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ABSTRACT OF THE DISSERTATION

Negative correlation and log-concavity

by Michael Neiman

Dissertation Director: Jeff Kahn

This thesis is concerned with negative correlation and log-concavity properties and re-

lations between them, with much of our motivation provided by [40], [46], and [12]. Our

main results include a proof that “almost exchangeable” measures satisfy the “Feder-

Mihail” property; counterexamples and a few positive results related to several con-

jectures of Pemantle [40], Wagner [46], and Choe and Wagner [7] concerning negative

correlation and log-concavity properties for probability measures and relations between

them; a proof that a conditional version of the “antipodal pairs property” implies a

strong form of log-concavity, which yields some partial results on a well-known conjec-

ture of Mason [38]; a proof that “competing urn” measures satisfy “conditional negative

association”; and proofs that certain classes of measures introduced by Srinivasan [42]

and Pemantle [40] satisfy a strong form of negative association.
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Chapter 1

Introduction

In this chapter, we state our main results, provide a bit of context, background, and

motivation, and mention several open problems. Since this subject seems to generate a

lot of acronyms and terminology, a short glossary is included at the end of this thesis.

We begin with some terminology. Given a finite set S, denote by M =MS the set

of probability measures on Ω = ΩS = {0, 1}S . As a default we take S = [n] = {1, . . . , n}

(which for us is simply a generic n-set), using Ωn in place of Ω[n]. We will occasionally

identify Ω with the Boolean algebra 2[n] (the collection of subsets of [n] ordered by

inclusion) in the natural way (namely, identifying a set with its indicator). An event

A ⊆ Ω is increasing (really, nondecreasing) if x ≥ y ∈ A implies x ∈ A (where we

give Ω the product order), and similarly for decreasing. While our concern here is

with negative dependence properties, for perspective we first recall one or two points

regarding their better understood positive counterparts.

1.1 Positive correlation and association

Events A and B in a probability space are positively correlated—we write A ↑ B—if

Pr(AB) ≥ Pr(A) Pr(B). The joint distribution of random variables X1, ..., Xn—here

always {0, 1}-valued—is said to be positively associated (PA) if any two events both

increasing in the Xi’s are positively correlated. (This is easily seen to be equivalent to

the property that for any two increasing functions f, g of the Xi’s one has Efg ≥ EfEg.)

The seminal result here is Harris’ Inequality [25], which says that product measures

are PA. (The special case of uniform measure on Ω was rediscovered in [30], and in

combinatorial circles has often been called Kleitman’s Lemma.) The best known—

and most useful—extension of Harris’ Inequality is the FKG Inequality of Fortuin,
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Kasteleyn, and Ginibre [15], viz.

Theorem 1.1 If µ ∈M satisfies

µ(η)µ(τ) ≤ µ(η ∧ τ)µ(η ∨ τ) ∀ η, τ ∈ Ω (1.1)

(where ∧,∨ denote meet and join in the product order on Ω), then µ is PA.

(Stronger still, and also very useful, is the Ahlswede-Daykin or “Four Functions” The-

orem [1], whose statement we omit.)

The positive lattice condition (1.1) (a.k.a. the FKG lattice condition or log super-

modularity) is equivalent to conditional positive association, the property that every

measure obtained from µ by conditioning on the values of some of the variables is PA;

this follows easily from Theorem 1.1 and is a good way to make sense of (1.1). One also

says that µ with (1.1) is an FKG measure. See, e.g., [3], [18], [32], [17], [13], [14] for a

small sample of applications of these notions in combinatorics, probability, statistical

mechanics, statistics and computer science.

1.2 Negative association and related properties

While negative correlation has the obvious meaning (µ(AB) ≤ µ(A)µ(B), denoted

A ↓ B), negative association requires a little care (for instance, A ↑ A holds strictly for

any A with µ(A) 6∈ {0, 1}). Say i ∈ [n] affects event A if there are η ∈ A and τ ∈ Ω \A

with ηj = τj for all j 6= i, and write A ⊥ B if no coordinate affects both A and B. (Note

that we sometimes use “variable” in place of “coordinate.”) Then µ ∈M is negatively

associated (or has negative association; we use “NA” for both) if A ↓ B whenever A,B

are increasing and A ⊥ B. We say µ has negative correlations (or is NC) if ηi ↓ ηj (that

is, {ηi = 1} ↓ {ηj = 1}) whenever i 6= j.

Negative association turns out to be a much subtler property than PA. Pemantle

[40] proposes a number of questions regarding conditions related to NA, and possible

implications among them; we sketch what we need from this, and refer to [40] for a more

thorough discussion (and more motivation). The properties of interest for us are those
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obtained from NC and NA by requiring closure under either conditioning or imposition

of external fields. We first define these operations.

Here conditioning always means fixing the values of some variables (and this speci-

fication is always assumed to have positive probability); thus a measure obtained from

µ ∈ M by conditioning is one of the form µ(·|ηi = ξi ∀i ∈ I) (which we regard as a

measure on Ω[n]\I) for some I ⊆ [n] and ξ ∈ {0, 1}I . (If we think of Ω as 2[n], then

conditioning amounts to restricting our measure to some interval [J,K] of 2[n] (and

normalizing).)

For W = (W1, . . . ,Wn) ∈ Rn
+ and µ ∈M, define W ◦ µ ∈M by

W ◦ µ(η) ∝ µ(η)
∏

W ηi
i (1.2)

(meaning, as usual, that the left side is the right side multiplied by the appropriate

normalizing constant). Borrowing Ising terminology, one says that W ◦ µ is obtained

from µ by imposing the external field W (though to make this specialize correctly to the

Ising model, we should really take the “field” to be h given by hi = lnWi). It will be

convenient to allow Wi =∞, which we interpret as conditioning on {ηi = 1}; similarly,

we interpret Wi = 0 as conditioning on {ηi = 0}.

A third standard operation is projection: the projection of µ on J ⊆ [n] is the

measure µ′ on {0, 1}J obtained by integrating out the variables of [n] \ J ; that is,

µ′(ξ) =
∑
{µ(η) : η ∈ Ω, ηi = ξi ∀i ∈ J} (ξ ∈ {0, 1}J).

A basic motivation for much of [40] was the desire for a natural and robust notion

(or notions) of negative dependence, one measure of naturalness (and also of usefulness)

being invariance under some or all of the preceding operations (and a few others that

we will not discuss here). This leads in particular to the following classes, which were

alluded to above.

We say that µ ∈ M is conditionally negatively correlated (CNC) if every measure

obtained from µ by conditioning is NC, and NC+ if every measure obtained from µ by

imposition of an external field is NC. Conditional negative association (CNA) and NA+

are defined analogously. Of course NC+ and NA+ imply CNC and CNA respectively.
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(This would be true even if we didn’t allow Wi ∈ {0,∞} in (1.2), since a limit of NC

measures is again NC, and similarly for NA; but there are properties of interest—in

particular the Feder-Mihail property below—for which things go a little more smoothly

with the present convention.)

Note that Pemantle uses CNA+ where we use NA+, but it is easy to see that the

two notions coincide. In general he uses “+” for closure under both projections and

external fields, but for the properties we are considering, this collapses to the definitions

above: it is easy to see that all of the properties NC, CNC, NC+, NA, CNA, NA+ are

preserved by projections.

Following [7], [46], we will also sometimes use the term Rayleigh for NC+. (The ref-

erence is to Rayleigh’s monotonicity law for electric networks; see the second paragraph

following Conjecture 1.13 below or e.g. [11] or [7].) We should also say a little more

about the relation between our usage and that of [40], for which we need the negative

lattice condition (NLC) for µ ∈M:

µ(η)µ(τ) ≥ µ(η ∧ τ)µ(η ∨ τ) ∀η, τ ∈ Ω. (1.3)

This is of course the analogue of (1.1), but turns out to be not nearly as useful, a crucial

difference being that, unlike (1.1), it is not preserved by projections. Following [40], we

say that µ has the hereditary negative lattice condition (h-NLC) if all projections of µ

satisfy the NLC, and that µ is h-NLC+ if every measure obtained from µ by imposition

of an external field is h-NLC. It is not hard to see

Proposition 1.2 (a) The properties CNC and h-NLC are equivalent.

(b) The properties NC+ and h-NLC+ are equivalent.

This has also been observed in [4] (see their Proposition 2.2 for (b) and Remark 2.2 for a

statement equivalent to (a)), so we will not prove it here, but briefly: (a) clearly implies

(b); h-NLC trivially implies CNC; and the reverse implication follows easily from the

observation that the support of a CNC measure is convex (i.e. µ(η), µ(τ) > 0 implies

µ(σ) > 0 whenever η ≤ σ ≤ τ), proof of which is identical to that of [46, Theorem 4.2].)

Extremely interesting would be
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Conjecture 1.3 ([40]) (a) The properties CNC and CNA are equivalent.

(b) The properties NC+ and NA+ are equivalent.

See [40, Conjectures 2 and 3]. Note that in each case it’s enough to show that the first

named property implies NA. As shown in [40], CNA does not imply NC+; we will later

(Theorem 1.21) see a “naturally occurring” example of this. See also Conjecture 1.20

below for one approach to proving Conjecture 1.3(b). A measure µ ∈M is exchangeable

if it is invariant under permutations of the coordinates (that is, µ(ησ(1), . . . , ησ(n)) =

µ(η1, . . . , ηn) for any η ∈ Ω and permutation σ of [n]), or, equivalently, if µ(η) depends

only on |η| :=
∑
ηi. We say µ is almost exchangeable if it is invariant under permutations

of some subset of n− 1 of the variables.

Pemantle shows [40, Theorem 2.7] that for exchangeable measures the properties

CNC, NC+, CNA and NA+ are equivalent, while [4] proves Conjecture 1.3 for almost

exchangeable measures, that is,

Theorem 1.4 ([4], Corollary 6.6) For almost exchangeable measures

(a) the properties CNC and CNA are equivalent, and

(b) the properties NC+ and NA+ are equivalent.

In Chapter 2 we give quick proofs of both these results. (Note that, in contrast to the

exchangeable case, CNA and NC+ are not equivalent for almost exchangeable measures;

see Theorem 1.21 and Example 5.13.) It may be worth noting that, despite its apparent

simplicity, the class of almost exchangeable measures is considerably richer than the

class of exchangeable measures; in particular, the examples proving Theorem 1.6 below

(and also those of [4]) are almost exchangeable.

1.3 Log-concavity

A sequence a = (a0, . . . , an) of real numbers is unimodal if there is some k ∈ {0, . . . , n}

for which a0 ≤ a1 ≤ · · · ≤ ak ≥ · · · ≥ an, and is log-concave (LC) if a2
i ≥ ai−1ai+1 for

1 ≤ i ≤ n− 1. Of course a nonnegative LC sequence with no internal zeros is unimodal

(where “no internal zeros” means {i : ai 6= 0} is an interval). Following [40] we say that



6

a (as above) is ultra-log-concave (ULC) if the sequence (ai/
(
n
i

)
)ni=0 is log-concave and

has no internal zeros.

We also say that µ ∈ M is ULC if its rank sequence, (µ(|η| = i))ni=0, is ULC. We

define “µ is LC” and “µ is unimodal” similarly, except that for the former we add the

stipulation that the rank sequence has no internal zeros. (It would be convenient to also

make this a requirement for “LC” for sequences, but we politely adhere to the standard

definition.)

Pemantle shows [40, Theorem 2.7] that for exchangeable measures, ULC coincides

with CNC, NC+, CNA and NA+. He conjectures (see his Conjecture 4) that each of

the latter properties implies ULC for general µ; more precisely, this is a set of four

conjectures, the weakest of which is

Conjecture 1.5 NA+ implies ULC.

(He also conjectures that NA implies ULC, but, as noted in [4], this is easily seen to be

incorrect, even for exchangeable measures.)

One of the stronger versions of Pemantle’s conjecture—that the Rayleigh property

(i.e. NC+) implies ULC—was separately proposed by Wagner in [46], where it was

called the “Big Conjecture.” (The overlap seems due to the failure in [40], [46] to notice

Proposition 1.2(b).) We will say more about Wagner’s motivation below. In Section

3.1 we show

Theorem 1.6 Conjecture 1.5 is false; in fact NA+ does not even imply unimodality.

The first part of this was discovered a little earlier by Borcea et al. [4]. The present

examples are slightly smaller (12 variables as opposed to 20 for violation of ULC) and

simpler, and also disprove more, as the example of [4] is LC.

The examples for Theorem 1.6 also turn out to disprove Conjectures 8 and 9 of [40];

again, the first of these is also disproved by the example of [4]. Statements of these

conjectures are deferred to Section 3.1.

A more particular notion than ULC, from [45] and [7], is as follows. Say µ ∈ M

is BLC[m] if every measure gotten from µ by imposing an external field and then
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projecting onto a set of size at most m is ULC (the acronym is for “binomial log-

concavity”), and BLC if it is BLC[m] for all m. (In [7], BLC[m] is called LC[m].)

Choe and Wagner [7, Theorem 4.8] show that the three properties NC+, BLC[2], and

BLC[3] are equivalent. (Strictly speaking, [7] is confined to a smaller class of µ’s, but

the proof is valid in the present generality.) They ask whether NC+ implies BLC[4].

(Of course, since projections preserve NC+, Wagner’s conjecture above would say that

NC+ implies BLC.) In Section 3.2 we will show

Theorem 1.7 NC+ implies BLC[5]

(so also BLC[4]), whereas the examples for Theorem 1.6 will show

NC+ does not imply BLC[12]. (1.4)

We don’t know what happens between 5 and 12. Of course Theorem 1.7 is now less

interesting than formerly, when it was thought to be a step in the direction of Conjecture

1.5.

1.4 The antipodal pairs property

For µ ∈M set

αi(µ) =
(
n

i

)−1∑
{µ(η)µ(1− η) : η ∈ Ω, |η| = i} (1.5)

(where 1 = (1, . . . , 1)). Say µ ∈ M2k has the antipodal pairs property (APP) if

αk(µ) ≥ αk−1(µ), and that µ ∈M has the conditional antipodal pairs property (CAPP)

if any measure obtained from µ by conditioning on the values of some n− 2k variables

(for some k) has the APP. (Note that these properties are not affected by strictly pos-

itive and finite external fields. That is, if µ has the APP then so does W ◦ µ for all W

with strictly positive and finite entries, and similarly for the CAPP.) In Chapter 4 we

prove

Theorem 1.8 For measures without internal zeros in their rank sequences, the CAPP

implies ULC.
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(A somewhat more general version of Theorem 1.8 is stated and proved in Section 4.1.)

Theorem 1.8 is useful for establishing ULC in some settings; here we describe a

few applications. (See also Section 1.5 and Theorem 5.11.) A first, easy consequence is

improvement of some of the results of [45], for which we need to recall some terminology

from that paper. Given a positive integer k and positive real number λ, say µ satisfies

λ-Ray[k] if every measure ν gotten from µ by imposing an external field and then

projecting onto a set S of 2k variables satisfies∑
{ν(η)ν(1− η) : η ∈ Ω, |η| = k} ≥ λ

∑
{ν(η)ν(1− η) : η ∈ Ω, |η| = k − 1}. (1.6)

With the notation of (1.5), the above condition is

αk(ν) ≥ λk

k + 1
αk−1(ν);

thus (1 + 1/k)-Ray[k] says that each ν as above has the APP. (As observed by Wagner

[45]—see his Proposition 4.6—λ = (1 + 1/k) is an “especially natural strength for these

conditions”; there as here, this is essentially because 1+1/k is the ratio of the numbers

of summands on the two sides of (1.6).) Note also that 2-Ray[1] is precisely the Rayleigh

property. Wagner proved

Theorem 1.9 ([45], Theorem 4.3) If a measure satisfies 2-Ray[1] and (1 + 1/k)2-

Ray[k] for all 2 ≤ k ≤ m, then it is BLC[2m+ 1].

(In [45] this is stated only for uniform measure on the bases of a matroid, but the

proof is valid for general measures in M.) Theorem 1.8 easily implies the following

strengthening (see Section 4.2).

Corollary 1.10 If a measure satisfies (1 + 1/k)-Ray[k] for all 1 ≤ k ≤ m, then it is

BLC[2m+ 1].

Using Corollary 1.10 in place of Theorem 1.9 improves Corollary 4.5(b) and Theorem

5.2 of [45] by substituting BLC for the weaker property
√

BLC; see [45] for definitions

and statements.

It is easy to see that if µ ∈ MS , ν ∈ MT are NA+ then the product measure

µ × ν (given by µ × ν(ξ, η) = µ(ξ)ν(η) for (ξ, η) ∈ {0, 1}S × {0, 1}T )) is also NA+.



9

Note that the rank sequence of µ × ν is the convolution of the rank sequences for µ

and ν. One consequence of Conjecture 1.5 would have been that the convolution of

two ULC sequences is ULC or, equivalently, that the product of two ULC measures is

ULC. (The implication follows from a result of Pemantle [40, Theorem 2.7] stating that

for exchangeable measures the properties NA+ and ULC coincide.) Surprisingly—given

that the analogous statement for ordinary log-concavity is fairly trivial—preservation of

ULC under convolution turns out not to be so obvious; it was conjectured by Pemantle

[40] (motivated by the preceding considerations) and proved by Liggett:

Theorem 1.11 ([33], Theorem 2) The convolution of two ULC sequences is ULC.

In Section 4.3 we derive this from Theorem 1.8 and also discuss a potentially interesting

strengthening of ULC for measures that is again preserved by products.

1.5 Mason’s conjecture

Here we want to say a little about the motivation for Wagner’s (“big”) conjecture

and mention a few related questions. For this discussion we regard a matroid as a

collection I of independent sets, subsets of some ground set E. We will not go into

matroid definitions; see e.g. [49] or [39]. Prototypes are the collection of (edge sets of)

forests of a graph (with edge set E)—this is a graphic matroid—and (as it turns out,

more generally) the collection of linearly independent subsets of some finite subset E

of some (not necessarily finite) vector space; for present purposes not too much is lost

by thinking only of graphic matroids.

We are interested in the independence numbers of a matroid I, that is, the numbers

ak = ak(I) = |{I ∈ I : |I| = k}| k = 0, . . . , n,

concerning which we have a celebrated conjecture of J. Mason [38]:

Conjecture 1.12 For any matroid I on a ground set of size n, the sequence of inde-

pendence numbers a = a(I) = (a0, . . . , an) is ULC.

(Note that a will typically end with some 0’s, and also that in the graphic case n

counts edges, not vertices.) Of course one can relax Conjecture 1.12 by asking for LC
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or unimodality in place of ULC. In fact unimodality, first suggested by Welsh [47],

was the original conjecture in this direction, and even this, even for graphic matroids,

remains open. (See [43] or [5] for much more on log-concavity in combinatorial settings.)

From the present viewpoint, Mason’s Conjecture asks for ultra-log-concavity of uni-

form measure on I (regarded in the usual way as a subset of {0, 1}E). In case I is

graphic such a measure is a uniform spanning forest (USF) measure (“spanning” be-

cause we think of a member of I as a subgraph that includes all vertices). These

measures are also very interesting from a correlation standpoint; in particular we have

Conjecture 1.13 USF measures are Rayleigh.

This natural guess was perhaps first proposed in [29] (which was circulated in the

combinatorial community as early as 1993, but took a while to get to press). It is also,

for example, Conjecture 5.11.2 in [46]. (The statement in [29] is (in present language)

that USF measures are NC, but it’s not hard to see that this is equivalent.)

As essentially shown by Brooks et al. [6], the analogue of Conjecture 1.13 for uniform

measure on the spanning trees of a (finite) graph amounts to Rayleigh’s monotonicity

law for electric networks (again, see [11]). This was extended by Feder and Mihail

([14], to which we will return shortly) to say that such measures are in fact NA+ (more

precisely, this is what their proof gives).

Let us call a measure obtained from a USF measure by imposition of an external

field—equivalently, a measure µ on the spanning forests of some finite graph G with,

for some W : E(G) → R+, µ(F ) ∝
∏
e∈F W (e)—a weighted spanning forest (weighted

SF) measure, and define weighted spanning tree (WST) measures and weighted matroid

measures (replace “forest” by “independent set”) similarly. (We avoid “WSF” since it

means wired SF; see e.g. [36].)

One should note that, while the intuition for Conjecture 1.13 may seem clear—

presence of a given edge e makes it easier for a second edge f to complete a cycle—

this may be misleading, since the same intuition applies to uniform measure on the

independent sets of a general matroid, for which NC need not hold (as can be derived

from an example of Seymour and Welsh [41]). Some evidence for Conjecture 1.13, and
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its analogue for spanning connected subgraphs, is given in [21]. Also worth mentioning

here—though without definitions; see [20]—is the following far-reaching extension of

Conjecture 1.13, which has been “in the air” for a while (e.g. [40], [19]).

Conjecture 1.14 Any random cluster measure with q < 1 is NA+.

(Equivalently, such measures are NA.) Limiting cases include the aforementioned uni-

form measures on forests, spanning trees and connected subgraphs of a graph; again

see [20]. Conjecture 1.14 with NC+ in place of NA+ is proved for series-parallel graphs

(part of a more general matroid statement) in [46] (see Example 5.1 and Theorem

5.8(d)).

Of course Wagner’s “Big Conjecture,” if true, would have implied Mason’s Con-

jecture for any class of matroids for which one could establish the Rayleigh property

(meaning, of course, for uniform measure on independent sets). Conjecture 1.13 says

that graphic matroids should be such a class, and Wagner [46, Conj. 5.11] suggests a

sequence of strengthenings of this. (Mason’s Conjecture also partly motivated Conjec-

ture 1.13 in [29], though at the time the connection wasn’t much more than a feeling

that the issues underlying the two were similar.)

