters θ in diffusion processes

dX(t) = µ(X(t); θ)dt + σ(X(t))dW (t), (1.10)

is consistent when the discretization interval goes to zero and other conditions are

satisfied as

θ̂ → θ if ∆ → 0, N →∞, N∆ →∞,

where N is the number of discrete observations.

Since the discretization interval ∆ is not zero in practice, θ̂ is generally asymp-

totically biased. Florens-Zmirou (1989) shows that, when the sample interval ∆ is

a nonzero constant, the MLE θ̂∆ in the Euler scheme for (1.10) does not converge

to the true value of the parameter θ. The asymptotical bias is a function of the

discretization ∆.

For instance, in Vasicek’s model, the estimators of parameters a, b and c using

Euler approximation can be shown to be inconsistent since they converge to values
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that are not identical to the true values as long as the discretization interval ∆ 6= 0,

âeuler → κ0θ0∆ 6= θ0(1− e−κ0∆) = a0,

b̂euler → 1− κ∆ 6= e−κ0∆ = b0,

ĉ2
euler → σ2∆ 6= σ2

0

2κ0

(1− e−2κ0∆) = c2
0

where κ0, θ0, σ0 or a0, b0, c0 are true parameter values. This will be discussed in detail

in the next section.

Although the MLE for the discretization scheme is asymptotically biased and the

magnitude of the asymptotical bias may have an analytical form, it is worthwhile

empirically exploring the impact of the discretization errors on the estimators using

the discretization schemes, particularly compared with the finite-sample variances of

the estimators. The following questions can be addressed in the empirical study:

• How is the performance of the estimators for the Euler scheme affected by the

length of the discretization interval? Or what size of the sampling interval will

cause an significant discretization errors to parameter estimation?

• Will and how much will the parameter estimation using the Euler scheme be

improved by reducing the discretization intervals?

The second question also has practical implication to Bayesian inference using the

data augmentation technique proposed by Elerian, Chib and Shephard (2001).
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1.3 Euler Discretization under Vasicek’s Model

1.3.1 The Model

Vasicek (1977) introduced the first popular continues-time term structure model of

interest rates. In Vasicek’s model, the spot rate r(t) follows an Ornstein-Uhlenbeck

process characterized by an SDE

dr(t) = κ(θ − r(t))dt + σdW (t), (1.11)

where the parameter θ represents the long-term equilibrium interest rate level, the

parameter κ controls the adjusting speed of spot rates to the long-term level, and

the parameter σ reflects the volatility. Intuitively speaking, the process will drift

up when the current spot rate is below the long-term level θ and will drift down

when the current spot rate is above it. So the Ornstein-Uhlenbeck process captures

mean-reversion, the stylized fact of interest rates. However, Vasicek’s model has a

drawback that the probability that the spot rate drops below zero is positive under

the Gaussian transition density assumption. The interest rate is never negative in

reality.

A main reason why Vasicek’s model is one of the most popular term structure

models is that the Ornstein-Uhlenbeck process in the Vasicek model is a Gaussian

process which is relatively easy to handle in statistical inference. This allows us to

do “exact” estimation on Vasicek’s model since both the marginal and transition

densities are fully specified.

Solving the SDE (1.11), an explicit solution of the spot rate at any time t is

obtained as

r(t) = r(0)e−κt + θ(1− e−κt) + σe−κt

∫ t

0

eκsdW (s). (1.12)
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For the purpose of inference, we are interested in the density of r(s) conditional on

r(t) (t < s), which is normal with mean and variance given by

E(r(s)|r(t)) = r(t)e−κ(s−t) + θ(1− e−κ(s−t)) (1.13)

V ar(r(s)|r(t)) =
σ2

2κ
(1− e−2κ(s−t)). (1.14)

1.3.2 Exact Bayesian Inference Using Gibbs Sampler

Suppose that we observe discretely sampled spot rates {ri}n
i=0 at time points {ti}n

i=0.

Assume that the time intervals between every two samples are a constant, ∆ = ti−ti−1

2 . for i = 1, 2, ..., and t0 = 0. We use a subscript i to denote the sample realized at

time t(i), i.e., ri = r(ti) = r(i∆). If the spot rates {ri}n
i=0 are sampled from Vasicek’s

model, the conditional density of ri on ri−1 is normal with mean and variance given

by

E(ri|ri−1) = ri−1e
−κ∆ + θ(1− e−κ∆) (1.15)

V ar(ri|ri−1) =
σ2

2κ
(1− e−2κ∆). (1.16)

Since we know the full joint distribution of all samples, the statistical inference

on the model is straightforward. The likelihood function is the product of normal

density functions as

l(κ, θ, σ) =
n∏

i=1

p(ri|ri−1) (1.17)

=
n∏

i=1

φ(ri; E(ri|ri−1), V ar(ri|ri−1)) (1.18)

2we assume that ∆ is measured in year since the interest rate is usually measured in year.
∆ = 1/12 for monthly data, ∆ = 1/50 for weekly data and ∆ = 1/250 for daily data, etc.
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where φ(x; a, b) denotes the normal density function of random variable x with mean

a and variance b. We adopt flat priors for parameters as

p(κ) ∝ c; p(θ) ∝ c; p(σ) ∝ σ−1

By the Bayes’s rule, the joint posterior density of three parameters are

p(κ, θ, σ|data) ∝
n∏

i=1

φ(ri; E(ri|ri−1), V ar(ri|ri−1)) · σ−1. (1.19)

It is clear that the Bayesian posterior mean using the flat priors is equivalent to the

maximum likelihood estimator (or OLS) in this model.

To obtain the marginal posterior densities of a parameter, we have to integrate

the joint density over other parameters. Gibbs sampler is a numerical integration

method, which iteratively samples parameters from their fully conditional densities.

To implement the Gibbs sampler algorithm, we first consider the Vasicek’s model

as a linear Gaussian regression model:

ri+1 = aexact + bexactri + cexactεi+1 (1.20)

where εi+1 ∼ N(0, 1), and the new parameters are linked to the original parameters

as

aexact = θ(1− e−κ∆); bexact = e−κ∆; c2
exact =

σ2

2κ
(1− e−2κ∆) (1.21)

Instead of sampling the original interested parameters, we use the Gibbs sampler

to sample three transformed parameter aexact, bexact and cexact, because Bayesian in-

ference and Gibbs sampler in a linear Gaussian regression model is straightforward.

After obtaining the MCMC samples for three transformed parameters, we can eas-

ily recover three original parameters. The Gibbs sampler algorithm for the ”exact”

model is as follows:
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Step 1 Set the initial values a
(0)
exact, b

(0)
exact and c

(0)
exact;

Step 2 Draw β(j) = (a
(j)
exactb

(j)
exact)

′ from a normal distribution

N(β̂ols, c
2(j−1)
exact (X ′X)−1)

where β̂ols = (X ′X)−1X ′Y , Y and X are respectively the dependent variable

observations vector and independent variables observations matrix in the linear

model (1.20) and c
(j−1)
exact is the j − 1-th draw of the parameter cexact;

Step 3 Draw c
2(j)
exact from an inverted gamma distribution

IG(
N

2
,

[
1

2

n∑
i=1

(ri − a
(j)
exact − b

(j)
exactri−1)

2

]−1

)

Step 4 Recover three original interested parameters by

κ(j) = − ln(b
(j)
exact)

∆
; θ(j) =

a
(j)
exact

1− b
(j)
exact

; σ2(j) =
2κ(j)c

2(j)
exact

1− 2b
(j)
exact

;

Step 5 Iterate the procedure by increasing j.

1.3.3 Asymptotic Discretization Bias of Euler Approxima-

tion

When we apply the Euler scheme to Vasicek’s model, an approximation of the SDE

(1.11) is:

ri+1 − ri = κ(θ − ri)∆ + σ
√

∆εi+1 (1.22)

which can be expressed as

ri+1 = aeuler + beulerri + ceulerεi+1 (1.23)
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where

aeuler = κθ∆; beuler = 1− κ∆; c2
euler = σ2∆. (1.24)

The discretized model is also a linear Gaussian model. It is easy to show that

aeuler → aexact; beuler → bexact; ceuler → cexact

when ∆ → 0. This means the Euler discretization converge to the true continuous

process when the sampling interval is infinitely small. At the same time, this shows

the asymptotic discretization bias of Euler discretization on Vasicek’s model always

exists when the sampling interval is nonzero.

To show the inconsistency, suppose we obtain the point estimates â, b̂ and ĉ, which

converge to the true parameters in (1.21) as

â → θ0(1− e−κ0∆),

b̂ → e−κ0∆,

ĉ2 → σ2
0

2κ0

(1− e−2κ0∆),

where κ0, θ0 and σ0 are true parameter values. Then we recover the estimates of

original parameters κ, θ and σ by using the discretized model as

κ̂euler =
1− b̂

∆
→ 1− e−κ0

∆
6= κ0,

θ̂euler =
â

1− b̂
→ θ0(1− e−κ0∆)

1− e−κ0∆
= θ0,

σ̂2
euler =

ĉ2

∆
→ σ2

0

1− e−2κ0∆

2κ0∆
6= σ2

0.

We can find that both estimators for κ and σ are inconsistent, while only the estimator

for θ is not introduced the bias by the Euler discretization.
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Consider a second-order Taylor expansion of the exponential function e−κ∆:

e−κ∆ = 1− κ∆ +
1

2
(κ∆)2 + o(∆2). (1.25)

Then the asymptotic discretization bias for parameters κ and σ2 in Vasicek’s model

can be numerically measured as

Bias(κ) = plim(κ̂euler)− κ0 =
1− e−κ0

∆
− κ0

=
1

2
κ2

0∆ + o(∆), (1.26)

Bias(σ2) = plim(σ̂2
euler)− σ2

0 = σ2
0

1− e−2κ0∆

2κ0∆
− σ2

0

= σ2
0κ0∆ + o(∆). (1.27)

We can conclude that the discretization bias could be negligible relative to the value

of parameters when the discretization interval ∆ is sufficiently small.

1.3.4 Monte Carlo Experiments

Although the numerical explanation of Euler discretization bias is quite clear in Va-

sicek’s model, it is still necessary to investigate the effect of discretization on the

empirical analysis. In this section, we compare the accuracy of the estimators using

Euler discretization on the continuous-time model to that of an “exact” estimator,

which is feasible in Vasicek’s model.

Since the continuous-time model is assumed to be the true model, we generate

simulated data using the exact transition distribution of the continuous-time Vasicek’s

model characterized by Equation (1.20) and (1.21). The Bayesian inference using

discretely sampled data is implemented on two models: one model is the “exact”

model, in which the likelihood function is the product of the exact transition density
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functions of the continuous-time model, the other model is the discretized model

using Euler approximation, in which the transition densities are derived from the

Euler discretization of the continuous-time model.

Gibbs sampler is implemented to obtain the full posterior distributions and the

posterior means are reported as the point estimators of parameters. Using the flat

priors, the posterior mean is equivalent to the maximum likelihood estimator in Va-

sicek’s model. Theoretically, the “exact” estimator is consistent, while the “Euler”

estimator is asymptotically biased. Moreover, the smaller the sampling interval is, the

closer the “Euler” estimator should be to the “exact” estimator. We are interested

in the finite-sample performance of the “Euler” estimator compared to the “exact”

estimator.

Two sets of Monte Carlo experiments are conducted. In the first set, the sample

size is fixed to be 1, 000. The estimates for sampling intervals ∆ = 10, 5, 1, 1/4, 1/20, 1/100

are reported and the impact of discretization interval on estimation is evaluated. In

the second set, the whole sampling period is fixed to be 40 years. We generate data

according to three popular sampling intervals ∆ = 1/12, ∆ = 1/50 and ∆ = 1/250,

responding to monthly, weekly and daily sampling. Then sample sizes are different,

being 480, 2, 000 and 1, 0000 respectively, for three intervals. It seems that the second

set of experiments can better mimic the practical case. In reality, we often face the

choice of different data sets with the same sampling period and different sampling

frequencies. If we increase sampling frequency or “fill” the discretization intervals,

the sample size will increase.

Furthermore, we need a criterion to measure the accuracy of estimators. Mean

absolute deviation (MAD) is used in this section to compare the performance of
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Table 1.1: Comparison of MADs: fixed sampling size, different sampling intervals

∆ = 10 ∆ = 5 ∆ = 1

Parameter Euler Exact Euler Exact Euler Exact

κ .4004 .2093 .3165 .0687 .1065 .0344

θ .0215 .0215 .0217 .0217 .0440 .0440

σ .5436 .1732 .4385 .0565 .1501 .0217

∆ = 1/4 ∆ = 1/20 ∆ = 1/100

Parameter Euler Exact Euler Exact Euler Exact

κ .0554 .0641 .1290 .1343 .5453 .5516

θ .0842 .0842 .1806 .1806 .4259 .4259

σ .0375 .0189 .0142 .0178 .0241 .0275

Note: the true values of parameters are

κ = 0.5, θ = 4.0, σ = 0.8

“Euler” and “exact” estimators. The MAD of a parameter θ is defined as

MAD(θ) =
1

R

R∑
i=1

|θ̂(i) − θ|,

where θ̂(i) is the point estimate of parameter θ at the i-th replication. A large value of

MAD indicates a poor performance of the point estimate. 300 replications are made

to compute the MADs. In each replication, 6, 000 MCMC samples are drawn and

first 1, 000 are “burned”. The results of MADs are reported in Table 1.1 and 1.2.

