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ABSTRACT OF THE DISSERTATION

On the probability that a discrete complex random

matrix is singular

by Philip J. Wood

Dissertation Director: Van H. Vu

Let n be a large integer and Mn be an n by n complex matrix whose entries are

independent (but not necessarily identically distributed) discrete random variables.

The main goal of this thesis is to prove a general upper bound for the probability

that Mn is singular.

For a constant 0 < p < 1 and a constant positive integer r, we will define a property

p-bounded of exponent r. Our main result shows that if the entries of Mn satisfy this

property, then the probability that Mn is singular is at most
(
p1/r + o(1)

)n
. All of

the results in this thesis hold for any characteristic zero integral domain replacing the

complex numbers.

In the special case where the entries of Mn are “fair coin flips” (taking the values

+1,−1 each with probability 1/2), our general bound implies that the probability that

Mn is singular is at most
(

1√
2

+ o(1)
)n

, improving on the previous best upper bound

of
(

3
4 + o(1)

)n
, proved by Tao and Vu [39].

In the special case where the entries of Mn are “lazy coin flips” (taking values +1,−1

each with probability 1/4 and value 0 with probability 1/2), our general bound implies

that the probability that Mn is singular is at most
(

1
2 + o(1)

)n
, which is asymptotically

sharp.
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Our method is a refinement of those from [22] and [39]. In particular, we make a

critical use of the Structure Theorem from [39], which was obtained using tools from

additive combinatorics.

One key lemma for extending our results to the complex numbers follows from

a more general result about characteristic zero integral domains. We show that any

finite system S in a characteristic zero integral domain can be mapped to Z/QZ, for

infinitely many primes Q, preserving all algebraic incidences in S. This can be seen

as a generalization of the well-known Freiman isomorphism lemma, which asserts that

any finite subset of a torsion-free group can be mapped into Z/QZ, preserving all linear

incidences.

As applications, we derive several combinatorial results (such as sum-product esti-

mates) for a finite set in a characteristic zero integral domain. As C is a characteristic

zero integral domain, this allows us to obtain new proofs for some recent results con-

cerning finite sets of complex numbers, without relying on the topology of the plane.
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Chapter 1

Introduction

1.1 The probablitiy that a discrete random matrix is singular

Let n be a large integer and Mn be an n by n random matrix whose entries are inde-

pendent (but not necessarily identically distributed) discrete random variables taking

values in the complex numbers. The problem of estimating the probability that Mn is

singular is a basic problem in the theory of random matrices and combinatorics. The

goal of this thesis is to give a bound that applies to a large variety of distributions.

The general statement (Theorem 2.1.2) is a bit technical, so we will first discuss a few

corollaries concerning special cases.

The most famous special case is when the entries of Mn are independent identically

distributed (i.i.d.) Bernoulli random variables (taking values ±1 with probability 1/2).

The following conjecture has been open for quite some time:

Conjecture 1.1.1. For M±1,n an n by n matrix with each entry an i.i.d. Bernoulli

random variable taking the values +1 and −1 each with probability 1/2,

Pr(M±1,n is singular) =

(
1

2
+ o(1)

)n

.

It is easy to verify that the singularity probability is at least (1/2)n by considering

the probability that there are two equal rows (or columns).

Even in the case of i.i.d. Bernoulli random variables, proving that the singularity

probability is o(1) is not trivial. It was first done by Komlós in 1967 [25] (see also

[26]; [32] generalizes Komlós’s bound to other integer distributions). The first expo-

nential bound was proven by Kahn, Komlós, and Szemerédi [22], who showed that

Pr(M±1,n is singular) ≤ .999n. This upper bound was improved upon by Tao and Vu
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in [38] to .958n. A more significant improvement was obtained by the same authors in

[39]:

Pr(M±1,n is singular) ≤
(

3

4
+ o(1)

)n

. (1.1)

This improvement was made possible through the discovery of a new theorem [39,

Theorem 5.2] (which was called the Structure Theorem in [39]), which gives a complete

characterization of a set with certain additive properties. The Structure Theorem (to

be more precise, a variant of it) will play a critical role in the current thesis as well.

Our general result has the following corollary in the Bernoulli case:

Pr(M±1,n is singular) ≤
(

1√
2

+ o(1)

)n

, (1.2)

which gives a slight improvement over Inequality (1.1) (since 1/
√

2 ≈ 0.7071 < .75).

Let us now discuss a more general class of random matrices. Consider the random

variable γ(µ) defined by

γ(µ) :=





+1 with probability µ/2

0 with probability 1 − µ

−1 with probability µ/2,

(1.3)

and let M
(µ)
±1,n be an n by n matrix with each entry an independent copy of γ(µ). The

random variable γ(µ) plays an important role in [22, 38, 39], and the matrices M
(µ)
±1,n

are of interest in their own right. In fact, giving zero a large weight is a natural thing

to do when one would like to (randomly) sparsify a matrix, a common operation used

in randomized algorithms (the values of ±1, as the reader will see, are not so critical).

Our general result implies the following upper bounds:
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Pr(M
(µ)
±1,n is singular) ≤ (1 − µ+ o(1))n for 0 ≤ µ ≤ 1

2
(1.4)

Pr(M
(µ)
±1,n is singular) ≤

(
2µ+ 1

4
+ o(1)

)n

for
1

2
≤ µ ≤ 1 (1.5)

Pr(M
(µ)
±1,n is singular) ≤

(√
1 − 2µ+

3

2
µ2 + o(1)

)n

for 0 ≤ µ ≤ 1. (1.6)

Note that Inequality (1.5) implies Inequality (1.1) and that Inequality (1.6) implies

Inequality (1.2) (in both cases setting µ = 1).

Figure 1.1 summarizes the upper bounds from Inequalities (1.4), (1.5), and (1.6)

and also includes the following lower bounds:

(1 − µ+ o(1))n ≤ Pr(M
(µ)
±1,n is singular) for 0 ≤ µ ≤ 1 (1.7)

(
1 − 2µ+

3

2
µ2 + o(1)

)n

≤ Pr(M
(µ)
±1,n is singular) for 0 ≤ µ ≤ 1. (1.8)

These lower bounds can be derived by computing the probability that one row is all zeros

(Inequality (1.7)) or that there is a dependency between two rows (Inequality (1.8)).

Note that in the case where µ ≤ 1/2, the upper bound in Inequality (1.4) asymptotically

equals the lower bound in Inequality (1.7), and thus our result is the best possible in this

case. We also used a Maple program to derive the formulas for lower bounds resulting

from a dependency between three, four, or five rows; however, these lower bounds were

inferior to those in Inequality (1.7) and Inequality (1.8).

We will now present another corollary of the main theorem that has a somewhat

different flavor. In this corollary, we treat partially random matrices, which may have

many deterministic rows. Our method allows us to obtain exponential bounds so long

as there are still at most c lnn random rows, where c > 0 is a particular constant.

Corollary 1.1.2. Let p be a real constant between 0 and 1, let c be any positive constant

less than 1/ ln(1/p), and let S ⊂ C be a set of complex numbers having cardinality

|S| ≤ O(1). Let Nf,n be an n by n complex matrix in which f ≤ c lnn rows contain fixed,

non-random elements of S and where the other rows contain entries that are independent

random variables taking values in S. If the fixed rows are linearly independent and if
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Asymptotic Upper and Lower Bounds for Pr
(
M

(µ)
±1,n is singular

)1/n
for 0 ≤ µ ≤ 1
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��������������

9−
√

6

10
≈ 0.655

P (µ)

1 − 2µ+ 3

2
µ2

2

3
10

1

1

2

1√
2

µ

1

2

2µ+1

4

3

4

1

2

1 − µ

√
1 − 2µ+ 3

2
µ2

Figure 1.1: Let P (µ) := lim
n→∞

Pr
(
M

(µ)
±1,n is singular

)1/n
, where M

(µ)
±1,n is the n by n

matrix with independent random entries taking the value 0 with probability 1 − µ
and the values +1 and −1 each with probability µ/2. The solid lines denote the upper
bounds on P (µ) given by Inequalities (1.4), (1.5), and (1.6), and the dashed lines denote
the lower bounds given by Inequalities (1.7) and (1.8). The upper and lower bounds
coincide for 0 ≤ µ ≤ 1

2 , and the shaded area shows the difference between the best
known upper and lower bounds for 1

2 ≤ µ ≤ 1. The straight line segments from the
point (0, 1) to (1/2, 1/2) and from the point (1/2, 1/2) to (1, 3/4) represent the best
upper bounds we have derived using the ideas in [39], and the curve 1 − 2µ + 3

2µ
2 for

0 ≤ µ ≤ 1 represents a sometimes-better upper bound we have derived by adding a new
idea. Note that the upper bounds given here also apply to the singularity probability
of a random matrix with independent entries having arbitrary symmetric distributions
in a set S of complex numbers, so long as each entry is 0 with probability 1 − µ and
the cardinality of S is |S| ≤ O(1) (see Corollary 2.2.1).
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for every random entry α, we have maxx Pr(α = x) ≤ p, then

Pr(Nf,n is singular) ≤ (
√
p+ o(1))n .

Notice that the case f = 0 and p = 1/2 also implies Inequality (1.2).

Remark 1.1.3 (Other exponential bounds). The focus of this thesis is optimizing the

base of the exponent in bounds on the singularity probability for discrete random ma-

trices. One main tool in this optimization is the use of a structure theorem similar to

[39, Theorem 5.2] (see Theorem 4.2.1 below); however, using such a theorem requires

additional assumptions to be placed on the values that can appear as entries, and in

particular, this is why we assume in Corollary 1.1.2 that the set S has cardinality

|S| ≤ O(1) and that f ≤ c lnn.

The structure of the rest of the thesis is as follows. In Section 2.1 we define p-

bounded of exponent r and state the main theorem of this thesis. In Section 2.2, we

discuss some corollaries of Theorem 2.1.2. In particular, we will:

(A) prove Inequalities (1.4), (1.5), and (1.6);

(B) prove general bounds on the singularity probability for discrete random matri-

ces with entries that have symmetric distributions and with entries that have

asymmetric distributions;

(C) Prove a version of Corollary 1.1.2 (namely, Corollary 2.2.5) that holds for up to

o(n) fixed rows, assuming that the entries in the fixed rows take integer values

between −C and C for any positive constant C; and

(D) prove that the probability that random matrices with integer entries have a ra-

tional eigenvalue is exponentially small.

In Section 3.1.1, we discuss Lemma 3.1.1, a result that is proved in [44] using standard

tools from algebraic number theory and algebraic geometry. Lemma 3.1.1 reduces the

question of bounding the singularity probability of a random matrix with entries in C

to a question of bounding the singularity probability of a random matrix with entries



6

in Z/QZ for some large prime Q (in fact, it is possible to replace C with any char-

acteristic zero integral domain). Chapter 3 is devoted to proving Theorem 3.1.4 and

demonstrating various applications of Theorem 3.1.4, including proving Lemma 3.1.1.

The proof of Theorem 2.1.2 is outlined in Section 4.1, where we also prove some of the

easier lemmas needed for the theorem. In Section 4.2, we state a structure theorem

(Theorem 4.2.1) that completes the proof of our Theorem 2.1.2 and that is very similar

to [39, Theorem 5.2] (which is the Structure Theorem in [39]). We discuss the proof of

Theorem 4.2.1, which uses discrete Fourier analysis and tools from additive combina-

torics, in Sections 5.1 and 5.2. Finally, in Section 6.1 we show that the entire argument

proving Theorem 2.1.2 can be generalized to random complex matrices with f rows of

the matrix containing fixed, non-random entries, so long as f ≤ c lnn for a particular

constant c > 0 (this leads to Corollary 1.1.2).
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Chapter 2

Main result and applications

2.1 The general theorem

To prove the results in Inequalities (1.1) and (1.2) (and also the results in [22] and [38]),

one basic idea is to replace entries of a random matrix with independent copies of the

random variable γ(µ) or 2γ(µ) (see Equation (1.3)). One key idea in proving the more

general results of the current thesis is replacing the entries of a random matrix with

more complicated symmetric discrete random variables.

A generalized arithmetic progression of rank r is a set of the form {v0 + m1v1 +

· · · + mrvr : |mi| ≤ Mi/2}, where the vi are elements of a Z-module and the mi and

Mi > 0 are integers. Note that whenever the term “symmetric” is used in this thesis,

it will apply to the distribution of a random variable or to a generalized arithmetic

progression; in particular, the term will never apply to matrices. Also, throughout this

thesis we will use the notation

e(x) := exp(2πix).

The following definition lies at the heart of our analysis.

Definition 2.1.1 (p-bounded of exponent r). Let p be a positive constant such that

0 < p < 1 and let r be a positive integer constant. A random variable α taking values

in the integers (or, respectively, the integers modulo some large prime Q) is p-bounded

of exponent r if

(i) maxx Pr(α = x) ≤ p, and

if there exists a constant q where 0 < q ≤ p and a Z-valued (or, respectively, a Z/QZ-

valued) symmetric random variable β(µ) taking the value 0 with probability 1 − µ = p
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such that the following two conditions hold:

(ii) q ≤ minx Pr(β(µ) = x) and maxx Pr(β(µ) = x) ≤ p, and

(iii) the following inequality holds for every t ∈ R:

|E(e(αt))|r ≤ E

(
e(β(µ)t)

)

Here, if the values of α and β(µ) are in Z/QZ, we view those values as integers

in the range (−Q/2, Q/2) (note that each element in Z/QZ has a unique such

integer representation).

We will define p-bounded of exponent r for collections of random variables below,

but first we note that the conditions above are easy to verify in practice. In particular,

if we have a symmetric random variable

β(µ) =





bℓ with probability µpℓ/2

...
...

b1 with probability µp1/2

0 with probability 1 − µ

−b1 with probability µp1/2

...
...

−bℓ with probability µpℓ/2,

(2.1)

where bs ∈ Z for all s (or, respectively, bs ∈ Z/QZ for all s), then condition (iii) becomes

|E(e(αt))|r ≤ E

(
e(β(µ)t)

)
= 1 − µ+ µ

ℓ∑

s=1

ps cos 2πbst, (2.2)

where the equality on the right-hand side is a simple expected value computation.

We say that a collection of random variables {αjk}n
j,k=1 is p-bounded of exponent

r if each αjk is p-bounded of exponent r with the same constants p, q, and r; and,

importantly, the same value of µ = 1 − p. We also make the critical assumption that

the set of all values that can be taken by the β
(µ)
jk has cardinality O(1) (a relaxation

of this assumption is discussed in Remark 5.2.5). However, the definition of β
(µ)
jk is
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otherwise allowed to vary with j and k. Also, we will use S to denote the set of

all possible values taken by the random variables αjk, and we will assume that the

cardinality of S is at most |S| ≤ no(n).

If α takes non-integer values in C, we need to map those values to a finite field

of prime order so that we may use Definition 2.1.1, and for this task we will apply

Lemma 3.1.1, which is proved in Chapter 3. We say that α is p-bounded of expo-

nent r if and only if for each prime Q in an infinite sequence of primes produced by

Lemma 3.1.1, we have φQ(α) is p-bounded of exponent r, where φQ is the ring homomor-

phism described in Lemma 3.1.1 that maps S, the finite set of all possible values taken

by the αjk, into Z/QZ in such a way that for any matrix Nn := (sjk) with entries in S,

the determinant of Nn is zero if and only if the determinant of φQ(Nn) := (φQ(sjk)) is

zero.

Theorem 2.1.2. Let p be a positive constant such that 0 < p < 1, let r be a positive

integer constant, and let S be a generalized arithmetic progression in the complex num-

bers with rank O(1) (independent of n) and with cardinality at most |S| ≤ no(n). Let Nn

be an n by n matrix with entries αjk, each of which is an independent random variable

taking values in S. If the collection of random variables {αjk}1≤j,k≤n is p-bounded of

exponent r, then

Pr(Nn is singular) ≤ (p1/r + o(1))n.

In the motivating examples of Section 1.1 (excluding Corollary 1.1.2), we discussed

the case where the entries of the matrix are i.i.d.; however, in general the distributions

of the entries are allowed to differ (and even depend on n), so long as the entries all take

values in the same structured set S described above. The condition that S has additive

structure seems to be an artifact of the proof (in particular, at certain points in the

proof of Theorem 4.2.1, we need the set
{∑n

j=1 xj : xj ∈ S for all j
}

to have cardinality

at most no(n)). The easiest way to guarantee that S has the required structure is to

assume that the set of values taken by all the αjk has cardinality at most O(1), and

this is the approach we take for the corollaries in Section 2.2, since it also makes it easy

to demonstrate that the collection of entries is p-bounded of exponent r.
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Remark 2.1.3 (Strict positivity in Inequality (2.2)). Note that the constants µ, ps, bs

must be such that the right-hand side of Equation (2.2) is non-negative. It turns out

for the proof of Theorem 2.1.2 that we will need slightly more. At one point in the

proof, we will apply Lemma 5.1.3, for which we we must assume that there exists a very

small constant ǫ−1 > 0 such that E(e(β
(µ)
jk t)) > ǫ−1 for all t and for all β

(µ)
jk used in the

definition of p-bounded of exponent r. Of course, if the expectations are not strictly

larger than ǫ−1, we can simply reduce µ by ǫ−1 > 0. Then, since we are assuming

1 − µ = p, we clearly have that all the αjk are (p + ǫ−1)-bounded of exponent r (by

using β
(µ−ǫ−1)
jk instead of β

(µ)
jk ) and we have that E(e(β

(µ−ǫ−1)
jk t)) > ǫ−1 > 0. Since

Theorem 2.1.2 would thus yield a bound of
(
(p+ ǫ−1)

1/r + o(1)
)n

for every ǫ−1 > 0, we

can conclude a bound of
(
p1/r + o(1)

)n
by letting ǫ−1 tend to 0. Thus, without loss of

generality, we will assume that E(e(β
(µ)
jk t)) > ǫ−1 for all t and for all β

(µ)
jk used in the

definition of p-bounded of exponent r.

2.2 Some corollaries of Theorem 2.1.2

In this section, we will state a number of corollaries of Theorem 2.1.2, starting with short

proofs of Inequalities (1.4), (1.5), and (1.6). The two most interesting results in this

section will be more general: first (in Section 2.2.2), we will show an exponential bound

on the singularity probability for a matrix with independent entries each a symmetric

random variable taking values in S ⊂ C, where |S| ≤ O(1) and assuming that each

entry takes the value 0 with probability 1 − µ; and second (in Section 2.2.3), we will

describe a similar (and sometimes better) bound when the condition that the random

variables have symmetric distributions is replaced with the assumption that no entry

takes a value with probability greater than p. In the first case, the bound will depend

only the value of µ, and in the second case, the bound will depend only on the value of

p. In Section 2.2.4, we will show an exponential bound on the singularity probability

for an n by n matrix with f = o(n) fixed rows containing small integer values and with

the remaining rows containing independent random variables taking values in S ⊂ C,

where |S| ≤ O(1) (this is similar to Corollary 1.1.2, which is proved in Section 6.1).

Finally, in Section 2.2.5, we will prove an exponential upper bound on the probability
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that a random integer matrix has a rational eigenvalue.

In each corollary, we will use the definition of p-bounded of exponent 1 and of

exponent 2. The definition of p-bounded of exponent 2 is particularly useful, since then

the absolute value on the left-hand side of Inequality (2.2) is automatically dealt with;

however, when µ is small (for example whenever µ ≤ 1/2), one can get better bounds

by using p-bounded of exponent 1. We have not yet found an example where the best

possible bound from Theorem 2.1.2 is found by using p-bounded of an exponent higher

than 2.