According to Theorem 1.8, Mason’s conjecture would follow from

Conjecture 1.15 Uniform measure on the independent sets of a matroid has the CAPP.

(See also the remark following Corollary 4.4 for a possible strengthening.) Of course

here it’s enough to show APP, since each conditional measure is just uniform measure

on the independent sets of some minor.

Though probably not for lack of effort, progress on Mason’s conjecture has been

fairly modest. Dowling [10] proved that for each I the sequence (a0, . . . , a8) is LC;

Mahoney [37] proved that for graphic matroids corresponding to outerplanar graphs,

the full sequence of independence numbers is LC; and Hamidoune and Salaün [22]

proved that for any matroid on a ground set of size n the sequence (ai/
(
n
i

)
)4
i=0 is LC,

i.e. the sequence (ai) is “ULC up to 4”.
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Here we adapt one of Dowling’s arguments to prove Conjecture 1.15 for small ma-

troids:

Theorem 1.16 For every matroid on a ground set of size at most 11, uniform measure

on independent sets has the CAPP.

This is proved in Section 4.4. Combined with Theorem 1.8 (for (a)) or the more general

Theorem 4.1 below (for (b)) it gives

Theorem 1.17 (a) Every matroid on a ground set of size at most 11 satisfies Conjec-

ture 1.12.

(b) For any matroid on a ground set of size n with independence numbers ai, the se-

quence (ai/
(
n
i

)
)6
i=0 is LC (a.k.a. the sequence (ai) is “ULC up to 6”).

1.6 Feder-Mihail

Say µ ∈M has the Feder-Mihail property (or is FM) if

for any increasing A ⊆ Ω, {ηi = 1} ↑ A for some i ∈ [n],

and extend this to CFM and FM+ in the usual way. (Of course FM+ trivially implies

CFM, but note that this implication requires that we explicitly include conditioning in

our definition of “+” (i.e. we allow Wi ∈ {0,∞} in (1.2)), since there are situations

where W ◦ µ is FM for all W with positive entries but µ(·|η1 = 1) is not FM (e.g. if

µ is the product of a measure on {0, 1} and a non-FM measure on {0, 1}{2,...,n}).) The

following simple but powerful observation is essentially from [14], though given there

only in a special case.

Theorem 1.18 (a) If µ ∈M is both CNC and CFM then it is CNA.

(b) If µ ∈M is both NC+ and FM+ then it is NA+.

(A statement equivalent to (a) is proved in [40, Theorem 1.3], and (b) follows easily

from (a).)

Given the power of Theorem 1.18, it would be useful to identify situations where

the FM property holds. This is trivially the case for µ concentrated on a level (that is,
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{η ∈ Ω : |η| = k} for some k; see e.g. [12, Corollary 3.2]), e.g. for WST measures (a key

to [14]), and it is fairly easy to show that exchangeable measures and, more generally,

“rescalings” of product measures, satisfy the stronger “normalized matching property”

(NMP; see Chapter 2 for definitions). But in general FM seems hard to establish, and

indeed we’re not aware of any interesting classes of non-NMP measures that are known

to be FM. Thus the following result, which is proved in Chapter 2, may be of some

interest.

Theorem 1.19 Almost exchangeable measures are FM+.

Note that this combined with Theorem 1.18 gives Theorem 1.4. (This is not quite the

“quick” proof of Theorem 1.4 promised earlier, since Theorem 1.19 requires some effort;

but, as observed in Chapter 2, FM (resp. FM+) for almost exchangeable measures that

are also NC (resp. NC+) is much easier.)

Despite the (apparent) difficulty of proving FM, the property seems to tend to

hold for measures not deliberately constructed to violate it. Thus we propose, perhaps

optimistically,

Conjecture 1.20 The Feder-Mihail property holds for

(a) Rayleigh measures,

(b) weighted SF measures, and (more generally)

(c) weighted matroid measures.

Note that, in view of Theorem 1.18, (a) would imply Conjecture 1.3(b) (the correspond-

ing approach to Conjecture 1.3(a) fails because CNC measures need not be FM), while

(b) together with Conjecture 1.13 would say that USF measures are NA+. (Extending

this to matroids via (c) fails because Conjecture 1.13 does.)

1.7 Competing urns

One of the principal motivating examples for [40] is competing urns, which refers to

the experiment in which m balls are dropped, randomly and independently, into urns

1, . . . , n. Formally, we have a random σ : [m] → [n] with the σ(i)’s independent. We
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then take xj to be the indicator for occupation of urn j (i.e. xj = 1{σ−1(j)6=∅}) and are

interested in the law, µ, of (x1, . . . ,xn) (a measure on {0, 1}n). In the traditional case

where the balls are identical (i.e. the σ(i)’s are i.i.d.) we call µ an urn measure, or,

for emphasis, an ordinary urn measure. More generally, setting Bj = |σ−1(j)|, we may

consider thresholds t1, . . . , tn, and let xj be the indicator of {Bj ≥ tj}; for i.i.d. balls,

we then call the law of (x1, . . . ,xn) a threshold urn measure. When the balls are not

required to be identical we speak of generalized urn measures and generalized threshold

urn measures.

The competing urns model was explored in some detail by Dubhashi and Ranjan

[13]1, who proved inter alia that threshold urn measures are NA. Another proof of this

is given in [40]. Actually the argument of [13]—which proves the stronger statement

that the (law of the) random variables

ξij = 1{σ(i)=j} (1.7)

is NA—does not require identical balls. (The argument of [40] does not work for

nonidentical balls.) In Chapter 5 we prove (a slight generalization of)

Theorem 1.21 Threshold urn measures are CNA.

In contrast, it’s not hard to give examples (see Example 5.13) showing that even ordi-

nary urn measures need not be Rayleigh. Thus, as mentioned earlier, we have a natural

class of measures for which CNA does not imply Rayleigh.

The question of whether Theorem 1.21 extends to nonidentical balls seems very

interesting, and at this point we don’t even have an opinion on what the answer should

be. As far as we can see, even the following very general statement could be true.

Question 1.22 Suppose T0 ∪T1 ∪ · · · ∪Ts is a partition of [m]× [n], and ar, br ∈ N for

r = 1, . . . , s. Is it necessarily true that the ξij’s in (1.7) are NA given

{ξ(Tr) ∈ [ar, br] ∀r ∈ [s]}

(where ξ(T ) =
∑

(i,j)∈T ξij)?

1They say “bins” rather than “urns.”
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This would be a considerable strengthening of CNA for generalized threshold urn mea-

sures.

That the weaker (than CNA) CNC, at least, does hold for generalized threshold urn

measures is a special case of the following result, a somewhat more general version of

Corollary 34 of [13], which implies CNC for generalized threshold urn measures. For

A ⊆ 2[m] and a, b ∈ Nn−1, set p(A, a, b) = Pr(σ−1(n) ∈ A|Bj ∈ [aj , bj ] ∀j ∈ [n− 1]).

Theorem 1.23 For any increasing A (and any generalized threshold urn measure),

p(A, a, b) is decreasing in (a, b); that is, p(A, a, b) ≤ p(A, r, s) whenever a ≥ r and

b ≥ s (in the product order on Nn−1).

(The proof of Corollary 34 in [13] is not quite correct, since it depends on the incorrect

Proposition 24. Theorem 1.23 is proved at the end of Section 5.2.) Thus one reason to

be interested in whether generalized urn measures are CNA is that a negative answer

would provide a counterexample to Conjecture 1.3(a).

Pemantle [40] suggests

Conjecture 1.24 Every ordinary urn measure is ULC.

In fact he conjectures something more general that we will not state, since unfortunately

Proposition 1.25 Conjecture 1.24 is not true; ordinary urn measures need not be LC.

(See Example 5.12.) Proposition 1.25 and Theorem 1.21 provide a (natural) coun-

terexample to the strengthening of Conjecture 1.5 obtained by replacing NA+ by CNA

(which is again one of the versions of Conjecture 4 of [40]).

Finally we turn to some conjectures of Farr (unpublished, circa 2004) and Welsh

[48]. To put these in our framework, we add an urn Λ and assume

Pr(σ(i) = j) = q ∀i ∈ [m], j ∈ [n].

(So Pr(σ(i) = Λ) = 1 − nq.) Let I ⊆ 2[m] be decreasing and set Aj = {σ−1(j) ∈ I}

and AJ =
⋂
{Aj : j ∈ J}. Then Farr’s conjecture (somewhat rephrased) is



16

Conjecture 1.26 If G is a graph on [m] and I is the collection of independent sets of

G, then for any disjoint I, J,K ⊆ [n], AI ↓ AJ given AK .

It’s not clear why this should require that I be of the type described, and Welsh’s

conjecture was that the same conclusion holds for an arbitrary I, viz.

Conjecture 1.27 ([48]) For any decreasing I ⊆ 2[m] and disjoint I, J,K ⊆ [n],

AI ↓ AJ given AK .

We disprove this stronger version (see Example 5.14). At present we don’t see how to

extend to a counterexample to Conjecture 1.26, though we feel that this too is likely to

be false.

1.8 Srinivasan’s sampling process and Pemantle measures

Srinivasan [42] introduced a procedure for generating a random η ∈ Ω concentrated

on a level, having prescribed marginal probabilities, and satisfying certain negative

dependence properties; in particular, he proved that for such measures

Pr(ηi = 1 ∀ i ∈ I) ≤
∏
i∈I

Pr(ηi = 1)

for every I ⊆ [n] (which is a special case of NA). Srinivasan used these measures to

create a new type of randomized rounding scheme and give improved approximation

algorithms for several NP-hard problems; see [42], [16] for details.

For our purposes (see the remark following Proposition 6.5) we will need something

a little more general than Srinivasan’s procedure. We first describe this generalization.

A pairing tree for I ⊆ [n] is a rooted binary tree T with set of leaves I and some

additional structure, as follows. (N.B. this differs somewhat from the “pairing tree” in

[42].) The two children of each internal (i.e. non-leaf) vertex are distinguished: one

is the left child, and the other the right child. (As usual, one may think of a plane

drawing of the tree.) Each internal vertex u is assigned parameters tu ∈ {0, 1} and

βu ∈ [0, 1], and there is one additional parameter α = α(T ) ∈ [0, 1]. (Srinivasan’s

procedure corresponds to the special case that α ∈ {0, 1}; see Proposition 6.5 and the

discussion preceding it.)
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Each pairing tree for [n] yields a measure in M, the law of η ∈ Ω generated by

the following procedure. (In our generalized setting, η will be concentrated on two

consecutive levels of Ω, rather than a single level, whenever α ∈ (0, 1).) The values

ηi (∈ {0, 1}) are set sequentially. Assume that we have already fixed the values of

entries indexed by coordinates in J (initially J = ∅), and that we have inherited from

the previous step a pairing tree for I := [n]\J . Pick an internal vertex u, both of whose

children are leaves, to “process” at the current step; say the left child is i and the right

child is j. (We use common terminology for rooted trees: v is a descendant of w if the

(unique) path from v to the root contains w, and a child of w if in addition w is adjacent

to v. Also, for a vertex v, Tv is the subtree of T rooted at v, where descendants of v

retain their t, β parameters.) With probability βu fix ηi = tu, and otherwise (so with

probability 1−βu) fix ηj = tu; let k ∈ {i, j} be the coordinate fixed at this step. Create

a pairing tree for I \{k} from the one for I by removing leaves i, j and relabeling vertex

u (now a leaf) by whichever of i, j has not been fixed. (The remaining parameters (tw,

βw for internal vertices w and α) are unchanged.)

We continue this process until all but one coordinate, say i, have been fixed, at

which point the current pairing tree consists of a single vertex labeled by the unfixed

coordinate. At this point we make use of α to fix the value of ηi, setting ηi to 1 with

probability α (so to 0 with probability 1− α).

For consistency with [12] (and for lack of a better name), we call this procedure

a super-generalized Srinivasan sampling process (SGSSP), and the resulting measure

an SGSSP measure. In [12], the special case that α ∈ {0, 1} (i.e. the measure is con-

centrated on a single level) is called a generalized Srinivasan sampling process (GSSP)

measure. (The measures initially introduced by Srinivasan [42], called Srinivasan sam-

pling process (SSP) measures in [12], appear to be a subclass of the GSSP measures;

however, as we will see below (Theorem 6.5), the two classes coincide.)

Dubhashi et al. [12] conjectured that GSSP measures satisfy strong negative de-

pendence conditions, viz.

Conjecture 1.28 Every GSSP measure is CNA,
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and proved it in the special case that the initial pairing tree has the property that every

internal vertex has at least one leaf as a child (i.e. the internal vertices are simply a

path from the root). In Chapter 6 we prove Conjecture 1.28 and a bit more:

Theorem 1.29 Every SGSSP measure is NA+.

Pemantle defined and proved some negative dependence properties for a class of

measures (defined shortly) that, as shown here (see Lemma 6.1 and Corollary 6.3),

includes all SGSSP measures. Recall that the product of µ ∈ MS and ν ∈ MT (with

S ∩ T = ∅) is µ × ν ∈ MS∪T with µ × ν(η) = µ(η|S)ν(η|T ). Given a nonnegative

LC sequence q = (q0, . . . , qn) with no internal zeros, we follow [40] and define the rank

rescaling of µ ∈M by q to be the measure q ⊗ µ ∈M with

q ⊗ µ(η) ∝ q|η|µ(η).

(To be precise, we only make this definition when the right side is not identically zero.)

Let P be the smallest class of measures containing all Bernoulli measures (i.e. measures

on {0, 1}) and closed under imposition of external fields, products, and rank rescaling;

since they were introduced in [40], we call measures in P Pemantle measures. In Chapter

6 we give an improvement of an earlier result of Pemantle [40]:

Theorem 1.30 Pemantle measures are NA+.

(Following [40], say µ ∈M is jointly negative regression dependent (JNRD) if for every

measure gotten from µ by conditioning on the values of some of the coordinates we have

A ↓ {ηi = 1} whenever A is an increasing event that is not affected by coordinate i,

and extend to JNRD+ in the usual way; it is easy to see that CNA implies JNRD and

JNRD implies CNC, but we don’t know if the reverse implications hold (cf. Conjecture

1.3). Pemantle [40, Theorem 3.1] proved that Pemantle measures are JNRD+.) The

core of our proof of Theorem 1.30 is a result stating that several properties of measures

are preserved by products (Theorem 6.6).

Of course, in view of the aforementioned Corollary 6.3, Theorem 1.30 contains The-

orem 1.29; but, as we will see in Section 6.1, there is a simple derivation of Theorem

1.29 from Lemma 6.1 that does not require Theorem 1.30.
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Chapter 2

Exchangeable and almost exchangeable measures

In this chapter we examine the Feder-Mihail property and some negative dependence

properties for exchangeable and almost exchangeable measures; in particular, we prove

Theorem 1.19 and give short proofs of Theorems 1.4 and 2.2.

We begin with a few more definitions. We extend the definitions of exchangeable

and almost exchangeable measures (given following Conjecture 1.3) to general functions

on Ω in the obvious way (f : Ω → R is almost exchangeable if it is invariant under

permutations of some subset of n− 1 of the variables and exchangeable if it is invariant

under permutations of all the variables). We also extend our notation for positive and

negative correlation to functions: for f, g : Ω→ R, we write f ↑ g if Efg ≥ EfEg (and

similarly for f ↓ g); we will also write, e.g., A ↑ f for 1A ↑ f . A stronger statement

is that A is stochastically increasing in f , that is, that Pr(A|f = t) is increasing in t,

where we restrict to values of t for which Pr(f = t) is positive. (N.B. our use of the

notation A ↑ f differs from that in [40].) Following [12], for a function f : Ω→ R and

measure µ ∈ M, we say i ∈ [n] is a variable of positive influence for the pair (f, µ) (or

(A, µ) if f = 1A) if ηi ↑ f . Thus the FM property for µ says that for every increasing

A there is a variable of positive influence for (A, µ). In [12], Dubhashi et al. prove the

(easy) result that (f, µ) has a variable of positive influence if f is increasing and at least

one of f , µ is exchangeable, and ask for other classes of function-measure pairs having

variables of positive influence. Here we show

Theorem 2.1 If there is a variable l for which

E[f |ηl = j,
∑
i 6=l

ηi = k] is increasing in j and k (2.1)

(for pairs (j, k) for which the conditioning event has positive probability, and where
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E is expectation with respect to µ), then (f, µ) has a variable of positive influence.

In particular, if f is increasing and almost exchangeable then (f, µ) has a variable of

positive influence.

As we will see shortly, this implies Theorem 1.19.

As observed earlier, Theorem 1.4 is an immediate consequence of Theorems 1.18

and 1.19; but it does not require the full strength of Theorem 1.19, and before proving

Theorem 2.1 we will give an easier argument, together with a quick proof of

Theorem 2.2 ([40], Theorem 2.7) For exchangeable measures the properties CNC,

CNA, NC+, NA+, and ULC are equivalent.

For these arguments and the derivation of Theorem 1.19 we need a little background.

We first recall Chebyshev’s Inequality, which in our terminology says

Proposition 2.3 Any probability measure on a totally ordered set is PA

(where, of course, PA is as for measures on {0, 1}S : f ↑ g for any two increasing

functions f, g).

For probability measures µ and ν, µ stochastically dominates ν (written µ � ν) if

µ(A) ≥ ν(A) for every increasing event A. Writing µk for the conditional measure

µ(·|
∑
ηi = k) (defined only when µ(

∑
ηi = k) > 0), we say µ has the normalized

matching property (NMP) if µl � µk whenever l ≥ k and both conditional measures

are defined. (This generalizes the usual definition, for which see e.g. [2].) The NMP is

equivalent to the property that every increasing event A is stochastically increasing in∑
ηi, which implies (easily and directly, by Proposition 2.3, or essentially by Proposition

1.2 in [40]) that A ↑
∑
ηi, and thus (since expectation is linear) that A ↑ ηi for some i.

This proves

Proposition 2.4 The NMP implies FM.

Conjecture 8 of [40] says NA+ implies NMP, but this is false; see Conjecture 3.1 and

Theorem 3.3 in Section 3.1.
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Given µ ∈M and a nonnegative sequence a = (ai)ni=0, the generalized rank rescaling

of µ by a is the measure a⊗ µ ∈M with

a⊗ µ(η) ∝ a|η|µ(η).

(Again, we only make this definition when the right side is not identically zero.) This

generalizes the rank rescaling operation defined in Section 1.8, which required that a

be LC with no internal zeros. Observe that (since µk = (a ⊗ µ)k whenever ak > 0)

generalized rank rescalings preserve the NMP.

Lemma 2.5 Product measures (and, consequently, generalized rank rescalings of prod-

uct measures) have the NMP.

(A proof is sketched in [12, Section 4.2]. See also Theorem 6.6(b) for a more general

result.) For the proof of Theorem 1.4 we also need the following standard observation,

which is an easy consequence of Proposition 2.3.

Lemma 2.6 Let f, g : Ω→ R, and suppose for some event B

(i) each of f , g is positively correlated with B, and

(ii) f and g are conditionally positively correlated given each of B, Ω \ B.

Then f and g are positively correlated.

Proof of Theorem 1.19. Let µ′ ∈ M be invariant under permutations of the variables

1, . . . , n − 1, and µ = W ◦ µ′ for some W ∈ Rn
+. We may assume all Wi are finite and

strictly positive, since otherwise we can reduce the number of variables (note that any

measure gotten from an almost exchangeable measure by conditioning is again almost

exchangeable). Then, with ν ∈Mn−1 the product measure satisfying

ν(η) ∝
∏

i∈[n−1]

W ηi
i ,

we have

µ(·|ηn = 0,
∑

i∈[n−1]

ηi = k) = µ(·|ηn = 1,
∑

i∈[n−1]

ηi = k) = νk,

so (by Lemma 2.5) f = 1A satisfies (2.1) with l = n for every increasing event A. �
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Proof of Theorem 1.4. By Theorem 1.18, it suffices to show that every NC measure that

can be gotten by applying an external field to an almost exchangeable measure is FM.

Let µ ∈ M be such a measure, obtained by imposing an external field on a measure

invariant under permutations of coordinates {2, . . . , n}, and let A ⊆ Ω be increasing.

We should show that A ↑ ηi for some i ∈ [n]. We may assume that all coordinates

of the external field are finite and strictly positive (or we can reduce the number of

variables), and that A ↓ η1 (or we are done). For j ∈ {0, 1}, the conditional measure

µ(·|η1 = j) is a generalized rank rescaling of a product measure, so by Lemma 2.5 and

the discussion in the paragraph preceding Proposition 2.4 we have A ↑ f :=
∑

i 6=1 ηi

conditionally given either of the events {η1 = 0}, {η1 = 1}. Since µ is NC, we have

η1 ↓ ηi for all i ∈ {2, . . . , n}, so that η1 ↓ f . But then applying Lemma 2.6 with g = 1A

and B = {η1 = 0} gives A ↑ f , whence A ↑ ηi for some i ∈ {2, . . . , n}. �

Proof of Theorem 2.2. It suffices to show CNC implies ULC and ULC implies NA+. The

first implication is easy: CNC implies NLC (cf. Proposition 1.2), which for exchangeable

measures is equivalent to ULC. For the second implication, our main point is that we

can eliminate much of the work in [40] by observing that exchangeable measures are

FM+ (by Lemma 2.5 and Proposition 2.4; of course this is also an instance of Theorem

1.19, but not one that requires the less trivial Theorem 2.1), so that by Theorem 1.18(b)

it is enough to show that ULC implies NC+. This is a special case of the observation,

proved in Lemma 2.8 of [40], that a measure obtained from an exchangeable ULC

measure by imposing an external field that is identically 1 on J ⊆ [n], followed by

projection on J , is exchangeable and ULC. �

Proof of Theorem 2.1. First observe that if f : Ωn → R is increasing and invariant

under permutations of coordinates in [n] \ {l} then (2.1) is satisfied for every µ ∈ M,

so the last part of Theorem 2.1 follows from the first.

