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Unidimensionality – a condition, under which only one dominant construct is being 

measured by the test, is a fundamental assumption of most modern day psychometric 

models. However, some tests are multidimensional by design. A test, for instance, might 

measure physics, biology and chemistry subscales combined to measure a “general 

science” composite. The relative magnitudes of those subscales sometimes shift from 

administration to administration, which results in an altered composite. This study 

examined the conditions under which two different forms of a multidimensional test 

measure the same composite construct to a degree that allows them to be equated, i.e. 

used interchangeably.  

IRT true-score equating was used in a simulation study to assess the closeness of 

the scores on the forms. Conditions examined included the correlations between 

subscales, varying number of items per subscale form to form, and different 

subpopulation ability estimates on the subscales. Differences in the equating errors due to 

generating model (1PL or 3PL) were also examined. A way of calculating a 
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unidimensional composite from a two-dimensional ability was devised and compared to 

the unidimensional composite obtained from Parscale. 

It was found that in general, the errors increase with decreasing correlation 

between traits and increased divergence of the two forms to be equated, with the later 

being the main predictor of the equating errors. However, the magnitude of those errors 

was small for the population as a whole especially when all examinee abilities are drawn 

from the same distribution. It was concluded that IRT true score equating is relatively 

robust to multidimensionality for the conditions examined, especially if the overall 

population score is desired. However, when accurate estimate of the equated score for 

individuals at the extremes of the population is needed, or whenever population abilities 

are drawn from more than one distribution, the unidimensional true score equating 

functions well only for very similar forms and with high correlations between traits. 
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1 Introduction 

 

1.1 Background 

Unidimensionality – a condition under which only one dominant construct is 

being measured by the test, is a fundamental assumption of most modern day 

psychometric models. However, in practice, all cognitive constructs are multidimensional 

to some extent. For instance, a general science test can consist of chemistry, physics and 

biology subscales, each of which, while correlated with the others, might be considered a 

separate mini-test measuring a different skill. The way the subscales are combined to 

measure examinee or subgroup mastery of the material and, in subsequent test 

administrations, trend, is critical to the validity of the assessment. 

Considerable research has gone into assessing if a test shows evidence of 

multidimensionality when it was not purposefully written to, with both parametric (e.g. 

factor analysis) and nonparametric (e.g. conditional covariance) methods applied to 

identify the clusters of items that measure the same ability and to examine the 

correlations among those clusters. This dissertation explores multidimensionality from a 

different viewpoint by considering a situation in which the multidimensional structure of 

the test is known, and the validity of the construct continuity assumption between 

subsequent assessment forms needs to be checked. Stated another way – how different 

can two multidimensional tests be and still measure the same overall ability.  

Most assessments consist of separate subscales (dimensions) which are combined 

together to form a composite. For instance, the (new) SAT verbal has reading 

comprehension, sentence completion and paragraph-length critical reading items; the 
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GRE writing test consists of an issue task and an argument task; the NAEP Reading 

assessment measures reading for literary experience, reading for information and reading 

to perform a task. Those dimensions are combined to measure verbal, writing and reading 

composite for the three tests respectively. But the relative magnitudes of those subscales 

sometimes shift from administration to administration, which results in an altered 

composite. A passage measuring one of the subscales on a reading test could show 

Differential Item Functioning (DIF)1 and might need to be removed, thus shifting the 

composite towards the remaining subscales. Or one of the subscales might be removed 

and replaced by a completely new one, as was the case with the (old) SAT verbal analogy 

items which were replaced by reading items on the (new) SAT verbal test. More 

commonly, a test is designed to certain specifications which cannot be fulfilled exactly 

year after year. The number of possible questions referring to a passage on a reading 

assessment for instance will depend on the passage. If a portion or all items are released, 

a different passage might consist of a different number of questions. 

 

1.2 Statement of the problem 

It is important to know when the construct measured by the test diverged from 

what it was originally designed to be. For one, the equated scores of examinees on a test 

are assumed to be equivalent even if they took the test at different administrations. A 

2300 on the (new) SAT is intended to have the same meaning for an examinee that took 

the December form as it does for an examinee that took the April form. This assumption 

cannot be made if the forms are measuring different things!  Secondly, any increase in 

                                                 
1  That is – conditioned on ability (usually approximated by a function of raw score and model-
specific parameters) at least one group performs worse than another group on an item. 
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examinee or group scores from administration to administration needs to be due to an 

increase in proficiency, not to change in the construct measured. If the conditions of 

measurement (format, timing, availability of accommodations for disabled students, etc) 

have changed between administrations, additional psychometric adjustments may be 

required and are usually employed. However, potential dimensional inconsistencies 

between administrations are rarely considered in this adjusting even though the validity 

of the assessment is at stake.   

A slight shift in the composite between administrations is probably unavoidable 

with items being released (or replaced with other items). However, it is desirable to 

identify when the construct measured by the test has shifted too much to reasonably 

assume that the original construct is still being measured. One could speculate that if, in 

the extreme case all items from one subscale were removed, the “same construct” 

argument obviously could not be made. 

This dissertation examines under what circumstances equating is no longer 

possible because of the shift in the composite described above when multidimensionality 

is assumed. It’s assumed throughout that once equating fails (i.e. the scores between 

different administrations for forms of the test are not comparable), the same construct has 

not been measured. 

 

1.3 Research Questions/Hypotheses. 

The following research questions were explored: 

1. What influences the magnitude of the equating errors for multidimensional test 

forms: 
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a. Correlation between dimensions – it was hypothesized that the higher 

correlation between the subscales, the more difficult it was going to be to 

distinguish between the dimensions on the test, which will result in 

smaller equating errors. 

b. Number of items on each subscale relative to the total number of items on 

the test – naturally, the more divergent the two forms of the test, the less 

equatable the tests. 

c. Different ability distributions of subpopulations on the dimensions. It was 

hypothesized that equating is more likely to fail with increased interaction 

of dimension and ability.  

2. Conversely – when are the equating errors small enough to justify the same 

construct assumption?  

3. As a practical implication of the research questions 1 and 2, one can ask whether a 

test can be scaled together to report a composite score (e.g. the ACT model) or 

should each subscale be considered separately (e.g. the SAT model) depending on 

the form and examinee characteristics? 

 

The dissertation is structured as follows: first, (Chapter 2) Item Response Theory 

(IRT) models are described and multidimensionality and equating are introduced. This 

chapter also reviews some of the equating literature together with equating evaluation 

indices and literature on the interaction of equating and multidimensionality. Chapter 3 

describes the methods used to answer the research questions posed above. Chapter 4 

states the results obtained. Finally, Chapter 5 lists the shortcomings of the study and 
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proposes some further studies to both expand the current methodology, and further 

explore the general problem of unidimensional equating of multidimensional traits. Full 

result tables are included in Appendix A. Appendix B lists the SAS output code for the 

glm procedure used to parse the results. Appendix C illustrates sample sizes at the 

extremes of the population. Parscale code used to obtain the ability estimates is included 

in Appendix D.  
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2 Theoretical Framework 

 

2.1 Item Response Theory (IRT) Models 

 Three models are commonly used in modern day psychometrics to describe 

examinee responses to individual dichotomous items. These are the One Parameter 

Logistic (1PL, a.k.a. the Rasch) model, Two Parameter Logistic (2PL) and the Three 

Parameter Logistic (3PL). The probability of a correct response on item i by an examinee 

with ability θ is given by: 
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for the 1PL, 2PL and 3PL respectively. In all of the above formulas a is the item 

discrimination, b is the item difficulty and c is the pseudo-guessing parameter. For the 

1PL model the discrimination is assumed to be identical for every item on the test. 
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The polytomous items2 are most often modeled by the Generalized Partial Credit model – 

the probability of an examinee with ability θ responding to the kth category of item i is 

given by: 
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where mi is the number of categories in the response to item j, ai is the slope parameter, bi 

is the item location parameter (characterizing the overall difficulty of the item) and id υ is 

the item i category k threshold parameter.   

Software (e.g. Testfact (Wood et. al, 2003), Bilog (Zimowski, Muraki, Mislevy, 

& Bock, 1996), Parscale (Muraki & Bock, 1993)) is readily available to estimate item 

parameters for those models, and it’s those parameters that are calibrated whenever IRT 

is used in equating. 

 

2.2 Multidimensionality 

 It seems convenient to define multidimensionality as the lack of 

unidimensionality. Unidimensionality is intuitively simple – only one characteristic is 

measured by the test. Stout, (1990) illustrates the point quite well– “the dimensionality s 

of a test U is the minimal dimensionality required for Θ to produce a latent model (U, Θ) 

which is locally independent and monotonic.” While there will always be nuisance 

variables measured – anxiety, motivation, etc, a cognitive test should be able to achieve 
                                                 
2  i.e. items scored as wrong, (different degrees of) partially correct and correct.  
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Local Independence and Monotonicity3 without those being included in the model.  Thus, 

while the performance on the science test described in the introduction might also be 

influenced by the examinee’s ability to read, follow directions, possibly reason logically, 

draw, and a number of other nuisance dimensions, it is hoped that the effects of those will 

be very limited. 

One of the important statistics for assessing the degree of multidimensionality 

between tests is the correlation between traits. This is calculated with a Pearson 

correlation: 

 

12
12

1 2

σρ
σ σ

=  

  

where σ1 and σ2 are the standard deviations of distributions of the abilities and σ12 is the 

covariance between the abilities.  

The correlation is calculated either between examinee abilities (in a simulation 

study, since those are not observed), or raw scores on the subscales. While for a 

mathematics test the correlations between subscales are usually fairly high – around 0.95 

for high school mathematics, some tests don’t exhibit that high of a correlation. 

Generally, the higher the correlation, the more difficult it is to distinguish between 

constructs measured. It might therefore be possible to equate a purely algebra test to a 

purely geometry test without much detriment given the high correlation between those 

                                                 
3  Local Independence means that conditioned on the construct the test is purported to measure, the 
person’s responses to items are independent P(U1, U2, …. Un | θ ) = P(U1 | θ) P(U2 | θ)... P(Un | θ)  
where Ui is the response of examinee with ability θ to item i. 
Monotonicity means that the probability of endorsing an item increases with ability. 
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two abilities. While a purist might argue that in such a situation the same construct 

requirement is not fulfilled, this might be of little statistical or practical consequence 

provided all subgroups exhibit comparable performance on both subscales.  

Item difficulty could be confused with multidimensionality (Ackerman, 1994) 

when one form subscale difficulty differs from the other form’s subscale difficulty. This 

will render equating impossible, since unidimensional equating functions cannot account 

for dimension-specific changes in difficulty. The scores in this situation would never be 

equivalent across forms.  

While today’s commonly used IRT models are based on the assumption of 

unidimensionality, the presence of multidimensionality at the item level does not 

necessarily mean equating between forms is impossible. In fact, multiple dimensions can 

add to the predictor space and thus assess the (purported) one-dimensional construct 

better. Dorans (2004c) gives an example of “reading graphs and tables”, which is a skill 

unto itself, but is also known to function differently for males and females. Still, it needs 

to be included in a social studies exam as part of the construct tested.  

Ackerman (1996) developed a graphical representation of multidimensional tests 

which has proven useful in visualizing such tests. This representation is depicted in 

Figure 1 below. 
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Figure 1: Graphical representation of multidimensional items (Ackerman, 1996) 

  

 Directional vectors are used to represent items. The length of a vector indicates 

the discrimination (item 1 is more discriminating than item 2); the angular direction of a 

vector indicates the composite trait that is being measured (item 3 measures θ1 only, 

while item 1 measures θ2 to a greater extent than it measures θ1). The location of the 

vector indicates item difficulty (item 2 is less difficult than either item 1 or 3). Ackerman 

also suggests different arrowheads for different magnitudes of the ‘c’ parameter – open-

tipped arrowhead for c<0.1, closed arrowhead for c between 0.1 and 0.2 and solid 

arrowhead for c>0.2. However, this unnecessarily complicates the picture and is not used 

here.  

 Notice in Figure 1 that item 3 measures only θ1, while items 1 and 2 measure both 

θ1 and θ2 (with item 2 measuring θ1 to a greater degree than θ2; item 1 – the reverse). If a 

test consists only of items similar to item 3, it is said to exhibit approximate simple 

structure, if there are items like item 1 or item 2 in the test – it is called a nonsimple 

structure. Since in a practical testing situation those structures are more a matter of 

agreement than of any theoretical justification and implementation of nonsimple structure 

θ1

θ2 item 1 

item 2 

item 3 
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to practical testing situations presents serious problems, a simple structure is most 

commonly assumed. This structure is going to be used in this study as well.    

 The situation described in the introduction in which the overall trait measured by 

the test shifts because individual items have been removed or added is schematically 

represented in Figure 2. 

 

 

 Figure 2: Graphical representation of the shifting ΘTT caused by the shift in individual items. 

 

 In 2a) items 1 and 2 predominantly measure the ability θ2, while item 3 

predominantly measures ability θ1. The overall test measures the direction indicated by 

the dashed arrow (called ΘTT throughout this dissertation following Stout, 1996, or the 

reference composite). In 2b) item 2 has been removed; ΘTT shifted more towards the θ1 

ability. In 2c) item 4 which measures θ1 over θ2 has been added to the test shifting the 

ΘTT even further towards the θ1. The question asked is if the same ΘTT is measured a 

through c.  

Currently, extensive research is being conducted on the multidimensional 

extensions of the IRT models (MIRT; e.g. Ackerman, 1994; Reckase, 1985, 1997; 

Reckase & McKinley, 1991). Most popular of those models are given by 
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θ1

θ2 

a 

Item 1 

Item 4 
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ΘTT
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for the 1PL, the 2PL and the 3PL respectively. Similar extensions exist for polytomous 

items (te Marvelde, Glas, van Landeghem & van Damme, 2006). As can be seen, the 

difference between the multidimensional and unidimensional IRT models described in 

section 2.1 is that both the discrimination and the ability parameters are now n-

dimensional vectors (ai
T in the equations above) representing the loading of the item 

discrimination and examinee ability on each of the n dimensions. di is a scalar related to 

the difficulty of the item. The above models are compensatory – an examinee can be very 

low on one ability and still endorse the item if she is sufficiently high on the other ability 

(or abilities). Noncompensatory IRT models have also been developed – generally those 

models have a multiplicative (rather than additive) ability. However, as they have not 

been widely used in research literature, they are not further considered here.   
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2.3 Equating 

The role of equating is to make scores interchangeable across forms. It is mainly 

used to adjust for difficulty differences of forms. While it is always possible to “match 

up” the scores on one test to the scores of another test, this “matching up” has to fulfill 

very specific criteria (listed on the next page following Dorans & Holland, 2000) in order 

to be called equating; otherwise linking or concordance are performed. Prediction – a 

regression technique that predicts the scores on one test from the scores on the other, is 

used infrequently in cognitive testing. Before the linking is done a “logical evaluation of 

the similarity of the processes that produced the scores” (Dorans, 2000) needs to be 

performed and the strength of the relationship between scores needs to be evaluated.  

Kolen and Brennan (2004, pp.7-8) list seven steps for implementing equating:  

1. Decide on the purpose of equating; 

2. Construct alternate forms; 

3. Choose a design for data collection; 

4. Implement data collection design; 

5. Choose one or more operational definitions of equating – what 

types of relationships between forms are to be estimated? 

6. Choose one or more statistical estimation methods; 

7. Evaluate the results of equating.  

Steps 1, 3, 5 and 7 are described in this section, steps 2,4 and 6 are described for this 

project in the methods chapter. Further description of step 7, specifically for this 

dissertation, is in Chapter 4. 
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Dorans and Holland (2000) identify 5 requirements for equating to be valid 

(following Lord, 1980). 

1. Same construct requirement – forms need to be developed to the same 

specifications. This requirement is only seemingly trivial. In practice, it’s very 

difficult to assess what the test measures. Dorans and Holland (2000) give an 

example of the (old) SAT verbal section which might be construed to measure 

verbal reasoning, “college-bound” vocabulary, white American domination, 

general intelligence, and so on, depending on the perspective (and agenda) of the 

person judging the construct. Even experts cannot reliably assess what the test 

measures nor, in a multidimensional case, partition the test into clusters 

measuring similar constructs. In a multidimensional case, the “same construct” 

requirement could also have multiple meanings. For instance, the consistency and 

quality of the dimensions measured by the test might need to be established. 

Moreover, individual items need to be classified according to what subscale they 

belong to (in a simple structure case) or to what extent they measure each 

subscale (in a nonsimple structure case). In fact, the constructs measured by a 

single item don’t have to be cognitive at all for a test to be multidimensional – 

Kim and Lee (2006) for instance, have found that item format (multiple choice vs. 

constructed response) measured different competencies in the simulation study 

they conducted. The authors suggest a separate calibration be used for items 

depending on their format.  

There have been multiple studies trying to link the various sections of the (old) 

SAT to seemingly corresponding sections of the ACT. While those tests can be 
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described as measuring the same construct, linking has not always been successful 

and can never be called equating. If the tests are build to different specifications 

only concordance is possible – the scores in this case are not interchangeable.  

2. Equal reliability requirement – both forms need to have the same reliability. For 

psychometric tests, reliability describes how well the observed score reflects the 

true score. The lower bound of reliability is called Cronbach’s alpha and is given 

by:  

 

2

21
1

j

j Y

N
N

σ
α

σ
⎡ ⎤

= −⎢ ⎥
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∑  

 

where N is the sample size, and σj and σY are the standard deviations of the item 

and the test respectively. 

3. Symmetry requirement – the function used to transform a score on form X to a 

score on the form Y scale has to be the inverse of the function used to transform a 

score on form Y to the score in the form X. This requirement eliminates simple 

linear regression (or any regression for that matter) as a form of equating, since 

f(x)≠f-1(x).  

4. Equity requirement – it is supposed to be a matter of indifference to the examinee 

which form she takes. This has the following immediate implications – firstly, the 

examinee should expect the same score regardless of which form of the test she 

took, and secondly – the distribution of scores given the ability should be the 

same on the original and equated forms. Lord (1980) defined it specifically as: 
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[ ]* ( ) | ( | )YG eq x G yτ τ τ= ∀ , where τ is the true score, eqY is an equating function 

used to convert scores on form X to form Y scale, G is the cumulative distribution 

of scores on form Y and G* is the cumulative distribution of eqY. Examines with a 

given true score have identical observed score means, standard deviations and 

distributional shapes of converted scores. The conditional standard error of 

measurement at any true score should be equal on the two forms. Therefore, if one 

form measures some ability a bit more precisely than the other form, the equity 

requirement is not met (Kolen & Brennan, p. 11). However, under Lord’s 

criterion equating is either not necessary, since the forms are identical, or is 

impossible, since any divergence between forms will never fulfill this 

requirement. This prompted Morris (1982) to suggest a first order equity property 

– examinees with a given true score have the same mean converted score on both 

forms: 

 

( ) | ( | ),yE eq X E Yτ τ τ⎡ ⎤ = ∀⎣ ⎦  

 

Similarly, the second order equity property – conditioned on the true score 

examinees have the same standard error of measurement on the two forms – is 

also commonly used to evaluate equating in simulation studies. Both first and 

second order equity properties are functions of unobservable true scores and 

therefore cannot be readily used in practice.  

5. Population invariance requirement – the choice of subpopulations on which the 

equating function is calculated does not influence the conversion of scores from 
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one form to the other. There are two ways of looking at the equating functions for 

subpopulations. The first one is to apply the equating function calculated on the 

full population to subpopulation Pj while concurrently applying the equating 

function calculated on the subpopulation Pj (epj) to it, the other is to apply the epj 

to the full population P. In the first case, the ep is treated as the “true” equating 

function and errors of the subpopulation-specific function are the errors due to 

equating, in the second case – the equating functions calculated on different 

subpopulations can be compared on the full population. The use of a function 

calculated on one subgroup on the other subgroup is “unlikely to be considered in 

practice”, but “may be of interest from a research perspective” (Liu, Cahn & 

Dorans, 2006).  

 

The requirements listed above are only theoretically straightforward. As 

mentioned previously, being able to assess what an item (and thus – a test) really 

measures can be a nontrivial endeavor. The reliability requirement is easily computed, 

but there has been no research to date on how close the reliabilities of two test forms need 

to be for the forms to be considered measuring the same construct. The population 

invariance is the most testable one, and can be used to evaluate the results of equating. If 

the population invariance assumption is violated there is strong evidence of an interaction 

between the form (presumably the difficulty of the form) and the group membership (i.e. 

the difficulty of both test forms differs across subgroups), which can result in differential 

item functioning of items or even of the whole form. Differential treatment (i.e. using 
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separate linking functions for subpopulations) has to occur if reproducing the 

distributions of scores on one form on the other form is the goal.  

When linking fulfills the first four requirements, but is not population invariant it 

is called concordance. If concordance is implemented, linking functions should be 

obtained for important subpopulations (Dorans & Holland, 2000). 

  

2.3.1 Data collection designs 

There are several experimental designs commonly used when equating of two test 

forms is desired. Those are represented graphically in Figure 3 (adapted from Davey, 

Oshima & Lee, 1996) on the next page. 

In the random group design (equivalent groups design) the examinees (from the 

same population) are randomly assigned to the form being administered. Any difference 

in score distributions in this design will be due to form, not to differences in examinee 

abilities (Han, Kolen & Pohlmann, 1997). Sometimes every other examinee is 

administered the same form – a procedure known as spiraling – which results in 

randomly equivalent populations receiving the two forms. Since each examinee takes 

only one form, it minimizes testing time, eliminates some of the practice and fatigue 

effects associated with taking a longer test, and is possible to administer in a high-stakes 

situation. However, large sample sizes are usually needed for this design. Additionally, it 

might be difficult to administer, if the forms consist of differently timed sections 

(Holland & Dorans, 2006). It is also impossible to administer forms in different test 

administrations, since ‘same population’ requirement is not met (unless the sample size is 

very large relative to the population size). In the single group design each examinee is 
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Figure 3: Data collection designs 

 

single group 
items

ex
am

in
ee

s 

common items 

items 

ex
am

in
ee

s 

common examinees 

items 

ex
am

in
ee

s 

common items and examinees 
items 

ex
am

in
ee

s 

random group 

items 

ex
am

in
ee

s 



    

    

20

given both test forms. In a real testing situation fatigue and practice effects are usually 

strong, and this design is not often used. In order to alleviate those effects, 

counterbalancing might be used – one form appears once in the first position (for the 

randomly chosen half of examinees), and once in the second position (for the remaining 

examinees). In practice, testing time has to be doubled to administer this equating design. 

However, a smaller sample size than for random group design is necessary if position 

effects are not present. Finally, the common item nonequivalent group design (NEAT 

design) is most often used in practical equating situations. In this design different 

populations of examinees are administered separate forms with some items in common 

between forms. The common items, called an anchor, should be representative of the test 

forms in terms of content and statistical characteristics, and should occupy a similar 

position within each form to control for position effects. A major advantage of this design 

is the chance to release non common items after they have been administered. The score 

on the anchor can either count towards the test score (internal anchor), or not (external 

anchor). Kolen and Brennan however suggest the common item nonequivalent groups 

design, while seemingly perfect, should be used with caution – strong statistical 

assumptions are necessary to separate the group and form differences. This separation 

gets more difficult with larger ability differences between the populations. The distinct 

populations might have to be combined (using weights) to form a synthetic population, 

but not all parameters of this synthetic population can be estimated (since the first 

population did not take the second form for instance). In this situation it is either assumed 

that the regression of each test form on the common items is the same for both 

populations, and that the conditional variance of each test form given the common items 
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are the same for both populations (the Tucker method), or that the true scores on form X 

and common items as well as on form Y and common items correlate perfectly for both 

populations and the measurement error variance is the same for each form on both 

populations (the Levine Observed score method).  

Generally, the single group design is the best; however, because of administration 

constraints it’s often impossible to implement in practice. Since this is a simulation study, 

with no administration limitations, single group design is going to be used.  This, of 

course limits its applicability, although the results obtained here can be considered an 

upper bound for the possible equating errors. This issue is further discussed in Chapter 5.  

 

2.3.2 Types of equating 

The following methods are commonly used to equate scale scores or link true 

scores. Each of them has its own assumptions, advantages and disadvantages. The 

methods described below are described for the random and single group designs. Most of 

them have been adapted for the other equating designs (such as the common item 

equating), but those adaptations are reviewed only cursorily.  

In the below descriptions X and Y are two forms of a test, as well as the scores on 

those forms. x and y represent a particular score, μ(x) and μ(y) denote the mean scores on 

form X and Y respectively and σ(x) and σ(y) denote the standard deviation of scores on 

those forms. eY is an equipercentile symmetric equating function used to convert scores 

on X to the scale of the score on Y. It is assumed that all forms fulfill criteria 1 and 2 of 

equating and all functions fulfill criteria 3, 4, and 5.  
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Mean equating 

In mean equating the difference between the difficulty of two forms is considered 

constant across the whole ability scale. The equating sets the means of form X and Y to 

be equal and scores that are an equal distance away from their means are set equal. 

 

( ) ( ) ( )Ym x x X Yμ μ= − +  

 

Linear equating 

In linear equating not only the means, but also the standard deviations of the 

scores are matched; the difference in difficulty of the forms is allowed to vary across the 

score scale. The standardized deviation scores (z-scores) are set to be equal. 

