
PHY-TECHNIQUES TO IMPROVE HIGHER-LAYER

FUNCTIONS IN WIRELESS NETWORKS

by

LIANG XIAO

A Dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Profs. Narayan Mandayam and Wade Trappe and Larry Greenstein

and approved by

New Brunswick, New Jersey

May, 2009



ABSTRACT OF THE DISSERTATION

PHY-Techniques to Improve Higher-Layer Functions in

Wireless Networks

By Liang Xiao

Dissertation Directors:

Profs. Narayan Mandayam and Wade Trappe and Larry Greenstein

The wireless medium contains location-specific information at various scales, and thus it can

serve in multiple ways to enhance the performance of wireless networks. In this thesis we

study the use of physical-layer information to improve higher-layer functions in the following

categories: (1) the use of the measured large-scale channel gain variations (due to power

spreading and shadowing) to estimate signal outage and to perform mobile localization;

and (2) the use of the measured small-scale channel gain variations (due to multipath) to

improve wireless network security.

We first consider sensor networks that record received signal strength for estimating

and updating network performance. Using a generic path-loss model incorporating dis-

tance effects and shadow fading, we apply the principle of importance sampling to the

sensor placements. This helps to minimize measurement costs while accurately estimating

outage probability and coverage holes, thereby improving the radio resource management

of wireless systems. We also analyze the use of sensor networks to locate mobiles, and we
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propose four simple-yet-accurate localization algorithms that meet E-911 requirements in

most environments. The localization performance can be further improved by implement-

ing a minimum mean square error (MMSE) algorithm which meets the Cramer-Rao lower

bound. However, the four simple proposed algorithms have much lower numerical complex-

ity than MMSE for real-time operation and require little a priori knowledge of the channel

parameters.

Next, we exploit the rapid-decorrelation property of the multipath channel to enhance

security in environments with rich scattering. We propose a channel-based authentication

scheme to detect both spoofing attacks (a spoofing node pretends to be another node to

gain access to network resources); and Sybil attacks (a Sybil node maliciously sends mul-

tiple service requests with different identities, in hopes of depleting network resources).

The scheme uses little additional system overhead, as it exploits pilots or preambles that

already exist in most wireless systems. A double-layer authentication protocol is devised,

whereby the scheme either combines with higher-layer security mechanisms, such as 802.11i

or works independently with some performance degradation. Verification that PHY-based

authentication provides good performance is performed using several methods, specifically,

stochastic channel modeling, site-specific ray-tracing and field tests.
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Chapter 1

Introduction

1.1 Motivation

Wireless communications are susceptible to interference and channel fading, which vary over

time in an unpredictable way. In general, interference from other radios can be controlled

by techniques, such as appropriate radio resource management, while the property of the

radio channel places fundamental limitations on the system performance.

Radio propagation is usually characterized by two models: The large-scale path gain

variation indicates how the locally averaged received signal strength (RSS) changes over

large transmitter-receiver (T-R) separation, and is usually described by the pathloss and

shadow fading models; and the small-scale gain variation, modeled in terms of multipath

and Doppler, captures the rapid fluctuations of path gain over very short distances (a few

wavelengths) or short time duration [1].

We study how to exploit the properties of the radio channel to improve higher-layer

functions for wireless networks, notably, cellular networks and wireless local area networks

(WLANs). We focus on four applications: The estimation of the signal coverage outages

of cellular systems and the localization of mobile terminals (MT), both using large-scale

variation information; and the detection of spoofing attacks and Sybil attacks, both based

on using small-scale variation information.
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Figure 1.1: System topology of the distributed measurements that use a large number
of sensors with known locations to measurement the recieved signal strength for wireless
systems, such as cellular systems and WLAN.

1.2 The Use of Large-Scale Variations Measurements

The first two applications, signal coverage estimation and mobile localization, are both

accomplished by using distributed measurements. As shown in Fig. 1.1, the distributed

measurements can be performed via many low-cost sensors over the area of interest. Each

sensor is located at known locations and estimates and updates the received signal strength

information. While we focus here on applications to cellular, the technique also has the

potential to work in cognitive radio systems.

The sensor-based distributed measurements provide round-the-clock services, and can

react to gradual changes in propagation, e.g., new structures, especially in cities, or interfer-

ence which may change due to adaptive beamforming. The use of distributed measurements

is not labor-intensive, and moreover, it is easy to ensure that data is available at all times, so

as to facilitate slow adaptive changes in radio resources. The sensors can be numerous and

measurements can be gathered more-or-less uniformly from known locations, facilitating
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reliable outage evaluations. In fact, the potential exists to accurately pinpoint chronically

poor service areas that arise after initial planning, and to identify the need for new or reengi-

neered sites. Additionally, the sensor network could be extended to support multiple air

interfaces within overlapping coverage regions (e.g., wireless LAN, DVB-H deployments).

The first application of distributed measurements, coverage outage estimation in cellular

environments, can be used not only for medium-term radio resource management, but also

for longer-term engineering, e.g., identifying the need for new cell sites.

The second application, the collection of the location information of mobile terminals,

can be used to improve radio resource management, mobility management, and overall

cellular system design [2]. Also, the Federal Communications Commission (FCC) initially

required all wireless carriers to report the location of E-911 callers with an accuracy of 125

m in at least 67% of cases [3]. This rule was later adjusted to 100 m or less in 67% of all

cases, and 300 m or less in 90% of all cases [4].

1.3 The Use of Small-Scale Variation Measurements

The rapid proliferation of wireless networks has changed the landscape of network security.

Security has become a significant concern in wireless networks and subscribers demand pro-

tection of their privacy, as wireless platforms are being used to access an increasing amount

of security-sensitive services, such as e-commerce and online banking. Security in wired

networks has been thoroughly studied, resulting in many encryption and authentication

mechanisms proposed for multiple layers in the communication OSI protocol stacks. Al-

though conventional cryptographic security mechanisms are essential to securing wireless

networks, these techniques do not directly leverage the unique properties of the wireless

domain to address security threats.
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1.3.1 Security Mechanisms in Wireless LAN

In a typical wireless LANs, the mobile wireless devices communicate though the wireless

channel with a centralized, stationary access point (AP) that might be connected to a wired

network.

The first link-layer security protocol developed for WLAN is the wired equivalent pri-

vacy (WEP) scheme, which was aimed at providing a security level comparable to that with

a wired network. An RC4-based stream cipher is used for the encryption and a cyclic redun-

dancy check (CRC) is utilized as the integrity checksum. A challenge-response handshake

is used to authenticate the stations. Unfortunately, WEP has been proved to have severe

flaws, such as key reuse, weak RC4 keys, linear checksum, and one-way authentication.

In order to amend these flaws of WEP, the Wi-Fi alliance released a second standard

called Wi-Fi Protected Access (WPA) in 2002. The important new features introduced by

WPA include the temporal key integrity protocol (TKIP), which addresses the key reuse

and weak key attack problems, message integrity codes (MICs), which provide better data

integrity protection; and 802.1x authentication, which provides stronger authentication,

authorization, and key management.

Later, in 2004, a next-generation WPA, or WPA2, or 802.11i was released by IEEE

802.11 Task Group i. This standard is based on WPA and retains many WPA features,

such as TKIP/Michael and 802.1x. On the other hand, instead of the RC4 steam cipher,

802.11i utilizes the Advanced Encryption Standard (AES) in counter mode with CBC-MAC

Protocol (CCMP) for data encryption [5]. In spite of all these efforts, 802.11 systems still

have security vulnerabilities, as shown in [6, 7].
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1.3.2 Security Threats to Wireless Networks

Compared to their wired counterparts, wireless networks are especially vulnerable to secu-

rity threats. First of all, the broadcast nature of radio implies that no physical connection

is required for access to a wireless network. As consequence, wireless networks are open to

intrusion from the outside without the need for a physical connection.

Second, mobile devices usually identify themselves with their MAC address. In com-

modity networks, such as 802.11, it is easy for a device to alter its MAC address and claim

to be another device by simply issuing an ifconfig command. The development of new

wireless platforms, such as cognitive radio, provides attackers even more power to implement

attacks.

Furthermore, mobile nodes in a wireless network require high energy efficiency and

can not support algorithms with high complexity and computation costs. For example,

in sensor networks, low-power/low-cost algorithms are highly desirable. Moreover, time-

variant fading of the wireless medium, due to both node mobility and environment changes,

introduces new challenges to network security.

As a result, techniques that would provide a high level of security in a wired network

have proven inadequate in a wireless network, as many motivated groups of students have

readily demonstrated [8–10]. Let us review some attacks that seriously threaten wireless

networks:

• Spoofing/masquerading: An attacker can claim to be given mobile or access point

(AP) by using their identities, such as the MAC address.

• Sybil attacks: An attacker claims to be multiple users in hopes of depleting the

network resources.
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• Jamming: An attacker can jam the wireless network at the physical layer by trans-

mitting while a nearby user is sending or receiving signals and thus prevent nearby

legal users from accessing the network.

• Man-in-the-middle attacks: If an attacker manages to stay between a mobile and a

AP, and can intercept and spoof the messages on-the-fly, then he/she can act as a

rogue AP, replaying false messages between the mobile and the AP.

• Session hijacking: An attacker can hijack an established session by first breaking

the session connection, and then spoofing the mobile/AP and replaying the previous

authentication messages.

Wireless networks are vulnerable to these attacks because the MAC-layer or even higher-

layer security mechanisms do not offer mutual authentication or protection before the estab-

lishment of authentication. More specifically, an adversary device can perform Sybil attacks

and/or spoof management frames/control messages in a wireless system. Possible results

include session hijacking, Man-in-the-middle attacks and denial-of-service (DoS) attacks,

even in presence of the advanced security mechanisms, such as 802.11i [6, 7].

1.3.3 Channel-based Authentication

The physical properties of the wireless medium are a powerful source of domain-specific

information that can be used to complement and enhance traditional security mechanisms.

In rich multipath environments typical of wireless scenarios, the response of the medium

along any transmit-receive path is frequency-selective (or in the time domain, dispersive) in

a way that is location-specific. This means:

• The channel can be specified by a number of complex samples either in the frequency
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domain, i.e., a set of complex gains at a set of frequencies, or the time domain, i.e., a

set of impulse response samples at a set of time delays.

• Such sets of numbers decorrelate from one transmit-receive path to another if the

paths are separated by the order of an RF wavelength or more.

Therefore, we could use the channel response to discriminate among transmitters, and

thus detect various identity-based attacks, such as spoofing attacks and Sybil attacks. While

using the physical layer to enhance security might seem to be a radical paradigm shift for

wireless systems, we note that this is not the first time that multipath and advanced physical

layer methods have proven advantageous. Specifically, we are encouraged in our belief by

two notable parallel paradigm shifts in wireless systems:

• Code division multiple access (CDMA) systems [11], where the use of Rake processing

transforms multipath into a diversity-enhancing benefit; and

• Multiple-input multiple-output (MIMO) antenna techniques [12], which transform

scatter-induced Rayleigh fading into a capacity-enhancing benefit.

1.4 Thesis Roadmap

In Chapter 2, we consider a received signal strength (RSS)-based distributed measurements

that estimate the signal coverage for cellular systems. A large number of sensors are placed

in the area and they measure the received signal strength. By applying the principle of

importance sampling and a generic path-loss model, we propose an efficient sensor placement

method, which reduces the required number of nodes for a given measurement accuracy. A

higher measurement efficiency can have a substantial payoff, in terms of both the drain on

sensor batteries and the information bandwidth needed by sensor networks.
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In Chapter 3, we investigate the localization of MTs, using distributed measurements.

Each sensor has an identifying code and a fixed and known location, and it measures the

received signal power from transmitting MTs to estimate their locations. Our work is based

on RSS or power measurement approach, which is relatively inexpensive and simple to

implement in hardware [13]. In the system we consider, it is very likely that some sensors

are located very close to the MT, and thus simple-yet-accurate localization schemes are

possible.

In Chapter 4, we exploit the rapid spatial-decorrelation property of the channel response

in environments rich with scatterers to detect spoofing attacks in wireless networks. We

describe a physical-layer authentication technique that combines channel probing with hy-

pothesis testing. More specifically, the channel frequency response is used to discriminate

among transmitters, e.g., to determine whether current and prior communication attempts

are made by the same user (same channel response). We consider practical issues, such as

environmental changes, terminal mobility, channel estimation errors, and multiple antenna

techniques. The performance of scheme is analyzed based on stochastic channel model-

ing, site-specific ray tracing, and experiments using 802.11 testbench within typical indoor

environments.

We apply the channel-based authentication technique to detect Sybil attacks in Chapter

5. We build a hypothesis test to detect Sybil clients for both wideband and narrowband

wireless systems, such as WiFi and WiMax systems with low overhead. This Sybil detec-

tion scheme can be implemented either independently or combined with the channel-based

spoofing detection. The performance of our Sybil detector is verified, via both propagation

modeling software and field measurements using a vector network analyzer. Our evaluation

examines numerous combinations of system parameters, including bandwidth, signal power,
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number of channel estimates, number of total clients, number of Sybil clients, and number

of APs.

In the last part of the thesis, in Chapter 6, we conclude and discuss future work.
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Chapter 2

RSSI-based Coverage/Outage Estimation for Cellular

Systems

In a coverage outage area, the mobiles have inadequate signal-to-noise ratio (SNR) or signal-

to-interference ratio (SIR), and consequently call drops or handovers are very likely to take

place. The knowledge of the outages is important for radio resource management and

longer-term engineering, such as site planning, for commercial wireless networks, such as

cellular systems, WLAN and DVB-H (digital video broadcasting - handheld).

To estimate the outages for wireless networks, we propose a distributed measurement

via a number of low-price power-measuring nodes, such as sensors, at known locations.

This method is not labor-intensive and is available at all times to accommodate slow adap-

tive changes in radio resources. Our focus is to improve the efficiency of the distributed

measurement, which reduces the overall costs of the measurements.

2.1 System Model

We consider a scenario involving distributed measurements with N sensors in a given cellular

cell with radius R, where the sensors measure the power of a downlink (DL) pilot signal

from the base station (BS). We assume that the sensors perform the measurement over a

bandwidth sufficiently wide (5 MHz or more) that multipath fading is essentially averaged

out. Thus, the measurement of the signal power received by the i-th sensor, Pi, combined
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with knowledge of the DL transmit power per user and the antenna gains, permits the

network to estimate the DL path loss, PLi, i = 1, · · · , N .

For our purposes, it is fair to assume that the antenna gains are independent of sensor

position, so that the variation of Pi precisely tracks the variation of PLi, i.e., Pi = C−PLi,

where C is the same for all sensors.

For SNR-based estimation of outage probability, we compare the path loss, PLi, to a

threshold value PL0. That threshold is the value at which a mobile receiver near the sensor

would have just enough fade-averaged SNR for good reception1. A hole in coverage (i.e., an

outage) is defined as a location whose path loss from the BS is greater than the threshold,

i.e., PL > PL0. The fraction of sensors measuring power below the threshold is the sensor

network’s estimate of the cell’s SNR-based outage probability. The SNR-based approach

is the same for the downlink and uplink, while the value of PL0 may differ for the two

directions, due to differences in transmit power, receiver noise level or air interface.

Placing the i-th sensor in a location with a distance di from the BS at an azimuth angle

ϕi, we assume that the squared distance, Di = d2
i , is drawn from a set of possible values

on (0, R2], whose underlying probability density function (PDF) is f(D); that each ϕi has

a uniform PDF on [0, 2π); and that all the Di and ϕi are mutually independent. Thus,

in populating a given cellular cell with N sensors, each sensor can be said to be placed

independently and randomly according to the underlying PDF f(D).

1The multipath-averaged SNR is a valid determinant of link performance (e.g., see [14] and [15]), which
is why our method is based on fade-averaged measurements.
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2.2 Large-Scale Path Loss

Assuming the model of [16], the path loss (PL) from a transmitter (Tx) to a location of the

receiver (Rx) in the environment is

PL[dB] = A + 10γ log(d/d0) + s, d > d0, (2.1)

where d is the T-R separation distance; d0 is a reference distance (typically, 1 m indoors and

100 m outdoors); the intercept A is given by 20 log(4πdo/λ), where λ is the wavelength [16];

the path loss exponent γ can range from 3 to 6, depending on the environment; the dB

shadow fading, s, is a Gaussian random variable with zero mean and standard deviation σ;

and σ can range from 3 dB to 10 dB, depending on the environment [17].

We assume that the autocorrelation of the spatial process s depends only on the sepa-

ration distance. More specially, if we consider one transmitter and two receivers (denoted

as the i-th Rx and j-th Rx), we have

E[sisj ] = σ2e−dij/Xc , i, j = 1, · · · , N, (2.2)

where dij is the distance between these receivers; and Xc, the shadow fading correlation

distance, ranges from several to many tens of meters [17].

2.3 Importance Sampling (IS) for Outage Probability Estimation

2.3.1 IS Concept and Analysis

We first consider a full-cell (FC) placement of sensors, based on a Monte Carlo method,

where N sensors are distributed randomly and uniformly over the full cell, with Di following
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the distribution of

f(D) =

⎧⎪⎪⎨
⎪⎪⎩

1/R2, 0 < D < R2

0, otherwise
. (2.3)

For given channel realizations, the outage probability estimated by a FC placement is an

average over measurements by N sensors, given by

p̂FC =
1
N

N∑
i=1

φ(ξi), (2.4)

where φ(·) is an indicator function, i.e., φ(ξi) = 1 if PLi > PL0, otherwise, φ(ξi) = 0.

Now we utilize important sampling (IS) theory in the sensor placement, where more

sensors are placed in areas where the outage is more likely to happen. We denote the

corresponding PDF of D and d as f∗(D) and f∗
d (d), respectively. The estimated outage

probability is

p̂IS =
1
N

N∑
i=1

φ(ξ′i)W (ξ′i), (2.5)

where ξ′i is the location of the i-th sensor, generated according to f∗(D). The weight

function W (·) seeks to “undo” the bias due to sampling with the biased placement.

The estimate of outage probability must be unbiased, i.e., E[p̂IS ] = E[p̂FC ]. Also,

the variance should be smaller, i.e., V ar[p̂IS ] < V ar[p̂FC ], which means that its estimate

is sharper than that for full-cell placement with same amount of sensors, or equivalently,

requires fewer sensors for the same estimate sharpness. The average and the variance

are taken over different random selections of the sensor positions and the shadow fading

realizations. This is the essence of importance sampling [18].

We now consider how to satisfy the two conditions: (1) unbiased estimates of the outage

probability, P0, and (2) minimal estimator variance. To gain insight with minimal complex-

ity, we assume Xc = 0 in the current analysis, i.e., the dB shadow fadings are i.i.d. Gaussian
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variables N(0, σ2). In our later computations, we will take shadow fading correlations into

account.

Following Eq. (2.1) and (2.4), we have the average outage probability of FC placement

over all realizations of the shadow fading as

P̂FC =
1
N

N∑
i=1

Pr(A + 10γ log(di/d0) + si > PL0)

=
1
N

N∑
i=1

Q(
β − α log(Di)

σ
), (2.6)

where α = 5γ, β = PL0 − A + 10γ log(d0).

Similarly, by Eq. (2.5), the average outage probability of IS placement is given by

P̂IS =
1
N

N∑
i=1

Q(
β − α log(D∗

i )
σ

)W (D∗
i ). (2.7)

Condition 1 above amounts to E[P̂FC ] = E[P̂IS ] = P0, and by Eq. (2.6)(2.3), we have

P0 = Ef(D)[P̂FC ] = E[Q(
β − α log(D)

σ
)]

=
1

R2

∫ R2

0
Q(

β − α log(D)
σ

)dD. (2.8)

By (2.7), we also require that

W (D) =
f(D)
f∗(D)

=

⎧⎪⎪⎨
⎪⎪⎩

1
R2f∗(D)

, 0 < D < R2

0, o.w.
, (2.9)

which indicates that f∗(D) > 0, for any D ∈ (0, R2].

Condition 2 amounts to minimizing V ar[P̂ ]. By (2.7) and (2.9), we have

V arf∗(D)[P̂ ] = Ef∗(D)[P̂
2] − P 2

0

=
1

N2
E[

N∑
i=1

N∑
j=1

Q(
β − α log(D∗

i )
σ

)W (D∗
i )Q(

β − α log(D∗
j )

σ
)W (D∗

j )] − P 2
0

=
1
N

Ef∗(D∗)[(Q(
β − α log(D∗)

σ
)W (D∗))2] − P 2

0

N

=
1

NR4

∫ R2

0

Q2(β−α log(D)
σ )

f∗(D)
dD − P 2

0

N
, (2.10)
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where the third line follows from the independence of W (D∗
i ) and W (D∗

j ), for i �= j.

