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ABSTRACT OF THE DISSERTATION

A Statistical Test Spectrum - From Robust To Powerful

by Somnath Mukherjee

Dissertation Director: Prof. Kesar Singh

The concept of Scale Curve provides a graphical tool for analysis of multivariate data,

with a broad range of statistical applications. Recent research in variants of Scale

Curves have shown great promise, as they can be easily adapted to build robust non-

parametric testing procedures under various scenarios, while preserving good power,

and retaining the crucial virtues of easy computation and simple graphical representa-

tion.

This thesis investigates the properties of one such variant of Scale Curves, named

the Determinant Scale Curve (dsc). It is shown that the dsc can be used to devise non-

parametric exact tests for location of multivariate data with a special property (stated

in next paragraph), under both one sample and multi-sample setups. Similar ideas are

extended to tackle problems in linear regression, where the dsc is used to build tests

for significance of the slope parameter.

For all the problems discussed, the dsc’s actually provide a whole spectrum of tests.

The tests at the rightmost end of the spectrum are shown to be Pitman equivalent

to the benchmark most powerful tests for the given problem. As one moves towards

the other end, the corresponding tests become progressively more and more robust, i.e.

insensitive to outliers. Simulation results show that this robustification does not come

with a serious loss of power under most situations.
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Applications of the dsc as an exploratory tool are also discussed. It is shown to be

useful for investigating tail properties of a data distributions and identifying presence

of linearity in multivariate data. The results are very encouraging, and suggest wider

applicability of similar techniques.
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Chapter 1

Introduction

The notion of scale curves was introduced by Liu, Parelius and Singh in their paper

[Liu, Parelius, Singh 1999]. A scale curve describes how scale evolves from the center

for a multivariate dataset. For 0 ≤ t ≤ 1, [Liu, Parelius, Singh 1999] defines the scale

curve s(t) as the volume of 100t% central data. Here, the centrality is characterized

by a concept of data-depth. The properties of the curve would of course depend on

the statistic used to measure the data-depth. Among the well known choices are the

Half-Space depth by Tukey, the Oja depth, and the Simplicial Depth, [Liu, R. 1990].

With a suitably chosen data-depth, the scale curve can yield valuable insights into the

nature of the distribution. This is especially true in the case of high-dimensional data,

where visualizing the spread of the data without the help of a graphical tool like the

scale curve can prove to be difficult. The theoretical properties of the scale curve are,

however, difficult to ascertain, as shown by Serfling, [Serfling, R. 2002].

A significant simplification of the of the computational problems associated with

the scale curves was provided by [Singh, Tyler, Zhang, Mukherjee] (to appear), which

defines a variant of the scale curve, called the Quantile Scale Curve (qsc). For 0 ≤ t ≤ 1

the qsc is defined as: q(t) = the 100tth percentile of the volumes of all simplices created

by the data-points as the vertices. As shown in [Singh, Tyler, Zhang, Mukherjee], the

qsc can be useful as a tool for detecting linear and non-linear associations between

groups of variables, using some proposed graphical tests. Other problems that were

addressed using the qsc were testing for multivariate location and scale, and exploring

heavy-tailedness.

This thesis will explore another variant of the scale curve, which we will call the

Determinant Scale Curve (dsc), which has got some special appeal. It will be shown
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that, like the qsc, the dsc can also be used for a wide range of testing purposes, while

retaining the nice properties of easy computation and simple graphical interpretation.

Furthermore, it will be established that the graphical tests derived at the upper end

of the test-plots of the dsc’s are Pitman equivalent to the most powerful tests in many

common scenarios. This fact makes the testing procedures developed using the dsc far

more attractive. The graphical tests using dsc are shown to have optimality properties

in many of the testing scenarios considered in [Singh, Tyler, Zhang, Mukherjee], as well

as some additional important problems in multivariate analysis.

Before formally defining dsc, we must introduce a few notations and definitions.

Let X1, X2, . . . , Xn be i.i.d. p-variate data, where X ′
i = {Xi1, Xi2, . . . , Xip}, 1 ≤ i ≤

n are p× 1 row vectors.

In this presentation, X will denote the p× n data-matrix, whose ith column is Xi, 1 ≤
i ≤ n. The mean vector is X̄ ′ = {X̄1, X̄2, . . . , X̄p}, where X̄j = 1

n

∑n
i=1 Xij , 1 ≤ j ≤ p.

Also, define the sum of squares matrix SS(X) = {sij}p×p as

sij =
n∑

k=1

(Xki − X̄i)(Xkj − X̄j), 1 ≤ i, j ≤ p

Finally, the matrix X(−i) will denote the sub-matrix of X with the ith column Xi

deleted. X̄(−i) and SS(X(−i)) should be interpreted analogously to X(−i).

We can now go on to define the Determinant Scale Curve and explore some of its

properties.

Definition 1.1. For a data matrix X , the Determinant Scale Curve d(t), 0 ≤ t ≤ 1

is defined as follows:

d(1) =
√
|SS(X)|,

d

(
n− 1

n

)
=

√
min

1≤i≤n

∣∣SS(X(−i))
∣∣.

Suppose, for a given sample, the above minimum is attained at X(−i). Then define,

d

(
n− 2

n

)
=

√
min

1≤j≤n,j 6=i
SS([X(−i)](−j)).

This sequential elimination process is continued to define d( k
n), 1 ≤ k ≤ n.

Finally, having defined d(.) at the nodes
(

k
n

)
, 0 ≤ k ≤ n, we define the rest of the
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function as lines joining the nodes: for k
n ≤ t ≤ k+1

n , 0 ≤ k ≤ (n− 1), i.e.

d(t) = d

(
k

n

)
+ (nt− k)

(
d

(
k + 1

n

)
− d

(
k

n

))
.

1.1 Properties of the Determinant Scale Curve (dsc)

One would like any scale curve to be monotonically non-decreasing, since, addition of

points to the outer regions of a data-cloud is expected to only increase the data vol-

ume. The following results would prove that dsc does indeed satisfy this monotonicity

property.

Lemma 1.1. For any data matrix X, we have |SS(X)| ≥ ∣∣SS(X(−i))
∣∣

Proof. Observe that by partitioning X into
(
X(−i) : Xi

)
, one can get the identity

|SS(X)| = |(X(−i) − X̄1′(n−1))(X(−i) − X̄1′(n−1))
′ + (Xi − X̄)(Xi − X̄)′|, (1.1)

where 1k is the column vector of length k with all entries equal to 1.

Now, notice that

X̄ =
(n− 1)X̄(−i) + Xi

n
= X̄(−i) +

Xi − X̄(−i)

n
, (1.2)

and,

X(−i) − X̄1′(n−1) = X(−i) − X̄(−i)1
′
(n−1) +

(Xi − X̄(−i))1′(n−1)

n
.

Therefore,

(X(−i) − X̄1′(n−1))(X(−i) − X̄1′(n−1))
′ =(X(−i) − X̄(−i)1

′
(n−1))(X(−i) − X̄(−i)1

′
(n−1))

′

+
(n− 1)(Xi − X̄)(Xi − X̄)′

n2

(1.3)

Also, by 1.2,

Xi − X̄ =
(n− 1)(Xi − X̄(−i))

n
. (1.4)
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Using 1.3 and 1.4 in 1.1, we get,

|SS(X)| =
∣∣∣∣∣(X(−i) − X̄(−i)1

′
(n−1))(X(−i) − X̄(−i)1

′
(n−1))

′ +
(n− 1)(Xi − X̄)(Xi − X̄)′

n

∣∣∣∣∣

=

∣∣∣∣∣SS(X(−i)) +
(n− 1)(Xi − X̄)(Xi − X̄)′

n

∣∣∣∣∣

=
∣∣SS(X(−i))

∣∣
[
1 +

(n− 1)(Xi − X̄)′(SS(X(−i)))
−1(Xi − X̄)

n

]

The last equality follows from the fact that for any k × k non-singular matrix A and

k × 1 vector b, we have,

|A| ∣∣1 + b′A−1b
∣∣ =

∣∣∣∣
(

A −b
b′ 1

)∣∣∣∣ =
∣∣A + bb′

∣∣

Since SS(X(−i))
−1 is positive definite, and n ≥ 2, the lemma is proved.

The lemma immediately provides us with the following result.

Theorem 1.2. d(.) is monotonically non-decreasing.

Proof. For any data matrix X and 1 ≤ k ≤ n, suppose d
(

k
n

)
is attained at the submatrix

U of order p× k of X. Using the lemma, we have:

d2

(
k − 1

n

)
= min

1≤i≤k

∣∣SS(U(−i))
∣∣ ≤ ∣∣SS(U(−k))

∣∣ ≤ |SS(U)| = d2

(
k

n

)
,

which proves that d(.) is non-decreasing at the nodes
(

k
n

)
, 0 ≤ k ≤ n. Since d(.) is

linear between any two successive nodes, the theorem is proved.

Theorem 1.2 essentially establishes that, even though the scheme to define d(.)

stipulates dropping one data row at a time, one can actually drop more than one row

of data at any given step. The resulting curve will be a scale curve in its own right and

will inherit most of the properties of the original curve. However, dropping more and

more points at any given step reduces the number of nodes, and reduces the amount

of information captured in the curve, making it less effective for analytical purposes.

When at least two data-rows are dropped in a step, it is possible to view the result

in Lemma 1.1 as a special case of well known results in multivariate analysis. To see
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this, lets partition the original data matrix X into
(
X1(p×n1),X2(p×n2)

)
, n1 +n2 = n,

where X1(p×n1) is the part that is retained and X2(p×n2) is the part that is dropped.

Now, one can consider the two partitions as data coming from two populations, and,

using a standard result in multivariate analysis, one can split the variance of the data

into ”within-group” and ”between group” sum-of-squares, i.e.,

SS(X) = W + B

where W = SS(X1) + SS(X2) is the ”within group” sum-of-squares, and B is the

”between group” sum-of-squares. Therefore,

|SS(X)| = |W | ∣∣I + W−1B
∣∣

Now, in a two-sample problem like this, we have

∣∣I + W−1B
∣∣ = 1 +

n1n2

n
h′W−1h ≥ 1

where h is the difference in the means of the two samples. The last inequality holds

since W is n.n.d. Therefore,

|SS(X)| ≥ |W |

= |SS (X1) + SS(X2)|

≥ |SS(X1)|+ |SS(X2)|

≥ |SS(X1)| .

The second inequality above follows from the fact that both SS(X1) and SS(X2) are

n.n.d. matrices.

Another desirable property of a scale curve is affine equivariance, defined as follows:

Definition 1.2. A statistic U(X) is affine equivariant, if, for all p× p matrices A and

p× n matrices B, we have

U(AX + B) = |A|U(X)

This property essentially ensures that a rotation and/or a translation of the axes

does not affect the scale curve. The following theorem confirms that dsc does, indeed,

satisfy this property.
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Theorem 1.3. For any data matrix X, and Y = A×X+B , for p× p matrices A and

p× n matrices B, we have

dY (t) = abs(|A|)dX(t), for all 0 ≤ t ≤ 1.

Therefore, dsc is affine equivariant.

Proof. First, notice that for any 0 ≤ i ≤ n, we have

Y(−i) = A×X(−i) + B(−i).

Also,

|SS(Y)| = |SS(A×X + B)| = |A|2 |SS(X)| =⇒ dY (1) = abs(|A|)dX(1).