To prove the first part, suppose, without loss of generality, that µ ∈ M and

f : Ωn → R satisfy (2.1) with l = 1, and set h(η) =
∑

i 6=1 ηi (η ∈ Ωn). It suffices

to show that either

f ↑ η1 or f ↑ h. (2.2)
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For i ∈ {0, . . . , n− 1}, let

αi = µ(h = i, η1 = 1) and βi = µ(h = i, η1 = 0).

Choose increasing, nonnegative sequences γ = (γ0, . . . , γn−1) and δ = (δ0, . . . , δn−1)

such that

γi = E[f |h = i, η1 = 1] and δi = E[f |h = i, η1 = 0] (2.3)

whenever the conditioning events have positive probability and γi ≥ δj whenever i ≥ j.

(Existence of γ, δ is guaranteed by (2.1). This extension to values not given by (2.3) is

convenient, but not really necessary, as these values play no role; see (2.4) and Lemma

2.7.)

Assume f ↓ η1, i.e., ∑
αiγi∑
αi
≤
∑
βiδi∑
βi

(all sums in this proof are over {0, . . . , n − 1} unless otherwise specified). We want to

show Efh ≥ EfEh, that is,

∑
(αiγi + βiδi)

∑
i(αi + βi) ≤

∑
i(αiγi + βiδi)

∑
(αi + βi). (2.4)

(Of course the last sum is 1.) This will follow from

∑
αiγi

∑
iαi ≤

∑
iαiγi

∑
αi,

∑
βiδi

∑
iβi ≤

∑
iβiδi

∑
βi,

and ∑
iαi
∑

βiδi +
∑

iβi
∑

αiγi ≤
∑

iαiγi
∑

βi +
∑

iβiδi
∑

αi. (2.5)

The first two of these are instances of Proposition 2.3 (since γ and δ are increasing), so

we only need

Lemma 2.7 Let α = (αi)n−1
i=0 , β = (βi)n−1

i=0 , γ = (γi)n−1
i=0 , and δ = (δi)n−1

i=0 be nonnega-

tive sequences (with neither of α, β identically zero). If γ and δ are increasing, γi ≥ δj

whenever i ≥ j, and (
∑
αiγi)/(

∑
αi) ≤ (

∑
βiδi)/(

∑
βi), then (2.5) holds.
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Proof. Since scaling α, β affects neither our hypotheses nor (2.5), we may assume∑
αi =

∑
βi. It suffices to show

∑
i≥s

αi
∑

βiδi +
∑
i≥s

βi
∑

αiγi ≤
∑
i≥s

αiγi
∑

βi +
∑
i≥s

βiδi
∑

αi (2.6)

for s ∈ [n− 1] (since summing (2.6) over s yields (2.5)).

Fix s ∈ [n− 1]. Obviously,

if (2.6) is true, then it remains true when any δi with i ≥ s is increased. (2.7)

We define δ′ = (δ′i)
n−1
i=0 by

δ′i =

 δi if i < s

δs if i ≥ s

and consider two cases.

Case 1:
∑
αiγi >

∑
βiδ
′
i. Then there is an increasing sequence δ′′ = (δ′′i )n−1

i=0 with

δ′i ≤ δ′′i ≤ δi for all i and
∑
αiγi =

∑
βiδ
′′
i (note

∑
αiγi ≤

∑
βiδi, since we’ve normal-

ized to
∑
αi =

∑
βi). Since γ and δ′′ are increasing, we have

∑
i≥s

αi
∑

αiγi ≤
∑
i≥s

αiγi
∑

αi

and ∑
i≥s

βi
∑

βiδ
′′
i ≤

∑
i≥s

βiδ
′′
i

∑
βi.

This yields (2.6) with δ replaced by δ′′, and then (2.6) (for δ) follows from (2.7).

Case 2:
∑
αiγi ≤

∑
βiδ
′
i. By (2.7), it suffices to prove (2.6) with δ replaced by δ′; this

is a straightforward computation:

∑
i≥s

αi
∑

βiδ
′
i +
∑
i≥s

βi
∑

αiγi ≤
∑
i≥s

(αi + βi)
∑

βjδ
′
j

=
∑
i≥s

∑
j

(αiβjδ′j + βiβjδ
′
j)

≤
∑
i≥s

∑
j

(αiβjδ′i + βiβjδ
′
i)

=
∑
i≥s

(αiδ′i + βiδ
′
i)
∑

βj

≤
∑
i≥s

αiγi
∑

βi +
∑
i≥s

βiδ
′
i

∑
αi,
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where we used:
∑
αiγi ≤

∑
βiδ
′
i for the first inequality; δ′i ≥ δ′j ∀i ≥ s (and ∀j) for

the second; and γi ≥ δ′i ∀i for the third. This completes the proofs of Lemma 2.7 and

Theorem 2.1. �
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Chapter 3

The Rayleigh property and ultra-log-concavity

In this chapter we prove Theorem 1.6, disprove two other conjectures from [40], and (in

Section 3.2) prove Theorem 1.7.

3.1 Counterexamples

Here we give the construction for Theorem 1.6. As mentioned earlier, two further

conjectures from [40] turn out to be disproved by the same examples, and we begin by

stating these.

Conjecture 3.1 ([40], Conjecture 8) NA+ implies the NMP.

(Recall from Chapter 2 that µ ∈ M has the NMP if µ(·|
∑
ηi = k) stochastically

dominates µ(·|
∑
ηi = l) whenever k ≥ l.)

For η, ζ ∈ Ω, we say η covers ζ (η ·> ζ) if there is an i ∈ [n] for which ηi = 1,

ζi = 0 and ηj = ζj for all j 6= i. Following [40] we say that µ ∈M stochastically covers

ν ∈ M (written µ ·� ν) if we can couple r.v.’s η, ζ having laws µ and ν so that with

probability 1, η = ζ or η ·> ζ; and that µ has the stochastic covering property (SCP)

if µ(·|ηi = 0) ·� µ(·|ηi = 1) for every i (where, again, we regard these as measures on

Ω[n]\{i}). Observe that if µ is NA+ (or even just NA) then µ(·|ηi = 0) stochastically

dominates µ(·|ηi = 1); a possible strengthening suggested by Pemantle is

Conjecture 3.2 ([40], Conjecture 9) NA+ implies the SCP.

Again, our examples will give

Theorem 3.3 Conjectures 3.1 and 3.2 are false.
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Conjecture 3.1 was also disproved in [4]; see also the note at the end of this section.

We now describe the examples. For a positive integer k ≥ 2 and real number

β ∈ (0, 1), let νk,β be the measure on Ω2k with

νk,β(η) ∝



1 if [|η| = k − 1 and η1 = 1]

β2 if [|η| = k − 1 and η1 = 0]

β if |η| = k

β2 if [|η| = k + 1 and η1 = 1]

1 if [|η| = k + 1 and η1 = 0]

0 otherwise

Note that (clearly) νk,β is almost exchangeable.

Proposition 3.4 The measure νk,β satisfies

(a) NA+ if and only if β ≥ 1√
2

(b) ULC if and only if β ≥ 1− 2
k+1

(c) unimodality (and also LC) if and only if β ≥ 1−
√

2
k+1

(d) NMP if and only if β ≥
√

1− 2
k+1

(e) SCP if and only if β ≥
√

1− 2
k+1

For example, for β = 0.71: ν6,β is NA+ but not ULC, giving the first part of Theorem

1.6 (i.e. disproving Conjecture 1.5); ν23,β is NA+ but not unimodal (proving Theorem

1.6); and ν4,β is NA+ but not NMP or SCP (proving Theorem 3.3).

Proof. We will mainly prove what we need for Theorems 1.6 and 3.3, namely “if” in (a)

and “only if” in (b)-(e). The other direction in (b),(c) will come for free, but we omit

the (not very difficult) verifications of the remaining implications.

Fix k and β, write ν for νk,β, and set ri = ν(|η| = i). We have, for some C,

rk = Cβ

(
2k
k

)
and rk−1 = rk+1 = C

(k − 1
2k

+
k + 1

2k
β2
)( 2k

k − 1

)
.

Unimodality and LC for ν are equivalent to (each other and) rk ≥ rk−1, which reduces

to

β2 − 2β +
k − 1
k + 1

≤ 0,
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giving (c). ULC for ν is equivalent to k2r2
k ≥ (k + 1)2rk−1rk+1, which reduces to

(k + 1)β2 − 2kβ + (k − 1) ≤ 0,

giving (b). The NMP requires that

ν(η1 = 1||η| = k) =
1
2

be at least as large as

ν(η1 = 1||η| = k − 1) =
k − 1

(k − 1) + (k + 1)β2
,

from which the forward direction of (d) follows. The SCP requires

ν(|η| = k − 1|η1 = 1) ≤ ν(|η| = k − 1|η1 = 0),

which reduces to (
2k − 1
k − 2

)
≤ β2

(
2k − 1
k − 1

)
and yields the forward direction of (e).

It remains to prove the backward direction of (a); that is, we assume β ≥ 1/
√

2

and should show ν is NA+. Since ν is almost exchangeable, Theorem 1.4 says we only

need to show NC+, which, by symmetry, will follow if we show η1 ↓ η2 and η2 ↓ η3

with respect to W ◦ ν, for any external field W . (Our original proof of this has been

shortened using some ideas from [4].) Observe that, since a limit of NC measures is

NC, it suffices to consider the case when all entries of W are finite and strictly positive.

Let W ′ = (W1, 1, . . . , 1), and let ν ′ be the projection of W ′ ◦ ν on Ω{2,...,2k}. To

prove η2 ↓ η3 for W ◦ ν, it suffices to show ν ′ is NC+, which, since ν ′ is exchangeable,

will follow via Theorem 2.2 if we show ν ′ has a ULC rank sequence. The nonzero part

of the normalized rank sequence (ai := ν ′(|η| = i)/
(

2k−1
i

)
)2k−1
i=0 is

(ak−2, . . . , ak+1) ∝ (W1,W1β + β2,W1β
2 + β, 1),

which a straightforward computation shows to be LC when β ≥ 1/
√

2.

That η1 ↓ η2 for W ◦ ν will follow immediately from

W ◦ ν(·|η1 = 0) stochastically dominates W ◦ ν(·|η1 = 1). (3.1)
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Set

π1 = W ◦ ν(·|η1 = 0, |η| = k + 1),

π2 = W ◦ ν(·|η1 = 0, |η| ∈ {k − 1, k}),

π3 = W ◦ ν(·|η1 = 1, |η| ∈ {k, k + 1}), and

π4 = W ◦ ν(·|η1 = 1, |η| = k − 1).

It follows readily from Lemma 2.5 (since β < 1 and the two measures appearing in (3.1)

are rank rescalings of a common product measure, namely the measure µ ∈ M{2,...,2k}

with µ(τ) ∝
∏
W τi
i ) that each of π1, π2 stochastically dominates each of π3, π4. Conse-

quently, every convex combination of π1 and π2 stochastically dominates every convex

combination of π3 and π4, which in particular gives (3.1). �

Before closing this section, let us just mention that a more natural class of coun-

terexamples to Conjecture 3.1 is probably provided by the following simple construc-

tion, which, as far as we know, first appeared in [9]. Given k, let G be the graph with

V (G) = {x, y, z1, . . . , zk} and E(G) = {xy, xz1, . . . , xzk, yz1, . . . , yzk}. It is well known

and easy to see (consider the event {ηxy = 1}) that for k ≥ 5, the USF measure for G

fails the NMP, so is a counterexample to Conjecture 3.1 if the USF measure for G is

NA+. The latter would follow from Conjecture 1.20(b) (USF measures are FM+) for

G, since Conjecture 1.13 for these graphs is contained in the result from [46] mentioned

following Conjecture 1.14. (We can prove FM+ for k ≤ 5, and even this is not so easy).

3.2 Rayleigh implies BLC[5]

The main point here is the following lemma, stating that NC+ (i.e. the Rayleigh

property) implies the APP (defined in Section 1.4) for measures inM4. For notational

simplicity, we set αX = µ(X) for X ⊆ [n] (where we now treat Ωn as 2[n]), often omit

commas and set braces in subscripts (e.g. α134 = µ({1, 3, 4})), and write α0 for µ(∅).

Let Σt
r,s =

∑
αXαY , with the sum over unordered pairs {X,Y } of subsets of [n] with

|X| = r, |Y | = s, and |X ∩ Y | = t.



30

Lemma 3.5 If µ ∈M4 is NC+, then

3Σ0
1,3 ≤ 4Σ0

2,2. (3.2)

We first prove this and then give the easy derivation of Theorem 1.7. (Notice that we

could also get Theorem 1.7 from Lemma 3.5 via Theorem 1.8, (3.2) being the only part

of the CAPP that is not immediate from NC+; but, as the proof of Theorem 1.8 is

relatively difficult, we give a direct proof of Theorem 1.7 here.)

For convenience, we now work with unnormalized (nonnegative) measures on Ω,

and say that such a measure µ with µ(Ω) > 0 has a property (CNC, NC+, etc.) iff its

normalization µ′ (given by µ′(η) = µ(η)/µ(Ω)) does. Observe that A ↓ B under µ if

and only if

µ(AB̄)µ(ĀB) ≥ µ(AB)µ(ĀB̄) (3.3)

(where Ā = Ω \ A).

Proof of Lemma 3.5. Let A = Σ0
2,2 (= α12α34 + α13α24 + α14α23). We may assume

α0 = α1234 = 0, since decreasing α0 or α1234 preserves NC+ and has no effect on (3.2).

Furthermore, by renaming variables, applying a uniform external field, and scaling

(none of which affect (3.2)), we may assume

α123 = α4 = 1 and α1α234, α2α134, α3α124 ≤ 1. (3.4)

(First, rename coordinates so αiα[4]\{i} is largest for i = 4 (and observe we may assume

this largest value is strictly positive). Second, impose a uniform external field (one of

the form (w,w,w,w) for some w ∈ R+) to get α123 = α4. Third, divide all αX by α123.)

Since µ is NC+ (so in particular CNC), (3.4) gives α1 ≤ α12α13 (and similarly for

α2, α3) and α124 ≤ α14α24 (and similarly for α134, α234). It thus suffices to show

3(1 + xy + xz + yz) ≤ 4A, (3.5)

where

x = α12α34, y = α13α24, and z = α14α23 (so A = x+ y + z).

For fixed A, the left hand side of (3.5) is maximized when x = y = z; thus (3.5) holds

whenever A ∈ [1, 3] (as can be seen by examining the quadratic polynomial A2−4A+3).

In view of (3.4) we can assume A ≤ 3, so we just need A ≥ 1.
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Assume, for a contradiction, that A < 1. Negative correlation of η2 and η3 for the

measure (0, 1, 1,W ) ◦ µ implies (use (3.3))

P 1(W ) := (α24α34 − α234)W 2 + (α2α34 + α3α24 − α23)W + α2α3 ≥ 0 for W > 0.

Similarly, negative correlation of η1 and η2 for (∞, 1, 1,W ) ◦ µ implies

P1(W ) := α124α134W
2 +(α12α134 +α13α124−α14)W +(α12α13−α1) ≥ 0 for W > 0.

Similarly (interchanging 1 with either 2 or 3) we have, again for W > 0,

P 2(W ) := (α14α34 − α134)W 2 + (α1α34 + α3α14 − α13)W + α1α3 ≥ 0,

P2(W ) := α124α234W
2 + (α12α234 + α23α124 − α24)W + (α12α23 − α2) ≥ 0,

P 3(W ) := (α14α24 − α124)W 2 + (α1α24 + α2α14 − α12)W + α1α2 ≥ 0, and

P3(W ) := α134α234W
2 + (α13α234 + α23α134 − α34)W + (α13α23 − α3) ≥ 0.

We pause to show

αX > 0 for X 6= ∅, [4]. (3.6)

First we show αX > 0 if |X| = 2. Suppose for example that α12 = 0. Since P 1(W ) ≥ 0

for all W > 0 and α2 = 0 (since α2 ≤ α12α23) the coefficient of W in P 1 must

be nonnegative, and thus (using α3 ≤ α13α23) yα23 ≥ α23. If α23 > 0, this gives

A ≥ y ≥ 1; thus (since we are assuming A < 1) α23 = 0, and similar reasoning

shows α1 = α3 = α13 = 0. Hence, αX = 0 unless X = {1, 2, 3} or 4 ∈ X; but then

nonnegativity of P1, P2, and P3 gives α14 = α24 = α34 = 0. Thus αX > 0 if and only

if X = {1, 2, 3} or X = {4}; but for any such measure η1 and η2 are strictly positively

correlated. This contradiction shows α12 > 0, and similar arguments (or symmetry)

give αX > 0 whenever |X| = 2.

If α2 = 0, then nonnegativity of the linear term in P 1 gives, as in the preceding

paragraph (and using α23 > 0), A ≥ 1; thus α2 > 0. Similar arguments (or, again,

symmetry) show α1, α3, α124, α134, and α234 are positive, and we have (3.6).

Set

a =
α1

α12α13
, b =

α2

α12α23
, c =

α3

α13α23
, d =

α124

α14α24
, e =

α134

α14α34
, and f =

α234

α24α34
.
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Note a, b, c, d, e, f ∈ (0, 1]. If the coefficient of W in P 1 is nonnegative, then, as above,

A ≥ 1; thus this coefficient is negative, whence the discriminant of P 1 is nonpositive.

This yields

1− α2α34

α23
− α3α24

α23
≤ 2
√
α2α3

α2
23

(α24α34 − α234),

which in the notation introduced above becomes

1− bx− cy ≤ 2
√
bxcy(1− f) ≤ (bx+ cy)

√
1− f.

Thus

x+ y ≥ [(1 +
√

1− f) max {b, c}]−1,

and a similar argument using P1 gives

x+ y ≥ [(1 +
√

1− a) max {d, e}]−1,

so that

x+ y ≥ max {[(1 +
√

1− f) max {b, c}]−1, [(1 +
√

1− a) max {d, e}]−1}.

Similar arguments using P 2, P2, P 3, and P3 yield

x+ z ≥ max {[(1 +
√

1− e) max {a, c}]−1, [(1 +
√

1− b) max {d, f}]−1}

and

y + z ≥ max {[(1 +
√

1− d) max {a, b}]−1, [(1 +
√

1− c) max {e, f}]−1}.

In particular, we have x+ y, x+ z, y + z ≥ 1/2.

The proof is now an easy consequence of

inf {[(1 +
√

1− v)u]−1 + [(1 +
√

1− u)v]−1 : 0 < u, v ≤ 1} =
27
16
, (3.7)

verification of which is a straightforward calculus exercise which we omit. Assuming

(3.7) and, without loss of generality, a ≥ b and d ≥ e, we have

(x+ y) + (y + z) ≥ [(1 +
√

1− a)d]−1 + [(1 +
√

1− d)a]−1 ≥ 27
16
,

which, combined with x+ z ≥ 1/2, gives the final contradiction 2A > 2. �
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Proof of Theorem 1.7. First observe that BLC[m] is equivalent to having

NC+ implies ULC for measures in Mn (3.8)

for all n ≤ m. Suppose µ ∈ Mn has rank sequence (ri)ni=0. Notice that in general for

(3.8) it is enough to show that NC+ implies

r2
k

(
n

k

)−2

≥ rk−1rk+1

(
n

k − 1

)−1( n

k + 1

)−1

(3.9)

for 1 ≤ k ≤ bn/2c, since the measure µ∗ ∈ Mn with µ∗(X) = µ([n] \ X) has rank

sequence (rn−i)ni=0 and is NC+ if and only if µ is. In fact, Choe and Wagner [7] show

that (3.9) holds for k = 1 and any n (assuming NC+). This gives (3.8) for n ≤ 3 (and

hence BLC[3]) and for the cases of interest here—that is, n = 4, 5—reduces the problem

to proving (3.9) when k = 2.

Assume n ∈ {4, 5}. Using inequalities of the form

αiαijl ≤ αijαil

(which follow from NC+) we obtain

Σ1
1,3 ≤ Σ1

2,2. (3.10)

It follows from Lemma 3.5 (for n = 4 this is the conclusion of the lemma, and for n = 5

we apply the lemma to each of the five conditional measures µ(·|ηi = 0)) that

3Σ0
1,3 ≤ 4Σ0

2,2. (3.11)

Note also that Cauchy-Schwarz implies that the average size of a term in Σ2
2,2 is at least

the average size of a term in either of Σ0
2,2, Σ1

2,2; that is,

Σ2
2,2 ≥

4
(n− 2)(n− 3)

Σ0
2,2 and Σ2

2,2 ≥
1

n− 2
Σ1

2,2. (3.12)

Thus, finally, we have (3.9) for k = 2:

9r1r3 = 9Σ0
1,3 + 9Σ1

1,3 ≤ 12Σ0
2,2 + 9Σ1

2,2 ≤ 8Σ0
2,2 + 8Σ1

2,2 + 4Σ2
2,2 = 4r2

2 if n = 4

and

2r1r3 = 2Σ0
1,3 + 2Σ1

1,3 ≤
8
3

Σ0
2,2 + 2Σ1

2,2 ≤ 2Σ0
2,2 + 2Σ1

2,2 + Σ2
2,2 = r2

2 if n = 5,
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where in each case we used (3.10) and (3.11) for the first inequality and (3.12) for the

second. �
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Chapter 4

The antipodal pairs property and ultra-log-concavity

The main point of this chapter is the proof of (a generalization of) Theorem 1.8, given

in Section 4.1. In the remaining sections we deduce several consequences (including

Corollary 1.10 and Theorems 1.11 and 1.17) by using Theorem 1.8 (or Theorem 4.1)

to establish ultra-log-concavity in certain situations. (See Theorem 5.11 for another

application of Theorem 1.8.)

