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ABSTRACT OF THE DISSERTATION

On the probability that a discrete complex random

matrix is singular

by Philip J. Wood

Dissertation Director: Van H. Vu

Let n be a large integer and M, be an n by n complex matrix whose entries are
independent (but not necessarily identically distributed) discrete random variables.
The main goal of this thesis is to prove a general upper bound for the probability
that M, is singular.

For a constant 0 < p < 1 and a constant positive integer r, we will define a property
p-bounded of exponent r. Our main result shows that if the entries of M,, satisfy this
property, then the probability that M, is singular is at most (pl/ T+ 0(1))”. All of
the results in this thesis hold for any characteristic zero integral domain replacing the
complex numbers.

In the special case where the entries of M,, are “fair coin flips” (taking the values
+1, —1 each with probability 1/2), our general bound implies that the probability that
M, is singular is at most (% + 0(1))n7 improving on the previous best upper bound
of (3+ 0(1))", proved by Tao and Vu [39).

In the special case where the entries of M,, are “lazy coin flips” (taking values +1, —1
each with probability 1/4 and value 0 with probability 1/2), our general bound implies
that the probability that M, is singular is at most (% + o(l))n, which is asymptotically

sharp.
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Our method is a refinement of those from [22] and [39]. In particular, we make a
critical use of the Structure Theorem from [39], which was obtained using tools from
additive combinatorics.

One key lemma for extending our results to the complex numbers follows from
a more general result about characteristic zero integral domains. We show that any
finite system S in a characteristic zero integral domain can be mapped to Z/QZ, for
infinitely many primes @), preserving all algebraic incidences in S. This can be seen
as a generalization of the well-known Freiman isomorphism lemma, which asserts that
any finite subset of a torsion-free group can be mapped into Z/QZ, preserving all linear
incidences.

As applications, we derive several combinatorial results (such as sum-product esti-
mates) for a finite set in a characteristic zero integral domain. As C is a characteristic
zero integral domain, this allows us to obtain new proofs for some recent results con-

cerning finite sets of complex numbers, without relying on the topology of the plane.
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Chapter 1

Introduction

1.1 The probablitiy that a discrete random matrix is singular

Let n be a large integer and M,, be an n by n random matrix whose entries are inde-
pendent (but not necessarily identically distributed) discrete random variables taking
values in the complex numbers. The problem of estimating the probability that M, is
singular is a basic problem in the theory of random matrices and combinatorics. The
goal of this thesis is to give a bound that applies to a large variety of distributions.
The general statement (Theorem 2.1.2) is a bit technical, so we will first discuss a few
corollaries concerning special cases.

The most famous special case is when the entries of M,, are independent identically
distributed (i.i.d.) Bernoulli random variables (taking values +1 with probability 1/2).

The following conjecture has been open for quite some time:

Conjecture 1.1.1. For M4y, an n by n matriz with each entry an i.i.d. Bernoulli

random variable taking the values +1 and —1 each with probability 1/2,
L 1 "
Pr(Mi , ts singular) = <§ + 0(1)> .

It is easy to verify that the singularity probability is at least (1/2)" by considering
the probability that there are two equal rows (or columns).

Even in the case of i.i.d. Bernoulli random variables, proving that the singularity
probability is o(1) is not trivial. It was first done by Komlés in 1967 [25] (see also
[26]; [32] generalizes Komlds’s bound to other integer distributions). The first expo-
nential bound was proven by Kahn, Komlds, and Szemerédi [22], who showed that

Pr(Mx ,y, is singular) < .999". This upper bound was improved upon by Tao and Vu



in [38] to .958™. A more significant improvement was obtained by the same authors in

[39]:

3 n
Pr(M4;, is singular) < <Z + 0(1)> . (1.1)

This improvement was made possible through the discovery of a new theorem [39,
Theorem 5.2] (which was called the Structure Theorem in [39]), which gives a complete
characterization of a set with certain additive properties. The Structure Theorem (to
be more precise, a variant of it) will play a critical role in the current thesis as well.

Our general result has the following corollary in the Bernoulli case:

1 n
Pr(M4q , is singular) < | — 4+ o(1 , 1.2
(s, s singalar) < (= o(1) ) (12)

which gives a slight improvement over Inequality (1.1) (since 1/v/2 ~ 0.7071 < .75).

Let us now discuss a more general class of random matrices. Consider the random

variable v(*) defined by

+1  with probability p/2
¥ =40  with probability 1 — p (1.3)

—1  with probability u/2,

and let Mi”l)n be an n by n matrix with each entry an independent copy of v(*). The
random variable v(*) plays an important role in [22, 38, 39], and the matrices Mi“l)n
are of interest in their own right. In fact, giving zero a large weight is a natural thing
to do when one would like to (randomly) sparsify a matrix, a common operation used
in randomized algorithms (the values of +1, as the reader will see, are not so critical).

Our general result implies the following upper bounds:



1
Pr(Mi”l)ﬂ is singular) < (1 — p+ o(1))" for 0 <p < 3 (1.4)
2 1 " 1
Pr(Mi”l)ﬂ is singular) < < MI + 0(1)) for 3 <p<l1 (1.5)

3 n
Pr(Mj(_L“l),n is singular) < (\ [1—2u+ §,u2 + 0(1)) for0<p<1. (1.6)

Note that Inequality (1.5) implies Inequality (1.1) and that Inequality (1.6) implies
Inequality (1.2) (in both cases setting p = 1).
Figure 1.1 summarizes the upper bounds from Inequalities (1.4), (1.5), and (1.6)

and also includes the following lower bounds:

(I—p+o(1)" < Pr(Mi“l)’n is singular) for0<pu<1 (1.7)
<1 —2u+ gﬂz + 0(1)> < Pr(Mj(E”l)n is singular) for 0 <p<1. (1.8)

These lower bounds can be derived by computing the probability that one row is all zeros
(Inequality (1.7)) or that there is a dependency between two rows (Inequality (1.8)).
Note that in the case where © < 1/2, the upper bound in Inequality (1.4) asymptotically
equals the lower bound in Inequality (1.7), and thus our result is the best possible in this
case. We also used a Maple program to derive the formulas for lower bounds resulting
from a dependency between three, four, or five rows; however, these lower bounds were
inferior to those in Inequality (1.7) and Inequality (1.8).

We will now present another corollary of the main theorem that has a somewhat
different flavor. In this corollary, we treat partially random matrices, which may have
many deterministic rows. Our method allows us to obtain exponential bounds so long

as there are still at most c¢Inn random rows, where ¢ > 0 is a particular constant.

Corollary 1.1.2. Let p be a real constant between 0 and 1, let ¢ be any positive constant
less than 1/1n(1/p), and let S C C be a set of complex numbers having cardinality
|S| < O(1). Let Ny, be ann by n complex matriz in which § < clnn rows contain fived,
non-random elements of S and where the other rows contain entries that are independent

random variables taking values in S. If the fized rows are linearly independent and if



1/n
Asymptotic Upper and Lower Bounds for Pr (Mi“l)n is singular) for0<u<1
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Figure 1.1: Let P(u) := nan;O Pr (Mi”l)n is singular> v
matrix with independent random entries taking the value 0 with probability 1 — u
and the values +1 and —1 each with probability p/2. The solid lines denote the upper
bounds on P(u) given by Inequalities (1.4), (1.5), and (1.6), and the dashed lines denote
the lower bounds given by Inequalities (1.7) and (1.8). The upper and lower bounds
coincide for 0 < pu < %, and the shaded area shows the difference between the best
known upper and lower bounds for % < u < 1. The straight line segments from the
point (0,1) to (1/2,1/2) and from the point (1/2,1/2) to (1,3/4) represent the best
upper bounds we have derived using the ideas in [39], and the curve 1 — 2u + % u? for
0 < p < 1 represents a sometimes-better upper bound we have derived by adding a new
idea. Note that the upper bounds given here also apply to the singularity probability
of a random matrix with independent entries having arbitrary symmetric distributions
in a set S of complex numbers, so long as each entry is 0 with probability 1 — x4 and

the cardinality of S is |S| < O(1) (see Corollary 2.2.1).

, Where Mi”l)n is the n by n



for every random entry «, we have max, Pr(a = x) < p, then
Pr(Njs,, is singular) < (y/p+o(1))".

Notice that the case f = 0 and p = 1/2 also implies Inequality (1.2).

Remark 1.1.3 (Other exponential bounds). The focus of this thesis is optimizing the
base of the exponent in bounds on the singularity probability for discrete random ma-
trices. One main tool in this optimization is the use of a structure theorem similar to
[39, Theorem 5.2] (see Theorem 4.2.1 below); however, using such a theorem requires
additional assumptions to be placed on the values that can appear as entries, and in
particular, this is why we assume in Corollary 1.1.2 that the set S has cardinality

|S| < O(1) and that f < clnn.

The structure of the rest of the thesis is as follows. In Section 2.1 we define p-
bounded of exponent r and state the main theorem of this thesis. In Section 2.2, we

discuss some corollaries of Theorem 2.1.2. In particular, we will:
(A) prove Inequalities (1.4), (1.5), and (1.6);

(B) prove general bounds on the singularity probability for discrete random matri-
ces with entries that have symmetric distributions and with entries that have

asymmetric distributions;

(C) Prove a version of Corollary 1.1.2 (namely, Corollary 2.2.5) that holds for up to
o(n) fixed rows, assuming that the entries in the fixed rows take integer values

between —C and C for any positive constant C'; and

(D) prove that the probability that random matrices with integer entries have a ra-

tional eigenvalue is exponentially small.

In Section 3.1.1, we discuss Lemma 3.1.1, a result that is proved in [44] using standard
tools from algebraic number theory and algebraic geometry. Lemma 3.1.1 reduces the
question of bounding the singularity probability of a random matrix with entries in C

to a question of bounding the singularity probability of a random matrix with entries



in Z/QZ for some large prime @ (in fact, it is possible to replace C with any char-
acteristic zero integral domain). Chapter 3 is devoted to proving Theorem 3.1.4 and
demonstrating various applications of Theorem 3.1.4, including proving Lemma 3.1.1.
The proof of Theorem 2.1.2 is outlined in Section 4.1, where we also prove some of the
easier lemmas needed for the theorem. In Section 4.2, we state a structure theorem
(Theorem 4.2.1) that completes the proof of our Theorem 2.1.2 and that is very similar
to [39, Theorem 5.2] (which is the Structure Theorem in [39]). We discuss the proof of
Theorem 4.2.1, which uses discrete Fourier analysis and tools from additive combina-
torics, in Sections 5.1 and 5.2. Finally, in Section 6.1 we show that the entire argument
proving Theorem 2.1.2 can be generalized to random complex matrices with f rows of
the matrix containing fixed, non-random entries, so long as f < clnn for a particular

constant ¢ > 0 (this leads to Corollary 1.1.2).



Chapter 2

Main result and applications

2.1 The general theorem

To prove the results in Inequalities (1.1) and (1.2) (and also the results in [22] and [38]),
one basic idea is to replace entries of a random matrix with independent copies of the
random variable (") or 27 (see Equation (1.3)). One key idea in proving the more
general results of the current thesis is replacing the entries of a random matrix with
more complicated symmetric discrete random variables.

A generalized arithmetic progression of rank t is a set of the form {vg + mqv; +
<o+ mevy : Imy| < M;/2}, where the v; are elements of a Z-module and the m; and
M; > 0 are integers. Note that whenever the term “symmetric” is used in this thesis,
it will apply to the distribution of a random variable or to a generalized arithmetic
progression; in particular, the term will never apply to matrices. Also, throughout this

thesis we will use the notation
e(z) := exp(2mix).
The following definition lies at the heart of our analysis.

Definition 2.1.1 (p-bounded of exponent 7). Let p be a positive constant such that
0 < p <1 and let r be a positive integer constant. A random variable a taking values
in the integers (or, respectively, the integers modulo some large prime Q) is p-bounded

of exponent r if
(i) max, Pr(a=x) <p, and

if there exists a constant ¢ where 0 < ¢ < p and a Z-valued (or, respectively, a Z/QZ-

valued) symmetric random variable ) taking the value 0 with probability 1 — = p



such that the following two conditions hold:
(ii) ¢ < ming, Pr(8® = ) and max, Pr(8" = z) < p, and

(iii) the following inequality holds for every ¢ € R:

[E(e(at)|” < E (e(8%)1))

Here, if the values of a and 8® are in Z/QZ, we view those values as integers
in the range (—Q/2,Q/2) (note that each element in Z/QZ has a unique such

integer representation).

We will define p-bounded of exponent r for collections of random variables below,
but first we note that the conditions above are easy to verify in practice. In particular,

if we have a symmetric random variable

by with probability ppe/2

by with probability up;/2

AW = 0 with probability 1 — pu (2.1)

—b;  with probability up;/2

—by  with probability up/2,

\

where by € Z for all s (or, respectively, by € Z/QZ for all s), then condition (iii) becomes

¢
E(e(at))]" < E (e(ﬁ(“)t)) =1—p+p Zps cos 2mbyt, (2.2)
s=1

where the equality on the right-hand side is a simple expected value computation.

We say that a collection of random variables {ajk}z p—1 is p-bounded of exponent
r if each o, is p-bounded of exponent r with the same constants p, ¢, and r; and,
importantly, the same value of 4 = 1 — p. We also make the critical assumption that
the set of all values that can be taken by the ﬂj(.’,i) has cardinality O(1) (a relaxation

of this assumption is discussed in Remark 5.2.5). However, the definition of ﬁj(f,:) is



otherwise allowed to vary with j and k. Also, we will use S to denote the set of
all possible values taken by the random variables «a;;, and we will assume that the
cardinality of S is at most |S| < n°(™),

If o takes non-integer values in C, we need to map those values to a finite field
of prime order so that we may use Definition 2.1.1, and for this task we will apply
Lemma 3.1.1, which is proved in Chapter 3. We say that « is p-bounded of expo-
nent r if and only if for each prime ) in an infinite sequence of primes produced by
Lemma 3.1.1, we have ¢g(a) is p-bounded of exponent r, where ¢ is the ring homomor-
phism described in Lemma 3.1.1 that maps S, the finite set of all possible values taken
by the ajy, into Z/QZ in such a way that for any matrix N,, := (s;;) with entries in S,
the determinant of IV, is zero if and only if the determinant of ¢g(N,) := (¢ (s;k)) is

Zero.

Theorem 2.1.2. Let p be a positive constant such that 0 < p < 1, let r be a positive
integer constant, and let S be a generalized arithmetic progression in the complexr num-
bers with rank O(1) (independent of n) and with cardinality at most |S| < n°™. Let N,
be an n by n matriz with entries oy, each of which is an independent random variable
taking values in S. If the collection of random variables {cvi}1<jk<n s p-bounded of
exponent r, then

Pr(N,, is singular) < (p'/" + o(1))".

In the motivating examples of Section 1.1 (excluding Corollary 1.1.2), we discussed
the case where the entries of the matrix are i.i.d.; however, in general the distributions
of the entries are allowed to differ (and even depend on n), so long as the entries all take
values in the same structured set S described above. The condition that S has additive
structure seems to be an artifact of the proof (in particular, at certain points in the
proof of Theorem 4.2.1, we need the set {Z;‘L:I xj:x; €8 forallyj } to have cardinality
at most no(")). The easiest way to guarantee that S has the required structure is to
assume that the set of values taken by all the o has cardinality at most O(1), and
this is the approach we take for the corollaries in Section 2.2, since it also makes it easy

to demonstrate that the collection of entries is p-bounded of exponent r.
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Remark 2.1.3 (Strict positivity in Inequality (2.2)). Note that the constants pu, ps, bs
must be such that the right-hand side of Equation (2.2) is non-negative. It turns out
for the proof of Theorem 2.1.2 that we will need slightly more. At one point in the
proof, we will apply Lemma 5.1.3, for which we we must assume that there exists a very
small constant e_; > 0 such that E(e(ﬁ](-’,;)t)) > e_1 for all ¢ and for all ﬁj(-l,:) used in the
definition of p-bounded of exponent r. Of course, if the expectations are not strictly
larger than e_j;, we can simply reduce p by e_; > 0. Then, since we are assuming
1 — p = p, we clearly have that all the «j; are (p + e_1)-bounded of exponent r (by
using 6}(};—571) instead of ﬂj(.‘,j)) and we have that E(e(ﬂj(’]j_E*l)t)) > e_; > 0. Since
Theorem 2.1.2 would thus yield a bound of ((p + e )Y+ 0(1))” for every e_; > 0, we
can conclude a bound of (pl/ T+ o(l))n by letting e_1 tend to 0. Thus, without loss of
generality, we will assume that E(e(ﬂj(g)t)) > €_1 for all ¢t and for all ﬂj(’lj) used in the

definition of p-bounded of exponent r.

2.2 Some corollaries of Theorem 2.1.2

In this section, we will state a number of corollaries of Theorem 2.1.2, starting with short
proofs of Inequalities (1.4), (1.5), and (1.6). The two most interesting results in this
section will be more general: first (in Section 2.2.2), we will show an exponential bound
on the singularity probability for a matrix with independent entries each a symmetric
random variable taking values in S C C, where |S| < O(1) and assuming that each
entry takes the value 0 with probability 1 — u; and second (in Section 2.2.3), we will
describe a similar (and sometimes better) bound when the condition that the random
variables have symmetric distributions is replaced with the assumption that no entry
takes a value with probability greater than p. In the first case, the bound will depend
only the value of i, and in the second case, the bound will depend only on the value of
p. In Section 2.2.4, we will show an exponential bound on the singularity probability
for an n by n matrix with f = o(n) fixed rows containing small integer values and with
the remaining rows containing independent random variables taking values in S C C,
where |S| < O(1) (this is similar to Corollary 1.1.2, which is proved in Section 6.1).

