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Abstract

Factorization of isometries of Hyperbolic 4-space and a

Discreteness Condition

By Karan Mohan Puri

Dissertation Director: Professor Jane P. Gilman

Gilman’s NSDC condition is a sufficient condition for the discrete-

ness of a two generator subgroup of PSL(2, C). We address the question

of the extension of this condition to subgroups of isometries of hyper-

bolic 4-space. While making this new construction, namely the NSDS

condition, we are led to ask whether every orientation preserving isom-

etry of hyperbolic 4-space can be factored into the product of two half-

turns. We use some techniques developed by Wilker to first, define a

half-turn suitably in dimension 4 and then answer the former question.

It turns out that defining a half-turn in this way in any dimension n

enables us to generalize some of Gilman’s theorems to dimension n ≥ 4.

We also give an exposition on part of Wilker’s work and give new proofs

for some of his results.
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1 Introduction

There are several methods which enable us to test whether a given subgroup

of isometries of three-dimensional hyperbolic space is discrete. Gilman [5]

described one such method, a sufficient condition for discreteness of a group

generated by two isometries of three-dimensional hyperbolic space, H3, namely

the NSDC condition, along with a means to construct discrete subgroups of

the group of isometries of H3.

Our goal here is to extend this construction to hyperbolic space of dimension

four. One of the main questions that arises here is whether an orientation

preserving isometry of hyperbolic 4-space can be written as a composition of

half-turns. While this is true for hyperbolic 3-space, the answer is not known

in higher dimensions. In dimension four, the action of the Möbius group can

be viewed explicitly on the boundary of hyperbolic space (Ê3). Wilker [11]

proves that every orientation preserving Möbius transformation acting on Ê3

can be factored as the product of two suitably defined half-turns and we give

a new proof for all but one case of this theorem. We also explain why this

new definition of half-turn is the proper and natural generalization for our

purposes. In recent work, Basmajian and Maskit [2] have explored a similar

question in dimension n although their definition of half-turn is broader than

ours. With our initial goal in mind, we use some of Wilker’s [11] techniques,

elaborate on and motivate some of his definitions and constructions as we

proceed.
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2 Organization

The organization of this work is as follows. In sections 3, 4 and 5 we review

the necessary background. This is standard material and is drawn from [3, 9].

Sections 6 and 7 constitute the main results of this thesis. In section 6, we

analyze and describe Wilker’s techniques [11] and give some new proofs and

motivation for his results. We give a new proof for the first five cases of the

half-turn theorem, namely Theorem 6.53. We begin section 7 with the half-

turn theorem restated for hyperbolic 4-space, Corollary 7.1. We then proceed

to state and prove the discreteness theorem 7.14 and conclude with section

7.1, wherein we define the associated LM -supergroup to a given two generator

group and we describe the extended discreteness condition via Theorem 7.16:

that is if the associated supergroup has the NSDS property, then the given

two generator group is discrete.

3 Definitions and Preliminaries

We refer to Ratcliffe [9] for the definitions in this section. Consider the n-

dimensional vector space Rn. A vector in Rn is an ordered n-tuple x =

(x1, ..., xn) of real numbers. Let x and y be vectors in Rn.

Definition 3.1. Let

dE(x, y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2.

Then dE is a metric on Rn called the Euclidean metric. The metric space
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consisting of Rn together with the metric dE is called Euclidean n-space.

Henceforth, we shall use En to denote the metric space (Rn, dE).

Definition 3.2. An m − plane of En is a coset a + V of an m-dimensional

vector subspace V of Rn. A straight line of En is a 1-plane of En.

Definition 3.3. The (n-1)-sphere of En of radius r centered at a = (a1, ..., an)

is defined to be the setx = (x1, ..., xn) ∈ En : dE(x, a) =

√√√√ n∑
i=1

(xi − ai)2 = r

 .

Every (m− 1)-sphere, m < n, in En is the intersection of an (n− 1)-sphere in

En with an m-plane of En. A circle is a 1-sphere of En.

Identify En−1 with En−1 × {0} in En. Therefore, En−1 will be the plane in En

exactly consisting of points of the form (x1, ..., xn−1, 0), where xi ∈ R.

Let Un = {(x1, ..., xn) ∈ En : xn > 0}.

Definition 3.4. The hyperbolic metric dH on Un is given by

cosh dH(x, y) = 1 +
|x− y|2

2xnyn
.

The metric space consisting of Un together with the metric dH is called the

upper half-space model of hyperbolic n-space.

Henceforth, we shall use Hn to denote the metric space (Un, dH).
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Definition 3.5. A subset P of Hn is a hyperbolic m-plane of Hn if and only

if P is the intersection of Hn with either an m-plane of En orthogonal to En−1

or with an m-sphere of En orthogonal to En−1.

A subset L of Hn is a hyperbolic line of Hn if and only if L is the intersection

of Hn with either a straight line of En orthogonal to En−1 or with a circle of

En orthogonal to En−1.

Now, let Bn = {x ∈ En : |x| < 1}.

Definition 3.6. The Poincaré metric dB on Bn is given by

cosh dB(x, y) = 1 +
2 |x− y|2

(1− |x|2)(1− |y|2)
.

The metric space consisting of Bn together with the metric dB is called the

conformal ball model of hyperbolic n-space.

Henceforth, we shall use Bn to denote the metric space (Bn, dB).

Definition 3.7. A subset P of Bn is said to be a hyperbolic m-plane of Bn if

and only if P is the intersection of Bn with an m-dimensional vector subspace

of En or with an m-sphere of En orthogonal to Bn.

A hyperbolic line of Bn is a 1-plane of Bn.

The definitions of line, plane, distance etc. will hence become clear from the

space under consideration.
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4 Reflections, Stereographic Projection and Möbius

Transformations

The material in this section is standard and may be found in Beardon [3] and

Ratcliffe [9].

4.1 Reflections

Let a be a unit vector in En and t ∈ R.

Definition 4.1. Then, the hyperplane of En with unit normal vector a and

passing through the point ta is given by

P (a, t) = {x ∈ En : a · x = t}.

Every hyperplane of En is of this form, and every hyperplane as exactly two

representations P (a, t) and P (−a,−t).

Definition 4.2. The reflection ρ in the plane P (a, t) is given by the explicit

formula

ρ(x) = x+ 2(t− a · x)a.

Let a be a point of En and r ∈ R+.

Definition 4.3. The sphere of En of radius r centered at a is defined to be the

set

S(a, r) = {x ∈ En : |x− a| = r}.
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Definition 4.4. The reflection (or inversion) σ of En in the sphere S(a, r) is

given by the explicit formula

σ(x) = a+

(
r

|x− a|

)2

(x− a).

Theorem 4.5. [9] If σ is the reflection of En in the sphere S(a, r), then

(1) σ(x) = x⇔ x ∈ S(a, r)

(2) σ2(x) = x ∀ x 6= a; and

(3) for each x, y 6= a,

|σ(x)− σ(y)| = r2 |x− y|
|x− a| |y − a|

.

Remark 4.6. Every reflection of En in a hyperplane or sphere is conformal

and reverses orientation.

4.2 Stereographic Projection and Möbius Transforma-

tions

Identify En with En × {0} in En+1.

Definition 4.7. The stereographic projection π of En onto Sn − {en+1} is

defined by projecting x in En towards (or away from) en+1 until it meets the

sphere Sn in the unique point π(x) other than en+1. Calculation yields the

explicit formula

π(x) =

(
2x1

1 + |x|2
, ...,

2xn

1 + |x|2
,
|x|2 − 1

|x|2 + 1

)
.
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Remark 4.8. The map π is a bijection of En onto Sn−{en+1} and after some

more calculation we see that

π−1(y) =

(
y1

1− yn+1

, ...,
yn

1− yn+1

)
.

Let∞ be a point not in En+1 and define Ên = En∪{∞}. Now, we may extend

π to a bijection π̂ : Ên → Sn by setting π̂(∞) = en+1, and we define a metric

d on Ên by the formula

d(x, y) = |π̂(x)− π̂(y)| .

The metric d is called the chordal metric on Ên. The metric space Ên is

compact and is obtained from En by adjoining one point at infinity. For this

reason, Ên is called the one-point compactification of En.

Let P (a, t) be a hyperplane of En. Let

P̂ (a, t) = P (a, t) ∪ {∞}.