4.1 The CAPP implies ULC

In this section we prove the following generalization of Theorem 1.8, which will be used

in Section 4.4.

Theorem 4.1 Suppose µ ∈ M has the property that, for every k ∈ [t], every measure

gotten from µ by conditioning on the values of n − 2k coordinates has the APP. Then

the sequences (µ(|η| = i)/
(
n
i

)
)t+1
i=0 and (µ(|η| = i)/

(
n
i

)
)ni=n−t−1 are LC.

For the rest of this section it will be convenient to treat Ω as 2[n], so that (1.5) becomes

αi(µ) =
(
n

i

)−1∑
{µ(X)µ([n] \X) : X ∈

(
[n]
i

)
}

(where
(

[n]
i

)
= {X ⊆ [n] : |X| = i}).

We will use some properties of the Johnson association scheme; this material (up to

(4.2)) is taken from chapter 30 of [34]. Fix positive integers n and l with l ≤ n/2, let

X =
([n]
l

)
, and, for i = 0, 1, . . . , l, let Ai be the X×X adjacency matrix of ith associates,

viz.

Ai(X,Y ) =

 1 if |X ∩ Y | = l − i

0 otherwise.
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We write elements of RX as row vectors. For T ⊆ [n] with |T | ≤ l, let eT be the vector

in RX with

eT (S) =

 1 if S ⊇ T

0 otherwise,

and let Ui be the span of {eT : T ∈
(

[n]
i

)
}. Then U0 ⊆ U1 ⊆ · · · ⊆ Ul = RX and

dimUi =
(
n
i

)
. Set V0 = U0 and Vi = Ui ∩ U⊥i−1 for i = 1, 2, . . . , l, and let Ei be the

projection of RX onto Vi. Then

RX = V0 ⊕ V1 ⊕ · · · ⊕ Vl

is an orthogonal decomposition,

EiEj =

 Ei if i = j

0 if i 6= j,

and

E0 + E1 + · · ·+ El = I.

Note that V0 consists of the constant vectors. The span, A, of A0, . . . , Al is an al-

gebra under matrix multiplication (the Bose-Mesner algebra). The set of matrices

{E0, E1, . . . , El} is also a basis for A, with

Ai =
l∑

j=0

Pi(j)Ej (i = 0, 1, . . . , l), (4.1)

where

Pi(j) =
i∑

k=0

(−1)i−k
(
l − k
i− k

)(
l − j
k

)(
n− l + k − j

k

)
. (4.2)

The next lemma is presumably well-known.

Lemma 4.2 For any γ0, γ1, . . . , γl ∈ R, the X×X real symmetric matrix M =
∑l

i=0 γiAi

is positive semidefinite if and only if
∑l

i=0 γiPi(j) ≥ 0 for j = 0, 1, . . . , l.

Proof. Since M =
∑l

j=0

∑l
i=0 γiPi(j)Ej and Ej is the orthogonal projection of RX onto

Vj , the eigenvalues of M are {
∑l

i=0 γiPi(j) : j = 0, 1, . . . , l}. �

Remark. It is not hard to show, using some additional properties of the Johnson scheme,

that the condition appearing in Lemma 4.2 is equivalent to the statement that the vector

(
(
l
i

)(
n−l
l−i
)
γi)li=0 satisfies Delsarte’s inequalities ([8] or [34, p. 416]).
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We also need one technical lemma:

Lemma 4.3 For all positive integers M,N and real numbers a, b,

N∑
t=0

(−1)t
at+ b

t+M

(
N

t

)
= (

b

M
− a)

(
M +N

M

)−1

.

Proof. It suffices to prove either of the equivalent

N∑
t=0

(−1)t
t

t+M

(
N

t

)(
M +N

M

)
= −1, (4.3)

N∑
t=0

(−1)t
M

t+M

(
N

t

)(
M +N

M

)
= 1,

since the desired identity is a linear combination of these. We prove (4.3), fixing M

and proceeding by induction on N , with the base case N = 1 trivial. For the induction

step, we just check that the left side of (4.3) does not change when we replace N by

N + 1; indeed, the difference is

(−1)N+1 N + 1
M +N + 1

(
M +N + 1

M

)

+
N∑
t=1

(−1)t
t

t+M

[(N + 1
t

)(
M +N + 1

M

)
−
(
N

t

)(
M +N

M

)]

= (−1)N+1

(
M +N

M

)
+

N∑
t=1

(−1)t
(

N

t− 1

)(
M +N

M

)
,

which is zero. �

Proof of Theorem 4.1. Let µ be a measure on 2[n] satisfying the hypotheses of the

theorem, with rank sequence (ai)ni=0. Our goal is to show

l(n− l)a2
l ≥ (l + 1)(n− l + 1)al−1al+1 (4.4)

for l ∈ {1, . . . , t}∪{n−t, . . . , n−1}; but, since µ′ ∈M given by µ′(X) = µ([n]\X) again

satisfies the hypotheses of Theorem 4.1 and has rank sequence (an−i)ni=0, it suffices to

prove (4.4) when l ≤ min{t, n/2}. To this end, fix such an l and set

Zij,k =
∑
{µ(X)µ(Y ) : (X,Y ) ∈

(
[n]
j

)
×
(

[n]
k

)
and |X ∩ Y | = i};
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with this notation, (4.4) is

l(n− l)
l∑

i=0

Zil,l ≥ (l + 1)(n− l + 1)
l−1∑
i=0

Zil−1,l+1. (4.5)

For each i ∈ {0, 1, . . . , l − 1} and I ⊆ J ⊆ [n] with |I| = i and |J | = 2l − i, let

µI,J ∈MJ\I be the conditional measure with

µI,J(X) ∝ µ(X ∪ I) (X ⊆ J \ I)

(or µI,J ≡ 0 if µ([I, J ]) = 0). By hypothesis (or trivially if µI,J ≡ 0) µI,J has the APP,

i.e.

αl−i(µI,J) ≥ αl−i−1(µI,J). (4.6)

With

Zj,k(I, J) =
∑
{µ(X)µ(Y ) : (X,Y ) ∈

(
[n]
j

)
×
(

[n]
k

)
, X ∪ Y = J, and X ∩ Y = I},

we have

αj(µI,J) =

 ∑
I⊆X⊆J

µ(X)

−1(
2l − 2i
j

)−1

Zi+j,2l−i−j(I, J),

and (4.6) becomes
l − i

l − i+ 1
Zl,l(I, J) ≥ Zl−i.l+1(I, J). (4.7)

Summing (4.7) over I, J with |I| = i and |J | = 2l − i gives

l − i
l − i+ 1

Zil,l ≥ Zil−1,l+1 (4.8)

(since each pair (X,Y ) contributing to Zil,l contributes to the left side of (4.7) for exactly

one choice of (I, J), and similarly for pairs contributing to Zil−1,l+1). Replacing each

Zil−1,l+1 in (4.5) by the (corresponding) left side of (4.8), we find that it is enough to

show
l∑

i=0

βiZ
i
l,l ≥ 0, (4.9)

where

βi =
i(n+ 1)− l(l + 1)

l − i+ 1
.
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In fact, we will show that (4.9) holds for every µ ∈ M. Let ψ = ψµ be the (row)

vector in RX with ψ(X) = µ(X) for X ∈
([n]
l

)
, and recall the matrices Ai defined before

Lemma 4.2. Since

ψAiψ
T = Z l−il,l ,

the left side of (4.9) is

ψ(
l∑

i=0

βl−iAi)ψT (4.10)

and (4.9) will follow from Lemma 4.2 once we show

l∑
i=0

βl−iPi(j) ≥ 0 (4.11)

for j = 0, 1, . . . , l.

Fix j ∈ [l]. (We deal with the case j = 0 separately below.) The left side of (4.11)

is

l∑
i=0

(l − i)(n+ 1)− l(l + 1)
i+ 1

i∑
k=0

(−1)i−k
(
l − k
i− k

)(
l − j
k

)(
n− l + k − j

k

)
, (4.12)

which we want to show is nonnegative. Interchanging the order of summation and

making the substitution t = i− k, we may rewrite (4.12) as

l∑
k=0

(
l − j
k

)(
n− l + k − j

k

) l−k∑
t=0

(−1)t
(l − t− k)(n+ 1)− l(l + 1)

t+ k + 1

(
l − k
t

)
. (4.13)

It is thus enough to show

l−k∑
t=0

(−1)t
(l − t− k)(n+ 1)− l(l + 1)

t+ k + 1

(
l − k
t

)
≥ 0 (4.14)

whenever k ≤ l − 1 (since the k = l term in (4.13) is zero). But Lemma 4.3, with

N = l − k, M = k + 1, a = −(n + 1), and b = N(n + 1) − l(l + 1), says that the left

side of (4.14) is
(n− l + 1)(l + 1)

k + 1

(
l + 1
k + 1

)−1

,

which is positive since l ≤ n/2.

Finally we show that when j = 0, (4.11) holds with equality. To see this, notice that

when µ is uniform measure on 2[n], we have equality in (4.5) and (4.8), and consequently
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(4.9), from which it follows (see (4.10)) that

ψ(
l∑

i=0

βl−iAi)ψT = 0. (4.15)

But, since ψEjψT is 2−2n
(
n
l

)
if j = 0 and zero otherwise (recall that E0 is projection

onto the span of (1, 1, . . . , 1)), the left side of (4.15) is (by (4.1))

2−2n

(
n

l

) l∑
i=0

βl−iPi(0),

which gives the promised equality in (4.11). �

4.2 Proof of Corollary 1.10

In this short section we use Theorem 1.8 to prove Corollary 1.10.

Proof of Corollary 1.10. The statement is: if µ ∈M satisfies (1+1/k)-Ray[k] ∀k ∈ [m],

T ⊆ [n], |T | ≤ 2m + 1, and ν ∈ MT is obtained from µ by imposing an external field

and projecting on T , then ν is ULC. By Theorem 1.8, it suffices to show ν has the

CAPP (since it’s not hard to see that the hypothesis implies the rank sequence of ν has

no internal zeros). But any measure gotten from ν by conditioning on the values of the

variables in some set T \ S is the limit of a sequence of measures, each gotten from µ

by imposing an external field and projecting on S; the CAPP for ν thus follows from

our assumption on µ. �

4.3 Convolution of ULC sequences

In this section we define a property of measures which is stronger than ULC, prove it

is preserved by products, and show that this implies Theorem 1.11.

We begin with some definitions. With αi(µ) as in (1.5), say µ ∈M is antipodal pairs

unimodal (APU) if the sequence (αi(µ))ni=0 is unimodal (since αi(µ) = αn−i(µ), this

means α0(µ) ≤ · · · ≤ αbn/2c(µ) = αdn/2e(µ) ≥ · · · ≥ αn(µ)), and say µ is conditionally

antipodal pairs unimodal (CAPU) if every measure obtained from µ by conditioning

is APU. Since CAPU trivially implies the CAPP (and no internal zeros in the rank

sequence), Theorem 1.8 gives
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Corollary 4.4 Every CAPU measure is ULC.

(As far as we know, Conjecture 1.15 can be strengthened by replacing “CAPP” with

“CAPU.”) We will show

Theorem 4.5 (a) The product of two APU measures is APU.

(b) The product of two CAPU measures is CAPU.

Before giving the proof of Theorem 4.5, we show that it implies Theorem 1.11. Recall

that µ ∈M is exchangeable if µ(η) depends only on |η| =
∑
ηi.

Lemma 4.6 For exchangeable measures, the properties ULC and CAPU are equivalent.

Remark. Pemantle shows that for exchangeable measures, ULC and several negative

dependence properties coincide (see Theorem 2.2). Lemma 4.6 adds CAPU to this list.

Proof of Lemma 4.6. By Corollary 4.4, we need only show that every exchangeable

ULC measure is CAPU; in fact, since conditioning preserves both exchangeability and

ULC, it suffices to prove that an exchangeable ULC measure is APU. But if µ ∈ M is

exchangeable with rank sequence (a0, . . . , an), then

αi(µ) = aian−i

(
n

i

)−1( n

n− i

)−1

so that log-concavity of (and absence of internal zeros in) (ai/
(
n
i

)
)ni=0 implies unimodal-

ity of (αi(µ))ni=0. �

Proof of Theorem 1.11. Given ULC sequences a = (a0, . . . , an) and b = (b0, . . . , bm), let

µ ∈M[n] and ν ∈M{n+1,...,n+m} be the corresponding exchangeable measures; that is,

µ(η) =
a|η|(
n
|η|
) and ν(η) =

b|η|(
m
|η|
) .

By Lemma 4.6, µ and ν are CAPU, so that Theorem 4.5(b) and Corollary 4.4 give

ULC for µ× ν ∈M[n+m], completing the proof (since the rank sequence of µ× ν is the

convolution of a and b). �

Remark. Following [33], say an infinite nonnegative sequence (a0, a1, . . .) is ULC[∞]

if there are no internal zeros and a2
i ≥ i+1

i ai−1ai+1 for i ≥ 1. The proof of Theorem
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1.11 in [33] allows one or both sequences to be ULC[∞], but an easy limiting argument

suffices to get this more general statement from the finite version proved above.

Proof of Theorem 4.5. Notice that (a) implies (b), since any measure gotten from µ×ν

by conditioning is the product of measures obtained from µ and ν by conditioning.

Call a nonnegative sequence (p0, . . . , ps) symmetric if pi = ps−i for i = 0, . . . , s and

ultra-unimodal if (pi/
(
s
i

)
)si=0 is unimodal. Let µ ∈ M[n] and ν ∈ M{n+1,...,n+m} be

APU. Then (
(
n
i

)
αi(µ))ni=0 and (

(
m
i

)
αi(ν))mi=0 are symmetric and ultra-unimodal, and

we want to say that their convolution, (
(
n+m
k

)
αk(µ× ν))n+m

k=0 , is ultra-unimodal. So we

will be done if we show

Lemma 4.7 The convolution of two symmetric ultra-unimodal sequences is ultra-

unimodal

(and symmetric). It’s easy to see that Lemma 4.7 is not true without the symmetry

assumption.

Proof of Lemma 4.7. Since every symmetric ultra-unimodal sequence (p0, . . . , ps) is

a positive linear combination of sequences of the form (
(
s
i

)
1{k≤i≤s−k})si=0 (and since

convolution is bilinear), it suffices to prove that the convolution of (
(
s
i

)
1{k≤i≤s−k})si=0

and (
(
t
i

)
1{l≤i≤t−l})ti=0 is ultra-unimodal for all k, l, s, t with k ≤ s/2 and l ≤ t/2. (Of

course this is also implied by Theorem 1.11.)

To see this set (for k, l, s, t as above)

fj =
(
s+ t

j

)−1∑
i

(
s

i

)
1{k≤i≤s−k}

(
t

j − i

)
1{l≤j−i≤t−l};

so we should show

fj ≤ fj+1 ∀j < (s+ t)/2. (4.16)

It’s convenient to work with the natural interpretation of fj as a probability. Let S

and T be disjoint sets with |S| = s and |T | = t, and let

Q = {Z ⊆ S ∪ T : k ≤ |Z ∩ S| ≤ s− k, l ≤ |Z ∩ T | ≤ t− l}.

Then fj = Pr(Xj ∈ Q), where Xj is chosen uniformly from
(
S∪T
j

)
. To prove (4.16),

we consider the usual coupling of X = Xj and Y = Xj+1; namely, choose X uniformly
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from
(
S∪T
j

)
and y uniformly from (S ∪ T ) \X, and set Y = X ∪ {y}. We have

fj+1 − fj = Pr(X 6∈ Q,Y ∈ Q)− Pr(X ∈ Q,Y 6∈ Q),

so should show that the right side is nonnegative.

We may assume that j ≥ k + l, since otherwise we cannot have X ∈ Q. Then

{X 6∈ Q,Y ∈ Q} occurs if and only if either (i) |X∩S| = k−1, y ∈ S, and j−k+1 ≤ t−l,

or (ii) |X ∩ T | = l − 1, y ∈ T , and j − l + 1 ≤ s− k; thus,

Pr(X 6∈ Q,Y ∈ Q) =
(
s

k−1

)(
t

j−k+1

)
s−k+1
s+t−j 1{j−k+1≤t−l} +

(
t
l−1

)(
s

j−l+1

)
t−l+1
s+t−j1{j−l+1≤s−k}.

Similarly (noting that j ≤ s − k + t − l), {X ∈ Q,Y 6∈ Q} occurs if and only if either

(i) |X ∩ S| = s− k, y ∈ S, and l ≤ j − s + k or (ii) |X ∩ T | = t − l, y ∈ T , and

k ≤ j − t+ l, whence

Pr(X ∈ Q,Y 6∈ Q) =
(
s

s−k
)(

t
j−s+k

)
k

s+t−j1{l≤j−s+k} +
(
t
t−l
)(

s
j−t+l

)
l

s+t−j1{k≤j−t+l}.

Thus, since

(
s

k−1

)
(s− k + 1) =

(
s

s−k
)
k and

(
t
l−1

)
(t− l + 1) =

(
t
t−l
)
l,

we will be done if we show

(
t

j−k+1

)
1{j−k+1≤t−l} ≥

(
t

j−s+k
)
1{l≤j−s+k}. (4.17)

and (
s

j−l+1

)
1{j−l+1≤s−k} ≥

(
s

j−t+l
)
1{k≤j−t+l}.

The easy verifications are similar and we just do (4.17): we have j − k + 1 ≥ j − s+ k

(since 2k ≤ s) and (j − k + 1) + (j − s + k) ≤ t (since 2j ≤ s + t − 1), implying both(
t

j−k+1

)
≥
(

t
j−s+k

)
and 1{j−k+1≤t−l} ≥ 1{l≤j−s+k}. �

4.4 Consequences for Mason’s conjecture

In this section we prove Theorem 1.16. As noted at the end of Section 1.5, this with

Theorem 4.1 (or, for part (a), Theorem 1.8) immediately implies Theorem 1.17. Here we
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do assume a (very) few matroid basics—again, [49] and [39] are standard references—

and now denote matroids by M . Our argument mainly follows that of [10], which,

as mentioned in Section 1.5, makes some progress on the “LC version” of Mason’s

conjecture.

Given a matroid M on ground set E, let Πi = Πi(M) be the set of ordered partitions

(A,B) of E with |A| = i and each of A,B independent. Notice that when |E| = 2k, APP

for uniform measure on the independent sets of M is the inequality |Πk−1| ≤ k
k+1 |Πk|.

Dowling’s point of departure was the observation that if |Πk(M)| ≥ |Πk−1(M)| for

every k ≤ t and every M on an E of size 2k, then for an arbitrary M (on a ground set

of any size) the initial portion (a0, . . . , at+1) of the sequence of independence numbers

is LC. This is, of course, analogous to Theorem 4.1. Note, though, that, in contrast

to Theorem 4.1, the implication here is quite straightforward; namely, a natural (and

standard) grouping of terms represents the expansion of a2
i ≥ ak−1ak+1 as a positive

combination of inequalities |Πk(M)| ≥ |Πk−1(M)| for various M ’s. (If, in analogy with

(1.5), we set βi(ν) =
∑
{ν(η)ν(1− η) : η ∈ Ω, |η| = i}, then Dowling’s argument shows

that µ ∈ M is LC provided each ν obtained from µ by conditioning on the values of

some n− 2k variables satisfies βk(ν) ≥ βk−1(ν).)

Dowling also showed that every matroid on a ground set of size 2k ≤ 14 satisfies

|Πk| ≥ |Πk−1| (which yields the result mentioned in Section 1.5). This is mainly based

on Lemma 4.9 below and (a version of) the following easy observation, in which we use

d for degree and “∼” for adjacency.

Lemma 4.8 Let G be a simple, bipartite graph with bipartition X ∪ Y . If d(x) ≥ 1 for

all x ∈ X and
∑

x∼y d(x)−1 ≤ C for all y ∈ Y , then |X| ≤ C|Y |.

Proof. This is standard: |X| =
∑

x∈X
∑

y∼x d(x)−1 =
∑

y∈Y
∑

x∼y d(x)−1 ≤ C|Y |. �

Proof of Theorem 1.16. Since the class of measures in question is closed under condi-

tioning, it’s enough to show that every matroid M on a ground set E of size 2k ≤ 10

satisfies

|Πk−1(M)| ≤ k

k + 1
|Πk(M)|. (4.18)



45

This is trivial when k = 1, so we assume k ∈ {2, 3, 4, 5}. Define bipartite graphs G1, G2

with the common bipartition Πk−1∪Πk by setting, for (C,D) ∈ Πk−1 and (A,B) ∈ Πk,

(C,D) ∼ (A,B) in G1 (resp. G2) if C ⊆ A (resp. C ⊆ B). Let G = G1 ∪ G2. Then,

writing r for rank and di and d for degrees in Gi and G, we have (see [10], pp. 24-27)

Lemma 4.9 If r(M) ≥ k + 2 or r(M) = k + 1 and M has no coloops, then

(a) every (A,B) ∈ Πk satisfies 2 ≤ di(A,B) ≤ k for i = 1, 2;

(b) every (A,B) ∈ Πk satisfies

∑
(C,D)∼(A,B)

1
d(C,D)

≤ 1
2

(
d1(A,B)

d2(A,B) + 1
+

d2(A,B)
d1(A,B) + 1

)
;

(c) every (A,B) ∈ Πk with d1(A,B) < d2(A,B) satisfies

∑
(C,D)∼(A,B)

1
d(C,D)

≤ 1
2

(
d1(A,B)− 1
d1(A,B) + 1

+
d2(A,B)− d1(A,B) + 1

d1(A,B) + 2
+

d1(A,B)
d2(A,B) + 1

)
.