Based on these two conditions, we can derive f∗(D) for the optimal sensor placement.

Noting that
∫ R2

0 f∗(D)dD = 1 and f∗(D) ≥ 0 by definition, we have

min V arf∗(D)[P̂ ]

s.t.
∫ R2

0 f∗(D)dD = 1,

(2.11)

where f∗(D) > 0, for 0 < D < R2. Its Lagrangian form is

L(f∗, λ) =
∫ R2

0

Q2(β−α log(D)
σ )

f∗(D)
+ λf∗(D)dD. (2.12)

Then the optimization reduces to minimizing

L2(f∗, λ) =
Q2(β−α log(D)

σ )
f∗(D)

+ λf∗(D), (2.13)

leading to the following solution for the PDF of D:

f∗(D) =

⎧⎪⎪⎨
⎪⎪⎩

Q(β−α log(D)
σ )/η, 0 < D < R2

0, otherwise
, (2.14)

where η =
∫ R2

0 Q(β−α log(x)
σ )dx, according to the constraint in (2.11). The corresponding

optimal PDF for d is

f∗
d (x) =

⎧⎪⎪⎨
⎪⎪⎩

2xQ(β−2α log(x)
σ )/η, 0 < d < R

0, otherwise
. (2.15)

This is a parametric scheme in that it requires knowledge of channel parameters, such as

σ and γ (= 0.2α). Further, this optimal placement essentially requires knowledge of the

outage probability P0, as can be seen from (2.8) and the above definition of η. In traditional

IS methods, such an optimal solution is referred to as degenerate, since it requires knowledge

of the true value of the quantity being estimated.
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2.3.2 Semi-Parametric Placement Schemes

Motivated by the importance sampling idea above and to overcome the degenerate problem,

we propose three sensor placement schemes that are semi-parametric, that is, each exploits

the knowledge that power generally falls off with distance but does not attempt to know or

exploit the precise nature of that falloff. Each scheme is defined by the PDF it uses for the

base-to-sensor distance, d; the angular PDF in each case is uniform on [0, 2π], as before.

The three distance PDFs we consider are the following:

Scheme 1 : fd(x) =

⎧⎪⎪⎨
⎪⎪⎩

4x3/R4, 0 < x < R

0, otherwise
(2.16)

Scheme 2 : fd(x) =

⎧⎪⎪⎨
⎪⎪⎩

6x5/R6, 0 < x < R

0, otherwise
(2.17)

Scheme 3 : fd(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x
R2−R2

min
, Rmin < x < R

0, otherwise
(2.18)

Unlike the first two schemes, Scheme 3 is based on the assumption that there are no

holes in the cell center area, i.e., at locations with distances smaller than Rmin. Here, all the

sensors are distributed uniformly in the outer ring of the cell, i.e., at locations with distances

between Rmin and R. Accordingly, we call Scheme 3 partial-cell (PC) placement. From Fig.

3, we see that these PDFs, and especially the one for Scheme 2, are good approximations

to the PDF that was shown to be optimal for the case γ = 3.8, σ = 8 dB, Xc = 0 and

P0 = 0.05. How this translates into performance is a topic we address next.
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Figure 2.1: CDF of the distance between sensor and BS (d) for five sensor placement
schemes, including full-cell (FC) placement. The “optimal” scheme is for the case γ = 3.8,
σ = 8 dB, Xc = 0, R = 1000 m, and P0 = 0.05. Scheme 3 is partial-cell (PC) placement
with Rmin = 0.5R.

2.4 Simulation Results on Outage Probability Estimation

2.4.1 Preliminary Result

Figure 2.2 presents the probability that the error in estimating Po falls within ±20% of the

true value, which is 0.05 in this example. Similar results are obtained for Po = 0.10. It is

seen that the three IS-based schemes cited above have similar performance, and all of them

are better than full-cell placement. Among the IS-based schemes, Scheme 3, partial-cell

placement given by (2.18), is easy to implement and has very good performance. In the

remainder of this section, we will compare it with full-cell placement for both SNR-based

and SIR-based outages and for both indoor and outdoor environments.

2.4.2 Simulation Approach

In our simulations, we initially assume a circular cell of radius R (later, we discuss circular

vs. hexagonal cell shapes), and we assign values to R and the propagation parameters in
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Figure 2.2: Estimation performance, b = Pr[|P̂0 − P0| < 0.2P0], vs. the number of sensors
in a cell, N , with cell radius R = 1000 m, γ = 3.8, σ = 8 dB, Xc = 50 m, and P0 = 0.05.

Eq. (2.1) and (2.2). We simulate some number, Nsh, of statistically similar cells, with each

having a different spatial variation of s, the dB shadow fading. We start by simulating

s(ξ) for Cell 1, where ξ denotes position within the cell. This random spatial variation is

simulated using (2.2) and Cholesky decomposition described in [19]. The next step is to

choose a value for N , the number of sensors per cell; a placement for the N sensors; and

a path-loss threshold, PL0, the determination of which is described below. Finally, the

path-loss at each of the sensors is computed, and the outage probability in Cell 1, p0(1), is

determined as the fraction of sensors for which PL > PL0.

With s(ξ) fixed, the N -sensor placement is chosen a total of M times and, if M is

sufficiently large, the mean and standard deviation of p0(1), μ1 and σ1, respectively, can be

estimated. (Note that these are the mean and standard deviation taken over the random

placements of the N sensors within the cell.) This procedure is repeated for a total of Nsh

generations of the shadow fading variation s(ξ), corresponding to Cells 1, · · · , Nsh. The

average of μj over j is the network’s estimate, denoted by P ∗
0 , of the true outage probability;

and the average of σj over j, denoted by ρ, is the network’s estimate of the intra-cell standard



19

deviation due to the random N -sensor placement. We call ρ the “sharpness” of the estimate,

and seek to make it as small as 0.25P0 or less.

The baseline value of P0, i.e., what we assume to be the true one, is obtained by first

assigning an extremely large value for N . We have found, by a combination of analysis

and simulation not shown here, that N = 4000 would yield precise estimates in any cell,

with negligible variation from one placement of N sensors to another. For that N , we (1)

computed outage probability for each of Nsh realizations of s(ξ), for each of several values of

path-loss threshold, PL0; (2) averaged over the Nsh values for each PL0; and (3) took the

result to be the “true” outage probability, P0, for that path-loss threshold. We were thus

able to identify the values of PL0 producing average outage probabilities of 0.05 and 0.10.

We applied the procedure described in the previous paragraph for each of these P0-values,

using practical values of N (namely, 50, 100, 200, 300, and 400). For each of these N , we did

M = 200 placements for each of Nsh = 10 realizations of the shadow fading variation, s(ξ).

2.4.3 Simulation Performance

First, we investigate an outdoor system with the usual hexagonal cells, in particular, a center

cell and six surrounding cells. The center cell, for which we will analyze outage probability

estimation, is conveniently assumed to be circular, with a radius, R, chosen such that the

circle has the same area as the actual hexagonal cell. This will simplify analysis with no

loss in accuracy; other studies (e.g., [20]) have shown cell shape to be a negligible factor so

long as cell area is preserved2. The shadow fading parameters (σ, Xc) are initially set at

(8 dB, 50 m). We set PL0 at values that yield “true” outage probabilities, P0, of 0.05 and

0.10. For each of these two values, we have computed the corresponding estimate, P ∗
0 , for

2We note further that the regular hexagon closely approximates a circle, which is why early investigators
chose it as the tessellating shape to use in cellular studies [21], [22].
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both full-cell sensor placement (Rmin = 0) and partial-cell placement (Rmin = 0.5R and

0.7R).

Simulation results for P ∗
0 are shown in Table 2.1. The estimates obtained are indepen-

dent of N except for a slight fluctuation due to finite simulation, so the numbers shown

are averages of those obtained for several values of N . We see that the estimation of P0 is

virtually unbiased for Rmin up to at least 0.5R, i.e., there are virtually no outages to be

counted at smaller distances. At Rmin = 0.7R, however, the estimation is biased downward

because outages can occur at base-terminal distances between 0.5R and 0.7R and are not

counted.

For the same case, we obtained simulation results for ρ, the average standard deviation

of the estimate resulting from the random placement of N sensors. Here, we expect to

see a decrease with N , as is confirmed by the plots in Fig. 2.3. The “sharpness” of the

estimates improves not only with increasing N , but also with increasing Rmin, because

larger Rmin leads to a higher density of sensors in the area containing them. A near-best

tradeoff between small bias error and maximum “sharpness” occurs for Rmin = 0.5R, at

least for the assumed model. For ρ to be no greater than 0.25P0, the figure shows that the

required N for P0 = 0.05 is about 200 for Rmin = 0.5R and around 300 for Rmin = 0 (full

placement). For P0 = 0.10, the required N -values are around 100 and 150, respectively.

Thus, a simplified form of importance sampling reduces the required number of sensors by

about 33%. The general rule is that, with Rmin = 0.5R, the required N is ∼ 10/P0, which

is consistent with binomial statistics.

While the above study of SNR-based outage probability was generic, the study of SIR-

based outage probability requires specificity about the radio interface. For this purpose,

we assume a CDMA system with a spreading factor of 128 and a required receiver output
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Figure 2.3: Standard deviation of estimate for P0 = 0.05 and 0.10, R = 1000 m, and
(Xc, σ)=(50 m, 8 dB).

SIR of 5 dB. For simplicity, we assume that the downlink co-channel interference from the

six surrounding cells is dominant. Also, we assume that each sensor is able to identify,

from downlink pilots, the power from each base (its own plus the six nearest interfering

bases) [23]; that each base is transmitting its full rated power; and that an “outage” occurs

for a mobile if its serving base runs out of power before it is able to meet that mobile’s SIR

requirement. These assumptions, combined with the above path-loss model, enable us to

compute outage probability for a given number, K, of active mobiles per cell (or sector).

Some results are given in Table 2.1, where the increase in P0 with K, due to the dividing

of transmit power among more mobiles, is evident but mild.
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Table 2.1: Estimated Downlink Outage Probability.
CASE Rmin = 0 Rmin = 0.5R Rmin = 0.7R

SNR-Based; Outdoor Cell (R = 1000 m); (σ, Xc)=(8 dB, 50 m)
“True” P0 = 0.05 0.050 0.050 0.044
“True” P0 = 0.10 0.100 0.098 0.086

SNR-Based; Indoor Cell (R = 100 m); “True” P0 = 0.10
(σ, Xc)=(8 dB,8 m) 0.100 0.099 0.089
(σ, Xc)=(8 dB,50 m) 0.099 0.100 0.092
(σ, Xc)=(10 dB,50 m) 0.100 0.099 0.089
SIR-Based; Outdoor Cell (R = 1000 m); CDMA System; (σ, Xc)=(8 dB, 50 m)
K = 4 (P0 = 0.076) 0.075 0.074 -
K = 8 (P0 = 0.088) 0.088 0.087 -
K = 12 (P0 = 0.103) 0.103 0.100 -

2.5 Conclusion

We applied the principle of importance sampling to improve the efficiency of the distributed

measurements in cellular systems. Specifically, we investigated ways to minimize the num-

ber (N) of sensors needed to estimating the signal coverage of the cells. We derived, for a

particular set of parameters, an optimal sensor placement scheme for estimating cell out-

age probability; and we used it to postulate schemes that require no specific parameter

information. Among them, we emphasize a version of partial-cell placement, wherein the

power-measuring sensors are distributed in a random uniform way over base-mobile dis-

tances from 50% to 100% of the cell radius. Its performance was compared with that of

full-cell placement. It was shown that a cell outage probability of P0 can be accurately

estimated using ∼ 10/P0 sensors with partial-cell placement; and that this represents a

reduction, relative to full-cell placement, of ∼ 33%. This result applies to both SNR-based

and SIR-based outage estimation for both indoor and outdoor environments [24,25].



23

Chapter 3

RSSI-based Mobile Localization for Cellular Systems

In cellular systems, location information associated with mobile terminals (MTs) is collected

to improve radio resource management, mobility management, and overall cellular system

design [2]. Further, the Federal Communications Commission (FCC) initially required all

wireless carriers to report the location of E-911 callers with an accuracy of 125 m in at least

67% of cases [3]. This rule was later adjusted to 100 m or less in 67% of all cases, and 300

m or less in 90% of all cases [4].

To address this problem, we investigate the localization of MTs using the distributed

measurements described in previous chapter. For this chapter, we note that the sensors

measure the received signal power from transmitting mobiles, instead of from the BS. In

this system, it is very likely that some sensors are located very close to the MT, so that

simple-yet-accurate localization schemes should be possible.

3.1 Related Work

Related work in the area of user localization based on received power falls roughly into four

categories: (1) In-building infrared networks, (2) cellular networks based on RF, (3) global

positioning system (GPS) and (4) sensor networks [26–30].

Accordingly, the MinMax algorithm was proposed for N -hop sensor networks to obtain

an initial coarse estimate of sensor locations [28]. The least squares (LS) algorithm linearizes
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the triangulation formulas of the distance between anchors (i.e., the sensors with known

locations) and the unknown sensor, and then uses the standard least-squares approach to

solve the linearized equations [29]. Similarly, in the Euclidean algorithm, up to two possible

sensor positions are obtained by strictly solving the triangulation formulas of two anchors,

and then the position of the unknown sensor is determined by the vote of the third anchor if

necessary [30]. It often flags the case with large distance estimation error, through a failure

to achieve intersecting circles. Such a flag can signal the location algorithm to switch to a

more robust scheme.

3.2 System Model of Sensor-Assisted Localization

The model of the sensor network is almost the same as described in the previous chapter,

though the sensors measure the power of signals coming from mobiles instead of BSs. We

denote the sensor locations as L1, · · · ,LN , where Li = [xi, yi]T , i = 1, 2, · · · , N . The

received power and path-loss associated with location Li are Pi and PLi, respectively.

Power-based localization in a sensor-assisted cellular system can be implemented in two

steps:

Step 1: The system collects the received signal power information Pi from N sensors. For

convenience, i is ordered such that Pi decreases with i (P1 ≥ P2 ≥ · · · ≥ PN ).

For most of the schemes considered here, the distances di is estimated from PLi via

(2.1), assuming that A and γ are known and the shadow-fading components si are unknown.

Estimating di is possible by assuming that si = 0, leading to

d̂i = d0 · 10(PLi−A)/(10γ). (3.1)

The estimation error for di results from the existence of unknown shadow fading and any



25

errors in estimating A and γ.

Step 2: To estimate the location of the MT, θ = [θ1, θ2]T , we select the first n data values,

estimated by sensors with the n strongest powers. Compared with localization algorithms

using data from all N sensors [26], this not only simplifies the implementation and saves

energy, but also improves the estimate accuracy, as we will discuss in Section 3.3.

The postulated sensor-based system can use existing localization algorithms, such as

MinMax [28] and Least Squares [29], but we also consider two new schemes (Weighted

Average and Modified Euclidean), as follows:

Weighted Average (WtdAv) Method: This method requires no a priori information on

A or γ, and does not need to estimate the distances between the MT and the sensors. The

location of the MT is assumed to be an average of the locations of the nearby sensors,

weighted by their received signal powers, i.e., θ̂ = [
∑n

i=1 xiwi,
∑n

i=1 yiwi]T , where wi =

Pi/
∑n

j=1 Pj .

Modified Euclidean (ModEuc) Method: This method is an extension of the Euclidean

algorithm [30], wherein WtdAv with n ≥ 3 is invoked if and only if the Euclidean algorithm

fails to produce intersecting circles. We will see that ModEuc provides a good combination

of accuracy and robustness to conditions; and obviously, it has better coverage than the

Euclidean algorithm, especially under heavy shadow fading. For example, with γ = 3.8,

σs = 8 dB, Xc = 80 m, and N = 200 sensors in an outdoor cell with a radius of 1000 m,

the Euclidean algorithm fails in 63% of the cases where ModEuc succeeds.
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3.3 Simulations, Results and Discussion

3.3.1 Simulation Approach

We developed a simulation platform for determining the error statistics for different propa-

gation conditions and system parameters. If not specified otherwise, the numerical results

we present will be for the specific case of an outdoor cell, with a cell radius of 1 km; a

reference distance d0 = 100 m; a frequency of 2.4 GHz; a path-loss exponent, γ, of 3.8; and

a correlation distance Xc = 80 m.

In the simulations, we first generate a total of Nsh “scenarios”, a scenario consisting of a

randomly chosen MT location and a spatial distribution of the dB shadow fading component,

s, as characterized by (2.2). For each scenario, we generated M random placements of N

sensors, with M being a program variable. We chose Nsh = 50 and M = 300, for a

total of 15,000 trials. In each trial, we determined the location estimate for each of the

methods, compared it with the true MT location, and thus determined the location error,

ε, in meters. From the 15,000 values of ε for each method, we obtained a CDF, determined

the 67th percentile value, and also computed the RMS value.

3.3.2 Numerical Results

As noted, the localization schemes select n out of N data values, i.e., the data collected by

those sensors with the n strongest powers. Figure 3.1 presents the impact of n on the 67th

percentile and the RMS estimation error, with 3 ≤ n ≤ 32 and the parameters indicated in

the caption. We see that WtdAv is not sensitive to n, because the additional data brought

in by a larger n are weighted by smaller values (Pi/
∑

j Pj). ModEuc is also insensitive to

n, since the Euclidean method itself is based solely on the three nearest sensors; thus, n > 3
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only applies when WtdAv is brought in.

MinMax tends to be less accurate as n rises. From Eq. (2.1) and Eq. (3.1) we

see that the absolute estimation error of the distance between MT and the i-th sensor,

|d̂i − di| = di|10si/(10γ) − 1|, is approximately proportional to the distance di itself. Thus

the distance estimate from a farther sensor is usually less accurate, especially in these

sparsely distributed sensor networks. Since MinMax does not weight the measurements, its

performance degrades when taking into account more “bad” data.

Similar comments apply to the LS scheme as well. The choice of n in that case is a bit

complicated: n = 4 and 5 yield the lowest 67th percentile, while n = 6 yields the lowest

RMS error. The large RMS errors seen for n < 5 arise from the occasional flip ambiguity

(illustrated in [31]), where the sensors line up and cause the estimated and true MT location

to be approximately symmetric about the line of sensors. We can assume that a practical

algorithm would avoid these cases, but to simplify our study (and since the 67th percentiles

are hardly different for n = 4, 5 and 6), we will assume n = 6 for the LS method.

Now we consider the selection of N , the number of sensors in each cell. Figure 3.2 shows

that the estimation error decreases with N for each scheme. Under large shadow fading

(σ = 8 dB), LS is the worst algorithm and all the other three schemes satisfy the FCC

requirement that the estimation error be less than 100 m for 67% of cases with N > 150.

For the case with negligible shadow fading (σ = 0.1 dB), all schemes satisfy the FCC

requirement using very small N . Note that the LS and ModEuc schemes yield almost zero

error with small shadow fading (assuming A and γ are precisely known).

From Fig. 3.3 we can see that the LS scheme is the most sensitive to σ among the four

schemes, followed by the ModEuc scheme. However, the latter has smaller 67th percentile

errors than others, as σ ranges from 0 to 8 dB. The performance of the WtdAv scheme is
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Figure 3.1: Error metrics vs. n, the number of strongest-power sensors used in the algorithm
(γ = 3.8, σ = 8 dB, Xc = 80 m, N = 200, outdoor cell with a radius of 1000 m). Note the
rough similarity of the RMS error to the 67% error in most cases.
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Figure 3.3: 67% error vs. σ (N = 200, γ = 3.8, Xc = 80 m, outdoor cell with a radius of
1000 m).

similar to that of MinMax, although the former does not require any a priori information

about A and γ. Besides, we can see that N = 200 is large enough (for a 1-km radius) to find

a scheme satisfying the FCC requirement over a wide range of σ. In the previous chapter,

we found that 200 sensors also enable the system to obtain accurate estimates of outage

probability.

Simulation results not presented here show that the estimation error of the algorithms

decreases with increasing γ. For example, the 67th percentile errors of MinMax are 90 m

and 140 m, respectively, for γ = 3.8 and 3, with σ = 8 dB, Xc = 80 m, and N = 200.