The values of MAD are reported in Table 1.1 and 1.2. First, we compare the

values of MAD of “exact” estimates and “Euler” estimates in Table 1. When the

sampling intervals are “too large”, say ∆ = 10, 5 and 1. The “Euler” estimators

show large discretization bias since their MADs are significantly bigger than those of
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Table 1.2: Comparison of MADs: fixed sampling period, different sampling intervals

∆ = 1/12 ∆ = 1/50 ∆ = 1/250

N = 480 N = 2, 000 N = 10, 000

Parameter Euler Exact Euler Exact Euler Exact

κ .1460 .1576 .1577 .1607 .1641 .1647

θ .2051 .2051 .1967 .1967 .2138 .2138

σ .0236 .0357 .0102 .0120 .0043 .0045

Note: the true values of parameters are

κ = 0.5, θ = 4.0, σ = 0.8

“exact” estimators. When the intervals become smaller, such as ∆ = 1/4, the “Euler”

estimates do not performs worse than the “exact” estimators any more and are even

closer to the truth than “exact” estimates in many settings. This contradiction to

the argument of discretization bias should be due to the finite-sample variances.

Another interesting finding is that the MADs for both “exact” and “Euler” esti-

mators are getting worse when the sampling intervals become extremely small. This

result seems to be a contradiction to our theory in the first place because the shorter

the discretization interval is, the closer discretization schemes should be to the true

diffusion process. If we go back and check the conditions for the consistency of the

MLE for the diffusion process. In Florens-Zmirou (1989) and Yoshida (1992), the

necessary conditions for the consistency of the MLE include ∆ → 0, N → ∞ and

N∆ →∞. That means, when the discretization interval goes to zero, the sample size

of discrete observations must increase at a faster speed than the speed at which the

interval shrinks. In this experiment setting, the sample size does not increase when
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the discretization interval decreases. When this trend persists, neither estimators

converge to the true values.

In Table 1.2, we also find no evidence that the “exact” estimator dominates the

“Euler” estimator when the sampling intervals are as small as monthly. For both

parameters κ and σ, Euler scheme yields lower MAD using all three discretization

intervals. The result suggests that monthly sampling interval is already short enough

to provide satisfying approximation to Vasicek’s model in these experiments, and the

attempt to reduce the discretization errors by reducing the sampling interval may not

yield worthwhile rewards. In that sense, a higher-order discretization scheme or a

data augmentation procedure for Euler approximation might be redundant when the

sampling interval is regularly small.

Meanwhile, we do not observe the obvious decrease of discretization bias when

we shorten the length of the sampling interval ∆. As seen in the table, the accuracy

of estimate of κ is getting worse when the sampling interval decreases from 1/12 to

1/50 to 1/250. The performance of the estimate of θ is improved first when ∆ drops

to 1/50, then becomes poorer when the interval is shorten to 1/250. The evolution

of the estimate of σ is the same as that of θ in this particular experiment. Lo (1988)

claims that the maximum likelihood estimator of the drift parameter of a Wiener

process is inconsistent when the sampling size goes to zero at the same time that

the total sampling period is fixed, which is exactly our second experiment design.

This might explain the poor performance of both “exact” and “Euler” estimators for

an extremely short interval. This result further shows that using data augmentation

might deteriorate the estimation in some cases.
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1.4 Euler Discretization Under CIR Model

1.4.1 The Model

CIR model is another best-known term structure model of interest rates. In their

seminal paper, the spot rate is modelled to follow a square-root (Bessel) process as

dr(t) = κ(θ − r(t))dt + σ
√

r(t)dW (t). (1.28)

Compared with the Vasicek’s model, the CIR model keeps the mean-reverting char-

acteristic, but the volatility is not constant, but depends on the spot rate r(t). The

property of this process seems to be consistent with observed styled facts of nominal

interest rates: the interest rate is less volatile for low levels than high levels of the

rate. Moreover, the nominal interest rate cannot be negative in the CIR model, which

is a major advantage relative to the Vasicek’s model.

The CIR model is probably the most popular term structure model both among

academia and financial industry. Its popularity stems from the fact that it is the most

tractable model of a positive mean reverting process. But undoubtedly it is more

computationally complicated than Vasicek’s model. The SDE characterizing the CIR

square-root diffusion has no explicitly solution, though the transition density of the

process has a closed-form expression. With the original contribution of Feller (1951),

CIR (1985) show that the density of r(s) conditioned on r(t) can be evaluated as

pχ2(r(s)|r(t)) = ce−u−v(
v

u
)q/2Iq(2

√
uv) (1.29)

where

c =
2κ

σ2(1− e−κ(s−t))
, u = cr(t)e−κ(s−t), v = cr(s), q =

2κθ

σ2
− 1
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and Iq(·) is the modified Bessel function 3 of the first kind of order q, which is

defined as

Iq(z) =
∞∑

k=0

1

k!Γ(q + k + 1)

(z

2

)2k+q

.

This noncentral χ2 distribution has degrees of freedom 2(q+1) and a non-centrality

parameter 2u. Furthermore, the conditional mean and variance of r(s) are

E(r(s)|r(t)) = θ(1− e−κ(s−t)) + e−κ(s−t)r(t) (1.30)

V ar(r(s)|r(t)) = σ2κ−1[r(t)(e−κ(s−t) − e−2κ(s−t)) + (θ/2)(1− e−κ(s−t))2](1.31)

1.4.2 Exact Bayesian Inference Using Metropolis-Hastings

Algorithm

Again, suppose we have a set of sampled spot rates {ri}n
i=0. Based on the transi-

tion density of the CIR process, we can obtain the joint posterior density of three

parameters:

p(κ, θ, σ|data) ∝
n∏

i=1

pχ2(ri|ri−1) · σ−1, (1.32)

where pχ2(ri|ri−1) is evaluated by equation (1.29).

The complication of the noncentral χ2 distribution causes the analytical difficulty

when we try to make statistical inference on the CIR model. Besides applying the

methods of moments, a discretization that approximates it using a normal distribution

seems a feasible approach. Chen and Scott (1995) propose an approximation as:

p(ri|ri−1) ≈ φ(ri; E(ri|ri−1), V ar(ri|ri−1))

3I used the GAUSS procedure mbesseli to evaluate the modified Bessel function of the first
order. The fragility of this procedure to large argument limits the choice of parameter values and
sampling intervals. I only chose relatively large intervals to do Monte Carlo experiments in this
paper.
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where E(ri|ri−1) and V ar(ri|ri−1) are the functions in Equation (1.30) and (1.31).

This approximation is based on a fact that a normal density function is likely to

be close to a non-central χ2 density function with similar mean and variance. The

comparison between a non-central χ2 density function and two kinds of normal ap-

proximation is shown in Figure 3. The real line represents the density function of ri

conditioned on ri−1 = 8 given a CIR model and some parameter values. The dotted

line is derived from an Euler discretization approximation on the CIR model. And the

dashed line is based on another normal approximation of the CIR transition density

function, by using a normal density with the same mean and variance as the CIR

density. The latter approach obviously provides a more accurate approximation than

the former. However, the difference in the approximation accuracy is almost illegible

in this graph.

This approximation motivates another feasible approach to estimating the CIR

model. A Metropolis-Hasting (MH) algorithm allows to sample from an arbitrary

“exact” distribution by drawing from a feasible proposal distribution first if the “ex-

act” density function can be evaluated numerically. A normal approximation is a

natural proposal density function for sampling from the noncentral chi-square distri-

bution.

Fruhwirth-Schnatter and Geyer (1996) use MH to estimate the CIR state-space

model. They call the MCMC algorithm Metropolis within Gibbs. The proposal density

function they use is the normal approximation proposed by Chen and Scott (1993).

Here I also use the MH within Gibbs sampler, but the proposal density function I

adopt is simpler. If we use Chen and Scott’s proposal, the next draw must be depen-

dent on the previous draw. Instead, I select the Euler approximation as the proposal.
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Therefore, the algorithm I use here is actually an independent MH algorithm.

Next, let us consider the Euler discretization of the CIR model:

ri+1 − ri = κ(θ − ri)∆ + σ
√

ri∆εi+1. (1.33)

The transition density function in the discretized model is:

p(ri+1|ri) = φ(ri; κθ∆ + (1− κ∆)ri, σ
2∆ri). (1.34)

The Euler approximation provides simple proposal densities for sampling parame-

ters from their full conditional posterior densities. Take the parameter κ as example,

the conditional posterior density is:

p(κ|·, data) ∝
n∏

i=1

pχ2(ri|ri−1|·), (1.35)

where |· denotes conditional on all other parameters. Accordingly, the proposal den-

sity at the j-th draw can be chosen as:

q(κ(j)) =
n∏

i=1

φ(ri; κθ∆ + (1− κ∆)ri−1, σ
2∆ri−1|·). (1.36)

Finally, the Metropolis-Hastings algorithm within Gibbs sampler is implemented

in the following procedures:

Step 1 Set initial values κ(0), θ(0) and σ(0);

Step 2 Draw current κ′ from its proposal density characterized by the discretized model

(1.33). Evaluate the function values of true density and proposal density at the

j − 1 and j-th draws. Accept κ′ as κj with a probability

ρ = min{1, p(κ′|·)
p(κ(j−1)|·)

· q(κ(j−1))

q(κ′)
};
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Step 3 Follow the same procedure to draw θ(j) and σ(j) based on the independent MH

algorithm;

Step 4 Iterate the procedure by increasing j.

1.4.3 Monte Carlo Experiments

First we assume the CIR square-root process is the true data generating process. We

follow the simulation method discussed in Johnson and Kotz (1970) and Robert and

Casella (1999) to generate noncentral χ2 random variables: a noncentral chi-square

distributed variable χ2
ν(δ) with a degree of freedom ν > 1 4 can be written as a

sum of two other random variables:

χ2
ν(δ) = χ2

1(δ) + χ2
ν−1 (1.37)

where χ2
ν−1 is a central χ2 variable, which can be generated by using a gamma random

variable generator, and χ2
1(δ) is a noncentral χ2 random variable with 1 degree of

freedom, which can be generated using a standard normal variable Y ∼ N(0, 1) and

a constant as

(Y +
√

δ)2 ∼ χ2
1(δ)

Different from Vasicek’s model, CIR model requires a MH step to obtain MCMC

estimates. We are also interested in the impact of the introduction of MH step on

the accuracy of Euler discretization. Both the numerical evaluation of noncentral

χ2 density function and the implementation of hybrid MH algorithm within Gibbs

sampler has dramatic need of computing resources. The Monte Carlo experiment of

4The random variable generation when ν < 1 can be done by using the Poisson mixture of central
chi-square variables. We do not consider this case in the experiments



29

Table 1.3: Empirical Performance of Euler Discretization under CIR Model

Replication 1 Replication 2 Replication 3

κ 0.5277 0.5045 0.5679

Euler θ 3.9770 3.7556 3.8489

σ 0.7785 0.7708 0.7987

κ 0.5262 0.5079 0.5699

Exact θ 3.9159 3.9358 3.9431

σ 0.7811 0.7735 0.8073

κ 0.9686 0.9520 0.9483

Accept θ 0.9203 0.8786 0.8833

σ 0.7466 0.7413 0.5363

Note: the true values of parameters are κ = 0.5, θ = 4.0, σ = 0.8,

the sampling interval ∆ = 1/12 and the sample size is 1, 000

estimating the CIR model is very time-consuming. For the CIR model, I no longer

use MAD as the criterion of performance evaluation. Instead, I randomly report the

results of three experiments, and compare the performance of two approaches in three

experiments.

We expect that the “exact” estimation by using Metropolis-Hasting algorithm

achieve more accurate results since Metropolis-Hasting algorithm “reselects” samples

from the Euler discretization to some extent. However, the practical performance

is not guaranteed based on our findings on the Vasicek’s model. In Table 1.3, the

Bayesian posterior mean is still used as the point estimator. Their distances to true
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values are studied. The standard deviation and autocorrelation of MCMC samples

are ignored in the report. We also report the acceptance rates for sampling three

parameters since they can also be used to check the accuracy of Euler approximation.

It is remarkable that the acceptance rate for parameter σ is relatively low, which is

consistent with the poor estimation performance for σ. This phenomenon is reason-

able because the diffusion term in the CIR model is heteroscedastic and much more

complicated than that in the Vasicek’s model.

The comparison is made based on the results presented in Table 1.3. There is

no strong evidence supporting the advantage of “exact” estimation over the Euler

discretization approach. The dominance relationship is vague based on those experi-

ment results. Basically the estimates from two approaches are very close to each other.

The differences for parameters κ and σ are less than .01. These experiments testify

that the Euler discretization may provide reliable estimators for the CIR square-root

process when the sampling interval is reasonably small.

1.5 Concluding Remarks

Continuous-time stochastic processes have been widely used in modern financial the-

ory. But the continuous-time setting brings great difficulties in estimation. Discretiza-

tion of continuous-time models is often inevitable since we cannot obtain the closed-

form likelihood function of discretely sampled data in most cases. Euler scheme is the

most popular discretization method, but the estimator using the Euler discretization

scheme haven been proven to be asymptotically biased in general. In this paper, by

empirically comparing the accuracy of the “exact” estimator and the estimator using

the Euler approximation, we find that Euler approximation provides reliable esti-
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mates relative to the “exact” estimator when the discretization interval is regularly

small. In those cases, a higher-order discretization scheme or a data augmentation to

Euler scheme might be redundant and even “be more of a hindrance than a help” for

improving the accuracy of estimates. This result is consistent for either a Gaussian

model or a non-Gaussian model and either when only a Gibbs sampler is used or

when an MH step is added.

Restricted by the availability of closed-form solution of the models, only two single-

factor models are studied in this paper. More complicated and successful multi-factor

models (even with jumps) have become the mainstream today. The extension to

multi-factor models with jumps should be considered, though it is not easy to find a

multi-factor jump-diffusion model which can be exactly generated and estimated.



Chapter 2

Identification of State-Space

Models: A Bayesian Perspective

2.1 Introduction and Literature Review

2.1.1 Definition and Early Development of Identification

The identification problem in econometrics was initiated by Koopmans (1949). Koop-

mans supplemented the traditional procedure of statistical inference, in which a popu-

lation is inferred from a sample, by another step from the population to the structure

of the model. Although statistical inference from the observations to the parameters

of the joint distribution of the observations is feasible, the step from that distribution

to the parameters of the structural models often fails. Then an identification problem

arises.

