
AN EFFICIENT ARCHITECTURE FOR

DETECTION OF MULTIPLE BIT UPSETS IN

PROCESSOR REGISTER FILES

BY WEN YUEH

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Tapan J. Chakraborty

and

Prof. Michael L. Bushnell

and approved by

New Brunswick, New Jersey

May, 2009

ABSTRACT OF THE THESIS

An Efficient Architecture for Detection of

Multiple Bit Upsets in Processor Register Files

by Wen Yueh

Thesis Directors: Prof. Tapan J. Chakraborty

and

Prof. Michael L. Bushnell

With the semiconductor industry transitioning into the next generation of

deep submicron technology such as 40 nm or 32 nm CMOS technology, transis-

tors are becoming more vulnerable to malfunction due to soft errors. Due to the

reduction in the supply and threshold voltages of the transistors in this smaller

geometry, soft errors can affect the state of multiple numbers of transistors simul-

taneously. Hence, the traditional fault model of a single event upset (SEU) due

to a soft error needs to be revisited and a new fault model and an associated fault

tolerant architecture for circuit structures in deep submicron technology based

on multiple-bit upsets (MBUs) needs to be developed. In this reseach work, we

propose a novel fault tolerant architecture for the register files in a processor that

can detect the MBUs in them efficiently. In this proposed method, we compute

and store the Cyclic Redundancy Check (CRC) bits of a complete register which

can be 32 bits or 64 bits wide, when new data is loaded into it. The CRC bits are

of smaller bit size and are stored in a soft error protected memory structure using

ii

well known conventional soft error protection mechanisms such as error-correcting

codes (ECCs), etc., for memory structures. When data from a register is read,

first the new CRC value is computed based on the existing data value stored in

that register and compared against the original CRC value stored previously in

the soft error tolerant memory structure. If there is a difference in these two CRC

values an error is flagged as it shows that the data is corrupted due to a soft error

either by an SEU or MBUs during the time interval between the last write and

the current read operation for that register. This operation is done for reading

every register in the register file. Although this method introduces timing and

area overheads, they are tolerable and this method of detection scales with the

increase in the number registers in the register file. Finally, we present simulation

results regarding the fault detection capability of this proposed method.

iii

Acknowledgements

I am thankful to Profesor Tapan J. Chakraborty for his valuable guidance and

advice as my adviser. I am also thankful to Professor Michael L. Bushnell for

his cooperation, which made this work possible. I am also thankful to him for

his valuable inputs to this work. I am indebted to Jordan Aubry, Jayant Silva,

and my many student colleagues for their feedback and comments to improve my

work.

iv

Dedication

To my parents, my grandfather, and all my teachers.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . viii

List of Figures . ix

1. Introduction . 1

1.1. Causes of Soft Errors . 1

1.2. Sources of Radiation . 2

1.3. Types of Soft-Errors . 4

1.4. Issues of Reliability and Validity 4

1.5. Contributions of the Research . 5

1.6. Thesis Organization . 6

2. Prior Work . 7

2.1. Techniques for Fabrication Processes 7

2.2. Techniques for Transistor Sizing 8

2.3. Techniques for Circuit Topology 10

2.4. Techniques for Reusing Scan Latches 15

2.5. Techniques for Code Redundancy 18

2.5.1. Hamming Distance . 18

2.5.2. Hamming Codes . 19

2.5.3. Cyclic Redundancy Checks 20

vi

2.5.4. Bose-Chaudhuri-Hocquenghem Codes 23

2.5.5. IBM’s Research on Symbol Codes 24

2.5.6. Fault Tolerant Systems . 25

2.6. Summary – Best of Prior Methods 27

3. Multiple Bit Upsets . 28

3.1. Spacial Locality of Multiple Cell Upsets 31

3.2. Conclusion . 31

4. MCU-Tolerant Hardware with Hybrid Techniques 33

4.1. Proposed MCU-Tolerant Design 33

4.2. Experiment . 33

4.3. Design Limitations . 34

4.4. Conclusion . 39

5. MBU-Tolerant Hardware Using CRCs 40

5.1. Proposed MBU-Tolerant Design 40

5.2. Experiment . 43

5.3. Hardware Overhead . 46

5.4. Fault Detecting Processor . 49

5.5. Conclusion . 51

6. Conclusions and Future Work . 54

6.1. Future Work . 55

Appendix A. User Manual . 56

A.1. Programs . 56

A.2. Files . 58

References . 60

vii

List of Tables

1.1. Alpha particle emissivities of various materials [1]. 3

2.1. Minimal Hamming distances and their properties [17] 19

viii

List of Figures

1.1. Funneling effect of a particle strike 2

2.1. Principle of the dual interlocked storage cell 11

2.2. NASA SEU tolerant latch . 13

2.3. The BISER design with a C-element truth table 15

2.4. The XSEUFF2 scan flip-flop design 16

2.5. The ESFF-SEC scan flip-flop design 17

2.6. The LFSR for P (x) = x3 + x2 + 1 23

3.1. Relative sizes of flip-flops in 90 nm and 70 nm 29

3.2. Protected flip-flop’s transistor count 30

4.1. 4-bit shift register with MCU protection with a single even parity

bit . 35

4.2. A SET affecting system outcomes 36

4.3. A SEU affecting system outcomes 37

4.4. A MCU affecting system outcomes 38

5.1. Block diagram of MBU detecting ARM processor 41

5.2. Architecture of MBU detecting registers 42

5.3. Random errors from 100K simulation runs 45

5.4. Burst errors from 100K simulation runs 46

5.5. The CRC-7-SD code generator with 64-bit parallel inputs 48

5.6. Overhead on a 32-bit word . 49

5.7. Overhead on a 64-bit word . 50

5.8. Random MBU affecting system outcomes 51

5.9. Burst MBU affecting system outcomes 52

ix

1

Chapter 1

Introduction

Building a reliable product from unreliable sources has been an open problem

in many engineering fields. For the field of electrical engineering, this problem

was once thought to be solved with CMOS technology. However, as the size of

transistors is scaled down with each successive chip generation, the overall issue of

reliability reappears. Noise from various sources that were once considered to be

tolerable has become a concern for hardware reliability. As the new generation of

nano scaled sensors and devices emerge, fault tolerant hardware becomes critical

in ensuring reliable operations.

1.1 Causes of Soft Errors

As opposed to hard errors, soft errors do not create permanent circuit defects

in the hardware. They are temporary errors that occur in operational time.

High energy particles such as α particles and neutrons travel through the silicon

substrate creating election and hole pairs. The excess carriers then disrupt normal

transistor operations until they recombine or diffuse to well taps. Soft errors are

the manifestation of these disruptions. The charge that is necessary to cause

an upset of a node logic value is defined as the critical charge. The charge

collection processes are mainly dominated by a drifting process known as charge

funneling [22]. A funnel is created when a particle enters the depletion region,

and the depletion layer is ionized by the particle’s plasma track. This removes

the screening effect of the depletion layer and a potential difference along the

particle’s track guides minority carriers in the plasma drifting upwards. The

2

funneling effect enhances the charge collection at the particle entry position as

shown in Figure 1.1. From the standpoint of a multiple-bit upset (MBU) caused by

single events, charge funneling is beneficial because it increases charge collection

at the struck node and decreases the amount of charge diffusing to neighboring

nodes [12].

Figure 1.1: Funneling effect of a particle strike [22]

1.2 Sources of Radiation

In a terrestrial environment, the sources of high energy particles are radioactive

decay of packaging materials, cosmic radiation, or a combination of both [1].

One significant source of high energy particles comes from radioactive decay of

the device and packaging materials. The reaction emits α particles, which are a

significant source of ionizing radiation. The α particle is composed of a doubly

3

Table 1.1: Alpha particle emissivities of various materials [1].
Material Emissivity (α/cm2-hr)
Fully Processed Wafer < 0.001
30µm thick Cu Metal < 0.002
20µm thick AlCu Metal < 0.001
Mold compound < 0.024 to < 0.002
Flip Chip Underfill < 0.002 to < 0.001
Eutectic Pb-based Solders < 7.200 to < 0.002

ionized helium atom (4He2) that carries kinetic energy within the range of 4-

9 MeV. While the primary sources of α particles are the packaging materials,

materials used to fabricate the chip, and materials used during the fabrication

process can also contribute to these impurities. Although radioactive decay can

produce other by-products such as β particles, they generally do not carry enough

energy to cause a soft error. Thus, α particles are still the primary source of

soft errors. The α particle emission rates of some key production materials are

summarized in Table 1.1.

A second significant source of radiation is from the ever-present cosmic rays.

The required energy for a primary cosmic ray to be able to affect a circuit at

ground level energy is 1 to 17 GeV. The required energy varies due to a particle’s

trajectory interacting with Earth’s magnetic field. Usually, a particle will react

with the Earth’s atmosphere and create a shower of secondary particles. Upon

reaching Earth’s surface the cascade is mainly composed of third to seventh gen-

eration particles. At terrestrial altitudes, less than 1% of the primary flux reaches

sea level [33]. The particles that arrive will mainly be muons, protons, neutrons,

and pions. Among these particles, neutrons are most likely to enter terrestrial

altitudes, since pions and muons are short-lived and protons and electrons are

charged particles, which lose energy through Coulombic interactions with the at-

mosphere. As neutrons only react to the strong interaction nuclear force and the

interaction has a limited range of 10−13 cm, they tend to preserve their energy

until the strong interaction takes place. Due to these facts, 97% of the flux at

sea level is primarily neutrons. These high energy neutrons react with the silicon

4

lattice through neutron-induced silicon recoil. In this case, the high energy neu-

tron transfers its kinetic energy to the silicon nucleus. With enough energy, the

silicon nucleus breaks into smaller fragments and generates a burst of charge. It

is also possible for neutrons to hit an unstable boron isotope and induce nuclear

fission. This type of reaction allows neutrons with energies as low as 15 eV to

trigger an ionizing reaction [2].