This is because the distance estimate is less accurate with a smaller γ for the same shadow

fading value.
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3.4 Lower Bounds and Parameter Estimation

To better assess the above results, we first invoke the CRB, which is the theoretical lower

limit on the variance of an unbiased estimator. We then describe the MMSE estimator,

which meets the CRB if the path-loss model parameters are perfectly known; and we show

how these parameters can be estimated using the N deployed sensors. Finally, we compare

RMS errors corresponding to the CRB, the MMSE estimator and the four simple schemes

when the parameter estimates are imperfect. We do this for a situation specifically devised

to simplify analysis, i.e., for spatially white shadow fading (Xc = 0). To simplify computa-

tions as well, we further assume that N and the cell radius are reduced (N = 20 and the

radius is 316 m), thereby keeping sensor density the same while significantly reducing the

running time.

3.4.1 Cramer-Rao Bound (CRB)

The CRB is the lower bound for the variance of any unbiased estimator, and provides

a benchmark for determining how far practical location algorithms are from ideal [32].

Following the derivation in [33], we compute the Fisher information matrix for the estimator

of θ with observation z = [PL1, · · · , PLN ]T , which is given by

F = (
10γ

σs log 10
)2Eθ,L1,··· ,LN

(

⎡
⎢⎢⎣ Σi

(θ1−xi)
2

d4
i

Σi
(θ1−xi)(θ2−yi)

d4
i

Σi
(θ1−xi)(θ2−yi)

d4
i

Σi
(θ2−yi)

2

d4
i

⎤
⎥⎥⎦). (3.2)

For any unbiased estimator based on power measurements, we have

E{||θ − θ̂||2} ≥ CRB = (F−1)1,1 + (F−1)2,2. (3.3)

Note that the MT and sensor locations (θ, L1, · · · , LN ) are viewed here as random variables,

instead of as nonrandom parameters as in [33]. This is because most existing estimators,
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including the bias-corrected ML estimator in [34], are usually biased for a specific asymmet-

ric MT-sensors topology. Meanwhile, most estimates of θ become unbiased, if averaged over

all possible topologies, because of the symmetry. Assuming that the MT and N sensors

are uniformly distributed in the cell, we can use (3.2) to numerically calculate the CRB.

If an efficient estimate exists, the CRB can be approached by the MMSE estimator [32],

discussed next.

3.4.2 MMSE Estimator

For the channel model in Sector 2.2, the minimum-mean-square error (MMSE) estimate of

θ with observations of z and known sensor locations is given by

θ̂i =
∫ ∞

−∞
θip(θi|z)dθi =

∫ ∞
−∞

∫ ∞
−∞ θip(z|θ)p(θ)dθ1dθ2∫ ∞

−∞
∫ ∞
−∞ p(z|θ)p(θ)dθ1dθ2

, i = 1, 2, (3.4)

where

p(z|θ) =
exp(−

∑
1≤i≤N

(PLi−A+10γ log10(d0)−5γ log10((θ1−xi)
2+(θ2−yi)

2))
2

2σ2
s

)

(
√

2πσs)N
, (3.5)

and p(θ) has a value equal to the inverse of the cell area if θ is inside the cell, and is

zero otherwise. Implementation of the MMSE algorithm clearly requires knowledge of

the channel model parameters, A, γ, and σ. We now discuss their estimation from finite

measurements.

3.4.3 Estimating the Model Parameters

Among the four described schemes, only WtdAv can operate without knowledge of the

model parameters, (2.1), which are known to vary from cell to cell. The other three rely

on knowledge of A and γ, and Figs. 3.1-3.3 are based on perfect information. The MMSE

estimator, moreover, requires knowledge of σ as well. It also requires an inordinate amount
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of computation, (3.4), which is not readily accomplished in a real-time operation like local-

ization. Quantifying this computational problem is beyond the scope of this work, but we

can address the method, and impact, of parameter estimation.

We assume that the N sensors in a cell measure the N(N − 1)/2 path-losses among

them. The sensor network knows their locations, and thus the distance between each node

pair. A scatter plot of path-loss versus distance, with N(N − 1)/2 points, can therefore

be constructed; and (A, γ, σ) can be estimated via least-squares fitting using (2.1). This

was done for the case of the smaller cell with 20 sensors and spatially white shadow fading

described above, and the results were used to compare RMS errors for various cases.

3.4.4 Numerical Results

Figure 3.4 compares RMS location error that include the four simple schemes, the MMSE

estimator, and the CRB given by (3.3). We see that, with only 20 sensors, the errors in

estimating (A, γ, σ) lead to but a minor degradation in performance. For larger cells with

more sensors, the results should be even better. What penalizes the MMSE estimator is its

computation-intensive nature.

Comparing the four simple schemes, with each other and with the MMSE estimator, we

see that, over the typical range of σ (σ > 4 dB), there is little difference among WtdAv,

MinMax and ModEuc. Further, the RMS errors for these schemes are above that for the

MMSE estimator by a factor between 2 and 3. Choosing among approaches then comes down

to balancing location accuracy against computation cost (running time, battery energy).

The WtdAv scheme seems to provide the best tradeoff while meeting the FCC accuracy

requirements under most conditions.
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3.5 Conclusion

We have postulated a sensor-assisted localization approach for mobile terminals in cellular

systems, where the power measurements obtained from 3 ∼ 6 sensors are used to locate the

mobile station (MT). We have validated it by evaluating the performance of five algorithms

in the system. Among them, a very simple scheme called WtdAv has performance similar to

the MinMax algorithm, without requiring any channel parameter information. The MMSE

estimator that ideally reaches the Cramer-Rao Bound, on the other hand, requires a priori

knowledge of all the channel parameters and has prohibitive numerical complexity for real-

time operation. Simulation results show that, in an outdoor cell with a radius of 1000 m,

200 sensors are sufficient for all these schemes to meet FCC E-911 requirements in most

cases.
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Although we have only discussed the localization of a single MT, our approach has

great potential to work with multiple MTs. First, the interference between two MTs is

small, unless they are too close to each other, because the localization of one MT solely

depends on the measurements from the 3 ∼ 6 closest sensors. Moreover, Base Stations can

roughly locate the MTs by sectoring, tracking records, etc; and then the sensors need only

provide refinements of these localizations. Further effort is needed to more fully explore

this approach [35].
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Chapter 4

Channel-Based Spoofing Detection

In a typically rich scattering environment, the radio channel response decorrelates quite

rapidly in space. Since the channel responses are difficult for others to predict and to spoof,

we can call them “Fingerprint in the Ether”, and use them to complement and enhance

traditional authentication. To this end, we will consider a channel-based authentication

scheme that exploits the channel estimation mechanism existing in most wireless systems.

In this scheme, the channel response is used to discriminate among transmitters, e.g., to

determine whether current and prior communication attempts are made by the same user

(same channel response). This physical-layer authentication can help detect identity-based

attacks, like spoofing attacks and Sybil attacks, with low additional system overhead. In

this chapter, we analyze channel-based spoofing detection, considering practical issues, such

as environmental changes, terminal mobility, channel estimation errors, and multiple an-

tenna techniques. The performance of our physical-layer authentication scheme is analyzed

using stochastic channel modeling, site-specific ray-tracing, and field tests using an 802.11

testbench.
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4.1 Introduction

Due to the broadcast nature of wireless medium, intruders can access wireless networks

without a physical connection. One serious consequence is that spoofing attacks (or mas-

querading attacks), where a malicious device claims to be a specific client by spoofing its

MAC address, becomes possible. Spoofing attacks can seriously degrade network perfor-

mance and facilitate many forms of security weakness. For instance, if attacking control

messages/ management frames smartly, the intruder can corrupt services of legal clients

[6, 36, 37].

It is desirable to conduct authentication at the lowest possible layer (i.e., physical layer).

We note that in rich multipath environments typical of wireless scenarios, channel responses

are location-specific. More specifically, channel responses decorrelate from one transmit-

receive path to another, if the paths are separated by the order of an RF wavelength or

more [38]. Hence it is difficult for an adversary to create or precisely model a waveform

that is transmitted and received by entities that are more than a wavelength away from the

adversary. This is the basis of “Fingerprints in the Ether”, i.e., PHY-layer authentication

for wireless networks [39–44].

Authentication is traditionally associated with the assurance that a communication

comes from a specific entity [45]. Physical-layer authentication, however, is used to dis-

criminate among different transmitters, and can be combined with a traditional handshake

authentication process to completely identify an entity. If not specified otherwise, we as-

sume that an entity’s identity is obtained at the beginning of a transmission using traditional

higher layer authentication mechanisms. Channel-based authentication is then used to en-

sure that all signals in both the handshake process and data transmission are actually from
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the same transmitter. The cross-layer design of physical-layer authentication is discussed

in Section 4.7.

4.2 Related Work

In commodity networks, such as 802.11 networks, it is easy for a device to alter its MAC

address and claim to be another device by simply issuing an ifconfig command. This

weakness is a serious threat, and there are numerous attacks, ranging from session hijacking

[37] to attacks on access control lists [9], which are facilitated by the fact that an adversarial

device may masquerade as another device.

In response, researchers have proposed using physical layer information to enhance wire-

less security. For example, spectral analysis has been used to identify the type of wireless

network interface card (NIC), and thus to discriminate among users with different NICs [46].

A similar method, radio frequency fingerprinting, discriminates wireless devices according

to the transient behavior of their transmitted signals [47]. For more general networks, the

clock skew characteristic of devices has been viewed as a remote fingerprint of devices over

the Internet [48]. In addition, the inherent variability in the construction of various digital

devices has been used to detect intrusion [49].

More recently, the wireless channel has been explored as a new form of fingerprint for

wireless security. The reciprocity and rich multipath of the radio channel has been used

as a means to establish encryption keys [50, 51]. In [7], a practical scheme to discriminate

among transmitters was proposed and identifies mobile devices by tracking measurements

of signal strength from multiple access points.

Concurrent to these efforts, we have proposed a channel-based authentication scheme

that exploits the spatial variability of channel frequency (or impulse) response to detect
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spoofing attacks and Sybil attacks in wireless networks [39–44].

Another group of physical-layer authentication techniques have been proposed to de-

tect identity-based attacks in wireless networks, exploiting the received signal strength

(RSS) [7, 36, 52] and channel impulse response (CIR) [53]. We note that channel responses

contain more location-specific information than RSS, and hence the channel response-based

techniques can provide higher accuracy than those merely using RSS.

4.3 System & Channel Models

4.3.1 Problem Model

We shall borrow from the conventional terminology of the security community by introduc-

ing three different parties: Alice, Bob and Eve, which may be be thought of as wireless

transmitters/receivers that are potentially located in spatially separated positions, as de-

picted in Fig. 4.1. Alice serves as the legitimate transmitter that initiates communication,

while Bob serves as the intended receiver. Their nefarious adversary, Eve, serves as an

active opponent who injects undesirable communications into the medium in the hopes of

impersonating Alice.

Our security objective is to provide authentication between Alice and Bob, despite

the presence of Eve. Authentication is traditionally associated with the assurance that

a communication comes from a specific entity, while the objective of the channel-based

authentication may be interpreted as follows: Since Eve, a potential adversary within range

of Alice and Bob, is capable of injecting her own signals into the environment to impersonate

Alice, it is desirable for Bob to have the ability to differentiate between legitimate signals

from Alice and illegitimate signals from Eve. The physical-layer authentication provides

Bob evidence that the signal he receives did, in fact, come from Alice.
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To illustrate this, let us consider a simple transmitter identification protocol in Fig.

4.1, where Bob seeks to verify that Alice is the transmitter. Suppose that Alice probes the

channel sufficiently frequently to assure temporal coherence between channel estimates and

that, prior to Eve’s arrival, Bob has estimated the Alice-Bob channel. Now, Eve wishes to

convince Bob that she is Alice. Bob will require that each information-carrying transmission

be accompanied by an authenticator signal. The channel and its effect on a transmitted

signal between Alice and Bob is a result of the multipath environment.

Suppose Bob receives two messages at times indexed by k and k + 1, with the time

interval between messages being T . Both messages are labelled with the sender identity of

Alice. We assume that Bob knows that Alice indeed sent the first message at k, while the

second message, sent at k + 1, is either a legal message from Alice or a spoofed one sent by

Eve. Bob seeks to use the channel-based spoofing detector to determine whether the second

message belongs to Alice.

Without loss of generality, we consider an NT × NR multiple-input multiple-output

(MIMO) system: both Alice and Eve use NT ≥ 1 transmit antennas, while Bob uses

NR ≥ 1 receive antennas. The antennas are placed in a way so that the channel paths of

different antenna pairs are independent.

The distance from Bob to Alice (Eve) is denoted as dA (dE). We assume that the

propagation environment may change, e.g., due to people walking by, and/or Alice moves

in any direction with a velocity v. We note that our method is generic and our results can

be easily extended to the case of mobility of all terminals. Finally, we allow the possibility

that channel gain estimation may be corrupted by additive interference.
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Figure 4.1: The multipath environment involving multiple scattering surfaces. The trans-
mission from Alice with NT antennas to Bob with NR antennas, experiences different multi-
path effects than the transmission by the adversary, Eve. Bob has to discriminate between
a legal message from Alice and the spoofing one from Eve. The distance between Alice
(Eve) and Bob is denoted as dA (dE).

4.3.2 Channel Estimates

As we mentioned, the channel-based authentication scheme utilizes the rapid spatial decor-

relation property of channel responses in multipath environments. Bob uses the received

version of the authenticator signal to estimate the channel response, as in the existing chan-

nel estimation mechanisms in most wireless systems. More specifically, Bob first (at time

k) measures and stores the frequency response of the channel connecting Alice with him,

based on pilot or preamble symbols in the message. (The discussion can be easily extended

to the case of the channel impulse response.)

The resulting channel vector contains M ′ independent channel samples. This assumption

can be conveniently implemented in orthogonal frequency division multiplexing (OFDM)

systems, where channel responses are measured at M ′ tones based on the pilots that are

equally placed within the system bandwidth of W . If the minimum frequency separation,
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W/M ′, is greater than the channel coherence bandwidth, the M ′ channel samples are essen-

tially uncorrelated. We assume that is the case here, although the discussion can be easily

extended to the over-sampled case where neighboring tones are correlated.

The use of multiple antenna techniques expands the dimension of the channel vector from

M ′ to M = NT NRM ′, and thus improve the channel resolution. Our spoofing detection

scheme can benefit from this increase, especially when the overall system bandwidth W is

too small to afford a large number of independently faded tones.

To model the channel estimation at time instant k, we assume an unknown phase mea-

surement error, denoted as ϕ(k) ∈ [0, 2π), due to the drift of the receiver local oscillator. We

also assume the receiver thermal noise contributes an additive Gaussian error component,

N(k), to each channel gain estimate. This error is zero-mean, independent across paths and

frequencies, and has a common variance given by

σ2
N = PN/PT , (4.1)

where PN is the average receiver noise power for each measured tone, and PT is the trans-

mitted power.

Another impairment is that due to the interference from other radio users. We can model

the interference effect on channel estimation as contributing a random error component,

I(k), to the true value of each measured channel gain. Again, we model these errors as

zero-mean, Gaussian, independent across paths and frequencies, and having a common

variance given by

σ2
I = PI/PT , (4.2)

where PI is the average received interference power for each measured tone. Thus we have

N + I ∼ CN
(
0,

(
σ2

I + σ2
N

)
I
)
, (4.3)
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where I is an M × M identity matrix.

Combining these factors, the channel estimation vector at time k, Ĥ(k), can be given

by

Ĥ(k) = H(k)ejϕ(k) + N(k) + I(k), (4.4)

where H(k) is the “ideal” channel row vector without estimation error; and I(k), N(k), and

ϕ(k), are independent from each other, as well as from their counterparts at time k + 1.

4.3.3 Channel Gains

As noted, we assume in this section that the first message at time k is not spoofed, i.e.,

H(k) ≡ HA(k), where the subscript ‘A’ denotes that the transmitter is Alice. The sender

of the second message is either Alice or Eve, and thus we have H(k + 1) = HA(k + 1) or

HE(k + 1), where the subscript ‘E’ represents Eve.

In our analysis, the three locations (for Bob, Eve, and Alice) are specified, and we

assume that HA(k) and HE(k) are independent, frequency-selective Rayleigh channels, i.e.,

H i(k) ∼ CN
(
0, σ2

i I
)
, i = A, E, (4.5)

where σ2
A and σ2

E are the locally averaged power gains along the paths from Alice to Bob

and from Eve to Bob, respectively.

Propagation theory shows that, in an environment full of scatterers and reflectors, the

channel response decorrelates rapidly as the terminal location changes by the order of a

wavelength, which is 6 cm for systems working at 5 GHz [38]. We note that both Alice and

Eve could be anywhere in the coverage region of Bob, and in practice, Eve cannot be close

to Alice. If the terminals never move fast and the interval T is very short, we can assume
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that Eve at time k + 1 can not be close to Alice’s previous location. Thus we assume that

HA(k) and HE(k + 1) are independent.

By (4.2), (4.4) and (4.5), we have

ĤE(k + 1) = HE(k + 1)ejϕ(k+1) + N(k + 1) + I(k + 1)

∼ CN
(
0,

(
σ2

E + σ2
N + σ2

I

)
I
)
. (4.6)

Similarly,

ĤA(k) ∼ CN
(
0,

(
σ2

A + σ2
N + σ2

I

)
I
)
. (4.7)

4.3.4 Channel Variations

Assuming a short enough interval T between successive transmissions, Alice at time k + 1

is close to her previous location, i.e., on the order of a fraction of a wavelength, and thus

HA(k) and HA(k + 1) are correlated. As an extreme case, we have HA(k + 1) = HA(k),

e.g., for static channels. In general, however, due to environmental changes and/or terminal

mobility, the channel vector can vary with time. For the case of mobility alone, this can be

modeled by

HA(k + 1) = aHA(k) + Δ(k), (4.8)

where a is the correlation coefficient between channel gains spaced by T ; and Δ(k) is an

M -dimensional vector in which each term is an i.i.d. zero-mean Gaussian process that is

independent of H(k) and has a variance

σ2
Δ = (1 − a2)σ2

A. (4.9)

Assuming that Alice moves with a speed of v, and using the Jakes model [38], we have

E
[
HA(k + 1)HH

A (k)
]

= σ2
AJ0 (2πvf0T/c) I, (4.10)
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where c is the speed of light, f0 is the carrier frequency, and J0 is the Bessel function of the

first kind and zero-th order. The J0(·) term is seen to be nothing other than the correlation

coefficient a in the above discussion. If Alice moves so slowly that v ∼ 0, then it is clear

that a ∼ 1.

Finally, we consider the possibility that, even if Alice is stationary, there can be changes

in the path gains due to movement of objects or people in the environment. We model this

as a component added to the path gains for the static case, HA(k). This added term is

zero-mean, Gaussian, independent across paths and frequencies, and has a common variance

σ2
Δ. With this variation included, the channel time variation Δ(k) in (4.8) can be modeled

as the sum of two random, independent Gaussian terms, ε1 and ε2, due to the motion and

the change in the environment [40], respectively, i.e.,

Δ(k) = ε1 + ε2 ∼ CN
(
0,

(
σ2

A(1 − a2) + σ2
Δ

)
I
)
. (4.11)

By (4.2)-(4.5), (4.8), and (4.11), we have

ĤA(k + 1) ∼ CN
(
aĤ(k)ejφ0 , �2I

)
, (4.12)

where φ0 = ϕ(k + 1) − ϕ(k), and

�2 =
(
1 + a2

) (
σ2

N + σ2
I

)
+

(
1 − a2

)
σ2

A + σ2
Δ. (4.13)

4.4 Channel-Based Spoofing Detection

In order to detect spoofing attacks, Bob compares the two resulting channel vectors: If the

two channel estimates are “close” to each other, then Bob will conclude that the source of

the second message is still Alice. If the channel estimates are not similar, then Bob should

conclude that the second source is likely a would-be intruder, e.g., Eve.
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The channel-based spoofing detector utilizes a simple hypothesis test:

H0 : H(k + 1) = HA(k + 1), (4.14)

H1 : H(k + 1) = HE(k + 1). (4.15)

Under the null hypothesis, H0, the message at k + 1 does belong to Alice, i.e., no spoofing

attack. Otherwise, under the alternative hypothesis, H1, there is a spoofing attack, i.e.,

the message belongs to Eve.