The terminology of identification (or its equivalence, identifiability) was first ap-

plied to simultaneous equations model of econometrics, and was extended to general
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scientific inference problems in the 50s and 60s. Koopmans (1949) and Koopmans

and Reiersol (1950) introduce the identification problem to econometrics and discuss

this with the structural equation system in details. There is a vector yt of endogenous

variables, say, price and quantity, and a vector xt of exogenous variables, say, income.

We can write the econometric supply-demand model in a structural form as:

Γyt = Bxt + εt, εt ∼ N(0, Σ). (2.1)

But statistical inference is only made from the observations to the joint distribution

of the observations characterized by the following reduced-form model:

yt = Πxt + vt, vt ∼ N(0, Ω), (2.2)

where Π = Γ−1B and Ω = Γ−1ΣΓ−1′
. The following step to transform the joint

distribution represented by parameters (Π, Ω) to the joint distribution represented

by (Γ, B, Σ) is sometimes not trivial. If we can find more than one set of (Γ, B, Σ)

to yield the same joint distribution, these sets are called observationally equivalent

by Koopmans. Structural parameters (Γ, B, Σ) are identified when there is only one

set of (Γ, B, Σ) that can be obtained from (Π, Ω). Identification on the structural

parameters can be obtained by imposing restrictions such as Ψ(Γ, B, Σ) = 0, for

instance, the exclusive restrictions on the simultaneous equations model.

Not only in the simultaneous equations model or in econometric models, identifi-

cation problem also lies in general statistical inference. A simple example is that an

observable random variable y is modelled to be affected by two independent errors

as yi = µ + ui + vi, ui ∼ N(0, σ2
u), vi ∼ N(0, σ2

v), cov(ui, vi) = 0. The distribution of

y only depends on σ2
u + σ2

v given µ. Obviously infinitely many pairs of (σ2
u, σ

2
v) will

generate the same value of the sum σ2
u + σ2

v and hence the same joint distribution
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of observations. F.M.Fisher(1966,1977) treats the identification problem in a general

statistical setting and initiates the separation of identification from a branch of eco-

nomics, though identification has been an important topic remaining in econometrics

and contributes one chapter by Hsiao(1983) in the Handbook of Econometrics.

Koopmans and Reiersol (1950) define identification in terms of model structures.

A structure S = (F, φ) covers both parametric and nonparametric specifications.

A vector of observed random variables y follow a conditional probability distribution

f(y|S), which is uniquely generated by the structure S. A model S is a set of possible

structures to be investigated. Then identification problem can be formalized in a pair

of definitions as follows:

• Definition 1: Two structures S and S∗ are observationally equivalent if f(y|S) =

f(y|S∗) for all y.

• Definition 2: A structure S in S is identifiable if there is no other structure S

in S which is observationally equivalent.

Rothenberg (1971) follows Koopmans and Reiersol (1950) and gives a little differ-

ent definition, in which only parametric structures are considered. Rothenberg uses

a parameter point to represent the whole structure. Suppose that α is the parameter

vector in a parameter space A. Identification of parametric models can be defined as:

• Definition 1: Two parameter points α1 and α2 are said to be observationally

equivalent if f(y, α1) = f(y, α2) for all y.

• Definition 2: A parameter point α0 in A is said to be identifiable if there is no

other α in A which is observationally equivalent.
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Rothenberg’s definition is more popular than Koopmans’s because he is more specific

about the structure and model so that testing the identification of a structure becomes

feasible. Rothenberg furthermore reaches a criterion that local identifiability of the

parameters is equivalent to non-singularity of the information matrix.

2.1.2 Bayesian View on Identification

In the classical econometrics, lack of identification matters because statistical in-

ference about structural parameters is impeded unless deterministic restrictions are

imposed. But Bayesians claim that “underidentifiability causes no real difficulty in

the Bayesian approach”(Lindly,1971). Raiffa and Schlaifa (1961) make clear the fact

that a proper prior distribution implies a proper posterior distribution. Rothenberg

(1973) claims that it is possible for a parameter to be “identifiable” even though

the data are completely irrelevant. Zellner(1971) also argues that uncertain prior

information can be used to solve identification problem without resorting to exact

restrictions that are generally necessary in the sample theory framework.

A simple example to illustrate this point of view is about the multicollinearity

problem in a linear regression model as follows:

Y = Xβ + ε (2.3)

where X is a n × k matrix and β is a k × 1 vector of unknown parameters. The

OLS estimator for this linear regression model is β̂ = (X ′X)−1X ′Y . There exists

a multicollinearity problem about the inference of β if X is not full-column rank,

which implies some explanatory variables are perfectly correlated. Multicollinearity

causes difficulty in implementing the OLS estimation of β since the matrix X ′X is

singular, hence the inverse does not exist. Multicollinearity can be also interpreted
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as an identification problem in that more than one set of values of β yields the same

value of the likelihood function. Because X is not full-column rank, it is possible to

find a k× 1 vector α such that Xα = 0. Then β + cα is observationally equivalent to

β for any constant c, since:

X(β + cα) = Xβ + c ·Xα = Xβ (2.4)

The traditional solution to multicollinearity is to impose restrictions to the parameter

vector β, for example, dropping one explanatory variables which is perfectly correlated

to the other, which is equivalent to assigning the value zero to one parameter, or

imposing some inequality restrictions as in a ridge regression.

β is unidentified in the presence of multicollinearity. However, multicollinearity

causes no real difficulty in Bayesian inference of this linear model. A proper prior

distribution is assigned to β as p(β) ∼ N(b0, V
−1
0 ). Suppose the variance of the error

ε is known as σ2. Let τ = σ−2 and β̂ = (X ′X)−1X ′Y . Then the posterior distribution

of β is normal with mean µ and variance V as follows:

µ = (X ′Xτ + V0)
−1(X ′Xτβ̂ + V0b0)

V = X ′Xτ + V0 (2.5)

If the prior distribution is proper and V0 is non-singular, the matrix X ′Xτ + V0 is

possibly invertible even if X ′X is not. With a probabilistic restriction instead of a

deterministic restriction, we obtain a properly concentrated posterior distribution for

β and β seems “identifiable” from the Bayesian view.

In this example, a parameter that is not identifiable in the viewpoint of a frequen-

tist could be “identifiable” in the viewpoint of a Bayesian. But Bayesians also may

not be able to distinguish between infinite possible values of a parameter when the
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parameter has a diffuse or flat posterior distribution. This happens when the param-

eters is unidentified in the Koopmans-Rothenberg definition and a diffuse or flat prior

is used. A question arises here: does Bayesian theory need a different definition of

identification from the classical one? Or equivalently, is identification a property of

the likelihood only, or both the likelihood and the prior. Morale (1971) defines that a

model is “identified” if the posterior density of parameters is not flat. In that sense,

a parameter is still possibly “identifiable” from the Bayesian approach even if it is

not identifiable from the classical approach.

Although this question is still unsolved, most Bayesians agree that the Koopmans-

Rothenberg definition is meaningful in that an experiment is valuable if it can yield

information leading a better decision. The identification problem can be also ex-

plained by the uninformativeness of the data. When the parameter is unidentifiable

from the classical approach, data gives no guide to the inference of the parameter

and the statistical inference based on this model structure in which the parameter is

unidentified changes no opinion about this parameter. Drèze (1972) used the following

theorem to characterize identification in terms of the informativeness of observations:

• Theorem: If p(y|βi) is the same for all i, then p(βi|y) is equal to p(βi), and the

observation y is noninformative, when this property holds for all y, the βi’s are

observationally equivalent.

This theorem can be simply proved by using the Bayes rule:

p(βi|y) =
p(βi)p(y|βi)∑
i p(βi)p(y|βi)

=
p(βi)∑
i p(βi)

= p(βi) (2.6)

since p(y|βi) is the same for all i and
∑

i p(βi) = 1. The theorem indicates that when

the parameter is unidentified, the data is uninformative to this parameter and the

prior dominates the likelihood and affects the posterior despite of infinite data.
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It has been widely accepted that defining identification as a property of the prior

is misleading and there is no necessity to redefine identification in the Bayesian ap-

proach. Kadane (1975) demonstrated that “identification is a property of the likeli-

hood function and is the same whether considered classically or from the Bayesian

approach”. This remark claims that identification has nothing to do with the prior

and an attention should be paid to the model structure even if a concentrated poste-

rior can always be easily obtained with an informative prior, as Wald said “we must

take care in interpreting ‘making sense”’.

Identification problem and its Bayesian treatment have been extensively discussed

in a variety of statistical or econometrical models such as generalized linear models

(Gelfand and Sahu (1999)), structural VAR models (Sims and Zha (1998)), etc..

In this paper, we focus on a set of dynamic time series models, state-space models,

which have been widely used in financial econometrics. Next section introduces state-

space models and discusses the identification problem on state-spaces models caused

by a linear transformation on state variables. The third section lists examples on

the identification problem in a specific class of financial models with the state-space

representation. The fourth section explores the empirical effects of the identification

problem on the Bayesian inference and the convergence of MCMC algorithms. The

fifth Section studies the impacts of the identification problem on the prediction of

state-space models. The last section summarizes.
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2.2 State-Space Models: Linear Transformation and

Identification

The state-space modeling representation is very attractive to structural modeling of

macroeconomic and financial time series because it assumes that the dynamics of

economic time series is derived from the dynamics of some unobserved state variables

that have sound economic meaning. A typical linear state-space model is given by

the following system of equations:

yt = Hxt + Gzt + ut (2.7)

xt = Fxt−1 + vt

and

E(u′tut) = Q

E(v′tvt) = R

where F, G, H, Q and R are matrices of parameters. It is possible to observe the

realizations of yt, while xt is unobservable and has to be estimated based on the

information of observed yt and model structure.

Hamilton (1994) states that “in the absence of restrictions on F, H, G, Q and R,

the parameters of the state-space representation are unidentified - more than one

set of values for the parameters can give rise to the identical value of the likelihood

function, and the data give us no guide for choosing among these”. Hannan (1971)

states that F, G, H, Q, R and xt are identified only up to a linear transformation

xt → Txt, F → TFT−1, G → TG, H → HT−1, Q → TQ, R → TRT−1, where T is a

non-singular constant matrix.
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The identification problem of state-space models caused by the linear transforma-

tion is illustrated by using a simple scalar state-space model without other exogenous

variables as follows:

yt = axt + ut (2.8)

xt = bxt−1 + vt

where ut ∼ N(0, c2) and vt ∼ N(0, d2), for all t, are independent. All variables yt, xt

and parameters a, b, c, d are scalars for simplicity of illustration.

Let a∗ = a/k, d∗ = kd and x∗t = kxt for an arbitrary constant k. We can show

that f(yt|a, b, c, d) = f(yt|a∗, b, c, d∗), hence (a, d) and (a∗, d∗) are observationally

equivalent and parameters a and d are unidentified.

To show this, we evaluate the likelihood function with respect to these two sets of

parameter values. The likelihood function of (2.8) can be written as:

L(a, b, c, d) = f(y1, y2, · · · , yn) (2.9)

=
n∏

t=2

f(yt|yt−1) (2.10)

where yt−1 = {y1, y2, · · · , yt−1}. The individual conditional likelihood function f(yt|yt−1)

is often obtained by estimating unobserved state variables xt using the Kalman fil-

ter. The Kalman filter is an algorithm to sequentially update the projection of the

unobserved state variables. Given the Kalman filter estimate of the state variables,

the conditional distribution of yt is normal:

yt|yt−1 ∼ N(ax̂t|t−1, a
2Pt|t−1 + c2) (2.11)

where x̂t|t−1 = Ê(xt|yt−1) is the optimal linear forecast of xt based on the observations

of y up to t − 1 and Pt|t−1 = Ê(xt − x̂t|t−1)
2 is the associated mean square errors of
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the forecasts. The Kalman filter calculates the forecasts of xt recursively as:

x̂t+1|t = bx̂t|t−1 +
abPt|t−1

a2Pt|t−1 + c2
(yt − ax̂t|t−1) (2.12)

Pt+1|t = b2(Pt|t−1 −
a2P 2

t|t−1

a2Pt|t−1 + c2
) + d2 (2.13)

Next we want to show that all individual conditional likelihood functions (t =

1, . . . , n) in (2.11) keep unchanged if we replace the original values of parameters

(a, b, c, d) with a new set values (a∗, b, c, d∗) . Let us start at t = 1. We initiate the

Kalman filter using the stationary distribution of the state variable:

x̂1|0 = 0 (2.14)

P1|0 =
d2

1− b2

The initial conditional distribution is y1 ∼ N(0, a2d2

1−b2
+ c2). This distribution does not

change as we replace (a, d) with (a∗, d∗) because a∗d∗ = ad. After the replacement,

the initial forecast of state variable x̂1|0 at t = 1 is still zero. However, the MSE P1|0

changes as P ∗
1|0 = k2P1|0.

Then we move to next time point t = 2. The Kalman filter yields the prediction

of x2 given the information up to time 1:

x̂2|1 = bx̂1|0 +
abP1|0

a2P1|0 + c2
(y1 − ax̂1|0) (2.15)

P2|1 = b2(P1|0 −
a2P 2

1|0

a2P1|0 + c2
) + d2

and y2|x1, y1 ∼ N(ax̂2|1, a
2P2|1 + c2). After we replace (a, d) with (a∗, d∗), both the

estimate and variance of x2 change as follows:

x̂∗2|1 = kx̂2|1 (2.16)

P ∗
2|1 = k2P2|1.
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But the conditional distribution or the individual likelihood function does not change

because N(a∗x̂∗2|1, a
∗2P ∗

2|1 + c2) = N(ax̂2|1, a
2P2|1 + c2).

