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Currently, there appears to be a tradeo¤ between the performance of a semiparametric

estimator in �nite and large samples. In Chapter 1, we argue that this tradeo¤ occurs

because of the nature of the bias reduction methods that are often employed in implementing

these estimators. Accordingly, we develop a bias control mechanism that eliminates this

tradeo¤ so as to ensure that the estimator performs well in �nite samples while retaining

desirable large sample properties.

Semiparametric models are commonly estimated under a single index assumption. In

estimating these models, the consistency of the estimator critically depends on this as-

sumption being correct. Therefore, in Chapter 2, we develop a test of this assumption.

We formulate such a test and derive its large sample distribution under the null hypothesis

of a single index. To ensure that the test statistic has good size and power properties in

�nite samples, we formulate a test whose form adapts to the model under the alternative

hypothesis. Monte Carlo results con�rm that the adaptive feature signi�cantly improves

the performance of the test statistic in �nite samples.

Studying healthcare decisions poses many empirical challenges. Healthcare utilization

and expenditures depend on health insurance and other health related variables. As insur-

ance is a choice variable for the individual, there are potential endogeneity issues. Expen-

ditures are only observed when utilization occurs and hence there is a selection problem.

Furthermore, the decision to utilize healthcare and the decision about the level of treat-

ment are determined by di¤erent decision makers. In Chapter 3, we study a system of

three simultaneous equations: insurance, utilization, and expenditures. To avoid making

traditional parametric distributional assumptions, we propose a semiparametric approach
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based on the previous two chapters. Both parametric and semiparametric approaches are

employed in an empirical study using the Medical Expenditure Panel Survey (MEPS) 2005

data. We �nd that insurance increases the likelihood of seeking healthcare by about 15%

points (from about 80% to 95%). We also �nd that the parametric approach predicts in-

surance to increase the level of expenditures by 125%; while the semiparametric method

predicts an increase of 51%, a number in accord with an important experimental study in

the literature.
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Part I

Introduction

1 A Semiparametric Estimator with Bias Corrections

Currently, there appears to be a tradeo¤ between the performance of a semiparametric

estimator in �nite and large samples. In Chapter 1, we argue that this tradeo¤ occurs

because of the nature of the bias reduction methods that are often employed in implementing

these estimators. Accordingly, we develop a bias control mechanism that eliminates this

tradeo¤ so as to ensure that the estimator performs well in �nite samples while retaining

desirable large sample properties. As is typically done, we develop this estimator when the

model satis�es an index structure. To explain this structure, let:

V1 = Z1�1 + Z2�2 + Z3�3 + c1

V2 = X3�3 + �5(X
�4
4 � 1)=�4 + c2

When E(Y jX) = G(V1); we refer to this model as a single index model with linear index

V1: Notice that this linear index permits interactions and higher order terms in that we can

have Z1 = X1; Z2 = X1X2; and Z3 = X2
2 : When E(Y jX) = G(V2), this is a single index

model with a nonlinear index. Finally, when E(Y jX) = G(V1;V2), this is a double index

model with indices V1 and V2: As index parameters are at most identi�ed up to location and

scale in the cases above, it is common to normalize the parameters so that the coe¢ cient

on one of the explanatory variables is one and the constant term is zero.

The most commonly used index structure is a single index assumption (See, for ex-

ample, Ahn (1997), Climov, Delecroix and Simar (2002), Fraga and Martins (2001), Ger�n

(1996), Gorgens (2000), Gorgens and Horowitz (1999), Ichimura (1993), Klein and Sherman

(2002), Klein and Spady (1993)). To explain the importance of this single index assumption,

consider a nonparametric setting in which there is no parametric information on the form of

the expectation of the dependent variable conditioned on the explanatory variables, X. In

this case, it is di¢ cult to obtain an accurate estimate of the conditional expectation when
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the dimension of X is high. For example, with X a high dimensional vector of exogenous

variables, consider the binary response model:

Y =

8><>: 1 : f (X) > u

0 : otherwise
;

where f and the distribution of u are both unknown and u is independent of X. In this

nonparametric case, it is well known that it is di¢ cult to obtain a good estimate of Pr(Y =

1jX) = E(Y jX) due to the high dimension of X. In contrast, a semiparametric single

index model avoids this problem by imposing a parametric structure on f . For example,

f(X) = X�0 aggregates the information in X into a single linear index and reduces the

dimension to one. This linear index is the most commonly used.

As in the example above, let �0 be a parameter vector of interest and denote �̂ as

its estimator. To insure that this estimator has desirable properties, in large and �nite

samples, it is critical to have a good estimator for the conditional expectation, E(Y jV (�)).

There are methods to estimate this expectation (e.g., those based on higher order kernels)

that deliver �̂ with desirable large sample properties but often with poor �nite sample

performance. The problem here is that in implementing a bias control to obtain asymptotic

normality, such methods can fail to satisfy restrictions on the true conditional expectation

of interest in �nite samples. For example, in the binary model above, such methods can

deliver estimated probabilities that fall outside of the interval [0,1]. In contrast, methods

that impose these restrictions (e.g., those based on regular kernels), perform well in �nite

samples. However, in failing to adequately implement a bias control, these methods do not

achieve
p
N�asymptotic normality.

The objective of this chapter is to provide an estimator with desirable large sample

properties and that also performs well in �nite samples. To obtain these properties, we

employ two alternative bias controls and regular kernels. The bias controls will insure

normality, while the use of regular kernels allows us to impose known restrictions on the

estimated conditional expectation. We �nd that the resulting estimator performs well in

�nite samples, an important feature for its use in applications. It should be remarked that



3

while this estimator was developed for single index models, it can be extended to the double

index case (see Klein, Shen, and Vella, 2009). Such models are important and naturally

arise when one or more of the explanatory variables is endogenous. For an application in

the context of healthcare decisions, see Shen (2008).

2 A Test of the Single Index Assumption in Semiparametric Models

As discussed above, semiparametric models are commonly estimated under a single

index assumption. In estimating these models, the consistency of the estimator critically

depends on this assumption being correct. Therefore, in Chapter 2, we develop a test of this

assumption. We formulate such a test and derive its large sample distribution under the

null hypothesis of a single index. To ensure that the test statistic has good size and power

properties in �nite samples, we formulate a test whose form adapts to the model under the

alternative hypothesis. Monte Carlo results con�rm that the adaptive feature signi�cantly

improve the performance of the test statistic in �nite samples.

The most commonly used index structure is a single index assumption (See, for ex-

ample, Ahn (1997), Climov, Delecroix and Simar (2002), Fraga and Martins (2001), Ger�n

(1996), Gorgens (2000), Gorgens and Horowitz (1999), Ichimura (1993), Klein and Sherman

(2002), Klein and Spady (1993)). When the single index assumption does not hold, its im-

position will result in an inconsistent estimator for the conditional expectation of interest.

Given the sensitivity of the estimator to a single index assumption and given its wide use,

a second objective of this paper is to formulate a test for this assumption.

There have been papers in the literature on testing parametric against semiparametric

models (e.g., Härdle, Mammen, and Müller (1998), Hardle, Spokoiny, and Sperlich (1997),

Horowitz and Hardle(1994)). Related tests of parametric models are given by Newey�s

(1985) paper on conditional moment tests and Bieren(1990) conditional moment test. This

paper di¤ers from those above in that it formulates a test for a main assumption in semi-

parametric models. We note that in a likelihood context with a parametric null hypothesis,

Newey develops conditional moment tests that have optimal local power properties. It may

be possible to extend these results to the present context, but this extension is beyond the

scope of the current paper.



4

There have been some papers which focus on testing single index restrictions. Escanciano

and Song (2007) provide a test focusing on average marginal e¤ects and show that it has

a minimax property; Andrews (1993) provides high level conditions for testing moment

restrictions. Our paper di¤ers from these in that we provide primitive conditions for a

conditional moment test and for the estimator on which it is based. Tripathi and Kitimura

(2001) employ an empirical likelihood approach for testing moment conditions of the form:

E [G(z; �)jX] = 0:With G a known function and X continuous, they establish an optimality

property for their test. The test proposed here is also an orthogonality test in that we test

whether a function G is correlated with functions M(X). However, unlike the above test,

here the function G will be unknown as we set G = Y �E(Y jV ), where V is an index and

the conditional expectation function E(Y jV ) is unknown. Further, the M-functions will be

unknown and we will require nonparametric estimates of them. This feature is needed to

insure that the form of test statistic adapts to the model under the alternative hypothesis.

The proposed statistic also di¤ers from those in the literature in the bias control mechanism

that it employs. This mechanism is similar to that underlying the estimator, and results in

a test statistic that has good size and power properties in �nite samples.

3 Determinants of Healthcare Decisions: Insurance, Utilization, and Expendi-

tures

A major healthcare policy issue in the U.S. today is the growing population without

insurance. The key questions include: How does health insurance coverage a¤ect the like-

lihood an individual seeks medical care? How does health insurance a¤ect their healthcare

expenditures? The purpose of this third chapter is to study these and other related policy

questions.

There are many empirical challenges in studying people�s healthcare decisions. An indi-

vidual�s decision about whether to utilize healthcare may depend on her insurance coverage.

The level of utilization likely also depends on whether or not the individual has insurance.

However, because insurance is a choice variable for the individual, we must allow for the

possibility that this variable is endogenous. For example, people who have greater need for

healthcare have more incentive to buy health insurance. Some papers in the literature deal
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with this endogeneity by using instrumental variables (e.g., Vera-Hernandez, 1999; Holly

et al., 2002; Wooldridge, 2002); others use experimental data to avoid this problem (e.g.,

Manning et al., 1987; Newhouse, 1993; Barros et al., 2008). However, instruments that are

correlated with insurance coverage but not with utilization are di¢ cult to �nd. Experi-

mental data are scarce and often out of date. For example, the RAND Health Insurance

Experiment, which remains to be the largest health policy study in U.S. history, started in

1971 and lasted for 15 years(RAND, 1974-1982). The structure, practice and philosophy of

medicine has changed dramatically since the 1980s as has the insurance industry.

Another empirical challenge is the selection issue in the expenditure decision. Namely,

expenditures are only observed for individuals who decide to see a doctor. One standard

parametric approach deals with this problem by making distributional assumptions about

error terms and then using a Heckman correction for sample selection (Heckman, 1976,1979).

An alternative approach is to use a two-part model (Duan et al., 1983, 1984, 1985). Both

of these may be problematic as the Heckman correction approach can be sensitive to the

distributional assumptions on error terms, while the two-part model approach also makes

implicit distributional assumptions (Puhani, 2000). The literature in health economics or

in economics in general does not provide a theoretical foundation or justi�cation for these

distributional assumptions. Moreover, if incorrect, they can result in incorrect inferences

and policy conclusions with respect to healthcare decisions.

Yet another challenge is the complicated nature of the decision-making process. In

healthcare, both the patient and the doctor are involved in making decisions. The patient

decides whether to visit a doctor(or more generally a healthcare provider), and then the

patient and doctor jointly decide what treatment the patient will have. These decisions are

interrelated. Some papers deal with the two-part decision-making process in healthcare uti-

lization (Newhouse, 1993; Mullahy, 1998), but none address the whole process of insurance

choice, utilization, and expenditure level.

This chapter contributes to the current literature by taking into account the interrelated

nature of healthcare decisions and using a semiparametric approach to address the empirical

challenges. We study three components of obese people�s healthcare decisions: insurance

coverage, utilization, and the level of expenditures. Using the Medical Expenditure Panel
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Survey (MEPS) 2005 data, we formulate and estimate a model for these three healthcare

decisions. First, we estimate the model using a standard parametric approach. We estimate

the health insurance and access decisions using bivariate probit-type estimators under the

assumption that the errors are jointly normal. Then assuming that the error component

in expenditures also has a normal distribution, we estimate the �nal equation making a

traditional correction to control for both sample selection and the endogeneity of insurance.

As there is not a strong justi�cation for the normality assumptions underlying the para-

metric formulation, we next employ a semiparametric approach in which these assumptions

are not made. As an additional advantage to a semiparametric approach, it should be re-

marked that since marginal e¤ects will in general not be constant in nonlinear models, we

will report the impact of changing a variable of interest at several di¤erent points in the

distribution of the variable of interest. The semiparametric approach will also allow greater

�exibility in the pattern of these e¤ects than in the parametric case. This approach is based

on the estimator discussed in Chapter 1.

Both parametric and semiparametric approaches are employed in an empirical study

using the Medical Expenditure Panel Survey (MEPS) 2005 data. We �nd that insurance

increases the likelihood of seeking healthcare by about 15% points (from about 80% to

95%). We also �nd that the parametric approach predicts insurance to increase the level

of expenditures by 125%; while the semiparametric method predicts an increase of 51%, a

number in accord with an important experimental study in the literature.
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Part II

Chapter 1

A Semiparametric Estimator with Bias Corrections

1.1 Introduction

Semiparametric models are typically estimated under an index structure. To explain

this structure, let:

V1 = Z1�1 + Z2�2 + Z3�3 + c1

V2 = X3�3 + �5(X
�4
4 � 1)=�4 + c2

When E(Y jX) = G(V1); we refer to this model as a single index model with linear index

V1: Notice that this linear index permits interactions and higher order terms in that we can

have Z1 = X1; Z2 = X1X2; and Z3 = X2
2 : When E(Y jX) = G(V2), this is a single index

model with a nonlinear index. Finally, when E(Y jX) = G(V1;V2), this is a double index

model with indices V1 and V2: As index parameters are at most identi�ed up to location and

scale in the cases above, it is common to normalize the parameters so that the coe¢ cient

on one of the explanatory variables is one and the constant term is zero.

The most commonly used index structure is a single index assumption (See, for ex-

ample, Ahn (1997), Climov, Delecroix and Simar (2002), Fraga and Martins (2001), Ger�n

(1996), Gorgens (2000), Gorgens and Horowitz (1999), Ichimura (1993), Klein and Sherman

(2002), Klein and Spady (1993)). To explain the importance of this single index assumption,

consider a nonparametric setting in which there is no parametric information on the form of

the expectation of the dependent variable conditioned on the explanatory variables, X. In

this case, it is di¢ cult to obtain an accurate estimate of the conditional expectation when

the dimension of X is high. For example, with X a high dimensional vector of exogenous
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variables, consider the binary response model:

Y =

8><>: 1 : f (X) > u

0 : otherwise
;

where f and the distribution of u are both unknown and u is independent of X. In this

nonparametric case, it is well known that it is di¢ cult to obtain a good estimate of Pr(Y =

1jX) = E(Y jX) due to the high dimension of X. In contrast, a semiparametric single

index model avoids this problem by imposing a parametric structure on f . For example,

f(X) = X�0 aggregates the information in X into a single linear index and reduces the

dimension to one. This linear index is the most commonly used.

As in the example above, let �0 be a parameter vector of interest and denote �̂ as

its estimator. To insure that this estimator has desirable properties, in large and �nite

samples, it is critical to have a good estimator for the conditional expectation, E(Y jV (�)).

There are methods to estimate this expectation (e.g., those based on higher order kernels1)

that deliver �̂ with desirable large sample properties but often with poor �nite sample

performance. The problem here is that in implementing a bias control to obtain asymptotic

normality, such methods can fail to satisfy restrictions on the true conditional expectation

of interest in �nite samples. For example, in the binary model above, such methods can

deliver estimated probabilities that fall outside of the interval [0,1]. In contrast, methods

that impose these restrictions (e.g., those based on regular kernels), perform well in �nite

samples. However, in failing to adequately implement a bias control, these methods do not

achieve
p
N�asymptotic normality.

1With Vi i.i.d. distributed as g, a kernel density estimator for g(t) is given as:

ĝ (t) =
X 1

Nh
K [(t� Vi) =h] :

When K is a density that is symmetric about zero (e.g., a standard normal), we refer to K as a regular
kernel. In this case, it can be shown that the bias is O(h2); where h tends to zero at a rate given below.
When K is a function that is symmetric about zero, integrates to one, andZ

z2pK(z)dz = 0; p = 1; 2; :::;

then K is termed a higher order kernel. It can be shown that the bais in a density estimator based on this

kernel is O
�
h2(1+p)

�
: Notice that unlike regular kernels, higher order kernels must take on negative values.

Here, with a single index model, p = 1.
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The objective of this chapter is to provide an estimator with desirable large sample

properties and that also performs well in �nite samples. To obtain these properties, we

employ two alternative bias controls and regular kernels. The bias controls will insure

normality, while the use of regular kernels allows us to impose known restrictions on the

estimated conditional expectation.2 We �nd that the resulting estimator performs well in

�nite samples, an important feature for its use in applications. It should be remarked that

while this estimator was developed for single index models, it can be extended to the double

index case (see Klein and Vella, 2008). Such models are important and naturally arise when

one or more of the explanatory variables is endogenous. For an application in the context

of healthcare decisions, see Shen (2008).

In organizing this chapter, we begin by discussing the moment conditions that char-

acterize the estimator in Section 1.2. These conditions incorporate methods for controlling

their bias using regular kernels. Section 1.3 contains assumptions and asymptotic results.

Here, we will also outline the basic proof strategy, with the Appendix containing all formal

and complete proofs. In section 1.5, we carry out Monte Carlo studies, where we evaluate

the performance of the estimators in �nite samples. To preview the results, we �nd that a

bias corrected estimator based on regular kernels performs the best.

1.2 Moment Conditions and Bias Control

In describing these conditions and the nature of the bias controls, it will be useful to

have simpli�ed notation for sample averages of the quantities of interest. For this purpose,

de�ne:

hABi �
NX
i=1

[AiBi] =N ; hA=Bi �
NX
i=1

[Ai=Bi] =N

Further, we use the " � " symbol above a quantity of interest to indicate an estimator for it.

Then, letting V (�0) � V (X; �0) be a single index depending on explanatory variables, X,
2There are other alternative methods that control for the bias under regular kernels. For example, Powell

and Honore (2005) employ the following jackknife approach. Let �̂(h) be an estimator based on the window
parameter h. Then, under this approach the �nal estimator is a linear combination of such estimators using
di¤erent windows. In contrast, here we employ a two-stage approach that exploits a result due to Whitney
Newey to insure asymptotic normality under regular kernels. In addition, we also implement a smoothing
adjustment to the �nal estimator. We �nd that the resulting estimator performs quite well in �nite samples.
It is an open question as to whether or not a further improvement would be obtained if we jackknifed our
estimator.
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and on a vector of true parameter values, �0; assume that we are interested in an extremum

estimator for �0: Let � be a trimming function that controls for small denominators in a

manner that we will make explicit below. In this section, for expositional simplicity, we

take this trimming function as known. In the Appendix, we let this function depend on an

estimated argument and show that it may be taken as known. Employing this trimming

function, consider estimators whose gradients have the following structural form:

Ĝ� (�0) �
Dh
Y � Ê(Y jV (�0)

i
�Ŵ �

E
;

where the weighting function, Ŵ �; has the form:

Ŵ �
i � �̂ (Vi (�0))rÊi

For SLS estimators (Ichimura (1993)), �̂ (Vi (�0)) = 1: For a QMLE estimator for binary

response models (Klein and Spady (1993)), �̂ (Vi (�0)) = 1=Êi

h�
1� Êi

�i
: For a QMLE

estimator of ordered models (Klein and Sherman (2002)), the gradient consists of a number

of components, all of which have the structure above. The weights di¤er above, but all con-

sist of a function of the index and the derivative of a nonparametric expectation estimator.

If the gradient, when normalized by
p
N is asymptotically distributed as normal, then it

is not di¢ cult to show that the underlying estimator of interest has an asymptotic normal

distribution. Accordingly, in what follows, we focus on these gradient expressions.

For such estimators characterized by the gradient structure above, write the gradient

as:

p
NĜ� (�0) =

p
N
h
Â� (�0)� B̂� (�0)

i
Â� (�0) �

D
[Y � E (Y jV0)] �Ŵ �

E
B̂� (�0) �

h
Ê (Y jV0)� E (Y jV0)

i
�Ŵ �

For the �rst term, with the argument given in the Appendix, it can be shown that:

p
N
h
Â� (�0)�A� (�0)

i
p�! 0; A� (�0) � h[Y � E (Y jV0)] �W �i
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The second or B-component above contributes a bias to the estimator that we need to

control in order to show that the gradient has an asymptotic normal distribution.

Below we will de�ne Ê (Y jV0) as a ratio of estimated functions: f̂=ĝ, each of which

converges to its true limiting value. We will be able to show that:3

p
N
h
B̂� (�0)� B̂�S

i
p�! 0;

B̂�S =
Dh
f̂=ĝ � E (Y jV0)

i
�Ŵ � (ĝ=g)

E
=

Dh
f̂ � ĝE (Y jV0)

i
�W �=g

E
+ op(1):

Since the above quantity is linear in the estimated components f̂ and ĝ; it is possible to

control for the bias in B̂�S by controlling for the bias in these estimated functions. Higher

order kernels are commonly employed for this purpose. In this case a standard U-statistic

projection argument, which we provide in the Appendix, immediately provides the result:

p
N
h
B̂�S �B�S

i
p�! 0;

B�S = h[Y � E (Y jV0)] �E [W �jV0]i

Asymptotic normality for the normalized gradient now follows from a standard central

limit theorem. In using higher order kernels to control for the bias and deliver this result,

it should be noted that such kernels can result in negative density estimates and (as is the

case here) often do not perform as well as methods based on regular kernels that do not

deliver the desired large sample properties. Here, we seek alternative bias controls that

deliver the desired large sample results with regular kernels.

Recalling that the weight function contains the derivative of the expectation function,

we exploit a property of this derivative due to Whitney Newey in the following theorem:4

3Note that: Dh
f̂=ĝ � E (Y jV0)

i
�Ŵ � [(ĝ=g)� 1]

E
p�! 0

with the �rst and third term each converging to zero at a rate somewhat below N�1=2. We will show in the
Appendix that the overall or combined rate of the product is su¢ cient to provide the desired result.

4This result and its proof were provided to one of the authors in a private communication. The proof,
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Theorem 0: With V (�0) � V (X; �0) as a single index, assume the following single

index restriction holds:

E (Y jX) = E (Y jV (�0)) � F ( V (�0))

Then:

E [ r�E (Y jV (�)) j V (�0)]�=�0 = 0 .