Since |A|2 ≥ 0, we have, for 0 ≤ i 6= j ≤ n,

∣∣SS(X(−i))
∣∣ ≤ ∣∣SS(X(−j))

∣∣ =⇒ ∣∣SS(Y(−i))
∣∣ ≤ ∣∣SS(Y(−j))

∣∣ .

Therefore, if dX

(
n−1

n

)
is attained at the submatrix X(−i), 0 ≤ i ≤ n, then dY

(
n−1

n

)

will be attained at Y(−i). Hence,

dY

(
n− 1

n

)
=

√∣∣SS(Y(−i))
∣∣ = abs(|A|)dX

(
n− 1

n

)
.

Since, the above argument can be repeated, replacing Y and X by Y(−i) and X(−i)

respectively, we can conclude

dY

(
n− 2

n

)
= abs(|A|)dX

(
n− 2

n

)
.

Continuing similarly, we have, dY

(
k
n

)
= abs(|A|)dX

(
k
n

)
for 0 ≤ k ≤ n. Since, dsc is

defined linearly in between the nodes
(

k
n

)
, 0 ≤ k ≤ n, the theorem is proved.

Figure 1.1 shows the dsc for pairs of test scores data provided by

[Mardia, Kent, Bibby 1979]. [Liu, Parelius, Singh 1999] provides the data-depth scale

curves for this data. [Singh, Tyler, Zhang, Mukherjee] shows the quantile scales curves

for the same data. All the three types of scale curves seem to indicate the same features

of the data. The dsc however, seems to accentuate the difference in scale of the groups

more strongly, as compared to qsc.
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t

d(
t)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

00
10

00
0

15
00

0

Mechanics + Vectors
Algebra + Analysis
Algebra + Statistics
Analysis + Statistics

Figure 1.1: Determinant Scale Curves for Test Scores data

1.2 Tailedness

The Determinant Scale Curve is a characteristic determined by the distribution of the

data. A distribution that is concentrated around its center is expected to have a flatter

scale curve compared to one that is more diffused. The reason is that the far outlying

points in a diffused distribution would contribute to a significant increase the scale of

the data. For a concentrated distribution however, this increase in scale, even with the

addition of the points that are farthest from the center, would be comparatively less

pronounced.

Figure 1.2 shows a comparison of dsc of samples taken from some standard bivari-

ate distributions. As expected, the scale curve for standard Cauchy distribution is
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t

d(
t)

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Std. Cauchy
Std. Double Exponential
Standard Normal
Uniform(0,1)

Figure 1.2: Determinant Scale curves for different distributions

much more steeper compared to that of standard Normal distribution, whereas, Double

Exponential falls somewhere in between. The Uniform(0,1) distribution is a lot more

concentrated than the others and have a largely flat scale curve.

This above property indicates that the dsc can be used as a tool to measure how

heavy-tailed the data-distribution is, when compared to some of the common distribu-

tions. The steeper the curve is, specially towards the end, the more heavy tailed the

distribution is expected to be. One should however make a scale adjustment, to make

the comparisons meaningful. Thus, we define a measure of “tailedness” as follows:

Definition 1.3. The Determinant Scale Curve based Tailedness Curve is defined as:

T (t) =
d(t)

d(0.5)
, 0.5 ≤ t ≤ 1

Figure 1.3 shows the simulated Tailedness Curves for some bivariate distributions.

Even though the component variances of N(0, 10I) are higher than that of Standard
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Double Exponential, the tails of the latter are heavier than that of the former, and the

curves capture this fact nicely. The Cauchy distribution, as expected, has the heaviest

tails among the ones considered.

t

T
(t

) 
=

 d
(t

)/
d(

0.
5)

0.5 0.6 0.7 0.8 0.9 1.0

0
10

20
30

40

Std. Cauchy
Std. Double Exponential
Normal(0,10I)
Uniform(0,1)

Figure 1.3: Tailedness Curves for different distributions

1.3 Applications of dsc

In the following chapters, we will look into a wide range of possible applications of

the Determinant Scale Curve. In chapter 2, the dsc will be combined with a reflection

scheme to develop tests for location of multivariate datasets. Chapter 3 will deal with

the problems involving comparisons of means of multiple multivariate samples. A multi-

sample version of the dsc will be introduced, and the idea will be combined with a

permutation scheme to develop non-parametric tests. Finally, chapter 4 will be devoted
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to investigating problems in linear regression and developing tests for the regression

parameters using the dsc. In all these developments, an appropriate optimality property

will be established for the ’end point’ test corresponding to d(1).
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Chapter 2

Determinant Scale Curve based Test Plots for Location

The most fundamental and commonly encountered problems in statistics involve ques-

tions regarding the means of populations, or, in general, the location parameters of

the underlying distributions of the populations. Often, the statistician would be in-

terested in testing whether a population is centered around a hypothesized value.

Statistical literature is rich in treatment of these problems, both in the paramet-

ric and non-parametric settings. See [Mardia, Kent, Bibby 1979] for parametric and

[Hettmansperger et al 1994], [Hettmansperger et al 1997], among others, for non-para-

metric multivariate location testing. [Gelman et al 1995] provides detailed analysis of

estimation and testing problems on the centrality parameter from a Bayesian point of

view. In this chapter, we will explore a robust non-parametric technique to tackle the

aforementioned problems, using the Determinant Scale Curve. It will be shown that

the dsc will produce a testing procedure at every point of its domain. Moreover, the

test at the rightmost extreme of the domain will be shown to have optimality properties

which make them comparable to the most powerful tests under the standard paramet-

ric testing setting. Also, the tests get progressively more robust as one moves inwards

from the right. These methods would make use of a “reflection principle”, which will

be discussed below.

2.1 A Reflection Principle and the One-Sample Location Problem

Let {X1, X2, . . . , Xn} be a sample on <p, from a distribution F, which is assumed

to be symmetric around the parameter µ. Let {τi}{i=1,...,n} be i.i.d. Bernoulli random

variables taking values 0 and 1, each with probability 0.5. Define the “reflected sample”
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as {Xi
∗}{i=1,...,n}, where

Xi
∗ = (2τi − 1)Xi + 2 (1− τi) µ (2.1)

Effectively, we are tossing an unbiased coin, and depending on which side comes

up, we are either leaving the data-point untouched, or, reflecting the data-point across

the assumed point of symmetry µ. We will denote the dsc of this reflected dataset by

d∗(t). If the reflection is done on or close to the true point of symmetry, the overall

spread of the data will not change appreciably. Consequently, if we draw the dsc′s of

the original and reflected data - d(t) and d∗(t), on the same graph, the two curves will

not be significantly apart. On the other hand, if the reflections are done across a point

that is away from the point of symmetry for the data, the resulting data will be much

more diffused. As a result, d∗(t) would much steeper, and the right tail of d∗(t) would

lie entirely above d(t). This phenomenon is illustrated in Figure 2.1 and Figure 2.2.

The above principle directs us towards a testing procedure for the one sample lo-

cation problem in a natural way. Suppose, our interest lies in testing H0 : µ = µ0 vs.

H1 : µ 6= µ0. One can generate a a large number of replicates of d∗(t) by reflecting the

data across the null value µ0. A practical choice for the number of replicates would be

100. For the purpose of doing the test at level α, we reject the null hypothesis if d(t)

lies in or under the bottom 100α% of the d∗(t)′s. Note here that t can be chosen to

be any fixed number within its domain 0 ≤ t ≤ 1, and for every distinct value of t, we

have a separate test.

Even though, there can be infinitely many choices for t, we restrict ourselves to

t = 0.25, 0.5, 0.75, 1 only, since these values, apart from representing a natural order of

dropping a quarter of the data at a time, also suffice in demonstrating the properties

of the tests across the domain of t. Also, note that these are permutation type tests,

and hence, by design, the tests are exact at each t.

Table 2.1 shows the power comparisons of the proposed test with the Hotelling T 2

test, which is the benchmark test under (approx.) Normality assumptions. As the

numbers show, the test at d(1) behaves similar to Hotelling T 2, for the Normal and

Double Exponential data. However, for Cauchy, which does not have finite second
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Figure 2.1: The reflection principle illustrated using a bivariate N(0,I) sample.
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Figure 2.2: Comparison of d(t) and 25 randomly generated d∗(t)′s for a N(0,I) sample.
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Mean d(.25) d(.5) d(.75) d(1) Hotelling T 2

0,0 0.047 0.048 0.053 0.052 0.059
0.25,0.25 0.066 0.124 0.211 0.383 0.374
0.5,0.5 0.120 0.410 0.680 0.940 0.910

0.75,0.75 0.418 0.754 0.956 1.000 0.999
1,1 0.668 0.950 1.000 1.000 1.000

(a) Bivariate Normal

Mean d(.25) d(.5) d(.75) d(1) Hotelling T 2

0,0 0.044 0.051 0.058 0.057 0.055
0.25,0.25 0.103 0.164 0.203 0.194 0.196
0.5,0.5 0.286 0.514 0.656 0.686 0.677

0.75,0.75 0.492 0.822 0.932 0.956 0.944
1,1 0.700 0.970 0.996 0.998 0.996

(b) Bivariate Double Exponential

Mean d(.25) d(.5) d(.75) d(1) Hotelling T 2

0,0 0.052 0.047 0.056 0.048 0.013
0.25,0.25 0.098 0.126 0.132 0.077 0.035
0.5,0.5 0.100 0.330 0.330 0.170 0.087

0.75,0.75 0.460 0.700 0.670 0.280 0.157
1,1 0.640 0.870 0.850 0.380 0.288

(c) Bivariate Cauchy

Table 2.1: Power comparison for One Sample Test using samples of size 30 and α = 0.05

moment, Hotelling T 2, expectedly, does poorly. It is in these cases, where the test

at d(0.5) performs better, since the test, by design, has taken care of the far outlying

points, and as a result, is far more robust. In fact, even for the Double Exponential

case, the test at d(0.5) performs reasonably well. All this indicates to the fact that

whenever we have a significant number of outliers, the test at d(0.5) can be a very

effective robust non-parametric test alternative to the Hotelling T 2.

We show below that the fact that the test at d(1) performs similar to the Hotelling

T 2 for Normal and Double Exponential populations is not a coincidence.

Let X and X∗ denote the matrices with the Xi’s and Xi
∗’s as their columns. Define

S = 1
nSS(X) and S∗ = 1

nSS(X∗).

Lemma 2.1. Under the above reflection scheme, the following identity holds:

|S| [1 + (X̄ − µ)′S−1(X̄ − µ)
]

= |S∗| [1 + (X̄∗ − µ)′S∗−1(X̄∗ − µ)
]
. (2.2)
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In other words, for any given µ, the statistic |S| [1 + (X̄ − µ)′S−1(X̄ − µ)
]

is invariant

under the reflection scheme, when reflected across µ.

Proof. By 2.1,

Xi
∗ − µ = (2τi − 1) (Xi − µ) ; i = 1, . . . , n.

Since (2τi − 1)2 ≡ 1, ∀i, we have,

(X− µ1′)(X− µ1′)′ = (X∗ − µ1′)(X∗ − µ1′)′ (2.3)

Now,

(X− µ1′)(X− µ1′)′ =(X− X̄1′)(X− X̄1′)′ + n(X̄ − µ)(X̄ − µ)′

=SS(X) + n(X̄ − µ)(X̄ − µ)′

Thus,
∣∣∣∣
1
n

(X− µ1′)(X− µ1′)′
∣∣∣∣ =

∣∣∣∣
1
n

SS(X) + (X̄ − µ)(X̄ − µ)′
∣∣∣∣

=
∣∣S + (X̄ − µ)(X̄ − µ)′

∣∣

= |S| [1 + (X̄ − µ)′S−1(X̄ − µ)
]

Similarly,

∣∣∣∣
1
n

(X∗ − µ1′)(X∗ − µ1′)′
∣∣∣∣ = |S∗| [1 + (X̄∗ − µ)′S−1(X̄∗ − µ)

]

Therefore, by 2.3, we have the required identity.