2.2.1 Proving Inequalities (1.4), (1.5), and (1.6)

To prove Inequality (1.4), we note for 0 ≤ µ ≤ 1
2 that (using the definition in Equa-

tion (1.3) of γ(µ))
∣∣∣E(e(γ(µ)t))

∣∣∣ = 1 − µ+ µ cos(2πt),

and thus γ(µ) is (1−µ)-bounded of exponent 1 (i.e., take β(µ) := γ(µ)), and so Inequal-

ity (1.4) follows from Theorem 2.1.2.

To prove Inequality (1.5), we note for 1
2 ≤ µ ≤ 1 that

∣∣∣E(e(γ(µ)t))
∣∣∣ = |1 − µ+ µ cos(2πt)| ≤

(
2µ+ 1

4

)
+(1−µ) cos(2πt)+

(
2µ− 1

4

)
cos(4πt)

(the inequality above may be checked by squaring both sides and expanding as poly-

nomials in cos(2πt)). Thus, we can take

β(µ) :=





+2 with probability 2µ−1
8

−2 with probability 2µ−1
8

+1 with probability 1−µ
2

−1 with probability 1−µ
2

0 with probability 2µ+1
4

to see that γ(µ) is

(
2µ+ 1

4

)
-bounded of exponent 1, and so Inequality (1.5) follows

from Theorem 2.1.2.
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To prove Inequality (1.6), we note for 0 ≤ µ ≤ 1 that

∣∣∣E(e(γ(µ)t))
∣∣∣
2

= |1 − µ+ µ cos(2πt)|2 = 1−2µ+
3

2
µ2+2(1−µ)µ cos(2πt)+

(
µ2

2

)
cos(4πt).

Thus, we can take

β(µ) :=





+2 with probability µ2

4

−2 with probability µ2

4

+1 with probability (1 − µ)µ

−1 with probability (1 − µ)µ

0 with probability 1 − 2µ+ 3
2µ

2

to see that γ(µ) is

(
1 − 2µ+

3

2
µ2

)
-bounded of exponent 2, and so Inequality (1.6)

follows from Theorem 2.1.2.

2.2.2 Matrices with entries having symmetric distributions

In this subsection, we will prove a singularity bound for an n by n matrix N
(µ)
n for which

each entry is a symmetric discrete random variable taking the value 0 with probability

1 − µ.

Corollary 2.2.1. Let S be a set of complex numbers with cardinality |S| ≤ O(1). If

N
(µ)
n is an n by n matrix in which each entry is an independent symmetric complex

random variable taking values in S and taking the value 0 with probability 1 − µ, then

Pr(N (µ)
n is singular) ≤





(1 − µ+ o(1))n for 0 ≤ µ ≤ 1
2

(
2µ+1

4 + o(1)
)n

for 1
2 ≤ µ ≤ 1

(√
1 − 2µ+ 3

2µ
2 + o(1)

)n

for 0 ≤ µ ≤ 1.

In particular, the same upper bounds as in Inequalities (1.4), (1.5), and (1.6) (which

are shown in Figure 1.1) apply to the singularity probability for N
(µ)
n .

Proof. Let αij be an entry of N
(µ)
n . Since αij is symmetric and takes the value 0 with

probability 1 − µ, we may write αij = γ
(µ)
ij ηij , where γ

(µ)
ij is an independent copy of
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γ(µ) as defined in Equation (1.3) and ηij is a random variable that shares no values

with −ηij . This description of αij was inspired by [1], and it allows us to condition on

ηij and then use the remaining randomness in γ
(µ)
ij to get a bound on the singularity

probability. In particular,

Pr(N (µ)
n is singular) =

∑

(cij)

Pr(N (µ)
n is singular|{ηij = cij}) Pr({ηij = cij}),

where the sum runs over all (n2)-tuples (cij)1≤i,j≤n of possible values taken by random

variables ηij. Since
∑

(cij)
Pr({ηij = cij}) = 1, we can complete the proof by proving an

exponential bound on Pr(N
(µ)
n is singular|{ηij = cij}), and we will use Theorem 2.1.2

for this task.

Consider the random matrix N
(µ)
n

∣∣∣
{ηij=cij}

, where the i, j entry is the random vari-

able cijγ
(µ)
ij for some constant cij . Note that the entries of N

(µ)
n

∣∣∣
{ηij=cij}

take values in

S, a set with cardinality O(1), and let φQ be the map from Lemma 3.1.1, which lets us

pass to the case where N
(µ)
n

∣∣∣
{ηij=cij}

has entries in Z/QZ. Defining θij := 2πφQ(cij),

we compute

∣∣∣Ee(φQ(cijγ
(µ)
ij )t)

∣∣∣ = |1 − µ+ µ cos(θijt)|

≤





1 − µ+ µ cos(θijt) for 0 ≤ µ ≤ 1
2 ,

2µ+1
4 + (1 − µ) cos(θijt) +

(
2µ−1

4

)
cos(2θijt) for 1

2 ≤ µ ≤ 1, and

(
1 − 2µ+

3

2
µ2 + 2(1 − µ)µ cos(θijt) +

µ2

2
cos(2θijt)

)1/2

for 0 ≤ µ ≤ 1.

We have thus shown that the entries of N
(µ)
n

∣∣∣
{ηij=cij}

are

(1 − µ) -bounded of exponent 1 for 0 ≤ µ ≤ 1

2
,

(
2µ+ 1

4

)
-bounded of exponent 1 for

1

2
≤ µ ≤ 1, and

(
1 − 2µ+

3

2
µ2

)
-bounded of exponent 2 for 0 ≤ µ ≤ 1.

Applying Theorem 2.1.2 completes the proof.

Corollary 2.2.1 is tight for 0 ≤ µ ≤ 1
2 , since the probability of a row of all zeroes
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occurring is (1 − µ+ o(1))n; however, for any specific case, Theorem 2.1.2 can usually

prove better upper bounds than those given by Corollary 2.2.1.

For example, consider the case of a matrix M
(µ)
{±2,±1},n with each entry an indepen-

dent copy of the symmetric random variable

α(µ) :=





+2 with probability µ
4

−2 with probability µ
4

+1 with probability µ
4

−1 with probability µ
4

0 with probability 1 − µ

Corollary 2.2.2. For M
(µ)
{±2,±1},n as defined above, we have

Pr(M
(µ)
{±2,±1},n is singular) ≤





(1 − µ+ o(1))n for 0 ≤ µ ≤ 16
25

(√
1 − 2µ+ 5

4µ
2 + o(1)

)n

for 0 ≤ µ ≤ 1.

Proof. By the definition of α(µ) we have

∣∣∣Ee(α(µ)t)
∣∣∣ = 1 − µ+

µ

2
cos(2πt) +

µ

2
cos(4πt), for 0 ≤ µ ≤ 16

25

(i.e., the right-hand side of the equation above is non-negative for such µ), which proves

the first bound.

Also, we have

∣∣∣Ee(α(µ)t)
∣∣∣
2

= 1 − 2µ+
5

4
µ2 +

(
µ− 3

4
µ2

)
cos(2πt) +

(
µ− 7

8
µ2

)
cos(4πt)

+
µ2

4
cos(6πt) +

µ2

8
cos(8πt)

for 0 ≤ µ ≤ 1, which proves the second bound.

We also have the following lower bounds for the singularity probability ofM
(µ)
{±2,±1},n:

(1 − µ+ o(1))n (from one row of all zeroes) (2.3)

(
1 − 2µ+ 5µ2/4 + o(1)

)n
(from a two-row dependency) (2.4)
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Asymptotic Upper and Lower Bounds for Pr
(
M

(µ)
{±2,±1},n is singular

)1/n
for 0 ≤ µ ≤ 1
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�����������

P (µ)

√
1 − 2µ+ 5

4
µ2

1

2

16

25

4

5

10

1

1

2

µ

1

21 − µ

1

4

1 − 2µ+ 5

4
µ2

Figure 2.1: Let P (µ) := limn→∞ Pr
(
M

(µ)
{±2,±1},n is singular

)1/n
, where M

(µ)
{±2,±1},n is

the n by n matrix with independent random entries taking the value 0 with probability
1−µ and the values +2,−2,+1,−1 each with probability µ/4. This figure summarizes
the upper bounds on P (µ) from Corollary 2.2.2 and the lower bounds from Displays (2.3)
and (2.4). The best upper bounds (shown in thick solid lines) match the best lower
bounds (thick dashed lines) for 0 ≤ µ ≤ 16

25 ; and it is not hard to improve the upper
bound a small amount by finding a bound (of exponent 1) to bridge the discontinuity.
One should note that even as stated above, the upper bounds are substantially better
than those given by Corollary 2.2.1 (which are shown in Figure 1.1). The shaded area
represents the gap between the upper and lower bounds.
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The results of Corollary 2.2.2 and the corresponding lower bounds are shown in Fig-

ure 2.1, and one should note that the upper bounds are substantially better than those

guaranteed by Corollary 2.2.1.

2.2.3 Random matrices with entries having arbitrary distributions

A useful feature of the definition of p-bounded of exponent 2 is that it lets one bound

the singularity probability of matrices with independent discrete random variables that

are asymmetric.

Corollary 2.2.3. Let p be a constant such that 0 < p ≤ 1 and let S ⊂ C be a set with

cardinality |S| ≤ O(1). If Nn is an n by n matrix with independent random entries

taking values in S such that for any entry α, we have maxx Pr(α = x) ≤ p, then

Pr(Nn is singular) ≤ (
√
p+ o(1))n.

We will need the following slightly more general corollary in Section 2.2.4. For a

set A and an integer m, we will use the notation mA := {∑m
j=1 aj : aj ∈ A} and

Am := {∏m
j=1 aj : aj ∈ A}.

Corollary 2.2.4. Let p be a constant such that 0 < p ≤ 1, let S ⊂ C be a set with

cardinality |S| ≤ O(1), and let Xn be an n by n matrix with fixed, non-random entries

in no(n)(S ∪{−1, 0, 1})O(1). If Nn is an n by n matrix with independent random entries

taking values in S such that for any entry α, we have maxx Pr(α = x) ≤ p, then

Pr(Xn +Nn is singular) ≤ (
√
p+ o(1))n.

Note that that Corollary 2.2.4 implies Corollary 2.2.3 by taking Xn to be the matrix

of all zeroes.

Proof of Corollary 2.2.4. Let αij be an entry in Nn. Our goal is to describe αij in a

two-step random process, condition on one of the steps, and then use the randomness

in the other step to bound the singularity probability. The conditioning approach is the

same as that used in the symmetric case (Corollary 2.2.1) and was inspired by [1]. The

conditioning argument is useful since some entries of the random matrix may take some
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values with very small probability (i.e. probability less than any constant); recall that

while the entries of the random matrix always take values in a fixed set S of cardinality

O(1), the distributions of those random variables within S are allowed to vary with n.

(Note that making use of Remark 5.2.5 would provide an alternate way of dealing with

entries that take some values with very small probability.)

Say that αij takes the values v1, . . . , vt with probabilities ̺1, . . . , ̺t, respectively,

where ̺1 ≥ ̺2 ≥ · · · ≥ ̺t. Define new random variables ηijk such that for some i0 and

i1, the values taken by ηijk are vi0 , vi0+1, . . . , vi0+i1 with corresponding probabilities

̺i0/pk, ̺i0+1/pk, . . . , ̺i0+i1/pk, where pk :=
∑i1

i=1 ̺i0+i. Thus, we can write

αij =





ηij1 with probability p1

ηij2 with probability p2

...
...

ηijℓ with probability pℓ.

(2.5)

Furthermore, the ηijk can be constructed so that pk ≤ p for every k, so that p/2 ≤ pk

for 1 ≤ k ≤ ℓ− 1, and so that no two ηijk with different k’s ever take the same value.

There are two cases to consider for the technical reason that pℓ is not necessarily

bounded below by a constant. Let ǫ > 0 be a very small constant, so for example

p/2 > ǫ. Case 1 is when ǫ ≤ pℓ, and in this case each pk is bounded below by ǫ and

above by p. We will consider Case 1 first and then discuss the small changes needed to

deal with Case 2.

As in the proof of Corollary 2.2.1, we will condition on the values taken by the ηijk

in order to prove a bound on the singularity probability. We have that

Pr(Xn +Nn is singular) =
∑

(cijk)

Pr(Xn +Nn is singular|{ηijk = cijk}) Pr({ηijk = cijk}),

where the sum runs over all possible values (cijk) that the ηijk can take. Thus, it

is sufficient to prove a bound on the singularity probability for the random matrix



18

Xn + Nn

∣∣∣
{ηijk=cijk}

which has random entries

xij + α̃ij =





xij + cij1 with probability p1

xij + cij2 with probability p2

...
...

xij + cijℓ with probability pℓ,

where xij and the cijk are constants.

Note the entries of Xn + Nn

∣∣∣
{ηijk=cijk}

take values in no(n) (S ∪ {−1, 0, 1})O(1), a

generalized arithmetic progression with rank O(1) and cardinality at most no(n), and

let φQ be the map from Lemma 3.1.1, which lets us pass to the case where Xn +

Nn

∣∣∣
{ηijk=cijk}

has entries in Z/QZ. Defining θijk := 2πφQ(cijk) and letting α̃′
ij be an

i.i.d. copy of α̃ij , we compute

|Ee(φQ(xij + α̃ij)t)|2 = Ee
(
φQ(xij + α̃ij − xij − α̃′

ij)t
)

= Ee
(
φQ(α̃ij − α̃′

ij)t
)

=
ℓ∑

k=1

p2
k + 2

∑

1≤k1<k2≤ℓ

pk1
pk2

cos((θijk1
− θijk2

)t).

Thus, xij + α̃ij is
(∑ℓ

k=1 p
2
k

)
-bounded of exponent 2 (using the constant q = ǫ2 in

Definition 2.1.1, so q does not depend on n). Given that 0 < pk ≤ p for every k, it is

not hard to show that
∑ℓ

k=1 p
2
k ≤ p < p + ǫ, and so from Definition 2.1.1, we see that

the collection {xij + α̃ij : α̃ij has corresponding probability pℓ ≥ ǫ} is (p+ ǫ)-bounded

of exponent 2. We are thus finished with Case 1.

Case 2 is when the decomposition of αij given in Equation (2.5) has pℓ < ǫ. In this

case we need to modify Equation (2.5) slightly, deleting ηijℓ and replacing ηij(ℓ−1) with

a new variable η′ij(ℓ−1) that takes all the values previously taken by ηijℓ and by ηij(ℓ−1)

with the appropriate probabilities. Thus, in Case 2, we have that p/2 ≤ pk < p+ ǫ for

all 1 ≤ k ≤ ℓ− 1, showing that each pk is bounded below by a constant and is bounded

above by p+ ǫ (here we are using pℓ−1 to denote the probability that αij draws a value

from the random variable η′ij(ℓ−1)).

For Case 2, we use exactly the same reasoning as in Case 1 above to show that

such entries of Xn + Nn

∣∣∣
{ηijk=cijk}

are
(∑ℓ−1

k=1 p
2
k

)
-bounded of exponent 2 (using the
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constant q = ǫ2 < p2/4 in Definition 2.1.1, so q does not depend on n). Noting that
∑ℓ−1

k=1 p
2
k < p + ǫ and using Definition 2.1.1, we see that the collection {xij + α̃ij :

α̃ij has corresponding probability pℓ < ǫ} is (p+ ǫ)-bounded of exponent 2.

Combining Case 1 and Case 2, we have that the collection {xij + α̃ij} is (p+ ǫ)-

bounded of exponent 2, and so by and by Theorem 2.1.2 we have that Pr(Xn +

Nn

∣∣∣
{ηijk=cijk}

is singular) ≤ (
√
p+ ǫ+ o(1))n.

The constant ǫ > 0 was chosen arbitrarily, and so letting ǫ tend to zero, we get that

Pr(Xn +Nn is singular|{ηijk = cijk}) ≤ (
√
p+ o(1))n .

2.2.4 Partially random matrices

In this subsection, we prove a bound on the singularity probability for partly random

matrices where many rows are deterministic.

Corollary 2.2.5. Let p be a real constant between 0 and 1, let K be a large positive

constant, and let S ⊂ C be a set of complex numbers having cardinality |S| ≤ K. Let

Nf,n be an n by n matrix in which f rows contain fixed, non-random integers between −K

and K and where the other rows contain entries that are independent random variables

taking values in S. If f ≤ o(n), if the f fixed rows are linearly independent, and if for

every random entry α, we have maxx Pr(α = x) ≤ p, then

Pr(Nf,n is singular) ≤ (
√
p+ o(1))n−f .

Corollary 2.2.5 applies to partly random matrices with f = o(n) fixed, non-random

rows containing integers bounded by a constant and with random entries taking at most

O(1) values in the complex numbers. Corollary 1.1.2, on the other hand, holds with

the fixed entries also allowed to take values in the complex numbers and gives a sligtly

better bound, but additionally requires f ≤ O(lnn) (which is far smaller in general than

o(n)). Proving Corollary 1.1.2 requires mirroring the entire argument used to prove the

main theorem (Theorem 2.1.2) in the case where f rows contain fixed, non-random

entires, and we discuss this argument in Section 6.1. Proving Corollary 2.2.5, however,
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can be done directly from Theorem 2.1.2, as we will show below. First, we will state a

generalization of Corollary 2.2.5.

Corollary 2.2.6. Let p be a real constant between 0 and 1, let K be a large positive

constant, and let S ⊂ C be a set of complex numbers having cardinality |S| ≤ K. Let

Nf,n be an n by n matrix in which f rows contain fixed, non-random integers between −K

and K and where the other rows contain entries that are independent random variables

taking values in S. If f ≤ o(n), if the fixed rows have co-rank k, and if for every random

entry α, we have maxx Pr(α = x) ≤ p, then

Pr(Nf,n has co-rank > k) ≤ (
√
p+ o(1))n−f .

To obtain Corollary 2.2.6 from Corollary 2.2.5, find a collection C of f − k linearly

independent rows among the deterministic rows. Replace the rest of the deterministic

rows with a collection C′ of rows containing integer values between −K and K such that

C′ is linearly independent from C. Finally, apply Corollary 2.2.5 to the new partially

random matrix whose deterministic rows are from C ∪ C′, thus proving Corollary 2.2.6.

Proof of Corollary 2.2.5. By reordering the rows and columns, we may write

Nf,n =




A B

C D


 ,

where A is an f by f non-random invertible matrix, B is an f by n − f non-random

matrix, C is an n− f by f random matrix, and D is an n− f by n− f random matrix.

Note that Nf,n is singular if and only if there exists a vector v such that Nf,nv = 0. Let

v1 be the first f coordinates of v and let v2 be the remaining n − f coordinates. Then

Nf,nv = 0 if and only if 



Av1 +Bv2 = 0, and

Cv1 +Dv2 = 0.

Since A is invertible, these two equations are satisfied if and only if (−CA−1B+D)v2 =

0, that is, if and only if the random matrix −CA−1B +D is singular.

We want to show that every entry that can appear in −CA−1B is an element of

no(n) (S ∪ {−1, 0, 1})O(1). By the cofactor formula for A−1, we know that the i, j entry
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of A−1 is (−1)i+j(detAij)/detA, where Aij is the f − 1 by f − 1 matrix formed by

deleting the i-th row and j-th column of A. Thus, A−1 = 1
det AÃ, where the i, j entry of

Ã is (−1)i+j detAij . By the volume formula for the determinant, we know that |detA|

is at most the product of the lengths of the row vectors of A; and thus |detA| ≤ no(n)

(here we need that A has integer entries between −K and K, where K is a constant,

and that f ≤ o(n)). Similarly, we have |detAij | ≤ no(n). Every entry of Ã is thus in

no(n){−1, 0, 1}, every entry of C is in S, and every entry of B is in O(1){−1, 0, 1}; thus,

every entry of −CÃB is an element of no(n)(S ∪ {−1, 0, 1}).