Proof: Let � (�) � V (�0) � V (�) and observe that � (�0) = 0 and that r�� (�) =

�r�V (�) : Then, employing the index restriction and using iterated expectations:

E (Y jV (�)) = EX [E (Y jV (�0)) j V (�)]

� EX [F [V (�0)] j V (�)]

= EX [F [V (�) + � (�)] j V (�)]

� G (V (�) ; � (�))

Let Gk be the partial derivative of G taken w.r.t. � in the kth argument of G, k = 1,2.

From the chain rule:

r�G (V (�) ; � (�)) j�=�0 = G1 (V (�) ; 0) j�=�0 +G2 (V (�0) ; � (�)) j�=�0

= r�F ( V (�)) j�=�0 � E [r�F ( V (�)) j V (�0)]�=�0

The proof now follows.

From above, r�E [Y jV (�)]�=�0 behaves as an error component with conditional ex-

pectation 0. As this component enters multiplicatively into the gradient, we exploit its

residual-like properties as a bias control. To utilize Newey�s result, return to the gradient

discussed above and let

H(V ) � E
�h
f̂ � ĝE (Y jV0)

i
j X

�
which is very short and can be found in Klein and Sherman (2002), is also provided here.
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Then, take an iterated expectation to obtain:

E
h
B̂�S

i
=

D
EXE

h
f̂ � ĝE (Y jV0)

i
�W �=g j X

E
+ o(1)

= hEX (�H(V )W �=g)i

= hEV f[H(V )=g]E [(�W �jV )]gi

If the trimming function, � ; depends on X, it is not possible to employ Newey�s result and

obtain 0 for this expectation. If the trimming depends on V , then this expectation would

be zero by construction.

Based on the above observation, we consider a multi-stage estimation method. In the

�rst stage, we trim on X and obtain consistent estimates for the index parameters. Using

these parameter estimates, we construct an estimated index upon which to base trimming.

In the second stage, we then trim on the basis of the (estimated) index rather than X. In

so doing, the expected value of the gradient would be zero. However, such trimming upsets

the consistency argument because it provides no protection for small denominators outside

of a small neighborhood of the truth. To resolve this problem, we adjust expectations as

follows. Recalling that Ê = f̂=ĝ, de�ne an adjusted expectation as:

Êa =
f̂

ĝ +�

Below, we will de�ne � such that it vanishes rapidly in regions where g is bounded away

from zero. In regions where g tends to zero, � tends to zero very slowly. In this manner,

we are able to preserve the consistency argument and establish asymptotic normality for

the gradient.5 It is possible to further improve the performance of the estimator in �nite

samples under a smoothing adjustment, but we defer discussion of this issue until Section

1.3.

1.3 Assumptions, De�nitions, and Results

To obtain the above results, we require standard assumptions on the data generating

5A similar strategy is employed in Klein and Spady (1993) so as to let trimming depend on an estimated
density. That paper, however, relies on higher order kernels or local smoothing to obtain large sample results.
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process, smoothness conditions on unknown densities, and given sets over which densities

are positive. Assume:

(A1) Observations. With (Yi; Xi) as the ith observation on the dependent and ex-

planatory variables, assume that (Yi; Xi) is i.i.d. WithX as theNxK matrix of observations

on the explanatory variables (including a column vector of ones), assume that X has full

column rank with probability 1.

(A2) Model. Under the null hypothesis E(YijXi) = E(YijVi); Vi � X1i+X2i�0; where

X1i is continuous and �0 is in the interior of a compact parameter space, �: Furthermore,

to simplify arguments we assume that X is bounded.6 In addition, V ar(YijXi) is bounded.

(A3) Estimator Characterization. Under the null hypothesis, with �Ho positive

de�nite and Gi being i.i.d., the estimator for �0 satis�es:

p
N(�̂ � �0) = �H�1

o N�1=2
nX
i=1

Gi + op(1);

E (Gi) = 0; V ar(Gi) = O(1):

(A4) Continuous Variable Density. With Xk as any of the continuous X variables,

denote gk(�jy) as its density conditioned on Y = y. Denote rdgk(tjy) as the dth partial

derivative with respect to t, with rogk(tjy) � gk(tjy). With gk supported on [a�k; b�k]:

gk > 0 on (ak; bk); a
�
k < ak < bk < b

�
k

jrdgkj = O(1) on [ak; bk]; d = 0; 1; 2; 3.

6The assumption on X being bounded is not necessary, but simpli�es several of the arguments.
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(A5) Index Density. With Vi � X1i +X2i�0, let g(x1jy; x2) be the indicated condi-

tional density supported on [a; b], Assume

g > 0 on (a; b)

jrdgj = O(1) on [a; b]; d = 0; 1; 2; 3.

(A6) Tail Condition. With gy as the density for the dependent variable, Y , assume

that there exists T such that for t > T and df > 4:

gy(t) < 1=[
�
1 + t2

�(df+1)=2
].

The above assumptions are somewhat standard in the literature. Namely, the model

must include a continuous variable (A2) and densities for continuous variables and the index

must be su¢ ciently smooth, as implied by (A4-5). Notice that (A4-5) also speci�es when

density denominators become zero, which facilitate the trimming strategy. To establish

uniform convergence results for estimated expectations, we require a tail condition on the

density for the dependent variable, Y . While this assumption can be made in terms of the

number of �nite moments for Y , here we directly assume in (A6) that the density has tails

that are no thinner than those for a t-distribution with d > 4. Additional window conditions

will be required and are stated directly in the Theorems for which they are needed. To de�ne

the estimators, we will also require the de�nitions below.

(D1) Trimming. With Zik as the ith observation on a continuous variable, Zk;

k = 1; :::K, let

�̂ ik �

8><>: 1 : âk < Zik < b̂k

0 : otherwise,

�̂ i � �k�̂ ik
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where âk and b̂k are respectively lower and upper sample quantiles for Zk: With Xk as an

exogenous variable, when Zik = Xik; we refer to �̂ i as X-trimming and write �̂ ix = �̂ i; with

V̂ as the estimated index, when Zik = V̂ ; k = 1; we refer to �̂ i as index-trimming and write

�̂ iv = �̂ i:

In the case where a smooth trimming function is required, de�ne:

� (z; �) � [1 + exp (�Ln(N)Ln(N) [z � �])]

as a smoothed approximation to an indicator on z > �: A smoothed indicator on z � [a; b]

is then de�ned as � (z; a)� � (b; z) :

(D2) Kernels. The kernel function K(z) is termed regular if K(z) � 0,
R
K(z)dz = 1,

and K(z) = K(�z). The function K(z) will be termed a (normal) twicing kernel if K(z) =

2� (z)� �
�
z=
p
2
�
=
p
2:

(D3) Expectations. With h = O (N�r) and Kij � K [(zi � zj) =h], the estimated

conditional expectation with window parameter r is denoted as Êi � Ê (Y jZ = zi) and is

given by:

Êi �

24 1

(N � 1)h
X
j 6=i

Yj �̂ jKij

35 =
24�̂i + 1

(N � 1)h
X
j 6=i

�̂ jKij

35 � f̂i=ĝ�i
The expectation is referred to as being:

a) regular (Ê) if �̂ j = 1, �̂i = 0, and K is a regular kernel.

b) twicing if �̂ j = 1, �̂i = 0, and K is a (normal) twicing kernel (Newey, Hsieh,

and Robins (2004)).

c) adjusted (Êa) if �̂ j = 1, K is regular, and with q̂ as a lower sample quantile,

(e.g., 0.01) of ĝ (zi) ; i = 1; :::; N:

�̂i � h�q̂
h
1� �̂ i

�
â; b̂
�i
, 0 < � < 1
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(D4) First and Second Stage Estimators.7

�̂1 = argmax
�

Q̂1; Q̂1 � �
1

2n

nX
i=1

�̂ ix[Yi � ~E (Yijv(Xi; �))]2;

�̂2 = argmax
�

Q̂2; Q̂2 � �
1

2n

nX
i=1

�̂ iv[Yi � Êa (Yijv(Xi; �))]2

(D5) Smoothing Adjustment. Letting Ĥ(�) be the Hessian w.r.t. Q̂2; and Ê� be

a regular expectation with window parameter r� = 1=5, de�ne:

B̂
�
�̂2

�
=

nX
i=1

�̂ iv(Êi

�
�̂2

�
� Ei

�
�̂2

�
)rÊi

�
�̂2

�
B̂�
�
�̂2

�
=

nX
i=1

�̂ iv(Ê
�
i

�
�̂2

�
� Ei

�
�̂2

�
)rÊi

�
�̂2

�

Then, de�ne an adjusted estimator as:

�̂
�
= �̂2 � Ĥ

�
�̂2

��1 h
B̂
�
�̂2

�
� B̂�

�
�̂2

�i

As discussed earlier, we employ a two-stage estimator (D4) so as to utilize Newey�s

result as a bias control. The �rst stage of this estimator requires X-trimming (D1) and reg-

ular expectations (D3), while the second stage requires index-trimming (D1) and adjusted

expectations (D3). We will compare results under regular and higher order kernels (D2).

Notice that the twicing kernel in (D2) is a higher order kernel in that:

Z
z2
h
2� (z)� �

�
z=
p
2
�
=
p
2
i
dz

= 2� 2
Z
[z=
p
2]2�

�
z=
p
2
�
=
p
2dz

= 2� 2
Z
w2�(w)dw = 0; w � z=

p
2

7As discussed earlier, there are many di¤erent estimators to which this chapter applies. We focus on
variants of the SLS estimator so as to employ the same estimator over designs where the dependent variable
is continuous or discrete.
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In examining the second stage estimator for various designs, we had one design where

the �nite sample bias for the estimator was signi�cantly larger than that for the other

designs. In this case, the smoothing adjustment (D5) improved the properties of our esti-

mator signi�cantly in this case by reducing the bias in the estimator. To explain why this

adjustment "works", recall the de�nition of Â(�0)� B̂(�0) in the previous section. Then, a

standard Taylor expansion yields:

�̂2 � �0 = �Ĥ�1(�+)(Â(�0)� B̂(�0)); �+�
h
�̂2; �0

i
:

De�ning an estimator with an infeasible adjustment as:

�̂I = �̂2 � Ĥ�1 ��+� hB̂ (�0)� B̂� (�0)i ;
then it immediately follows that

�̂I � �0 = �Ĥ�1 ��+� hÂ (�0)� B̂� (�0)i :
This infeasible estimator is the same as �̂2; except the B-component now depends on an

optimal expectation estimator. As a result, we would expect it to perform better in �nite

samples. Below, we show that this infeasible estimator can be approximated by the feasible

estimator based on the adjustment in (D5) in that:

p
N
h
�̂I � �̂

�
2

i
p! 0:

Beginning with the estimator, Theorem A.1 below establishes consistency at both stages.

Theorem A.1: (Estimator Consistency). With df = 4 given in (A6), set � �

df= (1� df) : Denote �̂1 and �̂2 as the �rst and second stage estimators respectively and

assume (A1-6). Base the �rst-stage estimator on a regular expectation (D3) with window

r1:

1=8 < r1 < 1=6; 0 < r1 < [1=2� �] = [�+ "]
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Base the second-stage estimator on an adjusted expectation (D3) with adjustment para-

meter 0 < � < 1 and window r2 :

1=8 < r2 < 1=6; and 0 < r2 < [1=2� �] = [� (1 + a) + "] ;

Then: ����̂1 � �o��� = op (1) ; ����̂2 � �o��� = op(1).
The normality arguments are based on moment conditions. After providing these results

in Theorems A.2-3 below, we will outline the common structure of the argument.

Theorem A.2: (Estimator: Asymptotic Linearity and Normality). Assume

(A1-6) and base the second stage estimator, �̂2; on an adjusted expectation (D3) with

adjustment and window parameters as given in Theorem A.1. Letting G (�0) � r�0Q2 (�0),

H0 � r��0Q2 (�0), and � � H�1
0 E

hp
NG0G

0
0

p
N
i
H�1
0 :

a) :
����̂1 � �o��� = op �N�1=4

�
b) :

p
N
�
�̂2 � �0

�
= �H�1

0

p
NG (�0) + op (1)

c) :
p
N
�
�̂
�
2 � �̂2

�
= op (1)

d) :
p
N
�
�̂
�
2 � �0

�
d! Z ~ N ( 0;�)

In the special case when V ar(YijXi) = �2o is constant, � = � �2oH�1
0 :

To outline the proof for Theorem A.2b (other parts follow directly), note that the

moment conditions underlying the estimator have the structure:

p
N
D
�̂(Y � M̂)!̂

E
=
p
N h�̂(Y �M)!̂i �

p
N
D
�̂(M̂ �M)!̂

E
:

Here !̂ is an estimated weight vector whose form is given above. Denote ! as the limit-

ing value of the estimated weight. Then, for the �rst component above, a mean-squared

convergence argument is employed in the Appendix together with a result from Pakes and
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Pollard (1989) to show that :

p
N h�̂(Y �M)!̂i =

p
N h�(Y �M)!i+ op (1) :

With M̂ = f̂=ĝ, in the Appendix we show that the second component is within op (1) of

p
N
D
�(M̂ �M)!ĝ=g

E
=
p
N
D
�(f̂ � ĝM)�!=g

E
:

As a U-statistic, this last term can be analyzed by conventional projection arguments. Pro-

vided that its expectation tends to zero, this term vanishes for the estimator. As discussed

in section 1.2, the above expression will have expectation tending to zero if appropriate

higher kernels are employed or when the trimming function, � ; depends only on the index:

Regular kernels can be employed as this last condition holds.

1.4 Monte Carlo Designs and Results

In this section Monte Carlo experiments are used to investigate di¤erent estimators. The

estimators examined here are de�ned in Section 1.3. Our Monte Carlo study shows that the

two-stage normal kernel estimator with bias correction has the smallest root mean-square

error (RMSE).

1.4.1 Designs

All of the designs have single index structures. In all the designs, we normalize such

that E(YijXi) has standard deviation 2.

In the �rst (basic) design, we use the following data generating process:

Yi =M0i + "i; M0i _ (X1i +X2i)2;

where the X0s ~ �2(1) and "~N(0; 1):

The second design is a binary response design. With "i being i.i.d. N(0; 1), under the

null of a single index model:
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Yi =

8><>: 1 : M0i > "i

0 : otherwise
, Moi _ X1i +X2i � 0:5

Unlike the previous two designs, here the two X0s are correlated. In particular, the X0s

are linear combinations of the same �2 variable and di¤erent normal shocks.

Since discrete independent variables are very common in practice, the third design has a

discrete regressor. The structure of the data generating process is the same as in the basic

design, however, here X2i is a binary variable.

In the fourth (general linear model) design, we generate data by:

Yi =M0i + "i, M0i _ (X1i +X2i + 2X3i)2;

where the X0s ~ �2(1) and "~N(0; 1):

For all the designs, the sample size we use is n=1000, and the number of Monte Carlo

replications is 1000.

There are a number of window and trimming choices that need to be speci�ed. With

windows having the form h = O(N�r); for the stage1 and stage2 estimators, we set r

at 1/6.1. Within the range of permissible values, the value gives the fastest point-wise

convergence rate of the estimated expectation to the truth. For the smoothing adjustment,

we select an optimal pointwise rate of 1/5. Finally, for the twicing kernel, we set this

window at 1/7. In the case of trimming, all trimming is based on the .99 quantile for the

relevant variables. Recall that in the second stage estimator, we adjust the denominator of

estimated expecations. Here, we smoothly keep the index between the .005 and the .995

index quantiles. Recall also that this adjustment depends on a lower density quantile, and

we select the .01 quantile for this purpose. Finally the adjustment depends multiplicatively

on a window raised to the power of �; 0 < � < 1: In this case, we set � to be 1/2.

1.4.2 Monte Carlo Results

The estimators studied are SLS estimators using twicing kernels (SLS-TW), using X-

trimming in the �rst stage (S1SLS), and using index-trimming in the second stage (S2SLS).
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For each SLS variant there are two versions: having smoothing correction or not; the cor-

rected ones have an extra "C" in front (e.g., CSLS-TW). Among the unadjusted estimators,

in the general linear model and basic designs, S2SLS has an RMSE about 30% lower than

that of the other estimators. The reduction in RMSE is smaller (8%) in the binary response

case and close to zero in the discrete regressor design reported here. This last �nding is de-

sign dependent and does not hold for other discrete designs.8

In terms of RMSE, bias adjusted estimators are quite close to uncorrected ones in all

the designs except in the discrete regressor case, where it reduced RMSE by about 16%

by cutting the bias in half. Essentially, the bias correction makes little di¤erence when the

bias in the uncorrected estimator is very small, but can have a large impact when this bias

is large. Hence our conclusion would be that the bias corrected two-stage normal kernel

estimator with bias reducing structure is the best choice. Detailed results can be found in

Table 1.1 Estimation Results. Note that with exception of the discrete regressor design,

in all the other designs the twicing kernel design are not reported because there are severe

outliers resulting in misleading bias and variance values.

1.5 Conclusions

In summary, we have developed an estimator that has desirable large sample properties

(consistency and asymptotic normality), and that also performs well in �nite samples. We

have obtained these properties by employing bias controls that make it possible to base

the estimator on regular kernels. These �nite and large sample properties are important in

applied work.

8Speci�cally, we interchanged quadratic and cubic components so that the conditional mean function was
cubic under the null. For this case, we found that the gain is substantial as is shown in the detailed table
below:

An Alternative Discrete Regressor Design
SLS-TW CSLS-TW S1SLS S2SLS CS2SLS

Bias 0.065 0.032 0.037 0.060 0.038
Discrete Regressor (Flipped) Rvar 0.101 0.116 0.093 0.067 0.069

Rmse 0.120 0.121 0.100 0.090 0.079
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Chapter 2

A Test of the Single Index Assumption in Semiparametric Models

2.1 Introduction

In the previous chapter, we de�ned the index restrictions in semiparametric models. In

particular, a single index assumption is commonly used in the semiparametric literature.

For example, with

V � X1�1 + :::+XK�K

and with X = [X1; :::; XK ] a single index assumption holds if: E(Y jX) = E(Y jV ). When,

the single index assumption does not hold, the imposition of the single index assumption

will result in an inconsistent estimator for the conditional expectation of interest.1 Given

the sensitivity of the estimator to a single index assumption and given its wide use, the

objective of this chapter is to formulate a test for this assumption.

To test the single index assumption, it is critical to have a good estimator for the

conditional expectation, E(Y jV (�)). To get a good estimator, we need a good parameter

estimate and also a good method to estimate the expectation. Here, we employ the bias-

corrected estimator discussed in the previous chapter, which has both good �nite sample

and large sample properties. For the expectation itself, there are methods to estimate

this expectation (e.g., those based on higher order kernels2) that deliver desirable large

sample properties but often with poor �nite sample performance. The problem here is
1As an alternative example of a double index model, return to the binary response model discussed earlier,

and let the error term have a conditional variance that depends on another index. Namely, let u = s(X�o)",
where " is independent of X.

2With Vi i.i.d. distributed as g, a kernel density estimator for g(t) is given as:

ĝ (t) =
X 1

Nh
K [(t� Vi) =h] :

When K is a density that is symmetric about zero (e.g., a standard normal), we refer to K as a regular
kernel. In this case, it can be shown that the bias is O(h2); where h tends to zero at a rate given below.
When K is a function that is symmetric about zero, integrates to one, andZ

z2pK(z)dz = 0; p = 1; 2; :::;

then K is termed a higher order kernel. It can be shown that the bias in a density estimator based on this

kernel is O
�
h2(1+p)

�
: Notice that unlike regular kernels, higher order kernels must take on negative values.

Here, with a single index model, p = 1.
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that in implementing a bias control to obtain asymptotic normality, such methods can

fail to satisfy restrictions on the true conditional expectation of interest in �nite samples.

For example, in the binary model above, such methods can deliver estimated probabilities

that fall outside of the interval [0,1]. In contrast, methods that impose these restrictions

(e.g., those based on regular kernels), perform well in �nite samples. However, in failing

to adequately implement a bias control, these methods do not achieve
p
N�asymptotic

normality.

There have been papers in the literature on testing parametric against semiparametric

models (e.g., Härdle, Mammen, and Müller (1998), Hardle, Spokoiny, and Sperlich (1997),

Horowitz and Hardle(1994)). Related tests of parametric models are given by Newey�s

(1985) paper on conditional moment tests and Bieren(1990) conditional moment test. This

chapter di¤ers from those above in that it formulates a test for a main assumption in semi-

parametric models. We note that in a likelihood context with a parametric null hypothesis,

Newey develops conditional moment tests that have optimal local power properties. It may

be possible to extend these results to the present context, but this extension is beyond the

scope of the current chapter.

There have been some papers which focus on testing single index restrictions. Escanciano

and Song (2007) provide a test focusing on average marginal e¤ects and show that it has

a minimax property; Andrews (1993) provides high level conditions for testing moment

restrictions. This chapter di¤ers from these in that we provide primitive conditions for a

conditional moment test and for the estimator on which it is based. Tripathi and Kitimura

(2001) employ an empirical likelihood approach for testing moment conditions of the form:

E [G(z; �)jX] = 0:With G a known function and X continuous, they establish an optimality

property for their test. The test proposed here is also an orthogonality test in that we test

whether a function G is correlated with functions M(X). However, unlike the above test,

here the function G will be unknown as we set G = Y �E(Y jV ), where V is an index and

the conditional expectation function E(Y jV ) is unknown. Further, the M-functions will be

unknown and we will require nonparametric estimates of them. This feature is needed to

insure that the form of test statistic adapts to the model under the alternative hypothesis.

The proposed statistic also di¤ers from those in the literature in the bias control mechanism
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that it employs. This mechanism is similar to that underlying the estimator proposed in

the previous chapter, and results in a test statistic that has good size and power properties

in �nite samples.

In organizing this chapter, we begin by discussing the moment conditions that charac-

terize the test statistic in Section 2.2. These conditions incorporate methods for controlling

their bias using regular kernels. Section 2.3 contains assumptions and asymptotic results.