Theorem 2.2. For testing H0 : µ = µ0 vs H1 : µ 6= µ0 at significance level α, under

the assumptions:

(i) E||X1||2 < ∞

(ii) µ− µ0 = Op(n−
1
2 )

the permutation test using d(1) has the asymptotic rejection region:

n(X̄ − µ0)S−1(X̄ − µ0)′ > χ2
p,(1−α) (2.4)

where S is the sample variance-covariance matrix of {Xi}{i=1,...,n}
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Proof. Without loss of generality, we may assume µ0 = 0 and the variance-covariance

matrix Σ of F to be identity, i.e., Σ = I, since replacing each Xi by Σ−
1
2 (Xi − µ0)

makes 2.4 free of µ0 and Σ. Thus by Lemma 2.1, we have:

|S| [1 + X̄ ′S−1X̄
]

= |S∗|
[
1 + X̄∗′S∗−1X̄∗

]
, (2.5)

So, the rejection region of the test given by : |S| < lower 100α% of |S∗|, which, by

2.5, is true iff nX̄ ′S−1X̄ > upper 100α% of nX̄∗′S∗−1X̄∗.

Now, using standard Central Limit Theorem for triangular arrays (see e.g. Feller(Vol

2)), we have the convergence

√
nS∗−

1
2 X̄∗ → N(0, I)

under the distribution of the τi’s, a.s. X. The claim of the theorem follows.

Corollary 2.3. The test using d(1) is Pitman equivalent to the Hotelling T 2 test.

Proof. The result follows immediately from the above theorem.

2.1.1 Application to Paired data

Paired data appear frequently in experimental situations where two observations are

made on a given individual or experimental object, resulting in a natural pairing of

values. A natural question that arises in such situations is whether the two components

in the paired data are exchangeable or not, possibly upto a real-valued transformation.

Thus, if (Xi1, Xi2)i=1...,n denote a paired sample of size n, and f : < → < be a known

real valued function, we define:

Xi = Xi1 − f(Xi2), i = 1, . . . , n.

The hypothesis of interest is H0 : the distribution of {Xi}{i=1,...,n} is symmetric

about 0, vs. the alternative hypothesis H1 of asymmetry.

It can be seen that the test developed in the previous section can be applied directly

to {Xi}{i=1,...,n} to test H0, as long as the the assumptions in Theorem 2.2 hold. Thus

the test using d(1) will have the same nice asymptotic optimality property.
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Note here that in most practical applications, the function f would be assumed to

be identity, i.e. f(x) = x, x ∈ <. The special case where f ≡ constant, yields tests for

the components having symmetric distributions.

Head Length - First Son
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Figure 2.3: Scatterplot of Head Length Data

2.2 An Example

As discussed earlier, we have a version of the test using d(t), for every 0 < t ≤ 1. The

results in the previous section deal mostly with the test using d(1). However, Monte

Carlo simulation of powers shown in Table 2.1 exhibit clearly that the test using d(.5)

should be the better choice in most practical situations, where one would expect a good

number of outliers. In this section, we will examine this property, using a dataset from
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Figure 2.4: Tests using dsc on Head Length Data
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[Frets, G. P. 1921] which shows the measurement of head length of the first and second

adult sons in 25 families. For the entire dataset as well as some analysis, please refer

[Mardia, Kent, Bibby 1979]. Figure 2.3 shows the scatter plot.

Let µ denote the mean of the underlying bivariate distribution. Suppose we choose

to test H0 : µ = (150, 150) vs H1 : µ 6= (150, 150), to illustrate the robustness of the

tests at the middle section of the dsc’s.

The mean of the sample is (185.72, 183.84). [Mardia, Kent, Bibby 1979] show that

the hypothesis µ = (182, 182) cannot be rejected by either the LRT or the Hotelling

T 2 test. Thus one might expect the true mean to be somewhere close to the point

(182, 182), and the Null hypothesis here to be false. Indeed, the Hotelling T 2 test

yields p-value 0 for the above test, thus rejecting H0 at all levels. The same is reflected

in Figure 2.4(a) where d(.), the dsc of the original data lies far below the dsc′s of the

reflected datasets, d∗()’s.

Now, we add four outliers to the data, each having value (50,50). The p-value for

the Hotelling T 2 test now becomes 0.134. So, the test cannot reject H0 at even level

10%. The dsc plots in this case, shown in Figure 2.4(b) , clearly exhibit the robustness

property of the test at d(0.5). The end point d(1) lies within the band of the d∗()’s,

and hence shows characteristics similar to the Hotelling T 2 test. The midpoint d(0.5)

however lies below the entire band of d∗()’s. So, the test at d(0.5) manages to reject

H0 even in the presence of the outliers.
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Chapter 3

The Multisample Multivariate Location Problem

A basic question that arises in all statistical analyses that involve two or more datasets,

is whether the samples come from distributions having the same centrality parameter.

The situation appears frequently in experimental setups where subjects are adminis-

tered different levels of treatment, and observations obtained for the different treatment

levels are compared to see whether they vary significantly from one another or not.

These questions are often handled via ANOVA or MANOVA, to analyze univariate

and multivariate samples respectively. See [Montgomery, D.C. 1976], [Rao, C.R. 1973],

[Anderson, T.W. 1958], [Wilks, S.S. 1962] or [Mardia, Kent, Bibby 1979] for detailed

discussions of these problems. For non-parametric analysis of similar problems, see

[Puri, Sen 1971]. In this chapter, we will introduce a multi-sample variant of the De-

terminant Scale Curve and then describe a permutation scheme that will help us devise

tests for the multi-sample multivariate location problems using the dsc’s. Similar to

the results in the previous chapter, the test at the rightmost end of the multi-sample

dsc will be shown to have optimality properties, and tests in the central region will be

shown to be robust. The results will be reinforced through Monte-Carlo simulation of

the powers of these tests, under different distributions.

3.1 The Multisample Determinant Scale curve

Let {X(j)
i}{i=1,...,nj} denote the j-th sample of size nj on <p, from a distribution Fj,

which is assumed to be symmetric around the parameter µj , j = 1, . . . , k. Our primary

interest in this chapter would be to test the equality of two or more of the µj ’s.

Define the total sample size as N =
∑k

j=1 nj . Let X(j) denote the p × nj matrix

with X(j)
i’s as its columns.
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For each j = 1, . . . , k, we define:

W (j)(1) = SS(X(j)),

W (j)

(
nj − 1

nj

)
= min

1≤i≤nj

SS(X(j)
(−i)),

where the minimum is taken over the determinants of the matrices.

Suppose, for a given sample, the above minimum is attained at X(j)
(−i). Then

define,

W (j)

(
nj − 2

nj

)
= min

1≤l≤nj ,l 6=i
SS([X(j)

(−i)](−l)).

Now, for k
nj
≤ t < k+1

nj
, k = 1, . . . , nj − 1, define:

W (j)(t) = W (j)

(
k

nj

)

Now, we go on to define the Multi-sample Determinant Scale Curve.

Definition 3.1. For 0 ≤ t ≤ 1, the multi-sample dsc d(.) for k samples is defined as:

d(t) =

∣∣∣∣∣∣

k∑

j=1

W (j)(t)

∣∣∣∣∣∣

3.1.1 A Permutation Scheme and tests using the Multi-Sample dsc

The tests in this chapter would involve a permutation scheme. To create a permuted

set of data, we first combine all the k samples into a single dataset of size N . Then,

we randomly split the dataset into k partitions, the size of the j-th partition being nj ,

1 ≤ j ≤ k. Now, one can create the multisample dsc using these permuted samples. We

will denote the permuted samples as {X(j)∗
i}{i=1,...,nj} and multisample dsc computed

on them as d∗(.). If the means of the k populations are close to each other, then this

process of randomization will not change the overall spread of the samples appreciably.

Hence, the curve d∗(.) will be close to the original curve d(.). On the other hand, if at

least two of the µj ’s are far apart, the permutation will make the samples significantly

more diffused. As a result, d∗(.) will tend to lie above d(.).

One can make use of this phenomenon to devise a test for the hypothesis H0 : All

µj ’s are equal vs. H1 : µj 6= µl for some 1 ≤ j 6= l ≤ k. Suppose we generate a large
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Figure 3.1: Tests using multisample dsc on Bivariate Normal samples
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number of replicates of d∗(.). Now, to test at level α, we reject the null hypothesis if

d(.) lies in or below the bottom 100α% of the d∗(.)’s. As in the previous chapter, here

also we have distinct test for every 0 < t ≤ 1, and we would restrict ourselves to the

choices t = 0.5, 0.75, 0.9, 1. The tests are exact for every choice of t.

An illustration of this testing procedure is shown in Figure 3.1. Figure shows the

dsc’s for two N(0,1) samples. The d(.) lies within the band of d∗(.), thus failing to

reject the Null hypothesis at all t, for all reasonable α. When the second sample is

centred around (3,3), the d(.) lies well outside the band of d∗(.)’s. The H0 is hence

rejected. Before going into the theoretical properties of these tests, we will try to apply

the method on two real life examples.

3.2 Examples

Reeve (see [Reeve, E.C.R. 1941]) provides measurements of the skulls of 13 ant-eaters,

belonging to the sub-species chapadensis, deposited in the British Museum, from 3

different locations in South America. Table 3.2 shows the natural logarithms of the

measurements. The variables are respectively- x1: the basal length excluding premax-

illa, x2: the occipito-nasal length, and x3: the maximum nasal length.

Minas Graes, Brazil Matto Grosso, Brazil Santa Cruz, Bolivia
x1 x2 x3 x1 x2 x3 x1 x2 x3

2.068 2.070 0.048 1.580 2.045 1.580 2.093 2.098 1.653
2.068 2.074 1.602 2.076 2.088 1.602 2.100 2.106 1.623
2.090 2.090 1.613 2.090 2.093 1.643 2.104 2.101 1.653
2.097 2.093 1.613 2.111 2.114 1.643 - - -
2.117 2.125 1.663 - - - - - -
2.140 2.146 1.681 - - - - - -

Table 3.1: Logarithms of measurements of the skulls of 13 ant-eaters, provided by
Reeve(1941)

The null hypothesis to be tested is that there is no significant difference between

the locations, versus the alternative of having a significant difference between at least

two locations.The Wilks Lambda statistic comes to 0.772, which, when compared to

the F6,16 distribution, provides a p-value of nearly 40%. Hence, the Null hypothesis

cannot be rejected at any reasonable level. The dsc test, shown in Figure 3.2, comes to
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the same conclusion for all t.
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Figure 3.2: Tests using multisample dsc on Reeve’s Ant Eater Data

As our second example, we look at R.A.Fisher’s Iris Data (see [Fisher,R.A. 1936]),

showing the lengths and widths of sepals and petals of three different varieties of Iris.

It is well known that the means of the three varieties are significantly different. Our

proposed array of tests, shown in Figure 3.3, provides a confirmation at all t.