4.4.1 Generalized Likelihood Ratio Test (GLRT)

The generalized likelihood ratio test for the hypothesis (4.14) and (4.15) in the generalized

system model given by the previous section can be written as

Lg =
||Ĥ(k + 1) − aĤ(k)ejφ||2

�2
− ||Ĥ(k + 1)||2

σ2
E + σ2

N + σ2
I

H1

≷
H0

η′, (4.16)

where ||A|| denotes the Frobenius norm of the matrix A, �2 is given by (4.13), φ =

Arg(Ĥ(k + 1)Ĥ(k)H), and the superscript H represents Hermitian transformation.

Proof: Since the phase rotation, φ, is usually unknown, the generalized likelihood

ratio test [54] for the system model can be written as a function of Ĥ(k + 1), i.e.,

Λg =
Pr

(
Ĥ(k + 1);H1

)
maxφ0 Pr

(
Ĥ(k + 1); φ0, a,H0, Ĥ(k)

) H1

≷
H0

η1. (4.17)

By (4.6), (4.12), (4.14), and (4.15), we can rewrite (4.17) as

Lg =
||Ĥ(k + 1) − aĤ(k)ejφ||2

�2
− ||Ĥ(k + 1)||2

σ2
E + σ2

N + σ2
I

H1

≷
H0

η′, (4.18)

where

φ = max
φ0

Pr
(
Ĥ(k + 1); φ0, a,H0, Ĥ(k)

)

= arg min
φ0

||Ĥ(k + 1) − aĤ(k) exp(jφ0)||

= Arg
(
Ĥ(k + 1)Ĥ(k)H

)
. (4.19)
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The exponent term is introduced to adjust for the phase drift in the channel estimation.

Otherwise, the messages belonging to Alice are likely to be mistaken for spoofing messages.

The rejection region is defined as those cases where the test statistic falls above the test

threshold, η′.

It is clear in (4.16) that the GLRT requires a priori knowledge of the channel parameters,

such as σN , σI , σE , a, and σΔ. These parameters can be obtained via training, or from

field measurements in a similar scenario before the start of the test.

4.4.2 Test with Unknown Channel Parameters

In practice, wireless systems are not always able to obtain the channel parameters in (4.16).

However, if both the channel time variation and estimation error are so small that �2 	

σ2
E + σ2

N + σ2
I , then the GLRT (4.16) can be simplified into a more practical test,

L = ||Ĥ(k + 1) − aĤ(k)ejφ||2
H1

≷
H0

η, (4.20)

where the test threshold η usually differs from η′ in (4.16), and a can be estimated by

J0(2πvf0T/c). If the terminal velocity v is unknown at the receiver, we use a = 1 by

assuming a very slow terminal velocity.

The new test L can be viewed as the difference between two channel estimates, utilizing

the exponential term to counteract phase measurement rotation. In real system implemen-

tation, (4.20) can be further simplified into

L =

∥∥∥∥∥Ĥ(k + 1) − Ĥ
H

(k)Ĥ(k + 1)

|ĤH
(k)Ĥ(k + 1)|

Ĥ(k)

∥∥∥∥∥
2

, (4.21)

indicating small computational overhead. For convenience of analysis, the test statistic L

sometimes is normalized with some parameter, such as σ2
N [39, 40,42].
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Figure 4.2: Frame structure of the transmission from Alice to Bob. Each data burst consists
of an arbitrary number of frames, while each frame has one pilot and Nd data symbols on
each of M subbands. Frame 0 in each data burst contains the channel response value in
the previous burst as a key for the inter-burst authentication. Bob uses the intra-burst
authentication method in the following frames to authenticate Alice, and saves at least one
frequency response as the key for the next burst.

4.4.3 Implementation Issues

Although our scheme can be implemented in many wireless systems, we shall take orthogonal

frequency division multiplexing (OFDM) systems as our example. Suppose Alice sends a

signal to Bob with the frame structure shown in Fig. 4.2, where the whole session consists

of several data bursts. Each burst has Nx frames (Nx may vary with the burst), while each

frame, with M frequency subbands and duration T , consists of Nd data symbols and one

pilot in each subband. The number of pilots in the first symbol can, in fact, be less than

the number of subbands, with the rest used for data. For concreteness, however, we assume

initially that all subbands in the first symbol are used for pilots.

As shown in Fig. 4.3, Bob uses the pilots for channel estimation, obtaining test vectors

Ĥ[k], where k is the frame index. The frame duration T is assumed to be small enough to

make the displacement of the transmitter (Alice) per frame much smaller than the channel
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Figure 4.3: Implementation of spoofing detector in OFDM systems. Each frame with M
frequency subbands, consists of one pilot and several data symbols in each subband.

decorrelation distance (i.e., r = vT 	 λ/2). Thus, two consecutive channel responses are

highly correlated.

Terminal mobility may force the self-decorrelation of Alice’s channel with respect to

itself. Hence we must employ a different strategy to bridge the gap between bursts of

communications. To accomplish this, an improved process consists of two consecutive parts:

an inter-burst authentication phase and an intra-burst authentication phase.

The intra-burst authentication happens within a data burst, after the first frame passes

the inter-burst authentication process. For any frame index k > 1, Bob is assumed to obtain

the Alice-Bob channel gain in the previous frame, ĤA[k], and the observation of the current

channel gain, Ĥ[k + 1]. The GLRT, Lg, or the test of L, can be used to determine whether

the current transmitter is still Alice.

The inter-burst authentication is carried out using the first frame of each data burst

to determine whether the current transmitter is still Alice. At the outset of this protocol,

in order for Bob to get an initial channel estimate for Alice, it is necessary to employ a

higher-layer authentication protocol to bootstrap the association between Alice and and a
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corresponding channel response. However, this is a one-time step, and generally the inter-

burst process will focus on authenticating a subsequent data burst given that a prior data

burst has been verified.

Thus we assume that Bob has an estimate of the Alice-Bob channel response of a partic-

ular frame in the previous data burst, which we shall denote as ĤA[−1]. The time interval

between two bursts may be so large that Alice has moved a significant distance. Thus the

channel response of the first frame in the current burst, ĤA[0], may be totally uncorrelated

with ĤA[−1].

To solve this problem, we assume that both Alice and Bob save at least one channel

response in each data burst as the key in the authentication process for the next successive

burst. Alice may obtain this ĤA[−1] either by feedback from Bob, or by measurement of

the reverse link pilots in a time division duplexing (TDD) system. In the first frame of

each burst, Alice sends the saved ĤA[−1] from the last burst to Bob. If it matches with

Bob’s version, Bob will assume it is from Alice. The channel response ĤA[−1] is not readily

predicted by Eve. Thus she will fail the inter-burst authentication with high probability. We

will present in Section 4.7 a double-layer authentication protocol to integrate the channel-

based authentication scheme in wireless systems assuming a more generalized transmission

pattern.

4.4.4 RLS Adaptive Filter-Based Test

We now explore an alternative hypothesis test, where M sets of linear least-squares adaptive

filters are used independently to estimate the channel response for the M subbands. For

the convenience of notion, we focus on the m-th subband, and ignore the frequency index

m unless necessary.



51

Input,
u1(k)=H 1[k-1]

w*0,1

v1/Z
H1[k-2]

w*1,1

+
Output, y 1[k]

d1(k)=H 1[k]

+ -
+

Error, e 1[k]

Hm[k]

...

... Test statistic

Test
threshold

Testing
decision

H[k-1]

H(k-1)  H(k-2)

RLS Adaptive filter at the 1-st tone

RLS Adaptive filter at the m-th tone
...
...

HM[k]

em[k]

eM[k]
RLS Adaptive filter at the M-th tone

Figure 4.4: Illustration of the RLS adaptive filter-based spoofing detection.

As shown in Fig. 4.4, the estimated channel response at time k, which is the output of

the m-th adaptive linear filter with order l, can be written as

y[k] =
l−1∑
l=0

w∗
nu(k − n), (4.22)

where u(k) is the input of the adaptive filter at time k, and wn is the n-th tap weight of

the filter, which can be determined using various adaptive algorithms, like the recursive

least-squares (RLS) algorithm [55].

If it is Alice transmitting during the time interval [k−L, k], the filter inputs are ĤA[k−

L], · · · , ĤA[k − 1], and the estimation error is e[k] = ĤA[k] − y[k]. Because of the strong

correlation of the inputs ĤA[k−L], · · · , ĤA[k], the ensemble-averaged squared error of the

channel estimation filter is usually quite small.

If, on the other hand, Eve comes in at time k, due to the spatial variability of the channel

response, the estimation error,

em[k] = ĤE,m[k] −
l−1∑
n=0

w∗
nĤA,m[k − n − 1], (4.23)

is very likely to jump to a much larger value.
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Therefore, we build another test statistic LR, using M parallel adaptive channel estima-

tors. The null hypothesis H0 is accepted if the normalized squared sum of estimation error

from these filters is less than a certain threshold ηR; otherwise, the alternative hypothesis

is chosen. Thus

LR =
||e[k]||2∑l−1

n=0 ||u[k − n]||2/l

H1

≷
H0

ηR. (4.24)

We normalize the estimation error to make ηR easier to determine. It does not have a

closed-form expression but can be obtained through simulations.

This test can be carried out only after the successful authentication of at least l frames,

and even though the RLS algorithm converges fast, it still takes approximately 2l frames [55].

Since we have to take data after the algorithm converges, we usually choose k > 3l in Eq.

(4.24). Thus this method has larger system overhead (3l frames) than the previous tests,

L and Lg, (1 frame), as well as greater implementation complexity.

The use of RLS estimators in this context may not be practical or cost-effective, but the

results we will present for this case are instructive. It is shown in [42] that, even under the

most favorable assumptions (RLS estimation), using least-squares adaptive filtering is not

measurably superior to using the tests, Lg or L.

4.5 Performance Evaluation based on Stochastic Channel Modeling

In order to evaluate the spoofing detection performance of the schemes, Lg and L, we

consider the false alarm rate (or Type I error), α, the probability that the test declares

Alice as Eve by mistake; and the miss detection rate (or Type II error), β, the probability
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that the test misses the detection of Eve. These metrics are defined, respectively, by

α = Pr(L > η|H0), (4.25)

β = Pr(L ≤ η|H1), (4.26)

where the probabilities are taken over all channel vectors and measurement errors. The test

may be actually Lg or LR, and for convenience, we only use L as an example here.

Typically, the threshold η is chosen according to different criteria for performance. As an

example, we just consider the Neyman-Pearson test, which minimizes the miss rate subject

to a maximum tolerable constraint on the false alarm rate [54]. Before the test, Alice first

sends a number of training messages, based on which Bob computes α for several η, via

(4.25). Since α decreases monotonically with η, Bob can conveniently find the test threshold

η that reaches the required α.

The performance of the scheme depends on several system parameters in addition to the

correlation coefficient a, as given by the J0 term in (4.10). One is the signal-to-(interference-

plus-noise) ratio (SINR) of the channel estimates for Alice, defined by

ρ =
σ2

A

σ2
I + σ2

N

. (4.27)

We see that ρ increases with transmit power, since the estimation noise variance, σ2
N ,

varies inversely with PT . Another key parameter is the ratio of the locally averaged path

gains for Alice and Eve,

κ = σ2
E/σ2

A. (4.28)

In general, κ increases as Eve moves closer to Bob (assuming fixed positions for Alice and

Bob). Finally, there is the relative change in the locally averaged path gain from Alice to
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Bob,

b = σ2
Δ/σ2

A. (4.29)

4.5.1 Performance Bound

The analysis of the performance of the test L can be greatly simplified if we assume zero

phase drift, φ = 0, whereupon (4.20) can be approximated as

L ≈ ||Ĥ(k + 1) − aĤ(k)||2. (4.30)

Since L ≤ ||Ĥ(k + 1) − aĤ(k)||2, the assumption φ = 0 generally increases the false alarm

rate α, (4.25), and decreases the miss rate β, (4.26). Consequently, this simplified approach

upper bounds α, and lower bounds β.

When the null hypothesis H0 is true, both channel samples are from Alice. By (4.2)-

(4.5), (4.8), and (4.10), we can approximate ĤA(k + 1) − aĤ(k) as a vector with M i.i.d.

complex Gaussian elements. Each element has zero mean and a variance given by

V ar[ĤA,m(k + 1) − aĤA,m(k)] = (1 + a2)(σ2
I + σ2

N ) + σ2
Δ + (1 − a2)σ2

A. (4.31)

Thus, L under H0 is chi-square distributed with order 2M [56]. Given a test threshold η,

the false alarm rate can be written as

α = 1 − P [L ≤ η|H0]

= 1 − Fχ2
2M

(
2η

(1 + a2)(σ2
I + σ2

N ) + σ2
Δ + (1 − a2)σ2

A

)

= 1 − Fχ2
2M

(
2η/σ2

A

(1 + a2)/ρ + 1 − a2 + b

)
, (4.32)

where Fχ2
2M

(·) is the cumulative distribution function (CDF) of the chi-square distribution

with order 2M . It is clear that α rises as Alice moves faster, and is independent of κ and



55

σE . In addition, this equation also provides the test threshold for a given α:

η = 0.5σ2
A

(
1 + a2

ρ
+ 1 − a2 + b

)
F−1

χ2
2M

(1 − α), (4.33)

where F−1 is the inverse function of F (·). This formula provides a way to set the threshold

for the test L.

On the other hand, when H1 is true, the channel vectors, Ĥ(k + 1) and Ĥ(k), are

independent. By (4.6) and (4.7), we have

Ĥm(k + 1) − aĤm(k) ∼ CN
(
0,

((
1 + a2

) (
σ2

I + σ2
N

)
+ a2σ2

A + σ2
E

))
. (4.34)

Hence the test statistic L is also chi-square distributed with order 2M , and the miss rate is

given by

β = Fχ2
2M

(
2η

(1 + a2)
(
σ2

I + σ2
N

)
+ a2σ2

A + σ2
E

)

= Fχ2
2M

(
2η/σ2

A

(1 + a2) /ρ + a2 + κ

)
. (4.35)

As we see from (4.32) and (4.35), the test performance does not depend on the value of

σ2
A, as it is absorbed into the threshold, η. What matters are the estimation SINR, ρ; the

Alice-Eve path gain ratio, κ; the relative change in Alice’s path gain due to environmental

changes, b; and the correlation coefficient, a, which is determined by Alice’s speed, v.

4.5.2 Simulation Method

We perform Monte Carlo simulations to provide the receiver operating characteristic (ROC)

curves for the GLRT (Lg) and the more practical test (L), in a wide range of scenarios.

ROC curves are widely used in the performance evaluation of spoofing detection, showing

how the detection rate Pd = 1 − β changes with the false alarm rate, α. The value of the

test threshold, η (or η′), determines the working point on the ROC curve. Accordingly,
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in our computations, we make the simplifying assumption (with no loss in generality) that

σ2
A = 1.

For each scenario, we first use (4.6) and (4.7) to generate two channel vectors, ĤE(k+1)

and ĤA(k). Then we obtain ĤA(k + 1) via (4.12) and ĤA(k). Based on these M -element

vectors, we calculate the test statistics of Lg via (4.16) and L via (4.20), for both H0 and

H1. We repeat the experiment Ns = 20, 000 times.

Given test threshold, η, we compute the false alarm rate and miss rate by

α =
1

Ns

Ns∑
k=1

I
(
L

(
ĤA(k), ĤA(k + 1)

)
> η

)
, (4.36)

β =
1

Ns

Ns∑
k=1

I
(
L

(
ĤA(k), ĤE(k + 1)

)
≤ η

)
, (4.37)

where the indicator function I(A) = 1 if the statement A is true, and zero otherwise. In

this way, we obtain the ROC curve by simply varying η (or η′).

path-loss Model: The emulation of ĤA(k) and ĤE(k+1) with (4.7) and (4.6) requires

information about σ2
A and σ2

E . We can model them as the ratio version of the generic dB

formula for path-loss, [15], i.e.,

σ2
i = Ωdi

−γSi, i = A, E, (4.38)

where the path-loss exponent γ ranges between 2 and 5 in most wireless environments; Ω

denotes a reference path gain value, (e.g., the path gain at d = 1 m); and the shadowing Si

is usually modeled as a log-normal random variable. Thus, we can write κ in terms of its

dB value,

K = 10γ log(dA/dE) + (sE − sA), (κ in dB), (4.39)

where sA (or sE) is the dB value of SA (or SE).



57

For any environment, such as an irregular-shape office building, the PDF of the log-

distance ratio can be easily obtained via simulation, where Alice and Eve are assumed to be

located with uniform (and independent) randomness anywhere in the coverage area. This

PDF can be convolved with the Gaussian PDF of (sE − sA) to obtain the PDF of K. At

the end of the next sub-section, we will give a specific example wherein (1) shadow fading

is assumed to be absent, sE − sA = 0; and (2) Alice and Eve are distributed at random

in a circular area centered on Bob. The PDF of K in this special case is a double-sided

exponential given by

fK(x) =
ln(10)
10γ

10−|x|/5γ . (4.40)

Proof: Assume that Alice and Eve are randomly uniformly distributed in a circular

area centered on Bob with radius R. Denote D1 = d2
A and D2 = d2

E , and we assume

that both D1 and D2 are independent and uniformly distributed between 0 and R2, i.e.,

Di ∼ U(0, R2), i = 1, 2. For sE−sA = 0 and using (4.39), we easily get K = 5γ log(D2/D1).

Since Alice and Eve can exchange their locations, it is clear that the PDF of K, fK(x),

is symmetric about x = 0. For x < 0, the CDF can be written as

FK(x) = Pr(K ≤ x) = Pr(5γ log(D2/D1) ≤ x)

=
∫ ∞

−∞
Pr(D1 = x1)Pr(5γ log(D2/x1) ≤ x)dx1

=
∫ R2

0

1
R2

Pr(D2 ≤ x110x/5γ)dx1

=
∫ R2

0

1
R2

(x110x/5γ)/R2dx1 = 0.5 · 10x/5γ (4.41)

By symmetry about x = 0, we have the PDF of K as

fK(x) = dFK(x)/dx =
ln(10)
10γ

10−|x|/5γ (4.42)
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4.5.3 Numerical Results

We first present in Fig. 4.5 the ROC curves of Lg and L with a parameter κ. The worst

case for Lg is at κ = 0 dB. The corresponding performance can be α = β = 4%, when

there are M = 4 independent channel samples in each message, the SINR of the channel

estimation is ρ = 20 dB, and the (relative) channel time variation power is b = 0.2. When

the absolute value (in dB) of κ is very large, i.e., ±100 dB, the system achieves near-perfect

performance.

As for L, negative dB values of κ yield worse results than positive ones, indicating that

a “smart” Eve should stay in an area wherein κ < 0. As an example, let us fix the locations

of Alice and Bob, and let Eve depart from a near-Bob location. The performance of L first

degrades, until Eve reaches a location where κ ≈ −10 dB. The performance slowly improves

thereafter, and converges to an asymptotic value as κ goes to −∞ dB. This value is still

worse than for κ ≥ 0 dB. The worst case, κ ≈ −10 dB, corresponds to α ≈ β ≈ 10%.

Figure 4.6 presents the performance under various combinations of ρ, M , and b, given

κ = 0 dB (worst case for Lg). It shows that both Lg and L have better detection perfor-

mance, under a higher ρ, larger M , or smaller b. It is clear that Lg provides better detection

performance than L, and the performance gain is more significant with less detection re-

sources, i.e., for lower ρ and smaller M , and also for larger b.

Figure 4.6 (a) assumes a substantial channel time variation, b = 0.2, and M = 4

independent channel samples. The latter may be interpreted as using M ′ = 4 independent

tones in a single-antenna (SISO) system; M ′ = 2 tones in a 2 × 1 MISO system; M ′ = 2

tones in a 1 × 2 SIMO system; or 1 tone in a narrow band 2 × 2 MIMO system. Given

α = 5%, we have β ≈ 2% for Lg and β ≈ 4% for L. Moreover, the performance gain is not

significant if ρ increases from 20 dB.
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In Fig. 4.6 (b), we consider the case of a moderate SINR, ρ = 10 dB, with b = 0.2.

The use of a larger M is a more efficient way to improve performance than to increase ρ,

especially if ρ is already not very low. If M is large enough (e.g., M ≥ 12), both tests

perform extremely well, i.e., with α = 1% and β < 0.3%.

Figure 4.6 (c) shows how the performance degrades as the channel time variation rises.

It is seen that Lg is more robust against channel time variation than L, and that these tests

have α = β ≈ 2.5%, and α = β ≈ 7.5%, respectively, when b = 0.5, M = 8, and ρ = 20 dB.

