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Coastal oceans as highly productive components of the global ocean play crucial roles 

in global carbon cycle and climate change.  The wide continental shelf off US east coast is 

a typical coastal environment that serves as a buffer zone between human activities and 

open oceans.  This thesis investigates the dispersal pattern of Hudson River outflow in the 

New York Bight (NYB). It applies adjoint sensitivity, Incremental Strong Constraint 4D 

Variational Data Assimilation (IS4DVAR) and representer-based optimal observation to 

integrate coastal ocean modeling and observation capabilities. 

        Firstly, analysis of a 2-year model simulation identifies three freshwater pathways: 

along (i) the New Jersey coast, (ii) the Long Island coast, and (iii) a Mid-shelf Pathway. It 

is shown that the New Jersey coast Pathway dominates winter months and the Mid-shelf 

Pathway summer months. It is also demonstrated that wind is the primary force for 
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spreading freshwater into mid- and outer-shelf and presence of the Hudson Valley 

strengthens freshwater recirculation in the New York Apex area.  Secondly, the 

Constituent-oriented Age and Residence time Theory is implemented to simulate the age 

and residence time of the Hudson River plume.  Analysis shows strong seasonality of 

surface mean age and residence time consistent with seasonal variation of the circulation. 

Time series analysis shows that spatial and temporal variations of the time scales in NYB 

are largely buoyancy- and wind-driven.   

        Thirdly, adjoint sensitivity analysis applied on the New Jersey inner shelf identifies 

water sources and quantitatively compares the contributions of different variables to a 

chosen oceanic process.  Fourthly, IS4DVAR is used to assimilate observational data 

collected by all instrument types during spring 2006.  It reduces the model-observation 

misfit by 60% and improves forecast of temperature, salinity and velocity.  Finally, a 

representer-based optimal observation system is applied to identify the optimal sampling 

locations for predicting salt transport within the Hudson Shelf Valley. The system is then 

used to compare the influence area of existing observations.  

This work prototypes the integration of observation and modeling in a coastal 

environment and demonstrates the use of traditional and variational tools to reveal the 

physical processes in a shelf region.  
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CHAPTER 1. INTRODUCTION 

1.1. New York Bight 

The wide continental shelf off US east coast is a major component of the global ocean 

in terms of the carbon cycle (Hofmann et al. 2008) and primary productivity (Schofield et 

al. 2008b).  It is an important place for human activities, like fishing and recreation. The 

New York Bight (NYB) is the part of the shelf that is half enclosed by the New Jersey and 

Long Island coasts and heavily influenced by anthropogenic forces through river 

discharge.  Studies of the physical and biogeochemical processes in the NYB will therefore 

contribute to the understanding of the changes that coastal oceans are undergoing in the 

context of climate change. 

In the NYB, bathymetry, tides, freshwater input, air-sea exchange, and large-scale 

shelf-wide circulation all interact to create a coastal zone with complicated dynamics and 

short time and space scales of variability  (Chant et al. 2008a, Choi and Wilkin 2007, 

Yankovsky 2003).  It has been the subject of numerous studies, both modeling and 

observational (Castelao et al. 2008a, Chant et al. 2008a, Chant et al. 2008b, Johnson et al. 

2003, Tilburg and Garvine 2003, Wilkin et al. 2005, Wong 1999, Yankovsky et al. 2000), 

with most of them focusing on the influences of the Hudson River discharge and winds on 

the local circulation.  The Hudson River is a major supplier of freshwater, nutrients and 

suspended matter to the NYB and the dispersal pattern of the river plume in the shelf has 

dramatic influences on local physical and biochemical processes. Despite the cited studies, 

the overall picture of the dispersal pattern of the Hudson River plume in the NYB and the 

detailed effects that different forces have on the dispersal pattern are still largely unknown.  
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The effects that wind-driven coastal upwelling and down-welling have on the Hudson 

River plume in the apex area of the NYB have been studied intensively, but studies of the 

influence of winds on the pathways and eventual fate of the freshwater are lacking.  

Southwestward along-shelf mean currents of approximately 5 cm s-1 occur in the NYB 

(Beardsley and Boicourt 1981, Chapman and Beardsley 1989) and presumably steer the 

river plume once it reaches the mid- and outer-shelf. But details of the effects of the 

ambient current are still unknown.  One distinct feature in the NYB is the Hudson Shelf 

Valley (HSV) which cuts through the entire shelf from the shelf break to the mouth of the 

Hudson River. It is expected that the HSV affects local circulation and plume dispersal 

(Chant, personal communication), but few systematic studies exist.  The first two parts of 

this dissertation aim at these unknown mechanisms and offer a thorough description of the 

dispersal pattern of the Hudson River plume in the NYB.   

The NYB is one of the most well-observed coastal areas on the world and has seen 

pioneering deployments of new observing instruments and platforms, including 

Autonomous Underwater Vehicles (gliders), High Frequency (HF) coastal radar system, 

and cabled observatory moorings. The NYB has also been studied through the 

comprehensive use of multiple satellites together with shipborne and moored instruments 

during a series of intensive multidisciplinary observational programs, e.g., LEO-15 

(Long-term Ecosystem Observatory), LaTTE (Lagrangian Transport and Transformation 

Experiment), and MARCOOS (Mid-Atlantic Regional Coastal Ocean Observation 

System). Monitoring of water conditions in the NYB using these observing platforms has 

become a routine operation in the Coastal Ocean Observation Laboratory (COOLroom) at 

Rutgers University (Schofield et al. 2008a, Schofield et al. 2007).  Meanwhile, numerical 
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simulations with Regional Ocean Modeling System (ROMS) have also been carried out to 

study the physics of the region (Choi and Wilkin 2007, Wilkin et al. 2005) and forecast the 

ocean conditions in real time.   

The operation of the instruments on a quasi-continuous basis and the real-time 

simulation of ROMS makes the NYB an ideal location to learn how to integrate 

observation and modeling capabilities. The last three parts of this dissertation demonstrate 

how to employ variational methods to gain an understanding of coastal oceanic dynamics, 

and prototype a comprehensive integrated coastal ocean predictive capability that 

contributes directly to building a coastal ocean forecast and observation design system for 

the NYB.  

 

1.2. Variational methods 

Derived from control theory (Bertsekas 1982), variational methods have been used for 

decades in numerical weather prediction for applications such as data assimilation.  The 

use of variational methods in oceanography is relatively new but has under-gone 

significant increase recently.  One crucial component that underlies the variational 

approach is the adjoint model, or more precisely, the adjoint of a tangent linear 

approximation to a conventional forward ocean simulation model.  Besides data 

assimilation, there are many other applications of the adjoint model that include parameter 

estimation, general stability analysis, sensitivity analysis, and optimal observation design.  

These are all useful tools for the study of oceanic processes and dynamics.   

Regional Ocean Modeling System (ROMS) is a finite difference numerical ocean 

model.  It utilizes a terrain-following coordinate system in the vertical that allows high 
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resolution in shallow shelf seas. Details of the computational kernel of nonlinear ROMS 

are described by Shchepetkin and McWilliams (1998, 2003, 2005) and Haidvogel et 

al.(2008). The adjoint and tangent linear component models in ROMS, together with 

drivers that link these models for adjoint sensitivity, optimal perturbation, 4-Dimensional 

Variational (4DVAR) data assimilation and observation sensitivity have been developed 

recently by the ROMS Adjoint Group (Moore et al. 2004) and used in numerous 

applications (Broquet et al. 2009, Di Lorenzo et al. 2007, Moore et al. 2008, Moore et al. 

2004, Powell and Moore 2008, Powell et al. 2008, Powell et al. 2009, Veneziani et al. 

2009).  In this work, four of the ROMS adjoint model applications, namely adjoint 

sensitivity, residence time, Incremental Strong-constraint 4DVAR (IS4DVAR) and 

representer-based optimal observation, are applied to the NYB to test the theories, 

machineries, and applicability of these new analysis tools.  

The adjoint sensitivity application uses the adjoint model to determine the sensitivity of 

selected model features to variations of initial conditions, boundary conditions, and surface 

forcing (Errico and Vukicevic 1992, Moore et al. 2008).  The sensitivity signal can then be 

used to locate the dynamical upstream of the selected features and quantitatively compare 

the contributions of different possible sources to variation of the features.   

In the residence time simulation, an adjoint of an age tracer equation (similar to a 

passive tracer conservation equation but with an additional aging term) is utilized to obtain 

the averaged duration it takes the water at any time and any location to be flushed out of a 

pre-defined control volume (Delhez 2006, Delhez et al. 2004).   

IS4DVAR is one of the Data Assimilation (DA) methods that take the full dynamics 

into consideration while adjusting model control variables to fit observations (Courtier et 
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al. 1994, Powell et al. 2008, Weaver et al. 2003).  Adjoint models are utilized here to 

provide the direction of the minimum search in a conjugate gradient algorithm. The 

algorithm is to find the optimal adjustment to model control variables that give the 

minimum model-observation mismatch.  

Representer, the outcome of an adjoint model integration followed by a tangent linear 

model integration, gives the covariance of a selected model feature with model prior, 

present and posterior states (Bennett 2002).  This covariance information can then be used 

to identify the most effective observation locations for more thorough understanding of the 

selected feature and to compare the influences of different observation strategies in a DA 

and forecasting system.  

The applications of these four methods in this work will be the first test of their 

practical strengths and weaknesses on a broad, shallow, continental shelf. The extensive 

observational data already available for the NYB, and the many active projects in this 

region, afford the opportunity to immediately demonstrate the utility of the analysis 

methods for DA and observing system design for integrated coastal ocean observing 

systems of the type now being widely deployed internationally.  
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CHAPTER 2. PATHWAYS OF THE HUDSON RIVER PLUME 

2.1. Introduction 

Fresh water discharged into the coastal ocean from rivers and runoff is often observed 

to be incorporated into a narrow coastal current that is typically a few internal Rossby radii 

wide and rapidly transports freshwater down shelf, which appears similar to the classical 

model of buoyant outflow onto coastal oceans (Garvine 1999). However, more recent 

theoretical, modeling and laboratory studies (Avicola and Huq 2003b, Fong and Geyer 

2002, Nof and Pichevin 2001) revealed a tendency for the formation of a recirculating 

bulge structure in the vicinity of the outflow in the absence of wind and alongshore current.  

In reality, the outflow pattern depends on outflow angle (Avicola and Huq 2003a, b, 

Garvine 1999), wind forcing (Fong and Geyer 2001, García Berdeal et al. 2002, Lentz and 

Chapman 2004), ambient current (Fong and Geyer 2002, García Berdeal et al. 2002, 

Hickey et al. 2005), tides, and local topography.  These factors and forcing modify the 

pathways of the river plume and can make it similar to the classical theory. Given the 

temporal variation of some of the forcing, freshwater pathways are often highly mobile, 

and the unsteady freshwater transport pathways have important ecological implications 

regarding contaminant, larval, and nutrient transport (Cahill et al. 2008, Ciotti et al. 1995, 

Tilburg et al. 2005). Moreover, the details of freshwater dispersal processes can affect 

ocean stratification and parameterization of these processes impacts climate model results 

(Garvine and Whitney 2006). 
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In this study I use a numerical model to elucidate processes dispersing fresh water 

discharged from the Hudson River across the NYB. As mentioned in Chapter 1, 

southwestward along-shelf mean currents of approximately 5 cm s-1 occur in the NYB 

(Beardsley and Boicourt 1981, Chapman and Beardsley 1989).  An analysis combining a 

simple steady model of the shelf-wide momentum balance and historical long-term moored 

current meter data (Lentz 2008) indicates that the vertically averaged along-shelf current is 

proportional to water depth, and hence the transport increases quadratically moving 

offshore. This suggests that while the southwestward mean flow may steer the Hudson’s 

outflow once it reaches the outer shelf, on the inner shelf and particularly in the apex of the 

New York Bight in the shadow of Long Island, the ambient flow is relatively weak given 

its depth and its impact on fresh water pathways is unclear.  

Observational and modeling studies have described a variety of freshwater transport 

pathways on the inner shelf and the NYB apex. For example, several studies describe the 

role of coastally trapped currents (Johnson et al. 2003, Münchow and Chant 2000, 

Yankovsky and Garvine 1998) while others note that the outflow is susceptible to bulge 

formation and is highly responsive to wind forcing (Chant et al. 2008a, Choi and Wilkin 

2007). Chant et al. (2008a) presented evidence for rapid cross-shelf transport of the 

Hudson River injected freshwater during early summer. Relatively swift cross-shelf 

mixing is also evident in repeat autonomous coastal glider transects (Castelao et al. 2008a, 

Castelao et al. 2008b) that show the expansion of low salinity water over the entire shelf 

during summer months, and the cross-shelf transport is correlated with upwelling wind that 

dominates the NYB during summer months.  This cross-shelf transport over summer is 

consistent with Mountain’s (2003) analysis of historical hydrographic data that revealed 
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significant annual cycles of shelf water salinity in the NYB with a summer salinity 

minimum.  However, the mechanisms that drive freshwater dispersal to mid-shelf and its 

subsequent fate on the mid- and outer-shelf are not fully known. One explanation given is 

that a fast cross-shelf pathway is created by upwelling favorable winds that drive 

short-term freshwater extension events (Castelao et al. 2008a), but beyond this there have 

been few studies that trace the fate of the river plumes in the region after their initial entry 

into shelf waters. The major objectives of this chapter are to characterize the shelf-wide 

spreading of freshwater input from Hudson River, describe its seasonal variability, and 

elucidate the dynamics that drive the variability. The Hudson River discharge has high 

levels of nutrients, phytoplankton, dissolved organic matter and contaminants, and 

characterizing its dispersal is of fundamental importance to regional studies of 

biogeochemical process.   

The outline of this chapter is as follows: Section 2.2 introduces the model 

configurations and verification; Section 2.3 presents the simulated mean momentum 

dynamics, and the corresponding mean freshwater dispersal patterns are given in Section 

2.4.  In Section 2.5, the temporal variation of the freshwater transport on NYB is presented 

and discussed.  The results are summarized in Section 2.6. 

2.2. Model Configuration and Comparison to Observations 

The model domain shown in Figure 2.1 covers the New Jersey coastal area from 

eastern Long Island to south of Delaware Bay and from the coast to approximately the 

70-m isobath on the continental shelf. Two rivers, the Hudson and Delaware, are included.  

The model has 30 vertical layers and horizontal resolution of about 1 km.  Chapman (1985) 
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and Flather (1976) open boundary conditions are used for sea level elevation and the 

barotropic component of velocity on the model perimeter, respectively. These conditions 

impose both a remotely forced, along-shelf mean flow described below, and tidal harmonic 

variability (7 components: K1, O1, Q1, M2, S2, N2, K2) extracted from a regional 

ADCIRC simulation (Mukai et al. 2002). For 3-dimensional velocity and tracers, tests 

comparing Orlanski-type radiation (Orlanski 1976) and simple ‘gradient’ conditions 

revealed little difference for the mean circulation and freshwater dispersal.  All the results 

presented here are from simulations with gradient open boundary conditions for 3D 

velocity and tracers. To include the remotely forced, along-shelf currents associated with 

the large-scale pressure gradient I prescribed depth averaged normal flows on the open 

boundaries based on the water depth/flow speed linear relationship deduced by Lentz 

(2008).  The normal flow on the off-shore boundary was smoothed to suppress the effect of 

small-scale undulations of the local topography and also to get a better fit with the CODAR 

data. The normal flow on the northeastern boundary was adjusted to conserve the total 

volume of the model domain, and the gradient of depth-averaged normal flow with respect 

to depth was preserved. In this study, the ambient current is assumed to be steady.   

The model applies bulk formulae (Fairall et al. 2003) using marine boundary layer 

winds, temperature, humidity, and pressure from the North America Regional Reanalysis 

(NARR) (Mesinger et al. 2006), and ROMS sea surface temperature and current to 

compute air-sea fluxes of momentum and sensible, latent, and longwave heat. Quadratic 

bottom drag was used in all simulations with a drag coefficient of 0.003. It was found that 

results were insensitive to a bottom drag because shelf circulation and freshwater dispersal 

were similar in simulations with and without tides as will be discussed later in the chapter. 
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The river discharge was obtained from USGS Water Data (U. S. Geological Survey 2007) 

and modified to include ungauged portions of the watershed  following Chant et al. 

(2008a).  To avoid the ambiguity of reference salinity for ocean water in the NYB, and also 

to isolate the Hudson River from other sources of freshwater in the model, a passive tracer 

with unit concentration was introduced in the modeled Hudson River source. Following the 

simulated passive tracer concentration gives an unambiguous measure, anywhere in the 

model domain, of the volume fraction of water contributed by the Hudson River freshwater 

outflow.  The model is initialized with zero ‘freshwater’ Hudson tracer concentration 

everywhere. Three-year-duration simulations were conducted with the first year used as a 

spin-up period; results presented here are from the analysis of the final two years of each 

simulation. 

Five different simulations are discussed here.  The first, with all the previously 

mentioned forces applied, is named the Full Physics Simulation (FPS).  Four additional 

simulations were carried out to investigate the impact of remotely-forced along-shelf 

current, wind, tides, and the presence of the Hudson Shelf Valley (Figure 2.1), on the 

pattern and dynamics of freshwater spreading and mean circulation. The approach 

followed is to withdraw each of these factors individually from the FPS.  The case with 

wind, shelf valley and tides but no along-shelf mean current is termed the no 

ambient-current simulation (NAS); the case with ambient current, valley, tides but no wind 

is the no-wind simulation (NWS); the case with along-shelf current, wind and tides, but 

with the model bathymetry altered to fill in the Hudson Shelf Valley, is called the no-valley 

simulation (NVS). For completeness, I also conducted a simulation with ambient current, 

wind and the original bathymetry, but omitted the tides. This no-tide simulation (NTS) is 
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discussed only partially in the interests of brevity. The other simulations are discussed in 

detail. 

 

Figure 2.1.  Bathymetry of the New York Bight (grayscale), mean wind over this area 

(gray arrow on land) over 2-year period 2005-2006, and barotropic inflow boundary 

condition (white arrows) on the northeast boundary of the model domain.  The black frame 

indicates the model domain and contours are model isobaths in meters. Scale vectors for 

wind and inflow boundary velocity are given at the lower right corner. 



12 

  

Before proceeding to an analysis of the results, it should first be established that the full 

physics (FPS) modeled circulation has acceptable fidelity with respect to relevant 

observations. This study focuses on transport pathways of the buoyant freshwater 

discharge from the Hudson River, so the veracity of the modeled surface velocity field is a 

key requirement.  

Throughout much of the NYB region we have available 2 to 5 years of surface current 

observations from land-based CODAR (Coastal Ocean Dynamics Applications Radar) 

high-frequency radar systems (Kohut et al. 2006a). Figure 2.2 compares the 2-year (2005 

-2006) mean surface current from model and CODAR. The observed mean current is 

plotted only at locations where data are available for more than 70% of the time; the model 

results plotted are limited to the same area to aid comparison. Both model and observations 

show strong southward flow to the south of the mouth of the Hudson Shelf Valley. The 

triangular shaped zone of strong flow is somewhat more compact, stronger and located 

closer to the Valley in the model than in observations. This discrepancy may be due in part 

to the differing resolution of model and observation: 1 km in model and 10 km at this range 

for CODAR. Nevertheless, the pattern correlation coeffcient between the modeled and 

observed mean surface current is about 0.56 and the overall correspondence in pattern, 

direction and location is good.   

To evaluate the simulated temporal variability, time series of the modeled and observed 

daily-averaged radial velocity across the arc depicted in Figure 2.2 are plotted in Figure 

2.3. The arc is centered on the CODAR site at Sandy Hook (indicated by the star symbol in 

Figure 2.2) which measures the radial current speed across the arc directly, with somewhat 

greater accuracy than CODAR vectors derived from pairs of sites. In the analyses that 
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follow, freshwater transport across concentric pathways at varying range from Sandy Hook 

will also be presented. Figure 2.3 shows many similarities in model and observation: 

velocity south of the Hudson Shelf Valley is generally outgoing and to the north of the 

valley incoming; the timing and duration of the flow events are consistent in model and 

observation. A statistically significant cross-correlation of 0.69 is obtained between 

modeled and observed radial velocity in a 50-km wide band over the shelf valley where the 

CODAR observations have the most consistent availability. There are some issues 

regarding potential bias in the calculation of daily averaged CODAR values because 

sometimes, at some locations, there is only a handful of 1-hourly interval CODAR 

observations available to contribute to the 1-day average window, and the data gaps appear 

to correlate with low sea state and low current magnitude. Furthermore, the spatial 

resolution of model and observations differ. Despite these possible limitations to the 

model-data comparison, I feel that the model captures the temporal variability of the 

surface current well, and that, overall, the model is valid for the statistical long-term 

average simulation of freshwater spreading in the NYB.  
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Figure  2.2.  (a) Modeled and (b) observed mean surface current over the 2-year period 

2005-2006.  Color represents current magnitude and the arrows depict the direction.  Red 

contours are 20 m, 40 m, and 60 m isobaths.  The arcs of radius 100 km are centered at 

Sandy Hook (star symbol) and are used for the comparison of radial velocity in Figure 2.3.   
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Figure  2.3.  The time series (color plots) and 2-year mean (blue lines in the top panels) of 

modeled and observed radial velocity on the arc in Figure 2.2.  Positive velocity is 

outgoing. Black lines in the top panels are the bathymetry along the arc with the y-axes 

spanning 0 to 80 meters.
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2.3. Mean Dynamics 

2.3.1. Sea Surface Height 

Mean sea surface height (SSH) and surface current over the 2-year period for all the 

simulations are given in Figure 2.4.  SSH contours (Figure 2.4a-d) generally follow 

isobaths and show a recirculation pattern in the NYB apex .The mean SSH pattern differs 

substantially between the different simulations. In the FPS case (Figure 2.4a), SSH 

contours are spaced closely on the mid- and outer-shelf with a riverward detour over the 

shelf valley. Without the ambient current (NAS) (Figure 2.4b), the SSH variation from 

coast to outer-shelf is three times weaker than in the FPS case. This shows that the 

remotely forced along-shelf circulation has a significant impact on the local mean sea level 

elevation on the mid- and outer-shelf, and this SSH variation is directly related with the 

surface mean geostrophic current that is described further in Section 3c. From the 

comparison of the FPS and NAS cases we can infer that about 75% of the local mean sea 

surface gradient, and therefore surface geostrophic current, is caused by the remotely 

forced shelf-wide circulation; it will be shown the remaining 25% is locally generated. 

In the NWS case the mean SSH (Figure 2.4c) has a similar pattern to that in FPS, but 

the cross-shelf sea level gradient in NWS is much higher with SSH contours closer to each 

other on the inner- and mid-shelf.  Given the absence of wind-driven lateral mixing of the 

freshwater, a stronger cross-shelf density gradient is expected that would cause stronger 

thermal wind and, ultimately, stronger sea level gradient across the shelf. This suggests 

that the locally generated geostrophic balance is largely driven by the influence of river 

discharge on the cross-shelf density gradient.  
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In the no-valley simulation (NVS) (Figure 2.4d), the mean SSH contours no longer 

detour over the valley on the mid- and outer-shelf, though they do still diverge somewhat 

on the broadest part of the shelf south of the shelf valley. Meanwhile, at the river mouth, 

the almost closed recirculation pattern trapped between the valley and the Long Island 

coast in FPS becomes a jug-handle-shaped bulge next to the New Jersey coast, which 

echoes the results of Fong and Geyer (2002) for idealized simulations of the freshwater 

bulge at a river mouth on a straight coast in the absence of an ambient current. This 

suggests that the Hudson Shelf Valley perturbs the surface current shoreward on the mid- 

and outer-shelf, traps freshwater on the north side of the valley in the apex area and forms a 

closed recirculation there.  
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Figure  2.4.  (a)–(d) Mean SSH contours, (e)–(h) mean surface current, and (i)–(l) mean 

current at 20 m depth over 2-year period of different simulations.  In (e)–(l), color 

represents magnitude and arrows depict direction. Solid white lines are 20, 40, and 60 m 

isobaths; dash white lines in (d), (h) and (l) are the corresponding isobaths after the Hudson 

Shelf Valley is filled. The abbreviations: FPS - Full Physics Simulation, NAS - No 

Ambient-current Simulation, NWS - No Wind Simulation, and NVS - No Valley 

Simulation. 

 

2.3.2.Sea Surface Current 

The mean surface current in the FPS case (Figure 2.4e-h) shows outflow faster than 

10cm s-1 at the river mouth directed along Long Island coast. A substantial part of this 

coastal current departs the Long Island coast and turns to the south, with a portion 

recirculating in the apex of the NYB in an approximately 30 km radius loop and the 

remainder crossing the Hudson Shelf Valley. The rest of the coastal current turns to the 

southeast gradually as it moves eastward along the Long Island Coast. On the New Jersey 

side, a southward coastal current forms at Sandy Hook.  For most of the mid- and 

outer-shelf, water moves south-southeastward on the surface.  

Without the remotely forced along-shelf flow (NAS), the mean surface current in 

Figure 2.4f is weakened substantially and directed more eastward on the mid- and 

outer-shelf.  The region of strong southward current between the 40-m isobath and the 

valley on the outer-shelf in FPS disappears in NAS, but the inner-shelf circulation differs 

little. Thus the largely isobath-following, remotely forced ambient current does not have 
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much influence on the mean surface current on the inner-shelf or NYB apex area, but it 

magnifies the surface current on the mid- and outer-shelf, rotates the currents there 

clockwise, and forms the strong southward flow on the outer-shelf.  

Dramatic differences exist between Figure 2.4g, the mean surface current of the NWS, 

and Figure 2.4e (FPS), especially for the inner- and mid-shelf. Without winds, the 

circulation pattern constitutes an elongated freshwater bulge greatly amplified compared to 

the bulge in FPS. Fong and Geyer (2002) demonstrated that the freshwater bulge in the 

vicinity of a river mouth can continually grow without reaching a steady state in the 

absence of any ambient current or surface mixing to aid its dispersal. The circulation here 

has similarities to Fong and Geyer’s (2002) results, except that the bulge is squeezed 

between the coast and the bathymetry of the Hudson Shelf Valley, and the growth of the 

bulge is arrested by the remotely forced ambient current in the middle of the Long Island 

coast. The presence of the Long Island coast and the Hudson Shelf Valley makes the 

situation here much more complicated than that in Fong and Geyer (2002), and the extent 

to which bottom friction modifies the ballooning effect of the freshwater outflow, as 

described by Nof and Pichevin (2001), is uncertain. To discern this role clearly when the 

outflow is confined by coastline and the Shelf Valley would require further analysis that is 

beyond the scope of this dissertation.  A strong southward coastal current emerges along 

the northern New Jersey coast that is joined by flow that crosses the shelf valley after 

branching off from the recirculation. This combined flow forms a strong current belt 

between the 40-m and 60-m isobaths that extends all the way to the mouth of Delaware 

Bay. The striking change from the FPS to NWS case (Figures 4e and 4g) indicates that 

wind plays a major role in shaping the circulation on the inner- and mid-shelf on very short 
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time scales, and strikes a cautionary note that simulation studies applying the bulk 

formulae in conjunction with low frequency (e.g. monthly average) climatological winds 

might neglect important dynamical influences in this area. 

Consistent with the SSH comparison, the surface recirculation loop at the river mouth 

in FPS disappears in NVS (Figure 2.4h), and more of the river outflow turns to the south 

upon exiting the harbor to form a stronger New Jersey coastal current.  In the offshore 

region, though the direction of surface velocity is similar in FPS and NVS, the dramatic 

change of velocity magnitude immediately downstream from the Hudson Shelf Valley is 

less abrupt in NVS.  These results confirm that the Hudson Shelf Valley acts as a dynamic 

boundary that redirects the surface current on the mid- and outer-shelf and obstructs the 

southward flow of freshwater from the north side of the shelf valley in the NYB apex area. 
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Figure  2.5.  Two-year mean surface (a-d) geostrophic and (e-h) residual ageostrophic 

current of different simulations.  Color represents magnitude and arrows depict direction.  

Solid white lines are 20, 40, and 60 m isobaths; dash white lines in (d) and (h) are the 

corresponding isobaths after the Hudson Shelf Valley is filled; the grey arrow in (e) is 

2-year mean wind. 
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2.3.3. Decomposition of the surface current 

To understand the dynamics in greater detail, the surface mean geostrophic current 

(Figure 2.5a-d) was computed from the 2-year mean of SSH enabling me to examine the 

mean residual ageostrophic current, i.e. the difference between surface current and surface 

geostrophic current (Figure 2.5e-h). Due to the strong nonlinearity in the estuaries created 

by tides and bottom friction, this linear decomposition is not informative inside the 

estuaries and is not discussed here. The surface mean geostrophic current of FPS (Figure 

2.5a) is very similar to Figure 2.4e, especially the southwestward current on the 

outer-shelf, and the strong out-flow at the river mouth and Long Island coastal current; 

these major features of the surface current are geostrophically balanced, consistent with the 

conclusion drawn in Section 3a.  But the direction of the flow everywhere in Figure 2.5a is 

rotated clockwise with respect to Figure 2.4e and the strong off-shore current on the 

outer-shelf is weakened. On the mid- and outer-shelf, and along the New Jersey coast, the 

residual flow vectors in Figure 2.5e are directed almost uniformly southeastward at a speed 

of approximately 2.5 cm s-1. From later analysis we know that this residual flow is basically 

Ekman transport on the surface. Ekman transport is different at the New York Apex area 

because freshwater-outflow-generated stratification there is stronger than that on the rest of 

the shelf.  

The changes from Figure 2.5a to 5b-d reinforce the three conclusions drawn in Section 

3: (i) on the outer-shelf the geostrophic balance develops in response to the remotely forced 

along-shelf current; (ii) the action of the wind is to modify the pressure field and thence the 

mean geostrophic circulation; (iii) the Hudson Shelf Valley modifies the surface 

geostrophic balance. 
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The comparison between surface ageostrophic velocity in Figure 2.5e and Figure 2.5g 

suggests that the surface mean residual flow is basically wind driven. To confirm it is 

Ekman transport, drift current was estimated using Madsen’s (1977) steady-state Ekman 

spiral equation. The average 10-m wind in the NYB in NARR is about 1.64 m s-1 

southeastward (Figure 2.1), which is equivalent to wind stress of 0.02 N m-2 given a drag 

coefficient of 0.005  (Yelland and Taylor 1996).  The estimated drift current at 0.15 m 

depth (average depth of the model surface layer) is about 3.8 cm s-1, which is somewhat 

stronger than the mean surface residual current in FPS. The estimated deflection angle 

between the surface wind stress and the drift current at the corresponding depth is about 

23o, which is smaller than the 33o deflection angle in FPS (Figure 2.5e). These 

discrepancies are consistent with the linear increase of vertical viscosity with depth in 

Madsen’s theory being about half that computed by the model turbulence closure. 

2.3.4. Mean subsurface circulation 

The mean current at 20 m deep for the different simulations is plotted in Figure 2.4i-l. 

For the FPS case, southward flow is strongest offshore and this outer-shelf current deflects 

shoreward somewhat as it crosses over the Hudson Shelf Valley. On the mid- and 

inner-shelf at this depth the Hudson Shelf Valley guides a significant flow toward the apex 

of the New York Bight. When the remotely forced along-shelf flow is removed (NAS; 

Figure 2.4j) the southward current on the mid- to outer-shelf disappears showing that the 

mean subsurface current in the NYB is driven primarily by large scale shelf circulation. 

However, the shoreward flow intrusion at 20 m depth at the head of the valley head 

remains in NAS. In Figures 4i and 4k the subsurface circulation is much the same except 

the riverward intrusion at the valley head is weakened substantially in NWS.  This 
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indicates that the 2-year mean up-valley flow at 20 m is, at least partially, the result of the 

prevailing westerly wind. This is consistent with winter-time observations of flow in the 

Shelf Valley by Harris et al. (2003). The mean current at 20 m in the NVS case (Figure 

2.4l) differs from FPS in three respects: (i) not surprisingly the slight shoreward detour of 

the outer-shelf current over the Hudson Valley disappears, (ii) the abrupt increase of 

velocity magnitude over the valley is diminished, and (iii) the riverward water intrusion at 

the head of the Hudson Shelf Valley is weakened. Thus, on the mid- to outer-shelf the 

valley steers the surface and subsurface currents in a similar way, while on the inner shelf it 

acts to funnel subsurface currents that flow shoreward to feed surface offshore transport 

that is driven by wind and the river outflow.   

The results from the NTS case (not shown), in which tides are omitted but all other 

forces and bottom drag coefficient are retained, are the same as those from FPS. This 

indicates that tidal processes in the NYB are mostly linear in the respect that there is no 

appreciable rectification of tidal currents into the mean circulation on the inner shelf or 

deeper waters. Moreover we can conclude that bottom friction is unimportant because the 

inclusion of tides dramatically increases bottom drag on the shelf, yet the mean flow 

patterns and freshwater pathways change little. The principal role of tides in this area is to 

influence mixing within the Hudson River estuary (Chant et al. 2007, Lerczak et al. 2006).  
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Figure  2.6. (a) – (d) Temporally-averaged vertically-integrated freshwater flux (thick 

black lines) across thin black arcs of radius 20, 40, 60, 80, 100, and 120 km, respectively, 

and 2-year mean surface salinity (in color). The arcs are centered at the entrance to New 

York harbor (star symbol).  (e) - (h) Temporally-averaged spatially-integrated freshwater 
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transport across the segments of the arcs on either side of the Shelf Valley (gray dash-dot 

line), and the valley itself.  The size of the arrow heads along with the numbers indicates 

the freshwater transport. Solid gray lines in all panels are 20, 40, and 60 m isobaths; dash 

gray lines in (d) and (h) are the corresponding isobaths after the valley is filled. 

 

2.4. Mean Freshwater Dispersal 

To examine the patterns of river-source freshwater spreading in the NYB I consider 

flow across six arcs (thin lines in Figure 2.6) centered at the entrance to New York harbor. 

The arcs of radius 20, 40, 60, 80, 100 and 120 km are numbered arc 1 through 6, 

respectively. The two-year (2005-2006) time-averaged, vertically-integrated freshwater 

flux across each arc is depicted by the thick lines in Figure 2.6a-d; the scale bar indicates 

freshwater transport per unit length of azimuth of arc. The two-year mean sea surface 

salinity is also given in Figure 2.6a-d for reference.  To quantify the budget of freshwater 

dispersal to the shelf the freshwater fluxes across the segments of the arcs either side of the 

valley and across the valley itself are presented in Figure 2.6e-h.  