We note that the subspace P̂ (a, t) of Ên is homeomorphic to Sn−1. If ρ is the

reflection of En in P (a, t), then we define the extension ρ̂ : Ên → Ên of ρ by

setting ρ̂(∞) = ∞. The map ρ̂ is called the reflection of Ên in the extended

hyperplane P̂ (a, t). Note that every reflection of Ên in an extended hyperplane

is a homeomorphism.

Let σ be the reflection of En in the sphere S(a, r). We now extend σ to a map

σ̂ : Ên → Ên by setting σ̂(a) = ∞ and σ̂(∞) = a. The map σ̂ is called the
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reflection of Ên in the sphere S(a, r). Note that every reflection of Ên in a

sphere of En is a homeomorphism.

Definition 4.9. A sphere of Ên is defined to be either a Euclidean sphere

S(a, r) or an extended plane P̂ (a, t) = P (a, t) ∪ {∞}. P̂ (a, t) is topologically

a sphere.

Definition 4.10. A Möbius transformation of Ên is a finite composition of

reflections of Ên in spheres. The set of all Möbius transformations of Ên is

denoted Mn and forms a group under composition.

Definition 4.11. A group G acts on a set X if and only if there is a function

from G×X to X, written (g, x) 7→ gx, such that for all g, h ∈ G and x ∈ X,

we have

(1) 1 · x = x and

(2) g(hx) = (gh)x.

A function from G × X to X satisfying conditions (1) and (2) is called an

action of G on X.

Example 4.12. If X is a metric space, then the group I(X) of isometries

of X acts on X by φx = φ(x). We note that the group of isometries of Hn,

denoted I(Hn), and the group Mn−1 are isomorphic. Hence, Mn−1 acts on

Hn.
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5 Poincaré Extension

We review the Poincaré extension and note that this is a critical tool in our

analysis of factorization into half-turns. Once again, we refer to Beardon [3]

and Ratcliffe [9] for the construction below.

We recall the identification of En−1 with En−1 × {0} in En, whereby a point

x ∈ En−1 corresponds to the point x̃ = (x, 0) of En. Let φ be a Möbius

transformation of Ên−1. We may extend φ to a Möbius transformation of Ên

as follows. If φ is the reflection of Ên−1 in P̂ (a, t), then φ̃ is the reflection of

Ên in P̂ (ã, t). If φ is the reflection of Ên−1 in S(a, r), then φ̃ is the reflection

of Ên in S(ã, r). In both these cases

φ̃(x, 0) = (φ(x), 0) ∀ x ∈ En−1.

Thus, φ̃ extends φ. In particular, φ̃ leaves Ên−1 invariant. It also leaves

invariant upper half-space

Un = {(x1, ..., xn) ∈ En : xn > 0}.

Now, we assume that φ is an arbitrary Möbius transformation of Ên−1. Then

φ is a composition of reflections, say φ = σ1 . . . σm. Let φ̃ = σ̃1 . . . σ̃m. Then

φ̃ extends φ and leaves Un invariant. It may be shown that φ̃ depends only

on φ and not on the decomposition φ = σ1 . . . σm. The map φ̃ is called the

Poincaré extension of φ.
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5.1 Classification of Möbius Transformations

Let φ be a Möbius transformation of Ên (resp. Sn). By the Brouwer fixed

point theorem [7], φ fixes a point in Un+1 (resp. Bn+1). Then, φ is said to be

1. elliptic if it fixes a point of Un+1 (resp. Bn+1);

2. parabolic if it fixes no point of Un+1 (resp. Bn+1) and fixes a unique point

of Ên (resp. Sn);

3. loxodromic otherwise.

We note that if φ fixes more than two points of Ên (resp. Sn), then it must

fix a point in Un+1 (resp. Bn+1) and is therefore, elliptic. Thus, a loxodromic

transformation fixes exactly two points of Ên (resp. Sn).

6 Exposition on Wilker’s Inversive Geometry

In his paper titled Inversive Geometry [11], Wilker takes a seemingly different

approach to Möbius transformations when compared with the one above. We

will describe his approach and motivate and elaborate on some of his construc-

tions and definitions by relating them to the standard approach described thus

far.

6.1 The Möbius Group revisited

Recall that Sn = {x ∈ En+1 : |x| = 1} is the unit n-sphere in Euclidean

(n+ 1)-space.
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Figure 1: Inversion in a 1-sphere in S2

Definition 6.1. An (n−1)-sphere, σ, lying on Sn is defined as the intersection

of Sn with an n-plane in En+1 (provided the plane is not tangent to or disjoint

from Sn).

Definition 6.2. σ̄ : Sn → Sn is called inversion in the (n − 1)-sphere σ and

is defined as follows. If σ is an equatorial or great (n − 1)-sphere, then σ̄ is

the restriction to Sn of reflection in the Euclidean n-plane which intersects

Sn in σ. If σ is not an equatorial (n − 1)-sphere, then there exists a point

xσ ∈ En+1, all of whose tangent lines to Sn touch Sn exactly in σ. In this case,

σ̄ interchanges the points x and x′ where the secant xx′ passes through xσ.

Remark 6.3. (Unification) By referring to Sections 4.2 and 5, we may give

these two cases a unified definition. Note that Sn ⊂ Ên+1. In the first case,
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where σ is an equatorial (n− 1)-sphere, notice that σ̄ is the restriction to Sn

of inversion in n-sphere Σ which is orthogonal to Sn and intersects Sn in σ.

Similarly, when σ is not an equatorial (n− 1)-sphere, then σ̄ is the restriction

of inversion in the n-sphere Σ which is orthogonal to Sn and intersects Sn in

σ. We note that Σ must pass through ∞ in the first case and cannot pass

through ∞ in the second case.

Remark 6.4. The inversion σ̄ is a bijection and, moreover, is an involution.

Definition 6.5. Let Mn denote the set of all bijections on Sn which can be

expressed as a product of inversions in (n− 1)-spheres as defined above. Mn

forms a group called the n-dimensional Möbius group and its elements are

called Möbius transformations.

Remark 6.6. We make an observation about stereographic projection.

Let Σ be an n-sphere in En+1 and let x0 be a point on Σ. Let En
0
′ be the

Euclidean n-plane tangent to Σ at x0. Now, choose any Euclidean n-plane

not through x0 which is parallel to En
0
′ and call it En

0 . We will now define

stereographic projection from En
0 to Σ as follows. The set of all Euclidean lines

through x0 and not in En
0
′ establishes a 1-1 correspondence between Σ− {x0}

and En
0 . The image of each point x of En

0 is that point π(x) on Σ, where

the line joining x0 and x intersects Σ. Let ∞ be a point not in En+1 and

define Ên
0 = En

0 ∪ {∞}. Then, we may extend the above defined stereographic

projection π to a bijection π̂ : Ên
0 → Σ by setting π̂(∞) = x0.

We have now the concept of an extended Euclidean plane or an n-sphere

through ∞, Ên
0=En

0 ∪ {∞} where En
0 is a Euclidean n-plane in En+1.
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If Sn is the unit n-sphere in En+1 and En
0 is the plane En × {0} with unit

normal en+1 = (0, . . . 0, 1), then we get the explicit representation given above

in section 4.2. The point of this remark is that stereographic projection can

be carried out by taking any point on any give n-sphere to ∞.

6.2 Caps, Clusters and the Lorentz Group

We begin this section with a discussion of the Lorentz group for which we refer

to Ratcliffe [9]. This standard discussion is then related to Möbius transfor-

mations on Sn and to Wilker’s definition of n-caps.

Definition 6.7. Let x and y be vectors in Rn. The Lorentzian inner product

of x and y is defined to be the real number

x ◦ y = x1y1 + . . . + xn−1yn−1 − xnyn.

The inner product space consisting of the vector space Rn together with the

Lorentzian inner product is called Lorentzian n-space and is denoted Rn−1,1.

The Lorentzian norm of x is defined to be the complex number ‖x‖ = (x◦x)
1
2 ,

where (x ◦ x)
1
2 is the principal branch of the square root function.

The set {x ∈ Rn : ‖x‖ = 0} is a hypercone Cn−1 in Rn called the light cone of

Rn. If ‖x‖ = 0, then x is said to be light-like. A light-like vector x is said to

be positive (resp. negative) if xn > 0 (resp. xn < 0).

If ‖x‖ > 0, then x is said to be space-like. The set of all space-like vector is

said to be the exterior of the light cone.
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If ‖x‖ is positive imaginary, then x is said to be time-like. The set of all time-

like vectors is said to be the interior of the light cone. A time-like vector is

said to be positive (resp. negative) if xn > 0 (resp. xn < 0).