 

( ) ( )
( ) ( )

x X y Y
X Y
μ μ

σ σ
− −

=  

 

( )( ) ( ) ( )
( )Y

x Xl x y Y Y
X
μσ μ

σ
⎡ ⎤−

= = +⎢ ⎥
⎣ ⎦

 

 

With the linear equating, as with mean, equating it is possible for the equated 

score to be above or below the possible range of raw scores (i.e. negative for higher than 

the maximum raw score). Kolen and Brennan (2004, p.34) suggest 2 methods of 

adjusting for this. One is to allow the maximum and minimum equated score to float and 

the other is to truncate all negative scores to zero and set all scores above the maximum 

raw score to the maximum raw score. They note that sometimes the issue of choosing the 
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adjusting method is of “no consequence” since no one achieves the extreme scores. Often 

specific tests will have policies as to the assignment of the highest possible raw score. 

The SAT program for instance assigns the highest possible raw score to the highest 

possible scale score no matter what the equating results might indicate.  

 

Equipercentile equating  

Equipercentile equating uses a curve, rather than a line to describe differences in 

difficulty between forms and matches all moments of the form X score distribution. 

Angoff’s (1971, p. 563) definition of equipercentile equating states that “true scores, one 

on form X and the other on form Y (where X and Y measure the same construct with the 

same degree of reliability) may be considered equivalent if their corresponding percentile 

ranks in any given group are equal”. 

Braun and Holland (1982) restate this definition: “The function eY is the 

equipercentile equating function in the population if when the cumulative distribution 

function of scores on form X converted to the form Y scale is the same as the c.d.f of the 

scores on form Y”:  

 

eY(x) = G-1[F(x)] 

 

where F is the cumulative distribution function of X, G is the cumulative distribution 

function of Y. This definition of equipercentile equating is also used in “Test equating, 

scaling and linking” (Kolen & Brennan, 2004). 
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In practice, the discreteness of the scores might cause the distributions of the two 

scores to differ. However, in a large-scale testing situation “not being able to achieve the 

equal distribution goal is often more a theoretical consideration than a practical one” 

(Kolen & Brennan, p. 48).  

Equipercentile equating is straightforward to implement, has few assumptions 

(particularly regarding model fit) and is used in multiple testing programs (e.g. the SAT, 

which also uses linear equating whenever appropriate) It also does not have the problem 

of linear and mean equatings where the form Y equated scores are outside the possible 

range of form X raw scores.  

The algorithm for finding the equipercentile equivalent has 3 steps: 

1. For a score x on form X find the percentage of examinees at or below this 

score. 

2. Find a score y on form Y that has the same percentage of examinees at or 

below it. 

3. Score x and y are considered equivalent. 

In the case where the score distributions are identical in shape and differ only in 

their means and standard deviations, linear and equipercentile equating are equivalent. 

Linear equating introduces less random error than equipercentile equating, and it has 

been shown that equipercentile equating is linear equating with some variability added 

(von Davier, Holland & Thayer, 2004).  
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IRT true score equating 

The equating method described below assumes the items follow one of the Item 

Response Theory (IRT) models described in section 2.1 IRT true-score equating links 

true (i.e. unobserved) scores between test administrations. 

True score is the sum of p(θ)s for all items on the test: 

 

:

( ) ( ; , , )X i ij i j j j
j X

p a b cτ θ θ=∑  

 

where i denotes the examinee and j an item. IRT true score equating sets the item 

parameters to be equal between the two distributions. True scores on form X and Y are 

equivalent for a given θ. This equating method is very convenient with the common item 

nonequivalent group designs and, assuming the IRT model holds, is always population 

invariant (Han, Kolen & Pohlmann, 1997). However, observed, rather than true scores 

are present in testing situations, and there have been “philosophical differences” (Harris 

& Crouse, 1993) as to whether true score equating should be done in practice. 

In the data collection designs other than the single group design, item parameters 

have to be calibrated i.e. put on the same scale for the two forms. Methods of estimating 

item parameters have been a subject of research. Concurrent estimation (all item 

parameters from all forms are estimated together) is the most popular one; however, 

separate estimation (item parameters are estimated separately for each form then 

transformed to the same scale) has also been researched, as well as the fixed parameter 

(anchoring) estimation. In the separate estimation method matching item parameter 

means or means and standard deviations are used. The mean/sigma method uses the 
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means and standard deviations of the ‘b’ parameter estimates from the common items to 

put all the parameters on the same scale. The mean/mean method uses the means of both 

‘a’ and ‘b’ parameters for the same purpose. Item parameter scaling is only needed when 

the groups taking the two forms are nonequivalent, but it can reduce the estimation error 

by reducing the differences in the θ scale due to sampling error. There are also 

characteristic curve methods (such as the Stocking-Lord and Haebara) where all 

parameters for all items are considered simultaneously. Those usually produce less error 

(Kim & Lee, 2006) than the moments methods. They involve, however, extremely 

computationally intensive iterative procedures and are not further discussed here. 

Discussion, description and criticism of those methods are considered in detail in Kolen 

and Brennan (2004, p. 168). Davey, Oshima and Lee (1996) theoretically extended and 

adapted the unidimenisional linking procedures to a multidimensional case. Those 

extensions (called direct method, equated function method, test characteristic method and 

item characteristic function method) were tested in a simulation study by Oshima, Davey 

and Lee (2000).  

In research comparing the estimation methods it was generally found that for 

large sample sizes (around 3000 examinees per form) concurrent estimation had lower 

errors (Hanson & Beguin, 2002). When the number of common items is small, the 

separate estimation is better (Kim & Cohen, 1998). This last study concluded that further 

research was needed to reaffirm this estimation method’s superiority over separate 

estimation. If fact, the authors go on to say that using separate estimation and obtaining 

two sets of parameters might help pinpoint potential problems in scaling. Concurrent 
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estimation might even be better than the anchoring (fixed parameter) estimation, since 

larger sample size is used for parameter estimation. 

How true-score equating works in practice is represented graphically in Figure 4 

below where test characteristic curves for 2 forms are depicted.  

 

Figure 4: Illustration of true-score equating. 

 

For a given value of θ (0 in the figure above) the form 1 true score is x, while form 2 true 

score is y. Assuming the item parameters for those forms are on the same scale, x and y 

are considered equivalent.  

Notice that technically, IRT true-score equating is not equating according to the 

Dorans and Holland definition described above. While the population invariance 

requirement is theoretically fulfilled, it has never been tested in practice. The symmetry 

requirement might also be called into question because of inherent unavailability of true 

scores. However, since it is the “most commonly used” form of linking it’s going to be 

used here as well.  
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2.3.3 Some studies comparing equating methods. 

Care should be employed when using the model-based (IRT) equating methods in 

real testing situations since they have strong distributional assumptions for parameters. 

The assumption of normality for instance, is hard to keep for smaller sample sizes. 

Additionally, the parameter estimates are frequently not stable (with the ‘b’ parameter 

generally considered more stable than the ‘a’ parameter), and there usually is a large 

amount of measurement error on the θ values, especially at the extremes of the scale. This 

is especially pertinent if the 3PL model is used since there will be no relationship below 

the sum of the pseudo guessing parameters.   

Equipercentile and IRT true-score equating outperform other methods when the 

relationship is not linear, i.e. the shapes of score distributions (3rd and 4th moments) 

differ (Ree, Carretta & Earles, 2003) and accuracy is required along the whole score 

scale. In the random groups design, linear equating has been shown to have less random 

error for normally distributed scores than equipercentile equating, and thus requires 

smaller sample sizes to achieve the same equating precision (Kolen & Brennan, 2004 p. 

256). Similarly, single group linear equating usually has less error than the random group 

linear equating. In the single group design systematic error is more likely to occur with 

the need to counterbalance practice and fatigue effects (Kolen & Brennan, 2004, p. 15). 

Many studies have compared equating methods for unidimenisional tests. Han, 

Kolen and Pohlmann (1997) used the ACT datasets to compare IRT true and observed 

score equating with equipercentile equating. IRT true-score equating had more stable 

equating results than the other two equating methods. IRT true-score equating is sample 

independent. Since the ACT uses a randomly equivalent group design, any difference in 
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score distributions is due to form, not to examinee. The authors suggest equating the test 

onto itself (either by using the entire group or split-half groups) to assess the stability of 

the equating results. In the study, the IRT true score equating had the most minimum 

means of loss index, so it’s more stable than equipercentile equating. The authors also 

selected Math and English forms by difficulty (least, median and most difficult). The 

most difficult forms were equated to the other two forms and the median form was 

equated to the least difficult form. The equating differences were largest when the 

difficulty of the forms was most different (the result was not as clear for the mathematics 

forms).  

Tong and Kolen (2005) used the Iowa Test of Basic Skills (also a random group 

design) to compare the performance of the equipercentile, IRT true score and IRT 

observed score equating using three criteria – same distribution property, first-order 

equity property and second-order equity property4. The authors concluded that if the raw 

score distributions on the forms are similar all three methods lead to good equating. 

When raw score distributions are dissimilar, IRT true score method performs best in 

preserving the first order equity property while equipercentile and IRT observed score 

method preserve the second order equity property best. Equipercentile and IRT observed 

score method also work well if the same distributions are to be preserved. The greater the 

difficulty difference between the tests the more difficult it is for the first and second order 

properties to hold.  

The authors used the nonparametric Kolmogorov t-statistic which looks at the 

largest difference between the two relative cumulative distribution functions to test the 

                                                 
4  As a reminder – the first order equity property means that conditioned on the true score, 
examinees have the same scale score. Second order equity property – conditioned on the true score 
examinees have the same standard error of measurement on the two forms.  
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equal distribution property. The smaller the difference, the more similar the two 

distributions. This t-statistic has an advantage over the more popular methods described 

below of following a theoretical distribution. As the difference in CDFs increased, the 

first order equity property statistic did not increase, but the second order equity property 

statistic did. This increase was more pronounced for the IRT true score method. This was 

not entirely consistent with the hypothesis that as the difference in scores increases the 

first order equity is not preserved. The authors also used the standardized difference to 

look at the results (standardized in order to make the results for different forms 

comparable). The capitalization subtest had zero scale score differences, but not the maps 

and diagrams (which had the highest difference between the means on the two forms). 

Second order equity property is less likely to be preserved with a high difference in raw 

score distributions.  

Tong and Kolen concluded that all three equating methods lead to “reasonably 

similar” scale score distributions, with IRT true-score equating performing worse than the 

equipercentile equating on matching the scale score distributions (since it matches the 

estimated true scores).  

Tong and Kolen also conducted a simulation study with increased “b” parameters 

– adding 0.2, 0.4, 0.6, 0.8, 1 and 1.2 with the IRT true and observed score equating. The 

observed score equating had much smaller t-values for b=0.4 and above added, so it 

preserves the distributions better.  

The authors suggest that if tests differ substantially in their raw score 

distributions, use equipercentile and observed score to preserve the distributions and the 
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true-score to preserve the first order equity and observed score to preserve the second 

order equity.  

 

2.3.4 Evaluating equating results 

When can the tests be considered equated? How do we know if equating worked? 

Evaluating the results of equating is a necessary final step of the procedure. However, no 

universal procedure has been established so far for this purpose. What follows is a review 

of commonly used procedures.  

How do we know if we should even attempt to link forms? Dorans (2000) 

introduces the coefficient of alienation: 2(1 )r−  where r is the correlation between 

forms. The coefficient of alienation is a measure of statistical uncertainty that remains 

after inclusion of information from the predictor variable. In equating, the predictor 

variable is the form to be equated. Dorans posits that “if a predictor cannot reduce the 

uncertainty by at least 50 percent it is unlikely that it can serve as a valid surrogate for the 

score.” By simple algebra it follows that only correlations above 0.866 reduce the 

uncertainty by more than 50%. 

 Some of the evaluation measures are definitional in nature and therefore, at least 

conceptually, if not computationally, straightforward – mean, linear and equipercentile 

equating methods match the score characteristics of the distributions (first moment, first 

and second moments and all moments respectively). All equating by definition has to 

preserve equity (ideally the Lord’s definition of it, but in practice – preservation of the 

weak equity is checked), but equity is often difficult to compute and explain (Harris & 
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Crouse, 1993). There has been some research (Bolt, 1999) on the degree to which the 

equity fails to hold.  

When true abilities are known, as is the case in simulation studies, one might look 

at the misclassification rates of equating. Fitzpatrick and Yen (2001) looked at the false 

negative classification5 rates at the 25th percentile, arguing that this is a standard pass 

percentile for high-stakes state tests. Naturally, one does not want to classify a student as 

failing if the student’s ability is high enough to pass the test. (A mistake in the opposite 

direction, while carrying the same statistical importance, does not have grim 

consequences for the examinee). Similarly, one could look at what Ree, Carretta and 

Earles (2003) call the impact analysis – after equating, the test forms should have not 

only the same proportion of examinees passing the test, but also the proportions of 

examinees who passed one test form and failed the other should be the same. The authors 

suggest that the impact analysis be performed on the whole population and gender and 

race/ethnicity groups to evaluate the results of equating.  

Equating a test to itself has been suggested by some researchers (Han, Kolen & 

Pohlman, 1997; Harris & Crouse, 1993). It’s convenient, especially since the ‘true’ state 

is known (as is also the case when using generated data), but no equating will always be 

the best solution. Additionally, results obtained might depend on the starting form (Harris 

& Crouse, 1993). Simulated data problems will favor the equating method that uses the 

way the data were simulated (IRT equating when IRT models were used for instance). No 

equating is also a good solution if the distributions of scores on the two forms differ only 

by random error (as confirmed by the chi-square test for equal distributions). In this case 

equating would introduce only more random error.  
                                                 
5  Passing examinees classified as failing. 
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In order to evaluate the results of IRT true-score equating, the differences 

between equated scores and the criterion scores are considered. 

Han, Kolen and Pohlmann (1997) used weighted and unweighted mean signed 

difference (bias): 

 

0
( )

k

i i
i

u

T O
MSD

k
=

−
=
∑

   0
( )

k

i i i
i

w

f T O
MSD

N
=

−
=
∑

 

 

mean absolute difference  

 

0
| |

k

i i
i

u

T O
MAL

k
=

−
=
∑

    0
| |

k

i i i
i

w

f T O
MAL

N
=

−
=
∑

 

 

and root mean square difference  

 

2

0

( )
k

i i
i

u

T O
RMSD

k
=

−
=
∑

   

2

0

( )
k

i i i
i

w

f T O
RMSD

N
=

−
=
∑

 

 

to evaluate the results of their equatings. In all of the above formulas Ti is the equivalent 

score, Oi is the criterion score for the Ti, k is the number of score points (for dichotomous 

forms – the number of items on the test); fi is the frequency of the equivalent score Oi and 

∑(fi) is equal to the total sample size N. For IRT true-score equating Ti and Oi are the two 
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true scores on the two forms.  Those equating criteria are well established in literature 

(Livingston, Dorans & Wright, 1990; Harris & Crouse, 1993).  

The disadvantage of using bias to evaluate the results of equating is that it will 

cancel out, unless it’s in one direction across the whole of the score range, however, it 

can be “helpful diagnostically” (Livingston et. al, 1990) to investigate why the values of 

other indices are high. As such, it will be used in this study as well.    

Using weights (in mean absolute difference) allows for points that occur 

frequently to be given more emphasis. No weights might be used when the whole score 

scale is considered. Harris and Crouse warn against using weights, especially when 

equating data from a pilot study for instance – examinees in the operational assessment 

might score at the extremes at higher rates than during the pilot.  

The magnitude of the indices is used to evaluate the results, but what amount of 

difference is significant in equating has not been determined. Livingston et al (1990) set a 

cutoff for RMSD saying that a value of 5 or greater might imply problems in equating. 

Bias will lead to some values canceling out, but Livingston et al (1990) said that it can be 

“helpful diagnostically” to investigate why RMSD value is high.  

For the multidimensional case, if the true ability (or rather – abilities) is known 

(i.e. simulated) Bolt (1999) introduces the conditional bias of equating. 

 

( ) [ | ] [ ( ) | ]l x yd E X E x Yθ θ θ= −  

 

Where 1 2( , )θ θ θ= is the two-dimensional ability vector. This gives an indication of how 

well the equating function has matched expected scores. A positive value for ( )ld θ  



    

    

35

indicates that the expected performance at a given ability is greater on test X than test Y 

as a result of applying an equating transformation. Bolt suggests ( )ld θ  might also serve 

as the local index of equity performance measuring how equating bias changes as a 

function of θ. By integrating over all θ, weighted average bias is introduced: 

 

1 2

( ) ( )l lwad d f d
θ θ

θ θ θ= ∫ ∫  

 

Where f(θ) is the bivariate density function of theta. Since wad is weighted by f(θ) the 

size of the population influences the size of the bias.  

Finally, Bolt combines the first and second order equity criteria in the total 

conditional variance (tcv) measure: 

 

[ ]2( ) ( ) ( ) |Y Xtcv E x Y E Xθ θ= =  

2
1 ( ) [ ( ) | ]Yd Var x Yθ θ= +  

 

tcv gives a measure of how well the equating transformation predicts examinee expected 

score on X given the score on test Y. By adding ( | )XVar X θ to tcv, Bolt obtained an 

index measuring how well the equating fulfills Lord’s definition of equity. This index,  
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also assesses the accuracy of the expected score on X by Y compared to the actual score 

of X. 

Harris and Crouse (1993) concluded their review of equating results by saying 

that all of the methods are valuable, but more research needs to be done. They admit that 

“it appears likely that the summary indices will continue to be used on the basis of their 

prominence in literature”, not necessarily on the basis of their applicability to a particular 

equating situation.  

 

2.4 Intersection of the equating and multidimensionality  

To date, there has been very little research on the impact of multidimensionality 

on equating. Studies have generally concluded that the impact of multidimensionality on 

equating, at least the accuracy of the IRT true score equating, appears minimal. Most 

researchers resort to citing Wang (1985) who claimed that it’s negligible as long as the 

same linear composite of latent traits (reference composite) underlies the item responses 

on both tests, but little thought is given to the degree of “sameness” that has to be 

achieved.   

While there are multidimensional scaling methods being developed (Davey, 

Oshima & Lee, 1996), it is more common to use unidimensional equating for 

multidimensional tests. The rationale for it is two-fold. Firstly, on a test designed to be 

unidimensional, it is hoped that the degree of multidimensionality is not going to be 

severe enough to impact the quality of equated scores. If the test is designed as 

multidimensional, simple structure is assumed and each dimension is scaled separately 

(as is the case with NAEP). Complicating the matter further, multidimensional equating 
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methods are currently at the theory stage of development and have not been used in any 

operational test.  

The studies concerned with equating in the presence of dimensionality assume 

construct equivalence. Usually, the same mix of items is used between forms. Most of the 

literature so far has considered the performance of IRT true-score equating under 

multidimensionality.  

Camilli, Wang and Fesq (1995) found that the IRT true-score equating of the 

LSAT is relatively robust to multidimensionality. LSAT, through factor analysis, was 

found to measure two reasoning abilities. The authors divided the whole test into a 

homogeneous subtest (consisting of all the items) and a heterogeneous subtest (consisting 

of the items measuring the two abilities separately). Each of those was calibrated 

separately and IRT true-score equating was conducted for the two parts. The differences 

in the true score tables between the homogeneous and heterogeneous subtests were 

compared. Since those differences were small, the authors concluded that the true-score 

equating is robust to multidimensionality at least for the LSAT case (correlation of 0.7 

between the factors).   

De Champlain (1996) considered a practical possibility in which the 

dimensionality of a test differs depending on the racial/ethnic group of examinee. He 

discovered that a 3 dimensional model fit the Hispanic LSAT test takers better than the 2 

dimensional model (which fit the black and white test takers). The author tried to test the 

population invariance of true-score equating by obtaining separate 3PL estimates for 

three racial groups then scaling them to one of the subscales using preoperational form 
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parameters using the characteristic curve method. Estimated true scores were obtained 

and transformed to the LSAT score scale by using CSEM DIFF (Dorans, 1984): 
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Where ˆ ˆ( ) 1 ( )i i i iQ Pθ θ= − and A is the slope transformation that places raw scores on the 

LSAT reported scale. 

The differences in means were small – ranging from 0.01 to 0.4 for Hispanic 

examinees (difference between the mean score obtained using just the Hispanic 

population equating function and either the Caucasian population equating function or the 

whole population) and between 0.02 and 0.26 for black test takers. The author concluded 

that the differences were negligible throughout the entire ability scale, even if they were 

larger at the low end of the scale, therefore the equating function obtained from all 

examinees does not penalize the minority examinees.  

One study to date has examined the performance of traditional equating (either 

mean, linear or equipercentile) under multidimensionality – Bolt (1999). He compared 

the equipercentile, linear and true-score IRT equating for a two-dimensional test and 

found that IRT true score equating performs well for examinees high on both abilities. 

Equipercentile equating performs poorly for those abilities, but is considerably better then 

either the linear or IRT method for examinees low on both abilities. Equipercentile 

equating performed just as well as the IRT true-score equating on the error-measurement 

indices (described in the previous section) and better for low (0.5 and 0.3) correlations. 
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Surprisingly, the linear method does not appear to be affected by the increase in 

correlations between θs. Bolt noticed that even in the unidimensional case the equity 

criteria were not well satisfied (this, he suggested, might indicate the shortcoming of the 

indices he used). IRT true-score equating performed as well with high correlations 

between θs as the equipercentile and linear equating and slightly worse than the 

equipercentile method for lower (<0.5) correlations. Bolt concludes that “none of the 

methods is superior to the others for all examinees.” 

While Davey, Oshima and Lee (1996) claim that it is not possible to link tests 

with randomly equivalent groups of examinees and different tests since no method 

developed to date can link tests with a different number of underlying dimensions, Bolt 

explicitly suggests studying the effect of adding another dimension to the second form 

that was not present in the first form. He gives an example of a reading assessment which 

can have dimensions connected to the passage effects that the previous administration did 

not have. Some of the simulation settings (described in the next chapter) are going to 

explore this situation.  

 



    

    

40

3 Methods 

 As can be seen from the literature review above, there has been very little 

research on the effects of multidimensionality on equating. Moreover, the research extant 

treats multidimensionality as consistent form-to-form and evaluates the results of 

equating within that framework. Compatibility of constructs is also always assumed in 

those studies. This dissertation attempted to reverse this thinking by using equating as a 

tool to evaluate the effect of varying degree of multidimensionality.  

Errors in equating two two-dimensional test forms differing on their ΘTT were 

examined in a simulation study.  

 

3.1 Data generation 

Responses of 4000 examinees to forty dichotomous items on two forms were 

generated (80 items total). Two IRT models described in section 2.2 were used – the 

M3PL (Reckase & McKinley, 1991) and the multivariate Rasch model (Reckase, 1985) 

The Rasch model was used in the hope of removing the possible effect of varying item 

discrimination on the results. Additionally, this model is commonly used in state 

assessments and is thus considered of practical importance. Item parameters were 

simulated to follow the distributions outlined by Donoghue and Allen (1993) – the 

discrimination (“a”) parameter followed a lognormal distribution with mean zero and 

standard deviation 0.35, the difficulty (“b”) parameter followed a standard normal 

distribution and the guessing (“c”) parameter was set to 0.2. For the Rasch model only 

the “b” parameter was generated from the distribution above; the “a” parameter is 

commonly set to 1.  
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  Correlations between dimensions were set to 0.5, 0.7, 0.9 and 0.95. Since one of 

the assumptions of IRT true-score equating is that of unidimensionality, it is felt that for 

correlations lower than 0.5 the errors of equating would have been large due to the severe 

multidimensionality, regardless of the other variables investigated here. 

Three conditions of examinee ability distribution were investigated. All 

examinees were simulated to have a standard normal distribution on the second 

dimension. Half of the examinees were simulated to have a standard normal distribution 

of ability on the first dimension. The other half of the examinees had the mean ability 

increased by either 0.5 or 1 (corresponding to either half or full standard deviation) 

respectively. Those setting are depicted in Table 1 (for dimension 1 only) for easy 

reference. Those adjustments were applied to both forms. 

 

Table 1: Mean ability of the examinees on the first 
dimension. 

Dimension 1 (θ1) 

50% of the population 50% of the population 

0 0 
0 0.5 

0 1 

 

Note that the dimensions are not independent (they are connected by the 

correlation) and thus two bivariate normal distribution will be simulated (one for each 

half of the population) and then combined to form a full population for estimation.  

Single group design was used – same abilities were used to simulate item 

responses to items on both forms, and no increase in ability form-to-form is assumed.  
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Simple structure was used; number of items was distributed among the two forms 

according to the Table 2 below.  

Table 2: Distribution of the number of items on each form, each dimension.  

Form 1 Form 2 

1st dimension 2nd dimension 1st dimension 2nd dimension 

20 20 20 20 

20 20 21 19 

20 20 25 15 

20 20 40 0 

0 40 40 0 

 

The situation depicted in the first row of Table 2 provided a baseline for the equating 

errors. This is especially important at lower correlations between dimensions where the 

equating errors and correlation interact (per violations of the assumptions of IRT true-

score equating) regardless of the shift in ΘTT (which this study was trying to capture). 

Note that from the measurement perspective, it is not known how many items (and at 

what correlations) are necessary to be able to identify a cluster (Reckase, 1997). Zhang 

(2004) for instance, in his description of the dimensionality assessment program 

DETECT suggests that the users should disregard clusters with fewer than 5 items, since 

this number does not provide a stable solution to the partitioning algorithm. Therefore, 

the 20-20:35-5 split was not examined since it might not be differentiable from the 20-

20:40-0 setting, especially at higher correlations.   

Standard dichotomous item response generation procedures were used. This is a 

fully crossed design with 2*4*3*5=120 settings (models*correlations*abilities*form 

differences). The calculated results are based on ten simulation runs; the estimated results 
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are based on 50 simulation runs. All programming was done in R.  For ease of 

programming, the data was generated separately for each form. 