Finally, in Section 2.2.5, we will prove an exponential upper bound on the probability
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that a random integer matrix has a rational eigenvalue.

In each corollary, we will use the definition of p-bounded of exponent 1 and of
exponent 2. The definition of p-bounded of exponent 2 is particularly useful, since then
the absolute value on the left-hand side of Inequality (2.2) is automatically dealt with;
however, when p is small (for example whenever 1 < 1/2), one can get better bounds
by using p-bounded of exponent 1. We have not yet found an example where the best
possible bound from Theorem 2.1.2 is found by using p-bounded of an exponent higher

than 2.

2.2.1 Proving Inequalities (1.4), (1.5), and (1.6)

To prove Inequality (1.4), we note for 0 < p < % that (using the definition in Equa-
tion (1.3) of v(1)
‘E(e('y(“)t))‘ =1 — p+ pucos(2rt),

and thus v is (1 — p)-bounded of exponent 1 (i.e., take B = ’y(“)), and so Inequal-
ity (1.4) follows from Theorem 2.1.2.

To prove Inequality (1.5), we note for % < p <1 that

‘E(e(fy(”)t))‘ = |1 — p+ pcos(2nt)| < (2'[:1_ 1) +(1—p) cos(27t) + <2,u4— 1) cos(4mt)

(the inequality above may be checked by squaring both sides and expanding as poly-

nomials in cos(27t)). Thus, we can take

)
+2  with probability 24

—2  with probability 2”—8_1
BY = {41 with probability 15
—1  with probability 1_7“

0 with probability 2”#11

2u+1

to see that () is < >—b0unded of exponent 1, and so Inequality (1.5) follows

from Theorem 2.1.2.
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To prove Inequality (1.6), we note for 0 < p < 1 that

2

2 3
‘ = |1 — pu+ peos(2mt)|? = 1—2u+§u2+2(1—,u),u cos(27rt)+<%> cos(4mnt).

[E(e(+#)1))

Thus, we can take

+2  with probability

NI

NS

—2  with probability
AW = +1  with probability (1 — p)p
—1  with probability (1 — p)p

0 with probability 1 — 2u + %,u2

3
to see that v(¥ is <1 — 2+ §u2>—bounded of exponent 2, and so Inequality (1.6)

follows from Theorem 2.1.2.

2.2.2 Matrices with entries having symmetric distributions

In this subsection, we will prove a singularity bound for an n by n matrix N,(L“ ) for which
each entry is a symmetric discrete random variable taking the value 0 with probability

1—p.

Corollary 2.2.1. Let S be a set of complex numbers with cardinality |S| < O(1). If
NT(L“ ) is an n by n matriz in which each entry is an independent symmetric complex

random variable taking values in S and taking the value 0 with probability 1 — 1, then
(1 -+ o(1))" for0<p<}

PY(NT(LM) is singular) < (@ I 0(1)>" for % <pu<l

n
<\/1—2,u—|—%,u2—|—0(1)) for0<pu<1.

In particular, the same upper bounds as in Inequalities (1.4), (1.5), and (1.6) (which

are shown in Figure 1.1) apply to the singularity probability for NT(L” ).

Proof. Let a;; be an entry of NT(L” ). Since «; is symmetric and takes the value 0 with

probability 1 — u, we may write a;; = 72(]“ )77ij, where 72-(‘-‘ ) is an independent copy of
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~(#) as defined in Equation (1.3) and 7;; is a random variable that shares no values
with —n;;. This description of «;; was inspired by [1], and it allows us to condition on

7;; and then use the remaining randomness in ’y-(H )

i to get a bound on the singularity

probability. In particular,
Pr(N is singular) = Z Pr(NW is singular|[{n;; = c;; }) Pr({ni; = ¢ij}),
(cij)

where the sum runs over all (n?)-tuples (c;;)1<; j<n Of possible values taken by random
variables 7;;. Since Z(cij) Pr({n;; = c¢i;}) = 1, we can complete the proof by proving an
exponential bound on Pr(NT(L“ ) i singular|[{n;; = ¢;;}), and we will use Theorem 2.1.2
for this task.

Consider the random matrix NT(L“

able cij’y.(’-‘)

)

|

, where the 7, j entry is the random vari-

{mij=ci;}
) take values in
{mij=ci;}
S, a set with cardinality O(1), and let ¢g be the map from Lemma 3.1.1, which lets us

for some constant c;;. Note that the entries of NT(L“

pass to the case where NT(L”)‘{ , has entries in Z/QZ. Defining 60;; := 2w¢pg(cij;),
Nij=Cij

we compute

Ee(dq(cir))| = 11 = -+ peos(0ijt)

)
1 — p+ pcos(b;;t) for 0 < p < %,
< % + (1 — p) cos(6;;t) + <%> cos(26;;t) for 3 <p <1, and
3 /L2 1/2
<1 —2u+ §u2 +2(1 — p)pcos(b;5t) + 5 cos(29,~jt)> for 0 <p <1
(
We have thus shown that the entries of Ny(L“ ) ‘{ y are
Mij =Cij
1
(1 — p)-bounded of exponent 1 for 0 < p < 3
2 1 1
( M;— > -bounded of exponent 1 for 5 <u <1, and
3 9
1—2u+ ol -bounded of exponent 2 for 0 < p < 1.
Applying Theorem 2.1.2 completes the proof. U

Corollary 2.2.1 is tight for 0 < p < %, since the probability of a row of all zeroes
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occurring is (1 — u + o(1))™; however, for any specific case, Theorem 2.1.2 can usually
prove better upper bounds than those given by Corollary 2.2.1.

For example, consider the case of a matrix M ()

(£2,41}.n with each entry an indepen-

dent copy of the symmetric random variable

+2  with probability

LS

—2  with probability

S

o) = +1  with probability

=

—1  with probability

LS

0 with probability 1 — u

Corollary 2.2.2. For MW

(42,41}n 05 defined above, we have

16
(I—p+o(1)" Jor0<p <3

<\/1—2,u—|—%,u2+0(1)) for0<pu<1.

Proof. By the definition of o*) we have

Pr(]%éi)2 Ly 0 singular) <

16
‘Ee(a(“)t)‘ =1—pn+ g cos(2mt) + %cos(47rt), for 0 <p < %

(i.e., the right-hand side of the equation above is non-negative for such ), which proves

the first bound.

Also, we have

2
‘Ee(a(“)t)‘ =1-2u+ Z,tf + (u — 2,u2> cos(27t) + <u - g,u2> cos(4mt)

2 2
+ 'UI cos(6mt) + % cos(87t)

for 0 < p < 1, which proves the second bound. O

We also have the following lower bounds for the singularity probability of M {(i)z Lt

(I—p+o(1)" (from one row of all zeroes) (2.3)

(1 —2p+5p%/4+ o(1))" (from a two-row dependency) (2.4)
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1/n
Asymptotic Upper and Lower Bounds for Pr (Mfié t1n is singular> for0<u<1

N | =
N —

-,

S

N\

1

W~

o
o0

v

5 H
1—2pu+ 32 AN

16 4
25 )

N~ —

Figure 2.1: Let P(u) := lim,_ Pr (M{(i)z,ﬂ}m is singular) 1/n7 where M{(i)Z,il}ﬂ is
the n by n matrix with independent random entries taking the value 0 with probability
1 — p and the values +2, —2,+1, —1 each with probability p/4. This figure summarizes
the upper bounds on P () from Corollary 2.2.2 and the lower bounds from Displays (2.3)
and (2.4). The best upper bounds (shown in thick solid lines) match the best lower
bounds (thick dashed lines) for 0 < p < %; and it is not hard to improve the upper
bound a small amount by finding a bound (of exponent 1) to bridge the discontinuity.
One should note that even as stated above, the upper bounds are substantially better
than those given by Corollary 2.2.1 (which are shown in Figure 1.1). The shaded area
represents the gap between the upper and lower bounds.
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The results of Corollary 2.2.2 and the corresponding lower bounds are shown in Fig-
ure 2.1, and one should note that the upper bounds are substantially better than those

guaranteed by Corollary 2.2.1.

2.2.3 Random matrices with entries having arbitrary distributions

A useful feature of the definition of p-bounded of exponent 2 is that it lets one bound
the singularity probability of matrices with independent discrete random variables that

are asymmetric.

Corollary 2.2.3. Let p be a constant such that 0 < p <1 and let S C C be a set with
cardinality |S| < O(1). If N, is an n by n matriz with independent random entries

taking values in S such that for any entry a, we have max, Pr(a = x) < p, then
Pr(N, is singular) < (/p+ o(1))".

We will need the following slightly more general corollary in Section 2.2.4. For a

set A and an integer m, we will use the notation mA := {Z;nzl aj : a; € A} and

Am=A{[IlL, a; : aj € A}.

Corollary 2.2.4. Let p be a constant such that 0 < p < 1, let S C C be a set with
cardinality |S| < O(1), and let X,, be an n by n matriz with fized, non-random entries
in n°M(SU{-1,0,11)°W . If N,, is an n by n matriz with independent random entries

taking values in S such that for any entry «, we have max, Pr(a = x) < p, then
Pr(X, + N, is singular) < (y/p + o(1))".

Note that that Corollary 2.2.4 implies Corollary 2.2.3 by taking X,, to be the matrix

of all zeroes.

Proof of Corollary 2.2.4. Let a;; be an entry in IN,. Our goal is to describe «;; in a
two-step random process, condition on one of the steps, and then use the randomness
in the other step to bound the singularity probability. The conditioning approach is the
same as that used in the symmetric case (Corollary 2.2.1) and was inspired by [1]. The

conditioning argument is useful since some entries of the random matrix may take some
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values with very small probability (i.e. probability less than any constant); recall that
while the entries of the random matrix always take values in a fixed set .S of cardinality
O(1), the distributions of those random variables within S are allowed to vary with n.
(Note that making use of Remark 5.2.5 would provide an alternate way of dealing with
entries that take some values with very small probability.)

Say that «;; takes the values vy,...,v; with probabilities g1,..., g, respectively,
where 91 > 02 > --- > ;. Define new random variables 7;;; such that for some iy and
i1, the values taken by 7,1 are vy, Vig41,...,Vi+i; With corresponding probabilities

Oio [Pk Oig+1/Pks - - - » Oig+ir /Pks Where pg :=> "1 1 0044 Thus, we can write

mij1  with probability p

nijo  with probability ps
i = (2.5)

nije  with probability py.

Furthermore, the n;;;, can be constructed so that p; < p for every k, so that p/2 < py,
for 1 < k < ¢ —1, and so that no two 7;;;, with different £’s ever take the same value.

There are two cases to consider for the technical reason that py is not necessarily
bounded below by a constant. Let € > 0 be a very small constant, so for example
p/2 > e. Case 1 is when e < py, and in this case each py is bounded below by e and
above by p. We will consider Case 1 first and then discuss the small changes needed to
deal with Case 2.

As in the proof of Corollary 2.2.1, we will condition on the values taken by the 7

in order to prove a bound on the singularity probability. We have that

Pr(X,, + N, is singular) = Z Pr(X,, + N, is singular|{n;jx = cijr}) Pr({nijx = cijr}),

(Cijk)
where the sum runs over all possible values (cijk) that the 7;;, can take. Thus, it

is sufficient to prove a bound on the singularity probability for the random matrix
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Xn+ N, which has random entries
{nij=ciji}

)
xij +cij1 with probability p;

B Tij + cijo with probability po
Tij + Qi =

x;j + ;5 with probability py,
\
where z;; and the c;;; are constants.

Note the entries of X,, + N, . , take values in n°™ (Su{-1,0, 1})0(1)7 a
Nijk=Cijk
generalized arithmetic progression with rank O(1) and cardinality at most n°™ and

let g be the map from Lemma 3.1.1, which lets us pass to the case where X,, +
N, has entries in Z/QZ. Defining 0;;, := 2n¢q(ciji) and letting &;j be an

{mijCijk}
i.i.d. copy of a;;, we compute

[Ee(éq (i) + aij)t)[* = Ee <¢Q(ﬂ?z‘j + &y — iy — a)t) = Ee (9o(@; — @)t)

0
=D Pi+2 D PraPrs cos((Oigm — Oiry)1)-
k=1 1<k <ka<l

-bounded of exponent 2 (using the constant ¢ = €2 in

N—

Thus, x;; + ay; is (Zizlpi
Definition 2.1.1, so g does not depend on n). Given that 0 < py < p for every k, it is
not hard to show that Zf;:ﬂ?% < p < p+e¢, and so from Definition 2.1.1, we see that
the collection {x;; + ay; : a; has corresponding probability py > €} is (p + €)-bounded
of exponent 2. We are thus finished with Case 1.

Case 2 is when the decomposition of «;; given in Equation (2.5) has p; < €. In this
case we need to modify Equation (2.5) slightly, deleting 7;;, and replacing 7;;(,_) with
a new variable 7/ ie—1) that takes all the values previously taken by 7;;, and by n;;—1)
with the appropriate probabilities. Thus, in Case 2, we have that p/2 < py, < p + € for
all 1 <k < /¢—1, showing that each p; is bounded below by a constant and is bounded
above by p + € (here we are using py_; to denote the probability that «;; draws a value
from the random variable ngj (Z—l))'

For Case 2, we use exactly the same reasoning as in Case 1 above to show that

such entries of X, + N, are ( f;_:ll pi)—bounded of exponent 2 (using the

{mijCijk}
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constant ¢ = €2 < p?/4 in Definition 2.1.1, so ¢ does not depend on n). Noting that
i;ll pz < p + € and using Definition 2.1.1, we see that the collection {x;; + a;; :
&;j has corresponding probability p, < €} is (p + €)-bounded of exponent 2.
Combining Case 1 and Case 2, we have that the collection {x;; + ay;} is (p + €)-
bounded of exponent 2, and so by and by Theorem 2.1.2 we have that Pr(X, +
" e} is singular) < (y/p+e+o(1))".

The constant € > 0 was chosen arbitrarily, and so letting € tend to zero, we get that

Pr(X,, + N, is singular|[{n;;x = cijx}) < (/o + o(1))".

2.2.4 Partially random matrices

In this subsection, we prove a bound on the singularity probability for partly random

matrices where many rows are deterministic.

Corollary 2.2.5. Let p be a real constant between 0 and 1, let K be a large positive
constant, and let S C C be a set of complex numbers having cardinality |S| < K. Let
Nj,n be ann by n matriz in which f rows contain fized, non-random integers between —K
and K and where the other rows contain entries that are independent random variables
taking values in S. If f < o(n), if the f fized rows are linearly independent, and if for

every random entry o, we have max, Pr(a = ) < p, then
Pr(Nj,, is singular) < (v/p+o(1))" .

Corollary 2.2.5 applies to partly random matrices with f = o(n) fixed, non-random
rows containing integers bounded by a constant and with random entries taking at most
O(1) values in the complex numbers. Corollary 1.1.2, on the other hand, holds with
the fixed entries also allowed to take values in the complex numbers and gives a sligtly
better bound, but additionally requires f < O(Inn) (which is far smaller in general than
o(n)). Proving Corollary 1.1.2 requires mirroring the entire argument used to prove the
main theorem (Theorem 2.1.2) in the case where f rows contain fixed, non-random

entires, and we discuss this argument in Section 6.1. Proving Corollary 2.2.5, however,
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can be done directly from Theorem 2.1.2, as we will show below. First, we will state a

generalization of Corollary 2.2.5.

Corollary 2.2.6. Let p be a real constant between 0 and 1, let K be a large positive
constant, and let S C C be a set of complex numbers having cardinality |S| < K. Let
Nj,n, be an n by n matriz in which | rows contain fized, non-random integers between —K
and K and where the other rows contain entries that are independent random variables
taking values in S. If § < o(n), if the fized rows have co-rank k, and if for every random

entry o, we have max, Pr(a = x) < p, then
Pr(Nj,, has co-rank > k) < (y/p+o(1))" .

To obtain Corollary 2.2.6 from Corollary 2.2.5, find a collection C of f — k linearly
independent rows among the deterministic rows. Replace the rest of the deterministic
rows with a collection C’ of rows containing integer values between —K and K such that
C’ is linearly independent from C. Finally, apply Corollary 2.2.5 to the new partially

random matrix whose deterministic rows are from C UC’, thus proving Corollary 2.2.6.

Proof of Corollary 2.2.5. By reordering the rows and columns, we may write

A|B
Nf,n = )
C|D

where A is an f by f non-random invertible matrix, B is an f by n — f non-random
matrix, C is an n — f by f random matrix, and D is an n — f by n — f random matrix.
Note that NNy, is singular if and only if there exists a vector v such that N;,v = 0. Let
vy be the first f coordinates of v and let v be the remaining n — f coordinates. Then
Ns,v =0 if and only if

Avy + Bvy =0, and

Cvy+ Dvy = 0.
Since A is invertible, these two equations are satisfied if and only if (~CA~!B+ D)vy =
0, that is, if and only if the random matrix —CA~'B + D is singular.