In FPS three somewhat distinct freshwater transport pathways show in Figure 2.6a: (i) 

southward along the New Jersey Shore (which I name the New Jersey Pathway), (ii) 

eastward along the Long Island coast (which I name the Long Island Pathway), and (iii) 

along the southern flank of the Hudson Valley (which I name the Mid-Shelf Pathway).  The 

Long Island Pathway located on the inshore northeastern shelf has been observed 

episodically (Chant et al. 2008a) and starts as a strong, broad feature that becomes thinner, 

weaker, and more coastally trapped, as it moves eastward. On the offshore northeastern 

shelf there is virtually no freshwater flux across the arcs. The New Jersey Pathway, located 
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on the inshore southwestern shelf, has been noted in observations before and is consistent 

with the dynamics of a buoyancy-driven coastal current.  It starts as a sharp and thin feature 

on arc 1 and gradually broadens as it propagates southward.  On the offshore southwestern 

shelf the Mid-shelf Pathway becomes distinct at arc 3. At arc 6, it is almost evenly 

distributed between the 20-m isobath and the valley with a local maximum on the southern 

flank of the valley. At arc 1 and 2, there is freshwater returning along a path over the 

Hudson Valley as part of the freshwater recirculation identified in Figure 2.4e. The 

freshwater budget in Figure 2.6e shows that in the long-term mean almost all river 

discharge goes first to the northeastern shelf at arc 1, but the southwestern shelf is the 

eventual destination for more than 90% of the freshwater discharge. Recirculation 

processes on the northeastern shelf ultimately guide the freshwater across the Hudson 

Shelf Valley onto the southwestern shelf, with most of the crossing occurring within 80 km 

radial distance from the harbor mouth. Inside arc 2 there is northward transport between 

New Jersey coast and the valley that creates a closed recirculation (Figure 2.4e) of about 

one fifth of the total freshwater discharge.  

Comparing Figures 2.6a and 2.6b we see that without the remotely forced along-shelf 

current (NAS) the freshwater dispersal pattern changes in several respects: On the 

northeastern shelf the Long Island Pathway strengthens and a new, minor off-shore 

pathway emerges along the northern flank of the valley; the freshwater return over the 

Hudson Valley extends to arc 5 indicating an intensification of the bulge recirculation; and 

on the southwestern shelf the Mid-Shelf Pathway splits into two lobes at arc 4. The New 

Jersey Pathway remains the same as in FPS. Figures 2.6e and 2.6f quantify these 

differences. Compared to FPS, the NAS case has 50% stronger recirculation at the harbor 
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mouth (267 m3 s-1 compared to 183 m3 s-1) and a 40% weaker (355 m3 s-1 vs. 605 m3 s-1) 

flow crossing the valley inside arc 3 (60 km radius). About one third of the total freshwater 

exits the domain from the northeastern shelf at arc 6 in NAS compared to about one tenth in 

FPS. These differences show that the remotely forced ambient current weakens the bulge 

recirculation, suppresses the Long Island Pathway, and diminishes the net cross-shelf 

export of freshwater on the northern flank of the Hudson Shelf Valley. In terms of the 

eventual fate of material transported in the Hudson River discharge, the ambient current 

acts to direct water away from the Long Island coast and across the Hudson Shelf Valley 

toward the southwestern shelf.   

When the effect of wind is removed (NWS; Figure 2.6c and 2.6g), the Long Island 

Pathway along arcs 1 and 2  grows substantially compared to FPS and there is a 

commensurate increase in the freshwater recirculation on the offshore northeastern shelf, 

especially on the inner four arcs.  On the southwestern shelf, a strong and broad pathway 

forms at arc 2 and flows cross-shore and then along-shelf bounded by the 20 m to 40 m 

isobaths. This is the broad southward flow separated from the coast in Figure 2.4g. Along 

the New Jersey coast there is no longer a coherent southward coastal current, but rather the 

flow direction is reversed consistent with the recirculation seen in Figure 2.4g between the 

coast and the main pathway that turns offshore. Figure 2.6g shows that the net affect of 

these circulation changes when winds are absent are to first direct 35% more of the river 

discharge to the northeastern shelf, yet via a much stronger recirculation most of this flow 

crosses the Hudson Valley within 80 km of the harbor mouth. Taking the result in Section 3 

into consideration, we can conclude that by mixing the ocean surface layer, wind is a major 

force for the mean surface circulation on NYB and the freshwater pathways. It plays an 
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important role in establishing the mean southward New Jersey coastal pathway, dispersing 

a portion of the discharge across the northeastern shelf, and suppressing the strength of the 

bulge recirculation.  

Without the Hudson Valley (Figure 2.6d and h) the freshwater pathways differ from 

FPS such that the cross-shelf transport on the northeastern shelf is substantially weakened, 

the northward return flow in the Hudson Valley at arcs 1 and 2 disappears, the local 

maximum cross-shelf freshwater flux along the southern flank of the Hudson Valley at arcs 

5 and 6 is absent, and the New Jersey Pathway is strengthened. These changes confirm the 

conclusion reached in Section 3: the valley helps trap freshwater on the northern shelf in 

the NYB apex area, promotes formation of the closed freshwater recirculation loop there, 

and guides freshwater export on the southwestern outer shelf parallel to the valley. 

Comparing Figures 2.6e and 2.6h we see that while in the NVS case less of the Hudson 

River discharge initially flows to the northeastern shelf across arc 1 (638 m3 s-1 vs. 952 m3 

s-1 in FPS), the net export across the northern portion of the arc 6 is 40% greater, and 

therefore relatively less freshwater crosses the Hudson Valley from the north to the south 

when there is no shelf valley. This apparent paradox arises because by amplifying the 

recirculation in the NYB apex the shelf valley fosters stronger exchange from north to 

south between arcs 1 and 3 (FPS 605 m3 s-1; NVS 285 m3 s-1). In FPS, this vigorous flow 

bifurcates at the New Jersey coast, feeding both the northward coastally-trapped 

recirculation and the southward coastal current. 

As was noted in Section 3, there is little difference in the freshwater dispersal pattern in 

FPS and NTS.  
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Figure  2.7. Time series of vertically integrated daily-averaged freshwater flux across arc 5 

(Figure 2.6) of different simulations: (b) FPS, (c) NAS, (d) NWS, and (e) NVS.  (a) River 

discharge and (f) meridional component of the wind over the same period, and (g) 

bathymetry along arc 5: black solid line is the original depth, blue dash is the depth after the 

valley is filled.   
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2.5. Temporal Variation of Freshwater Dispersal 

The temporal variability of freshwater dispersal is presented in Figure 2.7 in terms of 

the vertically-integrated daily-averaged freshwater flux across arc 5 over the two-year 

period, along with the Hudson River discharge and the northward (parallel to New Jersey 

coast) component of the wind. (The water depth as a function of azimuth along arc 5 is 

shown to the right of Figure 2.7g.)  Positive freshwater flux is defined as out-going from 

the harbor. The time series of wind has been low-pass filtered with cut-off period of 10 

days.   

In the FPS case (Figure 2.7b) most of the outgoing freshwater flux occurs on the 

southern shelf and along the New Jersey coast, as was noted in the mean freshwater flux 

patterns described in Section 4. A weak yet clearly discernable cutoff line over the valley 

distinguishes variability on the northern and southern shelves throughout the whole 

two-year period. Thus, the effect the valley has on the freshwater flux at this outer-shelf 

(arc 5) location is also exerted at daily time scales. There is a noticeable seasonality in the 

freshwater dispersal patterns in FPS. Between October and May outgoing flux is 

predominantly along the New Jersey coast with a weaker eastward flux in a narrow current 

along the Long Island coast. In contrast, between June and September outgoing flux across 

is primarily across the mid-shelf portion of the arc. Comparing the freshwater flux with the 

time series of along-shore wind (Figure 2.7f) we see that outgoing flux across the center 

portion of the arc coincides predominantly with periods of upwelling favorable wind 

(southerly). This is consistent with the results of Castelao et al. (2008a) in CODAR and 

surface float observations that a swift jet transports water from the New York Bight apex to 

the outer-shelf in summer and is significantly correlated with upwelling favorable winds. 
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Moreover, this is also consistent with historical observations that reveal a freshening of the 

outer shelf during summer months (Mountain 2003).  The off-shore transport intensity 

differs between years, with the summer-time direct off-shore freshwater transport being 

stronger in 2006 than that in 2005. It appears this is caused by the peak in Hudson River 

discharge in 2006 coinciding with the beginning of the upwelling season (end of June), 

whereas the peak discharge in 2005 occurs some two months before the upwelling season.  

All these features of the flow variability are similar at arcs 3, 4 and 6 (not shown).   

 

Figure  2.8.  Correlation (dark lines) between filtered meridional component of the wind 

(southerly as positive) and filtered freshwater flux across four arcs in the Full Physics 

Simulation.  The correlation is plotted only where it is significant at the 95% confidence 

level.  The gray lines in each panel are bathymetry along the arcs. 
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To examine more quantitatively the relationship of freshwater transport to winds, 

correlations between time series of the wind at the New Jersey coast (northward positive) 

and freshwater flux across 5° azimuth intervals of each arc are considered. Using a similar 

analysis approach to that of Castelao et al. (2008a) applied to CODAR surface velocity in 

this region, a weighted running mean filter is first applied to the time series using the 

equation 1 ( )( ) ( )
t t t k

kf t k f t e dt′− −

−∞
′ ′= ∫  where ( )f t  is the wind stress or freshwater flux at 

time t , and ( )kf t  is the resulting convolution with weights that decay exponentially with 

time scale k (Austin and Barth 2002). By doing this, the time history of the wind and the 

freshwater advection is considered. Here, k is chosen to be 4 days, being a time scale 

reflecting the 2-5 day variability in the synoptic wind field in the NYB and appropriate to 

the duration of wind events that could displace waters on the order of 70 km, at 20 cm s-1, 

from the New Jersey coast to arcs 4-6. Of all wind directions, the component along the 

New Jersey shore has the highest correlation with the freshwater flux over the Hudson 

Shelf Valley area. The correlation between filtered along-shore wind and freshwater flux 

for the four outer arcs is presented in Figure 2.8. The correlation is plotted only where it is 

significant at the 95% confidence level. The results are similar for all four arcs: the 

negative correlation on the shelf adjacent to the New Jersey coast indicates southward 

(negative) wind favors the export of freshwater in the coastal current, while the positive 

correlation from the 40-m isobath on the south (New Jersey) side of the valley to 

approximately the 30-m isobath north of the valley indicates northward wind favors the 

off-shore freshwater advection in the Mid-shelf Pathway and the weak eastward freshwater 

advection on much the northern shelf.  Similar conclusions were drawn by Choi and Wilkin 

(2007) using idealized simulations. 
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Figure  2.9.  Temporally averaged vertically integrated freshwater transport within 140 km 

from the estuary entrance for (a) spring (March – May), (b) summer (June - August), (c) 

fall (September – November) and (d) winter (December – February) seasons. Color 

represents transport magnitude and vectors depict the direction. Black lines in both panels 

are 20, 40, and 60 m isobaths. 

 

To depict clearly the seasonal variation of the freshwater pathways, Figure 2.9 shows 

the mean vertically integrated freshwater fluxes as a vector field on the model grid during 
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spring (March to May), summer (June to August), fall (September to November) and 

winter (December to February) months. Off-shore freshwater transport along the Mid-shelf 

Pathway dominates the summer period, eastward freshwater transport along the Long 

Island coast is the most obvious pathway in the fall period and southward freshwater 

transport along the New Jersey coast dominates the winter-spring period. In all seasons, 

freshwater first moves eastward after it exits the New York Harbor. In summer, part of the 

outflow turns to the south and forms a weak freshwater recirculation at the river mouth but 

the majority of it turns seaward at the 40-m isobath and crosses the Hudson Shelf Valley 

about 100 km from the harbor mouth, whereupon it moves offshore following the 60-m 

isobath. This path is similar to the episodic jet transport Castelao et al. (2008a) found in 

CODAR surface current observations. There is little freshwater movement along the New 

Jersey coast in summer. In fall, a relatively strong flow in the Long Island Pathway, weak 

recirculation at the harbor mouth and, a weak New Jersey Pathway transport are present. In 

winter-spring months, a strong New Jersey Pathway and a strong recirculation at the harbor 

mouth are distinctive features of the flow, and there is modest transport of freshwater 

eastward along the Long Island coast in the winter. There is little transport to the northern 

and central mid- and outer-shelf at this time. 

We now return to consideration of the forces that influence variability in the freshwater 

spreading on short time scales. Time series of the freshwater flux across arc 5 in the NAS, 

NWS and NVS cases are shown in Figures 2.7c, d and e, respectively, to complement the 

FPS results discussed previously. The temporal variability of FPS and NAS are very 

similar, but in NAS (Figure 2.7c) the Hudson Shelf Valley appears clearly as a conduit for 

on-shore transport for much of the time, especially October through May when winds tend 
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to have a southward along-coast component (negative in Figure 2.7f). In summer, when 

wind is predominantly upwelling favorable (positive in Figure 2.7f), the NAS case shows 

stronger off-shore transport on the south flank of the valley that then spreads over the entire 

northern shelf. 

The pattern in NWS (Figure 2.7d) is very different from FPS and NAS showing clearly 

that wind is the primary driving force for the daily time-scale variability of the freshwater 

flux and the spreading of freshwater onto the mid- and outer-shelf. Without wind, the 

freshwater only crosses the arc on either end, in coastal currents, leaving the middle of the 

shelf free of freshwater flux. Both of the coastal currents have recirculations that grow and 

decay in step with the respective outflows, indicating the freshwater movement largely 

follows the static path in Figure 2.4g. 

Case NVS (Figure 2.7e) shows variability similar to the full physics simulation (Figure 

2.7b) on time scales of days to seasonal, but the boundary at the valley that delineates 

northern and southern shelf regimes in FPS vanishes. This indicates the valley plays its role 

in blocking freshwater movement at all time scales. The boundary at the valley between the 

two regimes is evident even in the absence of any wind forcing (Figure 2.7d). Moreover, 

without the Hudson Valley, it appears that the southward freshwater transport on the New 

Jersey coast is more coastally trapped, consistent with the result in Section 4. 

The time variability of freshwater flux across arc 5 in the NTS case (not shown) is the 

same as FPS, which shows that tides have no real effect on the freshwater transport to the 

mid- and outer-shelf, even on daily time scales.   
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2.6. Summary and Conclusions 

I have conducted a study of the processes that influence the dispersal of the Hudson 

River discharge as it enters the New York Bight and spreads across the New Jersey shelf. 

Two-year simulations with ROMS were used to analyze the mean momentum dynamics 

and freshwater transport pathways. To investigate the influences of remotely forced 

along-shelf current, wind, the topographic control of the Hudson Shelf Valley, and tides, 

reduced physics simulations were conducted in which each of these respective factors was 

individually withdrawn from the model configuration.   

In all simulations, mean sea surface current follows the isobaths on the mid- and 

outer-shelf and a freshwater recirculation occurs in the apex of the New York Bight near 

the harbor mouth. Analysis of the surface current identifies Ekman dynamics and 

geostrophic balance as the two major processes governing the mean surface circulation. 

The reduced physics simulations show that the large-scale remotely forced shelf 

circulation is the major driver for the surface geostrophic balance. Below the surface mixed 

layer most of the circulation is driven by the remotely forced shelf-wide circulation, except 

on the inner shelf where bathymetry funnels subsurface flow toward the head of the 

Hudson Valley. Tides have almost no influence on the mean shelf circulation.  

The freshwater entering New York Bight from the Hudson estuary disperses along 

three principal transport pathways: (i) along the New Jersey coast, (ii) along the Long 

Island coast, and (iii) along a mid-shelf pathway that proceeds offshore guided by the 

southern flank of the Hudson Shelf Valley, consistent with recent analyses of CODAR 

surface current observations (Castelao et al. 2008a). In all cases, a freshwater recirculation 
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forms near the harbor mouth within the 40 km arc.  In terms of the freshwater budget, all 

the simulations show that the majority of the river-source freshwater flows first onto the 

shelf north of the Shelf Valley but then crosses the valley within 80 km of the harbor 

mouth. In the simulation with all physics included, more than 90% of the freshwater flux 

eventually exits the region on the south side of the Hudson Valley.  

From the reduced physics simulations the role of the remotely forced large scale shelf 

circulation is found to be decreasing the volume of freshwater recirculating, and pushing 

freshwater from the northern shelf across the Hudson Valley, subsequently dispersing it 

more evenly over the southern shelf. Wind is the most significant force pushing freshwater 

from the inner-shelf onto the mid- and outer-shelf. Winds also reduce the recirculation 

intensity at the river mouth but do little to change the ultimate fate of the freshwater. The 

bathymetry of the Hudson Shelf Valley is shown to have a significant role in forming the 

strong and closed recirculation at the harbor mouth and promotes cross-shelf transport of 

freshwater further down shelf. Tides have minor impact on the freshwater pathways.  

There is seasonal variability in freshwater flux across the 100 km arc over the two-year 

period simulated.  In the winter-spring period, the New Jersey coastal pathway dominates. 

During fall, the Long Island pathway is relatively strong. During summer, the mid-shelf 

pathway that directly transports river discharge to the mid- and outer-shelf dominates. The 

mid-shelf pathway is active when the wind is upwelling favorable, which supports the 

tentative conclusion drawn by Castelao et al. (2008a) that upwelling wind is the main 

driver of off-shore transport. The cross-correlation between a 4-day weighted temporal 

average of along-coast wind and freshwater flux across the four outer arcs considered 

shows significant positive correlation between the upwelling wind and mid-shelf out-going 
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freshwater flux.  This result agrees with Choi and Wilkin’s (2007) conclusion that 

southward wind favors the New Jersey pathway.  

The comparison of the differing reduced physics simulations identifies wind as the 

primary source for the daily-scale variability of freshwater transport and the major force 

pushing the freshwater onto mid- and outer-shelf.  Ambient current is shown to be a 

suppressive force for the outgoing freshwater flux on the northern shelf.   

These results have implications for biogeochemical processes in the New York Bight 

because the Hudson River is a significant source of nutrients, organic matter, and dissolved 

and suspended contaminants to the inner shelf. The patterns of freshwater dispersal 

revealed here indicate that the destination of material transported in the Hudson River 

discharge changes rapidly on the time scales of a few days, but also with longer term 

seasonal differences. For river-borne material that is biologically or geochemically active 

on time scales of a few days to months, the transport pathways inferred here will influence 

deposition, availability to the regional marine ecosystem, and regions where material may 

be exported from the New York Bight by advection. 
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CHAPTER 3. AGE AND RESIDENCE TIME 

3.1. Introduction 

Timescale analysis (water age, residence time) has utility for estimating ventilation 

rates of lakes, estuaries, and ocean basins (England 1995, Hohmann et al. 1998, Jenkins 

1987), inferring ocean circulation and mixing (Fine 1995, Haine et al. 1998, Schlosser et al. 

2001, Wunsch 2002), and studying rates of biogeochemical processes (Hohmann et al. 

1998, Sarmiento et al. 1990, Weiss et al. 1991).  Water age is not directly observable, so 

transient tracers, isotopes and anthropogenic tracers are used to infer “age”, by which it is 

generally meant the elapsed time since the water was last in contact with the tracer source. 

Most tracer age derivations assume negligible mixing and diffusion (Fine 1995, Hohmann 

et al. 1998, Jenkins 1987, Schlosser et al. 2001, Weiss et al. 1991), though these processes 

can substantially divert tracer-based age from real age (Deleersnijder et al. 2001, Delhez et 

al. 2003, Thiele and Sarmiento 1990, Waugh et al. 2003).  In numerical modeling, a 

common approach is to release many tracers and extract timescale information from their 

differential transport (Gao et al. 2005, Monsen et al. 2002). This method requires 

substantial computation if spatial and temporal detail is sought.  Methods for directly 

simulating these timescales were introduced by Jenkins (1987) and Sarmiento et al. (1990) 

who derived tracer-based age conservation equations.  The concept of an ideal age tracer 

followed and has been compared with radiotracer age in idealized simulations (Thiele and 

Sarmiento 1990), and used to simulate global ocean ventilation rates in a general 

circulation model (England 1995).   
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Further developments in modeling timescales have followed two approaches: 

Constituent-oriented Age and Residence-time Theory (CART) (Deleersnijder et al. 2001, 

Delhez 2006, Delhez et al. 2004, Delhez et al. 1999) and Green’s function based Transit 

Time Distribution theory (TTD) (Haine and Hall 2002, Hall and Plumb 1994, Holzer and 

Hall 2000).  These approaches describe similar concepts from different perspectives. 

CART focuses on mean tracer age, defined as the mass-weighted, arithmetic average of 

the time elapsed since the tracer left the source region, and mean residence time, defined as 

the mass-weighted, arithmetic average of the time needed for tracer to leave a domain of 

interest. TTD emphasizes the transit time spectrum; this is an age spectrum when 

expressed as a probability density function (PDF) of transit times since tracer last had 

contact with its origin, and a residence time spectrum when the PDF is of transit time from 

a certain point to first contact with a location where it can exit a defined domain. Neither 

mean age nor mean residence time fully characterize the water mass movement (Hall and 

Haine 2002). Nevertheless, this information is still very useful for studying spatial patterns 

of circulation and mixing and their associated timescales, which is the main objective here 

and is instructive when considering many coastal ocean biogeochemical processes.  

Besides, the computation of full age and residence time spectra can be prohibitive for 

highly resolved coastal ocean applications even when exploiting the recently described 

transport matrix framework (Khatiwala 2007) to accelerate simulations.   

Focusing on timescales associated with the spreading of river source waters across the 

inner shelf, this chapter applies CART to the circulation of the Hudson River discharge in 

the NYB.  The Hudson River plume is a major source of suspended matter, nutrients, 

dissolved organic matter and contaminants to the NYB (Adams et al. 1998, Howarth et al. 
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2006, Schofield et al. 2009). Transport of these materials from the estuary to the shelf 

regulates local biogeochemical processes (Geyer et al. 2001, Moline et al. 2008, Schofield 

et al. 2009) for which timescales are key factors (Howarth et al. 2006, Malone and Chervin 

1979).   

The path of the Hudson River plume is highly mobile, largely controlled by local wind, 

and influenced by bottom topography (Chant et al. 2008a, Choi and Wilkin 2007).  Under 

high discharge conditions, the plume often forms a low salinity “bulge” at the NYB apex 

area extending 30-40 km from the coast.  The bulge recirculates water and potentially traps 

tracers there, causing less than ½ of the total freshwater outflow to enter the southward 

current along the coast of New Jersey.  The freshwater outflow pathways vary with season 

(Chapter 2). In summer, when upwelling favorable winds prevail, the recirculation bulge is 

weak and the river plume tends to move directly offshore. During the rest of the year winds 

have a significant offshore component and the recirculation bulge is more prevalent, 

ultimately feeding a strong coastal current along the New Jersey coast and weaker current 

along the Long Island coast. The effect of these pathways on the timescale of freshwater 

dispersal onto and out of the NYB apex is the focus of this chapter. 

The CART theory is summarized in Section 3.2. Section 3.3 introduces the regional 

model configuration and verification. Results of the mean age simulations are presented in 

Section 3.4, and those for mean residence time in Section 3.5.  Section 3.6 summarizes the 

results and their relevance to regional ocean circulation. 

 

 



44 

 

3.2. Constituent-oriented Age and Residence Time theory (CART) 

Following Delhez et al. (1999), Deleersnijder et al. (2001), Delhez et al. (2004), Delhez 

(2006), and Delhez and Deleersnijder (2006), derivations of mean age and residence time 

are summarized here. 

3.2.1. Mean age 

Suppose a water parcel located at x at time t contains dissolved tracer having an age 

spectrum concentration distribution c(t,x, τ), where τ is the age, i.e. the time since the 

tracer was released into the water. The equation for age spectrum concentration is 

( )c cp d c c
t τ

∂ ∂
= − − ∇ ⋅ − ⋅∇ −

∂ ∂
u K                                           (3.1) 

where p  and d  are the rates of production and destruction, respectively (in this 

application these terms are zero, with production effectively entering only in the river 

source boundary condition), u is the flow velocity and K is the eddy diffusivity tensor.  The 

last term on the right-hand-side expresses the aging of the tracer. Equation (3.1) can be 

used to simulate the age spectrum concentration directly, but at considerable computational 

cost if hundreds of tracers are activated to resolve the age spectrum well.  

The concentration of tracer in the fluid is the integral of the age spectrum with respect 

to age, 
0

( , ) ( , , )C t c t dτ τ
∞

= ∫x x , while the mean age, a(t,x), is the first moment of the age 

spectrum, 0
( , , )

( , )
( , )

c t d
a t

C t

τ τ τ
∞

= ∫ x
x

x
.  If we define an age concentration tracer, 

0
( , ) ( , , )t c t dα τ τ τ

∞
= ∫x x , then 
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( , )( , )
( , )
ta t

C t
α

=
xx
x

.                                                      (3.2) 

The lim ( , , ) 0c t
τ

τ
→∞

=x , so integrating (3.1) over τ gives the total concentration of the tracer: 

( )C P D C C
t

∂
= − − ∇ ⋅ − ⋅∇

∂
u K .                                             (3.3) 

Here, 
0

( , ) ( , , 0) ( , , )P t c t p t dτ τ τ
∞

= = + ∫x x x  is the source of tracer, and 

0
( , ) ( , , )D t d t dτ τ

∞
= ∫x x  is the sink.  Equation (3.3) is the conservation equation solved in 

any numerical model.  Multiplying (3.1) by τ, then integrating over τ and applying a 

reasonable assumption, lim ( , , ) 0c t
τ

τ
→∞

=x , we obtain the age concentration equation:  

( )C
t
α π δ α α∂

= + − − ∇ ⋅ − ⋅∇
∂

u K                                           (3.4) 

where 
0

( , ) ( , , )t p t dπ τ τ τ
∞

= ∫x x , and 
0

( , ) ( , , )t d t dδ τ τ τ
∞

= ∫x x .  The age concentration is 

coupled with (3.3) through the first term on the right-hand-side; if tracer is present in the 

fluid then C > 0 and the age concentration grows in time proportionately.   

      If there are no sources and sinks of tracers C and α in the domain interior, the terms π 

and δ can be removed from (3.4) and implemented though boundary conditions. Dividing 

(3.4) by C, we obtain  

( )1a a a
t

∂
= − ∇ ⋅ − ⋅∇

∂
u K ,                                                    (3.5) 

which is the ideal age equation of Thiele and Sarmiento (1990) and England (1995).  

Equations (3.3) and (3.4) can be solved numerically using an ocean model. I set initial 

conditions for both C and α of zero and release tracer after the initial time from a source at 
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the head of the modeled Hudson River. I am therefore asking the question: “how long is it 

that the fraction of Hudson River water at x, t has been exposed to the ocean?”   Equation 

(3.2) gives the mean age of river source water everywhere. Where the newly released tracer 

has not yet reached, C is zero and the mean age is undefined.  This method is easily 

implemented in most Eulerian numerical models because it requires only two tracers and 

the addition of the first term on the right-hand-side of (3.4). 

3.2.2. Residence time  

We define residence time θ as the time taken by tracer to leave a control domain ω. 

Consider a mass of tracer located around x0 (inside the control domain) at time t = t0 with 

volume V0 and concentration C(t0,x0), 

0 0
0

0

( , )
0
C

C t
=⎧

= ⎨ ≠⎩

x x
x

x x
, 

that leaves the control domain ω gradually.  Some fraction of the tracer leaves the control 

domain at time tf having residence time θ = tf - t0.  The mean residence time of the tracer 

body in the control domain is  

0

0 0 0
0

1( , ) ( - )df
V

t t t V
V

θ = ∫x .                                     (3.6) 

Applying integration by parts and assuming that all of the tracer is flushed out of the 

control domain eventually, i.e. V(tf) = 0 as tf → ∞ (V(t) is the volume of the tracer 

remaining in ω at time t), we can express the mean residence time as  

0
0 0

0

1( , ) ( )f ft
t V t dt

V
θ

∞
= ∫x .                                                (3.7) 

The volume of the tracer remaining in the control domain at time tf is an integration of 

the tracer concentration over the whole control domain, 
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( ) ( , ) ( , ) ( )
T

f f fV t C t d C t f d
ω ω

ω ω= =∫ ∫x x x                                           (3.8) 

where ωT is the volume of the total model domain which is larger than or equal to ω, and f  

is a function that delineates the control domain,  

1
( )

0
f ω

ω
δ

ω
∈⎧

= = ⎨ ∉⎩

x
x

x
. 

These equations show how point injections of tracer in a model can be used to obtain 

the residence time.  However, one injection only gives the residence time at one place at 

one time, and to resolve spatial and temporal variability requires many injections and 

simulations, at substantial computational cost.  This problem can be circumvented.  

We write (3.8) in inner-product form, 

( ) ( , ), ( )
T

f fV t C t f
ω

= x x                                                   (3.9) 

and note that (3.3) can be written in propagator form (Moore et al. 2004) C(tf,x) = R(t0, 

tf)C(t0,x) because it is linear in the concentration, C. Here, R(t0, tf) is the propagator matrix 

that advances the ocean state from time t0 to tf. Applying the bilinear identity of the adjoint 

operator (Lanczos 1961) to (3.9), we obtain 

† †
0 0 0 0 0 0 0( ) ( , ) ( , ), ( ) ( , ), ( , ) ( ) ( , )

T T
f f fV t t t C t f C t t t f V C t

ω ω
= = =R x x x R x x     (3.10) 

Here, R†(tf, t0) is the adjoint operator of  (3.3) that propagates information backward from tf 

to t0, and C†(t0,x) = R†(tf, t0)f(x) is the adjoint state. The corresponding adjoint equation is 

( )
†

† †

0

C C C
t

∂
− = ∇ ⋅ + ⋅∇

∂
u K ,                                            (3.11) 
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which is integrated backward in time with initial conditions at tf of  C†(tf,x) = f(x) = δω.  

Equation (3.10) shows that C†(t0,x0) is the fraction of tracer that was initially located at x0 

at time t0 that remains in the control domain at time tf, i.e.  

†
0 0

0

( )
( , ) fV t

C t
V

=x , 

 and from (3.7), we have 

0

†
0 0 0 0( , ) ( , ) ft

t C t dtθ
∞

= ∫x x .                                            (3.12) 

The ocean state is unsteady, so the fraction of tracer remaining differs for different time 

windows [t0, tf] even with same window duration.  That is, C† is a function of both t0 and tf, 

i.e. C† = C†(t0, tf, x).  

Let us now define a time Tf far in the future, i.e. Tf  >> t0, when all tracer has been 

flushed out of the control domain, that is 

†
0( , , ) 0fC t T =x .                                                    (3.13) 

Integrating (3.11) over tf from t0 to Tf, applying Leibniz Integral Rule and using (3.12), we 

obtain the equation for the mean residence time: 

( )
0t

ω
θ δ θ θ∂

− = + ∇ ⋅ + ⋅∇
∂

u K .                                          (3.14) 

Here, 0( , )tθ θ= x . Integration of (3.14), backward in time, gives the mean residence time 

everywhere in the control domain for any time within the simulation window. However, 

the initial condition ( , )fTθ x  is unknown. Delhez et al. (2004) proposed initializing (3.14) 

with ( , ) 0fTθ =x  and integrating sufficiently long that the influence of the initial condition 

vanishes; the required time can be determined from the solution to (3.11). The argument 
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goes as follows. The initial condition of (3.11) is C†(tf, tf, x) = δω, and due to the lack of 

forcing C†(t0, tf, x) gradually diffuses away as the backward integration proceeds until 

C†(t0, tf, x) approaches 0 and the effect of the initial condition vanishes. By virtue of the 

similarity of (3.11) and (3.14), we expect the effect of initial conditions to decay similarly 

in both equations. Therefore, we integrate (3.11) and (3.14) simultaneously and the 

solution to (3.14) becomes valid when the solution to (3.11) approaches zero.   

If the model domain is larger than the control domain (ω⊂ωT), there are two ways to 

treat the area beyond the control domain (Delhez 2006, Delhez and Deleersnijder 2006).  

The first is to force the adjoint model state 0( , )tθ x  to be zero everywhere beyond the 

control domain. This is termed the strict mean residence time. In the analysis of 

Lagrangian drifters this is equivalent to ceasing to track a drifter the first time it crosses the 

control domain boundary. The second way is to let the adjoint solution evolve freely 

outside the control domain.  This approach essentially gives the accumulated time spent by 

tracer in the control domain, which is called the exposure time (Monsen et al. 2002). In 

tracking drifters, this allows for reentry into the control domain. 
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Figure  3.1.  The study domain.  The black frame indicates the model domain; Bathymetry 

of the New York Bight is in grayscale; Dashed lines are contours of model isobaths in 

meters; Gray arrow on land depicts the 2-year (2005-06) mean wind over this area; White 

arrows at the northeast boundary of the model domain represent barotropic inflow 

boundary condition on that boundary; Solid triangles are the sites for mean age and 

residence time referred to in the text; The line of plus symbols is the ship track on 9 Apr 

2005 referred to in Section 3; The thin solid line depicts the control domain used in the 

residence time simulation. 
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3.3. Model configuration and verification 

The first terms on the right-hand-sides of (3.4) and (3.14) were added to the ROMS 

code for this study. The model setup in this chapter is similar to the one in Chpater 2.  

Figure 3.1 depicts the model domain. The model has 30 vertical layers and horizontal 

resolution of about 1 km.  Chapman (1985) and Flather (1976) conditions are used for sea 

level elevation and barotropic velocity on the model perimeter, respectively. Tidal 

harmonics extracted from a regional tide simulation (Mukai et al. 2002) and remotely 

forced along-shelf currents deduced by Lentz (2008) are imposed on the open boundaries. 

An Orlanski-type radiation (Orlanski 1976) open boundary condition is used for 

3-dimensional momentum, temperature and salinity, and the age and residence time 

passive tracers are clamped to zero on the open boundaries.  The model applies bulk 

formulae (Fairall et al. 2003) at the sea surface using atmospheric boundary layer 

conditions from the North America Regional Reanalysis (NARR) (Mesinger et al. 2006).  

River discharge was obtained from USGS Water Data.   

A comparison of modeled and observed salinity along the ship track in Figure 3.1 is 

presented in Figure 3.2.  The observations are from a ship-towed undulating instrument and 

surface CTD on 9 April 2005 (Chant et al. 2008a).  The model and observations show 

agreement in the surface salinity and vertical variation of the halocline, although the model 

shows a bias toward higher salinity in deep water and the low salinity anomaly that reaches 

73.4oW in the observations does not extend so far eastward in the model. We note that there 

has been no assimilation of observations in this simulation. Model initial conditions based 

on a multi-year shelf-wide climatology are somewhat more salty than mid-shelf conditions 
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in 2005, and we expect this presents resistance to the spreading of the river plume, and 

prevents low salinity water penetrating far to the east.  

 

Figure  3.2.   Cross-section of (a) observed salinity, (b) modeled salinity, (c) modeled 

freshwater concentration, and (d) modeled mean age along the ship track in Figure 3.1. 

 

To simulate the mean age of Hudson River source water on the shelf, two tracers are 

activated in the forward ROMS model.  The first is conservative and satisfies (3.3) with 

unit concentration in the Hudson River inflow, while the second represents the river water 

age concentration and satisfies (3.4). Its value is zero in the river inflow. Mean freshwater 

age is computed with (3.5). Regions where the concentration is lower than 10-5 are 
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assumed to be free of Hudson River source water and age there is undefined. To verify that 

the mean age calculation is correct, I conducted a 60-day simulation solving (3.1) with the 

full age spectrum discretized into 120 age intervals, while also computing the mean age 

from a concurrent simulation of C and α. The full age spectra at sites A and E in Figure 3.1 

at day 60 are plotted in Figure 3.3; the mean age computed from the age spectra is marked, 

along with the corresponding mean age α/C from (3.2). Calculating mean age using the 

two-tracer approach clearly works well.   