Definition 6.8. A function φ : Rn → Rn is a Lorentz transformation if and

only if

φ(x) ◦ φ(y) = x ◦ y ∀ x, y ∈ Rn.

A real n × n matrix A is said to be Lorentzian if and only if the associated

linear transformation A : Rn → Rn, defined by A(x) = Ax, is Lorentzian.

The set of all Lorentzian n × n matrices together with matrix multiplication

forms a group O(n−1, 1) called the Lorentz group of n×n matrices. The group

O(n − 1, 1) is naturally isomorphic to the group of Lorentz transformations

of Rn. A Lorentzian matrix A is said to be positive (resp. negative) if it

transforms positive time-like vectors into positive (resp. negative) time-like

vectors. A Lorentzian matrix is either positive or negative.

Let PO(n − 1, 1) denote the set of all positive matrices in O(n − 1, 1). Then

PO(n−1, 1) is a subgroup of index two in O(n−1, 1) and is called the positive

Lorentz group.

Definition 6.9. Two vectors x, y ∈ Rn are Lorentz orthogonal if and only if

x ◦ y = 0.

Definition 6.10. Let V be a vector subspace of Rn. Then V is said to be

(1) time-like if and only if V has a time-like vector,

(2) space-like if and only if every non-zero vector of V is space-like, or

(3) light-like otherwise.
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Definition 6.11. The Lorentzian complement of a vector subspace V of Rn

is defined as the set

V L = {x ∈ Rn : x ◦ y = 0 ∀ y ∈ V }.

We note that (V L)L = V and that V is time-like if and only if V L is space-like.

Theorem 6.12. [9] [Page 59]

Let x, y be positive (negative) time-like vectors in Rn. Then x ◦ y ≤ ‖x‖‖y‖

with equality if and only if x and y are linearly dependent.

If x and y are positive (negative) time-like vectors in Rn, then by theorem

6.12, there is a unique nonnegative real number η(x, y) such that

x ◦ y = ‖x‖‖y‖ cosh(η(x, y)).

η(x, y) is called the Lorentzian time-like angle between x and y. Note that

η(x, y) = 0 if and only if x and y are positive scalar multiples of each other.

Let F n = {x ∈ Rn+1 : ‖x‖2 = −1}. The set F n is a hyperboloid of two sheets

in Rn+1. The set of all x in F n such that x1 > 0 (resp. x1 < 0) is called the

positive (resp. negative) sheet of F n.

The hyperboloid model Hn of hyperbolic n-space is defined to be the positive

sheet of F n. The hyperbolic distance between x and y in F n is given by

dH(x, y) = η(x, y).

where η(x, y) is the Lorentzian time-like angle between x and y.
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Definition 6.13. A hyperbolic m-plane of Hn is the intersection of Hn with

an (m+ 1)-dimensional time-like vector subspace of Rn+1.

Note that a hyperbolic line is a hyperbolic 1-plane of Hn and that a hyperplane

of Hn is a hyperbolic (n− 1)-plane of Hn.

Remark 6.14. If x is a space-like vector in Rn+2, then the Lorentzian com-

plement of the subspace 〈x〉 spanned by x is an (n+ 1)-dimensional time-like

vector subspace, P , of Rn+1,1. We say that x is a Lorentz normal vector to P . If

‖x‖ = 1, then it is a unit Lorentz normal vector to P. We note that P = P ∩Hn

is a hyperplane of Hn called the hyperplane of Hn Lorentz orthogonal to x.

We now make a definition and an observation to help motivate some of Wilker’s

[11] construction.

Definition 6.15. The Lorentz reflection in the (n+ 1)-dimensional time-like

vector subspace P of Rn+1,1 with unit Lorentz normal x is a map ρ : Rn+1,1 →

Rn+1,1 such that

1. ρ(y) = y ⇔ y ∈ P ,

2. ρ(y) = y + tx and

3. ‖ρ(y)‖ = ‖y‖.

Remark 6.16. In Definition 6.15, we note that P = {u ∈ Rn+2 : u ◦ x = 0}.

If ρ is the Lorentz reflection in P , then for each y ∈ Rn+1,1,

(y + tx) ◦ (y + tx) = y ◦ y



17

⇒ y ◦ y + t(x ◦ y) + t(y ◦ x) + t2 = y ◦ y

⇒ t2 + 2t(x ◦ y) = 0⇒ t = 0,−2(x ◦ y).

If y /∈ P , then t 6= 0 (as ρ(y) 6= y). If y ∈ P , then t = 0 = −2(x ◦ y).

Thus, we have that the Lorentz reflection in P is given by the formula

ρ(y) = y − 2(x ◦ y)x.

We now turn our attention to Wilker’s discussion and relate his construction

to the Lorentz group. We define an n-cap on Sn. By subsequently lifting

to (n + 2) coordinates, this equips us with a means to parameterize Lorentz

orthogonal hyperplanes in Hn+1.

Definition 6.17. The closed n-cap C on Sn with center c ∈ Sn and angular

radius θ, 0 < θ < π is defined as

C = {x ∈ Sn : x · c ≥ cos θ}.

Remark 6.18. Geometric meaning: [Figure 2]

Note that x · c = |x||c| cosφ where φ is the angle between the vectors x and c

(0 < φ < π). Therefore, x·c = cosφ. Now, as cos θ is decreasing for 0 < θ < π,

we have φ ≤ θ ⇒ cosφ ≥ cos θ. Hence, points in the cap are those vectors

x ∈ Sn which make angle less than or equal to θ with the vector c ∈ Sn.

Also, there is a unique point xσ from which all tangents to Sn meet Sn in

exactly the (n − 1)-sphere σ. Observe that an easy calculation tells us that

xσ = (sec θ)c, that is xσ is the vector with magnitude sec θ and unit vector c
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Figure 2: A 2-cap in S2 with center c and angular radius θ.

where c is the center of the n-cap bounded by σ.

The condition for x ∈ Sn to belong to the cap C can be rewritten as

x · c− 1 · cos θ ≥ 0.

Since sin θ > 0,

x · c

sin θ
− 1 · cos θ

sin θ
≥ 0.

Let us define the lift of the point x by the (n+ 2)-vector

x = (x, 1),
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and the lift of the cap by the (n+ 2)-vector

c = ((csc θ)c, cot θ).

Consider the Lorentzian inner product in Rn+2. Then, a vector c is the lift of

a cap if and only if c ◦ c = 1 and a vector x is the lift of a point if and only

if x ◦ x = 0 and xn+2 = 1. Also, point x belongs to the cap c if and only if

x ◦ c ≥ 0.

Note that we may allow the coordinates of a point to be positive homogeneous.

That is for λ > 0, x and λx are lifts of the same point x ∈ Sn. We can do

this since multiplying by a positive constant neither changes the sign of the

inner product, nor does it change the property of being a point (if λ > 0, then

x ◦ x = 0⇔ (λx) ◦ (λx) = 0). Therefore, we may make the modification that

x is the lift of a point if and only if x ◦ x = 0 and x = λ(x, 1) for some λ > 0.

Clearly, one must fix the sign of λ since the condition for x to belong to cap

c must remain invariant.

Definition 6.19. The complementary cap of a cap C is the cap C ′ with center

−c (the antipode of c) and angular radius π − θ. Thus, in (n+2)-coordinates,

the lift of C ′ is c′ = (csc(π − θ)(−c), cot(π − θ)) = ((− csc θ)c,− cot θ) = −c.

Remark 6.20. Note that a point x belongs to the common boundary (n−1)-

sphere of C and C ′ if and only if x ◦ c = 0, where x and c are the lifts of x

and C, respectively.

Theorem 6.21. Inversion of Lorentz space Rn+1,1 in the lift of the common
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boundary of C and C ′ is given by the linear transformation

ρ(u) = u− 2(c ◦ u)c.

Proof. Note that

ρ(u) ◦ ρ(v) = [u− 2(c ◦ u)c] ◦ [v − 2((c ◦ v)c]

= u ◦ v − 2(c ◦ u)(c ◦ v)− 2(c ◦ v)(c ◦ u) + 4(c ◦ u)(c ◦ v)(c ◦ c)

= u ◦ v.