We want to show that every entry that can appear in —CA™'B is an element of

n°™ (S U {-1,0, 1})0(1). By the cofactor formula for A~!, we know that the i, j entry
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of A7l is (—1)"*7(det A;j)/det A, where A;; is the f — 1 by f — 1 matrix formed by
deleting the i-th row and j-th column of A. Thus, A~ = ﬁg, where the i, j entry of
Ais (—1)""7 det A;;. By the volume formula for the determinant, we know that |det A
is at most the product of the lengths of the row vectors of A; and thus |det A| < n°)
(here we need that A has integer entries between —K and K, where K is a constant,
and that f < o(n)). Similarly, we have |det A;;| < n°™. Every entry of A is thus in
n°™{—1,0,1}, every entry of C is in S, and every entry of B is in O(1){—1,0,1}; thus,
every entry of —CAB is an element of n°(™ (S U {—1,0,1}).

Conditioning on the values taken by all the entries in C, we have

Pr(N,, is singular) = Pr(~CA™'B + D is singular)

= Z Pr(~CA™'B + D is singular|C = (¢;;)) Pr(C = (ci)),
(cij)
(2.6)
where the sum runs over all possible matrices (¢;;) that C' can produce. Considering

the entries in C' = (¢;;) to be fixed (note that A and B are fixed by assumption), we

now need to bound
Pr(—(c;;)A™'B + D is singular) = Pr(—(cij)ZB + (det A)D is singular).

Note that every entry of —(cij)gB is an element of n°™ (S U {—1,0,1})°" and that
the random matrix (det A)D has entries that take values in the fixed set {(det A)s : s €

S} having cardinality O(1). Thus, by Corollary 2.2.4, we have that
Pr(—(cij)AB + (det A)D is singular) < (v/p + o(1))" .

Plugging this bound back into Equation (2.6) completes the proof. O

2.2.5 Integer matrices and rational eigenvalues

Let i be the random variable taking the values —k, —k+1,...,k—1, k each with equal
probability, and let M,, be the n by n matrix where each entry is an independent copy
of . In [27], Martin and Wong show that for any e > 0,

c(n,€)

Pr(M,, has a rational eigenvalue) < R
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where ¢(n,€) is a constant depending on n and €. (One goal in [27] is to study this
bound as k goes to co while n is fixed, which is why ¢(n, €) is allowed to depend on n.)

Below, we prove a similar result for random integer matrices with entries between
—k and k (with k fixed), where we allow each entry to have a different (independent)

distribution and we also allow the distributions to be very general.

Corollary 2.2.7. Fiz a positive integer k, and let My, be a random integer matriz
with independent entries, each of which takes values in the set {—k,—k+1,...,k—1,k}.
Let ¢ be a constant such that for every entry «, we have max_jp<,<i Pr(a = z) < ¢/k.
Then

n/2
Pr(My, has a rational eigenvalue) < (% + 0(1)) ,
where the o(1) term goes to zero as n goes to oo.

For example, in the case where each independent entry has the uniform distribution on

{—=k,—k+1,...,k—1,k} (as in [27]), one can set ¢ = 1/2 in the corollary above.

Proof. The proof given below follows the same outline as the main theorem of [27], with
Corollary 1.1.2 replacing an appeal to [27, Lemma 1].

The characteristic polynomial for Mj, ,, is monic with integer coefficients, and thus
the only possible rational eigenvalues are integers (by the rational roots theorem). Every
eigenvalue of M}, ,, has absolute value at most nk (see [27, Lemma 4]); thus, the only
possible integer eigenvalues are between —nk and nk.

The matrix Mj, , has X as an eigenvalue if and only if M}, ,, — Al is singular (where

I is the n by n identity matrix). By Corollary 1.1.2 (with f = 0), we have

Pr(Mjy,, — M is singular) < <\/§ + 0(1)> .

Using the union bound, we have

Pr(Mj, , has a rational eigenvalue) = Pr(Mj, ,, — A is singular, for some A € {—nk,...,nk})

nk
< Z Pr(My, , — A is singular)

A=—nk

< (2nk + 1) <\/% + 0(1)>n

< (% + o(1)>"/2.
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Chapter 3

Reduction to a finite field, with other applications

3.1 Introduction

3.1.1 Placing complex matrices in a finite field

The original work on discrete random matrices in [25, 22, 38, 39] is concerned with
matrices having integer entries, which can also be viewed as matrices with entries in
Z/QZ where @ is a very large prime. In this section we show that one can pass from a
(random) matrix with entries in C to one with entries in Z/QZ where @ is an arbitrarily
large prime number, all without affecting the probability that the determinant is zero,

thanks to the following lemma.

Lemma 3.1.1. Let S be a finite subset of C. There exist infinitely many primes Q
such that there is a ring homomorphism ¢¢q : Z[S] — Z/QZ satisfying the following two

properties:
(1) the map ¢q is injective on S, and

(it) for any n by n matriz (s;j)i1<ij<n with entries s;; € S, we have
det <(8z’j)1§z‘,j§n> =0 ifand only if det <(¢Q(Sij))1§i,y§n> = 0.

In order to apply this lemma, let us point out that the proof of Theorem 2.1.2,
which is discussed in Sections 4.1 through 5.2, works exclusively in Z/QZ; though at
various points, it is necessary to assume () is extremely large with respect to n and
various constants. For this thesis, S will be the set of all possible values taken by the
random variables ;. Recall that by assumption, S| < n°™ so in particular, S is

finite.
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Remark 3.1.2 (On the size of Q). When we apply Lemma 3.1.1, we will take @ >
exp(exp(Cn)) for some constant C' in order for Freiman-type theorems such as [39,
Theorem 6.3] (which is restated in Theorem 5.2.1 below) to apply, and we will also
choose @ large enough so that the integral approximation in Inequality (A.1) holds and
so that @ is large with respect to various constants. One should note that while ) can
be taken arbitrarily large with respect to n, we cannot choose @) so that it is arbitrarily
large with respect to ¢g(s) for all s € S, where S is the set of all values that could appear
in the given random matrix. For example, if v/2 € S, then the smallest positive integer
representative for ¢o(v/2) must be larger than /Q (since (¢g(v/2))? = 2 in Z/QZ).
Finally, if we were in a situation where S C Q, then we could avoid using Lemma 3.1.1
altogether by clearing denominators to pass to Z and then taking @ = exp(exp(Cn)),

as is done in [39].

Lemma 3.1.1 is a corollary of Theorem 3.1.4 which we will state in the next subsec-
tion and which we will prove in Section 3.7. We will prove Lemma 3.1.1 in Section 3.5.
The remainder of this chapter contains further applications of Theorem 3.1.4, for ex-
ample proving a sum-product result for the complex numbers and proving a Szemerédi-
Trotter-type result for the complex numbers, where the applications follow from the
analogous results for Z/Q where @ is a prime (see [5]). All of the results in the complex
numbers that are corollaries of Theorem 3.1.4, including Lemma 3.1.1, go through with
the complex numbers replaced by any characteristic zero integral domain. Thus, the
results stated in Sections 1.1, 2.1, and 2.2 above for the complex numbers C also all
go through with C replaced by any characteristic zero integral domain. For example,

Corollary 2.2.3 becomes

Corollary 3.1.3. Let p be a constant such that 0 < p <1 and let D be a characteristic
zero integral domain. Let S C D have cardinality |S| < O(1). If Ny, is an n by n matriz
with independent random entries, each taking values in S, such that for every entry «,

we have max, Pr(a = z) < p, then

Pr(N,, is singular) < (y/p+ o(1))".
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3.1.2 Mapping incidences to a finite field

Many problems and results in arithmetic combinatorics deal with algebraic incidences in
a finite set S. Classical examples are the Szemerédi-Trotter theorem and sum-product
estimates.

A well-studied situation is when S is a subset of Z/QZ, the finite field with @
elements where () is a large prime. In this case, the special structure of the field and
powerful techniques such as discrete Fourier analysis provide many tools to attack these
problems. These features are not available in other settings and it seems one needs to
invent new tricks. For example, when S is a subset of the complex numbers, most
studies previous to this thesis relied on some very clever use of properties of the plane.
Thus, it seems desirable to have a tool that reduces a problem from a general setting
to the special case of Z/QZ.

Such a tool exists, if one only cares about the linear relations among the elements
of S. In this case, the famous Freiman isomorphism lemma (see, for example, [40,
Lemma 5.25]) asserts that any finite subset of an arbitrary torsion-free group can be
mapped into Z/QZ, given that @ is sufficiently large, preserving all additive (linear)
relations in S. Thanks to this result, it has now become a common practice in additive
combinatorics to reduce additive problems from a general torsion-free group to Z/QZ.

The goal of this chapter is to show that the desired reduction is possible in general.
Technically speaking, we prove that any finite set S in a characteristic zero integral
domain can be mapped to Z/QZ, for infinitely many primes @, preserving all algebraic
incidences in S.

Some notable characteristic zero integral domains include the integers, the complex
numbers, and the field of rational functions C(t1,%2,...) in any number of formal vari-
ables t;. As applications, we obtain some new results and short proofs of some known
results. In particular, it is shown that sum-product estimates and bounds for incidence
geometry problems over Z/QZ imply the same bounds for the analogous problems over
any characteristic zero integral domain (including the real and complex numbers).

Throughout this chapter, we assume that all rings are commutative with identity 1
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and that all ring homomorphisms take 1 to 1. Let D be a characteristic zero integral
domain (so D is a commutative ring with identity that has no zero divisors). We will
identify the subring of D generated by the identity with the integers Z (since the two
are isomorphic). For a subset S of D, we will use Z[S] to denote the smallest subring

of D containing S.

Theorem 3.1.4 (Reduction Theorem). Let S be a finite subset of a characteristic zero
integral domain D, and let L be a finite set of non-zero elements in the subring Z[S| of
D. There exists an infinite sequence of primes with positive relative density such that

there is a ring homomorphism ¢¢q : Z[S] — Z/QZ satisfying 0 ¢ ¢q(L).

By positive relative density, we mean that the sequence has positive density in the
sequence of all primes. It is important to note that Theorem 3.1.4 is not true for all
primes. For example, if S = {i} C C, then the desired map does not exist for @ = —1
(mod 4), since the equation 22 = —1 is not solvable in Z/QZ for these Q. Note that for
the applications of Theorem 3.1.4 in this thesis, we only need that there exist infinitely
many primes such that a map ¢¢ exists, which follows from those primes having positive
relative density.

The remainder of this chapter is organized as follows. In the next few sections, we
present few sample applications of Theorem 3.1.4. Combining arguments from [5] with
Theorem 3.1.4, we prove a Szemerédi-Trotter-type result in Section 3.2. In Section 3.3,
we use Theorem 3.1.4 to demonstrate a sum-product estimate for characteristic zero
integral domains, based on well-known sum-product estimates in Z/QZ. Section 3.4 is
focused on combining a product result for SLy(Z/QZ) from [19] with Theorem 3.1.4 to
get an analogous product result for SLo(D), where D is a characteristic zero integral
domain. In Section 3.5, we show that a random matrix taking finitely many values in
a characteristic zero integral domain is singular with exponentially small probability.
This extends earlier results on integer matrices to the complex setting. Finally, the

proof of Theorem 3.1.4 is given in Section 3.7.
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3.2 A Szemerédi-Trotter-type result for characteristic zero integral

domains

In this section, we apply Theorem 3.1.4 to the problem of bounding the maximum
number of incidences between a finite set of lines and a finite set of points. The well-
known Szemerédi-Trotter Theorem [37] solves this problem in the case of points and
lines in R x R. Recently, in [5], an analogous result was proven for Z/q x Z/q where g

is a prime.

Theorem 3.2.1 (Theorem 6.2 in [5]). Let g be a prime, and let P and L be sets of
points and lines, respectively, in Z/q X Z/q such that the cardinalities |P|,|L] < N < q.

Then there exist positive absolute constants ¢ and § such that
{(p,0) e Px L:pel} <eN3?*9. (3.1)

Remark 3.2.2. The original version of Theorem 3.2.1 proven in [5] relied on the best
known sum-product result at the time (also found in [5]), which worked only for sub-
sets of Z/q with cardinality between ¢® and ¢!~ for a constant a. In particular, the
proof in [5] assumed that Inequality (3.1) was false and used this assumption to con-
struct a subset A of Z/q with cardinality N 1/2=C3 " for some constant C, such that
max{|A + A|,|AA|} was small, a contradiction of the sum-product estimate proven in
[5]. Thus, the version of Theorem 3.2.1 in [5] required the additional assumption that
N = ¢“ for a constant «. To prove Theorem 3.2.1 as stated above, one can simply re-
place the sum-product results in [5] by more recent estimates that apply for all subsets

of Z/q (for example, [6, 18, 23]).

In a general ring R, we define a line to be the set of solutions (z,y) in R X R to an
equation y = mx + b, where m and b are fixed elements of R. Using Theorem 3.1.4,
we prove that the same bound as in Theorem 3.2.1 holds for an arbitrary characteristic

zero integral domain:

Theorem 3.2.3. Let D be a characteristic zero integral domain, and let P and L be

sets of points and lines (respectively) in D x D with cardinalities |P|,|L| < N. Then
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there exist positive absolute constants ¢ and § such that
{(p,0) e P x L:pel} <N,

The constants ¢ and § are the same as those in Theorem 3.2.1. Any improvement to
Theorem 3.2.1, for example, better constants or giving a good bound when P and L
have very different cardinalities, would also immediately translate to Theorem 3.2.3
above. In the case of R x R, this theorem is true with § being replaced with the optimal
constant 1/6 (by the Szemerédi-Trotter Theorem [37]).

Restricting to the case of complex numbers, Solymosi [33, Lemma 1] has proven a
Szemerédi-Trotter-type result over C with 6 = 1/6, under the additional assumption
that the set of points form a Cartesian product in C2. Our result has a small § but does
not require this additional assumption. It looks plausible that § = 1/6 holds without
any additional assumption.

We conjecture that one can set § = 1/6 in Z/QZ given that N is sufficiently small

compared to p. (This implies § = 1/6 for the complex case.)

Proof of Theorem 3.2.3. Without loss of generality, assume that |P| = |£| = N, adding
“dummy” points and lines if necessary. By rotating the entire collection of points and
lines, we may assume that there are no vertical lines. Say that P = {(x;,y;) : i =
1,..., N}, and, uniquely parameterizing a line y = mx + b by the ordered pair (m,b),
say that £ = {(m;,b;):i=1,...,N}. Let S := Ufil{xi,yi,mi,bi}, set

LQZZ{Z'Z'—.Z']'ZlSi<j§N}U{yi—yj21Si<j§N}U

U{ml—m]1SZ<]§N}U{Z)Z—I)J1§Z<]§N},

and let L := Lg \ {0}. By Theorem 3.1.4, there exists a prime ¢ > N and a ring
homomorphism ¢, : Z[S] — Z/q such that 0 ¢ ¢,(L). Define a map ®, : Z[S] x
Z]S] — Z/q x Z/q by ®4(a,b) = (¢q(a),pq(b)). Because 0 ¢ ¢4(L), we know that
|®4(P)| = |®4(L)| = N. Thus, by Theorem 3.2.1, there exist absolute constants ¢ and

6 such that

{0, 0) € 0y(P) x @y(L) : p € I}| < NP0
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Since ¢ is a ring homomorphism, the equation y = ma + b implies that ¢,(y) =

dg(mx 4 b) = dpg(m)dy(x) + ¢¢(b); and thus,
{(p, ) e P x L:pel} <{W,0) € DyP) x By(L) : p/ € £'}] < N30,

completing the proof. O

3.3 A sum-product result for characteristic zero integral domains

Given a subset A of a ring, we define A + A := {a; + a2 : a1,a2 € A} and AA :=
{aias : a1,a9 € A}. Heuristically, sum-product estimates state that one cannot find a
subset A such that both A + A and AA have small cardinality. The first sum-product
result was proven in 1983 by Erdds and Szemerédi [14] for the integers, and there have
been numerous improvements and generalizations, see for example [28], [16], [13], and
[8]. Proving sum-product estimates in Z/QZ, where p is a prime, has been the focus of
some recent work (see, for example, [5], [4], and [6]), with the best known bound due

to Katz and Shen [23], slightly improving a result of Garaev [18]:

Theorem 3.3.1 ([23]). Let p be a prime and let A be a subset of Z/QZ such that

|A| < p'/2. Then, there exists an absolute constant ¢ such that
e[ AT < max{|A + Al |AA]},
where € is any positive constant.

Theorem 3.3.2 demonstrates the same lower bound on max{|A + A, |AA|} for any

finite subset A of a characteristic zero integral domain.

Theorem 3.3.2. There is a positive absolute constant ¢ such that, for every finite

subset A of a characteristic zero integral domain,
c| A" < max{|A + A], |AA]},
where € is any positive constant.

The constant ¢ in this result is the same as that in Theorem 3.3.1.
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Theorem 3.3.2 applies to a very general class of rings; however, our mapping ap-
proach requires that the rings be commutative and have characteristic zero. For some
results in the non-commutative case, see [8]; and for some results in Z/m where m is a

composite, see [9].
Proof of Theorem 3.3.2. Let
Ly := {CLl —ag:a1,a € A}U{a1 + ag — (ag —I-CL4) ra; € A}U {alag —azaq : a; € A}

and let L := Lo \ {0}.
By Theorem 3.1.4, there exists a prime p > |A|? and a ring homomorphism bq :
Z[A] — Z/QZ such that

(i) |6g(A)| = |A|, which follows since a; — ay € L for every aj,az € A where
ai 7é az,
(ii) |6 (A) + ¢g(A)| = |A+ A, which follows by definition of L (if a3 + as —

(a3 + CL4) # 0, then (bQ(CLl) + ¢Q(a2) = (bQ(CLl + ag) #* ¢Q(CL3 + a4) = ¢Q(a3) +

$g(aq)) and because ¢ is a ring homomorphism (if a; + az — (ag +a4) = 0, then

$q(a1) + dqlaz) = dqlar + az) = dqlas + as) = dq(as) + ¢q(as)),
(iii) |6 (A)pg(A)| = |AA|, which follows by the same reasoning as (ii).