3.3 Power Simulations

Table 3.3 shows the Monte Carlo simulations of powers for some standard bivariate

distributions using samples at a time. For Normal and Double Exponential samples,
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Figure 3.3: Tests using multisample dsc on Fisher’s Iris Data

the test at d(1) performs almost as well as the Wilks Lambda test, which is the most

powerful test under (approx.) Normality assumptions. As in the case for the one-

sample location tests, the tests in the middle region of the dsc show strong robustness.

The Wilks Lambda test performs poorly for the Cauchy distribution, where one would

expect to have a significant number of extreme observations. The test at d(0.5) provides

much better power in such cases. In fact, for moderate separation between the means of

the populations, the power of the test at d(0.5) for the Normal and Cauchy distributions

is comparable, reinforcing the fact that the tests are robust in the middle zone of the

dsc.



27

Diff. of Means d(.5) d(.75) d(.9) d(1) Wilks Λ
(0,0) 0.044 0.050 0.044 0.052 0.049

(0.5,0.5) 0.058 0.100 0.172 0.214 0.247
(0.75,0.75) 0.104 0.204 0.354 0.498 0.490

(1,1) 0.180 0.330 0.580 0.782 0.740
(1.5,1.5) 0.282 0.610 0.894 0.986 0.983

(2,2) 0.450 0.806 0.990 1.000 1.000

(a) Bivariate Normal

Diff. of Means d(.5) d(.75) d(.9) d(1) Wilks Λ
(0,0) 0.055 0.048 0.056 0.058 0.042

(0.5,0.5) 0.112 0.122 0.152 0.184 0.150
(0.75,0.75) 0.148 0.212 0.270 0.320 0.311

(1,1) 0.162 0.294 0.390 0.460 0.496
(1.5,1.5) 0.342 0.588 0.754 0.848 0.832

(2,2) 0.446 0.748 0.902 0.952 0.965

(b) Bivariate Double Exponential

Diff. of Means d(.5) d(.75) d(.9) d(1) Wilks Λ
(0,0) 0.058 0.055 0.050 0.035 0.018

(0.5,0.5) 0.090 0.104 0.088 0.070 0.023
(0.75,0.75) 0.094 0.124 0.118 0.110 0.050

(1,1) 0.142 0.186 0.158 0.144 0.095
(1.5,1.5) 0.260 0.326 0.246 0.236 0.188

(2,2) 0.404 0.480 0.418 0.384 0.284

(c) Bivariate Cauchy

Table 3.2: Power comparison for Two Sample Test using samples of size 10 each and
α = 0.05

3.4 Optimality of the test at t = 1

In this section, we will go on to show some optimality properties of the permutation

test at t = 1, which will explain why its power is comparable to that of Wilks Lambda

test, for approximately Normal populations.

To that end, we must introduce some notations and prove the following lemmas.

Lemma 3.1. Let X = {Xi}{i=1,...,N} be an univariate finite population made of i.i.d.

observations, of size N with E(Xi) = µ < ∞ , and let Y = {Yi}{i=1,...,n} be a sample

of size n drawn without replacement, such that n
N → λ ∈ (0, 1) as N →∞. Let X̄ and

Ȳ denote the population mean and the sample mean respectively. Then, for any ε > 0,
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Mean d(.5) d(.75) d(.9) d(1) Wilks Λ
(0,0),(0,0),(0,0) 0.044 0.043 0.055 0.053 0.048

(0,0),(0.25,0),(0,0.25) 0.068 0.095 0.164 0.227 0.250
(0,0),(0.5,0),(0,0.5) 0.154 0.345 0.558 0.792 0.792

(0,0),(1,0),(0,1) 0.545 0.927 0.992 1.000 1.000
(0,0),(0.5,0.5),(1,1) 0.338 0.706 0.949 0.996 0.998

(0,0),(1,1),(2,2) 0.881 1.000 1.000 1.000 1.000

(a) Bivariate Normal

Mean d(.5) d(.75) d(.9) d(1) Wilks Λ
(0,0),(0,0),(0,0) 0.045 0.050 0.048 0.045 0.034

(0,0),(0.25,0),(0,0.25) 0.092 0.120 0.127 0.013 0.138
(0,0),(0.5,0),(0,0.5) 0.223 0.311 0.387 0.461 0.472

(0,0),(1,0),(0,1) 0.695 0.869 0.926 0.979 0.990
(0,0),(0.5,0.5),(1,1) 0.519 0.697 0.774 0.880 0.858

(0,0),(1,1),(2,2) 0.973 0.997 1.000 1.000 1.000

(b) Bivariate Double Exponential

Mean d(.5) d(.75) d(.9) d(1) Wilks Λ
(0,0),(0,0),(0,0) 0.051 0.055 0.057 0.049 0.032

(0,0),(0.25,0),(0,0.25) 0.083 0.065 0.048 0.051 0.014
(0,0),(0.5,0),(0,0.5) 0.152 0.118 0.061 0.069 0.012

(0,0),(1,0),(0,1) 0.502 0.364 0.148 0.076 0.056
(0,0),(0.5,0.5),(1,1) 0.332 0.246 0.111 0.085 0.032

(0,0),(1,1),(2,2) 0.884 0.680 0.263 0.177 0.120

(c) Bivariate Cauchy

Table 3.3: Power comparison for Three Sample Test using samples of sizes 30,50 and
30 respectively and α = 0.05

we have:

P{|Ȳ − X̄| > ε} → 0 as N →∞ a.s.[X]

Note here that the probability is with respect to the simple random sampling without

replacement, and the result is true for almost all path of [X].

Proof. By Tchebychev’s Inequality, we have the following bound for the above proba-

bility:

P{|Ȳ − X̄| > ε} ≤ 1
ε2

N − n

N − 1
1

nN

[
N∑

i=1

(Xi − X̄)2
]

∼ 1
ε2

(1− 1
λ

)
1
λ

[∑N
i=1 Xi

2

N2
− X̄2

N

]
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Now, since E(Xi) = µ < ∞, X̄2

N → 0, and by Marcinkiewicz-Zigmund SLLN,
∑N

i=1 Xi
2

N2 →
0 as N →∞. Hence the result follows.

Define X̄2 and Ȳ 2 as the means of Xi
2’s and Yi

2’s respectively. Analogously, for

any real k, define ¯X(k) and ¯Y (k) as the means of Xi
2I(Xi > k)’s and Yi

2I(Yi > k)’s

respectively. Then, as an immediate consequence of the previous lemma, we have the

following results:

Lemma 3.2. Let X and Y be as in Lemma 3.1 with E(X1
2) < ∞. Then, for any

ε > 0, we have:

P{|Ȳ 2 − X̄2| > ε} → 0 as N →∞ a.s.[X]

Lemma 3.3. Let X and Y be as in Lemma 3.2. Then, for any fixed k and ε > 0, we

have:

P{| ¯Y (k) − ¯X(k)| > ε} → 0 as N →∞ a.s.[X]

Under the setup of Lemma 3.3, define the set G(Y, k, ε) as:

G(Y, k, ε) = {Y ⊂ X : |Ȳ − X̄| < ε, |Ȳ 2 − X̄2| < ε, ¯Y (k) − ¯X(k)| < ε}

It follows from Lemmas 3.1, 3.2 and 3.3 that P [G(Y, k, ε)] → 1 as n,N →∞ a.s.[X],

for all real k.

Theorem 3.4. Let X = {Xi}{i=1,...,N} be an univariate finite population of size N with

V ar(Xi) = σ2 < ∞. Let {S1, S2, S3} be a random disjoint partition of X, such that

the size of Si is ni, i = 1, 2, 3;
∑3

i=1 ni = N . Let the mean of the partition Si be X̄i,

i = 1, 2, 3. Also assume ni
N = λi → ∆i ∈ (0, 1), i = 1, 2, 3. Then we have the Central

Limit Theorem:

√
N(X̄1 − X̄, X̄2 − X̄, X̄3 − X̄)′ ⇒ N(0, Σ), a.s[X],

where Σ = ((σi,j)) is given by σi,i = σ2( 1
∆i
− 1) and σi,j = −σ2, i, j = 1, 2, 3, i 6= j.

Proof. Note that without loss of generality, σ2 = 1 and E(Xi) = 0.

Suffices to show, for any real vector a = {a1, a2, a3},

TN =
√

N
3∑

i=1

ai(X̄i − X̄) ⇒ N(0,a′Σa), a.s.[X],
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Note that
∑3

i=1 λiX̄i = X̄. Hence, X̄2 = −λ1
λ2

X̄1 − λ3
λ2

X̄3 − X̄
λ2

.

Hence, we can eliminate X̄2 from the above expression. Let

TN
′ =

√
N

3∑

i=1

aiX̄i

=
√

N(a1 − a2λ1

λ2
)X̄1 +

√
N(a3 − a2λ3

λ2
)X̄3 +

√
N

a2X̄

λ2

=
√

N
a2X̄

λ2
+
√

N(c1X̄1 + c2X̄3),

where c1 = a1 − a2λ1
λ2

and c2 = a3 − a2λ3
λ2

.

Now, we can restrict ourselves to the cases when S3 belongs to the “good” set

G(S3, k, ε), as follows:

For i =
√

(−1) and real t,

E(eitTN
′
) = e

√
N

a2X̄
λ2 Eeit

√
N(c1X̄1+c2X̄3)

= e
√

N
a2X̄
λ2 Eeit

√
N(c1X̄1+c2X̄3)I(S3 ∈ G(S3, k, ε)) + ξ,

where ξ = E(eitTN
′
I(S3 /∈ G(S3, k, ε))) ≤ 1 − P (G(S3, k, ε)) → 0 as N → ∞, for any

fixed k, since |eiu| ≤ 1 for all real u.

Now,

E(eitTN
′
) = e

it
√

N
a2X̄
λ2 E

[
eit
√

N(c1X̄1+c2X̄3)I(S3 ∈ G(S3, k, ε))
]

+ ξ

= e
it
√

N
a2X̄
λ2 E

[
eit
√

N(c2X̄3)I(S3 ∈ G(S3, k, ε))E[eit
√

Nc1X̄1I(S3 ∈ G(S3, k, ε))|S3]
]

+ ξ

Given S3 ∈ G(S3, k, ε), we have:

∑

S1∪S2

Xj
2 = (1− λ3)

N∑

j=1

Xj
2 + O(ε)N

∑

S1∪S2

Xj
2I(Xj > k) = (1− λ3)

N∑

j=1

Xj
2I(Xj > k) + O(ε)N.

Therefore, given S3 ∈ G(S3, k, ε),

sup
S3

∑
S1∪S2

Xj
2I(Xj > k)∑

S1∪S2
Xj

2 =
1−λ3

N

∑N
j=1 Xj

2I(Xj > k) + O(ε)
1−λ3

N

∑N
j=1 Xj

2 + O(ε)
, (3.1)

which can be made arbitrarily small by choosing a large enough k a.s.[X], since E(X1
2) <

∞. We can therefore use Erdos-Renyi’s CLT (see [Erdös, P. and Rényi, A. (1959)]) in
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conjunction with the uniformity of 3.1 over all S3 ∈ G(S3, k, ε) to claim:

E
[
eit
√

Nc1X̄1I(S3 ∈ G(S3, k, ε))|S3

]
= e

√
Nitc1E(X̄1I(S3∈G(S3,k,ε))|S3)

× e−
t2c1

2

2
V ar(

√
NX̄1I(S3∈G(S3,k,ε))|S3)+o(1)

Now,

E(X̄1|S3 ∈ G(S3, k, ε)) =
NX̄ − n3X̄3

N − n3

=
1

1− λ3
X̄ − λ3

1− λ3
X̄3 + o(ε)

as N →∞.