(4.19)

Proof of (4.18). We may assume r(M) > k, since otherwise Πk−1 = ∅. Also, if

r(M) = k + 1 and M has a coloop e, then |Πk−1(M)| = |Πk−1(M \ e)| (since every

basis contains e) and |Πk(M)| = 2|Πk−1(M \ e)|, so we have (4.18).

So we may assume we are in the situation of Lemma 4.9 (either r(M) ≥ k + 2 or

r(M) = k + 1 and M has no coloops). By Lemma 4.8, it suffices to show that for each

(A,B) ∈ Πk, ∑
(C,D)∼(A,B)

1
d(C,D)

≤ k

k + 1
. (4.20)

Since d1(A,B) = d2(B,A), we may assume that 2 ≤ d1(A,B) ≤ d2(A,B) ≤ k (by

Lemma 4.9(a)). If d1(A,B) = d2(A,B), then Lemma 4.9(b) bounds the left side of

(4.20) by d1(A,B)/(d1(A,B) + 1) ≤ k/(k+ 1). Otherwise (i.e. if d1(A,B) < d2(A,B)),

Lemma 4.9(c) bounds the left side of (4.20) by the right side of (4.19), which a little

calculation shows—this is where we use the hypothesis that k ≤ 5—to be at most

d2(A,B)/(d2(A,B) + 1) ≤ k/(k + 1). �
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Chapter 5

Competing urns

Our main task in this chapter is to prove Theorem 1.21. We begin with a natural

extension of the definition of negative association given in Section 1.2. Call the joint

distribution of the random variables X1, . . . , Xn, with each Xi taking values in a totally

ordered set Ωi, negatively associated (NA) if A ↓ B for all increasing A,B ⊆ Ω1×· · ·×Ωn

satisfyingA ⊥ B (where “increasing” is with respect to the product order on Ω1×· · ·×Ωn

and A ⊥ B again means no coordinate affects both A and B). In particular, two real-

valued random variables X,Y are NA if

{X ≥ s} ↓ {Y ≥ t} for all s, t ∈ R, (5.1)

which is easily seen to be equivalent to

Ef(X)g(Y ) ≤ Ef(X)Eg(Y ) for all increasing f, g : R→ R.

We also call the joint distribution of X1, . . . , Xn (again, with each Xi taking values in a

totally ordered set) conditionally negatively associated (CNA) if every measure gotten

by conditioning on the values of some of the Xi’s is NA.

The proof of Theorem 1.21 actually gives something a little more general, as follows.

Suppose that for each j ∈ [n] we are given a sequence 0 = a0(j) < · · · < akj (j) = m+1,

and for σ : [m]→ [n] set

xj(σ) = t iff at(j) ≤ Bj < at+1(j) (5.2)

(recall Bj = |σ−1(j)|).

Theorem 5.1 If the σ(i)’s are i.i.d. then the xj’s in (5.2) are CNA.

Call the law of (x1, . . . ,xn) as in (5.2) a (generalized) interval urn measure.
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The rest of this chapter is organized as follows. Section 5.1 reduces Theorem 5.1

to either of our two main inequalities, (5.8) and (5.12); these are equivalent in the

case of ordinary urns but not in general. Section 5.2 presents a general result, inspired

by the approach of [13], that easily specializes to give each of these, and Section 5.3

gives a different proof of (5.12), based on a graph-theoretic approach thought to be

of independent interest. (It is only in the derivation of Theorem 5.1 from (5.8) that

we need the σ(i)’s to be i.i.d.) Finally, in Section 5.4 we give examples justifying

Proposition 1.25 and the remark following Theorem 1.21, and provide a counterexample

to Conjecture 1.27. As before, we always tacitly assume that conditioning events have

positive probability.

5.1 Setting up

For a nonnegative vector

γ = (γij : i ∈ [m], j ∈ [n]), (5.3)

A ⊆ [m] and K ⊆ [n], the probability measure on KA (functions from A to K) corre-

sponding to γ is that given by

Pr(σ) ∝W (σ) :=
∏
i∈A

γi,σ(i). (5.4)

Thus the r.v.’s σ(i) are independent; they are i.i.d. if γij does not depend on i, in

which case we write simply γj . We also use PrL (L ⊆ [m]) for the measure on [n]L

corresponding to γ (so Pr = Pr[m]).

Let σ ∈ [n][m] be as above (that is, given by (5.4)) and x1, . . . ,xn as in (5.2). Let

I ∪ J ∪K be a partition of [n] and tj ∈ {0, . . . , kj − 1} for j ∈ K, and set

Q := {x(σ) ≡ t on K} (= {atj (j) ≤ |σ−1(j)| < atj+1(j) ∀j ∈ K}), (5.5)

X = |σ−1(I)| and Y = |σ−1(J)|. The main point for the proof of Theorem 5.1 is

X,Y are NA given Q, (5.6)

given which we finish easily:
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Proof of Theorem 5.1. With notation as above, let A,B ⊆ Ω be increasing events

determined by I and J (more precisely, by the values of the variables xj indexed by

I and J) respectively. For Theorem 5.1 we should show A ↓ B given Q. Define

f, g : N → R (where N = {0, 1, . . .}) by f(k) = Pr(A|X = k), g(l) = Pr(B|Y = l). A

standard coupling argument shows that f and g are increasing, whence, according to

(5.6),

Pr(A ∩ B|Q) = E[f(X)g(Y )|Q] ≤ E[f(X)|Q]E[g(Y )|Q] = Pr(A|Q) Pr(B|Q).

(The first equality follows from the observation that A,B are independent given X,Y .)

�

We continue to condition on Q and write µk for the law of Y given {X = k}; that

is,

µk(l) = Pr(Y = l|X = k). (5.7)

We will actually prove
µk+1(l + 1)
µk+1(l)

≤ µk(l + 1)
µk(l)

(5.8)

(whenever neither side is 0/0, where we agree that x/0 = ∞ when x > 0), which is a

strengthening of (5.6) once we rule out some pathologies. We recall the standard

Definition 5.2 C ⊆ Nn is convex if a, c ∈ C and a ≤ b ≤ c imply b ∈ C.

It will follow from Proposition 5.6 below that

supp(Pr) := {(k, l) : Pr(X = k, Y = l) > 0} is convex. (5.9)

Given this convexity, (5.8) implies that Y is stochastically decreasing in X—that is,

µk+1(Y ≥ t) ≤ µk(Y ≥ t) ∀t

(the easy implication is essentially Proposition 1.2 of [40])—which in turn easily implies

(5.6).

Let

Z = |σ−1(I ∪ J)|. (5.10)
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When the σ(i)’s are i.i.d., an alternate way to specify X and Y is: let Z be as in (5.10),

X ∼ Bin(Z,α) and Y = Z −X, where α = γI/γI∪J (with γI =
∑

i∈I γi) and Bin(Z,α)

is the binomial distribution with parameters Z and α.

In general, for ν the law of an N-valued random variable Z and α ∈ [0, 1], let

X = Xν,α ∼ Bin(Z,α), Y = Yν,α = Z − X and, for lack of a better name, say ν

is binomially negatively associated (BNA) if X ↓ Y for every α. Call a nonnegative

sequence a = (ai)∞i=0 strongly log-concave (SLC) if

ia2
i ≥ (i+ 1)ai−1ai+1 for all i ≥ 1 (5.11)

(that is, (i!ai)∞i=0 is log-concave), and say a probability measure ν on N is SLC if the

sequence (ν(i))∞i=0 is. (For the equivalence of (5.8) and (5.12) below, it will be convenient

to allow SLC sequences and measures to have internal zeros, even though the measures

we are interested in here have no internal zeros.) A straightforward calculation shows

that this is equivalent to saying that (5.8) holds for any α, X = Xν,α and Y = Yν,α

(and µk as in (5.7)): since

µk(l) =
ν(k + l) Pr(X = k|Z = k + l)

Pr(X = k)
=
ν(k + l)

(
k+l
k

)
αk(1− α)l

Pr(X = k)
,

we may rewrite (5.8) as

ν(k + l + 2)
(
k+l+2
k+1

)
ν(k + l)

(
k+l
k

)
≤ ν(k + l + 1)

(
k+l+1
k+1

)
ν(k + l + 1)

(
k+l+1
k

)
,

which is SLC for ν. (If ν is Poisson—that is, if (5.11) holds with equality—then X

and Y are independent Poisson r.v.’s and the inequalities (5.1) are equalities.) Thus,

in the i.i.d. case, (5.8) is equivalent to saying that Z as in (5.10) is SLC. That Z is

SLC again turns out to be true at the level of generalized urns; that is, for any γ as in

(5.3), σ ∈ [n][m] with law given by (5.4), Q as in (5.5) and Z as in (5.10),

the law of Z is SLC. (5.12)

It seems interesting that both (5.8) and (5.12) are valid for generalized urns, though

the equivalence that holds for i.i.d. balls disappears in the more general setting.

To repeat, (5.12) gives an alternate proof of (5.8)—and thus of (5.6) and Theorem

5.1—in the i.i.d. case. More generally, the preceding discussion shows that any SLC ν
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with no internal zeros is BNA (since it’s easy to see that absence of internal zeros in

(ν(i)) is equivalent to (5.9) for X = Xν,α, Y = Yν,α).

5.2 First proof

Let Pr be the measure on [n][m] corresponding to some γ (see the beginning of Section

5.1), and for a, b ∈ Nn−1 and k ∈ N, set

p(k, a, b) = Pr(Bn = k|Bj ∈ [aj , bj ] ∀j ∈ [n− 1]) (5.13)

(recalling that Bj = |σ−1(j)|). The main result of this section is

Theorem 5.3 With notation as above,

(a)
p(k + 1, a, b)
p(k, a, b)

is decreasing (i.e. nonincreasing) in (a, b)

(b)
p(k + 1, a, b)
p(k, a, b)

≤ k

k + 1
· p(k, a, b)
p(k − 1, a, b)

(where we say nothing about the case 0/0 and agree that x/0 =∞ when x > 0).

This is somewhat related to Theorem 1.23, whose proof is sketched at the end of this

section.

Before proving Theorem 5.3 we observe a few consequences—in particular that it

yields both (5.8) and (5.12)—and give the promised Proposition 5.6.

Corollary 5.4 For fixed a, b ∈ N[n−1] the sequence {p(k, a, b)} is SLC.

This is just Theorem 5.3(b). Note that it includes (5.12): with notation as in (5.5)

define

γ′ij =

 γij if j ∈ K = [n− 1]∑
{γij : j ∈ I ∪ J} if j = n;

then, for σ chosen according to γ′, the law of |σ−1(n)| is the same as that of Z in (5.10),

and the conditioning in (5.5) is of the same type as that in (5.13). �
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A second application of Theorem 5.3, this time of part (a), gives (5.8). Here we

should take

γ′ij =


γij if j ∈ K = [n− 2]∑
{γij : j ∈ I} if j = n− 1∑
{γij : j ∈ J} if j = n,

let the k of Theorem 5.3 be the l of (5.8), and, in (5.13), compare the pairs (a, b)

corresponding to Q ∧ {Bn−1 = k} and Q ∧ {Bn−1 = k + 1} (where Q is as in (5.5)). �

For f, a ∈ Nn, let Mf (a) = {σ ∈ [n][m] : |σ−1(j)| ∈ [aj , aj + fj ] ∀j ∈ [n]} and

Mf (a) = Pr(Mf (a)). Though we won’t use the next corollary (but see the remark

following Corollary 5.9), it seems natural and worth mentioning.

Corollary 5.5 For each f ∈ Nn, M = Mf satisfies the negative lattice condition:

M(a)M(c) ≥M(a ∨ c)M(a ∧ c) ∀a, c ∈ Nn. (5.14)

This is more or less immediate from Theorem 5.3 once we have the next little observa-

tion, which, as noted earlier, also gives (5.9) and absence of internal zeros in the law of

Z in (5.10).

Proposition 5.6 For any f and Mf as above, the support of M = Mf is convex.

Proof. This will follow easily from

Claim. For any σ, τ ∈ [n][m] with Pr(σ),Pr(τ) > 0 and i ∈ [n] with |σ−1(i)| > |τ−1(i)|,

there are j ∈ [n] and ρ ∈ [n][m] with Pr(ρ) > 0, |σ−1(j)| < |τ−1(j)| and

|ρ−1(k)| =


|σ−1(i)| − 1 if k = i

|σ−1(j)|+ 1 if k = j

|σ−1(k)| if k ∈ [n] \ {i, j}.

This is a standard type of graph-theoretic observation: regarding σ and τ as edge sets of

bipartite graphs on [m]∪ [n] in the natural way,1 we need a path with edges alternately

from σ \ τ and τ \σ that begins with a σ-edge at i and ends with a τ -edge at some j as

1We pretend [m] ∩ [n] = ∅.
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above. (We then get ρ by switching σ and τ on this path.) We omit the routine proof

that such a path must exist.

To prove Proposition 5.6, we should show that for all a, b, c ∈ Nn with a < b < c and

a, c ∈ supp(M), we also have b ∈ supp(M). Of course it suffices to show this when there

is some i ∈ [n] with bi = ci − 1 and bk = ck for all k 6= i. Choose τ ∈ M(a) :=Mf (a)

and σ ∈ M(c) with Pr(τ),Pr(σ) > 0. We assume |σ−1(i)| = ci + fi, since otherwise

σ ∈ M(b) and we are finished. Letting j, ρ be as in the claim (note |τ−1(i)| < ci + fi),

we have

|ρ−1(i)| = bi + fi

and

|ρ−1(j)| = |σ−1(j)|+ 1 ∈ [cj + 1, aj + fj ] ⊆ [bj , bj + fj ],

whence ρ ∈M(b) and b ∈ supp(M). �

Proof of Corollary 5.5. It is easy to see (and standard) that convexity of M (given by

Proposition 5.6) implies that it’s enough to prove (5.14) when both sides of (5.14) are

positive and there are indices i and j with ai = ci − 1, aj = cj + 1, and ak = ck for all

k 6= i, j. In this case—assuming, w.l.o.g., that i = n− 1 and j = n—we set

p1(k) = Pr(Bn = k|Bl ∈ [al, al + fl] ∀l ∈ [n− 1])

and

p2(k) = Pr(Bn = k|Bl ∈ [cl, cl + fl] ∀l ∈ [n− 1]).

Then (5.14) iscn+fn+1∑
k=cn+1

p1(k)

cn+fn∑
k=cn

p2(k)

 ≥
cn+fn+1∑

k=cn+1

p2(k)

cn+fn∑
k=cn

p1(k)


and follows immediately from

p1(k)p2(l) ≥ p1(l)p2(k) whenever k ≥ l,

which is a consequence of Theorem 5.3(a) (and Proposition 5.6). �

The proof of Theorem 5.3 resembles that of Theorem 33 in [13], and is based on
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Observation 5.7 For any i ∈ [n], k ∈ N, and event Q determined by (σ−1(j) : j 6= i),

Pr(Bi = k + 1, Q) =
1

k + 1

∑
l∈[m]

γli Pr[m]\{l}(Bi = k,Q).

(Recall PrL was defined at the beginning of Section 5.1.) We also use the trivial

min
i

αi
βi
≤ α1 + · · ·+ αk
β1 + · · ·+ βk

≤ max
i

αi
βi

(5.15)

(for all α1, . . . , αk, β1, . . . , βk ≥ 0 with β1 + · · ·+ βk > 0, where x/0 =∞ when x > 0).

Proof of Theorem 5.3. We proceed by induction on m, omitting the easy base cases

with m = 1. For (a), it’s enough to show the ratio in question does not increase when

we increase a single entry—w.l.o.g. the (n − 1)st—of one of a, b. Thus, by (5.15), it

suffices to show that

Pr(Bn = k + 1|Bn−1 = t, R)
Pr(Bn = k|Bn−1 = t, R)

is nonincreasing in t,

where R = {aj ≤ Bj ≤ bj ∀j ∈ [n− 2]}; by Proposition 5.6, it is enough to show

Pr(Bn = k + 1|Bn−1 = t+ 1, R)
Pr(Bn = k|Bn−1 = t+ 1, R)

≤ Pr(Bn = k + 1|Bn−1 = t, R)
Pr(Bn = k|Bn−1 = t, R)

(5.16)

for all t for which all four probabilities appearing in (5.16) are positive.

Using Observation 5.7, the left side of (5.16) is∑
l∈[m] γl,n−1 Pr[m]\{l}(Bn = k + 1, Bn−1 = t, R)∑
l∈[m] γl,n−1 Pr[m]\{l}(Bn = k,Bn−1 = t, R)

,

which, by (5.15), is at most

max
l∈[m]

Pr[m]\{l}(Bn = k + 1|Bn−1 = t, R)
Pr[m]\{l}(Bn = k|Bn−1 = t, R)

.

Setting Q = {Bn−1 = t} ∧ R and assuming (w.l.o.g.) that the maximum occurs at

l = m, we will have (5.16) if we show

Pr(Bn = k + 1|Q)
Pr(Bn = k|Q)

≥ Pr[m−1](Bn = k + 1|Q)
Pr[m−1](Bn = k|Q)

. (5.17)

Now

Pr(Bn = k + 1|Q)
Pr(Bn = k|Q)

=

∑
j∈[n] Pr(σ(m) = j|Q) Pr(Bn = k + 1|Q, σ(m) = j)∑
j∈[n] Pr(σ(m) = j|Q) Pr(Bn = k|Q, σ(m) = j)

,
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so that (5.17) will follow (again using (5.15)) from

Pr(Bn = k + 1|Q, σ(m) = j)
Pr(Bn = k|Q, σ(m) = j)

≥ Pr[m−1](Bn = k + 1|Q)
Pr[m−1](Bn = k|Q)

for all j ∈ [n] (5.18)

(where, again, “for all j ∈ [n]” really includes only those for which Pr(Q, σ(m) = j) > 0).

There are three cases to consider. If j = n, the left side of (5.18) is

Pr[m−1](Bn = k|Q)
Pr[m−1](Bn = k − 1|Q)

,

which is at least the right side of (5.18) by (part (b) of) our induction hypothesis. If

j = n− 1, the left side of (5.18) is

Pr[m−1](Bn = k + 1|Bn−1 = t− 1, R)
Pr[m−1](Bn = k|Bn−1 = t− 1, R)

,

which is at least the right side of (5.18) by (part (a) of) the induction hypothesis.

Finally, if j 6= n− 1, n, the left side of (5.18) is

Pr[m−1](Bn = k + 1|Bn−1 = t, R∗)
Pr[m−1](Bn = k|Bn−1 = t, R∗)

,

where R∗ is obtained from R by replacing the condition aj ≤ Bj ≤ bj by the condition

aj − 1 ≤ Bj ≤ bj − 1; again this is at least the right side of (5.18) by part (a) of the

induction hypothesis.

We now turn to (b) and set Q = {aj ≤ Bj ≤ bj ∀j ∈ [n− 1]}. Then we have, again

using Observation (5.7) and (5.15),

Pr(Bn = k + 1|Q)
Pr(Bn = k|Q)

=
k
∑

l∈[m] γln Pr[m]\{l}(Bn = k,Q)

(k + 1)
∑

l∈[m] γln Pr[m]\{l}(Bn = k − 1, Q)

≤ max
l∈[m]

kPr[m]\{l}(Bn = k,Q)
(k + 1) Pr[m]\{l}(Bn = k − 1, Q)

w.l.o.g.
=

kPr[m−1](Bn = k,Q)
(k + 1) Pr[m−1](Bn = k − 1, Q)

(where, again by Proposition 5.6, we may assume that Pr(Bn = r|Q) is positive for

r ∈ {k − 1, k, k + 1}); so we will be done if we can show

Pr[m−1](Bn = k|Q)
Pr[m−1](Bn = k − 1|Q)

≤ Pr(Bn = k|Q)
Pr(Bn = k − 1|Q)

. (5.19)
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Proceeding as in the proof of part (a), we may rewrite

Pr(Bn = k|Q)
Pr(Bn = k − 1|Q)

=

∑
j∈[n] Pr(σ(m) = j|Q) Pr(Bn = k|Q, σ(m) = j)∑

j∈[n] Pr(σ(m) = j|Q) Pr(Bn = k − 1|Q, σ(m) = j)
;

so for (5.19) it is enough to show that, for each j ∈ [n],

Pr(Bn = k|Q, σ(m) = j)
Pr(Bn = k − 1|Q, σ(m) = j)

≥ Pr[m−1](Bn = k|Q)
Pr[m−1](Bn = k − 1|Q)

,

which, as did (5.18), follows easily from our induction hypothesis (here we only need to

consider the two cases j = n and j 6= n). �

Proof of Theorem 1.23. This is similar to the above proof of Theorem 5.3, so we just give

a brief sketch. We again proceed by induction on m and note that it’s enough to show

p(A, a, b) does not increase when we increase a single entry—w.l.o.g. the (n− 1)st—of

one of a, b; that is, with Q = {aj ≤ Bj ≤ bj for all j ∈ [n− 2]}, we should show

Pr(σ−1(n) ∈ A|Bn−1 = t, Q) is nonincreasing in t.

Using Observation 5.7 and (5.15), we may assume without loss of generality that

Pr(σ−1(n) ∈ A|Bn−1 = t+ 1, Q) ≤ Pr[m−1](σ−1(n) ∈ A|Bn−1 = t, Q),

and it suffices to show

Pr[m−1](σ−1(n) ∈ A|Bn−1 = t, Q) ≤ Pr(σ−1(n) ∈ A|Bn−1 = t, Q, σ(m) = j)

for all j ∈ [n]. But for j 6= n this is true by the induction hypothesis and for j = n it

follows from the fact that A is increasing. �

5.3 A graphical approach

We will return to (5.12) soon, but begin with a natural and seemingly new graph theo-

retic statement which we regard as the main point of this section. Given a multigraph

G on vertex set V and a, b ∈ NV , let O(a, b) = OG(a, b) be the set of orientations of G

for which

d+(x) ≥ ax and d−(x) ≥ bx for all x ∈ V ,
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and N(a, b) = NG(a, b) = |O(a, b)|. Here d+ and d− are, as usual, out- and in-degrees.