1.3 Types of Soft-Errors

Soft errors can be further categorized into SEUs and Single Event Transients

(SETs). SEUs upset a sequential element and alter stored values; SETs affect

the combinational circuitry and cause glitches and delays. In sub-micron scaled

DRAMs, there have been observations of Multiple Bit Upsets (MBUs) where

multiple bits in a word are corrupted by distinct particles, or multiple-cell upsets

(MCUs) where multiple bits in a word are corrupted by a single particle. For

an SEU to take place, there must be enough excess charge in the circuit node

to violate a transistor’s noise margin. Once the collected charge exceeds the

critical charge, the transistor’s operation is disrupted. Different types of particle

strikes will have different responses. An α particle strike will follow a linear

energy transfer equation. The particle gradually loses energy as it goes through

the silicon substrate and creates electron and hole pairs. If the collected charge

exceeds the critical charge, there will be an SEU. Although high energy neutrons

do not normally interact with silicon, if they collide with a silicon nucleus while

traveling through the silicon substrate they generate a burst of charge. When

this happens, the collected charge is more likely to exceed the critical charge.

1.4 Issues of Reliability and Validity

A soft error does not necessarily always cause a system failure. If a fault occurs

in a cache bit that has not been read before it is overwritten with new data, it

would not affect the system performance. If the corrupted data is indeed read by

5

the system, it still might not affect the logical outcome. The combinational logic

would possibly mask the error propagation. But if soft errors remain undetected

they manifest themselves as silent data corruptions where they ultimately affect

the system’s final response without any warnings. To prevent such corruption

from happening, we need additional mechanisms to correct or detect errors in

the system. As the size of transistors is scaled down, the noise margin of the

transistors becomes lower, and the density of transistors increases. A lower noise

margin can result in a lower critical charge, which means the threshold energy of

an SEU is reduced accordingly. The densely packed transistors also become more

vulnerable to soft errors because the carriers generated by high energy particles

can travel to different transistors before they recombine. Alternatively, the parti-

cle directly strikes through multiple cells and creates multiple soft errors. A single

particle can now affect multiple nodes and cause MBUs, which are currently only

a concern in densely packed memory cells, in a state machine in the logic circuit.

1.5 Contributions of the Research

We develop a fault tolerant scheme for registers that uses the CRC to achieve bet-

ter performance than the common Hamming code in MBU detection. The CRC

can either be protected by a Hamming code or left unprotected. As compared to

IBM’s symbol code, it is also slightly better in the ability to handle burst errors.

In random error detection, the IBM symbol code missed 25.8% fewer random er-

rors than the CRC code. In burst error detection, our stronger CRC code missed

0.5% fewer errors than the IBM SSC-DSD code. Although on average the burst

error detection rates of both techniques are almost equivalent, the CRC code

can withstand burst error lengths of 10 bits before a miss while the IBM symbol

code can only withstand 9 bits. The CRC code has 3.9% less hardware overhead

compared with the IBM symbol code. Thus, if chip real estate is a greater con-

cern and multiple faults are modeled as MCUs, a CRC can be chosen instead of

IBM’s technique. Compared with the widely accepted distance 4 Hamming code,

6

our chosen CRC code is 6.0% smaller in hardware overhead than the distance 4

Hamming code. The random error detection miss rate of the CRC code is 1% less

than the distance 4 Hamming code and the burst error detection miss rate is 88%

less than the distance 4 Hamming code. Also, for burst error detection, the CRC

can withstand a maximum of 5-bit burst errors while the distance 4 Hamming

code can only withstand 3-bit burst errors. Furthermore, CRCs are more flexible

to satisfy different design constraints, since the CRC polynomials can be chosen

to detect arbitrary burst error lengths.

1.6 Thesis Organization

The thesis is organized as follows. Chapter 2 introduces related and prior work in

the field. Chapter 3 introduces the reason for choosing code redundancy for our

fault tolerant approach. Chapter 4 uses the idea of code redundancy and demon-

strates a proof of concept. Chapter 5 details the implementation and experimen-

tal results. Chapter 6 concludes the research and proposes further research and

development.

7

Chapter 2

Prior Work

There have been many prior techniques to reduce soft errors. Approaches to the

problem include developing better fabrication processes, resizing transistors, mod-

ifying circuit topologies, and using error correcting and detecting codes. These

approaches have their strengths and limitations. It is possible to combine differ-

ent approaches to complement each technique’s weakness. A fault tolerant system

may incorporate one or more of these approaches to achieve a lower failure rate.

However, in some of these techniques, they are optimized for SEUs and are not

built to handle MBUs. To build systems that tolerate MBUs, there is a need to

rethink a new design optimized for MBUs.

2.1 Techniques for Fabrication Processes

Baumann introduces several common methods to reduce soft errors due to α

particles [1]. Since the majority of α particles come from the radioactive decay of

packaging materials, one approach that reduces soft errors would be to use high-

purity materials and screen for low alpha emission. However, due to the limitation

of the current detection method that resolves α emission concentrations up to

0.001 α/hr-cm2, it is insufficient to identify material emissions below this level [21].

Another approach would be to identify high α particle emitting materials and to

have design rules for the chip floor plan to locate sensitive components away

from them [1]. This technique works if the package has defined high emissivity

materials such as solder bumps and the chip has logic cores that are significantly

more sensitive than the other cores. Using package shielding with polyimide thin

8

films is another technique to guard against α particles [11]. The films coated over

the finished chip prior to bonding and encapsulation can also bring α particles to

a stop or at least slow them down. Extensive analysis on the source and energy of

the impurity is helpful in choosing film thickness, to avoid worsening the soft error

rate (SER) [28]. The reason for this is that the non-linearity in the α particle’s

charge generation rate reaches maximum ionization just before the particle stops

and comes to a reset in the bulk lattice. Hence the sensitive volume (SV), which

is the well dimension under the transistor, collects maximum charge.

The same transistor dimension in different fabrication technologies often shows

different resistance against soft errors. The Silicon on Insulator (SOI) technology

is known to have a lower SER than bulk technology, because of a lower junc-

tion capacitance and better noise isolation. SOI technology is also a more MBU

resistant technology, because it does not suffer charge sharing and well charge

collection-induced bipolar effects that are seen in the bulk technology. The re-

duction of the substrate thickness in SOI also lowers the SV depth. With a

smaller SV, collected charge decreases when high energy particles intersect the

silicon lattice, which results in a lower error rate [9]. In recent research on SOI

SRAM design, in 65 nm nodes the SER is reduced as much as 75% when compared

to bulk technology [8].

2.2 Techniques for Transistor Sizing

When shrinking transistors reduce the node’s critical charge, it is reasonable to

selectively resize nodes to improve SERs in sequential nodes. The technique

resizes nodes that are not on circuit critical paths to improve the soft error rate

(see Karnik et al. [19]). Since the extra capacitance is not on the critical path,

there are no noticeable delay penalties and the method has only 3% power penalty.

The improvement has been observed to be as high as 3× at the cell level.

Karnik et al. analyze the node capacitance and related capacitance-voltage

(CV) curves [19]. One pMOS and one nMOS transistor are connected in parallel

9

to form a capacitor. The reason for using both pMOS and nMOS transistors

in parallel is that the CV response changes the signal voltage swings between

logic high and logic low. To compensate for such non-linearity of MOSFETs, the

two complementing MOSFET capacitances are lumped together with a parallel

connection. This extra capacitor is then added on the non-critical path of a cell.

In the case of latch design, it is added within the feedback node between two

feedback inverters. The benefit of doing this is that we add a low-pass filter to

the circuit, which filters out SETs.

Karnik et al. also proposed an algorithm to insert these error hardened latches

without noticeable performance penalties [19], since 70% of the circuit paths are

non-critical. They propose an insertion equation as follows:

Inserting Priority = α ∗

|CS|
∑

i=1

SERQi − β ∗

|CO+CC+CS|
∑

i=1

Cgate(i)

 (2.1)

where CO are output cells, CC are the combinatorial cells, and CS are the se-

quential cells in a given block. SERQ is the SER tolerance and Cgate is the gate

capacitance, and α and β are parameters to balance between SERs and active

power. The selection algorithm will rank the latches based on the above equation

and select the least critical latch for insertion. As the insertion will modify the

maximum and minimum delay slacks, the program iteratively re-evaluates the

delay criticality and finds the next suitable latch.

Similarly, Soft-Error Filtering (SEF) is a technique to reduce soft errors by

filtering radiation induced noise pulses [29]. The physical implementation of SEF

inserts low pass filters in front of latches and filters any transient fault from

the combinational logic. This technique effectively filters single event transients

(SETs) but does not protect the latch if the fault occurs when the latch is opaque.

Thus, this technique cannot protect latches from SEUs where the soft error occurs

when the latch is opaque and holding the data. The latch will forget its previous

value and obtain the erroneous charge. Thus, although this technique shows a

typical overhead of 17%, it cannot protect against all types of soft errors.

While SEF does not protect against SEUs, the methodology used in the paper

10

gains our attention. The technique analyses a latch as a resistor-capacitor (RC)

circuit and treats set and reset lines as signal integrators. The RC time constant

of the integrators is the key to filtering out soft errors. Within given process

parameters, properly sized pMOS and nMOS capacitors will be attached on the

set and reset lines to achieve the desired filtering effect. The technique is called

double-filtering, since the feedback stage of the latch takes differential outputs of

the set and reset signals. The authors propose an optimizing equation as follows:

U

S − 1
= e(2−S)U (2.2)

The variable S is a performance measure called the security margin. It represents

the factor of setup time over the longest transient error a latch tolerates. The

factor U is the error pulse width over the RC time constant of the filter. Finding

the optimum U for a given S will determine the latch delay and the capacitance

on the set and reset lines.

This method of providing the soft error immutability is solely based on ma-

nipulating the node critical charge against errors. Obtaining properly weighted

transistor sizes could be difficult in different fabrication technologies. The effi-

ciencies of these selective scaling techniques also depend on the circuit functions.

Without a proper analysis of electrical properties of the circuit it could be difficult

to determine the merit of these techniques.

2.3 Techniques for Circuit Topology

The Dual Interlocked storage CEll (DICE) is a design hardening technique to

reduce soft errors at the circuit level [6]. A DICE cell uses hardware redundancy

in a latch to ensure a copy of non-corrupted data after an SEU. It also decouples

the n-tree and p-tree feedback inputs of each output node. This configuration

prevents the corrupted data propagating over adjacent transistors and allows the

correct data to restore the corrupted sets. Unlike the traditional triple-modular

redundancy (TMR) technique, the DICE cell only uses approximately 40% area

11

overhead compared with an unprotected cell and does not need an additional

voter in the design.