Thus, ρ preserves the bilinear form and hence maps caps to caps. Consider

two cases now:

Case 1: cn+2 = 0. Then, c = (c, 0) because cot θ = 0 implies that θ = π/2 and

that csc θ = 1. Furthermore, the cap C is bounded by an equatorial (n − 1)-

sphere and c is the unit normal to that Euclidean n-plane, reflection in which

induces inversion in the common boundary of C and −C. Now, let x = (x, 1)

be the lift of a point on Sn. Now,

ρ(x) = x− 2(x ◦ c)c

⇒ ρ(x, 1) = (x, 1)− 2[(x, 1) ◦ (c, 0)](c, 0)

= (x, 1)− 2(x · c)(c, 0) = (x− 2(x · c)c, 1).

Therefore, we see that every point x on Sn is taken to point x′ = x− 2(x · c)c
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which is nothing but the definition of reflection in an n-flat through the origin

with unit normal c.

Case 2: cn+2 6= 0. Then, c = ((csc θ)c, cot θ) and let xσ = (sec θ)c ∈ En+1.

Note that xσ is that very point outside Sn, all of whose tangents to Sn touch Sn

along the common boundary of C and −C. Also, this is point of concurrence

of all line segments joining each point of Sn to its image under inversion in the

common boundary of C and −C. We also notice that this common boundary

is the set {x ∈ Sn : x · c = cos θ}. Inversion herein is the restriction to Sn of

inversion in the n-sphere in En+1 centered at xσ = (sec θ)c with radius tan θ.

Using these observations, we compute the image of point x under inversion in

σ as follows:

σ̄(x) = xσ +
tan2 θ

|x− xσ|2
(x− xσ)

= λx+ (1− λ)xσ,

where λ = tan2 θ
|x−xσ |2

. Therefore, in (n+ 2) coordinates, we have,

ρ(x, 1) = (x, 1)− 2[((csc θ)c, cot θ) ◦ (x, 1)]((csc θ)c, cot θ).

After some manipulation, we get

ρ(x, 1) = λ−1(λx+ (1− λ)xσ, 1).

As ρ(x) ◦ ρ(x) = x ◦ x = 0, we have that ρ(x) is the lift of a point and this

point on Sn lies on the line joining xσ and x. Thus, it is just the required

image of x under inversion in the boundary of C and C ′.
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Remark 6.22. This theorem yields a beautiful geometric picture. The cap C

in Sn lifts to a space-like vector c of Rn+1,1 such that ‖c‖ = 1. We note that

the subspace Pc = {w ∈ Rn+1,1 : w◦c = 0} is an (n+1)-dimensional subspace

of Rn+2 that intersects the light-cone in the set Bc = {x ∈ Pc : ‖x‖ = 0}. Bc

consists exactly of the lifts of those points x ∈ Sn that constitute the boundary

of the cap C.

Remark 6.23. We notice that a Möbius transformation of Sn is a product of

reflections in (n−1)-spheres on Sn i.e. a product of inversions in the boundaries

of n-caps on Sn. These extend via the Poincaré extension to inversions in

Rn+1 that preserve the unit ball Bn+1. In fact, these are just reflections in

hyperplanes of hyperbolic space Bn+1 and any isometry of Bn+1 may be written

as a product of reflections in these hyperplanes.

Now, the inversion in the boundary of an n-cap C is given by Lorentz reflection

in the (n + 1)-dimensional subspace Pc(= 〈c〉L). The intersection of each

such subspace with the positive sheet of F n+1 is a hyperplane of hyperbolic

space in the hyperboloid model Hn+1. Thus, when restricted to Hn+1, each

of these transformations restricts to reflection in a hyperplane of Hn+1 and is

an isometry of Hn+1. Furthermore, any isometry of Hn+1 may be written as

a product of such reflections.

Corollary 6.24. The n-dimensional Möbius group Mn is isomorphic to a

subgroup of the (n+2)-dimensional positive Lorentz group.

Proof. Each inversion in an (n−1)-sphere of Sn is given by a Lorentz reflection
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in the (n + 1)-dimensional subspace 〈c〉L. This reflection is given by ρc(u) =

u− 2(u ◦ c)c, where c is the lift of the cap C ⊂ Sn bounded by σ.

Now, Mn is generated by all such inversions in Sn. By definition, the map

σ̄ 7→ ρc is a homomorphism. Therefore, the group generated by all Lorentz

reflections is isomorphic to Mn. Moreover, it is clear from the proof of the

theorem that any such Lorentz reflection is a positive Lorentz transformation.

Thus, the group generated by Lorentz reflections, LR, is a subgroup of PO(n+

1, 1).

Lemma 6.25. It is possible to have a set of n+2 n-caps on the n-sphere such

that any two of them are externally tangent.

Proof. Consider Ên. Let Cn+1 and Cn+2 be any two (n−1)-spheres tangent at

∞ such that the Euclidean distance between them in En is 2r. Now, consider

the unique (n−1)-sphere through∞, D, whose Euclidean distance in En from

each one of Cn+1 and Cn+2 is r. Choose any regular (n−1)-simplex {x1, . . ., xn}

in D such that dE(xi, xj) = 2r. Then, let Ci be the (n − 1)-sphere centered

at xi with radius r. Notice that the set {C1, . . ., Cn+2} has the property that

any two spheres (or planes) are tangent. Moving back to Sn by taking ∞ to

any convenient point on Sn, we have the desired result.

Definition 6.26. An ordered set of n+ 2 n-caps, any two of which are exter-

nally tangent, is called a cluster.

Remark 6.27. If c = ((csc θ)c, cot θ) and d = ((cscψ)d, cotψ) represent be
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the respective lifts of externally tangent n-caps, then c · d = cos(θ + ψ) and

c ◦ d = −1. The caps in a cluster Cl = (c1, . . . cn+2) therefore satisfy

cij = ci ◦ cj =

 +1 if i = j

−1 if i 6= j

The cluster matrix M = (cij) = 2I − J , where I is the (n + 2) × (n + 2)

identity matrix and J is the (n + 2) × (n + 2) matrix of 1’s. We note that

J2 = (n+ 2)J and that 1
2
[I − (1/n)J ] = M−1. Thus, M is nonsingular and in

turn the vectors in Cl are linearly independent and form a basis for En+2.

Remark 6.28. We claim that an element of PO(n + 1, 1) is determined by

its action on a given cluster Cl. To see this, first we observe that a positive

Lorentz transformation takes clusters to clusters. Also, we notice that the

vectors in a cluster form a basis for Rn+2. Thus, given clusters Cl and Cl′,

there is a unique linear transformation that takes Cl to Cl′. Moreover, this

transformation must be Lorentz since it must preserve the Lorentzian inner

product and it must be positive since it maps points to points.

6.3 Euclidean Isometries and Similarities

We conduct a survey of Euclidean isometries and Euclidean similarities in this

section as these are central to the study of the Möbius group, a fact that will

be proved later. The definitions in this section may be found in [11].

Definition 6.29. An isometry is a mapping f : En → En such that |f(x)− f(y)| =

|x− y| .
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We shall see that any isometry can be written as a product of at most n + 1

reflections, and so the isometries form a subgroup of Mn.

Definition 6.30. A similarity with scale factor k > 0 is a mapping g : En →

En such that |g(x)− g(y)| = k |x− y| .

The similarity g can be written g = fd where f is an isometry and d is the

dilation x 7→ kx. Moreover, d can be written as the product of two inversions

p : x 7→ (k1/|x|)2x and q : x 7→ (k2/|x|)2x such that k1
k2

=
√
k. Thus g ∈Mn.

Computation:

pq(x) = p(q(x)) = p

((
k2

|x|

)2

x

)
= p

(
k2

2x

|x|2

)
=

k1
2∣∣∣k22x

|x|2

∣∣∣2 ·
k2

2x

|x|2

= k1
2k2

2x÷ k2
4|x|2|x|2

|x|4
=
k1

2

k2
2x = kx.

We shall see that similarities constitute the subgroup of Mn which stabilizes

∞.

Definition 6.31. Two subsets S = {xi} (i ∈ I) and S ′ = {x′i} (i ∈ I) of En

are said to be similar (resp. congruent) if there is a constant k > 0 (resp.

(k = 1)) such that |xi − xj| = k|x′i − x′j| for all i, j ∈ I.

Lemma 6.32. If S = {xi} (i = 1, ...,m) and S ′ = {x′i} (i = 1, ...,m) are

congruent m-point subsets of En, then there is an isometry f : En → En such

that f(S) = S ′ and f can be written as the product of at most m reflections.

Proof. We proceed by induction on the number of points k, in S and S ′. If

k = 1, then S = {x} and S ′ = {x′} and there is an isometry f1, namely
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reflection in the (n− 1)-plane midway between x and x′ such that f1(x) = x′.

