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ABSTRACT OF THE DISSERTATION

Robust Segmentation and Object Classification in Natural

and Medical Images

by Lin Yang

Dissertation Director: Prof. Peter Meer

Image segmentation and object classification are two fundamental tasks in computer

vision. In this thesis, a novel segmentation algorithm based on deformable model and

robust estimation is introduced to produce reliable segmentation results. The algorithm

is extended to handle touching object and partially occluded image segmentation. A

multiple class segmentation algorithm is described to achieve multi-class ”object cut”.

The accurate results are achieved using the appearance and bag of keypoints models

integrated over mean-shift patches. An affine invariant descriptor is proposed to model

the spatial configuration of the keypoints. Besides working with 2D image segmentation

problem, a robust, fast and accurate segmentation algorithm is illustrated for process-

ing 4D volumetric data. One-step forward prediction is applied to generate the motion

prior based on motion modes learning. Two collaborative trackers are introduced to

achieve both temporal consistency and failure recovery. Multi-class classification al-

gorithms using a gentle boosting is used to classify three types of breast cancer. The

algorithm is Grid-enabled and launched on the IBM World Community Grid. We will

introduce a fast and robust image registration algorithm for both 2D and 3D images.

The algorithm starts from an automatic detection of the landmarks followed by a coarse

to fine estimation of the nonlinear mapping. The parallelization of the algorithm on

the IBM Cell Broadband Engine (IBM Cell/B.E.) will also be explained in details.
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Chapter 1

Introduction

Image segmentation and object recognition in natural and medical images is one of the

most important topics in computer vision. The application can be extended to human

computer intervention, computer aided diagnosis and automatic computer processing

system, etc.

Image segmentation is the process of delineating an image into several ”homoge-

neous” regions based on the similarity of pixel attributes. If the segmentation is per-

formed independently by the computer, the processing is referred to as unsupervised.

This is in contrast to supervised image segmentation which requires human input and

intervention. Depending on whether or not prior knowledge has been used in the image

segmentation, it can be classified as either “high-level” or “low-level” segmentation.

Low-level image segmentation relies upon the pixel attributes of the image without

consideration of prior-knowledge. For many practical applications, however, it is often

necessary to incorporate additional ”high-level” information into the analysis. There

exists many difficulties within image segmentation area. This includes occluded im-

age segmentation, multiple class segmentation and touching object segmentation, to

mention only a few.

While it may be obvious that people are able to recognize objects under many

variations in conditions, it is well known that object recognition and classification are

extremely difficult for computers. Computer might be able to analyze simple features of

objects and apply those features to recognize objects. However, it might have difficulties

to recognize an object that varied slightly in form or was seen from a novel viewpoint

because the features would be altered. Moreover, it might not be able to discriminate

between two objects that contained the same features, but with a different organization.
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In this thesis, we will present several novel algorithms which can handle robust seg-

mentation and object classification in natural and medical images. We have described

a color gradient vector flow (GVF) deformable model based on robust estimation by

exploiting prior-knowledge of the specific applications. The algorithm starts from an

initialization using L2 norm error (L2E) robust estimation. By merging L2E robust

estimation with the GVF snake and the Luv color space gradient, we will describe a

quick and robust approach which is shown to produce reliable results for detecting and

delineating the boundaries of imaged medical objects. The algorithm is able to provide

satisfactory performance even when confronted with images exhibiting weak contrast

and subtle edges. The algorithm is further extended to handle partially occluded image

segmentation and touching objects segmentation.

A simple but effective segmentation framework will be described for multiple class

object-based segmentation. The algorithm contains a novel but simple model to rep-

resent the spatial configurations of key points called spatial keyton histogram. The

elliptical Fourier descriptor (EFD) is applied to refine the final segmentation results

for certain type of objects. We demonstrate that our method provides good results for

multiple class segmentation using real datasets.

A robust, fast and accurate 4D left ventricle (LV) segmentation algorithm is de-

veloped for the 3D echocardiography. According to our knowledge, this is the first

study reporting fast and reliable 4D ultrasound segmentation of the left ventricle on

a very large dataset, which contains 1143 3D volumetric data. From our research we

report that collaborative trackers increased the tracking accuracy dramatically. The

final accurate results are achieved by applying the motion priors using one-step for-

ward prediction on the manifold. The robustness to complex background and weak

edges come from the learned discriminative detectors and boundary classifiers, while

the temporal consistence is preserved by template tracker. Instead of building specific

models for heart, all the major steps in our algorithm are based on learning. Our pro-

posed algorithm is therefore general enough to be extended to other 4D medical image

segmentation problems.

We will describe a Grid-enabled framework which utilized texton histograms to
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perform high throughput analysis of digitized breast cancer specimens. Experimental

results will show that a gentle AdaBoost classifier using an eight node classification

and regression tree (CART) decision tree as the weak learner provided the best results.

We illustrate the classification results of separating benign from cancer and also two

sub-classes of breast cancer.

Finally, we will present a new method for fast and robust image registration combin-

ing landmark and region based techniques. The algorithm is completely unsupervised

and computationally efficient. Due to a relatively small number of landmarks, the

method runs faster than many existing nonlinear registration algorithms reported in

the literature, such as B-Spline based image registration and the Demon’s algorithm.

The method can also handle large transformation and deformation while still providing

good registration results. We will also explain how to implement the algorithm in a

multi-core platform, the IBM Cell Broadband Engine.

1.1 Organization of the Thesis

The thesis is organized as follows.

• In Chapter 2, we investigate the design, development, and implementation of

a robust color gradient vector flow (GVF) active contour model for performing

segmentation. The algorithms developed for this research operate in Luv color

space, and introduce the color gradient and robust estimation into the traditional

gradient vector flow (GVF) snake. The algorithm is shown to provide good results

and successfully applied on segmenting blood cells. It is further extended to

touching object and occluded image segmentation.

• In Chapter 3, the multiple class object-based segmentation is achieved using the

appearance and bag of keypoints models integrated over mean-shift patches. We

also propose a novel affine invariant descriptor to model the spatial relationship of

keypoints and apply the Elliptical Fourier Descriptor (EFD) to describe the global

shapes. The algorithm is computationally efficient and has been tested for three

real datasets which contain a large number of natural objects. Our algorithm
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provides better results than other studies reported in the literature.

• In Chapter 4, we present a robust, fast and accurate 4D left ventricle (LV) seg-

mentation algorithm. We propose a novel one-step forward prediction to generate

the motion prior using motion modes learning, and introduce two collaborative

trackers to achieve both temporal consistency and failure recovery. Compared

with tracking by detection and 3D optical flow, our algorithm provides the best

results and subvoxel accuracy. The new algorithm is completely automatic and

computationally efficient. It requires less than 1.5 seconds to process a 3D volume

which contains 4,925,440 voxels.