The DICE design relies on the principle of dual node feedback control. Refer-

ring to Figure 2.1, each charge storing node X0, X1, X2, and X3 is driven by two

neighboring transistors and drives two other neighboring transistors. Two differ-

ent types of transistors form feedback loops in the opposite direction. Transistors

N0...N3 are n-type and form a counter-clockwise feedback loop. Transistors

P0...P3 are p-type and form a clockwise feedback loop. To flip the stored charge,

two nodes on the opposite diagonals must flip simultaneously. When an upset

pulse occurs in only one node, then the cell will recover as follows (assuming node

X0 is affected victim):

Figure 2.1: Principle of the dual interlocked storage cell [6]

• Nodes X0...X3 store 1010

• Node X0 flips from logic 1 to logic 0 due to a soft error

• P1 turns on; N3 turns off

• Node X1 voltage settles between logic 0 and 1; X3 remains unaffected

12

• P2 turns partially off

• Node X2 remains unaffected

• P0 recovers X0; N1 recovers X1

Another case:

• Nodes X0...X3 store 0101

• Node X0 flips from logic 0 to logic 1 due to a soft error

• N3 turns on; N1 turns off

• Node X3 voltage settles between logic 0 and 1; X1 remains unaffected

• N2 turns partially off

• Node X2 remains unaffected

• N0 recovers X0; P3 recovers X3

A design used in National Aeronautics and Space Administration (NASA)

space applications was proposed [18]. The design separates the nMOS and pMOS

storage nodes so that electrons are collected in n-diffusions and holes are collected

in p-diffusions. This reduces the chance of a particle simultaneously affecting a

pair of storage nodes. The design of Figure 2.2 shows an implementation of the

described SEU-tolerant latch. The design stores charges in nodes PP , QP , NN ,

and QN . If any node holds an incorrect logic level due to a soft error, the C-switch

at the output Q maintains the previous correct logic. For example, suppose that

a logic 0 is to be stored in the latch, and node NN is driven to an incorrect logic

state. The latch blocks an erroneous state change as follows:

• Nodes PP , QP , NN , and QN store 0, 1, 0, and 1, respectively

• Node NN flips from logic 0 to logic 1 due to a soft error

• N3 turns on; P4 turns off

13

Figure 2.2: NASA SEU tolerant latch [18]

14

• Node QN ’s voltage settles at logic 0; PP remains unaffected

• P5 turns on, N6 turns off

• Node QP voltage settles at logic 1; Q remains unaffected

Here is another case of Q holding logic 1, while node PP is driven to an incorrect

state 0:

• Nodes PP , QP , NN , and QN store 1, 0, 1, and 0, respectively

• Node PP flips from logic 1 to logic 0 due to a soft error

• P3 turns on; N4 turns off

• Node QP voltage settles at logic 1; NN remains unaffected

• N5 turns on, P6 turns off

• Node QN voltage settles at logic 0; Q remains unaffected

The work of NASA claims that there are only two cases in all possible state

changes, since a node that is driven by an nMOS transistor has a monotonic

drop from logic 1 to logic 0 upon a soft error, and a monotonic rise if a pMOS

transistor is affected [20]. The latch design relies on the parasitic charge on

the output node to preserve the previous correct state when an error occurs.

Unlike the DICE design, the circuit does not actively correct an erroneous node

charge. The latch design incorporates a temporal separation technique to reduce

SET faults. The technique reduces the transient fault by delaying an input line

with an additional buffer. The latch treats a SET pulse as two successive SEU

pulses and stops their propagation individually. In more recent research [20], the

cell shows 34× higher resilience against soft errors compared with unprotected

cells. This technique further expands the charge-collecting technique and creates

a soft error hardened cell that preserves charges in three nodes. The innovative

arrangements of transistors also block erroneous charge propagation. The design

effectively combines the benefits of two designs [6, 18].

15

Shadow latching is a topological approach to soft error detection in flip-

flops [13]. The flip-flop design contains a regular master-slave flip-flop and a

parallel pulse latch. The augmented pulse latch toggles synchronously with the

flip-flop. Alternatively, it toggles with a slightly delayed clock to guard against

SETs from the combinational circuit. The latch follows the flip-flop operations at

normal operation with little performance penalty, and it is thus called a shadow

latch. Upon a soft-error occurrence, the logic value of the shadow latch and the

flip-flop will feed into a meta-stability detector and generate an error interrupt.

This technique only detects but does not correct soft errors.

Figure 2.3: The BISER design with a C-element truth table [23]

2.4 Techniques for Reusing Scan Latches

Extending the idea of shadow latching, Built-In Soft Error Resilience (BISER)

redesigns normal scan latches and reuses the scan latch as shadow latch to achieve

a lower area overhead [23]. Referring to Figure 2.3, if one of the BISER latches

should fail, a C-element at the output node will block the transmission of the

16

Figure 2.4: The XSEUFF2 scan flip-flop design [25]

incorrect value and a keeper will preserve the last known consensus value. Ef-

fectively, it interrupts error propagation as well as detects errors. Mitra et al.

claim that even though the BISER flip-flop uses 218% of the power, the cell area

overhead is only 8% compared to an unprotected scannable flip-flop. While a

scannable flip-flop has two unused latches in the functional mode, it is possible to

perform a correction with majority voting instead of simple detection and meta-

stable state blocking. Oliveira et al. presented another design that utilizes the

scan latch [24]. The design modifies existing scan latches and uses TMR and

voting. An improvement of the design was made later [25], which can protect

against not only SEUs but also single event transients (SETs). The improved

design is the XSEUFF2 flip-flop of Figure 2.4. The design has 37% hardware

overhead and uses 95% more power compared to the standard scan flip-flop. It

samples the combinational input at 3 distinctly different times around the clock

edge, and then votes to determine the result. Although the design has larger area

17

overhead and has similar power consumption to Mitra’s work, the XSEUFF2 de-

sign relies on static logic outputs and uses no dynamic logic, unlike Mitra. Also,

the overall overhead in the circuit reduces to 15% to 20% with careful placement

of protected cells. This protection also greatly reduces the window of vulnerability

(WoV) – the time period when a SET is latched in to the flip-flop and results in

an SEU. The design incorporates the temporal separation technique, which was

introduced earlier in the work of NASA, to sample the combinational logic output

at different phases of the clock. This is an effective time redundancy approach to

the current SET problem. Roy et al. further optimize the BISER design at the

transistor level [16]. Referring to Figure 2.5, the scan cell is named ESFF-SEC.

The ESFF-SEC cell is 62% of the original BISER cell size and uses only 79% of

the BISER cell power. The cell design is also capable of performing delay test by

toggling the Hold signal with controlled timing.

Figure 2.5: The ESFF-SEC scan flip-flop design [25]

18

2.5 Techniques for Code Redundancy

The code redundancy solution to soft error tolerant hardware has been used in

random access memory technologies and error prone storage devices. It is also

widely used in digital communications, guarding reliable messages across noisy

channels. In memory, single error correction and double error detection (SEC-

DED) Hamming codes can guard against a single error in a word, or can detect

double errors in the same word. There are other codes that have better mathe-

matical properties and are capable of correcting multiple faults, such as the work

of Chen et al. [10] described in Section 2.5.5. These codes with multiple-bit error

correction capabilities generally have more hardware overhead compared to the

ones that correct fewer bits.

2.5.1 Hamming Distance

The Hamming distance of a pair of binary symbols is the number of bits they

differ in. For example, symbols 001 and 010 differ by the lower two bits, so the

Hamming distance of these two symbols is 2. Symbols 100 and 000 differ by the

highest bit, so the Hamming distance of these symbols is 1. Another way to view

the distance between a pair of symbols is how many bits of minimal transitions

the symbol must make to reach the other symbol. In our first example, symbol

001 starts from 001, moves to 011 (or 000), and reaches 010. Thus, the minimal

Hamming distance is 2. In some error correcting techniques, mapping erroneous

codewords to a valid codeword directly uses the minimal Hamming distance for

likelihood arbitration. For a code with two valid symbols 000 and 111, upon

receiving an invalid code symbol 110, it can be simply decoded as 111 using the

Hamming distance concept. This assumes that a code 111 having one bit flip to

110 is more likely to happen than a code 000 having two flips to 110. The ability

of detecting and correcting errors with minimal Hamming distance is given in

Table 2.1.

The previous code example corrects 1 error, but the code in fact is capable of

19

Table 2.1: Minimal Hamming distances and their properties [17]
Minimal Distance Meaning

1 Uniqueness
2 Single error detection
3 Single error correction
4 Single error correction plus

Double error detection
5 Double error correction, etc.

detecting 2 errors without the correction. The detectable error will then be the

shortest Hamming distance between any valid symbol pairs. This should not be

confused with the correction plus detection technique.

2.5.2 Hamming Codes

The Hamming code is a well-known error correcting code for memory systems.

The basis of Hamming code correction is finding a systematic code with a Ham-

ming distance of 3 [17]. A Hamming code is a perfect code in that each code

symbol maintains minimal Hamming distance and the code symbol volumes ex-

actly fill the code space. In the original work by Hamming, single error detecting

(SED) codes, single error correcting (SEC) codes, and SEC-DED codes are in-

troduced. The single error detecting code is a simple even parity check. The code

has n binary digits with the first n− 1 positions as information bits and the n-th

position as a check bit. Checking whether the previous n− 1 bits contain even or

odd numbers of 1’s, we assign position n with a 0 or 1 to ensure that the entire

expression contains an even number of 1’s. If an error occurred, then we will

observe an odd number of 1’s. As a result, an even number of errors will not be

detected, but every odd number of errors will be detected. Such a code has n− 1

message positions and 1 check position. It forms a (n, n− 1) block code with the

redundancy of this code being:

n

n − 1
= 1 +

1

n − 1
(2.3)

20

The single error detecting code does not give information on where the errors occur

in the data bits. Thus, there is a need to construct a single error correction code

with the ability to identify where the error occurs and correct such an error. Since

there are m information positions, a k position check must be able to represent

every location in m + k bit positions to identify the error location, so that:

2k ≥ m + k + 1 (2.4)

should be satisfied. Writing n = m + k, Hamming obtains the (n, m) Hamming

code redundancy equation:

2m ≤
2n

n + 1
(2.5)

Upon solving the above equation for all message lengths under a desired m, the

check positions are determined by observing the relation between n and k. When

n increments and k changes, the particular position n should be a check bit. Then,

the binary representation of the locations will indicate which checkers perform

parity checks on what bits. For example, check bit 0, check bit 1, and check bit 2

will check location 7 (0111). Check bit 1 and check bit 3 will check the location

10 (1010). Hamming also introduces the single error correcting plus double error

detecting code by adding an extra parity check, treating all previous message bits

and Hamming check bits as message bits. It effectively increases the Hamming

distance of the code to distance 4.