By deduction, we can show the individual likelihood function is the same for

(a, b, c, d) and (a∗, b, c, d∗) at t = 3, 4, . . . . n. Finally, our conclusion is that different

values for the parameter set (a, b, c, d) can give rise to identical values for the likelihood

function. (a, b, c, d) and (a∗, b, c, d∗) are observationally equivalent and, particularly,

the parameters a and d are not identified. We observe that such observationally

equivalent model structures are obtained by a linear transformation on the state

variable xt. In the transformation, parameters b and c are not involved, which means

we can not find different values of b or c that are observationally equivalent. So b and

c are identified.

Identification can be achieved by imposing restriction on those matrices of pa-

rameters to make them have canonical form. This process is often called parameter

normalization. For example, we can let d = 1 in the scalar model (2.8). Then new

model structure is identifiable. This is shown in the fourth section based on the

convergence of MCMC chains for the parameters.

2.3 Application in Finance: Identification of Affine

Term Structure and Reduced-Form Credit Risk

Models

The identification problem in state-space models has import implication in financial

modeling since state-space models have been widely used in asset pricing. A typical

example is term structure of interest rates. A zero-coupon bond that pays $1 at the
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maturity T has a price at time t

Pt = EQ
t [exp(−

∫ T

t

rsds)] (2.17)

where Q is the risk-neutral probability measure. An m-factor affine term structure

model (ATSM), proposed by Duffie and Kan(1996), assumes that the instantaneous

short rate rt is an affine function of a number of factors x1, x2, . . . , xm. Let a vector

X = (x1, x2, . . . , xm), then

rt = δ0 + δ′Xt = δ0 +
m∑

i=1

δixit (2.18)

And an ATSM assumes the factors follow ”affine diffusion” as

Xt = K(Θ−Xt)dt + Σ
√

StdWt (2.19)

where St is a diagonal matrix with the i-th diagonal element given by

[St]ii = αi + β′
iSt. (2.20)

The bond prices Pt and short rates rt are equivalently observable in practice, while

the factors Xt are not. The ATSM has a state-space representation if measurement

errors are introduced to equation (2.18). Based on the conclusion drawn in the previ-

ous section, the parameter vector (K, Θ, Σ, {αi}m
i=1, {βi}m

i=1) is generally not identified

without certain restrictions. It is possible to find a linear transformation to the la-

tent state variables and parameters such that the dynamic of rt is not affected. Dai

and Singleton (2000) refer to such linear transformations as ”invariant transforma-

tions”. An invariant transformation for an m-factor ATSM is defined by a nonsingular

m×m matrix L and a m×1 vector h such that Xt → LXt +h, δ0 → δ0−δ′L−1h, δ →

L′−1δ,K → LKL−1, Θ → LΘ + h, Σ → LΣ, αi → αi − β′
iL

−1h, βi → L′−1βi for
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i = 1, . . . ,m. A set of normalizations on parameter matrices and vectors are also

proposed to achieve an identified m-factor ATSM model. For example, some αi must

be assigned zero, some βi must be assigned one, some diagonal elements of Σ must

also be normalized, etc..

Next we consider a reduced-form credit risk model, which is a special case of a two-

factor ATSM model, to illustrate the identification problem of ATSM models. Lando

(1998) and Duffie and Singleton (1999) present a valuation model for defaultable

corporate bonds, which has been a benchmark for reduced-form credit risk models.

In this model, the time-t price of a defaultable zero-coupon bond that pays a dollar

at expiration date T unless it defaults before T is

Pt = EQ
t

{
exp

[
−

∫ T

t

(rs + hs(1− Ls))ds

]}
(2.21)

where rt is the instantaneous default-free interest rate, ht is the default probability or

the hazard rate for default, and Lt is the recovery rate at time t. It is very common

to assume both default-free rate and default probability follow some affine diffusion

process, for example, a Cox-Ingersoll-Ross process in Duffee (1999):

drt = κ1(θ1 − rt)dt + σ1
√

rtdW1t (2.22)

dht = κ2(θ2 − ht)dt + σ2

√
htdW2t

where W1t and W2t are standard Wiener processes and might be correlated. There

are different treatments for the recovery rate Lt in practice. Duffee assumes that

Lt = 0 for all t for the simplicity of estimation. Zero recovery rate implies that the

bond holder is not able to recover any of the loss when default happens, which is

obviously not realistic since most bonds have some forms of collateral in practice. A

practical way to deal with Lt is to estimate a constant recovery rate from historical
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data and replace Lt with the estimate in equation (2.21). Both ways are actually

imposing restrictions on L to make the model identifiable. A wrong try would be a

joint estimation of the recovery rate and default probability when the recovery rate

is an unknown parameter, because the following two-factor ATSM is not identified:

Pt = EQ
t

{
exp

[
−

∫ T

t

(rs + hs(1− L))ds

]}
(2.23)

drt = κ1(θ1 − rt)dt + σ1

√
rtdW1t

dht = κ2(θ2 − ht)dt + σ2

√
htdW2t

An invariance transformation as ht → cht(1− L) → (1− L)/c, θ2 → cθ2, σ2 →
√

cσ2

would keep Pt unchanged.

Empirical evidences have shown that there exists significant negative correla-

tion between default-free rate rt and default probability ht, which makes the above

reduced-form model inadmissible in practice. Lando (2002) propose a transformation

to above reduced-form credit risk model to incorporate the negative correlation. He

assumes ht = α + βrt, where β measures the correlation between h(t) and rt. As-

suming a constant recovery, the two-factor ATSM is reduced to a one-factor model

as:

Pt = EQ
t

{
exp

[
−

∫ T

t

(αL + (1 + βL)rs)ds

]}
. (2.24)

It is obvious that this one-factor ATSM is not identified again. Neither α nor β is

identified because we can find an invariance transformation on rt. All above examples

show that it is relatively easy to specify an unidentified model when the asset pricing

model has a state-space form.
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2.4 Bayesian Identification and Parameter Esti-

mation

Estimation of state-space models is generally not trivial because unobserved state

variables must be estimated with parameters together. The Kalman filter is the

traditional way to deal with a linear, normal state-space model. The extend Kalman

filter might apply when the state-space model is nonlinear or nonnormal. But this is

not guaranteed in general cases. MCMC methods have been shown to be suitable for

the estimation of state-space models even if they are highly nonlinear and nonnormal.

Using a single-move (Carlin, Polson and Stoffer, 1992) or multi-move (Carter and

Kohn, 1994) Gibbs sampler, we are able to draw random samples from the posterior

distributions of latent variables as well as other structural parameters.

In Introduction, we concluded that “identification problem does not cause real

problem to Bayesian inference” if an informative prior is used. A legitimate posterior

distribution is still attainable and MCMC chains may still converge to a stationary

distribution even if some parameters are unidentified. Regarding the state-space

models, some implications from this conclusion include:

1. MCMC convergence can be achieved and statistical inference based on a legiti-

mate posterior distribution can be made for an unidentified state-space model,

for which the classical inference often collapses;

2. The MCMC chain for an unidentified parameter might not converge if a flat

prior is used.

There implications also arise some questions such as:
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1. When a parameter in a state-space model is unidentified, does the stationary

distribution of the MCMC chain “make sense” even if the chain always converges

to something when the prior is informative?

2. Is the posterior distribution for an unidentified parameter exactly the same or

very similar as the prior distribution, or equivalently, don’t data provide any

information on a parameter that is unidentified in a state-space model?

3. Is the MCMC convergence of other identified parameters affected when the

convergence fails on the unidentified parameters?

4. Can we use the MCMC convergence as a criterion for checking the identification

of a state-space model?

We try to answer these questions in the following by using a numerical example.

Model (2.8) is used as the data-generating process, in which the values of the

parameters are: a = 0.7, b = 0.8, c = 0.3, d = 0.2. Using these values, we generate the

observations on yt for a sample size 300. We use a single-move Gibbs sampler to draw

MCMC samples of four structural parameters (a, b, c, d), monitor the convergence

of MCMC draws and analyze the posterior distributions. Totally 10, 000 MCMC

samples are drawn for each parameter, and first 2, 000 are “burned out”.

Figure 2.1 displays the MCMC draws when improper priors are used for four

parameters p(a), p(b) ∼ const, p(c) ∼ c−1 and p(d) ∼ d−1. Horizontal dished lines

represent true values a = 0.7, b = 0.8, c = 0.3, d = 0.2. Only the chains for identified

parameters b and c converge. The posterior means of b and c are 0.7955 and 0.3066.

It can clearly seen that the MCMC chains for parameters a and d do not converge

at all after 10, 000 draws, while b and c are more likely to have stationary posterior
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Figure 2.1: MCMC convergence of four parameters when priors are improper
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distributions concentrated at the true values. The posterior means of b and c are

0.7955 and 0.3066, very close to the true values. These results are expected since it

has been shown in the second section that b and c are identified but a and d are not.

When improper priors are used on unidentified parameters, concentrated posterior

distributions are still not achievable and Bayesian inference has troubles as well as

the classical approach. Good news to question 3 above is that the MCMC convergence

for identified parameters b and c seems unaffected by two unidentified parameters a

and d. Both MCMC chains converge to stationary posterior distributions that are

well concentrated at the true values, although the other two chains do not converge at

all. The Gibbs sampler based on conditional posterior distributions works well even if

some marginal posterior distributions are improper. Another interesting finding that

should be reported is that the serial correlations for unidentified parameters a and d

are very high, 97% and 99%, and even persistent when we choose a longer interval

to compute correlations. The serial correlations for identified parameters b and c are

also high, but die out soon when the interval becomes longer. This result has been

reported by some author as an evidence whether a parameter is identified or not.

Next we explore what will happen if priors are proper and informative. Four

conjugate priors are chosen as a, b ∼ N(10, 102) and c2, d2 ∼ IG(3, 0.1). Prior dis-

tributions are chosen to be quite far away from the true values of the parameters,

which generate the data, so that we can compare the effects of priors and data on

posteriors. The plot of MCMC draws is presented in Figure ??. Now all four MCMC

chains successfully pass the Geweke’s Zg Convergency test, which indicate legitimate

posteriors exist even for unidentified parameters when informative priors are used,

which is consistent with our previous argument about Bayesian identification.
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But a question still remains: do Bayesian inference results make any sense? We

report that the posterior means for (a, b, c, d) are 0.0382, 0.9250, 0.4317, 1.6453 respec-

tively. It seems that the posterior distributions of two identified parameters b and

c “make more sense” because they are roughly concentrated at the true values that

govern the likelihood of generated data, considering the effects of “unreasonable” pri-

ors. The posterior means of two unidentified parameters a and d are not close to

the true values, neither to the prior means. We have to admit that identification

problem causes serious troubles since Bayesian inference does not supply too much

useful information to improve our decision on these two unidentified parameters.

This result implies that it has to be kept in mind for modelers and researchers that

identification must be diagnosed even if their MCMC algorithms converge perfectly

and a concentrated Bayesian posterior can be obtained. Without confidence about

model identification, Bayesian parameter estimation and MCMC algorithms might

be a “trap”.

Drèze’e theorem states that the posterior distribution is the exactly the same as

the prior distribution for an unidentified parameter when the data is totally uninfor-

mative. In this state-space model we can see the likelihood function is not absolutely

flat and data still provides some information for the inference of unidentified pa-

rameters. Since the priors cannot perfectly dominate the posteriors, the posterior

distributions of unidentified parameters are still a combination of information from

both the prior distributions and the data. However, compared with the identified pa-

rameters, Bayesian inference on unidentified parameters “makes less sense” because

the data is less relevant to them.

Finally we propose an answer to the question 4 above: it is possible to use the
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Figure 2.2: MCMC draws of four parameters when priors are proper and informative
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MCMC convergence as a diagnostic tool for checking the identification of some struc-

tural models including state-space models. As long as we use proper informative

priors, Bayesian inference always yields legitimate posterior distributions, and the

MCMC chain must converge to a stationary distribution. If we observe that the

MCMC chains do not converge in a state-space model, this is a strong sign for us

that some parameters are unidentified in this model.

2.5 Bayesian Identification and Prediction

In many cases, we are interested in prediction rather than parameter estimation in

research. Although identification still remains a problem in parameter estimation,

it is unclear whether the identification problem imposes important impact on the

prediction of a state-space model.

We have already shown that a legitimate Bayesian inference is possible for an

unidentified state-space model given informative priors. Thus, it is not a problem to

obtain a legitimate predictive posterior distribution of the observed variable yt even

if the state-space model is unidentified.

To evaluate the predictive performance, we compare the predictive posterior dis-

tribution of an unidentified state-space model and that of an equivalent but identi-

fied model. Normalization, or rescaling, can eliminate the overparameterization and,

therefore solve the identification problem. For example, the state-space model in (2.8)

becomes identified when the parameter d is normalized:

yt = a∗x∗t + ut (2.25)

x∗t = bx∗t−1 + vt,
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Figure 2.3: MCMC draws of three parameters in the identified state-space model

when priors are improper

and ut ∼ N(0, c2) and vt ∼ N(0, 1), where a∗ = a ∗ d and x∗t = xt/d. Only three

parameters (a, b, c) are left after normalization. Model (2.25) is equivalent to model

(2.8) except that some parameters and latent variables are rescaled. This “canon-

ical” model is identified. We simulate numerical data from this model and run a

Gibbs sampler using noninformative priors. MCMC draws for three parameters are

displayed in Figure 2.3. All three chains converge to the stationary distribution well

concentrated at true values even if priors are improper.

We generate time series of yt from both models: identified and unidentified, with

two sets of true values of parameters. Note that two paths are almost the same since

two models are equivalent. We proceed to estimate both models using the Bayesian
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approach and generate the MCMC draws of the parameters from their posterior dis-

tribution. Our goal is to find the one-step-ahead prediction yT+1 MCMC algorithms

allow us to easily obtain random draws from the posterior predictive distribution

of yT+1 given the MCMC draws from the posterior distribution of the parameters

and latent variables. Since model (2.25) is identified, we take its posterior predic-

tive distribution as the benchmark, and investigate that how different the posterior

predictive distribution of the unidentified model (2.23) is from the benchmark. The

difference can be treated as a measure of the impact of the identification problem on

the prediction of this state-space model.