We will also use dx for the degree of x in G. Note that we regard a loop (at x, say) as

having two orientations, each of which contributes 1 to each of d+(x) and d−(x).

Lemma 5.8 If a, b, r, s ∈ NV satisfy

a ≥ r, s and a+ b ≥ r + s

(where the inequalities are with respect to the product order on NV ), then

N(a, b) ≤ N(r, s). (5.20)

Of course the idea is that it’s harder to satisfy a set of demands that always requires

large out-degrees than one for which these requirements are mixed. For the sake of

comparison, let us also mention the specialization of Corollary 5.5 to the present situ-

ation:

Corollary 5.9 If a+ b = r + s then

N(a, b)N(r, s) ≥ N(a ∨ r, b ∧ s)N(a ∧ r, b ∨ s). (5.21)

Proof. Interpret vertices of G as urns and edges as balls, and assume that for each edge

(ball) e we have γex = 1 or 0 according to whether x is or is not an end of e. Then

(5.21) is just Corollary 5.5 with f = d− a− b (= d− r− s), where d = (dx : x ∈ V (G))

is the vector of degrees. �

Remark. It’s possible to derive Lemma 5.8 from Corollary 5.9, but the derivation is

about as difficult as the following direct argument.

Proof of Lemma 5.8. We proceed by induction on

ϕ(G, a, b) := |E(G)|+
∑
x∈V

(dx − ax − bx),

calling x ∈ V saturated if ax + bx = dx. Since N is decreasing in each of its arguments,

we may assume a+ b = r + s (otherwise we increase r or s so as not to increase ϕ).

Suppose first that there is at least one saturated vertex, x. We may assume there are

no loops at x, since otherwise (5.20) follows easily from the induction hypothesis applied
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to the graph gotten from G by deleting such loops. Let α = ax, β = bx, ρ = rx, σ = sx,

and let X = {e1, . . . , eα+β} be the set of edges incident to x.

Consider a set π consisting of β pairs {ei, ej} ⊆ X, with the 2β edges appearing in π

distinct, and, say, yi the vertex joined to x by ei (so the yi’s need not be distinct). Let

G(π) be the graph with vertex set V \ {x} and edge set E(G) \X ∪ {eij : {ei, ej} ∈ π},

where eij joins yi and yj . Let U(π) be the set of edges in X not belonging to pairs from

π, and Uz(π) the set of edges of U(π) incident to z.

Define aπ, bπ ∈ NV (G(π)) by

aπz = az and bπz = max{bz − |Uz(π)|, 0} for all z ∈ V \ {x}.

For each π as above and T ∈
(U(π)
ρ−β
)

(where, as usual,
(
S
k

)
= {T ⊆ S : |T | = k}), define

rπ,T , sπ,T ∈ NV (G(π)) by

rπ,Tz = max{rz − |Uz(π) \ T |, 0}

and

sπ,Tz = max{sz − |Uz(π) ∩ T |, 0}

for all z ∈ V \ {x}.

Each σ ∈ OG(π)(aπ, bπ) maps naturally to a (unique) σ̂ ∈ OG(a, b), namely: σ̂ agrees

with σ on E(G − x); orients all edges of U(π) away from x; and orients ei from yi to

x and ej from x to yj whenever σ orients eij from yi to yj (where, when yi = yj , we

interpret one orientation of the loop eij as yi → yj and the other as yj → yi). Since

each τ ∈ OG(a, b) is in the range of this map for exactly
(
α
β

)
β! choices of π, we have

N(a, b) =
1(
α
β

)
β!

∑
π

NG(π)(a
π, bπ). (5.22)

Similarly,

N(r, s) =
1(

ρ
β

)(
σ
β

)
β!

∑
π

∑
T∈(U(π)

ρ−β)

NG(π)(r
π,T , sπ,T ). (5.23)

Since aπ +bπ ≥ rπ,T +sπ,T and aπ ≥ rπ,T , sπ,T , it follows from the induction hypothesis

that

NG(π)(aπ, bπ) ≤ NG(π)(rπ,T , sπ,T ) for all π and T ∈
(U(π)
ρ−β
)
. (5.24)
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(Note that ϕ(G(π), aπ, bπ) < ϕ(G, a, b), since |E(G(π))| < |E(G)| and, for z ∈ V \ {x},

aπz + bπz ≥ az + bz − |Uz(π)|, while the degree of z in G(π) is dz − |Uz(π)|.) Combining

(5.23), (5.24) and (5.22), we have

N(r, s) ≥ 1(
ρ
β

)(
σ
β

)
β!

∑
π

(
α− β
ρ− β

)
NG(π)(a

π, bπ) =
α!β!
ρ!σ!

N(a, b) ≥ N(a, b),

where the last inequality follows from the assumptions α ≥ ρ, σ and α+ β = ρ+ σ.

So we may assume there are no saturated vertices. In this case we fix x ∈ V with

ax > bx. (Of course if there is no such vertex, then a = b = r = s and (5.20) is an

equality.) For γ, δ ∈ N let N ′(γ, δ) be the number of orientations of G with

(d+
y , d

−
y ) ≥

 (ay, by) if y 6= x

(γ, δ) if y = x,

and let N ′′(γ, δ) be defined analogously with (r, s) in place of (a, b). Let α = ax, β = bx,

ρ = rx, and σ = sx, so that (5.20) is

N ′(α, β) ≤ N ′′(ρ, σ). (5.25)

By induction we have

N ′(γ, δ) ≤ N ′′(η, ξ) whenever γ ≥ η, ξ and γ + δ = η + ξ > α+ β. (5.26)

We apply this to the identity

N ′(α, β) = N ′(α, β + 1) +N ′(dx − β, β). (5.27)

If α > σ, then, by (5.26), the right side of (5.27) is at most

N ′′(ρ, σ + 1) +N ′′(dx − σ, σ) = N ′′(ρ, σ).

If α > ρ, then, again using (5.26), the right side of (5.27) is at most

N ′′(ρ+ 1, σ) +N ′′(ρ, dx − ρ) = N ′′(ρ, σ).

(And, since α > β, we have at least one of α > σ, α > ρ.) �

The next result isolates (and generalizes) the main point in the derivation of (5.12)

from Lemma 5.8. We consider a hypergraph H = H1 ∪H2 on a set W of size 2l, where
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(i) the edges of H1 are pairwise disjoint and

(ii) the edges of H2 are of size 2 and pairwise disjoint.

Let S be the set of vertices of H not covered by edges of H2, and |S| = 2t. Given

α : H1 → N, let Ni be the number of partitions (X,Y ) of W with each of X,Y a vertex

cover of H2, each of |X ∩H|, |Y ∩H| at least αH (for all H ∈ H1), and |X| = i.

Lemma 5.10 In the above situation, Nl ≥ t+1
t Nl+1.

Proof. For i ∈ N and π a collection of t− 1 disjoint 2-sets contained in S, let Ni(π) be

the set of partitions as above for which each of X,Y also covers the edges of π, and set

Ni(π) = |Ni(π)|. We assert that (for each π)

Nl(π) ≥ 2Nl+1(π). (5.28)

This implies the proposition since (as is easily seen)

Nl =
1
t · t!

∑
π

Nl(π)

and

Nl+1 =
1(

t+1
2

)
(t− 1)!

∑
π

Nl+1(π).

For the proof of (5.28) let x, y be the two vertices of W not contained in members of

H′2 := H2 ∪ π. Noting that (X,Y ) ∈ Nl+1(π) implies x, y ∈ X, we may regard (X,Y )

as an orientation of H′2, where orienting {u, v} from u to v corresponds to putting u in

X (and v in Y ). The orientations corresponding to (X,Y )’s from Nl+1 are those for

which, for each H ∈ H1,

d+(H) ≥ αH − |H ∩ {x, y}| and d−(H) ≥ αH ,

where, for the given orientation, d+(H) (resp. d−(H)) is the number of oriented edges

whose tails (resp. heads) lie in H.

If we let G be the multigraph gotten from H ∪ π by collapsing each H ∈ H1 to a

single vertex (so for example, any {u, v} ∈ H′2 contained in some H ∈ H1 becomes a
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loop in G), then the above discussion says that Nl+1(π) = NG(a, b) (see Lemma 5.8 for

the notation), where

az = αH − |H ∩ {x, y}| and bz = αH

if z is the vertex of G corresponding to H ∈ H1, and az = bz = 0 if z is not of this type.

A similar discussion shows that Nl(π) = NG(r, s) +NG(s, r), where

rz = αH − 1{x∈H} and sz = αH − 1{y∈H}

if z is the vertex of G corresponding to H ∈ H1, and rz = sz = 0 if z is not of this type.

(For example, NG(r, s) counts pairs (X,Y ) with x ∈ X (and y ∈ Y ).)

Finally, Lemma 5.8 gives NG(r, s), NG(s, r) ≥ NG(a, b), so we have (5.28). (Strictly

speaking we may be applying Lemma 5.8 with some negative entries in b, r and/or s;

but it’s easy to see that this slightly more general version follows from the lemma as

stated.) �

Proof of (5.12). For A ⊆ [m] and σ ∈ KA, say σ ∈ Q if it satisfies the conditions in

(5.5), which we now rewrite

Sj ≤ |σ−1(j)| < Tj ∀j ∈ K, (5.29)

where Sj = atj (j) and Tj = atj+1(j). (This extends the Q of (5.5), which was a subset

of [n][m].)

Write σ ∼ A if σ ∈ KA ∩Q, and σ ∼ l if σ ∼ A for some A of size l. For i ∈ [m] let

γi0 =
∑
{γij : j ∈ I ∪ J} and set X(A) =

∏
{γi0 : i ∈ [m] \A}.

We may then rewrite (5.12) as

∑
|A|=l

∑
|B|=l

X(A)X(B)
∑∑

{W (σ)W (τ) : σ ∼ A, τ ∼ B}

≥ m− l + 1
m− l

∑
|C|=l+1

∑
|D|=l−1

X(C)X(D)
∑∑

{W (α)W (β) : α ∼ C, β ∼ D}.

(5.30)

Again regard each of σ, τ, α, β in (5.30) as a bipartite graph on the vertex set [m] ∪K

in the natural way (e.g. the edge set for σ ∼ A is {{i, σ(i)} : i ∈ A}, where we again
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pretend that [m] ∩K = ∅). Then for each pair (σ, τ) appearing in (5.30) the multiset

union G = σ ∪ τ is a bipartite multigraph with exactly 2l edges and

dG(i) ≤ 2 for all i ∈ [m]

(and similarly for pairs (α, β)). Setting X(G) =
∏
i∈[m] γ

2−dG(i)
i0 we may rewrite (5.30)

as

∑
G

X(G)
∑∑

{W (σ)W (τ) : σ ∪ τ = G, σ ∼ l, τ ∼ l}

≥ m− l + 1
m− l

∑
G

X(G)
∑∑

{W (α)W (β) : α∪β = G,α ∼ l+1, β ∼ l−1}.

It is thus enough to show that for each fixed G we have the corresponding inequality

for the inner double sums, i.e.

∑∑
{W (σ)W (τ) : σ ∪ τ = G, σ ∼ l, τ ∼ l}

≥ m− l + 1
m− l

∑∑
{W (α)W (β) : α∪β = G,α ∼ l+ 1, β ∼ l− 1}.

(5.31)

This has the advantage that the weights no longer play a role, since for σ, . . . , β as in

(5.31), we have

W (σ)W (τ) = W (α)W (β);

so we will have (5.31) if we show

Nl ≥ m−l+1
m−l Nl+1, (5.32)

where Ni = Ni(G) is the number of partitions G = γ ∪ δ with γ ∼ i.

Now let H = H1 ∪H2 be the hypergraph with vertex set W = E(G),

H1 = {Hj : j ∈ K},

where Hj = {e ∈W : j ∈ e}, and

H2 = {{e, f} : e 6= f , e and f have the same end in [m]}.

Define α : H1 → N by

αHj = max{Sj , dG(j)− Tj + 1}
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(recall Sj , Tj were defined following (5.29)). We are then in the situation of Lemma

5.10: a partition W = X ∪ Y with |X| = i (and |Y | = 2l − i) as in the proposition is

the same thing as a partition G = γ ∪ δ with γ ∼ i and δ ∼ 2l − i.

Defining t as in the proposition, we have 2t = |{i ∈ [m] : dG(i) = 1}| ≤ 2(m − l)

(since dG(i) = 1 (for i ∈ [m]) requires that in any partition γ ∪ δ of E(G), at least one

of γ, δ fails to cover i, and the number of such i is at most 2(m− l)). Thus t+1
t ≥

m−l+1
m−l

and (5.32) follows. �

Remark. It’s possible to derive Theorem 5.3 from Lemma 5.8, as follows. First observe

that part (b) of Theorem 5.3 is equivalent to (5.12), as in the remark following Corollary

5.4 (even for generalized urns). To get part (a), it suffices to show that the ratio in

question does not increase when we increase a single entry—w.l.o.g. the (n− 1)st—of

one of a, b, whence, by (5.15) and Proposition 5.6, it is enough to show

Pr(Bn = k + 1, Bn−1 = l, R) Pr(Bn = k,Bn−1 = l + 1, R)

≥ Pr(Bn = k + 1, Bn−1 = l + 1, R) Pr(Bn = k,Bn−1 = l, R), (5.33)

where R = {aj ≤ Bj ≤ bj ∀j ∈ [n − 2]}. Let I = {n}, J = {n − 1}, and K = [n − 2];

and, for σ ∈ [n][m], write σ ∼ (s, t) if |σ−1(n)| = s, |σ−1(n− 1)| = t, and σ ∈ R. Then

(5.33) is

∑∑
{W (σ)W (τ) : σ ∼ (k + 1, l), τ ∼ (k, l + 1)}

≥
∑∑

{W (α)W (β) : α ∼ (k + 1, l + 1), β ∼ (k, l)}.

Proceeding as in the above proof of (5.12) and regarding each of σ, τ, α, β as a bipartite

graph on [m] ∪ [n], it suffices to show that, for each fixed multigraph G,

|{(σ, τ) : σ ∪ τ = G, σ ∼ (k + 1, l), τ ∼ (k, l + 1)}|

≥ |{(α, β) : α ∪ β = G,α ∼ (k + 1, l + 1), β ∼ (k, l)}| (5.34)

(since, as earlier, the weights no longer play a role). Let H be the multigraph on [n]

with edge set {ex : x ∈ [m]}, where ex joins i and j if x was joined to i, j in G, and

identify a partition E(G) = γ ∪ δ with the orientation of H gotten by directing ex from
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i to j whenever {x, i} ∈ γ and {x, j} ∈ δ. The orientations corresponding to pairs (σ, τ)

in (5.34) are those satisfying

d+(j), d−(j) ≥ max{aj , dH(j)− bj} for all j ∈ [n− 2] (5.35)

and

d+(n) ≥ k + 1, d−(n) ≥ k, d+(n− 1) ≥ l, d−(n− 1) ≥ l + 1,

while the orientations corresponding to pairs (α, β) are those satisfying (5.35) and

d+(n) ≥ k + 1, d−(n) ≥ k, d+(n− 1) ≥ l + 1, d−(n− 1) ≥ l;

so (5.34) is an instance of Lemma 5.8. �

Log-concavity results being of some interest (see e.g. [43], [5]), we mention one

natural consequence of Lemma 5.10 and Theorem 1.8 (and Proposition 5.6). For a

bipartite graph G = (V ∪K,E), define a G-map to be function f : A→ K with A ⊆ V

and (v, f(v)) ∈ E for all v ∈ A. Given l, u ∈ NK (with lj ≤ uj), call a G-map valid if

|f−1(j)| ∈ [lj , uj ]

for all j ∈ K. Let sk = sk(G, l, u) be the number of valid G-maps f : A → K with

(A ⊆ V and) |A| = k.

Theorem 5.11 For any G, l, u the sequence (s0, . . . , s|V |) is ultra-log-concave.

(See Section 1.3 for the definition of ultra-log-concave.)

Remark. In the special case that l ≡ 0 and u ≡ 1, sk is the number of matchings in G of

size k (where, as usual, the size of a matching is the number of edges it contains), which

we denote here by Φk = Φk(G). Heilman and Lieb [26],[27] and Kunz [31] (see also

[35, Chapter 8]) proved that for any (not necessarily bipartite) graph G, the matching

generating polynomial

p(x) =
ν∑
k=0

Φkx
k

(where ν = max{k : Φk > 0} is the matching number of G) has all real (negative) roots.

This implies, by Newton’s inequalities (see e.g. [23, Theorem 51]), that the sequence



64

(Φ0, . . . ,Φν) is ULC, which (if ν < |V |) is slightly stronger than Theorem 5.11 in this

special case. In contrast, it’s not hard to see that for arbitrary l and u the polynomial

|V |∑
k=0

skx
k

need not have all real roots. (For example, consider the case V = {y, v, w}, K = {1},

E(G) = {{y, 1}, {v, 1}, {w, 1}}, l1 = 1, u1 = 3.)

Proof of Theorem 5.11. Let µ ∈MV be the probability measure with µ(A) proportional

to the number of valid G-maps from A to K (for A ⊆ V ). Since s := (s0, . . . , s|V |) is

proportional to the rank sequence of µ, it suffices (by Theorem 1.8) to show that µ has

the CAPP and that s has no internal zeros.

That s has no internal zeros is an instance of Proposition 5.6: with notation as in

Section 5.1 and Proposition 5.6, let K = [n − 1], V = [m] (where, again, the copies of

i ∈ [min{m,n}] in V and [n] are considered distinct), set

γij =

 1 if ij ∈ E or j = n

0 otherwise,

and let û = (u1 − l1, . . . , un−1 − ln−1, 0); then sk = Mû(l1, . . . , ln−1,m − k). (In fact,

applying (5.12) to this setup shows that s is LC.)

To show that µ has the CAPP, we should verify the APP for the conditional measures

µX,Y ∈MY \X , where X ⊆ Y , |Y \X| = 2k (for some k), and

µX,Y (A) ∝ µ(A ∪X) (A ⊆ Y \X).

(Here we regard ΩV as 2V , as we did in Chapter 4.) Fix X,Y as above, and for a

G-map f , write D(f) for the domain of f . Then, with

Si = {(f, g) : f, g valid G-maps, D(f) ∩D(g) = X,D(f) ∪D(g) = Y, |D(f)| = |X|+ i},

the APP for µX,Y is

|Sk| ≥
k + 1
k
|Sk−1|. (5.36)

We regard a G-map f : A→ K as a subgraph of G in the usual way (namely, as the

graph on V ∪K with edge set {(v, f(v)) : v ∈ A}). For each pair (f, g) contributing to
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the left side of (5.36), the multiset union F = f ∪ g is a bipartite multigraph on V ∪K

satisfying

dF (v) =


2 if v ∈ X ∩ Y

1 if v ∈ Y \X

0 if v ∈ V \ Y

(5.37)

for all v ∈ V (and similarly for pairs contributing to the right side). We may rewrite

(5.36) as∑
F

|{(f, g) ∈ Sk : f ∪ g = F}| ≥ k + 1
k

∑
F

|{(h, p) ∈ Sk−1 : h ∪ p = F}|,

so it is enough to show

|{(f, g) ∈ Sk : f ∪ g = F}| ≥ k + 1
k
|{(h, p) ∈ Sk−1 : h ∪ p = F}| (5.38)

for each fixed F .

Now let H = H1 ∪H2 be the hypergraph on vertex set W := E(F ) with

H1 = {Hj : j ∈ K},

where Hj = {e ∈W : j ∈ e}, and

H2 = {{e, e′} : e 6= e′, e and e′ have the same end in V },

and define α : H1 → N by

αHj = max{lj , dF (j)− uj}.

Then (5.38) is an instance of Lemma 5.10 (since, by (5.37), the t in Lemma 5.10 is

equal to k). �

Before closing this section we point out one further consequence of Lemma 5.8 that

seems to us interesting in its own right. With notation as in the above proof of (5.12),

set f(A) =
∑
{W (σ) : σ ∈ KA ∩Q} (A ⊆ [m]). We assert that

f(A ∪B)f(A ∩B) ≤ f(A)f(B) ∀A,B ⊆ [m]. (5.39)

While we don’t see how to get (5.12) from this, it does give another proof of Theorem

5.1, as follows. Set f(i) =
∑
{f(A) : |A| = i}. If we specialize (5.30) to the case that the
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σ(i)’s are i.i.d., the terms X(A)X(B) and X(C)X(D) cancel, and we are left needing

the inequality

f2(l) ≥ m−l+1
m−l f(l + 1)f(l − 1).

But for i.i.d. σ(i)’s the measure (not probability measure) f is exchangeable—i.e. f(A)

depends only on |A|—in which case (5.39) is trivially equivalent to ultra-log-concavity

of the sequence {f(l}ml=0, that is, to

f2(l) ≥ m−l+1
m−l

l+1
l f(l + 1)f(l − 1).

�

Proof of (5.39). We may rewrite the inequality as

∑∑
{W (σ)W (τ) : σ ∼ A ∪B, τ ∼ A ∩B} ≤

∑∑
{W (α)W (β) : α ∼ A, β ∼ B}.