 

3.2 Equating 

For each of the simulation settings and replications the two forms simulated were 

equated using IRT true-score equating as described in section 2.3.2. Item and ability 

parameters were obtained in separate calibrations using Parscale. Since single group 

design was used, it was not necessary to calibrate the item parameters – they are assumed 

to be on the same scale (Kolen & Brennan, p. 166). Form 2 was equated to form 1.  

Preliminary results indicated that the unidimensional ability retrieved by Parscale 

most closely approximates the average of the two-dimensional abilities weighted by the 

number of items on each ability6. Therefore, equating was done along this line (i.e. the 

ΘTT line). In order to keep the variances of the calculated ability consistent with the 

variances of the simulated abilities, this weighted average was divided by the cross 

product of the weights – a2+2abρ+b2, where a is the number of items at trait 1 divided by 

the total number of items, b is the number of items at trait 2 divided by the total number 

of items and ρ is the simulated correlation between trait 1 and trait 2. Notice that the 

function mapping a (θ1, θ2) pair to ΘTT in this case is not 1-1, i.e. more than one pair of 

multidimensional abilities results in a given θTT. For example, a θTT of 1 on a test with 10 

items from one dimension and 20 items on the other dimension could obtained by, among 

others, pairs (3,0), (3/2, 3/4), (1,1), (-20, 11.5), etc, all of which are solutions to the 

equation 

                                                 
6  This statement is correct for simple structure and non-aberrant item discrimination parameters. 
Other combinations might be better approximated by the theoretical θα index of Zhang & Stout (1999). 
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1 2
1 23 3 1θ θ+ =  

 

Note, that while (-20, 11.5) pair is a rather counterintuitive (θ1, θ2) combination, 

especially for nonzero correlations between normal traits; it is unlikely, but not 

impossible for an infinite population (which, in effect, is what a Monte Carlo study 

simulates). The equation above has an infinite number of solutions – those solutions can 

be represented graphically (in two dimensions) as lines perpendicular to the ΘTT line at 

θTT – the dashed lines in Figure 5 below: 

 

 
Figure 5: The (θ1, θ2) equivalence on ΘTT 

 

 If the number of items at each of the abilities is known, for any (θ1, θ2) we can 

find the corresponding unidimensional ability (θTT). Unidimensional equating can be 

conducted using this θTT by finding the true scores on each of the forms to be equated. 

This was discussed in detail in section 2.3.2 and is illustrated again in Figure 6 below, 

where true score B is considered equated to the true score E. 

θ1 

θ2 ΘTT 
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Figure 6: True score on form 1 (τform 1) to true score on form 2 (τform 2) equating line. 
 

However, this equating line is along the unidimensional substitute for the 

multidimensional ability (later called calculated θ). In reality, for a two dimensional 

situation, there are two abilities contributing to θTT. A different viewpoint of this equating 

with an explanation how to find point B is depicted in Figures 7a through 7e on the 

following pages. 

τform 2 

equating line

E 

B 

τform 1 
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X

θ1

Figure 7a: Unidimensional equating in the multidimensional θ1θ2 plane

 

In Figure 7a above, x represents an examinee of the two-dimensional ability (θ1,θ2). 
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θ2

X

θ1

ΘTT fo
rm

 1

ΘTT form 2

Figure 7b: Unidimensional equating in the multidimensional θ1θ2 plane

 

 

In Figure 7b, the two lines indicate the unidimensional composite ability (ΘTT) measured 

by each of the test forms – form 1 contains the same number of items sensitive to θ1 as to 

θ2 (the line is at a 45 degree angle to each of the ability lines), form 2 has more items 

sensitive to the θ1 dimension (the line is closer to the θ1 axis than to the θ2 axis). 
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θ2

ΘTT fo
rm

 1

ΘTT form 2

 

An examinee x with a two-dimensional ability (θ1,θ2) is associated with a certain 

unidimensional ability on form 1, labeled E in Figure 7c (consistent with Figure 6), and a 

certain (different) unidimensional ability on form 2, labeled A. The value of E and A 

depends on (θ1,θ2) as well as the number of items measuring each of the abilities on both 

forms – it’s the average of (θ1,θ2) weighted by the number of items on each form.  
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θ2

ΘTT fo
rm

 1

 

The length of the dotted line (12 dots from the origin) in Figure 7c indicates the ΘTT of 

examinee x on form 1 (the original form). The same length is used along the ΘTTform 2 (the 

form being equated), since it is assumed the examinee will have the same unidimensional 

true ability, regardless of the form she takes. For this particular examinee (who’s 

magnitude of θ2 is slightly higher than of θ1 as determined by the position of the x) this is 

longer than this examinee’s unidimensional ability form 2 (which, as stated above, is A). 
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θ2

X

θ1

ΘTT fo
rm

 1

ΘTT form 2

E

A

equating error

B

Figure 7e: Unidimensional equating in the multidimensional θ1θ2 plane

 

 

The difference between the unidimensional ability reflected on form 1 vs. the “true” 

unidimensional ability as calculated on form 2 is the error of equating form 2 to form 1. 

In other words - what true score did an examinee with a given multidimensional (θ1,θ2) 

get equated to vs. what score should they have been given. In this particular example, if 

form 2 were to be equated to form 1, x would have gotten an equated true score of B 
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(eqτf2) instead of a lower score of A (“true” true score, tτf2) because of the change in item 

mixture of the forms.  

 

3.3 Evaluating results 

 Both forms were calibrated (separately) using Parscale (code is included in 

Appendix D). This resulted in each simulating examinee obtaining two abilities for each 

of the forms – the calculated ability and the ability estimated from Parscale. The 

differences between the “true” unidimensional ability (T2, point A in Figure 7e) and 

equated true score (eq2T2, point B in figure 7e) for the calculated and estimated abilities 

were calculated using the indices described in chapter 2.3. Those indices are naturally 

weighted since they are summed across all examinees.  

Depending on which ability was used in calculation of the indices, Mean Signed 

Difference and Root Mean Squared Difference were calculated using abilities calculated 

as described in the previous section and abilities obtained from Parscale estimation 

(calculated MSD and RMSD and estimated MSD and RMSD (called MSDE and RMSDE 

respectively)). For each setting, the overall error was calculated as well as the errors for 

unidimensional top and bottom 10 percent of the population. For the settings in which 

half of the population differed on the second dimension, the top and bottom 10% of each 

of the abilities was considered as well as the errors for each of the population halves. The 

errors for those were also calculated for the no difference in subpopulation means setting; 

however, those are not discussed in detail here under the assumption that errors are 

symmetric in this condition.  

 As a crude estimate of the top and bottom distribution errors, the unidimensional 

10% of the population were calculated. Those cutoffs were taken from the univariate 
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normal distribution – for the no difference between subpopulations settings, if θ1 was 

lower than -1.28115 or higher than 1.28115 it was summed as bottom or top 10% of θ1 

respectively. A similar calculation was done for θ2. If both of the abilities were lower or 

higher than those cutoffs the top/bottom 10% combined was calculated, if only one of the 

abilities was above/below the cutoff, the errors were classified at that ability.  For the 0.5 

difference the respective cutoffs were -1.03155 and 1.53155 (corresponding to the 

univariate normal distribution with mean of 0.25); for the 1 difference between 

subpopulations the cutoffs were -0.78155 and 1.78155 (corresponding to the univariate 

normal distribution with mean of 0.5).  

Note that the 20-20:20-20 setting was possible for estimated abilities only, since 

the weighted ability for form 1 is the same as the weighted calculated ability for form 2, 

all errors for the calculated abilities in this setting would have been zero; consequently, 

they are not used in any analyses. 

In order to examine which of the factors of interest (correlation between traits, 

form divergence and difference in subpopulation means) were the most important in 

determining the magnitude of the equating errors, a MANOVA analysis was run in SAS 

to model MSD, MSDE, RMSD and RMSDE as a function of the factors above, which 

were treated as fixed effects. The analyses were split for results for the full population 

and top and bottom 10% of the population. The mean errors across all simulations (rather 

than replications) were used as dependent variables.   

The design of the study (4 way factorial, with 3 primary factors of interest) 

directly answered the first research question about what influences the magnitude of 

equating errors for non-parallel test forms. The second research question was answered 
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by observing the magnitude of the equating errors for various indices and comparing 

them to the least divergent form or the baseline setting. Answers to the first two research 

questions informed the answer to the third research question. 

 

3.4 Algorithm  for the study 

For a quick reference, the following algorithm for the study is provided. 

For each setting (model, correlation between traits, divergence of forms, divergence of 

population means) and every simulation do the following: 

1. simulate data – simple structure two two-dimensional forms. Each form is 

simulated separately, but the same vector of examinee abilities is used to obtain 

the responses. 

2. for each of the forms calculate the reference composite (“true” unidimensional 

ability) on each of the forms as the weighted average of the  two unidimensional 

abilities, where weights are defined as the number of items measuring each ability 

for each subscale.  

3. run both forms through Parscale (independently) – estimate the examinee 

unidimensional ability and item parameters, on both forms. 

4. calculate “true” true score on form 2 – this is the sum of probabilities of 

responding to the item using the ability on form 1 (calculated in 2) and estimated 

item parameters on form 2, depicted by point As in Figure 7e. 

 

),ˆ|1(
122 ∑ Θ== FuPT  
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Θ1  scaled to (0,1), 2̂F  are the estimated item parameters on form 2.  

5. calculate the equated true score on form 2 – this is the sum of probabilities of 

responding to the item using ability on form 2 (calculated in 2) and estimated item 

parameters on form 2, depicted with point B in Figure 7e. 

 

),ˆ|1()(ˆ
22222 ∑ Θ=== FuPTeqT  

 

Θ2  scaled to (0,1)  

6. the difference between 5 and 4 above is the equating error. 

 

2 2T̂ Tε = −  

 

7. for Parscale estimated abilities, repeat steps 4,5 and 6, but use estimated 

unidimensional ability on forms 1 form 2, respectively. 

 

)ˆ,ˆ|1(
122 ∑ == θFuPt  

 

Estimated θ1 scaled to (0,1)  

 

)ˆ,ˆ|1()(ˆ
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Estimated θ2 scaled to (0,1)  
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22̂ˆ tt −=ε  

 

8. calculate error indices for the full population: 

a. mean signed difference – sum the differences calculated in 6 for all 

examinees, divide by the number of examinees. 

b. root mean squared difference – square the absolute  value of the 

differences in 6, then sum across all examinees, divide by the number of 

examinees and take the square root. 

9. calculate error indices for the parts of the population of interest – repeat 8a and 

8b, but calculate the sums only for the following examinees: 

a. theta 1 and theta 2 ability each above 1.281552 (1.531552 and 1.781552 

for higher differences in the means) 

b. only one of the abilities above the values in a) 

c. theta 1 and theta 2 ability each below -1.281552 (-1.031552 and -

0.7815516 for higher differences in the means) 

d. only one of the abilities below the values in d) 

e. subpopulation 1 examinees 

f. subpopulation 2 examinees 

keep the counts of how many examinees are in each of the groups, divide by the 

number of appropriate examinees belonging to each of the groups.  

10. save 8 and 9 into a vector, calculate the mean across all simulations. 
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4 Results 

The results are structured as follows - first, a general description of the 3PL model 

results is provided for no difference in the mean and for the differences in the mean (0.5 

and 1) conditions. The behavior of the indices is described for the full population, 

top/bottom 10% of the full population, top/bottom of each of the abilities and for each of 

the subpopulations (subpopulation 2 is the one with increased means on the first 

dimension). Values of the errors are provided for some settings for illustration purposes; 

the full result tables are included in Appendix A. Last, the results of the ANOVA 

analyses for MSD, MSDE, RMSD and RMSDE are presented with a discussion of the 

results. The behavior of the Rasch model is also included in those results. The full SAS 

output of proc glm is included in Appendix B. 

Because the equated true score was subtracted from the true score based on ability 

estimates, negative MSDs and MSDEs indicate that the equated true score was larger 

than the true score based on the calculated and estimated ability – i.e. the equating 

overestimates the true score and gives higher score to the examinees than they would 

have gotten if they had taken a different form.  

Generally, the intuition holds – the scoring errors increase with the decreased 

correlation between traits and increased disparity between forms. However, there are 

some exceptions to this and some trends which are interesting to note which are discussed 

below. 

True score equating overestimates at the bottom of the combined ability scale and 

underestimates at the top regardless of the subpopulation mean difference. This under- 

and over-estimation respectively seems to be due mainly to the errors in equating of the 
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θ2 ability where the errors are biggest. For the bottom 10 percents of each of the abilities, 

the errors are always higher for θ2 than for θ1 (in absolute magnitude for the MSD and 

MSDE). Errors for the subpopulation with all zero ability are very small and positive for 

all settings; in contrast, errors for the population half with the mean ability of 0.5 and 1 

were much larger and positive – it seems that the more able half of the population would 

have actually been penalized with equating. The effect of the differences in the 

population means on the equating errors is much larger when 0.5 difference is compared 

to difference of 1 than when 0.5 difference is compared to the difference of 0.  

As more examinees become available at higher abilities with the shift in means, 

the errors decrease for those groups. The opposite is the case for the bottom of the ability 

ranges. 

The correlation of 0.9 seems to exhibit the most behavior which is contrary to 

intuitive trend. Removing 5 items also shows that kind of behavior for many settings. 

This could be explained by the high dependence of the errors on the quality of items 

removed for 1 or 5 items, i.e. removing one strong item (highly discriminating with most 

information for the population) will have more effect on the true score than removing 5 

not as informative items. Errors for the most divergent forms are also often smaller then 

the errors for the less divergent forms. This is especially pronounced for the extremes of 

the population.  

Based on the indices using estimated abilities, one could say for instance that 

removing 5 items at the 0.5 correlation with no difference in subpopulation means has the 

same effect on the equating errors as completely switching subscales for the 0.95 

correlation between traits. However, this result is not confirmed for the calculated 
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abilities. At correlation of 0.5 removing all 20 items from the subscale has the same 

effect in terms of mean absolute difference error as switching subscales at correlation of 

0.7. 

Most of the variability in errors is due to forms diverging rather than the change 

in correlation. This is especially true for the non zero differences in subpopulation means 

setting. 

Generally, the errors in the Rasch model are larger than for the 3PL model. In 

particular, the Rasch model does not perform well with fewer examinees to estimate – for 

the bottom 10% of each of the abilities with non-zero mean, the errors are larger than for 

the 3PL. This is probably due to the guessing parameter of the 3PL model which reduces 

the possible variation in the score on either form. However, for some settings the errors in 

Rasch equating are smaller; the equating does not overestimate as much as the 3PL does. 

As the subpopulations diverge, the errors become similar to the 3PL for all the population 

parts examined but the bottom of each ability (where the sparseness of the data seems to 

effect the Rasch model more than the 3PL model).  

 The RMSD and RMSDE errors differ rather substantially in magnitude, especially 

for the low divergence between the forms. The exact reason for this discrepancy is 

unknown at this time; however, closer investigation of the linearity of the calculated 

approximation of the reference composite could shed some light on this issue. 

For convenience, the following convention was adopted for naming the different 

form settings: a-b:c-d where a is the number of items on the first form, first dimension, b 

is the number of items on the first form second dimension, c is the number of items on 
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the second form, first dimension and d is the number of items on the second form, second 

dimension.  

 The calculated setting do not allow for the 20-20:20:20 error comparison – the 

difference between eqτ2 and τ2 is zero for this setting since the weighted reference 

composite of both the first and the second form is the same.  

 

4.1 Main settings results – no difference in population means 

For this setting, by design, the top 10% of both abilities is symmetric with the 

bottom 10% of both abilities – for MSD and MSDE they differ in the sign, for RMSD 

and RMSD they are similar in magnitude. The same is true for the top and bottom 10 

percent of each of the abilities. The errors for each of the subpopulations are the same as 

for the full population. Those results are included in the Appendix A, but are not 

discussed here.  

MSD. The MSD errors for the full population are very small (zero to one decimal 

place). The top 10% combined errors are mostly negative and increase as forms diverge 

for every correlation till the 0-40:40-0 setting when they are almost as small as for the 20-

20:21-19 setting. As the correlations increase, the errors decrease. Most of the top 10 

percent of θ1 indices are positive (with very slight overestimations for 20-20:40-0 

setting); the general trend holds – indices increase as forms diverge and decrease as 

correlations increase.  

MSDE. The mean signed difference for the whole population for estimated 

abilities is relatively small and negative. As forms diverge, the errors increase (with the 

exception of 20-20:40-0 vs. 0-40:40-0 setting, where they decrease slightly). Overall, as 
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the correlations increase the indices decrease, but there seems to be little difference 

between the 0.7 and 0.9 correlation. With the shift to 0.95 from 0.9 correlation the indices 

decease rapidly. The general trends are the same as for the MSD. 

 RMSD. The trend is kept without exceptions for the full population – the RMSD 

ranges from the high of 7.17 for 0-40:40-0, 0.5 correlation setting to 0.067 for the 20-

20:21-19, 0.95 correlation.  

RMSDE. The trend is kept, although it seems that most of the trend can be 

explained to the divergent forms rather than the decrease in error as the correlations 

increase (this is confirmed with the glm analysis in section 4.4). For example, for the full 

population, for the baseline setting, the errors decrease from 3.34 to 3.11 as correlations 

increase from 0.5 to 0.95, but for 0.5 correlation, the error increases more than two-fold 

from 3.34 to 7.52 between the baseline and the 0-40:40-0 setting. For the higher 

correlations (0.9 and 0.95) this increase is not as pronounced (from 3.36 to 4.38 and from 

3.11 to 3.78 respectively). The errors for the top 10% of the population are inconsistent 

with higher divergence between the forms, sometimes exhibiting higher errors than the 

baseline setting. For the top/bottom of each of the abilities, the errors are much larger 

than for the top of the overall population (e.g. 2.25 vs. 4.27 for the 0.7 correlation 

20:20’40-0 setting). 

 

4.2 Different population means 

For this setting, half of the population (subpopulation 2) mean was set to either 0.5 or 1 

for the first dimension (θ1). The standard deviations of the abilities were kept at 1 for 

either half of the population. The populations were combined for Parscale estimation.  
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 MSD. All the mean signed differences for the full population are positive. As the 

forms diverge, the equating errors for the full population increase for both differences in 

the means. As correlations increase however, for the 0.5 difference between means, the 

errors seem to stay relatively constant. For the 1 difference between means the errors 

increase with correlation increase. For both abilities in the top 10% range, the errors are 

very small for one and five items removed for both differences in population means. For 

20 items removed all errors are negative decreasing from -0.843 with 0.5 correlation to -

0.421 with 0.95 correlation for 0.5 difference between means and -0.44 to -0.17 for 1 

difference between means. For both abilities in the bottom 10% range the errors are 

positive and relatively constant across correlations for 0.5 difference in means, the trend 

is kept for 1 difference in means. The errors for the 0-40:40-0 setting are lower than for 

the 20 items removed, increasing from 0.253 to 0.646 for the minimum and maximum of 

the examined correlations for 0.5 difference between subpopulation means, and from 

0.349 to 0.804 for 1 difference in subpopulation means. Equating overestimates the true 

score for top 10% of θ2 with contrary to trend errors for the most divergent forms and 

higher correlations. In addition, for the top 10% of θ2 for the two most divergent forms, 

all of the differences are negative and smaller (in absolute magnitude) than the top 10% 

of θ1 for both differences in means. For the bottom 10% of θ1 errors are negative – they 

become more negative as forms diverge and closer to zero as the correlations increase for 

0.5 difference in means. For 1 difference in means, errors are larger than for the no 

difference and 0.5 difference for all settings and trend is kept. For the bottom 10% of θ2 

all mean signed differences are positive and much larger (in absolute terms) than the top 

10% θ2. The absolute magnitude to MSD is larger for the bottom 10% of both abilities 
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than for the top 10% of both abilities. Errors for subpopulation 1 are very close to zero, 

while the errors for subpopulation 2 are much larger (3.517 for 0.5 correlation most 

divergent forms, 0.5 difference, 7.05 for 1 difference). The trend is kept with errors 

increasing as forms diverge for subpopulation 2 and decreasing as correlations increase, 

however, this decrease is not as pronounced across correlations. 

 MSDE. The overall errors for the full population are relatively small (from 

slightly negative -0.123 for one item removed 0.5 correlation between traits to 0.36 for 

the 0-40:40-0 0.5 correlation setting for 0.5 difference in means). Generally they increase 

as forms diverge and decrease as correlations increase with errors for the last setting 

smaller for low correlations (0.5 and 0.7) between traits than errors for the 20-20:40-0 

setting. Trend is kept for 1 difference in means for all settings but the most divergent one. 

For the top 10% of both abilities for both differences in means the errors are again small 

and decreasing rapidly as correlations increase, but decreasing as forms diverge for 0.5 

correlation. The bottom 10% of both abilities the errors increase as forms diverge and 

decrease as correlations increase. For the most divergent forms the errors decrease when 

compared to the 20-20:40-0 setting. Again, as with MSD, most errors are positive for top 

10% of θ1 and negative for top 10% of θ2; the reverse is true for bottom 10% of each 

ability. For 1 difference in the means the absolute magnitudes are similar with no 

apparent trend for lower correlations, while for the higher correlations the top 10% θ2 is 

slightly higher than the θ1. For the bottom 10% of θ1 the errors are all negative; they are 

all positive (and bigger in absolute terms) for bottom 10% of θ2. As before, equating 

underestimates the true score for the top abilities of θ1 and overestimates for bottom 

abilities; the reverse is true for θ2. Same trends as with the MSD can also be seen for the 
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subpopulations with subpopulation 2 exhibiting larger (and all positive) errors than 

subpopulation 1.  

 RMSD. The trend is kept for the full population and for the top 10% of both 

abilities. For the bottom 10% the errors are generally larger than the ones for the top 10% 

of the overall population, much larger for the larger difference in the subpopulation 

means. For both differences in the means the trend is kept for top and bottom 10% of 

each of the abilities. The errors for top 10% of θ1 are higher for the 20-20:40-0 setting 

than the top 10% of θ2 for both differences in population means. They are comparable for 

1 and 5 items removed. The opposite is true for bottom 10% of θ1 – here the errors are 

much smaller than those for bottom 10% of θ2. The magnitude of the errors is similar for 

the top and bottom 10% of θ1 for 0.5 difference in subpopulation means. They are slightly 

higher for 1 difference in the means. For θ2, bottom 10% is much higher than the top 10% 

for both differences in the means. The trend is kept when both population halves are 

examined separately; however the errors are higher for subpopulation 2 than for 

subpopulation 1. The differences are more pronounced the more divergent the forms and 

seem more pronounced with lower correlations (7.41 vs. 8.07 for 0.5 correlation and 2.48 

vs. 4.57 for 0.95 correlation for 0.5 difference in the means).  

 RMSDE. The trend is kept for the full population. For the top 10% and the bottom 

10% of both abilities, the errors decline slightly for the five items removed setting. For 

larger difference in subpopulation means, the baseline errors are higher than one and five 

items removed. For the bottom 10% the errors increase slightly as correlation increases 

from 0.7 to 0.9 for the baseline and moderately divergent forms to drop again with 0.95 

correlation between traits for 0.5 difference in the means. For large difference in 



    

    

64

subpopulation means the errors are slightly smaller for top 10% of θ1 than for the top 

10% of θ2. The same is true for bottom 10% for each of the abilities individually 

(everything but the baseline at 0.7 correlation). Errors are larger for the bottom 10% of 

both abilities than the top 10%, bottom 10% of θ1 than top 10% of θ1 and much larger for 

bottom 10% of θ2 (for the most extreme settings in terms of form divergence) than for the 

top 10% of θ2. The two subpopulation errors reflect the general trend, but there are no 

noticeable differences in the magnitude of the errors for 0.5 difference in the means; for 

large difference in subpopulation means the errors are slightly smaller for subpopulation 

2 at low form divergence, but larger at higher form divergence. 

 

4.3 Rasch model results 

In this section comparisons are made between the errors of the 3PL model and the errors 

in the 1PL model. Where examples are given, the errors for the 1PL model are listed first.  

 

No difference in population means 

Overall results. The MSD and MSDE errors are slightly larger, in absolute 

magnitude than the corresponding 3PL errors. RMSD and RMSDE errors are larger as 

well. 

Top 10% combined. The errors are larger here than for the 3PL, there is also a 

drop at the most divergent setting, like with the 3PL, the errors are negative. MSDE 

directionality is even less consistent than for the 3PL model, no conclusions can be drawn 

about the magnitude of the errors (they are generally rather small). RMSD errors are very 

close in magnitude to the 3PL; RMSDE on the other hand are generally smaller. 
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Top 10% θ1. Trend is kept, most MSD are positive and similar in magnitude as 

for the 3PL for one and five items removed, but slightly smaller for the more divergent 

forms. MSDE is mostly positive and smaller than for the 3PL (e.g. 0.736 vs. 1.665 for 0.5 

correlation five items removed, 0.946 vs. 1.024 for 0.95 subscale removed) as are the 

RMSDE. RMSD magnitudes are relatively comparable between the models.  

 

Different population means 

Overall results. The MSD 1PL errors are slightly larger than the 3PL errors, but 

the difference is minimal (for instance 1.81 vs. 1.82 for 0.7 correlation, 0-40:40-0 setting 

for 0.5 difference in means, 1.24 vs. 1.41 for 0.5 correlation one subscale removed for 1 

difference in means). The MSDE is smaller for most settings particularly at lower 

correlations for both differences in means. RMSD and RMSDE are also slightly larger 

than for the 3PL. 