2.5.3 Cyclic Redundancy Checks

The CRC is a type of checksum that calculates the remainder of a polynomial.

This type of cyclic code is very effective at burst error detection. Depending on the

code polynomial, the code can detect multiple individual errors and multiple burst

errors. Peterson and Brown reported some important facts on these polynomials

and their abilities to detect multiple faults are given [27]. Transmitting n digits

of code polynomial with k information digits and n − k check digits, a generator

polynomial P (X) of degree n − k satisfies the following theorems:

21

Theorem 2.5.1 A cyclic code generated by any polynomial P (X) with more than

one term detects all single errors.

Theorem 2.5.2 Every polynomial divisible by 1 + X has an even number of

terms. Hence, they detect any odd number of errors.

Theorem 2.5.3 A code generated by the polynomial P (X) detects all single and

double errors if the length n of the code is no greater than the exponent e to which

P (X) belongs.

Theorem 2.5.4 A code generated by P (X) = (1 + X)P1(X) detects all single,

double, and triple errors if the length n of the code is no greater than the exponent

e to which P1(X) belongs.

Theorem 2.5.5 Any cyclic code generated by a polynomial of degree n−k detects

any burst-error of length n − k or less.

Theorem 2.5.6 The fraction of bursts of length b > n− k that are undetected is

2−(n−k) if b > n − k + 1, 2−(n−k−1) if b = n − k + 1.

Theorem 2.5.7 The cyclic code generated by P (X) = (1+X)P1(X) detects any

combination of two burst-errors of length two or less if the length of the code, n,

is no greater than e, the exponent to which P1(X) belongs.

Theorem 2.5.8 The cyclic code generated by P (X) = (Xc +1)P1(X) will detect

any combination of two bursts E(X) = X iE1(X) + X iE2(X), provided that c + 1

is equal to or greater than the sum of the lengths of the bursts, P1(X) is irreducible

and of the degree at least as great as the length of the shorter burst, and provided

that the length of the code is no greater than the least common multiple of c and

the exponent e to which P1(X) belongs.

A properly chosen cyclic code’s minimal Hamming distance is equivalent to

the SEC-DED code’s minimal distance. The difference is that a CRC checker

22

is designed for error detection only. Without a syndrome decoding mechanism,

the polynomial simply detects triple errors. With the two codes being essentially

equally good at random error detection, the benefit of CRCs over Hamming codes

would be the ability to detect burst errors. If the number of check bits n − k

is greater than the code’s minimal Hamming distance, then the CRC’s ability

to detect burst errors would have an advantage over Hamming codes based on

Theorem 2.5.5.

A CRC code is generated by multiplying the code polynomial by the generator

polynomial P (x). Using a Linear Feedback Shift Register (LFSR) to construct a

CRC generator requires an n-bit shift register where n is the order of the generator

polynomial. The data input will be XORed with the shift register output and

feedback to the input of the first shift register S0. Then, we insert XOR logic

gates before the register polynomial terms where the P (x) coefficient is not zero

but we ignore the highest polynomial term and the constant 1 term. For example,

a polynomial P (x) = x3 + x2 + 1 will form the LFSR in Figure 2.6. Removing

the highest polynomial term and the constant term, we obtain the x2 term and

we should insert a XOR gate before S2. The current CRC bits are stored in the

Sn registers. This implementation is a simple serial CRC checker that uses the

least amount of hardware but takes many cycles to encode and decode the CRC.

A parallel CRC can be created through unrolling the LFSR sequential logic or

iteratively using constrains to find the parallel CRC generator matrix with the

least number of XOR gates [7, 31].

Referring to Figure 2.6, to encode the data sequence, we shift in u(t) serially,

where u(t) is a vector of serialized data and t is the index of the current data bit.

Alternatively, t is the discrete time steps of the clock. To initialize the checker,

we initialize t, S0, S1, and S2 to zeros. At every clock cycle we increment t by 1

time until u(t) is fully shifted into the checker. Then, we stop the shifting and

retrieve S0, S1, and S2. These three bits are the CRC check bits of the data

sequence u(x). The CRC code word will be the CRC check bits appended to

u(t). To perform CRC decoding, we shift the first d bits of the CRC code word

23

into the same encoder. If the resultant S0, S1, and S2 are equal to the remaining

p − d bits of the CRC code word, then there is no error during decoding. Let d

be the size of vector u(t) and p be the size of the CRC code word. The delay of

encoding will be d clock periods when encoding, and the delay of decoding will be

d + 1 clock periods. In some designs, the shift register can only access appended

check bits after all the data bits are shifted into the checker. For these designs,

the decoding delay will be p clock periods.

Figure 2.6: The LFSR for P (x) = x3 + x2 + 1. The data shifts in through u(t)
the and CRC check bits are retrieved from outputs of registers S0, S1, and S2.

2.5.4 Bose-Chaudhuri-Hocquenghem Codes

Bose-Chaudhuri-Hocquenghem (BCH) codes were discovered by Hocquenghem in

1959, and independently by Bose and Ray-Chaudhuri in 1960 [5]. For a cyclic

code with polynomial degree m and its maximum correctable errors to be t, one

important discovery about this class of codes is that for any arbitrary choices of

m and t there exists a code of length 2m − 1, which is capable of correcting any

combinations of t errors with no more than mt redundant digits. In the worst

case, a BCH code has 2m − mt − 1 data bits and mt check bits. Alternatively,

such a code detects 2t random combination of errors. This fact gives an upper

bond on the required bits for error correction and covers a wide range of data

transmission rates and error-correcting abilities [26]. The BCH codes are cyclic,

and encoding can be done with a shift register similar to the CRC. Constructing

a BCH code polynomial f(x) in field GF (2m) is simple. The polynomial f(x)

24

would be the least common multiple (LCM) of the first 2t − 1 unique irreducible

polynomials pi(x):

f(x) = LCM [p1(x) × p3(x) × p5(x) × . . . × p2t−1(x)] (2.6)

Since the factors are irreducible, the least common multiple of them will be

simply their product. Even though individual factors are irreducible, it is possible

to have duplicated products as the primitive root αi happens to be the same

as αj in a finite field. In these case, the duplicated terms should be omitted.

Reed-Solomon codes and Reed-Muller codes are proven to be equivalent to a

subcategory of the BCH code [26].

2.5.5 IBM’s Research on Symbol Codes

IBM has done research on symbol correcting codes specifically targeting memory

systems [10]. While a SEC-DED Hamming code operates on binary fields, the

same concept can be extended to b-bit symbols to form a single symbol correction

plus double symbol detection (SSC-DSD) code. In the parity check matrix, each

entry would be a submatrix of a b × b zero matrix or a power of the companion

matrix T of a primitive polynomial of degree b. A companion matrix is a square

matrix with last column defined by a polynomial p(t) = c0+c1t+. . .+cn−tn−1+tn

and a sub-identity matrix of size (n − 1) × (n − 1) starting from the second row:

T (p) =

0 0 . . . 0 −c0

1 0 . . . 0 −c1

0 1 . . . 0 −c2

...
...

. . .
...

...

0 0 . . . 1 −cn−1

(2.7)

The parity check matrix can be viewed as a distance 4 Hamming code that oper-

ates on distinct symbols instead of on the binary field. The parity check matrix

can be transformed into a systematic form after proper elementary row oper-

ations. The transformation is beneficial as it removes duplicated columns and

25

makes the code more compact.

Symbol codes are specially designed codes targeting two different modes of

failures in memory systems: chip failures and bitwise failures. Matching the sym-

bol polynomial degree b to the chip input width, a SSC-DSD is able to withstand

one failed chip and is still capable of detecting one symbol error from the re-

maining good chips. For IBM’s G3 and G4 servers, a code with 4-bit correction

capability (S4EC) was implemented [30]. The (76, 64) S4EC/DED code that was

implemented on the G3 and G4 servers is designed to ensure that all single-bit

failures of one chip occurring in the same doubleword as a 1-to-4-bit errors on a

second chip are detected.

2.5.6 Fault Tolerant Systems

In many mainframe computers, fault tolerant design is necessary to achieve reli-

able computing. In IBM’s enterprise grade servers, there are many mechanisms to

ensure data integrity: instantaneous error detection, fault isolation, and on-line

repair [30]. It is common to have duplicated chips or module pairs to perform

redundancy-checks. In the G5 server design, the processors have duplicated in-

struction fetch/decode units and execution elements for error detection. These

steplocked pairs will perform identical operations and the final results will be

examined by an error correcting module. The design allows a data comparison

cycle overlapped with the instruction execution pipeline, so the checker performs

operations, transparently without incurring cycle-time penalties. The processor

supports online repair through an error-correcting code (ECC) protected regis-

ter file. When an error occurs in registers or during instruction executions, the

processor will reset and return to the last check-pointed state. If the error is

transient, the processor will resume and the retry will be successful. If the retry

fails, the failing processor will halt its own operation and transparently another

working processor will retry and continue the application. In the G5 memory

hierarchy, every level of cache has adequate protections. The L1 cache has write

26

through design, and a parity check on each byte is sufficient to protect the dupli-

cated data. In the L2 cache, the data is protected by an ECC. In the L3 cache, a

(72,64) SEC-DED code protects the system against catastrophic failures. Here,

the stronger (76,64) S4EC-DED code used in G3 and G4 is no longer in use in

G5 due to the excessive overhead of such an implementation.

Integrating fault tolerant designs in every microprocessor module would re-

quire longer design and verification cycles. It becomes less attractive to build

custom designed fault tolerant processors for large systems. On the other hand, it

is possible to build identical high-end processors and to use n-redundancy proces-

sor cores checking for majority outputs. The Intel Pentium and Hewlett Packard

NotStop architectures used such inter-processor checks for data integrity [30]. In

the Hewlett Packard Non-Stop Advanced Architecture (NSAA), the fault tolerant

cluster uses processor pairs or TMR configurations in Itanium servers to check for

consensus or majority processor outputs. Then, the result will be stored through

a system area network (SAN) via messages under CRC checksum protection [3].

The NSAA design does not require traditional lockstepped processors where two

processors must agree on every instruction, as the result is checked only through

a carefully designed I/O interface and allows non identical commodity micropro-

cessors to work together.