• In Chapter 5, we introduce a Grid-enabled decision support system for perform-

ing automatic analysis of imaged breast tissue microarrays. Texture based fea-

tures were extracted from the digitized images and isometric feature mapping

(ISOMAP) is applied to achieve nonlinear dimension reduction. Iterative pro-

totyping and testing are performed to classify several major subtypes of breast

cancer. Overall the most reliable approach was gentle AdaBoost using an eight

node classification and regression tree (CART) as the weak learner.

• In Chapter 6, we will explain a 2D/3D image registration algorithm. The method

combines the landmark based and region based method together. Using a coarse-

to-fine searching schema, the algorithm is accurate and computationally efficient.

Using a C++ implementation, the algorithm can register a pair of 3D volumes

which contains 24,641,536 voxels in less than 2 minutes. The parallelization of

the algorithm on an IBM Cell Broadband Engine (IBM Cell/B.E.) will also be

explained in details.
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Chapter 2

Image Segmentation Using Robust Estimation and Color

Active Contour Models

New segmentation methods have emerged which guide the partitioning process by uti-

lizing cues based on shape, appearance and/or contextual models. In early low-level

segmentation pixels are clustered based on their similarity in spatial and feature space

and the resulting sub-regions are then assigned object labels. In contrast, high-level

approaches attempt to detect and extract objects from images using prior knowledge

and establish models which allow the segmentation method to adapt to the object of

interest. Deformable models belong to this family of high-level image segmentation

approaches.

There are two general types of deformable models described in the literature: para-

metric deformable models and geometric or level set based deformable models [70], [91],

[12] (geometric deformable models and level set based deformable models are mathemat-

ically proved to be the same). Parametric deformable models have gained significant

attention throughout the image processing community since its first introduction by

Kass, Witkin and Terzopoulus [70]. Snakes are curves which are defined within the

image’s domain and move under the influence of internal forces within the curve and

external forces derived from the image data. All snake properties and behaviors are

specified through a function called energy function by analogy with physical systems.

A partial differential equation controlling the snake causes it to evolve so as to reduce

its energy and the local minima of this energy then correspond to desired image proper-

ties. Parametric deformable models have been used in a range of applications, including

edge detection [70], object recognition [85], [36], shape modeling [36], [131] and motion

tracking [85], [132], to mention only a few. In an almost parallel effort, a variety of
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snakes based on utilizing the image gradients as external forces have been proposed.

Examples include the traditional snake [4], [145], the balloon snake [21], the pressure

forces model [22] and the more recently reported gradient vector flow (GVF) model

[149]. The GVF snake model often outperforms other gradient-based models because

it is insensitive to initialization values and can move into boundary concavities. It also

has a much larger capture region than earlier approaches.

However, as the GVF snake was designed for binary or gray-level images, it is not

straightforward to adapt this approach to color images. The original snake is also not

robust approach which can be affected by noise and also sensitive to the initial positions.

In this chapter we propose a robust color GVF snake [158], [152], [123] based on Luv

color gradients and L2E robust estimation. The proposed algorithm was shown to be

effective in segmenting color pathology images [160]. We also extend the robust GVF

snake into touching objects segmentation using concave vertex graph [161].

Geometric deformable models, or level set based deformable models, were almost

simultaneously proposed by Caselles et al. [12] and by Malladi et. al. [91] to address

the fact that parametric active contour models could not resolve topological changes.

Geodesic deformable models are based on the theory of curve evolution and are numer-

ically implemented using level set methods. They can automatically handle topology

changes in an image and allow for multiple simultaneous boundary estimations. Fur-

thermore, they are not sensitive to initial starting positions as parametric deformable

models are. Therefore, these group of deformable models continue to gain increasing

interests throughout the research community [67], [38], [14]. In this chapter, we also

propose a level set based deformable model using semi-density approximation and global

shape prior [153] to handle the occluded image segmentation problem.

In Section 2.1 we introduce the general active contour models. In Section 2.2 we

describe the proposed robust color gradient vector flow snake. Section 2.3 provides an

algorithm to segment touching objects. The occlude image segmentation algorithm is

illustrated in Section 2.4.
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2.1 A Quick Look at Active Contour Models

Defined within an image domain, a traditional deformable model [70] is parametrically

defined as x(s) = (x(s), y(s)), where x(s) and y(s) are x and y coordinates along the

contour and s represents the arc-length with value in [0, 1], to minimize an energy

function as follows:

Esnake =
∫ 1

0
(Eint(x(s)) + Eext(x(s)))ds (2.1)

where the first term represents the internal energy of snake, and the second term rep-

resents the external forces pushing the snake toward the desired objects’ edges. The

internal energy is defined as:

Eint(x(s)) = (α |xs(s)|2 + β |xss(s)|2)/2 (2.2)

where xs(s) is the first derivative of x(s) and xss(s) is the second derivative of x(s)

with respect to s. The external energy is defined as the image energy which is derived

from the image data over the position that the snake lies. This energy function attracts

snakes to salient features in images such as lines and edges. The edges of the image

is actually the boundary between color differences. Therefore, the external energy is

usually defined as follows:

Eext(x(s)) = −
∣∣∇{Gσ(x,y) ∗ I(x, y)

}∣∣ (2.3)

where I(x, y) is the image intensity at point (x, y), Gσ(x,y) is the two dimensional Gaus-

sian kernel with σ as standard deviation. Therefore, the external energy in the tradi-

tional snake is defined as the negative value of the gradient of the Gaussian smoothing

image.

The goal of the active contour models is to find the local minima of Esnake defined in

equation (2.1), Based on the Euler-Lagrange principle. Equation (2.1) has a minimum

only if the Euler-Lagrange differential equation is satisfied as:

α ∗ xss(s)− β ∗ xssss(s)− γ ∗ ∇Eext(x(s)) = 0 (2.4)
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where xss(s) and xssss(s) are the second and fourth derivatives of the curve with respect

to the parameter s.

In order to find the solution for equation (2.4), the snake is made dynamic by

defining x as the function of time t and s as follows:

xt(s, t) = α ∗ xss(s, t)− β ∗ xssss(s, t)− γ ∗ ∇Eext(x(s, t)) (2.5)

Then the partial derivative of x with respect to t is the same as the left side in equation

(2.4). When x gets a stable value, its partial derivative with respect to t will be 0 and

we get the solution for equation (2.4). The solution to equation (2.5) can be achieved

by solving the discrete equations iteratively.