We assume that the lemma is true if S and S ′ each have k points. Now,

let S and S ′ have k + 1 points each. Therefore, S = {x1, . . ., xk+1} and

S ′ = {x′1, . . ., x′k+1}. Then, consider the sets Sk = {x1, . . ., xk} and S ′k =

{x′1, . . ., x′k}. By the induction hypothesis, there exists an isometry fk : En →

En such that for each i = 1, . . ., k, fk(xi) = x′i and fk = η1 . . .ηr where each

ηi is reflection in an (n− 1)-plane and r ≤ k. If fk(xk+1) = x′k+1, then we are

done. If not, then let us note that

∣∣x′i − x′k+1

∣∣ = |xi − xk+1| = |fk(xi)− fk(xk+1)| = |x′i − fk(xk+1)| .

Furthermore, the locus of all points equidistant from x′k+1 and fk(xk+1) is an

(n − 1)-plane P , that contains the points xi, (i = 1, . . ., k). Let ηr+1 be the

reflection in P . Then ηr+1 fixes each point xi, (i = 1, . . ., k). Define the map

fk+1 = fkηr+1. Then, for each i = 1, . . ., k+ 1, we have fk+1(xi) = x′i and that

fk+1 = η1 . . .ηr+1 where r + 1 ≤ k + 1.

Definition 6.33. An n-simplex S = {xi} (i = 1, . . ., n + 1) is a set of n + 1

points of En which do not lie on an (n− 1)-plane.

Note that any set congruent to an n-simplex is also an n-simplex and that

isometries map n-simplices to congruent n-simplices.

Lemma 6.34. An isometry f : En → En is determined by its effect on an

arbitrary n-simplex. Moreover, it can be written as the product of at most

n+ 1 reflections.
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The lemma says that there cannot be two distinct isometries whose respective

restrictions to the n-simplex are equal.

Proof. Let S be an n-simplex and f and g be two isometries such that f(xi) =

g(xi) = x′i ∀ xi ∈ S. We will show that f(x) = g(x) ∀ x ∈ En. If not, then

there is a point c ∈ En such that f(c) 6= g(c). Then for each i = 1, . . ., n+ 1,

|f(c)− x′i| = |f(c)− f(xi)| = |c− xi| = |g(c)− g(xi)| = |g(c)− x′i| .

The set of points that are equidistant from each of f(c) and g(c) form an

(n− 1)-plane P of En and by our observation above, f(S) = g(S) ⊂ P . This

contradicts the fact that f(S) = g(S) is an n-simplex.

Thus, f is determined by its action on an n-simplex and since an n-simplex

has n + 1 points, we may use Lemma 6.32 to show that f may be written as

the product of at most n+ 1 reflections.

Corollary 6.35. The group of isometries of En is uniquely transitive on any

class of mutually congruent n-simplices. In other words, given two congruent

n-simplices S and S ′, there is a unique isometry f such that f(S) = S ′.

Lemma 6.36. The similarities of En form a group S. The mapping Φ : S →

R+ such that Φ(g) = k taking every similarity g to its scale factor k is a

homomorphism whose kernel is the isometries. The similarities are uniquely

transitive on any class of mutually similar n-simplices.
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Proof. Clearly, S is a group since any similarity is the composition of an isom-

etry and a dilation. Also, it is quite clear that the kernel of Φ is the isometries

as 1 is the identity element of R+ under the operation of multiplication. This

leaves the question of unique transitivity.

Let S and S ′ be similar n-simplices. Then, there is a dilation d such that

d(S) and S ′ are congruent. Then, by corollary 6.35 above, we have a unique

isometry f such that f(d(S)) = S ′ and then clearly g = fd is a similarity

taking S to S ′. Now, g is unique because if there is another similarity h such

that h(S) = S ′, then g−1h(S) = S. Since g−1h is a similarity that fixes an

n-simplex, it is in fact an isometry that fixes an n-simplex. Thus, g−1h is the

identity or g = h.

Lemma 6.37. A proper similarity (one where the scale factor k 6= 1) can

be written as the commuting product of an isometry with a fixed point and a

dilation with the same fixed point.

Proof. Let g be a proper similarity. As k 6= 1 we have that either g or g−1

is a contraction mapping and by the Contraction mapping theorem [8], it has

a unique fixed point x0 (note that g and g−1 share this fixed point). Let

d(x) = k(x − x0) + x0 be the dilation with the same fixed point and scale

factor. Then gd−1 = f is an isometry with fixed point x0. Then g = fd and

also fd = df by factoring f and d into their respective inversions (in flats

through x0 and in spheres centered at x0 respectively) and noticing that these

particular inversions commute.
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6.4 The Complete Description of the Möbius Group

Lemma 6.38. Let Cl = (C1, . . . Cn+2) and Cl′ = (C ′1, . . . C
′
n+2) be any two

clusters on the n-sphere Sn. Then there is a sequence of at most n+ 2 inver-

sions whose product maps Cl to Cl′.

Proof. Let us consider the situation in Ên with ∞ at the point of contact of

C ′n+1 and C ′n+2. So, C ′n+1 and C ′n+2 are parallel half-spaces and all the other C ′is

are congruent n-balls sandwiched between these two half-spaces. The centers

of C ′1, . . ., C
′
n are vertices of a regular (n−1)-simplex, say (x′1, . . ., x

′
n) and these

points lie in the (n−1)-flat that is midway between the boundaries of C ′n+1 and

C ′n+2. We complete this (n − 1)-simplex to an n-simplex S ′ = (x′1, . . ., x
′
n+1)

by adding the point of contact of C ′1 and C ′n+1.

Let x0 be the point of contact of Cn+1 and Cn+2. Two cases arise:

Case(i) x0 6= ∞: Then invert in an (n − 1)-sphere σ centered at x0 and

control its radius such that the distance between the boundaries of the im-

ages σ̄(Cn+1) and σ̄(Cn+2) (which are parallel half-spaces) is equal to that

between the boundaries of C ′n+1 and C ′n+2. Then, introduce an n-simplex

S = (x1, . . ., xn+1) just as before. S is clearly congruent to S ′. By our earlier

work, the isometry that takes S to S ′ will also take σ̄(C) to C ′. This isometry

costs at most n+ 1 inversions. Therefore, including σ̄, we have at most n+ 2

inversions.

Case (ii) x0 = ∞: We already have that Cn+1 and Cn+2 are two parallel half

spaces and so again define an n-simplex S which will at worst be similar to S ′.



30

Then, we can dilate S through a transformation which takes C1 to C ′1. This

dilation will take up two inversions but will also make S congruent to S ′ and

will make sure that they have at least one point in common. Now, S can be

taken to S ′ through an isometry that costs at most n inversions because one

point is already in common. Again, the total is n+ 2 inversions.

Theorem 6.39. Mn is isomorphic to the n+ 2 dimensional positive Lorentz

group, PO(n+1, 1). Mn is uniquely transitive on clusters and its most general

element can be written as the product of at most n+ 2 inversions.

Proof. As Mn is transitive on clusters, so is the subgroup LR, generated by

Lorentz reflections. But since PO(n + 1, 1) is uniquely transitive on clusters,

we have that LR = PO(n+ 1, 1) and that Mn
∼= LR ∼= PO(n+ 1, 1).

Corollary 6.40. When Mn acts on Ên, its most general element is either a

similarity of En or the product of an inversion and an isometry of En.

Proof. Consider a cluster Cl′ with ∞ as the point of contact of C ′n+1 and

C ′n+2. Now, any element of Mn is determined by its action on a cluster.

So, let Cl = h−1(Cl′). Thus, h(Cl) = Cl′ and following the notation and

argument of lemma 6.38, if x0 =∞, then h is a similarity and if x0 6=∞ then

h is the product of an inversion and an isometry.

Corollary 6.41. An element ofMn which fixes a point of Sn can be considered

as a Euclidean similarity.
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Proof. If h fixes x0 ∈ Sn, then consider the action of Mn on Ên by taking x0

to ∞. Then h acts as a similarity on Ên.

Corollary 6.42. An element of Mn which acts without fixed points on Sn is

conjugate to an isometry of Sn, the extension of whose action to En+1 is an

orthogonal transformation.

Proof. A map h ∈ Mn which acts on Sn can be extended via the Poincaré

extension to a map h̃ ∈ Mn+1 which acts on En+1 ∪ {∞} and maps the ball

|x| ≤ 1 continuously onto itself. If h has no fixed point, then h̃ has no fixed

point on Σ but by the Brouwer fixed point theorem [7], h̃ must have a fixed

point x0 with |x0| < 1.