Top 10% of both abilities. For both differences in means, MSDs are comparable 

in magnitude to the 3PL for the small divergence and slightly larger (in absolute 

magnitude) for the higher form divergence.  For MSDE most errors are negative. For 0.5 

difference in means approximately as many errors are larger as are smaller than the 3PL 

in terms of absolute values, for 1 difference in means the absolute value of the errors is 

larger than for the 3PL model. RMSD and RMSDE are not noticeably different for the 

1PL than for the 3PL for 0.5 difference in means, they are slightly smaller for the Rasch 

model than for the 3PL for 1 difference in means. 

Bottom 10% of both abilities. MSD errors are much bigger than for the 3PL 

model. Again, the errors remain more or less constant across the correlations. For MSDE, 
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the absolute magnitude of the errors is greater than for the 3PL except for the baseline 

condition 0.5 and 0.95 correlation and the most extreme condition 0.7 and 0.95 

correlation for 0.5 difference in means. For 1 difference in means MSDE is larger than 

for the 3PL errors and mostly positive. RMSD errors are much larger for the 1PL than for 

the 3PL (e.g. 0.5 correlation most divergent forms 4.54 vs. 2.68 for RMSD for 0.5 

difference in means. The respective number for 1 difference in means is 5.6 vs. 3.5).  

RMSDE are also larger. 

Top 10% of θ1. MSDs are smaller for more divergent forms and the same for less 

divergent form for 0.5 difference in the means. Reverse is the case for 1 difference in the 

means. MSDEs are mostly positive and smaller than those of the 3PL for all but the 

highest correlations least diverse settings (baseline and 1 item removed) For 1 difference 

in means the only exceptions are one item removed correlation 0.7 – 0.257 vs. 0.153 and 

baseline correlation 0.95 – 0.073 vs. -0.043. RMSD errors are slightly smaller than for 

the 3PL. Same is true for the estimated root mean square differences for 0.5 difference in 

means. For 1 difference in means RMSDE is generally larger than for the 3PL, however 

those differences are not big. The error for 0.7 correlation one subscale removed being 

exceptionally small (smaller than for the five items removed for this correlation). 

Top 10% of θ2. The MSD errors are negative and mostly larger (i.e. more 

negative) in absolute magnitude for both differences between the means. MSDE are 

mostly negative and slightly smaller (i.e. larger in absolute magnitude) than the 3PL for 

0.5 difference in subpopulation means. They are larger (more negative) for more 

divergent forms and smaller for less divergent forms and the baseline for 1 difference in 

subpopulation means. RMSDs are comparable to the 3PL for low form divergence and 
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smaller for high form divergence for both differences in the means. RMSDE errors are 

slightly smaller than for the 3PL for 0.5 difference in population means, for 1 difference 

RMSDE is smaller for baseline and one and five items removed, but bigger for most 

divergent forms. 

Bottom 10% of θ1. Both MSD and MSDE errors are larger (more negative) than 

for the 3PL. RMSD and RMSDE are larger than for the 3PL for both differences in 

subpopulation means.  

Bottom 10% of θ2. For both subpopulation differences, the MSDs are larger than 

for the 3PL model.  MSDEs are larger for higher form divergence and slightly smaller for 

low form divergence and the baseline setting. RMSDs are larger than for the 3PL (e.g. 

0.7 correlation one subscale removed 7.54 vs. 6.42 for 0.5 difference in the means, 8.25 

vs. 7.5 for 1 difference in the means. RMSDE is also larger. 

Subpopulation 1. MSD is generally very small. The 20-20:40-0 error is much 

larger (decreasing from 0.126 to 0.076 across correlations for 1PL and increasing from 

0.118 to 0.215 for the 3PL for 0.5 difference in subpopulations and increasing from 0.241 

to 0.28 for 1PL vs. 0.017 to 0.18 for the 3PL model for 1 difference in subpopulations). 

For MSDE for the two most divergent settings the errors are bigger (more negative) for 

most correlations (with the exception of the 0.9 correlation where the errors are smaller 

for 0.5 difference in subpopulation means and 0.95 correlation baseline, five and 20 items 

removed and 0.9 correlation baseline for 1 difference in subpopulation means); for the 

least divergent settings (including the baseline) the errors are smaller (with the same 

exception of 0.9 correlation). RMSD and RMSDE are also larger for the 1PL.  
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Subpopulation 2. For 0.5 difference in means MSD is larger for subpopulation 2 

for 1PL than for 3PL especially for more divergent forms. MSDE is slightly smaller in 

magnitude for both subpopulation mean differences. The differences are slightly more 

pronounced for low form divergence with 1 difference between means. RMSD and 

RMSDE are larger than for the 3PL. 

 

4.4 GLM results 

As can be seen from sections 4.1 though 4.3 and in Appendix A, the sheer number 

of results is overwhelming. In order to better understand the factors at work, a 

generalized linear model was run on the errors. This chapter presents the results of this 

model. Form difference, correlation and difference in population means were treated as 

fixed factors and used in full interactions. Whether the error came from calculated or 

estimated reference composite was also included in the model, but not used in 

interactions.  

The SAS’ proc GLM output full population results for MSD (bias) and RMSD are 

included in Appendix B. Table 3 below lists the factors indicated by the model as 

significant at 5% level. 
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Table 3:  Factors significant for the magnitude of equating errors. 

Portion of 

population 
3PL 1PL 

 MSD RMSD MSD RMSD# 

Calculation vs. estimation Calculation vs. estimation Calculation vs. estimation Calculation vs. estimation 

Form difference Form difference Form difference Form difference 

Difference in pop. means  Difference in pop. means Difference in pop. means 

Form difference*Pop.difference  Form difference*Pop.difference  

 Correlation  Correlation 

Overall 

 Correlation*form difference   

 Calculation vs. estimation  Calculation vs. estimation 

Form difference Form difference Form difference Form difference Top 10% of 

both abilities Difference in pop. means Difference in pop. means 

Correlation 

  

Calculation vs. estimation Calculation vs. estimation Calculation vs. estimation Calculation vs. estimation 

Form difference Form difference Form difference Form difference 

Bottom 10% 

of both 

abilities Difference in pop. means Difference in pop. means Difference in pop. means Difference in pop. means 

 

# - Generalized Linear Model is not significant at 5% level for the top 10% of both abilities



    

    

70

 

The r-squared for the models are given in table 4 below: 

Table 4: R-squared for the respective models  

Portion of the 
population 3PL 1PL 

 MSD RMSD MSD RMSD 

Overall 0.73 0.92 0.73 0.85 

Top 10% 0.81 0.92 0.72 0.55 

Bottom 10% 0.85 0.86 0.86 0.83 
 

Large proportion of variability in the data is explained by the model, as depicted 

in Table 4. This indicates that the errors in equating as measured by this study can in fact 

be predicted fairly well by the factors examined.  From Table 3 one can see that the form 

difference and difference in population means are the most decisive factors in predicting 

the magnitude of the errors. Somewhat surprisingly, correlation is important only for the 

RMSD overall results. In addition, whether the reference composite used was calculated 

or estimated is also significant. Very similar results (in terms of significance of the 

remaining factors) were obtained when the variable indicating calculated or estimated 

error was not included in the model.  

An illustration of the form divergence significance on the overall results as 

measured by the bias is in Tables 5 and 6 below (identical to Tables A1 and A19 in the 

Appendix). 
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Table 5: MSD using calculated reference composite full population, 
no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.002 0.000 -0.001 0.000 
25-15 -0.004 0.012 0.001 0.003 
40-0 -0.045 0.008 -0.005 0.033 

0-40:40-0 0.038 -0.037 -0.007 -0.001 
 

 

Table 6: MSD using calculated reference composite full population, 
0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.047 0.049 0.048 0.048 
25-15 0.215 0.235 0.236 0.234 
40-0 0.760 0.806 0.820 0.855 

0-40:40-0 1.746 1.814 1.799 1.829 
 

 

In Table 6, the bias (MSD) increases as the forms diverge (from 0.05 to 1.745 for 

0.5 correlation and 0.05 to 1.8 for 0.9 correlation), but stays more or less the same as 

correlations increase for the same divergence between the forms. In Table 5, the errors 

are much smaller than in Table 6, illustrating the significance of the difference in 

population means. In Table A37 in the appendix (overall results, difference of 1 between 

subpopulation means) the errors are even bigger than the errors for 0.5 difference above. 

To illustrate the importance of the interaction factor, one has to look across Tables 5 and 

6. One can see that the increases in errors are not the same for different population 
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means. For example, errors increase tenfold from 20-20:25-15 setting to 20-20:40-0 

setting for no difference between means, but only 3.5 times for 0.5 difference between 

means. Similar results can be seen in Tables A37 (for 1 difference in the means), A109, 

A127, A145 for the estimated reference composite, and Tables A55, A73, A91, A163, 

A181 and A195 for the 1PL model). 

 In a manner similar to the above, one can illustrate the RMSD differences with 

Tables 7 and 8 below (identical to Tables A28 and A136 in the Appendix). The 

difference in the errors, and thus the significance of the factor, between the calculated 

(Table 7) and estimated (Table 8) reference composite is clearly visible. The errors 

increase with decreased correlation and increased divergence between forms. For the 

interaction term, one can see in Table 8 that the ratio of the 20-20:21-19 form divergence 

0.5 to 0.95 correlation is 1.14 (3.464/3.027=1.14), while the ratio for the most divergent 

form is 1.85. Notice however, that for the errors calculated using the calculated 

composite, those ratios remain very close, ranging from 2.12 for the 20-20:40-0 setting to 

2.28 for the 20-20:21-19 setting.. This might be an indication of a 3-way interaction 

between the variables.  

Table 7: RMSD using calculated reference composite full population, 
0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.224 0.175 0.116 0.098 
25-15 1.053 0.852 0.590 0.479 
40-0 4.138 3.420 2.252 1.943 

0-40:40-0 7.754 6.462 4.346 3.640 
 



    

    

73

Table 8: RMSD using estimated reference composite full population, 
0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.323 3.011 3.071 3.019 
21-19 3.464 3.062 3.023 3.027 
25-15 3.501 3.183 3.116 3.106 
40-0 4.954 4.285 3.571 3.375 

0-40:40-0 7.753 6.548 4.776 4.172 
 

 The RMSD analysis for errors for overall results for the 3PL model can be seen in 

Tables A10, A46 (for the calculated latent composite) and Tables A119 and A154 in 

addition to the ones mentioned above.  

 The next set of tables refers to the top 10% of the overall population MSD error 

predictors. 

  

Table 9: MSD using estimated reference composite top 10% of the 
full population, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.261 -0.032 0.447 -0.006 
21-19 -0.068 -0.053 0.020 0.124 
25-15 0.203 -0.052 -0.051 -0.006 
40-0 -0.751 -0.380 -0.230 -0.098 

0-40:40-0 0.119 -0.049 0.024 0.006 
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Table 10: MSD using estimated reference composite top 10% of the 
full population, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.343 -0.078 0.010 0.001 
21-19 0.213 -0.007 -0.013 -0.019 
25-15 0.199 -0.011 0.014 0.003 
40-0 -0.472 -0.406 -0.236 -0.128 

0-40:40-0 -0.004 0.199 0.025 0.029 
 

For the top 10% of the population for the 3PL model compare Table 9 (Table 

A110) and Table 10 (Table A128) above – with few exceptions, as the forms diverge, the 

errors increase. As the population means diverge, the errors also increase for most of the 

settings. The decrease in errors as correlations increase is not significant, probably 

because of certain inconsistencies of trend, especially visible in Table 10. Errors in this 

table actually increase with some increased correlations.  

 Because some errors increase and others decrease for the same form divergence 

across different population means, it’s easy to see why the interaction term was not 

significant in the glm analysis. For instance the ratios of the 0.5 correlation error to 0.95 

correlation error for a 20-20:21:19 form distribution is 0.51 (i.e. and increase in error) for 

no difference in population means and 11.21 for 0.5 difference in means (i.e. a decrease 

in error).  

The MSD and MSDE errors illustrating the same points for the 3PL model can be 

seen in Tables A2, A20, A38 (for the calculated reference composite) and Table A146, in 

addition to the tables above (for the estimated reference composite). 
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 For the illustration of the importance of the correlation for the RMSD, please refer 

to Table 11 below (Table A11). A significant drop in error is evident as the correlations 

between abilities increase. As the forms diverge, the errors increase. Similar results for 

the 3PL model can be found in Tables A29 and A47 (for the calculated reference 

composite) and Tables A119, A137 and A155 (for the estimated reference composite) 

Table 11: RMSD using calculated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.044 0.039 0.032 0.022 
25-15 0.258 0.223 0.181 0.125 
40-0 1.796 1.553 1.200 1.011 

0-40:40-0 1.939 1.570 1.393 0.982 

     
For the bottom 10% of both abilities, compare Table 12 (Table A23 in the 

Appendix) to Table 13 (Table A41 in the Appendix).  

Table 12: MSD using calculated reference composite for bottom 10% 
of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.010 0.012 0.017 0.017 
25-15 0.160 0.148 0.135 0.151 
40-0 2.068 1.620 1.490 1.635 

0-40:40-0 0.253 0.431 0.542 0.646 
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Table 13: MSD using calculated reference composite for bottom 10% 
of the full population, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.015 0.016 0.021 0.025 
25-15 0.193 0.190 0.175 0.199 
40-0 2.408 2.142 1.840 1.808 

0-40:40-0 0.349 0.646 0.806 0.804 
 

 In both tables, the errors increase with increased form divergence is evident (with 

the exception of the most extreme setting where the errors are actually smaller than for 

the 20-20:40-0 setting). In Table 12, the errors are higher than in Table 11, illustrating the 

significance of the difference in population means factor.  

 The MSD and MSDE errors illustrating the same points can also be seen in Table 

A5 (for the calculated reference composite), A113, A131 and A149 (for the estimated 

reference composite) for the 3PL model. 1PL model errors where the same factors proved 

significant, Tables A59, A77 and A95 (for the calculated reference composite) and 

Tables A167, A185 and A203 (for the estimated reference composite) illustrate the points 

made above. 

The RMSD significant factors are the same for the bottom 10% of the full 

population as the MSD significant factors. They are therefore not discussed here in detail. 

Please refer to Tables A14, A31, A50 and A59, A86, A105 for the calculated reference 

composite for the 3PL and 1PL model respectively. The estimated reference composite 

errors are in Tables A113, A140, A158 and A176, A194 and A212 for the 3PL and 1PL 

models respectively. 
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Differences between the 1PL and the 3PL model: 

 As can be seen from Table 3, the 3PL significant factors differ slightly from the 

1PL significant factors for the RMSD for overall population (no interaction term and 

difference in population means significant) and the top 10% of the full population (in 

both MSD and RMSD). For the top 10% of the full population, the predictive model is 

not significant for the 1PL model. It is therefore hard to draw any valid conclusions for 

the differences in significant factors indicated.  

 Tables 14 (Table A64) and Table 15 (Table A82) below, together with Table 7 

above, address the differences between the 3PL and the 1PL model RMSD errors for the 

full population.  

Table 14: RMSD using calculated reference composite full 
population, no difference in subpopulation means, 1 PL model 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.218 0.171 0.114 0.069 
25-15 1.061 0.836 0.496 0.368 
40-0 4.133 3.324 1.999 1.653 

0-40:40-0 7.727 6.135 3.616 2.499 
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Table 15: RMSD using calculated reference composite full 
population, 0.5 difference in subpopulation means, 1PL model 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.226 0.185 0.125 0.106 
25-15 1.160 0.942 0.637 0.516 
40-0 4.410 3.627 2.699 2.208 

0-40:40-0 8.391 6.669 4.435 3.792 
 

With the difference in population means, the errors are bigger, especially for the 

more divergent forms. However, there is no interaction between the correlation and form 

difference – compare increase in errors from five items removed to full subscale removed 

at 0.5 correlation – 0.25 ratio. This is the same ratio for the increase in errors for those 

form discrepancies for the remaining 3 correlations. 

 For the top 10% compare the Tables 16 and 17 (Tables A74 and A92 in the 

Appendix) below. While some of the errors increase with increased difference (for the 

20-20:21-19 most correlations and 20-20:40-0 form difference), the remaining errors 

decrease. It is this inconsistency, not present in the 3PL model, which makes the 

difference in population means not a significant factor in predicting the magnitude of the 

errors.  
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Table 16: MSD using calculated reference composite top 10% of the 
full population, 0.5 difference in subpopulation means, 1PL model 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.002 0.004 0.007 0.011 
25-15 -0.064 -0.039 -0.009 0.004 
40-0 -0.960 -0.697 -0.415 -0.422 

0-40:40-0 0.218 0.228 0.456 0.490 
 

Table 17: MSD using calculated reference composite top 10% of the 
full population, 1 difference in subpopulation means, 1PL model 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.006 0.008 0.010 0.010 
25-15 -0.020 -0.003 0.021 0.024 
40-0 -0.374 -0.320 -0.163 -0.168 

0-40:40-0 0.315 0.322 0.384 0.371 
 

  In order to further explore the effect of changing each of the setting, the 

LSMEANS procedure was conducted for the 4 variables of interest. The data design 

precluded using interactions with the procedure. The LSMEANS for the 3PL model 

overall results are presented in Table 18 below, the 1PL model results and top/bottom 

10% of examinees results are in Appendix B with the rest of the SAS output.  
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Table 18: LSMEANS differences for 3PL model, overall 
results 

Statistic Variable and levels 
msd rmsd

 calculation 0.645 2.254
 estimation 0.159 3.898
    

0.5 0.430 3.810
0.7 0.392 3.288
0.9 0.397 2.707

correlation 

0.95 0.390 2.497
    

20-20 0.253 2.333
21-19 0.023 1.639
25-15 0.161 1.985
40-0 0.544 3.540

form difference 

0-40:40-0 1.029 5.881
    

0 0.068 2.882
0.5 0.414 3.018difference in pop. means 
1 0.724 3.327

 

We can be seen in Table 18, the Mean Signed Difference decreases from 0.65 to 

0.16, or four-fold when the abilities considered are estimated vs. calculated. For 

correlation, the errors decrease slightly with increased correlation between 0.5 and 0.7, 

then increase very slightly to decrease again. The cumulative effect of those decreases is 

not enough to make the result significant (see Table 3). The form difference shows big 

shifts in means – from a low of 0.023 with 1 item removed, to a high of 1.029 with a 

subscale shift. Generally, the errors increase with increased form discrepancy, it’s 

interesting to note that the errors increase 1.9 times from 20 items removed to 40 items 

removed is. MSD increases by 0.32 for every 0.5 shift in population means. For the 

RMSD the decreases in errors due to increased correlation are more pronounced – the 
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error at 0.95 correlation is 65% that at 0.5 correlation. Comparing that result to the 1PL 

result (Appendix B), one can see that that rate of RMSD decrease is consistent for both 

models. A pattern similar to the MSD is also present for the RMSD – a drop for the 1 and 

5 items removed as compared to the baseline setting and final increase, with slightly less 

than 1.9 times, in fact it’s 1.7 times from 20 items removed to 40 items removed.  

Similar comparisons can be conducted for other population parts and the 1PL 

model. However it’s noteworthy that it would be impossible to tell if the effect is 

significant or not – note for instance the RMSDs for the difference in population means – 

the errors do increase, and yet the effect is not significant for this error. A different design 

of the study with variables increasing linearly would allow for setting up contrasts. 

Alternatively, if there were only two settings for each variable, an effect size could be 

calculated. 

In conclusion – while there are some differences between the predictive factors of 

the magnitude between the 3PL and the 1PL errors those differences are not systematic in 

nature. Generally, the same factors are important for both models.  
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5 Final conclusions and further studies 

 

5.1 Answers to the research questions 

The following research questions were stated at the beginning of this study: 

1. What influences the magnitude of the equating errors for multidimensional test 

forms: 

a. Correlation between dimensions – it was hypothesized that the higher 

correlation between the subscales, the more difficult it was going to be to 

distinguish between the dimensions on the test, which will result in 

smaller equating errors. 

b. Number of items on each subscale relative to the total number of items on 

the test – naturally, the more divergent the two forms of the test, the less 

equatable the tests. 

c. Different ability distributions of subpopulations on the dimensions. It was 

hypothesized that equating is more likely to fail with increased interaction 

of dimension and ability.  

2. Conversely – when are the equating errors small enough to justify the same 

construct assumption?  

3. When can we scale the test together and report a composite score (e.g. the ACT 

model), when does each subscale need to be considered separately (e.g. the SAT 

model)  

 



    

    

83

In light of the results presented in the last chapter the following conclusions can be 

drawn: 

1a. This hypothesis is generally correct – as the correlations increase the distinctions 

between the dimensions become difficult to identify. This is illustrated by the lower 

errors for higher correlations. For some settings the errors were larger for the 0.9 than for 

0.95 correlations, indicating that correlation of 0.9 might be large enough for the 

subscales to become undistinguishable. However, it is surprising how small a role 

correlations played when errors were modeled with the glm compared to other factors.  

One can only conclude that unidimensional true score equating is relatively robust to low 

correlations between dimensions. 

1b. This hypothesis was correct – more divergence in the two forms of the test makes 

tests less equatable. Since for most settings, information about the true ability is 

established from form 1 (because form 2 is put on the form 1 scale), any divergence from 

this form makes this information less valid. The drop for the 40-0 setting for no 

difference should be investigated closer, assuming it is not simulation variability. One of 

the hypotheses (excluding simulation variability) is that the last two settings are just too 

extreme – equating does not work even for the 20-20:40-0 setting, adding the 0-40:40-0 

just adds noise, rather than information, to equating errors. A very careful examination of 

all the variables not included in this study (item discrimination and form information for 

example) would be necessary to unequivocally confirm this hypothesis. This condition is 

also partially confounded with the correlation between traits condition – removing five or 

even 20 items from one subscale if the correlations between traits are adequate mitigates 

the effect of non-compatible forms to be equated. It seems that the “subscale flip” (i.e. 
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replacing a form consisting of items of one dimension with a form consisting of items 

from another dimension) is not going to work for unidimensional equating – i.e. one 

cannot completely replace one subscale on one form with another subscale on the other 

form even if the correlations are very high. The glm analyses indicated that this is the 

main determining factor in predicting the bias and root mean squared difference error. 

1c. This hypothesis was also correct – the more divergent the subpopulations the more 

difficult the equating. In particular lower ability examinees of both subpopulations were 

affected by the increase in the ability for one of the subpopulations. This increase was 

more pronounced with mean difference of 1 (one standard deviation) than of half a 

standard deviation. This was the only other factor (after divergence between forms) that 

was important in predicting the magnitude of all the error types examined. Given the 

design of this study it is understandable that the more able half of the population would 

have actually been penalized with equating – equating uses information about the 

examinees from form 1. This form, by design, in a sense disadvantages the examinees 

more able on the 1st dimension, because it gives fewer items that those examinees are 

good at than form 2 (which in turn advantages those examinees).   

2. The answer to this question depends on the purpose(s) of the test. The standard error of 

measurement (SEM) can give some information on how aberrant the magnitudes of the 

errors discussed in previous chapters are. SEM is given by 

 

* (1 )SEM σ α= −  
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where σ is the standard deviation of the observed scores on the test and α is the reliability 

of the test. For the tests examined, the SEM for any setting was around 2.6. With this in 

mind, one can conclude that if only an overall population mean is desired, 

unidimensional true score equating of the multidimensional form is fairly robust to 

violations of unidimensionality. Regardless of the population ability distribution(s), even 

with lower correlations between traits (0.7 or even 0.5), small divergences (up to 5 items) 

are acceptable; with higher correlations, 20 items does not result in very large errors. This 

indicates that, at least with the employed here methodology, equating even with such a 

low correlation is reasonable (of course assuming that equating with 0.9 correlation is 

reasonable). However, if individual scores are of interest, as is the case in many testing 

situations, the large errors for the low and high ability students preclude anything but the 

parallel forms for anything but the highest (0.9 or 0.95) correlations where up to five 

items can differ in subscale from one form to the other. Examinees at the extremes of the 

ability scales are most effected by unidimensional equating of multidimensional trait. 

However, examines at the top and bottom of the ability continuum are not effected the 

same way by true score equating. As one subpopulation becomes more able and the mean 

ability for the whole population shifts, the errors for the top ability examines decrease – 

the estimation becomes less volatile with more people, leading to a decrease in errors. 

Conversely, the errors increase for the examinees at the low end of the ability scale. In 

fact, the sometimes counterintuitive results for the last setting and bottoms of each of the 

abilities and combined population might be due to a very small number of examinees at 

the top and bottom 10% of both abilities. The number of people (for the last simulation 

run) is shown in Tables in Appendix C. As can be seen the variability is quite large here, 
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but even 300 examinees constitute only 7% of the full population of 4000. Those results 

also clearly indicate a shift in the number of examinees used for estimation as the 

population mean increases. The ability estimation is naturally more precise in ranges 

where there are more examinees. 

Moreover, this study unambiguously pinpoints the direction of the bias for the 

extremes of the population – equating underestimates the true score for top abilities of the 

dimension the test becomes heavier in (here θ1) and overestimates for the bottom ability 

for this dimension. The reverse is true for the dimension the test becomes lighter in (θ2). 

3. While a correlation of around 0.7 (the general reported correlation between the (old) 

SAT sections) seems large enough to allow same construct equating, given that more than 

the overall population score is of interest, each subscale should be considered separately. 

Additionally, the difference between some subpopulations might be more than 1 on the 

standard normal scale. Differences larger than one were not examined in this study – 

errors would probably become more influenced by the relative differences in 

subpopulation ability as those differences get larger.  