Figure 4.15 presents the performance of Lg and L in a scenario with both terminal

mobility and environmental change, as functions of the velocity of Alice, v, for b = 0.1,

M = 8, ρ = 20 dB, and carrier wavelength λ = 6 cm. The figure also shows the bounds

given by (4.32) and (4.35), which upper bound α and lower bound β by assuming φ = 0.

It is seen that the bound can be used to approximately describe the performance of Lg, or

to upper bound that of L. It is also shown that the performance degrades, of course, as

Alice moves faster. These results can easily be generalized in terms of the dimensionless

parameter vT/λ. For example, the three mobile speeds, v = .05, .07, and .09 meter per

second (mps) translate, respectively, to vT/λ=0.0833, 0.1167, and 0.15.

Finally, let us consider the reality that κ is a random quantity over all possible joint

locations of Alice and Eve. To get an idea of the “average” performance over the range of

κ, we invoke the conditions cited earlier, i.e., there is no shadowing, sE − sA = 0; and the

coverage area is a circular region centered on Bob. Assume further that ρ can be maintained

fixed at 20 dB, say, by using power control; and that Eve, receiving the same power control

commands as Alice, continues to transmit the same power level as Alice. In this case, we

can get a near-analytical solution for the average β as a function of α, using (4.40) for the

PDF of κ. The results, Fig. 4.8, cover a wide practical range of the path-loss exponent, γ.
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The efficacy of using L, for any likely value of γ, is confirmed. For example, ᾱ ≈ 2% and

β̄ = 1%, when M = 8, ρ = 20 dB, and b = 0.2, for γ ∈ [2, 5].

4.6 Performance Analysis based on Site-Specific Ray Tracing

We now analyze the performance of the proposed channel-based spoofing detection for given

typical indoor environments. It is necessary to model not only “typical” channel responses,

but the spatial variability of these responses for the site. Only in that way can we discern

the success in detecting would-be intruders like Eve. To that end, we make use of a 3-D

propagation prediction software package developed by Bell Laboratories, called the Wireless

System Engineering (WiSE) tool [57].

The WiSE program uses ray-tracing to model typical channel responses for both indoor

and outdoor environments, as well as the spatial variability of these responses. One input

to WiSE is the 3-dimensional plan of a specific building, including walls, floors, ceilings

and their material properties. With this information, WiSE can predict the rays at any

receiver from any transmitter, including their amplitudes, phases and delays. From this, it is

straightforward to construct the transmitter-receiver frequency response over any specified

interval.

We have done this for one particular office building, for which a top view of the first

floor is shown in Fig. 4.9. This floor of this building is 120 meters long, 14 meters wide

and 4 meters high. For each Alice-Eve pair, (1) WiSE was used to generate the Alice-Bob

and Eve-Bob channel responses (HA and HE); and (2) we performed the Neyman-Pearson

test to detect Eve. More specifically, we calculated the test statistics, such as L by (4.20)

and LR by (4.24), and used them to compute the miss detection rate, β, for a specified

false alarm rate, α. The set of all β-values in a specific scenario were used to compute
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Figure 4.5: Receiver operating characteristic (ROC) of the channel-based spoofing detectors,
including the GLRT Lg, (4.16), and a simplified version, L, (4.20), as a function of κ(=
σ2

E/σ2
A), with M = 4 independent channel samples in each message, SINR of the channel

estimation ρ = 20 dB, zero terminal speed (v = 0), and the channel’s relative time variation
power, b = 0.2.
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Figure 4.7: ROC of the spoofing detector, L, (4.20), where Alice moves with a speed of v,
b = 0.1, T = 100 ms, ρ = 20 dB, carrier wavelength λ = 6 cm, M = 8 and κ = 1.
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Figure 4.9: System topology assumed in the simulations. Bob is located at 3-m height near
the center of a 120 m × 14 m × 4 m office building. Alice and Eve are located on dense
grids at a height of 2 m. The sizes of the grids are Ns = 150, 713, 315, and 348, respectively,
for Room # 1, 2, 3 and 4.

a site-specific mean, β, for each of several selected combinations of scenarios and system

parameters, such as bandwidth (W ), number of tones (M) and transmit power (PT ).

Assume that, in conjunction with WiSE, we obtain the various transfer functions as

dimensionless ratios (e.g., received E -field/transmitted E -field). Then the proper treatment

of the noise variance, σ2
N , in the hypothesis test is to define it as the receiver noise power per

tone, PN , divided by the transmit power per tone, PT /M , where PT is the total transmit

power. Noting that PN = κTNF bN , where κT is the thermal noise density in mW/Hz, NF

is the receiver noise figure, and b is the measurement noise bandwidth per tone in Hz.

4.6.1 Static Channel Test Scenario

We first performed a test for a static channel in this typical building. As shown in Fig. 4.9,

we placed Bob in the hallway (the filled-in circle) at a height of 3 m. For the positions of

Alice and Eve, we considered four rooms at the extremities of the building (shown shaded).

For each room, we assumed Alice and Eve both transmitted from a height of 2 m, each

of them being anywhere on a uniform horizontal grid of points with 0.2-meter separations.

With Ns grid points in a room, there were Ns(Ns−1)/2 possible pairs of Alice-Eve positions.

For Rooms 1, 2, 3 and 4, the numbers of grid points were Ns = 150, 713, 315 and 348,
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respectively.

In the simulations, we set α = 0.01, f0 = 5 GHz, NF = 10 (10 dB noise figure),

κT = 10−17.4 mW/Hz, bN = 2.5 MHz and PT = 1, 10 and 100 mW, respectively. We

obtain a miss rate β for each Alice-Eve pair, and then calculate the mean value β for each

room with M = 1 ∼ 10 and W = 20 ∼ 500 MHz. The per tone SNR in the channel

estimation ranges from 5 dB to 26 dB, with a median value of 20 dB, given PT = 10 mW

and M = 5.

The results in Fig. 4.10 verify the utility of our algorithm and show that, if PT = 100

mW, the average miss rate is usually below 0.05, even at Room 1, a corner of the building.

4.6.2 Test Scenario with Terminal Mobility

We next consider the mobility of the legal transmitter Alice, and multiple possible positions

of Eve. For our experiment, we randomly and uniformly select NA in-bulding locations for

Alice, each corresponding to her position at the start (i.e., in Frame 0) of one of NA data

bursts. As shown in Fig. 4.11, for each such location, we consider a set of NE possible

locations for Eve, which are also randomly uniformly selected. We assume that each burst

has the same number of frames, Nx.

Alice moves r millimeter (mm) per frame in arbitrary directions, and an arbitrary dis-

tance between neighboring data bursts. For each r, we collect NA(Nx − 1)Nn samples to

calculate the false alarm rate α of Λ1, and NANENn samples for the miss rate β, for a given

threshold η. For the case of Λ2, we use NA(Nx−3L)Nn and NANENn samples, respectively,

to calculate α and β.

We assume PT = 10 mW, bN = 0.25 MHz, M = 31, NA = 50, NE = 1000, Nn = 5,

1Here we depart from our initial assumption that the number of pilots used to measure the channel is
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Figure 4.10: The average miss rate, β, for Room 1, given false alarm rate of 0.01.
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Figure 4.11: System topology assumed in the simulation scenario with terminal mobility.
The receiver, Bob, is fixed at a location within the hall way. We randomly uniformly select
NA locations for Alice inside the building, representing her positions at the start of each of
NA data bursts. For each of these, we consider a set of NE positions for Eve, which are also
randomly uniformly selected. Each burst has the same number of frames, Nx, and Alice
moves a distance of r from frame to frame, in an arbitrary direction. The independence
among her NA selected starting locations means that her position is independent from one
burst to another.

and Nx = 100. The center frequencies of the subbands are at 4.75, 5.0, and 5.25 GHz. The

per tone SNR in the channel estimation ranges from 1.7 dB to 69 dB, with a median value

of 30 dB. To implement the LR test, we use the RLS algorithm [55], with the filter order

L = 2, forgetting factor λ = 0.9995, and regularization parameter δ = 10−10.

Figure 4.12 presents the receiver operating characteristic (ROC) curves of the intra-burst

authentication method, i.e., the detection rate, 1 − β, as a function of the miss detection

rate, α, for the NP-based statistic L and the adaptive filter based statistic LR, with Alice

displacement per frame r ∈ {1, 2, 3, 4, 5} mm. This corresponds to the frame duration

T ∈ {0.70, 1.4, 2.1, 2.8, 3.5} millisecond (ms) given a typical pedestrian velocity va = 1.43

mps.

It is shown in Fig. 4.12 that both L and LR have good authentication performance,

given that r ≤ 2 mm. For example, L and LR result in detection rate greater than 0.98

and 0.99, respectively, with α = 0.01, r ≤ 2 mm and η = 0.1. The performance degrades

equal to the number of subbands in the signal format. Previous studies [39, 40] have shown that only a
few measurements say, 3-10, are needed; in an OFDM format, however, the number of subbands (tones) is
generally much larger



68

0 0.02 0.04 0.06 0.08 0.1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Alarm Rate

A
ve

ra
ge

 D
et

ec
tio

n 
R

at
e

 

 

r=1 mm
r=2 mm
r=3 mm
r=4 mm
r=5 mm

(a) L.

0 0.02 0.04 0.06 0.08 0.1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Alarm Rate

A
ve

ra
ge

 D
et

ec
tio

n 
R

at
e

 

 

r=1 mm
r=2 mm
r=3 mm
r=4 mm
r=5 mm

(b) Adaptive filter based statistic, LR.

Figure 4.12: Receiver operating characteristic (ROC) curves of the intra-burst authentica-
tion method, i.e., the average detection rate, PD = 1 − β, as a function of false alarm rate,
α, with Alice’s displacement per frame r ∈ {1, 2, 3, 4, 5} mm in arbitrary directions, and
Eve randomly placed in the building with topology shown in Fig. 4.11.
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as Alice moves faster, since it leads to a smaller correlation between successive channel

realizations of Alice’s channel to Bob. In addition, although LR has better performance

under smaller terminal velocity (e.g., r ≤ 2 mm), L is more robust against terminal mobility.

For instance, the detection rates of L and LR are around 0.96 and below 0.8, respectively,

given false alarm rate of 0.06, transmitter speed of 1.43 mps, and frame duration of 3.5 ms.

Considering that LR has larger system overhead than L, we believe L is a better statistic

to use than LR.

4.7 Protocol Design of FP

So far our analysis of the fingerprints authentication algorithm (called FP in this section)

assumed a “reliable” reference channel response Ĥ0(k), where the subscript “0” indicates

that it is a reference channel record for the corresponding user at time k. Channel response

decorrelates after a channel coherent time [15], and thus the use of stale channel data in

the FP test increases the false alarm of spoofing attacks. Hence, this assumption indicates

that Ĥ0(k) comes from a non-spoofing message received within the channel coherent time.

However, this assumption does not always hold in practice. It is possible that the

reference channel record corresponds to a spoofing message that successfully fools Bob.

Moreover, unless an additional mechanism is taken, the FP test is prone to error propaga-

tion: once accepting one spoofing message from Eve, Bob is very likely to accept Eve and

reject Alice in the following FP test. Finally, Bob does not have a valid reference channel

if Alice has kept silence during the past channel coherence time or all her messages in that

period have been rejected by Bob.

Therefore, it is important to analyze the performance of FP without assuming a reliable

Ĥ0(k). To this end, we build a double-layer authentication protocol to integrate the FP test
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with the higher-layer security process in the wireless systems, which might contain some key-

based authentication or authorization. The higher-layer security mechanism can be chosen

as sophisticated as IEEE 802.11i, to achieve maximal performance; or just a “nominal”

process that enables FP to work independently, with an associated level of performance

degradation.

4.7.1 Double-layer Authentication Protocol

We propose a double-layer authentication protocol that integrates the channel-based au-

thentication algorithm FP, and the higher-layer authentication to detect spoofing attacks

for wireless networks. The flow chart is shown in Fig. 4.13, where CIR is the channel

impulse response vector.

As a built-in process in the specified system, the higher-layer function might provide

security protection, e.g., the 802.11i in Section 1.3.1, while this higher-layer security mech-

anism has some weakness shown in Section 1.3.2. We do not intend to change the existing

process when implementing the FP test. It is clear that the higher-layer process has less

workload in this protocol, since FP filters out most spoofing messages. On the other hand,

the system also has better performance in terms of spoofing detection by using FP, as we

will see later.

When receiving a new message at time k, Bob identifies the sender by checking its MAC

address of the message. In this Alice-Bob-Eve model, both Alice and Eve use Alice’s MAC

address in their messages. In order to perform the FP test, Bob utilizes the pilots/premables

in the message to obtain a channel sample vector, Ĥ1(k), where the subscript “1” indicates

that it belongs to the new message.

If Bob has a valid reference channel record, he performs the FP test to compare it with
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Figure 4.13: Flow chart of the double-layer authentication protocol that integrates the
channel-based authentication (FP) and the higher-layer process, where CIR is the channel
vector obtained by pilots/preambles of the message.
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Ĥ1(k). Here, a test statistic L is calculated with (4.20) and compared with a test threshold

η. Let I1(k) denote the FP decision, where the value “0” represents no alarm, “1” denotes a

spoofing alarm, and “2” indicates a FP suspension due to the lack of Ĥ0(k). If the channel

samples, Ĥ1(k) and Ĥ0(k), are so different that L ≥ η, FP sends a spoofing alarm with

I1(k) = 1. In this way, the FP decision function can be written as

I1(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 (No alarm), L(Ĥ1(k), Ĥ0(k)) < η

1 (Spoofing alarm), L(Ĥ1(k), Ĥ0(k)) ≥ η

2 (FP suspension), No Ĥ0(k)

. (4.43)

When FP sends a spoofing alarm, Bob processes the message according to one of the

following two execution policies:

• Simply discard the message. In this strategy, the FP test threshold η has to be

designed to ensure a low false alarm rate. We assume this policy in this section unless

specified otherwise.

• Use a simplified higher-layer authentication algorithm to double-check the message,

and discard the message if it fails this second check. This strategy has better detection

accuracy, though at the expense of higher system overhead, compared to the previous

policy.

As shown in Fig. 4.13, if FP does not send a spoofing alarm, i.e., I1(k) �= 1, the message

then enters the higher-layer process, such as IEEE 802.11i. Let I2(k) denote the higher-layer

authentication decision, which equals one if finding a spoofing, and zero otherwise.

In our double-layer authentication protocol, Eve can successfully spoof Alice if and only

if both FP and the higher-layer test miss it, i.e., I1(k) �= 1 and I2(k) = 0. Let Ia(k) denote
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the final system decision, which is given by

Ia(k) =

⎧⎪⎪⎨
⎪⎪⎩

1 (Reject), if I1(k) = 1 or I2(k) = 1

0 (Accept), o.w.
. (4.44)

If Bob accepts the message with Ia(k) = 0, the channel sample Ĥ1(k) is saved as the

new reference channel record at time k +1, i.e., Ĥ0(k +1) = Ĥ1(k). The FP test maintains

a channel table to record and update the reference channel data for active users, and sets

a timer for each record. Since channel response decorrelates after the channel coherent

time, the use of stale channel data increases the false alarm rate of FP. Accordingly, we

delete the outdated channel data in the channel table, once their timers reach the maximum

lifetime, NT , which depends on the channel coherence time. The reference channel data is

maintained according to the following rule:

Ĥ0(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ĥ1(k − 1), if Ia(k − 1) = 0

Ĥ0(k − 1), if Ia(k − 1) = 1, and Elapsed Time ≤ NT

No ref., o.w.

. (4.45)

As an example, Fig. 4.14 shows how the protocol works in a scenario with Bob receiving

three spoofing messages from Eve and six messages from Alice. A spoofing message can

fool Bob only when both tests fail, such as the fourth message. The FP decision, I1(k),

depends on the difference between the new channel vector and the reference channel H0.

The reference channel is updated according to the previous system decisions Ia and the

timer lifetime limit NT .

4.7.2 Performance Analysis

We consider the performance of FP in spoofing detection, without assuming a reliable

reference channel. The FP false alarm rate α and the miss rate β, previously defined in
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(4.25) and (4.26), assume a reliable reference channel. As noted above, this assumption does

not hold in general, and the corresponding scenario can be viewed as a special “snapshot”

case. Let S(Ĥ) = A(lice) or E(ve) denote the actual sender of the message from which the

channel vector Ĥ is derived. The “snapshot” assumption indicates S(Ĥ0(k)) ≡ A, and the

snapshot performance, α and β, can be rewritten as

α = Pr(I1(k) = 1|S(Ĥ1(k)) = S(Ĥ0(k))) (4.46)

β = Pr(I1(k) = 0|S(Ĥ1(k)) �= S(Ĥ0(k))). (4.47)

Let α2 and β2 denote the false alarm rate and miss rate of the higher-layer authentication

test in the spoofing detection:

α2 = Pr(I2(k) = 1|S(Ĥ1(k)) = A) (4.48)

β2 = Pr(I2(k) = 0|S(Ĥ1(k)) = E). (4.49)

In general, the FP test decision I1(k) has three possible states, (4.43). As shown in

Fig. 4.13, the two decisions, I1(k) = 0 and 2, lead to the same process afterwards in this

double-layer protocol. Thus, we define the generalized FP false alarm rate, PFA, and the

miss detection rate, PM , as:

PFA = Pr(I1(k) = 1|S(Ĥ1(k)) = A) (4.50)

PM = Pr(I1(k) �= 1|S(Ĥ1(k)) = E). (4.51)

Let PFAA and PMA denote the spoofing detection performance of the double-layer protocol.

By (4.44), (4.48)-(4.51), they can be written as

PFAA = Pr(Ia(k) = 1|S(Ĥ1(k)) = A) = α2 + (1 − α2)PFA (4.52)

PMA = Pr(Ia(k) = 0|S(Ĥ1(k)) = E) = PMβ2. (4.53)
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It is clear that PFAA ≥ α2 and PMA ≤ β2. For the FP with small PFA and PM , we have

PFAA ≈ α2 while PMA 	 β2. Thus, the use of FP improves the system performance in

spoofing detection. In order to limit the system false alarm rate, we should adjust the test

threshold η to obtain a small PFA, while a relatively large PM does not hurt too much.

Further, what matters here are the values of PFA and PM , instead of their “snapshot”

counterparts.

In general, the performance of FP, PFA and PM , depends on the snapshot performance

(α and β), the maximum timer lifetime (NT ), the higher-layer algorithm (α2 and β2), and

the spoofing frequency (i.e., how often Eve injects spoofing messages). Both PFA and

PM increase, as Eve injects more spoofing messages, even with constant α and β. Let

Pa ∈ [0, 1] denote the fraction of all messages from Alice. As an extreme case, if all the

received messages are from Eve, i.e., Pa = 0, the FP test fails, even with small α and β.

It is very difficult to perform field tests to extensively measure PFA and PM , since they

depend on the attack pattern and the performance of the higher-layer process. On the

other hand, the snapshot performance of FP, α and β, are much easier to obtain via field

tests. We will consider two extreme cases of the higher-layer test, in order to bound the

performance of FP.

Ideal Higher-layer Test

For the double-layer protocol shown in Fig. 4.13, the performance of FP can be upper

bounded by an “ideal” higher-layer authentication test with α2 = β2 = 0. In this case,

by (4.52) and (4.53), we see that PFAA = PFA and PMA = 0, indicating that the protocol

does not provide Eve any chance to spoof Alice, with the ideal higher-layer test. Hence, the

reference channel Ĥ0(k), if it exists, always comes from Alice’s message.
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For simplicity, we assume that the reference channel timer lifetime NT to be an integer,

and that Bob receives exactly one message at each discrete time. Suppose the senders of

these messages are independent, and identically distributed with

Pa = Pr(S(Ĥ1(k)) = A) = 1 − Pr(S(Ĥ1(k)) = E). (4.54)

The discussion can be also extended to a general case. By (4.45), if a valid reference channel

record comes from the message received at time k − n, i.e., Ĥ0(k) = Ĥ1(k − n), we have

S(Ĥ1(k−n)) = A, n ≤ NT , and that Bob rejects all the messages sent by Alice after k−n.

Theorem 4.7.1 Without any assumption on the reference channel, we can upper-bound

the performance of the FP test based on the Alice-Bob-Eve attack model given by (4.54) as:

PFA = α − α(1 − Pa(1 − PFA))NT (4.55)

PM = β + (1 − β)(1 − PFA/α). (4.56)

Proof: In the i.i.d. attack model, (4.54), the FP decision I1(k) does not impact the

sender of the following messages, and we have

Pr(No Ĥ0(k)) =
∏

n=1,··· ,NT

(1 − Pr(S(Ĥ1(k − n)) = A, I1(k − n) �= 1))

=
∏

n=1,··· ,NT

(1 − Pr(S(Ĥ1(k − n)) = A)Pr(I1(k − n) �= 1|S(Ĥ1(k − n)) = A))

= (1 − Pa(1 − PFA))NT .