In embedded systems there is also a need for low cost and high error tolerant

devices that work in extreme environments. An embedded soft error tolerant

ARM processor was proposed [4]. The design uses both a Register Value Cache

(RVC) and previously-introduced shadow latches. The RVC guards the processor

register file and shadow latches guard processor state registers. The RVC block

relies on locality of reference, maintaining duplicate copies of the most recently

used register data. The RVC contains CRC check bits in case of disagreement

between the cached value and the register value. It conducts a CRC check on the

previously-read value. If the CRC check fails, then the error signal is asserted and

the buffered value from the register file is identified as the correct value, otherwise

the buffered value from the cache is assumed to be the correct value. For state

27

registers, every shadow latch incurs power and area overhead on the design. The

placement of these hardened registers is determined after performing a Monte

Carlo fault injection simulation. The top n registers that are more likely to have

faults are replaced by shadow latch protected cells.

2.6 Summary – Best of Prior Methods

So far, we investigated many important approaches to soft errors. Approaches

to the problem include developing better fabrication processes, resizing transis-

tors, modifying circuit topologies, and using error correcting and detecting codes.

These approaches have their strengths and limitations. Many of these designs

model the soft error as a single SEU. Especially in the circuit topology category,

this hinders the development of MBU tolerant cell designs. In techniques for

fabrication processes and transistor sizing, the designs are too process dependent

and cannot easily adapt to technologies other than the silicon fabrication process.

Considering the scalability, error correcting codes are the most flexible solution

for MBUs. The best prior work is XSEUFF2 due to the reason that it protects

the cells with static logic while most of the other approaches use dynamic logic

in their design. In the next chapter, we will detail the reason why some tech-

niques that are superior in one fault model can be inferior in another fault model

scenario.

28

Chapter 3

Multiple Bit Upsets

The prior work on soft error tolerance focuses on mitigating SEUs and SETs.

These techniques are very effective in recovering from or masking these types of

errors. Nevertheless, many designs cannot easily adapt to tolerate MBUs. The

problems generally reside in the excessive hardware overhead. Some designs are

also limited by cell level optimization and cannot reliably guard against MBUs

unless they are completely redesigned. Much of the prior work assumes that the

possibility of two errors in a single cell is extremely unlikely [33]. However, the

result of more recent research shows that simultaneous errors in 90 nm memory

cells can be twice as high as expected [15]. The possibility of MBUs further

increases if ions intersect with the bulk at larger angles. For smaller technology

nodes, it is reasonable that high energy particles are capable of traveling through

several well regions before they come to a full stop. Figure 3.1 shows two flip-

flop designs in 90 nm and 70 nm. The 70 nm node technology cell is roughly

3.3 µm × 9 µm and the 90 nm cell is roughly 4.2 µm × 11.2 µm. This results

in areas of 29.7 µm2 and 47.04 µm2, respectively. The ratio of areas is 1.5838.

It suggests a much larger affected radius upon a particle strike even for two

successive technology nodes. New soft error mitigation techniques should be able

to reliably handle MBU problems. Our research also takes a step forward and

focuses on designing MBU tolerant hardware.

The conventional fault detection techniques store charges in multiple nodes

and check for the consensus logical level of these nodes. Most of these topolog-

ical approaches require redesigning for different technology nodes and lead to a

scalability problem. Only later designs such as BISER and shadow latching allow

29

Figure 3.1: Relative sizes of flip-flops in 90 nm and 70 nm. The left cell is a
flip-flop for the 90 nm node and the right one is for the 70 nm node.

30

easier adaptation of multiple-bit detection and correction. The design can be

extended by adding more latches for comparisons in each cell. This provides a

simple tradeoff between the chip real estate and the desired hardware reliability.

Using Mitra et al.’s work [23] as an example, we can estimate the transistor over-

head. To detect MBUs, there must be at least one master latch to hold the correct

logic value. Thus, for an n-redundancy fault detecting flip-flop, it can, at most,

tolerate n− 1 SEUs. The number of transistors needed for fault detection will be

the count of transistors in each master latch, the slave latch, and the C-element.

The latch design has 8 transistors each and the C-element will have 2×n+4 tran-

sistors, where n is the number of redundancies. To correct multiple-bit upsets,

the nodes with correct logic levels must win by majority voting. Thus, there must

be at least n/2 + 1 latches to hold the correct logic values. For an n-redundancy

fault correcting flip-flop, it can, at most, tolerate (n−1)/2 SEUs. The transistors

that are needed for fault detection will be the sum of transistors in each master

latch, the slave latch, and the majority voter. The latch design has 8 transistors

each and the majority voter will have 5 × n transistors. As shown in Figure 3.2,

the number of transistors in each cell grows linearly with the number of tolerable

faults. The delay overhead will also increase as the voter grows in size.

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8

T
ra

ns
is

to
r

C
ou

nt

Correctable/Detectable Faults

Fault Correction
Fault Detection

Figure 3.2: Protected flip-flop’s transistor count

31

3.1 Spacial Locality of Multiple Cell Upsets

There is no better solution than using n-redundancy checking for a multiple-ion-

induced MBU. However, we can exploit the locality property of a subcategory of

MBU that is called a mulitiple-cell upset (MCU). In a MCU, the failing bits are

usually adjacent [14]. The reason for MCUs appearing as a cluster of multiple

upsets is because they are the result of a single ion affecting multiple nodes. MCUs

are difficult to correct with conventional error correcting techniques. Because

most topological fault tolerant techniques rely on the neighboring nodes to recover

a faulty node charge, the overhead can be enormous for n-redundancy techniques.

We find the code redundancy approaches to be more attractive. Instead of storing

the current state in multiple nodes within the same register cell, the encoding

process encodes a number of registers and stores code information in distinct cells.

In smaller registers, the MCU effects are more severe because the percentage of

MCUs in MBUs is given by:

EMCU% = e−ESRP×
AdjCell

N (3.1)

This equation is an adaptation of the work of Gasiot et al. [14]. Here ESPR is

the number of SEUs recorded after irradiation, AdjCell is the number of cells

around each SEU that are inspected to detect a MCU, and N is the size of the

memory array. AdjCell is also a function of cell spacing, which relates to cell

dimensions. When the error rate and the cell spacing remain constant, if the

size of a memory array reduces, then the percentage of MCUs increases. The

percentage of localized errors in a smaller memory array such as a register file is

higher and this necessitates the codes that correct burst errors.

3.2 Conclusion

It is infeasible to modify flip-flops bit-by-bit to make them all fault-tolerant to

MBUs. The solution does not scale. Using code theory on a group of flip-flops and

taking advantage of the locality property of MCUs is a better approach. In the

32

next chapter, we will introduce a hybrid approach that combines both traditional

cell level SEU tolerance and a simple parity check on group of cell.

33

Chapter 4

MCU-Tolerant Hardware with Hybrid

Techniques

4.1 Proposed MCU-Tolerant Design

We chose a hybrid technique to implement our registers. The technique uses SEU

correcting scan flip-flops to correct all SEUs, and uses a parity checker to detect

MCUs. The implementation of this detection and correction hardware is different

from the conventional SEC-DED Hamming code. The implementation guarantees

to correct any combinations of MBUs as long as they occur in different flip-flop

cells, and to detect a MCU in n protected registers, where n is the flip-flop count

in a parity group. The group size of n directly affects the MCU detection ability

of our technique because a parity check will miss an even number of errors. If n is

larger, the possibility of double MCUs increases. It is possible to implement other

types of checkers to detect MCUs. Codes such as Hamming codes and CRCs are

suitable substitutes to a simple parity check. These codes are fairly simple to

compute and can detect multiple inter-cell errors. However, one of the drawbacks

of using these more advanced codes would be the checker complexity and the

hardware overhead.

4.2 Experiment

We grouped 4 bits of SEU correcting scan flip-flops into a parity check group.

The design is shown in Figure 4.1. Counting the transistors versus 4 regular

scan flip-flops resulted in a hardware overhead of 82.5%. The scan flip-flops were

connected as a 4-bit shift register. The variable delay buffers between flip-flops

34

were components that emulated the combinational logic between states. Signals

Capture, Update, and Test were scan control signals. In the operation mode,

flip-flops read the Data input and write the output Q to System Out. In the

scan mode, flip-flops read SI and write output to Scan Out. Since the SEU

correcting flip-flops were capable of correcting all SEUs in each cell, there was a

need to inject more than two SEUs to a cell. So, two error signals SCA and SCB

were wired into each cell. Q1, Q2, and Q3 were the latched outputs of the first,

second, and third flip-flops, respectively. In the experiment only the third cell

had SCA and SCB signals internally wired to the shadow latches. Figure 4.2

shows a SET response of the system. At 550 ns on the x axis, Data switched

almost simutainously with Clk and this signal change during the flip-flop’s hold

time is captured as a SET. The Error signal was asserted accordingly. Figure 4.3

shows the SEU response of the system. At 390 ns on the x axis, a single error

pulse entered the third flip-flop. The flip-flop corrected the error immediately.

Figure 4.4 shows an MCU response of the system. At 390 ns, two errors in a SEU

correcting flip-flop resulted in an erroneous correction in the third flip-flop. The

parity check detected the problem and asserted the Error signal indicating there

was an uncorrectable error in the group. These simulations were performed with

70 nm transistor models and we used the Cadence SpectreS simulator for analog

simulations. We have proven that combining SEU scan latches with the parity

group can mask or at least detect MBUs.

4.3 Design Limitations

The hybrid design that uses SEU tolerating flip-flops and a parity checker is

a simple concept to handle MBUs. However, the detection ability of MCUs is

limited to one cell error per group. The hardware overhead is kept under 100%

but there is a need for better checkers with the detection abilities covering multiple

errors. In order to keep the detection ratio high, it is inevitable that one must have

small parity groups. This leads to a further wiring problem when error signals

35

Figure 4.1: 4-bit shift register with MCU protection with a single even parity bit

36

Figure 4.2: A SET affecting system outcomes

37

Figure 4.3: A SEU affecting system outcomes

38

Figure 4.4: A MCU affecting system outcomes

39

from each group must wire to reset logic in the system. Also, if the checker can

detect many MCUs, it is possible to use regular flip-flops instead of SEU tolerant

flip-flops and letting the check code handle all of the errors.

4.4 Conclusion

The parity bit protection alone is not enough for MBUs. It can only protect

against odd numbers of errors, but not even numbers of errors. Combined with

traditional cell-level SEU tolerant techniques, the parity bit is tolerant to odd

numbers of MCUs. It uses low overhead, but it still provides insufficient protection

against MBUs created by individual particles. In the next chapter, we introduce

a protection scheme without using SEU tolerant flip-flops and providing sufficient

protection from all MBUs.