Also,

V ar(
√

NX̄1|X̄3, S3 ∈ G(S3, k, ε))

=
(N − n3)− n1

(N − n3)− 1
1(
n1
N

)
[∑

S1∪S2
Xj

2

N − n3
−

(
NX̄ − n3X̄3

N − n3

)2
]

+ o(ε)

Now, given S3 ∈ G(S3, k, ε)), straightforward calculations show that

(
NX̄ − n3X̄3

N − n3

)2

= X̄2 + o(1) + O(ε)

and, ∑
S1∪S2

Xj
2

N − n3
=

∑N
j=1 Xj

2

N
+ O(ε) = 1 + o(1) + O(ε).

Thus, given S3 ∈ G(S3, k, ε)),

V ar(
√

NX̄1|X̄3, S3 ∈ G(S3, k, ε)) =
λ2

(1− λ3)λ1
(1 + o(1)) + O(ε). (3.2)

Thus,

E(eitTN
′
) = e

it
√

N
(

a2
λ2

+
c1

1−λ3

)
X̄− t2

2
λ2c1

2

λ1(1−λ3)
+o(1)+O(ε)

E

[
e
it
√

N(c2− c1λ3
1−λ3

)X̄3I(S3 ∈ G(S3, k, ε))
]

+ ξ

Now,

E(X̄3) = X̄

and

V ar(
√

NX̄3) =
N − n3

N − 1
N

n3
(1 + o(1)) =

(
1
λ3
− 1

)
(1 + o(1)) → σ33

as N →∞.



32

Therefore,

E(eitTN
′
) = e

it
√

N
(

a2
λ2

+
c1

1−λ3
+c2− c1λ3

1−λ3

)
X̄− t2

2
{ λ2c1

2

λ1(1−λ3)
+(c2− c1λ3

1−λ3
)2σ33}+o(1)+O(ε) + ξ

by using the Erdos-Renyi CLT once more.

Now, using the definition of c1 and c2, a straightforward simplification yields

a2

λ2
+

c1

1− λ3
+ c2 − c1λ3

1− λ3
= c1 + c2 +

a2

λ2

= (a1 − a2λ1

λ2
) + (a3 − a2λ3

λ2
) +

a2

λ2

= a1 + a3 +
1− λ1 − λ3

λ2
a2 =

3∑

j=1

ai.

Also, using the definition of Σ = ((σij)), 1 ≤ i, j ≤ 3, we have

λ3

1− λ3
→ ∆3

1−∆3
= −σ13

σ33

λ2

λ1(1− λ3)
→ ∆2

∆1(1−∆3)
= σ11 − σ13

2

σ33

Therefore,

λ2c1
2

λ1(1− λ3)
+ (c2 − c1λ3

1− λ3
)2σ33 ∼ c1

2

(
σ11 − σ13

2

σ33

)
+

(
c2 + c1

σ13

σ33

)2

σ33

= c1
2σ11 + c2

2σ33 + 2c1c2σ13

= V ar(
√

N(c1X̄1 + c2X̄3))

= V ar(
√

N
3∑

i=1

aiX̄i)

= a′Σa

Hence,

E(eitTN ) → e−
t2

2
a′Σa

as N →∞, for all real vector a.

Hence proved.

The same result could possibly have been proved using the Wald-Wolfowitz-Noether

CLT, for sampling without replacement from a finite population. For details see

[Hajek, J 1961] and [Noether, G.E. 1949]. We will, however, need to establish some
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extensions to the above result, and the Wald-Wolfowitz-Noether CLT does not lend

itself easily to that purpose.

The above theorem can be immediately extended to more than three partitions as

well as to the the multivariate case. Extension to four partitions from three would

follow by applying an added level of conditioning on the fourth partition S4 to the

above proof. Extensions to greater number of partitions would follow analogously. The

result for the multivariate case is similar and is presented below.

Theorem 3.5. Let X = {Xi}{i=1,...,N} be an p-variate finite population of size N such

that V ar(Xi) = Γ is positive-definite. Let {S1, S2, S3} be a random disjoint partition of

X, such that the size of Si is ni, i = 1, 2, 3;
∑3

i=1 ni = N . Let the mean of the partition

Si be X̄i = {X̄i1, . . . , X̄ip}, i = 1, 2, 3. Also assume ni
N = λi → ∆i ∈ (0, 1), i = 1, 2, 3.

Then we have the Central Limit Theorem:

√
N

(
(X̄1 − X̄)′, (X̄2 − X̄)′, (X̄3 − X̄)′

)′ ⇒ N(0, Σ⊗ Γ), a.s[X],

where Σ = ((σi,j)) is given by σi,i = ( 1
∆i
− 1) and σi,j = −1, i, j = 1, 2, 3, i 6= j, and the

symbol ⊗ indicate Kronecker product.

Proof. The proof will follow exactly on the lines of the corresponding proof for the

univariate case. Hence, only the outlines for the critical steps will be indicated. For

simplicity of presentation, we will assume p = 2.

First, note that without loss of generality, we can assume Γ = I.

Also, note that G(S3, k, ε) will be redefined analogously as:

G(S3, k, ε) = {S3 ⊂ X : |X̄3j − X̄j | < ε, |X̄2
3j − X̄2

j | < ε, | ¯X(k)
3j − ¯X(k)

j | < ε, ∀ j = 1, 2,

& | 1
n3

∑

S3

Xj1Xj2 − 1
N

N∑

j=1

Xj1Xj2| < ε},

and, as before, P [G(S3, k, ε)] → 1 as N →∞ for all k, ε.

Now, since Γ = I, given S3 ∈ G(S3, k, ε),

∑
S1∪S2

Xj1Xj2

N − n3
=

∑N
j=1 Xj1Xj2

N
+ O(ε) = O(ε).
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Therefore, if Z = c1X̄11 + c2X̄12 for some constants c1, c2, given S3 ∈ G(S3, k, ε),

sup
S3

∑
S1∪S2

Z2I(Z > k)∑
S1∪S2

Z2
=

1−λ3
N

∑N
j=1 Z2I(Z > k) + O(ε)

1−λ3
N

∑N
j=1 Z2 + O(ε)

can be made arbitrarily small by choosing k to be large enough.

So, the Erdos-Renyi CLT can be applied to claim:

E
[
eit
√

NZ |S3 ∈ G(S3, k, ε)
]

= e
√

NitE(Z|S3∈G(S3,k,ε))− t2

2
V ar(

√
NZ|S3∈G(S3,k,ε))

Also, 3.2 can be revised to:

V ar(
√

NZ|S3 ∈ G(S3, k, ε)) → λ2

(1− λ3)λ1

(
c1

2 + c2
2 + o(1)

)
+ O(ε). (3.3)

The rest of the proof follows by imitating the proof of Theorem 3.4.

As in the univariate case, this result can also be extended to k > 3 many partitions.

The above results lead us to the theorem:

Theorem 3.6. Under the setup of Theorem 3.5 and k partitions, we have

(√
n1(X̄1 − X̄)′,

√
n2(X̄2 − X̄)′, . . . ,

√
nk(X̄k − X̄)′

)′ ⇒ N(0,Σ1 ⊗ Γ), a.s[X],

where Σ1 = ((σi,j)) is given by σi,i = 1−∆i and σi,j = −∆i∆j, i, j = 1, 2, 3, i 6= j, and

the symbol ⊗ indicate Kronecker product.

Proof. The proof is immediate from Theorem 3.5 and the fact that n1
N → ∆i for i =

1, . . . , k.

Using standard terminology from MANOVA, we define the “Total Sum of Squares”

(T ), the “Between Group Sum of Squares” (B) and the “Within Group Sum of Squares”

(W ) as follows:

T = SS(X)

B =
k∑

j=1

nj(X(j) − X̄)(X(j) − X̄)′

W =
k∑

j=1

nj∑

i=1

(Xi
(j) −X(j))(Xi

(j) −X(j))′
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where X = {X(1) : X(2) : . . . : X(k)}.
The same would be defined on the permuted data X∗ = {X(1)∗ : X(2)∗ : . . . : X(k)∗}

as:

B∗ =
k∑

j=1

nj(X(j)∗ − X̄)(X(j)∗ − X̄)′

W ∗ =
k∑

j=1

nj∑

i=1

(Xi
(j)∗ −X(j)∗)(Xi

(j)∗ −X(j)∗)′

It is well known that T = W ∗ + B∗. Since 1
N T = 1

N (W ∗ + B∗) → Γ a.s. [X], W ∗

can also be expressed as:

W ∗ =
k∑

j=1

nj [
T

n
− (X(j)∗ − X̄)(X(j)∗ − X̄)′]

→
k∑

j=1

nj [Γ− (X(j)∗ − X̄)(X(j)∗ − X̄)′]

Hence, the asymptotic distribution of both W ∗ and B∗ are dictated by the asymp-

totic joint distribution of the vector {√ni(X(j)∗ − X̄), i = 1, . . . , k}.
Now, under the standard MANOVA assumption that X is a data matrix created

from i.i.d. observations from a multivariate Normal distribution, ie, when X(j)
i ∼

Np(0,Γ), ∀i = 1, . . . , nj ; j = 1, . . . , k, both W and B follow Wishart distributions, and

the ratio |W |
|T | follows the Wilks Lambda distribution:

B ∼ Wishart(Γ, k − 1)

W ∼ Wishart(Γ, n− k)

|W |
|T | ∼ Λ(p,N − k, k − 1)

(3.4)

Applying Theorem 3.6 to our permutation scheme, we can claim that the asymptotic

joint distribution of {√ni(X(j)∗ − X̄), i = 1, . . . , k} under the permutation scheme is

exactly the same as seen under the above mentioned MANOVA setup, i.e., when X is a

data matrix of i.i.d. multivariate Normal observations. As a result, we can claim that

the asymptotic permutation distribution of W ∗, B∗ and |W ∗|
|T ∗| will be exactly the same

as corresponding terms in 3.4.

This fact leads us to the most important result of the section.
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Theorem 3.7. Under the assumptions:

(i) V ar(X) = Γ is p.d.

(ii) ni
N → ∆i ∈ (0, 1) ∀i = 1, . . . , k,

the permutation test for testing H0 : µ1 = . . . = µk vs. H1 : µi 6= µj for some i 6= j, at

d(1) is Pitman equivalent to the Wilks Lambda test.

Proof. First, note that T is invariant under the permutation scheme. Hence, for the

permutation test, comparing d(1) with d∗(1), is equivalent to comparing d(1)
|T | with d∗(1)

|T | .

Now, since d(1)
|T | is precisely the Wilks Lambda statistic, by Corollary 3.4 and the

discussion following it, the asymptotic permutation distribution of d∗(1)
|T | →

d∗(1)
|NΓ| , under

H0, is the same as the Wilks Lambda distribution Λ(p,N − k, k − 1). Thus, at 100α%

level of significance, the rejection region of the test, given by: d(1) < lower 100α% of

d∗(1), is true iff d(1)
|T | < lower 100α% of Λ(p,N − k, k − 1) distribution.

For local alternatives, H1 : µ = ci√
ni

, ci ∈ <, 1 ≤ i ≤ k, note that the CLT in

Theorem 3.6 still holds, and as a result, the asymptotic distribution of B under the

permutation scheme remains the same as under the standard Normal data-matrix setup

in MANOVA. Hence the asymptotic distribution of d∗(1)
|T | = |W ∗|

|T ∗| = |T−B∗|
|T | → |I− Γ−1B∗

n |
is the same as in the Normal data-matrix case.