 

Figure  3.3.   Concentration distribution function (solid curves) at (a) site A and (b) site E 

at May 10th, 2005; Dash lines indicate the mean age computed from the concentration 

distribution functions; triangles indicate the mean age given by the mean age model 

simulation at corresponding places and time. 

 

Vertical cross-sections of modeled freshwater concentration and mean age are included 

in Figure 3.2 at times corresponding to the ship-board observations.  The freshwater 
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concentration has the same pattern as modeled salinity, while the mean age outlines a body 

of relatively young (8.5 days) water around 73.4oW at the place where a similar body of 

freshwater was observed. This supports the claim that river water reached that location in 

the model, but in a smaller amount.  

In the results that follow, two years of simulation (2005-2006) following a spin-up year 

(2004) form the basis of the freshwater mean age analysis.   

In the residence time simulations, the control domain is defined as the surfacemost 10 

m of the smoothed rectangular area at the NYB apex shown in Figure 3.1.  Ocean states 

from the 3-year model simulation are stored every three hours for the background state of 

the adjoint model.  In the adjoint model, two tracers representing the fraction of tracer 

remaining and the mean residence time (equations (3.11) and (3.14)) are activated.  The 

initial condition for the fraction of tracer remaining is one inside the control domain and 

zero everywhere outside; the mean residence time is initially zero everywhere. The adjoint 

model is integrated from the end of 2006 back to the beginning of 2005.  No external 

constraints are applied to the adjoint model in the places beyond the control domain, which 

means residence time calculated here is the so-called exposure time. Because of tidal 

oscillations across the control domain perimeter, the strict residence time would 

misrepresent the total time river source water spends in the NYB area. For the sake of 

convenience, the term residence time is used here.   

To test the validity of the adjoint-based residence time theory and model, simulations 

were conducted where passive tracers injected in the forward model at selected times and 

locations were followed for 120 days (Figure 3.4). Mean residence time computed from the 
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fraction of each tracer remaining in the control domain is indicated by the dashed lines in 

Figure 3.4. Comparison with the mean residence time obtained from the adjoint model 

(triangles in Figure 3.4) shows the two approaches agree. 

 

 

Figure  3.4.  Fraction of tracer remaining in the control domain after unit releases at 

selected sites (see Figure 3.1) at different times; Dashed lines indicate the mean residence 

time computed from the time series; Triangles indicate the mean residence time at  the 

corresponding places and times given by the mean residence time adjoint model 

simulation. 
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Figure  3.5.  Relationship between (top) salinity and (bottom) freshwater concentration 

and mean age at random locations in the model domain. 

 

3.4. Mean Age 

In studies of river plume dispersal, scientists have long used salinity or concentration of 

a river tracer to estimate the time that river source water has been exposed in the ocean.  To 
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contrast this approach with the more rigorous mean age calculation, Figure 3.5 compares 

mean age, salinity and freshwater concentration at selected locations in the model.  A 

positive relationship between mean age and salinity, and inverse relationship between 

mean age and freshwater concentration can be seen, but by no means are the relationships 

linear.  As the water becomes saltier and the concentration becomes lower, the range of the 

mean age become large. At salinity 33, the mean age is from 70 days to 150 days. This is to 

be expected because the volume of river water discharged over this timescale is much 

smaller than that into which it mixes, and once the salinity becomes close to the 

background value of mid-shelf water subsequent mixing changes the salinity little, yet the 

water continues to age.  The same logic applies to the freshwater concentration.  Figure 3.5 

suggests that estimating age from salinity or tracer concentration has limited utility, and 

could be very misleading for timescales of more than two weeks in the case of the Hudson 

River plume. 

3.4.1. Comparison between mean age and satellite measurements 

One of the objectives in studying age and residence time is to provide estimates of the 

rate of physical dispersal and mixing of the river plume for future comparison to timescales 

of regional biogeochemical processes. I will not present here any biogeochemical process 

observations, or results of coupled biogeochemical simulations, but before presenting an 

analysis of the model results I compare snapshots of simulated mean age with an empirical 

proxy for river water age derived from satellite optical observations.  

Waters near the coast are turbid and optically complex (Schofield et al. 2009).  The 

major optical constituents of the Hudson plume are phytoplankton, sediment, colored 

dissolved organic matter (CDOM) and detritus, and the relative concentration and 
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therefore optical signal of these change over time (Cahill et al. 2008, Schofield et al. 2009).  

In river source plumes, CDOM is the dominant optical constituent; however as the plume 

ages the CDOM signal decreases relative to phytoplankton and detrital signatures.  These 

changes produce a spectral shift in the remote sensing reflectance (Ramadurai 2008). The 

ratio of reflectance at 490 nm to 670 nm wavelengths is sensitive to the relative optical 

signatures of CDOM and phytoplankton, and therefore the time that river source waters 

have been exposed in the ocean waters. This ratio, which I henceforth refer to as the 

490/670 band ratio, can be computed from satellite observations by the Sea-viewing Wide 

Field-of-view Sensor (SeaWiFS). 

 

Figure  3.6.   Snapshots of (top row) the ratio of SeaWiFS observed water leaving radiance 

at 490 nm to 670 nm and (bottom row) modeled freshwater mean age at the sea surface. 

Dashed lines show 20, 40 and 60 m isobaths. 
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Figure 3.6 shows many similarities in the patterns of observed 490/670 band ratio and 

modeled surface freshwater age during the 2005 LaTTE field experiment. Note that there 

has been no assimilation of satellite data in these simulations; the model reproduces well 

the transport pathways of river water dispersal (Chapter 2) and we expect some pattern 

correspondence in optical characteristics that are strongly related to the river source waters. 

If indeed the 490/670 band ratio is a useful proxy for water age, we further expect some 

correspondence in values across the 4 realizations in Figure 3.6. To quantify the 

relationship, the 490/670 band ratio and mean age within the river-influenced area are 

plotted in Figure 3.7.  The correlation is 0.73, which is significant at the 95% level.  A least 

square fit gives: a = 1.3 + 25×r, where a is the mean age and r is the band ratio.  This 

simple relation may have applications in fieldwork where the age of the Hudson River 

influenced waters is needed in real time. I cannot yet comment on how robust this 

relationship is, or whether it can be employed for rivers other than the Hudson, but 

empirical relationships could likely be derived following the same methodology.  
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Figure  3.7.  Relationship between modeled mean age and the ratio of satellite observed 

water leaving radiance (490 nm : 670 nm).  The correlation coefficient r = 0.73 is 

significant at the 95% level. Solid line is the least square fit: mean age = 1.3 + 25 × radiance 

ratio. 

 

3.4.2. Temporal variability of the mean age 

To examine temporal variability of mean age, time series of surface freshwater water 

concentration and mean age at sites A, C, F, and G in Figure 3.1 are plotted in Figure 3.8 

along with river discharge and wind.  At all the sites, the mean age fluctuates dramatically 

between 10 and 170 days within a few days, similar to the timescale of wind variability. 

Fluctuations of mean age and freshwater concentration are inversely related.  Site A near 

the estuary mouth shows the least variability with mean age fluctuating from 10 to 40 days 

out of phase with the freshwater concentration and river discharge (which are closely 

correlated). Not surprisingly, mean age at the estuary mouth is closely related to river 
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discharge.  Site C near the Long Island coast lies in the pathway along which freshwater 

advects eastward, principally in fall and winter.  Accordingly, the mean age at site C is 

arguably lower in winter. Site F falls in the New Jersey coastal pathway that Chapter 2 

identified as dominating freshwater advection in winter and spring. Seasonality of this 

transport manifests itself in the time series of mean age: there are frequently lower age 

values in winter and spring and relatively high and unsteady values in summer and fall.  

Site G lies in the mid-shelf pathway that dominates the summer months and carries 

freshwater directly offshore – mean age at site G is generally low in summer. The mean age 

at site G is also low in winter 2005-2006, presumably because of persistent westerlies 

during that time.  This will be seen later in the correlation between mean age and wind. 
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Figure  3.8.  Time series of (a) the Hudson River discharge, (b-e) freshwater concentration 

(red lines) and mean age (blue lines) at different sites (see Figure 3.1 for locations of sites 

A, C, F and G). The bottom panels show the filtered (f) meridional (positive toward north) 

and (g) zonal (positive toward east) components of the wind in the New York Bight. 
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Figure  3.9.  Two-year mean and seasonal averages of (top row) surface current, (middle 

row) surface mean age, and (bottom row) surface residence time. Black arrows in middle 

row figures indicate direction and relative strength of the average wind stress. Dashed lines 

show the 20, 40 and 60 m isobaths. 

 

Figure 3.9 presents two-year and seasonal averages of the mean age and surface 

current.  Consistent with the three-pathway pattern of surface freshwater dispersal 

described in Chapter 2, the two-year average shows furthest penetration of young water 

along the New Jersey coast, secondary penetration along the Long Island coast, and at 

about 40oN a weak offshore tongue of moderate age water along the HSV.  The seasonal 

variation of mean age echoes the freshwater dispersal seasonality noted in Chapter 2. In 

spring, relatively young water penetrates along the New Jersey coast further than in the 
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two-year mean and the offshore extent of moderate age water is more obvious. In summer, 

transport of young water along the New Jersey coast is almost completely shut down.  

Instead, dispersal is towards the east and the tongue of moderate age water along the HSV 

is pronounced, consistent with the dominance of the mid-shelf freshwater pathway driven 

by upwelling favorable wind.  The pattern in fall is similar to spring except that there is less 

young water along the New Jersey.  In winter the coastal boundary currents are stronger 

and young water is found considerably further along both coasts than in the two-year mean, 

while evidence of offshore flow along the HSV is absent.   

Patterns and seasonality of freshwater mean age are readily explained in terms of mean 

circulation and freshwater dispersal pathways, and we can conclude that advection 

processes control the dispersal of Hudson River source water in the NYB. 

3.4.3. Relationship of mean age with river discharge and wind 

In Figure 3.8, mean age at site A appears correlated with the Hudson River discharge 

while temporal variability at sites C, F, and G has timescales more akin to the wind.  To 

quantify this, correlations of mean age with river discharge and wind are shown in Figures 

3.10a and 3.11, respectively.  (The wind time series used is the NARR data at 40.5oN, 

73.75oW.) The mean age pattern depends on the freshwater travel history, so I apply a 

weighted running mean time filter to river discharge and the wind prior to the correlation 

analysis. This approach was used in Chapter 2 with the filter 1 ( )( ) ( )
t t t k

kf t k f t e dt′− −

−∞
′ ′= ∫ , 

where f(t) is the wind component at time t, and fk(t) is the resulting convolution with 

weights that decay exponentially with scale k (Austin and Barth 2002) chosen to be 

characteristic of freshwater advection events in the NYB.  Tests with values of k from 1 to 
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50 days (not shown), and time lags between wind and mean age ranging from -10 to 10 

days, show few differences in the correlation pattern. I use k =10 days and zero lag for 

results in Figures 3.10a and 3.11.  Note that since I consider correlations between scalar 

and vector component time series, I need only show plots for wind direction in two 

quadrants – e.g. the pattern of correlation with a strictly southerly wind is the negative of 

the pattern for a northerly wind.  

 In Figure 3.10a the correlation between river discharge and mean age is negative for an 

area within 50 km from the New Jersey coast and as far south as Tuckerton, clearly 

outlining the area of direct influence of river discharge on coastal waters. Interestingly, the 

significant correlation extends much less far along the New York coast.     

Results that are evident from Figure 3.11 are: (i) Easterly wind and mean age 

everywhere are positively correlated; (ii) as wind direction becomes increasingly 

southeasterly to southerly, a negative correlation emerges offshore and spreads shoreward; 

(iii) southerly wind is positively correlated with surface mean age on the New Jersey coast 

and negatively correlated with that offshore; and (iv) significant negative correlation 

occupies most of the coastal area when wind is westerly.  What is occurring is that easterly 

wind pushes waters that have aged offshore back toward the coast, thereby increasing the 

mean age, while the opposite occurs for westerly winds that favor rapid dispersal of water 

offshore.  Southerly winds cause upwelling on the New Jersey coast which drives younger 

water from the coastal current eastward and lowers mean age offshore, while uplifting 

older deep water to the surface at the coast increasing the mean age there.    
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Figure  3.10. Correlation between (a) surface mean age and (b) surface mean residence 

time and 10-day time scale running mean low-pass filtered Hudson River discharge.  Only 

correlations significant at the 95% level and greater than 0.3 are plotted. Contours are in 

0.1 intervals. Dashed lines show the 20, 40 and 60 m isobaths. 
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Figure  3.11.  Correlation between surface mean age and 10-day time scale running mean 

low-pass filtered wind components in different direction.  Arrows on land depict the wind 

direction. Only correlations significant at the 95% level and greater than 0.3 are plotted. 

Contour interval is 0.1. Dashed lines show the 20, 40 and 60 m isobaths.  

 

3.5. Mean Residence Rime 

Residence time has been used in coastal ocean studies of water renewal (Monsen et al. 

2002) and biogeochemical processes (Brooks et al. 1999, Duarte et al. 2001).  Residence 

time can be crudely estimated by dividing a total volume by a characteristic flushing rate, 
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or more accurately by releasing Lagrangian particles or Eulerian tracers into numerical 

models, the computational cost of which can be heavy.  The capability, introduced here, of 

computing mean residence time for every location in a control domain at any time with a 

single adjoint model integration is a significant advance that provides the ability to study 

spatial and temporal heterogeneity of residence time and its connection with external 

forcing.  

Because we are interested in the duration that river source water stays in the NYB, 

residence time in this study is defined as the numbers of days, on average, it takes the water 

at a particular time and location to be flushed out of the control volume defined as the 

surfacemost 10 m of the smoothed rectangular area shown in Figure 3.1.  

3.5.1. Temporal variability of mean residence time 

Time series of mean residence time at four different sites in the control domain are 

plotted in Figure 3.12 along with the fraction of tracer remaining at 1 January 2007 and 

wind.  Recall from Section 2 that the residence time calculation is only valid once the 

fraction of remaining tracer in the adjoint integration is zero; by 1 September 2006 the 

tracer has vanished at all locations plotted in Figure 3.12 and the 4 months 

September-December 2006 is excluded accordingly from the analysis.  
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Figure  3.12. Time series at different sites (a-d) of mean residence time (blue lines) and 

fraction of tracer remaining in the control domain (red lines) (see Figure 3.1 for site 

locations), and 10-day running mean filtered wind components in the (e) meridional and (f) 

zonal direction. 

 

Before discussing these results, I restate what is being calculated in this application of 

the adjoint-based residence time method: Each blue time series in Figure 3.12 shows the 

time scale in days, after any particular date in the time series, that it will subsequently take 
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for passive tracer released at that location to be flushed out of the control volume. 

Residence time at site A near the harbor mouth stays around 20 days except during summer 

2005 when it often reaches 40 days.  At site B, close to the eastern boundary of the control 

domain, residence time is generally low in winter but higher in spring and summer.  The 

residence time at site D on the New Jersey coast does not show obvious seasonal 

dependence but generally varies in opposition to site B – the correlation between the time 

series for sites B and D is -0.36, and is significant at the 95% level.  Sites B and D are 

located at opposite ends of the control domain and a negative correlation is not unexpected.  

At site E mid-shelf the residence time is generally lower than 20 days except during 

summer 2005.  The correlation between residence times at site D and B is 0.27, which is 

significant (95% level).  These sites are both located north of the HSV, which Chapter 2 

showed places them in a related circulation regime and the similarity in residence time 

variability is therefore reasonable. The residence times at sites A, B and E all exhibit 

generally high values in summer, which is clear in the seasonal average residence time in 

Figure 3.9 (bottom row). 

The 2-year average residence time shown in Figure 3.9 has highest values in the estuary 

and along the Long Island coast and lower values south of the HSV, and these features are 

shared by all the seasonal averages though differences between the seasonal averages exist.  

Mean residence time along the Long Island coast in spring and summer is much higher than 

in fall and winter, consistent with the sense we obtained from the time series (Figure 3.12).  

In summer, the HSV clearly serves as a barrier between zones of relatively high residence 

time to the north, and low residence time to the south. The influence of the HSV in other 

seasons is not as obvious.  In winter, a circular feature of high residence time occurs in the 
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New York Bight apex area that is similar to the river water bulge in Chapter 2, indicating 

that in winter the recirculating bulge traps water and prolongs its residence in the NYB 

apex. 

Residence time is very large along the Long Island coast in summer, all the way to the 

eastern edge of the control volume, despite there being a strong eastward surface current 

that transports water swiftly along the Long Island coast enabling it to quickly exit the 

control domain.  The mechanism behind this apparent paradox is revealed by the 

concentration of a passive tracer released at site B during summer 2005; the time series of 

the fraction of tracer remaining in the control domain is plotted in Figure 3.4d. There is 

indeed a rapid decline of tracer right after release, but as time proceeds a substantial 

fraction of the tracer returns: some 40% of the initial release at site B reenters the control 

domain 50 days later . What has occurred is that eastward flow along the Long Island coast 

in summer has carried the tracer out of the control domain, but the tracer has remained 

nearby on the inner shelf and the change to southwestward flow in the fall has pushed 

tracer back into the control domain, from which it subsequently exits through the southern 

boundary. Flow across the eastern boundary of the control domain is only a temporary 

outlet for tracers in the NYB apex – it is transport across the southern boundary that is the 

real exit.  

This reentry process is given full consideration in the adjoint-based residence time 

method because I compute the accumulated tracer exposure time as explained in Section 3. 

This is potentially very important when employing residence time estimates in studies of, 

for example, river-borne pollutant dispersal, degradation and bioaccumulation, 

phytoplankton growth and secondary productivity, or larval transport and settlement. All 
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of these are influenced by processes active on timescales of a few to several tens of days, 

and the strict mean residence time as opposed to exposure time could represent timescales 

significantly differently. 

3.5.2. Relationship of mean residence time with river discharge and wind 

Figures 3.10b and 3.13 shows correlations of residence time with the Hudson River 

discharge and the wind, respectively.  Because the dispersal of water over the finite 

expanse of the control region relies on the accumulated effect of buoyancy- and 

wind-driven flow over some time, the river discharge and wind components were weighted 

using a running mean filter, 1 ( )( ) ( ) t t k
k t

f t k f t e dt
+∞ ′− −′ ′= ∫ , similar to that used in Section 

4.3. Note that the filter acts on times strictly after the release time, because it is river 

discharge and wind in the future that subsequently influences the dispersal and residence 

time of the tracer.  Different filter scales k and time lags were tested but, again, few 

differences occur in the correlation patterns (not shown). Ten days filter time scale and 

zero lag are used in the results in Figures 3.10b and 3.13.  

Figure 3.10b shows that significant correlation between river discharge and residence 

time occurs only along the Long Island coast and eastern boundary of the control domain, 

and is negative, i.e. high river discharge decreases residence time for waters starting from a 

those locations.  This pattern of negative correlation echoes the outer boundary of the 

circular freshwater pathway in the NYB shown in Chapter 2. It presumably occurs because 

high river discharge accelerates the bulge and sweeps water at the outer extent of the 

recirculation from the control domain. 
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Figure  3.13.  Correlation between surface mean residence time and filtered wind 

components in different directions.  Arrows on land depict the wind direction. Only 

correlations significant at the 95% level and greater than 0.3 are plotted. Contour interval is 

0.1. Gray lines show the 20, 40 and 60 m isobaths. 

 

Figure 3.13 shows easterly wind is positively correlated with residence time near the 

Long Island coast, but negatively correlated with residence time between the New Jersey 

coast and HSV. We have already seen that easterly winds drive westward flow along the 

Long Island coast that prolong residence time there, whereas westerly winds flush Long 

Island coastal waters and lower residence time. But easterly wind also pushes to the west 
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surface waters that lie between the New Jersey coast and the HSV, strengthening the New 

Jersey coastal current (Choi and Wilkin 2007) and lowering the time waters from this 

region stay in the control domain.  When winds are more southeasterly, the pattern of 

negative correlation between New Jersey and the HSV disappears.  A positive correlation 

between residence time and winds from the south and west occurs along the New Jersey 

coast and inner shelf because either upwelling (southwesterly wind) directs surface water 

northward and eastward, extending the time water next to the New Jersey coast stays in the 

control domain, or downwelling (northeasterly wind) pushes surface water into the coastal 

current which promptly exits the control domain, or both. 

3.6. Summary 

This study extends modeling studies in Chapter 2 and by Choi and Wilkin (2007) to 

consider in detail the timescales associated with dispersal of Hudson River source water 

within the New York Bight.  I have restated Constituent-oriented Age and Residence-time 

Theory and summarized application of the theory in ROMS – including verification that 

two-tracer-based mean age and adjoint-based residence time methods give the same results 

as more conventional multi-tracer methods.  

The mean age results here should be interpreted as the mean time since water at a given 

location and time entered into the ocean via the Hudson River. The mean recognizes that a 

water mass at any location comprises some younger water that has traveled relatively 

rapidly to the site, mixed with older waters that have taken a less direct route.  

The model results show that mean age and inner shelf salinity are related, as is typically 

assumed in river-influenced areas, but this relationship is not linear; there is value in 
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directly simulating age if the objective is explicit consideration of dispersal and dilution 

timescales. A more linear relationship, though noisy, was found between modeled surface 

mean age and the ratio of satellite-measured radiances at 490 and 670 nm, which has been 

proposed as an empirical proxy of age.  A least-square fit of age on band ratio is a 

potentially useful tool for estimating water age from remotely sensed observations, though 

analysis of a more extensive data set is required to formulate a robust relationship.   

Time series of mean age at different sites in the NYB show significant temporal and 

spatial variation in mean age, indicating that the tracer field is being stirred but has not yet 

been homogenized by mixing processes. Within 50 km of the New Jersey coast, mean age 

is strongly influenced by the river discharge, but no such influence is obvious for the area 

beyond.  Rather, temporal variability of mean age on the scale of days is consistent with a 

dominant influence from wind, and this carries through to seasonal differences in mean age 

patterns related to seasonality in prevailing wind. The patterns of seasonally averaged 

mean age are consistent with knowledge of the mean circulation from previous studies: 

young water penetrates furthest along the New Jersey coast in winter and spring when river 

discharge feeds into a southward coastal current that is unopposed by winds in these 

seasons; an offshore directed tongue of young and moderate age water appears in summer 

when more prevalent southerly upwelling favorable winds drive offshore movement of 

surface waters. Analysis of correlations between mean age and wind shows that easterly 

winds increase mean age of surface water adjacent to the coasts, whereas southerly winds 

raise the mean age along the New Jersey coast and lower mean age in the east.   

What we gain in this age analysis over conventional simulations of mean velocity and 

salinity is explicit information on timescales. Figure 3.9 shows that in the long-term 
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average, Hudson River influenced waters take some 60 days to reach the LEO-15 

(Long-term Ecosystem Observatory) site on the Jersey Shore (near site F in Figure 3.1). 

Most ecosystem and geochemical processes that would act on river-borne material could 

reasonably be expected to be mature by this time, suggesting it is unlikely there is much 

direct influence of the Hudson on the coastal ocean this far south. The mean age at LEO-15 

almost halves to roughly 35 days in winter and spring, allowing the likelihood of a 

significantly greater impact from the river during those seasons. The time series for site F 

in Figure 3.8d shows that at LEO-15 the mean age can plunge dramatically from highs far 

exceeding 100 days to low values less than 30 days in the course of a few weeks or less, 

seemingly with the onset of northwesterly winds (Figure 3.11). Such rapid changes 

indicate patches of rather different mean age water exist on the inner shelf, so close to shore 

and well south of New York Harbor the waters originating from the Hudson River are still 

not laterally well mixed. Further offshore at site G, age fluctuates much less and waters are 

more homogeneous.    

The adjoint model residence time analysis is based on slightly less than two years of 

simulation. Here, I defined a control volume encompassing most of the NYB within 50 km 

of the mouth of the Hudson estuary. Our interpretation of residence time is the number of 

days it takes for a tracer to be flushed out of this control volume and not return. The results 

are dependent not only on starting location (i.e. proximity to the edge of the control 

domain) but also time, because of variation in the transport pathways by which tracer is 

exported from the control domain.  

As was the case for age and passive tracers, the mean residence time exhibits strong 

temporal fluctuations on the scale of days in response to river discharge and wind, and 
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seasonal averages show some differences in spatial pattern.  In all seasons, residence time 

is long near to the estuary mouth and along the Long Island coast. High values near the 

estuary are unsurprising, but along the Long Island coast where a strong but variable 

eastward boundary current forms, long residence times were somewhat unexpected. What 

occurs is that in spring and summer, water that previously exited the control domain 

reenters when winds change to easterly. Thus the flow crossing through the eastern 

boundary of the control domain makes only a temporary exit. Residence time is low in all 

seasons along the southern boundary of the control domain. Water near this boundary is 

quickly lost from the domain, and thus it is the southern boundary that is the permanent exit 

for Hudson River waters entering the NYB. This result is consistent with mean circulaton 

but now we know the timescales of motion along these pathways. From the mouth of New 

York Harbor it takes the river discharge on average 20 days, in all seasons, to depart the 

NYB. Waters that find their way into the Long Island coastal current reside longer than this 

(over 30 days), while those that flow into the New Jersey coastal current, or have crossed 

the HSV from north to south, will take some 10 days further, on average, to exit the control 

domain. 

The recirculating low salinity bulge at the estuary mouth that forms during high river 

discharge events and is a conspicuous feature of winter circulation is a trap that extends 

residence times by 5 to 10 days compared to waters outside the bulge.  The correlation 

between residence time and winds shows that easterlies increase the residence time of 

water along the Long Island coast but reduce residence time of waters between the New 

Jersey coast and the HSV.  
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The Hudson River is the major source of nutrient and contaminants for the NYB, and 

the apex region has historically been the site of significant dumping of urban waste. Age 

and residence time have important implications for the extent to which biogeochemical 

processes might act on human-impacted waters as they move through this region. The time 

it takes river-injected tracers to reach places on the shelf is a key factor in estimating the 

uptake rate of nutrients by phytoplankton (Schofield et al. 2009) and to measure enzyme 

activities (Gaas et al., unpublished manuscript), to give two examples for this region. Age 

information assists the selection of rate parameters in ecosystem modeling. 

It has been demonstrated here that temporally and spatially resolved information on 

these timescales can be computed in a coastal ocean model using mean age calculated from 

just two model tracers (conservative, and age concentration) and residence time provided 

by a single integration of an adjoint model. The formulation of control domains, and age 

tracer release scenarios, are readily adapted to address questions of specific relevance to 

other applications.  
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CHAPTER 4. ADJOINT SENSITIVITY ANALYSIS 

4.1. Introduction 

The sector of the Mid-Atlantic Bight adjacent to the coast of New Jersey is separated 

from the Slope Sea by a wide, shallow shelf, largely insulating the circulation of the New 

Jersey inner shelf from remotely generated deep-ocean forcing. Historical observations 

show that ocean variability in the area is most energetic at relatively short time and space 

scales further suggesting likely dominance by local forcing. In recent years, the region has 

been the focus of studies designed to examine the dynamics of wind-driven coastal 

upwelling and buoyancy-driven coastal currents (Choi and Wilkin 2007, Johnson et al. 

2003, Münchow and Chant 2000, Tilburg and Garvine 2003, Wong 1999, Yankovsky and 

Garvine 1998, Yankovsky et al. 2000). These studies indicate that tides, river runoff and 

air-sea exchanges all have influence, with no single forcing mechanism controlling the 

regional dynamics. Details of the coastline (Yankovsky 2003, Yankovsky and Garvine 

1998) and bathymetry variations (Chant et al. 2004, Garvine 2004, Kohut et al. 2004) also 

affect the local ocean response. 

Using in-situ observations on the New Jersey inner shelf, Yankovsky and Garvine 

(1998) first found the interaction between wind-driven coastal upwelling and buoyancy 

intrusions; Wong (1999) discovered cross-shelf inhomogeneity in the ocean’s reaction to 

wind and attributed it to the buoyancy-driven coastal current on the inner shelf;  

Yankovsky et al. (2000) showed the spatial variability of mesoscale currents driven by the 

interaction of buoyancy and wind; Chant (2001) concluded that near-inertial motions are 

mainly driven by local wind, and subsequently propagate gradually into the thermocline; 
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Tilburg and Garvine (2003) and Yankovsky (2003) both investigated the 3-dimensionality 

of the flow generated by the combination of wind and buoyancy intrusions; Chant et al. 

(2004) further proved the 3-dimensionality of the wind-driven flow by studying coastal 

flow reversals during upwelling conditions; Johnson et al. (2003) described two dynamic 

states of the coastal ocean: a river plume state and an upwelling state; Garvine (2004) 

investigated the influence of buoyancy intrusion and wind forcing on the vertical structure 

of the flow, especially the thickness of surface mixed layer and bottom mixed layer; Kohut 

et al. (2004) demonstrated strong correlation between wind and surface current on the 

seasonal scale; Castelao et al. (2008b) identified local wind as a significant role player in 

driving coastal dynamics and spreading the plume.  In numerical model studies, Choi and 

Wilkin (2007) concluded that wind, and to a lesser extent buoyancy forces, together 

determine the pattern of horizontal freshwater dispersal; Chapter 2 of this thesis identified 

wind as the primary force to spread the river-injected freshwater onto the mid- and 

outer-shelf.  All these studies proved wind and buoyancy are two significant competing 

forces on the New Jersey inner shelf.  Their influences on SST on the coast are exactly 

what are intended to be quantified in this study.      

As mentioned in Chapter 1, in the New York Bight the operation of many sensors 

continues on a quasi-continuous basis and the area is presently the nation’s most densely 

routinely observed coastal region. Consequently, this is an attractive location in which to 

explore the integration of advanced observation, modeling and DA capabilities for the 

purposes of implementing coastal ocean forecast systems. 

The work presented here uses one of the variational calculus based methods – 

specifically, the adjoint sensitivity technique – to identify conditions and forcing that are 



81 

 

dynamically upstream, to quantify the relative significance of buoyancy and wind forcing 

to coastal dynamics in the New York Bight, and to characterize coherent patterns of 

circulation variability that deserve consideration in the deployment of regional coastal 

observing systems. Adjoint model sensitivity analysis is a step toward developing a 

comprehensive 4-dimensional variational (4DVAR) DA system that will exploit the 

diversity of coastal ocean observation technologies available, and direct their deployment.  

Beginning in the 1980s, meteorologists established the theory of adjoint sensitivity and 

used it to study how selected features of a model forecast vary with respect to prior model 

states (Errico and Vukicevic 1992). More recently, adjoint sensitivity studies have been 

applied in oceanography (Dutkiewicz et al. 2006, Galanti and Tziperman 2003, Hill et al. 

2004, Junge and Haine 2001, Li and Wunsch 2004, Losch and Heimbach 2007, Marotzke 

et al. 1999, van Oldenborgh et al. 1999) but with a focus on mesoscale to gyre-scale 

physics in ocean general circulation models.  In one of the first coastal ocean applications, 

albeit still in the predominantly deep waters of the California Current System, Moore et al. 

(2008) examined how coastal upwelling, eddy kinetic energy variability and baroclinic 

instability are affected by surface forcing. In this chapter, a related adjoint sensitivity 

approach is applied, but to a different class of analyses.  

On the New Jersey inner shelf the prior ocean state influences how the ocean responds 

to direct forcing; quite different ocean responses can occur under similar forcing 

conditions if the oceanic preconditioning differs. In adjoint sensitivity analysis, oceanic 

response is characterized by some particular aspect of the model variation expressed in 

terms of a user-defined scalar functional. The analysis quantifies how this aspect of the 

model varies with respect to initial conditions and forcing over some finite time interval. 
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The methodology is effective at revealing the spatial and temporal extent of the oceanic 

conditions and forcing that are “dynamically upstream” to a region or feature of interest. In 

this chapter, I emphasize how this analysis approach is a tool for addressing two questions 

that frequently drive observing system design: (i) Can we quantify the aspects of the ocean 

state that dominate the dynamics under differing circulation conditions? and (ii) can we 

identify the most useful places and times at which to make observations in order to better 

estimate the true ocean state? 

There are a number of challenges to adjoint modeling in limited area coastal domains.  

The first is open boundary conditions, which are formally ill-posed in any nonlinear 

forward model and can become worse in an adjoint model.  This is because any 

information that propagates out of the open boundaries in the forward tangent linear model 

is simply lost to the backward mode of the adjoint, unless tangent linear model states on the 

open boundaries are stored completely. Nonlinearity of coastal currents and abrupt 

gradients induced by local vertical mixing can pose further difficulties. The issue here is 

that the adjoint model is formulated for perturbations (the tangent linear approximation) 

along a trajectory of the nonlinear model, and validity of the linear perturbation assumption 

needs to be ascertained. This study is also a demonstration of how to deal with these 

difficulties in practice. The technique exhibited here can also be applied to determining 

which features of the regional oceanography dominate other local phenomena of interest 

such as freshwater anomaly transport, the trajectory of a phytoplankton bloom or reactive 

biogeochemical component, and so on. 

The outline of this chapter is as follows.  An alternative mathematical derivation of 

adjoint sensitivity is given in section 2a to better illustrate the interpretation of the adjoint 
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variables. This is followed by an explanation of adjoint sensitivity in section 2b.  Section 2c 

gives the definition of scalar sensitivity index, J, and guidelines on its formulation.  The 

model configuration and proof of the linearization are given in section 3. Model output is 

presented in section 4 and summarized in section 5.   

4.2. Adjoint Sensitivity 

4.2.1. An alternative derivation of adjoint sensitivity 

Different approaches have been used to describe the mathematical and conceptual 

formalism of adjoint sensitivity.  Errico (1997) combined a Taylor series expansion with a 

temporal discrete consideration of the model.  Marotzke et al. (1999) extended this method 

by applying an automatic differentiation to derive an adjoint code.  However, these 

time-step-by-time-step derivations do not give a mathematically concise form of adjoint 

sensitivity. The propagator-based approach adopted by Moore et al. (2008) showed that 

backward in time integration of the adjoint model gives the sensitivity to initial conditions, 

forcing and boundary conditions.  Here, an alternative explanation also using the 

propagator algorithm and variational data assimilation theory is presented to show the 

sensitivities from a different angle. 

Following Moore et al. (2004), let us represent the forward ocean model as 
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                                                                        (4.1) 

where M is the model nonlinear operator; Φ(t) is a state vector [u v T S ζ]T comprised of 

the velocity, temperature, salinity and sea surface height at all model grid points at time t; 
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F(t) is the external forcing; Φi are the initial conditions; and ΦΩ(t) are boundary conditions 

along boundary Ω.  I let Φ0 denote a solution to the nonlinear problem (4.1) and introduce 

perturbations φi = δΦi, φΩ(t) = δΦΩ(t), and f(t) = δF(t) to initial conditions, boundary 

conditions and forcing respectively. Then, using a Taylor expansion around base state Φ0, 

we obtain the so-called tangent-linear model 
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where φ = δΦ = Φ - Φ0 is the departure from the base state Φ0. When discretized in space 

and time, the tangent linear model yields a system of linear equations: 

Aφ = b                                                                          (4.3) 

Here, A is a coefficient matrix and b is a right hand side vector which consists of boundary 

conditions, initial conditions and external forcing, as, 
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where k
ijϕ  is the tangent linear state variable at the kth time step at location ( i , j ), k

ijc  is the 

corresponding coefficient coming from discretization and model physics, ∆t is the time 

step, ˆk
ijb  is discretized initial condition or boundary condition and k

ijf  is discretized 

forcing. If the trivial equations, k k
ij ijf t f t∆ = ∆ , are added to the system, matrix A and vector 

b can be modified to incorporate the forcing terms into the state vector thus: 
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. 