40

Chapter 5

MBU-Tolerant Hardware Using CRCs

5.1 Proposed MBU-Tolerant Design

We choose the CRC for creating MBU tolerant registers because among all prior

work, code redundancy designs are more promising for MBU detection consid-

ering the scalability and the ability to handle localized MCUs as mentioned in

Section 3.1. We use the CRC for simple error detection and use software roll

back to correct the corrupted state outcome. A high level block diagram is shown

in Figure 5.1. In the design, the checker registers are appended to a group of

registers. A pair of a CRC generator and a CRC checker will generate the check

bits for the next cycle and check errors for the current cycle. Upon observing

an error, the checker will raise the error signal RegErr high to indicate that the

register has a non-matching data and check values. Responding to an error signal,

the system enters the ABORT state and attempts a software roll back, then it

returns to the previous state for a retry. Our design differs from Blome et al.’s

Register Value Cache (RVC) [4], as we do not keep extra registers for the data

recovery. This is because the RVC scheme requires one of two registers to hold the

correct register value. In the case where both registers are corrupted, the checker

will believe that the register file holds the correct value and the error will remain

undetected. In this chapter, we will address errors in a contiguous sequence of

bits as a burst error. The length of a burst error is the number of bit errors in a

frame from the first error to the last, inclusive.

41

Figure 5.1: Block diagram of MBU detecting ARM processor

42

Figure 5.2: Architecture of MBU detecting registers

Architecture

We implemented an 32-bit ARM processor based on the ARMv4 archecture and

instruction sets without the co-processor instructions. Figure 5.2 shows the archi-

tecture of our MBU detecting registers, where we compute a CRC on the register

contents and store the CRC on-chip in bits attached to the register. If the check

bits are protected from any errors, they always detect the theoretical burst error

length. Thus, the CRC bits should be stored in soft error protected cells with

the traditional ECC or topologically hardened registers. Fortunately, as observed

from our experiments, the CRC code still functions near the optimal burst size

detection without such protection. The degraded detectable burst size is typi-

cally one to two bits shorter than the theoretical one. It is a designer’s decision

whether to allow a better burst error detection, or to save chip area and power

by not performing an ECC on the CRC check cells. To show a fair comparison

against Hamming codes, we show experiments with the assumption that CRC

check bits are equally vulnerable to soft errors as data bits are. Even without

43

an ECC on the CRC bits, all of our CRC checkers have excellent burst error

protection. The algorithm for these registers for a write to Rn is to compute

the CRC code CRCreference for that register, and store it in the register bits.

When reading Rn, the hardware recomputes the CRCn on the retrieved data,

and compares it to the stored CRCreference in the register. The CRC checking

can be pipelined, so that the retrieved register data is immediately forwarded to

the processor or the controller using it, concurrently with CRC checking. When

CRCn 6= CRCreference, the processor will enter the ABORT state. The controller

pipeline is flushed, and within the ABORT state, a subroutine will perform soft-

ware rolled back to the last checkpoint. The system then exits the ABORT state

and returns to the previous processor state for a retry. With our design there is

the additional expense of maintaining checkpoints of the computation, but the

great virtue of this architecture is that delay overhead is only incurred when

an error actually occurs, and not routinely. Also, this method avoids the heavy

hardware overhead of error correcting codes, and is much more suitable for mobile

electronic devices.

5.2 Experiment

We compared different fault detection codes to find the most suitable code for our

purpose. The detection mechanism was optimized for soft error detection only,

where the errors are intermittent and do not damage the physical hardware. Sev-

eral popular error detection codes in memory systems were in the testbench for

comparison. The designs then passed through the hardware compiler of Synopsys

Design Vision and we estimated the checker overhead from the obtained Register

Transfer Level (RTL) models. These experiments were the first step for us to

make a decision on which candidate was more suitable for constructing a fault

detecting ARM processor register. Later on, we implemented a fault detecting

ARM processor in Verilog. Based on our initial findings, the system was then

tested under various levels of soft errors and the responses were recorded. The

44

simulation was done mainly on a behavioral model and we used the Verilog Proce-

dural Interface (VPI) to automatically insert faults to the hardware. The results

obtained were grouped as random errors and burst errors. Within a register, the

random error count was the count of total errors within a single register. We

counted 2-bit flips on the same bit as two errors even if they nullified the fault.

The register results were compared with an ideal register simulated with no error

injected. After simulating for a hundred thousand iterations, we recorded the

count of missed faults. In burst error simulations, the error ranges were further

limited to the burst error length. Since a MCU does not necessarily affect every

register cell because of the cell placement, we modeled MCUs differently from

the standard definition. In our model, the furthest bit error pair occurring n bits

apart would be counted as a length n burst error regardless of whether there were

non-corrupted bits between the pair. The simulation ran for a hundred thousand

iterations and the missed faults were recorded with a similar technique to measure

random errors.

For Hamming codes, we picked the most common Hamming distance-3-code

and distance-4-code. There was no implementation of the correction mecha-

nism, but the codes simply detected the minimal simultaneous 2 or 3 bit errors,

respectively. For the CRC, we picked some commonly-used CRC polynomials

such as CRC-6-ITU (P (X) = X6 + X + 1), CRC-7-SD (P (X) = x7 + x3 + 1),

CRC-8-ATM (P (X) = x8 + x2 + x + 1), and CRC-12-TELECOM (P (X) =

x12 +x11 +x3 +x2 +x+1). For IBM’s symbol code, we directly mapped the code

table of the G4 server and obtained the SSC-DSD (76,64) code. The simulation

was done by Verilog behavioral simulation. For research purposes, the faulty word

group size is set to 8 bytes (64 bits) and the undetected fault was recorded for

simultaneous upsets of 1 to 10 bits. We compared the results in Figure 5.3. On

the log scale, if there is no undetected event, then it is not shown on the graph.

Thus, all of the distance 2 codes will not have the first upset bit plotted since the

error will always be detected, and all the distance 3 codes will not have the first

45

2 upset bits plotted, etc. Codes such as the CRC-12-TELECOM code and Ham-

ming (72,64) code always detect odd errors, so any odd numbers of errors do not

appear on the graph. The figure shows that SSC-DSD and CRC-12-TELECOM

had the least number of undetected errors when the error count exceeded the

codes’ minimal Hamming distance. The result also shows that similar check bit

lengths resulted in similar levels of undetected faults. All of the codes other

than CRC-6-ITU had at least a distance-3 property, where all 2-bit errors were

detected.

 0.0001

 0.001

 0.01

 0.1

 0 2 4 6 8 10

U
nd

et
ec

te
d

E
ve

nt
s

(p
er

 1
00

k
M

B
U

)

Simutainously Upset Bits

 CRC12 TELECOM
 CRC6 ITU
 CRC7 SD

 CRC8 ATM

 HAMMING (71 64)
 HAMMING (72 64)

 IBM SSC-DSD (76 64)

Figure 5.3: Random errors from 100K simulation runs

The next experiment was on burst errors. We set up the experiment so that

check bits and data bits were both prone to soft error corruptions as in previous

experiments. The burst starting position was randomly selected and there were

cases where both data bits and check bits fell under the same burst error. In

Figure 5.4, the CRC technique was obviously superior to both Hamming codes.

On the log scale, if there is no undetected event, then it is not shown on the

graph. Thus, we find the first point of a code that appears on the figure and

subtract it by one to obtain the maximum guaranteed detectable burst error

46

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20U
nd

et
ec

te
d

E
ve

nt
s

(p
er

 1
00

k
M

B
U

 B
ur

st
)

Burst Error Length

 CRC12 TELECOM
 CRC6 ITU
 CRC7 SD

 CRC8 ATM

 HAMMING (71 64)
 HAMMING (72 64)

 IBM SSC-DSD (76 64)

Figure 5.4: Burst errors from 100K simulation runs

length. For the CRC-12-TELECOM code, the burst error detection is better

than for the IBM SSC-DSD (76,64) symbol code. Again, theoretically the CRC

should have the ability to detect burst errors less than the order of the highest

CRC polynomial, but since we allowed the check bits to be corrupted by a burst

error, the performance was slightly degraded.

5.3 Hardware Overhead

We should observe the hardware overhead of the different codes after knowing

the efficiency of them. While we are aiming to detect errors in general purpose

registers and pipeline registers, the register overhead can be drastically different

from that of a memory system fault tolerant design. One major design difference

is that the size of a processor register is significantly smaller than that of a mem-

ory bank. Constructing a syndrome decoder for the error correction might not be

feasible in terms of hardware overhead. Also, the instruction and data are cached

hierarchically in lower level memory devices. As long as they are accessible to

47

the processor, the data recovery can be done by rolling back and re-fetching the

non-affected data. Most of the soft error rate is measured in the order of events

per billion hours. It might be more economical to roll back and recompute results

than to add extra hardware for correction. The performance gain of having ded-

icated correction hardware is negligible over billions of hours. Since the register

size is small compared to a memory, the fault detection checker’s size becomes

significant. Unlike memory banks where designers only worry about the check

bit length, we should consider the checker hardware overhead as well. We used

Synopsys Design Vision to generate the hardware overhead of our checkers in

Figures 5.6 and 5.7. The checker sizes have positive correlation with how many

check bits each code requires. In our experiment, all of the CRC checkers are

parallel checkers that can perform all checking in one cycle and not shift regis-

ters that require multiple cycles to compute results. The parallel CRC checker is

designed based on the time expension of sequential circuits. We build a parallel

CRC checker by unrolling the LFSR sequential logic to a combinational circuit.

The design is similar to Sprachmann’s technique [31], but we perform unrolling

at the block level. In order to balance between the logic depth and logic fanout,

we generate optimized checker blocks with a parallel CRC algorithm developed

by Campobello et al. [7]. Then, we connect these blocks to form a complete

parallel CRC checker. Figure 5.5 is a gate level CRC-7-SD code generator that

is created by our procedures and optimized with Synopsys Design Vision. The

Hamming codes are generated with Hamming’s work [17] and then are optimized

with Synopsys Design Vision’s logic optimizing functions. For IBM SSC-DSD

codes, we directly use the available generator matrix [10] and optimize the logic

with Synopsys Design Vision.