This proves the result.

The above result explains why the Monte-Carlo estimates of the power of the test

at d(1) came out to be close to that of the Wilks Lambda test. One should however

note a crucial difference between the two cases. Under normal data-matrix setup, any

increase in |T | under the alternative is fueled by an increase in |B|, while |W | remains

unchanged. On the other hand, under the permutation scheme, it is |W | that gets

inflated under the alternative, which causes |T | to be larger. This difference, however,

does to affect the asymptotic Pitman equivalence of the two tests.
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Chapter 4

Applications to Linear Regression

Regression analysis is a statistical methodology, that tries to establish a relationship

between two or more quantitative variables, so that the response or the outcome can be

predicted using the remaining variables. It is one of the oldest disciplines within statis-

tics, with the earliest research dating back to the nineteenth century with the works of

Gauss ([Gauss, C.F. 1809]) and Legendre ([Legendre, A.M. 1809]), who together con-

tributed to the initial developments of the theory of least squares. Linear regression

models provide the simplest regression setups, where the response is modeled as a linear

combination of the predictor variables.

The appeal of these methods lie in their conceptual simplicity, while retaining ap-

plicability. With time, linear regression has come to be one of the most widely used

statistical tools for multifactor data - its application ranging from business administra-

tion and economics to social, health and biological sciences.

The theory available today is very rich, with significant developments being done in

Bayesian, non-parametric and robust regression techniques. Literature on the subject is

abundant, a few examples being [Kutner, Nachtsheim, Neter 1987], [Rao, C.R. 1973],

[Draper, N.R., Smith H. 1966], [Hardle, W. 1990], [Ryan, T.P. 1997], [Fox, John 1997]

and [Stapleton, J.H. 1995].

We describe below the simple linear regression model, and go on to introduce testing

procedures based on the Determinant Scale curve which can be applied to the model.

4.1 The Linear Regression Model

Suppose we have a dataset consisting of the response variable V′ = {V1, V2, . . . , Vn}
and explanatory variables {U1, U2, . . . , Un} where U ′

i = {Ui1, Ui2, . . . , Uip}, 1 ≤ i ≤ n
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are p× 1 i.i.d. p-variate row vectors.

Let U denote the p × n data-matrix, whose ith column is Ui, 1 ≤ i ≤ n. Note here

that U is non-random.

In this chapter, we will be dealing with the the multiple linear regression model,

given by:

V = βint1n + U′β + ε (4.1)

where β = {β1, β2, . . . , βp} and βint are the regression coefficients and ε is the “error”

vector, such that E(ε) = 0, V ar(ε) = σ2G where G is a known non-singular matrix,

and εi ⊥ εj , 1 ≤ i 6= j ≤ n. Without loss of generality, we may assume G = I.

Note that the parameter of interest here is β.

We define the variables as Yi = Vi − V̄ and Xij = Uij − Ūj , 1 ≤ i ≤ n, 1 ≤ j ≤ p, so

that Y and Xi’s are now centered.

As in previous chapters, X will denote the p × n data-matrix, whose ith column

is Xi, 1 ≤ i ≤ n. However, unlike previous chapters, X here will be considered to be

non-random.

The most important hypothesis that one would typically be interested in testing

for the above model is H0 : β = β0 vs. H1 : β 6= β0, where β0 is known. In the next

section, we will investigate ways to apply testing procedures based on determinant scale

curves to this problem.

4.2 Tests for β

For testing H0 : β = β0 vs. H1 : β 6= β0, we first note that without loss of generality,

we may assume β0 = 0, since, otherwise, we may redefine V as V = V −U′β0.

To obtain the test, we shall employ a permutation scheme on the centered variables

as follows:

Define d(.) as the dsc for the combined dataset (V : U′). By definition, d(.) is also

the dsc of (Y : X′). Now, we randomly permute the vector V to create V∗. Define

d∗(.) as the dsc of the matrix (V∗ : U′), which again is same as the dsc of (Y∗ : X′),

where Y∗ = V∗ − V̄ ∗.



39

Under the null hypothesis, we have V = βint1n + ε, so that d() is the dsc of (ε : X′)

and d∗() is the dsc with of (ε∗ : X′), where ε∗ is the permutation of ε. Since ε is a vector

of i.i.d. “errors”, this permutation will not change the d() appreciably, and so, d() and

d∗() will remain close to each other.

Now, under any point in the alternative, say β = β1, d() = the dsc of (Y : X′) = dsc

of (ε + X′β1 : X) = dsc of (ε : X′) will be the same as under the null. However, under

the permutation, d∗() =dsc of
(
ε∗ + X∗′β1 : X′

)
will tend have larger values. One

way to see it is to note that while computing SS
(
ε∗ + X∗′β1 : X′

)
, the permutation

effectively inflates the diagonal entry corresponding to the variance of ε∗ by the sample

variance of X∗′β1, while the off-diagonal entries do not change significantly, since the

covariances between ε∗,X∗′β1 and the columns of X′ remain small. Hence, d∗() will

tend to lie above d().

A more geometric way of visualizing the same effect is to note the fact that |SS(ε : X′)|
is a measure of the volume of the data. Under null, ε is distributed evenly around 0,

for the entire range of the X’s. Hence, the permutation does not cause any apprecia-

ble change to the volume of the scatter of (ε : X′). However, under any alternative:

β = β1, d∗() essentially measures the volume of
(
ε∗ + X∗′β1 : X′

)
. ε∗ + X∗′β1 is no

longer centered around the same value across the domain of X′, and the permutation

destroys the relationship between ε + X
′
β1 and the X’s, thus inflating the volume of

the scatter.

Equivalently, one might say that under the null, the data scatter of {X,Y} approxi-

mately lies in a lower dimensional subspace of <p+1, and thus, the volume, as computed

using |SS(ε : X′)| remains low. The permutation process does not inflate this volume,

because of the reasons described in the previous paragraph. However, under the al-

ternative, the permutation disturbs the linear relationship between X and Y, so that

the scatter of {X∗,Y} no longer lies in a lower dimensional subspace. This inflation of

volume shows up in the permuted scale curves being higher than the scale curve of the

un-permuted data.

This phenomenon can be utilized to devise a permutation test at any given level

α. To perform the test, first we create a large number of replicates of d∗(). Now, we
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reject H0 if d() lies in or under the bottom 100α% of the d∗()’s. Note that, like in

previous chapters, this procedure leads to a distinct test for every 0 ≤ t ≤ 1. However,

as before, we would restrict ourselves to the specific values t = 0.5, 0.75.0.9, 1 as they

would suffice in demonstrating the properties and usefulness of the tests.

Figures 4.1(a) and 4.1(b) provide illustration of the tests under the null and alter-

native hypotheses.

Observations and results in the subsequent sections will show that the above test

for t = 1 is Pitman equivalent to the parametric F-test, which is the most powerful

test for the above hypotheses, under (approx.) Normality assumptions on the error (ε)

terms. Also, the dsc tests for 0.5 ≤ t < 1 will be shown to have significant robustness

properties, being resilient to the presence of outliers. Hence, the tests will prove to be

extremely useful in cases where there are outliers in the data, or when the distribution

of ε is believed to be more diffused than the Normal distribution.

Before exploring these theoretical properties of the tests, we present some power

simulations of the tests.

4.3 Power Simulations

We simulated the power of the dsc tests using a sample of size 20, on the model in

equation 4.1, using

U1i = i

U2i = 1 + log(i), 1 ≤ i ≤ 20

Table 4.1 shows the powers compared to the F-test, using Standard Normal, Double

Exponential and Cauchy as the error distributions. The column ”F-test” shows the

power of the F-test, using cut-off points corresponding to the Normal distribution.

For Double Exponential and Cauchy distributions, these numbers are expected to be

slightly inflated because of the thicker tails compared to Normal distribution. The fact

becomes evident from the simulated figures corresponding to β = (0, 0) in tables 4.1(b)

and 4.1(c), where, the numbers for both Double Exponential and Cauchy are much

higher than the expected number 0.05. We therefore calculated the 95th percentile of
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(b) Under H1 : β = (1,1).

Figure 4.1: The dsc tests illustrated using a bivariate N(β, I) sample of size 20.
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(β1, β2) d(.5) d(.75) d(.9) d(1) F-test
(0,0) 0.034 0.048 0.059 0.053 0.058

(0.0,0.4) 0.076 0.117 0.157 0.203 0.206
(0.0,0.6) 0.115 0.183 0.259 0.386 0.416
(0.0,0.8) 0.147 0.286 0.448 0.611 0.674
(0.0,1.0) 0.224 0.472 0.710 0.836 0.858
(0.2,0.0) 0.507 0.856 0.964 0.992 0.992
(0.2,0.2) 0.601 0.935 0.989 0.997 0.998
(0.2,0.4) 0.718 0.972 0.998 0.999 1.000

(a) Bivariate Normal

(β1, β2) d(.5) d(.75) d(.9) d(1) F-test Adj. F-test
(0,0) 0.047 0.053 0.052 0.053 0.074 0.044

(0.2,0.0) 0.371 0.557 0.710 0.831 0.888 0.870
(0.2,0.2) 0.445 0.675 0.794 0.901 0.932 0.912
(0.2,0.4) 0.511 0.769 0.890 0.955 0.968 0.956
(0.4,0.0) 0.879 0.983 0.998 1.000 0.998 1.000
(0.4,0.4) 0.913 0.993 1.000 0.999 1.000 1.000
(0.0,0.2) 0.066 0.062 0.068 0.070 0.080 0.076
(0.0,0.4) 0.047 0.063 0.070 0.114 0.132 0.126
(0.0,0.8) 0.129 0.179 0.243 0.347 0.424 0.368
(0.0,1.0) 0.158 0.260 0.374 0.551 0.568 0.530

(b) Bivariate Double Exponential

(β1, β2) d(.5) d(.75) d(.9) d(1) F-test Adj. F-test
(0,0) 0.052 0.051 0.058 0.053 0.076 0.060

(0.2,0.2) 0.212 0.215 0.203 0.196 0.212 0.218
(0.4,0.4) 0.544 0.625 0.584 0.449 0.520 0.440
(0.8,0.8) 0.874 0.909 0.869 0.704 0.744 0.678
(1.0,1.0) 0.940 0.959 0.921 0.757 0.754 0.730
(0.0,0.4) 0.046 0.061 0.050 0.066 0.060 0.062
(0.0,0.8) 0.073 0.092 0.081 0.089 0.106 0.070
(0.0,1.0) 0.100 0.105 0.092 0.096 0.108 0.102
(0.4,0.0) 0.460 0.533 0.479 0.400 0.446 0.394
(0.8,0.0) 0.828 0.882 0.829 0.659 0.726 0.656
(1.0,0.0) 0.923 0.952 0.917 0.740 0.768 0.744

(c) Bivariate Cauchy

Table 4.1: Power comparison of dsc tests with F-test using samples of size 10 each and
α = 0.05
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the F-statistic under these two distributions using 5000 Monte-Carlo simulations, before

using them to recalculate the power figures. These revised numbers are shown under

the column ”Adj. F-test”, and are the ones that should be compared to those of the

permutation test.
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Figure 4.2: Scatter plot and fitted lines for CYG OB1 data.