Here, we will also outline the basic proof strategy, with the Appendix containing all formal

and complete proofs. In section 2.5, we carry out Monte Carlo studies, where we evaluate

the performance of the test statistics in �nite samples. To preview the results, we �nd that

the bias-corrected form of the test statistic has good size and power properties.

2.2 Moment Conditions and Bias Control

In what follows, we will �rst consider a general test of moment conditions and then

specialize it to the test for the single index restriction. Consider test statistics based on

moment conditions of the form:

GkT (�0) � h[Y � E(Y jV (�0)]WTki , k = 1; ::;K

where WTk = WTk (Xk) is a vector of observations on a function of the kth exogenous

variable, Xk. De�ne GT as a column vector with GkT as the kth element. Under a null

hypothesis of interest, H0; we assume that the following orthogonality condition holds:

E [GT (�0)] = 0;

In testing whether or not these conditions hold, we allow the conditional expectation

E(Y jV ) and the weight Wk to be unknown functions that can be estimated nonparametri-

cally. Accordingly, write the estimated kth moment as:

Ĝk

�
�̂
�
�
Dh
Y � Ê(Y jV

�
�̂
�i
ŴTk

E
:

With a test statistic based on these estimated moments, we will need to show that
p
NĜkT (�̂)
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has an asymptotic normal distribution under the null hypothesis of interest. Employing a

standard Taylor expansion and with �̂ as a
p
N�consistent estimator that has an asymp-

totic linear representation3, we will be able to write

p
NĜkT

�
�̂
�
=
p
NĜkT (�0) +rE [GkT (�0)]

p
N
h
�̂ � �0

i
+ op (1) :

As the second or parameter-uncertainty component poses no di¢ culty, here we focus on the

�rst component and discuss the nature of the bias control that we employ.

With Vo � V (�0), we will be able to decompose these moment conditions in the same

form as the gradient for the estimator above and write

p
NĜkT (�0) =

p
N
h
AT (�0)� B̂T (�0)

i
+ op(1)

AT (�0) � [Y � E (Y jV0)]WTk

B̂T (�0) �
Dh
Ê (Y jV0)� E (Y jV0)

i
ŴTk

E

As for the estimator, here the second or B-component contributes a bias that we seek to

control. As above, we will be able to show:

p
N
h
B̂T (�0)� B̂S

i
p�! 0;

B̂S =
Dh
f̂=ĝ � E (Y jV0)

i
ŴTk (ĝ=g)

E
=

Dh
f̂ � ĝE (Y jV0)

i
WTk=g

E
+ op(1)

Using higher order kernels to control for the bias in f̂ and ĝ , in a standard U-statistic

argument, which is provided in the Appendix, we can show:

p
N
h
B̂S �B

i
p�! 0;

B = h[Y � E (Y jV0)]E [WkjV0]i
3The estimators we consider are all of the form:

p
N
h
�̂ � �0

i
= �H�1

o

p
N hGi ;

where H0 is the Hessian matrix, and
p
N hGi is asymptotically distributed as N(0;�):
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The moment condition in large samples now has a form to which a central limit theorem

would apply under the null hypothesis. Namely:

p
NĜkT (�0) =

p
N h[Y � E (Y jV0)] [Wk � E [WkjV0]]i+ op (1)

Taking estimation uncertainty into account, the "full" gradient has the form:

p
NĜkT

�
�̂
�
=
p
NĜkT (�0) +rE [GkT (�0)]

p
N
h
�̂ � �0

i

Letting G
�
�̂
�
be the vector with kth element ĜkT

�
�̂
�
, the test statistic is then given by a

standard quadratic form:

T �
p
NG

�
�̂
�0
�̂�1

p
NG

�
�̂
�
;

where �̂ is a consistent estimator for the covariance matrix of
p
NG

�
�̂
�
: Various alternative

estimators for this covariance matrix will be provided below and examined in the Monte

Carlo section.

As in the case for the estimator, we �nd that the test statistic based on higher order

kernels can be dominated by one based on an alternative bias control and regular kernels.

Unfortunately, the weight need not and will not here have the residual property of the

derivative weight entering the gradient for the estimator. Therefore, we propose to recenter

the weight so that it has the same residual-like property as in the estimator case. Namely,

with V̂ � V
�
�̂
�
de�ne Ĝ�(�̂) as a vector with the kth element being:

Ĝ�kT

�
�̂
�

�
Dh
Y � Ê(Y jV

�
�̂
�i
Ŵ �
k

E
Ŵ �
k � Ŵk � E

h
Ŵ �
k jV̂

i
T � �

p
NĜ�

�
�̂
�0
�̂�1

p
NĜ�

�
�̂
�

For the test statistic proposed below, we will show that such recentering provides a bias

control that makes it possible to employ regular kernels and still obtain the same large

sample result obtained under higher order kernels. Namely, we will show that T � is close in
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probability to T , with T � having a �2 distribution. We �nd below that T �; which is based

on this alternative bias control, has much better �nite sample properties than T .

To specialize the above moment conditions and develop a corresponding test statistic

(a quadratic form in the moments) for the single index assumption, we need to specify the

weight function. A natural choice for this function would not be a function of any particular

exogenous variable, but rather the full conditional expectation: E (Y jX). In this case, the

expected moment condition becomes:

E ( [Y � E (Y jV )]E (Y jX) )

= E ( [E (Y jX)� E (Y jV )]E (Y jX) )

= E
�
[E (Y jX)� E (Y jV )]2

�

Notice that this expected moment condition is zero i¤ E (Y jX) = E (Y jV ) : The above

weight would seem natural as the expected moment condition reduces to the distance be-

tween nonparametric and index expectations. However, it is di¢ cult to obtain reasonable

estimates of the full conditional expectation W = E (Y jX) when the dimension of X is

large. We are therefore motivated to seek low dimensional weights that are close to this full

expectation. With "close" de�ned in a mean-squared error sense, low dimensional weights

are given by:

Wk = argmin
!

�
E(W � !)2jXk

�
= E (Y jXk)

Notice that this weight depends on the actual form of the dependence of Y on X. In

other words, it is adaptive to the alternative model. This property is desirable compared

to �xed weights, because intuitively it yields better test power by being able to �exibly

capture di¤erent violations of the null hypothesis. Our Monte Carlo study comparing one

common �xed weight and our adaptive weight con�rms the above observation. The �xed

weight we use is the quadratic weight. Detailed discussions are in the Monte Carlo section.

2.3 Assumptions, De�nitions, and Results

To obtain the above results, we require standard assumptions on the data generating
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process, smoothness conditions on unknown densities, and given sets over which densities

are positive. Assume:

(A1) Observations. With (Yi; Xi) as the ith observation on the dependent and ex-

planatory variables, assume that (Yi; Xi) is i.i.d. WithX as theNxK matrix of observations

on the explanatory variables (including a column vector of ones), assume that X has full

column rank with probability 1.

(A2) Model. Under the null hypothesis E(YijXi) = E(YijVi); Vi � X1i+X2i�0; where

X1i is continuous and �0 is in the interior of a compact parameter space, �: Furthermore,

to simplify arguments we assume that X is bounded.4 In addition, V ar(YijXi) is bounded.

(A3) Estimator Characterization. Under the null hypothesis, with �Ho positive

de�nite and Gi being i.i.d., the estimator for �0 satis�es:

p
N(�̂ � �0) = �H�1

o N�1=2
nX
i=1

Gi + op(1);

E (Gi) = 0; V ar(Gi) = O(1):

(A4) Continuous Variable Density. With Xk as any of the continuous X variables,

denote gk(�jy) as its density conditioned on Y = y. Denote rdgk(tjy) as the dth partial

derivative with respect to t, with rogk(tjy) � gk(tjy). With gk supported on [a�k; b�k]:

gk > 0 on (ak; bk); a
�
k < ak < bk < b

�
k

jrdgkj = O(1) on [ak; bk]; d = 0; 1; 2; 3.

4The assumption on X being bounded is not necessary, but simpli�es several of the arguments.
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(A5) Index Density. With Vi � X1i +X2i�0, let g(x1jy; x2) be the indicated condi-

tional density supported on [a; b], Assume

g > 0 on (a; b)

jrdgj = O(1) on [a; b]; d = 0; 1; 2; 3.

(A6) Tail Condition. With gy as the density for the dependent variable, Y , assume

that there exists T such that for t > T and df > 4:

gy(t) < 1=[
�
1 + t2

�(df+1)=2
].

The above assumptions are somewhat standard in the literature. Namely, the model

must include a continuous variable (A2) and densities for continuous variables and the index

must be su¢ ciently smooth, as implied by (A4-5). Notice that (A4-5) also speci�es when

density denominators become zero, which facilitate the trimming strategy. To establish

uniform convergence results for estimated expectations, we require a tail condition on the

density for the dependent variable, Y . While this assumption can be made in terms of the

number of �nite moments for Y , here we directly assume in (A6) that the density has tails

that are no thinner than those for a t-distribution with d > 4. Additional window conditions

will be required and are stated directly in the Theorems for which they are needed. To de�ne

the test statistics, we will also require the de�nitions below.

(D1) Trimming. With Zik as the ith observation on a continuous variable, Zk;

k = 1; :::K, let

�̂ ik �

8><>: 1 : âk < Zik < b̂k

0 : otherwise,

�̂ i � �k�̂ ik
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where âk and b̂k are respectively lower and upper sample quantiles for Zk: With Xk as an

exogenous variable, when Zik = Xik; we refer to �̂ i as X-trimming and write �̂ ix = �̂ i; with

V̂ as the estimated index, when Zik = V̂ ; k = 1; we refer to �̂ i as index-trimming and write

�̂ iv = �̂ i:

In the case where a smooth trimming function is required, de�ne:

� (z; �) � [1 + exp (�Ln(N)Ln(N) [z � �])]

as a smoothed approximation to an indicator on z > �: A smoothed indicator on z � [a; b]

is then de�ned as � (z; a)� � (b; z) :

(D2) Kernels. The kernel function K(z) is termed regular if K(z) � 0,
R
K(z)dz = 1,

and K(z) = K(�z). The function K(z) will be termed a (normal) twicing kernel if K(z) =

2� (z)� �
�
z=
p
2
�
=
p
2:

(D3) Expectations. With h = O (N�r) and Kij � K [(zi � zj) =h], the estimated

conditional expectation with window parameter r is denoted as Êi � Ê (Y jZ = zi) and is

given by:

Êi �

24 1

(N � 1)h
X
j 6=i

Yj �̂ jKij

35 =
24�̂i + 1

(N � 1)h
X
j 6=i

�̂ jKij

35 � f̂i=ĝ�i
The expectation is referred to as being:

a) regular (Ê) if �̂ j = 1, �̂i = 0, and K is a regular kernel.

b) twicing if �̂ j = 1, �̂i = 0, and K is a (normal) twicing kernel (Newey, Hsieh,

and Robins (2004)).

c) adjusted (Êa) if �̂ j = 1, K is regular, and with q̂ as a lower sample quantile,

(e.g., 0.01) of ĝ (zi) ; i = 1; :::; N:

�̂i � h�q̂
h
1� �̂ i

�
â; b̂
�i
, 0 < � < 1
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(D4) Two Estimation Stages

(D5) Smoothing Adjustment for the estimator

(D6) Test Statistics. The test statistics, T and T �; are de�ned as above.

As discussed earlier, we employ a two-stage estimator (D4) so as to utilize Newey�s

result as a bias control. The �rst stage of this estimator requires X-trimming (D1) and reg-

ular expectations (D3), while the second stage requires index-trimming (D1) and adjusted

expectations (D3). We will compare results under regular and higher order kernels (D2).

Notice that the twicing kernel in (D2) is a higher order kernel in that:

Z
z2
h
2� (z)� �

�
z=
p
2
�
=
p
2
i
dz

= 2� 2
Z
[z=
p
2]2�

�
z=
p
2
�
=
p
2dz

= 2� 2
Z
w2�(w)dw = 0; w � z=

p
2

In examining the second stage estimator and the test statistic for various designs, we

had one design where the �nite sample bias for the estimator was signi�cantly larger than

that for the other designs. As a result, we found that the test statistic had poor size

properties in this case. The smoothing adjustment (D5) improved the size properties of

our test statistic signi�cantly in this case by reducing the bias in the estimator. To explain

why this adjustment "works", recall the de�nition of Â(�0)� B̂(�0) in the previous section.

Then, a standard Taylor expansion yields:

�̂2 � �0 = �Ĥ�1(�+)(Â(�0)� B̂(�0)); �+�
h
�̂2; �0

i
:

De�ning an estimator with an infeasible adjustment as:

�̂I = �̂2 � Ĥ�1 ��+� hB̂ (�0)� B̂� (�0)i ;
then it immediately follows that



33

�̂I � �0 = �Ĥ�1 ��+� hÂ (�0)� B̂� (�0)i :
This infeasible estimator is the same as �̂2; except the B-component now depends on an

optimal expectation estimator. As a result, we would expect it to perform better in �nite

samples. Below, we show that this infeasible estimator can be approximated by the feasible

estimator based on the adjustment in (D5) in that:

p
N
h
�̂I � �̂

�
2

i
p! 0:

Recall that Theorems A.1-2 of the previous chapter established that the estimator we

employed has the required form for the test statistic employed here, in Theorem A.3 below

we examine the large sample properties of the test statistic.

Theorem A.3. (Test Statistic: Asymptotic Null-Distribution): Let

M̂ � Ê
�
Y jV̂

�
; M̂k � Ê (Y jXk) ; M̂T � ÊT

�
Y jV̂

�
;

where the �rst two expectations are regular with window parameter r : 1=6 < r < 1=4 and

the third is twicing with window parameter rT : 1=8 < rT < 1=6: De�ne:

ŵk � �̂kM̂k; ŵ
�
k � ŵk � Ê

�
ŵkjV̂

�
;

where the above expectation is a regular with window parameter r�: 1=6 < r� < r < 1=4.

Denote T̂ and T̂ � as the un-centered and centered moments with respective kth elements:

T̂k

�
�̂
�
=
D
�̂v

�
Y � M̂T

�
ŵk

E
; T̂ �k

�
�̂
�
=
D�
Y � M̂

�
ŵ�k

E
Then, with " � (Y �M) ; under the null hypothesis of a single index:

a) :
p
NT̂ �k

�
�̂
�
=
p
NSk + op (1) ; Sk = h"w�ki � hr�w�kiH�1

0 Go

b) :
p
N
h
T̂ �k

�
�̂
�
� T̂k

�
�̂
�i
= op (1)

c) :
p
NT 0��1T

d! X ~ �2 (K) ; T = T̂ �
�
�̂
�
, T̂

�
�̂
�
,
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where with Sk as the kth element of S: � � E[SS0]:

To outline the proof for A.3a (other parts follow directly), note that the moment condi-

tions underlying the test statistic have the structure:

p
N
D
�̂(Y � M̂)!̂

E
=
p
N h�̂(Y �M)!̂i �

p
N
D
�̂(M̂ �M)!̂

E
:

Here !̂ is an estimated weight vector whose form is given above, depending on whether

the above moment conditions describe the estimator or the test statistic. Denote ! as the

limiting value of the estimated weight. Then, for the �rst component above, a mean-squared

convergence argument is employed in the Appendix together with a result from Pakes and

Pollard (1989) to show that :

p
N h�̂(Y �M)!̂i =

p
N h�(Y �M)!i+ op (1) :

With M̂ = f̂=ĝ, in the Appendix we show that the second component is within op (1) of

p
N
D
�(M̂ �M)!ĝ=g

E
=
p
N
D
�(f̂ � ĝM)�!=g

E
:

As a U-statistic, this last term can be analyzed by conventional projection arguments. Pro-

vided that its expectation tends to zero, this term vanishes for the centered test statistic.

For the uncentered test statistic, it contributes precisely the term that makes it asymptoti-

cally close to the centered form. As discussed in section 2.2, the above expression will have

expectation tending to zero if appropriate higher kernels are employed or when the trim-

ming function, � ; depends only on the index: For both the centered test statistic, regular

kernels can be employed as this last condition holds.

2.4 Monte Carlo Designs and Results

In evaluating the test statistics T and T �, we will examine both bias-corrected and

regular forms of the test statistics as de�ned in Section 2.3. Both test statistics depend on

an estimated covariance matrix, and we provide results for two di¤erent estimates. With S
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de�ned as in Theorem A.3, the covariance matrix is given by � = E(SS0); which may be

estimated by a sample analogue. Alternatively, with "i � Yi � E(YijVi); note that the kth

element of S has the form:

Sk =
NX
i=1

w�ik"i � hr�w�kiH�1
0

NX
i=1

r�E (YijVi) "i

Accordingly, elements of S will depend on "2i terms. Taking an iterated expectation and

conditioning on X, write:

� = E
�
E(SS0jX)

�
Given the form of Sk; it can be shown that the inner expectation depends on the variance

of Y conditioned on the index. If this conditional variance is known to be constant, as it is

in all but one of the designs below, then it can be factored out of the above expectation and

directly estimated as an average of squared residuals. We will use the terms KCV (known

constant conditional variance) and UCV (unknown conditional variance) to refer to these

two covariance matrix estimates. Test statistics will be computed and compared under these

two covariance matrix estimators.

Third, we compare the performance of our adaptive weight version of the test statistic

and the �xed weight version. Recall that the test statistic depends on a weight function that

depends on Xk; the kth exogenous variable entering the model. The adaptive or predictive

weight is given by w(Xk) = E(Y jXk); which is the optimal predictor of Y under quadratic

loss. Notice that this weight has an unknown functional form that is model dependent.

In contrast, a �xed weight has a known functional form that does not depend on the

alternative. The �xed weight we use in our Monte Carlo study is the common quadratic

weight w(Xk) = X2
k . The Monte Carlo experiment con�rms that the adaptive weight version

of the test is robust. Namely, in some designs the two versions perform similarly, however,

in other designs the adaptive weight strongly dominates the �xed one.

2.4.1 Designs

All of the designs have single index structures under the null hypothesis. For each design,

the alternative does not satisfy a single index assumption. Under the alternative, the �rst
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design is a double index model with continuous dependent variables; the second design is

a binary response model with index heteroscedasticity; the third design is a double index

model with discrete dependent variables; the last two designs are general linear models

with no index structure. In all the designs, we normalize such that E(YijXi) has standard

deviation 2 under the null and alternative models.

In the �rst (basic) design, we use the following data generating method for the null

hypothesis:

Yi =M0i + "i; M0i _ (X1i +X2i)2;

where the X0s ~ �2(1) and "~N(0; 1): Under the alternative:

Yi =M1i + "i, M1i _ [(X1i +X2i)2 + (X1i �X2i)3]:

The second design is a binary response design. With "i being i.i.d. N(0; 1), under the

null of a single index model:

Yi =

8><>: 1 : M0i > "i

0 : otherwise
, Moi _ X1i +X2i � 0:5

Unlike the previous two designs, here the two X0s are correlated. In particular, the X0s

are linear combinations of the same �2 variable and di¤erent normal shocks.

The alternative model introduces heteroscedasticity, with M1i"i replacing "i above and

with M1i _
p
1 + (X1i �X2i)2. We normalize M0i and M0i=M1i so that they have ex-

pectation zero and standard deviation 2. This design is the only one that does not have a

constant conditional variance.

Since discrete independent variables are very common in practice, the third design has

a discrete regressor. The structure of the null and alternative are the same as in the basic

design, however, here X2i is a binary variable.

In the fourth (general linear model) design, under the null hypothesis we generate data

by:

Yi =M0i + "i, M0i _ (X1i +X2i + 2X3i)2;
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where the X0s ~ �2(1) and "~N(0; 1): Under the alternative, which has no index structure:

Yi =M1i + "i, M1i _ [3X1i2 + 2X2i2 +X3i2 + 3]:

A �fth design is constructed to compare the properties of our adaptive weight version of

the test statistic and the �xed weight version. This design is di¤erent from the other four

in a way that will be explained below. Under the null hypothesis we generate data by:

Yi =M0i + "i, M0i _ (X1i +X2i +X3i)2;

where theX0s ~ N(0; 1) and "~N(0; 1): Under the alternative, which has no index structure:

Yi =M1i + "i, M1i _ [X1i3 +X2i3 +X3i3 + 1]:

For all the designs, the sample size we use is n=1000, and the number of Monte Carlo

replications is 1000. We provide results for theoretical sizes of 0.05 and 0.10. As discussed

earlier, the estimator we employ is developed in the previous chapter, with all window

and smoothing parameters set as discussed in Chapter I. For the test statistics, with one

exception given below, we set the window parameter r to be 1/5 for the expectations E(Y jV )

and Mk = E(Y jXk): The window parameter for E(MkjV ) is 1/7. The index-trimming is

set at .95, while the X-trimming is set at .99.

3.4.2 Monte Carlo Results

We compare all the variants of test statistics we mentioned in our Monte Carlo study,

involving known or unknown conditional variance (KCV or UCV) and di¤erent bias reducing

mechanisms. The bias reducing mechanisms we employ are Twicing Kernel (TW), Regular

Kernel using a window r > 1
4(BRR); and Recentering. We investigate the empirical size,

power, and adjusted power, which is the empirical power using bootstrap critical value

adjusting the empirical size to be equal to the theoretical size. For reasons discussed below,

our Monte Carlo results recommend the centered BRR as the best among all those variants.

In addition, in all cases where the conditional variance is constant, it is better to impose
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this information.

In comparing di¤erent variants of the test statistic, note �rst that the recentered test

statistics perform much better than uncentered ones in that the empirical sizes are much

closer to theoretical value and power is also better. The uncentered test statistics in all

the designs have highly in�ated empirical sizes. For example, turn to the general linear

model design. The recentered KCV BRR gives empirical sizes of 0.049 and 0.097 for 5%

and 10% theoretical sizes; while the uncentered version gives 0.153 and 0.231 respectively.

The recentered test also has better power properties. Similar results occur for the other

designs.

Second, we compare results that depend on whether or not a known constant conditional

variance (KCV) assumption is correctly imposed in estimating the covariance matrix. In all

three designs where this assumption holds, the performance of the test statistic is improved.

The sizes are reasonable and similar, but the power of KCV is higher than UCV. For

example, in the basic design, the power of the UCV version gives adjusted power of only 0.7

and 0.792 for 5% and 10% theoretical sizes; while the KCV version gives powers of 0.878

and 0.914 respectively. Not surprisingly, a better test statistic results from imposing correct

(constant conditional variance) information when estimating the covariance matrix.