Posterior distributions of parameters in the unidentified model (2.23) are sensitive

to prior information even if the sample size is large. So a sensitivity analysis is

conducted by using three different prior distributions:

• Prior 1: a, b ∼ N(0, 1), c, d ∼ IG(3, 1) and a∗ ∼ N(0, 0.4) 1

• Prior 2: a, b ∼ N(10, 1), c, d ∼ IG(10, 1) and a∗ ∼ N(3, 0.4)

• Prior 3: a, b ∼ N(10, 1), c, d ∼ IG(3, 0.1) and a∗ ∼ N(20, 70)

The results are displayed in Table (2.1). Both the first and second set of priors are

dominated by the data since the posterior means in the identified model are close to

the true values used to generate the data. The third set of priors has a nonneglectable

impact on the posterior distribution since the posterior means in the identified model

are relatively far away from the true values. Obviously all three sets of priors have

significant impacts on the posterior distributions in the unidentified models, which is

1Note that a∗ = a · d. Here the prior mean and variance of a∗ match those of a and d
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Table 2.1: Sensitivity Analysis of Prior Distribution on Parameter Estimates

Panel A: The Identified Model

Posterior Mean and Std using Different Priors

Parameter True Value Prior 1 Prior 2 Prior 3

a∗ 0.14 0.131(0.025) 0.136(0.025) 0.078(0.021)

b 0.8 0.846(0.054) 0.854(0.051) 0.916(0.040)

c 0.3 0.304(0.017) 0.292(0.016) 0.419(0.019)

Panel B: The Unidentified Model

Posterior Mean and Std using Different Priors

Parameter True Value Prior 1 Prior 2 Prior 3

a 0.7 0.177(0.059) 0.453(0.112) 0.041(0.014)

b 0.8 0.857(0.051) 0.825(0.060) 0.922(0.038)

c 0.3 0.307(0.016) 0.290(0.016) 0.419(0.019)

d 0.2 0.782(0.305) 0.336(0.054) 1.999(0.691)

expected. Note that the MCMC algorithms converge under the unidentified model

with three sets of informative priors.

The posterior predictive distributions of yT+1 in the identified and unidentified

models are plotted and compared in Figure 2.4. We can clearly see that the uniden-

tified model yields almost the same prediction as the identified parameter does when

different informative priors are used. It can be concluded that the identification prob-

lem “does not matter” for the prediction while it may cause misleading estimates for

parameters.
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Figure 2.4: The posterior predictive distributions of yT+1 in the identified and uniden-

tified models
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2.6 Concluding Remarks

State-space models have been widely used in financial econometrics. But modelers

often fail to realize that state-space models without restrictions are generally unidenti-

fied. Bayesian inference and MCMC algorithms have been frequently used to estimate

state-spaces models including their application in finance. But researchers might ig-

nore the identification problem in the models when they only focus on the convergence

of their MCMC algorithms. It is the advantage of Bayesian inference over the classi-

cal inference that identification problem causes no real trouble in Bayesian inference

because a legitimate posterior distribution can always be attained when priors are

proper and informative even if the parameter is unidentified. However, Bayesian

treatment to identification problem could be the disadvantage, even a “trap” for re-

searchers. Their Bayesian estimates of parameters might yield results that do not

“make sense” even if their MCMC algorithms converge perfectly in the presence of

unidentified parameters. This paper suggests high caution be kept for researchers to

use MCMC algorithms to estimate state-space models. Model specification should

always be checked about potential identification problem before Bayesian inference

can be implemented effectively. We also found that, if the prediction instead of pa-

rameter estimation is the main concern for the researcher, the identification problem

really causes no problems to Bayesian prediction in state-space models.



Chapter 3

Bayesian Inference of Credit Risk

Models

3.1 Introduction

While the concept of “credit risk” is as old as banking itself, credit risk emerged

as a significant risk management issue during the 1990s. A series of financial crisis

in the 1990s and more recent Subprime Crisis evidences the importance of credit

risk measurement and management in the financial industry. As the introduction of

financial mathematics to this area, practitioners have become more and more relied

on quantitative model to measure credit risk and price the securities subject to default

such as corporate bonds, mortgage-backed securities and complex credit derivatives.

Theoretical research and practical application of quantitative credit risk models have

been exploding in recent years. Duffie and Singleton (2003) and Lando (2004) provide

comprehensive treatments of the theoretical and practical foundation of credit risk

modeling. The famous Basel II Accord that allows the banks to develop their credit
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risk models for PD (Probability of Default) and other measures also stimulates the

quantitative research in the area of credit risk.

However, there is not an unanimous theoretical framework to model credit risk

so far. There are a large number of credit risk models that have been developed.

The credit risk models used extensively in the practice of credit risk management

and asset pricing range from the relatively simple credit rating transition matrix to

some complicated continuous-time models such as the Merton (or KMV) model. The

examples of them include the approach to use external credit ratings by Moody’s

or S&P to estimate the PD(Probability of Default) (Lando and Skodeberg (2002),

Nickell et al.(2000)), the credit scoring models that link the likelihood of defaults to

a set of debtor characteristics (Altman (1968), Blume et al.(1998), Shumway (2001)),

the structural credit risk models originated by Merton (1974) and extended by Black

and Cox (1996), Leland and Toft (1996), Collin-Dufresne and Goldstein (2001) and

so on.

The first concern facing the users of credit risk models is the validation of quanti-

tative models, which includes the issues such as how well the models fit the real data,

how accurately the models can predict the defaults, what are the pros and cons of the

competing models, which model should be selected among a number of alternatives,

etc.. Extensive empirical work has been conducted by academic and practitioners.

Although there are too many to list, some important work are listed as follows: Lando

and Skodeberg (2002), Nickell et al.(2000), Amato and Furfine (2004) studies how to

incorporate systematic variables to improve the accuracy of the unconditional credit

rating transition matrix; Beaver (1966), Blume et al.(1998)), Shumway (2001) com-

pare the performance of the credit scoring models using various statistical techniques
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and different covariates; Eom et. al. (2003) reveals that the Merton model is not able

to generate credit spreads as high as those observed spreads, hence underestimates

the PD, while most of the other structural models predict spreads that are too high

on average.

This paper is about the empirical analysis of different credit risk models. Since

there are too many credit risk models to study, we classify the credit risk models of

interest into three groups: the rating migration models, the credit scoring models, and

the asset value models. Although there are other classification of credit risk models

available in the literature, our classification is based on the information that the

models use to estimate the PD. The rating migration models in Lando and Skodeberg

(2002) and Nickell et al.(2000) use the historical credit rating data to estimate the

PDs of debtors with different ratings. The credit scoring models in Altman (1968),

Blume et al.(1998) and Shumway (2001) supplement the credit rating data with the

financial ratios or other debtor characteristics. The asset value models extended

from Merton (1994) all utilize the information contained in the time series of the

debtors’ stock prices to estimate the PDs. Based on this classification, we can see

that previous empirical research on credit risk models is generally limited in one

class. For example, the empirical work on the credit scoring models focuses on the

select of covariates or statistical models to improve the credit scoring system. The

comparison of asset value models in Eom et. al. (2003) explores the effects of more

complicated structures on the predictive power of the Merton model. We call this

“vertical” analysis or comparison of credit risk models. The existing research rarely

compare the credit risk models across the classes we define above. Thus, the first

task of this paper is to study and compare the credit risk models “horizontally”, i.e.,
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the models in different classes.

Another feature distinguishing our work from others is that we follow the Bayesian

approach to make inference of the PD. Although this is not the first attempt to intro-

duce Bayesian inference in credit risk models and some researchers and practitioners

have realized that Bayesian inference can be very useful in credit risk model valida-

tion, the literature on the Bayesian analysis in the area of credit risk is much more

scanty than the literature on the classical approach. Most of the previous work only

focus on assigning priors or adding parameter uncertainty in a specific credit risk

model 1 . In this paper, we make full use of Bayesian inference for three differ-

ent credit risk models. We derive the posterior distribution of the PD either by a

closed-form density function or the Markov chain Monte Carlo (MCMC) sampling

methods.

The three credit risk models we discuss in this paper have been extensively ex-

plored by using other statistical methods, for example, nonparametric estimation for

the rating migration model, maximum likelihood estimation for the credit scoring

model and calibration for the asset value model. We claim that, compared to other

methods, the Bayesian inference equipped with MCMC methods has a number of ad-

vantages in the statistical analysis of credit risk models: First, the Bayesian inference

can supplement the data analysis with the prior information. The incorporation of

prior information is useful in the practice of credit risk analysis because risk ana-

lysts often need to use subjective judgement or personal opinion to adjust the results

1McNeil and Wendin (2007) apply a generalized linear mixed model to credit risk and estimate
the model using a Gibbs sampler. Gossl (2005) jointly estimates the PD and default correlation
for a credit risk portfolio in a Bayesian approach. Kiefer (2006) asserts how to incorporate expert
opinion as priors for low-default portfolios with little historical default information. By using the
Bayesian inference, Kadam and Lenk (2007) allow issuer heterogeneity in credit rating migration
despite of data sparsity
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from quantitative analysis. Secondly, Bayesian inference can easily produce the full

distribution of the PD, instead of several moments or intervals estimated in the clas-

sical approach. Practitioners have realized that, since the distribution of the PD is

often highly skewed, the information in the distribution will be much more useful

than point estimates. Thirdly, many credit risk models are extremely complicated.

MCMC methods have been shown to be suitable for dealing with highly nonlinear

or nonnormal model structures, high dimensional parameter space including unob-

served latent variables, which are common in credit risk models. Admittedly, MCMC

methods are computation-intensive and the Bayesian estimation of the PD more time

consuming than other methods. However, continuous advances in computing power

mitigate these drawbacks.

Another advantage to use the Bayesian inference for credit risk models is that

we can use the Bayes rule to incorporate the information contained in different data

sets under different credit risk models for estimating a PD. In this paper we propose

a “combined” Bayesian estimation method for the PD, which is actually a special

case of using informative priors in the Bayesian inference. The basic idea is that

we can use the PD estimate from one credit risk model as the prior in the second

credit risk model given the data sets used in these two models are different. This

new method to estimate the PD is motivated by the two severe issues in the practical

implementation of quantitative models in credit risk management: Data insufficiency

and model uncertainty. If we stick to one specific credit risk model in practice, it

is often difficult or impossible to collect sufficient data to make reliable statistical

inference. Furthermore, the existing credit risk models are highly simplified models

and tend to over- or under-estimate the PD systematically. This combined estimation
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can incorporate information for the PD from different sources, and tends to alleviate

the data insufficiency problem. Secondly, the combined estimator of the PD is likely

to moderate the PD estimators under different classes of credit risk models.

The paper is structured as follows: The second section introduce three credit risk

models that are benchmark for the three classes: rating migration models, credit

scoring models and asset value models. Bayesian inference for three models is con-

ducted and, if it is necessary, MCMC algorithms are developed for specific models.

Empirical analysis using the real data is following in the third section. The PD of the

same obligor is estimated under three different models using different data sets. The

posterior distributions of the PD under different models are compared. In the fourth

section, we introduce the motivation and implementation of combining PD estimates

from different models. Empirical results in the third section are used to illustrate the

methodology. The last section concludes and discusses the possible extensions.

3.2 Credit Risk Models and Bayesian Inference

There are a large number of credit risk models available and the number is increasing

every year. Following the classification method in introduction, we study three classes

of credit risk models that utilize different information to estimate the PD of a specific

debt obligor. In each class, we focus on a representative (or benchmark) model and

conduct the Bayesian inference on these models. The posterior distributions of the

PD in these models are derived either directly or by using the MCMC methods.

Before we proceed to a specific credit risk model, we define the default of the
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obligor i, during a time period, as a binary variable Di:

Di =

 1 if obligor i defaults

0 otherwise

which is often assumed to follow a Bernoulli distribution

Di ∼ Bernoulli(PDi)

where PDi = Prob{Di = 1} = 1−Prob{Di = 0} is the default probability of obligor

i.

3.2.1 A Rating Migration Model

In rating migration models, historical migrations of credit ratings are used to estimate

the PDs. A comprehensive treatment of this class of credit risk models is referred to

Lando and Skodeberg (2002).

Suppose that we are interested in estimating the PD of an obligor rated i (for

example, AAA) at time t. Ni obligors are rated i a certain time period, say 1 year,

ago. Then we count how many of them default (downgraded to rating D) by the end

of the time period, say NiD =
∑Ni

l=1 Dil. The average annual PD of the obligors with

the rating i is computed by simply taking the ratio

ˆPDi =
NiD

Ni

. (3.1)

This estimator is first a nonparametric estimator as the Kaplan-Meier estimator.

Meanwhile, it can also be shown to be the maximum likelihood estimator of the PD

given the Bernoulli distribution of defaults.

The average PDs for all ratings can be computed by the same way. Finally we can

obtain a transition matrix with elements PDij representing the transition probability
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Table 3.1: One-year Credit Rating Transition Matrix 05/2004-05/2005 (%)

AAA AA A BBB BB B CCC CC Default NA

AAA 90.00 10.00 0 0 0 0 0 0 0 0

AA 0 87.95 7.23 1.20 0 0 0 0 0 3.62

A 0 0 92.49 4.92 0 0 0 0 0 2.59

BBB 0 0.16 1.44 92.47 3.85 0.32 0 0 0 1.76

BB 0 0 0 4.85 87.44 4.41 0.22 0 0 3.08

B 0 0 0.50 0.50 8.73 72.57 3.24 0.50 1.50 12.47

CCC 0 0 0 0 1.75 14.04 56.14 0 19.30 8.77

CC 0 0 14.29 0 0 28.57 0 0 14.29 42.86

Note: NA represents the firms that do not have ratings at the end of the time peiord

from the rating i to the rating j over one year. The PDs are a part of the transition

matrix. We use S&P historical credit rating data to compute the one-year credit

rating transition matrix from 05/2004 to 05/2005, which is presented in Table 3.1.