To effectively lead the snakes into concave region, Xu and Prince [149] proposed a

new external force. According to Helmholtz theorem [53], rewriting (2.5) and replacing

the −∇Eext(x(s)) with Θ

xt(s, t) = αxss(s, t)− βxssss(s, t) + Θ (2.6)

where Θ is the gradient vector flow defined as Θ(x, y) = [u(x, y), v(x, y)] that minimizes

the energy functional

Ψ =
∫ ∫

µ(u2
x + u2

y + v2
x + v2

y)dxdy

+(
∣∣∇{Gσ(x,y) ∗ f(x, y)

}∣∣2 ·∣∣Θ−∇
{
Gσ(x,y) ∗ f(x, y)

}∣∣2)dxdy (2.7)

where ∇
{
Gσ(x,y) ∗ f(x, y)

}
is the gradient of the input image f(x, y) after Gaussian

smoothing with variance σ and mean 0. Equation (2.7) is dominated by u2
x+u2

y+v2
x+v2

y

when
∣∣∇{Gσ(x,y) ∗ f(x, y)

}∣∣ is small. When
∣∣∇{Gσ(x,y) ∗ f(x, y)

}∣∣ is large, the second

term dominates the integrand and is minimized when Θ = ∇
{
Gσ(x,y) ∗ f(x, y)

}
. This

result keeps Θ nearly equal to the gradient of the edge when the snake is near the

object, while enabling the snake to move towards the edges when it is far away from

the object.
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2.2 The Robust Color GVF Snake

In this section we will introduce the color GVF snake model using robust estimation to

provide the initializations.

2.2.1 Color Gradient in Luv Color Space

In gray-level images, the gradient is defined as the first derivative of the image lumi-

nance. It has a high value in those regions exhibiting high luminance contrast. However,

this strategy is not suitable for color images. Simply transforming color images into

gray-level image by taking the average of three channels and applying the gray-level

image gradient operator do not provide satisfactory results in our applications.

We adopt the definition of gradients for color images [163], [119], [49]. In contrast to

previous approaches, we define the color gradient in Luv color space rather than RGB

color space because Euclidean metrics and distances are perceptually uniform in Luv

color space, which is not the case in RGB color space [119].

Let Γ(x, y) : R3 be a color image, based on classical Riemannian geometry results

[73], the L2 norm can be written in matrix form

dΓ2 =

 dx

dy

T  g11 g12

g21 g22

 dx

dy

 (2.8)

where g11 = [∂Γ
∂x ]2, g12 = g21 = ∂Γ

∂x
∂Γ
∂y , g22 = [∂Γ

∂y ]2.

The quadratic form (2.8) achieves its extreme changing rates in the directions of the

eigenvectors of matrix [gi,j ] , i = 1, 2, j = 1, 2 and the changing magnitude is decided by

its eigenvalues λ+ and λ−. In our approach, we select
√
λ+ − λ− [119], [50] to define

the color gradient.

2.2.2 L2E Robust Estimation

In the previous section, we defined the color gradient in Luv color space in order to

replace the gray level gradient of the original GVF snake. Although the capture range

of original GVF snake is large, it still may fail to find the edges of the object when
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given unsuitable initial positions. For example, to capture the boundary of a circular

object the initial snake must include the center of the circle [112]. Another potential

difficulty relates to computational complexity. Given an initial location far away from

the object, the original GVF snake may take a long time to converge to the edges of the

object. Because of these challenges, it was necessary to introduce a robust estimation

method to provide accurate initial positions.

One of the common approaches used to resolve this sort of classification problem is

the least square (LS) approach. Define the image classification model as

g = Fw + e (2.9)

where F is the sample image, a m × 3 matrix with m = w · h as the total pixels in

the image, w is the width of the image and h is the height of the image. Applying the

ordinary least square principle, we obtain the least square solution

w = (FTF)−1FTg. (2.10)

By choosing g as 1 and -1 to denote the background and the object, respectively, LS

provides a least square solution to the classification problem.

A total least square (TLS) performs better by minimizing the error between both

g, ĝ and F, F̂. The weights w are given by the right singular vector corresponding to

the smallest eigenvalue of the singular value decomposition (SV D) of
[

F g
]
, which

is the stacked data of input image F and output image g. It can be shown [97] that

the solution is

w = − vn+1(1 : n)
vn+1(n+ 1)

(2.11)

where vn+1 corresponding to the right singular vector of the smallest singular value.

Because L2 norm is sensitive to outliers, neither LS nor TLS are robust estimators.

In order to address the outliers and variabilities of the images, L2E robust estimation

and training have been proposed. By merging training and L2E robust estimation with
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Figure 2.1: The estimation results using least square (LS), total least square (TLS)
and L2E for a linear regression problem of a dataset containing outliers.

color GVF snake, the segmentation accuracy improved significantly, while simultane-

ously saving computation time. In order to obtain a robust estimation of the initial

locations of the nucleus and cytoplasm of cells without being affected by outliers, we

adopt a statistically robust matching criteria based on the minimization of the integral

squared error (ISE) also known as L2E between a Gaussian model of the residual and

the true density function of the residual. It was shown in [121], [120] that minimum

distance estimators, including the L2E, are inherently robust without requiring the

specification of tuning parameters.

Figure 2.1 is a linear regression example showing the capacity of L2E robust esti-

mation to reject outliers. One can easily see that the LS and TLS are perturbed by

the outliers on the left upper side of Figure 2.1, marked with a rectangle, while the L2E

based fit has successfully rejected the outliers.

In (2.9), the residual e is assumed to be composed of independent, identically dis-

tributed random variables, whose distribution will be modeled by a Gaussian with mean

0 and variance σ. Our goal is to minimize the integrated square error (ISE) or L2E

error measurement given by

ISE (θ̂) = E
θ̂

∫
[g(e|θ̂)− h(e|θ)]2de (2.12)

where g(·) is the Gaussian function modeling the density of the residual error, θ̂ and
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θ are the estimation parameter and the true parameter respectively, and h is the true

unknown density of the residual error term. E
θ̂
(·) denotes the estimate of the integral.

Considering minimizing an estimate of ISE with respect to θ:

θ̂ = arg min
θ̂
E

θ̂

∫
[g(e|θ̂)− h(e|θ)]2de

= arg min
θ̂

[E
θ̂

∫
g2(e|θ̂)de− 2E

θ̂

∫
g(e|θ̂)h(e|θ)de

+E
θ̂

∫
h2(e|θ)de]. (2.13)

The third term h2(·) is independent of θ̂ and can be omitted from the minimization.