Now, each element in the right hand side vector bis a discretized element of initial 

conditions, boundary conditions or forcing.  Following Errico (1997), let us define a scalar 

functional, J, that describes a chosen aspect of the model state for which we wish to explore 

the sensitivity 

( ( ))J G t= Φ .                                                            (4.4) 

Applying the method of Lagrange multipliers (Bertsekas 1982), we can define a 

corresponding scalar index (or cost function for DA) 

( )( ) ( ) TJ G G= = + −Φ Φ µ Aφ b                                          (4.5) 

which has the same minimum as (4.4) for all φ that satisfy (4.3).  Here, φ is the tangent 

linear state vector which incorporates f∆t as discussed before; µ is a vector of Lagrange 

multipliers; and b is the right hand side of the tangent linear model, including initial 

conditions, boundary conditions, and forcing.  

Setting δJ/δµ  to zero (Bennett 2002), we recover the tangent linear model (4.3); setting  

δJ/δφ to zero results in the adjoint system:  
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φ φ Φ Φ

.                                        (4.6) 

This shows that ∂G/∂Φ is the adjoint forcing, AT the adjoint operator, and the Lagrange 

multipliers µ are the adjoint variables. Additionally, 

J Gδ δ
δ δ

= = µ
b b

                                                        (4.7) 
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indicating that µ are the sensitivities of J with respect to all the components of b. In other 

words, the adjoint variables µ reveal how J depends on perturbations to all of the initial 

conditions, boundary conditions, and forward model forcing. For J defined as the 

mismatch between the model state and observations, the sensitivity information can be 

used to adjust initial conditions to obtain a better model-observation match (Courtier et al. 

1994); this is the underlying principle of variational DA.  If J is a scalar measure of some 

aspect simulated in the nonlinear model, the adjoint sensitivity identifies locations and 

variables which are important to this feature.  

4.2.2. Dimensional considerations 

In the discrete model, a perturbation is distributed over the small yet finite-sized grid 

cell that contains the perturbation point. ROMS utilizes orthogonal curvilinear coordinates 

that allow for variable grid sizes which must be accounted for in the formulation in order to 

make the correct physical interpretation of adjoint sensitivity. In practice, sensitivity is 

most readily interpreted as the gradient of J with respect to equivalent masses or volumes 

of water (Lewis et al. 2001). In ocean applications, mass-weighted and volume-weighted 

sensitivity differ little, and the latter is used in this study. The horizontal grid here is almost 

uniform so I show horizontal fields of adjoint sensitivity without any scaling. However, the 

ROMS terrain-following vertical coordinate is stretched significantly where bathymetry 

varies and the consequent changes in grid cell thickness change the cell volume. 

Accordingly, the vertical grid cell thickness is used to scale the vertical fields of adjoint 

sensitivity presented in Section 4.    

Adjoint sensitivity allows comparison of the relative contributions of different 

variables to the variation of the model aspect of interest. Consider the total variation of J, 
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 … are the adjoint variables (sensitivities), and δu0, δT0, 

δτx0, δυk0 … are variations of forward model variables (i.e. the state variables, but also 

forcing) at time zero. The relative contributions of different variables to the variation of J, 

i.e. the respective terms in equation (4.8), can be expressed in appropriate dimensional 

units by multiplying the adjoint variables by estimates of the magnitude of uncertainty in 

the corresponding nonlinear model variables. This procedure identifies those state 

variables or parameters that contribute most to the variation of J. This knowledge is readily 

applied to the question of determining which variables, where, and when, are crucial to 

obtaining a good estimate of J, and therefore pertinent to directing observing system design 

and deployments targeted at capturing a particular event or phenomenon characterized by 

the appropriate J (Köhl and Stammer 2004). It should be noted that adjoint sensitivity does 

not immediately reveal the underlying dynamics of the event, though it might point to, or 

eliminate, certain event triggers at particular places or times.  The real triggers will need to 

be identified through further model analysis. 

4.2.3. Definition of scalar index, J 

The scalar functional J = G(Φ(t)) (equation (4.4)) is defined according to the question 

of interest. Moore et al. (2008) give several definitions for different applications. I would 

like to add two comments on defining J.  First, caution should be exercised in defining J 

precisely targeting the aspect of interest, especially when the aspect of interest is too vague 

to define a J specifically. Once a particular J is chosen, the sensitivity of J with respect to 
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initial conditions or boundary conditions ought to be interpreted precisely according to the 

definition. Second, the cost function in variational DA is non-dimensionalized by model 

and observation error covariance which gives the tangent linear model variables the same 

units as the forward model variables. However, for adjoint sensitivity analysis, there is no 

necessity to non-dimensionalize J because the factor would be a single constant and would 

make no difference to the interpretation of sensitivity patterns.  In this work, J is 

dimensional. 

A characteristic feature of New Jersey coastal ocean dynamics is the occurrence of 

wind-induced upwelling and down-welling that leads to low and high, respectively, SST 

along the coast (Chant 2001, Münchow and Chant 2000). I study these events here by 

defining a J that is the SST anomaly variance within a localized area adjacent to the New 

Jersey coast:  

2

1

2

2 1

1 ( )
2( )

t

S St A
J T T dAdt

t t A
= −

− ∫ ∫   ,                                       (4.9) 

where TS is SST and ST  is its temporal mean, and the definition considers temperature 

anomaly within an area A during a time interval t1 to t2. Here, the time period is chosen to 

be the last three hours of the simulation time window. Note that J is defined as a quadratic 

form to prevent the cancellation of positive and negative anomaly inside area A.  

Being a scalar that characterizes local temperature variability, J could be affected by 

temperature through two different mechanisms: (i) transport, i.e. advection or diffusion of 

temperature as a tracer, and (ii) dynamics, i.e. the contribution of temperature to density 

and thereby to baroclinic pressure gradients and stratification that impacts vertical 

turbulent mixing. To separate the sensitivity of J due to advection/diffusion from that due 
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to the density effects, Marotzke et al. (1999) introduced a decomposition in which J is 

rewritten as a function of temperature and salinity with density and temperature as 

intermediates, 

( , ) ( ( ), ( , ))J J T S J q T T Sρ= =                                            (4.10)  

Here, q = T denotes the contribution of temperature in J only when it is being advected or 

diffused and has no relation with salinity, which implies (∂q/∂T)|S = 1  and (∂q/∂S)|T = 0.   

Applying the chain rule, the sensitivity of J to temperature can be expressed as, 
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∂ ∂
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∂ ∂

  ,                                             (4.11)  

where α is the thermal expansion coefficient. The first term on the right-hand side of (4.11) 

is the sensitivity to temperature due to the processes of advection or diffusion, while the 

second term describes the density effect. These can be separated by considering the 

sensitivity to salinity:  

T T Tq q

J J q J J
S q S Sρ

ρ βρ
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂
                                  (4.12) 

Here, β is the haline contraction coefficient. From (4.11), we can isolate the sensitivity of J 

to temperature due to the dynamic influence on density: 

q Tq

J J J
T S

ααρ
ρ β

∂ ∂ ∂
= − = −

∂ ∂ ∂
;                                              (4.13) 

Combining (4.11) and (4.12), we obtain the sensitivity to temperature due to advection 

and diffusion: 
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∂ ∂ ∂
= +

∂ ∂ ∂
                                    (1.14) 

 

4.3. Model Configuration and Experiments 

The model domain is shown in Figure 4.1. Circulation in the apex of New York Bight is 

mainly locally driven (Chapter 2) so gradient open boundary conditions are applied on all 

open boundaries.  Forcing scenarios are idealized in this study to develop experience with 

the adjoint model while also studying the regional ocean dynamics; here, tides and surface 

water exchange are neglected and both rivers have a steady discharge of 500 m3 s-1 which is 

typical outside of high discharge storm or freshet events.  Because the focus of this study is 

the oceanic dynamical upstream, the surface heat exchange, an apparent factor for SST 

variation, is simply neglected. Three adjoint sensitivity experiments are conducted to study 

the buoyancy-driven coastal circulation and wind-driven upwelling and down-welling that 

are major features of the dynamics in this area. In Experiment 1, no surface wind is applied, 

and a coastal current is generated by river buoyancy input. In Experiment 2, both river 

input and a southward 5 m s-1 wind are applied. The wind is switched to northward and 

coastal upwelling is generated in Experiment 3. The initial conditions for the spin-up of 

these experiments are from the corresponding model outputs of Choi and Wilkin (2007) in 

which the ocean has had 3 months to adjust to a realistic state. The SST and surface current 

at the end of 3-day spin-up periods for the respective experiments are shown in Figure 4.2; 

the patterns are similar to those identified by Choi and Wilkin (2007) for these forcing 

scenarios. 
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Figure  4.1.  Model domain (black frame) and bathymetry of the New York Bight. Depth 

contours are in meters. 

The Adjoint and Tangent Linear component models for ROMS, together with drivers 

that link these models for Adjoint Sensitivity, Optimal Perturbation, Incremental Strong 

Constraint 4-Dimensional Variational (IS4DVAR) and Weak constraint 4DVAR 

(W4DVAR) DA have been developed by the ROMS Adjoint Group (Di Lorenzo et al. 

2007, Moore et al. 2004). The Adjoint Sensitivity driver runs the ROMS adjoint model 

backward in time with zero initial condition. Adjoint forcing is prepared offline and given 

to the model.  
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Figure  4.2. Forward model SST and surface current at the end of the three day period for 

Experiments 1 (no wind), 2 (southward wind) and 3 (northward wind). The thick black 

frame indicates the adjoint sensitivity region, A. The red line in the right-hand figure 

indicates the location of the cross-section in section 4c. 

 

Figure  4.3. Pattern correlation between tangent linear model solution and the difference of 

two nonlinear model solutions (perturbed minus control, see text) for two idealized 

configurations: southward wind (left) and northward wind (right). High correlation 

indicates validity of the tangent linear approximation. 
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The validity of the tangent linearization should be verified prior to performing an 

adjoint sensitivity analysis. This is done by using the ROMS Optimal Perturbation driver, 

based on General Stability Theory (Farrell and Moore 1992, Moore and Farrell 1993), to 

first obtain the perturbation to initial conditions that has the most rapid energy growth 

among all singular vectors of the tangent linear system. The perturbation pattern is then 

scaled by a factor to give the initial condition perturbation a magnitude characteristic of 

model uncertainty (0.3 m s-1 for velocity, 0.2 oC for temperature, 0.2 for salinity) in this 

area. Three simulations are conducted for each experiment: the first is the control case, and 

is the nonlinear forward simulation used as the basic state of the adjoint model; the second, 

a perturbed nonlinear model, has the scaled perturbation added to the initial conditions of 

the control simulation; the third, a tangent linear model, is initialized with the scaled 

perturbation itself. The difference of the nonlinear forward models (perturbed minus 

control) is compared with the corresponding tangent linear model solution, and the 

similarity is evaluated by centered pattern correlation analysis (Santer et al. 1993). Figure 

4.3 shows the comparison for Experiments 2 and 3. For Experiment 1 (not shown) the 

similarity is much higher, presumably because of the absence of wind-induced mixing. The 

similarity of nonlinear and tangent linear solutions for Experiments 2 and 3 decreases 

gradually from 1 as time advances and the accumulated effects of nonlinearity become 

important. After 3 days, the correlation is about 0.6 for southward wind (Experiment 2) and 

about 0.8 for northward wind (Experiment 3).  Therefore, I am confident the linearization 

around the nonlinear model trajectory is valid for the 3-day duration time window of the 

adjoint model simulations presented here.  
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4.4. Model Output and Discussion 

4.4.1. Experiment 1: No wind 

In the nonlinear forward model of this experiment a purely buoyancy-driven coastal 

current is generated. As shown in Figure 4.2a, and examined in detail by Choi and Wilkin 

(2007), when the Hudson River volume discharge is modest a low salinity plume exits 

Raritan Bay and flows southward along the New Jersey coast. The current separates from 

the coast at about 40.2 oN but southward flow continues on the eastern side of a weak 

anticyclonically recirculating feature. SST is higher at the coast than offshore due to warm 

river water within the plume.  

In the absence of wind, vertical mixing is low and it is anticipated that coastal SST will 

be largely determined by the advection of temperature from upstream. I test this hypothesis 

using the SST anomaly adjoint sensitivity function, J, introduced in equation (4.9), 

evaluated for the area, A, adjacent to the coast indicated by the thick black frame in each 

panel of Figure 4.4, and for a time interval 1t  to 2t  that spans the final 3 hours of the 3-day 

window. The adjoint variables ( /J T∂ ∂  and /J S∂ ∂ ) show how SST in region A at the end 

of the time window is influenced by the distribution of temperature and salinity in the 

preceding 3 days.  

Figure 4.4 shows the evolution, backward in time (from left to right), of this 

temperature and salinity sensitivity evaluated at the surface. Surface values are plotted 

because the circulation is predominantly horizontal in this instance, though I emphasize 

that the adjoint variables are defined over all 3 spatial dimensions. As we shall see below, 

this can be particularly instructive for deducing 3-dimensional transport pathways. The 
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sensitivity to surface temperature (Figure 4.4, top row) at day 2.9 is simply the temperature 

anomaly pattern within region A that determines J, and is proportional to S ST T− . This is 

apparent if one considers the derivative of (4.9) with respect to ST .  The pattern shows 

positive sensitivity (anomaly) in the southern half of A, and negative in the north.   

 
Figure  4.4.  For Experiment 1 (no wind), the sensitivity of J to surface temperature (top 

row) and salinity (bottom row) at different times during the three-day period. Time retreats 

backwards from left to right. The region A over which J is evaluated, i.e. the adjoint forcing 

area, is indicated by the black frame.   

 

As time proceeds backward, the southern part makes a cyclonic motion first, stretches 

out, and moves northward following the track of the river plume (Figure 4.2a). The zone of 

maximum positive sensitivity lies at Sandy Hook at day 0, with a trail of sensitivity along 

almost the entire plume track. This means that surface temperature throughout most of the 
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river plume at day 0 contributes to the surface temperature anomaly in region A three days 

later; but the leading contribution comes from waters immediately southeast of Sandy 

Hook so this can be considered the principal upstream source location. Sensitivity greater 

than zero means that higher plume temperatures at day 0 at Sandy Hook would give 

stronger SST anomaly in the frame (i.e. larger J) at day 3. In contrast, the negative 

sensitivity patch in the northern half of the frame persists for the whole period. From 

Figure 4.2a we can see that this region is relatively cool and static, being surrounded by 

warmer waters of the detached plume which evidently trap the cool anomaly in place. The 

cool waters also contribute to J because it is defined as the square of SST anomaly, but the 

gradient of J with respect to SST there is negative. This states that had cooler waters in the 

northern part of A been warmer during days 0 to 3, J would decrease. This is consistent 

with warming making the cool anomaly and plume temperatures more similar, decreasing 

the anomaly within A, and thereby decreasing J.   

A significant role of advection in driving the coastal SST anomaly is evident from the 

sensitivity to surface salinity shown in the bottom row of Figure 4.4.  Sensitivity to salinity 

starts from zero since changes in salinity will not affect J at the time for which it is defined. 

Proceeding backward in time, salinity sensitivity gradually grows along the plume track 

eventually exhibiting a pattern very similar to the sensitivity to SST.  Using equations 

(4.12) through (4.14), the sensitivity to density, sensitivity to temperature associated with 

density effects, and sensitivity to temperature via passive advection are shown in Figure 

4.5c, d and e.  Temperature sensitivity due to density related effects is about two orders of 

magnitude smaller than the sensitivity due to advection. I conclude that the sensitivity of 
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SST anomaly is dominated by advection, and the pattern shows clearly the trajectory of the 

source waters over the preceding 3 days.   

 
Figure  4.5.  At day 0 of Experiment 1 (no wind), the sensitivity, evaluated at the sea 

surface, of J with respect to (a) temperature, (b) salinity, (c) density, (d) temperature 

density effect, and (e) temperature advection and diffusion effect. (a) and (b) are full 

adjoint variable, (c) is computed using with equation (4.12), and (d) and (e) are computed 

with equation (4.13) and (4.14), respectively. All the fields here are multiplied by 105. 

 

The similarity in the patterns of sensitivity to surface salinity and temperature at day 0 

(Figure 4.4) is striking. To reveal the physical mechanism that leads to this, I make a small 

0.01 salinity perturbation to the nonlinear forward model surface initial condition and trace 

its impact on the circulation. The perturbation is placed southeast of Sandy Hook where 

sensitivity to salinity is greater than 65 10−×  °C2.  Figure 4.6 shows the evolution through 

time of the difference between the perturbed and unperturbed solutions for surface current 

and salinity (top row) and surface temperature (bottom row). As we would expect from the 

adjoint sensitivity results (Figure 4.4), a positive salinity perturbation to the initial 
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condition produces an increase in SST in the southern half of sensitivity area, A, that 

increases J.  Throughout the 3 days, the positive salinity anomaly always coincides with 

surface convergence anomaly and a dipole of positive and negative SST anomaly.  At day 1 

there is also more vertical sinking at the location of the salinity anomaly (not shown). 

Because Equation (4.12) shows that sensitivity to salinity is positively related to sensitivity 

to density, I propose that the mechanism behind the positive sensitivity of SST to surface 

salinity is that the associated density anomaly introduces a convergent baroclinic pressure 

gradient anomaly that drives flow convergence and sinking, and evolves a cyclonic 

circulation anomaly.  This process suppresses vertical upward mixing, pulls warm plume 

water in from the west and cold mixed water in from the east toward the perturbation site 

producing the dipole pattern of SST anomaly. This warmed surface water moves into the 

southern half of A and augments J.  

However, the control mechanism is different beneath the surface.  Figures 4.7a and 

4.7b show sensitivity at day 0 to salinity and temperature at 10 m depth. Temperature 

sensitivity has opposite sign everywhere to the sensitivity to salinity and its absolute value 

is about 5 times smaller. Equation (4.12) is used to separate the density and advection 

effects at 10 m (Figure 4.7c and 4.7d, respectively). Clearly, the sensitivity due to 

temperature density effect dominates at this depth – the role of advection or diffusion is 

minor. To explore this further I show sensitivity to density at day 0 at depths of 10 m, 5 m, 

2.5 m and 1.5 m in Figure 4.7e through 4.7h, respectively. At depth, there is a strong 

positive sensitivity to density close to the sensitivity region. Moving up through the water 

column, this region is displaced progressively further upstream along the plume trajectory 

consistent with a vertically sheared flow. I interpret this as showing, for each depth, the 
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horizontal location where water at that depth affects vertical mixing of water into the 

sensitivity region. The sensitivity is positive because more dense subsurface water 

corresponds to stronger stratification; this suppresses the mixing of cold water up to 

surface causing a warmer plume and eventually higher SST anomaly in the sensitivity 

region at day 3. The opposite effect occurs in the colder part of the frame where warmer 

surface water would decrease J as in Figure 4.5: denser water at that depth suppresses 

upward mixing, keeps the surface water warmer (surface cool water is still warmer than 

subsurface water), and decreases J, as shown by negative sensitivity to density in Figure 

4.7g and h. 

 
Figure  4.6. The difference in nonlinear forward model simulations when a 0.01 salinity 

perturbation is added to the surface initial conditions in the region shown in top left panel. 

Top row: Surface current difference superimposed on surface salinity difference. Bottom 

row: Surface temperature difference. The arrow in the top left panel is a scale for 10-5 m s-1. 
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Figure  4.7. For Experiment 1 (no wind). Top row: Sensitivity to (a) temperature, (b) 

salinity, (c) temperature density effect and (d) temperature advection effect at 10 m depth. 

Bottom row: Sensitivity to density at different depths: (e) 10m, (f) 5m, (g) 2.5m, and (h) 

1.5m. All plots are for sensitivity of J at the beginning (day 0) of the 3-day period. The 

Adjoint forcing area is indicated by the black frame. All the fields here are multiplied by 

106. 

 

4.4.2. Experiment 2: Southward down-welling wind 

In Experiment 2, a moderate 5 m s-1 southward wind blows over the entire domain for 

20 days. Onshore Ekman transport pushes the river plume against the New Jersey coast, 
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drives down-welling at the coast, and generates a geostrophically balanced southward 

coastal jet (Choi and Wilkin, 2007) that augments the river plume as shown in Figure 4.2b.  

Stronger vertical mixing is expected due to the effect of the wind, and there should be more 

water from offshore joining the plume along its path and eventually entering my chosen 

sensitivity area, A. A time sequence of sensitivity of J to SST (Figure 4.8) shows backward, 

or upstream, propagation that is faster and along a path that is closer to the coast than the 

unforced plume of Experiment 1.   

 
Figure  4.8. For Experiment 2 (southward wind), the sensitivity of J to surface temperature 

(top row) and salinity (bottom row) at different times during the three-day period. Time 

retreats backwards from left to right.  The region A over which J is evaluated is indicated 

by the black frame.   

 

In common with Experiment 1, at day 3 the pattern of sensitivity to SST has positive 

value in the southern half of region A and negative in the north. Both features propagate, 

backwards in time, along the plume track. The negative branch enters Raritan Bay and the 
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Hudson River mouth with a long trail on the east side of the plume, whereas the positive 

part stays in the coastal plume. A small persistent patch of sensitivity to SST lies just 

outside the northeastern corner of region A at day 0. This feature is more obvious in the 

sensitivity to surface salinity. Once again I separate the density and advection effects at day 

0 using Equation (4.13) and (4.14) (Figure 4.9). This shows that the positive and negative 

sensitivity to SST within and adjacent to the plume trajectory are both due mainly to 

temperature advection, while the patch at the northeastern corner of the frame is associated 

mostly with the influence of temperature on density and vertical mixing.   

 
Figure  4.9. At day 0 of Experiment 2 (southward wind), the sensitivity, evaluated at the 

sea surface, of J with respect to (a) SST, (b) surface salinity, (c) density, (d) temperature 

density effect and (e) temperature advection and diffusion effect. All the fields here are 

multiplied by 105. 

 

Revisiting Figure 4.8, we now see that surface water in region A consists of three water 

masses: (i) river plume water which is already at the coast at day 0, (ii) a mixture of new 
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water originating from the Hudson river after day 0 with cool surface water from east of the 

plume, and (iii) offshore surface water at northeast corner of the frame at day 0.  The first 

two water sources affect the SST anomaly in the frame mainly through advection. Because 

the first source is warmer than mean SST in the frame at day 3, sensitivity of J to this part 

of the upstream temperature is positive. The opposite sign goes to that of the second source 

because it is colder than mean SST in the frame.  For surface water at the northeast corner 

of the frame at Day 0, because density effect there is dominant and it is colder than the 

average, J would be larger if stratification there was decreased and vertical mixing was 

enhanced.  Therefore the sensitivity of J to temperature of this patch of surface water is 

negative (Figure 4.9).  

4.4.3. Experiment 3: Northward upwelling wind 

In Experiment 3, a uniform 5 m s-1 wind blows to the north and pushes the river plume 

toward Long Island (Figure 4.2c). Along the New Jersey coast, offshore Ekman transport 

upwells deeper water to the surface (Choi and Wilkin 2007) and generates a coastal cold 

anomaly. Upward tilt of the thermocline and halocline at the coast associated with coastal 

upwelling can be seen in the temperature and salinity cross-section (upper panel in Figure 

4.11) along the red line in Figure 4.2c.  Note that relative low temperature and salinity 

difference in the vertical is expected because the strong surface heating, characteristic of 

summer time conditions in the NYB, is omitted, and there has been upwelling for a 

relatively long period during the spin-up which lowers vertical differences. In terms of the 

contribution to SST anomaly, strong vertical mixing due to the fact that deep cold water is 

brought up to the surface would lower the contribution from upstream water temperature 

advection. Figure 4.10 shows sensitivity of J to SST and surface salinity in the same format 
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as Figures 4.4 and 4.8 for the previous experiments. The sensitivity to SST at day 2.9, 

which we note again is simply the initial temperature anomaly S ST T− , has three patches: 

negative sensitivity at the northern and  

 
Figure  4.10. For Experiment 3 (northward wind), the sensitivity of J to surface 

temperature (top row) and salinity (bottom row) through time. The red line in the 

right-most panel indicates the position of the vertical cross-section for Figure 4.11.   

 

southern ends of the frame, and positive in the middle. Both the negative and positive 

sensitivity signal in the south moves southward as time proceeds backward (in the 

upstream direction for the upwelling coastal jet) but disappears rather rapidly compared to 

Experiments 1 and 2; and the negative sensitivity in the north remains on the surface, and 

within the frame, through to day 0.  Thus, the surface water in the frame at day 3 actually 

has water sources at day 0: water deep in the southern end of the frame and previously 

upwelled, offshore moving water (see the cool tongue in Figure 4.2). Almost the entire 
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southeast half of region A shows zero sensitivity to temperature at day 0 because these 

waters are swept out of the frame by Ekman transport and make no contribution to SST at 

day 3. 

 
Figure  4.11.  Top panel: forward model temperature and salinity along the vertical 

cross-section indicated in Figure 4.2c and Figure 4.10; Bottom panels: sensitivity to 

temperature (left) and salinity (right) along the cross-section at different time during the 

three-day period for Experiment 3 (northward wind). 
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Figure  4.12.  At day 0 of Experiment 3 (northward wind), the sensitivity to (a) 

temperature, (b) salinity, (c) density, (d) temperature density effect and (e) temperature 

advection and diffusion effect along the vertical cross-section indicated in Figure 4.10.  All 

the fields are multiplied by 107. 

 

To illustrate how adjoint sensitivity reveals the deep source of upwelling waters, 

cross-sections of sensitivity to temperature and salinity along the red line in Figure 4.10 are 

shown in Figure 4.11, along with cross-sections of the forward model temperature and 

salinity. Because of the stretched ROMS vertical coordinate the sensitivity here is scaled 

by the local vertical grid spacing to remove effects of the discrete grid size (Section 2b). 

Sensitivity to temperature and salinity gradually propagate to the deep and reach almost to 
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the seafloor at day 0. At that time, both temperature and salinity sensitivity show a 

two-layer pattern parallel to the thermocline. Applying Equations (4.13) and (4.14), the 

roles of density and advection in the temperature sensitivity are separated in Figure 4.12. 

These effects exert their influence at different depths: the sensitivity due to the dynamic 

role of density is positive and occurs mostly below 5 m, while above this there is negative 

sensitivity due to upwelling advection. A simple volume conservation calculation for the 

Ekman layer divergence indicates 5 m as the approximate distance the water would move 

vertically in 3 days. The sensitivity of J to temperature in the surface 5 m is negative 

because upwelling brings cold water to the surface and strengthens the southern cold 

anomaly in the frame. The reason for little dynamic density effect in this layer is 

presumably that small density changes to the water in the upper 5 m at day 0 cannot prevent 

the water from upwelling; the flow divergence is set by the wind stress. However, for the 

water beneath 5 m, SST at day 3 can be influenced through the effect of density 

stratification on vertical mixing, and subsequently on the SST anomaly.  

Sensitivity to density exhibits a two-layer pattern with negative sensitivity lying 

beneath positive sensitivity (Figure 4.12c).  To confirm this pattern, I follow a similar 

approach as presented in Figure 4.6 and add a 0.01 salinity perturbation at these layers in 

the initial conditions of a forward model run. The differences in SST between perturbed 

and unperturbed nonlinear model solutions at day 3 are shown in Figure 4.13 for 

perturbations to the lower and upper layer, respectively. Both figures show a tripole pattern 

of SST anomalies, with two positive patches bracketing a negative patch between them. 

Scrutiny of model state differences at other times (not shown) reveals that these patches 

originate subsurface and outcrop due to uplift driven by the diverging Ekman transport. 
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The pattern is displaced further offshore for salinity initial perturbation placed in the upper 

layer (Figure 4.13b),  and the impact on SST anomaly differs: the outcome of the lower 

layer perturbation (Figure 4.13a) lowers the SST anomaly in the frame at day 2.9 (see 

Figure 4.10), and then sensitivity of J to salinity at that layer is negative; the upper layer 

perturbation (Figure 4.13b) enhances the SST anomaly in the frame and then sensitivity of 

J to salinity in that layer is positive.   

 
Figure  4.13.  For Experiment 3 (northward wind), the difference in SST in forward model 

simulations when a salinity perturbation is added to the (a)  upper layer, and (b) lower layer, 

initial conditions. 



Table 4.1. Comparison of the magnitude of different contributions to J (coastal SST anomaly) for each of the 3 experiments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
X denotes model variables in their SI units; ∂J/∂X is the adjoint sensitivity in units oC2/[X];  δX is a small variation of  X in units [X]. 

 X Upstream 
temperature Density Surface 

current 

Sea 
surface 
height 

Vertical 
mixing of 

momentum 

Vertical 
mixing of 

tracers 

Wind 
stress 

∂J/∂X 10-4 10-5 42 10−×  53 10−×  1 0.3 10-4 

δX 2 1 10-1 10-2 10-5 10-6 -- 
No wind 

2( )J X C
X

δ∂
°

∂
 42 10−×  10-5 52 10−×  73 10−×  10-5 73 10−×  -- 

∂J/∂X 55 10−×  42 10−× 45 10−×  43 10−×  10 23 10−×  45 10−×  

δX 2 1 10-1 10-2 10-5 10-4 35 10−×  Southward 
wind 

2( )J X C
X

δ∂
°

∂
 10-4 42 10−× 55 10−×  63 10−×  10-4 63 10−×  62.5 10−×

∂J/∂X 10-4 42 10−× 45 10−×  42 10−×  15 10−×  10-2 43 10−×  

δX 2 1 10-1 10-2 10-5 10-4 10-3 Northward 
wind 

2( )J X C
X

δ∂
°

∂
 42 10−×  42 10−× 55 10−×  62 10−×  65 10−×  10-6 73 10−×  
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4.4.4. Comparison of the different contributions to total δJ  

Besides sensitivity to temperature and salinity, the adjoint model also gives the 

sensitivity of J to the other state variables, forcing, and parameters of the model. To 

quantitatively compare the different contributions to the total variation of J, terms in 

equation (4.8) are estimated for all three experiments and shown in Table 4.1. For 

Experiment 1 (no wind), the contribution of surface temperature dominates. Mixing is 

weak in this free river plume scenario, and SST anomaly in the frame is determined 

principally by the advection of warm water from upstream. From the perspective of 

observing system design, good estimation of upstream water temperature along the New 

Jersey coast over the proceeding 3 days is highly relevant to knowledge of the SST 

anomaly in region A.  

For Experiment 2 (southward wind), Table 4.1 shows density makes the leading 

contribution, followed by upstream temperature advection and vertical mixing. The 

contribution of wind to SST anomaly variation over the 3 days is surprisingly small 

considering that the strong coastal current is mainly due to the down-welling favorable 

wind. An adjoint model simulation with a longer time window does show sensitivity to 

wind stress having a leading role in the variation of J. It can be interpreted as indicating the 

full strength of the coastal current takes several days to evolve, and is not strongly 

impacted by wind changes in the last 3 days of simulation. Once established, details of the 

SST patterns within the current itself become the main contributor to variation of the J 

defined here.   
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The same logic applies to Experiment 3, the upwelling scenario, for which Table 4.1 

shows density and upstream temperature advection as the largest contributors. A leading 

contribution from density is to be expected because changes to the vertical stratification 

can alter both mixing and the depth from which upwelled water is drawn (Allen et al. 

1995). Both these influences can change SST as explained in Section 4c on the 3-day 

timescale. Therefore, in this circulation scenario, observation of the vertical density 

distribution as well as the upstream water temperature over the preceding three days is 

significant for accurate simulation of the SST anomaly in the end of the period.  

The quantitative comparison of the relative contributions of different state variables 

and forcing variables under different circulation scenarios, together with the spatially and 

temporally resolved adjoint sensitivity information in Section 4a-c, shed light on the timing 

and location of variations in the ocean state that are crucial for precise prediction of the 

future SST anomaly conditions as characterized by J. Observation of these variables at the 

identified times and locations can reasonably be expected to be of significantly greater 

value when seeking to adjust the model prior state through DA. 

 

4.5. Summary 

As a step toward building a coastal ocean forecast system for the New York Bight, I 

have undertaken an adjoint model study of the sensitivity of New Jersey coastal SST 

anomalies for three idealized wind forcing scenarios: no wind, upwelling favorable, and 

down-welling favorable wind. The adjoint sensitivity formulas were derived first to clarify 

how adjoint sensitivity has the capability to simultaneously compare the contribution from 
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different state variables, model forcing, and model parameters to the variation of some 

chosen model aspect characterized via a scalar functional, J, and then identify the main 

source of that variation.     

To focus on characteristics of short-term wind-induced SST anomalies adjacent to the 

New Jersey coast, my scalar functional J was defined as the temporal and spatial mean of 

the square of SST anomaly in a frame area in a small central sector of the New Jersey coast 

for a brief prescribed time interval. Within this definition, ocean temperature can affect J 

through two different processes: the advection and diffusion of source waters of differing 

temperature into the frame region, and the effect that temperature has on circulation and 

mixing through its contribution to density. It was shown that these influences can be 

separated by deriving a decomposition based on applying the chain rule to the adjoint 

sensitivity analysis; the method essentially exploits the density information in the 

sensitivity to salinity at constant temperature. Prior to the adjoint sensitivity analysis, I 

verify that the linearization assumption of the adjoint model is valid by comparing the 

tangent linear model solution with the difference between two, slightly perturbed, 

nonlinear model solutions. The tangent linearization is valid for the 3-day time window of 

this study. Care is taken to normalize the adjoint sensitivity appropriately to remove effects 

of the vertical grid discretization before interpretation of the results.  

In the first experiment, the Hudson River discharge generates a purely buoyancy driven 

coastal current in the nonlinear model (no wind). The adjoint sensitivity method shows that 

of all ocean state variables (temperature, salinity, velocity) and forcing, throughout the 

entire model domain and at all preceding times, temperature itself has the greatest impact 

on J in this experiment. The decomposition of sensitivity into advection and density 
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contributions shows that in this scenario advection dominates over the indirect role of 

temperature on circulation exerted through the influence of density on mixing and pressure 

gradients. The sensitivity of J to surface temperature identifies two sources of the surface 

water in the frame where the functional J is defined: warm plume water and cooler coastal 

ocean water that is partially surrounded by the river plume where it detaches from the 

coast. Analysis of the sensitivity to subsurface water temperatures shows these exert their 

influence principally through the dynamic density effect.   

In Experiment 2 a 5 m s-1 southward wind blows and drives a strong coastal current in 

the same direction as the buoyancy driven circulation. Adjoint sensitivity highlights three 

significant sources of influence on J. Decomposition shows that two stretches of water 

parallel to the coast and of opposite sign in sensitivity act through temperature advection, 

while a small patch northeast of the sensitivity frame influences SST less directly due to the 

dynamic effect of density. 