Conditioning on the values taken by all the entries in C, we have

Pr(Nf,n is singular) = Pr(−CA−1B +D is singular)

=
∑

(cij)

Pr(−CA−1B +D is singular|C = (cij)) Pr(C = (cij)),

(2.6)

where the sum runs over all possible matrices (cij) that C can produce. Considering

the entries in C = (cij) to be fixed (note that A and B are fixed by assumption), we

now need to bound

Pr(−(cij)A
−1B +D is singular) = Pr(−(cij)ÃB + (detA)D is singular).

Note that every entry of −(cij)ÃB is an element of no(n) (S ∪ {−1, 0, 1})O(1) and that

the random matrix (detA)D has entries that take values in the fixed set {(detA)s : s ∈

S} having cardinality O(1). Thus, by Corollary 2.2.4, we have that

Pr(−(cij)ÃB + (detA)D is singular) ≤ (
√
p+ o(1))n−f.

Plugging this bound back into Equation (2.6) completes the proof.

2.2.5 Integer matrices and rational eigenvalues

Let ηk be the random variable taking the values −k,−k+1, . . . , k−1, k each with equal

probability, and let Mn be the n by n matrix where each entry is an independent copy

of ηk. In [27], Martin and Wong show that for any ǫ > 0,

Pr(Mn has a rational eigenvalue) ≤ c(n, ǫ)

k1−ǫ
,



22

where c(n, ǫ) is a constant depending on n and ǫ. (One goal in [27] is to study this

bound as k goes to ∞ while n is fixed, which is why c(n, ǫ) is allowed to depend on n.)

Below, we prove a similar result for random integer matrices with entries between

−k and k (with k fixed), where we allow each entry to have a different (independent)

distribution and we also allow the distributions to be very general.

Corollary 2.2.7. Fix a positive integer k, and let Mk,n be a random integer matrix

with independent entries, each of which takes values in the set {−k,−k+1, . . . , k−1, k}.

Let c be a constant such that for every entry α, we have max−k≤x≤k Pr(α = x) ≤ c/k.

Then

Pr(Mk,n has a rational eigenvalue) ≤
( c
k

+ o(1)
)n/2

,

where the o(1) term goes to zero as n goes to ∞.

For example, in the case where each independent entry has the uniform distribution on

{−k,−k + 1, . . . , k − 1, k} (as in [27]), one can set c = 1/2 in the corollary above.

Proof. The proof given below follows the same outline as the main theorem of [27], with

Corollary 1.1.2 replacing an appeal to [27, Lemma 1].

The characteristic polynomial for Mk,n is monic with integer coefficients, and thus

the only possible rational eigenvalues are integers (by the rational roots theorem). Every

eigenvalue of Mk,n has absolute value at most nk (see [27, Lemma 4]); thus, the only

possible integer eigenvalues are between −nk and nk.

The matrix Mk,n has λ as an eigenvalue if and only if Mk,n − λI is singular (where

I is the n by n identity matrix). By Corollary 1.1.2 (with f = 0), we have

Pr(Mk,n − λI is singular) ≤
(√

c

k
+ o(1)

)n

.

Using the union bound, we have

Pr(Mk,n has a rational eigenvalue) = Pr(Mk,n − λI is singular, for some λ ∈ {−nk, . . . , nk})

≤
nk∑

λ=−nk

Pr(Mk,n − λI is singular)

≤ (2nk + 1)

(√
c

k
+ o(1)

)n

≤
( c
k

+ o(1)
)n/2

.
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Chapter 3

Reduction to a finite field, with other applications

3.1 Introduction

3.1.1 Placing complex matrices in a finite field

The original work on discrete random matrices in [25, 22, 38, 39] is concerned with

matrices having integer entries, which can also be viewed as matrices with entries in

Z/QZ where Q is a very large prime. In this section we show that one can pass from a

(random) matrix with entries in C to one with entries in Z/QZ where Q is an arbitrarily

large prime number, all without affecting the probability that the determinant is zero,

thanks to the following lemma.

Lemma 3.1.1. Let S be a finite subset of C. There exist infinitely many primes Q

such that there is a ring homomorphism φQ : Z[S] → Z/QZ satisfying the following two

properties:

(i) the map φQ is injective on S, and

(ii) for any n by n matrix (sij)1≤i,j≤n with entries sij ∈ S, we have

det

(
(sij)1≤i,j≤n

)
= 0 if and only if det

(
(φQ(sij))1≤i,j≤n

)
= 0.

In order to apply this lemma, let us point out that the proof of Theorem 2.1.2,

which is discussed in Sections 4.1 through 5.2, works exclusively in Z/QZ; though at

various points, it is necessary to assume Q is extremely large with respect to n and

various constants. For this thesis, S will be the set of all possible values taken by the

random variables αjk. Recall that by assumption, |S| ≤ no(n), so in particular, S is

finite.
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Remark 3.1.2 (On the size of Q). When we apply Lemma 3.1.1, we will take Q >

exp(exp(Cn)) for some constant C in order for Freiman-type theorems such as [39,

Theorem 6.3] (which is restated in Theorem 5.2.1 below) to apply, and we will also

choose Q large enough so that the integral approximation in Inequality (A.1) holds and

so that Q is large with respect to various constants. One should note that while Q can

be taken arbitrarily large with respect to n, we cannot choose Q so that it is arbitrarily

large with respect to φQ(s) for all s ∈ S, where S is the set of all values that could appear

in the given random matrix. For example, if
√

2 ∈ S, then the smallest positive integer

representative for φQ(
√

2) must be larger than
√
Q (since (φQ(

√
2))2 = 2 in Z/QZ).

Finally, if we were in a situation where S ⊂ Q, then we could avoid using Lemma 3.1.1

altogether by clearing denominators to pass to Z and then taking Q ≈ exp(exp(Cn)),

as is done in [39].

Lemma 3.1.1 is a corollary of Theorem 3.1.4 which we will state in the next subsec-

tion and which we will prove in Section 3.7. We will prove Lemma 3.1.1 in Section 3.5.

The remainder of this chapter contains further applications of Theorem 3.1.4, for ex-

ample proving a sum-product result for the complex numbers and proving a Szemerédi-

Trotter-type result for the complex numbers, where the applications follow from the

analogous results for Z/Q where Q is a prime (see [5]). All of the results in the complex

numbers that are corollaries of Theorem 3.1.4, including Lemma 3.1.1, go through with

the complex numbers replaced by any characteristic zero integral domain. Thus, the

results stated in Sections 1.1, 2.1, and 2.2 above for the complex numbers C also all

go through with C replaced by any characteristic zero integral domain. For example,

Corollary 2.2.3 becomes

Corollary 3.1.3. Let p be a constant such that 0 < p ≤ 1 and let D be a characteristic

zero integral domain. Let S ⊂ D have cardinality |S| ≤ O(1). If Nn is an n by n matrix

with independent random entries, each taking values in S, such that for every entry α,

we have maxx Pr(α = x) ≤ p, then

Pr(Nn is singular) ≤ (
√
p+ o(1))n.
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3.1.2 Mapping incidences to a finite field

Many problems and results in arithmetic combinatorics deal with algebraic incidences in

a finite set S. Classical examples are the Szemerédi-Trotter theorem and sum-product

estimates.

A well-studied situation is when S is a subset of Z/QZ, the finite field with Q

elements where Q is a large prime. In this case, the special structure of the field and

powerful techniques such as discrete Fourier analysis provide many tools to attack these

problems. These features are not available in other settings and it seems one needs to

invent new tricks. For example, when S is a subset of the complex numbers, most

studies previous to this thesis relied on some very clever use of properties of the plane.

Thus, it seems desirable to have a tool that reduces a problem from a general setting

to the special case of Z/QZ.

Such a tool exists, if one only cares about the linear relations among the elements

of S. In this case, the famous Freiman isomorphism lemma (see, for example, [40,

Lemma 5.25]) asserts that any finite subset of an arbitrary torsion-free group can be

mapped into Z/QZ, given that Q is sufficiently large, preserving all additive (linear)

relations in S. Thanks to this result, it has now become a common practice in additive

combinatorics to reduce additive problems from a general torsion-free group to Z/QZ.

The goal of this chapter is to show that the desired reduction is possible in general.

Technically speaking, we prove that any finite set S in a characteristic zero integral

domain can be mapped to Z/QZ, for infinitely many primes Q, preserving all algebraic

incidences in S.

Some notable characteristic zero integral domains include the integers, the complex

numbers, and the field of rational functions C(t1, t2, . . .) in any number of formal vari-

ables ti. As applications, we obtain some new results and short proofs of some known

results. In particular, it is shown that sum-product estimates and bounds for incidence

geometry problems over Z/QZ imply the same bounds for the analogous problems over

any characteristic zero integral domain (including the real and complex numbers).

Throughout this chapter, we assume that all rings are commutative with identity 1
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and that all ring homomorphisms take 1 to 1. Let D be a characteristic zero integral

domain (so D is a commutative ring with identity that has no zero divisors). We will

identify the subring of D generated by the identity with the integers Z (since the two

are isomorphic). For a subset S of D, we will use Z[S] to denote the smallest subring

of D containing S.

Theorem 3.1.4 (Reduction Theorem). Let S be a finite subset of a characteristic zero

integral domain D, and let L be a finite set of non-zero elements in the subring Z[S] of

D. There exists an infinite sequence of primes with positive relative density such that

there is a ring homomorphism φQ : Z[S] → Z/QZ satisfying 0 /∈ φQ(L).

By positive relative density, we mean that the sequence has positive density in the

sequence of all primes. It is important to note that Theorem 3.1.4 is not true for all

primes. For example, if S = {i} ⊂ C, then the desired map does not exist for Q = −1

(mod 4), since the equation x2 = −1 is not solvable in Z/QZ for these Q. Note that for

the applications of Theorem 3.1.4 in this thesis, we only need that there exist infinitely

many primes such that a map φQ exists, which follows from those primes having positive

relative density.

The remainder of this chapter is organized as follows. In the next few sections, we

present few sample applications of Theorem 3.1.4. Combining arguments from [5] with

Theorem 3.1.4, we prove a Szemerédi-Trotter-type result in Section 3.2. In Section 3.3,

we use Theorem 3.1.4 to demonstrate a sum-product estimate for characteristic zero

integral domains, based on well-known sum-product estimates in Z/QZ. Section 3.4 is

focused on combining a product result for SL2(Z/QZ) from [19] with Theorem 3.1.4 to

get an analogous product result for SL2(D), where D is a characteristic zero integral

domain. In Section 3.5, we show that a random matrix taking finitely many values in

a characteristic zero integral domain is singular with exponentially small probability.

This extends earlier results on integer matrices to the complex setting. Finally, the

proof of Theorem 3.1.4 is given in Section 3.7.
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3.2 A Szemerédi-Trotter-type result for characteristic zero integral

domains

In this section, we apply Theorem 3.1.4 to the problem of bounding the maximum

number of incidences between a finite set of lines and a finite set of points. The well-

known Szemerédi-Trotter Theorem [37] solves this problem in the case of points and

lines in R × R. Recently, in [5], an analogous result was proven for Z/q × Z/q where q

is a prime.

Theorem 3.2.1 (Theorem 6.2 in [5]). Let q be a prime, and let P and L be sets of

points and lines, respectively, in Z/q×Z/q such that the cardinalities |P| , |L| ≤ N ≤ q.

Then there exist positive absolute constants c and δ such that

∣∣∣{(p, ℓ) ∈ P × L : p ∈ ℓ}
∣∣∣ ≤ cN3/2−δ . (3.1)

Remark 3.2.2. The original version of Theorem 3.2.1 proven in [5] relied on the best

known sum-product result at the time (also found in [5]), which worked only for sub-

sets of Z/q with cardinality between qα and q1−α for a constant α. In particular, the

proof in [5] assumed that Inequality (3.1) was false and used this assumption to con-

struct a subset A of Z/q with cardinality N1/2−Cδ , for some constant C, such that

max{|A+A| , |AA|} was small, a contradiction of the sum-product estimate proven in

[5]. Thus, the version of Theorem 3.2.1 in [5] required the additional assumption that

N = qα for a constant α. To prove Theorem 3.2.1 as stated above, one can simply re-

place the sum-product results in [5] by more recent estimates that apply for all subsets

of Z/q (for example, [6, 18, 23]).

In a general ring R, we define a line to be the set of solutions (x, y) in R×R to an

equation y = mx + b, where m and b are fixed elements of R. Using Theorem 3.1.4,

we prove that the same bound as in Theorem 3.2.1 holds for an arbitrary characteristic

zero integral domain:

Theorem 3.2.3. Let D be a characteristic zero integral domain, and let P and L be

sets of points and lines (respectively) in D ×D with cardinalities |P| , |L| ≤ N . Then
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there exist positive absolute constants c and δ such that

∣∣∣{(p, ℓ) ∈ P × L : p ∈ ℓ}
∣∣∣ ≤ cN3/2−δ .

The constants c and δ are the same as those in Theorem 3.2.1. Any improvement to

Theorem 3.2.1, for example, better constants or giving a good bound when P and L

have very different cardinalities, would also immediately translate to Theorem 3.2.3

above. In the case of R×R, this theorem is true with δ being replaced with the optimal

constant 1/6 (by the Szemerédi-Trotter Theorem [37]).

Restricting to the case of complex numbers, Solymosi [33, Lemma 1] has proven a

Szemerédi-Trotter-type result over C with δ = 1/6, under the additional assumption

that the set of points form a Cartesian product in C2. Our result has a small δ but does

not require this additional assumption. It looks plausible that δ = 1/6 holds without

any additional assumption.

We conjecture that one can set δ = 1/6 in Z/QZ given that N is sufficiently small

compared to p. (This implies δ = 1/6 for the complex case.)

Proof of Theorem 3.2.3. Without loss of generality, assume that |P| = |L| = N , adding

“dummy” points and lines if necessary. By rotating the entire collection of points and

lines, we may assume that there are no vertical lines. Say that P = {(xi, yi) : i =

1, . . . , N}, and, uniquely parameterizing a line y = mx+ b by the ordered pair (m, b),

say that L = {(mi, bi) : i = 1, . . . ,N}. Let S :=
⋃N

i=1{xi, yi,mi, bi}, set

L0 := {xi − xj : 1 ≤ i < j ≤ N} ∪ {yi − yj : 1 ≤ i < j ≤ N}∪

∪ {mi −mj : 1 ≤ i < j ≤ N} ∪ {bi − bj : 1 ≤ i < j ≤ N},

and let L := L0 \ {0}. By Theorem 3.1.4, there exists a prime q > N and a ring

homomorphism φq : Z[S] → Z/q such that 0 /∈ φq(L). Define a map Φq : Z[S] ×

Z[S] → Z/q × Z/q by Φq(a, b) = (φq(a), φq(b)). Because 0 /∈ φq(L), we know that

|Φq(P)| = |Φq(L)| = N . Thus, by Theorem 3.2.1, there exist absolute constants c and

δ such that

∣∣∣{(p′, ℓ′) ∈ Φq(P) × Φq(L) : p′ ∈ ℓ′}
∣∣∣ ≤ cN3/2−δ .
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Since φq is a ring homomorphism, the equation y = mx + b implies that φq(y) =

φq(mx+ b) = φq(m)φq(x) + φq(b); and thus,

|{(p, ℓ) ∈ P ×L : p ∈ ℓ}| ≤
∣∣{(p′, ℓ′) ∈ Φq(P) × Φq(L) : p′ ∈ ℓ′}

∣∣ ≤ cN3/2−δ ,

completing the proof.

3.3 A sum-product result for characteristic zero integral domains

Given a subset A of a ring, we define A + A := {a1 + a2 : a1, a2 ∈ A} and AA :=

{a1a2 : a1, a2 ∈ A}. Heuristically, sum-product estimates state that one cannot find a

subset A such that both A+A and AA have small cardinality. The first sum-product

result was proven in 1983 by Erdős and Szemerédi [14] for the integers, and there have

been numerous improvements and generalizations, see for example [28], [16], [13], and

[8]. Proving sum-product estimates in Z/QZ, where p is a prime, has been the focus of

some recent work (see, for example, [5], [4], and [6]), with the best known bound due

to Katz and Shen [23], slightly improving a result of Garaev [18]:

Theorem 3.3.1 ([23]). Let p be a prime and let A be a subset of Z/QZ such that

|A| ≤ p1/2. Then, there exists an absolute constant c such that

c |A|14/13−ǫ ≤ max{|A+A| , |AA|},

where ǫ is any positive constant.

Theorem 3.3.2 demonstrates the same lower bound on max{|A+A| , |AA|} for any

finite subset A of a characteristic zero integral domain.

Theorem 3.3.2. There is a positive absolute constant c such that, for every finite

subset A of a characteristic zero integral domain,

c |A|14/13−ǫ ≤ max{|A+A| , |AA|},

where ǫ is any positive constant.

The constant c in this result is the same as that in Theorem 3.3.1.
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Theorem 3.3.2 applies to a very general class of rings; however, our mapping ap-

proach requires that the rings be commutative and have characteristic zero. For some

results in the non-commutative case, see [8]; and for some results in Z/m where m is a

composite, see [9].

Proof of Theorem 3.3.2. Let

L0 := {a1 − a2 : a1, a2 ∈ A} ∪ {a1 + a2 − (a3 + a4) : ai ∈ A} ∪ {a1a2 − a3a4 : ai ∈ A}

and let L := L0 \ {0}.

By Theorem 3.1.4, there exists a prime p > |A|2 and a ring homomorphism φQ :

Z[A] → Z/QZ such that

(i) |φQ(A)| = |A|, which follows since a1 − a2 ∈ L for every a1, a2 ∈ A where

a1 6= a2,

(ii) |φQ(A) + φQ(A)| = |A+A|, which follows by definition of L (if a1 + a2 −

(a3 + a4) 6= 0, then φQ(a1) + φQ(a2) = φQ(a1 + a2) 6= φQ(a3 + a4) = φQ(a3) +

φQ(a4)) and because φQ is a ring homomorphism (if a1 + a2 − (a3 + a4) = 0, then

φQ(a1) + φQ(a2) = φQ(a1 + a2) = φQ(a3 + a4) = φQ(a3) + φQ(a4)),

(iii) |φQ(A)φQ(A)| = |AA|, which follows by the same reasoning as (ii).

We can now apply Theorem 3.3.1 to get that there exists a positive constant c such

that

c |φQ(A)|14/13−ǫ ≤ max{|φQ(A) + φQ(A)| , |φQ(A)φQ(A)|},

for any absolute constant ǫ > 0. Finally, substituting (i), (ii), and (iii) into this in-

equality gives the desired result.

3.4 A matrix product result for SL2(D)

In this section, we will consider finite subsets of the special linear group SL2(D) of 2

by 2 matrices with determinant 1 and entries in a characteristic zero integral domain

D. For A a finite subset of SL2(D), let 〈A〉 denote the smallest subgroup of SL2(D)
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(under inclusion) that contains A. We will refer to 〈A〉 as the group generated by A. In

general, the goal of this section will be to give conditions on 〈A〉 so that cardinality of

the triple product AAA := {a1a2a3 : ai ∈ A} is large.

Helfgott proved the following theorem in [19]:

Theorem 3.4.1 ([19]). Let p be a prime. Let A be a subset of SL2(Z/QZ) not contained

in any proper subgroup, and assume that |A| < p3−ǫ for some fixed ǫ > 0. Then

|AAA| > c |A|1+δ ,

where c > 0 and δ > 0 depend only on ǫ.