As for kernel selection, the results are quite close to one another. However, BRR is

the most stable over designs. For the discrete regressor design, the recentered KCV with

BRR gives empirical sizes of 0.053 and 0.089 for 5% and 10% theoretical sizes; while the

corresponding ones for simple expectation are 0.22 and 0.353; twicing kernel yields 0.177 and

0.282. The power is also slightly better than the other two. The di¤erence among them in

other designs is often small. For example in the general linear model design our recentered

KCV under BRR gives size power combinations of (0.049, 0.817) and (0.097,0.872) for 5%

and 10% theoretical sizes; while corresponding expectation by index gives (0.045,0.85) and

(0.089, 0.889); twicing provides (0.045, 0.806) and (0.088, 0.863).

As a conclusion, the recentered test statistic using BRR stands out among all the vari-

ations we tried. It performs well under all the designs. Furthermore, when it is known that

the conditional variance is constant, such information should be imposed.

To compare �xed with adaptive weights, recall that the �xed weights are the squares of
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the exogenous variables that appear in the model, while the adaptive or predictive weights

are the optimal (MSE) predictors of Y: With the exception of the �fth design, all of the

other design have important quadratic elements. As a result, the �xed and adaptive weights

explain a comparable proportions of the variation in the dependent variable in those designs.

Not surprisingly, in these cases we �nd, but do not report, that �xed and adaptive weights

perform similarly. In the �fth design, which is given above, quadratic elements are not

important in the alternative model. Even collectively, such elements only explain 3.5% of

the variation in Y . In contrast, collectively the adaptive weights explain 78.1%. Table 2.2

provides Monte Carlo results for the comparison between our adaptive weight version of

the test and the �xed weight version. It is shown that our adaptive weight test statistic

dominates the �xed weight version in this design by having much better power results. For

example, at the 5% theoretical critical value panel, we �nd the adaptive weight version of

the recentered BRR test with KCV has an empirical power of 0.962; while the number for

the �xed weight version is much lower at 0.706.

2.5 Conclusions

In summary, we have formulated a test statistic for testing the frequently made single

index assumption in semiparametric models. We establish the large sample distribution of

the test statistic under the null hypothesis and show that it performs well across a variety

of designs in Monte Carlo experiments. This performance is obtained by an embedded bias

control mechanism, the adaptive nature of the test statistic, and also the estimator upon

which it is based.
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Chapter 3

Determinants of Healthcare Decisions: Insurance, Utilization, and

Expenditures

3.1 Introduction

A major healthcare policy issue in the U.S. today is the growing population without in-

surance. The key questions include: How does health insurance coverage a¤ect the likelihood

an individual seeks medical care? How does health insurance a¤ect healthcare expenditures?

There are many empirical challenges in studying people�s healthcare decisions. An indi-

vidual�s decision about whether to utilize healthcare may depend on her insurance coverage.

The level of utilization likely also depends on whether or not the individual has insurance.

However, because insurance is a choice variable for the individual, we must allow for the

possibility that this variable is endogenous. For example, people who have greater need for

healthcare have more incentive to buy health insurance. Some papers in the literature deal

with this endogeneity by using instrumental variables (e.g., Vera-Hernandez, 1999; Holly

et al., 2002; Wooldridge, 2002); others use experimental data to avoid this problem (e.g.,

Manning et al., 1987; Newhouse, 1993; Barros et al., 2008). However, instruments that are

correlated with insurance coverage but not with utilization are di¢ cult to �nd. Experi-

mental data are scarce and often out of date. For example, the RAND Health Insurance

Experiment, which remains to be the largest health policy study in U.S. history, started in

1971 and lasted for 15 years (RAND, 1974-1982). The structure, practice, and philosophy

of medicine have changed dramatically since the 1980s as has the insurance industry.

Another empirical challenge lies in the expenditure decision, where we only observe

positive expenditures from individuals who decide to see a doctor. One standard parametric

approach deals with this problem by making distributional assumptions about error terms

and then using a Heckman correction for sample selection (Heckman, 1976, 1979). An

alternative approach is to use a two-part model (Duan et al., 1983, 1984, 1985). Both

of these may be problematic as the Heckman correction approach can be sensitive to the

distributional assumptions on error terms, while the two-part model approach also makes
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implicit distributional assumptions (Puhani, 2000). The literature in health economics or

in economics in general does not provide a theoretical foundation or justi�cation for these

distributional assumptions. Moreover, if incorrect, they can result in incorrect inferences

and policy conclusions with respect to healthcare decisions.

Yet another challenge is the complicated nature of the decision-making process. In

healthcare, both the patient and the doctor are involved in making decisions. The patient

decides whether to visit a doctor (or more generally a healthcare provider), and then the

patient and doctor jointly decide what treatment the patient will have. These decisions are

interrelated. Some papers deal with the two-part decision-making process in healthcare uti-

lization (Newhouse, 1993; Mullahy, 1998), but none address the whole process of insurance

choice, utilization, and expenditure level.

This chapter contributes to the current literature by taking into account the interrelated

nature of healthcare decisions and using a semiparametric approach to address the empir-

ical challenges. We study three healthcare decisions: insurance coverage, utilization, and

the level of expenditures. Using the Medical Expenditure Panel Survey (MEPS) 2005 data,

we formulate and estimate a model for these three healthcare decisions. As there is not a

strong justi�cation for normality assumptions underlying a traditional parametric formula-

tion, we employ a semiparametric approach in which these assumptions are not made. As

an additional advantage to a semiparametric approach, it should be remarked that since

marginal e¤ects will in general not be constant in nonlinear models, we will report the

impact of changing a variable of interest at several di¤erent points in its distribution. The

semiparametric approach will also allow greater �exibility in the pattern of these e¤ects

than in the parametric case. Nevertheless, as a convenient benchmark, we also estimate the

model using a standard parametric approach.

The chapter is organized as follows. Section 3.2 introduces the model and explains the

parametric and semiparametric approaches in two subsections; Section 3.3 describes the

dataset; Section 3.4 gives the main results; and Section 3.5 provides conclusions, discussions,

and future research directions.

3.2 The Model
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We study a set of three equations to examine the e¤ects of di¤erent factors on healthcare

decisions: health insurance, utilization, and expenditures. The �rst equation deals with the

health insurance choice. Let I be an indicator of whether or not an individual selects private

health insurance coverage. In the model below, an individual selects insurance if the net

value to so doing, VI � "I , is greater than zero. With VI determined by a set of exogenous

variables XI , the model is as follows:

I =

8><>: 1 : VI > "I where VI = XI�I

0 : otherwise
;

The second equation describes the decision to seek healthcare. Let A be an indicator of

whether or not an individual seeks access to healthcare from a doctor or other healthcare

providers, and letXA be a set of exogenous variables that determine the net value of utilizing

healthcare. Then:

A =

8><>: 1 : VA + I�A > "A where VA = XA�A

0 : otherwise
;

Notice that the insurance coverage enters this utilization (access) equation. There is a

vast literature about the e¤ects of moral hazard and adverse selection (see Arrow, 1963;

Rothschild and Stiglitz, 1976; Chiappori and Salanie, 2001; Cardon and Hendel, 2001, for

example). On the one hand, people who have insurance are much more likely to utilize

healthcare than their uninsured counterparts. On the other hand, people who have greater

demand for healthcare (e.g., those with high comorbidity levels) may have more incentive to

obtain insurance coverage. Consequently in our estimations, we will use methods that deal

with this endogeneity issue. To this end, exclusion restrictions will be needed. More specif-

ically we need some variables in the insurance equation to be excluded from the utilization

equation. In the data section, we will explain the variables used as exclusions.

The last equation explains the level of expenditures. Denote YE as the log of level of

expenditures, and XE as a set of exogenous variables that a¤ects expenditures for those

individuals who access healthcare services. Then, the model is given as:
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YE = XE�E + I�E + "E : A = 1 :

An individual incurs positive expenditures only if a visit is made. The patient decides

whether to visit a doctor, and then a joint decision is made by both the doctor and the

patient. We address this two-part decision-making process by separating the two equations

and allowing them to have di¤erent explanatory variables and parameters. Again, insur-

ance, healthcare, and the individual�s health status are interrelated. Insurance coverage

is included in this model, because it may a¤ect patient and doctor�s joint decision about

treatment plans. For example, insured people are much more likely to buy brand-name

medications instead of their generic counterparts. There could also be an adverse selection

problem here, because it is possible that people who are less healthy might have more in-

centive to purchase insurance. Hence our model will account for the interrelations between

the above variables, and we will employ estimation methods that deal with both sample

selection and endogeneity issues. Similar to the utilization equation, for identi�cation pur-

poses we will need some exogenous variables in the insurance and utilization models that are

excluded from this expenditure equation. In the data section, we will discuss the particular

variables that provide the required exclusion restrictions.

To avoid making strong distributional assumptions that are hard to justify, in this

chapter, we employ a semiparametric method to estimate the three healthcare equations

discussed above. Indeed, we will �nd that standard parametric distributional assumptions

(e.g. joint normality) do not hold. Nevertheless, as a convenient benchmark, we also provide

the parametric formulation and results. There are a variety of di¤erent methods for estimat-

ing the parametric model. To make the role of the parametric assumptions transparent, we

estimate the parametric model in a manner that parallels the semiparametric approach. In

the parametric case, we will make distributional assumptions on all three equations above.

In contrast, we will relax these distributional as

3.2.1 Parametric Model

In the parametric model, we assume that the error terms in the above system of three
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equations follow a trivariate normal distribution. A two-step estimation method is then

employed to estimate the three equations. In the �rst step, the insurance and utilization

decisions are jointly estimated by maximum likelihood. Assuming that the errors in the

insurance and utilization equations are jointly distributed as bivariate normal, the likeli-

hood has a bivariate probit form, which accounts for the possibility that insurance may be

endogenous with respect to the access decision.

To identify the parameters without relying on nonlinearities, we require restrictions on

the model. The insurance equation will depend on only exogenous variables, XI , while the

access decision will depend on exogenous variables, XA; and whether or not the individ-

ual has insurance. In this triangular system of binary equations, the insurance equation

is identi�ed as it is essentially a reduced form. However, to identify the access equation,

we impose exclusion restrictions on it. Namely, there are exogenous variables that a¤ect

the choice of insurance (i.e., variables in XI) that are excluded from XA. Such excluded

exogenous variables do not a¤ect the access decision once this decision already controls for

insurance. Two exclusion variables are industry insurance rates and occupation. Industry

and occupation have important impacts on insurance, because insurance plans are often

provided by employers in the U.S. In the meantime, they are not expected to a¤ect uti-

lization or expenditures once the insurance decision is made. We will further discuss these

exclusions in the data section.

In addition to the parameters in the joint model for the two decisions, the likelihood

depends on the correlation between the errors. A non-zero correlation between the two error

terms would indicate the endogeneity of insurance with respect to the utilization decision.

As will be described below, in the empirical results we �nd this correlation to be small in

absolute magnitude and not statistically di¤erent from zero.

In the second step, we estimate the expenditure equation by employing a Heckman cor-

rection (Heckman, 1976; Fishe et al., 1981; Lee, 1982) that controls for both sample selection

and the possibility that insurance is an endogenous variable with respect to expenditures.

To simplify this correction or control term, we employ a form for it that is applicable when,

as was found empirically, utilization and insurance errors are not correlated.1 For individu-

1As discussed in the next section, in a semiparametric formulation we will not need to make any assump-
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als that utilize healthcare, recall the form of the expenditure model in the previous section.

With "E as the error term in the log expenditure model, and denoting Z as the set of all

the exogenous variables in the system of three equations, for d 2 f1; 0g, de�ne:

�dGd
(VA; VI) = E("E jZ;A = 1; I = d).

In a parametric model with jointly normal errors, the G-functions above are known and the

�0s are parameters whose values are unknown. Typically, the above expectations are not

zero and depend on the variables Z; A; and I. To estimate our model, we seek to remove

the dependence of the errors on these conditioning variables. To this end, for d 2 f1; 0g;

de�ne the recentered errors:

"�d = "E � �dGd (VA; VI) ;

where by construction,

E ("�djZ;A = 1; I = d) = 0:

Then, including the G-controls in the model and partitioning XE into XE1 and XE0 ac-

cording to whether I = 1 or 0:

YE =

8><>: XE1�E + �E + �1G1 + "
�
1 : A = 1; I = 1

XE0�E + �0G0 + "
�
0 : A = 1; I = 0

9>=>; :
Here, the observations are stacked with I = 1 observations followed by I = 0 observations

and theG functions are evaluated at the estimated indices. Provided that the above equation

is identi�ed and joint normality holds, OLS estimation provides consistent estimates.

To identify the above equation, without relying on nonlinearities in the G-controls,

we impose exclusion restrictions on the exogenous variables XE that enter this equation.

Detailed discussions about these and other restrictions will be provided in the data section.

We conclude this discussion about the parametric model by emphasizing the importance

of its restrictive parametric assumptions. Both the bivariate probit speci�cation and the

form of the Heckman correction term depend on the (joint) normality assumption. If this

tions on the functional form of this correction factor.
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assumption is incorrectly imposed, the resulting estimator is typically inconsistent. In the

next subsection, we propose a semiparametric approach that avoids the restrictive distri-

butional assumptions. Furthermore, the parametric model assumes a threshold crossing

structure, while the semiparametric model does not impose this structure. As discussed in

the next section, this generalization has important implications for marginal e¤ects.

3.2.2 Semiparametric Model

In the semiparametric model, no assumptions are made about the error terms "I ; "A; and

"E . In these types of models involving limited dependent variables, a parametric formulation

requires an assumption about the distribution of these errors. However, if this assumption

is incorrect, then the resulting estimator will not be consistent. Therefore, as there is

no compelling arguments in the literature regarding error distributions, it is important to

examine methods for which such distributional assumptions are not needed. Moreover,

as will be pointed out below, in a semiparametric formulation it will also be possible to

generalize the manner in which exogenous values and errors interact so as to result in a

binary outcome (decision).

While the semiparametric model generalizes the parametric model, it does retain a

parametric (index) restriction to insure that the estimator "works well" in moderately sized

samples. To illustrate this restriction, return to the insurance model. In a commonly

employed probit speci�cation:

P (I = 1jX) = � (XI�I) ;

where the function � is the cumulative distribution function for the model�s standard normal

error component, "I . In a semiparametric formulation, this function need not be speci�ed

and indeed can be estimated from the data along with parameters of interest. In such a

formulation, the model is semiparametric because it makes no parametric assumptions on

the error distribution, but does assume a parametric index, VI � XI�I : This index, VI ,

need not be linear, but as discussed below it is important that it has a parametric form. In
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a more general, nonparametric formulation, we might write:

P (I = 1jX) = F (X1;X2; :::; XK) = E(IjX).

However, when the dimension of X is large, it is di¢ cult to "reliably" estimate the above

probability (expectation).2 Index restrictions serve to keep the relevant dimension of the

problem small and thereby improve the �nite sample behavior of the estimator. In general,

a single index restriction takes the form:

E(IjX) = E(IjVI) � F1(VI).

In this form, not only is the function F1 left unspeci�ed, but the model also permits very

�exible interactions between errors and values.

In some problems, a single index may not adequately describe the underlying behavior

of interest. Given that the access model is not linear, when insurance is endogenous with

respect to access, the access probability depends not only on its own index but also on the

exogenous index driving the insurance decision. In this case, a double index model would

be appropriate. Such a model would satisfy the following double index assumption:

E(Y jX) = E(Y jVI ; VA) � F2(VI ; VA);

where VI ; VA are now two indices. Again, there are methods for reliably estimating the

above expectation under this double index structure. As discussed below, estimators for

both single and double index models will be employed here. Throughout, we use the notation

Ê(Y jV ) to denote an estimated conditional expectation for Y conditioned on V , where V

may be a single index or a vector containing two indices. When this estimated expectation

is evaluated at an estimate of V , as will be the case below, we will write Ê(Y jV̂ ).3

For the insurance and utilization decisions, we estimate the model by a method that is

2 If X is continuous, then the convergence rate of the estimated expectation to the truth becomes slower
as the dimension of X increases. If X is discrete, there may be few observations to estimate E(Y jX) at each
value of X.

3Here, we note that we employ an estimator (see Klein and Shen, 2008) that has desirable �nite sample
properties as well as traditional large sample properties of consistency and normality.
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analogous to that for the parametric case. For that case, the form of the likelihood is known

and the model is estimated by maximum likelihood. In contrast, here we do not make any

distributional assumptions on error components, implying that the form of the likelihood

is unknown. Nevertheless, it is possible to employ index assumptions above to develop an

estimator for the likelihood.

We employ an estimator based on an extension of the approach in Klein and Shen (2008),

where a bias correction mechanism was proposed to overcome �nite sample performance is-

sues of common semiparametric estimators in the literature. Monte Carlo studies in that

paper show that this estimator dominates the others in terms of mean squared error. One

component of the model below contains a triangular system of binary response equations.

Klein, Shen, and Vella (2009) extend the bias-control mechanism discussed above to estab-

lish desirable large-sample properties for the estimator of this component. The estimator for

these components of the model is then based on maximizing an "estimated log-likelihood".

To de�ne this function, for r; s 2 f0; 1g, let

Yrs =

8><>: 1 : A = r; I = s

0 : Otherwise
;

with the corresponding probabilities:

Prs = Pr(Yrs = 1jVA; VI):

For r = 1 and s = 1 (other cases are analogous), notice that

P11 � Pr (Y11 = 1jVA; VI) = Pr (A = 1; I = 1jVA; VI)

= Pr (A = 1jI = 1; VA; VI) Pr (I = 1jVA; VI)

= Pr (A = 1jI = 1; VA; VI) Pr (I = 1jVI)

= E (AjI = 1; VA; VI)E (IjVI) :

Hence, P11 can be estimated by estimating each of the above two expectations semipara-

metrically. The �rst expectation over A has a double index form, while the second one has
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a single index form. The product of the above expectations (probabilities) then provides

the joint probability of interest. It is important to impose a single index restriction on the

I-model as it provides useful identifying information. Namely, in general double index mod-

els, identi�cation requires that each index contains a continuous variable that is excluded

from the other. This restriction is not required here. We do require, however, that there

be at least one continuous variable (or a variable that can be viewed as "approximately

continuous") in the model that enters access and insurance decisions.4 In addition to these

continuity restrictions, we require and impose the same exclusion restrictions discussed in

the previous section for the parametric model.

Given the estimated probabilities, we can now proceed as in Klein and Spady (1993) to

estimate the model by maximizing the following estimated log likelihood:

LogL̂ =
X
r;s

YrsLn(P̂rs):

When we assume that the above probabilities are known and have a bivariate normal struc-

ture, the estimator becomes bivariate probit. By estimating the probabilities using index

assumptions as discussed above, we avoid assuming parametric functional forms.5

Turning to the expenditure equation, we again need a correction term that will enable us

to deal with the sample selection and endogeneity problems. As above, with Z containing

all of the exogenous variables in all three equations, and Vo referring to (VA; VI) ; consider

the control function:

Gd(Vo) � E("E jA = 1; I = d; Z)

= E("E jA = 1; I = d; Vo)

where d 2 f1; 0g: Notice that this adjustment is similar to that in the parametric case, but
4 In the insurance model, we treat the following variables: age, age2; number of comorbidities, years of

education, family size, and industry insurance rate as being approximately continuous; while in the access
decision, these variables are: age, age2; number of comorbidities, years of education, and family size.

5For technical reasons, and is standard in this literature, we trim out certain observations for which the
probability is poorly estimated.
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now we do not make any assumptions on its functional form here in the semiparametric

formulation. With c as a constant:

XE�E = Xc�c + c;

we can rewrite the expenditure equation as:

YE =

8><>: Xc1�c + c+ �E +G1 + u
�
1 : A = 1; I = 1

Xc0�c + c+G0 + u
�
0 : A = 1; I = 0

9>=>;
where u�d = "E �Gd(Vo)

E [u�djA = 1; I = d; Z] = E [u�djA = 1; I = d; Vo] = 0

Since the control functions are unknown, we employ an extension of Peter Robinson�s

di¤erencing method (Robinson, 1988) to eliminate the unknown control functions:

YE � E(YE jA = 1; I = d; Vo) =

8><>: [Xc1 � E(Xc1jA = 1; I = d; Vo)]�c + u�1 : d = 1

[Xc0 � E(Xc0jA = 1; I = d; Vo)]�c + u�0 : d = 0

9>=>;
With ���denoting a di¤erenced variable:

Y � =

�
YE � E(YE jA = 1; I = 1; Vo)
YE � E(YE jA = 1; I = 0; Vo)

�
;

X� =

�
Xc1 � E(Xc1jA = 1; I = 1; Vo)
Xc0 � E(Xc0jA = 1; I = 0; Vo)

�
;

u� =

�
u�1
u�0

�
;

we can rewrite the above equation as:

Y � = X��c + u
�:
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Before proceeding to estimate the above di¤erenced model, there are several identi�-

cation issues that need to be discussed. First, it is clear that the constant term and the

insurance variable disappear from the model. Second, as in the parametric model, we

require additional identifying restrictions. To this end, we impose the same exclusion re-

strictions as in the parametric model discussed above. To see that these restrictions are

needed, suppose that there are no variables excluded from Xc that appear in the indices VI

and VA: Without such restrictions, it will be possible to take linear combinations of the Xc

variables and reproduce one of the indices, say VI : To illustrate the problem, for simplicity

take Xc = XI: (A similar argument holds when Xc = XA:) Then, since VI is a linear

combination of the variables in XI ; there must exists a vector of coe¢ cients C such that

XcC = VI : It follows that:

X�
cC = [Xc � E(XcjA = 1; Vo)]C = XcC � E(XcCjA = 1; Vo)

= VI � E(VI jA = 1; Vo) = VI � VI = 0:

Hence, there is perfect multicollinearity, which results in a lack of identi�cation.