Deep water is uplifted to the surface in Experiment 3 due to a northward upwelling 

favorable wind.  The sensitivity of J to SST rapidly diminishes at the coast as time 

proceeds backward in this scenario because surface waters to the south are swept offshore 

by Ekman transport and do not enter the sensitivity region where J is defined. A vertical 

cross-section of sensitivity to temperature confirms there is a deep source to the 

temperatures that influence SST anomaly, and clearly delineates its depth and offshore 

extent through time. Separation of the sensitivity to temperature into the respective 

contributions of advection and dynamics shows that influence of direct advection is 

restricted to mainly the top 5 m of the water column and some 10 km offshore (3 days 
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previously), while the indirect dynamic or density effect is beneath this (5 to 15 m depth) 

and over the same across-shelf extent.  

The contributions from different variables and parameters to the total variation of J  

are quantitatively compared. For the no wind, unforced plume experiment, upstream 

surface temperature dominates. For the down-welling favorable wind experiment, density 

effect is shown to have the leading contribution followed by temperature advection and 

vertical mixing. Only when adjoint simulations are extended to a time window longer than 

3 days do we find that wind stress can become the dominate source of sensitivity for the 

chosen J. For the upwelling scenario, density and upstream temperature advection 

contribute equally to J. The importance of density is expected in this case because 

upwelling is against the vertical stratification, and changes in vertical density structure 

alter details of the upwelling process and subsequently SST characterized by J.  

The results obtained in this study demonstrate the ability of adjoint sensitivity to 

identify the oceanic conditions and forcing that are “dynamically upstream” to a region or 

feature of interest, water sources, the main contributors to variation of a defined model 

feature, and often the mechanisms behind these. The timing and location of variations in 

the ocean state that are crucial for subsequent prediction of the model features, as 

characterized by a chosen functional J, are clearly highlighted. It follows, therefore, that 

observation of these variables at the identified locations and times can be expected to have 

significant value when used to adjust the model prior state through DA. This property 

embodied in the adjoint model will underpin future DA and adaptive sampling studies.  
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CHAPTER 5. IS4DVAR DATA ASSIMILATION 

5.1. Introduction 

In this chapter ROMS IS4DVAR system is used to assimilate observational data 

collected in the NYB during spring 2006.  The practice exposes some practical issues that 

need to be addressed when assimilating observational data, especially in real-time, 

evaluates the influences of different observations on the performance of the forecast 

system, and provides the best estimated ocean state that can be obtained.   

The NYB is active in biogeochemical processes and the Hudson River is a major 

source of the biogeochemical tracers and contaminants in the NYB.  Thorough 

understanding of the local biogeochemistry is an objective for some studies in this area 

(Schofield et al. 2008b), and numerical modeling is one of the approaches that have been 

taken in these studies (Cahill et al. 2008, Fennel et al. 2006).  For the purpose of simulating 

biogeochemical processes, an accurate estimate of the ocean physical states is required.  

Improving estimates of the ocean state is one of the objectives of this chapter. 

As described in Chapter 1, the NYB is one of the best observed coastal areas in the 

world and the target of pioneered deployments of new observing instruments including 

gliders, HF radar, and a cabled observatory. During spring 2006, interdisciplinary process 

studies of the Hudson River plume, the Lagrangian Transport and Transformation 

Experiment (LaTTE), were conducted (Chant et al. 2008a).  A variety of observational 

platforms, including satellites, HF Radar network, a fleet of gliders, mooring arrays, 

surface drifters, R/V Cape Hatteras and R/V Oceanus, were used extensively to monitor the 
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NYB.  Meanwhile, numerical simulation of the NYB with ROMS was used to guide the 

observations in real-time.  These make the NYB an attractive location to explore the 

integration of advanced observation and modeling capabilities for the purposes of 

implementing coastal ocean DA and optimal observation systems. The first half of the 

integration is carried out in this chapter and the second in Chapter 6. 

In DA observations are used to improve the model description of the oceans (Bennett 

2002, Evensen 2007, Wunsch 2006).  Time-dependent variational method (4DVAR) is one 

DA method and it takes the linearized dynamical model into consideration while adjusting 

model control variables to fit observations.  Within the 4DVAR system a cost function is 

usually defined as the weighted mismatch between observations and model equivalent plus 

some extra constraints, such as the size of the adjustment to the model control variables.  

The ultimate goal of the 4DVAR DA system is to minimize the cost function.  In principle, 

control variables to be adjusted can be any external constraints on the model, such as initial 

conditions, boundary conditions, and external forcings, or inside the model, such as 

vertical mixing parameters and missing physics.   

Assuming the model physics is perfect (“strong” constraint (Talagrand and Courtier 

1987)), there are two approaches to minimize the cost function: (i) IS4DVAR (Courtier et 

al. 1994), and (ii) representer-based 4DVAR (Bennett 2002) (also called 4D-PSAS 

(Courtier 1997)), which are essentially equivalent (Courtier 1997). However, they 

minimize the cost function in different spaces: IS4DVAR performs the minimization in 

model space and representer-based 4DVAR in observation space.  In IS4DVAR an 

iterative scheme, e.g. conjugate gradient algorithm and quasi-Newtonian method, is used 

to minimize the cost function based on the information provided by Tangent Linear and 
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Adjoint models (Powell et al. 2008, Weaver et al. 2003).  In each iteration a backward 

integration of the Adjoint model forced by the model-observation mismatch is conducted. 

It rides on nonlinear model trajectory over the period that a single continuous DA spans, 

the DA window, and gives the gradient of the cost function with respect to control 

variables. The gradient is then used to provide the direction of the cost function minimum 

search. Subsequent Tangent Linear model integration propagates the control variable 

adjustment forward over the DA window.  The IS4DVAR algorithm was implemented in 

ROMS (Powell et al. 2008) and therefore used in this study. 

In representer-based 4DVAR the minimum search is achieved through looking for the 

coefficients of the observational representers that give the model-observation mismatch 

(Bennett 2002).  A representer is the covariance between an observed model state at an 

observation location and model states everywhere at any time. The covariance has 

dynamical components, and obtaining these components requires integration of Tangent 

Linear and Adjoint models.  The process of solving the equations of representer 

coefficients hence employs Tangent Linear and Adjoint models.  Courtier (1997) proved 

that the equations of representer coefficients are equivalent to the equations of control 

variable adjustment in IS4DVAR, and that to solve the equations of representer 

coefficients is essentially to minimize an objective function whose Hessian has the same 

condition number as that of the cost function in IS4DVAR.  The integration of Tangent 

Linear and Adjoint models in both IS4DVAR and representer-base 4DVAR algorithms 

incorporates the time-dependent dynamics into the adjusting system, which is the very 

merit of the 4DVAR method.  
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Both 4DVAR algorithms have been applied in oceanography studies in different 

scales.  In large scales IS4DVAR have been applied for methodology improvement 

(Vialard et al. 2003, Vossepoel et al. 2004, Weaver et al. 2003, Weaver et al. 2005) and 

state estimation (Stammer et al. 2004, Stammer et al. 2002, 2003, Wunsch and Heimbach 

2007).  In regional and coastal scales systems using 4DVAR algorithms have been 

developed and applied mostly in idealized setups (Di Lorenzo et al. 2007, Kurapov et al. 

2007, Ngodock et al. 2007, Scott et al. 2000) with the exception of  Hoteit and Köhl (2006), 

Powell et al. (2008) and Smith and Ngodock (2008).  Given the difficulties associated with 

coastal applications, such as open boundary condition and strong nonlinearity, extra 

caution is required to build the 4DVAR system. At the same time, some coastal ocean DA 

works have been done with other methods, such as nudging or melding (Lewis et al. 1998, 

Wilkin et al. 2005), optimal interpolation (Oke et al. 2002), 3DVAR (Li et al. 2008), and 

ensemble Kalman filter (Hoffman et al. 2008). 

This chapter is organized as follows: Section 5.2 describes the data collected in spring 

2006 and the quality control; Section 5.3 describes the model configuration and Section 5.4 

the DA system; Section 5.5 presents the results; Section 5.6 summarizes the chapter. 

 

5.2. Observational Data 

During spring 2006 there was a LaTTE field campaign in the NYB targeting the spring 

freshet of the Hudson River, similar to that in spring 2005 (Chant et al. 2008a). The 

sustained observatories including HF Radar, gliders, satellites were operated by the 
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Rutgers University Coastal Ocean Observation Laboratory (COOL) (Glenn and Schofield 

2003).   

Raw satellite data was acquired from the Advanced Very High Resolution Radiometer 

(AVHRR) aboard NOAA-12, 15, 17, 18 satellites by an L-Band satellite dish. On average, 

there are about 2 to 3 passes of the satellites over the NYB area in a day. The raw data were 

processed to 1km resolution SST data in COOL using the Multi-channel Sea Surface 

Temperature algorithm in SeaSpace terascan software.  Clouds in the SST snapshot data 

were manually removed and the snapshots were then spatially averaged on to a 4-km 

resolution grid.  An example of the SST snapshot is given in Figure 5.6a.   

Glider data used in this study are temperature and salinity profiles. There were 

measured by SeaBird CTD aboard which operates at 0.5 Hz and gives vertical profiles at 

resolution of 0.25 m. Because the conductivity cells on the gliders are unpumped, there is 

thermal-lag associated with flushing of conductivity cell and heat stored in the wall of 

conductivity cell especially when gliders cross the thermocline (Lueck 1990).  The 

thermal-lag was corrected using the algorithm proposed by Morison et al. (1994) and the 

data were then vertically averaged to profiles of 1 m resolution.  The glider tracks are 

plotted in Figure 5.1 and an example of glider-measured temperature and salinity 

cross-sections is given in Figure 5.7. 

HF radar data from 5 radio sites (Figure 5.1) are used to retrieve 3-hour averaged sea 

surface current once per hour.  The azimuthal resolution of the raw data at all the sites is 5 

degrees, and radial data from the sites was combined into total vector maps using the 

algorithm described by Kohut et al. (2001) and Kohut et al. (2006b). The product from the 
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COOL is surface currents on a 6 km resolution regular grid. An example of the HF 

Radar-measured surface current is given in Figure 5.6a.  I choose 2.5 m to be the depth of 

the HF Radar-measured currents according to the effective depth of the HF Radar 

measurement (Stewart and Joy 1974). 

  
Figure  5.1.  The study domain and observation locations.  The black frame indicates the 

model domain; Bathymetry of the New York Bight is in grayscale; Black dash lines are 

contours of model isobaths in meters; the yellow pentagram indicates location of the 

Ambrose Tower; the green squares indicate locations of the five HF Radar stations.   
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Figure  5.2.  Averaged spectrum of HF-Radar-measured surface current.  Dash lines 

indicate local inertial frequency band and the confidence limit applies to data within the 

inertial frequency band. 

 

The averaged power spectrum of the HF Radar data in Figure 5.2 shows that the tidal 

signal dominates the observed surface current.  Due to errors in either the model tidal 

harmonic boundary conditions, the HF Radar measurement, or both, tidal current in the 

model is different from that observed by HF Radar as we can see from the comparison of 

M2 tide in Figure 5.3.  However, the DA system used in this study does not take model 

tidal harmonics as a control variable, that is, it cannot adjust the tidal harmonics on the 

open boundaries to fit the observed tidal currents.  If the HF Radar data is assimilated 

directly the DA system would consider the tidal difference as the outcome of errors in 

control variables, i.e. initial conditions in this study. It would then adjust the initial 

conditions to minimize the difference in the tides, which would lead to overcorrection.   
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Figure  5.3. Comparison between HF Radar-observed and modeled M2 tide. 

 

To overcome this problem, I filtered the tidal signal (O1, K1, Q1, M2, S2, N2 and K2) 

in the HF Radar data, extracted the tidal harmonics from a control model simulation over 

the period of observation, and then added the modeled tides to the detided HF Radar data.  

This merge guarantees the consistency between the tidal currents in the “observational 

data” and model.  Assimilating the merged “observations” is essentially assimilating the 

subtidal currents measured by the HF Radar. Comparison of assimilating the original HF 

Radar data and the merged ones shows that assimilating the merged surface currents gives 

slightly better velocity fit and forecast skill (not shown). 
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Other observations used in this study include moorings, surface drifters, and ship 

surveys.  Seven moorings as shown in Figure 5.1 were deployed from the beginning of 

April to the end of June.  Each mooring contains an Acoustic Doppler Current Profile 

(ADCP) and two to three Conductivity/Temperature (CT) sensors at different depth.  Two 

surface drifters were deployed between 4 and 8 May.  They measured the surface water 

temperature while drifting.  The shipboard surveys with the R/V Cape Hatteras and R/V 

Oceanus occurred between 2 and 8 May. A towed undulating vehicle, CTD and ADCP 

were used to measure the temperature, salinity and current along the tracks.  All data from 

the towed undulating vehicle, ADCP, CTD, CT and drifters were averaged to resolution of 

2 m on vertical, 5 km on horizontal and 12 minutes on temporal.  

Figure 5.4a marks the types of observations we have each day during the experiment 

period and Figure 5.4b gives the total number of observations and numbers for each 

variable at each day.  We have between 20,000 and 45,000 observations each day, among 

which velocity occupies the most and salinity the least. More than 60% of the velocity data 

is surface current measured by HF Radar and the rest is measured by ADCPs. More than 

50% of the temperature data is SST data from satellites, about 13% is measured by gliders, 

and the rest is measured by moored and shipborne CTDs.  About half of the salinity data is 

subsurface glider measurement and the other half is from moored and shipborne CTDs.   
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Figure  5.4.  Types (a) and numbers (b) of observations over the data assimilation period. 

 

5.3. Model Configuration 

The model setup in this chapter is very similar to that in Chapter 2 as shown in Figure 

5.1, and it is therefore described only briefly here emphasizing the changes from Chapter 2. 

Because of the massive computational demand of the IS4DVAR system (about 100 times 

the computation of a single forward model simulation), horizontal resolution in this study 

has been decreased to 2 km.   
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The control forward nonlinear model simulation (before DA) starts at Apr. 5th, 2006 

with initial conditions obtained from the full physics simulation in Chapter 2.  In all 

forward nonlinear model simulations Chapman (1985) and Flather (1976) open boundary 

conditions are used for sea level elevation and the barotropic component of velocity on the 

model perimeter, respectively. These conditions impose both a remotely forced along-shelf 

mean flow computed from the water-depth/flow-speed relationship deduced by Lentz 

(2008), and tidal harmonic variability (K1, O1, Q1, M2, S2, N2, K2) extracted from a 

regional ADCIRC simulation (Mukai et al. 2002).  Gradient open boundary conditions are 

used for 3D velocity and tracers. Quadratic bottom drag was used with drag coefficient 

0.003. General length scale method with k-kl scheme (Umlauf and Burchard 2003, Warner 

et al. 2005) was used for the vertical mixing. The forward models apply bulk formulae 

(Fairall et al. 2003) with meteorological forcings from the North American Mesoscale 

(NAM) model at NOMADS (Rutledge et al. 2006) to compute air-sea momentum and heat 

exchange.  The meteorological variables were chosen to be the 6- to 30-hour daily forecasts 

in order to avoid the initial shocks at the beginning of the forecasts. The river discharge 

was obtained from USGS Water Data (U. S. Geological Survey 2007) and modified to 

include ungauged portions of the watershed.  Figure 5.5 shows the river discharges and 

wind at the Hudson River mouth over the DA experiment period. 
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Figure  5.5.  River discharges (a) and wind at the Hudson River mouth (b) over the 

experiment period. 

 

5.4. Data Assimilation System 

5.4.1.  IS4DVAR Theory 

Here I briefly describe the theory of IS4DVAR for completeness.  Readers can refer to 

literatures for detailed description (Courtier 1997, Courtier et al. 1994, Powell et al. 2008, 

Weaver et al. 2003). The nonlinear ROMS can be presented as, 
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where M is the model nonlinear operator; Φ(t) is a state vector [u v T S ζ]T comprised of 

the velocity, temperature, salinity and sea surface height at all model grid points at time t; 

F(t) is the external forcing; Φi is the initial conditions; and ΦΩ(t) are boundary conditions 

along boundary Ω. I assume the model is perfect (strong constraint). The objective of the 

DA is to adjust the control variables (i.e. initial conditions, boundary conditions and 

forcing) to minimize the mismatch between observations and model equivalent, 
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where H is the sampling operator which samples the nonlinear model states at the 

observation locations, O is the observational error covariance matrix, and y is the 

observations.  We let Φ0 denote a solution to the nonlinear problem (5.1) and the mismatch 

between the model and observation is then d = y - HΦ0(t). Assume Φ0 is sufficiently 

“close” to the truth, that is, d is small and adjustment to initial conditions, φi = δΦi, 

boundary conditions, φΩ(t) = δΦΩ(t), and external forcing f(t) = δF(t) required to fit the 

observations is sufficiently small.  Then the system can be linearized and the cost function 

is defined as 
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where Nobs is the number of observational data, H' is linearized H, φ(t) is the perturbation 

state at time t, φ(t) = Φ(t) – Φ0(t), Bi, BΩ and Bf are the covariances of errors in initial 

conditions, boundary conditions and forcing, respectively.  The first term in the 

right-hand-side of equation (5.3) is a measure of the model-observation mismatch, and the 

last three terms in equation (5.3) are to penalize the adjustment of the control variables to 

ensure them to be small.  

The minimization of J is usually achieved iteratively (inner-loop) using a Conjugate 

Gradient algorithm. Because the system is linear, J is quadratic and the convergence of 

iterations is guaranteed.  In each iteration the gradient of J with respect to control variables 

obtained from the adjoint model forced by the model-observation mismatch (Talagrand 

and Courtier 1987) provides the direction of the minimum search.  There is also a layer of 

outer-loop which runs the nonlinear model using the adjusted control variables when an 

inner-loop is finished.  This brings the nonlinearity into the system. In the end, corrected 

initial conditions, boundary conditions and forcing are obtained. 

5.4.2.  System Setup 

The DA experiment in this chapter covers the period of April 10 to June 5, 2006.  The 

DA window is chosen to be 3 days based on the Tangent Linear model linearization tests in 

Chapter 4. Following the practice of real-time numerical weather forecast, I choose to 

overlap consecutive DA cycles: the beginning of the DA window proceeds one day from 
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one cycle to the next, and there is therefore a two-day overlap between two consecutive 

cycles. The workflow is described as follows.  The first DA cycle starts at April 10, 00:00 

UTC (The times in this chapter are all UTC and UTC is neglected from now on.) with the 

first guess of the initial conditions from the control forward model simulation. The 3-day 

DA assimilates all the observational data within the period (April 10, 00:00– April 13, 

00:00) and gives an adjusted initial conditions.  An 18-day forward nonlinear model 

simulation is then launched with the adjusted initial conditions at April 10, 00:00.  The 

model output within the first three days are analysis results and that for the following 15 

days are forecasts.  Note that the ocean forecasts here are forced by the sequentially merged 

6- to 30-hour daily meteorological forecasts, and the forecast skill of the 4DVAR system in 

this study is therefore expected to be better than that in real time.  The second DA cycle 

starts at April 11, 00:00 with the first guess of the initial conditions from the analysis of the 

first DA cycle.  It then assimilates all the observational data within the window of April 11, 

00:00 and April 14, 00:00 and produces adjusted initial conditions at April 11, 00:00.  Note 

that the observations between April 11, 00:00 and April 13, 00:00 have been assimilated in 

both the first and the second DA cycles.  Another 18-day forward nonlinear model 

simulation starting from the adjusted initial conditions at April 11, 00:00 is then launched.  

The cycles repeat.  The last DA cycle starts at June 3, 00:00:00.  In total, there are 55 

overlapped cycles.    

In this study, I adjust only the model initial conditions to fit the observations.  The last 

two terms in equation (5.3) are therefore neglected.  It is likely that errors exist in the 

external forcing and boundary conditions.  But given the relatively short DA window, I 

expect the effects of initial conditions to dominate the effects of boundary conditions and 
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forcing in the subsequent evolution of oceanic tracers (temperature and salinity).  Thus 

initial condition error is a major cause of the model-observation tracer mismatch. This is 

consistent with results in Chapter 4 in the context of comparing contributions of different 

sources to SST anomaly on the New Jersey coast.  However, this argument is not 

necessarily correct for velocity as we will see later in this chapter. The capability of 

adjusting external forcing and boundary conditions has been recently added to ROMS. 

They will be applied in future studies and it presumably will improve the performance of 

the DA system.  

Within each DA cycle, 3 outer-loops and 11 inner-loops are used. Tests with different 

number of outer-loops and inner-loops show that this combination is the best balance 

between system performance and affordability.  Due to strong nonlinearity embedded in 

the generic length scale method and bulk formulae, their linearizations are not used in the 

Tangent Linear and Adjoint models.  Instead, vertical viscosity and diffusivity, surface 

heat and moment fluxes computed in the first nonlinear model simulation of each cycle 

were stored and used by the Tangent Linear and Adjoint models in that cycle.  

5.4.3.  Error Statistics 

The model-observation mismatch in the cost function (the first term in the 

right-hand-side of equation (5.3)) is weighted by observational error covariance.  In this 

study I assume the observations are independent of each other, and the observational error 

covariance matrix O is then a diagonal matrix.  An error value is assigned to each 

observation to represent observational error which includes instrument error, 

misrepresentation error associated with subgrid-scale physics missed by the model but 
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caught by the instruments, and model misrepresentation error associated with error in 

forcing and open boundary conditions. The error assigned for each observation is 

essentially to measure how much each of the observations can be trusted given the status of 

the model.  To choose the observational error representation is a rather subjective and 

empirical task. On one hand, it should be based on the knowledge we have about the 

instruments and model characteristics.  On the other hand, we need to choose the errors that 

will make the minimization in the DA system converge.  Table 5.1 lists the error 

representation associated with each instrument type that is used in this study. 

 

Table 5.1.  Observational Error Representation 

 
Observational 

Platform Satellite HF 
Radar Glider Mooring Drifters Shipborne

Velocity 
(m s-1) ---- 0.05 ---- 0.02 ---- 0.06 

Temperature 
 (oC) 0.4 ---- 0.4 0.4 0.3 0.6 

Salinity ---- ---- 0.4 0.4 ---- 0.6 

  

The background error covariance Bi in Equation (5.3) is to take into account the 

interconnection between the initial condition adjustment in the same variable at different 

locations (univariate) and between the adjustment in different variables (multi-variate) 

(Derber and Bouttier 1999). It is essentially to spatially smooth the initial condition 

adjustment for this study.  Because it is impossible to have the explicit form of Bi in a 

4DVAR system given its prohibitive size (O(106)×O(106) for this study), it is usually 
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estimated based on an ensemble of model simulations (Li et al. 2008, Parrish and Derber 

1992) or numerical simulation of diffusion equations (Weaver and Courtier 2001). The 

algorithm proposed by Weaver and Courtier (2001) was implemented in ROMS (Powell et 

al. 2008).  It separates Bi into a multi-variate balance operator, background error standard 

deviations, and a univariate correlation matrix.  The correlation matrix is further separated 

to horizontal and vertical correlations, and each of them is achieved by solving a diffusion 

equation (2 dimensional for horizontal and 1 dimensional for vertical).   

Because the balance operator in ROMS is still under development, it is not used in this 

study.  It is worth emphasizing that some of the dynamical connections between different 

variables can still be caught by the Tangent Linear and Adjoint model integrations.  The 

background error standard deviations were calculated from a detided 3-month model 

simulation assuming that the uncertainty in initial conditions is similar to the subtidal 

variability.  In computation of correlation 20 km horizontal and 2 m vertical decorrelation 

scales were chosen based on the length scales that local spatial variability has.  Note that 

the length scale in ROMS is defined as the distance over which the correlation reaches 

about 0.7.   

5.5. Results 

In this section I am going to show two examples of the DA results first.  Investigations 

of statistical measures of the model performance, i.e., the reduction of the 

model-observation mismatch in analysis and forecast modes, respectively, will then be 

presented.  Note that the comparison in analysis mode will be conducted with only 

assimilated data and that in forecast mode with unassimilated independent data. 
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Figure  5.6.  Comparison of observed and modeled sea surface temperature and current at 

2006 April 20, 07:00:00. 

 

5.5.1.  Two Examples 

Figure 5.6 and 5.7 show two examples of the DA result.  In Figure 5.6, 

satellite-measured SST and HF-Radar-measured surface current at 2006 April 20, 07:00:00 

are compared to their equivalent in the control simulation, the analysis given by the 10th 

cycle (DA window spans April 19 – 22, 00:00:00) and the forecast of the 6th cycle (DA 

window spans April 15 – 18, 00:00:00).  The observational data were preprocessed as 
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described in Section 5.2.  Comparison between Figure 5.6a and b clearly shows that SST in 

the control simulation is too warm everywhere, the warm Hudson River plume extends too 

much to the east, the coastal warm patch around 39.6oN extends too offshore, and most of 

the surface current vectors are pointing to the right of the observed ones.  The model errors 

have largely been removed in the analysis by the DA (Figure 5.6c): SST bias appears 

absent, the Hudson River plume sits at the right location, the warm patch along the New 

Jersey coast covers the right area, and most the surface current vectors point to the same 

direction as the observed ones.  The 3-day forecast (Figure 5.6d) has SST and surface 

current pattern closer to the observations than the control simulation, but the forecast 

deviates more from the observations than the analysis, especially for the surface current in 

the Hudson River plume area.  

Between April 27 and 29 a glider was deployed around the Hudson Shelf Valley area 

and its track is the one in Figure 5.1 across the Hudson Shelf Valley.  In Figure 5.7, the 

measured temperature and salinity cross-sections are compared to the equivalent in the 

control simulation, the analysis given by the 20th cycle (DA window spans April 27 – 30, 

00:00:00) and the forecast given by the 17th cycle (DA window spans April 24 – 27, 

00:00:00).  The comparison between observations and the control simulation shows about 

1oC surface warm bias, 1oC subsurface cold bias and 0.5 psu saline biases in all depth in the 

model.  In the analysis the biases have largely been removed and the temperature and 

salinity patterns have been mostly restored except that the subsurface saline bias in the 

Hudson Shelf Valley becomes worse.  In the 3-day forecast, the biases in most areas are 

absent, but the spatial patterns divert from the observations much more than the analysis, 

especially salinity in the surface layer. 
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These two examples demonstrate that the DA system utilized in this study is capable of 

bringing the model closer to the observations and also giving somewhat improved 

forecasts comparing to the control simulation before DA.   

 

 

Figure  5.7.  Comparison of glider-measured and modeled temperature and salinity along a 

glider track between April 27 and April 29, 2006 (The red line across the Hudson Shelf 

Valley in Figure 5.1). 
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Figure  5.8.  Normalized cost functions (a) and cost function gradient norm (b) at each 

iteration of all the 55 DA cycles.  The dashed lines are from the first DA cycle.  The 

normalization is achieved through dividing the cost functions and cost function gradient 

norms by their value at the beginning of each DA cycle. 

 

5.5.2.  Analysis Error Reduction 

Figure 5.8 shows cost function value and cost function gradient norm after each 

iteration for all 55 cycles.  They are normalized by their initial values at the beginning of 

each cycle.  It can be seen that cost functions in all cycles decrease as the iterations proceed 
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and most of the cycles have more than 20% reduction of cost function after 33 iterations.  

The reason for such a low reduction of cost function is that, on average, 2/3 of the 

observations in each cycle have been assimilated by previous cycles.  The dashed curve in 

Figure 5.8a has the largest decrease of cost function (about 50%) in 33 iterations and is 

from the first 3-day cycle within which all observations were assimilated for the first time. 

It is expected that most of the mismatch between the previously assimilated observations 

and the model is in the null space of the DA system, and it is caused by subgrid-scale 

dynamics, error in forcing or boundary conditions, etc. That is, it is impossible to adjust 

model initial conditions to reduce this part of the mismatch.  Within 33 iterations, cost 

function gradient norms in all cycles have about an 80%-90% reduction.  This indicates 

that the conjugate gradient algorithm has successfully found the minima of the cost 

functions.   

Another distinct feature in Figure 5.8 is the surge of the cost functions and their 

gradient norms at the beginning of each outer-loop.  This is caused by the update of the 

nonlinearity in the dynamical system.  The minimization of the cost function within each 

outer-loop is based on linearization upon the nonlinear model trajectory given by the 

previous cycle (for the first outer-loop) or the previous outer-loop (for the second and third 

outer-loops). The nonlinearity update at the beginning of each outer-loop breaks the 

assumption and incorporates nonlinearity into the DA system. As the minimization 

proceeds, the surges of cost function become smaller. This indicates that the linear models 

are getting closer to the nonlinear models, suggesting that the linear assumption embedded 

in the Tangent Linear and Adjoint models is appropriate. 
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To further demonstrate reduction of the model-observation mismatch, I produced 

scatter plots of observation vs. the control simulation and the analysis for temperature, 

salinity and velocity u-component as in Figure 5.9.  Comparison of model-observation 

RMS differences before and after the DA gives about 60% RMS reduction for temperature, 

30% for salinity, and 25% for velocity u-component by the DA.  The RMS reduction for 

velocity v-component is similar to u-component (not shown).  From the temperature 

comparison we can see that the warm bias in the control simulation has been removed in 

the analysis and the scattering around the diagonal line has been reduced.  The salinity 

comparison also shows reduction of the scattering around the diagonal line, although some 

large mismatch between analysis and observation remains.  The large salinity mismatch 

between analysis and observation mostly occurs within the estuary (shipborne in-situ 

salinity measurements).  Because the model resolution is too coarse to properly resolve the 

estuarine processes, large mismatch there is unsurprising.  Scattering of the velocity 

u-component is also reduced by the DA, but it remains large.  One possible reason for this 

is that the variability-to-span ratio of velocity is about 1, which is much larger than that of 

temperature and salinity.  Presumably, model error is proportional to the natural variability 

and then the ratio of model error to span, which the plotted scattering really means, for 

velocity is larger than that for temperature and salinity.  Another possible reason for the 

relatively larger error in modeled velocity is wind error and it will be discussed in the next 

section. 
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Figure  5.9.  Comparison between observed and modeled temperature, salinity and 

U-velocity for model before (control run) and after data assimilation. 
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Figure  5.10.  Cost function of the control run, at the beginning of each cycle and of the 

analysis and the Chi-squared-theory-predicted optimal minimum of cost function of each 

cycle. 

 

Figure 5.10 presents the time series of the total cost function and the cost functions of 

temperature, salinity and velocity.  The cost functions of the control simulation, at the 

beginning of each cycle and of the analysis are compared in each subplot.  Note that the 

background cost function (the second term in the right-hand side of equation (5.3)) in this 

study starts with zero at the beginning of the minimization and is about one order smaller 
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than the observational cost function at the end of the minimization for all the cycles.  The 

time series of cost functions in Figure 5.10 therefore approximately represent the change of 

observational cost functions (the first term in the right-hand-side of equation (5.3), i.e. a 

measure of the model-observation mismatch) over the experiment period.  If the 

observational and background errors are Gaussian and their covariance O and Bi are 

correctly described in the 4DVAR system, the Chi-squared theory predicts that the 

minimum value of the cost function is half of the number of observational data assimilated, 

Nobs/2, with variance 1/ Nobs (Bennett 2002, Powell et al. 2008, Weaver et al. 2003).  Note 

that because the definition of cost function in Bennett (2002) is different from the one in 

this study, Powell et al. (2008) and Weaver et al. (2003) by a ½-factor, the minimum value 

of cost function in Bennett (2002) is Nobs.  The Chi-squared predicted minimum cost 

functions are plotted in dash lines in Figure 5.10a with the associated variances neglected 

(they are too small to be shown). 

The cost function comparison in Figure 5.10a shows a big drop of the total cost 

function from the control simulation to the beginning of each cycle for most of the cycles.  

Notice that they are the same for the first cycle because the oceanic state at the beginning of 

the first cycle is from the control simulation.  From the beginning of the cycles to the 

analysis there is another drop of the cost function but to a smaller extent.  As mentioned 

before, it is small because 2/3 of the observations in most of the cycles have been 

assimilated by previous cycles and most of the residual mismatch is in the null spaces. In 

the end, the analysis cost functions are 2 to 3 times larger than the optimal minimum values 

given by Chi-squared theory.  Given the fact that the IS4DVAR system used here corrects 

only initial conditions, and the errors in surface forcing, boundary conditions and model 
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physics are neglected, this result is unsurprising.  As will be presented in next subsection, 

there are substantial errors in wind forces.  It certainly contributes to the discrepancies 

between minimized cost functions and the optimal minima.  

Breaking down the cost functions to different variables I find that the 

model-observation velocity mismatch is the leading source of the total cost function, 

temperature mismatch is the second and the salinity mismatch is the smallest.  For all of 

them, DA is able to substantially decrease the mismatch in all cycles. As previously 

reported, the largest decrease happens to temperature mismatch and the smallest decrease 

to velocity mismatch. The large remain of the velocity mismatch suggests that much of the 

velocity mismatch is in the null space of the DA system and can not be corrected by 

adjusting model initial conditions.  As we will see in next subsection, it is, at least partially, 

due to the spatially coherent “error” in the surface current observations.  The velocity error 

is really error in the model generated by error in wind forcing.  But because surface forcing 

is not part of the control variables the DA system considers the model-observation 

discrepancy as “observational error”.   
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Figure  5.11. Magnitude of NAM wind error, normalized model-observation total misfit 

and normalized model-observation velocity misfit of the control run before (a) and after (b) 

the wind correction. All misfits are normalized by the number of corresponding 

observations assimilated in each cycle. 

 

5.5.3.  Effects of Wind Error 

Another feature in Figure 5.10 is the spike increase of total cost function around May 

21. The spike persists after DA.  Similar spikes also exist in the control simulation cost 

function of temperature and velocity, and DA was able to eliminate it for temperature, but 
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not for velocity.  This suggests that a significant part of the model-observation velocity 

mismatch falls into the null space of the DA system.  To investigate the mechanism I 

computed the difference between the 3-hour averaged observed wind and the 3-hourly 

NAM wind at the nearest grid point to the wind observation. The observed wind was 

measured at about 20 m above the sea level by the Ambrose Tower which was maintained 

by National Data Buoy Center and its position is given in Figure 5.1.  Note the NAM wind 

is 10 m wind. The apparent inconsistency here is neglected because the measurements that 

are required to compute the 10 m wind are missing.  Part of the difference between NAM 

wind and observed wind is the error of the NAM wind at the area around Ambrose Tower.  

Averaged magnitude of the NAM wind error over each DA window is plotted in Figure 

5.11a together with total cost function and velocity cost function of the control simulation.  

To eliminate the effect of different numbers of observations, I normalized the cost 

functions in Figure 5.11 by the number of corresponding observations assimilated in each 

cycle.   

Because the number of observations in each day varies relatively little as shown in 

Figure 5.4b, the normalized cost functions in Figure 5.11a preserve the basic temporal 

variation in Figure 5.10 including the spike around May 21.  Time series of averaged NAM 

wind error in Figure 5.11a show a similar jump around May 21. The overall correlation 

between averaged NAM wind error and normalized total cost function is about 0.48 and 

that between average wind error and normalized velocity cost function is about 0.62, both 

statistically significant at 95% confidence level.  These suggest that error in wind forcing 

of the model is an important source of the model-observation mismatch, especially the 

mismatch in velocity.  The reason can be easily seen in Figure 5.2, the averaged power 
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spectrum of surface current measured by HF Radar.  There is a distinct peak within the 

inertial band, significant at the 95% level.  It means that the ocean in this area reacts 

strongly to wind through inertial oscillation. Note that the highest peak in Figure 5.2 is M2 

tide. Because tidal currents in HF Radar data have been replaced with ROMS tidal 

currents, I am essentially assimilating the detided surface current data.  Then 

model-observation velocity mismatch in the inertial band is very likely to be a major part of 

the total velocity mismatch.   