The results show the strongest CRC code, the CRC-12-TELECOM code has

3.9% less hardware overhead compared with the IBM SSC-DSD code. In ran-

dom error detection, the IBM SSC-DSD code misses 25.8% fewer errors than the

CRC-12-TELECOM code. In burst error detection, the CRC-12-TELECOM code

misses 0.5% fewer errors than the IBM SSC-DSD code. Although on average the

48

Figure 5.5: The CRC-7-SD code generator with 64-bit parallel inputs. The bot-
tom ports are the 7-bit CRC seed in and the 64-bit data in; the top port is 7-bit
CRC out.

49

burst error detection rates of both techniques are almost equivalent, the CRC-12-

TELECOM can withstand a burst error length of 10 bits before missing an error

while the IBM SSC-DSD code can only withstand 9 bits. The CRC-8-ATM code

is compared with the distance 4 Hamming code, and has 10% more transistor

overhead than the Hamming code. However, the CRC-8-ATM code misses 19.7%

fewer errors and misses 88.2% fewer burst errors than a distance 4 Hamming code.

 0

 50

 100

 150

 200

32-Bit Word

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

HAMMING (38 32)
CRC6 ITU
CRC7 SD

HAMMING (39 32)
CRC8 ATM

CRC12 TELECOM

Figure 5.6: Overhead on a 32-bit word

5.4 Fault Detecting Processor

In our 32-bit ARM processor, we picked the CRC-7-SD code for general register

protection. The CRC-7-SD code Hamming distance was equivalent to a distance-

3 Hamming code. It used the same number of check bits as a distance 3 Hamming

code but the checker overhead was slightly larger. The CRC-7-SD also detected

up to 7-bit burst errors when CRC bits were protected, which was another benefit

over a simple Hamming code. Unlike pipeline registers and state registers, in a

register file it was possible to reduce the overhead by sharing checkers similarly to

50

 0

 50

 100

 150

 200

64-Bit Word

H
ar

dw
ar

e
O

ve
rh

ea
d

(%
)

CRC6 ITU
CRC7 SD

HAMMING (71 64)
HAMMING (72 64)

CRC8 ATM
CRC12 TELECOM

IBM SSC-DSD (76 64)

Figure 5.7: Overhead on a 64-bit word

a memory ECC design. This alleviated the 100% checker overhead problem in reg-

ister file design. The register had two read ports and one write port and shared one

CRC generator and two CRC decoders. We also protected the program counter,

the current program state register, and saved program state registers individu-

ally. Together, we shared four CRC generators and five CRC decoders among

37 registers. We compared our CRC-7-SD with a distance-4 Hamming code and

observed the processor’s responses. To test the protected register processor, the

processor calculated the Fibonacci number under soft errors. The instructions

performed calculations of the largest 32-bit Fibonacci integer and saved the entry

to the memory. The calculation took roughly 70 clocks to complete. We manually

injected burst errors of length from 1 to 10. Without exhaustively simulating all

possible error combinations, a Monte Carlo simulation was performed by injecting

faults at a random cycle in a randomly picked register during each 70-clock calcu-

lation. Every 15 additions, we added 2 store instructions to save the current and

previous Fibonacci numbers. When an error was detected, the processor entered

ABORT state and performed 2 load instructions to load the stored current and

51

previous Fibonacci numbers. The routine would gracefully exit ABORT state for

a retry if no more errors occurred during the roll back routine. The results were

recorded in Figures 5.8 and 5.9, which show that the CRC was significantly bet-

ter than the distance 4 Hamming code in burst error protection. In the random

error simulations, the CRC performance was slightly better than the distance 4

Hamming code with an exception when the error is exactly 3 bits. The chosen

polynomial CRC-7-SD was not a multiple of X + 1, and the CRC code in triple

error detections was not as strong as a distance 4 Hamming code. The CRC-7-SD

code hardware overhead is 6.0% smaller than for the distance 4 Hamming code.

The random error detection miss rate of CRC-7-SD is 1% less than the distance

4 Hamming code and the burst error detection miss rate is 88% less than the

distance 4 Hamming code.

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

U
nd

et
ec

te
d

E
ve

nt
s

(3
5k

 M
B

U
 In

je
ct

ed
)

Simutainous Upset Bits

HAMMING (39 32)
CRC7 SD

Figure 5.8: Random MBU affecting system outcomes

5.5 Conclusion

The CRC-12-TELECOM code has 3.9% less hardware overhead compared with

the IBM SSC-DSD code. In random error detection, the IBM SSC-DSD code

misses 25.8% fewer errors than the CRC-12-TELECOM code. In burst error

52

 0

 50

 100

 150

 200

 1 2 3 4 5 6 7 8 9 10

U
nd

et
ec

te
d

E
ve

nt
s

(3
5k

 M
B

U
 B

ur
st

 In
je

ct
ed

)

Burst Error Length

HAMMING (39 32)
CRC7 SD

Figure 5.9: Burst MBU affecting system outcomes

detection, the CRC-12-TELECOM code misses 0.5% fewer errors than the IBM

SSC-DSD code. Although on average the burst error detection rates of both

techniques are almost equivalent, the CRC-12-TELECOM can withstand a burst

error length of 10 bits before missing an error while the IBM SSC-DSD code can

only withstand 9 bits. Regardless, these codes have a low miss rate, and the

excess hardware overhead of them reaches nearly 150%. In the field of reliable

enterprise server designs, IBM SSC-DSD codes, which were once commercialized

in the G3 and G4 series, are no longer in use in the following G5 series due

to the excessive overhead [30]. Thus, we use a distance 4 Hamming code as a

benchmark for the rest of our experiments. The CRC-8-ATM code is compared

with the distance 4 Hamming code, and has 10% more transistor overhead than

the Hamming code. However, the CRC-8-ATM code misses 19.7% fewer random

errors and misses 88.2% fewer burst errors than a distance 4 Hamming code.

The CRC-7-SD code hardware overhead is 6.0% smaller than for the distance 4

Hamming code. The random error detection miss rate of CRC-7-SD is 1% less

than the distance 4 Hamming code and the burst error detection miss rate is 88%

less than the distance 4 Hamming code. The CRC checking can be pipelined, so

53

that the retrieved register data is immediately forwarded to the processor or the

controller using it, concurrently with CRC checking. A 32-bit parallel CRC-7-SD

checker has 11 gate delays on the critical path and a 64-bit one has 19 gate delays.

If the pipelined logic’s critical path is shorter than the CRC-7-SD checker’s delay

then the checker will affect the processor’s performance regardless of whether the

processor is pipelined.

54

Chapter 6

Conclusions and Future Work

The code redundancy technique for MBU detection can be very useful when errors

are induced by a single α particle or cosmic ray. Using CRCs to detect errors

and then recomputing from check points to correct the error is a simpler solution

than using expensive MBU hardened register cells. Compared with other fault

detecting codes, the CRC is also a better balance between hardware overhead

and detection capabilities. The burst error capability shows that CRCs can be

an effective substitute for Hamming codes in caches and register files. They have

nearly equivalent checker overhead and a flexible check polynomial length that can

be chosen during an early design cycle to match the system reliability constrains.

Compared with the state of the art IBM SSD-DSD code, CRC polynomials can

be chosen to have a better burst error protection but IBM still has the lead in

random error detection. In random error detection, the IBM SSC-DSD code

missed 25.8% fewer errors than the CRC-12-TELECOM code. In burst error

detection, the CRC-12-TELECOM code missed 0.5% fewer errors than the IBM

SSC-DSD code. Although on average the burst error detection rates of both

techniques are almost equivalent, the CRC-12-TELECOM code can withstand

a burst error length of 10 bits before a miss while the IBM SSC-DSD code can

only withstand 9 bits. On the hardware overhead of these codes, our chosen CRC

polynomial shows a lower checker overhead than the IBM SSD-DSD code. The

CRC-12-TELECOM code has 3.9% less overhead compared with the IBM SSC-

DSD code. Thus, if chip real estate is a higher concern and multiple faults are

modeled as MCUs, a CRC can be chosen instead of the IBM SSD-DSD code.

Compared with the widely accepted distance 4 Hamming code, the CRC-7-SD

55

code used 6.0% less hardware than the distance 4 Hamming code. The random

error detection miss rate of the CRC-7-SD code is 1% less than the distance 4

Hamming code and the burst error detection miss rate is 88% less than for the

distance 4 Hamming code. Also, for burst error detection the CRC-7-SD code can

withstand a maximum 5-bit burst error while the distance 4 Hamming code can

only withstand a 3-bit burst error. A 32-bit parallel CRC-7-SD checker has 11

gate delays on the critical path and a 64-bit one has 19 gate delays. For a highly

pipelined processor, the 64-bit CRC checker might be longer than the critical

path. One way to solve the timing problem is to use two 32-bit parallel CRCs for

a highly pipelined processor.

6.1 Future Work

Generally, a fault detecting register cannot protect against hard faults. The reg-

ister with faulty hardware will continuously produce an erroneous outcome, and

the software rollback will not correct the problem. The design can be improved

so that the register file can protect against these stuck faults or other hard faults.

With some modification, register renaming hardware can avoid mapping virtual

registers to a faulty physical register. This is one way of making the system

tolerate hard errors. There is also room for improvement in cell arrangements

to minimize hardware overhead. In actual system layouts, the checkers’ routing

overhead should be considered and a partitioning algorithm should be derived to

minimize this overhead.

56

Appendix A

User Manual

A.1 Programs

We used the Ruby programming language and interpreter [32] to execute these

programs on a PC. All available programs are on the Sun UNIX Systems under

the directory /ece/under/wenyueh/code_gen/.

crcgen verilog.rb

Usage: ruby crcgen verilog.rb [CRC polynomial] [parallel bits]

Example: ruby crcgen verilog.rb “1 0 1 1” 3

A CRC Verilog code generator for an arbitrary datawidth and check poly-

nomials. The program uses the standard algorithm [7] to generate CRC

hardware. The CRC polynomial should be in an array of the polynomial

coefficients. The first element should be the zeroth order of the polynomial

and the last element should be the highest order of the polynomial. A poly-

nomial P (x) = x3 + x2 + 1 should be entered as “1 0 1 1” separated with

white space. Since the Ruby language contains a smart parser, entering

“x3 + x2 + 1” will also work as expected.

hammingGen.rb

Usage: ruby hammingGen.rb [parallel bits] [Hamming distance]

57

A Hamming Code Verilog code generator for an arbitrary datawidth. The

available Hamming distance is distance 3 or 4.