The first term in the expansion is E
θ̂

∫
g2(·)de and can be evaluated in closed form. The

second term is −2E
θ̂

∫
g(e|θ̂)h(e|θ)de with E

θ̂
[g(·)] being the expectation of g(·) with

respect to θ̂. The following Rudemo’s unbiased estimator can be used for the second

term [118]

− 2
m

m∑
i=1

g(ei|θ) for i = 1, ..,m (2.14)

where m = w · h denotes the total number of pixels. Thus, the minimization using the

L2E criterion for normal density is given by

θ̂L2E = arg min
θ=[σ,w]

[
1

2
√
πσ
− 2
m

m∑
i=1

1
2
√
πσ

exp

(
−‖g− Fw‖2

2σ2

)]
(2.15)

The numerical solution is calculated by applying the gradient descant algorithm to

equation (2.15). For readers who are interested in robust estimators, we should point

out that L2E robust estimation has many useful applications, such as image registration

[88], computer latency and workload prediction [157], [156], [54], applied statistics [45],

[118] and data mining [72] .

2.2.3 Robust Color GVF Snake

Now we describe the design and development of the robust color GVF snake. Rewriting

equation (2.6) and replacing the original GVF vector field Θ with the new color GVF

vector field Θ in Luv color space, we have

Esnake = αvss(s)− βvssss(s) + Θ (2.16)
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Figure 2.2: Some representative morphologies of touching lymphocytes. In the first row,
from left to right: CLL, MCL and FCC. In the second row, from left to right: ALL,
AML and benign. Note the variations among the staining is because the specimens
were prepared at different hospitals and institutions.

where Θ is the color gradient vector flow defined as Θ(x, y) = [u(x, y), v(x, y)] that

minimizes the energy function defined in equation (2.7).

In the robust color GVF snake, ∇ in equation (2.7) is the Luv color gradient.

The two initial snake contour locations are obtained from L2E robust estimation and

correspond to the boundaries of the nucleus and the cytoplasm respectively. By applying

calculus of variations, it can be shown that minimizing the integral in equation (2.7) is

equal to solve the following equation

µ∇2u− (u− fx)(f2
x + f2

y ) = 0 (2.17)

µ∇2v − (v − fy)(f2
x + f2

y ) = 0. (2.18)

The numerical solution to (2.17) and (2.18) can be solved by treating u and v as

functions of time and solving

ut(x, y, t) = µ∇2u(x, y, t)− (u(x, y, t)− fx(x, y)) ∗ (f2
x(x, y) + f2

y (x, y)) (2.19)

vt(x, y, t) = µ∇2v(x, y, t)− (v(x, y, t)− fy(x, y)) ∗ (f2
x(x, y) + f2

y (x, y)). (2.20)

In order to set up an iterative solution, let the indices i, j and n correspond to x, y, and

t will be derived from the iterative algorithm for (2.19) and (2.20).
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(a) (b)

Figure 2.3: The segmentation result of robust color GVF snake. (a) The ROI contains
only one cell. (b) The ROI contains the touching cells.

2.3 Touching Objects Segmentation

In real applications, there always exist touching objects which are challenging to be ac-

curately segmented using traditional methods. This problem is especially prominent in

medical images. In Figure 2.3 we show several malignant touching cells. In this section,

we describe a novel algorithm which can reliably handle touching cells segmentation.

The algorithm is based on the previously proposed color GVF snake and the concave

vertex graph.

2.3.1 Boundary Contour Extraction

The initial step of the algorithm is to extract the boundary contour of the touching

cells. We first apply a robust color GVF snake proposed by [158] in each region of

interest (ROI). This algorithm has two steps. The first step is a L2E robust estimation

[121], which provides a rough estimate of the starting position of the deformable model.

The second step is the gradient vector flow (GVF) snake [149] using Luv [148, Sec.

8.4] color gradients as the external force. The touching cases are shown in Figure 2.3b,

where the output contour represents the outer boundary of the touching cells.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: Construction of the concave vertex graph. (a) The original image with
the yellow boundary contour. (b) High curvature points detection. (c) Concave points
detection. (d) Inner edges detection. (e) The outer boundary C, concave vertices V
and inner edges E, superimposed on the original image. (f) The constructed concave
vertex graph G. The filling edges are shown with dotted lines.

2.3.2 Concave Points and Inner Edges Detection

In Figure 2.4, we show the construction of the concave vertex graph. The boundary of

the touching cells is illustrated as the yellow contour in Figure 2.4a. We then apply the

algorithm in [18] to detect the high curvature points on the contour (Figure 2.4b). At

each point p a set of triangles are constructed which satisfies

dmin ≤ |a| ≤ dmax dmin ≤ |b| ≤ dmax α ≤ αmax (2.21)

where α = arccos |a|2+|b|2−|c|2
2|a||b| , dmin, dmax = 7, 9 pixels and αmax = 150◦ are kept. The

candidates are further processed to suppress the local nonmaxima points. The final
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high curvature points correspond to both concave and convex points. We keep only the

concave points, shown as red rectangles in Figure 2.4c. This can be calculated from the

sign of the cross product a⊗ b, which has to be negative for concave points.

Canny edge detector is applied inside the cell region and straight line fitting is used

to model the edges (Figure 2.4d). The separating curve combines a pair of convex

vertices on the boundary and is enforced to pass through the inner edges.

2.3.3 Touching Cells Segmentation

The outer boundary of the touching cells is defined as C, and the region enclosed by

C is R(C). The concave points are the set V , e.g. v1 − v5 which are shown in Figure

2.4e. The inner edges are the set E, e.g. shown as white solid lines in Figure 2.4e and

also illustrated by ei in Figure 2.4f.

Concave Vertex Graph. In Figure 2.4f we construct the concave vertex graph G.

Let W be the vertex set consisting of the end points of inner edges E, e.g. wi and wj

in Figure 2.4f. The vertices of graph G are then equal to V ∪W . Let F be the filling

edges which connect the gaps among all these vertices in G, e.g. fk in Figure 2.4f.

In graph G, if the edges are real inner edges E, we set their length as a small

positive number ε (10−16). If the edges are gap filling edges F , we set their length

as the real distance. The length of the edges is defined in this way to restrict the

segmentation to follow real inner edges, because most of the time the trivial solution

of directly connecting two concave vertices using only filling edges in G, will provide

longer distance than a path using real inner edges. A path pij is defined as the shortest

path between the concave vertices vi, vj ∈ V . The Dijkstra’s algorithm, which is a

greedy algorithm but guarantees to provide the optimal solution, is used to find the pij

between vi and vj . The length of the pij , ‖pij‖, is defined as the total length of the

filling edges fk in the shortest path pij

‖pij‖ =
∑

fk∈pij

length (fk) . (2.22)

In Figure 2.4f, as an example, we can see ‖p12‖ > ‖p13‖, because p12 traverse much

longer filling edges than p13.
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Input: Given the region of interest (ROI) containing touching cells.