In this section, we will prove the following related result by combining Theorem 3.4.1

with Theorem 3.1.4:

Theorem 3.4.2. Let A be a finite subset of SL2(D), where D is a characteristic zero

integral domain, and let 〈A〉 be the subgroup generated by A. If 〈A〉 has infinite cardi-

nality and 〈A〉 is not metabelian, then

|AAA| > c |A|1+δ ,

where c > 0 and δ > 0 are absolute constants.

One should note that Chang [10] has already proven a very similar product result for

SL2(C), in which “metabelian” is replaced by “virtually abelian”.

Theorem 3.4.3 ([10]). Let A be a finite subset of SL2(C), and let 〈A〉 be the subgroup

generated by A. If 〈A〉 is not virtually abelian (which implies that 〈A〉 has infinite

cardinality), then

|AAA| > c |A|1+δ ,

where c > 0 and δ > 0 are absolute constants.

One major difference between Theorem 3.4.2 and Theorem 3.4.3 is in how the two

results are proved. Below, we will prove Theorem 3.4.2 using Helfgott’s Theorem 3.4.1

as a black box along with some group theory and an easy application of Theorem 3.1.4.
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On the other hand, Theorem 3.4.3 is proven in [10] by adapting Helfgott’s methods in

[19] from the case of SL2(Z/QZ) to SL(C) and using tools from additive combinatorics.

The constants δ > 0 in Theorems 3.4.2 and 3.4.3 are not the best possible if one

restricts to a subgroup. For example, SL2(Z) contains a subgroup isomorphic to F2, the

free group on 2 generators, and the following product result has recently been shown

by Razborov [29]:

Theorem 3.4.4 ([29]). Let A be a finite subset of a free group Fm (on m generators)

with at least two non-commuting elements. Then,

|AAA| ≥ |A|2
(log |A|)O(1)

.

One should note that neither Theorem 3.4.2 nor Theorem 3.4.3 fully characterizes

finite subsets of SL2(C) that have expanding triple product. For example, neither

theorem applies when A is contained in an abelian subgroup, but letting

A :=






1 2j

0 1


 : 1 ≤ j ≤ n



 ,

we have that |AAA| ≥ |AA| =
(n+1

2

)
> n2/2 = |A|2 /2. One should also note that a

sum-product theorem similar to Theorem 3.3.2 does not hold in general for matrices.

As pointed out in [11, Remark 0.2], the subset

A :=






1 j

0 1


 : 1 ≤ j ≤ n





has the property than both the sumset and product sets are small: |A+A| = |AA| =

2n − 1. However, it is also shown by Chang [11] that by adding the assumption that

the matrices in A are symmetric, one can prove a sum-product result similar to Theo-

rem 3.3.2.

We now turn our attention to the proof or Theorem 3.4.2.

Proof of Theorem 3.4.2. Say that A is a finite subset of SL2(D), where D is a charac-

teristic zero integral domain. Let G := 〈A〉, the subgroup generated by A, and assume

that G has infinite cardinality and is not metabelian. Let T be the set of all normal
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subgroups N of G such that G/N is abelian (note that we include G in the set T ), and

define

N0 :=
⋂

N∈T

N.

Then N0 is a normal subgroup of G and G/N0 is abelian. Since G is not metabelian by

assumption, we know that N0 is not abelian, and so there exists B1, B2 ∈ N0 such that

B1B2 6= B2B1. Also, let M1,M2,M3, . . . ,M121 be 121 distinct elements of G (note G

is infinite by assumption). We may now define a set L0 as follows:

L0 :=




bi − cj :

i, j ∈ {1, 2, 3, 4} and bi and cj are entries in ma-

trices


b1 b2

b3 b4


 ,


c1 c2

c3 c4


 ∈ A





∪




bi − cj :

i, j ∈ {1, 2, 3, 4} and bi and cj are entries in matrices
b1 b2

b3 b4


 ∈Mk1

and


c1 c2

c3 c4


 ∈Mk2

for some 1 ≤ k1, k2 ≤ 121





∪



b1 − 1, b2, b3, b4 − 1 : where


b1 b2

b3 b4


 = B1B2B

−1
1 B−1

2 6=


1 0

0 1






 .

Let L := L0 \ {0}, and let S be the set of all entries that appear in matrices in A. By

Theorem 3.1.4, there exists p > |A| and φQ : Z[S] → Z/QZ such that 0 /∈ φQ(L). Let

ΦQ : SL2(D) → SL2(Z/QZ) be defined by


b1 b2

b3 b4


 7→


φQ(b1) φQ(b2)

φQ(b3) φQ(b4)


. Let A :=

ΦQ(A) and let G := 〈A〉. Note that by construction |A| = |A| and |AAA| ≥ |AAA|,

and also note that |G| ≥ 121.

Assume for the sake of a contradiction that G is a proper subgroup of SL2(Z/QZ).

In [36], Suzuki gives the following classification of the proper subgroups of SL2(Z/QZ):

Theorem 3.4.5 (cf. Theorem 6.17 of [36], page 404). Let G be a proper subgroup of

SL2(Z/QZ) where p ≥ 5. Then G is isomorphic to one of the following groups (or to a

subgroup of one of the following groups):

(i) a cyclic group,
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(ii) the group with presentation
〈
x, y
∣∣xm = y2, y−1xy = x−1

〉
, which has order

4m,

(iii) a group H of order p(p− 1) having a Sylow-p subgroup K such that H/K is

cyclic and K is elementary abelian,

(iv) the special linear group SL2(Z/3Z) on a field of three elements, which has

order 24,

(v) Ŝ4, the representation group of S4 (the symmetric group on 4 letters), which

has order 48, or

(vi) the special linear group SL2(Z/5Z) on a field of five elements, which has order

120.

Since |G| > 120, we may eliminate (iv), (v), and (vi) as possibilities. The remaining

possibilities (namely, (i), (ii), and (iii)) are all metabelian; and thus, G must have a

normal subgroup N such that N is abelian and G/N is also abelian.

LetN := Φ−1
Q (N). ThenN is a normal subgroup of G, and by the third isomorphism

theorem G/N ≃ (G/ ker(ΦQ))/(N/ ker(ΦQ)) ≃ G/N , which is abelian. Thus, N0 is a

subgroup of N , and so B1, B2 ∈ N . We know that B1B2B
−1
1 B−1

2 6=


1 0

0 1


, and by

the definition of ΦQ, we also have that

ΦQ(B1)ΦQ(B2)ΦQ(B1)
−1ΦQ(B2)

−1 = ΦQ(B1B2B
−1
1 B−1

2 ) 6=


1 0

0 1


 .

But, this contradicts the fact that N is abelian. Thus, the assumption that G is a

proper subgroup of SL2(Z/QZ) is false, and we have that 〈A〉 = G = SL2(Z/QZ).

Finally, by Theorem 3.4.1, there exist absolute constants c > 0 and δ > 0 such that

|AAA| ≥ |AAA| ≥ c |A|1+δ = c |A|1+δ .

Another way to show that 〈ΦQ(A)〉 generates all of SL2(Z/QZ) would be to assume

that 〈A〉 is not virtually solvable, which implies by Tits Alternative Theorem [43] that
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〈A〉 has a non-abelian free subgroup. Then, following [17, Section 2], it is possible to

bound the girth of a certain Cayley graph from below in terms of p, eventually showing

(via an appeal to Theorem 3.4.5) that 〈ΦQ(A)〉 = SL2(Z/QZ).

Also, the proof above uses the following implicit corollary of Theorem 3.4.5: if G is

a proper subgroup of SL2(Z/QZ) and |G| > 120, then G in metabelian. A very similar

result for PSL2(Z/QZ) ≃ SL2(Z/QZ)/(±I) (where I is the identity matrix) appears in

[12, Theorem 3.3.4, page 78].

3.5 Random matrices with entries in a characteristic zero integral

domain

In [22, 39], it is shown that a random Bernoulli matrix of size n is singular with prob-

ability exp(−Ω(n)). One may ask what happens for random matrices with complex

entries. We are going to give a quick proof for the following:

Theorem 3.5.1. For every positive number ρ < 1, there is a positive number δ < 1

such that the following holds. Let ξ be a random variable with finite support in a

characteristic zero integral domain, where ξ takes each value with probability at most

ρ. Let Mn be an n by n random matrix whose entries are i.i.d. copies of ξ. Then the

probability that Mn is singular is at most δn.

Remark 3.5.2. Here we assume that n is sufficiently large and the size of the support

of ξ does not depend on n. In the case when the characteristic zero integral domain is

C, more quantitative bounds are available (see [7, 41]).

Theorem 3.5.1 follows directly from the following two results.

Theorem 3.5.3. For every positive number ρ < 1, there is a positive number δ < 1

such that the following holds. Let n be a large positive integer and p ≥ 2nn
be a prime.

Let ξ be a random variables with finite support in Z/QZ, where ξ takes each value with

probability at most ρ. Let Mn be an n by n random matrix whose entries are i.i.d.

copies of ξ. Then the probability that Mn is singular is at most δn.

This theorem was implicitly proved in [39]. The bound 2nn
is not essential, we

simply want to guarantee that p is much large than n. The reason that the proof from
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[39] does not extend directly to the complex case (or characteristic zero integral domain

in general) is that in [39] one relied on the identity

Ix=0 =

∫ 1

0
e(xt)dt,

where I is the indicator event and e(α) := exp(2πiα). This identity holds for x an inte-

ger, but not true for complex numbers in general. Theorem 3.1.4 provides a simple way

to overcome this obstacle. (For other methods, see [41, 42].) We restate Lemma 3.1.1

for the reader’s convenience.

Lemma 3.5.4. Let S be a finite subset of a characteristic zero integral domain. There

exist arbitrarily large primes p such that there is a ring homomorphism φQ : Z[S] →

Z/QZ satisfying the following two properties:

(i) the map φQ is injective on S, and

(ii) for any n by n matrix (sij) with entries sij ∈ S, we have

det(sij) = 0 if and only if det (φQ(sij)) = 0.

Proof. Let L := {det(sij) : sij ∈ S} \ {0}. Applying Theorem 3.1.4 gives us a ring

homomorphism φQ : Z[S] → Z/QZ (for some arbitrarily large prime p) such that

0 /∈ φQ(L). Since φQ is a ring homomorphism, φQ(det(sij)) = det(φQ(sij)) and also

φQ(0) = 0; thus, we have satisfied condition (ii).

In this particular case, we will show that (i) follows from (ii). If S contains more

than one element, we can find s 6= t 6= 0, and thus

det







s t · · · t t

t s t · · · t

... t
. . . t

...

t · · · t s t

t t · · · t t







= det







s− t 0 · · · 0 0

0 s− t 0 · · · 0

... 0
. . . 0

...

0 · · · 0 s− t 0

0 0 · · · 0 t







= (s−t)n−1t 6= 0.

Thus, by (ii), 0 6= (φQ(s) − φQ(t))n−1 φQ(t), and so φQ(s) 6= φQ(t) and we see that φQ

is injective on S.
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The fact that (ii) happens to imply injectivity on S is not important—in fact, for any

given finite subset A ⊂ Z[S] we can find φ eQ satisfying (ii) above that is also injective on

A by adding {a1 − a2 : a1 6= a2 and a1, a2 ∈ A} to L in the proof above. For example,

we could find φ eQ that is injective on the set of all determinants of n by n matrices with

entries in S.

One should note that it is easy to prove results similar to Lemma 3.1.1 where the

determinant is replaced by some polynomial f(x1, x2, . . . , xk) with integer coefficients

and one wants a map φQ such that f evaluated at points in S is zero if and only if f

evaluated at points in φQ(S) is zero. This can also easily be extended to the case where

f is replaced by a list of polynomials, each of which is evaluated on some subset of S.

3.6 The density theorem

The number 7 is a prime in the ring of integers Z; however, if one extends Z to Z[
√

2],

the prime 7 splits: 7 = (3−
√

2)(3+
√

2). This fact has the same mathematical content as

the following: the polynomial x2−2 is irreducible in Z[x]; however, in (Z/7Z)[x], where

the coefficients of the polynomial are viewed as elements of Z/7Z, the polynomial splits:

x2 − 2 = (x− 3)(x+3). The Frobenius Density Theorem describes how frequently such

splitting occurs. In modern formulations, the Frobenius Density Theorem quantifies

the proportion of primes that split in a given Galois extension of the rational numbers.

We will use the following historical version given in [35, page 32], which is phrased

in terms of polynomials splitting modulo p. Note that the relative density of a set of

primes S is defined to be

lim
x→∞

|{p ≤ x : p ∈ S}|
|{p ≤ x : p is prime}| .

Theorem 3.6.1 (Frobenius Density Theorem). Let g(z) ∈ Z[z] be a polynomial of

degree k with k distinct roots in C, and let G be the Galois group of the polynomial g,

viewed as a subgroup of Sk (the symmetric group on k symbols). Let n1, n2, . . . , nt be

positive integers summing to k. Then, the relative density of the set of primes p for

which g modulo p has a given decomposition type n1, n2, . . . , nt exists and is equal to

1/ |G| times the number of σ ∈ G with cycle pattern n1, n2, . . . , nt.
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For example, since the identity element corresponds to the cycle pattern 1, 1, . . . , 1 and

every group has one identity, the relative density of primes p such that g decomposes

into k distinct linear factors modulo p is 1/ |G|.

Theorem 3.6.1 is the version proven by Frobenius in 1880 and published in 1896

[15]. In [35], Stevenhagen and Lenstra give numerous examples and an illuminating

discussion of the original motivation for the Frobenius Density Theorem and how it

relates to the stronger Chebotarev Density Theorem.

3.7 Proof of Theorem 3.1.4

The first step towards proving Theorem 3.1.4 is proving the following lemma.

Lemma 3.7.1. Let S be a finite subset of a characteristic zero integral domain D, and

let L be a finite set of non-zero elements in the subring Z[S] of D. Then there exists a

complex number θ that is algebraic over Z and a ring homomorphism φ : Z[S] → Z[θ]

such that 0 /∈ φ(L).

By itself, this lemma allows one to extend sum-product and incidence problem

results proven in the complex numbers to any characteristic zero integral domain (in

much the same way that Theorem 3.1.4 allows one to extend such results proven in

Z/QZ to any characteristic zero integral domain).

Lemma 3.7.1 is proved using three main steps: applying the primitive element the-

orem, applying Hilbert’s Nullstellensatz to pass to the case of only algebraic numbers,

and applying the primitive element theorem again to get to a ring of the form Z[θ].

Each of these three steps requires negotiating between the rings we are interested in

and their fraction fields. Theorem 3.1.4 is proved by combining Lemma 3.7.1 with the

Frobenius Density Theorem (or the stronger Chebotarev Density Theorem) to pass to

a quotient isomorphic to Z/QZ.

Proof of Lemma 3.7.1. Let S be a finite subset of a characteristic zero integral domain

D. Recall that we identify the subring of D generated by the identity with Z and so

we use Z[S] to denote the smallest subring of D containing S.
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We can write S = {x1, x2, . . . , xj, θ1, θ2, . . . , θk}, such that {x1, x2, . . . , xj} are inde-

pendent transcendentals over Q and such that K, the fraction field of Z[S], is algebraic

over Q(x1, x2, . . . , xj). Using the primitive element theorem, we can find θ̃ in K also

algebraic over Q(x1, x2, . . . , xj) such that

Q(x1, x2, . . . , xj , θ1, θ2, . . . , θk) ≃ Q(x1, x2, . . . , xj , θ̃).

To get the analogous statement for Z instead of Q, one can rationalize the denominators

of the θi for i ≥ 1 and rationalize the numerator of θ̃, and then define θ0 to be θ̃ divided

by the product of the rationalized denominators and the rationalized numerator. Thus,

we can find θ0 in K also algebraic over Q(x1, x2, . . . , xj) such that

Z[S] ⊂ Z[x1, x2, . . . , xj , θ0] ≃ Z[y1, y2, . . . , yj+1]/f0,

where the yi are formal variables and f0 is an irreducible element in Z[y1, y2, . . . , yj+1]

that is non-constant or zero and that gives zero when evaluated at yi = xi for i = 1, . . . , j

and yj+1 = θ0.

Let Q be the algebraic closure of the rational numbers, let L′ :=
∏

ℓ∈L ℓ, and let

L ∈ Z[y1, . . . , yj+1] be the lowest degree representative of the image of L′ under the

above inclusion and isomorphism. We will use the following corollary to Hilbert’s

Nullstellensatz:

Proposition 3.7.2 (c.f. the corollary on page 282 of [31]). If L, f0 ∈ Q[y1, . . . , yj+1]

and if on points of Q
j+1

we have that L is zero whenever f0 is zero, then there exists

m ≥ 0 and k ∈ Q[y1, . . . , yj+1] such that Lm = kf0.

Say that Lm = kf0 for some k ∈ Q[y1, . . . , yj+1]. Since Lm, f0 ∈ Z[y1, . . . , yj+1], we

have that k is in Q(y1, . . . , yj+1) (the fraction field of Z[y1, . . . , yj+1]). Thus, k is in the

ring Q[y1, . . . , yj+1], and so there is a positive integer c such that ck ∈ Z[y1, . . . , yj+1].

We now have cLm = (ck)f0. Since f0 is irreducible in Z[y1, y2, . . . , yj+1], we must have

that f0 divides L (f0 cannot divide the positive integer c since f0 is either non-constant

or zero). But this is impossible since by assumption L is non-zero in the quotient ring

Z[y1, . . . , yj+1]/f0. Thus, for every m ≥ 0 and for every k ∈ Q[y1, . . . , yj+1] we must

have that Lm 6= kf0. Therefore, by the contrapositive of Proposition 3.7.2, there exist
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algebraic numbers q1, . . . , qj+1 ∈ Q such that f0

∣∣∣
yi=qi

= 0 while L
∣∣∣
yi=qi

6= 0. Thus, we

have a homomorphism

ψ0 : Z[y1, y2, . . . , yj+1]/f0 → Z[q1, . . . , qj+1],

defined by yi 7→ qi, such that ψ0(L) 6= 0.

Applying the primitive element theorem again, we have

Z[q1, . . . , qj+1] ⊂ Z[θ1] ≃ Z[z]/f1,

where z is a formal variable and f1 is an irreducible element in Z[z] that gives zero when

evaluated at z = θ1. Combining the inclusions and isomorphisms from the applications

of the primitive element theorem with ψ0 completes the proof of Lemma 3.7.1.

Recall the statement of Theorem 3.1.4:

Theorem 3.7.3. Let S be a finite subset of a characteristic zero integral domain D,

and let L be a finite set of non-zero elements in the subring Z[S] of D. There exist

arbitrarily large primes Q such that there is a ring homomorphism φQ : Z[S] → Z/QZ

satisfying 0 /∈ φQ(L).

The proof of Theorem 3.1.4 picks up where the proof of Lemma 3.7.1 left off.

Proof of Theorem 3.1.4. By Lemma 3.7.1, there exists a ring homomorphism φ : Z[S] →

Z[z]/f1, such that 0 /∈ φ(L), where z is a formal variable and f1 is an irreducible element

in Z[z] that gives zero when evaluated at z = θ1.

Let L̂ :=
∏

ℓ∈L ℓ, let L̃(z) ∈ Z[z] denote the lowest-degree representative of φ(L̂) in

Z[z]/f1, and let L1(z) denote the product of all distinct irreducible factors of L̃(z) in

Z[z]. Note that a ring homomorphism will map L̃(z) to zero if and only if it maps L1(z)

to zero. By assumption, L̃(z) is non-zero, so we must have that f1(z) does not divide

L̃(z) in Z[z]; and thus f1(z) does not divide L1(z). Therefore, L1(z) has no roots (in

C, say) in common with f1(z), since f1(z) is irreducible.