(5.40)

As before we regard σ, τ, α, β in (5.40) as bipartite graphs on [m] ∪K. For each pair

(σ, τ) appearing in (5.40), the (multiset) union G = σ∪τ is a bipartite multigraph with

dG(i) =


2 if i ∈ A ∩B

1 if i ∈ A4B

0 otherwise

(and similarly for pairs (α, β)), and it’s enough to show that, for each such G, (5.40)

still holds if we restrict to pairs (σ, τ) and (α, β) with

σ ∪ τ = α ∪ β = G. (5.41)

Again the weights (W (σ) etc.) cancel and it’s enough to show

N(A ∪B,A ∩B) ≤ N(A)N(B), (5.42)

where, for C,D ⊆ [m], N(C,D) = NG(C,D) is the number of partitions E(G) = γ ∪ δ

with γ ∼ C and δ ∼ D.

Notice now that we are really counting partitions σ̂ ∪ τ̂ and α̂ ∪ β̂ of the edges of

G′ := G[(A ∩ B) ∪K], since for any σ, . . . , β (as in (5.40)) satisfying (5.41), any edge

of G with an end in A \B (resp. B \A) must belong to σ ∩ α (resp. σ ∩ β).
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For j ∈ K and C ⊆ [m] write dC(j) for the number of edges of G joining j to C.

In terms of σ̂, . . . , β̂ the requirement that σ, . . . , β satisfy (5.29) becomes the condition

that for each j ∈ K,

Sj − dA∆B(j) ≤ |σ̂−1(j)| < Tj − dA∆B(j),

Sj ≤ |τ̂−1(j)| < Tj ,

Sj − dA\B(j) ≤ |α̂−1(j)| < Tj − dA\B(j), and

Sj − dB\A(j) ≤ |β̂−1(j)| < Tj − dB\A(j).

(5.43)

Now let H be the multigraph on K with edge set {ex : x ∈ A∩B}, where ex joins j

and k if x was joined to j, k in G′. We may identify a partition E(G′) = γ ∪ δ with the

orientation of H gotten by directing ex from j to k whenever {x, j} ∈ γ and {x, k} ∈ δ.

The orientations corresponding to pairs (σ̂, τ̂) as in (5.43) are then those satisfying

Sj − dA∆B(j) ≤ d+(j) < Tj − dA∆B(j) and Sj ≤ d−(j) < Tj

for all j ∈ K, while those corresponding to pairs (α̂, β̂) are those with

Sj − dA\B(j) ≤ d+(j) < Tj − dA\B(j) and Sj − dB\A(j) ≤ d−(j) < Tj − dB\A(j)

for all j ∈ K. That the number of orientations of the first type is at most the number

of the second type is then an instance of Lemma 5.8. �

5.4 Examples

In this short section, we give the easy examples justifying Proposition 1.25 and the

remark following Theorem 1.21 (recall these say that log-concavity and the Rayleigh

property fail for ordinary urn measures), and provide a counterexample to Conjecture

1.27.

In Examples 5.12 and 5.13 we use p(j) for the probability that any given ball lands

in urn j.

Example 5.12 Suppose we have three balls and urns 0, . . . , n, with p(0) = ε and

p(1) = · · · = p(n) = (1− ε)/n, where ε is small and nε3/2 is large. Then for the as-

sociated rank sequence, say a = (a1, a2, a3), we have a1 ≈ ε3, a3 ≈ (1 + 2ε)(1 − ε)2,
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and

a2 = 3ε2(1− ε) + 3ε(1− ε)2/n+ 3(1− ε)3(n− 1)/n2 ≈ 3ε2(1− ε);

so LC fails for a.

(We don’t know what happens if we replace “LC” by “unimodal.”)

Example 5.13 Suppose we have two balls, urns 0, 1, 2, and p(1) = p(2) = ε, with ε

small, and impose the external field (ε, 1, 1). Then for the corresponding urn measure

µ on {0, 1}{0,1,2} (and η the random configuration) we have µ(η1 = η2 = 1) ∝ 2ε2,

µ(η1 = η2 = 0) ∝ (1−2ε)2ε, and µ(η1 = 1, η2 = 0), µ(η1 = 0, η2 = 1) ∝ ε2 +2ε2(1−2ε),

so that η1 and η2 are strictly positively correlated.

Example 5.14 Let n = 3 and q = 1/3 (so we don’t need Λ). Let M ∪ A ∪ B ∪ C be

a partition of V := [m] with |M | = s (large) and |A| = |B| = |C| = t = s + 3. Let

I1 = 2V \M ,

I2 = {X ⊆ V : |X ∩M | < .4|M | and X meets at most two of A,B,C},

and I = I1 ∪ I2. Then, we assert,

Pr(A{3}) Pr(A{1,2,3}) > Pr(A{1,3}) Pr(A{2,3}),

which contradicts Conjecture 1.27 (with I = {1}, J = {2} and K = {3}). We omit the

precise calculations; roughly, with α = (2/3)t and c = (3/2)3, we have (as t→∞)

Pr(AL) ∼


(c+ 3)α if |L| = 1

6α2 if |L| = 2

6α3 if |L| = 3.
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Chapter 6

Srinivasan’s sampling process and Pemantle measures

In this chapter we prove Theorems 1.29 and 1.30, and also show that every that every

SGSSP measure is a Pemantle measure. (These were defined in Section 1.8.)

6.1 Super-generalized Srinivasan sampling process measures are NA+

As we will see shortly, the proof of Theorem 1.29 is almost immediate once we establish

an alternative description of SGSSP measures, for which we need some definitions. The

truncation of µ ∈M to [r,s] is the conditional measure µ(·|r ≤
∑
ηi ≤ s) ∈M (where,

as usual, we assume the conditioning event has positive probability); it is a k-truncation

if s− r ≤ k−1 (i.e. the conditioning specifies that |η| take one of at most k consecutive

values), which here we only use with k ≤ 2.

Let S be the smallest class of measures that contains all Bernoulli measures (i.e.

measures on {0, 1}) and is closed under external fields, rank rescalings (defined after

Theorem 1.29; note that log-concavity of the rescaling sequence {qi} will be irrelevant

here), and the following operation:

take the product of two measures and apply a 2-truncation. (6.1)

(So, in particular, every µ ∈ S is concentrated on at most two levels, i.e. there is a k

so that µ(|η| ∈ {k, k + 1}) = 1.)

Note that the rank rescaling of a measure µ concentrated on at most two levels

can be gotten from µ by applying a (uniform) external field, and that external fields

commute with products and 2-truncations, so

S is the smallest class of measures that contains all Bernoulli

measures and is closed under (6.1).
(6.2)
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We will prove

Lemma 6.1 S consists of exactly the SGSSP measures,

but first give the easy derivation of Theorem 1.29 from Lemma 6.1.

Dubhashi et al. [12, Theorem 5.1] give a simple proof that every GSSP measure is

NA. In fact, their proof is valid for SGSSP measures:

Theorem 6.2 SGSSP measures are NA.

For completeness, we repeat their argument at the end of this section.

Proof of Theorem 1.29. Since S is trivially closed under imposition of external fields,

this is an immediate consequence of Theorem 6.2 and Lemma 6.1. �

Since S is obviously contained in the class of Pemantle measures (defined before

Theorem 1.30), another consequence of Lemma 6.1 is

Corollary 6.3 Every SGSSP measure is a Pemantle measure;

so, as noted earlier, Theorem 1.29 also follows from Theorem 1.30.

Remark. In fact, SGSSP measures are strongly Rayleigh, an even stronger property

than NA+, whose definition we omit (see [4]). This follows from Lemma 6.1 and (6.2),

since the class of strongly Rayleigh measures contains Bernoulli measures and is closed

under products and 2-truncations [4]. In contrast, even some very simple Pemantle

measures are not strongly Rayleigh (e.g. uniform measure on {η ∈ Ω3 : |η| ≥ 1}).

We now slowly work toward the proof of Lemma 6.1, beginning with a result that

relates the parameters of the pairing tree to properties of the corresponding measure.

Consider an SGSSP measure µ corresponding to a pairing tree T for [n]. For a vertex

u, let L(u) be the set of leaves that are descendants of u, and let k(u) be the sum of

tw over internal vertices w that are descendants of u (note u is a descendant of itself).

Also, for η ∈ Ω and a vertex u, set η(u) =
∑

i∈L(u) ηi. Observe that

µ(η(u) ∈ {k(u), k(u) + 1}) = 1 for all u (6.3)



71

(since once u is “processed” exactly k(u) of the coordinates in L(u) have been fixed to

1 and there is exactly one unfixed coordinate in L(u); note the final decision involving

α is not considered part of the processing of the root); furthermore, if v and w are the

two children of u, then, trivially,

k(u) = k(v) + k(w) + tu. (6.4)

It is also obvious that α = µ(|η| = k(x) + 1), where x is the root of T .

Proposition 6.4 With notation as above, for each internal vertex u with left child v

and right child w, we have

(a) if µ(η(u) = k(v) + k(w)) > 0, then tu = 0,

(b) if µ(η(u) = k(v) + k(w) + 2) > 0, then tu = 1, and

(c) if µ(η(u) = k(v) + k(w) + 1) > 0, then

βu = µ(η(v) = k(v) + tu|η(u) = k(v) + k(w) + 1)

(= µ(η(w) = k(w) + 1− tu|η(u) = k(v) + k(w) + 1)).

Observe that if µ(η(u) = k(v) + k(w) + 1) = 0 then the value of βu has no effect on µ

(since e.g. if µ(η(u) = k(v) + k(w) + 2) = 1 then the two unfixed coordinates that are

the children of u when it is processed are always both eventually fixed to 1). Informally,

part (c) says that when vertex u is processed, it is determined which of the two unfixed

coordinates that are the children of u at that step of the procedure will be fixed to 1 if

it happens that eventually exactly one of them is fixed to 1; otherwise (that is, if both

coordinates are eventually fixed to the same value), which coordinate gets fixed in the

step that u is processed does not affect the random output η.

Proof. Parts (a) and (b) follow immediately from (6.3) and (6.4). To prove (c), first

assume that tu = 1. Then, with η the (random) output of the process, the event

{η(u) = k(v)+k(w)+1} occurs when the coordinate in L(u) that remains unfixed after

u is processed is eventually fixed to 0. Thus, conditioned on {η(u) = k(v) + k(w) + 1},

η(v) = k(v) + 1 if and only if the coordinate fixed to 1 when u is processed is in L(v),

which happens with probability βu. A similar argument proves (c) when tu = 0. �
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We now describe (in our terminology) the measures (now called SSP measures) that

correspond to Srinivasan’s original process [42], and use Proposition 6.4 to show that

GSSP measures are in fact no more general than these. (Recall that GSSP measures

correspond to pairing trees with α ∈ {0, 1}.) An SSP measure is any GSSP measure µ

obtained from a pairing tree that satisfies (α ∈ {0, 1} and)

tu =

 1 if e(v) + e(w) > 1

0 if e(v) + e(w) < 1
(6.5)

(so there is no requirement here when e(v) + e(w) = 1) and

βu =


e(w)

e(v)+e(w) if tu = 0
1−e(w)

2−e(v)−e(w) if tu = 1
(6.6)

for every internal vertex u with left child v and right child w, where

e(z) := Eη(z)− k(z) (= µ(η(z) = k(z) + 1)). (6.7)

(If the relevant denominator in (6.6) is zero then the value of βu has no effect on the

resulting measure µ.) The purpose of this choice of tu’s and βu’s was to produce η’s with

prescribed marginal distributions. We omit a complete explanation (for more see [42],

[12]), but briefly: each unfixed coordinate i maintains a (changing) “value,” initially

set to the marginal probability µ(ηi = 1), which is given in advance; when vertex u

is processed, the value of the coordinate that was a child of u and is still unfixed is

updated to e(u); and the parameters tu, βu for each internal vertex u with children

v, w are thought of as being determined by e(v), e(w) (as in (6.5) and (6.6)) instead of

being given as part of the pairing tree. We now prove

Proposition 6.5 Every GSSP measure is an SSP measure.

Proof. We need only show that (6.5) and (6.6) hold for any GSSP measure µ ∈M. (In

fact, the same argument shows that (6.5) and (6.6) hold for any SGSSP measure.) Let

T be a pairing tree for [n] with associated measure µ, and consider an internal vertex u

with left child v and right child w. It is easy to see that (6.5) follows from Proposition

6.4 (e.g. if e(v) + e(w) < 1 then µ(η(u) = k(v) + k(w)) > 0), so we just need to prove

(6.6).
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As noted after Proposition 6.4, the value of βu is irrelevant unless

µ(η(u) = k(v) + k(w) + 1) > 0,

so assume this is the case. Consider the case when tu = 1. (The case tu = 0 is similar,

and we omit it.) Since tu = 1, the events {η(v) = k(v)}, {η(w) = k(w)} are disjoint

and

µ(η(u) = k(v) + k(w) + 1) = µ(η(v) = k(v)) + µ(η(w) = k(w)).

Thus, by Proposition 6.4(c) and (6.7),

βu =
µ(η(w) = k(w))

µ(η(v) = k(v)) + µ(η(w) = k(w))
=

1− e(w)
(1− e(v)) + (1− e(w))

.

�

Remark. Let us say a word about why we generalize from GSSP to SGSSP measures.

It’s not hard to see that, for any vertex u in a pairing tree that yields an SGSSP measure

µ, the projection of µ onto the coordinates in L(u) is again an SGSSP measure. (A

pairing tree that yields the projection can be obtained from a pairing tree T that gave µ

by restricting to Tu (the subtree rooted at u) and taking α(Tu) = e(u).) Such projections

of GSSP measures need not be GSSP measures (since the projections will typically be

concentrated on not one, but two, levels), so it’s natural to consider the more general

SGSSP measures if we are aiming for a result like Lemma 6.1 that describes a way to

inductively build the measures.

Proof of Lemma 6.1. We show that every SGSSP measure µ ∈Mn is in S by induction

on n. Since Bernoulli measures are in S (this is the case n = 1), it suffices to show that

every SGSSP measure in µ ∈Mn (n ≥ 2) can be gotten by applying (6.1), followed by

a rank rescaling, to two other SGSSP measures. Let T be a pairing tree for [n] that

yields µ, let u be the root of T , and let v and w be the left and right children of u,

respectively. (Note that one or both of v, w may be leaves.) We assume that tu = 1;

the proof in the case tu = 0 is similar.

Set α(Tv) = 1
2−β and α(Tw) = 1

1+β , where β := βu (recall that e.g. Tv is the subtree

of T rooted at v). With π and ψ the SGSSP measures corresponding to Tv and Tw,

k = k(u), r = k(v), and s = k(w) (so k = r + s+ 1), it suffices to show
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Claim. Let ν ∈ Mn be the 2-truncation of π × ψ to [k, k + 1], and let q = (qi)ni=0 be

the sequence with

qi =


α if i = k + 1

1− α if i = k

0 otherwise,

where α = α(T ). Then µ = q ⊗ ν.

The main points here (to be verified below) are: the parameters α(Tv), α(Tw) are

chosen to ensure that

ν(η(v) = r + 1|η(u) = k) = µ(η(v) = r + 1|η(u) = k); (6.8)

the 2-truncation is chosen to ensure that ν is concentrated on levels k, k + 1; and the

rank rescaling is chosen to ensure that

q ⊗ ν(|η| = k + 1) = µ(|η| = k + 1). (6.9)

Since µ and q⊗ν are each clearly concentrated on levels k and k+ 1, it suffices to show

(6.8), (6.9),

the projection of µ(·|η(v) = l) onto L(v) is πl for l ∈ {r, r + 1}, (6.10)

the projection of µ(·|η(w) = l) onto L(w) is ψl for l ∈ {s, s+ 1}, (6.11)

and

under µ, η|L(v) and η|L(w) are independent given η(v), η(w), (6.12)

where e.g. πl = π(·|
∑

i∈L(v) σi = l) ∈ ML(v) and η|L(v) ∈ {0, 1}L(v) is the restriction

of η to L(v). For convenience, for a nonnegative integer l we set µ(l) = µ(|η| = l), and

define ν(l), π(l), and ψ(l) similarly.

To prove (6.8), observe that

ν(η(v) = r + 1|η(u) = k) =
π(r + 1)ψ(s)

π(r + 1)ψ(s) + π(r)ψ(s+ 1)

=
1

2−β ·
β

1+β

1
2−β ·

β
1+β + 1−β

2−β ·
1

1+β

= β

= µ(η(v) = r + 1|η(u) = k);
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the final equality is an instance of Proposition 6.4(c).

We also have

q ⊗ ν(k + 1) =
qk+1π(r + 1)ψ(s+ 1)

qk+1π(r + 1)ψ(s+ 1) + qk(π(r + 1)ψ(s) + π(r)ψ(s+ 1))

=
α · 1

2−β ·
1

1+β

α · 1
2−β ·

1
1+β + (1− α) · ( 1

2−β ·
β

1+β + 1−β
2−β ·

1
1+β )

= α

= µ(k + 1),

which gives (6.9).

Finally, observe that (under µ), given η(v), η|L(v) is determined by what happens

when the descendants of v are processed, and similarly for η|L(w) given η(w). This

proves (6.10)-(6.12), completing the proof of the claim and the assertion that every

SGSSP measure is in S.

We now show that every measure in S is an SGSSP measure. Every Bernoulli mea-

sure is clearly an SGSSP measure (the pairing tree consisting of a single vertex and

parameter α yields the measure on {0, 1} that assigns probability α to 1), so by (6.2)

it suffices to prove that

any measure obtained from two SGSSP measures by applying

(6.1) is an SGSSP measure.
(6.13)

Let π ∈MI be an SGSSP measure gotten from a pairing tree R for I, and let ψ ∈MJ

(I ∩ J = ∅) be an SGSSP measure gotten from a pairing tree S for J . Let v be the

root of R and w the root of S, and set r = k(v) and s = k(w). We will show that the

truncation, ν, of π × ψ to [r + s, r + s + 1] is an SGSSP measure by constructing an

appropriate pairing tree for I ∪ J . (Similar arguments show the truncation of π × ψ to

[r+s+1, r+s+2] and any 1-truncation of π×ψ are SGSSP measures; note that π×ψ

is concentrated on levels r + s, r + s+ 1, r + s+ 2.) Note that we may assume at least

one of α(R), α(S) is strictly less than 1 (else ν is identically zero).

We construct a pairing tree T for I ∪ J from R and S, as follows. Join each of v,

w to a new vertex u (which will be the root of T ), designating v as the left child of u.



76

Internal vertices of R and S retain their t, β values, and we set tu = 0,

βu =
(1− α(R))α(S)

(1− α(R))α(S) + α(R)(1− α(S)
,

and

α(T ) =
(1− α(R))α(S) + α(R)(1− α(S))

1− α(R)α(S)
.

(If α(R) = α(S) = 0, then, as pointed out following Proposition 6.4, the value of βu is

irrelevant.)

Letting µ be the SGSSP measure gotten from the pairing tree T , we should show

that µ = ν. Each of µ, ν is clearly concentrated on levels r + s, r + s+ 1, and it’s easy

to see that

µ(r + s+ 1) = ν(r + s+ 1) = α(T )

and

µ(η(v) = r|η(u) = r + s+ 1) = ν(η(v) = r|η(u) = r + s+ 1) = βu.

Thus, that µ = ν follows from the following three facts, each of which (as above) is easily

seen to be true: the projection of µ(·|η(v) = l) onto I = L(v) is πl (for l ∈ {r, r + 1});

the projection of µ(·|η(w) = l) onto J = L(w) is ψl (for l ∈ {s, s+ 1}); and η|I , η|J are

independent (under µ) given η(v), η(w). This finishes the proof of Lemma 6.1. �

Proof of Theorem 6.2. As mentioned above, this argument is from [12], though given

here using our terminology. We proceed by induction on n, letting µ ∈ Mn be an

SGSSP measure. (The case n = 1 is trivial.) We are given increasing A, C ⊆ Ω with

A ⊥ C, and should show A ↓ C. Let u be the first internal vertex that is processed; we

may assume without loss of generality that the children of u are the leaves 1 and 2. If

tu = 1, let B be the event that coordinate 1 is fixed to 1 at the first step. (If tu = 0,

let B be the event that coordinate 2 is fixed to 0 at the first step.) Observe that each

of µ(·|B), µ(·|Ω \ B) is (equivalent to) an SGSSP measure with n − 1 variables, so by

induction we have A ↓ C conditionally given each of B, Ω \ B. If one of A, C (say A)

is not affected by either of the coordinates 1, 2, then A is independent of B (since the

distribution of (η3, . . . , ηn) does not depend on B), whence A ↓ C follows via Lemma

2.6. (If C ↑ B, take f = 1Ω\A and g = 1C ; otherwise take f = 1A and g = 1Ω\C .)
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So we may assume, without loss of generality, that A is affected by coordinate 1 and

C is affected by coordinate 2. In this case A ↑ B and C ↓ B (since A, C are increasing

and the distribution of (η3, . . . , ηn) is independent of B), and we again finish by Lemma

2.6 (with f = 1A and g = 1Ω\C). �

6.2 Pemantle measures are NA+

In this section we prove Theorem 1.30, which, as we will see shortly, is an immediate

consequence of Theorem 1.18 and the following result. Recall the normalized matching

property defined before Proposition 2.4 and the stochastic covering property defined

before Conjecture 3.2, and say µ ∈M is SCP* if every measure gotten from µ by rank

rescaling (defined in Section 1.8) has the SCP; note that any measure which has the

SCP is NC.

Theorem 6.6 (a) The product of two LC measures is LC; equivalently, the convolution

of two LC sequences with no internal zeros is LC (and has no internal zeros).

(b) The product of two LC measures with the NMP has the NMP.

(c) The product of two measures that are both SCP* and LC and have the NMP is

SCP*.