Replacing true expectations and index parameter values with their estimates, we can use

OLS to estimate the expenditure equation and get consistent estimates. In this empirical

study, we �rst use OLS to obtain consistent residuals. Second, employing squared residuals,

in a semiparametric regression, we estimate the variance for the error conditioned on the

X-variables through the two indices. We then employ these conditional variances in a GLS

approach to obtain the �nal results.

Notice that in the above approach we can not directly estimate the impact of insurance

coverage on expenditures (�E). Therefore, we next describe a strategy for indirectly obtain-

ing this marginal e¤ect. Recall from above that Yrs is an indicator of the event A = r and

I = s, and Prs is the corresponding probability. With " as an error whose expectation is

0 when conditioning on only exogenous variables, and again with Vo referring to (VA; VI) ;
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notice that:

E("E jVo) = 0

= PrsE("E jYrs = 1; Vo) + (1� Prs)E("E jYrs = 0; Vo):

For Prs close to 1, we now have the following useful result:

R) : E("E jYrs = 1; Vo)
:
= 0:

We exploit the above result to estimate �E ; a marginal e¤ect of interest. To this end, write

the conditional expectations given insured/not:

M1 � E(YE �Xc�cjY11 = 1; Vo) = c+ �E + E("E jY11 = 1; Vo)

M0 � E(YE �Xc�cjY10 = 1; Vo) = c+ E("E jY10 = 1; Vo):

From property (R), for each individual j with P11 close to 1:

M1j
:
= c+ �E :

Similarly, for each individual i with P10 close to 1:

M0i
:
= c:

With �M1 as an average over j and �M0 as an average over i, we can recover �E by calculating:

�̂E = �M1 � �M0:

To get some sense as to how well the method described above works in practice, we

conduct a small scale Monte Carlo experiment, where we �nd that this method performs

very well. We generate data from the following design, which has the same structure as our

model:
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I =

8><>: 1 : VI > "I where VI = X1 +X2 +X3 + 1

0 : otherwise
;

A =

8><>: 1 : VA + 2I > "A where VA = X1 +X2

0 : otherwise
;

YE = 4I + 2X1 + 1 + "E : A = 1 ;

where the X0s are all distributed as normal, and the errors are jointly normal with non-zero

correlations between them. The sample size we use is n=2000, and the number of Monte

Carlo replications is 1000. As we can see, the true �E = 4: The average �̂E from the Monte

Carlo is 3.93, and the standard deviation is 0.16. In other words, the percentage bias is

about 1.6%, and the variance is also small, taking into account that the truth is 4.

We want to point out another advantage of semiparametric estimation with respect to

marginal e¤ects here. Since marginal e¤ects will in general not be constant in nonlinear

models, more information can be revealed by examining the patterns of marginal e¤ects

at several di¤erent points in the distribution of a variable of interest. We will look at the

patterns by changing this variable at several di¤erent points in its distribution. For instance,

we report the marginal e¤ects of education at di¤erent education level groups (less than high

school, high school, and some college or higher). Because the semiparametric model is more

�exible than the parametric model, the semiparametric case permits a richer pattern of

marginal e¤ects. As an example of such �exibility, in specifying the model for the insurance

decision, a single index restriction would permit a model of the form:

I = 1 i¤ f(VI ,"I) > 0;

where VI is the index (XI�I in the linear index case) and "I is the error. Here, f is an un-

known function that may or may not be separable in the index and the error. Furthermore,

the function f may or may not be monotonic in its arguments. Finally, the distribution

of the error component is left unspeci�ed. We will demonstrate how this �exibility yields
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valuable information and policy implications in our result section.

3.3 Data

The Medical Expenditure Panel Survey (MEPS) is an on-going nationally representative

survey of U.S. civilian non-institutionalized population started in 1996 by U.S. Department

of Health and Human Services. Surveys of households, employers, and medical providers are

conducted to collect information on healthcare expenditures and health insurance coverage

as well as demographic and socioeconomic characteristics.6

We consider the subsample of obese adults between the ages of 22 and 64, who are

employed. People who have body mass index (BMI) greater than 30 are considered obese

(CDC, 1985-2007). We focus on the obese population, because this is a growing population

that might have di¤erent healthcare needs and patterns than other groups. We also focus on

individuals who are employed, because in the United States, insurance is often linked with

employment. In fact, health insurance plans are often o¤ered by employers. We exclude

individuals who have public insurance, because having public insurance is not expected to

be a consumer�s choice for working adults between the ages of 22 and 64. The �nal sample

consists of 2,771 individuals.7

The key endogenous variables that we seek to explain are insurance coverage, utilization

of the healthcare system, and the level of expenditures. The insurance variable here is an

indicator of whether the individual has private health insurance coverage. The expenditures

are the total amount paid for healthcare services, including both out-of-pocket payments and

payments by insurance; but not including payments for over-the-counter drugs. Note that

the expenditures are derived from the MEPS Household and Medical Provider Components.

Since both the healthcare providers and the consumers are surveyed, it is more reliable than

typical surveys. We de�ne utilization of healthcare system as having positive healthcare

expenditures.8

6We note that the semiparametric model can be less sensitive to reporting errors than parametric models
(see, for example, Hausman et al., 1998).

7Other exclusion criteria included: individuals who died during the year, missing values on the exogenous
variables used. Various robustness checks indicate that there are no selection issues in this sample.

8We use this indicator instead of the self-reported healthcare utilization, because the self-reported uti-
lization may su¤er from recall errors, whereas the expenditure data were collected by both sides and hence
more reliable.
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The explanatory variables include demographics, socioeconomic status, and health re-

lated characteristics. The demographics include age, gender, race/ethnicity (white, non-

white), marital status (married, other), family size, and region (northeast, midwest, south,

west). Years of education, income, occupation class, and industry insurance rates are in-

cluded as socioeconomic characteristics. We use an indicator for white-collar jobs (profes-

sional, management, business and �nancial operations) to re�ect the impact of occupation,

and the percentage of people having insurance in each industry in the Kaiser study as a

variable to re�ect the impact of industry (Kaiser Family Foundation, 2006). The health

related characteristics include number of comorbidities, presence of mental illnesses, and

whether they are current smokers. Each individual was asked whether or not they had

any of a number of conditions. The comorbidity variable then counts the following health

problems: Alzheimer�s disease, asthma, arthritis, cancer, emphysema, diabetes, heart dis-

ease, high blood pressure, osteoarthritis, and stroke. This variable is included to capture

di¤erences in people�s physical health status and is often employed in health studies (e.g.,

Klabunde, 2000). Presence of mental illnesses is an indictor of whether an individual has

depression, anxiety, or schizophrenia. In the following paragraphs, we discuss the set of

exogenous variables to be included in each equation and the exclusion variables.

The set of explanatory variables in the insurance decision equation includes: age, age2,

gender, race/ethnicity, marital status, family size, region, education, income, occupation,

industry insurance rate, number of comorbidities, presence of mental illnesses, and whether

they are current smokers. It is conceivable that older people have greater incentive to obtain

insurance coverage because they often have more health issues and concerns. Females may

have di¤erent health needs than males. It would be interesting to know whether race has

an impact as it may shed some light upon racial disparities in health. Married people

might have more incentive to obtain insurance coverage. The same reason applies to family

size. Di¤erent regions might have di¤erent healthcare policies and plans as well as di¤erent

availabilities of healthcare services.9 Consequently region may also have an impact on

insurance. The education level is often used as a proxy for health literacy (e.g., Lindau et

al., 2006; Steinvil et al., 2008). We expect people with more education to be more health

9No detailed information about state of residence is available in the MEPS dataset.
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conscious and willing to spend more time and money on health. Hence those people are

more likely to have insurance. As is known in the literature, occupation and industry have

important e¤ects on people�s insurance (Kaiser Family Foundation, 2006). In the United

States, insurance plans for working adults often come as a part of the compensation package.

When good insurance packages are o¤ered, people are more likely to have insurance. We

expect physical and mental illnesses to increase people�s incentive to buy insurance. The

impact of smoking is unclear. On the one hand, current smoking might result in greater

healthcare demands because it has a negative impact on health; on the other hand, it might

indicate a lower health consciousness.

The exogenous variables in the utilization equation are: age, age2, gender, race/ethnicity,

marital status, family size, region, education, income, number of comorbidities, presence

of mental illnesses, and an indicator of current smoking. Older people are expected to

have higher probabilities of utilizing healthcare. Again there could be gender di¤erences in

utilization. For example, females might utilize healthcare regularly because of their annual

papsmear checkup. It would be revealing to know whether there are racial di¤erences

in utilization after controlling for insurance. The impact of marriage and family size on

utilization is mixed. These variables might have a positive impact (e.g., spousal pressures);

while there could also be a negative impact because family duties take up time and increase

the opportunity cost of visiting a doctor. Di¤erent regions may have varied healthcare

availabilities, and hence may a¤ect utilization. For the same reason as in the insurance

equation, more education can have a positive e¤ect on utilization by improving health

literacy. Physical and mental illnesses increase the likelihood of utilizing healthcare, because

they increase the need for health services. The impact of being a current smoker is still

unclear.

The expenditure equation includes the following variables as exogenous explanatory

variables: age, age2, gender, race/ethnicity, family size, education, income, number of co-

morbidities, presence of mental illnesses, and an indicator of current smoking. Older people

may incur more healthcare expenditures. Males and females may have di¤erent healthcare

needs. Racial di¤erences in healthcare expenditures would be interesting to know. Physical

and mental illnesses are expected to increase the level of expenditures, and the magnitude
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of these e¤ects would be interesting to know. The impact of smoking is again unclear. One

would expect a long term negative e¤ect on health from smoking and increased healthcare

expenditures in the long run. However, there is no information about smoking history, and

even if available, it might not be accurate because of the nature of a survey. Moreover,

current smoking might indicate a lower health consciousness.

Recalling the exclusion restrictions discussed in the previous section, we want to em-

phasize the exclusion variables we use here. It should be noted that exclusion restrictions

for this particular type of model are di¢ cult to �nd. For example, we have argued that

the access decision is separate and distinct from the expenditure decision, which makes

exclusion restrictions necessary to identify them. However, one would think that many of

the variables that a¤ect healthcare utilization would also a¤ect healthcare expenditures. In

this chapter, we use the following exclusion restrictions. The industry insurance rate and

occupation are excluded from both utilization and expenditure equations; while marital

status and region are excluded from the expenditure equation. In the United States, health

insurance is often included in the compensation package o¤ered by an employer. Di¤erent

jobs might o¤er varied choices of insurance packages at di¤erent prices. Hence it a¤ects the

insurance decision by a¤ecting the cost of buying insurance. However, once the insurance

coverage decision is made, it is plausible to assume that the industry insurance rate and

occupation class would not a¤ect the bene�t or the cost of utilization and expenditures

after controlling for income and education. Recall that the patient makes decisions about

insurance and utilization, while the doctor and patient jointly decide on the level of treat-

ment, with the doctor being the main decision maker. Once a patient decides to visit a

healthcare provider, we assume that the prescribed treatment does not depend on marriage

or region. Hence the level of expenditures may not depend on these variables. We recognize

the di¢ culty in �nding appropriate restrictions for the type of model that we estimate, but

view the exclusion restrictions discussed above as being plausible.

Some summary statistics with preliminary bivariate analysis of the data are provided

in Tables 3.1-3.3. Note that the continuous variables are categorized into groups to show

the distribution of those variables. However, they remain continuous in estimating the

model. Table 3.1 provides detailed summary statistics for the variables discussed above.
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Of the 2,771 individuals in our dataset, 488 (18%) are uninsured and 262 (10%) have

no utilization. The level of expenditures for those that utilize healthcare is very skewed.

About 40% of them have expenditures of less than $1,000, while 8% of them incur more

than $10,000 in healthcare expenditures. Less than half of the study population (49%) have

none of the physical illnesses mentioned above and 19% have two or more comorbidities.

In this sample, 62% are married. Table 3.2 describes the population by insurance coverage

(insured/uninsured), and also provides preliminary chi-square test results. It shows that

14% of the people who utilize healthcare are uninsured, while 48% of those who have no

utilization are uninsured. Age and comorbidities increase the likelihood of having insurance

probably by increasing the incentive to get insurance. White people and married people

are more likely to be insured. It also shows that socioeconomic characteristics play an

important role in people�s insurance coverage. More income and more education both

increase the probability of having insurance. Industry and occupation are signi�cant factors

that a¤ect insurance coverage. People in highly insured industries are more likely to be

insured. Current smokers are less likely to have insurance coverage. There is not much

di¤erence between males and females in insurance coverage. Table 3.3 provides a similar

cross tabulation by utilization: 94% of those insured utilize healthcare, while only 74%

of those uninsured utilize healthcare. There is signi�cantly less utilization among those

uninsured. With the exception of gender, most of the characteristics a¤ect utilization and

insurance decisions similarly. The insurance decisions are not very di¤erent for males and

females, while females are much more likely to utilize healthcare.

3.4 Results

In this section, we discuss both parametric and semiparametric results of estimating the

three equations. Before we discuss these results, there is an important normalization issue

for the semiparametric case that a¤ects how we present results for insurance and utilization.

For simplicity, we illustrate the issue for the insurance decision. As discussed earlier, the

estimates are based on an estimate of the probability:

Pr(I = 1jXI�I) = Pr(I = 1ja+ b(XI�I)) , where a and b are constants.
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The above probability does not depend on a or b. Hence one of the variables will have its

parameter normalized to a �xed value. After estimation, we normalize the parameter of

education to the corresponding parametric estimate for presentation purposes.10 Neverthe-

less, the marginal e¤ects of all variables are retrievable and invariant to normalization. The

same logic applies to the utilization (access) equation.

Below we examine both parametric and semiparametric results for the three decisions.

We compare not only the normalized estimates and average marginal e¤ects but also pat-

terns of marginal e¤ects calculated at di¤erent levels of certain continuous variables of

interest. Most of the normalized estimates and average marginal e¤ects are close between

the two approaches for insurance and utilization decisions. However, the two estimation

methods yield very di¤erent estimated e¤ects of insurance on expenditures. Furthermore,

the semiparametric approach gives richer patterns of marginal e¤ects. Detailed results are

provided in Tables 3.4-3.7.

First, we look at the insurance coverage decision. As shown in Table 3.4, both the

normalized estimates and the average marginal e¤ects are similar for parametric and semi-

parametric approaches. The biggest marginal e¤ect on the probability of having insurance

comes from marital status, with the p-values of the coe¢ cient on married in both approaches

being less than 0.01. Marriage increases the probability of having private insurance cover-

age by more than 7% points. Region also has a signi�cant e¤ect on the insurance coverage,

with the northeast indicator having coe¢ cient p-values of 0.06 and 0.02 in parametric and

semiparametric models respectively. People in the northeast region are 4-5% points more

likely to have insurance compared to people living in the west. White people are 4% points

more likely to have insurance than non-whites (coe¢ cient p-value < 0.01). Education and

income level both have signi�cant positive impacts on insurance coverage. Industry insur-

ance rate, which is one of the exclusions, has a substantial impact on the insurance decision.

Increasing the industry insurance rate by 5% increases the probability of having insurance

by more than 2% points on average. Occupation class is marginally signi�cant. The num-

ber of comorbidities also has a signi�cant positive e¤ect on insurance. When the number of

10The choice of variable on which to normalize does not a¤ect estimation results (provided that the variable
belongs in the model).
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comorbidities increases by one, the average increase in the probability of having insurance

is 2% points.

With respect to the normalized parameter estimates and averaged marginal e¤ects, the

parametric and semiparametric results for the utilization decision are also similar. These

results are presented in Table 3.5. One of the most important questions here is how insurance

coverage a¤ects utilization, and parametric and semiparametric estimations provide very

similar results. The average marginal e¤ect of insurance coverage is 14-15% points (the

probabilities move from 78-80% to 93-94%,) meaning if we move everyone in the sample

from uninsured to insured, the average gain in the probability of visiting a doctor is 14-

15% points, a large number. Both the number of comorbidities and the presence of mental

illnesses have very signi�cant positive impacts on utilization (coe¢ cient p-value < 0.05).

For the number of comorbidities, parametric estimation gives a higher marginal e¤ect of 6%

points compared to the 3% points of the semiparametric approach; while for the presence

of mental illnesses, both approaches give an average marginal e¤ect of 4% points. One

interesting �nding here is that females are much more likely to visit a doctor. Parametric

and semiparametric estimations yield average marginal e¤ects of 6% points and 4% points

respectively. Another interesting �nding is that income does not have a signi�cant impact on

utilization. Once the insurance coverage decision is �xed, income does not matter. Marital

status, which is one of the exclusions, has a highly signi�cant impact on utilization. Married

people are 2-3% points more likely to utilize healthcare. Region, as an additional exclusion,

is marginally signi�cant. Another important �nding here is that the correlation factor in

the parametric estimation is very small in absolute magnitude (-0.09), and it is statistically

insigni�cant with a p-value of 0.61. As discussed earlier, this �nding has implications for

the form of an adjustment factor in estimating the expenditure equation.11

The �nal equation deals with the level of healthcare expenditures. Note that most of

the marginal e¤ects are the same as the coe¢ cient estimates here. With the exception

of the impact of insurance, estimates in the two approaches are similar. The number of

comorbidities and the presence of mental illnesses both have very signi�cant e¤ects in this

11The variables excluded from the expenditure equation are: marital status and region. Marital status is
highly signi�cant, and region is marginally signi�cant.
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equation. Both have p-values of less than 0.01. Having one more physical disease can

increase the level of expenditures by about 35% on average; while having a mental illness

increases it by more than 45%. Income again does not have a big impact on the level of

healthcare expenditures.

For insurance coverage, which is the factor of most interest in this study, the semipara-

metric approach estimates the marginal impact to be 51%.12 This impact would seem to

be credible as it is very close to the number in a previous study by Newhouse and the

Insurance Experiment Group (Newhouse et al., 1993). Their study based on the RAND

Health Insurance Experiment shows that mean predicted expenditure in the 0% coinsurance

(free-care) plan is 46 percent higher than in the 95% coinsurance plan. We want to keep in

mind that the relevance of the study may be lowered by the fact that it was done more than

a decade ago. Nevertheless, this study based on experimental data con�rms our semipara-

metric result. In contrast, parametric estimation gives a marginal e¤ect of 125%. We note

that there are many other parametric studies that have also found an insurance impact of

this magnitude (e.g., Hadley and Holahan, 2003; Miller et. al., 2003). These studies treat

insurance as exogenous and state that in so doing the marginal impact of insurance has an

upward bias. However, none of these studies have quanti�ed the extent of this bias.

To understand the large di¤erence between semiparametric and parametric results, we

performed several di¤erent checks. First, we examined the normality assumption in the

insurance equation by using semiparametric methods to estimate the density of the error.

In particular, we obtained the semiparametric estimate of the expectation of the insurance

dummy conditioned on the index. In a traditional threshold-crossing model, this estimated

expectation is the estimate of the distribution function for the error term. Taking a nu-

merical derivative then produces its density. As shown in Figure 3.1, the density estimator,

which we re-centered to have median zero, is remarkably non-normal for the insurance error.

It should be noted that other components of the model (access and expenditures) depend

on the insurance decision. Therefore, mispeci�cation errors in the insurance equation will

be transmitted to these other components of the model.

12The 90 percent con�dence interval for the marginal e¤ect is approximately [.29, .72], which is based on
the asymptotic distribution of the estimator as given in Klein, Shen, and Vella (2009).
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To evaluate the implications of parametric distributional assumptions not holding, we

performed the following experiment. Recall that in the parametric model, the G-functions

that control for selection and endogeneity are known under normality. The parametric

results were then obtained in an OLS estimation of the expenditure equation with these

G-functions included. Given the failure of parametric distributional assumptions to hold,

it would seem that these parametric G-functions are incorrect. Accordingly, we semipara-

metrically estimated these functions without making any assumptions on their functional

forms. Recall that the semiparametric estimates of the expenditure equation were obtained

by di¤erencing out the G-functions as their form was not known. However, once all of the

parameters of the expenditure model have been estimated, it is possible to obtain the semi-

parametric estimates of these functions. With the subscript s indicating a semiparametric

estimator:

Ĝ1s = Ê
h
YE �Xc�̂s � ĉs � �̂sI j A = 1; I = 1; V̂I ; V̂A

i
Ĝ0s = Ê

h
YE �Xc�̂s � ĉs � �̂sI j A = 1; I = 0; V̂I ; V̂A

i

Replacing the parametric G-functions with the �exibly estimated semiparametric functions

above, we then re-estimated the parametric expenditure equation. The marginal impact

of insurance was found to be .50, which con�rms the �nding that the parametric marginal

e¤ect has an upward bias by a factor of two.

Besides the di¤erence in marginal e¤ect of insurance coverage on the level of expen-

ditures, Table 3.7 shows that parametric and semiparametric approaches also give very

di¤erent marginal e¤ects for di¤erent population groups. Here, the parametric approach

restricts the marginal e¤ects of the groups to be monotonic, while the semiparametric ap-

proach does not have this restriction and hence can provide more accurate results. In the

parametric estimation, the marginal e¤ects of education on insurance for the three groups

(less than high school, high school, and some college or more) are 3.22% points, 2.00%

points, and 1.05% points, which shows a strong monotonic relation; in the semiparametric

estimation, without this restriction, the largest marginal e¤ect is also in the "less than high

school" population, and it is 1.37% points. However, the marginal e¤ects in the other two
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groups are at a similar level of 1.0-1.1% points. The same pattern happens for the marginal

e¤ects of education on utilization. The parametric estimation yields marginal e¤ects of

1.21% points, 0.58% points, and 0.38% points respectively for the three groups, while semi-

parametric estimation suggests again that the marginal e¤ects are close in the three groups

(3.25% points, 2.81% points, and 2.96% points). This result suggests that it is important

to improve health literacy in all groups, with probably more of the e¤ort placed on people

having less than high school education. Another interesting observation concerns the indus-

try insurance rate. In the semiparametric case, the biggest marginal e¤ect (1.71% points

compared to 1.55% points and 1.37% points) is in the middle group where the industry

insurance rate is 75-90%. The people in those industries have the greatest marginal bene�t

of getting into a more insured industry. In contrast, in the parametric case, marginal e¤ects

are again monotonic.