By Theorem 3.6.1 (the Frobenius Density Theorem) there exists a sequence of primes

(Q1, Q2, Q3, . . .) in Z (with positive relative density) such that for any prime Q in the
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sequence, the polynomial f1(z)L1(z) factors completely modulo Q into a product of

deg (f1(z)L1(z)) distinct linear factors.

Let (z − a) be a linear factor of f1(z) modulo Q, where Q is any prime in the

sequence (Q1, Q2, Q3, . . .). Since, modulo Q, the linear factors of f1(z) are all distinct

from those of L1(z), we know that (z − a) does not divide L1(z) modulo Q. Thus, for

infinitely many primes Q, we may quotient out by Q and by (z − a) to get a canonical

quotient map

ψ1 : Z[z]/f1 −→ Z[z]/(Q, z − a) ≃ Z/QZ

where ψ1(L1(z)) 6= 0. One can think of ψ1 as modding out by Q and then sending z to

the element a in Z/QZ.

Letting φQ := ψ1 ◦ φ completes the proof.
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Chapter 4

Proof of main result: reduction to exceptional spaces

4.1 Proof of the main theorem (Theorem 2.1.2)

The proof of Theorem 2.1.2 very closely follows the proof of [39, Theorem 1.2]. Our

goal is to highlight the changes that need to be made to generalize the proof in [39]

so that it proves Theorem 2.1.2. A reader interested in the details of the proof of

Theorem 2.1.2 should read this thesis alongside of [39]. Throughout the proof, we

will assume that n is sufficiently large, and we will allow constants hidden in the o(·)

and O(·) notation to depend on the constants ǫ−1, ǫ0, ǫ1, ǫ2, p, q, r, cMedDim, cLgDim, cLO,

and cm. The constants ǫ−1, ǫ0, ǫ1, ǫ2 should be considered very small, and, in fact, we

will let them tend to zero to prove the full strength of Theorem 2.1.2. The constants

p, q, r, cMedDim, cLgDim, cLO, and cm can be thought of as absolute, except possibly for

depending on each other.

4.1.1 Definitions and preliminaries

Given an n by n matrix Nn with entries αij , we assume that the collection of indepen-

dent random variables {αij}1≤i,j≤n is p-bounded of exponent r for some fixed constants

p, q, and r (here, q is the constant from Definition 2.1.1 which is independent of n). We

also assume that each αij takes at most no(n) distinct values. Using Lemma 3.1.1, we

may assume without loss of generality that each αij takes values in Z/QZ for some very

large prime Q. The entirety of the proof will take place over the field Z/QZ, and so

terminology such as “linearly independent”, “span”, “dimension”, “rank” and so forth

will always be with respect to the field Z/QZ.
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Let Xi := (αi,1, . . . , αi,n) denote the i-th row of Nn. We note that Nn has deter-

minant zero if and only if there is a linear dependency among the rows Xi. It has

been shown (see [38, Lemma 5.1] and also [22]) that the dominant contribution to the

singularity probability comes from the Xi spanning a hyperplane (of dimension n− 1).

In particular,

Pr (Nn is singular) = p−o(n)
∑

V a non−trivial
hyperplane in (Z/QZ)n

Pr(AV ), (4.1)

where AV denotes the event that X1, . . . ,Xn span V , and non-trivial means that V

contains the origin, V is spanned by vectors in Sn (where S is the set of all possible

values that can occur in Nn), and Pr(Xi ∈ V ) > 0 for all i.

As in [39], we will divide the non-trivial hyperplanes into n2 classes, since it is then

sufficient to show that the sum of Pr(AV ) over all V in a particular class is at most

(p1/r + o(1))n.

Definition 4.1.1 (combinatorial dimension). Let D :=
{

a
n : 0 ≤ a ≤ n2, a ∈ Z

}
. For

any d± ∈ D such that d± ≥ 1
n , we define the combinatorial Grassmannian Gr(d±) to

be the set of all non-trivial hyperplanes V in (Z/QZ)n such that

pn−d±+1/n < max
1≤i≤n

Pr(Xi ∈ V ) ≤ pn−d± . (4.2)

For d± = 0, we define Gr(0) to be the set of all non-trivial hyperplanes such that

max
1≤i≤n

Pr(Xi ∈ V ) ≤ pn.

We will refer to d± as the combinatorial dimension of V .

Note that Gr(d±) = ∅ for d± ≥ n − 1 + 1/n (by Lemma A.2.1). We will con-

sider hyperplanes V with combinatorial dimension in three main regions: d± small,

d± medium-sized, and d± large. The two lemmas and the proposition below suffice to

prove Theorem 2.1.2.

Lemma 4.1.2 (Small combinatorial dimension, [22], [38], [39]). For any δ > 0 we have

∑

d±∈D s.t. pn−d±≤δn

∑

V ∈Gr(d±)

Pr(AV ) ≤ nδn.
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In proving Theorem 2.1.2, we will take δ = (p + cMedDimǫ0)
1/r to take care of all

small d± not covered by Proposition 4.1.4 below.

Proof. The reasoning here is the same as in [39, Lemma 2.3], making use of fact that

Pr(Xi ∈ V ) ≤ max1≤i≤n Pr(Xi ∈ V ) ≤ pn−d± ≤ δn. In particular,

Pr(AV ) ≤
n∑

i=1

Pr ({Xj}1≤j≤n \ {Xi} spans V ) Pr(Xi ∈ V ),

which completes the proof since the summing the right-hand side over all V is at most

nmaxi Pr(Xi ∈ V ) (note that an instance of the vectors {Xj}1≤j≤n \ {Xi} can span at

most one hyperplane).

Lemma 4.1.3 (Large combinatorial dimension, [22],[38],[39]). We have

∑

d±∈D s.t.
cLgDim√

n
≤pn−d±

∑

V ∈Gr(d±)

Pr(AV ) ≤ (p+ o(1))n

Here we choose the constant cLgDim so that cLgDim ≥ cLOp
−1/n

√
2r
q , where cLO is

the constant from the Littlewood-Offord inequality (see Lemma A.1.1 in Appendix A.1)

and q is the constant from Definition 2.1.1.

Proof. Our proof is essentially the same as [39, Lemma 2.4]. Fix V ∈ Gr(d±), where

cLgDim√
n

≤ pn−d± . Let imax be an index such that Pr(Ximax ∈ V ) = max1≤i≤n Pr(Xi ∈ V ).

By assumption,

Pr(Ximax ∈ V ) ≥ pn−d±+1/n ≥ cLgDim√
n

p1/n ≥ cLO

√
2r

qn
.

Noting that Ximax ∈ V if and only if Ximax is orthogonal to the normal vector for V ,

we have by Lemma A.1.1 that

Pr(Ximax ∈ V ) ≤ cLO

√
r

qk
,

where k is the number of nonzero coordinates in the normal vector to V . Combining

the two inequalities above shows that k ≤ n/2.
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Thus, we have

∑

d±∈D s.t.
cLgDim√

n
≤pn−d±

∑

V ∈Gr(d±)

Pr(AV ) ≤ Pr








there exists a vector v with at

most n/2 nonzero coordinates

such that Nn · v = 0








≤ (p+ o(1))n (by Lemma A.1.2)

(Lemma A.1.2 is a natural generalization of [22, Section 3.1]; see also [26], [38, Lemma 5.1],

and [3, Lemma 14.10].)

Proposition 4.1.4 (Medium combinatorial dimension estimate). Let 0 < ǫ0 be a con-

stant much smaller than 1, and let d± ∈ D be such that (p+ cMedDimǫ0)
n/r < pn−d± <

cLgDim√
n

. Then
∑

V ∈Gr(d±)

Pr(AV ) ≤ o(1)n.

Here we choose the constant cMedDim so that cMedDim >
(

1
100 + cm

)
, where cm is some

absolute constant such that 0 < cm < 1 (the 1
100 here comes from µ as defined in

Section 4.1.2 below; in [39], it happens that the constant cm is also taken to be 1
100 ).

To prove Theorem 2.1.2, we can simply combine Lemma 4.1.2 with δ = (p +

cMedDimǫ0)
1/r, Lemma 4.1.3, and Proposition 4.1.4. Thus, proving Proposition 4.1.4

will complete the proof of Theorem 2.1.2. To prove Proposition 4.1.4, as in [39, Propo-

sition 2.5], we will separate hyperplanes V of medium combinatorial dimension into two

classes, which we will call exceptional and unexceptional (see Definition 4.1.5). See [39,

Section 3] for motivation. The unexceptional case will be proved in the remainder of

this section, and the exceptional case will be proved in Sections 4.2, 5.1, and 5.2.

The results in [38] and [22] were derived using the ideas that we will use for the

unexceptional medium combinatorial dimension case. The idea of considering the ex-

ceptional case separately in [39] (and using tools from additive combinatorics in the

exceptional case) is what lead to the improvement of Inequality (1.1), which gives a

bound of asymptotically
(

3
4

)n
, over the .999n bound in [22].
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4.1.2 Proof of the medium combinatorial dimension

Before defining exceptional and unexceptional hyperplanes, we will need some new

notation. By assumption, the collection of random variables {αij}1≤i,j≤n is p-bounded

of exponent r with a constant µ = 1 − p, with random variables β
(µ)
ij corresponding to

each αij , and with a constant 0 < q ≤ p (see Definition 2.1.1). We also define a constant

slightly smaller than µ, namely µ := µ − ǫ0
100

. We will let Yi := (yi,1, . . . , yi,n) :=

(β
(µ)

i,1 , . . . , β
(µ)

i,n ) denote another row vector that corresponds to the row vector Xi (β
(µ)

i,j

comes from the definition of p-bounded of exponent r). Also, we will let

Z∗
i,k := (

kstart − 1

zeroes︷ ︸︸ ︷
0, . . . , 0, yi,kstart

, . . . , yi,kend
,

n − kend

zeroes︷ ︸︸ ︷
0, . . . , 0), (4.3)

where kstart :=
⌊
(k − 1)n

r

⌋
+ 1 and kend :=

⌊
kn

r

⌋
. The vector Z∗

i,k can be thought of as

the k-th segment of Yi (out of r roughly equal segments). Note that Yi and Z∗
i,k are

both defined using µ := µ − ǫ0
100 , not µ. Finally, let ǫ1 be a positive constant that is

small with respect to ǫ0, cm, and r.

Definition 4.1.5 (exceptional and unexceptional). Consider a hyperplane V of medium

combinatorial dimension (that is, d± satisfies the condition in Proposition 4.1.4). We

say V is unexceptional if there exists an i0 where 1 ≤ i0 ≤ n and there exists a k0 where

1 ≤ k0 ≤ r such that

max
1≤j≤n

{Pr(Xj ∈ V )} < ǫ1 Pr(Z∗
i0,k0

∈ V ).

We say V is exceptional if for every i where 1 ≤ i ≤ n and for every k where

1 ≤ k ≤ r we have

ǫ1 Pr(Z∗
i,k ∈ V ) ≤ max

1≤j≤n
{Pr(Xj ∈ V )}. (4.4)

In particular, there exists imax such that Pr(Ximax ∈ V ) = max1≤j≤n{Pr(Xj ∈ V )};

and so if V is exceptional, then

ǫ1 Pr(Z∗
imax,k ∈ V ) ≤ Pr(Ximax ∈ V ) for every k. (4.5)

We will refer to Ximax as the exceptional row.
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Inequality (2.2) following Definition 2.1.1 can be used to give another relationship

between Pr(Z∗
imax,k ∈ V ) and Pr(Ximax ∈ V ) that, together with Inequality (4.5), will

be of critical importance in Section 5.1.

Proposition 4.1.4 follows from the two lemmas below, so long as ǫ1 is chosen suitably

small with respect to ǫ0, cm, and r.

Lemma 4.1.6 (Unexceptional space estimate). We have

∑

V ∈Gr(d±): V is unexceptional

Pr(AV ) ≤ p−o(n)2nǫ
cmǫ0n/r
1 .

Lemma 4.1.7 (Exceptional space estimate). We have

∑

V ∈Gr(d±): V is exceptional

Pr(AV ) ≤ n−
n
2
+o(n).

We will prove Lemma 4.1.6 in Section 4.1.3, and we will prove Lemma 4.1.7 in

Section 4.2.

4.1.3 The unexceptional medium combinatorial dimension case

The general idea for the case of an unexceptional hyperplane V is to replace some of

the rows Xi in the matrix Nn with rows that concentrate more sharply on the subspace

V . In the case where the exponent r = 1, replacing a row Xi with Yi := (β
(µ)

i,1 , . . . , β
(µ)

i,n )

is successful; however, in the exponent r = 2 case, for example, replacing the entire

row results in a bound that is off by an exponential factor. We solve this problem by

replacing Xi with only half of Yi (with the other half of the entries being zero). This

idea easily extends to any integer r ≥ 2 and is the motivation for defining the vectors

Z∗
i,k to have all zeros except for roughly n/r coordinates, as is done in Equation (4.3).

The basic utility of Z∗
i0,k0

(from Definition 4.1.5) is that it concentrates more sharply

on the unexceptional subspace V than the vector Xi for any i.

Let Z∗
i0,k0

be the vector from the definition of unexceptional (Definition 4.1.5) such

that Pr(Xi ∈ V ) < ǫ1 Pr(Z∗
i0,k0

∈ V ) for every i, and set Z := Z∗
i0,j0

. Let m be the

closest integer to cmǫ0n
r , where cm is a small positive absolute constant (for example, in

[39], cm is taken to be 1
100). Finally, let Z1, . . . , Zm be copies of Z, independent of each

other and of X1, . . . ,Xn.
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Lemma 4.1.8 (see Lemma 4.4 in [39]). Let BV,m be the event that Z1, . . . , Zm are

linearly independent and lie in V . Then,

Pr (BV,m) ≥ po(n)

(
max1≤i≤n Pr(Xi ∈ V )

ǫ1

)m

Proof. The argument follows the same reasoning as [39, Lemma 4.4], however, the

quantity 2d±−n in [39] should be replaced by max1≤i≤n Pr(Xi ∈ V ). Details are provided

in Appendix A.2.

To conclude the proof of Lemma 4.1.6, we follow the “row-swapping” argument

at the end of [39, Section 4], with the small change of bounding Pr(Xi ∈ V ) by

max
1≤i≤n

Pr(Xi ∈ V ), which we use in place of the quantity 2d±−n. Details are provided in

Appendix A.2.

4.2 Analyzing the exceptional medium combinatorial dimension case

The approach for exceptional V in [39] is very different from that used in the unexcep-

tional case or in the large or small combinatorial dimension cases. Using some powerful

tools from additive combinatorics, the general idea is to put exceptional hyperplanes V

in correspondence with a particular additive structure called a generalized arithmetic

progression, and then to show that the number of the particular generalized arithmetic

progressions that arise in this way is exceedingly small. The key to this approach is a

structure theorem—namely, [39, Theorem 5.3]. In this section, we state a slightly mod-

ified structure theorem (Theorem 4.2.1), and then we show how to use Theorem 4.2.1

to prove Lemma 4.1.7. In the beginning of Section 5.1, we outline the changes needed

to prove the the structure theorem for our current context, and in Sections 5.1 and 5.2

we provide details.

Before stating the structure theorem, we need some definitions and notation. A

generalized arithmetic progression of rank r is a set of the form

P = {v0 +m1v1 + · · · +mr : |mi| ≤Mi/2},

where the basis vectors v0, v1, . . . , vr are elements of a Z-module (here, Z/QZ) and where

the dimensions M1, . . . ,Mr are positive integers. We say that vi has corresponding
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dimension Mi. For a given element a = v0 + m1v1 + · · · + mr in P , we refer to

m1, . . . ,mr as coefficients for a. A generalized arithmetic progression P is symmetric

if v0 = 0, and P is proper if for each a ∈ P , the there is a unique r-tuple (m1, . . . ,mr)

with |mi| < Mi/2 that gives the coefficients for a. If P is proper and symmetric, we

define the P -norm ‖a‖P of an element a ∈ P to be

‖a‖P :=

(
r∑

i=1

(
mi

Mi

)2
)1/2

.

We will use the notation mP , where m is a positive integer, to denote the set {∑m
i=1 xi :

xi ∈ P} and the notation Pm, where m is a positive integer, to denote the set {∏m
i=1 xi :

xi ∈ P}. If P is a generalized arithmetic progression of rank r, then so is mP , while

Pm, on the other hand, is a generalized arithmetic progression of rank at most rm. Also

note that |mP | ≤ mr |P | and that |Pm| ≤ |P |m.

Let V be an exceptional hyperplane of medium combinatorial dimension in Gr(d±)

and let Ximax = (α1, . . . , αn) be the exceptional row (here we are using αj as shorthand

for αimax,j). Let (β
(µ)
1 , . . . , β

(µ)
n ) be the row of random variables corresponding to Ximax

from the definition of p-bounded of exponent r, and let bj,s with 1 ≤ j ≤ n and

1 ≤ s ≤ ℓj be the values taken by β
(µ)
j (see Equation (2.1) for the definition of β

(µ)
j ).

Given an exceptional hyperplane V , there exists a representation of the form

V = {(x1, x2, . . . , xn) ∈ (Z/QZ)n : x1a1 + x2a2 + · · · + xnan = 0}

for some elements a1, a2, . . . , an ∈ Z/QZ. We will call a1, a2, . . . , an the defining coordi-

nates of V . Finally, let ãj := bj,1aj. We will refer to (ã1, . . . , ãn) as the scaled defining

coordinates of V . Note that once imax is fixed, so are the elements bj,1. We should also

note that the choice of bj,1 among bj,s for 1 ≤ s ≤ ℓj is arbitrary—since β
(µ)
j takes the

values bj,s each with probability at least q, any value of s will do; and so we have taken

s = 1 for convenience.

Let H denote the highly rational numbers, that is, those numbers in Z/QZ of the

form a/b (mod Q) where a, b are integers such that |a| , |b| ≤ no(n) and b 6= 0. The highly

rational numbers were defined in [39, Section 8], and we will need a small extension

for the current thesis, due to the fact that we are using the scaled defining coordinates
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of V instead of simply the defining coordinates of V . If we were to assume that bj,1

was an O(1) integer for all j and that every possible value taken by αij was an O(1)

integer for all i, j, then we could still use the same definition of highly rational as in [39].

However, if there is a bj,1 or an entry αij in the matrix Nn that ever takes an irrational

value, then when we pass to Z/QZ using Lemma 3.1.1 we have to account for values

possibly on the order of Q (see Remark 3.1.2), and the highly rational numbers are not

sufficient for this task. We can overcome this difficulty by extending to the highly T -

rational numbers, which contain the highly rational numbers along with all the values

in a structured set T (described below). We will now give a rigorous definition the

highly T -rational numbers.

Let T be a generalized arithmetic progression in Z/QZ with rank O(1) and having

cardinality at most no(n). As in the definition of p-bounded of exponent r (Defini-

tion 2.1.1), we will take S to be the generalized arithmetic progression containing all

possible values in Z/QZ taken by the random variables αij that are the entries of Nn;

thus, by assumption |S| ≤ no(n). By the definition of p-bounded of exponent r, we

know that all of the random variables β
(µ)
ij take values in a set with cardinality O(1).

Thus, there is a symmetric generalized arithmetic progression T with rank O(1) and

cardinality |T | ≤ no(n) such that T contains S, such that T contains the set {−1, 0, 1},

and such that T contains all the values taken by the β
(µ)
ij . To construct T from S, one

can, for example, add each distinct value taken by a β
(µ)
ij as a new basis vector v′ with

corresponding dimension M ′ := 3 (say).