CheckGen.rb

Usage: ruby CheckGen.rb [generator matrix file]

Example: ruby CheckGen.rb “hamming 12 8.csv”

The program takes in any generator matrix and creates error detection hard-

ware in Verilog. The generator matrix should be a Comma-Separated Values

(CSV) file containing rows of generator matrix information. In the genera-

tor matrix, the first row is the parity check positions, which are separated

by commas, of the first check bit, and the second row is the parity check

positions of the second check bit, etc. If the check bit i checks position j,

we fill in a 1 at the position (i, j) where i is the row position and j is the

column position. Finally, we fill 0 in all unchecked positions. For example,

the file format of the Hamming (12,8) code is:

1,0,1,0,1,0,1,0,1,0,1,0

0,1,1,0,0,1,1,0,0,1,1,0

0,0,0,1,1,1,1,0,0,0,0,1

0,0,0,0,0,0,0,1,1,1,1,1

autoRun.rb

Usage: ruby autoRun.rb

The program runs simulations in batch mode. To simulate the desired

checkers, the user can simply drag and drop any previous program-created

Verilog files to sub folder .\codes and the script will run a batch simulation

automatically. The simulated results are time stamped, so invoking the

batch script twice will not overwrite the previous result. The simulations

58

will be saved in folder .\result. Since the Ruby language is ported on

various systems, these folders should exist and accessible to the user on

the relative path of the autoRun.rb file. This prevent the complication of

different systems handle file system differently.

A.2 Files

All avaliable files are under the directories /ece/under/wenyueh/arm_processor_

2009/, /ece/under/wenyueh/check_unprot_rand/, and /ece/under/wenyueh/

check_unprot_burst/.

ff crc.v

This is Verilog code for a stand alone register with the CRC protection.

This module is compatible with CRC checkers generated from the crc-

gen verilog.rb script.

ff hed.v

This is Verilog code for a stand alone register with the Hamming code pro-

tection. This module is compatible with Hamming code checkers generated

from the hammingGen.rb script.

ff sed.v

This is Verilog code for a stand alone register with the symbol code protec-

tion. This module is compatible with any code checkers generated from the

CheckGen.rb script.

arm *.v

This Verilog code is for parts of an ARM processor. They are necessary

components for the autoRunError.rb script to simulate the full processor

59

with the protected register file.

memory.list

This is the instruction list for the processor. The legal instructions are in

global.v. Thumb instructions and co-processor instructions are not avail-

able.

faultinject.c

This C library is compiled as a Verilog Procedural Interface (VPI) and in-

teracts with Verilog modules. The library uses the Mersenne twister library

to generate pseudo-random faults in registers for Monte Carlo simulations.

60

References

[1] R. C. Baumann. Soft Errors in Advanced Semiconductor Devices – Part I:
the Three Radiation Sources. IEEE Transactions on Device and Materials
Reliability, 1(1):17–22, Mar 2001.

[2] R. C. Baumann and E. B. Smith. Neutron-Induced Boron Fission as a Major
Source of Soft Errors in Deep Submicron SRAM Devices. In Proceedigs of
the 38th Annual IEEE International Reliability Physics Symposium, pages
152–157, 2000.

[3] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen. NonStop Advanced Architecture. In Proceedings of the
International Conference on Dependable Systems and Networks. DSN 2005,
pages 12–21, June-July 2005.

[4] J. A. Blome, S. Gupta, S. Feng, and S. Mahlke. Cost-Efficient Soft Error
Protection for Embedded Microprocessors. In Proceedings of the 2006 Inter-
national Conference on Compilers, Architecture and Synthesis for Embedded
Systems. CASES ’06, pages 421–431, New York, NY, USA, 2006. ACM.

[5] R. C. Bose and D. K. Ray-Chaudhuri. On a Class of Error Correcting Binary
Group Codes. Information and Control, 3(1):68–79, March 1960.

[6] T. Calin, M. Nicolaidis, and R. Velazco. Upset Hardened Memory Design
for Submicron CMOS Technology. IEEE Transactions on Nuclear Science,
43(6):2874–2878, Dec 1996.

[7] G. Campobello, G. Patane, and M. Russo. Parallel CRC Realization. IEEE
Transactions on Computers, 52(10):1312–1319, Oct. 2003.

[8] E. H. Cannon, M. S. Gordon, D. F. Heidel, A. J. KleinOsowski, P. Oldiges,
K. P. Rodbell, and H. Tang. Multi-Bit Upsets in 65nm SOI SRAMs. In
Proceedings of the IEEE International Reliability Physics Symposium. IRPS
2008, pages 195–201, May 2008.

[9] E. H. Cannon, D. D. Reinhardt, M. S. Gordon, and P. S. Makowenskyj.
SRAM SER in 90, 130 and 180 nm Bulk and SOI Technologies. In Proceed-
ings of the 42nd Annual IEEE International Reliability Physics Symposium,
pages 300–304, April 2004.

[10] C. L. Chen. Symbol Error-Correcting Codes for Computer Memory Systems.
IEEE Transactions on Computers, 41(2):252–256, Feb 1992.

61

[11] T. H. Daubenspeck, J. P. Gambino, C. D. Muzzy, W. Sauter, and E. J. Spro-
gis. Post Bump Passivation for Soft Error Protection. US Patent #7348210,
Filing Date:04/27/2005, Publication Date:03/25/2008.

[12] P. E. Dodd, F. W. Sexton, and P. S. Winokur. Three-Dimensional Sim-
ulation of Charge Collection and Multiple-Bit Upset in Si Devices. IEEE
Transactions on Nuclear Science, 41(6):2005–2017, Dec 1994.

[13] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, Toan Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A Low-Power
Pipeline Based on Circuit-Level Timing Speculation. In Proceedings of the
36th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-36, pages 7–18, Dec. 2003.

[14] G. Gasiot, D. Giot, and P. Roche. Alpha-Induced Multiple Cell Upsets in
Standard and Radiation Hardened SRAMs Manufactured in a 65 nm CMOS
Technology. IEEE Transactions on Nuclear Science, 53(6):3479–3486, Dec.
2006.

[15] D. Giot, P. Roche, G. Gasiot, and R. Harboe-Sorensen. Multiple-Bit Upset
Analysis in 90 nm SRAMs: Heavy Ions Testing and 3D Simulations. IEEE
Transactions on Nuclear Science, 54(4):904–911, Aug. 2007.

[16] A. Goel, S. Bhunia, H. Mahmoodi, and K. Roy. Low-Overhead Design
of Soft-Error-Tolerant Scan Flip-Flops with Enhanced-Scan Capability. In
ASP-DAC ’06: Proceedings of the 2006 Asia South Pacific Design Automa-
tion Conference, pages 665–670, Piscataway, NJ, USA, 2006. IEEE Press.

[17] R. W. Hamming. Error Detecting and Error Correcting Codes. The Bell
System Technical Journal, 29(2):147–160, April 1950.

[18] K. J. Hass, J. W. Gambles, B. Walker, and M. Zampaglione. Mitigating
Single Event Upsets From Combinational Logic. In Proceedings of the 7th
NASA Symposium on VLSI Design, October 1, 1998.

[19] T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha, V. Erraguntla, and
S. Borkar. Selective Node Engineering for Chip-Level Soft Error Rate Im-
provement [in CMOS]. In Digest of Technical Papers of the Symposium on
VLSI Circuits, pages 204–205, 2002.

[20] Y. Komatsu, Y. Arima, T. Fujimoto, T. Yamashita, and K. Ishibashi. A Soft-
Error Hardened Latch Scheme for SoC in a 90 nm Technology and Beyond.
Proceedings of the IEEE Custom Integrated Circuits Conference, pages 329–
332, 3-6 Oct. 2004.

[21] L. I. Lantz. Soft Errors Induced by Alpha Particles. IEEE Transactions on
Reliability, 45(2):174–179, Jun 1996.

62

[22] F. B. McLean and T. R. Oldham. Charge Funneling in N- and P-Type Si
Substrates. IEEE Transactions on Nuclear Science, 29(6):2017–2023, Dec.
1982.

[23] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K.S. Kim. Robust System Design
with Built-In Soft-Error Resilience. Computer, 38(2):43–52, Feb. 2005.

[24] R. Oliveira, A. Jagirdar, and T. J. Chakraborty. A TMR Scheme for SEU
Mitigation in Scan Flip-Flops. In In Proceedings of the 8th International
Symposium on Quality Electronic Design. ISQED ’07, pages 905–910, 26-28
March 2007.

[25] R. Oliveira, A. Jagirdar, and T. J. Chakraborty. Efficient Flip-Flop Designs
for SET/SEU Mitigation with Tolerance to Crosstalk Induced Signal Delays.
In IEEE Workshop on Silicon Errors in Logic – System Effects. SELSE 3,
April 3-4, 2007.

[26] W. Peterson. Encoding and Error-Correction Procedures for the Bose-
Chaudhuri Codes. IRE Transactions on Information Theory, 6(4):459–470,
September 1960.

[27] W. W. Peterson and D. T. Brown. Cyclic Codes for Error Detection. Pro-
ceedings of the IRE, 49(1):228–235, Jan. 1961.

[28] P. Roche, G. Gasiot, K. Forbes, V. O’Sullivan, and V. Ferlet. Comparisons of
Soft Error Rate for SRAMs in Commercial SOI and Bulk below the 130-nm
Technology Node. IEEE Transactions on Nuclear Science, 50(6):2046–2054,
Dec. 2003.

[29] Y. Savaria, N. C. Rumin, J. F. Hayes, and V. K. Agarwal. Soft-Error Filter-
ing: A Solution to the Reliability Problem of Future VLSI Digital Circuits.
Proceedings of the IEEE, 74(5):669–683, May 1986.

[30] L. Spainhower and T. A. Gregg. IBM S/390 Parallel Enterprise Server G5
Fault Tolerance: A Historical Perspective. IBM J. of Research and Develop-
ment, 43(5/6):863–873, November 1999.

[31] M. Sprachmann. Automatic Generation of Parallel CRC Circuits. IEEE
Design & Test of Computers, 18(3):108–114, May 2001.

[32] S. Vinoski. Enterprise Integration with Ruby. IEEE Internet Computing,
10(4):91–95, July-Aug. 2006.

[33] J. F. Ziegler. Terrestrial Cosmic Rays. IBM Journal of Research and Devel-
opment, 40(1):19–39, January 1996.