We can now apply Theorem 3.3.1 to get that there exists a positive constant ¢ such

that
clo(A)"17C < max{|oq(A) + ¢(A)l, [oo(A)dq(A)l},

for any absolute constant ¢ > 0. Finally, substituting (i), (ii), and (iii) into this in-

equality gives the desired result. O

3.4 A matrix product result for SL,(D)

In this section, we will consider finite subsets of the special linear group SLo(D) of 2
by 2 matrices with determinant 1 and entries in a characteristic zero integral domain

D. For A a finite subset of SLo(D), let (A) denote the smallest subgroup of SLy(D)
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(under inclusion) that contains A. We will refer to (A) as the group generated by A. In
general, the goal of this section will be to give conditions on (A) so that cardinality of
the triple product AAA := {ajazas : a; € A} is large.

Helfgott proved the following theorem in [19]:

Theorem 3.4.1 ([19]). Let p be a prime. Let A be a subset of SLa(Z/QZ) not contained

in any proper subgroup, and assume that |A| < p>~¢ for some fived € > 0. Then
|AAA| > c| A",
where ¢ > 0 and § > 0 depend only on e.

In this section, we will prove the following related result by combining Theorem 3.4.1

with Theorem 3.1.4:

Theorem 3.4.2. Let A be a finite subset of SLa(D), where D is a characteristic zero
integral domain, and let (A) be the subgroup generated by A. If (A) has infinite cardi-

nality and (A) is not metabelian, then
|AAA| > c|AI'T?,
where ¢ > 0 and § > 0 are absolute constants.

One should note that Chang [10] has already proven a very similar product result for

SL2(C), in which “metabelian” is replaced by “virtually abelian”.

Theorem 3.4.3 ([10]). Let A be a finite subset of SLa(C), and let (A) be the subgroup
generated by A. If (A) is not virtually abelian (which implies that (A) has infinite

cardinality), then
|AAA| > c| A"

where ¢ > 0 and § > 0 are absolute constants.

One major difference between Theorem 3.4.2 and Theorem 3.4.3 is in how the two
results are proved. Below, we will prove Theorem 3.4.2 using Helfgott’s Theorem 3.4.1

as a black box along with some group theory and an easy application of Theorem 3.1.4.
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On the other hand, Theorem 3.4.3 is proven in [10] by adapting Helfgott’s methods in
[19] from the case of SLy(Z/QZ) to SL(C) and using tools from additive combinatorics.

The constants § > 0 in Theorems 3.4.2 and 3.4.3 are not the best possible if one
restricts to a subgroup. For example, SLy(Z) contains a subgroup isomorphic to F, the
free group on 2 generators, and the following product result has recently been shown

by Razborov [29]:

Theorem 3.4.4 ([29]). Let A be a finite subset of a free group F,, (on m generators)

with at least two non-commuting elements. Then,

K

AAAl > ———— |
AAA] = fog oD

One should note that neither Theorem 3.4.2 nor Theorem 3.4.3 fully characterizes
finite subsets of SLg(C) that have expanding triple product. For example, neither

theorem applies when A is contained in an abelian subgroup, but letting

1 2
A= 1<ji<ny,
0 1
we have that |[AAA| > |AA| = (";rl) > n2/2 = |A]* /2. One should also note that a
sum-product theorem similar to Theorem 3.3.2 does not hold in general for matrices.
As pointed out in [11, Remark 0.2], the subset
Ly

A= 1<ji<n
0 1

has the property than both the sumset and product sets are small: |A + A| = |[AA| =
2n — 1. However, it is also shown by Chang [11] that by adding the assumption that
the matrices in A are symmetric, one can prove a sum-product result similar to Theo-

rem 3.3.2.

We now turn our attention to the proof or Theorem 3.4.2.

Proof of Theorem 3.4.2. Say that A is a finite subset of SLy(D), where D is a charac-
teristic zero integral domain. Let G := (A), the subgroup generated by A, and assume

that G has infinite cardinality and is not metabelian. Let T be the set of all normal
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subgroups N of G such that G/N is abelian (note that we include G in the set T'), and
define

Ny := ﬂ N.

Then Ny is a normal subgroup of G and G/Nj is abelian. Since G is not metabelian by
assumption, we know that Ny is not abelian, and so there exists By, By € Ny such that
B1By # ByBy. Also, let My, My, Ms, ..., Moy be 121 distinct elements of G (note G
is infinite by assumption). We may now define a set Ly as follows:

i,j €{1,2,3,4} and b; and ¢; are entries in ma-

b1 b c1 2

Low=qbi—¢: trices , cA
by by c3 ey
i,j € {1,2,3,4} and b; and c¢; are entries in matrices
.1 b cp c
Uqbime (o7 € My, and b € My, for some 1 < ky, ko <121
by by C3 C4
by b e 1
U by —1,b9,b3,b4 — 1 : where = BlBgBl B2 =+
by by 0 1

Let L := Lo \ {0}, and let S be the set of all entries that appear in matrices in A. By

Theorem 3.1.4, there exists p > |A| and ¢¢ : Z[S] — Z/QZ such that 0 ¢ ¢go(L). Let
by b dq(b1) ¢o(b

Qg : SLa(D) — SL2(Z/QZ) be defined by R o) dalb) . Let A :=

by bi)  \oolbs) éo(ba))
Pg(A) and let G := (A). Note that by construction |A| = |A| and |AAA| > |AAA|,

and also note that |G| > 121.
Assume for the sake of a contradiction that G is a proper subgroup of SLs(Z/QZ).

In [36], Suzuki gives the following classification of the proper subgroups of SL2(Z/QZ):

Theorem 3.4.5 (cf. Theorem 6.17 of [36], page 404). Let G be a proper subgroup of
SLo(Z/QZ) where p > 5. Then G is isomorphic to one of the following groups (or to a

subgroup of one of the following groups):

(i) a cyclic group,
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1

(ii) the group with presentation <x,y‘xm =y y oy :a:_1>, which has order

4m,

(11i) a group H of order p(p — 1) having a Sylow-p subgroup K such that H/K is

cyclic and K 1is elementary abelian,

(iv) the special linear group SlLe(Z/37) on a field of three elements, which has
order 24,

(v) §4, the representation group of Sy (the symmetric group on 4 letters), which

has order 48, or

(vi) the special linear group SLa(Z/5Z) on a field of five elements, which has order
120.

Since |G| > 120, we may eliminate (iv), (v), and (vi) as possibilities. The remaining
possibilities (namely, (i), (ii), and (iii)) are all metabelian; and thus, G must have a
normal subgroup N such that N is abelian and G/N is also abelian.

Let N := @él(ﬂ ). Then N is a normal subgroup of G, and by the third isomorphism
theorem G/N =~ (G/ker(®q))/(N/ker(®q)) ~ G/N, which is abelian. Thus, Ny is a

10
subgroup of N, and so By, By € N. We know that BlBgBl_le_l #+ , and by
0 1

the definition of ®¢, we also have that

1 0
Do (B1)®q(B2)Po(B1) ' ®q(By) ! = ®o(B1 BBy ' By ') #
0 1

But, this contradicts the fact that N is abelian. Thus, the assumption that G is a
proper subgroup of SLo(Z/QZ) is false, and we have that (4) = G = SLo(Z/QZ).

Finally, by Theorem 3.4.1, there exist absolute constants ¢ > 0 and § > 0 such that

|AAA| > [AAA| > c|A"T0 =c|A).

O

Another way to show that (®g(A)) generates all of SLo(Z/QZ) would be to assume

that (A) is not virtually solvable, which implies by Tits Alternative Theorem [43] that
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(A) has a non-abelian free subgroup. Then, following [17, Section 2], it is possible to
bound the girth of a certain Cayley graph from below in terms of p, eventually showing
(via an appeal to Theorem 3.4.5) that (Pg(A)) = SL2(Z/QZ).

Also, the proof above uses the following implicit corollary of Theorem 3.4.5: if G is
a proper subgroup of SLo(Z/QZ) and |G| > 120, then G in metabelian. A very similar
result for PSLo(Z/QZ) ~ SL2(Z/QZ)/(+I) (where I is the identity matrix) appears in
[12, Theorem 3.3.4, page 78].

3.5 Random matrices with entries in a characteristic zero integral

domain

In [22, 39], it is shown that a random Bernoulli matrix of size n is singular with prob-
ability exp(—€(n)). One may ask what happens for random matrices with complex

entries. We are going to give a quick proof for the following:

Theorem 3.5.1. For every positive number p < 1, there is a positive number § < 1
such that the following holds. Let & be a random wariable with finite support in a
characteristic zero integral domain, where £ takes each value with probability at most
p. Let M, be an n by n random matrix whose entries are i.i.d. copies of €. Then the

probability that M, is singular is at most 6.

Remark 3.5.2. Here we assume that n is sufficiently large and the size of the support
of £ does not depend on n. In the case when the characteristic zero integral domain is

C, more quantitative bounds are available (see [7, 41]).
Theorem 3.5.1 follows directly from the following two results.

Theorem 3.5.3. For every positive number p < 1, there is a positive number § < 1
such that the following holds. Let n be a large positive integer and p > 2"" be a prime.
Let & be a random variables with finite support in Z]QZ, where & takes each value with
probability at most p. Let M, be an n by n random matrix whose entries are i.i.d.

copies of £&. Then the probability that M, is singular is at most §".

This theorem was implicitly proved in [39]. The bound 27" is not essential, we

simply want to guarantee that p is much large than n. The reason that the proof from
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[39] does not extend directly to the complex case (or characteristic zero integral domain

in general) is that in [39] one relied on the identity

1
Ix:():/ e(xt)dt,
0

where I is the indicator event and e(«) := exp(2micr). This identity holds for x an inte-
ger, but not true for complex numbers in general. Theorem 3.1.4 provides a simple way
to overcome this obstacle. (For other methods, see [41, 42].) We restate Lemma 3.1.1

for the reader’s convenience.

Lemma 3.5.4. Let S be a finite subset of a characteristic zero integral domain. There
exist arbitrarily large primes p such that there is a ring homomorphism ¢q : Z[S] —

Z)QZ satisfying the following two properties:
(1) the map ¢q is injective on S, and
(it) for any n by n matriz (s;;) with entries si; € S, we have

det(s;;) =0 if and only if  det (¢g(sij)) = 0.

Proof. Let L := {det(s;;) : si; € S} \ {0}. Applying Theorem 3.1.4 gives us a ring
homomorphism ¢¢g : Z[S] — Z/QZ (for some arbitrarily large prime p) such that
0 ¢ ¢g(L). Since ¢q is a ring homomorphism, ¢g(det(s;;)) = det(pg(si;)) and also
$(0) = 0; thus, we have satisfied condition (ii).

In this particular case, we will show that (i) follows from (ii). If S contains more

than one element, we can find s # t # 0, and thus

s t t t s—t 0 0 0
t s t t 0 s—t 0 0
det [ [+ ¢+ . ¢ || =det : 0 . 0 ||=6-t"t£o0.
t t st 0 0 s—t O
t ot t ot 0 0 0 t

Thus, by (ii), 0 # (6o(s) — do (1) ' ¢q(t), and so ¢g(s) # ¢q(t) and we see that ¢g

is injective on S. O
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The fact that (ii) happens to imply injectivity on S is not important—in fact, for any
given finite subset A C Z[S] we can find gb@ satisfying (ii) above that is also injective on
A by adding {a1 — a2 : a1 # ag and ay,as € A} to L in the proof above. For example,
we could find qﬁ@ that is injective on the set of all determinants of n by n matrices with
entries in S.

One should note that it is easy to prove results similar to Lemma 3.1.1 where the
determinant is replaced by some polynomial f(x1,xo,...,x) with integer coefficients
and one wants a map ¢¢ such that f evaluated at points in S is zero if and only if f
evaluated at points in ¢g(S) is zero. This can also easily be extended to the case where

f is replaced by a list of polynomials, each of which is evaluated on some subset of S.

3.6 The density theorem

The number 7 is a prime in the ring of integers Z; however, if one extends Z to Z[v/2],
the prime 7 splits: 7 = (3—+/2)(3++/2). This fact has the same mathematical content as
the following: the polynomial 22 — 2 is irreducible in Z[z]; however, in (Z/7Z)[x], where
the coefficients of the polynomial are viewed as elements of Z/7Z, the polynomial splits:
2?2 —2 = (z—3)(z+3). The Frobenius Density Theorem describes how frequently such
splitting occurs. In modern formulations, the Frobenius Density Theorem quantifies
the proportion of primes that split in a given Galois extension of the rational numbers.
We will use the following historical version given in [35, page 32|, which is phrased
in terms of polynomials splitting modulo p. Note that the relative density of a set of

primes S is defined to be

{p<z:pe S}
z—oo [{p <z : pis prime}|

Theorem 3.6.1 (Frobenius Density Theorem). Let g(z) € Z[z] be a polynomial of
degree k with k distinct roots in C, and let G be the Galois group of the polynomial g,
viewed as a subgroup of Sy (the symmetric group on k symbols). Let ni,na,...,n; be
positive integers summing to k. Then, the relative density of the set of primes p for
which g modulo p has a given decomposition type ni,ns,...,n; exists and is equal to

1/ |G| times the number of o € G with cycle pattern ny,na, ..., n.
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For example, since the identity element corresponds to the cycle pattern 1,1,...,1 and
every group has one identity, the relative density of primes p such that g decomposes
into k distinct linear factors modulo p is 1/ |G].

Theorem 3.6.1 is the version proven by Frobenius in 1880 and published in 1896
[15]. In [35], Stevenhagen and Lenstra give numerous examples and an illuminating
discussion of the original motivation for the Frobenius Density Theorem and how it

relates to the stronger Chebotarev Density Theorem.

3.7 Proof of Theorem 3.1.4

The first step towards proving Theorem 3.1.4 is proving the following lemma.

Lemma 3.7.1. Let S be a finite subset of a characteristic zero integral domain D, and
let L be a finite set of non-zero elements in the subring Z[S| of D. Then there exists a

complex number 6 that is algebraic over Z and a ring homomorphism ¢ : Z[S] — Z[0)

such that 0 ¢ ¢(L).

By itself, this lemma allows one to extend sum-product and incidence problem
results proven in the complex numbers to any characteristic zero integral domain (in
much the same way that Theorem 3.1.4 allows one to extend such results proven in
Z/QZ to any characteristic zero integral domain).

Lemma 3.7.1 is proved using three main steps: applying the primitive element the-
orem, applying Hilbert’s Nullstellensatz to pass to the case of only algebraic numbers,
and applying the primitive element theorem again to get to a ring of the form Z[6)].
Each of these three steps requires negotiating between the rings we are interested in
and their fraction fields. Theorem 3.1.4 is proved by combining Lemma 3.7.1 with the
Frobenius Density Theorem (or the stronger Chebotarev Density Theorem) to pass to

a quotient isomorphic to Z/QZ.

Proof of Lemma 8.7.1. Let S be a finite subset of a characteristic zero integral domain
D. Recall that we identify the subring of D generated by the identity with Z and so

we use Z[S] to denote the smallest subring of D containing S.
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We can write S = {x1,22,...,2;,601,62,...,0;}, such that {z1,z9,...,2;} are inde-
pendent transcendentals over Q and such that K, the fraction field of Z[S], is algebraic
over Q(z1,x2,...,x;). Using the primitive element theorem, we can find 0 in K also

algebraic over Q(x1,x2,...,x;) such that

Q({L’l,xg,. .. ,a;j,Hl,Hg, . ,Qk) ~ Q(a:l,xg,. .. ,(L‘j,@).

To get the analogous statement for Z instead of QQ, one can rationalize the denominators
of the 6; for i > 1 and rationalize the numerator of 5, and then define 6, to be 0 divided
by the product of the rationalized denominators and the rationalized numerator. Thus,

we can find 6y in K also algebraic over Q(x1,x2,...,x;) such that

Z[S] C Zlxy, w2, .., x5,00) ~ Zy1,y2, - - -, yj+1]/ fo,

where the y; are formal variables and fy is an irreducible element in Z[y1,y2, ..., Y;+1]
that is non-constant or zero and that gives zero when evaluated at y; = x; fori =1,...,7
and y;j41 = 6.

Let Q be the algebraic closure of the rational numbers, let £/ := [Lecr 4, and let
L € Zly1,...,yj+1] be the lowest degree representative of the image of £’ under the
above inclusion and isomorphism. We will use the following corollary to Hilbert’s

Nullstellensatz:

Proposition 3.7.2 (c.f. the corollary on page 282 of [31]). If £, fo € Qy1, ..., yj+1]
and if on points of @jH we have that L is zero whenever fy is zero, then there exists

m >0 and k € Qy1,...,y;j+1] such that L™ = kf;.