A highly T -rational number h is any element of Z/QZ of the form a/b, where a, b ∈

no(n)TO(1). Note that therefore, the cardinality of the highly T -rational numbers is at

most (ndo(n) |T |)O(1) = no(n), where d = O(1) is the rank of T (here we used the fact

that |T | ≤ no(n)).

Theorem 4.2.1 (Structure Theorem). There is a constant C = C(ǫ−1, ǫ0, ǫ1, ǫ2, q, r, µ)

such that the following holds. Let V be an exceptional hyperplane and let ã1, . . . , ãn be

its scaled defining coordinates (as described above). Then there exist integers

1 ≤ r ≤ C
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and M1, . . . ,Mr ≥ 1 with the volume bound

M1 · · ·Mr ≤ C Pr(Ximax ∈ V )−1

and nonzero elements v1, . . . , vr ∈ Z/QZ such that the following holds

• (i) (Scaled defining coordinates lie in a progression) The symmetric generalized

arithmetic progression

P := {m1v1 + · · · +mrvr : −Mi/2 < mi < Mi/2}

is proper and contains all of the ãj.

• (ii) (Bounded norm) The ãj have small P -norm:

n∑

j=1

‖ãj‖2
P ≤ C.

• (iii) (Rational T -commensurability) The set {v1, . . . , vr}∪{ã1, . . . , ãn} is contained

in the set

{hv1 : h is highly T -rational} .

Note that unlike [39], part (iii) above does not necessarily place {v1, . . . , vr}∪{ã1, . . . , ãn}

in a simple arithmetic progression.

We will discuss the proof of the structure theorem in Sections 5.1 and 5.2. In the

remainder of this section, we will discuss how to use the structure theorem to prove

Lemma 4.1.7.

Fix d± of medium combinatorial dimension (see Proposition 4.1.4). Using indepen-

dence of the rows, we have

∑

V ∈Gr(d±):

V is exceptional

Pr(AV ) ≤
∑

V ∈Gr(d±):

V is exceptional

n∏

i=1

Pr(Xi ∈ V )

≤ |{V ∈ Gr(d±) : V is exceptional}| ·
(

max
1≤i≤n

Pr(Xi ∈ V )

)n

.

(4.6)
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In [39, Section 5], it is shown using Theorem 4.2.1(i) and (ii) and Gaussian-type

methods (and the fact that r is bounded by a constant) that

|{V ∈ Gr(d±) : V is exceptional}| ≤ no(n)

Q− 1

∑

r,{M1,...,Mr}
{v1,...,vr}

(
1 + n−1/2M1 · · ·Mr

)n
,

where the sum runs over all possible values for r, for the Mi, and for v1, . . . , vr. By The-

orem 4.2.1, we know that r ≤ C = O(1) and that Mi ≤ M1M2 · · ·Mr ≤ C Pr(Ximax ∈

V )−1 ≤ O(1/pn); thus, there are at most no(n) choices for r and the Mi. Further-

more, there are at most Q− 1 choices for v1 (since v1 6= 0), and once the value for v1

has been fixed, (iii) tells us that there are at most no(n) choices for {v2, . . . , vr} (since
∣∣no(n)TO(1)

∣∣ ≤ no(n)). Thus, the sum runs over at most no(n) terms. (This is the point

in the proof where it is essential that no(n)TO(1) has cardinality no(n).)

Plugging the volume bound on M1 · · ·Mr into the previous displayed inequality, we

have

|{V ∈ Gr(d±) : V is exceptional}| ≤ no(n)
(
1 + n−

1
2C Pr(Ximax ∈ V )−1

)n

= n−
n
2
+o(n) Pr(Ximax ∈ V )−n, (4.7)

using the fact that Pr(Ximax ∈ V ) ≤ cLgDim√
n

, which is a consequence of d± being of

medium combinatorial dimension. Plugging in Inequality (4.7) into Inequality (4.6)

and summing over all d± of medium combinatorial dimension completes the proof of

Lemma 4.1.7 (recall that by assumption max1≤i≤n Pr(Xi ∈ V ) = Pr(Ximax ∈ V )).
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Chapter 5

The structure of exceptional spaces

5.1 Halász-type arguments

The proof of the structure theorem has two main ingredients: tools from additive

combinatorics, and Halász-type arguments using discrete Fourier analysis. Our proof

of Theorem 4.2.1 will follow the proof of [39, Theorem 5.2] very closely. We will use

results about additive combinatorics from [39, Section 6] directly, and we will discuss

below the extent to which the Halász-type arguments of [39, Section 7] need to be

modified to work for our current context. The proof of Theorem 4.2.1 will be given in

Section 5.2 using results from the current section, [39, Section 6], [39, Section 7], and

[39, Section 8]. Our Section 5.2 follows [39, Section 8] closely, with a few modifications

to prove rational T -commensurability instead of only rational commensurability.

In this section we discuss modifications to the lemmas in [39, Section 7] that are

needed in order to prove Theorem 4.2.1.

We will use eQ(·) to denote the primitive character

eQ(x) := exp(2πix/Q).

Let imax be the index of the exceptional row, so for every 1 ≤ k ≤ r we have

ǫ1 Pr(Z∗
imax,k ∈ V ) ≤ Pr(Ximax ∈ V ), (5.1)

and recall that by Definition 4.1.5 we have Pr(Ximax ∈ V ) = maxi Pr(Xi ∈ V ). Let

(α1, . . . , αn) := Ximax with the corresponding random variables (β
(µ)
1 , . . . , β

(µ)
n ) from

the definition of p-bounded of exponent r (see Definition 2.1.1 and Equation (2.1)), and

let (a1, . . . , an) be the defining coordinates of V . Then, using the Fourier expansion,
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we can compute

Pr(Ximax ∈ V ) = E(1{Ximax∈V }) = E


 1

Q

∑

ξ∈Z/QZ

eQ(
n∑

j=1

αjajξ)




≤ 1

Q

∑

ξ∈Z/QZ

n∏

j=1

|E(eQ(αjajξ))|

≤ 1

Q

∑

ξ∈Z/QZ

n∏

j=1

E

(
eQ(β

(µ)
j ajξ)

)1/r

=
1

Q

∑

ξ∈Z/QZ

n∏

j=1


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r

(5.2)

≤ 1

Q

∑

ξ∈Z/QZ

n∏

j=1


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r

≤
r∏

k=1

Pr(Z∗
imax,k ∈ V )1/r, (5.3)

where the last line is an application of Hölder’s inequality.

Define

f(ξ) :=

n∏

j=1


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r

, (5.4)

fj(ξ) :=


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r

, and (5.5)

gk(ξ) :=
∏

(k−1)n
r

<j≤k n
r


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r

, (5.6)

where µ := µ− ǫ0
100 , as defined in Section 4.1.2. Note that f(ξ) =

n∏

j=1

fj(ξ).

We will need the following analog of [39, Lemma 7.1]:

Lemma 5.1.1. For all ξ ∈ Z/QZ, we have

n∏

j=1

fj(ξ)
rµ/µ ≤

r∏

k=1

gk(ξ)

Proof. This inequality may be proven pointwise (for each j after expanding out the

definition of gk) using the convexity of the log function, just as in the proof of [39,

Lemma 7.1] (see also [38, Lemma 7.1].
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Let ǫ2 be sufficiently small compared to ǫ1 (we will specify how small in Inequal-

ity (5.12) while proving Lemma 5.1.2). Following [39], we define the spectrum Λ ⊂

Z/QZ of {b1,1a1, . . . , bn,1an} = {ã1, . . . , ãn} (the scaled defining coordinates of V ) to

be

Λ := {ξ ∈ Z/QZ : f(ξ) ≥ ǫ2}. (5.7)

Let ‖x‖
R/Z

denote the distance from x ∈ R to the nearest integer. Using the elementary

inequality cos(2πx) ≤ 1 − 1
100 ‖x‖

2
R/Z

, we have

f(ξ) ≤ exp


− µ

100r

n∑

j=1

ℓj∑

s=1

pj,s ‖bj,sajξ/Q‖2
R/Z


 (5.8)

≤ exp


− q

50r

n∑

j=1

‖bj,1ajξ/Q‖2
R/Z




(µpj,1 ≥ 2q since minx Pr(β
(µ)
j = x) ≥ q by Definition 2.1.1).

Thus, there is a constant C(ǫ2, q, r) such that




n∑

j=1

‖ãjξ/Q‖2
R/Z




1/2

=




n∑

j=1

‖bj,1ajξ/Q‖2
R/Z




1/2

≤ C(ǫ2, q, r), (5.9)

for every ξ ∈ Λ. (E.g., the constant C(ǫ2, q, r) :=
(

50r
q ln

(
1
ǫ2

))1/2
suffices.)

Lemma 5.1.2. There exists a constant C depending on ǫ−1, ǫ0, ǫ1, ǫ2, q, r, and µ such

that

C−1QPr(Ximax ∈ V ) ≤ |Λ| ≤ CQPr(Ximax ∈ V ). (5.10)

Furthermore, for every integer k ≥ 4 we have

|kΛ| ≤
(
C + k − 3

k − 2

)
CQPr(Ximax ∈ V ). (5.11)

Proof. Our goal is to bound
∑

ξ∈Λ f(ξ) from above and below, and then pass to bounds

on |Λ| using the fact that ǫ2 ≤ f(ξ) ≤ 1 for all ξ ∈ Λ.

Note that

1

Q

∑

ξ∈Z/QZ

f(ξ) ≥ Pr(Ximax ∈ V ) (by Equation (5.4) and Equation (5.2)).
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Also,

1

Q

∑

ξ /∈Λ

f(ξ) =
1

Q

∑

ξ /∈Λ

n∏

j=1

fj(ξ) ≤ ǫ
1−µ/µ

2

1

Q

∑

ξ /∈Λ

n∏

j=1

fj(ξ)
µ/µ

≤ ǫ
1−µ/µ

2

1

Q

∑

ξ∈Z/QZ

r∏

k=1

gk(ξ)
1/r (Lemma 5.1.1)

≤ ǫ
1−µ/µ

2

1

Q




r∏

k=1

∑

ξ∈Z/QZ

gk(ξ)




1/r

(Hölder’s inequality)

≤ ǫ
1−µ/µ

2

(
1

ǫ1

)
Pr(Ximax ∈ V ) (by Inequality (5.1)) .

For the lower bound, we have

∑

ξ∈Λ

f(ξ) =
∑

ξ∈Z/QZ

f(ξ) −
∑

ξ /∈Λ

f(ξ)

≥ QPr(Ximax ∈ V ) − ǫ
1−µ/µ

2

ǫ1
QPr(Ximax ∈ V )

= QPr(Ximax ∈ V )

(
1 − ǫ

1−µ/µ

2

ǫ1

)
.

We can choose ǫ2 sufficiently small with respect to ǫ1 and 1−µ/µ so that, for example,

1 − ǫ
1−µ/µ

2

ǫ1
≥ 1

2
. (5.12)

For the upper bound, we have

∑

ξ∈Λ

f(ξ) ≤
∑

ξ∈Z/QZ

f(ξ)

≤ Q

r∏

k=1

Pr(Z∗
imax,k ∈ V )1/r (Inequality (5.3))

≤ Q
1

ǫ1
Pr(Ximax ∈ V ) (Inequality (5.1)) .

Thus, we have shown that
∑

ξ∈Λ f(ξ) = Θ(QPr(Ximax ∈ V )). Since ǫ2 ≤ f(ξ) ≤ 1

for all ξ ∈ Λ, we have proven Inequality (5.10).

Making use of [39, Lemma 6.4], we can prove Inequality (5.11) by showing |4Λ| ≤

C |Λ| for some constant C. Using Lemma 5.1.3 below (for which we need to assume

strict positivity of E(e(β
(µ)
j t))—see Remark 2.1.3), we have that there exists a constant
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c := c(ǫ−1, ǫ2) such that

f(ξ) ≥ c(ǫ−1, ǫ2),

for every ξ ∈ 4Λ. Thus,

|4Λ| ≤ 1

c(ǫ−1, ǫ2)

∑

ξ∈Z/QZ

f(ξ)

≤
(

1

c(ǫ−1, ǫ2)

)
Q

ǫ1
Pr(Ximax ∈ V ) = C |Λ| ,

for some constant C. This completes the proof of Lemma 5.1.2.

We now state and prove a lemma showing that f(ξ) is at least a constant for all

ξ ∈ 4Λ. In [39], the lemma below is unnecessary because an inequality following from

[39, Inequality (30)] (which corresponds to Inequality (5.9)) and the triangle inequality

suffices.

Lemma 5.1.3. Let Λ and f be defined as in Equation (5.7) and Equation (5.4), re-

spectively. If ξ ∈ 4Λ, then

f(ξ) ≥
(
ǫ2ǫ

ln(1/ǫ2)
−1

)320000
=: c(ǫ−1, ǫ2).

Note that c(ǫ−1, ǫ2) is a constant.

Proof. Note that Inequality (5.8) implies that for any ξ′ ∈ Λ we have




n∑

j=1

ℓj∑

s=1

pj,s

∥∥bj,sajξ
′/Q
∥∥2

R/Z




1/2

≤
(

100r

µ
ln

(
1

ǫ2

))1/2

.

Thus, by the triangle inequality, we have for any ξ ∈ 4Λ that




n∑

j=1

ℓj∑

s=1

pj,s ‖bj,sajξ/Q‖2
R/Z




1/2

≤ 4

(
100r

µ
ln

(
1

ǫ2

))1/2

. (5.13)

Fix ξ ∈ 4Λ. Let k0 be the number of indices j such that

100µ

ℓj∑

s=1

pj,s ‖bj,sajξ/Q‖2
R/Z

>
1

2
,
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and without loss of generality, say that these indices are j = 1, 2, . . . , k0. Squaring

Inequality (5.13), we see that k0

200µ ≤ 1600r
µ ln

(
1
ǫ2

)
, and so we have

k0 ≤ 320000r ln

(
1

ǫ2

)
,

which is a constant. Thus, for the vast majority of the indices j, namely j = k0+1, k0 +

2, . . . , n, we have

100µ

ℓj∑

s=1

pj,s ‖bj,sajξ/Q‖2
R/Z

≤ 1

2
. (5.14)

We may now compute that

f(ξ) :=
n∏

j=1


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r

≥ ǫ
k0/r
−1

n∏

j=k0+1


1 − µ+ µ

ℓj∑

s=1

pj,s cos(2πbj,sajξ/Q)




1/r (since f(ξ′) ≥ ǫ−1 for any ξ′ by the as-

sumption of strict positivity—see Re-

mark 2.1.3))

≥ ǫ
k0/r
−1

n∏

j=k0+1


1 − 100µ

ℓj∑

s=1

pj,s ‖bj,sajξ/Q‖2
R/Z




1/r (since cos(2πx) ≥ 1 − 100 ‖x‖2

R/Z
and

the factors are all positive by Inequal-

ity (5.14))

≥ ǫ
k0/r
−1 exp


−200µ

r

n∑

j=k0+1

ℓj∑

s=1

pj,s ‖bj,sajξ/Q‖2
R/Z


 (1 − x ≥ e−2x for 0 ≤ x ≤ .79)

≥ ǫ
320000 ln

“
1
ǫ2

”

−1 exp

(
−320000 ln

(
1

ǫ2

))
(by Inequality (5.13))

=
(
ǫ2ǫ

ln(1/ǫ2)
−1

)320000
.

This completes the proof.

We have shown that the spectrum Λ has small doubling, and the next step is to

use this fact to show that a set containing most of the scaled defining coordinates ãj

also has small doubling. Towards that end, we will use the Λ-norm from [39], which is

defined as follows: for x ∈ Z/QZ, let ‖x‖Λ be defined by

‖x‖Λ :=


 1

|Λ|2
∑

ξ,ξ′∈Λ

∥∥x(ξ − ξ′)/Q
∥∥2

R/Z




1/2

.
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Note that 0 ≤ ‖x‖Λ ≤ 1 for all x and that the triangle inequality holds: ‖x+ y‖Λ ≤

‖x‖Λ + ‖y‖Λ. We also have that

‖x‖Λ ≤ (
1

|Λ|2
∑

ξ,ξ′∈Λ

‖xξ/Q‖2
R/Z

)1/2 + (
1

|Λ|2
∑

ξ,ξ′∈Λ

∥∥xξ′/Q
∥∥2

R/Z
)1/2

= 2(
1

|Λ|
∑

ξ∈Λ

‖xξ/Q‖2
R/Z

)1/2.

Thus, squaring Inequality (5.9) and summing over all ξ ∈ Λ, we have

n∑

j=1

‖ãj‖2
Λ ≤ 4C(ǫ2, q, r) =: C ′. (5.15)

We will now show that the set of all x with small Λ-norm, which by Inequality (5.15)

includes most of the ãj, has small doubling.

Lemma 5.1.4. [39, Lemma 7.4] There is a constant C such that the following holds.

Let A ⊆ Z/QZ denote the “Bohr set”:

A := {x ∈ Z/QZ : ‖x‖Λ <
1

100
}.

Then we have

C−1 Pr(Ximax ∈ V )−1 ≤ |A| ≤ |A+A| ≤ C Pr(Ximax ∈ V )−1.

The proof of Lemma 5.1.4 is the same as in [39], with the small modification that

aj should be replaced with ãj := bj,1aj and the quantity 2d±−n should be replaced with

Pr(Ximax ∈ V ) (and, of course, the field F in [39] should be replaced with Z/QZ). Also,

one should note that [39, Inequality (30)], [39, Inequality (31)], and [39, Inequality (32)]

correspond to, respectively, Inequalities (5.9), (5.10), and (5.11).

In the next section, we will complete the proof of the structure theorem using the

lemma above.

5.2 Proof of the Structure Theorem (Theorem 4.2.1)

The key to proving the structure theorem is an application of Freiman’s Theorem for

finite fields.



61

Theorem 5.2.1 (see Lemma 6.3 in [39]). For any constant C there are constants r and

δ such that the following holds. Let A be a non-empty subset of Z/QZ, a finite field of

prime order Q, such that |A + A| ≤ C|A|. Then, if Q is sufficiently large depending

on |A|, there is a symmetric generalized arithmetic progression P of rank r such that

A ⊂ P and |A|/|P | ≥ δ.

Note that by Lemma 3.1.1 we can assume that Q is sufficiently large with respect to

|A| ≤ C Pr(Ximax ∈ V )−1 ≤ C(1/p)n (this follows from V being of medium combinato-

rial dimension).

The set A from Lemma 5.1.4 satisfies |A + A| ≤ C2|A|, where C ≤ O(1), and also

contains all but O(1) of the scaled defining coordinates ãj , since ãj /∈ A implies that

‖ãj‖Λ ≥ 1/100 and Inequality (5.15) shows that there can be at most 100C ′ = O(1)

such ãj . By Theorem 5.2.1, there exists a symmetric generalized arithmetic progression

P = {m1v1 + · · · +mrvr : |mi| < Mi/2} containing A and satisfying the bounds:

rank(P ) = r ≤ O(1) and (5.16)

|P | ≤M1M2 · · ·Mr ≤ O(Pr(Ximax ∈ V )−1). (5.17)

The symmetric generalized arithmetic progression P is close to what is needed for

Theorem 4.2.1, since it satisfies the required volume and rank bounds. We will show

below that P can be altered in ways that preserve Inequalities (5.16) and (5.17) (except

possibly for changing the implicit constants) so that P satisfies conditions (i), (ii), and

(iii) of Theorem 4.2.1.