 

5.2 Improvements to methodology  

While the M3PL of Reckase has been firmly entrenched in literature and research, 

it’s appropriateness to the situation investigated here might be called into question. In 

particular, the difficulty parameter is assumed to be constant between dimensions, but 

intuitively, for a multidimensional case (especially when the traits are not highly 

correlated); the difficulty might be in a totally different metric.  
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The estimation of abilities, while confirmed by the pilot simulation study, is only 

approximate. It’s unclear how well it works when the abilities have different means or 

follow completely different distributions. Should extensions of this study be desired, 

another approximation would be necessary for the two subpopulations differing in shape 

of their ability distribution. The difference in the magnitudes (although not the general 

trends) between the errors using calculated reference composite and estimated reference 

composite actually further underscores this. Alternatively, separate calculations for each 

of the subpopulation halves could have been employed. As mentioned in the results 

section, the exact reason for discrepancy between the errors using calculated and 

estimated reference composite is unknown and should be investigated further. It could be 

due to linearity of the calculated approximation. Another explanation is that the Parscale 

estimation takes into account the response data, while the calculation is purely based on 

both abilities and is linear. 

 This study underutilizes the generated item parameters which serve only to 

generate the observed scores. Those parameters could be used to calculate a more exact 

true score. It is unclear at this point if that would necessitate the use of the generated, 

rather than estimated item parameters for equating. One could employ the conditional 

standard error of measurement (standard deviation of the observed scores conditional on 

the true score) before and after the equating for an additional measure on how the 

multidimensional score translates into a unidimensional one.  

 Some of the settings in the current study might be called into question given the 

purpose of this study. For example, with a correlation of 0.5 between traits, equating 

should probably not be conducted for the whole form; rather, each of the traits should be 
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equated separately. While the results indicate equating functioning well for low 

correlations between traits, the validity of putting what are presumably different 

constructs on the same test form is questionable. In such a situation in practice, two 

constructs should (and hopefully would) be equated separately.  

A unidimensional approximation was used for the calculation of the indices for 

the top and bottom abilities. This is very crude, and forces the error estimation to be 

based on very few people. A more population-dependent (maybe a rank-order) measure 

could have been employed. 

Finally, the estimation of the item parameters depends on what Parscale is asked 

to do. However, given that the same estimation was used for each of the simulations it 

has little effect on the relative magnitudes of the equating indices. Population halves 

could have been estimated separately though for a more accurate ability estimation. 

However, one could argue, that in the real situation the person doing the equating would 

not know that a part of the population exhibits higher ability on one of the dimensions 

and population invariance requirement states that the equating functions have to be the 

same regardless of ability differences of subpopulations. 

  

5.3 Further studies 

This dissertation opens doors for a multitude of possible further studies. 

Naturally, the settings presented here can be extended for a fine-tuning of the results. 

Additional correlations of 0.6 and 0.8 could be considered in addition to the correlation of 

1 which would serve as another baseline for the magnitude of the results. Lower 

correlations could also be explored to test the limits of robustness of IRT true-score 
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equating. Lower correlations however, could only serve the above purpose, since it’s 

unlikely any real assessment would be equated together for low correlations between 

traits. Additional splits of the forms could also be explored, especially ones that are not as 

extreme – while the 20 items removed does not provide good equating, examining up to 

10 items removed might shed some light on the unidimensional true score equating. In 

addition, that would allow for examining informative contrasts in the glm procedure – an 

estimate of the error increase with each item removed from a subscale could be obtained 

for instance. More ability differences could be examined, with varying sizes of groups 

differing in the mean ability. An interesting setting would be to have half of the 

population increase on one ability while the other half decreases on that ability to create a 

seeming “no difference in ability” scenario. Additional dimensions could be added, 

especially for higher correlations so that different dimensional structures of, for example, 

a mathematics assessment could be explored. Similarly, a lower correlational structure 

could be examined with more dimensions (correlations around 0.7 as in the reading 

constructs). The simulation study could be further enhanced if the correlations between 

dimensions were allowed to vary; however, care needs to be taken not to make the design 

so complicated it becomes a) not applicable to the real world and b) extremely difficult to 

interpret.  

 Single group design, while very intuitive and easy to interpret, is rarely used in 

operational settings. The reasons were described in detail in chapter 2.3.1. In the next 

iterations of this project, other designs could be used; for instance the common item 

(NEAT) design where a portion of items (an anchor) is common to both assessments. For 

a fixed percentage of common items some structures might be more robust to item 
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loading shift than others. Of course, it’s not clear how many items are needed as the 

common items; there is a belief in the field that if the items are “good” (definitions of 

“good” vary) very few are needed. In general, the correlation between the score on the 

anchor and the score on the forms to be equated has to be high. Intuitively, it seems that a 

simple structure with common items would be robust to the variability in subscales since 

the correlation between the anchor score and the score on the items of the same 

dimension as the anchor would be high for each of the parts. It is also known, that 

common items have to reflect the forms that are to be equated (Kolen & Brennan, p. 19). 

This requirement obviously negates the purpose of this study in which the forms are 

changing. However, how close do multidimensional common items have to be to reflect 

both forms is an interesting research question. In the extreme case for instance – could 

one have common items reflecting the general ΘTT and simple structure multidimensional 

test forms (which would reflect the general ΘTT)? Or will simple structure common items 

be able to provide good equating of non-simple structure forms? The NEAT design 

would also allow a setting in which part (or all) of the population increases in ability 

either on one dimension or both dimensions. 

Another extension of the current study would be to examine a non-simple 

structure. However, with this kind of structure any potential results might be very 

difficult to interpret. And, as some argue, that such a structure exists only theoretically as 

a matter of test development agreement, rather than practically (although that could be 

caused simply by a lack of developed estimation procedures). 

Another interesting setting which could be explored is not to keep the total 

number of items constant, but rather to remove items from one subscale without replacing 
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them in the other subscale. However, this course of action would cause reliability 

problems due to varying number of items. Same reliability of the forms, as discussed in 

detail previously (chapter 2.3), is one of the necessary conditions for equating to be valid. 

This problem could be partially overcome by increasing the discrimination of the 

remaining items, although that solution would be available only in a simulation study 

since it would presumably be hard to develop items of a given discrimination (unless the 

item pool is very rich). Ackerman (1992) warned against confounding form difficulty 

with equating, but it seems that some of this confounding is present in this study with the 

changing of the mean ability of the ½ of the population on the first dimension and 

changing of the items loading on each of the dimensions. As the forms diverge, the form 

being equated effectively becomes easier for half of the population (impacting the whole 

population in the process of course). The forms might be non-equatable because of that. 

However, purposefully confounding item difficulty and form could make for a very 

interesting further study. Closer monitoring of the quality of the items (in terms of item 

information) could not only help with the above issues, but in of itself provide interesting 

feedback on sensitivity of IRT true score equating to multidimensionality.  

A linearity of the errors as a function of the factors was implicitly assumed in the 

generalized linear model procedure. It is conceivable that the errors are dependent on the 

higher degrees of the factors. More settings of form divergence and correlations could 

lead to an exploration of this issue.  

Employing multiple equatings with each form differing very slightly from the 

previous form could give rise to interesting studies on the accumulation of errors as a 

multidimensional test is treated unidimensionally for many administrations.  
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APPENDIX A  
Full results of the simulation study.  
The following pages list the errors (MSD and RMSD) for the two models examined in 
this simulation study by the distribution of items on the second form (listed in the first 
column, uniquely identified for all but the most divergent setting) and the correlations 
between simulated traits. Results using the calculated reference composite for the 3PL 
model start below and continue through Table A54 on page 111. Results using the 
calculated reference composite for the 1PL model start with Table A55 on page 111 and 
continue through Table A108 on page 129. Results using the estimated reference 
composite for the 3PL model start with Table A109 on page 130 and continue through 
Table A162 on page 147. Results using the estimated reference composite for the 1PL 
model start with Table A163 on page 148 and continue though Table A214. For each of 
the sections Mean Signed Difference is listed first for all the population sections 
examined, followed by the Root Mean Squared Difference. 

 
Table A1: MSD using calculated reference composite full population, 
no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.002 0.000 -0.001 0.000 
25-15 -0.004 0.012 0.001 0.003 
40-0 -0.045 0.008 -0.005 0.033 

0-40:40-0 0.038 -0.037 -0.007 -0.001 
     
     

Table A2: MSD using calculated reference composite top 10% of the 
full population, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 -0.005 -0.003 -0.003 -0.003 
25-15 -0.116 -0.096 -0.087 -0.063 
40-0 -1.496 -1.274 -0.997 -0.876 

0-40:40-0 -0.076 -0.014 0.004 0.046 
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Table A3: MSD using calculated reference composite top 10% of θ1, 
no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.224 0.159 0.086 0.057 
25-15 0.924 0.699 0.359 0.202 
40-0 2.153 1.256 0.336 -0.013 

0-40:40-0 8.258 6.189 3.535 2.286 

     
     

Table A4: MSD using calculated reference composite top 10% of θ2, 
no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.237 -0.169 -0.098 -0.063 
25-15 -1.260 -0.955 -0.556 -0.365 
40-0 -6.731 -4.950 -3.042 -2.194 

0-40:40-0 -8.119 -6.014 -3.600 -2.240 
     

     

Table A5: MSD using calculated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.003 0.003 0.003 0.003 
25-15 0.112 0.096 0.068 0.069 
40-0 1.488 1.243 0.951 0.946 

0-40:40-0 -0.102 -0.033 0.002 0.004 
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Table A6: MSD using calculated reference composite for the bottom 
10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.197 -0.152 -0.079 -0.055 
25-15 -0.901 -0.633 -0.309 -0.199 
40-0 -1.941 -1.240 -0.309 0.040 

0-40:40-0 -8.412 -6.317 -3.156 -2.382 
 

     

Table A7: MSD using calculated reference composite for the bottom 
10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.215 0.166 0.087 0.059 
25-15 1.210 0.927 0.495 0.383 
40-0 6.393 4.924 2.993 2.392 

0-40:40-0 8.376 6.207 3.107 2.440 

     
     

Table A8: MSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.001 0.001 0.000 0.000 
25-15 0.004 0.020 0.004 0.006 
40-0 -0.030 0.023 0.001 0.026 

0-40:40-0 0.054 -0.021 0.011 0.009 

     
     



    

    

98

 

Table A9: MSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.002 0.000 -0.001 0.001 
25-15 -0.011 0.003 -0.001 0.001 
40-0 -0.060 -0.006 -0.010 0.040 

0-40:40-0 0.022 -0.053 -0.026 -0.012 

     
     

Table A10: RMSD using calculated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.199 0.161 0.092 0.067 
25-15 0.974 0.765 0.460 0.333 
40-0 4.055 3.141 1.972 1.462 

0-40:40-0 7.166 5.899 3.356 2.369 

     
     

Table A11: RMSD using calculated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.044 0.039 0.032 0.022 
25-15 0.258 0.223 0.181 0.125 
40-0 1.796 1.553 1.200 1.011 

0-40:40-0 1.939 1.570 1.393 0.982 
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Table A12: RMSD using calculated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.273 0.191 0.101 0.066 
25-15 1.170 0.876 0.446 0.258 
40-0 3.341 2.074 0.872 0.543 

0-40:40-0 9.591 7.298 4.053 2.620 

     
     

Table A13: RMSD using calculated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.283 0.201 0.113 0.071 
25-15 1.456 1.092 0.618 0.402 
40-0 7.278 5.418 3.252 2.286 

0-40:40-0 9.443 7.107 4.130 2.571 

     
     

Table A14: RMSD using calculated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.041 0.037 0.027 0.022 
25-15 0.230 0.227 0.148 0.137 
40-0 1.781 1.526 1.143 1.082 

0-40:40-0 1.934 1.748 1.220 0.976 
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Table A15: RMSD using calculated reference composite for the 
bottom 10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.242 0.186 0.093 0.064 
25-15 1.143 0.788 0.390 0.250 
40-0 3.019 2.035 0.870 0.559 

0-40:40-0 9.695 7.434 3.643 2.723 

     
     

Table A16: RMSD using calculated reference composite for the 
bottom 10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.260 0.200 0.102 0.067 
25-15 1.407 1.072 0.557 0.418 
40-0 6.971 5.386 3.210 2.520 

0-40:40-0 9.684 7.350 3.591 2.795 

     
     

Table A17: RMSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.199 0.160 0.093 0.067 
25-15 0.971 0.765 0.459 0.334 
40-0 4.046 3.134 1.966 1.463 

0-40:40-0 7.118 5.927 3.379 2.367 
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Table A18: RMSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.199 0.161 0.092 0.067 
25-15 0.977 0.766 0.460 0.331 
40-0 4.063 3.148 1.977 1.460 

0-40:40-0 7.214 5.871 3.333 2.370 

     

Table A19: MSD using calculated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20      
21-19 0.047 0.049 0.048 0.048 
25-15 0.215 0.235 0.236 0.234 
40-0 0.760 0.806 0.820 0.855 

0-40:40-0 1.746 1.814 1.799 1.829 

     

Table A20: MSD using calculated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.002 0.004 0.008 0.010 
25-15 -0.069 -0.040 -0.008 0.002 
40-0 -0.843 -0.816 -0.571 -0.421 

0-40:40-0 0.183 0.226 0.374 0.453 
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Table A21: MSD using calculated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.206 0.165 0.094 0.073 
25-15 0.875 0.637 0.343 0.270 
40-0 1.529 1.208 0.479 0.267 

0-40:40-0 8.277 5.921 3.625 2.883 

     

Table A22: MSD using calculated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.188 -0.130 -0.063 -0.045 
25-15 -1.034 -0.704 -0.369 -0.282 
40-0 -5.433 -4.431 -2.302 -1.763 

0-40:40-0 -6.630 -4.502 -2.361 -1.578 

     

Table A23: MSD using calculated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.010 0.012 0.017 0.017 
25-15 0.160 0.148 0.135 0.151 
40-0 2.068 1.620 1.490 1.635 

0-40:40-0 0.253 0.431 0.542 0.646 
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Table A24: MSD using calculated reference composite for the bottom 
10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.222 -0.165 -0.097 -0.068 
25-15 -1.041 -0.760 -0.407 -0.294 
40-0 -2.577 -1.625 -0.643 -0.198 

0-40:40-0 -9.224 -7.144 -4.075 -2.786 

     
     

Table A25: MSD using calculated reference composite for the bottom 
10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.282 0.219 0.147 0.115 
25-15 1.552 1.262 0.824 0.708 
40-0 7.276 5.967 4.198 3.789 

0-40:40-0 10.628 8.665 5.652 4.501 

     
     

Table A26: MSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.002 0.000 0.001 -0.001 
25-15 -0.012 0.008 0.002 0.004 
40-0 0.126 0.094 0.072 0.076 

0-40:40-0 -0.026 -0.020 -0.021 0.016 
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Table A27: MSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.096 0.098 0.096 0.096 
25-15 0.442 0.462 0.470 0.463 
40-0 1.394 1.519 1.568 1.634 

0-40:40-0 3.517 3.647 3.619 3.641 

     
     

Table A28: RMSD using calculated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.224 0.175 0.116 0.098 
25-15 1.053 0.852 0.590 0.479 
40-0 4.138 3.420 2.252 1.943 

0-40:40-0 7.754 6.462 4.346 3.640 

     
     

Table A29: RMSD using calculated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.025 0.029 0.023 0.021 
25-15 0.167 0.146 0.100 0.089 
40-0 1.038 1.035 0.760 0.559 

0-40:40-0 1.311 0.980 0.983 0.879 
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Table A30: RMSD using calculated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.268 0.203 0.111 0.084 
25-15 1.129 0.819 0.425 0.325 
40-0 2.517 2.020 0.907 0.602 

0-40:40-0 9.776 7.185 4.192 3.286 

     
     

Table A31: RMSD using calculated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.250 0.159 0.073 0.052 
25-15 1.261 0.833 0.428 0.311 
40-0 6.205 5.000 2.469 1.836 

0-40:40-0 8.056 5.530 2.866 1.836 

     
     

Table A32: RMSD using calculated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.052 0.048 0.047 0.039 
25-15 0.319 0.302 0.253 0.252 
40-0 2.537 2.012 1.798 1.912 

0-40:40-0 2.686 2.561 1.859 1.737 
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Table A33: RMSD using calculated reference composite for the 
bottom 10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.277 0.202 0.113 0.079 
25-15 1.287 0.935 0.499 0.361 
40-0 3.806 2.495 1.230 0.752 

0-40:40-0 10.445 8.186 4.649 3.192 

     
     

Table A34: RMSD using calculated reference composite for the 
bottom 10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.340 0.258 0.166 0.129 
25-15 1.764 1.432 0.928 0.777 
40-0 7.728 6.425 4.488 3.971 

0-40:40-0 11.903 9.857 6.375 5.037 

     
     

Table A35: RMSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.215 0.160 0.092 0.066 
25-15 1.007 0.784 0.474 0.327 
40-0 4.088 3.264 1.910 1.473 

0-40:40-0 7.414 5.961 3.490 2.488 
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Table A36: RMSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.233 0.188 0.136 0.121 
25-15 1.097 0.914 0.687 0.592 
40-0 4.186 3.569 2.548 2.319 

0-40:40-0 8.078 6.926 5.060 4.507 

     
     

Table A37: MSD using calculated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.089 0.090 0.087 0.088 
25-15 0.403 0.402 0.435 0.417 
40-0 1.241 1.388 1.471 1.528 

0-40:40-0 3.515 3.371 3.316 3.388 

     
     

Table A38: MSD using calculated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.005 0.007 0.010 0.011 
25-15 -0.031 -0.005 0.022 0.026 
40-0 -0.440 -0.307 -0.187 -0.170 

0-40:40-0 0.248 0.277 0.390 0.388 
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Table A39: MSD using calculated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.215 0.169 0.096 0.088 
25-15 0.796 0.623 0.455 0.340 
40-0 1.355 0.977 0.623 0.490 

0-40:40-0 8.310 5.731 3.608 3.160 

     
     

Table A40: MSD using calculated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.144 -0.101 -0.044 -0.034 
25-15 -0.813 -0.550 -0.310 -0.198 
40-0 -4.487 -2.937 -1.736 -1.141 

0-40:40-0 -5.578 -3.092 -1.383 -1.019 

     
     

Table A41: MSD using calculated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.015 0.016 0.021 0.025 
25-15 0.193 0.190 0.175 0.199 
40-0 2.408 2.142 1.840 1.808 

0-40:40-0 0.349 0.646 0.806 0.804 
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Table A42: MSD using calculated reference composite for the bottom 
10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 -0.232 -0.199 -0.126 -0.085 
25-15 -1.165 -0.913 -0.516 -0.372 
40-0 -3.342 -2.554 -1.160 -0.588 

0-40:40-0 -10.374 -8.430 -5.222 -3.760 

     
     

Table A43: MSD using calculated reference composite for the bottom 
10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.337 0.308 0.247 0.232 
25-15 1.855 1.594 1.279 1.219 
40-0 7.661 7.085 5.750 5.821 

0-40:40-0 13.732 12.009 9.666 9.167 

     
     

Table A44: MSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.002 0.000 -0.001 0.000 
25-15 0.012 -0.006 0.012 0.010 
40-0 0.017 0.108 0.153 0.150 

0-40:40-0 -0.020 -0.011 0.025 0.009 
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Table A45: MSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.176 0.180 0.174 0.175 
25-15 0.794 0.809 0.859 0.823 
40-0 2.465 2.669 2.789 2.907 

0-40:40-0 7.051 6.753 6.607 6.766 

     
     

Table A46: RMSD using calculated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.233 0.206 0.159 0.147 
25-15 1.142 0.970 0.794 0.711 
40-0 4.372 3.812 2.961 2.848 

0-40:40-0 9.240 7.690 6.075 5.714 

     
     

Table A47: RMSD using calculated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.020 0.018 0.017 0.019 
25-15 0.099 0.088 0.087 0.068 
40-0 0.555 0.425 0.319 0.291 

0-40:40-0 0.624 0.552 0.609 0.608 
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Table A48: RMSD using calculated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.278 0.216 0.116 0.100 
25-15 1.051 0.812 0.542 0.395 
40-0 2.244 1.577 0.924 0.680 

0-40:40-0 10.258 7.204 4.349 3.650 

     
     

Table A49: RMSD using calculated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.192 0.129 0.053 0.038 
25-15 1.054 0.678 0.349 0.216 
40-0 5.500 3.598 1.912 1.196 

0-40:40-0 7.417 4.118 1.687 1.220 

     
     

Table A50: RMSD using calculated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.077 0.070 0.071 0.067 
25-15 0.424 0.416 0.365 0.382 
40-0 3.106 2.806 2.408 2.321 

0-40:40-0 3.503 3.527 3.045 2.718 
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Table A51: RMSD using calculated reference composite for the 
bottom 10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.271 0.229 0.143 0.096 
25-15 1.387 1.078 0.604 0.443 
40-0 4.485 3.440 1.711 1.103 

0-40:40-0 11.644 9.403 5.881 4.224 

     
     

Table A52: RMSD using calculated reference composite for the 
bottom 10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.383 0.346 0.272 0.251 
25-15 2.032 1.756 1.398 1.301 
40-0 8.119 7.511 6.064 6.095 

0-40:40-0 14.972 13.093 10.519 9.848 

     
     

Table A53: RMSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.196 0.159 0.090 0.063 
25-15 1.016 0.775 0.460 0.321 
40-0 4.168 3.333 1.973 1.538 

0-40:40-0 8.077 6.138 3.598 2.567 
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Table A54: RMSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.264 0.244 0.206 0.198 
25-15 1.256 1.131 1.024 0.952 
40-0 4.566 4.237 3.692 3.722 

0-40:40-0 10.271 8.977 7.801 7.662 

 
Table A55: MSD using calculated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.001 0.001 0.002 0.001 
25-15 0.006 0.004 0.010 0.012 
40-0 0.057 0.076 0.139 0.179 

0-40:40-0 0.026 -0.010 0.036 0.010 

     
     

Table A56: MSD using calculated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.006 -0.004 -0.006 -0.003 
25-15 -0.119 -0.099 -0.071 -0.068 
40-0 -1.598 -1.335 -1.044 -0.819 

0-40:40-0 0.060 -0.002 -0.027 0.003 
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Table A57: MSD using calculated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.204 0.150 0.070 0.049 
25-15 0.921 0.634 0.327 0.192 
40-0 1.942 1.259 0.303 -0.040 

0-40:40-0 8.050 5.857 3.079 2.243 

     
     

 

Table A58: MSD using calculated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.219 -0.160 -0.086 -0.058 
25-15 -1.235 -0.885 -0.517 -0.348 
40-0 -6.143 -4.797 -2.770 -2.078 

0-40:40-0 -8.068 -5.815 -3.128 -2.132 

     
     

Table A59: MSD using calculated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.004 0.006 0.013 0.006 
25-15 0.198 0.191 0.126 0.124 
40-0 2.703 2.278 1.884 1.884 

0-40:40-0 -0.047 -0.027 0.013 -0.005 
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Table A60: MSD using calculated reference composite for the bottom 
10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.288 -0.216 -0.120 -0.080 
25-15 -1.248 -0.940 -0.475 -0.328 
40-0 -2.694 -1.803 -0.494 0.085 

0-40:40-0 -10.376 -8.343 -4.627 -3.182 

     
     

 

Table A61: MSD using calculated reference composite for the bottom 
10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.305 0.232 0.150 0.090 
25-15 1.604 1.240 0.751 0.561 
40-0 7.405 6.099 3.994 3.533 

0-40:40-0 10.292 8.355 4.700 3.208 

     
     

Table A62: MSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.001 0.000 0.003 0.000 
25-15 0.006 0.000 0.010 0.008 
40-0 0.058 0.058 0.139 0.193 

0-40:40-0 -0.006 0.024 0.018 -0.016 
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Table A63: MSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.002 0.001 0.001 0.001 
25-15 0.007 0.009 0.010 0.016 
40-0 0.055 0.095 0.139 0.165 

0-40:40-0 0.059 -0.045 0.054 0.036 

     
     

 

Table A64: RMSD using calculated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.218 0.171 0.114 0.069 
25-15 1.061 0.836 0.496 0.368 
40-0 4.133 3.324 1.999 1.653 

0-40:40-0 7.727 6.135 3.616 2.499 

     
     

Table A65: RMSD using calculated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.042 0.039 0.024 0.023 
25-15 0.257 0.220 0.169 0.130 
40-0 1.902 1.633 1.231 0.941 

0-40:40-0 1.926 1.722 1.174 1.027 
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Table A66: RMSD using calculated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.248 0.183 0.086 0.057 
25-15 1.159 0.804 0.408 0.242 
40-0 3.013 2.056 0.820 0.479 

0-40:40-0 9.411 6.866 3.561 2.545 
     

 

Table A67: RMSD using calculated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.264 0.191 0.100 0.066 
25-15 1.429 1.031 0.580 0.383 
40-0 6.734 5.247 2.947 2.176 

0-40:40-0 9.435 6.854 3.576 2.453 
     
     

Table A68: RMSD using calculated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.086 0.078 0.054 0.045 
25-15 0.477 0.445 0.300 0.247 
40-0 3.171 2.750 2.208 2.117 

0-40:40-0 3.296 3.341 2.264 1.768 
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Table A69: RMSD using calculated reference composite for the 
bottom 10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.334 0.250 0.142 0.091 
25-15 1.486 1.135 0.575 0.404 
40-0 4.084 2.866 1.283 0.918 

0-40:40-0 11.659 9.427 5.257 3.558 
     
     

 

Table A70: RMSD using calculated reference composite for the 
bottom 10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.346 0.265 0.168 0.101 
25-15 1.780 1.374 0.822 0.611 
40-0 7.798 6.448 4.183 3.648 