• Extract the boundary contour C, detect the concave points V , the inner edges E in
R(C), construct the concave vertex graph G.

• for each vertex v(i) ∈ V

– Find the path pij and calculate the length ‖pij‖ using (2.22).

• Initialize mincost = +∞ and Q = ∅.

• while (V is not empty)

– for each vertex v(i) ∈ V
∗ for each vertex v(j 6= i) ∈ V

· Apply the path pij to separate the graph G in to L and R.
· Calculate the cost c using (2.26) and save in Q.

– Sort Q and pick up the path pij with the lowest cost c.

– if (c < 1.5 ∗mincost)
∗ Record path pij and the region R(C, pij) with cost c in the result.
∗ The edges and vertices in the R(C, pij) are removed from G.
∗ Set mincost = c and Q = ∅.

– else return result.

Figure 2.5: The algorithm to separate touching cells using concave vertex graph.

After the Dijkstra’s algorithm was applied, we found all pij-s, which were valid

candidates following the real inner edges to separate touching cells. In our algorithm,

we treat the touching cells segmentation as recursively searching for the best path pij

in G, which minimizes a cost function specifically designed to prefer cell-like object-cut.

Cost Function. We are looking for perceptually ”good” segmentation of touching

cells. For this purpose, we design the cost function to represent the clues that clinical

pathologists use for judgement.

• The cells should be objects which are perceptually salient, because humans tend

to separate such objects in an image. A good definition of saliency is proposed in

[127] based on the Gestalt laws [37]. We apply the minimum of two saliency costs

cs = min

(
‖pij‖√

areaL (C, pij)
,

‖pij‖√
areaR (C, pij)

)
(2.23)

where ‖pij‖ is the length defined in (2.22), each path pij in G divides R(C) into

two regions L and R, and the min function in (2.23) selects the region with the
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smallest cost. The area(C, pij) denotes the area enclosed by C and path pij .

• The cells are objects which are close to elliptical shape and can be modeled by

ellipse fitting using points on C and pij . The ratio between the long and short

axes is recorded as tg. The segmented objects are expected to provide a ratio

tg in the range [tg1, tg2], in which case the dist (tg, [tg1, tg2]) = 0. Otherwise, we

define dist (tg, [tg1, tg2]) = min (|tg − tg2| , |tg − tg1|).

cg = min
(

1
1 + exp (−dist (tgL, [tg1, tg2]))

,
1

1 + exp (−dist (tgR, [tg1, tg2]))

)
(2.24)

where the L and R have the same definition as (2.23). The tg1 = 0.5 and tg2 = 1.5

are selected by fitting an Gaussian distribution on the ratio with 90% confidence

region.

• The cells are objects which have biologically reasonable areas. Following the

definition above, we use
[
ta1 = π ∗ 802, ta2 = π ∗ 1202

]
for the 60× magnification

in our tests, which are selected by fitting an Gaussian distribution on the area.

ca = min
(

1
1 + exp (−dist (taL, [ta1, ta2]))

,
1

1 + exp (−dist (taR, [ta1, ta2]))

)
.

(2.25)

• The final cost c is the weighted sum

c = λ1cs + λ2cg + λ3ca

3∑
i=1

λi = 1. (2.26)

The optimal values of coefficients are selected as λ1 = 0.5, λ2 = 0.3 and λ3 = 0.2,

which are learned in an offline process using a training set and held constant

throughout the experiments.

Algorithm. Using the concave vertex graph G and the cost function c, the method

is described in Algorithm 2.5. It is recursively applied to separate touching cells until

all the vertices vi ∈ V is empty or the cost c < 1.5 ∗mincost, which represents overseg-

mentation. The algorithm only separates the cytoplasm of touching cells. The nuclei

in each cell is further separated from its cytoplasm using [158]. In order to provide
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(a) (b) (c) (d)

Figure 2.6: The image segmentation results using robust color GVF snake: (a), (c) are
the original images. (b), (d) are the corresponding segmentation results.

smooth boundaries, we apply the quadratic splines to postprocess the boundaries of

each segmented cell.

2.3.4 Experimental Results

The cell database consists of a mixed set of 86 hematopathology cases: 18 Mantle

Cell Lymphoma (MCL), 20 Chronic Lymphocytic Leukemia (CLL), 9 Follicular Center

Cell Lymphoma (FCC), 18 Acute Lymphocytic Leukemia (ALL), 19 Acute Myelocytic

Leukemia (AML), and 19 benign cases. For each case, there are varying number of cell

images from 10 to 90. In total there exists 3898 cell images in our complete database.
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Figure 2.7: The segmentation results using the concave vertex graph.

Table 2.1: Segmentation accuracy(%) using the concave vertex graph. The accuracyc

and accuracyn represent the segmentation accuracy for cytoplasm and nuclei respec-
tively.

Benign CLL MCL FCC AML ALL
accuracyc (%) of touching cells 90.1 90.8 86.4 86.9 86.3 85.2
accuracyn (%) of touching cells 92.3 91.2 88.1 88.7 87.5 87.9

accuracyc (%) of all cells 92.5 91.7 87.2 89.1 88.5 87.6
accuracyn (%) of all cells 95.8 92.8 90.1 91.0 88.9 89.2

All cases originated from the archives of City of Hope Hospital in California, University

of Pennsylvania of School of Medicine, Spectrum Health System, Grand Rapids, MI

and Robert Wood Johnson Medical School, University of Medicine & Density of New

Jersey.

The test platform for the experiments consisted of an Intel-based workstation inter-

faced with a high-resolution Olympus DP70 camera equipped with 12-bit color depth on

each color channel and 1.45 million pixel effective resolution. The system also includes

a single 2/3 inch CCD digital camera, an Olympus AX70 microscope equipped with a

Prior 6-way robotic stage, motorized objective turret and a magnification changer. In

order to validate the proposed algorithm, two sets of experiments are performed.

We compare the segmentation results with manual segmentation. Two sets of ex-

periments are performed.

• The 217 touching cases of the hematologic cell image dataset.
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Table 2.2: The segmentation accuracy(%) using the watershed algorithm and the con-
cave vertex graph.

Mean Median Min Max 80%
Watershed 74.3 75.1 65.4 82.7 72.9

Concave Vertex Graph 88.9 90.2 75.2 95.5 87.1

• The complete database which contains 3898 hematologic cell images.