Say that L™ = kf, for some k € Q[y1,...,y;j+1]. Since L™, fo € Zly1,...,yj+1], We
have that k& is in Q(y1,...,yj4+1) (the fraction field of Z[y1,...,y;+1]). Thus, & is in the
ring Q[y1, ..., yj+1), and so there is a positive integer ¢ such that ck € Z[y1,. .., yj+1].
We now have ¢L™ = (ck) fo. Since fj is irreducible in Z[y1, y2, . . ., y;j+1], we must have
that fo divides £ (fy cannot divide the positive integer ¢ since fj is either non-constant
or zero). But this is impossible since by assumption £ is non-zero in the quotient ring
Zly1,...,yj+1]/fo. Thus, for every m > 0 and for every k € Q[y1,...,y;j+1] we must

have that L™ =# kfy. Therefore, by the contrapositive of Proposition 3.7.2, there exist
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algebraic numbers qi,...,qj4+1 € Q such that fy = 0 while £ # 0. Thus, we
Yi=q; Yi=qi

have a homomorphism

Yo : Zly1, Y2, - -, yj1)/fo — Zlqu, . - ., g1,

defined by y; — ¢;, such that ¥y(L) # 0.

Applying the primitive element theorem again, we have

Z[ql, o ,Qj+1] C Z[Hl] ~ Z[Z]/fl,

where z is a formal variable and f; is an irreducible element in Z[z] that gives zero when
evaluated at z = 6. Combining the inclusions and isomorphisms from the applications

of the primitive element theorem with vy completes the proof of Lemma 3.7.1. O
Recall the statement of Theorem 3.1.4:

Theorem 3.7.3. Let S be a finite subset of a characteristic zero integral domain D,
and let L be a finite set of non-zero elements in the subring Z[S]| of D. There exist
arbitrarily large primes Q such that there is a ring homomorphism ¢¢q : Z[S| — Z/QZ

satisfying 0 ¢ ¢o(L).
The proof of Theorem 3.1.4 picks up where the proof of Lemma 3.7.1 left off.

Proof of Theorem 3.1.4. By Lemma 3.7.1, there exists a ring homomorphism ¢ : Z[S] —
Z[z]/ f1, such that 0 ¢ ¢(L), where z is a formal variable and f; is an irreducible element
in Z[z] that gives zero when evaluated at z = 6.

Let L := [Lecr ¥ let L(z) € Z[z] denote the lowest-degree representative of ¢(L) in
Z[2]/f1, and let Ly(z) denote the product of all distinct irreducible factors of L(z) in
Z[2]. Note that a ring homomorphism will map L(z) to zero if and only if it maps L;(2)
to zero. By assumption, L(z) is non-zero, so we must have that fi(z) does not divide
L(z) in Z[2]; and thus f1(z) does not divide L;(z). Therefore, L;(z) has no roots (in
C, say) in common with f;(z), since fi(z) is irreducible.

By Theorem 3.6.1 (the Frobenius Density Theorem) there exists a sequence of primes

(Q1,Q2,Qs,...) in Z (with positive relative density) such that for any prime @ in the
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sequence, the polynomial fi(z)L1(z) factors completely modulo @ into a product of
deg (f1(2)L1(z)) distinct linear factors.

Let (z — a) be a linear factor of fi(z) modulo @, where @ is any prime in the
sequence (Q1,Q2,Qs,...). Since, modulo @, the linear factors of fi(z) are all distinct
from those of Lq(z), we know that (z — a) does not divide Lq(z) modulo @. Thus, for
infinitely many primes @), we may quotient out by @ and by (z — a) to get a canonical

quotient map

P12/ fL — Z[2]/(Q, 2 — a) = Z/QL
where 11 (L1(2)) # 0. One can think of ¢ as modding out by @ and then sending z to
the element a in Z/QZ.

Letting ¢q := 11 o ¢ completes the proof. O
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Chapter 4

Proof of main result: reduction to exceptional spaces

4.1 Proof of the main theorem (Theorem 2.1.2)

The proof of Theorem 2.1.2 very closely follows the proof of [39, Theorem 1.2]. Our
goal is to highlight the changes that need to be made to generalize the proof in [39]
so that it proves Theorem 2.1.2. A reader interested in the details of the proof of
Theorem 2.1.2 should read this thesis alongside of [39]. Throughout the proof, we
will assume that n is sufficiently large, and we will allow constants hidden in the o(-)
and O(-) notation to depend on the constants e_1, €y, €1, €2, D, ¢, 7", CMedDim » CLgDim; CLO
and ¢,,. The constants €_1, €g, €1, €2 should be considered very small, and, in fact, we
will let them tend to zero to prove the full strength of Theorem 2.1.2. The constants
P, 4, T, CMedDim> CLgDim» CLO, and ¢, can be thought of as absolute, except possibly for

depending on each other.

4.1.1 Definitions and preliminaries

Given an n by n matrix N,, with entries «;;, we assume that the collection of indepen-
dent random variables {;}i<i j<n is p-bounded of exponent r for some fixed constants
p, ¢, and 7 (here, ¢ is the constant from Definition 2.1.1 which is independent of n). We
also assume that each «;; takes at most n°™ distinct values. Using Lemma 3.1.1, we
may assume without loss of generality that each o; takes values in Z/QZ for some very
large prime (). The entirety of the proof will take place over the field Z/QZ, and so
terminology such as “linearly independent”, “span”, “dimension”, “rank” and so forth

will always be with respect to the field Z/QZ.



44

Let X; == (®i1,...,05,) denote the i-th row of N,,. We note that NN,, has deter-
minant zero if and only if there is a linear dependency among the rows X;. It has
been shown (see [38, Lemma 5.1] and also [22]) that the dominant contribution to the
singularity probability comes from the X; spanning a hyperplane (of dimension n — 1).
In particular,

Pr (N, is singular) = p~°" Z Pr(Ay), (4.1)
V a non—trivial
hyperplane in (Z/QZ)"
where Ay denotes the event that Xiq,..., X, span V, and non-trivial means that V
contains the origin, V' is spanned by vectors in S™ (where S is the set of all possible
values that can occur in N,,), and Pr(X; € V) > 0 for all 1.
As in [39], we will divide the non-trivial hyperplanes into n? classes, since it is then

sufficient to show that the sum of Pr(Ay) over all V in a particular class is at most

(P! + o(1))™.

Definition 4.1.1 (combinatorial dimension). Let D := {% :0<a<n?ac Z}. For
any di € D such that di > %, we define the combinatorial Grassmannian Gr(dy) to

be the set of all non-trivial hyperplanes V in (Z/QZ)" such that

P ETYN < max Pr(X; e V) < ptidE. (4.2)

1<i<n

For dy = 0, we define Gr(0) to be the set of all non-trivial hyperplanes such that

. < p"
ax. Pr(X; e V) <p"

We will refer to d+ as the combinatorial dimension of V.

Note that Gr(dy) = 0 for dp > n— 1+ 1/n (by Lemma A.2.1). We will con-
sider hyperplanes V with combinatorial dimension in three main regions: di small,
d+ medium-sized, and d+ large. The two lemmas and the proposition below suffice to

prove Theorem 2.1.2.

Lemma 4.1.2 (Small combinatorial dimension, [22], [38], [39]). For any § > 0 we have

Z Z Pr(Ay) < nd".

d+ €D s.t. p"~d<gn  VEGr(dy)
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In proving Theorem 2.1.2, we will take § = (p + cMedDimeo)l/r to take care of all

small d+ not covered by Proposition 4.1.4 below.

Proof. The reasoning here is the same as in [39, Lemma 2.3], making use of fact that
Pr(X; € V) <maxj<i<, Pr(X; € V) < p"~%= < §". In particular,
n
Pr(Ay) < Z Pr ({X;}h<j<n \ {Xi} spans V) Pr(X; € V),
i=1
which completes the proof since the summing the right-hand side over all V' is at most
nmax; Pr(X; € V) (note that an instance of the vectors {X;}1<j<n \ {X;} can span at

most one hyperplane). O

Lemma 4.1.3 (Large combinatorial dimension, [22],[38],[39]). We have

> Y. Pr(4y) < (pto(1)"

(& H _
d+€D s.t. %SP” dy  VeGr(ds)

Here we choose the constant cpgpim so that crgpim > cLop_l/ ./ 2q—”, where cp,o is
the constant from the Littlewood-Offord inequality (see Lemma A.1.1 in Appendix A.1)

and q is the constant from Definition 2.1.1.

Proof. Our proof is essentially the same as [39, Lemma 2.4]. Fix V € Gr(dy), where

CLET% < p" %, Let ipay be an index such that Pr(X;

By assumption,

€ V) = maxj<;<n PI‘(XZ € V)

max

CLoDi 2r
Pr(X;, .. €V)> p"‘diH/" > 7Lngmp1/" > crLoy/ —.
Vn V qn

Noting that X;__ € V if and only if X;__ is orthogonal to the normal vector for V/,

max max

we have by Lemma A.1.1 that

T
Pr(X; < i
r( max e V) —_ CLO qk

where k is the number of nonzero coordinates in the normal vector to V. Combining

the two inequalities above shows that k < n/2.



46

Thus, we have

there exists a vector v with at

Z Z Pr(Ay) < Pr | < most n/2 nonzero coordinates
“LgDim n—d VeQGr(d
d+€D st — o <p" Tk r(ds) such that N,,-v =20

<(p+o(1))" (by Lemma A.1.2)

(Lemma A.1.2 is a natural generalization of [22, Section 3.1]; see also [26], [38, Lemma 5.1],

and [3, Lemma 14.10].) O

Proposition 4.1.4 (Medium combinatorial dimension estimate). Let 0 < €y be a con-

stant much smaller than 1, and let di € D be such that (p + cMedDimeo)”/r < pTE <
CLgDim

NG . Then

> Pr(Av) <o()",

VeGr(dt)
Here we choose the constant cyfedpim SO that ¢yedDim > (Wlo + cm), where ¢, is some
absolute constant such that 0 < ¢, < 1 (the ﬁ here comes from p as defined in
Section 4.1.2 below; in [39], it happens that the constant ¢, is also taken to be Wlo)'

To prove Theorem 2.1.2, we can simply combine Lemma 4.1.2 with 6 = (p +
CMedDimEO)l/ry Lemma 4.1.3, and Proposition 4.1.4. Thus, proving Proposition 4.1.4
will complete the proof of Theorem 2.1.2. To prove Proposition 4.1.4, as in [39, Propo-
sition 2.5], we will separate hyperplanes V' of medium combinatorial dimension into two
classes, which we will call ezceptional and unexceptional (see Definition 4.1.5). See [39,
Section 3] for motivation. The unexceptional case will be proved in the remainder of
this section, and the exceptional case will be proved in Sections 4.2, 5.1, and 5.2.

The results in [38] and [22] were derived using the ideas that we will use for the
unexceptional medium combinatorial dimension case. The idea of considering the ex-
ceptional case separately in [39] (and using tools from additive combinatorics in the
exceptional case) is what lead to the improvement of Inequality (1.1), which gives a

bound of asymptotically (2)", over the .999" bound in [22].
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4.1.2 Proof of the medium combinatorial dimension

Before defining exceptional and unexceptional hyperplanes, we will need some new
notation. By assumption, the collection of random variables {a;;}1<; j<n is p-bounded
of exponent r with a constant p = 1 — p, with random variables ﬁl(]“ ) corresponding to
each o;, and with a constant 0 < ¢ < p (see Definition 2.1.1). We also define a constant

slightly smaller than p, namely p = p — %. We will let Y; := (yi1,...,Yin) ==

(ﬁi(%), cee Z(/;)) denote another row vector that corresponds to the row vector X; ( Z(%)
comes from the definition of p-bounded of exponent 7). Also, we will let
kstars — 1 1 — Kend
zeroes zeroes
" —— ——
ik (07 .0, Yikstarts -+ > Yikena» 0,... >0)7 (43)

where kgiart 1= L(k‘ — 1)%J + 1 and kepg = Lk‘%J The vector Z;jk can be thought of as
the k-th segment of Y; (out of r roughly equal segments). Note that Y; and Z: , are
both defined using p := p — 155, not p. Finally, let €1 be a positive constant that is

small with respect to €q, ¢;,, and 7.

Definition 4.1.5 (exceptional and unexceptional). Consider a hyperplane V' of medium
combinatorial dimension (that is, di satisfies the condition in Proposition 4.1.4). We
say V' is unexceptional if there exists an iy where 1 < iy < n and there exists a kg where

1 < kg < r such that

max {Pr(X; e V)} < e Pr(Z; , €V).

1<j<n i0,ko

We say V' is exceptional if for every i where 1 < i < n and for every k where
1 <k <r we have

a1 Pr(Z/, eV) < max {Pr(X; e V)}. (4.4)
<j<n

In particular, there exists imax such that Pr(X; .. € V) = maxi<j<,{Pr(X; € V)};

max

and so if V' is exceptional, then

e Pr(z; ,eV)<Pr(X;

Tmax

eV) for every k. (4.5)

max

We will refer to X;_. . as the exceptional row.

max
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Inequality (2.2) following Definition 2.1.1 can be used to give another relationship

€ V) that, together with Inequality (4.5), will

max

between Pr(Z; , € V) and Pr(X;
be of critical importance in Section 5.1.
Proposition 4.1.4 follows from the two lemmas below, so long as € is chosen suitably

small with respect to €q, ¢;,, and 7.

Lemma 4.1.6 (Unexceptional space estimate). We have
Z Pr(Ay) < p—o(n)Zneiméon/T‘
VeGr(d+): V is unexceptional
Lemma 4.1.7 (Exceptional space estimate). We have
Z Pr(Ay) < n” 2700
VeGr(d+): V is exceptional
We will prove Lemma 4.1.6 in Section 4.1.3, and we will prove Lemma 4.1.7 in

Section 4.2.

4.1.3 The unexceptional medium combinatorial dimension case

The general idea for the case of an unexceptional hyperplane V is to replace some of

the rows X; in the matrix NV,, with rows that concentrate more sharply on the subspace

V. In the case where the exponent r = 1, replacing a row X; with Y; := (ﬁi(%), e Z(%))

is successful; however, in the exponent r = 2 case, for example, replacing the entire
row results in a bound that is off by an exponential factor. We solve this problem by
replacing X; with only half of Y; (with the other half of the entries being zero). This
idea easily extends to any integer r > 2 and is the motivation for defining the vectors
Z}y to have all zeros except for roughly n /r coordinates, as is done in Equation (4.3).
The basic utility of Z; (from Definition 4.1.5) is that it concentrates more sharply
on the unexceptional subspace V' than the vector X; for any 1.

Let Z7 ;. be the vector from the definition of unexceptional (Definition 4.1.5) such

that PT(XZ' € V) < € PT(Z*

i0,ko

€ V) for every i, and set Z := Z} Let m be the

10,J0"

Cmeéon
r

closest integer to , where ¢, is a small positive absolute constant (for example, in
[39], ¢, is taken to be ﬁ). Finally, let Z1, ..., Z,, be copies of Z, independent of each

other and of X1,...,X,.
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Lemma 4.1.8 (see Lemma 4.4 in [39]). Let By,, be the event that Z,...,Z,, are

linearly independent and lie in V. Then,

Pr (Byn) > p" <maX1<i<n Pr(X; € V>>

€1

Proof. The argument follows the same reasoning as [39, Lemma 4.4], however, the
quantity 24" in [39] should be replaced by max;<;<, Pr(X; € V). Details are provided
in Appendix A.2. O

To conclude the proof of Lemma 4.1.6, we follow the “row-swapping”’ argument
at the end of [39, Section 4], with the small change of bounding Pr(X; € V) by
max Pr(X; € V), which we use in place of the quantity 24=="_ Details are provided in

1<i<n
Appendix A.2.

4.2 Analyzing the exceptional medium combinatorial dimension case

The approach for exceptional V' in [39] is very different from that used in the unexcep-
tional case or in the large or small combinatorial dimension cases. Using some powerful
tools from additive combinatorics, the general idea is to put exceptional hyperplanes V'
in correspondence with a particular additive structure called a generalized arithmetic
progression, and then to show that the number of the particular generalized arithmetic
progressions that arise in this way is exceedingly small. The key to this approach is a
structure theorem—namely, [39, Theorem 5.3]. In this section, we state a slightly mod-
ified structure theorem (Theorem 4.2.1), and then we show how to use Theorem 4.2.1
to prove Lemma 4.1.7. In the beginning of Section 5.1, we outline the changes needed
to prove the the structure theorem for our current context, and in Sections 5.1 and 5.2
we provide details.

Before stating the structure theorem, we need some definitions and notation. A

generalized arithmetic progression of rank v is a set of the form
P ={vg+mivy + -+ +my: |my| < M;/2},

where the basis vectors vy, vy, . .., v, are elements of a Z-module (here, Z/QZ) and where

the dimensions M, ..., M, are positive integers. We say that v; has corresponding
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dimension M;. For a given element a = vy + myvy + --- + m, in P, we refer to
mi,..., M. as coefficients for a. A generalized arithmetic progression P is symmetric
if v9 = 0, and P is proper if for each a € P, the there is a unique t-tuple (my,...,m;)
with |m;| < M;/2 that gives the coefficients for a. If P is proper and symmetric, we

define the P-norm ||a||p of an element a € P to be

lallp = (; (%)zy-

We will use the notation mP, where m is a positive integer, to denote the set {d ;~ z; :
z; € P} and the notation P™, where m is a positive integer, to denote the set {] [~ z; :
x; € P}. If P is a generalized arithmetic progression of rank t, then so is mP, while
P on the other hand, is a generalized arithmetic progression of rank at most t™. Also
note that [mP| < m*|P| and that |P™| < |P|™.

Let V be an exceptional hyperplane of medium combinatorial dimension in Gr(dy)
and let X; = (ou,...,qy) be the exceptional row (here we are using «; as shorthand
for ;. ;). Let (ﬁ§“ ), ce ﬁy(f )) be the row of random variables corresponding to X; .
from the definition of p-bounded of exponent r, and let b;, with 1 < j < n and

1 < s < /; be the values taken by ﬂ](-” ) (see Equation (2.1) for the definition of ﬂj(.” )).