To show Theorem 4.2.1(i), we will first add the remaining scaled defining coordi-

nates {ã1, . . . , ãn} \ P (i.e., those ãj such that ‖ãj‖Λ ≥ 1/100) as new basis vectors v′k

with corresponding dimensions M ′
k equal to (say) 3. The resulting generalized arith-

metic progression, which we will continue to call P by abuse of notation, satisfies both

Inequalities (5.16) and (5.17), since there are only O(1) of the ãj with ‖ãj‖Λ ≥ 1/100

(by Inequality (5.15)). Second, we need to ensure that P is proper, for which we will

use the following lemma:

Lemma 5.2.2 (cf. Lemma 9.3 in [39]). There is an absolute constant C0 ≥ 1 such that

the following holds. Let P be a symmetric progression of rank r in a abelian group G,
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such that every nonzero element of G has order at least rC0r3 |P |. Then there exists a

proper symmetric generalized arithmetic progression P ′ of rank at most r containing P

such that

|P ′| ≤ rC0r3|P |.

Furthermore, if P is not proper and r ≥ 2, then P ′ can be chosen to have rank an most

r − 1

One can conclude Lemma 5.2.2 from the proof of [39, Lemma 9.3] (the only difference

is noting that the rank can be reduced by at least 1 if P is not proper to begin with).

Note that we can always choose Q larger than rC0r3 |P | ≤ O
(

1
p

)n
.

Applying Lemma 5.2.2 gives us a proper symmetric generalized arithmetic progres-

sion, which again we call P by abuse of notation, that contains all the ãj and satisfies

both Inequalities (5.16) and (5.17).

The next task is to show that P can be further altered so to meet the condition (ii)

in Theorem 4.2.1. Note that there are only O(1) scaled defining coordinates ãj such

that ‖ãj‖Λ ≥ 1/100, and so these ãj contribute only a constant to the sum
∑n

j=1 ‖ãj‖2
P .

On the other hand, for any ãj with ‖ãj‖Λ < 1/100, we have that kãj ∈ A ⊂ P for every

positive integer k < 1
100‖ãj‖Λ

. We will exploit this fact, and to do so will need the

following notation. Let ΦP : P → Zr be the map sending a point m1v1 + · · · + mrvr

in the proper generalized arithmetic progression P to the unique r-tuple of coefficients

(m1, . . . ,mr).

If the representation for ãj in P is ãj = m1v1 + · · ·+mrvr and kãj is in P , we would

like to be able to say that the representation for kãj is km1v1+ · · ·+kmrvr; i.e., we hope

that ΦP (kãj) is equal to kΦP (ãj). If this were true, then we would have |kmi| ≤ Mi

for 1 ≤ i ≤ r, which, if k is large, would show that ‖ãj‖P is small. However, at this

point we may well have ΦP (kãj) 6= kΦP (ãj). A priori, changing this to equality would

require replacing P with kP and then applying Lemma 5.2.2 to get a proper symmetric

generalized arithmetic progression, but since k may be large, this would increase the

volume of P too much, violating Inequality (5.17). Luckily, the lemma below provides a

way around this difficulty. We will say that P is (kj , xj)-proper if ΦP (kjxj) = kjΦP (xj).
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Lemma 5.2.3. There exists an absolute constant C1 such that the following holds.

Let P be a symmetric proper generalized arithmetic progression with rank r containing

elements x1, . . . , xm, and let k1, . . . , km be positive integers such that ℓjxj ∈ P for

every 1 ≤ ℓj ≤ kj and for every j. Then, there exists a proper symmetric generalized

arithmetic progression P ′ of rank at most r such that P ′ contains P ,

∣∣P ′∣∣ ≤ rC1r4 |P | , and

P is (kj , xj)-proper for every j.

Furthermore, if r ≥ 2 and if there is some j for which P is not (kj , xj)-proper, then P ′

can be chosen to have rank at most r − 1.

The proof of this lemma relies on an application of Lemma 5.2.2 to 2P (which contains

P ) along with the fact that if ‖ãj‖Λ < 1/100 then kãj ∈ P for every 1 ≤ k < 1
100‖ãj‖Λ

.

Proof. We proceed by induction on the rank r. For the base case, let r = 1 and con-

sider xj ∈ P such that kjxj ∈ P . Since P has rank 1 in this case, we have that

xj = ΦP (xj)v1 and kjxj = ΦP (kjxi)v1. Combining these two equations we have

kjΦP (xj)v1 = ΦP (kjxj)v1, and dividing by v1 (note that we may assume that v1 6= 0),

we see that kjΦP (xj) = ΦP (kjxj). Thus P is (kj , xj)-proper for every j.

For r ≥ 2, we may assume that there is some j0 such that kj0ΦP (xj0) 6= ΦP (kj0xj0)

(i.e., we assume that P is not (kj0 , xj0)-proper). We may assume that P has the form

{m1v1 + · · · + mrvr : |mi| < Mi/2}. Let M := (M1, . . . ,Mr), and let (−M/2,M/2)

denote the box {(m1, . . . ,mr) : |mi| < Mi/2}.

Let k be the largest integer such that ΦP (kxj0) = kΦP (xj0), so 1 ≤ k < kj0 and

ΦP ((k+1)xj0) 6= (k+1)ΦP (xj0). Since kxj0 ∈ P and xj0 ∈ P , we know that ΦP (xj0) ∈

(−M/2,M/2) and ΦP (kxj0) = kΦP (xj0) ∈ (−M/2,M/2); and thus, (k + 1)ΦP (xj0) ∈

(−M,M). This shows that 2P , which has dimensions 2M = (2M1, . . . , 2Mr), is not

proper, since it has two distinct representations for (k + 1)xj0 .

We can now apply Lemma 5.2.2 to 2P , thus finding a proper symmetric generalized

arithmetic progression P ′ of rank at most r− 1 containing 2P (which contains P ) such

that
∣∣P ′∣∣ ≤ rC0r3 |2P | ≤ r2C0r3 |P | .
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Since P ′ has rank at most r − 1, we have by induction that there exists P ′′ a proper

symmetric generalized arithmetic progression of rank at most r − 1 containing P ′ and

such that
∣∣P ′′∣∣ ≤ (r − 1)C1(r−1)4

∣∣P ′∣∣ ≤ rC1(r−1)4r2C0r3 |P | ,

and such that P ′′ is (kj , xj)-proper for every j. Choosing C1 ≥ 2C0 (for example)

guarantees that rC1(r−1)4r2C0r3 ≤ rC1r4 , which completes the induction.

Applying Lemma 5.2.3, we can generate a new proper symmetric generalized arith-

metic progression, which again we will call P by abuse of notation, such that P contains

the ãj , satisfies Inequalities (5.16) and (5.17), and is (kj , ãj)-proper for every ãj such

that ‖ãj‖Λ < 1/100, where kj :=
⌈

1
200‖ãj‖Λ

⌉
≥ 1. We will now show that such P

satisfies part (ii) of Theorem 4.2.1. For ãj such that P is (kj , ãj)-proper, we have that

|kjmi| ≤Mi for each 1 ≤ i ≤ r, and so

‖ãj‖P =
r∑

i=1

(
mi

Mi

)2

≤
r∑

i=1

(
1

kj

)2

≤
r∑

i=1

(200 ‖ãj‖Λ)2 = 40000r ‖ãj‖2
Λ .

Thus, part (ii) of Theorem 4.2.1 follows from Inequality (5.15), since P is (kj , ãj)-proper

for all but O(1) of the ãj .

The next step is to make further alterations to P so that we can prove part (iii) of

Theorem 4.2.1. The key property that we will use for (iii) is to have the set of vectors

{ΦP (ãj) : 1 ≤ j ≤ n} span all of Rr, and we will use a rank reduction argument on P

to produce a new proper symmetric generalized arithmetic progression satisfying this

full rank property.

Lemma 5.2.4. [39] Let P be a proper symmetric generalized arithmetic progression of

rank r containing a set B such that the set of vectors ΦP (B) does not span Rr. Then

there exists a symmetric generalized arithmetic progression P ′ containing P such that

rank(P ′) ≤ r − 1 and

∣∣P ′∣∣ ≤ |P | .

Note that the resulting P ′ is not necessarily proper or (kj , ãj)-proper, even if P had

these properties.
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Proof. We use the same proof here as appears in [39, Section 8]. If {ΦP (ãj) : 1 ≤ j ≤ n}

does not have rank r, then it is contained is a subspace of Rr of dimension r− 1. Thus,

there exists an integer vector (α1, . . . , αr) with all the αi coprime such that (α1, . . . , αr)

is orthogonal to every vector in {ΦP (ãj) : 1 ≤ j ≤ n}. Thus, for every w ∈ Z/QZ and

and any ãj = m1v1 + · · · +mrvr, we have that

ãj = m1v1 + · · · +mrvr = m1(v1 − wα1) + · · · +mr(vr − wαr).

Since not all the αi are zero, we may assume that αr 6= 0. Setting w = vr/αr so

that vr − wαr = 0, we see that P is contained in the symmetric generalized arithmetic

progression

P ′ := {m′
1v

′
1 + · · · +m′

r−1v
′
r−1 :

∣∣m′
i

∣∣ < Mi/2}

with rank r − 1, dimensions M1, . . . ,Mr−1 (which are the same as the corresponding

dimensions for P ), and basis vectors v′i := vi −αivr/αr. By construction |P ′| ≤ |P |.

We can now run the following algorithm to create a generalized arithmetic progres-

sion with all the desired properties. As the input, we take the generalized arithmetic

progression P that we arrived at after applying Lemma 5.2.3, thus the input P contains

all the ãj, satisfies Inequalities (5.16) and (5.17), and is (kj , ãj)-proper for every ãj such

that ‖ãj‖Λ < 1/100; however, we do not yet know whether ΦP ({ãj : 1 ≤ j ≤ n}) spans

Rr.

1. If ΦP ({ãj : 1 ≤ j ≤ n}) spans Rr, then do nothing; otherwise apply Lemma 5.2.4.

2. If P is proper, then do nothing; otherwise apply Lemma 5.2.2.

3. If for every ãj with ‖ãj‖Λ < 1/100 we have that P is (kj , ãj)-proper, then do

nothing; otherwise apply Lemma 5.2.3.

4. If P satisfies the three properties given in steps 1, 2, and 3, halt; otherwise, return

to step 1.

Each application of a lemma in the algorithm may disrupt some property that other

two lemmas preserve; however, we also know that each step in the algorithm either does
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not change P or reduces the rank of P by at least 1. Since the original input P has rank

O(1), the algorithm must terminate in O(1) steps, giving us a generalized arithmetic

progression of rank r that satisfies Inequalities (5.16) and (5.17), satisfies conditions (i)

and (ii) of Theorem 4.2.1, and satisfies the condition that ΦP ({ãj : 1 ≤ j ≤ n} spans

all of Rr.

Thus, all that is left to prove is part (iii), the claim of rational T -commensurability.

Though we will not need it in the current section, one should recall that Theorem 4.2.1 is

only useful when
∣∣no(n)TO(1)

∣∣ = no(n), where T is the symmetric generalized arithmetic

progression containing {−1, 0, 1} and all possible values taken by the β
(µ)
ij and the αij

(see Section 4.2).

We say that a set W economically T -spans a set U if each u ∈ U can be represented

as a highly T -rational linear combination of elements in W , where each coefficient may

be expressed as a/b where a, b ∈ no(n)TO(1) and where the implicit constants in the o(·)

and O(·) notation are uniform over U .

Comparing our definitions with those from [39, Section 8], we note that “highly ra-

tional” means the same thing as “highly {−1, 0, 1}-rational”, and “economically spans”

means the same thing as “economically {−1, 0, 1}-spans”. Thus, it is clear that any

highly rational number is also highly T -rational for any T containing {−1, 0, 1}, and

also the statement “W economically spans U” implies “W economically T -spans U” for

any set T containing {−1, 0, 1}. The remainder of this section paraphrases (with some

notational changes) the latter portion of [39, Section 8].

We know that ΦP ({ãj : 1 ≤ j ≤ n} spans Rr. Thus, there exists a subset U ⊂

{ã1, . . . , ãn} of cardinality r such that ΦP (U) spans Rr. Renumbering if necessary, we

can write U = {ã1, . . . , ãr}. It will be important later on that U has cardinality O(1).

The set {v1, . . . , vr} of basis vectors for P economically {−1, 0, 1}-spans {ã1, . . . , ãn}

by the definition of P (note that Mi ≤ O(Pr(Ximax ∈ V )−1) ≤ O(p−n) = no(n)), and so

by Cramer’s rule, the vectors ΦP (U) economically {−1, 0, 1}-span the standard basis

vectors {e1, . . . , er} for Rr. Applying Φ−1
P (recall that ΦP is a bijection since P is proper)

shows that U economically {−1, 0, 1}-spans {v1, . . . , vr}.

Following this paragraph, we will show that there exists a single vector vi0 where
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1 ≤ i0 ≤ r such that vi0 economically T -spans U , which will show by transitivity that

vi0 economically T -spans {ã1, . . . , ãn} (since U economically T -spans {v1, . . . , vr} which

economically T -spans {ã1, . . . , ãn}; the relation “economically T -spans” is transitive

here since the sets U and {v1, . . . , vr} have cardinality O(1)).

Let s be the smallest integer such that there exists a subset of cardinality s of

{v1, . . . , vr} (by renumbering, say the set is {v1, . . . , vs}) so that for some nonzero

d ∈ no(n)TO(1) and some cij ∈ no(n)TO(1) we have

dãi =

s∑

j=1

cijvj for every 1 ≤ i ≤ n. (5.18)

Note that d does not depend on i, and so this statement is slightly stronger than having

{v1, . . . , vs} economically T -span {ã1, . . . , ãn}. Also, note that Equation (5.18) holds

(for example) with s = r by the definition of P and since T contains {−1, 0, 1}.

We now consider two cases:

• The n × s matrix C = (cij) has rank 1 in Z/QZ. In this case, ãi1/ãi2 is highly

T -rational for all i1, i2 (Since all the cij are highly T -rational). We know that

U economically T -spans {v1, . . . , vr}, and so the numbers vi1/vi2 are also highly

T -rational (note that it is critical here that U has cardinality O(1)). This means

that v1 (for example) economically T -spans {v1, . . . , vr}, and so by transitivity v1

economically T -spans U .

• The matrix C has rank at least 2. Recall that (a1, . . . , an) is the normal vector for

V and that V is spanned by (n−1) linearly independent vectors with entries in S

(recall that S contains all possible values taken by the αij). We can scale the j-th

coordinate of each of these vectors by b−1
j,1 to get a set of n−1 linearly independent

vectors each of which is orthogonal to ã := (ã1, . . . , ãn). Among these (n − 1)

linearly independent vectors that are orthogonal to (ã1, . . . , ãn), we can find at

least one, say w = (b−1
1,1w1, . . . , b

−1
n,1wn), that is not orthogonal to every column of

C (since C has column rank at least 2). Let B := {bj,1 : 1 ≤ j ≤ n}, and let

w̃ := w
∏

b∈B b = (w̃1, . . . , w̃n). Thus w̃ is orthogonal to ã and every coordinate

w̃i of w̃ is an element of TO(1) (since T contains S and B and |B| = O(1) by the

definition of p-bounded of exponent r).
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Remark 5.2.5. Note that the line above is the only place in the proof where we

use the assumption from the definition of p-bounded of exponent r that the β
(µ)
ij

take values in a set with cardinality O(1). As is evidenced here, the following

weaker assumption suffices instead: say that for each 1 ≤ i ≤ n there exists

a set Bi such that |Bi| = O(1) and such that β
(µ)
i1 , β

(µ)
i2 , . . . , β

(µ)
in each take a

nonzero value in B with probability at least q. In fact, this weaker assumption

also replaces the assumption in the definition of p-bounded of exponent r that

q ≤ minx Pr(β
(µ)
ij = x) for every i, j: It suffices for each β

(µ)
ij to take one value in

Bi with probability at least q, instead of taking every value with probability at

least q.

We may now compute:

0 = dã · w̃ =

n∑

i=1

dãiw̃i =

n∑

i=1

s∑

j=1

cijvjw̃i =

s∑

j=1

(
n∑

i=1

cijw̃i

)
vj .

Since w̃ is not orthogonal to every column of C = (cij), we can assume (reordering

if necessary), that the coefficient for vs above is nonzero, and thus we have

vs =
−1∑n

ℓ=1 cℓsw̃ℓ

s−1∑

j=1

(
n∑

ℓ=1

cℓjw̃ℓ

)
vj .

Plugging this last equation into Equation (5.18), we arrive at

d

(
n∑

ℓ=1

cℓsw̃ℓ

)
ãi =

s−1∑

j=1

(
cij

n∑

ℓ=1

cℓsw̃ℓ − cis

n∑

ℓ=1

cℓjw̃ℓ

)
vj .

Since the coefficient for ãi on the left is an element of no(n)TO(1) and the coefficient

for each vj on the right is an element of no(n)TO(1), we have contradicted the

minimality of s.

Thus, we have completed the proof of the structure theorem (Theorem 4.2.1). �
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Chapter 6

Extension to the case where some rows are fixed

6.1 A generalization: f rows have fixed, non-random values

In this section, we will give a generalization of Theorem 2.1.2 to the case where the

random matrix Nn has f ≤ O(lnn) rows that are assumed to be linearly independent

and contain fixed, non-random entries. The proof of the generalized result is very

similar to the proof of Theorem 2.1.2, and we will sketch the main differences in the

two proofs below.

Definition 6.1.1 (a random matrix Nf,n with entries in S). Let f be an integer between

1 and n, let S be a subset of a ring, and let Nf,n be an n by n matrix defined as follows.

For 1 ≤ i ≤ f and 1 ≤ j ≤ n, let the entries sij of Nf,n be fixed (non-random) elements

of S such that the rows (si,1, . . . , si,n) for 1 ≤ i ≤ f are linearly independent. For

f + 1 ≤ i ≤ n and 1 ≤ j ≤ n, let the entries αij of Nf,n be discrete finite random

variables taking values in S. Thus,

Nf,n :=




s1,1 s1,2 · · · s1,n

... · · · · · · ...

sf,1 · · · · · · sf,n

αf+1,1 αf+1,2 · · · αf+1,n

αf+2,1 αf+2,2 · · · αf+2,n

αf+3,1 αf+3,2 · · · αf+3,n

...
...

. . .
...

αn,1 αn,2 · · · αn,n








Fixed rows; assumed to be lin-

early independent





Random rows

Theorem 6.1.2. Let p be a positive constant such that 0 < p < 1, let r be a posi-

tive integer constant, and let S be a generalized arithmetic progression in the complex
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numbers with rank O(1) (independent of n) and with cardinality at most |S| ≤ no(n).

Consider the matrix Nf,n with entries in S (see Definition 6.1.1 above), where f ≤
(

r
2 ln(1/p) − o(1)

)
lnn. If the collection of random variables {αjk}f+1≤j≤n,1≤k≤n is p-

bounded of exponent r, then

Pr(Nf,n is singular) ≤ max
{

(p1/r + o(1))n, (p + o(1))n−f
}
.

Note that the bound on the singularity probability of Nf,n for r ≥ 2 is the same

as in Theorem 2.1.2 (since for r ≥ 2, we have n/r ≪ n − c ln n = n − f). This is

a reflection of the fact that only the large dimension case uses the randomness in all

the rows simultaneously, and in that case the exponential bound does not depend on

r. Generally speaking, the best known lower bounds on the singularity probability of

a discrete random matrix come from a dependency among at most two random rows,

and since Nf,n certainly has more than two random rows, the upper bounds given in

Theorem 6.1.2 seem reasonable.

Theorem 6.1.2 leads to Corollary 1.1.2 by following a conditioning argument very

similar to that given in Section 2.2.3.