Since there is no exogenous variables involved with the estimation of this transition

matrix, this matrix is also called the unconditional transition matrix in comparison

with the conditional transition matrix sensitive to business cycles or other system-

atic factors. An important example for conditional credit rating transition matrix is

Nickell et al.(2000), who report that the cyclicality and sensitivity of credit ratings to

business cycles and estimate the credit rating transition matrix conditioned on some

macroeconomic variables.

Bayesian inference for the PDs in the unconditional credit rating transition matrix

is straightforward. We observe that there are Ni obligors with credit rating i at the
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beginning of the observation period. At the end of the observation period, say 1 year,

NiD(=
∑Ni

l=1 Dil) of them default and the rest did not. Since we assume that the

default of the obligors follows a Bernoulli(PDi) distribution, the joint distribution

of observed defaults, or the likelihood, is proportional to

Ni∏
l=1

p(Dil|PDi) =

Ni∏
l=1

PDDil
i (1− PDi)

1−Dil

= PD
∑Ni

l=1 Dil

i (1− PDi)
Ni−

∑Ni
l=1 Dil

= PDNiD
i (1− PDi)

Ni−NiD

If a noninformative prior is used, the posterior density function of PDi is

p(PDi|data) ∼ PDNiD
i (1− PDi)

Ni−NiD , (3.2)

which is a Beta(NiD + 1, Ni − NiD + 1) distribution. The posterior mean of PDi

with a noninformative prior is NiD+1
Ni+2

, which is approximately equal to the maximum

likelihood estimator when the sample sizes Ni and NiD are large.

We can also use a conjugate prior, Beta(a0, b0). Then the posterior density func-

tion of PD is

p(PDi|data) ∼ PDNiD+a0−1
i (1− PDi)

Ni−NiD+b0−1, (3.3)

which is a Beta(NiD + a0, Ni − NiD + b0) distribution. The sampling from a Beta

distribution is straightforward and MCMC algorithms are not necessary.

The elicitation of PD’s prior distribution has practical meanings to the practi-

tioners in the industry of credit risk management. In practice, credit risk analyst

often subjectively adjust the PD estimates from the quantitative credit risk models

when they feel the estimates are obviously not reasonable. Actually the subjective
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judgement or adjustment can be more scientifically incorporated in the statistical

inference under the Bayesian approach because Bayesian inference is in essence a

subjective decision theory. For Bayesians, expert opinions take the role of priors,

which can be combined with the information in the data through the Bayes rule.

Then personal judgement evolves to the elicitation of prior distribution of PD. PD is

a quantity falling in an interval between 0 and 1. Therefore, a candidate for the prior

distribution of PD can be a Beta distribution:

p(PD) ∼ Beta(a0, b0)

with mean a0/(a0 + b0) and variance a0b0/(a0 + b0)
2(a0 + b0 +1). Experts can express

their opinion about PD by controlling the mode and dispersion of the prior Beta

distribution.

3.2.2 A Credit Scoring Model

One of the limitations for rating-based models is the assumption that a group of

heterogenous obligors have identical default probabilities if they have the same credit

ratings. It is easy to argue that the obligors with the same ratings still differ in their

credit qualities. Credit scoring models, initiated by Altman (1968), links the PDs of

different obligors (even with the same ratings) to the obligor-specific information. In

credit scoring models, the PD of an obligor depends on a set of obligor characteristics,

for example, financial ratios representing their insolvency, liquidity and profitability.

Researchers and practitioners have the flexibility to select combination of covari-

ates that “the best” explain the default behaviors of all obligors. A renowned example

about the financial ratios used to predict the default of a firm is Altman’s Z score

that combines five financial ratios: working capital to total assets, retained earning to
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total assets, EBIT to total assets, market value of equity to book value of total debt,

and sales to total assets. We choose these five covariates in our “benchmark” credit

scoring model. There are different possible ways to model the dependence between a

binary variable and a set of covariates. Altman (1968) uses the linear discriminant

analysis. S&P’s CreditModel uses the neural networks and supporting vector ma-

chine. The most popular and easily interpreted model to link the credit score with

the default is the probit (or logit) model.

In a probit credit scoring model, the default of a firm i still follows a Bernoulli

distribution, while the PD depends on a linear combination of k explanatory variables

X = (x1, x2, · · · , xk), instead of being a constant in rating-based models, as

Prob{Di = 1} = Φ(Xiβ), (3.4)

where β = (β0, β1, β2, · · · , βk)
′ and Φ(·) is the cumulative distribution function of a

standard normal random variable.

Albert and Chib (1993) propose a Gibbs sampler to estimate probit models using

data augmentation. They re-write the probit model using some latent variables as

D∗
i = βXi + εi, εi ∼ N(0, 1) (3.5)

Di =

 1 if D∗
i ≤ 0

0 otherwise
(3.6)

where the latent variables D∗
i are continuous variables instead of binary variables as

Di. To obtain a maximum likelihood estimator of β, we have to integrate latent vari-

ables D∗
i out of the likelihood. However, D∗

i can be sampled as well as the parameters

β if the data augmentation technique is used in the Gibbs sampler.

To implement the Gibbs sampler using data augmentation, we have to specify

the full conditional posterior distributions of β and D∗
i . Given all latent variables
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D∗ = (D∗
1, D

∗
2, · · · , D∗

N)′ and data D = (D1, D2, · · · , DN)′, the conditional posterior

distribution of β is straightforward from a linear regression model:

p(β|D∗, D) ∼ N(β̂, V ), (3.7)

where β̂ = (X ′X)−1X ′D∗ and V = (X ′X)−1 are just the OLS estimates when the

priors are noninformative.

It can be shown that D∗
i follows a truncated normal distribution given β and Di:

D∗
i |Di = 1, β = D∗

i |D∗
i ≤ 0, β ∼ N(Xiβ, 1)I[0,∞) (3.8)

D∗
i |Di = 0, β = D∗

i |D∗
i < 0, β ∼ N(Xiβ, 1)I(−∞, 0).

Sampling from a truncated normal distribution is not trivial. Different MCMC algo-

rithms are available such as accept-reject and Metropolis-Hastings algorithms. An ef-

ficient algorithm using inverse CDF transformation was developed by Devroye(1986),

which is based on a simple fact that the CDF of a continuous random variable has

a uniform [0, 1] distribution. Define εi = D∗
i −Xiβ, which has an truncated N(0, 1)

distribution and its CDF must follow a U [0, 1] distribution:

F (εi|Di = 1, β) =
Φ(εi)− Φ(−Xiβ)

1− Φ(−Xiβ)
∼ U [0, 1] (3.9)

F (εi|Di = 0, β) =
Φ(εi)

Φ(−Xiβ)
∼ U [0, 1].

Specifically, the Gibbs sampler using data augmentation and inverse CDF trans-

formation is carried out in the following steps:

Step 1: Choose an initial value for β(0).

Step 2: Draw ui from the uniform [0,1] distribution. Generate εi as

εi =

 Φ−1(ui(1− Φ(−Xiβ)) + Φ(−Xiβ)) if Di = 1

Φ−1(uiΦ(−Xiβ)) if Di = 0
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and the latent variable D∗
i = Xiβ + εi for i = 1, 2, · · · , N .

Step 3: Draw β(1) from

N((X ′X)−1X ′D∗, (X ′X)−1).

Step 4: Repeat Step 2 through Step 3 for M iterations.

The Gibbs sampler will yield random draws from the posterior distribution of β.

Note that PD is not directly a parameter in the credit scoring model. Instead,

PDi is a function of the parameter β and the explanatory variable Xi as

PDi = Φ(Xiβ).

The random draws of PDi of our interest can be obtained by directly computing

Φ(Xiβ) using the MCMC draws from the joint posterior distribution of β and the

values of Xi.

3.2.3 An Asset Value Model

Merton (1974) is the foundation for all structural credit risk models. We call the

class of credit risk models based on Merton (1974) the asset value models because the

default probabilities are implicit in the movements of the market values of the assets

in these models.

Following Merton (1974), we assume that a firm, which is the debt issuer, has a

simple capital structure: a single homogeneous class of debt and the residual claim

(equity). At time t, the market values of its asset, liability(bond) and equity(stock)

are denoted Vt, Bt and St. The following accounting equation must hold:

Vt = Bt + St. (3.10)
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At the meantime we assume that the market value of the assets follows a geometric

Brownian motion as:

dVt = µVtdt + σVtdWt, (3.11)

where µVt is the physical drift, σVt is the physical diffusion and Wt is a standard

Brownian motion under the physical probability space (Ω,F ,P). If the maturity of

the debt is T , the asset value at T will be

VT = Vtexp[(µ− 1

2
σ2)(T − t) + σ(WT −Wt)]

which follows a lognormal distribution as:

log(VT )− log(Vt)|Ft ∼ N((µ− 1

2
σ2)(T − t), σ(T − t))

The only liability of the firm is assumed to be a zero-coupon bond with face value

F with a constant risk-free interest rate r.

Then the default motivation is modeled. Merton assumes that, acting in the

best interests of stockholders at the maturity, the firm must either pay the promised

payment F to the bondholders when the residual claim is positive, i.e. VT − F ≥ 0,

or choose default on debt and liquid its asset to repay the bondholders when its asset

cannot even cover the promised payment of debt, i.e. VT − F ≥ 0. Then at the

maturity the value of the bond is

BT = min(F, VT )

= F −max(0, F − VT ). (3.12)

At the same time, the value of equity at the maturity is

ST = VT −min(F, VT )

= max(VT − F, 0), (3.13)
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which exactly matches the expiration value of a European call option on a non-

dividend common stock where Vt corresponds to the value of the underlying stock

and F corresponds to the strike price. The Black-Scholes formula gives a solution for

the market value of equity at time t as

St = EQ
t

{
exp[−r(T − t)] ·max(Vt − F, 0)

}
= Vt · Φ(d1)− F · exp[−r(T − t)] · Φ(d2) (3.14)

where

d1 =
log(Vt/F ) + (r + 1/2σ2)(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

and Φ(·) is the cumulative distribution function for a standard normal distribution.

The Merton model was originally developed for pricing a defaultable corporate

bond. We can also use it to find the implicit n−year default probability of the debt

issuer, which is the probability that the time t + n asset value of the firm falls below

the default threshold value:

PDt = Prob{Vt+n < F |Ft} (3.15)

= Φ(− ln(Vt) + (µ− 1/2σ2)(n)− lnF

σ
√

n
).

where the fraction in the bracket is called the DD (Distance to Default) in the Moody’s

KMV model, and the PD calculate using the Merton’s model is called the EDF

(Expected Default Frequency), i.e. EDF = Φ(−DD).

The assumption about the default behavior in the Merton model is criticized to

be unrealistic. The first empirical work for the Merton model by Jones et. al. (1984)
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finds that the Merton model is not able to generate credit spreads as high as those ob-

served spreads, hence underestimates the PD. A large number of structural credit risk

models extend the Merton model by allowing more complicated assumptions about

the default threshold process: Black and Cox (1996) use an exponentially increas-

ing function for the default process; Leland and Toft (1996) claim that the default

threshold is determined exogenously by the optimal capital structure of the firm;

Collin-Dufresne and Goldstein (2001) assume a continuous-time stochastic process

for the default threshold. A comprehensive project by Eom et. al. (2003) reveals

that most of the other structural models predict spreads that are too high on average.

The empirical research for structural credit risk models has been historically limited

because of the difficulties in statistical methods. Early literature and industry often

rely on informal statistical analysis based on calibration techniques. Duan et. al.

(2002) and Ericsson and Reneby (2002) use the maximum likelihood method (MLE)

for structural credit risk models and argue that MLE has several advantages over the

calibration method.

In this section, we conduct a Bayesian inference of the Merton model. To im-

plement the Merton model and compute the PD, we need the asset value Vt and its

drift µ and volatility σ as inputs. However, Vt are not observable in practice and

have to be estimated with the parameters together. MCMC methods provide a uni-

fied framework to estimate unobserved latent variables with structural parameters

together.

First we introduce measurement errors to the stock prices since the realized values

could deviate from the theoretical values. Then the Merton model has a state-space
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model form as

St = CBS(Vt, σ) + εt (3.16)

dVt = µVtdt + σVtdWt,

in which the equity values St are observed with errors εt ∼ N(0, σ2
e), and CBS(Vt, σ)

is the Black-Scholes formula in equation (3.14) with the underlying asset value Vt and

volatility σ and other parameters including the risk-free interest rate, strike price and

maturity are observed or defined.

This is a nonlinear state-space model. There are two approaches to apply a Gibbs

sampler to draw unobserved latent variables in a state-space model: The single-move

Gibbs sampler by Carlin, Polson and Stoffer (1992) and the multi-move Gibbs sampler

by Carter and Kohn (1994). In this section we use the single-move Gibbs sampler

with the Metropolis-Hastings algorithm in each Gibbs step to estimate this nonlinear

state-space model.

Bayesian inference in the state space model is aimed at deriving the joint posterior

distribution of parameters θ = (µ, σ, σe) and latent variables V = (V1, · · · , Vn) given

the data S = (S1, · · · , Sn, which can be obtained by the Bayes rule as

p(θ,V|S) ∝ p(S|V, θ)p(V, θ) (3.17)

∝ p(S|V, θ)p(V|θ)p(θ)

where p(S|V, θ) is determined by the measurement equation in (3.16), p(V|θ) is de-

termined by the state equation in (3.16), and p(θ) is the priors of the parameters.