Figure 2.6 shows some results of difficult single cell image segmentation using robust

color GVF snake, where (a), (c) are original images and (b), (d) exhibit corresponding

segmentation results. Some images exhibit very weak differences between cytoplasm

and background. Some images have complex texture or even several different color

regions within the cytoplasm. In Figure 3.9, we show the touching cells segmentation

results. In Table 2.1 we present the segmentation accuracies for the six different classes

of lymphocytes in two set of experiments. We obtained an average accuracy 88.9% on

the touching cells dataset and 90.1% on the complete database.

Only a limited number of recent literature reports work on the touching cells segmen-

tation in pathology images which are prepared with hematoxylin staining and imaged

at high resolution (60×). As the watershed algorithm is widely accepted for touching

object segmentation and successfully used in segmenting pathology images [1], we com-

pared our method with watershed using the 217 touching cell image dataset and listed

the results in Table 2.2. The 80% column in Table 2.2 represents the sorted 80% highest

accuracy of all the results, and is commonly used by doctors to evaluate the usability

of the system. It is obvious that the proposed algorithm performed much better than

the watershed.

2.4 Occluded Objects Segmentation

There exist a lot of effort in recent literature to combine top down information to im-

prove the segmentation results. Kumar et al. [75] presents the OBJ CUT algorithm

which applied the pictorial structure (PS) model and Markov Random Field (MRF)

to combine the top-down and bottom-up cues for object-based image segmentation. A
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parts-based image segmentation approach, the Layout Consistent Random Field (Lay-

outCRF), is proposed in [147] to handle partial occluded object based segmentation.

A holistic-level representation of top-down constraints are integrated with the low-level

features, such as color and texture, in [134] and numerically solved using simulated

annealing. Borenstein et al [9], [8] construct a Bayesian model to integrate top-down

and bottom-up information and the shape prior is obtained using multiple scale seg-

mentation. The image fragments, or parts, are grouped together to produce a global

approximation of the object’s shape. Ren el al. [113], [114] combine different levels of

cues into the conditional random field (CRF) for object/background labeling. Levin

et al. [84] also apply bottom-up and top-down cues into CRF and the training of the

bottom-up and top-down cues is performed jointly. For the effort of including shape

prior in the active contour models, Leventon et. al [82] applied principle component

analysis (PCA) to obtain the training shape modes and presented them as signed func-

tions in the geodesic active contour. Similarly, Dambreville et. al [29] proposed to

apply Kernel PCA to boost the performance of shape prior in geodesic active contour

model. Cremers et. al [27] proposed a more nature way to include the shape prior into

the level-set scheme, where the transformation and rotation parameters will depend on

the level-set function φ. Shape symmetry information is included into level-set frame-

work in [111], which can be used to segment objects with symmetric structure. Hong

et. al [61] presented an integral kernel based representation of the shape prior and the

corresponding non-rigid template-based segmentation is implemented using level-set.

Compared with previous work, the advantages of our algorithm can be summarized

as follows: For the top-down information integration, we separate the stage into shape

learning and non-rigid transformation estimation, which replace the eigenspace expan-

sion of shapes with the shape modes. Similar as replacing Bayesian estimation with

MLE, we decrease the complexity of shape learning in PCA related method, such as

pre-alignment of the training shapes. Meanwhile, the in-class variations captured by

the PCA method are addressed by fast non-rigid transformation estimation, which can

be implemented efficiently. Furthermore, multiple objects and occlusion can be handled
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Figure 2.8: The filtering response using our revised MR filter bank.

by minimizing the proposed cost functions in our approach. For the bottom-up infor-

mation integration, we are seeking a trade-off between accuracy and storage usage. A

semi-parametric density approximation using adaptive mean-shift and L2E robust es-

timation is proposed to represent the likelihood. The whole cues from both models and

attributes are coupled into a variational framework and numerically implemented with

level-set for seamless integration of prior contours. Our algorithm is easy to implement

and computationally efficient with modest storage usage.

2.4.1 Features and Shape Clustering

The Luv colors and textures are used to describe the bottom-up information which are

extracted using a set of linear filters - filter banks. We revised the MR filter bank [140]

to compute the filter response. The feature vector is composed with two LoG filter

response on the L channel with σ = 1, 2, six Gaussian filtering response on the L, u

and v channels with σ = 1, 2 and the MR maximum bar and edge response on six

different directions, θ = 0, π/6, π/3, π/2, 2π/3, 5π/6, with σ = 1, 2 and 4. In total, each

image pixel is represented by a 10 dimensional feature vector. Figure 2.8 shows the

filtering results after applying the proposed filter bank to one tiger image.

For each human-delineated contours, we apply the elliptic Fourier descriptor (EFD)

[74] (will be described in Section 3.1.3) to calculate the Fourier coefficients and use the
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first 8 normalized harmonies. Each harmony contains four coefficients. An agglomera-

tive clustering was applied on the set of the coefficients to find the clustering centers,

which represent the shape modes. The advantages of using EFD are: 1) EFD is a good

measure of global properties of shapes, which is preferred in our algorithm because

small in-class variance is handled using non-rigid transformation estimation. This is

explained in details in section 3.3; 2) The normalized EFD descriptions are invariant

to rotation, translation and scaling.

2.4.2 Semi-density Approximation

Define f ∈ F in Rd as the random variable describing the feature vector, where F is

the set of all features and d is the dimension of the feature space. In order to build

the connection between the image partition and contours, we define a partitioning

operator ϑ with ϑ(I) describing the partition of image I. According to Bayesian rule,

the segmentation can be modeled as the maximum a posterior (MAP ) estimation

p(ϑ(I)|f) ∝ p(f |ϑ(I))p(ϑ(I)) (2.27)

where p(f |ϑ(I)) is the likelihood of bottom-up features f given ϑ(I). The p(ϑ(I)) is the

prior probability of the image partition which is used to model the shape constraints.

The final ϑ(I) can be solved by maximizing posterior probability p(ϑ(I)|f).

In order to calculate the posterior probability p(ϑ(I)|f), we need to compute the

likelihood p(f |ϑ(I)). Given the likelihood p(f |ϑ(I)) to be an arbitrary density function,

kernel density estimation (KDE) is often used. The flexibility to represent any com-

plicated probability density is KDE’s major advantage. On the other hand, the high

memory and computational complexity inhibit its practical usage.