As mentioned, with the ideal higher-layer test, the reference channel record, Ĥ0(k), if it

exists, always results from a message sent by Alice, and thus

Pr(S(Ĥ0(k)) = A) + Pr(No Ĥ0(k)) = 1. (4.57)
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Hence, we can rewrite the false alarm rate of FP, (4.50), as

PFA = Pr(I1(k) = 1|S(Ĥ1(k)) = S(Ĥ0(k)))Pr(S(Ĥ0(k)) = A)

+ Pr(I1(k) = 1|No Ĥ0(k))Pr(No Ĥ0(k))

= α(1 − Pr(No Ĥ0(k)))

= α − α(1 − Pa(1 − PFA))NT . (4.58)

We can also obtain the miss rate (4.51) with

PM = Pr(S(Ĥ0(k)) = A)Pr(I1(k) �= 1|S(Ĥ0(k)) �= S(Ĥ1(k))) + Pr(No Ĥ0(k))

= (1 − P (No Ĥ0(k)))β + P (No Ĥ0(k)) = β + (1 − β)P (No Ĥ0(k))

= β + (1 − β)(1 − Pa(1 − PFA))NT = β + (1 − β)(1 − PFA/α). (4.59)

The last line is based on (4.58).

Equation (4.55) shows that PFA is a function of α, β, Pa and NT , but it does not

provide a closed-form expression of PFA. However, the value of PFA can be easily derived

from (4.55), especially for small NT . For example, given NT = 2, we have

αP 2
a P 2

FA + (1 + 2α(1 − Pa)Pa)PFA + ((1 − Pa)2 − 1)α = 0. (4.60)

On the other hand, as NT approaches infinity (i.e., a static channel case), it is shown in

(4.55) and (4.56) that PFA = α and PM = β.

Figure 4.15 provides an upper bound of the performance of FP, as a function of Pa and

NT , given α = 0.05 and β = 0.03. It is shown that both PFA and PM improve with Pa,

due to the high costs for FP to recover from the miss detection of a spoofing message. We

also see that the FP test works efficiently, when Bob receives much more messages from

Alice than from Eve, e.g., Pa > 0.8. In addition, the performance of FP improves with the

timer limit NT , and in particular NT = ∞ results in the best performance. Actually, the
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Figure 4.15: Upper bound of the performance of FP in spoofing detection, including the
false alarm rate PFA and the miss rate PM , given α = 0.05, and β = 0.03, by (4.55) and
(4.56).

performance gap between NT = 3 and NT = ∞ is very small, indicating that FP works well

if Bob can receives about three messages on average during a channel coherence time.

Nominal Higher-layer Test

As another extreme case, a nominal “empty” higher-layer authentication test with I2(k) ≡ 0

lower bounds the performance. In certain cases, e.g. where low-power/lower-cost devices are

desired, higher-layer authentication may be too expensive in terms of power, computation,

or delay. In this case, the FP test works independently, as the only authentication process

for the system. Bob accepts any message if no valid reference channel exists. Thus we have

Ia(k) = 1, if and only if I1(k) = 1; and zero otherwise.

The error propagation property of FP is even more significant here, since any “non-

empty” higher-layer authentication can detect some spoofing messages that are missed
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by FP and thus reduces the error propagation. That is why this case lower bounds the

performance of FP.

On the other hand, the use of reference channel timers enables FP to recover from a

miss detection of Eve. As shown in (4.45), an “invalid” channel record expires, if Bob does

not accept any new message during a period of NT . If Eve keeps silent during that time

and the next message is sent by Alice, Bob accepts the new message and the FP test then

returns to the normal status. Thus the FP test can work independently, if Bob receives far

more legal messages than spoofing messages in the long run.

4.8 Field Test and Implementation Issues in 802.11

As a first step to implementing the FP algorithm in wireless systems, we verify the per-

formance of FP, as well as the double-layer authentication protocol, for IEEE 802.11 sys-

tems [58]. To this end, we utilize an 802.11 testbench, which we call the InterDigital Physical

Layer Security Validation Platforms (IPLSVP), with system parameters listed in Table 4.1.

The experiment is performed in the security lab at InterDigital’s King of Prussia office site,

a typical indoor office environment, with horizontal building map shown in Fig. 4.16.

In the experiment, we use two or three IPLSVP boards, and call them Alice, Bob, and/or

Eve. Mimicking a realistic deployment of the FP algorithm, our test in general operates as

follows:

• A connection is first established between a transmitter IPLSVP board and a receiver

board, according to the standardized 802.11 protocol.

• Then, the transmitter keeps sending probe signals to the receiver for a duration of

several minutes. The transmission intervals between neighboring probe signals vary,
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Table 4.1: System parameters for the field test of the channel-based spoofing detection in
802.11 testbed.

Type Value

Bandwidth 16.6 MHz

Channel spacing/sampling rate 20 MHz

Number of subcarriers 52

Center frequency 5 GHz

Noise power 17-21 dB

Number of CIR vectors 3000

Measurement duration 4 min

Average interval between CIRs 60.3 ms

Std of the interval between CIRs 23 ms

with a mean of 60.3 ms and standard deviation of 23 ms.

• The receiver utilizes the preamble symbols in each probe signal to measure the channel

impulse response (CIR). Each of the resulting CIR vector contains 64 channel samples,

as the inverse fast Fourier transform (IFFT) of the channel frequency response, which

is estimated from the preamble symbols at 52 subcarriers over the bandwidth of 16.6

MHz. The arrival time of each CIR vector is recorded with a time stamp.

The IPLSVP receiver saves these CIR data as well as their time stamps in a large

memory. We consider the CIR vectors from the first N = 3000 received probe signals,

which lasts for about four minutes.

• We change the locations of the testbenches, and then repeat the measurements of the

CIR data for the new scenario.

• By using these CIR data saved from field tests, we perform the FP test offline and

analyze its performance based on various attack models.

More details about the experiments are presented in the following discussion.
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4.8.1 Two-Board Test

In the two-board test, we perform the FP test by using the data collected by two IPLSVP

boards: one acts as Bob, the intended receiver; and the other acting as Alice or Eve,

periodically transmiting probe signals to Bob. We place Bob on a fixed location: a table

inside the lab, and put Alice in 32 different locations, as shown in Fig. 4.16. In each

test scenario, both the transmitter and the receiver are stationary, while people may walk

around from time to time in this busy office site.

Let Ĥ l(k), k = 1, · · · , N , l = 1, · · · , 32, denote the CIR vector derived from the k-th

message, when the transmitter is located at location l, as in Fig. 4.16. Each vector contains

64 complex channel impulse samples. For the offline FP test, there are totally 32 groups of

these CIR data, each containing N = 3000 CIR vectors. We select one transmitter location

as Alice and another one as Eve, and thus obtain 32 × 31 = 992 possible Alice-Eve pairs.

In this way, the two-board experiment conveniently tests the performance of FP, with Alice

and Eve covering a large area.
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For each transmitter location (i.e., given l), we calculate N−1 test statistics with (4.20),

based on the consecutive CIR pairs, Ĥ l(k − 1) and Ĥ l(k), k = 2, · · · , N . By comparing

these N − 1 test statistics with η, we obtain the “snapshot” false alarm rate, as Alice is

located at the l-th location:

α(l) =
1

N − 1

N∑
k=2

J(L(Ĥ l(k − 1), Ĥ l(k)) ≥ η), (4.61)

where the indicator function J(A) = 1 if A is true, and zero otherwise.

The calculation of the miss detection rate for spoofing attacks is much more complex

and requires some degree of approximation. For each of the 992 Alice-Eve pairs (since Bob

keeps in the same location), there are two groups of CIR data, each with N = 3000 vectors,

received at different time. We compare the (k − 1)-th CIR vector from Alice and k-th CIR

from Eve, k = 2, · · · , N , resulting in N − 1 test statistics. When Alice and Eve stay in the

l-th and j-th locations, respectively, the “snapshot” miss rate can be approximately given

by

β(l, j) =
1

N − 1

N∑
k=2

J(L(Ĥ l(k − 1), Ĥj(k)) < η). (4.62)

The two-board test has only one transmitter in the measurement. Hence Ĥ l(k) and

Ĥj(k) are measured at different time, if l �= j. This time difference is at least several

minutes. Similarly, the actual time difference between the measurements of Ĥ l(k − 1) and

Ĥj(k) are much longer than that for a typical practical scenario. Thus the use of (4.62)

for the miss rate calculation assumes that Bob can obtain the same CIR vector for any

specified transmitter location, if the measurement postpones for that time difference. The

assumption indeed increases the difference between Ĥ l(k − 1) and Ĥj(k), and thus (4.62)

lower bounds β.

As mentioned, it is important to set an appropriate test threshold η: if η is too high,
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FP cannot detect any spoofing message. On the other hand, every message will be rejected

if we choose a η that is too low. There are two strategies for the threshold selection:

• Pre-assigned threshold. A fixed threshold η is set according to the experiences or

previous experiments. We choose the value corresponding to a good performance of

FP averaged over most situations. This strategy does not provide an optimal η for

each specific scenario. Moreover, this pre-assigned threshold requires large scale field

tests that also cost efforts.

• Adaptive threshold. In this strategy, the legal user Alice is supposed to send Ntr + 1

training messages in advance, in order to inform Bob about the range of her test

statistics. In other words, when entering a new environment, Alice first continuously

sends Ntr + 1 messages to Bob. Based on these spoof-free messages, Bob calculates

the corresponding test statistics L(k), k = 2, · · · , Ntr + 1. Then he searches the o-

th percentile value of these Ntr test statistics, and sets it as η in the FP test for

the following N − Ntr − 1 CIR data. In this way, Bob adjusts the test threshold η

according to the channel property of the specific environment. Ideally, this adaptive

threshold policy enables a better balance between the false alarm rate and miss rate.

However, the performance is very sensitive to o.

Figure 4.17 presents the average and standard deviation of α(l) over 32 Alice locations

and β(l, j) over 992 Alice-Eve pairs. It verifies the performance of FP for the fixed test

threshold strategy. For example, given η = 2.6, the average α(l) and β(l, j) are around 7%

and 2%, respectively.

This figure also verifies the performance of the adaptive threshold strategy, with Ntr =

400 out of N = 3000 messages to train η. It is shown that the training-based η policy does
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Figure 4.17: The “snapshot” performance of FP, including the average and the standard
deviation of the false alarm rate α, (4.61), and the miss rate β, (4.62). The test statistics,
(4.20), are calculated using the CIR data obtained from the two-board experiment as shown
in Fig. 4.16 and Table 4.1.
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not evidently improve the performance of FP, unless the training is set to be even longer.

For both threshold strategies, the standard deviation of α and β are higher than the

corresponding average value. This indicates that the FP test accurately discriminates most

of the Alice and Eve pairs, while it fails in a few “bad” location pairs. This problem comes

from the nature of the FP test, and cannot be addressed by simply improving the threshold

policy. More specifically, a “bad” Alice-Eve pair does not happen frequently. Here, the time

variation of the Alice-Bob channel is comparable to its difference with the Eve-Bob channel,

or it changes so fast that the channel coherence time is smaller than most message intervals.

In these rare cases, FP may fail to work, and a high-performance high-layer authentication

process helps.

4.8.2 Three-Board Test

Now we evaluate the performance of FP using three boards that act as Alice, Bob and Eve,

in the same building shown in Fig. 4.16. In the three-board experiment, Bob is still located

in the place as denoted in Fig. 4.16, and continually sends probe messages to the other two

boards, Alice and Eve. Alice and Eve estimate the Bob-Alice and Bob-Eve channel based

on the probe messages. In this way, the Alice-Bob and Alice-Eve channel responses at the

same time can be obtained using the channel reciprocity property.

Although the three-board experiment is more accurate than the two-board counterpart

in the evaluation of the miss detection rate of Eve, it is hard to perform a large-scale field

test that covers most of the possible Alice-Eve location pairs. Hence we only provide results

for two specific terminal topologies.

In the first test scenario, Eve is located in the same room with Bob, while Alice is outside

the room. Thus the Alice-Bob channel, HA, has larger time variations than HE . In the
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Figure 4.18: Performance of FP in two experiment scenarios with three boards, including
both the snapshot performance, α and β, and the generalized performance, PFA and PM ,
calculated by (4.55) and (4.56), with NT = 2 and Pa = 70% of the received messages coming
from Alice. These two sub-figures use different scales in Y-axis.
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second test, we exchanged the location of Alice and Eve, and thus HE has larger channel

variations.

As shown in Fig. 4.18, both α and β are mostly below 5% in both cases. The performance

of FP criteria, PFA and PM , are in the same range, when NT = 2 and 30% of the messages

received by Bob are sent by Eve. As mentioned in Fig. 4.15, both PFA and PM decrease

with Pa. Thus Fig. 4.18 verifies the performance of FP for spoofing messages no more than

30%.

Moreover, FP exibits significantly different performance, after the locations of Alice and

Eve are reversed. The false alarm rate (either α or PFA) in Case 1 is larger than the

counterpart in Case 2, indicating that the performance of the FP test is more sensitive to

the channel time variation of Alice than that of Eve.

Figure 4.18 also shows that unlike the snapshot counterpart α, PFA does not always

decrease with the test threshold η, since PFA depends on both β and α. Hence a bad

selection of η may lead to a large PFA, as well as large PM .

Finally, we have to address several issues if implementing the FP algorithm in a com-

mercial 802.11 systems:

• The 16.6 MHz bandwidth in 802.11 systems is not always wide enough to provide very

high resolution of the multipath phenomenon inside an office building. In some cases,

the CIR is even presented as a single fading path, and thus the FP algorithm might

experience performance degradation to a certain degree. Fortunately, the use of MIMO

techniques improves the channel resolution and hence enhances the performance of

FP in spoofing detection.

• The CIR data provided by an 802.11 mobile device, are scaled and corrupted by
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factors, such as the thermal noise, and the receiver phase drift due to the drift of the

local oscillator w.r.t. the transmitter’s local oscillator.

• Realistically, many 802.11 testbench devices, such as IPLSVP, make timing or fre-

quency errors in their channel estimation. As a consequence, the peaks of the CIRs

shift in time, and the CIR data for the same channel may become very different to each

other. To address this problem, we might use a technique called post-CIR-processing

to reduce the timing error of the device.

• To the best of our knowledge, no commercial 802.11 provides estimation of the channel

parameters, such as channel coherence time, and thus it is not possible to implement

the high-performance FP test, such as GLRT Lg, (4.18).

4.9 Conclusion

We proposed a channel-based spoofing detection for wireless networks, utilizing channel

estimation mechanism to detect spoofing messages. For this framework, we presented an

optimized generalized likelihood ratio test, Lg, a practical test, L, which does not require

the knowledge of channel parameters, and a RLS-based test, LR. The efficacy of the scheme

was first verified via numerical analysis using a frequency-selective Rayleigh channel model,

independent of any specific network topology, building description, or channel emulation

software.

More specifically, considering relevant issues, such as terminal mobility, interference,

channel time variation, channel estimation errors, etc., we found that the simple test L

is almost as good as the optimal Lg test in many cases. For example, given path-loss

exponent γ = 4, M = 4 independent channel samples in each message, SINR of the channel
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estimation ρ = 20 dB, channel time variation, b = 0.2, the worst case performance of Lg and

L are α = β = 4% and α = β = 10%, respectively. The test statistic L also demonstrated

excellent “average” results, over the variation of Alice-Eve locations.

The test L was also verified by using site-specific ray tracing. We considered typical

in-building environments, where we used the ray-tracing tool WiSE to generate realistic

average channel responses and used a multipath tapped delay line channel model for the

temporal variation part of the channel response. Simulation results have confirmed the

efficacy of the algorithm for realistic values of the measurement bandwidth (e.g., W ∼ 10

MHz), number of response samples (e.g., M ≤ 10) and transmit power (e.g., PT ∼ 100

mW). The miss rate is generally smaller than 0.01, for a specified false alarm rate of 0.01,

in the static channel environment.

Simulation results show that the proposed scheme can detect spoofing attacks efficiently

under slow terminal velocity. For instance, the detection rate is around 0.96, given a false

alarm rate of 0.06, when the transmitter moves at a speed of 1.43 m/s and the frame

duration equals to 3.5 ms.

One promising ongoing research direction is to integrate this scheme into a holistic

cross-layer framework for wireless security. The aim would be to quantify the net benefit

in thus augmenting traditional “higher-layer” network security mechanisms with physical

layer methods.
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Chapter 5

Channel-Based Sybil Detection

Due to the broadcast nature of the wireless medium, wireless networks are especially vul-

nerable to Sybil attacks, where a malicious node illegitimately claims a large number of

identities in hopes of depleting system resources. We propose an enhanced physical-layer

authentication scheme to detect Sybil attacks, exploiting the spatial variability of radio

channels in environments rich with scattering, as is typical in indoor and urban environ-

ments. We build a hypothesis test to detect Sybil clients for both wideband and narrowband

wireless systems, such as WiFi and WiMax systems. Based on the existing channel esti-

mation mechanisms, our method can be easily implemented with minimal overhead, either

independently or combined with other physical-layer security methods, e.g., spoofing at-

tack detection. The performance of our Sybil detector is verified, via both a propagation

modeling software and field measurements using a vector network analyzer, for typical in-

door environments. Our evaluation examines numerous combinations of system parameters,

including bandwidth, signal power, number of channel estimates, number of total clients,

number of Sybil clients, and number of access points. For instance, both the false alarm

rate and the miss rate of detecting Sybil attacks are usually below 0.01, with 3 tones, pilot

power of 10 mW, and a system bandwidth of 20 MHz.
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5.1 Introduction

Compared with wired networks, most wireless networks lack the ability to reliably identify

clients, and fail to sufficiently protect management frames and control messages. For exam-

ple, IEEE 802.11 (WiFi) systems do not provide reliable “mutual” authentication between

access points (APs) and clients, even when equipped with security standards, such as IEEE

WPA/ 802.11i/ 802.1X [37]. One serious consequence is that such networks are vulnerable

to various identity-based attacks, such as Sybil attacks [7].

Sybil attacks were first introduced in the context of peer-to-peer networks [59] as a form

of resource depletion attack, and then analyzed in the context of wireless networks [7, 60].

In Sybil attacks, a malicious node claims a large number of client identities, either by

impersonating other legal nodes or claiming false identities. For instance, a Sybil node may

send a high rate of association request messages to an AP, using random MAC values to

emulate a large number of clients. The result is that legal clients are denied access once the

Sybil node has consumed an AP’s association slots or channel slots. As a special kind of

denial-of-service (DoS) attack, Sybil attacks seriously endanger the availability of network

services for wireless systems [60].

In order to address these problems, we propose a cross-layer approach to detect Sybil

attacks in wireless networks, exploiting the spatial variability of the wireless channel. As

illustrated in [38], the channel response decorrelates rapidly in space, in typical wireless

scenarios rich with scatterers. Hence, two clients with similar channels are very likely to

be in the same location (and thus from the same Sybil node). Based on this observation,

we propose an authentication scheme, which utilizes the channel measurement mechanisms

naturally existing in most wireless systems. Our scheme can be easily implemented in a
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AP 1

Sybil
Node

Client 1
Client 2

…
Client N s

Client Ns+1

Client Ns+2

Client N

...
AP 2

AP J

Figure 5.1: Sybil attack model with AP 1 receiving messages from N clients, where the first
Ns clients are actually in the same terminal (i.e., Sybil node), while the remaining N −Ns

clients are legal users in distinct terminals. Sometimes, more than one (i.e., J > 1) AP
cooperates to track channels from these clients.

wide range of wireless systems, such as IEEE 802.11, 802.15 (wireless PAN), and 802.16

(WiMax), and can be naturally integrated with a physical-layer spoofing detector described

in Chapter 4.

Assuming stationary terminals and time-invariant channels, we suppose a Sybil node

may use different policies in building the challenge frames. We analyze the detection per-

formance of Sybil attacks, including the miss rate and false alarm rate for a given test

threshold, as well as the corresponding receiver operating characteristic (ROC), for various

combinations of system bandwidth, frequency sample size, pilot power, number of channel

estimates, number of total clients, number of Sybil clients, and number of APs.