0-40:40-0 11.551 9.441 5.283 3.595 
     
     

Table A71: RMSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.218 0.171 0.114 0.068 
25-15 1.064 0.837 0.497 0.367 
40-0 4.133 3.315 1.987 1.660 

0-40:40-0 7.698 6.147 3.622 2.503 
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Table A72: RMSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.217 0.171 0.114 0.069 
25-15 1.059 0.835 0.496 0.369 
40-0 4.133 3.333 2.011 1.646 

0-40:40-0 7.756 6.122 3.609 2.495 

     
     

 

Table A73: MSD using calculated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.051 0.052 0.050 0.053 
25-15 0.250 0.258 0.261 0.257 
40-0 0.810 0.901 1.078 1.023 

0-40:40-0 1.839 1.820 1.859 1.889 

     
     

Table A74: MSD using calculated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.002 0.004 0.007 0.011 
25-15 -0.064 -0.039 -0.009 0.004 
40-0 -0.960 -0.697 -0.415 -0.422 

0-40:40-0 0.218 0.228 0.456 0.490 
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Table A75: MSD using calculated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.200 0.152 0.082 0.069 
25-15 0.921 0.639 0.344 0.271 
40-0 1.625 1.044 0.406 0.243 

0-40:40-0 7.613 5.366 3.309 2.682 

     
     

 

Table A76: MSD using calculated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.176 -0.123 -0.059 -0.045 
25-15 -1.047 -0.712 -0.363 -0.266 
40-0 -5.302 -3.714 -1.888 -1.666 

0-40:40-0 -6.293 -4.129 -2.183 -1.537 

     
 

Table A77: MSD using calculated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.023 0.021 0.027 0.029 
25-15 0.276 0.279 0.254 0.263 
40-0 3.237 2.913 2.568 2.516 

0-40:40-0 0.472 0.682 0.972 1.030 
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Table A78: MSD using calculated reference composite for the bottom 
10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.290 -0.218 -0.137 -0.091 
25-15 -1.328 -1.007 -0.539 -0.360 
40-0 -3.451 -2.500 -0.957 -0.240 

0-40:40-0 -11.303 -8.784 -5.047 -3.923 
     
     

Table A79: MSD using calculated reference composite for the bottom 
10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.350 0.281 0.197 0.157 
25-15 1.891 1.579 1.067 0.879 
40-0 8.206 7.159 5.618 4.629 

0-40:40-0 12.900 10.747 7.033 5.854 
     

Table A80: MSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.002 0.000 -0.001 0.001 
25-15 0.010 0.017 0.011 0.013 
40-0 0.118 0.154 0.256 0.215 

0-40:40-0 0.007 0.000 0.038 -0.001 
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Table A81: MSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.100 0.103 0.102 0.104 
25-15 0.490 0.498 0.511 0.502 
40-0 1.502 1.648 1.900 1.831 

0-40:40-0 3.670 3.640 3.679 3.780 

     
     

Table A82: RMSD using calculated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.226 0.185 0.125 0.106 
25-15 1.160 0.942 0.637 0.516 
40-0 4.410 3.627 2.699 2.208 

0-40:40-0 8.391 6.669 4.435 3.792 

     

Table A83: RMSD using calculated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.029 0.029 0.022 0.022 
25-15 0.164 0.142 0.099 0.092 
40-0 1.148 0.876 0.553 0.552 

0-40:40-0 1.171 0.999 0.987 0.902 
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Table A84: RMSD using calculated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.249 0.187 0.097 0.080 
25-15 1.197 0.814 0.428 0.324 
40-0 2.578 1.685 0.760 0.558 

0-40:40-0 9.267 6.600 3.841 3.009 

     
     

Table A85: RMSD using calculated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.221 0.151 0.070 0.051 
25-15 1.270 0.854 0.416 0.290 
40-0 6.056 4.318 2.056 1.752 

0-40:40-0 7.907 5.172 2.569 1.780 

     

Table A86: RMSD using calculated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.106 0.095 0.084 0.067 
25-15 0.594 0.560 0.459 0.420 
40-0 3.941 3.598 3.073 2.885 

0-40:40-0 4.540 4.282 3.212 2.851 
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Table A87: RMSD using calculated reference composite for the 
bottom 10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.333 0.251 0.159 0.106 
25-15 1.579 1.195 0.655 0.437 
40-0 4.790 3.655 1.863 1.034 

0-40:40-0 12.610 9.846 5.652 4.455 

     
     

Table A88: RMSD using calculated reference composite for the 
bottom 10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.390 0.315 0.220 0.173 
25-15 2.075 1.732 1.166 0.947 
40-0 8.628 7.540 5.890 4.820 

0-40:40-0 14.181 11.836 7.793 6.433 

     
     

 

Table A89: RMSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.218 0.170 0.101 0.072 
25-15 1.122 0.884 0.515 0.356 
40-0 4.404 3.509 2.274 1.682 

0-40:40-0 8.175 6.264 3.587 2.649 
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Table A90: RMSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.233 0.199 0.145 0.131 
25-15 1.196 0.997 0.739 0.637 
40-0 4.416 3.740 3.066 2.631 

0-40:40-0 8.599 7.050 5.145 4.663 

     
     

Table A91: MSD using calculated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.094 0.093 0.096 0.096 
25-15 0.445 0.466 0.465 0.453 
40-0 1.414 1.507 1.651 1.729 

0-40:40-0 3.506 3.532 3.653 3.597 

     

Table A92: MSD using calculated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.006 0.008 0.010 0.010 
25-15 -0.020 -0.003 0.021 0.024 
40-0 -0.374 -0.320 -0.163 -0.168 

0-40:40-0 0.315 0.322 0.384 0.371 
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Table A93: MSD using calculated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.210 0.148 0.100 0.080 
25-15 0.761 0.566 0.376 0.338 
40-0 1.114 0.888 0.515 0.490 

0-40:40-0 7.768 5.628 3.667 2.932 

     
     

Table A94: MSD using calculated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.144 -0.092 -0.046 -0.031 
25-15 -0.765 -0.499 -0.264 -0.188 
40-0 -4.165 -2.844 -1.449 -1.136 

0-40:40-0 -4.886 -3.073 -1.468 -0.817 

     

Table A95: MSD using calculated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.026 0.030 0.037 0.037 
25-15 0.309 0.308 0.299 0.294 
40-0 3.910 3.309 2.919 2.793 

0-40:40-0 0.512 0.974 1.192 1.373 
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Table A96: MSD using calculated reference composite for the bottom 
10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 -0.295 -0.246 -0.149 -0.107 
25-15 -1.519 -1.224 -0.692 -0.455 
40-0 -4.581 -3.377 -1.614 -0.727 

0-40:40-0 -12.533 -9.858 -6.469 -4.732 

     
     

Table A97: MSD using calculated reference composite for the bottom 
10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.397 0.363 0.291 0.283 
25-15 2.195 1.972 1.598 1.385 
40-0 8.806 7.779 6.931 6.555 

0-40:40-0 15.517 13.559 11.578 11.094 

     

Table A98: MSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.002 -0.001 0.002 0.001 
25-15 0.012 0.024 0.019 0.025 
40-0 0.241 0.233 0.268 0.280 

0-40:40-0 -0.051 0.055 -0.024 -0.009 
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Table A99: MSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.185 0.187 0.190 0.191 
25-15 0.878 0.907 0.912 0.880 
40-0 2.588 2.780 3.035 3.178 

0-40:40-0 7.063 7.010 7.329 7.202 

     
     

Table A100: RMSD using calculated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.250 0.220 0.175 0.164 
25-15 1.292 1.124 0.880 0.770 
40-0 4.934 4.119 3.393 3.189 

0-40:40-0 9.753 8.200 6.829 6.243 

     

Table A101: RMSD using calculated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20     
21-19 0.022 0.018 0.018 0.016 
25-15 0.082 0.072 0.065 0.072 
40-0 0.475 0.438 0.272 0.298 

0-40:40-0 0.654 0.643 0.618 0.552 
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Table A102: RMSD using calculated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.265 0.189 0.119 0.092 
25-15 1.031 0.757 0.466 0.394 
40-0 1.842 1.428 0.773 0.678 

0-40:40-0 9.807 7.065 4.444 3.402 

     
     

Table A103: RMSD using calculated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.184 0.122 0.055 0.035 
25-15 1.013 0.626 0.305 0.207 
40-0 5.391 3.454 1.628 1.201 

0-40:40-0 6.632 4.146 1.830 0.980 

     

Table A104: RMSD using calculated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.131 0.131 0.107 0.101 
25-15 0.773 0.731 0.624 0.558 
40-0 4.968 4.320 3.797 3.556 

0-40:40-0 5.605 5.455 4.477 4.318 
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Table A105: RMSD using calculated reference composite for the 
bottom 10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.332 0.280 0.170 0.123 
25-15 1.753 1.419 0.812 0.534 
40-0 5.997 4.413 2.324 1.364 

0-40:40-0 13.833 10.985 7.234 5.283 

     
     

Table A106: RMSD using calculated reference composite for the 
bottom 10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.435 0.399 0.317 0.304 
25-15 2.375 2.141 1.717 1.475 
40-0 9.365 8.225 7.273 6.849 

0-40:40-0 16.773 14.669 12.529 11.831 
 
 
 
Table A107: RMSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.219 0.177 0.103 0.074 
25-15 1.178 0.919 0.533 0.360 
40-0 4.932 3.731 2.330 1.794 

0-40:40-0 8.767 6.724 4.117 2.881 
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Table A108: RMSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20     
21-19 0.278 0.256 0.226 0.220 
25-15 1.397 1.296 1.125 1.027 
40-0 4.934 4.472 4.194 4.138 

0-40:40-0 10.646 9.448 8.735 8.345 
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Table A109: MSD using estimated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.010 0.082 0.105 -0.013 
21-19 -0.052 -0.069 0.071 0.032 
25-15 0.059 -0.019 -0.029 0.009 
40-0 0.316 0.121 -0.033 0.097 

0-40:40-0 0.039 -0.112 -0.026 0.055 

     

Table A110: MSD using estimated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.261 -0.032 0.447 -0.006 
21-19 -0.068 -0.053 0.020 0.124 
25-15 0.203 -0.052 -0.051 -0.006 
40-0 -0.751 -0.380 -0.230 -0.098 

0-40:40-0 0.119 -0.049 0.024 0.006 

     

Table A111: MSD using estimated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.236 -0.020 0.346 0.030 
21-19 0.644 0.193 0.113 0.203 
25-15 1.665 0.773 0.370 0.229 
40-0 3.529 2.643 1.353 1.024 

0-40:40-0 8.010 5.856 3.116 2.221 
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Table A112: MSD using estimated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.396 -0.007 0.339 0.000 
21-19 -0.756 -0.288 -0.077 0.070 
25-15 -1.519 -0.975 -0.473 -0.265 
40-0 -4.405 -3.326 -1.821 -1.113 

0-40:40-0 -7.827 -6.032 -3.096 -2.172 

     

Table A113: MSD using estimated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.285 0.116 -0.425 -0.033 
21-19 -0.073 -0.068 -0.033 -0.200 
25-15 -0.221 0.042 0.017 -0.026 
40-0 0.741 0.292 0.158 0.089 

0-40:40-0 -0.105 0.004 -0.039 -0.015 

     

Table A114: MSD using estimated reference composite for the 
bottom 10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.420 0.139 -0.344 0.154 
21-19 -0.150 -0.101 -0.043 -0.127 
25-15 -1.123 -0.955 -0.420 -0.212 
40-0 -2.227 -2.082 -1.197 -0.816 

0-40:40-0 -7.554 -5.374 -2.955 -1.899 
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Table A115: MSD using estimated reference composite for the 
bottom 10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.125 0.129 -0.260 -0.024 
21-19 0.061 0.036 0.154 0.007 
25-15 1.474 1.175 0.453 0.241 
40-0 5.177 3.475 1.702 1.284 

0-40:40-0 7.429 5.263 2.897 2.017 

     

Table A116: MSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.013 0.079 0.120 -0.016 
21-19 -0.054 -0.076 0.068 0.030 
25-15 0.060 -0.027 -0.029 0.004 
40-0 0.308 0.119 -0.031 0.105 

0-40:40-0 0.035 -0.118 -0.026 0.058 

     
     

 

Table A117: MSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 -0.007 0.085 0.089 -0.010 
21-19 -0.051 -0.061 0.074 0.034 
25-15 0.058 -0.011 -0.029 0.014 
40-0 0.324 0.123 -0.036 0.088 

0-40:40-0 0.044 -0.106 -0.026 0.052 
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Table A118: RMSD using estimated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.343 3.151 3.358 3.113 
21-19 3.263 3.095 3.092 3.132 
25-15 3.579 3.220 3.080 3.064 
40-0 4.935 4.324 3.488 3.297 

0-40:40-0 7.520 6.204 4.379 3.778 

     

Table A119: RMSD using estimated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.231 1.978 2.352 1.945 
21-19 3.263 1.935 1.958 2.090 
25-15 2.192 1.943 1.957 1.972 
40-0 2.274 2.256 2.088 2.022 

0-40:40-0 2.711 2.517 2.292 2.247 

     
     

Table A120: RMSD using estimated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.381 2.754 2.931 2.580 
21-19 3.257 2.811 2.603 2.631 
25-15 3.479 2.827 2.602 2.546 
40-0 5.310 4.277 2.964 2.735 

0-40:40-0 9.657 7.370 4.432 3.600 
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Table A121: RMSD using estimated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.262 2.787 2.975 2.450 
21-19 3.288 2.877 2.648 2.673 
25-15 3.811 3.079 2.713 2.575 
40-0 5.766 4.849 3.389 2.930 

0-40:40-0 9.576 7.515 4.384 3.570 

     

Table A122: RMSD using estimated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.335 2.475 2.954 2.444 
21-19 2.088 2.217 2.289 2.467 
25-15 2.403 2.241 2.295 2.319 
40-0 2.451 2.555 2.312 2.384 

0-40:40-0 2.799 2.548 2.462 2.462 

     

Table A123: RMSD using estimated reference composite for the 
bottom 10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.468 3.086 3.254 2.815 
21-19 3.125 2.999 2.942 2.966 
25-15 3.337 3.081 2.868 2.830 
40-0 4.260 3.921 3.063 2.944 

0-40:40-0 9.335 6.984 4.455 3.585 
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Table A124: RMSD using estimated reference composite for the 
bottom 10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.286 3.131 3.457 2.803 
21-19 3.267 3.055 2.925 2.943 
25-15 3.997 3.439 2.938 2.895 
40-0 6.733 5.232 3.534 3.276 

0-40:40-0 9.284 6.847 4.396 3.651 

     

Table A125: RMSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.351 3.149 3.391 3.108 
21-19 3.259 3.093 3.088 3.131 
25-15 3.570 3.215 3.085 3.061 
40-0 4.928 4.327 3.488 3.298 

0-40:40-0 7.516 6.196 4.390 3.777 

     
     

Table A126: RMSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.336 3.152 3.323 3.117 
21-19 3.266 3.097 3.095 3.134 
25-15 3.587 3.224 3.076 3.067 
40-0 4.940 4.321 3.487 3.295 

0-40:40-0 7.523 6.211 4.367 3.780 
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Table A127: MSD using estimated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.117 -0.082 0.012 0.070 
21-19 -0.123 -0.001 0.054 -0.062 
25-15 0.261 0.076 0.152 0.056 
40-0 0.576 0.335 0.151 0.175 

0-40:40-0 0.360 0.263 0.342 0.215 

     

Table A128: MSD using estimated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.343 -0.078 0.010 0.001 
21-19 0.213 -0.007 -0.013 -0.019 
25-15 0.199 -0.011 0.014 0.003 
40-0 -0.472 -0.406 -0.236 -0.128 

0-40:40-0 -0.004 0.199 0.025 0.029 

     
     

Table A129: MSD using estimated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.515 -0.160 0.009 0.017 
21-19 0.088 0.350 0.069 0.036 
25-15 2.154 0.927 0.328 0.348 
40-0 3.599 2.604 1.461 1.087 

0-40:40-0 7.580 5.799 3.254 2.470 

     
     



    

    

139

 

Table A130: MSD using estimated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.077 -0.043 0.002 0.011 
21-19 -0.074 -0.429 -0.032 -0.056 
25-15 -1.979 -1.094 -0.229 -0.485 
40-0 -4.084 -3.320 -1.905 -1.416 

0-40:40-0 -7.237 -5.210 -2.943 -2.396 

     

Table A131: MSD using estimated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.097 -0.029 0.017 -0.066 
21-19 -0.187 -0.006 0.012 -0.029 
25-15 0.145 0.102 -0.049 -0.013 
40-0 0.951 0.591 0.285 0.188 

0-40:40-0 -0.021 -0.240 0.002 -0.132 

     
     

Table A132: MSD using estimated reference composite for the 
bottom 10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.273 -0.182 -0.008 0.036 
21-19 -0.932 0.006 -0.019 -0.086 
25-15 -0.352 -0.700 -0.423 -0.305 
40-0 -1.827 -1.721 -1.088 -0.794 

0-40:40-0 -8.274 -6.283 -3.392 -2.658 
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Table A133: MSD using estimated reference composite for the 
bottom 10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.168 0.118 0.128 0.045 
21-19 0.750 0.047 0.177 0.060 
25-15 1.668 1.186 0.651 0.396 
40-0 5.588 3.967 2.089 1.753 

0-40:40-0 8.863 6.568 4.216 3.043 

     
 

Table A134: MSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.083 -0.092 -0.004 0.065 
21-19 -0.227 -0.053 0.037 -0.085 
25-15 -0.044 -0.174 -0.078 -0.200 
40-0 -0.109 -0.404 -0.640 -0.596 

0-40:40-0 -1.292 -1.386 -1.332 -1.451 

     
     

Table A135: MSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.150 -0.073 0.028 0.076 
21-19 -0.020 0.052 0.072 -0.039 
25-15 0.565 0.326 0.382 0.312 
40-0 1.260 1.073 0.941 0.947 

0-40:40-0 2.012 1.912 2.016 1.882 

     
     



    

    

141

 

Table A136: RMSD using estimated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.323 3.011 3.071 3.019 
21-19 3.464 3.062 3.023 3.027 
25-15 3.501 3.183 3.116 3.106 
40-0 4.954 4.285 3.571 3.375 

0-40:40-0 7.753 6.548 4.776 4.172 

     

Table A137: RMSD using estimated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.041 1.830 1.873 1.813 
21-19 2.087 1.813 1.770 1.849 
25-15 1.948 1.782 1.732 1.830 
40-0 1.981 1.840 1.800 1.795 

0-40:40-0 2.191 2.346 1.897 1.950 

     
     

Table A138: RMSD using estimated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.016 2.685 2.554 2.394 
21-19 3.248 2.661 2.423 2.471 
25-15 3.574 2.680 2.367 2.448 
40-0 5.248 4.025 2.824 2.615 

0-40:40-0 9.308 7.333 4.467 3.670 
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Table A139: RMSD using estimated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.233 2.688 2.498 2.449 
21-19 3.479 2.785 2.501 2.523 
25-15 3.914 3.044 2.484 2.570 
40-0 5.522 4.698 3.306 2.953 

0-40:40-0 8.995 6.942 4.145 3.575 

     
 

Table A140: RMSD using estimated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.388 2.321 2.394 2.452 
21-19 2.367 2.308 2.510 2.393 
25-15 2.250 2.414 2.589 2.367 
40-0 2.756 2.631 2.535 2.576 

0-40:40-0 3.162 3.264 2.974 2.827 

     
     

Table A141: RMSD using estimated reference composite for the 
bottom 10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.656 3.111 2.956 2.967 
21-19 3.612 3.135 3.089 2.906 
25-15 3.146 3.178 3.203 2.926 
40-0 4.275 3.890 3.242 3.182 

0-40:40-0 10.116 8.021 5.160 4.371 
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Table A142: RMSD using estimated reference composite for the 
bottom 10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.202 2.930 2.943 3.050 
21-19 3.452 2.991 3.136 2.932 
25-15 3.868 3.462 3.298 3.022 
40-0 7.137 5.593 3.952 3.720 

0-40:40-0 10.561 8.392 5.692 4.544 
 

Table A143: RMSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.378 3.046 3.076 3.050 
21-19 3.500 3.093 3.060 3.054 
25-15 3.499 3.213 3.147 3.128 
40-0 4.848 4.226 3.568 3.359 

0-40:40-0 7.730 6.505 4.681 4.098 

     
     

Table A144: RMSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.266 2.975 3.066 2.986 
21-19 3.426 3.029 2.985 2.998 
25-15 3.501 3.151 3.083 3.083 
40-0 5.056 4.341 3.573 3.388 

0-40:40-0 7.775 6.587 4.865 4.235 
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Table A145: MSD using estimated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.187 0.015 0.006 0.001 
21-19 0.086 0.030 0.047 -0.012 
25-15 0.378 0.190 0.055 0.097 
40-0 0.971 0.679 0.481 0.327 

0-40:40-0 0.718 0.630 0.740 0.711 

     
 

Table A146: MSD using estimated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.034 0.225 -0.015 0.011 
21-19 0.105 0.051 0.035 0.084 
25-15 0.215 0.091 0.002 0.067 
40-0 -0.330 -0.433 -0.239 -0.188 

0-40:40-0 0.022 -0.069 -0.028 0.031 

     
     

Table A147: MSD using estimated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 -0.511 0.102 -0.089 -0.048 
21-19 0.285 0.153 0.170 0.205 
25-15 1.582 1.316 0.559 0.471 
40-0 3.579 2.307 1.524 1.218 

0-40:40-0 7.524 5.863 3.419 2.654 
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Table A148: MSD using estimated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.449 0.145 0.085 -0.014 
21-19 -0.202 -0.243 -0.187 -0.280 
25-15 -1.436 -1.466 -0.729 -0.513 
40-0 -3.825 -3.000 -2.244 -1.885 

0-40:40-0 -6.970 -5.674 -3.490 -2.877 

     

Table A149: MSD using estimated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.169 -0.242 -0.029 -0.017 
21-19 -0.030 -0.053 0.021 -0.041 
25-15 0.281 0.162 0.054 0.076 
40-0 1.047 0.959 0.547 0.361 

0-40:40-0 0.111 0.211 0.175 0.070 

     
     

Table A150: MSD using estimated reference composite for the 
bottom 10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 -0.655 0.004 -0.067 -0.013 
21-19 -0.048 -0.080 0.061 -0.032 
25-15 -0.037 -0.139 -0.364 -0.227 
40-0 -0.536 -1.129 -0.855 -0.757 

0-40:40-0 -9.056 -6.899 -4.145 -3.086 
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Table A151: MSD using estimated reference composite for the 
bottom 10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.177 -0.313 -0.020 0.156 
21-19 0.158 0.237 0.060 -0.089 
25-15 1.689 1.156 0.746 0.770 
40-0 5.040 4.826 3.441 2.817 

0-40:40-0 10.956 8.808 6.882 5.838 
 
     

Table A152: MSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.149 0.062 0.052 -0.021 
21-19 0.051 -0.076 0.001 -0.087 
25-15 -0.024 -0.274 -0.406 -0.320 
40-0 -0.023 -0.479 -0.870 -1.049 

0-40:40-0 -2.483 -2.583 -2.505 -2.460 

     
     

Table A153: MSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 -0.225 -0.031 -0.040 0.023 
21-19 0.121 0.135 0.092 0.063 
25-15 0.780 0.654 0.516 0.513 
40-0 1.965 1.838 1.831 1.703 

0-40:40-0 3.918 3.843 3.985 3.883 
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Table A154: RMSD using estimated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.385 3.097 3.002 2.986 
21-19 3.208 3.053 3.014 3.024 
25-15 3.318 3.185 3.097 3.077 
40-0 4.656 4.291 3.787 3.634 

0-40:40-0 8.426 7.046 5.716 5.119 
 
     

Table A155: RMSD using estimated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.036 1.820 1.715 1.632 
21-19 1.713 1.706 1.689 1.646 
25-15 1.784 1.658 1.628 1.608 
40-0 1.611 1.556 1.426 1.484 

0-40:40-0 1.931 1.841 1.637 1.593 

     
     

Table A156: RMSD using estimated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.122 2.592 2.412 2.332 
21-19 2.878 2.477 2.356 2.371 
25-15 3.011 2.735 2.328 2.305 
40-0 4.811 3.631 2.679 2.433 

0-40:40-0 9.473 7.482 4.598 3.696 
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Table A157: RMSD using estimated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.787 2.882 2.523 2.453 
21-19 3.571 2.912 2.566 2.482 
25-15 3.749 3.299 2.682 2.559 
40-0 5.419 4.352 3.408 3.108 

0-40:40-0 9.023 7.147 4.551 3.762 

Table A158: RMSD using estimated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.586 2.503 2.491 2.493 
21-19 2.335 2.438 2.491 2.525 
25-15 2.487 2.451 2.456 2.534 
40-0 3.093 3.000 2.900 2.752 

0-40:40-0 3.765 3.515 3.329 3.219 

     
     

Table A159: RMSD using estimated reference composite for the 
bottom 10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.465 3.312 3.153 3.114 
21-19 3.261 3.157 3.121 3.125 
25-15 3.181 3.088 3.175 3.145 
40-0 3.890 3.897 3.596 3.412 

0-40:40-0 11.123 8.766 6.065 5.007 
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Table A160: RMSD using estimated reference composite for the 
bottom 10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.327 3.112 3.188 3.059 
21-19 3.189 3.136 3.182 3.269 
25-15 3.682 3.462 3.374 3.377 
40-0 6.430 6.266 5.036 4.611 