The simulations show the powers for the test at d(1) to be comparable to the F-test,

for all the choices of the error distributions. Also, the test at d(0.5) shows significant

improvement over the F-test for the Cauchy case, reinforcing the fact that the tests in

the middle zone of the dsc’s are significantly robust.
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4.4 Example

[Humphreys, R.M. 1978] reported the light intensities and surface temperatures for the

star cluster CYG OB1. The modified dataset, with the variables in logarithmic scale,

appeared in [Rousseeuw, Leroy 1987]. The dataset is interesting in the fact that there

seems to be a significant positive correlation between the variables. However, there

are four outliers: data-points corresponding to four giant stars, that do not conform to

the characteristics of the rest of the cluster. A scatter-plot of the data, along with the

outliers, are shown in Figure 4.2.
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Figure 4.3: dsc tests on CYG OB1 data.

Interest lies in exploring the effect of the surface temperature on the light intensity,

and a linear model can be applied on the logarithm of the variables to analyze the
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effect. However, presence of these four outliers skews the analysis significantly. In fact,

with the outliers included, the p-value of the F-test for H0 : β = 0 vs. H1 : β 6= 0 turns

out to be 0.15, failing to reject the null hypothesis at all reasonable levels. However,

the same analysis done with the outliers omitted, yields a p-value 0, thus rejecting the

null at all level of significance. The solid line in Figure 4.2 shows the fitted regression

line on the entire data, while the dotted line is the fitted line with the outliers omitted.
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Figure 4.4: Scatter plot and fitted lines for Belgian telephone calls data.

Applying the test using dsc on the dataset, illustrated in Figure 4.3, shows that the

null is rejected in the entire middle zone of the dsc. This once again demonstrates the

robustness of the tests. However, at t = 1, the null hypothesis could not be rejected,

showing the similarity of the test using d(1) with the F-test.

As a second example, we look at the data set provided by the Belgian Statistical
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Survey, describing the number of international phone calls from Belgium in years 1950−
1973. The data has been analyzed by [Rousseeuw, Leroy 1987]. The scatter plot shown

in Figure 4.4 shows clear outliers corresponding to the years 1964 − 1969 , when a

different measurement system was used and instead of the number of phone calls, the

total number of minutes of these calls were reported. The linear regression fit with the

outliers included has a slope 0.5, and is heavily affected by the outliers, as shown in

Figure 4.4. The regression fit without the outliers however, has a much lower slope,

and seems to fit well with the rest of the data.
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Figure 4.5: dsc tests on Belgian telephone calls data.

This distorting effect of the outliers is shown in hypothesis tests as well. The

standard F-test for testing H0 : β = 0.5 vs H1 : β 6= 0.5, has a p-value of 0.98

in presence of the outliers, while the same test has p-value 0 when the outliers are
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removed.

The dsc tests capture the effect of the outliers very nicely. Figure 4.5 shows the

dsc test for the above hypotheses. The test at t = 1 cannot reject H0, just like the

F-test. The tests in the middle region of the dsc are, however, much more resistant to

the outliers, and hence, reject the null.

We now go on to some results that would explain the similarity between the test

using d(1) and the F-test.

4.5 Optimality of dsc test at t = 1

We begin the section with a lemma.

Lemma 4.1. For the regression setup in equation 4.1, the least squares estimate β̂LS

of β is given by:

β̂LS = (XX′)−1XY

Proof. The least square estimates are obtained as the solution to the normal equations:

(
1n
′

U

) (
1nU′) (

βint
β

)
=

(
1n
′

U

)
V (4.2)

Define Ū′ = {Ū1, Ū2, . . . , Ūp}. Define L =
(−Ū : Ip

)
, where Ip is the identity matrix

of order p. Now, note that

L
(

1n
′

U

)
= X

Thus,

L
(

1n
′

U

) (
1n : U′) = X

(
1n : U′) =

(
0p : XX′)

and

L
(

1n
′

U

)
V = XV = XY

Therefore, pre-multiplying both sides of 4.2 by L, we get

XX′β = XY

which yields the solution β̂LS = (XX′)−1XY. Hence proved.
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The F-statistic used to test H0 : β = β0 vs. H1 : β 6= β0, is given by

F ∗
β =

(β̂LS − β0)′(XX′)−1(β̂LS − β0)
pMSE

(4.3)

where MSE = ||Y−β̂int1n−X′β̂LS||2
n−p−1 , β̂int being the least squares estimate of βint. The

rejection region at level α is given by: F ∗
β > 100(1 − α) percentile of Fp,n−p−1 distri-

bution.

Note here that MSE = ||Y−β̂int1n−X′β̂LS||2
n−p−1 → σ2 a.s. [ε].

Hence, F ∗
β ' 1

pσ2 (β̂LS − β0)′(XX′)−1(β̂LS − β0) for large n.

Therefore the test is asymptotically equivalent the test that rejects H0 at level α

when 1
σ2 (β̂LS − β0)′(XX′)−1(β̂LS − β0) > 100(1 − α) percentile of χ2

p distribution.

This important fact guides us to the most important result of this section.

Define e = Y −X′β0. Notice here that since Y and X are centered, so is e.

Now, observe that

d(1) = |SS(Y : X′)|

= |SS(Y −X′β0 : X′)|

=

∣∣∣∣∣∣


e′e e′X′

Xe XX′




∣∣∣∣∣∣

= |XX′| [e′e− e′X′(XX′)−1Xe
]

Similarly, d∗(1) = |XX′|
[
e∗′e∗ − e∗′X′(XX′)−1Xe∗

]
, where e∗ = Y∗ −X∗′β0.

Since, e∗′e∗ = e′e, therefore d(1) will be in or under the lowest α% of d∗(1)’s, if and

only if 1
σ2 e′X′(XX′)−1Xe ≥ 100(1−α)th percentile of the permutation distribution of

1
σ2 e∗

′
X′(XX′)−1Xe∗.

Now, a straightforward simplification yields

1
σ2

e′X′(XX′)−1Xe =
1
σ2

(Y −X′β0)′X′(XX′)−1X(Y −X′β0)

=
1
σ2

((XX′)−1X′Y − β0)′(XX′)((XX′)−1X′Y − β0)

=
1
σ2

(β̂LS − β0)′(XX′)(β̂LS − β0)

(4.4)

for large n.
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To proceed further, we would need to establish the asymptotic permutation dis-

tribution of 1
σ2 e∗

′
X′(XX′)−1Xe∗. But before tackling the most general case, we will

begin with the simpler case of p = 1.

Lemma 4.2. Using the notation above, for p = 1, and under the assumptions:

(i) limn→∞ 1
n

∑n
i=1 Xi1

r → O(1), r = 3, 4, 5, . . .,

(ii) limn→∞ 1
n

∑n
i=1 Xi1

2 = γ2 > 0,

(iii) max{1≤i≤n}
εi

2

n → 0 a.s. as n →∞,

(iv) β − β0 = Op(n−
1
2 ),

the asymptotic permutation distribution of 1
σ2 e∗

′
X′(XX′)−1Xe∗ is χ2

1 a.s. [X].

Note that condition (iii) above may be replaced by the slightly stronger condition:

(iiia)E(εi
2) < ∞. Proof of the fact that (iiia) implies (iii) is available in literature

(see for example [Singh, Xie 2003], Appendix A).

Proof. Recall, without loss of generality, β0 = 0. Hence, e∗ = Y∗ = X∗′β + ε∗.

Also, since p = 1, X = {X11, X21, . . . , Xn,1}. For simplicity of notation, we’ll denote

X = {X1, X2, . . . , Xn} = {X11, X21, . . . , Xn,1}.
Thus,

e∗
′
X′(XX′)−1Xe∗ = Y∗′X′(XX′)−1XY∗

=




∑n
i=1 XiYi

∗
√∑n

i=1 Xi
2




2

=

(
n∑

i=1

aiYi
∗
)2

where ai = Xi√∑n
i=1 Xi

2
, i = 1, 2, . . . , n. Thus, it suffices to show that the asymptotic

permutation distribution of
∑n

i=1 aiYi
∗ is N(0, σ2) a.s. [X].

By assumptions (i) and (ii), the ai’s trivially satisfy the Wald-Wolfowitz condition,

since
1
n

∑n
i=1 ai

r

(
1
n

∑n
i=1 ai

2
)r/2

=
1
n

∑n
i=1 Xi

r

(
1
n

∑n
i=1 Xi

2
)r/2

= O(1), r = 3, 4, 5, . . . .
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Also, the Yi’s satisfy the Noether condition:

max
{1≤i≤n}

Yi
2

n
= max
{1≤i≤n}

(εi + Xiβ)2

n

≤ max
{1≤i≤n}

εi
2

n
+ β2 max

{1≤i≤n}
Xi

2

n
+ 2β max

{1≤i≤n}
εiXi

n

→ 0

as n → ∞, since by assumption (iii), max{1≤i≤n}
εi

2

n → 0; by assumption (ii) and

(iv),

β2 max
{1≤i≤n}

Xi
2

n
≤ Op(n−1)

n∑

i=1

Xi
2

n
→ 0

and

β max
{1≤i≤n}

εiXi

n
≤ Op(n−

1
2 )

n∑

i=1

|εiXi|
n

≤ Op(n−
1
2 )

(
n∑

i=1

εi
2

n

) 1
2
(

n∑

i=1

Xi
2

n

) 1
2

→ 0.

Hence, using the Wald-Wolfowitz-Noether CLT for sampling without replacement

from a finite population (for details see [Hajek, J 1961] and [Noether, G.E. 1949]), we

can claim the asymptotic convergence in distibution a.s.[X]:

n∑

i=1

aiYi
∗ ⇒ N(θ, τ2)

where

θ = lim
n→∞

1
n

n∑

i=1

(ai − ā)
n∑

i=1

(Yi
∗ − Ȳ ) = 0

since X̄ is 0; and

τ2 = lim
n→∞

1
n− 1

n∑

i=1

(ai − ā)2
n∑

i=1

(Yi
∗ − Ȳ )2

= lim
n→∞

1
n− 1

n∑

i=1

(εi
∗ − ε̄ + βXi

∗)2

= lim
n→∞

1
n− 1

n∑

i=1

(εi
∗ − ε̄)2 + lim

n→∞
1

n− 1

n∑

i=1

(βXi
∗)2 + lim

n→∞
1

n− 1

n∑

i=1

βXi
∗(εi

∗ − ε̄)

= σ2 + β2γ2

since

lim
n→∞

1
n− 1

n∑

i=1

βXi
∗(εi

∗ − ε̄) = lim
n→∞

1
n− 1

n∑

i=1

βXi(εi − ε̄) = 0
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by SLLN a.s. [X].

Now, by assumption (iv), β = Op(n−
1
2 ). Therefore

τ2 = σ2 + β2γ2 = σ2 + γ2Op(n−1) → σ2

Thus, the asymptotic permutation distribution of
∑n

i=1 aiYi
∗ is N(0, σ2) a.s. [X].

Hence proved.

The general version of the above lemma, with p ≥ 1 follows analogously.

Lemma 4.3. Using the notation used above, and under the assumptions:

(i) limn→∞ 1
n

∑n
i=1 Xij

r = γj
(r), j = 1, 2, . . . , p, r = 3, 4, 5, . . .,

(ii) limn→∞ 1
nXX′ = Γ id p.d.,

(iii) max{1≤i≤n}
εi

2

n → 0 a.s. as n →∞,

(iv) β − β0 = Op(n−
1
2 ),

the asymptotic permutation distribution of 1
σ2 e∗

′
X′(XX′)−1Xe∗ is χ2

p.