I further show this through a nonlinear forward model simulation forced with wind 

corrected in a simple way.  I assume NAM wind error has a horizontal scale larger than the 

model domain. Wind error in the domain is then nearly uniform.  I corrected the NAM 

wind by adding the difference between NAM-modeled and Ambrose-measured winds to 

NAM wind everywhere in the model domain.  I then conducted a nonlinear forward model 

simulation same as the control one except using the corrected wind.  The normalized total 

cost functions and velocity cost functions of the new nonlinear model are plotted in Figure 

5.11b along with the NAM wind error.  The comparison between Figure 5.11a and b 

demonstrates the effect of simple wind correction: model-observation mismatch has been 

decreased for most of the cycles and the mismatch spike around May 21 has been 

decreased substantially.  However, the validity of the assumption about the scale of NAM 

wind error is unclear.  The exercise here is just for demonstration purposes.  Even if the 

assumption was valid, we would not have the observed wind available for real-time 

forecast which is one of the goals of this study.  Therefore, other methods of correcting 

wind are needed if no better wind product is available. 
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Because of the error in the NAM wind, correcting model initial conditions through DA 

would not be able to totally remove the model-observation mismatch, as shown in Figure 

5.10a and d.  After DA, the spikes of the cost functions around May 21 remain, but the 

magnitude has been substantially reduced.  It means that the IS4DVAR system adjusted 

initial conditions to minimize the mismatch caused by the wind error. Presumably, this is 

overcorrection and it degrades the performance of the system, especially the velocity 

forecast, as we will see in next section. Because the harmonics of wind-driven inertial 

oscillation are unsteady it is impossible to filter them out as with the tides.  Another option 

to solve this problem is to correct the wind forcing through DA by including surface 

forcing in the control variables of the IS4DVAR system.  This is the next step of this study.  

If correct error statistics are used, it will presumably correct the error in the surface forcing 

and give a better analysis, although the forecast is still limited to the use of the uncorrected 

wind forcing.   

5.5.4.  Improvement of the Forecast 

Because one of the purposes of this study is to practice real-time ocean weather 

forecasting, I present the statistical measure of the skills of the DA system, i.e. forecast 

improvement, of each variable in Figure 5.12.  The skill is defined as  

afterDA

beforeDA

RMSS 1
RMS

= − ,                                                        (5.4) 

where RMS is the root-mean-square of model-observation mismatch weighted by 

observational error. This RMS is equivalent to the square root of the observational cost 

function.  Note that observational data within forecast windows are not assimilated by DA, 
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and they are therefore independent data.  Given the skill definition, any skill value greater 

than 0 means improvement of the model performance and the maximum skill is 1.  Skill 

was computed for each day of the analysis and forecast windows for all 55 cycles. The 

ensemble average and 95% confidence interval for each analysis and forecast day were 

computed from the 55 cycles and plotted in Figure 5.12.   

 

Figure  5.12.  Ensemble average of the skills of different DA systems over analysis and 

forecast periods in term of different variables. Vertical bars indicate 95% confidence 

intervals of the skills. Vertical dash lines denote the boundary between analysis and 

forecast windows with analysis on the left and forecast on the right. 
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Figure  5.13.  Ensemble average of the skills of different DA system over analysis and 

forecast periods in terms of glider-measured temperature (a) and satellite-measured SST 

(b). Vertical bars indicate 95% confidence intervals of the skills. Vertical dash lines denote 

the boundary between analysis and forecast windows with analysis on the left and forecast 

on the right. 
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In Figure 5.12, skills of the DA system that assimilates all available observational data 

are denoted by the black curves. In order to diagnose the effect of different data sets on the 

skills, I formed three other DA systems in which I withdrew HF Radar-measured velocity 

data, glider-measured temperature and salinity data, and satellite-measured SST data 

respectively from the assimilation.  To make the explanation clear, I name the four DA 

systems All-data, No-HFradar, No-glider, and No-SST, respectively. Note that the skills 

shown in Figure 5.12 were computed from the comparison of models and all observational 

data even though some of the data were withdrawn from the DA systems.   

Figure 5.12a shows that model-observation temperature mismatch in the analysis 

period is dramatically reduced (about 70% for the All-data, No-HFradar and No-glider 

systems and 40% for the No-SST system) and temperature forecast is substantial improved 

in all DA systems.  The temperature forecast improvement of the All-data, No-HFradar and 

No-glider systems is about same, starts from 0.6 at the 1st day and gradually decreases to 0 

at about the 14th day.  In contrast, the No-SST system has the least forecast improvement.  

It starts with about 0.4 at the 1st day and drops to 0 at the 5th day.  After the 5th day, the 

temperature forecast deteriorates slightly. The contrast between the No-SST system and 

others demonstrates the major impact SST data has on the temperature forecast 

improvement.  It is expected to be, at least partially, an outcome of the fact that SST data 

occupies more than half of the temperature data.  

To further diagnose the impact of different data sets, the temperature forecast 

improvement was separated to those of glider-measured temperature and 

satellite-measured SST as shown in Figure 5.13.  Figure 5.13a shows that the forecast 

improvement of glider-measured subsurface temperature of the All-data system drops from 
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about 0.5 at the 1st day to 0 at the 8th day.  Without assimilating HF Radar velocity data, 

there is no obvious change to the forecast improvement until 7 days into the forecast.  

Assimilating surface velocity decreases forecast improvement of subsurface temperature 

in the second week.  Without assimilating glider data, although subsurface temperature 

mismatch between model and observation within the analysis window is preserved, the 

forecast gains skill for the first week.  This is presumably caused by assimilating SST as we 

can see from the comparison between All-Data and No-SST system.  Without assimilating 

SST data, the subsurface temperature forecast improvement drops for the entire forecast 

period even though the subsurface temperature mismatch between model and observation 

keeps same in the analysis period. This implies that the initial condition adjustment given 

by assimilating SST is able to propagate downward and improves subsurface temperature 

forecast.    

In Figure 5.13b, we see that the All-data, No-HFradar, and No-glider systems have 

same performance on SST and the 0.4 forecast improvement is rather stable for the entire 

forecast period.  Without assimilating the satellite-measured SST data, the skill of the DA 

system is constantly degraded.  This means that assimilating other data sets does not 

improve SST forecast, although assimilating satellite-measured SST improves forecast of 

subsurface temperature.  It suggests that model SST is not controlled by initial conditions 

of subsurface temperature or other variables.   

Figure 5.13b also gives the persistence skill of the satellite SST observations.  The 

persistence skill, a commonly used standard of reference for measuring the accuracy of the 

forecasts (Di Lorenzo et al. 2007, Murphy 1992), is computed by taking a SST map as the 

forecasts of subsequent fields of SST.  The persistence skill starts around 0.6 for the first 
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day forecast and quickly approaches zero after 3 days.  The comparison between the 

persistence skill and the skill of the DA system in Figure 5.13b suggests that the DA 

system was able to use the observations to correct the model dynamics through the model 

integration, rather than just fitting the observations.  

Let us now move back to Figure 5.12 to look at the forecast improvement for other 

variables. Figure 5.12b shows that the All-data DA system reduces the model-observation 

salinity mismatch by about 40% and has forecast improvement about 0.3 at the 1st day and 

about 0.1 at the 3rd day.  Forecast improvement after that stays around 0.1 for the rest of the 

15 days forecast.  Comparing the forecast improvement of different systems we see that 

assimilating glider-measured subsurface data improves salinity forecast improvement for 

the entire period, assimilating SST data decreases the salinity forecast improvement for the 

entire period, and assimilating surface velocity data has minimum impact on salinity 

forecast.  The impact assimilating SST data has on salinity forecast reflects loss of freedom 

that model has to adjust its initial conditions to fit the observations.  

Figure 5.12c and d show similar pattern: the All-data system reduces velocity 

mismatch between model and observations by about 45% and has velocity forecast 

improvement greater than 0 only for 2-3 days.  Velocity forecast after that is deteriorated 

slightly.  This weak skill of velocity forecast is presumably caused by the error in the 

surface wind as mentioned in previous subsection. Because surface wind stress is not one 

of the control variables and there is no other constraint on the initial condition adjustment 

than the overall departure, the DA system attributes model-observation velocity 

discrepancy to initial condition error.  This behavior of adjusting the wrong field to fit 

observations is expected to degrade system performance.  Negligible difference between 
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the skills of All-data, No-glider, and No-SST systems suggests that assimilating glider data 

and SST has little impact on the performance of the DA system on surface velocity.  

Nevertheless, the difference between All-data and No-HFradar systems suggests that 

assimilating HF Radar-measured surface current data improves velocity forecast by 1-2 

days. 

To show the evolution of skill over time, I present the Hovmöller plot of the RMS and 

cross-correlation (CC) ratios for different variables in Figure 5.14. Both RMS and CC are 

obtained from the comparisons between all available observational data and modeled 

equivalent (before DA and after All-data DA). Ratios are computed for each day in each 

DA cycle.  Then each 45-degree tilted line in Figure 5.14 represents a DA cycle and all 

value with y-coordinate less than 0 is within analysis periods.  The ratio for CC is chosen to 

be the ratio of 1-CC to make two ratios comparable: ratio less than 1 means improvement 

of the model relative to the observational data.   

Both RMS and CC ratios of temperature have values much smaller than 1 in the 

analysis window for almost all cycles.  In forecast periods, the RMS ratio remains less than 

1 for most of the cycles except for several particular days and the CC ratio has intermittent 

patches of ratio greater than 1.  The RMS ratio of salinity is less than 1 for most of the time 

except a period around April 25.  Figure 5.5 indicates that the Hudson River had a peak 

discharge around the same time.  Sudden injection of the large amount of freshwater into 

the shelf brings unusually large salinity variation, which is presumably hard to be 

simulated precisely.  For both velocity components, RMS and CC ratios have values less 

than 1 in the analysis periods for most of the cycles, but the ratios become greater than 1 

rather quickly after they enter the forecast periods, consistent with the statistical measure 



153 

 

of the velocity forecast improvement. The period in which it preserves its forecast 

improvement varies from 1 to 5 days.  

 

  

Figure  5.14.  Hovmöller plot of RMS and cross-correlation ratios at each day of all cycles 

for the DA system assimilating all observational data. Thick white lines are contours of 

value 1. 
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5.6. Summary and Conclusions 

As part of the project to build an integrated observation and modeling system for the 

New York Bight for the purpose of coastal ocean prediction and observing system design, 

this chapter carries out the 4D variational DA using ROMS in a realistic and 

pseudo-realtime setup.  

In this chapter all the observations including temperature, salinity and velocity data 

collected by variety of platforms in spring 2006 during a campaign of field observation 

were assimilated.  All observational data were preprocessed for quality control and to fit 

model spatial scales.  Errors in observations were assumed to be independent and an error 

standard deviation was assigned to each observation according to instrumental error, model 

representation and the convergence of the DA system.  ROMS IS4DVAR was used in this 

chapter with 3-day DA window to provide adjusted initial conditions.  Simulations of 

diffusion equations were used with 20 km horizontal and 2 m vertical decorrelation scales 

to obtain the background error covariance. An overlapped DA cycling system was applied 

for the purpose of practicing real-time ocean forecast.   

System performance was evaluated by looking into model-observation mismatch in 

analysis and forecast periods. Time series of cost functions and their gradient norms 

indicate that ROMS IS4DVAR converges towards cost function minima and reduces the 

model-observation mismatch in analysis periods successfully.  The overall mismatch 

reduction is about 60% for temperature, 30% for salinity and 25% for velocity.  Time series 

of the cost functions show that DA was able to reduce the cost functions for all 55 cycles, 

but the obtained minima of total cost functions are 2-3 times larger than the optimal 

minima given by the Chi-squared theory.  
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Significant correlation between wind forcing error and model-observation velocity 

mismatch suggests that a large portion of the velocity mismatch is actually caused by error 

in the wind used to force the model.  A nonlinear model simulation forced with simply 

corrected wind shows improvement in the modeled velocities. A strong inertial response of 

the ocean to wind is hypothesized to be the reason. This finding emphasizes the importance 

of having accurate wind forcing in coastal ocean DA, especially when predicting surface 

velocity.   

Skills of the DA system were obtained from comparing 15 days forecast of each cycle 

and unassimilated independent observations.  Three new DA systems were designed to 

reveal the effects different data sets have on the skills. Overall, the DA system has positive 

forecast improvement for about 15 days for temperature and salinity and 2 – 3 days for 

velocity.  Comparison between different DA systems indicates that assimilating 

satellite-measured SST improves not only the surface temperature forecast improvement 

substantially but also the forecast of subsurface temperature.  It decreases the forecast 

improvement of subsurface salinity.  Assimilating glider measurement improves the 

salinity forecast improvement but has little effect on the temperature forecast 

improvement.  Assimilating HF Radar surface current data improves the velocity forecast 

improvement by 1-2 days even with the error in the wind forcing.  The comparison also 

shows that assimilating HF Radar data worsens the forecast of subsurface temperature.   

In all, this study demonstrates the ability of ROMS IS4DVAR to reduce 

model-observation mismatch and provide better forecast.  It illustrates the importance of 

having accurate meteorological forcing and sheds the light on the benefit of correcting 

surface forcing through DA. 
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CHAPTER 6. OPTIMAL OBSERVATION 

6.1. Introduction 

The technology of ocean observation has undergone dramatic advances in recent 

decades. Numerous instruments are now monitoring the oceans and bringing 

unprecedented richness of data to oceanic research.  While being used to study the oceans 

directly, observational data can also be used to correct numerical models with schemes of 

DA for state estimation or ocean weather forecasting.  Increased investments in ocean 

observation also bolster the demand of evaluating existing observational strategies and 

objectively designing future observations.  It is called targeted observation or adaptive 

sampling.  The question of targeted observation for DA is to select the most efficient 

observation types and locations to improve model analysis or forecast of certain aspect of 

interest given instrumental and logistical constraints.   

Targeted observation is an active research topic in the numerical weather forecast 

community (Langland 2005, Rabier et al. 2008).  Berliner et al. (1999) synthesized the 

question thoroughly using the language of mathematics.  There are different techniques of 

seeking targeted observations: Singular Vector-type (Leutbecher 2003, Palmer et al. 1998), 

adjoint sensitivity-type (Bergot 1999, Wu et al. 2007), observation sensitivity-type (Baker 

and Daley 2000, Langland and Baker 2004), and ensemble transform-type (Bishop and 

Toth 1999, Bishop et al. 2001) techniques.   

Singular Vector techniques are to find the most rapidly growing error structures 

associated with a norm over a finite-time interval. The norm is chosen to describe an aspect 

of interest, e.g. forecast uncertainty or total energy. The argument is that to capture the 
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chosen aspect precisely the fastest-growing singular vector error structures in the model 

ought to be constrained by observations.  Adjoint sensitivity techniques identify the 

variables and geographic locations to which a chosen aspect is most sensitive.  The 

sensitive variables and locations are the dynamical upstream of the chosen aspect (Chapter 

4), which is presumably the most effective target to observe for predicting the chosen 

aspect. Both adjoint sensitivity and singular vector approaches identify patterns that could 

cause large forecast error if they exist.  But they do not take existing or planned 

observations into consideration.  Existing observations may project onto the singular 

vectors or be located near the dynamical upstream, and they will subsequently change the 

pattern of the most effective observations.   

The effect of existing observations on targeted observation can be addressed in 

observation sensitivity and ensemble transform techniques.  The observation sensitivity 

provides the effect of each assimilated observation on analysis (forecast) of a chosen aspect 

using the adjoint of the data assimilation (forecast).  Hence, effects of hypothetical 

observations can be obtained and compared although observation innovation (discrepancy 

between model and observation) needs to be estimated ahead.  The ensemble 

transform-type techniques use ensembles of forecast simulations to retrieve the covariance 

of forecast and look for the optimal observation pattern which minimizes forecast 

uncertainty the most.  It is most suitable for systems using ensemble-type DA schemes.  

Unlike in meteorology, few works of targeted observation in oceanography have been 

published.  Because most current studies of ocean DA emphasize state estimation, studies 

of targeted observation in oceanography pay more attention to better capturing certain 

ocean phenomena or variability (e.g. intraseasonal variability in the tropical oceans) in 
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analyses, instead of forecasts.  Among the existing works, some (Ballabrera-Poy et al. 

2007, Bennett 1990, Hackert et al. 1998, Oke and Schiller 2007, Sakov and Oke 2008) 

utilized ensemble transform-type techniques to study the designs of tropical mooring 

arrays in order to better capture the intraseasonal and interseasonal variability.  Frolov et al. 

(2008) utilized a similar technique to assess and design fixed coastal and estuarine 

observatories. Barth and Wunsch (1990) utilized a simulated annealing technique to 

optimize the design of an acoustic array. Using the adjoint sensitivity technique, Shulman 

et al. (2005) identified the upstream of a bioluminescence patch and conducted a survey 

accordingly. Basing on array mode analysis, i.e. the eigen analysis of stabilized representer 

matrix (the sum of representer matrix and observational error matrix), McIntosh (1987) 

presented the optimal positioning of tide gauges in an open-ended channel and Bennett 

(1990) assessed an equatorial Pacific XBT observing program.   

To reduce the computation load, Köhl and Stammer (2004) simplified the observation 

sensitivity technique using an assumption of large observational error.  They applied the 

simplified technique to identify the optimal observation locations for determining the heat 

transport across the Greenland-Scotland ridge.  Because the assumption of large 

observational error is inconsistent with the concept of DA being the step after targeted 

observation, interpreting their result as observation sensitivity as in Baker and Daley 

(2000) is probably inappropriate.  However, from another prospective, their simplified 

technique is consistent with computing the representer of the chosen aspect. As we will see 

in next section, it gives the covariance and then correlation between the chosen aspect and 

ocean states at all locations at any time.  Then it is logical to observe the places where the 
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correlation is the highest.  This explains Köhl and Stammer’s (2004) finding that their 

results are still valid even when the observational error is small. 

The integration of observation and modeling shall be two-way.  Chapter 5 

demonstrates the use of observations to correct a numerical model with a 4DVAR scheme.  

In this chapter I will explore the use of the numerical model to assess and guide 

observations objectively. It provides a prototype for forecast-oriented targeted observation 

in a coastal setup.  I stress here that the targeted observations will not be used to interpret 

physics directly and, instead, they are to be assimilated into a numerical model which will 

then describe the aspect of interest more precisely.  

 This chapter is organized as follows: Section 6.2 describes the theory of 

representer-based observing system design; Section 6.3 describes the system setup; 

Section 6.4 presents the application for predicting salt flux within the Hudson Shelf Valley 

(HSV); Section 6.5 compares the influences of different observations; Section 6.6 

summarizes the chapter. 

6.2. Representer-based Observing System Design 

Denote ocean state vector [u v T S ζ]T comprised of the velocity, temperature, salinity 

and sea surface height at all grid points at time t as Φ(t). A representer is the covariance 

between a single element of Φ(t0) (one variable at a particular grid point at a particular time 

t0, I call it “point aspect of interest” in this chapter) and all elements of ocean state vector 

Φ(t) (a 3-dimensional field at time t ) (Bennett 2002, Kurapov et al. 2009).  The covariance 

is not based on temporal variation of the ocean states but on different realization of 

randomly distributed ocean states in Bayesian statistics (van Leeuwen and Evensen 1996). 
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The ocean state obtained from a nonlinear numerical model is only one realization of all 

possible ocean states.  We can transform the continuous space-based representer format in 

Bennett (2002) to a discrete space-based matrix format as  

                            Representer = MBMT∆(φ 0, x0, t0),                                            (6.1) 

where M is tangent linear model propagator and MT is the corresponding adjoint operator 

(Moore et al. 2004), B is the background error covariance matrix, ∆ is a impulse vector 

with the same length as Φ,  
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0φ  is the variable of interest ( 0φ ∈ [u v T S ζ]T), x0 is the location of interest, and t0 is the 

time of interest. Then 0φ (x0, t0) is the point aspect of interest.  

The representer is based on the linearization around a nonlinear model trajectory as the 

tangent linear and adjoint models imply. In variational DA, if the aspect of interest is a 

single observation, the corresponding representer describes the influence of the 

observation in the model (Bennett 1990, Egbert and Erofeeva 2002, Kurapov et al. 2009). 

To obtain a representer, as in equation (6.1), an adjoint model initialized with ∆(φ 0, x0, t0) 

is integrated backward on time, model background error covariance is then applied and 

followed by forward integration of a tangent linear model.  Here, ∆(φ 0, x0, t0) can be 

considered as ∂J0/∂Φ(t0), where J0 is an objective function of a point aspect of interest, J0 = 

0φ (x0, t0).  Hence, the representer gives the covariance between J0 and Φ(t), and equation 

(6.1) becomes 
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Here I denote the linear representer operator as rep(·).  Notice that both sides of the second 

equal sign give the same unit, [J]·[Φ]. The middle term in equation (6.2) is very similar to 

Equation (13) in Köhl and Stammer (2004) except the sampling operator and observation 

error covariance matrix they applied after the representer.  

Next, I am going to extend the representer concept to a more general circumstance.  For 

a and b, any two independent point aspect of interest at time t0, we can prove that (see 

Appendix) 
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Given equation (6.3) – (6.6), we expect  
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to be valid for J defined as any arithmetic function of ocean state variables at time t0, J = 

J(Φ(t0)). For J being a function of Φ(t) over a time interval, J = J(Φ(t)), t∈[t1, t0], in 
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discrete space its representer can be simply treated as a superposition of several 

representers associated with J’s that are defined at instantaneous times, because the system 

is linear. Equation (6.7) is still valid.  A special aspect of this representer is that ∂J/∂Φ(t), 

once the initial condition of the adjoint model, now has to be applied as forcing of the 

adjoint model over the time interval [t1, t0] as in adjoint sensitivity (Chapter 3).  Thereby, 

for a particular aspect of interest that can be expressed as an arithmetic function of model 

variables, e.g. salt transport across a cross-section, we can compute the corresponding 

representer to get the covariance between the aspect of interest and ocean variables at all 

locations at any time in the integration window.  Note that the integration time window is 

limited by the linear assumption. 

Suppose we are going to conduct some observations for knowing the aspect of interest 

better and there is no other observation available for this purpose, it is then logical to 

deploy instruments at the place where the observed variables have the highest correlation 

with the aspect of interest.  Presumably, after assimilating the observations the model will 

describe the aspect of interest more precisely.  Because there is no time constraint in the 

theory above except the linearization window, observations can be conducted ahead of, at 

the same time as, or after the happening of the aspect of interest.  Hence, the 

representer-based observing system design can be applied for forecasts, nowcasts and 

hindcasts.  

Like those in adjoint sensitivity-type and singular vector-type techniques, the 

assumption of having no other observation is a major drawback in the representer-based 

technique.  Existing or routine observations will change the result of the targeted 

observation if their influences reach the aspect of interest in space and time.  Nevertheless, 
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the result of the representer-based technique is useful when existing or routine 

observations are not close to the aspect of interest.  Moreover, we can use the same 

representer-based technique to outline the influence area of existing or routine 

observations and check whether it covers the aspect of interest as in Section 6.5.  If the 

aspect of interest is covered, how different the targeted observations would be is an 

interesting scientific question and can be addressed by the observation sensitivity 

technique.  It is beyond the scope of this thesis but will be addressed in future studies since 

the machinery will soon be available. 

6.3. System Setup 

6.3.1.  Model Configuration 

The model domain as shown in Figure 6.1 is the same as the one in previous chapters.  

The nonlinear control simulation which the tangent linear and adjoint models are linearized 

based on covers the whole year of 2006 with initial condition from Chapter 2.  It uses 

Chapman (1985) and Flather (1976) conditions for sea level elevation and the barotropic 

component of velocity on the model open boundaries, respectively.  Steady along-shelf 

flow (Lentz 2008) and tidal elevation and current (K1, O1, Q1, M2, S2, N2, K2) extracted 

from a regional ADCIRC simulation (Mukai et al. 2002) were imposed on the open 

boundaries.  Orlanski-type radiation condition (Orlanski 1976) was applied for 3D velocity 

and tracers.  Vertical mixing was parameterized with the k-kl scheme of general length 

scale method (Umlauf and Burchard 2003, Warner et al. 2005) and quadratic bottom drag 

was used with drag coefficient 0.003. On the surface bulk formulae (Fairall et al. 2003) 

with meteorological forcings from the North American Regional Reanalysis (Mesinger et 

al. 2006) were applied to compute air-sea momentum and heat exchange. River discharges 



164 

 

were obtained from USGS Water Data (U. S. Geological Survey 2007) and modified to 

include ungauged portions of the watershed.   

 

Figure  6.1.  The model domain (black frame) and bathymetry of the New York Bight in 

grayscale.  The short straight line across the Hudson Shelf Valley indicates the 

cross-section used in this chapter for computing salt transport within the valley; the dash 

line is a real glider track; the long straight line is the hypothetical glider track used in this 

chapter; and the triangle indicates the location of the hypothetical mooring. 

 
 
 
 

6.3.2.  Representer Computation 
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To compute the representer, as mentioned in the previous section, an adjoint model 

started with zero initial condition and forced by adjoint forcing is integrated backward for 3 

or 4 days. A background error covariance, B, is then applied and followed by forward 

integration of a tangent linear model. The adjoint forcing, ∂J/∂Φ(t), is applied to the time 

interval over which J is defined. The length of adjoint and tangent linear model integration 

depends on the application as we will see later and it is constrained by the linearization.  

Chapter 4 tested the linear assumption in a model with the same domain but a higher 

horizontal resolution (1 km) and found that it is valid for 3 days.  Because the tests were 

rather strict (perturbing initial condition with the fastest growing perturbation pattern 

obtained from optimal perturbation application) and model resolution in this study is 

lower, I expect the linear assumption in this chapter to be valid for a longer window. In the 

application of salt flux within the HSV, the adjoint model was integrated backward for 4 

days in order to better simulate the glider deployment 2 days before the defined J.   

The background error covariance describes the interconnection between variations of 

same variable at different locations (univariate) and variations of different variables 

(multi-variate) due to dynamical and statistical reasons. Only the univariate part is 

considered in this study and it is simulated by solving two diffusion equations (one for 

horizontal and the other for vertical) with horizontal decorrelation scale 20 km and vertical 

2 m.  More detailed description of background error covariance in ROMS can be seen in 

Powell et al. (2008) and Chapter 5.  
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Figure  6.2.  Surface salinity field (top) and surface salinity representer field (bottom) at 

different times.  The triangles in the last column indicate the point of interest; the straight 

lines passing through that point in the last panel indicate the cross-sections plotted in 

Figure 6.3; and gray dashed lines are 20, 40 and 60 m isobaths.   

 

To illustrate the physical meaning of the representer, a representer computation was 

conducted for a point aspect of interest. The results are shown in Figure 6.2 and 6.3.  The 

aspect of interest, J, was chosen to be surface salinity at x0 = (73.7ºW, 40.3ºN) at t0 = 

2006-09-18 00:00 UTC. The location is shown by the triangle in Figure 6.2.  The adjoint 

model in the representer computation was forced by ∂J/∂Φ(t0) = ∆(S, x0, t0) at t0 and 

integrated backward for 4 days before applying the background error covariance.  The 

surface salinity representer, surface salinity in the subsequent tangent linear model, at 
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different time is shown in the bottom row of Figure 6.2.  Surface salinity fields at the same 

times in the nonlinear forward model are given in the top row of Figure 6.2.   

 

Figure  6.3. Cross-sections of the salinity representer field at 09-18 00:00, the time when J 

is defined.  The positions of the cross-sections are depicted in Figure 6.2. 

 

The surface salinity fields show that the river plume has two branches, one extends 

southeastward over the 4 days period and the other fresher one propagates southward along 

the New Jersey coast.  The salty water between them is presumably caused by the ocean 

water shoreward intrusion along the HSV as shown in Chapter 2. At 09-18 00:00, the point 
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of interest is located at the tip of the southwestward-propagating branch.  Given the 

common freshwater source, we expect properties of water at the point of interest to be 

highly correlated with properties of water in the two plume branches.  Figure 6.2 shows the 

surface salinity representers with the covariance pattern just as expected.  At 09-14 00:00 

just after applying the background error covariance, the surface salinity representer gives a 

round shape of high covariance in the New York apex area.  It results from the smoothing 

effect of the diffusion equations used to simulate the background error covariance.  The 

covariance pattern then transforms gradually in a way similar to the freshwater propagation 

as time proceeds.  By 09-18 00:00, the time when the aspect of interest is defined, the 

surface covariance patch develops into a two-branch pattern.  The branch east of the HSV 

has high covariance value and is in a shape very similar to the plume branch there. The 

highest covariance value sits around the point of interest.  The other branch along the New 

Jersey coast has relatively lower covariance value and is connected to the first branch at the 

estuary entrance.   Overall, the surface salinity representer clearly outlines the area where 

water has the same source as the point of interest.  

Figure 6.3 shows the vertical cross-section of the salinity representer at 09-18 00:00 

along line A and B in Figure 6.2. On both cross-sections covariance concentrates in the 

surface 15 m and has the largest value around the point of interest. The 15 m depth is 

consistent with the average depth of the surface layer in this area. On cross-section A 

(Figure 6.3a), the covariance pattern extends into the estuary.  Within the estuary (to the 

left of 40.5ºN) the covariance is positive on the bottom and zero on the surface.  It results 

from the two-layer circulation in the estuary. The surface layer consists of newly 

discharged freshwater and is independent of the previously discharged freshwater which is 
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the source of the water at the point of interest; the bottom intrusion water is a mixture of 

ocean water and previously discharged freshwater and is therefore correlated with the 

water at the point of interest.  On cross-section B (Figure 6.3b) which cuts through the HSV 

and bridges the two freshwater branches, the covariance exhibits a dipole pattern: high 

covariance value on both ends and zero covariance between.   The shoreward intrusion of 

ocean water in the HSV brings in a different type of water and causes the dipole pattern.   

Overall, the representer associated with the point aspect of interest gives covariance 

patterns highly consistent with the local circulation and, therefore, we can use the 

representer to help design and evaluate observations. 

 

6.4. Application of Targeted Observation 

In this section I will carry out the representer-based observing system design in a 

realistic setup.  Note that it is just an example and the same system can be used for a broad 

range of applications. 

6.4.1. Background  

The HSV is a distinct feature in the NYB and cuts through almost the entire continental 

shelf.  Flow within the HSV is highly correlated with local wind and sea level elevation 

(Mayer et al. 1982, Nelson et al. 1978) and the mean flow is shoreward along the valley.  

Because of the seasonal variation of the local wind and possibly that of the large-scale 

along-shelf circulation, the shoreward ocean water intrusion in the HSV intensifies in 

winter (Harris et al. 2003, Nelson et al. 1978). In Figure 6.4 I plot the season average of the 

salinity and current at 20 m depth from the nonlinear simulation of 2006.   
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Figure  6.4. Seasonal average of salinity (in grayscale) and current (arrows) at 20 m. Gray 

lines are 20, 40, 60 m isobaths and the thick black lines indicate the cross-section of the 

Hudson Shelf Valley that is used to compute the salt flux. 

 

At the cross-section (the short thick line in Figure 6.4) the seasonal mean current at 20 

m is shoreward along the valley in winter and spring with the strongest intrusion in winter. 

In summer and fall, the circulation at the cross-section is roughly along the isobaths 

crossing the valley.  Figure 6.5 shows time series of the vertically integrated subsurface 

(below 10 m) salt flux across the cross-section over 2006.  It is evident that shoreward salt 

flux dominates the spring and winter seasons and the corresponding time period (October - 

April) is consistent with observations in Nelson et al. (1978). Shoreward flow in the HSV 

transports saline and nutrient-rich subsurface ocean water towards the inner shelf. It is 

expected to have consequences on the local biogeochemical processes. The shoreward 

flow in the HSV also erodes the sea floor and carries the resuspended sediment onshore 

(Harris et al. 2003, Manning et al. 1994).   
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Figure  6.5. Time series of the vertically integrated subsurface (below 10 m) along-valley 

salt flux within the Hudson Shelf Valley over 2006.  The thin gray line is the 

daily-averaged record and the thick black is low-pass filtered with 24-day window LOESS. 

Positive is shoreward. 

 

6.4.2. Representer-based Glider Track Design 

Given the effects the HSV has, it would be useful for studies of local biogeochemistry 

and sedimentation if precise knowledge of the transport within the HSV were known.  

Because gliders are commonly used in this area for monitoring the ocean, the example of 

representer-based observing system design in this section is chosen to be the search of 

optimal track for a routine glider mission.  The question asked here is: where should the 

gliders be deployed in order to predict the along-valley salt flux across the cross-section 2 

days in the future?  The cross-section chosen to measure the along-valley salt flux is given 

by the short thick lines in Figure 6.4. To answer the question I define the objective 

function, J, as the vertically integrated subsurface salt flux 2 days after the glider 

deployment and I am going to apply the representer system to obtain the covariance and the 
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correlation between J and variables everywhere at the deployment time.  The place where 

the correlation is the highest is the answer to the question.  As previously mentioned, this 

application assumes there are no other observations available around the cross-section.   

 

Figure  6.6. Flow chart of the representer computation and corresponding twin experiment. 

Jt is the “true” salt flux from the control run; J φ∂ ∂  indicates corresponding adjoint 

forcing; B is the background error covariance; triangle indicates the time of the presented 

representer (two days before Jt); ‘obs.’ indicates the observation window; Jb is the 

background salt flux from the perturbed simulation; ‘DA’ indicates the data assimilation; 

Ja is the salt flux forecast given by the models after data assimilation. 

 

The flow of the representer-based observation design system is described in Figure 6.6.  

Firstly, a forward nonlinear simulation (control run) is carried out and I assume the 

simulated result is the truth.  Secondly, Jt, the “true” subsurface salt flux across the 
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cross-section over a day period (the 4th day counting from the time of applying background 

error covariance) and the corresponding adjoint forcing, ∂J/∂Φ(t), are computed from the 

control run.  Thirdly, a representer computation is conducted with 4-day adjoint model 

integration and 1-day tangent linear model integration.  This gives a representer field two 

days ahead of the J. The last two steps are then repeated with J defined two days apart from 

the previous one.  I repeated the process over the entire period of 2006 and obtained 180 

representers in total. They were separated into two seasons, winter-spring (October – 

April) and summer-fall (May – September), according to the time when J is defined. The 

correlation associated with each salinity representer was then obtained by dividing the 

representer by standard deviations of J and detided model variables.  RMS of all the 

correlation fields at 20 m in each season was then computed and presented in Figure 6.7.  

The average correlation map of summer-fall season (Figure 6.7a) has highest 

correlation north of the cross-section and the correlation contours are nearly circular. In 

winter-spring season the highest correlation is located east of the cross-section and has an 

elongated pattern.  Positions of the highest correlation relative to the cross-section are 

consistent with the seasonally averaged circulation in Figure 6.4.  In summer and fall, 

because subsurface current is roughly along the isobaths, the upstream of the cross-section 

is somewhere in the northeast.  In winter and spring, circulation at the cross-section is 

roughly shoreward along the HSV, and the upstream of the cross-section is therefore 

somewhere in the east or southeast.  Moreover, the correlation in winter-spring season is 

much higher because the current within the HSV is much stronger at that time.   
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Figure  6.7.  Averaged salinity correlation field at 20 m for different seasons.  Gray lines 

are 20, 40 and 60 m isobaths and the thick black lines indicate the Hudson Shelf Valley 

cross-section where J is defined. Triangles indicate the optimal glider track and circles the 

traditional. 