0-40:40-0 12.704 10.295 8.121 6.955 

     

Table A161: RMSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.505 3.241 3.104 3.100 
21-19 3.337 3.190 3.133 3.131 
25-15 3.407 3.281 3.205 3.169 
40-0 4.550 4.188 3.722 3.626 

0-40:40-0 8.324 6.823 5.256 4.603 

     
     

Table A162: RMSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.254 2.944 2.895 2.866 
21-19 3.071 2.908 2.888 2.912 
25-15 3.222 3.084 2.984 2.981 
40-0 4.755 4.389 3.843 3.633 

0-40:40-0 8.521 7.256 6.128 5.577 

 



    

    

150

 

Table A163: MSD using estimated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.015 0.029 -0.023 -0.048 
21-19 0.034 0.006 -0.005 -0.093 
25-15 0.077 -0.013 0.047 -0.061 
40-0 0.090 0.082 0.022 0.090 

0-40:40-0 -0.060 0.105 0.047 0.069 

     
     

Table A164: MSD using estimated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.050 -0.087 0.070 0.036 
21-19 -0.034 -0.005 -0.025 -0.020 
25-15 -0.153 0.061 -0.058 0.084 
40-0 -0.688 -0.418 -0.182 -0.111 

0-40:40-0 0.067 -0.105 0.048 0.007 

     
     

Table A165: MSD using estimated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.050 0.005 0.011 -0.090 
21-19 0.176 0.032 0.026 -0.013 
25-15 0.736 0.548 0.312 0.304 
40-0 3.075 2.290 1.236 0.946 

0-40:40-0 7.787 5.658 3.098 2.106 
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Table A166: MSD using estimated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.036 -0.023 0.029 0.059 
21-19 -0.198 -0.080 -0.069 -0.024 
25-15 -0.981 -0.593 -0.454 -0.196 
40-0 -4.549 -3.271 -1.641 -1.070 

0-40:40-0 -7.729 -5.527 -3.079 -1.986 

     
 

Table A167: MSD using estimated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.070 0.100 0.029 -0.012 
21-19 0.174 0.023 -0.004 -0.092 
25-15 0.213 0.141 0.221 -0.130 
40-0 1.226 0.746 0.269 0.192 

0-40:40-0 -0.057 -0.023 0.060 -0.055 

     
     

Table A168: MSD using estimated reference composite for the 
bottom 10% of θ1, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.116 0.057 -0.048 -0.132 
21-19 -0.094 -0.162 -0.040 -0.187 
25-15 -0.788 -0.733 -0.107 -0.370 
40-0 -3.041 -2.351 -1.359 -0.941 

0-40:40-0 -7.816 -5.943 -3.027 -2.123 
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Table A169: MSD using estimated reference composite for the 
bottom 10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.092 0.084 0.040 0.151 
21-19 0.287 0.222 0.074 0.030 
25-15 1.245 0.841 0.558 0.076 
40-0 4.946 3.553 1.904 1.283 

0-40:40-0 7.553 6.050 3.158 2.240 

     
     

Table A170: MSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.010 0.030 -0.025 -0.055 
21-19 0.044 0.003 0.001 -0.101 
25-15 0.064 -0.030 0.042 -0.063 
40-0 0.095 0.062 0.026 0.077 

0-40:40-0 -0.064 0.089 0.032 0.080 

     
     

Table A171: MSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.020 0.028 -0.020 -0.040 
21-19 0.025 0.010 -0.011 -0.085 
25-15 0.090 0.003 0.051 -0.060 
40-0 0.086 0.102 0.018 0.102 

0-40:40-0 -0.056 0.121 0.061 0.059 
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Table A172: RMSD using estimated reference composite full 
population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.266 3.263 3.382 3.350 
21-19 3.272 3.318 3.380 3.336 
25-15 3.409 3.357 3.413 3.376 
40-0 4.989 4.424 3.772 3.633 

0-40:40-0 7.538 6.338 4.586 4.084 

     
 

Table A173: RMSD using estimated reference composite top 10% of 
the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 1.819 1.828 1.781 1.814 
21-19 1.797 1.801 1.848 1.972 
25-15 1.787 1.861 1.951 1.996 
40-0 2.122 2.018 1.946 1.937 

0-40:40-0 2.620 2.313 2.274 2.062 

     
     

Table A174: RMSD using estimated reference composite top 10% of 
θ1, no difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 2.664 2.530 2.450 2.336 
21-19 2.662 2.580 2.470 2.538 
25-15 2.728 2.636 2.538 2.510 
40-0 4.635 3.765 2.810 2.602 

0-40:40-0 9.402 7.143 4.399 3.415 
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Table A175: RMSD using estimated reference composite top 10% of 
θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.649 2.613 2.410 2.405 
21-19 2.685 2.578 2.510 2.548 
25-15 2.905 2.745 2.637 2.583 
40-0 5.886 4.702 3.188 2.833 

0-40:40-0 9.395 6.989 4.374 3.346 
 
 

Table A176: RMSD using estimated reference composite for bottom 
10% of the full population, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.489 3.554 3.649 3.608 
21-19 3.471 3.576 3.628 3.587 
25-15 3.578 3.524 3.693 3.583 
40-0 4.047 3.873 3.773 3.828 

0-40:40-0 3.989 4.130 3.848 3.841 

     
     

Table A177: RMSD using estimated reference composite for the 
bottom 10% of θ1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.546 3.535 3.783 3.738 
21-19 3.542 3.643 3.779 3.670 
25-15 3.737 3.712 3.796 3.708 
40-0 5.586 4.865 4.212 3.980 

0-40:40-0 9.726 7.860 5.080 4.500 
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Table A178: RMSD using estimated reference composite for the 
bottom 10% of θ2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.546 3.607 3.658 3.691 
21-19 3.580 3.687 3.762 3.672 
25-15 3.826 3.747 3.722 3.680 
40-0 6.561 5.494 4.435 4.108 

0-40:40-0 9.525 7.939 5.150 4.587 
 
     

Table A179: RMSD using calculated reference composite for 
subpopulation 1, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.270 3.246 3.366 3.361 
21-19 3.276 3.309 3.379 3.342 
25-15 3.411 3.355 3.411 3.373 
40-0 4.995 4.419 3.761 3.646 

0-40:40-0 7.533 6.332 4.578 4.086 

     
     

Table A180: RMSD using calculated reference composite for 
subpopulation 2, no difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.263 3.278 3.397 3.339 
21-19 3.268 3.327 3.380 3.329 
25-15 3.406 3.358 3.413 3.379 
40-0 4.983 4.429 3.782 3.619 

0-40:40-0 7.543 6.344 4.594 4.081 
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Table A181: MSD using estimated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.006 -0.002 0.088 -0.027 
21-19 0.021 0.064 -0.043 -0.027 
25-15 0.084 0.063 0.019 0.048 
40-0 0.240 0.250 0.192 0.174 

0-40:40-0 0.275 0.249 0.365 0.222 
 
     

Table A182: MSD using estimated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.072 0.054 -0.093 0.004 
21-19 0.027 -0.024 0.129 -0.006 
25-15 -0.091 -0.057 -0.058 -0.091 
40-0 -0.590 -0.465 -0.174 -0.129 

0-40:40-0 -0.266 -0.161 -0.143 -0.086 
     
     

Table A183: MSD using estimated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 -0.086 0.076 0.035 0.019 
21-19 0.215 0.146 0.152 0.070 
25-15 0.856 0.629 0.219 0.093 
40-0 2.966 2.262 1.477 1.030 

0-40:40-0 7.245 5.388 2.871 2.307 
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Table A184: MSD using estimated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.032 0.015 -0.065 -0.019 
21-19 -0.194 -0.136 -0.015 -0.132 
25-15 -1.091 -0.823 -0.412 -0.364 
40-0 -4.434 -3.295 -1.907 -1.289 

0-40:40-0 -7.290 -5.572 -3.098 -2.455 

     
 

Table A185: MSD using estimated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.056 -0.099 0.209 -0.057 
21-19 0.055 0.110 -0.096 -0.090 
25-15 0.198 0.375 -0.082 0.104 
40-0 1.617 1.282 0.406 0.391 

0-40:40-0 0.261 0.050 0.174 -0.100 

     
     

Table A186: MSD using estimated reference composite for the 
bottom 10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 -0.081 -0.028 0.318 -0.097 
21-19 -0.089 -0.039 -0.229 -0.169 
25-15 -0.779 -0.426 -0.503 -0.240 
40-0 -3.162 -2.215 -1.414 -0.928 

0-40:40-0 -8.535 -6.380 -3.601 -2.668 
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Table A187: MSD using estimated reference composite for the 
bottom 10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.076 -0.158 0.075 -0.065 
21-19 0.237 0.196 0.046 0.040 
25-15 1.177 1.038 0.616 0.591 
40-0 5.669 4.474 2.429 1.918 

0-40:40-0 9.502 7.109 4.677 3.387 
 
     

Table A188: MSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.011 -0.006 0.112 -0.047 
21-19 -0. 

01618128
0.041 -0.097 -0.067 

25-15 -0.103 -0.122 -0.179 -0.140 
40-0 -0.504 -0.496 -0.608 -0.645 

0-40:40-0 -1.357 -1.432 -1.278 -1.445 

     
     

Table A189: MSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.001 0.002 0.064 -0.007 
21-19 0.058 0.087 0.011 0.013 
25-15 0.271 0.248 0.216 0.236 
40-0 0.984 0.997 0.991 0.992 

0-40:40-0 1.906 1.929 2.009 1.888 
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Table A190: RMSD using estimated reference composite full 
population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.231 3.271 3.380 3.212 
21-19 3.227 3.318 3.301 3.354 
25-15 3.423 3.433 3.366 3.362 
40-0 5.089 4.551 3.868 3.708 

0-40:40-0 7.916 6.679 4.997 4.471 
 
     

Table A191: RMSD using estimated reference composite top 10% of 
the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 1.710 1.711 1.721 1.635 
21-19 1.701 1.704 1.798 1.801 
25-15 1.651 1.692 1.705 1.769 
40-0 1.848 1.788 1.731 1.670 

0-40:40-0 2.104 2.058 1.839 1.944 

     
     

Table A192: RMSD using estimated reference composite top 10% of 
θ1, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 2.583 2.525 2.454 2.452 
21-19 2.555 2.522 2.451 2.397 
25-15 2.693 2.586 2.360 2.379 
40-0 4.436 3.624 2.810 2.472 

0-40:40-0 9.116 6.978 4.116 3.583 
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Table A193: RMSD using estimated reference composite top 10% of 
θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.555 2.463 2.382 2.458 
21-19 2.514 2.502 2.450 2.377 
25-15 2.930 2.747 2.438 2.409 
40-0 5.776 4.629 3.301 2.833 

0-40:40-0 8.957 7.007 4.224 3.600 

     

Table A194: RMSD using estimated reference composite for bottom 
10% of the full population, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.564 3.648 3.746 3.668 
21-19 3.511 3.673 3.615 3.816 
25-15 3.598 3.717 3.778 3.778 
40-0 4.390 4.243 4.023 3.922 

0-40:40-0 4.574 4.517 4.344 4.171 

     
     

Table A195: RMSD using estimated reference composite for the 
bottom 10% of θ1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.616 3.667 3.885 3.715 
21-19 3.591 3.731 3.727 3.900 
25-15 3.872 3.831 3.914 3.817 
40-0 5.885 5.106 4.406 4.140 

0-40:40-0 10.591 8.507 5.915 5.023 
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Table A196: RMSD using estimated reference composite for the 
bottom 10% of θ2, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.585 3.690 3.920 3.642 
21-19 3.553 3.704 3.624 3.894 
25-15 3.844 3.913 3.953 3.887 
40-0 7.191 6.223 4.791 4.457 

0-40:40-0 11.308 8.964 6.593 5.494 
 
     

Table A197: RMSD using calculated reference composite for 
subpopulation 1, 0.5 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.297 3.335 3.452 3.351 
21-19 3.290 3.375 3.357 3.428 
25-15 3.489 3.498 3.445 3.430 
40-0 5.157 4.626 3.923 3.775 

0-40:40-0 7.914 6.693 4.922 4.423 

     
     

Table A198: RMSD using calculated reference composite for 
subpopulation 2, 0.5 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.163 3.204 3.307 3.066 
21-19 3.162 3.259 3.243 3.278 
25-15 3.355 3.367 3.284 3.293 
40-0 5.018 4.474 3.812 3.637 

0-40:40-0 7.917 6.661 5.066 4.512 
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Table A199: MSD using estimated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.003 -0.027 0.049 0.030 
21-19 0.054 -0.035 0.056 0.043 
25-15 0.213 0.108 0.061 0.119 
40-0 0.613 0.448 0.433 0.565 

0-40:40-0 0.651 0.637 0.743 0.694 
 
     

Table A200: MSD using estimated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.080 0.004 -0.002 0.050 
21-19 -0.073 0.101 0.020 0.012 
25-15 -0.101 -0.088 -0.068 -0.037 
40-0 -0.585 -0.410 -0.247 -0.230 

0-40:40-0 -0.296 -0.226 -0.211 -0.173 

     
     

Table A201: MSD using estimated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 0.063 0.019 0.047 0.073 
21-19 0.031 0.257 0.029 0.023 
25-15 0.804 0.635 0.318 0.359 
40-0 3.004 2.384 1.396 1.083 

0-40:40-0 7.394 5.383 3.150 2.381 

     
     



    

    

163

 

Table A202: MSD using estimated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.024 -0.019 -0.015 0.006 
21-19 -0.086 -0.161 -0.077 0.041 
25-15 -1.006 -0.912 -0.526 -0.455 
40-0 -4.890 -3.606 -2.316 -2.016 

0-40:40-0 -7.502 -5.602 -3.736 -2.983 
 
     

Table A203: MSD using estimated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.002 -0.057 0.065 -0.014 
21-19 0.124 -0.150 0.173 0.128 
25-15 0.521 0.373 0.003 0.193 
40-0 3.205 1.565 1.147 1.238 

0-40:40-0 0.897 0.736 0.829 0.630 

 
Table A204: MSD using estimated reference composite for the 
bottom 10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.074 -0.097 0.010 0.039 
21-19 -0.065 -0.285 0.023 -0.043 
25-15 -0.672 -0.496 -0.459 -0.172 
40-0 -2.358 -2.209 -1.195 -0.443 

0-40:40-0 -9.262 -7.278 -4.063 -3.165 
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Table A205: MSD using estimated reference composite for the 
bottom 10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.006 -0.065 0.096 -0.049 
21-19 0.416 0.134 0.362 0.238 
25-15 1.629 1.200 0.810 0.825 
40-0 7.121 5.291 4.047 3.908 

0-40:40-0 11.739 10.105 7.849 6.897 

 
 
    

Table A206: MSD using calculated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 -0.003 -0.047 0.015 0.000 
21-19 0.025 -0.146 -0.007 -0.028 
25-15 -0.106 -0.242 -0.316 -0.243 
40-0 -0.671 -0.965 -1.021 -0.903 

0-40:40-0 -2.634 -2.629 -2.496 -2.530 

 
     

Table A207: MSD using calculated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 0.009 -0.007 0.084 0.059 
21-19 0.083 0.076 0.119 0.115 
25-15 0.531 0.457 0.439 0.480 
40-0 1.896 1.862 1.887 2.033 

0-40:40-0 3.936 3.903 3.981 3.918 
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Table A208: RMSD using estimated reference composite full 
population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.194 3.212 3.310 3.362 
21-19 3.182 3.221 3.326 3.379 
25-15 3.462 3.382 3.343 3.389 
40-0 5.469 4.978 4.168 4.133 

0-40:40-0 8.702 7.458 6.081 5.551 
 
     

Table A209: RMSD using estimated reference composite top 10% of 
the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 1.659 1.635 1.624 1.686 
21-19 1.595 1.613 1.637 1.333 
25-15 1.552 1.603 1.551 1.581 
40-0 1.569 4.770 1.418 1.335 

0-40:40-0 1.762 1.650 1.579 1.495 

     
     

Table A210: RMSD using estimated reference composite top 10% of 
θ1, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 2.540 2.452 2.410 2.414 
21-19 2.505 2.480 2.397 2.179 
25-15 2.654 2.557 2.322 2.341 
40-0 4.529 1.495 2.602 2.275 

0-40:40-0 9.519 7.240 4.500 3.526 
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Table A211: RMSD using estimated reference composite top 10% of 
θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 2.529 2.458 2.351 2.403 
21-19 2.505 2.451 2.388 1.927 
25-15 2.872 2.719 2.383 2.367 
40-0 6.206 3.672 3.487 3.106 

0-40:40-0 9.294 7.071 4.757 3.848 

     

Table A212: RMSD using estimated reference composite for bottom 
10% of the full population, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.512 3.668 3.801 3.812 
21-19 3.610 3.667 3.824 3.919 
25-15 3.778 3.818 3.908 3.859 
40-0 5.399 4.890 4.408 4.499 

0-40:40-0 5.135 5.013 4.916 4.871 

     
     

Table A213: RMSD using estimated reference composite for the 
bottom 10% of θ1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.629 3.715 3.885 3.988 
21-19 3.619 3.706 3.859 3.978 
25-15 3.960 3.879 3.952 3.972 
40-0 5.990 4.618 4.590 4.584 

0-40:40-0 11.613 9.588 6.702 5.807 
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Table A214: RMSD using estimated reference composite for the 
bottom 10% of θ2, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.497 3.642 3.800 3.915 
21-19 3.542 3.646 3.837 3.883 
25-15 4.070 3.877 3.935 4.014 
40-0 8.458 5.461 5.882 5.870 

0-40:40-0 13.459 11.766 9.408 8.389 
 
     

Table A215: RMSD using estimated reference composite for 
subpopulation 1, 1 difference in subpopulation means 

Correlation item distribution 
0.5 0.7 0.9 0.95 

20-20 3.327 3.351 3.447 3.516 
21-19 3.316 3.355 3.473 3.528 
25-15 3.612 3.526 3.503 3.540 
40-0 5.587 6.931 4.236 4.142 

0-40:40-0 8.650 7.296 5.701 5.126 

     
     

Table A216: RMSD using estimated reference composite for 
subpopulation 2, 1 difference in subpopulation means 

Correlation item distribution 0.5 0.7 0.9 0.95 
20-20 3.053 3.066 3.165 3.201 
21-19 3.042 3.080 3.171 3.222 
25-15 3.303 3.229 3.174 3.230 
40-0 5.347 4.881 4.094 4.118 

0-40:40-0 8.751 7.611 6.430 5.936 
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APPENDIX B 
Output of proc glm 
In the output below “calc_est” is an indicator variable whether the error was obtained 
using the calculated or the estimated reference composite, “split” indicates the difference 
between the forms – 0, 1, 5, 10 and 40 items, “difference” indicates the difference 
between subpopulation means. 
3PL results are presented first, followed by the 1PL results on page 178.



       

    

169

3pl 
                                     
-------------------------------------------- stat=10 ------------------------------------------ 
 
                                        The GLM Procedure 
                                     Class Level Information 
 
                           Class            Levels    Values 
                           calc_est              2    1 2 
                           correlation           4    0.5 0.7 0.9 0.95 
                           split                 5    0 1 5 20 40 
                           difference            3    0 0.5 1 
 
 
                             Number of Observations Read         108 
                             Number of Observations Used         108 
 
 
Dependent Variable: msd   msd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60      8.63349166      0.14389153       3.41    <.0001 
       Error                       47      1.98112681      0.04215163 
       Corrected Total            107     10.61461847 
 
                        R-Square     Coeff Var      Root MSE      msd Mean 
                        0.813359     -293.3956      0.205309     -0.069977 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      0.32915894      0.32915894       7.81    0.0075 
       correlation                  3      0.13291595      0.04430532       1.05    0.3789 
       split                        4      6.05249710      1.51312427      35.90    <.0001 
       correlation*split           12      0.62345996      0.05195500       1.23    0.2903 
       difference                   2      0.44591615      0.22295808       5.29    0.0085 
       correlati*difference         6      0.04879896      0.00813316       0.19    0.9773 
       split*difference             8      0.67434469      0.08429309       2.00    0.0671 
       correl*split*differe        24      0.32639991      0.01360000       0.32    0.9981 
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       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      0.15707477      0.15707477       3.73    0.0596 
       correlation                  3      0.09146296      0.03048765       0.72    0.5432 
       split                        4      6.05249710      1.51312427      35.90    <.0001 
       correlation*split           12      0.62345996      0.05195500       1.23    0.2903 
       difference                   2      0.28354930      0.14177465       3.36    0.0431 
       correlati*difference         6      0.09048213      0.01508035       0.36    0.9017 
       split*difference             8      0.67434469      0.08429309       2.00    0.0671 
       correl*split*differe        24      0.32639991      0.01360000       0.32    0.9981 
 
 
Dependent Variable: rmsd   rmsd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     67.60535218      1.12675587       9.37    <.0001 
       Error                       47      5.65078674      0.12022951 
       Corrected Total            107     73.25613892 
 
                        R-Square     Coeff Var      Root MSE     rmsd Mean 
                        0.922863      26.55585      0.346741      1.305706 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     53.47702097     53.47702097     444.79    <.0001 
       correlation                  3      1.25960706      0.41986902       3.49    0.0227 
       split                        4      5.90116394      1.47529098      12.27    <.0001 
       correlation*split           12      0.33225456      0.02768788       0.23    0.9958 
       difference                   2      4.76238605      2.38119303      19.81    <.0001 
       correlati*difference         6      0.27814944      0.04635824       0.39    0.8846 
       split*difference             8      1.21791888      0.15223986       1.27    0.2838 
       correl*split*differe        24      0.37685127      0.01570214       0.13    1.0000 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     48.06512560     48.06512560     399.78    <.0001 
       correlation                  3      1.14330128      0.38110043       3.17    0.0328 
       split                        4      5.90116394      1.47529098      12.27    <.0001 
       correlation*split           12      0.33225456      0.02768788       0.23    0.9958 
       difference                   2      4.10090332      2.05045166      17.05    <.0001 
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       correlati*difference         6      0.20021725      0.03336954       0.28    0.9447 
       split*difference             8      1.21791888      0.15223986       1.27    0.2838 
       correl*split*differe        24      0.37685127      0.01570214       0.13    1.0000 
 
                                       Least Squares Means 
 
                             calc_est      msd LSMEAN     rmsd LSMEAN 
 
                             1            -0.10149827      0.51991874 
                             2            -0.02059845      1.93509137 
 
                           correlation      msd LSMEAN     rmsd LSMEAN 
 
                           0.5             -0.07170901      1.39776573 
                           0.7             -0.10574975      1.22872151 
                           0.9             -0.03602982      1.17370133 
                           0.95            -0.03070487      1.10983164 
 
                              split      msd LSMEAN     rmsd LSMEAN 
 
                              0          0.05975684      1.23128385 
                              1          0.02130982      0.99278883 
                              5          0.00879431      0.98604949 
                              20        -0.51202527      1.36146063 
                              40         0.11692250      1.56594247 
 
                            difference      msd LSMEAN     rmsd LSMEAN 
 
                            0              -0.13204012      1.48592748 
                            0.5            -0.04730949      1.20519068 
                            1              -0.00379548      0.99139699 
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-------------------------------------------- stat=90 ------------------------------------------ 
 
                                        The GLM Procedure 
                                     Class Level Information 
 
                           Class            Levels    Values 
                    

         calc_est              2    1 2 
                           correlation           4    0.5 0.7 0.9 0.95 
                           split                 5    0 1 5 20 40 
                           difference            3    0 0.5 1 
 
                             Number of Observations Read         108 
                             Number of Observations Used         108 
 
Dependent Variable: msd   msd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                       60     28.81673300      0.48027888       4.29    <.0001 
       Error                       47      5.26762881      0.11207721 
       Corrected Total            107     34.08436181 
 
                        R-Square     Coeff Var      Root MSE      msd Mean 
                        0.845453      117.8403      0.334779      0.284096 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      5.57408789      5.57408789      49.73    <.0001 
       correlation                  3      0.16671905      0.05557302       0.50    0.6869 
       split                        4     18.75161742      4.68790436      41.83    <.0001 
       correlation*split           12      1.44465191      0.12038766       1.07    0.4025 
       difference                   2      1.49571131      0.74785566       6.67    0.0028 
       correlati*difference         6      0.02940833      0.00490139       0.04    0.9996 
       split*difference             8      1.07025444      0.13378181       1.19    0.3232 
       correl*split*differe        24      0.28428265      0.01184511       0.11    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
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       calc_est                     1      4.04904152      4.04904152      36.13    <.0001 
       correlation                  3      0.11021488      0.03673829       0.33    0.8052 
       split                        4     18.75161742      4.68790436      41.83    <.0001 
       correlation*split           12      1.44465191      0.12038766       1.07    0.4025 
       difference                   2      1.16868551      0.58434275       5.21    0.0090 
       correlati*difference         6      0.05840321      0.00973387       0.09    0.9973 
       split*difference             8      1.07025444      0.13378181       1.19    0.3232 
       correl*split*differe        24      0.28428265      0.01184511       0.11    1.0000 
 
 
Dependent Variable: rmsd   rmsd 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
 
       Model                       60     104.9522386       1.7492040       5.00    <.0001 
       Error                       47      16.4396826       0.3497805 
       Corrected Total            107     121.3919212 
 