Let Σ0 be the n-sphere orthogonal to Sn such that Σ̄0(x0) = 0. Then h̃′ =

Σ̄0h̃Σ̄0 fixes 0 and Sn and hence fixes S̄n(0) = ∞. It follows that h̃′ is a

Euclidean isometry which can be factored as the product of reflections in

Euclidean n-planes through 0.

Finally, restrict back down to Sn and we get h′ = σ̄0hσ̄0 where σ0 = σ0 ∩ Sn.

Then h′ factors as the product of reflections in equatorial (n − 1) spheres of

Sn and is hence an isometry of Sn.

6.5 The Product of two Inversions

In this section, we state an important theorem and corollary proved by Wilker

[11] which will be used in our analysis in section 6.6.
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Definition 6.43. If α and β are (n − 1)-spheres on Sn, then we define the

pencil perpendicular to α and β, (α, β)⊥ as the set of all circles (1-spheres) in

Sn that are orthogonal to both α and β.

Definition 6.44. If α and β are (n − 1)-spheres on Sn, then we define the

pencil of α and β, (α, β) as the set of all (n − 1)-spheres in Sn that are

orthogonal to each circle in (α, β)⊥.

Theorem 6.45. Let α and β be (n− 1)-spheres on Sn. Then the transforma-

tion h = ᾱβ̄ lies in one of the following conjugacy classes:

(i) Translation if α and β are tangent,

(ii) Rotation by an angle 2θ if α and β intersect at an angle θ,

(iii) Dilation δ if α and β are disjoint and separated by inversive distance δ.

Corollary 6.46. [11]

Let α, β and γ be three (n−1)-spheres in a pencil on Σ. Then there is a fourth

(n− 1)-sphere δ in the pencil such that ᾱβ̄γ̄ = δ̄.

6.6 Classification of Möbius Transformations of Sn, (n =

2, 3)

Recall that an arbitrary element of Mn may be written as the product of at

most n + 2 inversions. If it has a fixed point, it is conjugate to a Euclidean

similarity and if not, then it is conjugate to a spherical isometry. Thus, we

proceed by listing all possible Euclidean isometries, Euclidean similarities and



33

finally, spherical isometries. Although we exhaust all possibilities, we are par-

ticularly interested in the orientation preserving cases (products of an even

number of reflections).

Remark 6.47. In the second case, the transformation is necessarily elliptic

as a hyperbolic isometry in dimension n+ 1 because Sn or Σ is the boundary

of Bn+1. Now, by the Brouwer fixed point theorem [7], the Poincaré extension

of such an element must have a fixed point in the interior of the ball Bn+1.

Remark 6.48. Additionally, spherical isometries can be factored as the prod-

uct of reflections in at most n+ 1 equatorial (n− 1)-spheres. This is because

in the proof of Corollary 6.42, we move up to En+1 via Poincaré extension.

There, we have that the extension is a Euclidean isometry with fixed point 0.

Therefore, one of the points in the (n + 1)-simplex we use to determine this

isometry is already on the mirror. That reduces the required reflections from

n+ 2 to n+ 1 in number.

Let us begin by analyzing all possible Möbius transformations of S2:

Case 1) Euclidean isometries: These are products of reflections in at most

three straight lines in E2.

Reflection in one line yields just ordinary reflection.

Reflection in two lines throws up two distinct possibilities. If the lines intersect

at angle θ, then the resultant transformation is a rotation of angle 2θ about

the point of intersection. This extends to an elliptic transformation as its
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Poincaré extension will fix a hyperbolic line in H3. If the lines are parallel and

the Euclidean distance between them is d, then the resultant transformation

is a Euclidean translation of translation length 2d. This extends to a parabolic

transformation as it fixes no point in H3 and only one point (∞ in this case)

on the boundary of H3 = Ê2.

If the transformation requires three reflections, then the lines can neither be

concurrent nor parallel. Let the three lines be l1, l2 and l3 respectively. Now

the transformation is g = l̄1l̄2l̄3. Note that l̄1l̄2 = l̄′1l̄
′
2 where l′2 ⊥ l3 and that

l̄′2l̄3 = l̄′′2 l̄
′
3 where l′3 ⊥ l′1. Therefore, g = l̄′1l̄

′′
2 l̄
′
3 is a glide-reflection of E2 (the

product of a translation and a reflection).

Case 2) Euclidean Similarities: A similarity is the commuting product of an

isometry with a fixed point and a dilation with the same fixed point. The

only isometries with a fixed point (in E2) are the ordinary reflection and the

rotation. Thus, there are three types of similarities.

The first is dilation, which extends to a pure hyperbolic transformation acting

on H3 since it fixes two points on the boundary of H3 (0 and ∞ in this case)

and no other points in Ê2 or in H3.

The second is the product of a dilation and a reflection.

The third is the product of a dilation and a rotation with the same fixed point.

This third type of transformation extends to a pure loxodromic transformation

of H3 as it fixes only two points on the boundary Ê2 and no others. Note that
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the difference between the pure hyperbolic and pure loxodromic transformations

is that although each of them fix two points of Ê2 and no others, the pure

loxodromic transformation also has a non-trivial rotational element.

Case 3) Spherical Isometries: If the transformation does not have a fixed point

in Ê2, it is conjugate to a spherical isometry of S2 ⊂ E3 This transformation is

the product of at most three inversions in great circles on S2. The products of

reflection in one or two circles must fix a point on S2, thus eliminating these

from consideration. The product of three inversions may be rearranged as in

the case of the glide-reflection, hence yielding the product of a rotation (as

two great circles must intersect twice) and a reflection.

We now turn our attention to the Möbius transformations of S3:

Case 1) Euclidean Isometries: These are the products of reflections in at most

four 2-planes.

Again, reflection in one 2-plane is ordinary reflection.

The product of reflection in two 2-planes yields the same cases as in E2, namely,

the elliptic case i.e. rotation about a line in E3 that is fixed pointwise by the

transformation and the parabolic case, which we now rename pure parabolic,

that is translation that does not fix any point in E3. Here, we will refer to the

elliptic transformation as elliptic of type I.

If the transformation requires three reflections in 2-planes, then they can nei-
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Figure 3: A Pure Parabolic transformation in E3 as the product of
reflection in two Euclidean 2-planes.

Figure 4: An Elliptic element of type I in E3 as the product of reflec-
tion in two intersecting Euclidean 2-planes.
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ther intersect in a line nor be parallel. Now, we have two possibilities. If the

line of intersection of two of the planes is parallel to the third plane, we may

rearrange the transformation as in E2, thus yielding glide-reflection. If the

third plane intersects this line of intersection of the first two planes in a point,

we have the product of rotation about a line and a reflection.

If the transformation g actually requires four reflections, then it cannot have a

fixed point. This is clear form the proof of the fact that every isometry can be

written as the product of n+1 reflections in (n−1)-planes. If an isometry has

a fixed point, then this point is already in the desired position and hence, the

required number of reflections reduces from n+ 1 to just n. Thus, g does not

have a fixed point in E3. Now, choose a point o and a translation t such that

gt(o) = o. Now, since gt is orientation preserving with a fixed point in E3, it

must be a rotation, say gt = r. Thus, g = rt−1 where t−1 has two translational

components at most, t1 which is translation in a direction perpendicular to the

axis of rotation of r and t2 which is translation along the axis of rotation of r.

Thus, g = rt1t2. Now, note that rt1 = r1 is just rotation about an axis which

is parallel to the axis of r. Thus, g = r1t2, the product of rotation about a line

and translation along that line. We notice that this transformation extends

to a parabolic transformation acting on H4 as it fixes just one point in Ê3 and

no other. But we note that this transformation has a non-trivial rotational

element and we will thus call it screw-parabolic.

Case 2) Euclidean Similarities: Again, the isometries with a fixed point are

reflection, rotation and the product of rotation and reflection. Thus, there are
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Figure 5: A Screw Parabolic transformation in E3 as the product of
reflection in four Euclidean 2-planes.

four classes of similarities.

The first is dilation, which extends to a pure hyperbolic transformation acing

on H4 since it fixes two points on the boundary of H4 (0 and ∞ in this case)

and no other points in Ê3 or in H4.

The second is the product of a dilation and a reflection.