Generally there is no analytical expression for this posterior density if the state space

model is nonlinear and nonnormal. MCMC algorithms including Gibbs sampler and

Metropolis-Hastings algorithm can be used to draw random samples from this joint
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posterior distribution. The details of MCMC algorithms are presented in the ap-

pendix.

With MCMC draws from the joint posterior distribution of all parameters and

latent variables, the draws of one-year PD at time t can be obtained by computing

PDt = Φ(− log(Vt/F ) + (µ− 1/2σ2)

σ
), (3.18)

where PD in the asset value model is a function of both model parameters and a

latent variable. We can recall that PD is a parameter in the rating migration model

and a function of a set of model parameters and covariates in the credit spread model.

3.3 Empirical Analysis

We implement the Bayesian inference on three models in the last section, empirically

estimate the PDs for a specific obligor using real data, and finally compare the three

posterior distributions of the same PD.

3.3.1 Data

Since three models use different data sets. We have a number of data sets to introduce

in the following.

Credit ratings and financial statement information are from COMPUSTAT, which

is a database of financial, statistical and market information covering publicly traded

companies in the US and Canada over past 20 years. It provides annual or quarterly

data from financial statements and supplemental data. It also contains the monthly

long-term debt ratings since 1985. S&P Long Term Domestic Issuer Credit Rating

range from AAA to D. A bond with a rating BBB or above is known as an investment
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grade bond; one with a rating BB or lower is known as an speculation grade bond,

or junk bond. In an attempt to refine these ratings further, S&P now on occasion

assigns a + or − to its ratings to indicate that the bond is at the upper or lower

end of the rating category. Here we ignore + or −, which means AAA+, AAA and

AAA− are classified to the rating AAA. By doing this, we can try to avoid insufficient

observations for some ratings. We choose the one-year time period between the end

of May 2004 and the end of May 2005. During this period, 2032 have valid ratings

from S&P among the 9854 firms.

For the credit scoring model, we adopt the five financial ratios used in the renowned

Altman’s Z score:

1. working capital/total assets

2. retained earning/total assets

3. EBIT/total assets

4. market value of equity/book value of total debt

5. sales/total assets

Some firms in the Compustat dataset do not have financial statement information we

need. The sample size in the credit scoring model is reduced to 1972 after we drop

the firms with no information or extraordinary observations. Among 1972 firms, 14

firms default during the year.

We choose a company, Honeywell International Inc.(NYSE symbol: HON), to con-

duct the empirical analysis of the asset value model. Daily stock prices of Honeywell

are collected from CRSP. The daily equity values St are computed by multiplying
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the quoted daily stock prices by the number of the common shares ( preferred stocks

are added if available). The number of common shares and preferred stock values

are obtained from COMPUSTAT. We need to use stock prices to estimate important

parameters such as the instantaneous asset value and its drift and volatility. Since

we are interested in PD at the end of May 2005, we collect the daily stock prices

from 01/01/2005 to 05/31/2005 and the number of outstanding common shares and

total liability at the end of 2004. The risk free rate is set to be 3-month T-bill rate

at 05/31/2005 of 2.8%. The time to maturity of liability is set to be 5 years 2 .

For the purpose of comparison, we collect the credit default swap (CDS) prices of

Honeywell from Datastream. CDS is a financial contract in which one party makes

periodic payment to exchange for the protection from the other party when the ref-

erence entity defaults. The price of the CDS, represented as a percentage of the

notional amount, can be treated as the investors’ expectation about the PD of the

reference entity. Although the CDS market is not very liquid and the prices may be

a distorted indicator of the true PD, we use the CDS price as a criterion to compare

the posterior distributions of the PD of Honeywell from three different credit risk

models. The CDS price is helpful to identify which model tends to overestimate or

underestimate the PD.

3.3.2 Results

First we estimate the rating migration model. Table 3.2 presents how many obligors in

each rating default during 06/2004-05/2005. The point estimates of PD are computed

using the maximum likelihood method. Using noninformative (uniform [0,1]) prior

2It is the industry practice to set the maturity of the hybrid liability to be 5 years. We check
different values for the maturity and find the estimation results are robust to the time to maturity
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Table 3.2: Number of Defaults during 05/2004-05/2005

AAA AA A BBB BB B CCC CC

Number of Obligors (05/2004) 20 83 386 624 454 401 57 7

Defaults (05/2005) 0 0 0 0 0 6 11 1

Point estimate of PD (05/2005) 0 0 0 0 0 1.50% 19.30% 14.29%

distribution, we can also find the posterior distribution for any PD associated with

a particular rating, which follows a Beta distribution. For example, the posterior

distribution of the PD of an AAA-rated obligor is Beta(1, 21) ∝ (1−PD)20, and the

posterior distribution of the PD of a CCC-rated obligor is Beta(12, 47) ∝ PD11(1−

PD)46. Honeywell was rated A by S&P during the year. So the posterior distribution

of its PD follows a Beta(1,387) distribution, which is plotted in Figure 3.1.

Next, the credit scoring model using the Altman’s Z score variables yields the

estimates of five coefficients for the financial ratios. We draw 5,000 samples using the

Gibbs sampler from their posterior distributions. The first 2,000 are “burned”. All

MCMC chains converged very quickly. The posterior means and standard deviations

are presented in Table 3.3. It can be seen that four of five explanatory variables are

significant, and three of them are significantly negative, which is reasonable since

those variables should be low when default happens. Retained earning/total assets is

not quite significant and the coefficient of Sales/total assets seems to contradict our

expectation. With the MCMC draws from the posterior distribution of the param-

eters, we can easily obtain MCMC draws for the PD of any firm by computing the

function PDi = Φ(Xiβ). These MCMC draws are from the posterior distributions

of the PDs. The posterior distribution of PD of Honeywell using the credit scoring
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Figure 3.1: Posterior distribution of PD of Honeywell, Beta(1,387), using the rating

migration model
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Table 3.3: Estimates of The Credit Scoring Model

Coefficient Posterior Mean Std Deviation

constant -2.1272 0.1167

β1 : working capital/total assets -0.0180 0.0045

β2 : retained earning/total assets 0.0007 0.0017

β3 : EBIT/total assets -0.0503 0.0121

β4 : market value of equity/book value of total debt -0.0100 0.0047

β5 : sales/total assets 0.0015 0.0009

model is displayed in Figure 3.2.

Last, we estimate the asset value model based on Merton (1974) using the daily

stock prices of Honeywell in 2005. We still burn the first 2000 draws and keep 3000

draws for all parameters and latent variables. Again with the MCMC draws from the

posterior distribution of the parameters and the latent variable, we can obtain the

draws for the PD based on Equation . The posterior pdf of the PD of Honeywell is

plotted in Figure 3.3.

Finally we display three posterior distributions of Honeywell’s PD at the end of

May 2005 in Figure 3.4. The vertical line in three figures represents the CDS price, 6.8

bp, of Honeywell on May 31 2009, which can be used here to evaluate how far three

distributions are away from one another. From the figures, we can observe that the

posterior density corresponding to the rating migration model has the highest peak,

above 200, among the three, and the smallest variance. The posterior mode is near

to the CDS price. The posterior density corresponding to the credit scoring model

has a lower peak, below 100, and is less skewed. But its posterior mode or mean,
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Figure 3.2: Posterior distribution of PD of Honeywell, using the credit scoring model
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even the majority of the distribution, is well above the CDS price. We conclude that

the credit scoring model tends to overestimate the PD of Honeywell compared to the

other models. The posterior density corresponding to the asset value model is very

flat and the peak is below 4. As a result, it has a very fat tail and large variance.

This posterior distribution seems to be much less informative about the PD than the

other two. This should be due to a much smaller sample size and more complicated

state-space model structure used by the asset value model. Cross-sectional data are

used in both the rating migration and credit scoring model and the sample size is

over one thousand, while the time series data used by the asset value model only

contains around one hundred daily stock prices. Moreover, the asset value model

tends to underestimate the PD since the posterior mode is the nearest to zero among

the three. This result coincides the finding by Jones et. al. (1984) and Eoms et. al.

(2003).

3.4 A Combined Bayesian Estimation of PD

The empirical results in the last section show that different credit risk models often

yield largely different estimation results for the same PD. A natural way to deal

with contradicted results between competing models is to select the “best” credit risk

model, which fits the data in terms of in-sample fitting or out-of-sample prediction.

However, the direct model comparison based on model fits is not feasible in the

case of our “horizontal” comparison of credit risk models. For example, in a credit

scoring model, the dependent variable is credit ratings, while stock prices or corporate

bond prices is the predicted variable in an asset value model. It does not make

any sense to compare the mean square errors of credit ratings and those of stock
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prices if we compare these two models using some criterion based on the mean square

errors. More importantly, these two types of credit risk models describe the economic

reasoning behind the defaults in the different ways. Thus, both of them could be

correctly specified and it is not necessary to accept one model and reject the other.

In that sense, a statistical hypothesis testing between these two models might not be

appropriate.

The above issue can be referred as the model uncertainty problem in the prac-

tice of quantitative credit risk modeling. Practitioners in the banking industry often

complaint that it is difficult to find a satisfactory quantitative model that can con-

sistently explain historical defaults and make reliable prediction. This practical issue

is even exacerbated by another problem called data insufficiency. Data insufficiency

is referred to the cases in which it is difficult or impossible for the users of the credit

risk models to find sufficient data to make reliable statistical inference on the models.

First, default events are naturally infrequent, particularly for the obligors with low

PDs. Therefore it is often not likely to observe enough historical defaults for the

obligers with short credit history. A typical example is in the credit rating transition

matrix in Table (3.1). For the obligors with rating above B, the PDs are estimated to

be zero. These results obviously contradicting our commonsense should be due to the

data insufficiency. Moreover, many credit risk models rely on financial information

such as balance sheets and market prices of financial assets, which are frequently not

available in the sense of sufficient observations.

Motivated by these two practical issues, we propose a combined estimation of

PD using the Bayesian inference. The methodology of this combined estimation is

simply based on the Bayes rule: We use the PD estimates from one model using
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one data set as the prior information in the second model using a different data set.

This combination will yield a posterior distribution of PD which incorporate different

sources of information of multiple model structures. It is reasonable to believe this

approach is useful to reduce the data insufficiency and model uncertainty problem.

Suppose that we are interested in combining the PD estimates from the credit

scoring model M1 and the asset value model M2 that are studies previously. These

two models are using different data sets to estimate the PD of the same obligor. M1

uses a set of historical credit ratings, D1, while M2 uses D2, a set of the time series of

stock prices. Both models may suffer from the data sufficiency problem because some

firms may not have a long history of externally assigned credit ratings or publicly

listed stocks. Meanwhile two models are not necessarily competing models since

they are explaining different economic relations around the same default behavior. A

model selection to reject one of them is not appropriate. Let us consider to combine

the PD estimates from these two models to yield a “combined” posterior distribution

of PD. The empirical analysis in the last section outputs the posterior distributions,

more precisely MCMC draws, of the PD of Honeywell from two models: p1(PD|D1)

and p2(PD|D2). Through the Bayes rule, we can derive the “combined” posterior

distribution of the PD as:

p12(PD|D1, D2) ∝ p2(D2|PD)p1(PD|D1), (3.19)

assuming that D1 and D2 are conditionally independent given PD, where the sub-

scripts 1 and 2 for the posterior distributions denote that the density functions de-

pend on corresponding model structures. This result can be consecutively extended

to incorporate more data sets and models as long as the conditional independence

assumption can be satisfied. Note that the conditional independence assumption pre-
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vents us from combining the rating migration model and the credit scoring model

since their data sets are overlapped.

Generally we are not likely to find a closed-form posterior density function p12(PD|D1, D2).

For the practical implementation, we need to resort to numerical solutions. Here we

introduce a sampling techniques proposed by Rubin (1987), which is often called the

Sampling/Importance Resampling (SIR). SIR is based on the importance sampling

algorithm but involved with a resampling step. Let us illustrate this algorithm by

using our example to sample from p12(PD|D1, D2) as:

p12(PD|D1, D2) ∝ p2(D2|PD)p1(PD|D1). (3.20)

In the importance sampling algorithm, p12(PD|D1, D2) is called the target distribu-

tion, p1(PD|D1) is called the proposal distribution, and p2(D2|PD) is the importance

function.

To obtain random draws from the target distribution p12(PD|D1, D2), SIR re-

quires two conditions to be satisfied: First, drawing directly from the proposal distri-

bution is feasible, which is satisfied in our example since we have MCMC draws from

p2(D2|PD). Second, the importance function can be numerically evaluated, which is

also satisfied in our example. By using the Bayes formula, we can derive that

p2(D2|PD) ∝ p2(PD|D2)/p2(PD), (3.21)

in which p2(PD|D2) can be numerically evaluated by using any kernel density esti-

mation technique since we have MCMC draws from this distribution.

Finally, SIR is implemented in the following steps:

Step 1: Draw PDj for j = 1, · · · , m from the proposal distribution p1(PD|D1).
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Step 2: Evaluate the importance function w̃j = p2(D2|PD) at each PDj, and compute

weights as

wj =
w̃j∑m
i=1 w̃i

.

Step 3: Resample m draws with replacement from the multinomial distribution {PDj}m
j=1

with probabilities {wj}m
j=1.

The m draws we obtain are approximately from the posterior distribution p12(PD|D1, D2).

Importance sampling requires that the proposal density function should be close to

the target density. When this condition is not met, we need increase the size of inde-

pendent draws, m, to reduce the approximation error. Theoretically the order of the

combination (which one is the proposal distribution) does not affect the “combined”

posterior distribution if only noninformative priors are used for the PD. However, the

choice of the proposal density may have a large impact on the accuracy of numerical

approximation. This effect is expected to fade when the number of MCMC draws is

large enough.