3.5 Conclusions

This chapter studies the determinants of three healthcare decisions: insurance, utiliza-

tion, and expenditures. We study the above interrelated healthcare decisions by analyzing

a system of three simultaneous equations. Both parametric and semiparametric methods

are employed to estimate the model. The merit of our semiparametric approach compared

to a parametric approach is that it avoids distributional and functional form assumptions,

which are not well justi�ed. Indeed, while there are many similarities, parametric and semi-

parametric approaches yield some very di¤erent results, which can lead to di¤erent policy

implications.

Without repeating all the empirical results, we want to summarize some important

�ndings and their policy implications. We �nd that insurance has a substantial e¤ect on

both utilization and expenditures. Both methods suggest that having private insurance

coverage increases the likelihood of seeking healthcare by about 15% points. However,

the estimated magnitude of the e¤ect on expenditure diverge. The parametric estimation

predicts the level of expenditures to increase by 125% if universal insurance is given; while

semiparametric estimation predicts an increase of 51%, a number close to that found in a

Rand experimental study (Newhouse et al., 1993). Because the parametric assumptions are
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incorrect, the parametrically estimated impact of insurance on expenditures has an upward

bias on the order of 100%. The policy relevance of this �nding is that the cost of extending

universal healthcare is much lower than predicted by traditional parametric methods.

Other marginal e¤ects are also worth noting. Education is an important factor in every

healthcare decision, and hence improving health literacy is an important issue in the obese

population. Given the pattern in the marginal e¤ects, parametric results suggest that

most, if not all, of the emphasis be placed on improving health literacy of the low education

group (below high school). In contrast, results from the semiparametric case suggest that

it is important to improve health literacy among all education groups (with the low group

somewhat favored). Finally both physical and mental illnesses increase expenditures dra-

matically. Physical illnesses increase the level of expenditures by about 35%, and mental

illnesses increase it even more (45%+). This suggests that the obese population with phys-

ical and mental illnesses is a very challenging population. More prevention and treatment

of physical and mental illnesses should be provided to this population.

There are some limitations and consequently some future research directions that we

want to point out. First, this study is based on the obese (BMI>30) population. It would

be interesting to investigate the magnitude of marginal e¤ects for di¤erent BMI categories.

Second, we do not have information to distinguish the type of healthcare encounters, for

example, whether it is a preventive checkup with a physician or an acute episode of some

disease. It would be useful to distinguish di¤erent types of healthcare use, so that we

can study the e¤ects on di¤erent types of healthcare. Third, since this is a cross-sectional

dataset, we do not know the temporal e¤ects. It would be interesting to know, for example,

how the use of preventive care in the previous periods a¤ect inpatient care use in subsequent

time periods.
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Table 1.1 Estimation Results

Basic Design
S1SLS S2SLS CS2SLS

Bias 0.000 0.000 0.000
Rvar 0.042 0.031 0.031
Rmse 0.042 0.031 0.031

Binary Response Design
S1SLS S2SLS CS2SLS

Bias -0.010 -0.002 0.000
Rvar 0.063 0.060 0.059
Rmse 0.064 0.060 0.059

Discrete Regressor Design
SLS-TW CSLS-TW S1SLS S2SLS CS2SLS

Bias -0.019 -0.017 -0.023 -0.036 -0.019
Rvar 0.045 0.046 0.041 0.036 0.037
Rmse 0.049 0.049 0.047 0.050 0.042

General Linear Model Design
S1SLS S2SLS CS2SLS

Bias
-0.005
0.043

0.000
-0.003

0.001
-0.004

Rvar
0.089
0.132

0.069
0.109

0.069
0.109

Rmse
0.089
0.139

0.069
0.109

0.069
0.109
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Table 2.1 Test Results

Basic Design
5% theoretical critical value 10% theoretical critical value
Uncentered Recentered Uncentered Recentered
UCV KCV UCV KCV UCV KCV UCV KCV

size 0.039 0.041 0.085 0.100
R power 0.721 0.894 0.809 0.923

adjusted power 0.746 0.903 0.827 0.923
size 0.237 0.232 0.062 0.063 0.315 0.319 0.108 0.116

TW power 0.774 0.899 0.729 0.890 0.841 0.930 0.810 0.921
adjusted power 0.344 0.665 0.711 0.878 0.537 0.764 0.802 0.917

size 0.219 0.232 0.063 0.065 0.319 0.309 0.110 0.118
BRR power 0.768 0.905 0.723 0.889 0.842 0.936 0.809 0.920

adjusted power 0.449 0.744 0.700 0.878 0.617 0.836 0.792 0.914

Binary Response
5% theoretical critical value 10% theoretical critical value
Uncentered Recentered Uncentered Recentered
UCV KCV UCV KCV UCV KCV UCV KCV

size 0.049 0.035 0.097 0.067
R power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

adjusted power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
size 0.147 0.125 0.044 0.022 0.253 0.206 0.098 0.057

TW power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
adjusted power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

size 0.209 0.167 0.059 0.023 0.335 0.279 0.133 0.056
BRR power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

adjusted power 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2.1 Test Results Continued

Discrete Regressor Design
5% theoretical critical value 10% theoretical critical value
Uncentered Recentered Uncentered Recentered
UCV KCV UCV KCV UCV KCV UCV KCV

size 0.206 0.220 0.338 0.353
R power 0.973 0.989 0.989 0.992

adjusted power 0.911 0.967 0.943 0.978
size 0.772 0.770 0.167 0.177 0.809 0.813 0.273 0.282

TW power 0.996 0.996 0.99 0.994 0.996 0.998 0.994 0.995
adjusted power 0.007 0.069 0.96 0.986 0.027 0.218 0.977 0.992

size 0.864 0.874 0.051 0.053 0.909 0.901 0.096 0.089
BRR power 0.996 0.999 0.996 0.997 1.000 1.000 0.996 0.997

adjusted power 0.014 0.144 0.996 0.997 0.048 0.322 0.996 0.998

General Linear Model Design
5% theoretical critical value 10% theoretical critical value
Uncentered Recentered Uncentered Recentered
UCV KCV UCV KCV UCV KCV UCV KCV

size 0.034 0.045 0.082 0.089
R power 0.572 0.850 0.684 0.889

adjusted power 0.624 0.856 0.717 0.892
size 0.136 0.132 0.032 0.045 0.207 0.203 0.087 0.088

TW power 0.565 0.822 0.511 0.806 0.675 0.861 0.629 0.863
adjusted power 0.301 0.697 0.572 0.817 0.492 0.789 0.655 0.868

size 0.152 0.153 0.038 0.049 0.227 0.231 0.090 0.097
BRR power 0.695 0.909 0.522 0.817 0.800 0.931 0.647 0.872

adjusted power 0.417 0.806 0.585 0.819 0.606 0.874 0.665 0.875
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Table 2.2 Comparison of Fixed Weight and Adaptive Tests
Quadratic Weight Test

5% theoretical critical value 10% theoretical critical value
Uncentered Recentered Uncentered Recentered
UCV KCV UCV KCV UCV KCV UCV KCV

size 0.036 0.043 0.076 0.091
R power 0.045 0.698 0.094 0.774

adjusted power 0.062 0.713 0.119 0.783
size 0.139 0.144 0.034 0.040 0.219 0.226 0.075 0.088

TW power 0.055 0.716 0.043 0.695 0.109 0.780 0.094 0.774
adjusted power 0.012 0.559 0.061 0.708 0.020 0.662 0.120 0.783

size 0.049 0.057 0.038 0.044 0.099 0.106 0.073 0.086
BRR power 0.044 0.704 0.044 0.697 0.094 0.774 0.095 0.771

adjusted power 0.045 0.681 0.061 0.706 0.099 0.768 0.126 0.786

Adaptive Test
5% theoretical critical value 10% theoretical critical value
Uncentered Recentered Uncentered Recentered
UCV KCV UCV KCV UCV KCV UCV KCV

size 0.043 0.048 0.089 0.095
R power 0.768 0.968 0.845 0.976

adjusted power 0.786 0.968 0.852 0.976
size 0.466 0.460 0.045 0.049 0.565 0.565 0.093 0.095

TW power 0.813 0.975 0.757 0.966 0.877 0.981 0.833 0.976
adjusted power 0.223 0.822 0.770 0.966 0.349 0.881 0.846 0.976

size 0.094 0.090 0.045 0.049 0.164 0.159 0.093 0.099
BRR power 0.796 0.971 0.757 0.962 0.860 0.978 0.830 0.975

adjusted power 0.727 0.959 0.763 0.962 0.806 0.973 0.842 0.975
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Table 3.1 
Description of Study Population 

   N  % 
    
All  2771 100.0 
    
Insurance Coverage   
 Insured 2283 82.4 
 Uninsured 488 17.6 
Utilization    
 yes 2509 90.5 
 no 262 9.5 
Expenditures    
 no expenditures 262 9.5 
 <1,000 990 35.7 
 1,000-2,000 443 16.0 
 2,000-5,000 607 21.9 
 5,000-10,000 265 9.6 
 10,000+ 204 7.4 
Education    
 Less than high school 471 17.0 
 High school 946 34.1 
 College or higher 1354 48.9 
Age     
 <40 1022 36.9 
 40-49 856 30.9 
 50+ 893 32.2 
Income    
 <20,000 781 28.2 
 20,000-30,000 569 20.5 
 30,000-50,000 794 28.7 
 50,000+ 627 22.6 
Gender    
 Female 1460 52.7 
 Male 1311 47.3 
Race    
 White 1551 56.0 
 Non-white 1220 44.0 
Number of Comorbidities   
 Zero 1352 48.8 
 One 881 31.8 
 Two plus 538 19.4 
Mental Illnesses   
 yes 540 19.5 
 no 2231 80.5 
Current Smoker   
 yes 542 19.6 
 no 2229 80.4 
Marital Status   
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Table 3.1 
Description of Study Population 

   N  % 
 Married 1714 61.9 
 Other 1057 38.1 
Family Size    
 One-Two 1219 44.0 
 Three-Four 1069 38.6 
 Five plus 483 17.4 
Region    
 Northeast 381 13.7 
 Midwest 611 22.0 
 South 1206 43.5 
 West 573 20.7 
Industry Insurance Rate   
 <75% insured 519 18.7 
 75-90% insured 1326 47.9 
 90%+ insured 926 33.4 
Occupation    
 White-collar 830 30.0 
 Other 1941 70.0 
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Table 3.2 

Description of Study Population by Insurance Coverage 
  Insured Uninsured p-value 
   N  %  N  %  
       
All  2283 82.4 488 17.6  
Utilization       <.01 
 yes 2147 85.6 362 14.4  
 no 136 51.9 126 48.1  
Expenditures       <.01 
 no expenditures 136 51.9 126 48.1  
 <1,000 765 77.3 225 22.7  
 1,000-2,000 388 87.6 55 12.4  
 2,000-5,000 549 90.4 58 9.6  
 5,000-10,000 248 93.6 17 6.4  
 10,000+ 197 96.6 7 3.4  
Education       <.01 
 Less than high school 283 60.1 188 39.9  
 High school 778 82.2 168 17.8  
 College or higher 1222 90.3 132 9.7  
Age         <.01 
 <40 788 77.1 234 22.9  
 40-49 727 84.9 129 15.1  
 50+ 768 86.0 125 14.0  
Income        <.01 
 <20,000 470 60.2 311 39.8  
 20,000-30,000 461 81.0 108 19.0  
 30,000-50,000 745 93.8 49 6.2  
 50,000+ 607 96.8 20 3.2  
Gender      0.77 
 Female 1200 82.2 260 17.8  
 Male 1083 82.6 228 17.4  
Race        <.01 
 White 1379 88.9 172 11.1  
 Non-white 904 74.1 316 25.9  
Number of Comorbidities       <.01 
 Zero 1052 77.8 300 22.2  
 One 761 86.4 120 13.6  
 Two plus 470 87.4 68 12.6  
Mental Illnesses       <.01 
 yes 471 87.2 69 12.8  
 no 1812 81.2 419 18.8  
Current Smoker       <.01 
 yes 423 78.0 119 22.0  
 no 1860 83.4 369 16.6  
Marital Status       <.01 
 Married 1470 85.8 244 14.2  
 Other 813 76.9 244 23.1  
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Table 3.2 
Description of Study Population by Insurance Coverage 

  Insured Uninsured p-value 
   N  %  N  %  
       
Family Size       <.01 
 One-Two 1025 84.1 194 15.9  
 Three-Four 888 83.1 181 16.9  
 Five plus 370 76.6 113 23.4  
Region        <.01 
 Northeast 346 90.8 35 9.2  
 Midwest 531 86.9 80 13.1  
 South 943 78.2 263 21.8  
 West 463 80.8 110 19.2  
Industry Insurance Rate       <.01 
 <75% insured 343 66.1 176 33.9  
 75-90% insured 1121 84.5 205 15.5  
 90%+ insured 819 88.4 107 11.6  
Occupation       <.01 
 White-collar 754 90.8 76 9.2  
 Other 1529 78.8 412 21.2  

 
 
 
 
 
 



 73

 
Table 3.3 

Description of Study Population by Utilization 
  Utilization No Utilization p-value 
   N  %  N  %  
       
All  2509 90.5 262 9.5  
Insurance Coverage       <.01 
 Insured 2147 94.0 136 6.0  
 Uninsured 362 74.2 126 25.8  
Education        <.01 

 
Less than high 
school 380 80.7 91 19.3  

 High school 849 89.7 97 10.3  
 College or higher 1280 94.5 74 5.5  
Age         <.01 
 <40 872 85.3 150 14.7  
 40-49 785 91.7 71 8.3  
 50+ 852 95.4 41 4.6  
Income        <.01 
 <20,000 668 85.5 113 14.5  
 20,000-30,000 495 87.0 74 13.0  
 30,000-50,000 749 94.3 45 5.7  
 50,000+ 597 95.2 30 4.8  
Gender        <.01 
 Female 1369 93.8 91 6.2  
 Male 1140 87.0 171 13.0  
Race        <.01 
 White 1449 93.4 102 6.6  
 Non-white 1060 86.9 160 13.1  
Number of Comorbidities       <.01 
 Zero 1138 84.2 214 15.8  
 One 834 94.7 47 5.3  
 Two plus 537 99.8 1 0.2  
Mental Illnesses       <.01 
 yes 518 95.9 22 4.1  
 no 1991 89.2 240 10.8  
Current Smoker     0.02 
 yes 477 88.0 65 12.0  
 no 2032 91.2 197 8.8  
Marital Status     0.01 
 Married 1571 91.7 143 8.3  
 Other 938 88.7 119 11.3  
Family Size       <.01 
 One-Two 1129 92.6 90 7.4  
 Three-Four 972 90.9 97 9.1  
 Five plus 408 84.5 75 15.5  
Region      0.07 
 Northeast 354 92.9 27 7.1  
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Table 3.3 
Description of Study Population by Utilization 

  Utilization No Utilization p-value 
   N  %  N  %  
       
 Midwest 562 92.0 49 8.0  
 South 1086 90.0 120 10.0  
 West 507 88.5 66 11.5  
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Table 3.4 

Parametric and Semiparametric Estimation Results -- Insurance Coverage 
  Parametric Estimation 
  Estimate ( SE ) p-value ME (% pts.) 
 Intercept -6.47 ( 0.57 )   <.01   
 Age 0.04 ( 0.02 ) 0.09 0.10 
 Age² -3.86E-04 ( 2.62E-04 ) 0.14   
 Number of Comorbidities 0.10 ( 0.04 ) 0.01 1.90 
 Mental Illnesses 0.14 ( 0.09 ) 0.12 2.68 
 Female -0.01 ( 0.07 ) 0.83 -0.30 
 White 0.28 ( 0.07 )   <.01 5.74 
 Income 0.29 ( 0.03 )   <.01 0.58 
 Current Smoker -0.07 ( 0.08 ) 0.36 -1.45 
 Years of Education 0.09 ( 0.01 )   <.01 1.85 
 Married 0.36 ( 0.07 )   <.01 7.54 
 Family Size 0.01 ( 0.02 ) 0.72 0.16 
 Region-Northeast 0.23 ( 0.12 ) 0.06 4.41 
 Region-Midwest 0.12 ( 0.10 ) 0.23 2.44 
 Region-South -0.10 ( 0.08 ) 0.23 -2.03 
 Industry Insurance Rate 2.61 ( 0.30 )   <.01 2.54 
 White-collar -0.04 ( 0.08 ) 0.61 -0.88 
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Table 3.4 Continued 

Parametric and Semiparametric Estimation Results -- Insurance Coverage 

  Semiparametric Estimation 
  Estimate ( SE ) p-value ME (% pts.) 
 Intercept       
 Age -0.01 ( 0.02 ) 0.56 0.00 
 Age² 1.65E-04 ( 2.91E-04 ) 0.57  
 Number of Comorbidities 0.12 ( 0.05 ) 0.01 1.84 
 Mental Illnesses 0.07 ( 0.09 ) 0.47 1.00 
 Female 0.09 ( 0.08 ) 0.25 1.42 
 White 0.27 ( 0.09 ) <.01 4.32 
 Income 0.74 ( 0.13 ) <.01 3.31 
 Current Smoker -0.07 ( 0.09 ) 0.45 -1.03 
 Years of Education 0.09     1.40 
 Married 0.45 ( 0.10 ) <.01 7.22 
 Family Size 0.00 ( 0.02 ) 0.85 0.06 
 Region-Northeast 0.00 ( 0.14 ) 0.02 4.83 
 Region-Midwest 0.04 ( 0.10 ) 0.68 0.64 
 Region-South -0.03 ( 0.09 ) 0.75 -0.44 
 Industry Insurance Rate 2.81 ( 0.56 ) <.01 2.06 
 White-collar -0.12 ( 0.08 ) 0.13 -1.86 

 
 
 

Estimate=parameter estimate; SE=standard error; ME (% pts.)=average marginal effect in percentage points. 
Expenditure and income are in $1,000 and are logged. 
Reference group for region = West. 
Marginal effects of continuous variables are calculated by moving everyone in the sample above by 1 unit, except 
income and industry insurance rate which were moved by 10% and 5% respectively. 
Marginal effects of discrete variables are calculated by moving everyone in the sample from zero to one. 
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Table 3.5 
Parametric and Semiparametric Estimation Results – Utilization 

  Parametric Estimation 
  Estimate ( SE ) p-value ME (% pts.) 
 Intercept 0.03 ( 0.67 ) 0.97   
 Age -0.04 ( 0.03 ) 0.20 0.10 
 Age² 5.64E-04 ( 3.56E-04 ) 0.11   
 Number of Comorbidities 0.56 ( 0.07 )   <.01 5.55 
 Mental Illnesses 0.31 ( 0.12 ) 0.01 3.69 
 Female 0.43 ( 0.08 )   <.01 5.77 
 White 0.05 ( 0.09 ) 0.57 0.66 
 Income -0.01 ( 0.04 ) 0.86 -0.01 
 Current Smoker -0.10 ( 0.09 ) 0.28 -1.36 
 Years of Education 0.05 ( 0.02 )   <.01 0.70 
 Married 0.25 ( 0.09 ) 0.01 3.38 
 Family Size -0.04 ( 0.03 ) 0.12 -0.55 
 Region-Northeast 0.02 ( 0.14 ) 0.88 0.28 
 Region-Midwest 0.04 ( 0.12 ) 0.76 0.47 
 Region-South 0.08 ( 0.10 ) 0.39 1.11 
 Insurance Coverage 0.88 ( 0.29 )   <.01 15.50 
 Correlation Factor -0.09 ( 0.17 ) 0.61  
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Table 3.5 Continued 
Parametric and Semiparametric Estimation Results – Utilization 

  Semiparametric Estimation 
  Estimate ( SE ) p-value ME (% pts.) 
 Intercept       
 Age 0.01 ( 0.04 ) 0.86 0.12 
 Age² 1.25E-04 ( 4.81E-04 ) 0.79  
 Number of Comorbidities 0.55 ( 0.26 ) 0.03 3.39 
 Mental Illnesses 0.64 ( 0.33 ) 0.05 4.18 
 Female 0.51 ( 0.27 ) 0.05 3.52 
 White -0.35 ( 0.22 ) 0.10 -2.27 
 Income -0.28 ( 0.21 ) 0.19 -1.40 
 Current Smoker 0.13 ( 0.12 ) 0.27 0.88 
 Years of Education 0.05     0.36 
 Married 0.36 ( 0.18 ) 0.05 2.40 
 Family Size -0.10 ( 0.07 ) 0.15 -0.66 
 Region-Northeast 0.00 ( 0.19 ) 0.41 -1.05 
 Region-Midwest 0.19 ( 0.18 ) 0.27 1.31 
 Region-South 0.21 ( 0.18 ) 0.22 1.44 
 Insurance Coverage      13.70 
 Correlation Factor       

 
Estimate=parameter estimate; SE=standard error; ME (% pts.)=average marginal effect in percentage points. 
Expenditure and income are in $1,000 and are logged. 
Reference group for region = West. 
Marginal effects of continuous variables are calculated by moving everyone in the sample above by 1 unit, except 
income and industry insurance rate which were moved by 10% and 5% respectively. 
Marginal effects of discrete variables are calculated by moving everyone in the sample from zero to one. 
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Table 3.6 
Parametric and Semiparametric Estimation Results -- Level of Expenditures 

  Parametric Estimation 
  Estimate ( SE ) p-value ME (%) 
 Intercept 5.00 ( 0.52 )   <.01   
 Age -1.23E-03 ( 0.02 ) 0.95 1.40 
 Age² 1.72E-04 ( 2.23E-04 ) 0.45   
 Number of Comorbidities 0.40 ( 0.04 )    <.01 40.40 
 Mental Illnesses 0.55 ( 0.07 )    <.01 54.99 
 Female 0.15 ( 0.06 ) 0.01 15.45 
 White 0.25 ( 0.06 )   <.01 25.17 
 Income -0.01 ( 0.04 ) 0.78 -0.10 
 Current Smoker -0.18 ( 0.07 ) 0.01 -17.73 
 Years of Education 0.03 ( 0.01 ) 0.01 3.28 
 Family Size -0.04 ( 0.02 ) 0.05 -3.56 
 Insurance Coverage 1.25 ( 0.32 )   <.01 124.85 
 Correction Term wrt Visit -0.05 ( 0.33 ) 0.89   
 Correction Term wrt Insurance -0.32 ( 0.16 ) 0.05   
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Table 3.6 Continued 
Parametric and Semiparametric Estimation Results -- Level of Expenditures 

  Semiparametric Estimation 
  Estimate ( SE ) p-value ME (%) 
 Intercept       
 Age 1.60E-04 ( 0.02 ) 0.99 1.00 
 Age² 1.15E-04 ( 2.36E-04 ) 0.63  
 Number of Comorbidities 0.35 ( 0.08 )  <.01 34.96 
 Mental Illnesses 0.45 ( 0.10 )  <.01 45.32 
 Female 0.08 ( 0.08 ) 0.33 8.06 
 White 0.36 ( 0.07 )  <.01 36.37 
 Income 0.09 ( 0.05 ) 0.06 0.93 
 Current Smoker -0.20 ( 0.07 ) 0.01 -19.75 
 Years of Education 0.03 ( 0.01 ) 0.02 3.23 
 Family Size -0.03 ( 0.02 ) 0.13 -3.07 
 Insurance Coverage      50.63 
 Correction Term wrt Visit       
 Correction Term wrt Insurance       

 
Estimate=parameter estimate; SE=standard error; ME (%) =average marginal effect in percentages. 
Expenditure and income are in $1,000 and are logged. 
Reference group for region = West. 
Marginal effects of continuous variables are calculated by moving everyone in the sample above by 1 unit, except 
income and industry insurance rate which were moved by 10% and 5% respectively. 
Marginal effects of discrete variables are calculated by moving everyone in the sample from zero to one. 
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Table 3.7 

Marginal Effects across the Distribution of Select Variables of Interest 
  ME on Insurance (% pts.) 
 parametric semiparametric 
Education    
 Less than high school 3.22 1.37 
 High school 2.00 1.00 
 College or higher 1.05 1.11 
Industry Insurance Rate   
 <75% insured 4.28 1.55 
 75-90% insured 2.32 1.71 
 90%+ insured 1.41 1.37 
  ME on Utilization (% pts.) 
 parametric semiparametric 
Education    
 Less than high school 1.21 3.25 
 High school 0.58 2.81 
 College or higher 0.38 2.96 
Industry Insurance Rate   
 <75% insured -- -- 
 75-90% insured -- -- 
 90%+ insured -- -- 

 
 
ME on Insurance (% pts.)=median marginal effect on insurance in percentage points. 
ME on Utilization (% pts.)=median marginal effect on utilization in percentage points. 
Marginal effects of education are calculated by moving everyone in the sample above by one year. 
Marginal effects of industry insurance rate are calculated by moving everyone in the sample above by 5%. 
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Figure 3.1 

Estimated error distribution in the insurance equation 
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Appendix A

1 Main Results

In the proofs of Theorems 1-2 below we provide proofs for the large sample properties of
the second stage estimator, with the argument for the �rst-stage estimator being similar
but shorter as it is based on a regular expectation. In so doing, we simplify notation by not
subscripting objective functions, gradients, and hessian expressions.