5.2 Sybil Attack Model

We present a generalized Sybil attack model in Fig. 5.1, where the serving access point

(AP 1) receives service requests from N clients, during a specified period of time. A Sybil

node attempts to claim Ns ≤ N identities, in hopes of consuming the AP’s resources. The
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remaining N − Ns clients are legal users at distinct terminals.

For convenience of notation, we will refer to the first Ns clients as being from the Sybil

node. If the AP does not catch enough Sybil clients, it is likely that some of the legal

clients will fail to access network services, especially when Ns is large. The special cases

with Ns = 1 and Ns = N , respectively, indicate no Sybil and no legal client.

Some wireless networks deploy more than one AP (i.e., J > 1) in the area to improve the

quality of service and to increase the number of clients allowed. Without loss of generality,

we assume each AP can receive some of the service requests and is able to track the channel

from some of the clients.

5.3 Single-AP Sybil Detection

5.3.1 Channel Measurements

We propose a channel-based Sybil detection technique that relies on existing channel es-

timation mechanisms in wireless systems. We first consider a single AP that utilizes pi-

lots/preamble sequences to estimate channel frequency responses. Denote the true channel

response at frequency f as Hn(f), 1 ≤ n ≤ N , where N is the number of active clients. The

AP obtains and stores the noisy version, Ĥn(f), which is noisy due to three types of channel

estimation error: (1) the receiver thermal noise, which is modeled as white Gaussian noise;

(2) the phase measurement rotation, due to the phase variation of the receiver local oscil-

lator (LO) between one measurement and another; (3) the scaling error of the amplitude

measurement, which results from the deliberate change of the transmission power by an

attacking Sybil node.
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By sampling Ĥn(f) at M tones, f ∈ (fo − W/2, fo + W/2], the AP obtains an M -

dimension channel (row) vector Ĥn,

Ĥn = Hnanejφn + Nn, 1 ≤ n ≤ N, (5.1)

where the elements of arbitrary vector A = [A1, · · · , AM ] are samples from A(f). More

specifically, Am = A(fo + W (m/M − 0.5)); M is the frequency sample size; f0 is the center

frequency of the measurement; and W is the system bandwidth. All elements of Nn are i.i.d

complex Gaussian noise samples CN(0, σ2); φn ∈ [0, 2π) represents the phase measurement

rotation; and an denotes the scaling error in the amplitude measurement, if an �= 1.

5.3.2 Baseline Case: 2 Clients

To gain insight, we first study the Sybil detection problem with N = 2 clients. Since

channel responses decorrelate rapidly in space, two clients with similar channel vectors are

very likely to be at the same location (and thus from the Sybil node).

We can build a simple hypothesis test: In the null hypothesis, H0, there is no Sybil

node, i.e., two clients come from distinct terminals; while the alternative hypothesis, H1,

represents the presence of Sybil attacks, i.e., these two clients are actually the same terminal.

So, we have

H0 : H1 �= H2 (5.2)

H1 : H1 = H2. (5.3)

The test statistic is chosen according to an a priori assumption regarding the power control

strategy of the Sybil nodes. There are two natural strategies:

Sybil Nodes with Constant Power: When Sybil nodes use the correct pattern for pilot

transmission and keep their power levels fixed for different identities, the scaling error of
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the channel amplitude measurement can be ignored, i.e., an = 1. Hence, we claim Sybil

clients, if their channel responses are similar. The pair-wise test statistic is chosen as

L(Ĥ1, Ĥ2) =
1
σ2

||Ĥ1 − Ĥ2e
jφ||2, (5.4)

where

φ = arg min
x

||Ĥ1 − Ĥ2e
jx|| = Arg(Ĥ1Ĥ

H
2 ). (5.5)

This test statistic is approximately a generalized likelihood ratio test. The minimization

over the phase, x, is introduced to overcome phase measurement rotation. This step is

necessary as otherwise we may fail to catch the Sybil node, since its channel vectors change

with phase rotation.

Sybil Nodes with Adaptive Power: In order to increase the chance of fooling an AP

and avoid detection, a clever Sybil node may change the power of its pilots as it attempts

to claim different identities. As a result, the Sybil node will cause the scaling error an

to vary across the different claimed identities, thus resulting in different channel vectors

for different claimed identities. In this case, the AP should compare the relative shape of

channel response sequences, i.e., it checks whether the scaled channel vectors of the clients

can be matched up. Thus, an approximate likelihood ratio test statistic becomes

L(Ĥ1, Ĥ2) =
2||Ĥ1 − wĤ2||2

(1 + |w|2)σ2
, (5.6)

where

w = arg min
x

||Ĥ1 − xĤ2|| = Ĥ1Ĥ
H
2 /||Ĥ2||2. (5.7)

We note that w is a complex number: its phase counteracts the phase measurement rotation

(otherwise, we may fail to catch the Sybil nodes); while its magnitude counteracts the change

of the scaling error (this helps detect Sybil nodes that vary their power).
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In both cases, we define the rejection region for a Sybil attack as those cases where L

falls below some threshold k. Given an environment and the locations of the terminals, we

can study the performance of the detector, averaged over the channel measurement errors.

More specifically, given a test threshold (k) and true channel vectors (H1 and H2), the false

alarm rate (or Type I error) and the miss rate (or Type II error) in the Sybil detection are

defined respectively by

α(k) = Pr(L ≤ k|H0) (5.8)

β(k) = Pr(L > k|H1). (5.9)

The probabilities are taken over all realizations of channel measurement error.

Theorem 5.3.1 In a Sybil detection scenario with two clients, given the miss rate β, the

false alarm rate is

α(β) = Fχ2
2M,μ

(F−1
χ2

2M,0
(1 − β)), (5.10)

where

μ = ||H1 −H2e
jArg(H1H

H
2 )||2/σ2, (5.11)

when the Sybil node is known to employ constant power, or

μ = 2||H1 − wH2||2/(1 + |w|2)σ2, (5.12)

when the Sybil node is known to possibly adapt its power, with w = H1H
H
2 /||H2||2.

Proof: First, we consider the case that the Sybil node uses constant signal power, i.e.,

an = 1. When H1 is true, we have H1 = H2, (5.3). From (5.1), (5.5), and the assumption

that Arg(Ĥn) ≈ Arg(Hnejφn), which is reasonable for the high-SNR conditions where the
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system must operate, we can obtain

H1e
jφ1 − H2e

jφ2ejφ

=H1e
jφ1(1 − ej(φ2−φ1+Arg(Ĥ1Ĥ

H
2 )))

≈H1e
jφ1(1 − ej(φ2−φ1+Arg(H1)+φ1−Arg(H2)−φ2))

=ejφ1H1(1 − ej(Arg(H1)−Arg(H2)) = 0. (5.13)

The elements in the M -dimensional vectors, N1 and N2, are i.i.d. complex Gaussian

random variables CN(0, σ2). Thus Nm = N1,m − ejφN2,m ∼ CN(0, 2σ2), m = 1, · · · , M .

From (5.1), (5.4), and (5.13), the test statistic L under H1 can be written as

L =
1
σ2

||Ĥ1 − Ĥ2e
jφ||2

=
1
σ2

||H1e
jφ1 + N1 − Ĥ2e

φ2+jφ − ejφN2||2

=
||N1 − ejφN2||2

σ2

=
1
σ2

(
M∑

m=1

(Re(Xm))2 +
M∑

m=1

(Im(Xm))2
)

∼ χ2
2M , (5.14)

which is a Chi-square random variable with 2M degrees of freedom [56].

Similarly, when H0 is true, we usually have H1 �= H2. From (5.1) and (5.4), the test

statistic L under H0 can be written as

L =
1
σ2

||Ĥ1 − Ĥ2e
jφ||2

=
1
σ2

||H1e
jφ1 − H2e

j(φ+φ2) + N1 − ejφN2||2

=
1
σ2

||H1 − H2e
j(φ+φ2−φ1) + e−jφ1N1 − ej(φ−φ1)N2||2

≈ 1
σ2

||H1 − H2e
j(Arg(H1H

H
2 )) + e−jφ1N1

− ej(φ2+Arg(H1H
H
2 ))N2||2 ∼ χ2

2M,μ, (5.15)

where μ = ||H1 − H2e
jArg(H1H

H
2 )||2/σ2, which is a non-central Chi-square variable with a

non-centrality parameter μ and 2M degrees of freedom.
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Given a test threshold k, the false alarm rate α and the miss rate β, respectively, are

given by

α = Pr(L ≤ k|H0) = Fχ2
2M,μ

(k), (5.16)

β = Pr(L > k|H1) = 1 − Fχ2
2M

(k), (5.17)

where FX(·) is the CDF of the random variable X. From (5.16) and (5.17), the false alarm

rate for a given miss rate can be written as

α(β) = Fχ2
2M,μ

(F−1
χ2

2M,0
(1 − β)), (5.18)

where F−1
X (·) is the inverse function of FX(·).

Next, we assume that the Sybil node may change its transmission power, i.e., an �= 1

holds in most cases, and denote xn = anejφn , n = 1, 2. When H1 is true, from (5.1), (5.3),

(5.7), we can assume that when the SNR is high, Ĥ1Ĥ
H
2 /||Ĥ2||2 ≈ H1x1HH

2 x∗
2/||H2||2x2x

∗
2.

Thus we have

H1x1 − wH2x2 = H1x1 − x2Ĥ1Ĥ
H
2 H2/||Ĥ2||2

≈ H1x1 − x2H1x1HH
2 x∗

2H2/||H1||2x2x
∗
2 = 0. (5.19)

From (5.6) and (5.19), we have

LH1 ≈ 2||N1 − wN2||2
(1 + |w|2)σ2

∼ χ2
2M . (5.20)

Otherwise, when H0 is true, L can be written as

L =
2||H1 − wH2 + N1 − wN2||2

(1 + |w|2)σ2
∼ χ2

2M,μ, (5.21)

where

μ = 2||H1 − wH2||2/(1 + |w|2)σ2. (5.22)

The rest of the proof is the same as the case with constant power.



100

5.3.3 Generalized Case: Multiple Clients

For a generalized case with N active clients, we represent the decision result of the Sybil

detection with a decision indicator, I(·), which is given by

I(m) =

⎧⎪⎪⎨
⎪⎪⎩

1, Client m is a Sybil

0, Client m is legal
. (5.23)

If the AP claims the m-th client to be Sybil, we have I(m) = 1; otherwise, I(m) = 0.

The authentication decision for one client may depend on the channel vectors of all N

clients. The goal is to detect as many Sybil clients as possible, while reducing the false

alarm rate, i.e., the probability of claiming a legal client as a Sybil client. In our problem

model, where the first Ns clients come from the same Sybil terminal, i.e., H1 = Hn, n ≤ Ns,

an ideal error-free decision is

I(m) =

⎧⎪⎪⎨
⎪⎪⎩

1, 1 ≤ m ≤ Ns

0, Ns < m ≤ N

. (5.24)

Given a (N, Ns) system with specified channel realizations, the false alarm rate α and

the miss rate β, are given respectively by

α(N, Ns) =

⎧⎪⎪⎨
⎪⎪⎩

∑N
m=Ns+1 E[I(m)]

N−Ns
, N > Ns

0, N = Ns

, (5.25)

β(N, Ns) =

⎧⎪⎪⎨
⎪⎪⎩

0, Ns = 1

1 −
∑Ns

m=1 E[I(m)]
Ns

, Ns > 1
, (5.26)

where E[·] is the average over all realizations of channel measurement error.

We note that the detection with multiple clients is no longer a simple hypothesis test,

and thus the performance criteria are slightly different from those in Section 5.3.2. More

specifically, α in (5.8) and β in (5.9), correspond to α(2, 0) in (5.25) and β(2, 2) in (5.26),

respectively.
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A heuristic solution would be to claim that two clients are Sybil, if their channel re-

sponses are similar. Thus the detection rule can be written as

I(m) =

⎧⎪⎪⎨
⎪⎪⎩

1, ∃L(m, n) ≤ k, 1 ≤ n ≤ N, n �= m

0, otherwise
. (5.27)

The test statistic L is chosen according to the a priori knowledge of the power strategy of

the Sybil nodes,

L(m, n) =

⎧⎪⎪⎨
⎪⎪⎩

||Ĥm−Ĥnejφ||2
σ2 , constant power

2||Ĥm−wĤn||2
(1+|w|2)σ2 , adaptive power

, (5.28)

where φ = Arg(ĤmĤ
H
n ), and w = ĤmĤ

H
n /||Ĥn||2. It is actually based on (5.4) and (5.6).

For convenience of discussion, in the remainder of the chapter, we suppose the APs do

not know the power strategy that the Sybil nodes employ.

Theorem 5.3.2 Assume an AP receives requests from N clients, where Ns of them actually

come from the same Sybil node. Given the test threshold k, the proposed Sybil detector has

the false alarm rate and miss rate given respectively by

α(N, Ns) = 1 −

∑N
m=Ns+1 (1 − Fχ2

2M,μ(m,1)
(k))Ns

∏
Ns+1≤n≤N,n �=m(1 − Fχ2

2M,μ(m,n)
(k))

N − Ns

(5.29)

β(N, Ns) = (1 − Fχ2
2M

(k))Ns−1 ·
∏

Ns+1≤n≤N

(1 − Fχ2
2M,μ(1,n)

(k)), (5.30)

where μ(m, n) = 2||Hm − wHn||2/(1 + |w|2)σ2.
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Proof: Given a test threshold k, the false alarm rate averaged over all channel esti-

mation noise can be written as

α(N, Ns) =

∑N
m=Ns+1 E[I(m)]

N − Ns

=
1

N − Ns

N∑
m=Ns+1

Pr[I(m) = 1]

= 1 − 1
N − Ns

N∑
m=Ns+1

Pr[I(m) = 0]

= 1 − 1
N − Ns

N∑
m=Ns+1

Pr[L(m, n) > k, ∀n �= m]

= 1 − 1
N − Ns

N∑
m=Ns+1

∏
1≤n≤N,n �=m

Pr[L(m, n) > k]

= 1 − 1
N − Ns

N∑
m=Ns+1

∏
1≤n≤N,n �=m

(1 − Fχ2
2M,μ(m,n)

(k))

= 1 − 1
N − Ns

N∑
m=Ns+1

(1 − Fχ2
2M,μ(m,1)

(k))Ns

∏
Ns+1≤n≤N,n �=m

(1 − Fχ2
2M,μ(m,n)

(k)), (5.31)

where

μ(m, n) = 2||Hm − wHn||2/(1 + |w|2)σ2. (5.32)

Similarly, we get the miss rate for a given k,

β(N, Ns) = 1 −
∑Ns

m=1 E[I(m)]
Ns

= 1 −
∑Ns

m=1 Pr[I(m) = 1]
Ns

= Pr[I(1) = 0] = Pr[L(1, n) > k, ∀n = 2, · · · , N ]

= (1 − Fχ2
2M

(k))Ns−1
∏

n=Ns+1,··· ,N
(1 − Fχ2

2M,μ(1,n)
(k)). (5.33)
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As a special case, if there is no Sybil client, the false alarm rate is given by

α(N, 1) = 1 −

∑N
m=2

∏
n�=m(1 − Fχ2

2M,μ(m,n)
(k))

N − 1
. (5.34)

As another special case, if all clients are Sybil, the miss rate can be written as

β(N, N) = (1 − Fχ2
2M

(k))N−1. (5.35)

These cases illustrate in a simple way how the miss rate decreases with N , while the false

alarm rate rises with it.

5.4 Multiple-AP Sybil Detection

It is common practice that wireless networks are deployed with multiple APs (i.e., J >

1). If we have additional APs available, these APs may cooperate to improve detection

performance. For simplicity, we assume that no AP is outside the coverage area of the

clients, i.e., we assume all channel response vectors are non-zero, and denote the estimated

channel response between the n-th client and the j-th AP as Ĥn(j), where 1 ≤ n ≤ N , and

1 ≤ j ≤ J .

Suppose the APs cooperate in the Sybil detection process, using (5.27) to make a deci-

sion. The APs can either be asynchronous or synchronous in configuration: If the APs are

connected together and served by the same receiver oscillator, they may be synchronized

to have the same (but unknown) phase measurement rotation. Otherwise, if using different

oscillators, their phase rotations are assumed to be independent. With the size of the es-

timated channel samples rising from M to JM , we now build the tests according to each

system configuration.
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5.4.1 Synchronous APs

The channel frequency responses from synchronous APs have the same phase shift and

magnitude scaling factor. Hence, we can ignore which AP the channel vector comes from,

and combine them into an extended channel vector, Ĥn = [Ĥn(1); Ĥn(2); · · · ; Ĥn(J)]. It

is clear that it is the same as the case with a single AP, only with the dimension of the

channel vectors changing from M to MJ . Thus we choose a test statistic that is similar to

(5.6),

L(m, n, J) = 2
||Ĥm − wĤn||2
(1 + |w|2)σ2

, (5.36)

w = ĤmĤ
H
n /||Ĥn||2. (5.37)

5.4.2 Asynchronous APs

Since the channel vectors have independent and unknown phase shifts among asynchronous

APs, we choose the pair-wise test statistic as the sum of the metrics, (5.6), from the J APs,

i.e.,

L(m, n, J) = 2
J∑

j=1

||Ĥm(j) − w(j)Ĥn(j)||2
(1 + |w(j)|2)σ2

, (5.38)

w(j) = Ĥm(j)Ĥ
H
n (j)/||Ĥn(j)||2. (5.39)

Theorem 5.4.1 Assume J APs work together to detect a Sybil node that claims Ns clients,

with the existence of N − Ns legal clients. Given test threshold k, the false alarm rate,

α(N, Ns, J), and the miss rate, β(N, Ns, J), are given respectively by

α(N, Ns, J) = 1 − 1
N − Ns

N∑
m=Ns+1

(1 − Fχ2
2JM,μ(m,1)

(k))Ns
∏

Ns+1≤n≤N,n �=m

(1 − Fχ2
2JM,μ(m,n)

(k))

(5.40)

β(N, Ns, J) = (1 − Fχ2
2JM

(k))Ns−1
∏

Ns+1≤n≤N

(1 − Fχ2
2JM,μ(1,n)

(k)), (5.41)
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where

μ(m, n) =
2||Hm − wHn||2

(1 + |w|2)σ2
, (5.42)

when the APs are synchronous; otherwise, when using asynchronous APs,

μ(m, n) =
J∑

j=1

2||Hm(j) − w(j)Hn(j)||2
(1 + |w(j)|2)σ2

, (5.43)

where w and w(j) are given by (5.37) and (5.39), respectively.

Proof: It is clear that the synchronous-AP case is the same as the single-AP case, only

with the dimension of the channel vectors changing from M to MJ . Thus we only discuss

the asynchronous case here. It is easy to show that, when two clients come from different

terminals, i.e., their true channel responses are different, the pair-wise test statistic L is a

non-central Chi-square variable with a non-centrality parameter μ, i.e.,

L = 2
J∑

j=1

||H1(j) − w(j)H2(j) + N1(j) − w(j)N2(j)||2
(1 + |w(j)|2)σ2

∼ χ2
2JM,μ, (5.44)

where

μ = 2
J∑

j=1

||H1(j) − w(j)H2(j)||2/(1 + |w(j)|2)σ2. (5.45)

Otherwise, when two clients come from the same Sybil node, the test statistic L is a

chi-square random variable with 2JM degrees of freedom, i.e.,

L = 2
J∑

j=1

||N1(j) − w(j)N2(j)||2
(1 + |w(j)|2)σ2

∼ χ2
2JM . (5.46)

Similar to the proof of Theorem 5.3.2, the false alarm rate α and the miss rate β,

respectively, are given by,

α(N, Ns, J) = 1 −

∑N
m=Ns+1(1 − Fχ2

2JM,μ(m,1)
(k))Ns

∏
Ns+1≤n�=m≤N (1 − Fχ2

2JM,μ(m,n)
(k))

N − Ns

(5.47)

β(N, Ns, J) = (1 − Fχ2
2JM

(k))Ns−1
∏

n=Ns+1,··· ,N
(1 − Fχ2

2JM,μ(1,n)
(k)), (5.48)
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where

μ(m, n) = 2
J∑

j=1

||Hm(j) − w(j)Hn(j)||2/(1 + |w(j)|2)σ2, (5.49)

and w(j) = Ĥm(j)Ĥ
H
n (j)/||Ĥn(j)||2.

5.5 Implementation Issues

5.5.1 Frame Structure

In most wireless systems, each data/control message contains pilots/preambles, payload,

and a cyclic redundancy check (CRC) field. The accuracy of the pilot or preamble-based

channel estimation significantly influences the quality of the channel decoding. If there is

too much decoding error, the message will fail the CRC parity check and the frame will be

discarded.