Figure 3.5 shows how we implement the SIR algorithm and combine two posterior

distributions of the PD of Honeywell from the credit scoring model and the asset

value model. Since the posterior distribution from the asset value model is much

flatter than that from the credit scoring model, we expect that the credit scoring

model will dominate the combination. Therefore, the posterior distribution using the

credit scoring model is more appropriate to be selected as the proposal distribution.

We can observe that the posterior distribution based on the credit scoring model

almost assign the equal probabilities to the two sides of the center of the distribution
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credit scoring model and the asset value model
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since the distribution is roughly normally distributed. When the information of stock

prices comes in the analysis, we are informed by the asset value model that the PD

is more likely to be around zero than to be large. Then the values of the importance

function, determined by the asset value model, adjust the proposal distribution and

assigned higher weights to the left half side of the proposal density function than to

the right half side. As a result, the left half side of the proposal density function shifts

upwards and the right half side shifts downwards to reach the “combined” posterior

distribution. It is also observed that the combination seems to have some difficulties

in determining which model dominates in the area of the peak of the proposal density.

It is expected that the mode of the “combined” distribution is between, actually a

weighted average of, two “pre-combined” distributions. Moreover, the combination

makes the posterior distribution more concentrated in terms of a smaller variance.

This result is also reasonable because more information is incorporated. The estima-

tion of the PD can benefit from this combination in that the decision maker is more

confident about what range the PD should fall in.

3.5 Concluding Remarks

The research in the area of credit risk models is expected to be growing in the future

because of the current credit crisis. However, it is probably a impossible task to find a

credit risk models to perfectly explain the default behaviors. The competition between

different credit risk models will exist for a long time. In this paper, we empirically

explore and compare three classes of credit risk models, which are actively discussed

by academics and used by practitioners. Our comparison is different from previous

research in that the comparison is not limited to the same class of models using the
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same information. We call it “horizontal” comparison because the competing models

use different information and model comparison criteria for model fits or prediction

are inappropriate. Our comparison is based on the posterior distributions of the same

PD under three different credit risk models. Bayesian inference and MCMC methods

have been shown to be powerful to in dealing with high-dimensional parameters,

unobserved latent variables and highly complicated model structures in the credit

scoring and asset value models. With the MCMC methods, we can easily derive the

full posterior distributions of the PD instead of some point or interval estimates that

can be obtained under the classical approach. Furthermore, we utilize the advantage

of the Bayesian inference again, and propose a new estimation method for PD. This

so-called combined estimation method pools the information from different sources

for the estimation of the PD by using the PD estimates from one model as the prior

information for another model. The combined estimation is motivated by the attempt

to reduce two important practical issues in the implementation of credit risk models:

data insufficiency and model uncertainty.

The “horizontal” comparison and combination between different classes of credit

risk models can be extended to more complicated model structures in the future direc-

tion. For example, the recent frontier for the credit scoring models is the proportional

hazard models that allow the time-varying PD. We can consider to compare and com-

bine this kind of model with Collin-Dufresne and Goldstein (2001) or its extension.

Other possible sources for estimating default probabilities include the market prices

of corporate bonds and CDS (credit default swaps). The combination is possible to

be extended to include these new information.



Appendix A

Proof of the Stochastic Taylor

Formula

Consider the SDE characterizing the Ito process

dX(t) = µ(X(t))dt + σ(X(t))dW (t). (A.1)

Let f be a function of X(t). Applying the Ito lemma, we can obtain

df(X(t)) = {µ(X(t))f ′(X(t)) +
1

2
σ2(X(t))f

′′
(X(t))}dt + σ(X(t))f ′(X(t))dW (t).

(A.2)

Defining

L0 = µ
∂

∂X
+

1

2
σ2 ∂2

∂X2

L1 = σ
∂

∂X

then

df(X(t)) = L0f(X(t))dt + L1f(X(t))dW (t). (A.3)
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Let f(x) = µ(x), then

µ(X(t)) = µ(X(0)) +

∫ t

0

L0µ(X(s))ds +

∫ t

0

L1µ(X(t))dW (t). (A.4)

Similarly, choose f(x) = σ(x), then

σ(X(t)) = σ(X(0)) +

∫ t

0

L0σ(X(s))ds +

∫ t

0

L1σ(X(t))dW (t). (A.5)

Substituting Equations (49) and (50) into (47) leads to

f(X(t)) = f(X(0)) +

∫ t

0

{[
µ(X(0)) +

∫ s1

0

L0µ(X(s2))ds2 +

∫ s1

0

L1µ(X(s2))dW (s2)
]
f ′(X(s1))

+
1

2

[
σ(X(0)) +

∫ s1

0

L0σ(X(s2))ds2 +

∫ s1

0

L1σ(X(s2))dW (s2)
]2

f
′′
(X(s1))}ds1

+

∫ t

0

{σ(X(0)) +

∫ s1

0

L0σ(X(s2))ds2 +

∫ s1

0

L1σ(X(s2))dW (s2)
}

f ′(X(s1))dW (s1)

= f(X(0)) +
[
µ(X(0))f ′(X(0)) +

1

2
σ2(X(0))

] ∫ t

0

ds + σ(X(0))f ′(X(0))

∫ t

0

dW (s)

+
[
σ2(X(0))f

′′
(X(0)) + σ(X(0))σ′(X(0))f ′(X(0))

] ∫ t

0

∫ s1

0

dW (s2)dW (s1) + R,(A.6)

which is exactly the stochastic Taylor expansion formula in (4).

Furthermore, the above double Wiener integral is evaluated by the following

derivation∫ t

0

∫ s1

0

dW (s2)dW (s1) =

∫ t

0

[W (s1)−W (0)]dW (s1)

=

∫ t

0

W (s1)dW (s1)−W (0)

∫ t

0

dW (s1)

=
1

2

∫ t

0

[dW 2(s1)− ds1]

=
1

2
(W 2(t)− t) (A.7)

since dW 2 = 2WdW + dt by Ito’s lemma.



Appendix B

MCMC Algorithms for the Asset

Value Model based on Merton

(1974)

Suppose that observed data consist of a sequence of stock prices of the obligor S =

{Si∆}n
i=1 within equal time interval ∆ before the maturity date T . Before we proceed,

let us reparameterize the model (3.16) as

St = C(vt, σ) + εt, (B.1)

vt = vt−∆ + µ∗∆ + σ
√

∆ηt,

where vt = ln(Vt), µ∗ = µ− 1/2σ2, ηt ∼ N(0, 1), and the function

C(vt, σ) = exp(vt)Φ(d1)− exp[−r(T − t)]Φ(d2).

The joint posterior density function of a set of latent variables v = {vi∆}n
i=1 and



95

parameters Θ = (σe, µ
∗, σ) can be derived using the Bayes rule as:

p(v,Θ|S) ∝ p(S|v,Θ) · p(v|Θ) · p(Θ) (B.2)

∝
n∏

i=1

p(Si∆|vi∆, σ, σe) ·
n∏

i=1

p(vi∆|v(i−1)∆, µ, σ) · p(Θ)

∝
n∏

i=1

1

σe

exp
[
− (Si∆ − C(vi∆, σ))2

2σ2
e

]
·

n∏
i=1

1

σ
exp

[
−

(vi∆ − v(i−1)∆ − µ∆)2

2σ2∆

]
· p(Θ).

We use a Gibbs sampler to draw samples from the marginal posterior distribution

of each hyperparameter. To implement the Gibbs sampler, we need to obtain fully

conditional posterior density functions for all hyperparameters. For simplicity, we

assume independent noninformative priors 1 as

p(µ∗) ∼ c, p(σ2) ∼ σ−2, p(σ2
e) ∼ σ−2

e .

Their fully conditional posterior density functions are derived as

• The conditional posterior distribution of µ∗ is normal:

p(µ∗|·) ∝ p(v|µ∗, σ) · p(µ) (B.3)

∝
n∏

i=1

exp
[
−

(vi∆ − v(i−1)∆ − µ∆)2

2σ2∆

]
∼ N(

1

n∆

n∑
i=1

(vi∆ − v(i−1)∆),
σ2

n
),

and the conditional posterior distribution of σ2
e is inverted Gamma:

p(σ2
e |·) ∝ p(S|σe, σ,v) · p(σ2

e) (B.4)

∝
n∏

i=1

1

σe

exp{− [Si∆ − C(vi∆, σ)]2

2σ2
e

} · 1

σ2
e

∼ IG(
n

2
,
1

2

n∑
i=1

[Si∆ − C(vi∆, σ)]2).

1we can also use conjugate priors µ∗ ∼ N,σ2 ∼ IG, σ2
e ∼ IG
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• The conditional posterior distribution of σ2 is nonstandard:

p(σ2|)̇ ∝ p(S|v, σ) · p(v|σ) · p(σ2) (B.5)

∝
n∏

i=1

exp{− [Si∆ − C(vi∆, σ)]2

2σ2
e

}
n∏

i=1

1

σ
√

∆
exp{−

[vi∆ − v(i−1)∆ − µ∆]2

2σ2∆
} 1

σ2

(B.6)

where the second part of the posterior kernel is an inverted Gamma, but the

first part is not recognized as the kernel of any standard distribution. I propose

a Metropolis-Hasting algorithm to draw from this nonstandard distribution.

Define φ = σ2, then the posterior density function of φ is

p(φ|·) ∝
n∏

i=1

exp{− [Si∆ − C(φ)]2

2σ2
e

}
n∏

i=1

φ1/2 · exp{−
[vi∆ − v(i−1)∆ − µ∆]2

2∆
φ} · φ,

(B.7)

where

C(φ) = exp(vt)Φ(d1)− exp[−r(T − t)]Φ(d2)

is a nonlinear function of φ, since

d1 =
[vi∆ + (r + 1

2φ
)(T − i∆)]

√
φ√

T − i∆)

and

d2 =
[vi∆ + (r − 1

2φ
)(T − i∆)]

√
φ√

T − i∆)
.

We approximate the nonlinear function using a Taylor expansion around the

last draw, say φ(j−1), as

Si∆ − C(φ) ≈ Si∆ − C(φj−1)− (φ− φ(j−1))Cφ(φ
(j−1)), (B.8)

where Cφ(φ
(j−1)) is the partial derivative of C with respect to φ evaluated at

φ(j−1). Then the first part of the posterior density function in (B.7) can be
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approximated using a normal kernel for φ with mean m and variance V where

m = φ(j−1) + V ·
∑n

i=1{[Si∆ − C(φ(j−1))]Cφ(φ
(j−1))}

σ2
e

(B.9)

V =
σ2

e∑n
i=1 C2

φ(φ(j−1))
.

Furthermore, we approximate this normal distribution using a Gamma distri-

bution with the same mean and variance as

N(m,V ) ≈ Gamma(
m2

V
,
m

V
). (B.10)

Since the product of two Gamma kernels is still a Gamma kernel, we finally

derive a Gamma proposal distribution for the Metropolis-Hasting algorithm:

q(φ|φ(j−1)) ∼ Gamma(
m2

V
+

n

2
,
m

V
+

1

2∆

n∑
i=1

[vi∆ − v(i−1)∆ − µ∆]2). (B.11)

• The conditional posterior distribution of latent variable vi∆ i = (1, 2, · · · , n) is

also nonstandard:

p(vi∆|·) ∝ p(Si∆|vi∆, Θ) · p(v(i+1)∆|vi∆, Θ) · p(v(i)∆|v(i−1)∆, Θ) (B.12)

∝ exp{− [Si∆ − C(vi∆)]2

2σ2
e

} · exp{−
[v(i+1)∆ − vi∆ − µ∆]2

2σ2∆
}

·exp{−
[vi∆ − v(i−1)∆ − µ∆]2

2σ2∆
}.

(B.13)

The last two components of the product are normal kernels for vi∆, but the first

component is nonstandard. Again, we use the Taylor expansion around the last

draw v
(j−1)
i∆ to approximate the first component as

Si∆ − C(vi∆) ≈ Si∆ − C(v
(j−1)
i∆ )− (vi∆ − v

(j−1)
i∆ )Cv(v

(j−1)
i∆ ), (B.14)
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where Cv(v
(j−1)
i∆ ) is the partial derivative of C with respect to vi∆ evaluated

at v
(j−1)
i∆ . Then we derive a normal proposal distribution for the Metropolis-

Hasting algorithm:

q(vi∆|v(j−1)
i∆ ) ∼ N(mv, Vv), (B.15)

where

mv = v
(j−1)
i∆ + Vv

[ [Si∆ − v
(j−1)
i∆ ]Cv(v

(j−1)
i∆ )

σ2
e

+
v(i+1)∆ + v(i−1)∆

σ2∆

]
V −1

v =
C2

v (v
(j−1)
i∆ )

σ2
e

+
2

σ2∆
.

Note that vn∆ and v0 have slightly different posterior densities and proposal

distributions.

The MCMC algorithms are implemented in the following steps:

Step 1 Set the initial values µ∗(0), σ(0), σ
(0)
e and v(0);

Step 2 At the j-th iteration, draw µ∗(j) from a normal distribution in (B.3);

Step 3 Draw σ
2(j)
e from an inverted Gamma distribution in (B.4);

Step 4 Draw φ′ from a proposal Gamma distribution in (B.11) and accept this draw

and let φ(j) = φ′ with a probability

ρ = min

{
1,

p(φ′|·)
p(φ(j−1)|·)

· q(φ(j−1)|φ′)
q(φ′|φ(j−1))

}
, and recover the draw of σ by letting σ(j) = 1/

√
φ(j);

Step 5 Draw {v(j)
i∆}n

i=1 iteratively under the single-move approach. At each move, draw

v′i∆ from a normal proposal distribution in (B.15) and accept it with a proba-

bility

ρ = min

{
1,

p(v′i∆|·)
p(v

(j−1)
i∆ |·)

· q(v
(j−1)
i∆ |v′i∆)

q(v′i∆|v
(j−1)
i∆ )

}
;



99

Step 6 Repeat Step 2 through Step 5 for M iterations.
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