Proof of Theorem 1. (Consistency: �̂2). De�ne:

Q̂ (�) �
�
�̂ v

h
Y � f̂=ĝ�

i2�
; Q (�) �

D
� v [Y � f=g]2

E
Then, recalling (D3), letting �i � �̂ v

���f̂i=ĝ�i � fi=gi��� ; and "i � Yi � fi=gi :���Q̂ (�)�Q (�)��� � C + S + T

C � 2 hjY j �i ; S �
D�
f̂=ĝ� + f=g

�
�
E
; T � 1

N

X
j�̂ vi � � vij "2i

For C, with Ĉ21 � 4


�̂ vY

2
�
= Op (1), from Cauchy�s inequality and Lemma 5:

C � Ĉ1


�2
�1=2

= Op (1)


�2
�1=2

= op (1)

With a similar argument holding for S and T , Q̂ (�) converges uniformly in � to Q (�) in
probability. From standard arguments, Q (�) converges uniformly to E [Q (�)] in probabil-
ity. Therefore:

sup
�

���Q̂ (�)� E [Q (�)]��� p! 0:

From Ichimura (1993), E [Q (�)] is uniquely maximized at �0; which completes the proof.

We provide the proof for the asymptotic linear characterization in Theorem 2(b); other
results are similarly obtained or follow directly.

Proof of Theorem 2. (Asymptotic Normality: �̂2). With Ĥ (�) � r��0Q̂ (�) and
Ĝ (�) � r�0Q̂ (�), from a Taylor series expansion:

p
N
�
�̂2 � �0

�
= �

h
Ĥ
�
�+
��1i hp

NĜ (�0)
i
; �+ �

h
�̂2; �0

i
:

For the Hessian, with H(�) � r��0Q (�):

sup
�

���Ĥ(�)� EH(�)��� � sup
�

���Ĥ(�)�H(�))���+ sup
�
jH(�)� EH(�))j

From Lemma 5, the �rst term converges in probability to 0. From standard arguments,
the second term also converges in probability to zero. Therefore, as �+

p! �0 : Ĥ
�
�+
� p!

EH(�0) � H0



84

For the gradient, with ŵ � r�M̂ :
p
NĜ (�0) =

p
N
h
h[ Y �M ] �̂ ŵi �

Dh
M̂ �M

i
�̂ ŵ
Ei
�
p
N
h
ĜA � ĜB

i
;

For ĜA; with " � Y �M; and GA � h[Y �M ]�wi ;
p
N
h
ĜA �GA

i
=
p
N [�1 +�2 +�3] ;

�1 � h"� [ŵ � w]i ; �2 � h" [�̂ � � ]wi ; �3 � h" [�̂ � � ] [ŵ � w]i

From Lemma 9, �1
p! 0: For �2; let

� i � 1 fc1o < vi (�o) < c2og � � i (�o) ; �o � [�o; c1o; c2o]

Employing a similar strategy to that in Klein (1993), let N " � h� : j�� �oj < "i ; " = o(1):
Then,

p
N�2 = op(1) if

sup
N"

N1=2
X

[� i (�)� � i (�o)] "iwi=N = op(1)

for all " = o(1):1 The result then follows from Pakes and Pollard (1989, Lemma 2.17, p.
1037).

Turning to �3; let �� (�̂) be an indicator on the union of the sets over which � (�̂) and
� (�o) are de�ned. Then:
p
N j�3j �

p
N hj"j j� (�̂)� � (�o)j �� (�̂) jŵ � wji �

p
N j�31j j�32j ;

j�31j �
hX

"2i [� i (�̂)� � i (�o)]
2 =N

i1=2
, j�32j =

�
sup
N"

X
��i (�) [ŵi � wi]

2 =N

�1=2
To analyze j�31j, for k = 1; 2 let:

S (z) �
n
1 + exp[�

�
N�(s�") + z

�
=N�(s�")=2

o�1
, 0 < " < s

S�k � S (jv (�)� v0j+ jck � ck0j � jv0 � ck0j) + 1� S (0) ; k = 1; 2:

Then, from from Klein (1993, Lemma A.1):

j� i (�o)� � (�̂)j � S�1 + S
�
2 .

Let �N � jv � v0j + jc1 � c10j ; wk � jv0 � ck0j ; and write S�k � S (�N � wk) + 1 � S (0) :
Note that j�̂� �oj = N�(s+"), s > 1=4 and that 1 � S (0) = op (N

�s) : As in Klein (1993,
Lemma A.2), Taylor expand S (�N � wk) in �N about �N = 0: Assuming that E

�
"2i jXi

�
is

bounded, it can then be shown that j�31j
2 = op

�
N�1=2 � Since j�32j2 = Op

�
N�1=2�, the

result follows.
For ĜB; from Lemma 9:

p
N
h
ĜB � Ĝ�B

i
p! 0; Ĝ�B �

Dh
M̂ �M

i
�w
E

1 If uniformity holds for q � N" for all " = o(1); then uniformity holds over op (1) neighborhoods of qo :
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Next, noting that M̂i � f̂i=ĝi, recalling the de�nition of Kij in (D3), letting

�ij �
1

h
[YjKij �MKij ] [� iwi] =gi;

and employing Lemma 10:

p
N
h
Ĝ�B � UN

i
p! 0,

UN �
��

f̂=ĝ �M
�
w
ĝ

g

�
=

��
f̂ � ĝM

� w
g

�
=

1

N (N � 1)
X
i

X
j 6= i

�ij=N .

A U-statistic has the form:�
N
2

��1X
i

X
j > i

��ij , �
�
ij = ��ji::

For UN above:

N (N � 1)UN =
X
i

X
j > i

�ij +
X
i

X
j < i

�ij =
X
i

X
j > i

�ij +
X
j

X
i>j

�ij

=
X
i

X
j > i

�ij +
X
j

X
i>j

�ij =
X
i

X
j > i

�ij +
X
i

X
j>i

�ji:

Therefore, with ��ij =
�
�ij + �ji

�
=2 , UN has the conventional U-statistic form.

As discussed in section 2.1, with UN = B�S , E
�
�ij
�
= 0 =) E (UN ) = 0 under index

trimming and the residual property of wi: Since UN is a centered U-statistic and since
it can be shown that E(��0ij�

�
ij) = o(N), then (see Ser�ing(1980) and Powell, Stock, and

Stoker(1989)):
p
N [UN � ÛN ] = op(1); where:

p
NÛN � N�1=2

X
i

�
E
�
�ij j Xi; Yi

�
+ E

�
�ji j Xi; Yi

��
� T1 + T2

For T1 : E
�
�ij
�
= 0 ) E (T1) = 0: As E

�
�ij j Xi; Yi

�
= O

�
h2
�
; it may be shown that

V ar (T1)! 0: It follows that T1 = op (1) : The T2-term vanishes because E (wj jVj) = 0.
Therefore,

p
NĜB

p! 0, from which it follows that

p
N
�
�̂2 � �0

�
= �H�1

0

hp
N h[Y �M ]�wi

i
Asymptotic normality now follows from a standard central limit theorem.

Below we provide the proof for Theorem 3(a) which characterizes the kthcentered mo-
ment underlying the test statistic. Parts (b-c) of the theorem are either immediate or have
arguments similar to (a).

Proof of Theorem 3. (Test Statistic: Asymptotic Null-Distribution) De�ne:

p
NT̂ �k

�
�̂
�
=
p
N
D �

Y � M̂
�
�̂
���

M̂k � Ê(M̂kjV
�
�̂
��E
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From a Taylor series expansion, Theorem 2, and Lemma 3:

p
NT̂ �k

�
�̂
�
=
p
NT̂ �k (�0)�Rk, Rk � hr�w�kiH�1

0 Go + op (1)

With ŵ�k � M̂k � Ê
�
M̂kjV

�
, write T̂ �k (�0) = T̂ �Ak + T̂

�
Bk; where:

T̂ �Ak � h (Y �M)i ŵ�k; T̂ �Bk � �
D�
M̂ �M

�
ŵ�k

E
Analogous to the proof of Theorem 2, we show that

p
NT̂ �Ak =

p
NT �k +op(1) and

p
NT̂Bk =

op (1), where:
T �k (�0) = h(Y �M) (Mk � E(MkjV )i

Write
p
N
h
T̂Ak � T �k

i
as:

p
N
D
(Yi �Mi)

nh
M̂k �Mk

i
�
h
Ê(M̂kjV )� E(M jV )]

ioE
Convergence in probability to zero then follows for the �rst component from Lemma 7 and
for the second component from Lemma 8. For T̂Bk, from lemmas 9 -10,

p
NT̂B = op (1)

by an argument similar to that for ĜB in Theorem 2. Hence:

p
NT̂ �k

�
�̂
�
=
p
NT �k (�0)�Rk(�0) + op(1)

2 Intermediate Lemmas:

2.1 Convergence Rates

The proof of the following Lemma is due to Bhatacharaya (1967) and relies on an exponential
bound due to Hoe¤ding (1963). A version of the proof is also contained in Klein (1993).

Lemma 1. (Uniform Convergence Rates for Bounded Functions). With zi i.i.d., Let
mi � m (t; zi; �) be random variables such that:��miN

�s�� = O (1)

Then, for � and t in compact sets, m as the vector with ith element mi; and � > 0 :

sup
t;�
jhmi � E [hmi]j = op

�
N�(1=2)+s+�

�
Lemma 2. Assume:

h ââi = Op
�
N�1h�s

�
;
D
b̂b̂
E
= Op

�
N�1h�t

�
;

where s+ t < 6. Then, with h = O(N�r); r < 1=6:
p
N
D
âb̂
E
= op(1)

Proof. The proof follows directly from Cauchy�s inequality:hp
N
D
âb̂
Ei2

� N hââi
D
b̂b̂
E

Lemma 3. (Convergence Rates) For V a continuous random variable with density gv,
let rd� (gv) be the dth partial derivative of g with respect to �; r0� (ĝv) � ĝv: Let  ̂ (t; �)
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refer to either ĝv (t; v) or f̂v (t; v) and let  (t; �) refer to the corresponding true functions,
gv or fv. Then, for � in a compact set and t in a compact subset of the support of V , the
following rates hold for d = 0; 1; 2:

a) : sup
t;�
E

�h
rd�
�
 ̂ (t; �)

�
� E

�
rd�
�
 ̂ (t; �)

� �i2�
= O

�
1

Nh2d+1

�
b) : sup

t;�

���E � rd�
�
 ̂ (t; �)

� �
�rd� ( (t; �))

��� = O
�
h2
�

Proof. As the proof is standard (e.g., see Klein, 1993), we outline it below. When
 (t; �) = g and d = 1. The variance calculation in (a) is immediate2. For the bias calculation
(b), write E

�
r1� (ĝ (t; �))

�
as:

1

h

Z
r1� ( K [(t� v) =h]) gx(x)dx =

1

h
r1�
Z
K [(t� v) =h] gx(x)dx =

1

h
r1�
Z
K [(t� v) =h] gv(v)dv = r1�

Z
K (z) gv(t+ hz)dz

The result now follows from a standard Taylor expansion in h, with t restricted to be away
from the support boundary for V .

The test statistic depends on the marginal expectation of Y conditioned separately on
each variable in the index. For a discrete variable Z, E(Y jZ = t) can be estimated as
the sample mean of Y for those observations at the support point or by using the same
kernel representation employed for continuous random variables. Delgado and Mora (1995)
provide a similar result using the nearest neighbor estimator. As the argument for kernels
is very short, we provide it below.

Lemma 4. (Discrete Regressors). Let Z be a discrete random variable with support
points tk : Pr (Z = tk) > 0: With t as one of these points, de�ne the sample mean:

�Y (t) �
X
Zj = t

Yj=N (t) ;

where N(t) is the number of sample observations for which the random variable Z = t:
Assuming E jYj j is bounded,and that Ê is a regular expectation with window parameter
r > 0 (D3), then: ���Ê(Y jZ = t)� �Y (t)

��� = Op (1=N)

Proof. With f�g as an indicator on the indicated set, by de�nition Ê(Y jZ = t) is

2The estimator has the form: X 1

h2
k [(t� wi) =h] =N

With the bias term vanishing faster than the second moment term, the order of the variance is given by:

E
�
k2 [(t� wi) =h]

�
h4N

Letting z = (w � t) =h; a factor of h disappears in the Jacobian; the result follows.
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given as: P
fZj = tgYjK(0) +

P
fZj 6= tgYjK [(t� Zj) =h]P

fZj = tgK(0) +
P
fZj 6= tgK [(t� Zj) =h]

�
�Y (t) + �1
1 + �0

;

�d �
X

Zj 6= t

Y dj K ([t� Zj ] =h) = [N (t)K(0] ; d = 0; 1

Then, ��� �Y (t)� Ê(Y jZ = t)
��� = ����0 �Y (t)��1��� = [1 + �0] � j�1j+ �� �Y (t)�� j�0j

For jt� Zj j > c; a �xed positive and �nite constant, K ([t� Zj ] =h) = o
�
1=N2

�
: For the

normal-kernel case, this term vanishes at an exponential rate. The result follows by taking
expectations of both sides.

To establish consistency for the estimator, we require the relative convergence results
below.

Lemma 5. (Adjusted Expectations) Recalling that X is bounded and that � lies in a
compact set, assume that E � E(Y jV ) is bounded, where V is the index. From the tail
condition (A6), Y has tails thinner than a t-distribution with df = 4 degrees of freedom.
De�ne � � df= (df � 1) and let "; � > 0. Recalling the adjustment parameter � in (D3),
let ÊA be an adjusted expectation with adjustment parameter � : 0 < � < 1=2 and window
parameter r :

0 < r <
1=2� �

�(1 + �) + "

Then, withrk� as the partial derivative operator as de�ned above and recalling the de�nition
of ĝ� (t) :

(1) : sup
�

�h
ÊA � E

i2�
= op (1)

From (D3), recall that Êa � f̂ (x�; �) =ĝ� (x�; �) : Assume that rk�E and rk�g are
O(1); k = 0; 1; 2: From (D3), recall that Êa � f̂ (x�; �) =ĝ� (x�; �) : Let the window pa-
rameter satisfy:

0 < r <
1=2� �

�(1 + k) + "

Then, for � in an op(1) neighborhood of �0; k = 0; 1; 2; and for D = rk�
h
f̂ (x�; �)� f (x�; �)

i
or rk� [ĝ� (x�; �)� ĝ� (x�; �)] :

(2)sup
x;�
�̂
�
x�̂
�
D=ĝ� (x�; �)a = op (1)

Proof. For (1), since f(t)=g(t) is by assumption bounded, it su¢ ces to show Tf ,
Tg = op (1) :

Tf � sup
�

� h�
f̂ � f

�
=ĝ�
i2�

; Tg � sup
�

D
[ (ĝ � g) =ĝ�]2

E
.
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For Tf (the proof for Tg is similar), write Tf � A+B, where:

A � sup
�

D ����f̂ � Ef̂� =ĝ����E ; B � sup
�

�h�
Ef̂ � f

�
=ĝ�
i2�

Each of these terms is examined below.

A: Relative Convergence to Expectation

With b > 0, let bj � 1 if jYj j < h�b and 0 otherwise. Following a strategy employed
by Ichimura (1993), consider separately bounded and unbounded regions for Yj : Letting
Kj � K [ (t� vj (�)) =h] ; de�ne:

f̂b (t) �
NX
j=1

bjYj
hN

Kj ; f̂u (t) �
NX
j=1

(1� bj)Yj
hN

Kj

Then, A � Ab +Au, where:

Ab � sup
�;t

����f̂b (t)� Ef̂b (t)� =ĝ� (t)���
Au � sup

�;t

����f̂u (t)� Ef̂u (t)� =ĝ� (t)��� :
Recall that ĝ� (t) � ĝ (t)+haq̂(1� �̂); where (1� �̂) is a smoothed indicator that depends on
lower and upper sample quantiles denoted by q̂a and q̂b:With qa and qb as the corresponding
population quantiles, let A� � fg : q�a < t < q�bg be a �xed subset of the support for V that
contains A � ft : qa < t < qbg : De�ne ��(t) as the indicator on A�; then letting

�b � h�asup
�;t

����f̂b (t)� Ef̂b (t)����
Ab � �b

"
ha sup
�;t

j[��(t)=ĝ (t)]j+ hasup
�;t
j[1� ��(t)] =�̂ (t)j

#

On A�; inf ĝ (t) p! g
¯
> 0: On the complement, inf �̂

p! 0. Therefore, Ab
p! 0 if �b

p! 0:
From Lemma 4:

�b = O
�
h�a

�
op

�
h�1�bN�1=2+�

�
; � > 0:

Since h = O (N�r) ; �b
p! 0 for r < (1=2� �)=(1 + a+ b):

For Au; Au
p! 0 if �u

p! 0; where:

�u � h�asup
�;t

����f̂u (t)� Ef̂u (t)���� � h�asup
�;t

���f̂u (t)���+ h�asup
�;t

���Ef̂u (t)���
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With a similar argument holding for both terms, for the �rst term:

h�aE sup
�;t

���f̂u (t)��� � h�a�1
1

N

X
j

E [(1� bj) jYj j] ;

Employing the tail assumption on Yj , it su¢ ces to show convergence to zero for:

h�(1+a)
Z 1

h�b
y=
��
1 + y2

�(df+1)=2�
dy � h�(1+a)

Z 1

h�b
y=
�
y(df+1)

�
dy:

With df > 1; the above bound is

O
h
h�(1+a)h(df�1)b

i
;

which converges to zero for

b = "+ (a+ 1) = (df � 1) ; " > 0:

Combining this restriction with that on r above (for �b
p! 0 ) and letting � � df= (df � 1),

the uniform convergence for term A follows with: r < (1=2� �)= [� (1 + �) + "].

B: Relative Bias

Let Xk be a continuous variable supported on [ak; bk]. For c : 2a < c < 1, write 1 (A)
as an indicator on A, and with Xk , k = 1; :::;Kc as a continuous component of X, de�ne:

SN � fx : ak + hc < xk < bk � hc, k = 1; :::;Kcg

where the product is taken of the k = 1; :::;Kc continuousX-variables. On SN ; sup
�
B

p!
0 from Lemma 3. On the complement of SN , it can be shown that B vanishes if the
probability on this set vanishes su¢ ciently fast (0 < 2� < c).

The proof for (2) can be based on a similar argument. Alternatively, we can exploit
trimming to establish uniformity in an op (1) neighborhood of �0: To outline the argument
for one of the terms in (2), write:

� � 1
�
â�X

�
�̂ � �

�
< X� < b̂+X

�
� � �̂

�� ���rk� hf̂ (x�; �)� f (x�; �)i��� =ĝ� (x�; �)a
Denote jcj as the vector with ith element jcij : Then, with �̂ � jXj

����̂ � ���� and with � as the
indicator on X� s.t. â� �̂ < X� < b̂+ �̂; � is bounded above by:

�
���rk� hf̂ (x�; �)� f (x�; �)i��� =ĝ� (x�; �)a

� �

ĝ� (x�; �)a

h���rk� hf̂ (x�; �)� Ef̂ (x�; �)i���+ ���rk� hEf̂ (x�; �)� f (x�; �)i���i
The proof for the �rst term is similar but simpler to that in (1) because ĝ� is uniformly
close to g and in large samples �g is bounded away from 0. The argument for the second
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term follows from Lemma 3b with minor modi�cations.