Given an exceptional hyperplane V', there exists a representation of the form
V ={(x1,22,...,2,) € (Z/QZ)" : x1a1 + x202 + -+ + Tpa, = 0}

for some elements ay,as,...,a, € Z/QZ. We will call ay,as, ..., ay, the defining coordi-
nates of V. Finally, let a; := b;1a;. We will refer to (ai,...,a,) as the scaled defining
coordinates of V. Note that once iy,ax is fixed, so are the elements b; ;. We should also
note that the choice of b;1 among b; s for 1 < s < /; is arbitrary—since ﬁ](-“ ) takes the
values b; s each with probability at least ¢, any value of s will do; and so we have taken
s =1 for convenience.

Let H denote the highly rational numbers, that is, those numbers in Z/QZ of the
form a/b (mod Q) where a, b are integers such that |a|, |b| < 7°™ and b # 0. The highly
rational numbers were defined in [39, Section 8], and we will need a small extension

for the current thesis, due to the fact that we are using the scaled defining coordinates
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of V instead of simply the defining coordinates of V. If we were to assume that b;
was an O(1) integer for all j and that every possible value taken by a;; was an O(1)
integer for all 4, j, then we could still use the same definition of highly rational as in [39].
However, if there is a b; 1 or an entry «;; in the matrix N,, that ever takes an irrational
value, then when we pass to Z/QZ using Lemma 3.1.1 we have to account for values
possibly on the order of @ (see Remark 3.1.2), and the highly rational numbers are not
sufficient for this task. We can overcome this difficulty by extending to the highly T-
rational numbers, which contain the highly rational numbers along with all the values
in a structured set 7' (described below). We will now give a rigorous definition the
highly T-rational numbers.

Let T be a generalized arithmetic progression in Z/QZ with rank O(1) and having
cardinality at most n°™. As in the definition of p-bounded of exponent r (Defini-
tion 2.1.1), we will take S to be the generalized arithmetic progression containing all
possible values in Z/QZ taken by the random variables «;; that are the entries of Ny;
thus, by assumption |S| < n°™_ By the definition of p-bounded of exponent r, we
know that all of the random variables ﬁl(]“ ) take values in a set with cardinality O(1).
Thus, there is a symmetric generalized arithmetic progression 7" with rank O(1) and
cardinality |T| < n°™ such that T contains S, such that T' contains the set {—1,0,1},
and such that T' contains all the values taken by the 51(]“ ). To construct T from S , one
can, for example, add each distinct value taken by a ﬁl(]“ ) as a new basis vector v with
corresponding dimension M’ := 3 (say).

A highly T-rational number h is any element of Z/QZ of the form a/b, where a,b €
nMTOW) | Note that therefore, the cardinality of the highly T-rational numbers is at
most (n9™ |T)OM) = n°™) where d = O(1) is the rank of T (here we used the fact

that |T'| < n°™).

Theorem 4.2.1 (Structure Theorem). There is a constant C' = C(e_1, €g, €1, €2,q, T, 1)
such that the following holds. Let V' be an exceptional hyperplane and let aq,...,a, be

its scaled defining coordinates (as described above). Then there exist integers

1<e <
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and M, ..., M, > 1 with the volume bound

M- M, < CPr(X

Tmax

ceV)!
and nonzero elements vy, ...,ve € Z/QZ such that the following holds

e (i) (Scaled defining coordinates lie in a progression) The symmetric generalized

arithmetic progression
P :={myvy + - -+ meve : —M;/2 < m; < M;/2}
is proper and contains all of the a;.

e (ii) (Bounded norm) The a; have small P-norm:
> laly < C.
j=1

e (iii) (Rational T-commensurability) The set {vy,... v }U{a1,...,an} is contained

in the set

{hvy : h is highly T-rational} .

Note that unlike [39], part (iii) above does not necessarily place {v1, ..., v }U{a1,...,an}
in a simple arithmetic progression.

We will discuss the proof of the structure theorem in Sections 5.1 and 5.2. In the
remainder of this section, we will discuss how to use the structure theorem to prove
Lemma 4.1.7.

Fix dy of medium combinatorial dimension (see Proposition 4.1.4). Using indepen-
dence of the rows, we have

n
> Pr(4y) < > e ev)

VeGr(dt): VeGr(d+): =1
V' is exceptional V' is exceptional

<NV € Gr(ds) : V is exceptional}| - <1lila<x Pr(X; e V)> .

(4.6)
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In [39, Section 5], it is shown using Theorem 4.2.1(i) and (ii) and Gaussian-type
methods (and the fact that t is bounded by a constant) that

10(n)

1/2 "
{V € Gr(d+) : V is exceptional }| < 01 Z (1 Y20 "Mt> ,
t?{Mlv"'th}
{vi,...,ue }
where the sum runs over all possible values for ¢, for the M;, and for vy,...,v,. By The-

orem 4.2.1, we know that v < C = O(1) and that M; < MMy --- M, < CPr(X;, .. €

max

V)~' < O(1/p™); thus, there are at most n°™ choices for v and the M;. Further-
more, there are at most Q — 1 choices for vy (since v; # 0), and once the value for vy
has been fixed, (iii) tells us that there are at most n°™ choices for {vs,..., v} (since
!no(")To(1)| < n°M). Thus, the sum runs over at most n°™ terms. (This is the point
in the proof where it is essential that n°™TOM) has cardinality no(").)

Plugging the volume bound on M - - - M, into the previous displayed inequality, we

have

n

{V € Gr(dy) : V is exceptional}| < n°™ (1 + n_%C’Pr(XZ- € V)_l)

max

=n 2zt prX, eV)™, (4.7)

max

using the fact that Pr(X; . € V) < 2222 hich is a consequence of dy being of

v

medium combinatorial dimension. Plugging in Inequality (4.7) into Inequality (4.6)

max

and summing over all d+ of medium combinatorial dimension completes the proof of

Lemma 4.1.7 (recall that by assumption max;<;<, Pr(X; € V) =Pr(X;, .. €V)).

max
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Chapter 5

The structure of exceptional spaces

5.1 Halasz-type arguments

The proof of the structure theorem has two main ingredients: tools from additive
combinatorics, and Haldsz-type arguments using discrete Fourier analysis. Our proof
of Theorem 4.2.1 will follow the proof of [39, Theorem 5.2] very closely. We will use
results about additive combinatorics from [39, Section 6] directly, and we will discuss
below the extent to which the Haldsz-type arguments of [39, Section 7] need to be
modified to work for our current context. The proof of Theorem 4.2.1 will be given in
Section 5.2 using results from the current section, [39, Section 6], [39, Section 7], and
[39, Section 8]. Our Section 5.2 follows [39, Section 8] closely, with a few modifications
to prove rational T-commensurability instead of only rational commensurability.

In this section we discuss modifications to the lemmas in [39, Section 7] that are
needed in order to prove Theorem 4.2.1.

We will use eg(-) to denote the primitive character

eq(z) = exp(2miz/Q).
Let imax be the index of the exceptional row, so for every 1 < k < r we have

€1 PI“(Z*

Tmax

L€V)<Pr(X, . €V), (5.1)

max

and recall that by Definition 4.1.5 we have Pr(X; . € V) = max; Pr(X; € V). Let

( §“>,...,5£”)) from

max

(a1,...,0p) = X

Tmax

with the corresponding random variables
the definition of p-bounded of exponent r (see Definition 2.1.1 and Equation (2.1)), and

let (ai,...,a,) be the defining coordinates of V. Then, using the Fourier expansion,
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Pr(Xi.. €V) =E(lx,  evy) =E (22 > )] ajaji))

EEZ/QL j=1

IN

Ql ~

—.

[E(eq(eja;€))|

o
m
N

~

Q
N
<

I
—_

1/r

IN
Q=
-

E (eq(8)"a6))

o~
m
N
~
O
N
<
Il
-

0 1/r

1—p+ szjvs cos(2mb; sa;€/Q)

s=1

I
QO+

o~
m
N
~
O
N
<
Il
-

0 1/r

L= p+p Y pjscos(2md; sa;6/Q)

s=1

IN
= @| =
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m
N
~
O
N
<.
Hl 3

IN

Pr(Z; e V)V,

tmax

B
Il
—

where the last line is an application of Holder’s inequality.

Define

" 0 1/r
r© =11 (1 —ptpY pjscos(2mbsa/Q) |

j=1 s=1
¢ 1/r

£i© = [ 1= p+pd pjscos(@mbja;é/Q) | . and

s=1

0 1/r

gk(§) == 11 1—p+p Y pjscos(2mbj.a;/Q) :
(k=1) 2 <j<kZ s=1
where p := p — 1§, as defined in Section 4.1.2. Note that f(§) = H 1 (&).
j=1

We will need the following analog of [39, Lemma 7.1]:

Lemma 5.1.1. For all £ € 7Z/QZ, we have

1@ <] an©
j=1 k=1

55

(5.2)

Proof. This inequality may be proven pointwise (for each j after expanding out the

definition of gx) using the convexity of the log function, just as in the proof of [39,

Lemma 7.1] (see also [38, Lemma 7.1].

O
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Let €3 be sufficiently small compared to €; (we will specify how small in Inequal-
ity (5.12) while proving Lemma 5.1.2). Following [39], we define the spectrum A C
Z/QZ of {by1a1,...,bp1an} = {a1,...,a,} (the scaled defining coordinates of V') to
be

A= {E€Z/QT: f(€) > ea). (5.7)

Let [|z[| 7 denote the distance from = € R to the nearest integer. Using the elementary

inequality cos(2mz) < 1 — 15 HxH%&/Z, we have

n 4
O <exp | —1t 20> v [bj.sas6/Qllz 2 (5.8)

j=1s=1
q n
2
<exp | —— E 16j,105€/Qllr /2
50r =

(1pj1 > 2q since min,, Pr(ﬂj(-”) = x) > q by Definition 2.1.1).

Thus, there is a constant C'(eq, q,r) such that
. 1/2 . 1/2
> llaig/ Q1% = [ > Ibj1a;8/Q1% 1 < Clez,q,7), (5.9)
j=1

J=1

1/2
for every € € A. (E.g., the constant C'(eg, q,r) := <% In <i>) suffices.)

€2

Lemma 5.1.2. There exists a constant C' depending on €_1,€q, €1, €2,q,7, and [ such

that
C'QPr(X;,.. €V) <|A < CQPr(X;,.. €V). (5.10)
Furthermore, for every integer k > 4 we have
BA| < <C N B ) 3> CQPH(X; € V). (5.11)

Proof. Our goal is to bound de A f(€) from above and below, and then pass to bounds
on |A] using the fact that e < f(§) <1 for all £ € A.
Note that

% Z f(&) > Pr(X;,..€V) (by Equation (5.4) and Equation (5.2)).
§€L/QL
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Also,
& 1 —p/n 1
COSUTES o) | CCRENR Do) | IO
§EA gA =1 £¢A j=1
< ; @ Z Hgk 1 (Lemma 5.1.1)
§€Z/QL k=1
1/r
<e /K H Z gk (€ (Holder’s inequality)
k=1¢€2/QL
< ; /4 ( ) Pr(X;,... €V) (by Inequality (5.1)) .
€1

For the lower bound, we have

SO =D O f©

ceA €€Z/QL LN
1 —p/1
2 QPr(Ximax € V) ( Tmax V)
61 B/
= QPr(XiIIlaX E V) (1 a 26 ) ’
1

We can choose €3 sufficiently small with respect to ¢; and 1 — u/p so that, for example,

1-p/u

-2 1 (5.12)
€1 2
For the upper bound, we have

YO D F©
EeA §€Z/QZ

<Q H Pr(Z; k€ V)T (Inequality (5.3))

< Qe_ Pr(X;,..€V) (Inequality (5.1))

1

Thus, we have shown that } .., f(§) = ©(QPr(X;,,,. € V)). Since e < f(§) < 1
for all € € A, we have proven Inequality (5.10).

Making use of [39, Lemma 6.4], we can prove Inequality (5.11) by showing [4A| <
C'|A| for some constant C'. Using Lemma 5.1.3 below (for which we need to assume

strict positivity of E(e(ﬁj(»” )t))—see Remark 2.1.3), we have that there exists a constant
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¢ := c(e_1,€2) such that
f(f) > 6(6—1762)7

for every £ € 4A. Thus,

\41%% S

c(e-1, €2 €€7/QT
1
< ( > 9 b, e V)= A,
0(6_1, 62) €1
for some constant C'. This completes the proof of Lemma 5.1.2. O

We now state and prove a lemma showing that f(&) is at least a constant for all
¢ € 4A. In [39], the lemma below is unnecessary because an inequality following from
[39, Inequality (30)] (which corresponds to Inequality (5.9)) and the triangle inequality

suffices.

Lemma 5.1.3. Let A and f be defined as in Equation (5.7) and Equation (5.4), re-

spectively. If £ € 4A, then
320000
7€) = (D)7 < oe 0.

Note that c(e_1,€2) is a constant.

Proof. Note that Inequality (5.8) implies that for any ¢ € A we have

1/2

n 4 2
1007 1
Z ij,s Hbj7saj§//QH]?§/Z =< ( n <_>> .

€
j=1 s=1 K 2

Thus, by the triangle inequality, we have for any & € 4A that

1/2

n b 1/2
ST b b€ /QIE g4<1°°7”1n(l>) . (5.13)

€
j=1 s=1 H 2

Fix £ € 4A. Let kg be the number of indices j such that

£
1004 ij,s ”bj,sajf/QH?R/Z >

s=1

1
27
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and without loss of generality, say that these indices are j = 1,2,...,ky. Squaring

Inequality (5.13), we see that 23—8# < 162(” In (é), and so we have

ko < 3200007 In <i> ,
€2

which is a constant. Thus, for the vast majority of the indices j, namely j = kg+1, ko +

2,...,n, we have
L; ) 1
100 Y pj.s 10,006/ Q2 < 5- (5.14)
s=1
We may now compute that
" ¢ 1/r
FEO =TI | 1—n+nd_ pjscos(2mb;.a;é/Q)
j=1 s=1
. ‘. 1/r (since f(&') > e_; for any & by the as-
J
> eliol/r H 1—pu+p ZpLs cos(2mb; sa;€/Q) sumption of strict positivity—see Re-
j=ko+1 s=1 mark 2.1.3))
" ¢ 1/r (since cos(27wx) > 1 — 100 ||$||112%</Z and
> eliol/r H 1 —100p ij,s Hbj,sajﬁ/QH[%&/Z the factors are all positive by Inequal-
j=kotl o=t ity (5.14))
2001 <n &
k
> e_ol/T exp | ——— Z ij,s Hbj,saj{/QH]é/Z (1l—x>e 2 for0<az<.79)
Jj=ko+1 s=1
320000 1n(€i) 1
>€_y */ exp [ —3200001In [ — (by Inequality (5.13))
€2
320000
= <€2€1il§1/62)) .
This completes the proof. O

We have shown that the spectrum A has small doubling, and the next step is to
use this fact to show that a set containing most of the scaled defining coordinates a;
also has small doubling. Towards that end, we will use the A-norm from [39], which is

defined as follows: for x € Z/QZ, let ||z||, be defined by
1/2
1

A Z (B 5/)/QH§£/Z

£,¢'eA

[lls =
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Note that 0 < ||z||, < 1 for all z and that the triangle inequality holds: ||z + y||, <
llz]| o + [lyllo- We also have that

1 1 /
l#lla < (zp 2 08/QUey) + (g 32 [le€/Qlle )"

§,¢'eA £,¢'en

1
= 2(W > 12/ QI )"

£eA
Thus, squaring Inequality (5.9) and summing over all £ € A, we have
> lal} < 4C(ea,q.r) =: C". (5.15)
j=1
We will now show that the set of all  with small A-norm, which by Inequality (5.15)

includes most of the a;, has small doubling.

Lemma 5.1.4. [39, Lemma 7.4] There is a constant C' such that the following holds.
Let A C Z/QZ denote the “Bohr set”:

L,

A= 7/Q7 - —
(€ Z/QZ: |l < 5

Then we have

CPr(X;,. €V) ' <|A < |A+ A <CPr(X;,,, €V) L

max max

The proof of Lemma 5.1.4 is the same as in [39], with the small modification that
a; should be replaced with a; := b; 1a; and the quantity 24==" should be replaced with

Pr(X;,.. € V) (and, of course, the field F in [39] should be replaced with Z/QZ). Also,

one should note that [39, Inequality (30)], [39, Inequality (31)], and [39, Inequality (32)]
correspond to, respectively, Inequalities (5.9), (5.10), and (5.11).

In the next section, we will complete the proof of the structure theorem using the

lemma above.

5.2 Proof of the Structure Theorem (Theorem 4.2.1)

The key to proving the structure theorem is an application of Freiman’s Theorem for

finite fields.
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Theorem 5.2.1 (see Lemma 6.3 in [39]). For any constant C' there are constants t and
d such that the following holds. Let A be a non-empty subset of Z/QZ, a finite field of
prime order @, such that |A + A| < C|A|. Then, if Q is sufficiently large depending
on |Al], there is a symmetric generalized arithmetic progression P of rank v such that

A C P and |A|/|P| > 0.

Note that by Lemma 3.1.1 we can assume that @ is sufficiently large with respect to
|A] < CPr(X

tmax

€ V)~ < C(1/p)™ (this follows from V being of medium combinato-
rial dimension).