Part (a) is easy and standard (see e.g. [28, Theorem 1], [33, p. 317], or [2, Exercise

4.7]), so we omit the proof here. Part (b) is an instance of a result of Harper [24, Section

I.C] (and can also essentially be gotten from a combinatorial version proved in [28], [2]);

for completeness, and since Harper’s original proof is not that easy, we include a proof

(together with the proof of (c)) below. Before giving these arguments, we show that

Theorem 6.6 implies Theorem 1.30.

Proof of Theorem 1.30. Since the class of Pemantle measures is closed under imposition

of external fields, by Theorem 1.18(b) it suffices to show that every Pemantle measure

is both NC and FM. The imposition of external fields commutes with rank rescalings

and products, so in fact every Pemantle measure can be obtained from a collection of

Bernoulli measures by repeatedly taking products and applying rank rescalings, and it
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thus suffices to show that every measure obtained in this way is SCP* and has the NMP

(since SCP* implies NC and the NMP implies FM); but this follows immediately from

Theorem 6.6 (since SCP*, LC, and NMP are all obviously preserved by rank rescalings).

�

For the proof of Theorem 6.6 we need two preliminary results.

Proposition 6.7 (a) µ ∈M stochastically dominates ν ∈M if and only if there exists

a “flow” f : Ω× Ω→ R+ satisfying

(i)
∑
η∈Ω

f(η, τ) = µ(τ) for all τ ∈ Ω,
∑
τ∈Ω

f(η, τ) = ν(η) for all η ∈ Ω, and

(ii) f(η, τ) > 0 implies τ ≥ η

(b) µ ∈M stochastically covers ν ∈M if and only if there is a “flow” f : Ω×Ω→ R+

satisfying (i) and

(ii′) f(η, τ) > 0 implies τ = η or τ ·> η.

Part (a) is a special case of the finite version of Strassen’s Theorem [44] (and also follows

easily from the “maxflow-mincut theorem,” for which see e.g. [34, p. 64]), and (b) is a

restatement of the definition of stochastic covering (given before Conjecture 3.2).

Lemma 6.8 Let a = (a0, . . . , as) and b = (b0, . . . , bt) be nonnegative LC sequences with

no internal zeros, and set

Zl =
∑
i

al−ibi and Zl(j) =
∑
i≤j

al−ibi. (6.14)

Then, for each k and j with Zk, Zk+1 > 0, we have

Zk(j)
Zk

≥ Zk+1(j)
Zk+1

≥ Zk(j − 1)
Zk

. (6.15)

Proof. It suffices to prove the first inequality in (6.15) for all relevant k, j, since the

second then follows by interchanging the roles of a and b in (6.14). Fix k, j with

Zk, Zk+1 > 0. After cross multiplying and canceling terms that appear on both sides,

the first inequality in (6.15) becomes∑
i≤j

ak−ibi
∑
m>j

ak+1−mbm ≥
∑
i≤j

ak+1−ibi
∑
m>j

ak−mbm,
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which clearly follows from

ak−iak+1−m ≥ ak+1−iak−m whenever m > i,

an easy (and standard) consequence of the fact that a is LC without internal zeros. �

Proof of Theorem 6.6. As mentioned above, we omit the standard proof of part (a).

To prove (b), assume µ ∈ MS and ν ∈ MT (with S ∩ T = ∅) each have the NMP and

are LC, and let π = µ × ν (∈ MS∪T ) and k ∈ {0, . . . , |S| + |T | − 1}; we should show

πk+1 � πk, where πl = π(·|
∑
ηi = l). It will be convenient to write elements of ΩS∪T as

(ρ, ξ) with ρ ∈ ΩS and ξ ∈ ΩT . Since µ, ν have the NMP (by hypothesis), Proposition

6.7(a) gives flows fi : ΩS × ΩS → R+ (i ∈ {0, . . . , |S| − 1}) and gj : ΩT × ΩT → R+

(j ∈ {0, . . . , |T | − 1}) satisfying∑
ρ∈ΩS

fi(ρ, σ) = µi+1(σ),
∑
σ∈ΩS

fi(ρ, σ) = µi(ρ), and fi(ρ, σ) > 0 implies σ ·> ρ (6.16)

and∑
ξ∈ΩT

gj(ξ, τ) = νj+1(τ),
∑
τ∈ΩT

gj(ξ, τ) = νj(ξ), and gj(ξ, τ) > 0 implies τ ·> ξ. (6.17)

Of course the idea is to use the fi’s and gj ’s to construct a flow h that shows πk+1 � πk.

Let a = (a0, . . . , a|S|) and b = (b0, . . . , b|T |) be the rank sequences of µ and ν,

respectively, define Zl and Zl(j) as in (6.14), and define h : ΩS∪T × ΩS∪T → R by

h((ρ, ξ), (σ, τ)) =



g|ξ|(ξ, τ)µ(ρ)
a|ρ|

(
Zk(k−|ρ|)

Zk
− Zk+1(k−|ρ|)

Zk+1

)
if |ρ|+ |ξ| = k and ρ = σ

f|ρ|(ρ, σ)ν(ξ)
b|ξ|

(
Zk+1(|ξ|)
Zk+1

− Zk(|ξ|−1)
Zk

)
if |ρ|+ |ξ| = k and ξ = τ

0 otherwise.

It clearly follows from (6.16) and (6.17) that

h((ρ, ξ), (σ, τ)) > 0 implies |ρ|+ |ξ| = k, |σ|+ |τ | = k + 1, σ ≥ ρ and τ ≥ ξ, (6.18)

so to prove πk+1 � πk via Proposition 6.7(a) it is enough to show∑
(ρ,ξ)

h((ρ, ξ), (σ, τ)) = πk+1(σ, τ) for all (σ, τ), (6.19)



80

∑
(σ,τ)

h((ρ, ξ), (σ, τ)) = πk(ρ, ξ) for all (ρ, ξ), (6.20)

and

h((ρ, ξ), (σ, τ)) ≥ 0 for all (ρ, ξ) and (σ, τ). (6.21)

The proofs of (6.19) and (6.20) are similar, so we just do (6.19). Observe that,

by (6.18), it suffices to consider the case that |σ| + |τ | = k + 1, whence (6.19) is a

straightforward computation:

∑
(ρ,ξ)

h((ρ, ξ), (σ, τ)) =
∑
ξ

g|ξ|(ξ, τ)
µ(σ)
a|σ|

(
Zk(k − |σ|)

Zk
− Zk+1(k − |σ|)

Zk+1

)

+
∑
ρ

f|ρ|(ρ, σ)
ν(τ)
bτ |

(
Zk+1(|τ |)
Zk+1

− Zk(|τ | − 1)
Zk

)
=

ν(τ)
b|τ |
· µ(σ)
a|σ|

(
Zk(k − |σ|)

Zk
− Zk+1(k − |σ|)

Zk+1

)
+
µ(σ)
a|σ|

· ν(τ)
b|τ |

(
Zk+1(|τ |)
Zk+1

− Zk(|τ | − 1)
Zk

)
=

µ(σ)ν(τ)
a|σ|b|τ |Zk+1

(Zk+1(|τ |)− Zk+1(k − |σ|))

= πk+1(σ, τ);

here the first equality follows from the definition of h, the second from (6.16) and (6.17),

and the third and fourth from the assumption that |σ|+ |τ | = k + 1.

So in order to finish the proof of (b) we only need (6.21), which is an instance of

Lemma 6.8 (and so it is here that we use the hypothesis that µ and ν are LC).

To prove (c), let µ ∈ MS and ν ∈ MT (S ∩ T = ∅) be SCP* and LC and have

the NMP, and let q = (q0, . . . , qn) be an LC sequence with no internal zeros (where

n = |S|+ |T |); we should show

q ⊗ (µ× ν)(·|ηi = 0) ·� q ⊗ (µ× ν)(·|ηi = 1) (6.22)

for all i ∈ S ∪ T . Assume, without loss of generality, that i ∈ S, and set S′ = S \ {i}

and µk = µ(·|ηi = k) ∈MS′ , whence (6.22) is

(qj)n−1
j=0 ⊗ (µ0 × ν) ·� (qj)nj=1 ⊗ (µ1 × ν).
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It will be convenient to write elements of ΩS′∪T as (ρ, ξ) with ρ ∈ ΩS′ and ξ ∈ ΩT and

let πk = (qj)n+k−1
j=k ⊗ (µk × ν) for k ∈ {0, 1}. For k ∈ {0, 1}, let εk > 0 be such that

πk(ρ, ξ) = εkq|ρ|+|ξ|+kµ
k(ρ)ν(ξ) (6.23)

(so εk is just a normalizing factor), and set

Zl =
∑
i

biql+i and Zl(j) =
∑
i≤j

biql+i,

where b = (b0, . . . , b|T |) is the rank sequence of ν. The sequence Z = (Zl)
|S|
l=0 is LC and

has no internal zeros (by Theorem 6.6(a), since Z is the convolution of b and the reverse

of q), so our hypotheses include that Z⊗µ has the SCP; that is, (using Proposition 6.7

(b)) there exists a flow f : ΩS′ × ΩS′ → R+ satisfying∑
σ∈ΩS′

f(ρ, σ) = ε1µ
1(ρ)Z|ρ|+1,

∑
ρ∈ΩS′

f(ρ, σ) = ε0µ
0(σ)Z|σ|, (6.24)

and

f(ρ, σ) > 0 implies σ = ρ or σ ·> ρ.

Also, since ν has the NMP, there are flows gj : ΩT × ΩT → R+ (j ∈ {0, . . . , |T | − 1})

satisfying∑
ξ∈ΩT

gj(ξ, τ) = νj+1(τ),
∑
τ∈ΩT

gj(ξ, τ) = νj(ξ), and gj(ξ, τ) > 0 implies τ ·> ξ, (6.25)

where, again, νl is the conditional measure ν(·|
∑

i∈T τi = l).

We proceed in a manner similar to the proof of (b) above; again, the idea is to use

f and the gj ’s to construct a flow h that shows π0 ·� π1. Define h : ΩS′∪T ×ΩS′∪T → R

by

h((ρ, ξ), (σ, τ)) =



f(ρ, σ) q|σ|+|ξ|ν(ξ)

Z|σ|
if ξ = τ and σ ·> ρ

f(ρ, ρ)ν|ξ|(ξ)
(
Z|ρ|(|ξ|)
Z|ρ|

− Z|ρ|+1(|ξ|−1)

Z|ρ|+1

)
if ρ = σ and ξ = τ

f(ρ, ρ)g|ξ|(ξ, τ)
(
Z|ρ|+1(|ξ|)
Z|ρ|+1

− Z|ρ|(|ξ|)
Z|ρ|

)
if ρ = σ and τ ·> ξ

0 otherwise.
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It is obvious that

h((ρ, ξ), (σ, τ)) > 0 implies (σ, τ) = (ρ, ξ) or (σ, τ) ·> (ρ, ξ),

and it follows from Lemma 6.8 that

h((ρ, ξ), (σ, τ)) ≥ 0 for all (ρ, ξ) and (σ, τ).

Thus, by Proposition 6.7(b), in order to complete the proof of (c) we only have to show

∑
(ρ,ξ)

h((ρ, ξ), (σ, τ)) = π0(σ, τ) for all (σ, τ)

and ∑
(σ,τ)

h((ρ, ξ), (σ, τ)) = π1(ρ, ξ) for all (ρ, ξ);

again these are similar, so we just do the latter:

∑
(σ,τ)

h((ρ, ξ), (σ, τ)) = f(ρ, ρ)ν|ξ|(ξ)
(
Z|ρ|(|ξ|)
Z|ρ|

−
Z|ρ|+1(|ξ| − 1)

Z|ρ|+1

)

+
∑
τ ·>ξ

f(ρ, ρ)g|ξ|(ξ, τ)
(
Z|ρ|+1(|ξ|)
Z|ρ|+1

−
Z|ρ|(|ξ|)
Z|ρ|

)

+
∑
σ ·>ρ

f(ρ, σ)
q|ρ|+|ξ|+1ν(ξ)

Z|ρ|+1

= f(ρ, ρ)ν|ξ|(ξ)
b|ξ|q|ρ|+|ξ|+1

Z|ρ|+1
+
∑
σ ·>ρ

f(ρ, σ)
q|ρ|+|ξ|+1ν(ξ)

Z|ρ|+1

= ε1q|ρ|+|ξ|+1µ
1(ρ)ν(ξ)

= π1(ρ, ξ),

where we used the definition of h for the first equality, (6.25) for the second, (6.24)

(and that ν(ξ) = b|ξ|ν|ξ|(ξ)) for the third, and (6.23) for the fourth. �
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[23] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities, 2nd edition, Cambridge
University Press, Cambridge, 1952.

[24] L.H. Harper, The morphology of partially ordered sets, J. Combin. Theory Series
A 17 (1974), 44-58.

[25] T.E. Harris, A lower bound on the critical probability in a certain percolation
process, Proc. Cam. Phil. Soc. 56 (1960), 13-20.

[26] O.J. Heilman and E.H. Lieb, Monomers and dimers, Phys. Rev. Letters 24 (1970),
1412-1414.

[27] O.J. Heilman and E.H. Lieb, Theory of monomer-dimer systems, Comm. Math.
Physics 25 (1972), 190-232.

[28] W.N. Hsieh and D.J. Kleitman, Normalized matching in direct products of partial
orders. Studies in Appl. Math. 52 (1973), 285-289.

[29] J. Kahn, A normal law for matchings, Combinatorica 20 (2000), 339-391.

[30] D.J. Kleitman, Families of non-disjoint subsets, J. Combinatorial Th. 1 (1966),
153-155.

[31] H. Kunz, Location of the zeros of the partition function for some classical lattice
systems, Phys. Lett. (A) (1970), 311-312.

[32] T.M. Liggett, Interacting Particle Systems, Springer-Verlag, New York, 1985.

[33] T.M. Liggett, Ultra logconcave sequences and negative dependence, J. Combina-
torial Th. A 79 (1997), 315-325.

[34] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, 2nd edition, Cam-
bridge University Press, Cambridge, 2001.

[35] L. Lovász and M.D. Plummer, Matching Theory, North Holland, Amsterdam, 1986.



85

[36] R. Lyons and Y. Peres, Probability on Trees and Networks,
http://mypage.iu.edu/∼rdlyons/#book.

[37] C. Mahoney, On the unimodality of the independent set numbers of a class of
matroids, J. Comb. Theory Series B 39 (1985), 77-85.

[38] J.H. Mason, Matroids: unimodal conjectures and Motzkin’s theorem, pp. 207-221
in Combinatorics (D.J.A. Welsh and D.R. Woodall, eds.), Inst. Math. & Appl.,
1972.

[39] J.G. Oxley, Matroid Theory, Oxford Univ. Pr., Oxford, 1992.

[40] R. Pemantle, Towards a theory of negative dependence, J. Math. Phys. 41 (2000),
1371-1390.

[41] P.D. Seymour and D.J.A. Welsh, Combinatorial applications of an inequality from
statistical mechanics, Math. Proc. Cam. Phil. Soc. 77 (1975), 485-495.

[42] A. Srinivasan, Distributions on level sets with applications to approximation algo-
rithms, Proc. 42nd Annual Symp. Found. Comp. Sci. IEEE, 2001.

[43] R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and
geometry, pp. 500-535 in Graph theory and its applications: East and West (Jinan,
1986), Ann. New York Acad. Sci. 576, New York Acad. Sci., New York, 1989.

[44] V. Strassen, The existence of probability measures with given marginals, Ann.
Math. Statist. 36 (1965), 423-439.

[45] D. Wagner, Matroid inequalities from electrical network theory, Electronic J. Com-
bin. 11 (2005), #A1.

[46] D. Wagner, Negatively correlated random variables and Mason’s conjecture for
independent sets in matroids, Ann. Comb. 12 (2008), 211-239.

[47] D.J.A. Welsh, Combinatorial problems in matroid theory, pp. 291-307 in Combi-
natorial Mathematics and its Applications, Academic Press, 1971.

[48] D.J.A. Welsh, Harris’s inequality and its descen-
dants, lecture at Isaac Newton Inst., June 2008,
http://www.newton.ac.uk/programmes/CSM/seminars/062310005.pdf.

[49] D.J.A. Welsh, Matroid Theory, Academic Press, London, 1976.



86

Glossary

Here we list some acronyms and terminology that are used frequently in this thesis. Each

entry includes a brief definition and a pointer to where the terminology is defined in the

main text. Recall thatM =Mn is the set of probability measures on Ω = Ωn = {0, 1}n,

and that measure means probability measure.

almost exchangeable Measure µ ∈M is almost exchangeable if it is invariant under

permutations of some subset of n− 1 of the coordinates. Page 5.

APP A measure µ ∈M2k has the antipodal pairs property if(
2k
k

)−1 ∑
η∈Ω2k,|η|=k

µ(η)µ(1− η) ≥
(

2k
k − 1

)−1 ∑
η∈Ω2k,|η|=k−1

µ(η)µ(1− η).

Page 7.

APU A measure µ ∈M is antipodal pairs unimodal if the sequence (αi)ni=0 is unimodal,

where

αi =
(
n

i

)−1 ∑
η∈Ω,|η|=i

µ(η)µ(1− η).

Page 40.

BLC Measure µ is BLC[m] if every measure gotten from µ by imposing an external

field and then projecting onto a set of size at most m is ULC, and it is BLC if it

is BLC[m] for all m. Page 6.

CAPP A measure µ ∈M has the conditional antipodal pairs property if every measure

obtained from µ by conditioning on the values of some n− 2k variables (for some

k) has the APP. Page 7.

CAPU Measure µ is conditionally antipodal pairs unimodal if every measure gotten

from µ by conditioning on the values of some of the coordinates is APU. Page 40.
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CFM Measure µ is CFM if every measure gotten from µ by conditioning on the values

of some of the coordinates is FM. Page 12.

CNA Measure µ is conditionally negatively associated if every measure gotten from µ

by conditioning on the values of some of the coordinates is NA. Page 3.

CNC Measure µ is conditionally negatively correlated if every measure gotten from µ

by conditioning on the values of some of the coordinates is NC. This is equivalent

to the hereditary negative lattice condition (h-NLC). Page 3.

exchangeable Measure µ is exchangeable if it is invariant under permutations of the

coordinates (equivalently, µ(η) depends only on |η|). Page 5.

FM A measure has the Feder-Mihail property (or is FM) if for every increasing event

A there is a coordinate i such that A ↑ {ηi = 1}. Page 12.

FM+ Measure µ is FM+ if every measure gotten from µ by imposing an external field

is FM. Page 12.

GSSP generalized Srinivasan sampling process, Page 17.

LC A sequence (ai)ni=0 is log-concave if a2
i ≥ ai−1ai+1 for 1 ≤ i ≤ n− 1, and a measure

is LC if its rank sequence is log-concave with no internal zeros. Page 5.

NA Measure µ is negatively associated (or has negative association) if µ(AB) ≤ µ(A)µ(B)

for all increasing A ⊥ B. Page 2.

NA+ Measure µ is NA+ if every measure gotten from µ by imposing an external field

is NA. Page 3.

NC A measure µ ∈ M has negative correlations if {ηi = 1} ↓ {ηj = 1} (under µ) for

all i 6= j. Page 2.

NC+ Measure µ is NC+ if every measure gotten from µ by imposing an external field

is NC. This is equivalent h-NLC+. We sometimes use Rayleigh for NC+. Page 3.
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NLC Measure µ ∈M satisfies the negative lattice condition if

µ(η)µ(τ) ≥ µ(η ∧ τ)µ(η ∨ τ)

for all η, τ ∈ Ω. Page 4.

NMP A measure µ has the normalized matching property if µ(·|
∑
ηi = l) stochasti-

cally dominates µ(·|
∑
ηi = k) whenever l ≥ k. Page 20.

PA Measure µ is positively associated if µ(AB) ≥ µ(A)µ(B) for all increasing events

A,B. Page 1.

Pemantle measure Any measure that can be obtained from Bernoulli measures (mea-

sures on {0, 1}) by repeatedly taking products, imposing external fields, and rank

rescaling. Page 18.

rank rescaling Given a nonnegative LC sequence q = (q0, . . . , qn), the rank rescaling

of µ ∈M by q is the measure q ⊗ µ ∈M with q ⊗ µ(η) ∝ q|η|µ(η). Page 18.

rank sequence The rank sequence of µ ∈M is (µ(|η| = i))ni=0. Page 6.

Rayleigh Measure µ is Rayleigh if every measure gotten from µ by imposing an exter-

nal field is NC. This is another name for NC+. Page 4.

SCP Measure µ ∈ M has the stochastic covering property if µ(·|ηi = 0) stochastically

covers µ(·|ηi = 1) for every i ∈ [n]. Page 26.

SCP* Measure µ is SCP* if every measure gotten from µ by rank rescaling has the

SCP. Page 77.

SGSSP super-generalized Srinivasan sampling process, Page 17.

SLC A nonnegative sequence (ai)∞i=0 is strongly log-concave if ia2
i ≥ (i+ 1)ai−1ai+1 for

all i ≥ 1, and a measure ν on N is SLC if the sequence (ν(i))∞i=0 is. Page 49.

SSP Srinivasan sampling process, Page 71.
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stochastic domination Measure µ stochastically dominates measure ν if µ(A) ≥ ν(A)

for all increasing A. Page 20.

truncation The truncation of a measure µ ∈ M to [r,s] is the conditional measure

µ(·|r ≤
∑
ηi ≤ s) ∈M; it is a k-truncation if s− r ≤ k − 1. Page 69.

ULC A sequence (ai)ni=0 is ultra-log-concave if the sequence (ai/
(
n
i

)
)ni=0 is log-concave

and has no internal zeros, and a measure is ULC if its rank sequence is ULC. Page 5.

variable of positive influence Coordinate i ∈ [n] is a variable of positive influence

for the pair (f, µ), where f : Ω→ R and µ ∈M, if ηi ↑ f . Page 19.
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