                        R-Square     Coeff Var      Root MSE     rmsd Mean 
                        0.864574      30.22273      0.591422      1.956879 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     53.95686805     53.95686805     154.26    <.0001 
       correlation                  3      0.83414794      0.27804931       0.79    0.5029 
       split                        4     37.71071987      9.42767997      26.95    <.0001 
       correlation*split           12      1.80667659      0.15055638       0.43    0.9430 
       difference                   2      5.50581825      2.75290913       7.87    0.0011 
       correlati*difference         6      0.01732285      0.00288714       0.01    1.0000 
       split*difference             8      4.80550590      0.60068824       1.72    0.1192 
       correl*split*differe        24      0.31517912      0.01313246       0.04    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     50.32892428     50.32892428     143.89    <.0001 
       correlation                  3      0.57373600      0.19124533       0.55    0.6528 
       split                        4     37.71071987      9.42767997      26.95    <.0001 
       correlation*split           12      1.80667659      0.15055638       0.43    0.9430 
       difference                   2      4.09137505      2.04568752       5.85    0.0054 
       correlati*difference         6      0.04683585      0.00780598       0.02    0.9999 
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       split*difference             8      4.80550590      0.60068824       1.72    0.1192 
       correl*split*differe        24      0.31517912      0.01313246       0.04    1.0000 
 
 
                                      Least Squares Means 
 
                             calc_est      msd LSMEAN     rmsd LSMEAN 
 
                             1             0.49164074      1.14096676 
                             2             0.08089744      2.58908227 
 
                           correlation      msd LSMEAN     rmsd LSMEAN 
 
                           0.5              0.32419094      1.96402680 
                           0.7              0.31435698      1.90393734 
                           0.9              0.25204872      1.82865140 
                           0.95             0.25447971      1.76348252 
 
                              split      msd LSMEAN     rmsd LSMEAN 
 
                              0          0.10045782      1.76238858 
                              1         -0.02261733      1.20945686 
                              5          0.09445921      1.34422045 
                              20         1.07702820      2.34897517 
                              40         0.18201754      2.66008152 
 
                            difference      msd LSMEAN     rmsd LSMEAN 
 
                            0               0.14522749      1.62994103 
                            0.5             0.30569455      1.84141938 
                            1               0.40788523      2.12371314 
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-------------------------------------------- stat=100 ----------------------------------------- 
 
                                        The GLM Procedure 
                                     Class Level Information 
 
                           Class            Levels    Values 
                           calc_est              2    1 2 
                           correlation           4    0.5 0.7 0.9 0.95 
                           split                 5    0 1 5 20 40 
                           difference            3    0 0.5 1 
 
                             Number of Observations Read         108 
                             Number of Observations Used         108 
 
Dependent Variable: msd   msd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     43.42327604      0.72372127       2.15    0.0036 
       Error                       47     15.79527728      0.33606973 
       Corrected Total            107     59.21855332 
 
                        R-Square     Coeff Var      Root MSE      msd Mean 
                        0.733271      148.0152      0.579715      0.391659 
 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      7.31688375      7.31688375      21.77    <.0001 
       correlation                  3      0.04397084      0.01465695       0.04    0.9877 
       split                        4     14.97007035      3.74251759      11.14    <.0001 
       correlation*split           12      0.10293396      0.00857783       0.03    1.0000 
       difference                   2      9.81151677      4.90575839      14.60    <.0001 
       correlati*difference         6      0.01214643      0.00202441       0.01    1.0000 
       split*difference             8     11.07527175      1.38440897       4.12    0.0009 
       correl*split*differe        24      0.09048219      0.00377009       0.01    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
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       calc_est                     1      5.68079711      5.68079711      16.90    0.0002 
       correlation                  3      0.02620448      0.00873483       0.03    0.9943 
       split                        4     14.97007035      3.74251759      11.14    <.0001 
       correlation*split           12      0.10293396      0.00857783       0.03    1.0000 
       difference                   2      7.17965314      3.58982657      10.68    0.0001 
       correlati*difference         6      0.00965892      0.00160982       0.00    1.0000 
       split*difference             8     11.07527175      1.38440897       4.12    0.0009 
       correl*split*differe        24      0.09048219      0.00377009       0.01    1.0000 
 
 
Dependent Variable: rmsd   rmsd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     417.8426029       6.9640434       9.60    <.0001 
       Error                       47      34.0889612       0.7252970 
       Corrected Total            107     451.9315641 
 
                        R-Square     Coeff Var      Root MSE     rmsd Mean 
                        0.924571      26.20733      0.851644      3.249640 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      56.7391842      56.7391842      78.23    <.0001 
       correlation                  3      33.8134531      11.2711510      15.54    <.0001 
       split                        4     277.1343836      69.2835959      95.52    <.0001 
       correlation*split           12      34.5915431       2.8826286       3.97    0.0003 
       difference                   2       4.8396773       2.4198386       3.34    0.0442 
       correlati*difference         6       0.5240045       0.0873341       0.12    0.9934 
       split*difference             8       9.4840148       1.1855019       1.63    0.1406 
       correl*split*differe        24       0.7163423       0.0298476       0.04    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      64.8984686      64.8984686      89.48    <.0001 
       correlation                  3      26.3468511       8.7822837      12.11    <.0001 
       split                        4     277.1343836      69.2835959      95.52    <.0001 
       correlation*split           12      34.5915431       2.8826286       3.97    0.0003 
       difference                   2       3.4703552       1.7351776       2.39    0.1025 
       correlati*difference         6       0.3531857       0.0588643       0.08    0.9978 
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       split*difference             8       9.4840148       1.1855019       1.63    0.1406 
       correl*split*differe        24       0.7163423       0.0298476       0.04    1.0000 
 
                                   Least Squares Means 
 
                             calc_est      msd LSMEAN     rmsd LSMEAN 
                             1             0.64537024      2.25352186 
                             2             0.15885212      3.89793752 
 
                           correlation      msd LSMEAN     rmsd LSMEAN 
                           0.5              0.42978574      3.80989927 
                           0.7              0.39174259      3.28779767 
                           0.9              0.39699668      2.70799941 
                           0.95             0.38991971      2.49722239 
 
                              split      msd LSMEAN     rmsd LSMEAN 
                              0          0.25291989      2.33274875 
                              1          0.02282473      1.63891724 
                              5          0.16138595      1.98532073 
                              20         0.54405786      3.54041963 
                              40         1.02936748      5.88124208 
 
 
                            difference      msd LSMEAN     rmsd LSMEAN 
                            0               0.06826198      2.88186496 
                            0.5             0.41378331      3.01817037 
                            1               0.72428825      3.32715373 
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1pl 
                                       
-------------------------------------------- stat=10 ------------------------------------------ 
 
                                        The GLM Procedure 
                                     Class Level Information 
 
                           Class            Levels    Values 
                           calc_est              2    1 2 
                           correlation           4    0.5 0.7 0.9 0.95 
                           split                 5    0 1 5 20 40 
                           difference            3    0 0.5 1 
 
                             Number of Observations Read         108 
                             Number of Observations Used         108 
 
                                        The GLM Procedure 
 
Dependent Variable: msd   msd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60      7.39385388      0.12323090       1.98    0.0081 
       Error                       47      2.92146220      0.06215877 
       Corrected Total            107     10.31531608 
 
                        R-Square     Coeff Var      Root MSE      msd Mean 
                        0.716784     -221.8111      0.249317     -0.112400 
 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      0.00964631      0.00964631       0.16    0.6954 
       correlation                  3      0.37290136      0.12430045       2.00    0.1269 
       split                        4      5.30417921      1.32604480      21.33    <.0001 
       correlation*split           12      0.59736970      0.04978081       0.80    0.6476 
       difference                   2      0.30047305      0.15023653       2.42    0.1002 
       correlati*difference         6      0.02674780      0.00445797       0.07    0.9984 
       split*difference             8      0.61873021      0.07734128       1.24    0.2953 
       correl*split*differe        24      0.16380624      0.00682526       0.11    1.0000 
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       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      0.00189797      0.00189797       0.03    0.8620 
       correlation                  3      0.28114883      0.09371628       1.51    0.2248 
       split                        4      5.30417921      1.32604480      21.33    <.0001 
       correlation*split           12      0.59736970      0.04978081       0.80    0.6476 
       difference                   2      0.22698388      0.11349194       1.83    0.1723 
       correlati*difference         6      0.02458881      0.00409813       0.07    0.9988 
       split*difference             8      0.61873021      0.07734128       1.24    0.2953 
       correl*split*differe        24      0.16380624      0.00682526       0.11    1.0000 
 
 
Dependent Variable: rmsd   rmsd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60      97.5157321       1.6252622       0.95    0.5837 
       Error                       47      80.7365982       1.7178000 
       Corrected Total            107     178.2523303 
 
                        R-Square     Coeff Var      Root MSE     rmsd Mean 
                        0.547066      86.96484      1.310649      1.507102 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     14.03299141     14.03299141       8.17    0.0063 
       correlation                  3      4.33590032      1.44530011       0.84    0.4781 
       split                        4     35.20377963      8.80094491       5.12    0.0016 
       correlation*split           12      6.19247814      0.51603985       0.30    0.9863 
       difference                   2      8.23386402      4.11693201       2.40    0.1021 
       correlati*difference         6      3.56478258      0.59413043       0.35    0.9088 
       split*difference             8     19.65117298      2.45639662       1.43    0.2092 
       correl*split*differe        24      6.30076299      0.26253179       0.15    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     13.61432706     13.61432706       7.93    0.0071 
       correlation                  3      3.28198517      1.09399506       0.64    0.5950 
       split                        4     35.20377963      8.80094491       5.12    0.0016 



       

    

180

       correlation*split           12      6.19247814      0.51603985       0.30    0.9863 
       difference                   2      6.04220485      3.02110243       1.76    0.1834 
       correlati*difference         6      2.63578811      0.43929802       0.26    0.9545 
       split*difference             8     19.65117298      2.45639662       1.43    0.2092 
       correl*split*differe        24      6.30076299      0.26253179       0.15    1.0000 
 
 
                                       Least Squares Means 
 
                             calc_est      msd LSMEAN     rmsd LSMEAN 
                             1            -0.09505459      1.07634264 
                             2            -0.10394739      1.82951170 
 
                           correlation      msd LSMEAN     rmsd LSMEAN 
                           0.5             -0.17270182      1.66022535 
                           0.7             -0.12556098      1.60194054 
                           0.9             -0.06174726      1.31098554 
                           0.95            -0.03799388      1.23855725 
 
                              split      msd LSMEAN     rmsd LSMEAN 
                              0          0.01214773      1.34193922 
                              1          0.00580722      0.89550280 
                              5         -0.04583723      1.02585470 
                              20        -0.52268763      1.57110673 
                              40         0.05306497      2.43023242 
 
 
                            difference      msd LSMEAN     rmsd LSMEAN 
                            0              -0.16246181      1.40586177 
                            0.5            -0.08879820      1.17817862 
                            1              -0.04724295      1.77474113 
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-------------------------------------------- stat=90 ------------------------------------------ 
 
                                        The GLM Procedure 
                                     Class Level Information 
 
                           Class            Levels    Values 
 
                           calc_est              2    1 2 
                           correlation           4    0.5 0.7 0.9 0.95 
                           split                 5    0 1 5 20 40 
                           difference            3    0 0.5 1 
 
 
                             Number of Observations Read         108 
                             Number of Observations Used         108 
 
                                        The GLM Procedure 
 
Dependent Variable: msd   msd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     79.03325705      1.31722095       4.90    <.0001 
       Error                       47     12.63979115      0.26893173 
       Corrected Total            107     91.67304820 
 
                        R-Square     Coeff Var      Root MSE      msd Mean 
                        0.862121      89.53374      0.518586      0.579208 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      8.93287894      8.93287894      33.22    <.0001 
       correlation                  3      1.19142163      0.39714054       1.48    0.2330 
       split                        4     55.50640482     13.87660121      51.60    <.0001 
       correlation*split           12      4.31855827      0.35987986       1.34    0.2299 
       difference                   2      4.32456772      2.16228386       8.04    0.0010 
       correlati*difference         6      0.12020635      0.02003439       0.07    0.9983 
       split*difference             8      4.08791389      0.51098924       1.90    0.0824 
       correl*split*differe        24      0.55130542      0.02297106       0.09    1.0000 
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       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      6.03302052      6.03302052      22.43    <.0001 
       correlation                  3      0.87201644      0.29067215       1.08    0.3664 
       split                        4     55.50640482     13.87660121      51.60    <.0001 
       correlation*split           12      4.31855827      0.35987986       1.34    0.2299 
       difference                   2      3.22152740      1.61076370       5.99    0.0048 
       correlati*difference         6      0.09444122      0.01574020       0.06    0.9991 
       split*difference             8      4.08791389      0.51098924       1.90    0.0824 
       correl*split*differe        24      0.55130542      0.02297106       0.09    1.0000 
 
 
Dependent Variable: rmsd   rmsd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     228.7437353       3.8123956       3.93    <.0001 
       Error                       47      45.5875171       0.9699472 
       Corrected Total            107     274.3312524 
 
                        R-Square     Coeff Var      Root MSE     rmsd Mean 
                        0.833823      32.23768      0.984859      3.054993 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     107.6265122     107.6265122     110.96    <.0001 
       correlation                  3       2.3210507       0.7736836       0.80    0.5014 
       split                        4      96.4767987      24.1191997      24.87    <.0001 
       correlation*split           12       4.1022289       0.3418524       0.35    0.9734 
       difference                   2      10.1933756       5.0966878       5.25    0.0087 
       correlati*difference         6       0.0341267       0.0056878       0.01    1.0000 
       split*difference             8       7.6968889       0.9621111       0.99    0.4546 
       correl*split*differe        24       0.2927535       0.0121981       0.01    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     104.3450687     104.3450687     107.58    <.0001 
       correlation                  3       1.5552841       0.5184280       0.53    0.6609 
       split                        4      96.4767987      24.1191997      24.87    <.0001 
       correlation*split           12       4.1022289       0.3418524       0.35    0.9734 
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       difference                   2       7.9214455       3.9607228       4.08    0.0232 
       correlati*difference         6       0.0231972       0.0038662       0.00    1.0000 
       split*difference             8       7.6968889       0.9621111       0.99    0.4546 
       correl*split*differe        24       0.2927535       0.0121981       0.01    1.0000 
 
 
                                       Least Squares Means 
 
                             calc_est      msd LSMEAN     rmsd LSMEAN 
                             1             0.82334734      1.86275568 
                             2             0.32197338      3.94787227 
 
                           correlation      msd LSMEAN     rmsd LSMEAN 
                           0.5              0.71761386      3.05493783 
                           0.7              0.58619655      2.99703213 
                           0.9              0.51714757      2.81847240 
                           0.95             0.46968345      2.75081353 
 
                              split      msd LSMEAN     rmsd LSMEAN 
                              0          0.26304773      2.60076120 
                              1          0.02561301      1.87418386 
                              5          0.21039447      2.11665979 
                              20         1.92489912      3.82004475 
                              40         0.43934747      4.11492025 
 
                            difference      msd LSMEAN     rmsd LSMEAN 
                            0               0.35887720      2.57193197 
                            0.5             0.56103831      2.88368606 
                            1               0.79806557      3.26032389 
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-------------------------------------------- stat=100 ----------------------------------------- 
 
                                        The GLM Procedure 
                                     Class Level Information 
 
                           Class            Levels    Values 
                           calc_est              2    1 2 
                           correlation           4    0.5 0.7 0.9 0.95 
                           split                 5    0 1 5 20 40 
                           difference            3    0 0.5 1 
 
 
                             Number of Observations Read         108 
                             Number of Observations Used         108 
 
 
Dependent Variable: msd   msd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     47.97243076      0.79954051       2.15    0.0036 
       Error                       47     17.44313544      0.37113054 
       Corrected Total            107     65.41556620 
 
                        R-Square     Coeff Var      Root MSE      msd Mean 
                        0.733349      149.7970      0.609205      0.406687 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1      9.93160785      9.93160785      26.76    <.0001 
       correlation                  3      0.01032026      0.00344009       0.01    0.9988 
       split                        4     16.33114782      4.08278696      11.00    <.0001 
       correlation*split           12      0.05474757      0.00456230       0.01    1.0000 
       difference                   2     10.34886469      5.17443234      13.94    <.0001 
       correlati*difference         6      0.01940768      0.00323461       0.01    1.0000 
       split*difference             8     11.24385350      1.40548169       3.79    0.0017 
       correl*split*differe        24      0.03248140      0.00135339       0.00    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
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       calc_est                     1      8.02885076      8.02885076      21.63    <.0001 
       correlation                  3      0.00995038      0.00331679       0.01    0.9988 
       split                        4     16.33114782      4.08278696      11.00    <.0001 
       correlation*split           12      0.05474757      0.00456230       0.01    1.0000 
       difference                   2      7.80863818      3.90431909      10.52    0.0002 
       correlati*difference         6      0.02119833      0.00353305       0.01    1.0000 
       split*difference             8     11.24385350      1.40548169       3.79    0.0017 
       correl*split*differe        24      0.03248140      0.00135339       0.00    1.0000 
 
 
                                        The GLM Procedure 
 
Dependent Variable: rmsd   rmsd 
 
                                               Sum of 
       Source                      DF         Squares     Mean Square    F Value    Pr > F 
       Model                       60     421.7917484       7.0298625       4.79    <.0001 
       Error                       47      69.0483800       1.4691145 
       Corrected Total            107     490.8401284 
 
                        R-Square     Coeff Var      Root MSE     rmsd Mean 
                        0.859326      40.17844      1.212070      3.016718 
 
       Source                      DF       Type I SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     163.0553838     163.0553838     110.99    <.0001 
       correlation                  3      20.9536359       6.9845453       4.75    0.0056 
       split                        4     174.7907752      43.6976938      29.74    <.0001 
       correlation*split           12      29.3579349       2.4464946       1.67    0.1060 
       difference                   2      14.2341336       7.1170668       4.84    0.0122 
       correlati*difference         6       3.1669280       0.5278213       0.36    0.9008 
       split*difference             8      12.6316633       1.5789579       1.07    0.3968 
       correl*split*differe        24       3.6012935       0.1500539       0.10    1.0000 
 
 
       Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
 
       calc_est                     1     172.4011234     172.4011234     117.35    <.0001 
       correlation                  3      15.3751663       5.1250554       3.49    0.0228 
       split                        4     174.7907752      43.6976938      29.74    <.0001 
       correlation*split           12      29.3579349       2.4464946       1.67    0.1060 
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       difference                   2      10.7253992       5.3626996       3.65    0.0336 
       correlati*difference         6       2.4274618       0.4045770       0.28    0.9457 
       split*difference             8      12.6316633       1.5789579       1.07    0.3968 
       correl*split*differe        24       3.6012935       0.1500539       0.10    1.0000 
 
 
                                       Least Squares Means 
 
                             calc_est      msd LSMEAN     rmsd LSMEAN 
                             1             0.71384421      1.43554303 
                             2             0.13545381      4.11572588 
 
                           correlation      msd LSMEAN     rmsd LSMEAN 
                           0.5              0.41912133      3.31931227 
                           0.7              0.41326386      2.96558462 
                           0.9              0.43999079      2.49318582 
                           0.95             0.42622007      2.32445511 
 
                              split      msd LSMEAN     rmsd LSMEAN 
                              0          0.29711151      1.94597124 
                              1          0.02763929      1.70414234 
                              5          0.15206581      1.95929272 
                              20         0.57347633      3.26320082 
                              40         1.07295212      5.00556516 
 
                            difference      msd LSMEAN     rmsd LSMEAN 
                            0               0.08112334      2.91112444 
                            0.5             0.42723100      3.09144237 
                            1               0.76559269      2.32433655 
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APPENDIX C 
Exploratory tables of the number of examinees at the extremes of the 
population for the last simulation run. 
 

Table C1: Number of examinees in the bottom 10% 
of both subpopulations, no difference in 
subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 135 46 40 68 
21-19 129 207 280 330 
25-15 141 192 283 307 
40-0 124 196 265 300 

0-40:40-0 123 191 270 280 
     
     
Table C2: Number of examinees in the bottom 10% 
of θ1, no difference in subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 271 45 22 19
21-19 268 20 139 98
25-15 253 231 116 84
40-0 256 188 119 98
0-40:40-0 247 233 118 88
     
     
Table C3: Number of examinees in the bottom 10% 
of θ2, no difference in subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 272 61 57 20
21-19 283 211 114 82
25-15 258 231 143 117
40-0 272 233 120 91
0-40:40-0 262 219 113 83
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Table C4: Number of examinees in the top 10% of 
both subpopulations, no difference in subpopulation 
means 
Top 10%     

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 118 42 85 80
21-19 113 189 276 334
25-15 135 183 244 289
40-0 136 178 282 322
0-40:40-0 117 168 269 334
     
     
Table C5: Number of examinees in the top 10% of 
θ1, no difference in subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 262 49 86 21
21-19 254 213 129 85
25-15 253 219 141 78
40-0 254 209 93 85
0-40:40-0 267 183 113 94
     
     
Table C6: Number of examinees in the top 10% of 
θ2, no difference in subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 260 66 21 27
21-19 288 205 116 87
25-15 304 226 138 97
40-0 271 207 121 86
0-40:40-0 271 215 135 96
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Table C7: Number of examinees in the bottom 10% 
of both subpopulations, 0.5 difference in  
subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 128 176 328 300
21-19 137 127 242 321
25-15 122 142 271 291
40-0 153 146 271 305
0-40:40-0 133 146 283 309
     
     
Table C8: Number of examinees in the bottom 10% 
of θ1, 0.5 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 276 223 267 117
21-19 294 129 167 119
25-15 295 159 140 142
40-0 342 110 160 128
0-40:40-0 290 110 166 125
     
     
Table C9: Number of examinees in the bottom 10% 
of θ2, 0.5 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 267 216 63 94
21-19 288 262 121 104
25-15 240 267 140 116
40-0 266 254 123 104
0-40:40-0 254 254 133 112
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Table C10: Number of examinees in the top 10% of 
both subpopulations, 0.5 difference in  subpopulation 
means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 135 184 217 310
21-19 136 224 284 286
25-15 124 264 259 307
40-0 147 251 278 323
0-40:40-0 120 254 266 300
     
     
Table C11: Number of examinees in the top 10% of 
θ1, 0.5 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 320 223 49 110
21-19 285 299 152 125
25-15 314 390 163 133
40-0 297 408 158 122
0-40:40-0 325 408 129 130
     
     
Table C12: Number of examinees in the top 10% of 
θ2, 0.5 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 266 187 202 88
21-19 274 163 124 111
25-15 280 152 107 91
40-0 289 167 129 105
0-40:40-0 277 167 122 120
 



    

    

191
 
Table C13: Number of examinees in the bottom 10% 
of both subpopulations, 1 difference in  
subpopulation means 
Bottom 10%     

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 139 193 226 251
21-19 77 194 255 262
25-15 78 197 141 297
40-0 66 197 225 244
0-40:40-0 66 197 225 294
     
     
Table C14: Number of examinees in the bottom 10% 
of θ1, 1 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 416 325 226 234
21-19 135 318 271 245
25-15 161 328 151 248
40-0 155 306 254 251
0-40:40-0 151 300 250 246
     
     
Table C15: Number of examinees in the bottom 10% 
of θ2, 1 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 282 240 140 127
21-19 352 200 145 133
25-15 302 203 139 118
40-0 291 185 128 131
0-40:40-0 322 204 140 113
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Table C16: Number of examinees in the top 10% of 
both subpopulations, 1 difference in  subpopulation 
means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 136 172 267 260
21-19 206 199 252 284
25-15 212 195 272 265
40-0 222 187 263 257
0-40:40-0 209 89 237 248
     
     
Table C17: Number of examinees in the top 10% of 
θ1, 1 difference in  subpopulation means 

Correlation item 
distribution 0.5 0.7 0.9 0.95 

20-20 388 314 236 249
21-19 760 336 284 252
25-15 754 319 243 250
40-0 767 305 256 266
0-40:40-0 740 319 266 260
     
     
Table C18: Number of examinees in the top 10% of 
θ2, 1 difference in  subpopulation means 

Top 10% θ2     
Correlation item 

distribution 0.5 0.7 0.9 0.95 
20-20 243 212 144 139
21-19 181 180 138 127
25-15 179 193 152 132
40-0 200 235 154 128
0-40:40-0 174 219 139 132
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Appendix D  
Parscale code used for estimation 
 

Examinee parameter estimation in the 3PL model: 
>FILE DFNAME='filename',SAVE; 
>SAVE PARM='rsamp.par',SCORE='rsamp.sco'; 
>INPUT NIDCHAR=6,NTOTAL=40; 
(6A1,40A1) 
>TEST    NBLOCK=1; 
>BLOCK1 NITEMS=40,NCAT=2,ORIGINAL=(0,1),GUESSING=(2,ESTIMATE); 
>CAL PARTIAL,LOGISTIC, DIST=2, NQPT=40, CRIT=(0.001),NEWTON=5, SPRIOR, 
TPRIOR, GPRIOR; 
>SCORE   EAP, ITERATION=(0.001, 40),PRINT; 
 

For the 1PL (Rasch) model, the following code was used: 
 
>FILE DFNAME='c:/pdiss/rsamp.dat',SAVE; 
>SAVE PARM='c:/pdiss/rsamp.par',SCORE='c:/pdiss/rsamp.sco'; 
>INPUT NIDCHAR=6,NTOTAL=40; 
(6A1,40A1) 
>TEST    NBLOCK=1; 
>BLOCK1 NITEMS=40,NCAT=2,ORIGINAL=(0,1),GUESSING=(2,FIX); 
>CAL GRADED,LOGISTIC,SPRIOR,GPRIOR, CSLOPE; 
>SCORE   EAP,PRINT; 
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