6.1.1 Outline of the proof of Theorem 6.1.2

The proof of Theorem 6.1.2 follows the same lines of reasoning as that of Theorem 2.1.2.

In this subsection, we will state the main lemmas with the necessary modifications, and

we will mention a few important considerations when making the modifications.

Note that Equation (4.1), which reduces the question of singularity to one of the

rows spanning non-trivial hyperplane of dimension n− 1 holds in the current context,

using the same definition of AV and “non-trivial hyperplane” (both are defined after

Equation (4.1) in Section 4.1.1).

Definition 6.1.3 (combinatorial dimension with f fixed rows). Let D :=
{

a
n : 0 ≤ a ≤ n2, a ∈ Z

}
.

For any d± ∈ D, we define the combinatorial Grassmannian Grf(d±) to be the set of

all non-trivial hyperplanes V in (Z/QZ)n such that

pn−d±+1/n < max
f+1≤i≤n

Pr(Xi ∈ V ) ≤ pn−d± .
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For d± = 0, we define Grf(0) to be the set of all non-trivial hyperplanes such that

max
f+1≤i≤n

Pr(Xi ∈ V ) ≤ pn.

We will refer to d± as the combinatorial dimension of V .

Lemma 6.1.4 (Small combinatorial dimension, with f fixed rows). For any δ > 0 we

have
∑

d±∈D s.t. T d±qn≤δn

∑

V ∈Grf(d±)

Pr(AV ) ≤ (n− f)δn.

Proof. The proof is the same as that for Lemma 4.1.2; also see [22], [38], [39].

Lemma 6.1.5 (Large combinatorial dimension, with f fixed rows). We have

∑

d±∈D s.t.
cLgDim

n1/2
≤T d±qn

∑

V ∈Grf(d±)

Pr(AV ) ≤ (p+ o(1))n−f

Here, cLgDim is the same as in Lemma 4.1.3.

Proof. The proof is the same as that for Lemma 4.1.3, except now we appeal to

Lemma A.1.2 with f > 0. Note that we must assume f ≤ n/2 in order to apply

Lemma A.1.2. See also [22],[38],[39].

Proposition 6.1.6 (Medium combinatorial dimension estimate, with f fixed rows).

Let 0 < ǫ0 be a constant much smaller than 1, and let d± ∈ D be such that (p +

cMedDim,fǫ0)
n/r < T d±qn <

cLgDim√
n

. If f ≤
(

r
2 ln(1/p) − o(1)

)
lnn, then

∑

V ∈Grf(d±)

Pr(AV ) ≤ (p+ o(1))n/r.

Here we choose the constant cMedDim,f so that cMedDim,f >
(
cm + cf + 1

100

)
, where

cm and cf are positive absolute constants (in particular, we need cf such that f ≤ cfǫ0n
r ,

which is true for any positive constant cf since f ≤ O(lnn)). As before, we will prove

this proposition by separating V with medium combinatorial dimension into two cases:

exceptional and unexceptional, which are defined below using the definition of Z∗
i,k from

Equation (4.3) (this definition is the same as in Definition 4.1.5 with the small change

that i and j are required to be between f + 1 and n instead of between 1 and n).
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Definition 6.1.7. Consider a hyperplane V of medium combinatorial dimension (that

is, d± satisfies the condition in Proposition 6.1.6). We say V is unexceptional if there

exists an i0 where f + 1 ≤ i0 ≤ n and there exists a k0 where 1 ≤ k0 ≤ r such that

max
f+1≤j≤n

{Pr(Xj ∈ V )} < ǫ1 Pr(Z∗
i0,k0

∈ V ).

We say V is exceptional if for every i where f + 1 ≤ i ≤ n and for every k where

1 ≤ k ≤ r we have

ǫ1 Pr(Z∗
i,k ∈ V ) ≤ max

f+1≤j≤n
{Pr(Xj ∈ V )}. (6.1)

In particular, there exists imax such that Pr(Ximax ∈ V ) = maxf+1≤j≤n{Pr(Xj ∈ V )};

and so if V is exceptional, then

ǫ1 Pr(Z∗
imax,k ∈ V ) ≤ Pr(Ximax ∈ V ) for every k. (6.2)

We will refer to Ximax as the exceptional row.

Lemma 6.1.8 (Unexceptional space estimate, with f fixed rows). If f ≤ cfǫ0n
r for some

positive constant cf, then we have

∑

V ∈Grf(d±):V is unexceptional

Pr(AV ) ≤ p−o(n)2nǫ
cmǫ0n/r
1 .

Notice that the bound is the same as in Lemma 4.1.6, except that we replaced

cMedDim with cMedDim,f when defining “unexceptional”.

Proof. The proof follows in the same way as that for Lemma 4.1.6; however, when

replacing rows Xi of Nf,n with rows Zi that concentrate more sharply on V , we must

take care to only replace random rows of Nf,n (i.e., rows X1, . . . ,Xf must not be replaced

by Zi). See Appendix A.2 for details.

In the exceptional case, The same structure theorem (Theorem 4.2.1) holds, leading

to the following lemma.

Lemma 6.1.9 (Exceptional space estimate, with f fixed rows). If f ≤
(

r
2 ln(1/p) − o(1)

)
lnn,

then

∑

V ∈Gr(d±):V is exceptional

Pr(AV ) ≤ pn/r (6.3)
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Note that this upper bound is dramatically worse than the analogous upper bound

in Lemma 4.1.7 of n−
n
2
+o(n).

Proof. As in Lemma 4.1.7, the main step in the proof is applying the structure theorem

(Theorem 4.2.1). In the current context, Inequality (4.6) holds with n − f as the

exponent instead of n (since there are only n − f random rows). If we combine this

modified version of Inequality (4.6) with Inequality (4.7), then we have the bound

∑

V ∈Grf(d±):

V is exceptional

Pr(AV ) ≤ n−
n
2
+o(n) Pr(Ximax ∈ V )−n Pr(Ximax ∈ V )n−f

= n−
n
2
+o(n) Pr(Ximax ∈ V )−f,

where by assumptionXimax is the random row such that Pr(Ximax ∈ V ) = maxf+1≤i≤n Pr(Xi ∈

V ). In order for this upper bound to achieve the desired bound in Inequality (6.3), it

is sufficient to have

n−
n
2
+o(n) Pr(Ximax ∈ V )−f ≤ pn/r. (6.4)

Using the assumption that Pr(Ximax ∈ V ) ≥ (p + cMedDim,fǫ0)
n/r > pn/r (since V is of

medium combinatorial dimension), we see that Inequality (6.4) holds whenever

f ≤
(

r

2 ln(1/p)
− o(1)

)
lnn,

which completes the proof.
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Appendix A

Lemmas in additive combinatorics

A.1 Two background results

A.1.1 A version of the Littlewood-Offord result in Z/QZ

If S ⊂ Q, then we can clear denominators and prove (as in [39, Lemma 2.4]) the large

combinatorial dimension estimate in R instead of working in Z/QZ, in which case we

can also use the Littlewood-Offord result over R (see [40, Corollary 7.13]), instead of

the version over Z/QZ given here in Lemma A.1.1. When working in R, the integral

approximation of Inequality (A.1) can be replaced by a limit going to infinity, and we

do not need any extra assumptions on Q. In particular, we may take Q ≈ exp(exp(Cn))

(see Remark 3.1.2).

For Q sufficiently large with respect to q, r, and n, it is clear that we have

1

Q

∑

ξ∈Z/QZ

(1 − 2q + 2q cos(2πξ/Q))k/r ≤
∫ 1

0
(1 − 2q + 2q cos(2πt))k/r dt+

1

n
, (A.1)

for all 1 ≤ k ≤ n.

Lemma A.1.1. Let Q be sufficiently large to satisfy Inequality (A.1), and let v1, . . . , vn ∈

Z/QZ be such that v1, . . . , vk are nonzero. Let {αj}n
j=1 be a collection of random vari-

ables that are p-bounded of exponent r, and let Xv := α1v1 + · · · + αnvn. Then, for

every x ∈ Z/QZ we have

Pr(Xv = x) ≤ cLO
√
r√

qk
= O

(
1√
k

)
,

where cLO is an absolute constant.

Proof. Our proof is closely modeled on the proof of [40, Corollary 7.13]. Let β
(µ)
j

be the symmetric random variables from the definition of p-bounded of exponent r
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corresponding to αj (see Equation (2.1)). Then, we can compute

Pr(Xv = x) ≤ 1

Q

∑

ξ∈Z/QZ

k∏

j=1

|E(eQ(αjajξ))|
(note that aj = 0 for j >

k)

≤
k∏

j=1


 1

Q

∑

ξ∈Z/QZ

|E(eQ(αjajξ))|k



1/k

(Hölder’s inequality)

≤ 1

Q

∑

ξ∈Z/QZ

|E(eQ(αj0aj0ξ))|k
(where j0 corresponds to

the largest factor in the

previous line)

≤ 1

Q

∑

ξ∈Z/QZ


1 − µ+ µ

ℓj0∑

s=1

pj0,s cos(2πbj0,svj0ξ/Q)




k/r
(since αj0 is p-bounded

of exponent r)

≤ 1

Q

∑

ξ∈Z/QZ

(1 − 2q + 2q cos(2πbj0,1vj0ξ/Q))k/r (since µpj0,1 ≥ 2q)

=
1

Q

∑

ξ∈Z/QZ

(1 − 2q + 2q cos(2πξ/Q))k/r (by reordering the sum) .

Combining the above inequalities with Inequality (A.1) and following the proof of [40,

Corollary 7.13] to bound the integral, we have

Pr(Xv = x) ≤
∫ 1

0
(1 − 2q + 2q cos(2πt))k/r dt+

1

n

=
cLO

√
r√

qk
= O

(
1√
k

)
,

where cLO is an absolute constant.

A.1.2 A generalization of a lemma due to Komlós [26]

This lemma is a generalization of the result in [26] (see also [3, Lemma 14.10], [22,

Section 3.1], and [38, Lemma 5.3]).

Lemma A.1.2. Fix n, and let p be a positive constants such that 0 < p < 1 and let r

be a positive integer constant. Consider the matrix Nf,n taking values in Z/QZ, where

f ≤ n/2 and Q is large enough to satisfy Inequality (A.1). If the collection of random

entries in Nf,n is p-bounded of exponent r, then

Pr
(
there exists v ∈ Ω1 such that Nf,n · v = 0

)
≤ (p + o(1))n−f,
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where

Ω1 :=
{
(v1, . . . , vn) ∈ Z/QZ : at most (n− f)

(
1 − c

lnn

)
+ 1 of the vi are nonzero

}
\ {0},

where the constant c can be taken to be c ≥ 2 ln(100/p), and where 0 denotes the zero

vector.

Proof. Let Ek = {there exists v ∈ Ω1 with at most k nonzero coordinates such that Nf,n·

v = 0}. Clearly,

Pr
(
there exists v ∈ Ω1 such that Nf,n · v = 0

)
≤

∑

1≤k≤(n−f)(1− c
lnn )+1

Pr(Ek \ Ek−1).

Let S be the set of all possible values that could appear as entries in Nf,n, and let

Nf,n|j1,...,jk
be the n by k matrix consisting of columns j1, . . . , jk of Nf,n. Following [26,

Lemma 2] (see also [3, Lemma 14.10] and [38, Lemma 5.3]) we can write

Pr(Ek \Ek−1) ≤
∑

1≤j1<···
···<jk≤n

∑

1≤i1<···
···<ik−1≤n

∑

H a (k − 1)-

dimensional

hyperplane

spanned by Sk

Pr(RwSpni1,...,ik−1,H) Pr(RwIni1,...,ik−1,H),

where

RwSpni1,...,ik−1,H :=
{
rows i1, . . . , ik−1 of Nf,n|j1,...,jk

span H
}
, and

RwIni1,...,ik−1,H :=
{
all rows of Nf,n|j1,...,jk

except i1, . . . , ik−1 are in H
}
.

Let U(k, p, q) be a uniform upper bound for Pr(row i is in H), where f + 1 ≤ i ≤ n

and q is the constant from Definition 2.1.1 (here, we mean uniform with respect to the

index sets {j1, . . . , jk} and {i1, . . . , ik}). Then we have

Pr(Ek \ Ek−1) ≤ U(k, p, q)n−k−f+1

(
n

k

)(
n

k − 1

)
,

since k − 1 fixed rows of Nf,n|j1,...,jk
can span at most 1 hyperplane H of dimension

k − 1.

For k ≤ 28c2LOr

p2q
(a constant), we can set U(k, p, q) = p by the Weighted Odlyzko

Lemma (see Lemma A.2.1), giving us a bound of

Pr(Ek \ Ek−1) ≤ (p + o(1))n−f. (A.2)
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For
28c2LOr

p2q
< k ≤ (n − f)

(
1 − c

lnn

)
+ 1, we use Lemma A.1.1 to set U(k, p, q) =

cLO

√
r√

qk
. Since

(
n
k

)(
n

k−1

)
≤ 22n

n we thus have

Pr(Ek \ Ek−1) ≤
1

n
22n

(
c2LOr

qk

)n−k−f+1
2

.

As a function of k, this upper bound has strictly positive second derivative; thus,

the largest upper bound will occur at one of the extremal values of k =
28c2

LO
r

p2q
or

k = (n − f)
(
1 − c

lnn

)
+ 1, and a bit of computation shows that

Pr(Ek \Ek−1) ≤
1

n
O(pn−f). (A.3)

Summing the bounds in Inequalities (A.2) and (A.3) completes the proof.

A.2 The unexceptional case with f fixed rows

This section is adapted from the proof of [39, Lemma 4.1], and proves Lemma 4.1.6 by

setting f = 0. Assume that f ≤ cfǫ0n
r , and let m be the closest integer to cmǫn

r . Let

Z1, . . . , Zm be i.i.d. copies of the unexceptional row vector Z∗
i0,k0

from Definition 6.1.7,

so ǫ1 Pr(Zi ∈ V ) > Pr(Xi ∈ V ) for all f + 1 ≤ i ≤ n. We will need the following version

of the Weighted Odlyzko Lemma:

Lemma A.2.1. [cf. [39, Lemma 4.3] or [22, Section 3.2]] For 1 ≤ i, let Wi−1 be

an (f + i − 1)-dimensional subspace containing X1, . . . ,Xf (which are fixed, linearly

independent row vectors). Then

Pr(Zi ∈Wi−1) ≤
(
p+

ǫ0
100

)n
r
−f−i+1

.

Proof. Since Wi−1 has dimension f + i− 1, there exists a set of f + i− 1 “determining”

coordinates such that if a vector V ∈Wi−1, then the f+ i−1 “determining” coordinates

determine the values of the remaining n − f − i + 1 coordinates. Since the maximum

probability that any of the n/r random coordinates in Zi takes a given value is at most

1 − µ = p + ǫ0
100 , and since there are at least n

r − f − i + 1 of the random coordinates

in Zi that are not among the “determining” coordinates, we have the desired upper

bound.
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Let V0 := Span{X1, . . . ,Xf}, the space spanned by the f fixed rows, and for 1 ≤ i ≤

m let BV,i be the event that Z1, . . . , Zm are linearly independent in V \ V0. We have

the following analog of Lemma 4.1.8 (and also [39, Lemma 4.4]):

Lemma A.2.2 (see Lemma 4.4 in [39]). Let m, f, and BV,m be as defined above. Then,

Pr (BV,m) ≥ po(n)

(
maxf+1≤i≤n Pr(Xi ∈ V )

ǫ1

)m

Proof. Using Bayes’ Identity, we have

Pr(BV,m) =

m∏

i=1

Pr(BV,i|BV,i−1), (A.4)

where BV,0 denotes the full space of the Zi. Conditioning on a particular instance of

Z1, . . . , Zi−1 in BV,i−1, we have that

Pr(BV,i|BV,i−1) = Pr(Zi ∈ V ) − Pr(Zi ∈Wi−1),

where Wi−1 denotes the (f + i − 1)-dimensional space spanned by X1, . . . ,Xf and

Z1, . . . , Zi−1. We will now establish a uniform bound that does not depend on which

particular instance of Z1, . . . , Zi−1 in BV,i−1 that we fixed by conditioning. By the

definition of unexceptional, we have

Pr(Zi ∈ V ) >
1

ǫ1
max

f+1≤i≤n
Pr(Xi ∈ V ),

and by the Weighted Odlyzko Lemma (see Lemma A.2.1), we have

Pr(Zi ∈Wi−1) ≤
(
p+

ǫ0
100

)n
r
−f−i+1

≤
(
p+

ǫ0
100

)n
r
(1−(cm+cf)ǫ0)

.

Using Taylor’s Theorem with remainder (for example), one can show that

(
p+

ǫ0
100

)n
r
(1−(cm+cf)ǫ0)

≤ 1

2n
(p+ cMedDimǫ0)

n/r ≤ 1

n
max

f+1≤i≤n
Pr(Xi ∈ V ),

so long as cMedDim > 1
100 + cm + cf >

1
100 + (cm + cf)p ln

(
1
p

)
and n is sufficiently large

(the second inequality in the display above is the definition of medium combinatorial

dimension).

Thus

Pr(BV,i|BV,i−1) ≥
1

ǫ1

(
max

f+1≤i≤n
Pr(Xi ∈ V )

)(
1 − ǫ1

n

)
,
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and plugging this estimate back into Inequality (A.4) we get

Pr (BV,m) ≥ po(n)

(
maxf+1≤i≤n Pr(Xi ∈ V )

ǫ1

)m

.

To conclude Lemma 6.1.8 (which implies Lemma 4.1.6 by setting f = 0), we will

proceed as in the proof for [39, Lemma 4.1].

Let Z1, . . . , Zm be i.i.d. copies of Z∗
i0,k0

that are independent of the random rows

Xf+1, . . . ,Xn. Using independence and Bayes’ Identity we have

Pr(AV ) = Pr(AV |BV,m) =
Pr(AV ∧BV,m)

Pr(BV,m)
≤ Pr(AV ∧BV,m)p−o(n)

(
ǫ1

maxf+1≤i≤n Pr(Xi ∈ V )

)m

.

Because the Zi are linearly independent in V \ V0, we know that there is a subset

I ⊂ {f + 1, f + 2, . . . , n} of cardinality |I| = m, such that {Z1, . . . , Zm} ∪ {Xi : i /∈ I}

spans V . Let CV,I be the event that {Z1, . . . , Zm} ∪ {Xi : i /∈ I} spans V . Then we

have

Pr(AV ∧BV,m) ≤
∑

I⊂{f+1,...,n}
|I|=m

Pr (CV,I ∧ {Xi ∈ V : i ∈ I})

≤
(

max
f+1≤i≤n

Pr(Xi ∈ V )

)m ∑

I⊂{f+1,...,n}
|I|=m

Pr(CV,I).

Summing the above inequality over all unexceptional V (note that
∑

V Pr(CV,I) ≤ 1)

and combining with the bound for Pr(AV ) above gives us

∑

unexceptional V

Pr(AV ) ≤
(

max
f+1≤i≤n

Pr(Xi ∈ V )

)m(n− f

m

)
p−o(n)

(
ǫ1

maxf+1≤i≤n Pr(Xi ∈ V )

)m

≤ p−o(n)2nǫm1 .

This completes the proof of the estimate for unexceptional V .
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[33] Solymosi, József. On the number of sums and products. Bull. London Math. Soc.
37 (2005), no. 4, 491–494.

[34] Solymosi, Jozsef. On sum-sets and product-sets of complex numbers. (English,
French summary) J. Theor. Nombres Bordeaux 17 (2005), no. 3, 921–924.

[35] Stevenhagen, P.; Lenstra, H. W., Jr. Chebotarëv and his density theorem. Math.
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