We propose to model the likelihood p(f |ϑ(I)) using a semi-nonparametric method

which is the linear combination of M Gaussian distributions. We show that density

approximation using adaptive mean-shift and L2E robust estimation performs almost as

well as KDE using much less parameters. The semi-nonparametric Gaussian mixture

model (GMM) is distinguished from the normal GMM because the mean, variance,

weights and number of Gaussian distributions are not known in advance. The likelihood
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is

p(f|ϑ(I)) =
N∑

i=1

αi exp
(
−1

2(f− fi)Σ−1
i (f− fi)

′
)

(2π)d/2
∣∣∣Σ̂i

∣∣∣1/2
(2.28)

with i = 0, ..., N denotes the total number of points in the image. The αi is the

weight of the ith Gaussian, Normal(fi , Σi), and
∑N

i=1 αi = 1. Assume that after

applying adaptive mean-shift based mode detection, there is totally M unique modes

with weights α̂i as the proportion of the number of points in the ith cluster, where f̂i

is the stationary mode point. The L2E robust estimation can be used to estimate the

variance Σ̂i

L2E(θ̂i) = arg min
θ̂i=[̂fi,Σ̂i]

[
ϕ(θ̂i)

]
(2.29)

where ϕ(θ̂i) is

m−2d+1πd/2
∣∣∣Σ̂i

∣∣∣1/2∑m
j=1 φ(fj |̂fi, Σ̂i)

2dmπd/2
∣∣∣Σ̂i

∣∣∣1/2
(2.30)

where j = 1...m is the points in the ith cluster and φ(fj |̂fi, Σ̂i) is defined as

φ(fj |̂fi, Σ̂i) =
exp

(
−1

2(f − f̂i)Σ̂−1
i (f − f̂i)

′
)

(2π)d/2
∣∣∣Σ̂i

∣∣∣1/2
. (2.31)

The final density approximation can be written as

p(f|ϑ(I)) =
M∑
i=1

α̂i exp
(
−1

2(f− f̂i)Σ̂−1
i (f− f̂i)

′
)

(2π)d/2
∣∣∣Σ̂i

∣∣∣1/2
(2.32)

where
∑M

i=1 α̂i = 1.

Instead of keeping all the N sets of parameters in (2.28), the likelihood p(f|ϑ(I)) is

modeled usingM sets of parameters andM � N . We tested our density approximation

method on many densities and it provides similar pdf to the KDE result using much

less storage space. Figure 2.9 shows an example. The original six mixture Gaussian

distributions and the modes detected by the adaptive mean-shift algorithm [48] are

shown in Figure 2.9a and Figure 2.9b. Figure 2.9c is the standard kernel density

estimation (KDE) using Epanetchnikov kernel. The density approximation using (2.29)

and (2.32) is shown in Figure 2.9d.
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(a) (b)

(c) (d)

Figure 2.9: The standard KDE and our proposed semi-parametric density approxima-
tion results upon a six Gaussian mixture density.

2.4.3 Shape Alignment

Based on EFD clustering, we can obtain the shape modes for each object class. However,

the shape modes can not be used directly in the level set framework without alignment.

Therefore, a mapping T : shape mode → testing contour is required to be calculated.

In order to find the transformation T , gradient decent is used in each iteration of

the level set function in [17] and on the nested Euler-Lagrange equations in [27]. One

common problem of these methods is the affine or even rigid transformation assumption

of the mapping T . Instead, we generalize T to be the thin plate spline (TPS) transfor-

mation [20]. Affine transformation has proven to be a special case of TPS. Given two

point sets, the TPS is estimated by minimizing

ETPS =
∑

i

‖T (wi)− vi‖2 + λIf (2.33)

where

If =
∫∫ [(

∂2f

∂x2

)2

+ 2
(
∂2f

∂x∂y

)2

+
(
∂2f

∂y2

)2
]
dxdy (2.34)

with wi denote the points on the training contours and vi denote the points on the

contours of the calculated likelihood map.
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Because T is a nonrigid mapping which has infinite number of solutions for first

term in (2.33), the smoothness term λIf is used to regularize the ambiguity. Each

shape mode is matched to the contour of the likelihood map of the testing image by

minimizing (2.33). The final mapping T is defined by the shape mode with minimal

matching errors.

2.4.4 The Variational Framework.

Define C as the contour to separate the object from the background, the p(C) describes

the shape prior of the object. We calculate the non-rigid transforms T by minimizing

(2.33) and use T (C) to denote the aligned shape prior. Define ϑ(Ix,y) as the labeling

{−1, 1} of the xth column and yth row of the original image and Ω1/Ω2 as the region in

which Ix,y locates inside/outside the contour T (C). Denote label ·o as the object and

·bas background and posx,y as the coordinates. Because the pixels inside contour T (C)

has more chances to be labeled as object, the p(ϑ(I)) in equation (2.27) can be linked

with p(C) using the softmax function and signed Chamfer distance

p(ϑo(Ix,y)) =
1

1 + exp(−dist(x, y, T (C)))
,

p(ϑb(Ix,y)) = 1− p(ϑo(Ix,y)) (2.35)

where

dist(x, y, T (C))=min ‖posx,y − T (C)‖ on Ω1,

dist(x, y, T (C))=−min ‖posx,y − T (C)‖ on Ω2 (2.36)

The maximization of equation (2.27) is equal to minimize its negative logarithm.

Rewrite (2.27) in the energy integral equation and extending the approach in [14]

E(o, b, φ) = γ

∫
Ω
|∇u(φ(x, y)| dxdy

− λ1

∫
Ω
u(φ(x, y) log p(f |ϑo(I))dxdy − λ2

∫
Ω
(1− u(φ(x, y)) log p(f |ϑb(I))dxdy

− λ3

∫
Ω
u(φ(x, y) log p(ϑo(I))dxdy − λ4

∫
Ω
(1− u(φ(x, y)) log p(ϑb(I))dxdy

(2.37)
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: The occluded image segmentation results.

where the u(φ(x, y) is the Heaveside step function. The γ > 0 is used to adjust the

effect of the length of contour C. The λ1, λ2, λ3, λ4 > 0 are used to adjust the weights

of the bottom-up information and the top-down shape constraints. The minimization

is performed using the Euler-Largrange equation with the gradient of level set function

φ defined as

∂φ

∂t
= −∂E

∂φ
= δ(φ)

(
γdiv

(
∇φ
|∇φ|

))
+ δ(φ)(λ2 log p(f |ϑb(I))− λ1 log p(f |ϑo(I)))

+ δ(φ)(λ4 log p(ϑo(I))− λ3 log p(ϑb(I))) (2.38)

where δ(φ) = u′(φ) and u(t) = 1
2

(
1 + 2

π arctan
(

t
ε

))
. For all the experiments we are

using γ = 0.01 and all the λ are set to be 1.