The set A from Lemma 5.1.4 satisfies |A + A| < C?|A|, where C < O(1), and also
contains all but O(1) of the scaled defining coordinates a;, since a; ¢ A implies that
llall, = 1/100 and Inequality (5.15) shows that there can be at most 100C" = O(1)
such a;. By Theorem 5.2.1, there exists a symmetric generalized arithmetic progression

P ={mjvy + -+ + my : |m;| < M;/2} containing A and satisfying the bounds:

rank(P) =t < O(1) and (5.16)

|P| < MMy --- M, < O(Pr(X;,., € V)™). (5.17)

max

The symmetric generalized arithmetic progression P is close to what is needed for
Theorem 4.2.1, since it satisfies the required volume and rank bounds. We will show
below that P can be altered in ways that preserve Inequalities (5.16) and (5.17) (except
possibly for changing the implicit constants) so that P satisfies conditions (i), (ii), and
(iii) of Theorem 4.2.1.

To show Theorem 4.2.1(i), we will first add the remaining scaled defining coordi-
nates {ai,...,a,} \ P (i.e., those a; such that ||a;|, > 1/100) as new basis vectors v},
with corresponding dimensions M;, equal to (say) 3. The resulting generalized arith-
metic progression, which we will continue to call P by abuse of notation, satisfies both
Inequalities (5.16) and (5.17), since there are only O(1) of the a; with [|a;|, > 1/100
(by Inequality (5.15)). Second, we need to ensure that P is proper, for which we will

use the following lemma:

Lemma 5.2.2 (cf. Lemma 9.3 in [39]). There is an absolute constant Cy > 1 such that

the following holds. Let P be a symmetric progression of rank t in a abelian group G,
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such that every nonzero element of G has order at least tCOtSIP]. Then there exists a
proper symmetric generalized arithmetic progression P’ of rank at most v containing P
such that

1P| <% |p).

Furthermore, if P is not proper and v > 2, then P’ can be chosen to have rank an most

t—1

One can conclude Lemma 5.2.2 from the proof of [39, Lemma 9.3] (the only difference
is noting that the rank can be reduced by at least 1 if P is not proper to begin with).
Note that we can always choose ) larger than tCOtS|P | <O <%>n

Applying Lemma 5.2.2 gives us a proper symmetric generalized arithmetic progres-
sion, which again we call P by abuse of notation, that contains all the a; and satisfies
both Inequalities (5.16) and (5.17).

The next task is to show that P can be further altered so to meet the condition (ii)
in Theorem 4.2.1. Note that there are only O(1) scaled defining coordinates a; such
that ||@;||, > 1/100, and so these a; contribute only a constant to the sum »>"_, [|a; ||?3
On the other hand, for any a; with ||a;||, < 1/100, we have that ka; € A C P for every
positive integer k < m. We will exploit this fact, and to do so will need the
following notation. Let ®p : P — Z' be the map sending a point mivy + - -+ + MV
in the proper generalized arithmetic progression P to the unique r-tuple of coefficients
(my,...,my).

If the representation for a; in P is a; = mjv1 + - - - +mv, and ka; is in P, we would
like to be able to say that the representation for ka; is kmqvi +- - - 4+kmqvy; i.e., we hope
that ®p(ka;) is equal to k®p(aj;). If this were true, then we would have [km;| < M;
for 1 < i < v, which, if k is large, would show that ||a;||, is small. However, at this
point we may well have ®p(ka;) # k®p(a;). A priori, changing this to equality would
require replacing P with kP and then applying Lemma 5.2.2 to get a proper symmetric
generalized arithmetic progression, but since £ may be large, this would increase the
volume of P too much, violating Inequality (5.17). Luckily, the lemma below provides a

way around this difficulty. We will say that P is (k;,x;)-proper if ®p(kjz;) = k;j®p(x;).
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Lemma 5.2.3. There exists an absolute constant Cy such that the following holds.
Let P be a symmetric proper generalized arithmetic progression with rank t containing
elements x1,...,Ty,, and let ki,...,ky be positive integers such that {;x; € P for
every 1 < ¢; < k; and for every j. Then, there exists a proper symmetric generalized

arithmetic progression P’ of rank at most v such that P’ contains P,
|P'| < 1P|, and
P is (kj,x;)-proper for every j.

Furthermore, if 1 > 2 and if there is some j for which P is not (k;j,x;)-proper, then P’

can be chosen to have rank at most v — 1.

The proof of this lemma relies on an application of Lemma 5.2.2 to 2P (which contains

P) along with the fact that if ||a;||, < 1/100 then ka; € P for every 1 <k < W.
A

Proof. We proceed by induction on the rank t. For the base case, let t = 1 and con-
sider x; € P such that kjz; € P. Since P has rank 1 in this case, we have that
zj = ®p(xj)vy and kjz; = Pp(kjx;)vy. Combining these two equations we have
ki®p(z;)v1 = ®p(kjxj)vi, and dividing by vi (note that we may assume that vy # 0),
we see that k;®p(x;) = ®p(kjz;). Thus P is (kj;,x;)-proper for every j.

For v > 2, we may assume that there is some jy such that k; ®p(z;,) # ®p(kj,zj,)
(i.e., we assume that P is not (kj,,xj,)-proper). We may assume that P has the form
{mivy + -+ + mwe + |my| < M;/2}. Let M := (My,..., M), and let (—M/2,M/2)
denote the box {(mi,...,m) : |mi| < M;/2}.

Let k be the largest integer such that ®p(kx;)) = k®p(zj,), so 1 < k < kj, and
Pp((k+1)zj,) # (k+1)®p(zj,). Since kxj, € P and zj, € P, we know that ®p(z;,) €
(—M/2,M/2) and ®p(kz;)) = k®p(xj,) € (—M/2,M/2); and thus, (k + 1)®p(zj,) €
(=M, M). This shows that 2P, which has dimensions 2M = (2My,...,2M,), is not
proper, since it has two distinct representations for (k + 1)z ;.

We can now apply Lemma 5.2.2 to 2P, thus finding a proper symmetric generalized
arithmetic progression P’ of rank at most t — 1 containing 2P (which contains P) such
that

|P'| <<% 2P| < 207 |p).
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Since P’ has rank at most t — 1, we have by induction that there exists P” a proper
symmetric generalized arithmetic progression of rank at most v — 1 containing P’ and
such that

[P < (e = )OI P| < Ol R

and such that P” is (kj,z;)-proper for every j. Choosing C; > 2Cj (for example)

Ch (t—1)4t200t3 < t01t4

guarantees that t , which completes the induction. O

Applying Lemma 5.2.3, we can generate a new proper symmetric generalized arith-
metic progression, which again we will call P by abuse of notation, such that P contains
the a;, satisfies Inequalities (5.16) and (5.17), and is (k;, a;)-proper for every a; such

that [|a;|, < 1/100, where k; := [ > 1. We will now show that such P

|
200[]a; [T,
satisfies part (ii) of Theorem 4.2.1. For a; such that P is (k;j, a;)-proper, we have that
|kjm;| < M; for each 1 <4 <, and so
T m 2 T 1 2 T
- i - - 12
lastle =3 () <30 () = S0l )2 = 40000e s .
i=1 ¢ i=1 > i=1
Thus, part (ii) of Theorem 4.2.1 follows from Inequality (5.15), since P is (k;, a;)-proper
for all but O(1) of the a; .
The next step is to make further alterations to P so that we can prove part (iii) of
Theorem 4.2.1. The key property that we will use for (iii) is to have the set of vectors
{®p(a;) : 1 < j < n} span all of RY, and we will use a rank reduction argument on P

to produce a new proper symmetric generalized arithmetic progression satisfying this

full rank property.

Lemma 5.2.4. [39] Let P be a proper symmetric generalized arithmetic progression of
rank t© containing a set B such that the set of vectors ®p(B) does not span R*. Then

there ewists a symmetric generalized arithmetic progression P’ containing P such that

rank(P') <t —1 and

|P'| < |P].

Note that the resulting P’ is not necessarily proper or (k;,a;)-proper, even if P had

these properties.
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Proof. We use the same proof here as appears in [39, Section 8]. If {®p(a;) : 1 < j <n}
does not have rank ¢, then it is contained is a subspace of R* of dimension v — 1. Thus,
there exists an integer vector (a, ..., a,) with all the o; coprime such that (o, ..., o)
is orthogonal to every vector in {®p(a;) : 1 < j < n}. Thus, for every w € Z/QZ and

and any a; = myv1 + - - - + mv,, we have that
aj = mivy + - - + meve = my(v1 —way) + - -+ me(ve — war).

Since not all the «; are zero, we may assume that a, # 0. Setting w = v/, S0
that ve — wa, = 0, we see that P is contained in the symmetric generalized arithmetic
progression

P'i={mivy + - +me v ¢ il < M;/2}

with rank v — 1, dimensions Mj,..., M,_; (which are the same as the corresponding

dimensions for P), and basis vectors v} := v; — a;ve/a,. By construction |P'| < |P|. O

We can now run the following algorithm to create a generalized arithmetic progres-
sion with all the desired properties. As the input, we take the generalized arithmetic
progression P that we arrived at after applying Lemma 5.2.3, thus the input P contains
all the a;, satisfies Inequalities (5.16) and (5.17), and is (k;, a;)-proper for every a; such
that ||a;|[, < 1/100; however, we do not yet know whether ®p({a; : 1 < j < n}) spans

RE.
1. If @p({a; : 1 < j < n})spans RY, then do nothing; otherwise apply Lemma 5.2.4.
2. If P is proper, then do nothing; otherwise apply Lemma 5.2.2.

3. If for every a; with [|a;||, < 1/100 we have that P is (k;,a;)-proper, then do

nothing; otherwise apply Lemma 5.2.3.

4. If P satisfies the three properties given in steps 1, 2, and 3, halt; otherwise, return

to step 1.

Each application of a lemma in the algorithm may disrupt some property that other

two lemmas preserve; however, we also know that each step in the algorithm either does
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not change P or reduces the rank of P by at least 1. Since the original input P has rank
O(1), the algorithm must terminate in O(1) steps, giving us a generalized arithmetic
progression of rank v that satisfies Inequalities (5.16) and (5.17), satisfies conditions (i)
and (ii) of Theorem 4.2.1, and satisfies the condition that ®p({a; : 1 < j < n} spans
all of RF.

Thus, all that is left to prove is part (iii), the claim of rational T-commensurability.
Though we will not need it in the current section, one should recall that Theorem 4.2.1 is
only useful when ‘no(")T O(l)| = n°™_ where T is the symmetric generalized arithmetic
progression containing {—1,0,1} and all possible values taken by the 5(3” )

7 and the ay;

(see Section 4.2).

We say that a set W economically T-spans a set U if each u € U can be represented
as a highly T-rational linear combination of elements in W, where each coefficient may
be expressed as a/b where a,b € n°™T9M) and where the implicit constants in the o(-)
and O(-) notation are uniform over U.

Comparing our definitions with those from [39, Section 8|, we note that “highly ra-
tional” means the same thing as “highly {—1,0, 1}-rational”, and “economically spans”
means the same thing as “economically {—1,0,1}-spans”. Thus, it is clear that any
highly rational number is also highly T-rational for any 7' containing {—1,0,1}, and
also the statement “W economically spans U” implies “W economically T-spans U” for
any set T containing {—1,0,1}. The remainder of this section paraphrases (with some
notational changes) the latter portion of [39, Section 8].

We know that ®p({a; : 1 < j < n} spans RY. Thus, there exists a subset U C
{a1,...,a,} of cardinality v such that ®p(U) spans R*. Renumbering if necessary, we
can write U = {aq,...,a.}. It will be important later on that U has cardinality O(1).

The set {v1,..., v} of basis vectors for P economically {—1,0, 1}-spans {ai,...,a,}

by the definition of P (note that M; < O(Pr(X

imax € V)71 <O(p™") = n°™), and so
by Cramer’s rule, the vectors ®p(U) economically {—1,0,1}-span the standard basis
vectors {eq, ..., e } for R*. Applying <I>1§1 (recall that ®p is a bijection since P is proper)
shows that U economically {—1,0, 1}-spans {v1,...,v}.

Following this paragraph, we will show that there exists a single vector v;, where
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1 <ip < v such that v;, economically T-spans U, which will show by transitivity that
v;, economically T-spans {ai,...,a,} (since U economically T-spans {v1,...,v,} which
economically T-spans {ai,...,a,}; the relation “economically T-spans” is transitive
here since the sets U and {vy,..., v} have cardinality O(1)).

Let s be the smallest integer such that there exists a subset of cardinality s of
{v1,...,v:} (by renumbering, say the set is {vy,...,vs}) so that for some nonzero
d € n°™T9M) and some cij € n°MTOM) we have

S
da; = Z cijvj for every 1 <i <mn. (5.18)
j=1

Note that d does not depend on ¢, and so this statement is slightly stronger than having
{v1,...,vs} economically T-span {ai,...,a,}. Also, note that Equation (5.18) holds
(for example) with s = ¢ by the definition of P and since T contains {—1,0,1}.

‘We now consider two cases:

e The n x s matrix C = (c¢;;) has rank 1 in Z/QZ. In this case, a;, /a;, is highly
T-rational for all i1,7p (Since all the ¢;; are highly T-rational). We know that
U economically T-spans {vy,...,v}, and so the numbers v;, /v;, are also highly
T-rational (note that it is critical here that U has cardinality O(1)). This means
that v; (for example) economically T-spans {v1,..., v}, and so by transitivity vy

economically T-spans U.

e The matrix C has rank at least 2. Recall that (a1, ..., ay) is the normal vector for
V and that V' is spanned by (n — 1) linearly independent vectors with entries in S
(recall that S contains all possible values taken by the «;;). We can scale the j-th

coordinate of each of these vectors by b]_l1 to get a set of n—1 linearly independent

vectors each of which is orthogonal to @ := (ai,...,a,). Among these (n — 1)
linearly independent vectors that are orthogonal to (ai,...,ay,), we can find at
least one, say w = (bl_&wl, . ,b;llwn), that is not orthogonal to every column of

C (since C has column rank at least 2). Let B := {b;; : 1 < j < n}, and let
W= w][[epb= (W1,...,%,). Thus @ is orthogonal to @ and every coordinate
w; of b is an element of TOM) (since T' contains S and B and |B| = O(1) by the

definition of p-bounded of exponent r).
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Remark 5.2.5. Note that the line above is the only place in the proof where we
use the assumption from the definition of p-bounded of exponent r that the ﬁz(]“ )
take values in a set with cardinality O(1). As is evidenced here, the following
weaker assumption suffices instead: say that for each 1 < i < n there exists
a set B; such that |B;] = O(1) and such that ﬁi(f), i(;),..., 2(5) each take a
nonzero value in B with probability at least ¢q. In fact, this weaker assumption
also replaces the assumption in the definition of p-bounded of exponent r that
q < min, Pr(ﬁi(]“ ) = x) for every i, j: It suffices for each ﬁz(]“ ) to take one value in

B; with probability at least ¢, instead of taking every value with probability at

least q.

We may now compute:
n n S S n
0=da-w= E ddiﬂ)i = E E Cij’l)jﬂ)i = E E Cij’lf)i Vj.
i=1 i=1 j=1 j=1 \i=1
Since @ is not orthogonal to every column of C' = (¢;;), we can assume (reordering
if necessary), that the coefficient for vs above is nonzero, and thus we have

5 (S oo o

Vg = 5=
Zz 1048“’@] 1

Plugging this last equation into Equation (5.18), we arrive at
n s—1 n n
d (Z Cgﬂf)g) C~Li = <Cij Z Cgs’lf)g — Cis Z ng’l[)g) ’Uj.
=1 j=1 =1 =1
Since the coefficient for @; on the left is an element of n°™7T9M) and the coefficient

for each v; on the right is an element of noMTOM)  we have contradicted the

minimality of s.

Thus, we have completed the proof of the structure theorem (Theorem 4.2.1). O
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Chapter 6

Extension to the case where some rows are fixed

6.1 A generalization: | rows have fixed, non-random values

In this section, we will give a generalization of Theorem 2.1.2 to the case where the
random matrix N, has f < O(Inn) rows that are assumed to be linearly independent
and contain fixed, non-random entries. The proof of the generalized result is very
similar to the proof of Theorem 2.1.2, and we will sketch the main differences in the

two proofs below.

Definition 6.1.1 (a random matrix Ny, with entries in S). Let § be an integer between
1 and n, let S be a subset of a ring, and let N;,, be an n by n matrix defined as follows.
For 1 <¢<fand 1< j<n,let the entries s;; of Nj, be fixed (non-random) elements
of S such that the rows (s;1,...,sin) for 1 < i < f are linearly independent. For
f+1 <i¢<nand 1< j <n,let the entries o;; of Nj, be discrete finite random

variables taking values in S. Thus,

51,1 $12 0 S1n ) .
Fixed rows; assumed to be lin-
early independent
Sf,l e o .. Sf,n
Q5411 Q4412 " Qjplp
Nip =
Q42,1 Q5422 0 Qj4an
Q431 Q432 - Of43p Random rows
Qn 1 Qp2 r Opnp

Theorem 6.1.2. Let p be a positive constant such that 0 < p < 1, let r be a posi-

tive integer constant, and let S be a generalized arithmetic progression in the complex
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numbers with rank O(1) (independent of n) and with cardinality at most |S| < n°™.
Consider the matriz Ny, with entries in S (see Definition 6.1.1 above), where §f <
(W — 0(1)) Inn. If the collection of random wvariables {a}ir1<j<ni<k<n 1S D-

bounded of exponent r, then
Pr(Nj,, is singular) < max {(pl/r +o(1))", (p+ o(l))”‘f} .