The proof is similar to that of Lemma 4.2, but for a little cumbersome notation,

and is thus moved to the appendix. Just like Lemma 4.2, condition (iii) above may be

replaced by the slightly stronger condition: (iiia)E(εi
2) < ∞.

Using the above lemma, we have the immediate theorem:

Theorem 4.4. Under the assumptions of Lemma 4.3, the dsc test using d(1) is Pitman

equivalent to the F-test using the statistic in 4.3.

Proof. The theorem follows from Lemma 4.3 and equation 4.4.

The above theorem explains the similarity in the power of the dsc tests at d(1) and

the F-tests, as shown in Table 4.1.
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4.6 Exploring Linearity in Multivariate datasets

The techniques developed in the previous sections can be readily extended to problems

where one would wish to explore linearities in a multivariate data. Such situations

occur regularly in multiple linear regression setups, where linear relationship between

the covariates lead to problems like multicollinearity.

The standard parametric test and Likelihood Ratio test (LRT) for exploring linear

relationships involve the Pearson’s correlation coefficient, or its multivariate analog, and

utilize its asymptotic distributional properties under minor distributional assumptions

on the data.

One of the most popular statistics used to quantify the linearity in the data is the

Variance Inflation Factor (VIF). The VIF of a given variable is essentially a monotone

increasing function of the multiple correlation coefficient R2 achieved under a linear

regression setup with the (standardized) variable in question being the response and

the remaining (standardized) variables being the covariates. The higher the VIF, the

greater is the degree of linear dependence. It can be shown that the idea is closely related

to the LRT. For detailed discussion on the matter, see [Muirhead, Robb J. 1982].

The above approach can be easily replicated using the techniques developed in the

previous sections. The test to explore whether a variable is a linear function of another

group of variables would simply require us to identify them as V and U respectively in

Equation 4.1. Simple modifications of Lemma 4.3 and Theorem 4.3 will establish that

the dsc test for the slope parameter being zero is Pitman equivalent to the LRT for

H0 : R2 = 0 vs. H1 : R2 6= 0.

We however would explore a more holistic approach, where the aim is to check the

existence of (one or more) linear relationship(s) among a group of variables, without

explicitly identifying the variables that are linearly related.

To that end, let {Xi}{i=1,...,n} denote a multivariate sample of size n on <p, and let

X denote the p× n matrix with Xi’s as its columns.

To motivate the methods, we refer to a well known result:

Lemma 4.5. Let S = SS(X) = ((S))i,j , 1 ≤ i, j ≤ p. Then |S| ≤ ∏p
i=1 si,i, 1 ≤ i ≤ p.
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See [Rao, Bhimasankaram 1992] for a quick proof. The inequality above is strict

when S is p.d.

4.6.1 Permutation Scheme and test

We shall modify the permutation scheme in Section 4.2 as follows:

Let d() denote the dsc of X. Now we permute all the rows of X randomly to

create X∗, and generate the dsc d∗() of the permuted data. If there were any existing

linear relationship within (any subset of) the data, this process will completely destroy

it. As a result, the off-diagonal elements of SS(X∗) would be small in absolute value.

Lemma 4.5 indicates that this would inflate dsc of the permuted data. Thus, d∗() would

tend to lie above d().

In the absence of any linearity, this permutation will not have any appreciable effect

and thus d() and d∗() tend to lie close to each other.

From a more geometric standpoint, one might say, that in presence of linearity,

the data actually lies in a lower dimensional subspace, and thus has a smaller volume,

as captured by d(). The permutation process essentially inflates the data to a higher

dimension, causing d∗() to be higher than d().

This fact can be utilized to create permutation tests, similar to the ones we have

described before, to test H0 : No Linearity vs H1 : Linearity. One can generate

multiple copies of d∗(), using the permutation scheme, and create a band representing

the distribution of the dsc of the permuted data. For any 0 < t ≤ 1, reject H0 at level

α if d() lies in or under the bottom 100α% of the band of d∗()’s. As in all previous

cases, this yields a distinct test for every 0 < t ≤ 1.

We will explore the performance of the test using an example.

4.6.2 Example

[Montgomery et al 2007] provides data from an experiment on jet turbines. The ex-

planatory variables that are reported are respectively - X1: primary speed of rotation,
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(a) Using all variables

Figure 4.6: Tests for linearity using multisample dsc on Jet Turbine Data

X2: secondary speed of rotation, X3: fuel flow rate, X4: pressure, X5: exhaust tem-

perature and X6: ambient temperature at time of test.

We use the dsc test to check whether there exists any linearity among these six

variables.

When all the six variables are considered, V IF calculations yield V IF (X1) =

289, V IF (X3) = 168, V IF (X4) = 220, the rest being under 100. The high V IF ’s

indicate strong linear relations involving these variables. The same is reflected in Fig-

ure 4.6(a), which emphatically rejects the hypothesis of non-linearity for all 0 < t ≤ 1.

Dropping X1, X3 and X4 yields V IF (X2) = 15.3, V IF (X5) = 16.8, V IF (X6) = 2.3,

indicating that linearity still exists, albeit at a lesser degree. Figure 4.6(b) validates

the fact.

Finally, dropping X5 yields V IF (X2) = V IF (X6) = 1, indicating that there is no

linear relationship between the two remaining variables. Figure 4.6(c) confirms it, with

d() lying entirely within the band of d∗()’s for all 0 < t ≤ 1.
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Figure 4.6: Tests for linearity using multisample dsc on Jet Turbine Data (contd.)
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Figure 4.6: dsc tests on simulated Normal Data with outliers.

4.6.3 Robustness

Due to the inherent robustness of the dsc in its middle section, the permutation tests in

these middle ranges are largely unaffected by presence of outliers. The same property

is exhibited by the above test for existence of linearity.

A simple simulation exercise brings out the fact nicely, as is shown in Figure 4.6.

The bivariate data used were simulated as:

X1i = i, 1 ≤ i ≤ 20

X2i = X1i + εi, 2 ≤ i ≤ 19,

X21 = X220 = 20

where εi ∼ N(0, 1) are independent.
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By construction, X1 and X2 exhibit strong linear relationship, except for the points

(X11 , X21) and (X120 , X220), which serve as outliers. In spite of the strong linearity, the

two outliers bring down the V IF to 2.2. The same vulnerability to outliers is seen at

the rightmost extreme of the dsc, and the test at t = 1 fails to reject the hypothesis of

non-linearity. However, the tst performs much better in the middle sections, where d()

lies entirely below the band of d∗()’s, thus rejecting the hypothesis of non-existence of

linearity.
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Chapter 5

Appendix

5.1 Proof of Lemma 4.3

Proof. Recall, without loss of generality, β0 = 0. Hence, e∗ = Y∗ = X∗′β + ε∗.

Therefore,

e∗
′
X′(XX′)−1Xe∗ = Y∗′X′(XX′)−1XY∗

= ||(XX′)−
1
2XY∗||2

(5.1)

Therefore, it suffices to prove that the asymptotic permutation distribution of

(XX′)−
1
2XY∗ is Np(0, σ2I).

Let l ∈ <p and ||l||2 = 1. Will show that the asymptotic permutation distribution

of l′(XX′)−
1
2XY∗ is N(0, σ2).

To that end, define u′ = l′(XX′)−
1
2X. Note that u′1n = 0, since X1n = 0, and

||u||2 = l′(XX′)−
1
2XX′(XX′)−

1
2 l = ||l||2 = 1.

Also, by assumption (ii), u′ ' 1√
n
l′Γ−

1
2X as n →∞.

Denote, v′ = 1√
n
l′Γ−

1
2 . Thus, for all r = 3, 4, 5, ..., and large n, we have

(
n∑

i=1

ui
r

) 1
r

'



n∑

i=1




p∑

j=1

vjXij




r


1
r

≤
p∑

j=1

vj

(
n∑

i=1

Xij
r

) 1
r

'
p∑

j=1

vj

(
nγ

(r)
j

) 1
r

= n
1
r
− 1

2 l′Γ−
1
2 (γ(r))

1
r

(5.2)

where γ(r)′ = {γ(r)
1 , γ

(r)
2 , . . . , γ

(r)
p }. The inequality above follows using Minkowski’s

inequality.
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Therefore, for all r = 3, 4, 5, ...,

lim
n→∞

1
n

∑n
i=1 ui

r

[
1
n

∑n
i=1 ui

2
] r

2

≤ lim
n→∞n−1+ r

2

(
n

1
r
− 1

2 l′Γ−
1
2 (γ(r))

1
r

)r
=

(
l′Γ−

1
2 (γ(r))

1
r

)r
= Op(1)

(5.3)

and hence u satisfies the Wald-Wolfowitz condition.

Also, note that

max
{1≤i≤n}

Yi
2

n
= max
{1≤i≤n}

(εi +
∑p

j=1 Xijβj)2

n

≤ max
{1≤i≤n}

εi
2

n
+ max
{1≤i≤n}

(
∑p

j=1 Xijβj)2

n
+ 2 max

{1≤i≤n}
εi

∑p
j=1 Xijβj

n

As n →∞, by assumption (iii), max{1≤i≤n}
εi

2

n → 0.

By assumption (ii) and (iv),

max
{1≤i≤n}

(
∑p

j=1 Xijβj)2

n
≤

n∑

i=1

(
∑p

j=1 Xijβj)2

n
→ β′Γβ = op(1)

Also, by assumption (iv), can assume β′ = 1√
n
(c1, c2, . . . , cn), ci ∈ <

Thus,

max
{1≤i≤n}

εi
∑p

j=1 Xijβj

n
≤ 1√

n

n∑

i=1

|εi|
∑p

j=1 |Xijcj |
n

≤
(

max
{1≤i≤n}

|εi|√
n

)(∑n
i=1

∑p
j=1 |Xijcj |2
n

) 1
2

→ 0.

Hence the Yi’s satisfy the Noether condition:

max
{1≤i≤n}

Yi
2

n
→ 0

Hence, using the Wald-Wolfowitz-Noether CLT for sampling without replacement

from a finite population (for details see [Hajek, J 1961] and [Noether, G.E. 1949]), we

can claim the asymptotic convergence in distibution a.s.[X]:

n∑

i=1

uiYi
∗ ⇒ N(θ, τ2)

where

θ = lim
n→∞

1
n

n∑

i=1

(ui − ū)
n∑

i=1

(Yi
∗ − Ȳ ) = 0
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since u′1n = 0; and

τ2 = lim
n→∞

1
n− 1

n∑

i=1

(ui − ū)2
n∑

i=1

(Yi
∗ − Ȳ )2

= lim
n→∞

1
n− 1

n∑

i=1

(εi
∗ − ε̄ +

p∑

j=1

X∗
ijβj)2

= lim
n→∞

1
n− 1

n∑

i=1

(εi
∗ − ε̄)2 + lim

n→∞
1

n− 1

n∑

i=1

(
p∑

j=1

X∗
ijβj)2

+ lim
n→∞

1
n− 1

n∑

i=1

(εi
∗ − ε̄)

p∑

j=1

X∗
ijβj

= σ2 + β′Γβ = σ2 + op(1)

since

lim
n→∞

1
n− 1

n∑

i=1

(εi
∗ − ε̄)

p∑

j=1

X∗
ijβj = lim

n→∞
1√
n

n∑

i=1

(εi − ε̄)
∑p

j=1 Xijcj

n− 1
= 0

by SLLN a.s. [X].

Thus, the asymptotic permutation distribution of
∑n

i=1 uiYi
∗ is N(0, σ2) a.s. [X].

Hence proved.
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