 

The glider track was then designed according to the correlation pattern.  Figure 6.7 

presents the optimal design of the glider track for each season (triangles) in contrast to a 

traditional design of glider track (circles) which are on both sides of the cross-section.  I 

emphasize here that the optimal track is not obtained from a robust optimization algorithm 

but designed intuitively according to the correlation pattern.  I call it “optimal” to 

distinguish it from the traditional track. The real optimization of the glider track would be 
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based on a robust mathematical algorithm and take all instrumental and logistical 

constraints of glider deployment into consideration, which is another topic of research.   

6.4.3. Twin Experiments 

I am now going to verify the result using DA twin experiments.  Flow of the twin 

experiments is depicted in Figure 6.6.  For each representer, I first took temperature and 

salinity vertical profiles from “true” states of the control run along two different sampling 

tracks (optimal and traditional). Note that the optimal track is different for different 

seasons. Both sets of observations were taken over the second day counting from the time 

of applying the background covariance.  For a fair comparison, the two glider missions are 

set to take the same number of observations.  I then conducted a perturbed nonlinear model 

simulation starting from the end of the first day with initial conditions obtained from model 

state 5 days prior (day -4 in Figure 6.6).  Forcing of the perturbed simulation were kept the 

same as those of the control run, that is, there is no error in forcing, and errors exist only in 

initial conditions.  The perturbed simulation gives a forecast of the subsurface salt flux 

across the cross-section at the 4th day, Jb, different from the truth Jt given by the control 

run.  Two IS4DVAR DA based on the perturbed simulation were carried out to assimilate 

two sets of observations measured by two different missions, one optimal and one 

traditional, respectively.  The IS4DVAR system used here is same as the one used in 

Chapter 5. In this chapter the DA window is 1 day and only the “glider-measured” 

temperature and salinity profiles were assimilated. The corrected initial conditions given 

by the two DA systems were used to initialize two forecast simulations, respectively.  Each 

of the post-DA forecast simulations has forecast of the subsurface salt flux across the 
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cross-section at the 4th day, Ja (the second forecast).  Overall, I have 180 pairs of Ja and 180 

Jt and Jb.   

 

Figure  6.8. Skills of the two twin experiment systems in terms of predicting salt flux 

within the Hudson Shelf Valley for (a) summer-fall and (b) winter-spring seasons. Vertical 

bars are 95% confidence interval. 

 

A statistical measure of the skills of the two DA systems in improving forecast of J is 

presented in Figure 6.8 for both seasons.  The skill is defined as 

 1 a t

b t

J J
S

J J
−

= −
−

.                                                            (6.8) 

Positive skill means improvement of the J prediction by the DA and larger skill means 

better the prediction (the maximum skill is 1).  Because the objective is to predict the salt 

flux 2 days after the observation, the focus here is on the second day forecast (between the 

dash lines in Figure 6.8).  For both seasons, the system assimilated optimal observations 

has statistically better prediction of the salt flux than the one assimilated traditional 
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observations.  The amount of prediction improvement is also consistent with the magnitude 

of the correlation in Figure 6.7. In summer-fall season the correlation contrast between the 

optimal track and traditional track is rather small (Figure 6.7a) and the improvement of the 

J prediction is little; in winter-spring season the correlation contrast is relatively large  

(Figure 6.7b) and the prediction improvement is substantial. Figure 6.8 also shows that 

assimilating the optimal observations does not necessarily give better prediction of the salt 

flux for other days. For example, in winter-spring season the first day predictions of salt 

flux in the two systems are indistinguishable.  This suggests that precise definition of 

objective function is important in the representer-based observing system design. Overall, 

the DA twin experiments show the validity of the representer-based observing system 

design. 

     

6.5. Comparison of Observation Influence  

Observation influence is a measure operational oceanographer and policy makers have 

been concerned about for integrating observing systems (Kaiser and Pulsipher 2004), 

designing new observation networks (Oke and Schiller 2007) or evaluating existing 

observations (Frolov et al. 2008). In this section I am going to explore the use of the 

representer system to compare observation influences in a simple manner.   

6.5.1. Therory 

As mentioned in Section 1, the representer associated with a single observation 

describes the influence of that observation in a 4DVAR DA system.  Similar to the 

derivation in Section 2, we can expand this concept to a broader circumstance.  Suppose we 
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have a numerical model and a group of observations. Because of errors in initial 

conditions, boundary conditions, forcing, or model physics, modeled results are different 

from their observed counterpart.  The idea of DA is to use the observations to correct the 

model.  Let us assume that observational error is much smaller than model error and the 

analysis after DA is close to the truth.  Part of the gain of assimilating the observations is to 

eliminate the model error in the observed variables at the observation locations and times.  

We can define a corresponding gain function J, similar to the objective function in Section 

4.  In a 4DVAR system, assimilating the observations corrects not only the observed 

variables at the observation locations and times, but also the model state at other locations 

and times through background error covariance and the dynamical connections embedded 

in the adjoint and tangent linear models. Because the representer system is linear, we can 

obtain the influence of a group of observations by superimposing the representers 

associated with each observation.  The mathematical derivation is same as the one in 

Section 2.  That is, for a group of observations, if we define the associated gain function, J, 

as an arithmetic function of state variables, we can obtain the influences of the observation 

group through the associated representer. In general, definition of the gain function can be 

any arithmetic function of model variables.  Because different definitions of the gain 

function will result in different observation influences, interpretation of the influence 

should be consistent with the definition of the gain function. 

Next, I will demonstrate three examples of the representer-based comparison of 

observation influence.  I focus on the comparison of influence area and strength of two 

different observing strategies, of the same observations at different dynamical regimes, and 

also of the same observations with different DA windows.  Note that the comparison in this 
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study is not for realistic design of an observational network but rather for domonstrating 

the representer-based observation comparison. As the first try of this system, this 

comparison is intended to understand what the representer system can give us and to 

qualitatively compare the influences of different observations.   

6.5.2. Glider vs. Mooring 

Because gliders and moorings are two commonly used instruments to monitor the NYB 

and both measure vertical profiles of temperature and salinity, I choose to compare their 

influences in this section.  In Figure 6.1, I plot the track of a glider mission which is part of 

a routine cross-shelf glider section operated by the COOL (Castelao et al. 2008a).  I put the 

hypothetical glider track north of the real track for the sake of space and assign the one-way 

mission to be 3 days which is roughly the time it takes a real glider to cross the shelf.  The 

glider moves back and forth along the track.  The hypothetical mooring is located at the 20 

m isobath on the hypothetical glider track.  The experiment was conducted for the period of 

April – May, 2006. 

Firstly, both instruments sampled vertical temperature and salinity profiles in the 

nonlinear control model at every time step (180 seconds).  The two-month period was then 

separated into 20 3-day windows and a representer computation was conducted in each 

window.  If model error is proportional to ocean state anomaly, the gain of correcting the 

observed variables in the model at the observation locations and times is also proportional 

to the ocean state anomaly.  I therefore defined the gain function as 

2 2

∆

1 ( ) ( )
∆ T SV t

T T S SJ dtdV
V t

⎡ ⎤− −
= +⎢ ⎥

⎣ ⎦
∫ ∫ O O

,                                 (6.9) 
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where ∆t is  3 days, V is the volume of the observed space in 3 days, T and S are observed 

temperature and salinity, respectively, the overhead bars stand for a  temporal mean at each 

observation location, and OT and OS are the error covariance matrices of temperature and 

salinity observations, respectively.  Assume both error covariance matrices are the identity 

matrix for simplicity.  Because my objective is to investigate the influence of observations 

in a 4DVAR system, I chose a quadratic gain function to be consistent with the cost 

function in 4DVAR.   

 

Figure  6.9. Averaged influence of a glider section (black straight lines in top row) and a 

fixed mooring (white triangle in bottom row) observations.  The observations span from 

day 0 to day 3.  Counting of the days starts from the time of applying background error 

covariance (see Figure 6.6). 
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The procedure of representer computation is same as the one in Section 4.  For each 

representer, the adjoint model was integrated backward for 3 days with adjoint forcing 

covering the whole period.  After applying the background error covariance, the tangent 

linear model was integrated for 6 days in order to show the observation influences in both 

analysis (the first 3 days) and forecast (the last 3 days) periods.  RMS of the 20 representer 

fields was then computed for different time in the 6-day window. Figure 6.9 shows the 

RMS of the surface temperature representer at different times of the 6-day window.  

Generally, comparison in the analysis period (the first two columns in Figure 6.9) 

shows that glider observation has a larger influence area than a mooring but the influential 

strength of the mooring at the observation location is about twice as stronger as that of the 

glider observation.  During the forecast period (the last two columns in Figure 6.9), the 

influence of glider observation quickly decays away, while that of mooring observation 

stays strong.  At day 6, 3 days into the forecast, the influence of mooring observation at 

observation location is more than 3 times stronger than that of glider observation.  

Moreover, the influence area of mooring observation expands quickly along the shelf over 

the forecast period, but that of glider observation expands little.  At day 6, it is not obvious 

that the glider observations have larger influence area than the mooring.   

In Figure 6.10, I plot the vertical cross-section of the RMS influences of the two 

instruments. The cross-sections are along the glider track.  Comparison within the analysis 

period tells the same story as that in Figure 6.9: the glider observation has larger influential 

coverage across the shelf and the mooring observation has stronger influence at the 

observation location. Cross-sections of glider observation influence within the forecast 

period shows that decay of the influence mainly happens in the surface 15 m.  One 
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interesting feature in Figure 6.10 is that at day 0 both cross-sections show strong influence 

in the surface and bottom boundary layer and relatively weaker influence at mid-depth. 

The two boundary layers merge next to the coast. This feature is consistent with the strong 

temperature and salinity variability in the surface and bottom boundary layers caused by 

the wind-driven coastal upwelling and down-welling.   

 

Figure  6.10.  Cross-sections of the averaged influence at different time along the glider 

track in Figure 6.9.  The white lines in the second column indicate the mooring location.  

The observations span from day 0 to day 3. 
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Figure  6.11.   Averaged surface influence of a glider section (white lines) in wind-driven 

coast upwelling (top row) and down-welling (bottom row) regimes. The observations span 

from day 0 to day 3. 

 

6.5.3. Comparison of Different Wind Regimes 

Because wind-driven coastal upwelling and down-welling are common phenomena in 

the inner shelf of the NYB (Castelao et al. 2008b, Wong 1999, Yankovsky and Garvine 

1998), differences between the influences of observations in the two dynamical regimes 

are of particular interest for operational oceanography. This subsection takes the 

hypothetical glider section in Section 5.1 as an example and demonstrates its different 

influences in upwelling and down-welling regimes.  I separated the 20 glider representers 
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in Section 6.5.2 into two groups according to the wind direction in the 3-day observation 

windows (southerly wind drives upwelling on the coast and northerly wind down-welling).  

The RMS of the representers in each group were then computed and presented in Figure 

6.11.  

In general, the influence within the analysis window (Day 0-3) in the upwelling regime 

is about twice as strong as that in the down-welling regime.  Because coastal upwelling 

pulls deep cold water up to the surface and down-welling pushes offshore surface water on 

shore, the surface temperature anomaly associated with upwelling is much stronger.  

Model temperature error on the surface in an upwelling regime is consequently larger since 

model error is assumed to be proportional to the ocean state anomaly.  Therefore, the 

influence of the glider observations in an upwelling regime on correcting model errors is 

also larger.  

At day 0, the influence area of the observation extends southward along the coast in the 

upwelling regime and northward along the coast in the down-welling regime. It reflects 

that model state at the dynamical upstream of the observed quantities in a 4DVAR system 

is influenced by the observations.  In the upwelling regime, coastal surface water south of 

the glider track is pushed northeastward and, therefore, surface glider observation at the 

end of the 3-day window captures the properties of the water that had been located south of 

the track on the surface next to the coast at day 0.  In the down-welling regime, coastal 

surface water north of the glider track is pushed into the bottom boundary layer and moves 

southward.  Subsurface glider observation at the end of the window thus captures the 

properties of the water that had been located north of the track on the surface next to the 

coast at day 0.  The upstream coverage of the representer-based observation influence is 



185 

 

consistent with the identification of dynamical upstream by adjoint sensitivity as in 

Chapter 4.  As time proceeds into the forecast window (the last two columns in Figure 

6.11), the influence area propagates downstream along the coast, northward in upwelling 

regime and southward in down-welling regime. 

Results in this subsection and the previous one can be used to help the design of an 

observation network if the observations are taken for the purpose of DA.  Details of 

instrument spacing, especially for permanently mounted instruments, can be studied using 

representer-based systems before the instruments are deployed.  

 

6.5.4. Comparison of Different Data Assimilation Windows 

One major advantage of 4DVAR DA is its ability to propagate information, e.g. 

observation innovation, over time, backward and forward.  Ideally, we would like the 

information to be propagated as long as possible in order to capture as many dynamical 

connections as possible. But the longest time period for which the information can 

propagate, i.e. the DA window, is always constraint by the linear assumption used in 

4DVAR systems. The length of the DA window is thus always an issue in 4DVAR DA.  

For the same observation, different lengths of the DA window will result in different 

observation influences.  To show this, I conducted a simple example using the 

representer-based observation influence.  I formed 4 groups of representers of glider 

observations along the same track as in the previous section.  Each group has 20 

representers. The adjoint models in the 4 groups were initialized at the same times and 

integrated for 0, 1, 2 and 3 days, respectively. The tangent linear models were integrated 

for 3, 4, 5 and 6 days, respectively. To make the comparisons fair, I designed all glider 
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observations to be instantaneous at the initial times of the adjoint models and then all 

representer windows include the same observations.   

 

Figure  6.12.  Contours of the averaged influence of a glider section (black straight lines) 

at day 3 (top row) and day 6 (bottom row) in systems with different data assimilation 

window.  The contour lines are 0.01, 0.1, 0.5 oC, repectively.  The instantaneous 

observations were taken at Day 3.  

 

The RMS of the representers in each group at different time were computed and the 

surface average temperature influences are presented in Figure 6.12.  In Figure 6.12, Day 3 

is the observation time and Day 6 is the ending time of the tangent linear integration (3 
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days after observations).  The comparison at both times shows that longer DA windows 

have larger influence areas.  At Day 3, the average influence in the 0-day window group is 

confined around the glider track.  As the window becomes longer, the influence spreads 

out, especially along the coast.  The average influence in the 3-day window group covers 

almost the entire New Jersey coast.  Note that the small covariance value (0.01) at the 

edges of the influence area results from the RMS averaging process.  The influence value 

in individual representer is much larger but the corresponding influence area is smaller.   

The RMS averaged influence of the 0-day window group at Day 3 has a very smooth 

pattern because it is just after applying the background error covariance.  The representer 

of the 0-day window is a measure of observation influences in sequential DA, i.e. 3DVAR, 

Kalman Filter-type DA methods.   In these methods, information about the dynamical 

upstream is lost because there is no backward propagation of observation innovation, and 

all the information obtained from the observations are through the statistical and dynamical 

connections described by the background error covariance.   In 4DVAR DA, the adjoint 

model propagates the observation innovation backward according to linear dynamics and 

points out the corrections needed to be made in the dynamical upstream in initial 

conditions, boundary conditions or surface forcing.    

 

6.6. Summary 

This chapter is the part of the project to build an integrated observation and modeling 

system for the NYB for the purpose of coastal ocean prediction and observing system 

design.  Chapter 5 carried out the 4DVAR DA using ROMS in a realistic and 
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pseudo-realtime setup. This chapter is dedicated to the observation-modeling integration in 

the opposite direction: representer-based observing system design. 

It is well known that representer describes the covariance between a point aspect of 

interest and variables at all locations at any time.  In 4DVAR DA, a representer provides 

the influences of single assimilated observation and can be used in the process of cost 

function minimization in observation space (Bennett 2002).  To extend the application of 

representer to broader circumstances, I first showed that the representer associated with 

any arithmetic function of model variables describes the covariance between the aspect of 

interest described by the arithmetic function and model variables at all locations at any 

time.  The place where the correlation is the highest is presumably the optimal place to 

observe in order to estimate the aspect of interest more precisely if there is no other 

observation available in nearby locations.  Applying the same theory to observation 

influence, I found that the representer associated with a group of observations outlines the 

influences of the observation group in a 4DVAR DA system.   

To exam the consistency between representer and local dynamics I computed the 

representers associated with a point aspect of interest in the Hudson River plume.  Time 

series of representers show the propagation of covariance in a pattern similar to the river 

plume. The representer at the time of interest indicates high covariance confined in the area 

where water has the same source as the point of interest.  

In the application of observing system design, I seek the optimal glider track for better 

model prediction of salt flux across a cross-section of the Hudson Shelf Valley 2 days after 

the glider deployment.  180 representers were computed and grouped into two seasons, 

summer-fall and winter-spring. The RMS of the correlation in the summer-fall group is the 
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highest north of cross-section and for the winter-spring group it is east and southeast of the 

cross-section.  Optimal glider tracks were then picked intuitively for both seasons 

according to the correlation maps.  In contrast, the traditional glider track was designed to 

be on both sides of the cross-section for all year.   DA twin experiments were used to verify 

the result.  Glider observations taken from a control nonlinear simulation along the optimal 

and traditional tracks were then assimilated respectively into 4DVAR systems based on a 

perturbed nonlinear model.  Skills of the two DA systems in term of predicting the salt flux 

2 days after the observations were obtained.  For both seasons, the system assimilated the 

optimally positioned observations gives statistically better prediction of the salt flux than 

the one assimilated the traditional observations.  The difference in the improvement of the 

forecast in two seasons reflects the difference in the magnitude of seasonally averaged 

correlation.   

This example shows the usefulness of representer-based system in finding optimal 

observing locations in the situation of no other available observation.  The question of how 

much different the optimal pattern would be if other observations are available is an 

interesting scientific question and can be addressed using the observation sensitivity 

technique.    

The representer-based system was used to outline the influences of a group of 

observations in a 4DVAR DA system and compare the influences of different observing 

strategies.  I first compared the influences of a routine glider cross-shelf section and a fixed 

mooring.  20 representers were computed for each instrument type.  Comparison of the 

representer RMS shows that the glider section has a broader influence area and the 
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mooring has stronger influence at the observation location. Meanwhile, in the forecast 

mode, influence of the mooring persists and extends dramatically along the shelf.  

The influences of the same routine glider section in different dynamical regimes were 

then compared: wind-driven coastal upwelling and down-welling.  It was shown that 

influence area of the glider observation tends to cover the dynamical upstream: southward 

along the coast in the upwelling regime and northward along the coast in the down-welling 

regime.  The influence is stronger in upwelling regime because of the strong surface 

temperature anomaly associated with the coastal upwelling.  

In the last part, I compared the influences of the same glider section in DA systems 

with different window lengths, 0 to 3 days.  The result agrees with intuition that a longer 

DA window brings more dynamical connections and gives the same observations larger 

influence area. 

In all, this work demonstrates the ability of representer system in finding an optimal 

observation pattern and outlining the influence of observations.  It can potentially be used 

to help design the positioning of single observation or observation networks.  Of course, 

the real optimization of observations is a multi-aspect task and will have to consider other 

constraints, instrumental and logistical, as well.  The work in this chapter approaches the 

goal from one perspective.  
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Appendix: Derivation of Equations (6.3) – (6.6) 

Suppose a and b are two independent variables at particular locations of interest, x1 and 

x2 respectively, at time t0, that is, a = 1φ (x1, t0) and b = 2φ (x2, t0), and N is the number of all 

possible ocean states. I assume that (i) the ocean states given by the nonlinear model is the 

mean of the randomly distributed ocean states in Bayesian statistics and (ii) the deviation 

of all possible ocean states from the mean is small and the product of two or more state 

deviations (e.g. a´b´) is negligible.  The first condition is reasonable because distribution of 

model errors is usually assumed to be Gaussian and the nonlinear model states which the 

tangent linear and adjoint models are linearized based on are normally the best ones we can 

get.  The second condition agrees with the small background error assumption we have in 

variational DA.   

Overhead bars in following derivation stands for the mean of the randomly distributed 

ocean states.  

Derivation of equation (6.3): 
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Derivation of equation (6.4) is very similar to that of equation (6.3) and, therefore, 

neglected here. 
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Derivation of equation (6.5): 
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Derivation of equation (6.6) (first-order Taylor series expansion applied): 
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CHAPTER 7. SUMMARY 

The overarching theme of this dissertation is to develop a prototype for the 

implementation of an integrated coastal ocean observing and modeling system for the 

NYB. It utilizes ROMS component models (Nonlinear, Tangent Linear and Adjoint 

models) and drivers for adjoint sensitivity, residence time, IS4DVAR DA, and 

representer-based optimal observation.  The results demonstrate how these tools can be 

applied to reveal the dominant physical processes in shelf regions such as the NYB, give 

more precise oceanic state estimation for forecasting and re-analysis, and improve the 

design of observational systems.  

Chapter 2 investigates the spatial and temporal dispersal patterns of the Hudson River 

plume in the NYB.  Analysis of the two-year duration model simulation first provides the 

background dynamics and shows strong seasonal variations of the freshwater dispersal.  It 

is shown that the Hudson River source water propagates in the NYB in three major 

pathways: (i) a southward pathway along the New Jersey coast dominant in winter and 

spring seasons; (ii) a eastward pathway along the Long Island coast mainly happening in 

fall; and (iii) a direct southeastward off-shore pathway dominant in the summer. A series of 

reduced physics simulations demonstrate the effects different forces have on the dispersal 

pattern. Wind is the major force for the spreading of river source freshwater to the mid- and 

outer-shelf; the ambient current pushes the freshwater southwestward along the shelf; and 

the HSV intensifies the bulge recirculation at the apex area of the NYB.  

Chapter 3 investigates the time scales (age and residence time) associated with the 

dispersal of the Hudson River plume in the NYB. The spatial and temporal variability of 

the time scales are shown to be consistent with those of the freshwater pathways 
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discovered in Chapter 2. Correlations of the time scales with river discharge and wind 

show that both age and residence time of the surface water in the NYB are largely affected 

by the variations of the river discharge and wind.  Easterly winds increase surface water 

age and extend the duration waters along the Long Island coast remain in the NYB apex. 

Southerly winds increase age along the New Jersey coast, yet drive a decrease in age of 

offshore surface waters and prolong the time surface waters close to the New Jersey coast 

stay in the NYB apex. Comparison between modeled surface water age and an age proxy, 

the ratio of satellite measured irradiance in two channels, shows qualitative agreement.  A 

least squares fit gives empirical relationship between the band ratio and modeled mean age 

for NYB waters. 

Chapter 4 uses adjoint sensitivity analysis to study physics in the NYB for three 

idealized situations: an unforced buoyant river plume, and upwelling and down-welling 

wind forcing. Coastal SST variability is considered and the adjoint scalar index is defined 

as the temporal-spatial mean squared SST anomaly on a segment of the New Jersey coast at 

the conclusion of a 3-day period. The adjoint method identifies the oceanic conditions and 

forcing that are “dynamically upstream” to a region or feature of interest, and compares the 

relative roles of the prior ocean state, forcing, and dynamical influences on forming the 

feature of interest. In the absence of wind, surface temperature advection dominates SST 

anomaly with two sources of surface water identified. Down-welling favorable winds 

amplify upstream advective influence. For upwelling conditions, it is shown that coastal 

SST is controlled by both advection from the south and subsurface, but above 5 m depth, 

and temperature-related density stratification between 5 m and 15 m, out to 10 km 

offshore.  
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Chapter 5 carries out the 4D variational DA in the NYB using ROMS IS4DVAR 

system.  It assimilates a number of observations collected by a variety of instruments 

during spring 2006 to correct model initial conditions.  An overlapped cycling system with 

3-day DA window is used. The DA system reduces the model-observation mismatch 

substantially for all variables.  It is shown that error in model wind forcing is a major cause 

of the velocity mismatch. Because surface forcing quantities are not among the control 

variables, the DA system is unable to reduce the mismatch associated with surface forcing 

errors. Comparisons between model forecasts and independent observations show 

improvement of forecast for about 15 days for temperature and salinity and 2 – 3 days for 

velocity.  Comparison between different DA systems that assimilated different sets of data 

indicates that assimilating SST improves the forecast of surface and subsurface 

temperature but worsens salinity forecast.  Assimilating glider measurement improves the 

salinity forecast but has little effect on the temperature forecast.  Assimilating surface 

current data improves the velocity forecast for 1-2 days and worsens the forecast of 

subsurface temperature.   

Chapter 6 explores the representer-based observing system design in the NYB. 

Because the representer of an observation describes the covariance between the observed 

quantity and ocean states at all locations at any time, it can be used to measure the influence 

of the observation in a 4D Variational (4DVAR) DA system. A representer-based system is 

applied to identify the optimal glider track for better predicting salt flux in the Hudson 

Shelf Valley 2 days in the future.  Twin experiments assimilating observations along the 

optimal track give better prediction of the salt flux than the ones assimilating observations 

along a traditional track. The same system was used to compare the influences of different 
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observation strategies.  Comparison of the influences of a routine glider section and a 

mooring shows that the glider section influences a larger area and the mooring has stronger 

influence at the observation location; Comparison of the glider section in different 

dynamical regimes shows different coverage of the observations in a 4DVAR system. 

Comparison of the influences of the glider section in a DA system with different window 

lengths shows that longer DA window lets the system catch more dynamical connections 

and allows the observations to influence a larger area.  

 



197 

 

Bibliography 
 
 
Adams, D. A., J. S. O'Connor, and S. B. Weisberg, 1998: Sediment quality of the NY/NJ 
harbor systemEPA/902-R-98-001. 
 
Allen, J. S., P. A. Newberger, and J. Federiuk, 1995: Upwelling Circulation on the Oregon 
Continental Shelf. Part I: Response to Idealized Forcing. J. Phys. Oceanogr., 25, 
1843–1866 
 
Austin, J. A. and J. A. Barth, 2002: Variation in the position of the upwelling front on the 
Oregon shelf. J. Geophys. Res., 107, 3180,doi:10.1029/2001JC000858. 
 
Avicola, G. and P. Huq, 2003a: The role of outflow geometry in the formation of the 
recirculating bulge region in coastal buoyant outflows. J. Mar. Res., 61, 411-434 
 
——, 2003b: The characteristics of recirculating bulge region in coastal buoyant outflows. 
J. Mar. Res., 61, 435-463 
 
Baker, N. and R. Daley, 2000: Observation and background adjoint sensitivity in the 
adaptive observation-targeting problem. Q. J. R. Meteorol. Soc., 126, 1431-1454 
 
Ballabrera-Poy, J., E. Hackert, R. Murtugudde, and A. J. Busalacchi, 2007: An observing 
system simulation experiment for an optimal moored instrument array in the tropical 
Indian Ocean. J. Clim., 20, 3284-3299,doi: 10.1175/JCLI4149.1. 
 
Barth, N. and C. Wunsch, 1990: Oceanographic experiment design by simulated 
annealing. J. Phys. Oceanogr., 20, 1249-1263,doi: 
10.1175/1520-0485(1990)020<1249:OEDBSA>2.0.CO;2. 
 
Beardsley, R. C. and W. C. Boicourt, 1981: On estuarine and continental shelf circulation 
in the Middle Atlantic Bight. Evolution of Physical Oceanography, B. A. Warren and C. 
Wunsch, Eds., The MIT Press, 198-223. 
 
Bennett, A. F., 1990: Inverse methods for assessing ship-of-opportunity networks and 
estimating circulation and winds from tropical expendable bathythermograph data. J. 
Geophys. Res., 95, 16,111-16,148 
 
——, 2002: Inverse Modeling of the Ocean and Atmosphere. Cambridge University Press, 
234 pp. 
 
Bergot, T., 1999: daptive observations during FASTEX : A systematic survey of upstream 
flights. Q. J. R. Meteorol. Soc., 125, 3271-3298 
 



198 

 

Berliner, L. M., Z.-Q. Lu, and C. Snyder, 1999: Statistical design for adaptive weather 
observations. J. Atmos. Sci., 56, 2536-2552,DOI: 
10.1175/1520-0469(1999)056<2536:SDFAWO>2.0.CO;2. 
 
Bertsekas, D. P., 1982: Constrained optimization and Lagrange multiplier methods. 
Academic Press, 395 pp. 
 
Bishop, C. H. and Z. Toth, 1999: Ensemble transformation and adaptive observations. J. 
Atmos. Sci., 56, 1748-1765,10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2. 
 
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the 
Ensemble Transform Kalman Filter. Part I: theoretical aspects. Mon. Weather Rev., 129, 
420-436,doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2. 
 
Brooks, D. A., M. W. Baca, and Y.-T. Lo, 1999: Tidal circulation and residence time in a 
macrotidal estuary: Cobscook Bay, Maine. Est. Coast. Shelf Sci., 49, 647-665 
 
Broquet, G., C. A. Edwards, A. M. Moore, B. S. Powell, M. Veneziani, and J. D. Doyle, 
2009: Application of 4D-Variational data assimilation to the California Current System. 
Dyn. Atmos. Oceans, in press 
 
Cahill, B., O. Schofield, R. Chant, J. Wilkin, E. Hunter, S. Glenn, and P. Bissett, 2008: 
Dynamics of turbid buoyant plumes and the feedbacks on near-shore biogeochemistry and 
physics. Geophys. Res. Lett., 35, L10605, doi:10.1029/2008GL033595 
 
Castelao, R. M., O. Schofield, S. Glenn, R. J. Chant, and J. Kohut, 2008a: Cross-shelf 
transport of fresh water on the New Jersey Shelf. J. Geophys. Res., 113, 
C07017,doi:10.1029/2007JC004241. 
 
Castelao, R. M., S. Glenn, O. Schofield, R. J. Chant, J. Wilkin, and J. Kohut, 2008b: 
Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight from glider 
observations. Geophys. Res. Lett., 35, L03617, doi:10.1029/2007GL032335 
 
Chant, R. J., 2001: Evolution of near-inertial waves during an upwelling event on the New 
Jersey inner shelf. J. Phys. Oceanogr., 31, 746-764 
 
Chant, R. J., S. Glenn, and J. Kohut, 2004: Flow reversals during upwelling conditions on 
the New Jersey inner shelf. J. Geophys. Res., 109, C12S03, doi:10.1029/2003JC001941. 
 
Chant, R. J., W. R. Geyer, R. Houghton, E. Hunter, and J. Lerczak, 2007: Estuarine 
Boundary Layer Mixing Processes: Insights from Dye Experiments. J. Phys. Oceanogr., 
37, 1859-1877 
 
Chant, R. J., S. M. Glenn, E. Hunter, J. Kohut, R. F. Chen, R. W. Houghton, J. Bosch, and 
O. Schofield, 2008a: Bulge formation of a buoyant river flow. J. Geophys. Res., 113, 
C01017, doi:10:1029/2007JC004100 



199 

 

 
Chant, R. J., J. Wilkin, W. Zhang, B.-J. Choi, E. Hunter, R. Castelao, S. M. Glenn, J. Jurisa, 
O. Schofield, R. Houghton, J. Kohut, T. K. Frazer, and M. A. Moline, 2008b: Dispersal of 
the Hudson River Plume in the New York Bight: synthesis of observational and numerical 
studies during LaTTE. Oceanography, 21, 148-161 
 
Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic 
ocean model. J. Phys. Oceanogr., 15, 1060-1075 
 
Chapman, D. C. and R. C. Beardsley, 1989: On the origin of shelf water in the Middle 
Atlantic Bight. J. Phys. Oceanogr., 19, 384-391 
 
Choi, B.-J. and J. L. Wilkin, 2007: The effect of wind on the dispersal of the Hudson River 
plume. J. Phys. Oceanogr., 37, 1878-1897 
 
Ciotti, Á. M., C. Odebrecht, G. Fillmann, and O. O. Möller, 1995: Freshwater outflow and 
Subtropical Convergence influence on phytoplankton biomass on the southern Brazilian 
continental shelf. Cont. Shelf Res., 15, 1737-1756 
 
Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Q. J. R. 
Meteorol. Soc., 123, 2449-2461 
 
Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational 
implementation of 4DVAR using an incremental approach. Q. J. R. Meteorol. Soc., 120, 
1367-1388 
 
Deleersnijder, E., J.-M. Campin, and E. J. M. Delhez, 2001: The concept of age in marine 
modelling: I. Theory and preliminary model results. J. Mar. Syst., 28, 229-267 
 
Delhez, E. J. M., 2006: Transient residence and exposure time. Ocean Sci., 2, 1-9 
 
Delhez, E. J. M. and E. Deleersnijder, 2006: The boundary layer of the residence time field. 
Ocean Dynam., 56, 139-150,doi:10.1007/s10236-006-0067-0. 
 
Delhez, E. J. M., A. W. Heemink, and E. Deleersnijder, 2004: Residence time in a 
semi-enclosed domain from the solution of an adjoint problem. Est. Coast. Shelf Sci., 61, 
691-702 
 
Delhez, E. J. M., J.-M. Campin, A. C. Hirst, and E. Deleersnijder, 1999: Toward a general 
theory of the age in ocean modeling. Ocean Model., 1, 17-27 
 
Delhez, E. J. M., E. Deleersnijder, A. Mouchet, and J.-M. Beckers, 2003: A note on the age 
of radioactive tracers. J. Mar. Syst., 38, 277-286 
 
Derber, J. and F. Bouttier, 1999: A reformulation of the background error covariance in the 
ECMWF global data assimilation system. Tellus A, 51, 195-221 



200 

 

 
Di Lorenzo, E., A. M. Moore, H. G. Arango, B. D. Cornuelle, A. J. Miller, B. Powell, B. S. 
Chua, and A. Bennett, 2007: Weak and strong constraint data assimilation in the inverse 
Regional Ocean Modeling System (ROMS): development and application for a baroclinic 
coastal upwelling system. Ocean Model., 16, 160-187 
 
Duarte, A. S., J. L. Pinho, M. A. Pardal, J. M. Neto, J. P. Vieira, and F. S. Santos, 2001: 
Effect of residence times on River Mondego estuary eutrophication vulnerability. Water 
Sci. Technol., 44, 329-336 
 
Dutkiewicz, S., M. Heimbach, M. Follows, and J. Marshall, 2006: Controls on ocean 
productivity and air-sea carbon flux: an adjoint model sensitivity study. Geophys. Res. 
Lett., 33, L02603, 10.1029/2005GL024987 
 
Egbert, G. D. and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean 
tides. J. Atmos. Oceanic Technol., 19, 
183-204,10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2. 
 
England, M. H., 1995: The age of water and ventilation timescales in a global ocean model. 
J. Phys. Oceanogr., 25, 2756-2777 
 
Errico, R. M., 1997: What is an adjoint model? Bull. Am. Meteorol. Soc., 78, 2577-2591 
 
Errico, R. M. and T. Vukicevic, 1992: Sensitivity analysis using an Adjoint of the 
PSU-NCAR mesoscale model. Mon. Weather Rev., 120, 1644-1660 
 
Evensen, G., 2007: Data Assimilation: The Ensemble Kalman Filter. Springer, 208 pp. 
 
Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. Edson, 2003: Bulk 
Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm. 
J. Clim., 16, 571-591 
 
Farrell, B. F. and A. M. Moore, 1992: An adjoint method for obtaining the most rapidly 
growing perturbation to oceanic flows. J. Phys. Oceanogr., 22, 338-349 
 
Fennel, K., J. Wilkin, J. Levin, J. Moisan, J. O'Reilly, and D. Haidvogel, 2006: Nitrogen 
cycling in the Middle Atlantic Bight: Results from a three-dimensional model and 
implications for the North Atlantic nitrogen budget. Global Biogeochem. Cy., 20, 
doi:10.1029/2005GB002456 
 
Fine, R. A., 1995: Tracers, timescales, and the thermohaline circulation: the lower limb in 
the North Atlantic Ocean. Rev. Geophys., 33 Suppl., 1353-1365 
 
Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. 
Roy. Sci. Liege, Ser. 6, 10, 141-164 
 



201 

 

Fong, D. A. and W. R. Geyer, 2001: Response of a river plume during an upwelling 
favorable wind event. J. Geophys. Res., 106, 1067-1084 
 
——, 2002: The alongshore transport of freshwater in a surface-trapped river plume. J. 
Phys. Oceanogr., 32, 957-972 
 
Frolov, S., A. Baptista, and M. Wilkin, 2008: Optimizing fixed observational assets in a 
coastal observatory. Cont. Shelf Res., 28, 2644-2658,doi: 10.1016/j.csr.2008.08.009. 
 
Galanti, E. and E. Tziperman, 2003: A Midlatitude-ENSO Teleconnection Mechanism via 
Baroclinically Unstable Long Rossby Waves. J. Phys. Oceanogr., 33, 1877-1888 
 
Gao, Y., H. Drange, M. Bentsen, and O. M. Johannessen, 2005: Tracer-derived transit time 
of the waters in the eastern Nordic Seas. Tellus, 57B, 332-340 
 
García Berdeal, I., B. M. Hickey, and M. Kawase, 2002: Influence of wind stress and 
ambient flow on a high discharge river plume. J. Geophys. Res., 107, 3130, 
doi:10.1029/2001JC000932,doi:10.1029/2001JC000932. 
 
Garvine, R. W., 1999: Penetration of buoyant coastal discharge onto the continental shelf: 
a numerical model experiment. J. Phys. Oceanogr., 29, 1892-1909 
 
——, 2004: The vertical structure and subtidal dynamics of the inner shelf off New Jersey. 
J. Mar. Res., 62, 337-371,doi:10.1357/0022240041446182. 
 
Garvine, R. W. and M. M. Whitney, 2006: An estuarine box model of freshwater delivery 
to the coastal ocean for use in climate models. J. Mar. Res., 64, 173-194 
 
Geyer, W. R., J. D. Woodruff, and P. Traykovski, 2001: Sediment transport and trapping in 
the Hudson River Estuary. Estuaries, 24, 670-679 
 
Glenn, S. M. and O. Schofield, 2003: Observing the oceans from the COOLroom: Our 
history, experience. Oceanography, 16, 37-52 
 
Hackert, E. C., R. N. Miller, and A. J. Busalacchi, 1998: An optimized design for a moored 
instrument array in the tropical Atlantic Ocean. J. Geophys. Res., 103, 7491-7509 
 
Haidvogel, D. B., H. Arango, W. B. Budgell, B. D. Cornuelle, E. Curchitser, E. Di 
Lorenzo, K. Fennel, W. R. Geyer, A. J. Hermann, L. Lanerolle, J. Levin, J. C. McWilliams, 
A. J. Miller, A. M. Moore, T. M. Powell, A. F. Shchepetkin, C. R. Sherwood, R. P. Signell, 
J. C. Warner, and J. Wilkin, 2008: Ocean forecasting in terrain-following coordinates: 
formulation and skill assessment of the regional ocean modeling system. J. Comput. Phys., 
227, 3595-624 
 
Haine, T. W. N. and T. M. Hall, 2002: A generalized transport theory: water-mass 
composition and age. J. Phys. Oceanogr., 32, 1932-1946 



202 

 

 
Haine, T. W. N., A. J. Watson, M. I. Liddicoat, and R. R. Dickson, 1998: The flow of 
Antarctic bottom water to the southwest Indian Ocean estimated using CFCs. J. Geophys. 
Res., 103, 27637-27653 
 
Hall, T. M. and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. 
Geophys. Res., 99, 1059-1070 
 
Hall, T. M. and T. W. N. Haine, 2002: On ocean transport diagnostics: the idealized age 
tracer and the age spectrum. J. Phys. Oceanogr., 32, 1987-1991 
 
Harris, C. K., B. Butman, and P. Traykovski, 2003: Winter-time circulation and sediment 
transport in the Hudson Shelf Valley. Cont. Shelf Res., 23, 801-820 
 
Hickey, B., S. Geier, N. Kachel, and A. MacFadyen, 2005: A bi-directional river plume: 
The Columbia in summer. Cont. Shelf Res., 25, 1631-1656 
 
Hill, C., V. Bugnion, M. Follows, and J. Marshall, 2004: Evaluating carbon sequestration 
efficiency in an ocean circulation model by adjoint sensitivity analysis. J. Geophys. Res., 
109, C11005, doi:10.1029/2002JC001598 
 
Hoffman, R. N., R. M. Ponte, E. J. Kostelich, A. Blumberg, I. Szunyogh, S. V. 
Vinogradov, and J. M. Henderson, 2008: A simulation study using a local ensemble 
transform Kalman filter for data assimilation in New York Harbor. J. Atmos. Oceanic 
Technol., 25, 1638-1656,10.1175/2008jtecho565.1. 
 
Hofmann, E., J.-N. Druon, K. Fennel, M. Friedrichs, D. Haidvogel, C. Lee, A. Mannino, C. 
McClain, R. Najjar, J. O'Reilly, D. Pollard, M. Previdi, S. Seitzinger, J. Siewert, S. 
Signorini, and J. Wilkin, 2008: Eastern US continental shelf carbon budget, Integrating 
models, data assimilation, and analysis. Oceanography, 21, 86-104 
 
Hohmann, R., M. Hofer, R. Kipfer, F. Peeters, D. M. Imboden, H. Baur, and M. N. 
Shimaraev, 1998: Distribution of helium and tritium in Lake Baikal. J. Geophys. Res., 103, 
12823-12838 
 
Holzer, M. and T. M. Hall, 2000: Transit-time and tracer-age distributions in geophysical 
flows. J. Atmos. Sci., 57, 3539-3558 
 
Hoteit, I. and A. Köhl, 2006: Efficiency of reduced-order, time-dependent adjoint data 
assimilation approaches. J. Oceanogr., 62, 539-550 
 
Howarth, R. W., R. Marino, D. P. Swaney, and E. W. Boyer, 2006: Wastewater and 
watershed influences on primary productivity and oxygen dynamics in the lower Hudson 
River estuary. The Hudson River Estuary, J. S. Levington and J. R. Waldman, Eds., 
Cambridge University Press, 121-139. 
 



203 

 

Jenkins, W. J., 1987: 3H and 3He in the Beta Triangle: Observations of Gyre ventilation and 
oxygen utilization rates. J. Phys. Oceanogr., 17, 763-783 
 
Johnson, D. R., J. Miller, and O. Schofield, 2003: Dynamics and optics of the Hudson 
River outflow plume. J. Geophys. Res., 108, 3323, doi:10.1029/2002JC001485 
 
Junge, M. M. and T. W. N. Haine, 2001: Mechanisms of North Atlantic Wintertime Sea 
Surface Temperature Anomalies. J. Clim., 14, 4560-4572 
 
Kaiser, M. J. and A. G. Pulsipher, 2004: The potential value of improved ocean 
observation systems in the Gulf of Mexico. Mar. Policy, 28, 469-489,doi: 
10.1016/j.marpol.2003.11.002. 
 
Khatiwala, S., 2007: A computational framework for simulation of biogeochemical tracers 
in the ocean. Global Biogeochem. Cy., 21, GB3001,doi:10.1029/2007GB002923. 
 
Köhl, A. and D. Stammer, 2004: Optimal observations for variational data assimilation. J. 
Phys. Oceanogr., 34, 529-542 
 
Kohut, J., S. Glenn, and R. J. Chant, 2004: Seasonal current variability on the New Jersey 
inner shelf. J. Geophys. Res., 109, C07S07, doi: 10.1029/2003JC001963 
 
Kohut, J. T., S. M. Glenn, and D. E. Barrick, 2001: multiple HF-radar system development 
for a regional longterm ecosystem observatory in the New York Bight. American 
Meteorological Society: Fifth Symposium on Integrated Observing Systems, Albuquerque, 
New Mexco, 4-7. 
 
Kohut, J. T., H. J. Roarty, and S. M. Glenn, 2006a: Characterizing Observed 
Environmental Variability with HF Doppler Radar Surface Current Mappers and Acoustic 
Doppler Current Profilers: Environmental Variability in the Coastal Ocean. IEEE J. 
Oceanic Eng., 31, 876-884 
 
Kohut, J. T., S. M. Glenn, and J. Paduan, 2006b: The inner-shelf response to tropical storm 
Floyd. J. Geophys. Res., 111, C09S91,doi: 10.1029/2003JC002173. 
 
Kurapov, A. L., G. D. Egbert, J. S. Allen, and R. N. Miller, 2007: Representer-based 
variational data assimilation in a nonlinear model of nearshore circulation. J. Geophys. 
Res., 112, C11019,doi: 10.1029/2007JC004117. 
 
——, 2009: Representer-based analyses in the coastal upwelling system. Dyn. Atmos. 
Oceans, in press,doi:10.1016/j.dynatmoce.2008.09.002. 
 
Lanczos, C., 1961: Linear Differential Operators. D. Van Nostrand Company Ltd. 
 
Langland, R. H., 2005: Issues in targeted observations. Q. J. R. Meteorol. Soc., 131, 
3409-3425,doi: 10.1256/qj.05.130. 



204 

 

 
Langland, R. H. and N. L. Baker, 2004: Estimation of observation impact using the NRL 
atmospheric variational data assimilation adjoint system. Tellus A, 56, 189-201,doi: 
10.1111/j.1600-0870.2004.00056.x. 
 
Lentz, S. J., 2008: Observations and a model of the mean circulation over the Middle 
Atlantic Bight continental shelf. J. Phys. Oceanogr., 1203-1221 
 
Lentz, S. J. and D. C. Chapman, 2004: The importance of nonlinear cross-shelf momentum 
flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 2444-57 
 
Lerczak, J. A., W. R. Geyer, and R. J. Chant, 2006: Mechanisms Driving the 
Time-Dependent Salt Flux in a Partially Stratified Estuary&#042. J. Phys. Oceanogr., 36, 
2296-2311 
 
Leutbecher, M., 2003: A reduced rank estimate of forecast error variance changes due to 
intermittent modification of the observing network. J. Atmos. Sci., 60, 
729-742,10.1175/1520-0469(2003)060<0729:ARREOF>2.0.CO;2. 
 
Lewis, J. K., I. Shulman, and A. F. Blumberg, 1998: Assimilation of Doppler radar current 
data into numerical ocean models. Cont. Shelf Res., 18, 541-559 
 
Lewis, J. M., K. D. Raeder, and R. M. Errico, 2001: Vapor flux associated with return flow 
over the Gulf of Mexico: a sensitivity study using adjoint modeling. Tellus A, 53, 74-93, 
doi:10.1034/j.1600-0870.2001.01108.x 
 
Li, X. and C. Wunsch, 2004: An adjoint sensitivity study of chlorofluorocarbons in the 
North Atlantic. J. Geophys. Res., C01007, doi:10.1029/2003JC002014 
 
Li, Z., Y. Chao, J. C. McWilliams, and K. Ide, 2008: A three-dimensional variational data 
assimilation scheme for the Regional Ocean Modeling System: implementation and basic 
experiments. J. Geophys. Res., 113, C05002,doi: 10.1029/2006JC004042. 
 
Losch, M. and P. Heimbach, 2007: Adjoint Sensitivity of an Ocean General Circulation 
Model to Bottom Topography. J. Phys. Oceanogr., 37, 377-393 
 
Lueck, R. G., 1990: Thermal inertia of conductivity cells: theory. J. Atmos. Oceanic 
Technol., 7, 741-755 
 
Madsen, O. S., 1977: A realistic model of the wind-induced Ekman boundary layer. J. 
Phys. Oceanogr., 7, 248-255 
 
Malone, T. C. and M. B. Chervin, 1979: The production and fate of phytoplankton size 
fractions in the plume of the Hudson River, New York Bight. Limnol. Oceanogr., 24, 
683-696 
 



205 

 

Manning, J. P., L. Y. Oey, D. Packer, J. Vitaliano, T. W. Finneran, K. W. You, and S. 
Fromm, 1994: Observations of bottom currents and estimates of resuspended sediment 
transport at the New York Bight 12-mile dumpsite. J. Geophys. Res., 99, 10,221-10,239 
 
Marotzke, J., R. Giering, Q. K. Zhang, D. Stammer, C. N. Hill, and T. Lee, 1999: 
Construction of the adjoint MIT ocean general circulation model and application to 
Atlantic heat transport sensitivity. J. Geophys. Res., 104, 29,529-29,548 
 
Mayer, D. A., G. C. Han, and D. V. Hansen, 1982: Circulation in the Hudson Shelf Valley: 
MESA physical oceanographic studies in New York Bight, 1. J. Geophys. Res., 87, 
9563-9578 
 
McIntosh, P. C., 1987: Systematic design of observational array. J. Phys. Oceanogr., 17, 
885-902,doi: 10.1175/1520-0485(1987)017<0885:SDOOA>2.0.CO;2. 
 
Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jovi, an, 
J. Woollen, E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, 
Y. Lin, G. Manikin, D. Parrish, and W. Shi, 2006: North American Regional Reanalysis. 
Bull. Am. Meteorol. Soc., 87, 343-360 
 
Moline, M. A., T. K. Frazer, R. J. Chant, S. Glenn, C. Jacoby, J. R. Reinfelder, J. Yost, M. 
Zhou, and O. M. Schofield, 2008: Biological responses in a dynamic, buoyant river plume. 
Oceanography, 21, 70-89 
 
Monsen, N. E., J. E. Cloern, L. V. Lucas, and S. G. Monismith, 2002: A comment on the 
use of flushing time, residence time, and age as transport time scales. Limnol. Oceanogr., 
47, 1545-1553 
 
Moore, A. M. and B. F. Farrell, 1993: Rapid perturbation growth on spatially and 
temporally varying oceanic flows determined using an adjoint method: application to the 
Gulf Stream. J. Phys. Oceanogr., 23, 1682-1702 
 
Moore, A. M., H. G. Arango, E. Di Lorenzo, A. J. Miller, and B. D. Cornuelle, 2008: An 
adjoint sensitivity analysis of the Southern California Current circulation and ecosystem. 
Part I: The physical circulation. J. Phys. Oceanogr., in press 
 
Moore, A. M., H. G. Arango, E. Di Lorenzo, B. D. Cornuelle, A. J. Miller, and D. J. 
Neilson, 2004: A Comprehensive Ocean Prediction and Analysis System Based on the 
Tangent Linear and Adjoint of a Regional Ocean Model. Ocean Model., 7, 227-258 
 
Morison, J., R. Andersen, N. Larson, E. D'Asaro, and T. Boyd, 1994: The correction for 
thermal-lag effects in Sea-Bird CTD data. J. Atmos. Oceanic Technol., 11, 1151-1164 
 
Mountain, D. G., 2003: Variability in the properties of Shelf Water in the Middle Atlantic 
Bight, 1977–1999. J. Geophys. Res., 108, 3014,doi:10.1029/2001JC001044. 
 



206 

 

Mukai, A. Y., J. J. Westerink, R. A. Luettich, and D. Mark, 2002: Eastcoast 2001, A tidal 
constituent database for the western North Atlantic, Gulf of Mexico and Caribbean Sea,  
Tech. Rep. ERDC/CHL TR-02-24, 196 pp. 
 
Münchow, A. and R. J. Chant, 2000: Kinematics of inner shelf motion during the summer 
stratified season off New Jersey. J. Phys. Oceanogr., 30, 247-268 
 
Murphy, A. H., 1992: Climatology, persistence, and their linear combination as standards 
of reference in skill scores. Weather Forecast., 7, 692-698 
 
Nelson, T. A., P. E. Gadd, and T. L. Clarke, 1978: Wind-induced current flow in the upper 
Hudson Shelf Valley. J. Geophys. Res., 83, 6073-6082 
 
Ngodock, H. E., S. R. Smith, and G. A. Jacobs, 2007: Cycling the representer algorithm for 
variational data assimilation with a nonlinear reduced gravity ocean model. Ocean Model., 
19, 101-111 
 
Nof, D. and T. Pichevin, 2001: The ballooning of outflows. J. Phys. Oceanogr., 31, 
3045-3058 
 
Oke, P. R. and A. Schiller, 2007: A model-based assessment and design of a tropical Indian 
Ocean mooring Array. J. Clim., 20, 3269-3283,doi: 10.1175/JCLI4170.1. 
 
Oke, P. R., J. S. Allen, R. N. Miller, G. D. Egbert, and P. M. Kosro, 2002: Assimilation of 
surface velocity data into a primitive equation coastal ocean model. J. Geophys. Res., 107, 
3122,doi:10.1029/2000JC000511. 
 
Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. 
Comput. Phys., 21, 251-269 
 
Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular Vectors, Metrics, 
and Adaptive Observations. J. Atmos. Sci., 55, 633–653 
 
Parrish, D. F. and J. C. Derber, 1992: The National Meteorological Center's Spectral 
Statistical-Interpolation Analysis System. Mon. Weather Rev., 120, 1747-1763 
 
Powell, B. S. and A. M. Moore, 2008: Estimating the 4DVAR analysis error of GODAE 
products. Ocean Dynam., in press,doi: 10.1007/s10236-008-0172-3. 
 
Powell, B. S., H. G. Arango, A. M. Moore, E. Di Lorenzo, R. F. Milliff, and D. Foley, 
2008: 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean 
Modeling System (ROMS). Ocean Model., 25, 173-188,doi: 
10.1016/j.ocemod.2008.08.002. 
 



207 

 

Powell, B. S., A. M. Moore, H. Arango, E. Di Lorenzo, R. Milliff, and R. R. Leben, 2009: 
Near real-time assimilation and prediction in the Intra-Americas Sea with the Regional 
Ocean Modeling System (ROMS). Dyn. Atmos. Oceans, In press 
 
Rabier, F., P. Gauthier, C. Cardinali, R. Langland, M. Tsyrulnikov, A. Lorenc, P. Steinle, 
R. Gelaro, and K. Koizumi, 2008: An update on THORPEX-related research in data 
assimilation and observing strategies. Nonlin. Processes Geophys., 15, 81-94 
 
Ramadurai, R., 2008: Water mass classification using band ratios, Institute of Marine and 
Coastal Sciences, Rutgers, The State University of New Jersey, 101. 
 
Rutledge, G. K., J. Alpert, and W. Ebisuzaki, 2006: NOMADS: A climate and weather 
model archive at the National Oceanic and Atmospheric Administration. Bull. Am. 
Meteorol. Soc., 87, 327-341 
 
Sakov, P. and P. R. Oke, 2008: Objective array design: application to the tropical Indian 
Ocean. J. Atmos. Oceanic Technol., 25, 794-807,doi: 10.1175/2007JTECHO553.1. 
 
Santer, B. D., T. M. L. Wigley, and P. D. Jones, 1993: Correlation methods in fingerprint 
detection studies. Clim. Dynam., 8, 265-276 
 
Sarmiento, J. L., G. Thiele, R. M. Key, and W. S. Moore, 1990: Oxygen and Nitrate new 
production and remineralization in the North Atlantic subtropical gyre. J. Geophys. Res., 
95, 18303-18315 
 
Schlosser, P., J. L. Bullister, R. A. Fine, W. J. Jenkins, R. Key, J. Lupton, W. Roether, and 
W. M. Smethie Jr., 2001: Transformation and age of water masses. Ocean Circulation and 
Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic, 431-454. 
 
Schofield, O., J. Kohut, and S. M. Glenn, 2008a: Evolution of coastal observing networks. 
Sea Technology, 49, 31-36 
 
Schofield, O., J. Bosch, S. M. Glenn, G. Kirkpatrick, J. Kerfoot, M. A. Moline, M. Oliver, 
and P. Bissett, 2007: Bio-optics in integrated ocean observing networks: potential for 
studying harmful algal blooms. Real Time Coastal Observing Systems for Ecosystem 
Dynamics and Harmful Algal Blooms, M. Babin, C. Roesler, and J. J. Cullen, Eds., 
UNESCO, 85-108. 
 
Schofield, O., R. Chant, B. Cahill, R. Castelao, D. Gong, A. Kahl, J. Kohut, M. 
Montes-Hugo, R. Ramadurai, P. Ramey, Y. Xu, and S. M. Glenn, 2008b: The decadal view 
of the Mid-Atlantic Bight from the COOLroom: Is our coastal system changing? 
Oceanography, 21, 108-117 
 
Schofield, O. M., M. A. Moline, B. Cahill, T. K. Frazer, E. Hunter, A. Kahl, M. Oliver, J. 
R. Reinfelder, S. Glenn, and R. J. Chant, 2009: Regulation of primary productivity in the 
turbid Hudson River plume. J. Geophys. Res., in revision 



208 

 

 
Scott, R. K., J. S. Allen, G. D. Egbert, and R. N. Miller, 2000: Assimilation of surface 
current measurements in a coastal ocean model. J. Phys. Oceanogr., 30, 2359-2378 
 
Shchepetkin, A. F. and J. C. McWilliams, 1998: Quasi-monotone advection schemes based 
on explicit locally adaptive diffusion. Mon. Weather Rev., 126, 1541-1580 
 
——, 2003: A Method for Computing Horizontal Pressure-Gradient Force in an Oceanic 
Model with a Non-Aligned Vertical Coordinate. J. Geophys. Res., 108, 3090, 
doi:10.1029/2001JC001047 
 
——, 2005: The regional oceanic modeling system (ROMS): a split-explicit, free-surface, 
topography-following-coordinate oceanic model. Ocean Model., 9, 347-404 
 
Shulman, I., D. J. McGillicuddy, M. A. Moline, S. H. D. Haddock, J. C. Kindle, D. 
Nechaev, and M. W. Phelps, 2005: Bioluminescence intensity modeling and sampling 
strategy optimization. J. Atmos. Oceanic Technol., 22, 1267-1281,doi: 
10.1175/JTECH1760.1. 
 
Smith, S. R. and H. E. Ngodock, 2008: Cycling the Representer Method for 4D-variational 
data assimilation with the Navy Coastal Ocean Model. Ocean Model., 24, 
92-107,10.1016/j.ocemod.2008.05.008. 
 
Stammer, D., K. Ueyoshi, A. Köhl, W. G. Large, S. A. Josey, and C. Wunsch, 2004: 
Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data 
assimilation. J. Geophys. Res., 109, C05023,doi: 10.1029/2003JC002082. 
 
Stammer, D., C. Wunsch, R. Giering, C. Eckert, P. Heimbach, J. Marotzke, A. Adcroft, C. 
N. Hill, and J. Marshall, 2002: Global ocean circulation during 1992-1997, estimated from 
ocean observations and a general circulation model. J. Geophys. Res., 107, 3118,doi: 
10.1029/2001JC000888. 
 
——, 2003: Volume, heat, and freshwater transport of the global ocean circulation 
1993-2000, estimated from a general circulation model constrained by World Ocean 
Circulation Experiment (WOCE) data. J. Geophys. Res., 108, 3007,doi: 
10.1029/2001JC001115. 
 
Stewart, R. H. and J. W. Joy, 1974: HF radio measurements of surface currents. Deep-Sea 
Res., 21, 1039-1049 
 
Talagrand, O. and P. Courtier, 1987: Variational assimilation of meteorological 
observations with adjoint vorticity equation. I: Theory. Q. J. R. Meteorol. Soc., 113, 
1321-1328 
 
Thiele, G. and J. L. Sarmiento, 1990: Tracer dating and ocean ventilation. J. Geophys. Res., 
95, 9377-9391 



209 

 

 
Tilburg, C. E. and R. W. Garvine, 2003: Three-dimensional flow in a coastal upwelling 
zone: Convergence and divergence on the New Jersey Shelf. J. Phys. Oceanogr., 33, 
2113-2115,doi:10.1175/1520-0485(2003)033<2113:TFIASC>2.0.CO;2. 
 
Tilburg, C. E., J. T. Reager, and M. M. Whitney, 2005: The physics of blue crab larval 
recruitment in Delaware Bay: A model study. J. Mar. Res., 63, 471-495 
 
U. S. Geological Survey, 2007: Water-resources data for the United States, Water Year 
2006: U.S. Geological Survey Water-Data Report WDR-US-2006, accessed April 1, 2007, 
http://pubs.water.usgs.gov/wdr2006. 
 
Umlauf, L. and H. Burchard, 2003: A generic length-scale equation for geophysical 
turbulence models. J. Mar. Res., 61, 235-265 
 
van Leeuwen, P. J. and G. Evensen, 1996: Data assimilation and inverse methods in terms 
of a probabilistic formulation. Mon. Weather Rev., 124, 2898-2913 
 
van Oldenborgh, G. J., G. Burgers, S. Venzke, C. Eckert, and R. Giering, 1999: Tracking 
Down the ENSO Delayed Oscillator with an Adjoint OGCM. Mon. Weather Rev., 127, 
1477-1496 
 
Veneziani, M., C. A. Edwards, and A. M. Moore, 2009: A Central California coastal ocean 
modeling study. Part II: Adjoint sensitivities to local and remote driving mechanisms. J. 
Geophys. Res., In press 
 
Vialard, J., A. T. Weaver, D. L. T. Anderson, and P. Delecluse, 2003: Three- and 
four-dimensional variational assimilation with a general circulation model of the tropical 
Pacific Ocean. Part II: Physical validation. Mon. Weather Rev., 131, 1379-1395 
 
Vossepoel, F. C., A. T. Weaver, J. Vialard, and P. Delecluse, 2004: Adjustment of 
near-equatorial wind stress with four-dimensional variational data assimilation in a model 
of the Pacific Ocean. Mon. Weather Rev., 132, 2070-2083 
 
Warner, J. C., C. R. Sherwood, H. G. Arango, R. P. Signell, and B. Butman, 2005: 
Performance of four turbulence closure models implemented using a generic length scale 
method. Ocean Model., 8, 81-113 
 
Waugh, D. W., T. M. Hall, and T. W. N. Haine, 2003: Relationships among tracer ages. J. 
Geophys. Res., 108, 3138,doi:10.1029/2002JC001325. 
 
Weaver, A. T. and P. Courtier, 2001: Correlation modelling on the sphere using a 
generalized diffusion equation. Q. J. R. Meteorol. Soc., 127, 1815-1846 
 
Weaver, A. T., J. Vialard, and D. L. T. Anderson, 2003: Three- and four-dimensional 
variational assimilation with an ocean general circulation model of the tropical Pacific 



210 

 

Ocean. Part 1: Formulation, internal diagnostics and consistency checks. Mon. Weather 
Rev., 131, 1360-1378 
 
Weaver, A. T., C. Deltel, E. Machu, S. Ricci, and N. Daget, 2005: A multivariate balance 
operator for variational ocean data assimilation. Q. J. R. Meteorol. Soc., 131, 
3605-3625,doi: 10.1256/qj.05.119  
 
Weiss, R. F., E. C. Carmack, and V. M. Koropalov, 1991: Deep-water renewal and 
biological production in Lake Baikal. Nature, 349, 665-669,doi:10.1038/349665a0. 
 
Wilkin, J. L., H. G. Arango, D. B. Haidvogel, C. S. Lichtenwalner, S. M. Glenn, and K. S. 
Hedström, 2005: A Regional Ocean Modeling System for the Long-term Ecosystem 
Observatory. J. Geophys. Res., 110, 
doi:10.1029/2003JC002218,doi:10.1029/2003JC002218. 
 
Wong, K. C., 1999: The wind driven currents on the Middle Atlantic Bight inner shelf. 
Cont. Shelf Res., 19, 757-773,doi: 10.1016/S0278-4343(98)00107-1. 
 
Wu, C.-C., J.-H. Chen, P.-H. Lin, and K.-H. Chou, 2007: Targeted observations of tropical 
cyclone movement based on the Adjoint-Derived Sensitivity Steering Vector. J. Atmos. 
Sci., 64, 2611-2626,doi: 10.1175/JAS3974.1. 
 
Wunsch, C., 2002: Oceanic age and transient tracers: Analytical and numerical solutions. 
J. Geophys. Res., 107, 3048,doi:10.1029/2001JC000797. 
 
——, 2006: Discrete inverse and state estimation problems with geophysical fluid 
applications. Cambridge University Press, 371 pp. 
 
Wunsch, C. and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 
230, 197-208,doi: 10.1016/j.physd.2006.09.040. 
 
Yankovsky, A. E., 2003: The cold-water pathway during an upwelling event on the New 
Jersey shelf. J. Phys. Oceanogr., 33, 1954-1966,doi: 
10.1175/1520-0485(2003)033<1954:TCPDAU>2.0.CO;2. 
 
Yankovsky, A. E. and R. W. Garvine, 1998: Subinertial Dynamics on the Inner New Jersey 
Shelf during the Upwelling Season. J. Phys. Oceanogr., 28, 2444-2458 
 
Yankovsky, A. E., R. W. Garvine, and A. Munchow, 2000: Mesoscale Currents on the 
Inner New Jersey Shelf Driven by the Interaction of Buoyancy and Wind Forcing. J. Phys. 
Oceanogr., 30, 2214-2230 
 
Yelland, M. and P. K. Taylor, 1996: Wind Stress Measurements from the Open Ocean. J. 
Phys. Oceanogr., 26, 541-558 
 
 



211 

 

Curriculum Vita 
 

Weifeng Zhang 
 

EDUCATION 
 

2003 – 2009   Institute of Marine and Coastal Sciences 
                             Rutgers University, New Brunswick, NJ 
 
                             Field: Physical Oceanography 
                             Ph.D. awarded October 2009 
 

1996 – 2003   Department of Engineering Mechanics 
                       Zhejiang University, Hangzhou, Zhejiang Province, China 
 
                       Field: Fluid Mechanics 
                       M.S. awarded March 2003 
                       B.E. awarded June 2000 

 
PROFESSIONAL EXPERIENCES 
 
      2004 – 2009   Graduate Assistant 
                             Institute of Marine and Coastal Sciences, Rutgers University 
 

2005               Teaching Assistant, Physical Oceanography  
                             Institute of Marine and Coastal Sciences, Rutgers University\ 
 
      2003 – 2004   Graduate Fellow 
                             Institute of Marine and Coastal Sciences, Rutgers University 
 
PUBLICATIONS 
 

Zhang, Weifeng, John Wilkin, 2009, Towards building an integrated observation and 
modeling system in the New York Bight using variational methods, Part II: 
representer-based observing system design, to be submitted to Ocean Modelling. 

Zhang, Weifeng, John Wilkin, 2009, Towards building an integrated observation and 
modeling system in the New York Bight using variational methods, Part I: 4DVAR 
data assimilation, to be submitted to Ocean Modelling. 

Zhang, Weifeng, John Wilkin, Oscar Schofield, 2009, Simulation of age and residence 
time in the New York Bight, Journal of Physical Oceanography, accepted with minor 
revisions. 



212 

 

Zhang, Weifeng, John Wilkin, Julia Levin, Hernan Arango, 2009, An Adjoint 
Sensitivity Study of Buoyancy- and Wind-driven Circulation on the New Jersey Inner 
Shelf, Journal of Physical Oceanography, 39, 1652-1668. 

Zhang, Weifeng, John Wilkin, Robert Chant, 2009, Modeling of the pathways and 
mean dynamics of river plume dispersal in New York Bight, Journal of Physical 
Oceanography, 39, 1167-1183. 

Chant, R. J., J. Wilkin, W. Zhang, B.-J. Choi, E. Hunter, R. Castelao, S. Glenn, J. 
Jurisa, O. Schofield, R. Houghton, J. Kohut, T.K. Frazer, and M.A. Moline, 2008, 
Dispersal of the Hudson River Plume in the New York Bight: synthesis of 
observational and numerical studies during LaTTE, Oceanography, 21(4): 148-161.  

Wilkin, John, Weifeng Zhang, 2007, Modes of mesoscale sea surface height and 
temperature variability in the East Australian Current, Journal of Geophysical 
Research, 112, C01013, doi:10.1029/2006JC003590. 

Zhang Shanliang, Lin Jianzhong, Zhang Weifeng, 2007, Numerical research on the 
fiber suspensions in a turbulent T-shaped branching channel flow, Chinese Journal of 
Chemical Engineering, 15(1), 30-38, doi:10.1016/S1004-9541(07)60030-5. 

Lin Jianzhong, Zhang Lingxin, Zhang Weifeng, 2006, Pheological behavior of fiber 
suspensions in a turbulent channel flow, Journal of Colloid and Interface Science, 
296(2): 721-728. 

Zhang Lingxin, Lin Jianzhong, Zhang Weifeng, 2006, Theoretical model of particle 
orientation distribution function in a cylindrical particle suspension subject to turbulent 
shear flow, Progress in Natural Science, 16(1): 16-20. 

Lin Jianzhong, Li Jun, Zhang Weifeng, 2005, Orientation distribution of fibres in a 
channel flow of fibre suspension, Chinese Physics, 14: 2529-2538, 
doi:10.1088/1009-1963/14/12/026. 

Lin, Jianzhong, Wang Yelong, Zhang Weifeng, 2005, Sedimentation of short 
cylindrical pollutants with mechanical contacts, Journal of Environmental Sciences, 
17(6): 906-911. 

You, Zhenjiang, Lin, Jianzhong, Shao, Xueming, Zhang, Weifeng, 2004, Stability and 
drag reduction in transient channel flow of fibre suspension, Chinese Journal of 
Chemical Engineering, 12(3):319-323. 

Lin, Jianzhong, Li, Jun, Zhang, Weifeng, 2004, The force for cylindrical particles in 
an elongational-shear flow, International Journal of Nonlinear Sciences and 
Numerical Simulation, 5(1): 9-16. 

Lin, Jianzhong, Zhang, Weifeng, Yu, Zhaosheng, 2004, Numerical Research on the 
orientation distribution of fibers immersed in laminar and turbulent pipe flows, Journal 
of Aerosol Science, 35: 63-82. 



213 

 

Zhang, Weifeng, Lin, Jianzhong, 2004, Research on the Motion of Particles in the 
Turbulent Pipe Flow of Fiber Suspensions, Applied Mathematics and Mechanics, 
25(7): 417-750. 

Zhang, Weifeng, Lin, Jianzhong, 2003, Research on the Orientation of Cylindrical 
Particles in Gas-Solid Two-Phase Pipe Flows, ACTA Aerodynamica Sinica 21(2): 
237-243.  (In Chinese) 

Lin, Jianzhong, Zhang, Weifeng, Wang, Yelong, 2002, Research on the orientation 
distribution of fibers immersed in a pipe flow, Journal of Zhejiang University 
SCIENCE (English Edition) 3(5): 501-506. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