The following lemma provides a result that is useful for the recentered test statistic.
Lemma 6. Let �kMik � E (YijXik) and M̂ik � ÊI (YijXik) :Writing the window h =

O(N�r); refer to r as a window parameter. Then, assume that this estimated expectation
is regular (D3) with window parameter rI : 1=6 < rI < 1=4: Consider the estimated "outer"
expectation Êo(M̂ jV ) and assume that it is regular with outer window parameter ro < rI :
Below, we subscript h according to the window parameter upon which it is based (e.g.,
ho = O(N�ro))Then:

�E �
1

N

X
i

h
Êo

�
M̂ikjVik

�
� Êo (MikjVik)

i2
= op

�
N�1=2

�

Proof. By de�nition, with �j � M̂jk �Mjk, �E � �E1 +�E2; where:

�E1 � 1

N

X
i

24X
j 6=i

1

h2o (N � 1)2
�2jK

2
ij

35
�E2 � 1

N

X
i

24X
s

X
r 6=s

1

(N � 1)2
j�rjKir

ho

j�sjKis

ho

35
Note that

jaj jbj � max(a2; b2) � a2 + b2

Therefore, for �E2, which converges in probability to 0 slower than �E1 :

0 < �E2 <
1

N

X
i

24X
s

X
r 6=s

1

h2o (N � 1)2

�
�2rK

2
ir

h2o
+
�2sK

2
is

h2o

�35
It su¢ ces to show that E (�E2) = o

�
N�1=2�. From above:

E (�E2) = O (1)

�
E

�
�2rK

2
ir

h2o

�
+ E

�
�2sK

2
is

h2o

��
Proceeding with the �rst term (the analysis for the second is identical), write: �r = �r [i] +
��r [i] ; where �

�
r [i] = O(1=hN) is the component of �r that depends on i and �r [i] is the

remaining component after the ith term has been removed. It can be shown that

E

�
�2rK

2
ir

h2o

�
= E

�
�2r [i]K

2
ir

h2o

�
+ o

�
N�1=2

�
=

1

ho
E

�
E
�
�2r [i] j Xr

�
E

�
1

ho
K2
ir j Xr

��
+ o

�
N�1=2

�
The �rst inner expectation is uniformly O

�
max(h4I ; 1= (NhI)

�
while the second inner ex-
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pectation is uniformly O(1). Therefore, with he = O(N�re); h = O(N r); and re < r :

E

�
�2rK

2
ir

h2o

�
= O

�
max

�
h3I
�
; 1=

�
Nh2I

��
+ o

�
N�1=2

�
= o

�
N�1=2

�
; 1=6 < r < 1=4:

Both the gradient and the moment conditions for the test statistic can be written as
the sum of two components, each of which depends on estimated weights. The next two
subsections show that in each of these components the weights may be taken as known.

2.2 Estimated Weights: [Y � E (Y jv)] ŵ
One of the components of the test statistic and of the gradient for the estimator depends
on a weighted distance between the dependent variable and its expectation conditioned on
an index. The following lemmas simplify this component.

Lemma 7. De�ne:

ŵi �
n
r�Êa (YijVi) or Ê (YijXki)

o
;

where Êa is an adjusted expectation (D3) with window parameter r : 1=8 < r < 1=4: The
expectation Ê is regular with window parameter rk = r: With Si � Xki or the index, Vi,

de�ne � (Si) as the indicator on a < Si < b: Assume E
���Y 2j jXj��� � ��2 = O(1): Then, with

ui � (Yi �Mi):

D �
p
N h� (Vi)u� (Si) (ŵ � w)i = op (1)

Proof. We provide the proof for ŵi � r�Êa (YijVi) ; as the proof for the other weight is
similar. Consider ŵ�i � r�Ê (YijVi) ; where Ê is regular with window parameter r. Since:

p
N h� (Vi)u (ŵ � ŵ�)i = op (1) ;

we need to establish convergence in probability to 0 for

D� �
p
N h� (Vi)u (ŵ� � w)i

Recalling from (D3) that for regular expectations: � � ŵ�i �wi = r�
�
f̂i=ĝi

�
�r� (fi=gi; ) ;

this di¤erential can be written as a sum of similar terms, one of which is given as

r�f̂i=ĝ �r�fi=gi =
h
gi

�
r�f̂i �r�f

�
�r�f (ĝi � gi)

i
=ĝigi

With similar arguments holding for the other terms, we analyze the �rst term. With
�i � r�f̂i �r�fi; this term is given as:

p
N h� (Vi)u�=ĝi = D�

1 + op (1) ; D
�
1 �

p
N h� (Vi)u�=gi :

Employing a mean-square convergence argument, E
h
(D�

1)
2
i
= S + C :

S � E


u2�2

�
; C � 1

N

X
i

X
j 6=i

E (uiuj�i�j)
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Taking an iterated expectation, S tends to zero. For C, write:

�i = �i [j] + ��i; �j = �j [i] + ��j ;

where ��i and ��j do not depend on Yi or on Yj: Then:

C = O(N)E (ui�j [i])E [uj�i [j]] = O(N)O

�
1

Nh2

�2
= O

�
1

Nh4

�
= o (1) :

With the exception of one weight component in the recentered moment conditions, the
lemma above will be applied to simplify both the gradient for the estimator and the moment
conditions. The complication, which is due to the recentering, is covered by Lemma 8 below.

Lemma 8. Referring to Lemma 6, let Mik � E (YijXik) and M̂ik � �kÊI (YijXik) :
Let ÊI and Êo be regular non-parametric expectations with respective windows rI and ro
satisfying the restrictions in Lemma 6. Then:

� �
p
N
D
�̂ [Y �M ] [Êo(M̂ jV )� E(MkjV )]

E
p! 0

Proof. Let ŵk � Êo(MkjV ), wk � E (MkjV ), and u � [Y �M ]. Employing the same
arguments as in the proof to Theorem 2 and Lemma 4.21 of Pakes and Pollard(1989), take
the trimming function as known and write � = �1 +�2 + op(1);

�1 =
p
Nh�u[ŵk � wk]i; �2 =

p
N
D
�u[Êo(M̂ jV )� Êo(MkjV )]

E
From Lemma 7, �1

p! 0: For the second term, the convergence rate in the expectation
di¤erential is not su¢ cient in itself to establish the desired result. Accordingly, in what
follows we show that �2 simpli�es to a term whose expected square converges to zero.

To simplify �2; substitute from the de�nitions in the statement of the lemma to obtain:

�2 = N�1=2
nX
i=1

� iui
ĝi

nX
j 6=i

1

ho(N � 1) [M̂j �Mj ]kij ]

With �02 de�ned by replacing ĝi with gi in �2, it can be shown that �2 = �
0
2 + op(1):

By de�nition:

�02 = N�1=2
nX
i=1

� iui
1

gi

nX
j 6=i

1

ho(N � 1) [
f̂1j
ĝ1j

� f1j
g1j
]kij

It can also be shown that:

�02 = N�1=2
nX
i=1

� iui
1

gi

nX
j 6=i

1

ho(N � 1) [
f̂1j
ĝ1j

� f1j
g1j
] [ĝ1j=g1j ] kij + op(1)

Writing �002 for the expression above:
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�002 � O
�
N�3=2h�1o

� nX
r=1

� rur
gr

nX
j 6=r
[f̂1j � f1j ĝ1jMj ]krj

= O
�
N�5=2h�1o h�1I

� nX
r=1

Tr; Tr �
� rur
gr

nX
j 6=r

nX
l 6=j

�
Ylk

1
lj � k1ljMj

�
krj .

To complete the argument, we show that E
h
(�00)2

i
= o(1). Squaring �002 and noting

that h�2I > h�2o , the expectation of the cross-product terms is:

E(CP ) = O(N�5)O
�
h�4I

�
O(N2)E(TrTs)

In Tr; for each j, there are O(1) terms that depend on Yr or on Ys: Therefore, there are
O(N) such terms obtained by summing over j. Similarly, there are O(N) such terms in
Ts: Except for these O(N2) terms, all others vanish in expectation. Therefore:

E(CP ) = O(N�5)O
�
h�4I

�
O(N2)O

�
N2
�
= O

�
1

Nh4

�
For hI = O(Np); p < 1=4; the above expectation vanishes. The argument for the squared
terms in �002 is similar.

2.3 Estimated Weights:
h
Ê (Y jV )� E (Y jV )

i
ŵ,

This weighted component appears in both the test statistic and the gradient for the esti-
mator. The lemmas below show that it is close in probability to a simpli�ed term.

Lemma 9. With h = O(N�r); 18 < r < 1
4 ; then, with ŵ as :

(a) :
@Ê (Y jV )

@�
; (b) : Ê (Y jXk) ; or (c) : Ê[�̂kÊ (Y jXk) jV ],

� �
p
N
hD
�̂ v

�
M̂ �M

�
ŵ
E
�
D
� v

�
M̂ �M

�
w
Ei
= op (1)

Proof. The arguments for (a), (b), and (c) are similar. For ŵ in (c), write:

� �
p
N
D
� v

�
M̂ �M

�
(ŵ � w)

E
+
p
N
D
� v

�
M̂ �M

�
(�̂ v � � v) ŵ

E
For the �rst term, the result follows from Lemmas 2 and 3. The argument for the second
term is similar (see the section of the proof of Theorem 2 relating to indicators).

Lemma 10. (A Linear Characterization) Under the same window condition as in
Lemma 9 and with M̂ as the vector with ith element M̂i � f̂i=ĝi:

p
N
hD�

M̂ �M
�
w (ĝv=gv)

E
�
D�
M̂ �M

�
w
Ei
= op (1)

Proof. The proof follows from Lemmas 2 and 3.
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Appendix B

1 Notation, Assumptions, and Intermediate Results

Here, we provide the large sample theory for the estimated parameters in the di¤erenced
expenditure equation. Klein, Shen, and Vella (2009), hereafter KSV, provide the large
sample theory for the estimates of a class of joint binary double index models that includes
the model considered here. Since these results are required for the di¤erenced expenditure
equation, we begin by brie�y summarizing them. Referring to Section 2, let

�o =

�
�I
�A

�
; V (�o) =

�
VI(�I)

VA(�A)

�
� Vo

and their corresponding estimators:

�̂ =

�
�̂I
�̂A

�
; V (�̂) � V̂

With Ho as the hessian w.r.t. the binary quasi-likelihood in KSV, it is shown:

p
N(�̂� �o)

d!W~N(0;�H�1
o )

As the estimator will depend on nonparametric expectations, we next provide their
de�nitions. For Z as any variable in the model (X or Y ), KAij � K [(vAi � vAj) =h], KIij
� K [(vIi � vIj) =h], the estimated conditional expectation is denoted as Êzi � Ê(ZjVAi =
vAi, VIi = vIi) and is given by:

Êzi � f̂i=ĝi � Êzi (V (�o))

f̂i � 1

(N � 1)h
X
j 6=i

Zj �̂ jKAijKIij

ĝi � 1

(N � 1)h
X
j 6=i

�̂ jKAijKIij

where �̂ j is a trimming function that provides protection from small denominators. We set
h = O (N�r) with r = 1=5 as the point-wise optimal window parameter.

Recall that we have the expenditure equation:

YE = Xc�c + c+ I�E + "E

De�ne control functions:

Gd(Vo) � E("E jA = 1; I = d; Z) = E("E jA = 1; I = d; Vo) where d 2 f1; 0g:

We can rewrite the expenditure equation as

YE = Xc�c + c+ I�E +Gd(Vo) + u
�
d

where u�d = "E �Gd(Vo)
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E [u�djA = 1; I = d; Z] = E [u�djA = 1; I = d; Vo] = 0

Partitioning Xc into Xc1 and Xc0 according to whether I = 1 or 0:

YE =

�
Xc1�c + c+ �E +G1 + u

�
1 : A = 1; I = 1

Xc0�c + c+G0 + u
�
0 : A = 1; I = 0

�
Since the control function is unknown, we employ an extension of Peter Robinson�s

di¤erencing method (Robinson, 1988):

YE � E(YE jA = 1; I = d; Vo) =
�

[Xc1 � E(Xc1jA = 1; I = d; Vo)]�c + u�1 : d = 1
[Xc0 � E(Xc0jA = 1; I = d; Vo)]�c + u�0 : d = 0

�
De�ning

Y � =

�
YE � E(YE jA = 1; I = 1; Vo)
YE � E(YE jA = 1; I = 0; Vo)

�
;

X� =

�
Xc1 � E(Xc1jA = 1; I = 1; Vo)
Xc0 � E(Xc0jA = 1; I = 0; Vo)

�
;

u� =

�
u�1
u�0

�
;

we can rewrite the di¤erenced YE equation as

Y � = X��c + u
�:

Since OLS is not feasible, we need to replace all true values with the corresponding
estimates. De�ne

Ŷ � =

�
YE � Ê(YE jA = 1; I = 1; V̂
YE � Ê(YE jA = 1; I = 0; V̂ )

�

X̂� =

�
Xc1 � Ê(Xc1jA = 1; I = 1; V̂ )
Xc0 � Ê(Xc0jA = 1; I = 0; V̂ )

�
�Y (�̂) = Y

� � Ŷ �; �X(�̂) = �c(X� � X̂�)

The feasible OLS estimating equation can now be written as:1

Ŷ � = X̂��c + "; " = u
� ��Y (�̂) + �X(�̂)

With the OLS estimator having the following form:

p
N
�
�̂c � �co

�
=
�
X̂�0X̂�=N

��1p
NX̂�0(u� ��Y (�̂) + �X(�̂))=N;

we now proceed to show that this estimator is consistent and asymptotically distributed as
normal.

Lemma 1. Double convergence. With hxyi �
P
xiyi=N , assume:

1We note that all available observations are employed in estimating the expectations used. However, in
the �nal OLS step, for technical reasons we need to exclude observations where estimated indices are too
close to their support boundaries.
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h ââi = Op
�
N�t� ;Db̂b̂E = Op �N�s� , where s+ t > 1:

Then,
p
N
D
âb̂
E
= op(1):

Proof. The proof follows directly from Cauchy�s inequality:hp
N
D
âb̂
Ei2

� N hââi
D
b̂b̂
E

Lemma 2. Employing notation and results above, with 
 as a positive de�nite matrix:

X̂�0X̂�=N
p

! 


Proof. We begin by showing that

(a) : X̂�0X̂�=N �X�0X�=N
p! 0

To see that this result must hold, write:

X̂� �X� = E(XjV )� Ê(XjV̂ )
= E(XjV )� Ê(XjV )

+Ê(XjV )� Ê(XjV̂ )

The �rst term E(XjV ) � Ê(XjV ) goes to zero from KSV. For the second term, which
arises because the index has been estimated, from a Taylor series expansion:

Ê(XjV )� Ê(XjV̂ ) = r�Ê(XjV +)(�̂� �o) = r�E(XjV )(�̂� �o) + op(1)

The result in (a) now follows. To complete the argument, from standard convergence
arguments

(b) : X�0X�=N
p! 
:

Lemma 3. With Êi (�0) = f̂i=ĝi, assume thatXh
f̂i � ĝiEi

i2
=N = Op(N

s)

and de�ne:
B̂ �

Xh
Êi (�0)� Ei(�0)

i
�̂ iŵi=N;

where ŵi is to be viewed as an estimated weight that converges to a �xed weight:X
[ŵi � wi]2 =N = Op(N

t); s+ t > 1

Then:
p
NB̂

p! 0:
Proof. To simplify B̂; we �rst deal with the estimated denominator in Êi ( �o) ; Write

B̂ as:
B̂ �

Xh
f̂i=ĝi � Ei

i
�̂ iŵi=N;
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From double convergence (Lemma 1):

p
N
h
B̂ � B̂�

i
p! 0; B̂� =

Xh
f̂i=ĝi � Ei

i
[ĝi=gi] �̂ iŵi=N

Employing similar arguments, it can be shown that

p
N
h
B̂� � UN

i
p! 0; UN =

Xh
f̂i=ĝi � Ei

i
[ĝi=gi] � iwi=N

The lemma will now follow if
p
NUN

p! 0: To proceed, in UN substitute the expressions
for f̂i and ĝi above to obtain:

UN =

�
N

2

��1XX�
�ij + �ji

�
=2

where �ij =
1

h
(ZjKij � EiKij)wi=gi

There are two properties of �ij that we will require to analyze UN : First, its expectation
is 0. To establish this result, note that:

E [(ZjKij � EiKij)jX] = H(V )

Therefore, from iterated expectations

E
�
�ij
�
=
1

h
E [H(V )wi=gi] = E [H(V )E (wijV ) =gi] = 0

As a second property of �ij , it can be shown that it does not explode too fast in that E
�
�2ij

�
=

O(N). Therefore, from Powell, Stock, and Stoker (1989) and Ser�ing (1980):

p
N(UN � ÛN )

p! 0

where ÛN = N�1=2
X�

E(�ij jXi;Yi) + E(�jijXi;Yi
�
):

From the properties of the weight function, E(�jijXi;Yi) = 0: For the �rst term:

E
�
E(�ij jXi;Yi)

�
= 0

Furthermore, it can be shown that the �rst term has the form:

E(�ij jXi;Yi) = h2Ti;

where Ti is bounded. Therefore:
p
NÛN =

p
Nh2

X
Ti=N

converges to zero in probability as it has expectation of 0 and variance that converges to
zero.
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Lemma 4. Referring to the form for the estimator shown above:

X̂�0(u� ��Y (�̂) + �X(�̂))=N
p! 0

Proof. For the �rst term, since X̂�
i �! X�; it can be shown that:

X̂�0u�=N �X�0u�=N
p! 0;

with X�0u�=N
p! 0. For the second term, from a Taylor series expansion:

X̂�0�Y (�̂)=N = X̂�0�Y (�0)=N +r�
h
X̂�0�Y (�0)

i
(�̂� �0) + op(1)

From Lemma 3, the �rst term vanishes, while the second term vanishes from the asymptotic
form for the estimator for the index parameters shown above. The argument for the �X(�̂)
term is identical.

2 Main Results

Theorem 1 Consistency. �̂c � �c
p! 0

Proof. Consistency is immediate from Lemma 1-2.

Theorem 2 Normality. De�ne 
 as above and let

d = r� [��Y (�0) + �X(�0)] and A � p lim
�
X�0d=N

�
C1 � E

�
S1NS

0
1N

�
; S1N �

p
NX�0u�=N

C2 � A(H�1
o )A0

Then: p
N
�
�̂c � �c

�
d!W;

where W is distributed as:

W~N(0;�);

� = 
�1 [C1 + C2] 

�1

Proof. Recall that

p
N
�
�̂c � �c

�
=
�
X̂�0X̂�=N

��1p
NX̂�0(u� ��Y (�̂) + �X(�̂))=N

From Lemma 1,
�
X̂�0X̂�=N

�
p! 
: Therefore, it su¢ ces to show that the other (gradient)

term is normally distributed in large samples with covariance matrix C1 + C2:
To establish this result, we �rst simplify the gradient term by showing that we may

replace X̂� with X�: Consider:
p
N(X̂� �X�)

0
(u� ��Y (�̂) + �X(�̂))=N
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With wi � u�; from Lemma 2, the �rst term vanishes. For the second and third terms, from
a Taylor expansion in �̂, both terms vanish from double convergence arguments.

Proceeding with the simpli�ed gradient term, we need to establish asymptotic normality
for:

SN �
p
NX�0(u� ��Y (�̂) + �X(�̂))=N

Recalling that d = r� [��Y (�0) + �X(�0)] ; Taylor expanding in �̂:

SN = S1N + S2N + S3N ;

S1N �
p
NX�0u�=N

S2N �
p
NX�0 [��Y (�0) + �X(�0)] =N

S3N =
�
X�0d=N

�p
N(�̂� �0)

With wi � X�; from Lemma 4 the second term vanishes in probability. With A �
p lim

�
X�0d=N

�
as above:

S�3N � A
p
N(�̂� �0)

S�N = S1N + S
�
3N ;

Then, as S2N vanishes in probability,

SN � S�N =
h�
X�0d=N

�
�A

ip
N(�̂� �0)

Since the �rst component converges in probability to 0 and the second component converges
in distribution, the product of these two components converges in probability to 0 (Slutsky).
From above it su¢ ces to analyze S�N :

S�N =
p
NX�0u�=N �

p
NA(�̂� �0) � u1 � u2

To further simplify the analysis, as in typical selection models, we show that the covariance
between these error components is zero. To this end, suppose for observation i we have
Ai = 1 and Ii = 1 (the argument for the Ai = 1 and Ii = 0 case will be identical), then:

E
h
u1iu

0
2i

i
= [E (u1iu2ijAi = 1; Ii = 1; V )]P11: � C � P11

To show that this covariance is zero, it su¢ ces to show that C = 0. With �Ai � fAj ; j 6= ig
and with �Ii � fIj ; j 6= ig

C = E
�
E
�
u1iu2ijAi = 1; Ii = 1; �Ai; �Ii; V

��
= E

�
E
�
u1ijAi = 1; Ii = 1; �Ai; �Ii; V

�
u2i
�

= E [E (u1ijAi = 1; Ii = 1; V )u2i] = 0;

because of the recentered form for u1: From the form of S�N ; a standard central limit theorem
applies to yield normality, with expectation 0 and covariance matrix given by the sum of
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the covariance matrices for the two elements of S�N ; namely:

S�N
d! S�~N(0; C1 + C2);

C1 � E
�
S1NS

0
1N

�
; C2 � E

�
S3NS

0
3N

�
;

where the �rst component accounts for heteroscedasticity and the second accounts for pa-
rameter estimation uncertainty. The theorem now follows.

Remark 1 With minor changes in notation, the above theorem also applies in a GLS step.
With estimates given from above, de�ne the residual and conditional variance function as:

"̂ = Ŷ � � X̂��̂c
Ŝ2(X) = Ê

�
"̂2jv̂A; v̂I

�
With all variables de�ned relative to Ŝ(X) and with C1 above rede�ned as the identity
matrix, Theroem 2 immediately extends to the GLS version of this estimator.
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