Note that the bound on the singularity probability of Nj, for » > 2 is the same
as in Theorem 2.1.2 (since for r > 2, we have n/r < n —clnn = n — ). This is
a reflection of the fact that only the large dimension case uses the randomness in all
the rows simultaneously, and in that case the exponential bound does not depend on
r. Generally speaking, the best known lower bounds on the singularity probability of
a discrete random matrix come from a dependency among at most two random rows,
and since Nj,, certainly has more than two random rows, the upper bounds given in
Theorem 6.1.2 seem reasonable.

Theorem 6.1.2 leads to Corollary 1.1.2 by following a conditioning argument very

similar to that given in Section 2.2.3.

6.1.1 Outline of the proof of Theorem 6.1.2

The proof of Theorem 6.1.2 follows the same lines of reasoning as that of Theorem 2.1.2.
In this subsection, we will state the main lemmas with the necessary modifications, and
we will mention a few important considerations when making the modifications.

Note that Equation (4.1), which reduces the question of singularity to one of the
rows spanning non-trivial hyperplane of dimension n — 1 holds in the current context,
using the same definition of Ay and “non-trivial hyperplane” (both are defined after

Equation (4.1) in Section 4.1.1).

Definition 6.1.3 (combinatorial dimension with f fixed rows). Let D := {% :0<a<n?ac Z}.
For any di+ € D, we define the combinatorial Grassmannian Grj(d+) to be the set of

all non-trivial hyperplanes V in (Z/QZ)"™ such that

noditl/n - pax Pr(X; € V) < ptTd,
b fr1<i<n (XieV)sp
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For d4+ = 0, we define Gr(0) to be the set of all non-trivial hyperplanes such that

Pr(X;, e V) <p™
e Priie V) <p

We will refer to d+ as the combinatorial dimension of V.

Lemma 6.1.4 (Small combinatorial dimension, with f fixed rows). For any § > 0 we

have
) S Pr(Ay) < (n—fon.
di+€D st. Titgn<on  VEGri(dy)
Proof. The proof is the same as that for Lemma 4.1.2; also see [22], [38], [39]. O

Lemma 6.1.5 (Large combinatorial dimension, with f fixed rows). We have

> S Pr(Av) < (p+ o))"

d+€D sit. CLﬁ%gT‘iiqn VeGry(ds)

Here, cpgDim is the same as in Lemma 4.1.3.

Proof. The proof is the same as that for Lemma 4.1.3, except now we appeal to
Lemma A.1.2 with f > 0. Note that we must assume f < n/2 in order to apply

Lemma A.1.2. See also [22],[38],[39]. O

Proposition 6.1.6 (Medium combinatorial dimension estimate, with { fixed rows).

Let 0 < €y be a constant much smaller than 1, and let dx € D be such that (p +

CLgDim r
> Pr(Ay) < (p+o(1)"".
VEGI‘f(di)

d
CMedDim,fEO)n/T <T™q" <

Here we choose the constant cyjedpim, s 80 that cyedDim,s > (cm + ¢+ ﬁ), where
cm and ¢; are positive absolute constants (in particular, we need c; such that f < @,
which is true for any positive constant ¢; since f < O(lnn)). As before, we will prove
this proposition by separating V' with medium combinatorial dimension into two cases:
exceptional and unexceptional, which are defined below using the definition of Z;‘j ;. from

Equation (4.3) (this definition is the same as in Definition 4.1.5 with the small change

that ¢ and j are required to be between f+ 1 and n instead of between 1 and n).
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Definition 6.1.7. Consider a hyperplane V' of medium combinatorial dimension (that
is, d4 satisfies the condition in Proposition 6.1.6). We say V' is unexceptional if there

exists an ig where f + 1 < 79 < n and there exists a ky where 1 < ky < r such that

f+r1n<33x {Pr(X eV)i<ea Pr(Zz‘*o,ko

eV).
We say V is exceptional if for every i where f +1 < ¢ < n and for every k where
1 <k <r we have

<
e Pr(Z; eV) H?"%}in{Pr(X eV)} (6.1)

In particular, there exists ipyax such that Pr(X;

Tmax

S V) = maleSan{Pr(Xj S V)},

and so if V' is exceptional, then

€1 PI‘(Z

(3

o,k € V) < Pr(X;

Tmax

eV) for every k. (6.2)

We will refer to X;

Tmax

as the exceptional row.

Lemma 6.1.8 (Unexceptional space estimate, with f fixed rows). If f < @ for some
positive constant c;, then we have
Z PI‘(A\/) < p—o(n)2neim60n/r'
VEQGrj(d+):V is unexceptional
Notice that the bound is the same as in Lemma 4.1.6, except that we replaced

CMedDim With ¢yedDim,j When defining “unexceptional”.

Proof. The proof follows in the same way as that for Lemma 4.1.6; however, when
replacing rows X; of Nj, with rows Z; that concentrate more sharply on V', we must
take care to only replace random rows of Nj,, (i.e., rows Xi, ..., X; must not be replaced

by Z;). See Appendix A.2 for details. O

In the exceptional case, The same structure theorem (Theorem 4.2.1) holds, leading

to the following lemma.

Lemma 6.1.9 (Exceptional space estimate, with f fixed rows). If f < (21n 7 o(l)) Inn,

then

> Pr(Ay) < p™/" (6.3)

VeGr(d+):V is exceptional
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Note that this upper bound is dramatically worse than the analogous upper bound

in Lemma 4.1.7 of n~ 2o,

Proof. Asin Lemma 4.1.7, the main step in the proof is applying the structure theorem
(Theorem 4.2.1). In the current context, Inequality (4.6) holds with n — f as the
exponent instead of n (since there are only n — f random rows). If we combine this
modified version of Inequality (4.6) with Inequality (4.7), then we have the bound

Z Pr(Ay) < n~2+°M pr(X;

VeGrj(d+):
V' is exceptional

e V) "Pr(X;, . eV) S

max max

3

=n 2t pr(X, eV)T

tmax

where by assumption X;_, is the random row such that Pr(X; .. € V) = maxj1<j<, Pr(X; €

max max

V). In order for this upper bound to achieve the desired bound in Inequality (6.3), it

is sufficient to have

n2tompr(X; e V)<, (6.4)

max

Using the assumption that Pr(X;,.. € V) > (p + cMedDim,je0)™" > p™" (since V is of

medium combinatorial dimension), we see that Inequality (6.4) holds whenever

< <21H(TW - 0(1)> Inn,

which completes the proof. O
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Appendix A

Lemmas in additive combinatorics

A.1 Two background results

A.1.1 A version of the Littlewood-Offord result in Z/QZ

If S C Q, then we can clear denominators and prove (as in [39, Lemma 2.4]) the large
combinatorial dimension estimate in R instead of working in Z/QZ, in which case we
can also use the Littlewood-Offord result over R (see [40, Corollary 7.13]), instead of
the version over Z/QZ given here in Lemma A.1.1. When working in R, the integral
approximation of Inequality (A.1) can be replaced by a limit going to infinity, and we
do not need any extra assumptions on ). In particular, we may take @ ~ exp(exp(Cn))
(see Remark 3.1.2).

For @) sufficiently large with respect to ¢, v, and n, it is clear that we have

%fe%:QZ (1 — 2q + 2qcos(2m€/ Q)™ < /01 (1 —2q + 2qcos(2mt))*/™ dt + %, (A1)

foralll <k <n.

Lemma A.1.1. Let Q be sufficiently large to satisfy Inequality (A.1), and let vy, ..., v, €
Z/QZ be such that vi,..., v are nonzero. Let {a;}]_; be a collection of random vari-
ables that are p-bounded of exponent r, and let Xy = aqv1 + -+ + anv,. Then, for

every x € Z/QZ we have

where cr,0 18 an absolute constant.

Proof. Our proof is closely modeled on the proof of [40, Corollary 7.13]. Let ﬂ](-” )

be the symmetric random variables from the definition of p-bounded of exponent r
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corresponding to ¢ (see Equation (2.1)). Then, we can compute

k .
1 (note that a; = 0 for j >
Pr(Xy = @ H |E(eq(ajaj;))| i
€€2/QLj=1 )
e 1/k
< — IE(eq(aja;€))|* (Holder’s inequality)
'111 Q Z Q&
Jj= EEL/QL
(where jo corresponds to
1
< — |E(6Q(Ozj0aj0£))|k the largest factor in the
@ £€L/QL
previous line)
bio A is p-bounded
1 since aj, is p-bounde
<= Z 1- Mt ij(),s COS(Qijo,SUjOS/Q)
Q €7/ — of exponent r)
1
= Q Z (1 —-2q+2q cos(27rbjo,1ij§/Q))k/r (since upjo.1 > 2q)
£€Z/QT
1
6 Z (1—2q+2q COS(27T§/Q))]€/T (by reordering the sum) .
§€L/QL

Combining the above inequalities with Inequality (A.1) and following the proof of [40

Corollary 7.13] to bound the integral, we have

1
Pr(Xy =x) < / (1 — 2q + 2qcos(2mt))*/™ dt + %
0

where c1,0 is an absolute constant. O

A.1.2 A generalization of a lemma due to Komlés [26]

This lemma is a generalization of the result in [26] (see also [3, Lemma 14.10], [22

Section 3.1], and [38, Lemma 5.3]).

Lemma A.1.2. Fiz n, and let p be a positive constants such that 0 < p < 1 and let r
be a positive integer constant. Consider the matriz Ny, taking values in Z/QZ, where
f < n/2 and Q is large enough to satisfy Inequality (A.1). If the collection of random

entries in Nj, is p-bounded of exponent r, then

Pr (there exists v € (1 such that N, - v = 0) < (p+o(1))" T,
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where
c
0 = {(vl, coypn) EZJQZ : at most (n — f) <1 — m) + 1 of the v; are nonzero} \ {0},

where the constant ¢ can be taken to be ¢ > 2In(100/p), and where 0 denotes the zero

vector.

Proof. Let Ej, = {there exists v € €; with at most k nonzero coordinates such that Ns
v =0}. Clearly,

Pr (there exists v € {1 such that Nj, -v = 0) < Z Pr(Eg \ Ex-1)-
1<k<(n—)(1- &, )+1

Inn

Let S be the set of all possible values that could appear as entries in Nj,, and let

Nf,”‘jl N be the n by k matrix consisting of columns ji,. .., ji of N,. Following [26,

FEREY)

Lemma 2] (see also [3, Lemma 14.10] and [38, Lemma 5.3]) we can write

Pr(Ek \Ek—l) < Z Z Z PT(RWSpnil,...,ik,l,H) PY(RWInilpnyikth)?
1<ji< 1<ii<e  H a (k — 1)-
<Jk:§n ~~~<ik,1§n

dimensional
hyperplane

spanned by S*

where

RwSpn;, ;. . = {rows i1,y ip—1 of Nypl, . span H} , and

Rwln;, . 4, , H = {all rows of Nﬁ"’jl except 1,...,1,_1 are in H} .

sk

Let U(k,p,q) be a uniform upper bound for Pr(row i is in H), where f+1 <i<n
and ¢ is the constant from Definition 2.1.1 (here, we mean uniform with respect to the

index sets {j1,...,Jx} and {i1,...,i}). Then we have

Pr(Eg \ Ey—1) < U(k,p,q)" " (Z) (k i 1>,

since k — 1 fixed rows of Nf,”‘jl . can span at most 1 hyperplane H of dimension

Ik

k—1.
8 .2

2
For k < ;;;T (a constant), we can set U(k,p,q) = p by the Weighted Odlyzko

Lemma (see Lemma A.2.1), giving us a bound of

Pr(Ep \ Ex_1) < (p+o(1))" 1. (A.2)
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8 .2
For 2;2—qur <k<(n-1% <1 — L) + 1, we use Lemma A.1.1 to set U(k,p,q) =

Inn
%. Since (3) (") < 227” we thus have

9 n—k—f+1
1 i ar 2
Pr(E;\ Ej_;) < =2 [ L0
r(Ep\ Bp1) < (qk‘)
As a function of k, this upper bound has strictly positive second derivative; thus,
8.2
the largest upper bound will occur at one of the extremal values of k = 2;%;JT
k=(n—f)(1—-1%) +1, and a bit of computation shows that
1 _
Pr(Ex \ Ex_1) < EO(p” n. (A.3)
Summing the bounds in Inequalities (A.2) and (A.3) completes the proof. O

A.2 The unexceptional case with | fixed rows

This section is adapted from the proof of [39, Lemma 4.1], and proves Lemma 4.1.6 by

cjeon

setting f = 0. Assume that § < , and let m be the closest integer to “2=*. Let

Z1,...,Zy be iid. copies of the unexceptional row vector Z5 ke from Definition 6.1.7,

so e Pr(Z; € V) >Pr(X; € V) for all f+1 < i < n. We will need the following version
of the Weighted Odlyzko Lemma:

Lemma A.2.1. [cf. [39, Lemma 4.3] or [22, Section 3.2]] For 1 < i, let W;_; be
an (f + i — 1)-dimensional subspace containing Xi,...,X; (which are fized, linearly
independent row vectors). Then

Pr(Z € Wi_y) < 0. )7
1“( i € z—l) = <p+ m) .

Proof. Since W;_1 has dimension { + ¢ — 1, there exists a set of f +i — 1 “determining”
coordinates such that if a vector V' € W;_y, then the f+i—1 “determining” coordinates
determine the values of the remaining n — f — ¢ + 1 coordinates. Since the maximum
probability that any of the n/r random coordinates in Z; takes a given value is at most
1 —p = p+ 155, and since there are at least % —f — i + 1 of the random coordinates

in Z; that are not among the “determining” coordinates, we have the desired upper

bound. 0
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Let Vp := Span{Xj, ..., X}}, the space spanned by the f fixed rows, and for 1 <7 <
m let By,; be the event that Zi,..., Z,, are linearly independent in V' \ V. We have

the following analog of Lemma 4.1.8 (and also [39, Lemma 4.4]):

Lemma A.2.2 (see Lemma 4.4 in [39]). Let m, §, and By, be as defined above. Then,

Pr (Bypm) > p™ <maxf+1<i<n Pr(X; € V)>m

€1
Proof. Using Bayes’ Identity, we have
m
Pr(Bym) = | [ Pr(Bv.lBv.i-1), (A.4)
i=1
where By denotes the full space of the Z;. Conditioning on a particular instance of

Zl, . >Zi—1 in BV,i—la we have that
PI‘(BVJ"BVJ_l) = PI‘(ZZ‘ S V) — PI‘(ZZ‘ S Wi_l),

where W;_; denotes the (f + i — 1)-dimensional space spanned by Xi,...,X; and
Z1,...,Z;_1. We will now establish a uniform bound that does not depend on which
particular instance of Zi,...,Z;_1 in By;_1 that we fixed by conditioning. By the

definition of unexceptional, we have

1
Pr(Z; e V) > — max Pr(X;eV),
€1 fi<i<n

and by the Weighted Odlyzko Lemma (see Lemma A.2.1), we have

Pr(Z; € Wi—1) < (p + %) o < (p + %) 7 (1= (em+cj)eo) ‘

Using Taylor’s Theorem with remainder (for example), one can show that

< €0 >%(1—(Cm+0f)ﬁo)

1 1
7 100 = n (p+ cMedniméo)™” < = max Pr(X; € V),

n j+1<i<n

so long as ¢\edDim > Wlo +em t+cp > Wlo + (¢m + ¢5)pln <%> and n is sufficiently large
(the second inequality in the display above is the definition of medium combinatorial
dimension).
Thus
Pr(By|Byi 1) > — < max Pr(X; € V)> (1-%),

€1 \J+1<i<n n
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and plugging this estimate back into Inequality (A.4) we get

Pr (Bym) = p°™ <ma‘xf+1ﬁi§n Pr(X; € V)>m.

€1

O

To conclude Lemma 6.1.8 (which implies Lemma 4.1.6 by setting f = 0), we will
proceed as in the proof for [39, Lemma 4.1].
Let Z1,...,Z,, be i.i.d. copies of ZZ),ko that are independent of the random rows

Xj1,...,Xp. Using independence and Bayes’ Identity we have

€1

PI‘(AV A BV,m) m
maxXj41<i<n PI‘(XZ S V) '

PI‘(A\/) = PI‘(A\/‘B\/,m) = PT(BV )

< PI‘(Av/\BVJn)p_O(n) <

Because the Z; are linearly independent in V' \ Vj, we know that there is a subset
Ic{f+1,f+2,...,n} of cardinality |I| = m, such that {Zy,...,Z,} U{X; :i & I}
spans V. Let Cyr be the event that {Zy,...,Z,,} U{X; : ¢ ¢ I} spans V. Then we

have

Pr(Ay ABym) < Y Pr(CysA{X;€V:iel}

IC{§+1,...,n}
|[T]=m
m
< ( max Pr(X; € V)) Z Pr(Cv ).
rrisi=n I1C{f+1,0m}
|[T]=m

Summing the above inequality over all unexceptional V' (note that >, Pr(Cy,;) < 1)

and combining with the bound for Pr(Ay ) above gives us

" (n— f —o(n) €1 "
< .
Z PY(AV) - <f+nllg}in Pr(XZ < V)> < m )p <maxf+1<,~<n PI“(XZ' € V))

unexceptional V'

< pomonem.,

This completes the proof of the estimate for unexceptional V.
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