The third is the product of a dilation and a rotation whose axis passes through

the fixed points of the dilation. This third type of transformation extends

to a pure loxodromic transformation of H4 as it fixes only two points on the

boundary Ê3 (0 and∞ in this case) and no others. Again, this pure loxodromic

transformation has a non-trivial rotational element.

The fourth is the product of a dilation, a rotation and a reflection.
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Figure 6: A Pure Hyperbolic transformation in E3 as the product of
reflection in two concentric 2-spheres.

Figure 7: A Pure Loxodromic transformation in E3 as the product
of reflection in two concentric 2-spheres and two Euclidean 2-planes
through the two fixed points.
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Case 3) Spherical Isometries: These are the products of inversion in at most

four equatorial 2-spheres on S3 ⊂ E4. Now, products of inversion in one or

two equatorial 2-spheres clearly have fixed points on S3. In fact, by lemma

6.49, so does the product of inversion in three equatorial 2-spheres.

Lemma 6.49. Two equatorial (n − 1)-spheres on the surface of Sn must in-

tersect in an (n − 2)-sphere. Moreover, m equatorial (n − 1)-spheres on the

surface of Sn intersect in a k-sphere where k ≥ n−m.

Proof. An equatorial (n − 1)-sphere on Sn arises as the intersection of a Eu-

clidean n-plane through the origin with Sn. Two such Euclidean n-planes

must intersect in a Euclidean (n−1)-plane through the origin. This Euclidean

(n− 1)-plane must intersect Sn in a (n− 2)-sphere which turns out to be the

intersection of the equatorial (n − 1)-spheres. Now, if we consider the inter-

section of three equatorial (n − 1)-spheres, note that the Euclidean n-planes

whose intersections with Sn give rise to them must have a Euclidean l-plane

through the origin as their intersection where l ≥ n − 2. Thus, the intersec-

tion of this l-plane with Sn must be an (l − 1)-sphere which constitutes the

intersection of the three equatorial (n− 1)-spheres. One can use an inductive

argument continuing in this way to show that the intersection of m equatorial

(n− 1)-spheres on the surface of Sn is a k-sphere for k ≥ n−m.

Now, if this transformation does not fix a point on S3, then it must be the

product of inversion in four equatorial 2-spheres, σ1, σ2, σ3 and σ4 such that

∩4
i=1σi = φ. Move one of the points σ1 ∩ σ2 ∩ σ3 to ∞ via stereographic
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projection. Then, in Ê3, we have three Euclidean 2-planes, say α, β and γ such

that they intersect in just one point in E3 and a 2-sphere δ that intersects each

of α, β and γ in a circle but again the intersection of all four is empty. Thus,

this transformation is the composition of two rotations, one about the circle

α ∩ β through ∞ and one about the circle γ ∩ δ, not through ∞. We notice

that this transformation extends to an elliptic transformation acting on H4 as

it must fix a point of H4 by the Brouwer fixed point theorem [7]. We shall

refer to this transformation as elliptic of type II.

We are now ready to define a half-turn in S3.

Definition 6.50. A half turn about a circle C in S3 is the composition of

reflection in two orthogonal 2-spheres, SC and TC , such that SC ∩ TC = C.

Remark 6.51. We notice that there are two types of elliptic element in M3

and remark that our definition of half-turn cannot be restated as in dimension

three, i.e. we cannot say simply that a half-turn is an elliptic element of order

two. For example, the antipodal map in E4 is an elliptic element in the ball

model hyperbolic four-space B4. It is of order two but cannot be written as

the product of two reflections (it is the product of four reflections and no less).

However, we may rephrase our definition as follows.

Definition 6.52. A half turn of H4 is an elliptic type I element of order two.

This isometry fixes a hyperbolic 2-plane in H4 pointwise.

Theorem 6.53. Every orientation-preserving transformation in M3 can be

written as the product of half-turns about two circles.
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Proof. Let g represent the transformation under consideration. We proceed

with a case by case analysis:

Case 1) g is pure parabolic: If the transformation g is parabolic and not screw-

parabolic, then we may assume that the fixed point is∞. Then g = ᾱ′β̄′ where

α′ and β′ are 2-spheres tangent at ∞. Let c be any circle that is tangent to

α′ at ∞ and let α be the 2-sphere through c tangent to α′ at ∞. Then the

half-turn about c may be written as ᾱγ̄ where γ is the sphere through c which

is orthogonal to α. Also, g = ᾱβ̄ where β is a 2-sphere tangent to α at ∞.

Then, let b = γ ∩ β. The half-turn about b is γ̄β̄. Therefore, the product of

these half-turns is ᾱγ̄γ̄β̄ = ᾱβ̄ = g.

Case 2) g is screw-parabolic: Once again, let us consider the case where the

fixed point is at∞. Notice that there is a unique circle a through∞ that is left

invariant by g. Then g = ᾱ′β̄′γ̄′δ̄′ where α and β are 2-spheres orthogonal to

a and are tangent to each other at∞ whereas γ and δ are (distinct) 2-spheres

through a. Let c be any circle through ∞ which is orthogonal to a. Then,

the half-turn about c may be written as ᾱγ̄ where α is the 2-sphere through c

orthogonal to a and γ is a 2-sphere through a (and is clearly orthogonal to α).

Then, we observe that the rotational element of g may be written as γ̄δ̄ where

δ is another 2-sphere through a whereas the translational element of g may be

written as ᾱβ̄ where β( 6= α) is a 2-sphere orthogonal to a and tangent to α at

∞. Let b = β ∩ δ. Then, the half-turn about b is β̄δ̄ and also ᾱ′β̄′ = ᾱβ̄ and

γ̄′δ̄′ = γ̄δ̄. Therefore, the product of half-turns about b and c is ᾱβ̄γ̄δ̄ = g.
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Figure 8: A screw parabolic transformation as the product of half
turns about two circles through the fixed point and orthogonal to
axis a.

Case 3) g is pure hyperbolic: We may assume that one of the fixed points are

∞ and 0. Then, g = ᾱ′β̄′ where α′ and β′ are concentric spheres (not through

∞) centered at 0. Let c be any circle centered at 0 (and not through∞). Then

the half-turn about c can be written as ᾱγ̄ where α is the 2-sphere through

c centered at 0 and γ is a 2 sphere through c, ∞ and 0 and orthogonal to α.

Now, g = ᾱβ̄ where β is a 2-sphere also centered at 0. Let b = β ∩ γ. Then,

the half-turn about b is γ̄β̄. Thus, the product of the two half-turns about b

and c is ᾱγ̄γ̄β̄ = ᾱβ̄ = g.

Case 4) g is pure loxodromic: As in Case 3), assume that the fixed points are

at ∞ and 0. We note that in this case (as in the screw-parabolic case), there

is a unique circle a through 0 and ∞, such that a is left invariant by g. Then,

g = ᾱ′β̄′γ̄′δ̄′ where α′ and β′ are concentric 2-spheres centered at 0 whereas
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Figure 9: A loxodromic as the product of half turns about two con-
centric circles through the fixed points and orthogonal to axis a.

γ′ and δ′ are (distinct) 2-spheres through a and are orthogonal to each of α′

and β′. Let c be any circle (not through ∞) centered at 0 and intersecting a

twice at right angles. Then, the half-turn about c may be written as ᾱγ̄ where

α is the 2-sphere through c centered at 0 and γ is the 2-sphere through c,

∞ and 0 (and consequently through a) and orthogonal to α. Now, note that

the rotational element of g may be written as γ̄δ̄ where δ is another 2-sphere

through a while the dilation element of g may be written as ᾱβ̄ where β is

another 2-sphere (not through ∞) centered at 0 and orthogonal to a. Then,

let b = β ∩ δ. The half-turn about b is then β̄δ̄ and we have ᾱ′γ̄′ = ᾱγ̄ and

β̄′γ̄′ = β̄γ̄. Thus, the product of half-turns about b and c is ᾱβ̄γ̄δ̄ = g.

Case 5) g is elliptic of type I: We may assume that one of the fixed points is∞.

Here, there is a unique circle a through ∞ that is fixed by g pointwise. Now,
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Figure 10: An elliptic type I element as the product of half-turns in
circles orthogonal to a

g = ᾱ′β̄′ where α′ and β′ are (distinct) 2-spheres such that α′ ∩ β′ = a. Let

c be a circle through ∞ which intersects a orthogonally. Then the half-turn

about c may be written as ᾱγ̄ where α is the 2-sphere determined by a and c

and γ is the sphere through c orthogonal to α. We note that g = ᾱβ̄ where β

is a 2-sphere through a orthogonal to γ. Let b = β ∩ γ. Then then half-turn

about b may be written as γ̄β̄. Therefore, the product of the half-turns about

c and b is ᾱγ̄γ̄β̄ = ᾱβ̄ = g.