If a Sybil alters its pilot transmission scheme, it can make the channel estimates of its

corresponding claimed clients different. Thus the Sybil node has an increased chance to

fool the monitoring APs. The modification of pilot patterns, however, is very likely to be

noticed by the receiver. The reason is that it seriously degrades the channel decoding and

thus leads to a CRC check failure with high probability. Hence, the Sybil node cannot send

patterns that differ greatly from what is specified for normal communication. Thus, a clever

Sybil node should keep the shape of the pilots the same and strive to fool an AP verifier by

just changing the amount of power it uses to transmit pilots.

5.5.2 Wideband Systems

The underlying assumption of the proposed authentication scheme is that the system band-

width is greater than the coherence bandwidth in current wireless systems and environments.
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We now examine practical issues for two types of wideband systems.

OFDM-based Systems: The proposed Sybil detection scheme can be conveniently im-

plemented in OFDM-based systems, like IEEE 802.11 (WiFi), 802.15 (wireless PAN), and

802.16 (WiMax) [61,62].

The number of pilot symbols, M , can in fact be less than the number of subbands, Ms,

with the remainder of the subbands used for data. For concreteness, however, we assume

initially that all subbands in the first symbol are used for pilots. In our numerical examples

later, we relax this assumption. Simulation results will show that the detector only needs to

consider channel estimation on M < Ms subbands, where the tone spacing W/M is chosen

to be greater than the coherence bandwidth of the channel. Moreover, the CRC parity

check result is utilized to catch Sybil nodes who change the pilot transmission patterns.

Single-Carrier-based Systems: The proposed scheme can also be implemented in the

wideband single carrier systems, e.g., code division multiple access (CDMA) cellular sys-

tems. Each frame consists of Ms training symbols for channel estimation. The training se-

quence can be thought of as an impulse sequence convolved with p(t), the pulse shape with

a nominal width of T . We note that 1/T is large compared to the correlation bandwidth in

wideband systems by definition. After going through the channel, with frequency-selective

response, H(f), the receiver samples the Ms-pulse sequence and performs a discrete Fourier

transform (DFT) on it.

In order to constrain the two-sided spectrum within the bandwidth W , p(t) is typically

chosen to be a root Nyquist pulse; specifically, we assume a p(t) such that its matched filter

response is a cosine rolloff pulse whose Fourier transform has a half-amplitude width of 1/T

(the symbol rate) and a cosine rolloff factor B. In this case, T , W and B are related by

W = (1 + B)/T [63]. The choice of B is typically between 0.1 and 0.3, as a compromise
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between robustness of design and spectral efficiency. In any such case, the bulk of the

transmission pulse, p(t), spans a time interval of about T second.

We use an Ms-symbol training sequence of [1, 0, 0, · · · , 0], and every T seconds we sample

the received version out of the matched filter. In this way, we obtain the channel impulse

response sequence, whose DFT corresponds to the channel frequency response at a discrete

set of frequencies (with aliasing, of course, the extent of which depends on the rolloff factor,

B).

5.5.3 Narrowband Systems

Although the proposed authentication scheme is based on multipath propagation and hence

actually applicable to wideband systems, it can as well be implemented in a narrowband

system, where the system bandwidth is less than the coherence bandwidth [64]. In this

case, all the channel samples within the system bandwidth are highly correlated, and thus

we set M = 1.

If Sybil nodes use constant pilot power, our scheme can work with a single AP, and its

performance degrades compared to the wideband system. On the other hand, under un-

known power control strategy, the cooperation among multiple synchronized APs is required

for the narrowband system to overcome the magnitude changes, (5.36).

5.5.4 Integration with Spoofing Detection

We can integrate the proposed Sybil detection scheme with a spoofing detector (see Chapter

4) with small additional overhead. When a client initiates a service request, the APs first

start the Sybil detections. Once a client is verified to be non-Sybil, the APs continue to

track its channel response and initiate the channel-based spoofing detection that also utilizes
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the existing channel measurement mechanism [39].

More specifically, without any change to the system structure above, the APs perform

channel estimation and compare the channel vectors with the reference vectors, reusing the

test statistic of (5.4). The rejection region for a spoofing attack is defined as the test statistic

lying above some threshold k′. If a client has a similar channel response in consecutive time,

APs update their reference channel vectors; otherwise, a spoofing attack alarm is reported.

The integrated channel-based detection can efficiently catch mobile Sybil attackers. If

a Sybil node moves rapidly so as to yield a different channel response, it may be caught

by the spoofing detector, since it has difficulty in generating the channel response of the

corresponding client in the previous handshake process.

5.6 Simulation and Numerical Results

5.6.1 Simulation Model

We have done simulations for a typical office building, for which a top view of the first floor

is shown in Fig. 5.2. This floor of the building is 120 meters long, 14 meters wide and 4

meters high. For our experiments, we placed the APs in the hallway (the filled-in circles)

at a height of 3 meters, including AP 1 (the serving AP), AP 2, and AP 3, located at [45.6,

6.2, 3.0] m, [77.0, 5.0, 3.0] m, and [24.0, 6.2, 3.0] m, respectively.

For the positions of clients, we considered a 12 m × 67 m area, (outlined with a dashed

line), and placed the clients randomly on a uniform grid of points with 1.5-meter separations

(with 405 grid points), at a height of 2 m. We randomly chose one position as the Sybil

adversary who attempted to claim Ns identities, and randomly selected another N − Ns

points as legal clients. We then used WiSE to generate the corresponding channel impulse



110

67 m

1.5 m

1.5 m

AP 1 AP 2
AP 3

Clients12 m

Figure 5.2: System topology assumed in the simulations. Three APs are located at [45.6,
6.2, 3.0] m, [77.0, 5.0, 3.0] m, and [24.0, 6.2, 3.0] m, respectively, in a 120 m × 14 m × 4
m office building. All clients, including both legal clients and Sybil, are located on dense
grids at a height of 2 m. There are a total of 405 grid points.

responses.

The hypothesis test was performed, and the performance including α and β was evalu-

ated for the scenario. We repeated the experiment 10,000 times, and computed the average

false alarm rate and miss rate over the whole area, for each of several selected combinations

of system parameters.

The noise variance, σ2, is defined as the receiver noise power per tone, PN , divided by

the signal power per tone, PT /M , where PT is the total power over M tones in mW. Noting

that PN = ηNF b, where η is the thermal noise density in mW/Hz, NF is the receiver noise

figure, and b is the measurement noise bandwidth per tone in Hz, we can write

σ2 =
ηNF b

PT /M
. (5.50)

5.6.2 Simulation Results

In the simulations, we calculated the average false alarm rate for Sybil attacks, α, given

a miss rate of β = 0.01, with center frequency f0 = 5 GHz, NF = 10, b = 0.25 MHz,

M = 1, · · · , 8, bandwidth W = 0.025 ∼ 100 MHz and PT = 1 ∼ 100 mW, if not specified
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otherwise. The per tone signal-to-noise ratio (SNR) ranges from 1.7 dB to 80 dB, with a

median value of 35 dB, for PT = 10 mW and M = 1.

Figure 5.3 shows the effectiveness of the proposed Sybil detector in a wideband system,

with N = 2 clients and one AP. For example, both the average false alarm and miss rate

are as small as 0.01, when the power is PT = 10 mW, M = 3 tones, and W = 20 MHz. The

performance improves with higher power, since the channel measurement error decreases

with increasing PT , see Equation (5.50). The use of more frequency samples has a two-fold

impact: it increases the channel resolution, while reducing the power per tone. Thus our

scheme does not require too many frequency samples, and M = 3 is a good choice. It is

also shown that if a Sybil node varies the power of pilots, it has a larger false alarm rate,

i.e., it has a greater chance to hurt the system performance.

Proceeding further, Fig. 5.4 shows that our Sybil detector works in a narrowband system

(W = 300 kHz), and its performance improves as we increase the number of APs. In other

words, less pilot power is required for systems with more APs. For instance, systems with a

single and two APs, require 100 mW and 1 mW pilot power, respectively, in order to make

α < 0.01 and β = 0.01. In addition, our scheme requires at least 2 APs, in order to work

properly in narrowband systems, unless we know in advance that Sybil nodes use constant

pilot power.

Next, we find in Fig. 5.5 that the false alarm rate decreases with the system bandwidth

in wideband systems, and remains within an acceptable range in narrowband systems with

2 synchronous APs. As predicted, the synchronous system has a lower false alarm rate

than the asynchronous system, and only synchronous multiple-AP systems work well in the

narrowband regime.

Finally, Fig. 5.6 presents the performance with multiple clients (4 legal clients), including
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Figure 5.3: Average false alarm rate of Sybil detection in wideband systems, α, for a given
miss rate β = 0.01, with two clients, one AP, W = 20 MHz, and b = 0.25 MHz. The curves
with notation ‘fixed’ correspond to the cases where the receiver knows that the Sybil node
uses constant power.

the receiver operating characteristic (ROC) curves. As indicated in (5.29) and (5.30), the

miss rate decreases with the threshold, k, while the false alarm rate rises. Moreover, for a

given test threshold and number of legitimate clients, the false alarm rate slightly increases

with Ns (number of Sybil clients), while the miss rate dramatically decreases. As shown in

the ROC curves, the detection performance improves as the Sybil node claims more clients.

In other words, the more harmful a Sybil node is to a network, the more likely it is to be

caught by the proposed system.

5.7 Experimental Verification

We verified the proposed scheme via field measurements in a different office building, for

which a top view is shown in Fig. 5.7. The experimental settings were similar to those
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Figure 5.6: Performance of Sybil detection in the (N , Ns) systems, where there is one AP,
4 legal clients, and Ns (= N − 4) Sybil clients. We assume M = 5 tones, W = 50 MHz,
PT = 50 mW, and b = 0.25 MHz.
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using WiSE, except that the client grids were in a 4.55 m × 12.80 m area with 0.91-meter

separations (with 89 grid points). Both the AP and clients were at a height of 1.5 m.

We randomly chose N−Ns+1 points as clients and measured the corresponding channel

responses. The measurement system was comprised of an Agilent E5071B vector network

analyzer (VNA), HG2458RD-RSP Rubber Duck vertically polarized omni-directional an-

tennas, and low-loss, double-shielded, 60 ft. cables, with a maximum loss of 6 dB at 6

GHz.

We used the same thermal noise model as in previous section, and set M = 5, W = 20

MHz and PT = 1 μW. The corresponding per tone SNR in the channel estimation ranged

from 12.9 dB to 43.7 dB, with a median value of 28 dB. The value of PT was smaller than

0.1 mW, since the average distance between transmitter and receiver was much less than

that in Fig. 5.2.

Figure 5.8 presents the performance metrics as a function of test threshold k, given 4

legitimate clients. The figure verifies the performance of our Sybil detector; it shows that

both the false alarm rate and the miss rate are below 0.01 for the test threshold k = 25.

The results agree with the trend observed in Fig. 5.6.

5.8 Related Work

A traditional approach to address network attacks is secret-key-based authentication and en-

cryption. Several pairwise key management schemes have been proposed for wireless sensor

networks, based on probabilistic key sharing for authentication [65–68]. Their performance

was improved by exploiting the location information of sensor nodes [69]. The use of pair-

wise keys to prevent Sybil attacks was briefly discussed in [70]. These key management

schemes, however, usually incur a large system overhead associated with key management,
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which is not desirable. In contrast, after an initial association, our method does not require

key management as it exploits the inherent properties of the channel (and not keys) to

discriminate among entities.

In order to reduce the system overhead, the use of physical layer information has been

proposed to enhance security in wireless networks. One group of work is based on the

received signal strength (RSS) [7, 36, 52]. This work proposes to utilize large scale channel

fading and has three main limitations: (1) the monitor network has to be densely deployed,

since each client must be measured by multiple landmarks; (2) the monitoring network

may fail to discriminate terminals with small spatial separation, and may have performance

degradation in rich-scattering environments; (3) the RSS information may be eavesdropped

and spoofed in some circumstances [53].

To address these problems, the spatial variability of multipath propagation has been

utilized in enhancing wireless security. A scheme based on channel frequency response was

first proposed in [71]. An authentication method to detect spoofing attacks using hypothesis

testing was defined and further explored in [39–42]. Meanwhile, Patwari and Kasera propose

the use of the channel impulse response to discriminate among the terminal locations in [53].

5.9 Conclusion

We have proposed a channel-based authentication technique to detect Sybil attacks in wire-

less networks, utilizing the uniqueness of channel responses in rich-scattering environments.

By exploiting channel estimation, which is already performed in most wireless systems, we

can build a hypothesis test that can detect Sybil attacks. Our Sybil detector involves a

test statistic that is chosen based on the number of claimed identities, the number of access

points, whether the APs are synchronized, as well as the attack strategy used by Sybil
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nodes. The technique takes into account measurement errors in channel estimation, includ-

ing the receiver thermal noise, phase rotation of the receiver oscillator, and the variation of

pilot power of Sybil clients. Our Sybil detector can be conveniently implemented in most

existing wireless systems with low overhead, and can be naturally integrated with other

physical layer security methods, such as spoofing detection, with minimal changes.

We derived the closed-form expression of the average miss detection rate and false alarm

rate of the Sybil detection. We verified the efficacy of our scheme using the channel data

generated from both propagation modeling software and field measurements via a vector

network analyzer. Our scheme achieves high detection accuracy with a single AP in typical

indoor environments. For instance, both the false alarm rate and the miss rate are below

0.01, when we use 3 tones, 10 mW pilot power, and a system bandwidth 20 MHz. Such

a configuration is comparable to what is used in current WLAN deployments. It also

works well in narrowband systems when there are multiple APs that are synchronized.

The performance improves as we increase the number of APs, signal power, and system

bandwidth. In addition, using receiver operating characteristic curves, we show that a

Sybil node is more likely to be caught if it claims more identities, indicating that the Sybil

nodes that hurt the network performance more seriously are more likely to be caught.

The spatial variability of wireless channels, which serves as the basis of our detection

scheme, is most prevalent in environments with many scatterers and reflectors. As a result,

our scheme achieves better performance if the terminals are inside buildings or in crowded

urban areas, and if the system bandwidth is greater than the coherence bandwidth of the

channel. For narrowband systems, however, channel-based authentication has to rely on

the limited spatial information associated with channel path-loss, and thus the performance

degrades in this case. We have shown, however, that employing multiple access points can
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overcome this limitation, and make channel-based authentication viable for narrowband

systems.
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Chapter 6

Conclusion

In this thesis, we have investigated the use of channel information to improve several higher-

layer functions associated with wireless networks, based on the fact that the wireless medium

contains location-specific information at various scales. This work consists of two parts:

In the first part, sensor networks are deployed to measure the distribution of received

signal strength, which is influenced by the large-scale channel gain variations, in order to

estimate signal coverage (e.g., outage probability) and to locate mobiles. In the second

part, a receiver (e.g., a WLAN access point) measures – from each received transmission

– its current channel response, which is influenced by multipath (small-scale channel gain

variations), in order to discriminate among transmitters and thus detect spoofing and Sybil

attacks.

The first application we covered was the estimation of signal coverage, which is critical

for the radio resource management and site planning of wireless systems, notably cellu-

lar systems, WLAN and DVB-H. The coverage measurements are performed using sensor

networks in order to provide a round-the-clock, non-labor-intensive service that can facil-

itate slow adaptive changes in radio resources. In Chapter 2, we have demonstrated that

accurate coverage outage estimation based on sensor networks is possible and moreover,

that the required number of such measurements can be substantially reduced via impor-

tance sampling. We proposed a practical partial-cell sensor placement that does not require
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channel parameter information, wherein the power-measuring sensors are distributed in a

random and uniform way over base-mobile distances from 50% to 100% of the cell radius.

Compared with the full-cell placement, the partial-cell placement reduces the number of

sensors by ∼33%, while accurately estimating the cell outage probability.

As a future research direction, it would be interesting to perform field tests to verify

the performance of the sensor placements in a multiple-cell environment, and to further

analyze this issue from the viewpoint of measurement theory and data mining. Further,

while we have focused in this thesis on sensor-based coverage estimation, a given operator

may want to consider a wide range of approaches, including: (1) The traditional combining

of site data with drive testing; (2) deploying a dedicated network of sensors (which is the

case investigated here); (3) renting service from an existing multipurpose sensor network;

(4) using a set of subscriber mobiles, equipped with GPS, to periodically measure and

report power measurements; and so on. For those approaches based on sensor or mobile

measurements, the rate of measurement-and-report (e.g., hourly, daily, etc) can be tailored

to maintain acceptable levels of battery drain. Choosing among candidate approaches would

require a cost/performance tradeoff analysis.

Another application of sensor networks is to mobile localization, which not only helps to

improve many functions of wireless networks, such as radio resource management, mobility

management and overall cellular system design, but also is critical for security purposes.

In Chapter 3, we have investigated the application of sensor networks to locate mobiles,

based on the received signal strength at the sensor receivers from a mobile’s transmission.

The investigation used a generic path-loss model incorporating distance effects and spatially

correlated shadow fading. We have described four simple localization schemes and showed

that they all meet E-911 requirements in most environments. Performance can be further
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improved by implementing the MMSE algorithm, which ideally reaches the Cramer-Rao

Bound. We have compared the MMSE algorithm and the four simple schemes when the

model parameters are estimated via inter-sensor measurements.

Considering the sensor-based localization schemes described in Chapter 3, the follow-

ing topics are promising future directions: (1) Investigate localization in the presence of

interference, either from non-malicious users or from adversary radio sources, and devise

alternative schemes, as appropriate; (2) Investigate the use of any such techniques in the

context of cognitive radio (CR) networks [72]. We can envision embedding sensors within

a CR environment, playing the role of “spectrum police”. In such an application, the ob-

jective would be to use the police sensors to localize errant cognitive radios that are not

properly transmitting, and then employ a second means to punish those errant cognitive

radios, such as turning them off or adding their identities to a blacklist.

The second part of the thesis focused on the use of multipath information to improve

wireless network security. Wireless systems are vulnerable to security threats, because of

the broadcast nature of radio and the fact that users can easily change their MAC addresses,

the basis for the receiver to identify senders. On the other hand, studies have shown that

even advanced wireless security standards, such as 802.11i, have security flaws, such as

the lack of mutual authentications and the protection of the control messages/management

frames. Moreover, not every wireless system can afford these computationally expensive

security mechanisms.

To address this problem, in Chapter 4 and 5, we have proposed a PHY-layer authentica-

tion scheme to detect spoofing attacks and Sybil attacks in wireless networks, based on the

uniqueness of channel responses in rich-scattering environments. The scheme discriminates

among transmitters with little additional system overhead, as it exploits pilots or preambles
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that already exist in most wireless systems.

More specifically, we have built a generalized likelihood ratio test to detect attacks,

considering environmental changes, terminal mobility, radio interference, receiver thermal

noise and receiver phase drift. We have also proposed a simplified test with unknown

parameters, and as a comparison, a test based on an adaptive filter of the channel estimation.

We have verified the performance of the PHY-layer authentication scheme, using stochastic

channel modeling, site-specific ray-tracing and field tests based on a network analyzer and

an 802.11 testbench. Results have confirmed the efficacy of the scheme for realistic values

of the measurement bandwidth (e.g., W ∼ 10 MHz), number of response samples (e.g.,

M ≤ 10) and transmit power (e.g., PT ∼ 100 mW). For example, the miss rate is generally

smaller than 0.01, for a specified false alarm rate of 0.01, when the simplified test is used

to detect spoofing attacks in a static channel environment.

We have also devised a double-layer authentication protocol to integrate our physical-

layer authentication scheme into wireless systems, whereby the scheme either combines with

higher-layer security mechanisms or works independently with performance degradation.

Specifically, without the help of a higher-layer authentication process, the scheme has a

much higher false alarm rate and miss rate in spoofing detection, due to its error propagation

nature.

The channel-based authentication schemes described here suggest a number of research

topics. To cite just a few: (1) Quantify all the benefits that the scheme brings to wireless

security, e.g., the computation time that it saved for 802.11i when subjected to a series

of spoofing attacks; (2) Perform some “online” authentication tests using an 802.11 test-

bench in realistic communication scenarios; (3) Apply the channel-based scheme to improve

authentication in a sensor-based cognitive radio network. In such a scenario, the police



124

sensors cited above might detect transmitters pretending to be primary users by exploiting

the received channel information.
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