Case 6) g is elliptic of type II: We cannot improve upon Wilker’s proof of

this case and refer to [11] for the proof. We note that in this case, g may be

written as the product of half-turns about circles b and c, where b and c are

interlocked.
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7 A Discreteness Condition for Subgroups of

Isometries of H4

Using the machinery developed thus far, we extend some of the results given

by Gilman [5] to hyperbolic four-space, H4. We also note that some of the

theorems and definitions go through for dimension n ≥ 3. We begin with a

corollary of Theorem 6.53.

Corollary 7.1. Every orientation preserving isometry of H4 can be written

as the product of half-turns about two hyperbolic 2-planes.

Proof. We know that the transformations of M3 extend via the Poincaré ex-

tension to the isometries of H4. The property of preserving or reversing orien-

tation is also preserved. Thus, every half turn must extend to an isometry of

H4 and we have that every isometry of H4 may be written as the product of

two half turns in H4.

Definition 7.2. A topological group is a group G that is also a topological

space such that the multiplication (g, h) 7→ gh and inversion g 7→ g−1 in G are

continuous functions.

Remark 7.3. The topology of Sn determines a natural topology onMn, the

metric topology defined by the metric

dS(φ, ψ) = sup
x∈Sn
|φ(x)− ψ(x)| .

The group Mn, with this topology is a topological group [9].
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Definition 7.4. A discrete group is a topological group G all of whose points

are open.

Definition 7.5. A subgroup G of Mn is elementary if and only if G has a

finite orbit in the closure Hn.

Definition 7.6. The end-sphere of an m-plane in the upper half-space model

of Hn is the set of points where the plane intersects the boundary Ên−1. The

end-sphere is also known as the horizon of the m-plane. If m = 2, then this

set of points is called the end-circle. We will refer to the m-plane as the cap

of its end-sphere.

Remark 7.7. The end sphere of an m-plane in Hn is either an (m−1)-sphere

in Ên−1 or an extended (m− 1)-plane in Ên−1.

Definition 7.8. The half-turn HT about an (n − 2)-plane T of Hn is de-

fined as the composition of reflections in two orthogonal (n− 1)-planes whose

intersection is T . We refer to T as the axial plane of HT .

Remark 7.9. If C is a circle in Ê3, let PC be the 2-plane in H4 whose horizon

is C. Then C is the end-circle of PC . Let HPC be the half-turn about the

2-plane PC in H4. The hyperbolic plane PC is the axial plane of the half-turn

and we call the circle C the end-circle of the half-turn.

Theorem 7.10. A half-turn fixes every hyperplane whose horizon passes through

its end-sphere.

Proof. Let SC be any (n− 2)-sphere in Ên−1 that contains the end-sphere C.

Let TC be the (n − 2)-plane in Hn whose horizon in Ên−1 is C. Let PSC be
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the hyperplane ((n− 1)-plane) in Hn whose horizon is SC . We will denote the

half-turn about TC as HTC . We must show that HTC (PSC ) = PSC .

Clearly, HTC fixes TC pointwise. Also, TC lies on PSC . Let x ∈ PSC , x 6∈ TC .

Then let `x be the line through x which is perpendicular to TC . Let px =

lx ∩ TC . Note that HTC (`x) = `x. Now, HTC (x) is the point on `x which is

the same distance from px as x. Since `x lies on PSC , HTC (x) ∈ PSC and

HTC (PSC ) = PSC .

Definition 7.11. Let n ≥ 3, n ∈ N. Three (n − 3)-spheres CA, CB and CN

have the non-separating disjoint sphere property, (the NSDS property) if there

are three disjoint (n−2)-spheres SCA , SCB and SCN in Ên−1 containing CA, CB

and CN respectively such that no one sphere separates the other two.

Definition 7.12. Let n,m ≥ 3, n,m ∈ N. Then the (n−3)-spheres CA1 , CA2 , . . .CAm

in Ên−1 have the non-separating disjoint sphere property (the NSDS property),

if there exist m disjoint (n− 2) spheres SA1 , SA2 , . . .SAm in Ên−1 such that for

each i = 1, . . .m, CAi is contained in SAi and no one of the (n − 2)-spheres

separates any others.

Definition 7.13. In the definition of NSDS, if we allow the possibility that two

or more of the (n−2)-spheres are tangent instead of disjoint, the (n−3)-spheres

have the non-separating disjoint or tangent sphere property, (the NSD/TS

property).

Theorem 7.14. Let T1, T2, . . .Tm (m ≥ 3) be the (n− 2)-planes in Hn whose

horizons on Ên−1 are C1, C2 . . .Cm respectively. If C1, C2, . . .Cm have the
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NSD/TS property, then the group generated by the half turns

〈HT1 , HT2 , . . .HTm〉

is discrete.

Proof. Let SC1 , SC2 , . . .SCm be the (n−2)-spheres in Ên−1 that contain C1, C2 . . .Cm

respectively. Then we may apply the Poincaré Polyhedron Theorem [9] to the

region bounded by P1, P2 . . .Pm, the hyperplanes in Hn whose horizons are

SC1 , SC2 , . . .SCm respectively with side pairing transformationsHT1 , HT2 , . . .HTm ,

respectively. This shows discreteness as the half-turns fix the corresponding

hyperplanes by Theorem 7.10.

7.1 The Construction in H4

We make a construction analogous to Gilman’s [5] construction of NSDC

groups. Note that in H3, given two isometries with disjoint axes, there ex-

ists a common perpendicular hyperbolic line to each of the axes in H3. This

is a unique fact about H3 that distinguishes it from H4. The construction in

H4 is as follows.

Let A and B be isometries of H4 and let G = 〈A,B〉. We may assume that

neither A norB is elliptic (Remark 7.17). Then, A = HLA ·HMA
whereHLA and

HMA
are half-turns about the 2-planes LA and MA. Similarly, B = HLB ·HMB

.

Then, we make the following definition.
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Definition 7.15. Let 4GLM = 〈HLA , HMA
, HLB , HMB

〉. Then G = 〈A,B〉 is

a subgroup of 4GLM and we call 4GLM the associated LM-supergroup of G.

There are many choices of four generator supergroups associated to a given

group G and therefore, these are indexed by the choice of axial planes for the

associated half-turns.

Theorem 7.16. Let the end-circles of LA,MA, LB and MB be lA,ma, lB and

mB respectively. If lA,mA, lB and mB have the NSDS property, then the group

4GLM is discrete. Moreover, G is a subgroup of 4G and the discreteness of 4G

yields the discreteness of G. We call G and 4GLM NSDS groups.

Proof. The result is clear from Theorem 7.14.

Remark 7.17. If either A or B is an elliptic isometry of H4, then 4G cannot

have the NSDS or the NSD/TS property. Without loss of generality, let A

be elliptic. Then A is elliptic type I or elliptic type II. By Theorem 6.53, the

restriction of A to Ê3 can be factored into the product of half-turns about two

circles which either touch twice or are interlocked. In either case, there do not

exist 2-spheres in Ê3 that are non-separating and disjoint.

Remark 7.18. In order to distinguish the case n = 4 from n = 3, we note

that in H3, if the two transformations A and B share a fixed point, then the

group G = 〈A,B〉 is not discrete. However, in H4, we may have that the

transformations A and B share a fixed point and yet the group G is NSDS as

illustrated below.
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Example 7.19. Let A and B be two screw-parabolic isometries of H4 with a

shared fixed point at∞. Then, in their action on the boundary of H4, there are

unique circles axA and axB through∞ in Ê3 that are left invariant by A and B

respectively. Let n denote the common normal to a and b in Ê3. Then, by our

analysis in section 6.6, there exist circles lA and lB through∞ and orthogonal

to axA and axB respectively, such that A = HN · HLA and B = HLB · HN ,

where LA, LB and N are the caps of lA, lB and n in H4 respectively. If la,

lB and n have the NSD/TS property, then the group 3G = 〈HLA , HN , HLB〉 is

discrete and consequently, G is discrete.

We note here that in order for G to be NSDS, the circles axA and axB must

lie on a 2-sphere in Ê3. In other words, their caps in H4 must lie on a hy-

perplane of H4. Another point of distinction is that G is elementary as every

transformation in the group fixes ∞, whereas NSDC groups acting on H3 are

non-elementary [5].
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