2.4.5 Experimental Results

We tested the performance of the algorithm on a set of tiger images taken from COREL

database [11] and GOOGLE search. Two types of occlusions are shown here. In Figure

2.10a, the tree which blocked part of the tiger is mislabeled as object; the man-made

white strip which divides the whole tiger into two parts is shown in Figure 2.10d.

The segmentation results without shape priors are shown on Figure 2.10b and Figure

2.10e. Applying the shape priors calculated using EFD shape clustering and non-

rigid transformation estimation, more accurate results are obtained in Figure 2.10c and

Figure 2.10f for both cases. In total, we used 15 tiger images for likelihood density



29

approximation/shape clustering in the training stage and 20 partially occluded images

for testing. The overall pixel-wise segmentation accuracy we obtained is 91.27%. Note

that without applying shape prior the accuracy dropped to 85.01%.
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Chapter 3

Robust Multiple Class Segmentation Using Mean-shift

Patches

Region based segmentation, such as K-means, mean-shift [24], graph cut [124] and nor-

malized cut [124], has been successfully applied in many applications. These methods

treat image segmentation as a clustering or optimal grouping problem based on the

low-level features. However, they only utilize the bottom-up information which makes

it difficult to guarantee meaningful segmentation results. Recently, top-down prior

knowledge has been combined with bottom-up features to improve the object-based

segmentation results.

The pictorial structures model was proposed in [40] for visual object recognition.

Kumar et al. [75] presented the OBJ CUT algorithm which applied the pictorial struc-

ture (PS) model and Markov Random Field (MRF) to segment objects from back-

ground. Borenstein et al [8] constructed a Bayesian model to integrate top-down and

bottom-up information with the shape priors obtained from multiple scale segmenta-

tion. Orbanz et al [105] applied a nonparametric Bayesian model for image segmentation

and used MRF as smoothing constraints. Levin et al. [84] integrated bottom-up and

top-down cues into conditional random field (CRF) and the training was performed

jointly.

As the number of classes increases, these specific models become complex both for

training and parameter tuning. Winn [146] obtained good segmentation results with

a simpler model using boosting on image appearance (texton histograms). Spatial

weighting [93] and spatial pyramid [77] were used to improve the accuracy of the bag of

keypoints model [126]. Rabinovich [110] proposed to treat the segmentation as optimal

grouping problem and develop a model order selection schema to find the most stable
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segmentation from a number of possible segmentations. All these methods suggest that

a general framework can be suitable to perform multiple class object-based segmentation

too.

In this chapter, using an idea similar to [60], [143], where the patches are used

for outdoor scene labeling and video-cut, the segmentation problem is treated as an

optimal grouping of patches in the image. A small group of pixels (patches) are labeled

together to increase the robustness and decrease the running time. The traditional

mean-shift algorithm [24] is used to combine image appearance [146] with the bag

of keypoints model [126] for segmentation. We also propose a novel affine invariant

representation of spatial co-occurence of keypoints. The global shapes of objects are

modeled using Elliptical Fourier Descriptor (EFD). All these features are combined in a

unified framework to segment objects from a large number of classes. The contributions

are:

• the appearance model and bag of keypoints are simple but surprisingly successful

methods for generic object recognition. We demonstrate that for segmentation

these two methods can be linked together over mean-shift patches to provide

successful segmentation results too;

• the spatial relationship among the keypoints, which is disregarded in the tra-

ditional bag of keypoints model, are modeled using a novel and simple affine

invariant descriptor;

• the algorithm we propose is much faster for both training and testing;

• the experimental results using three real datasets demonstrate that our algorithm

provides satisfactory results.

In Section 3.1 we introduce the unified feature representation model. In Section

3.2 and Section 3.3, we describe our training method and the segmentation algorithm.

Section 3.4 provides the experimental results and Section 3.5 concludes this chapter.
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Figure 3.1: The graphic model of the segmentation framework.

3.1 Unified Feature Representation Model

In Figure 3.1, we represent the general model of our algorithm. The pixels P in the

image are segmented using mean-shift algorithm to generate patches M. For each patch,

the image appearance is represented with texton histogram T. Multiple hypothesis are

generated based on appearance and refined by top-down information: through the bag

of keypoints histogram K, the spatial correlation S (spatial keyton histogram) and the

global shape G (EFD). The final label L is assigned to each patch considering all the

cues.

3.1.1 Mean-Shift Texton Histogram

In order to generate the mean-shift texton histogram, we first apply the five-dimensional

mean-shift segmentation using two dimension for x, y coordinates and three dimensions

for Luv color [24]. The parameters for all the datasets have spatial radius 2hs + 1 = 7

and color radius 2hc = 7. The kernel we used is Epanechnikov kernel.

Texture and color are computed from the image through a set of linear filters using

a modified MR filter bank [140]. The feature vector is composed of two LoG filter

responses on the L channel (σ = 2, 4), six one-dimensional Gaussian filter responses

on the L, u and v channel (σ = 2, 4) and the maximum bar and edge responses on six

different directions between 0 and 5π/6 and three different variances (σ = 1, 2, 4). In

total, each image pixel is represented by a 10 dimensional feature vector. All the filter

responses obtained from the training set are put together and clustered using K-means
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to build the texton library.

For the traditional histogram-based segmentation, the windowed texton histogram

is used to model the image appearance of the training set. Instead, we computed the

texton histograms for each mean-shift patch separately

h(i) =
∑
j∈M

count(T (j) = i) (3.1)

where M denotes the mean-shift patch, i is the ith element of the texton histogram,

T (j) returns the texton assigned to pixel j. The advantages of applying the texton

histogram over mean-shift patches are:

• mean-shift patches take the edges into the consideration;

• the number of mean-shift patches is much smaller, which decrease the complexity

for training and classification;

• visually similar and spatially close pixels are grouped together and given the same

label, which is a more natural approach than arbitrary square windows;

• mean-shift patches provide a natural link between the appearance and the bag of

keypoints model.

Although this method may still mislabel a whole mean-shift patch based on appear-

ance, we will show that the top-down information in our framework helps to correct

these types of errors.

In Figure 3.2, an example is shown where mean-shift patches provide more dis-

tinctive information than an arbitrary square window. The original image (top-left)

is processed with mean-shift (top-right). The single mean-shift patch (middle-left) is

represented by texton histogram (bottom-left), where a 31×31 square window (middle-

right) has a completely different texton histogram (bottom-right). The classification

based on these two texton histograms labeled the mean-shift patch as airplane, but the

square window patch as sky.
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Figure 3.2: A mean-shift patch and a 31 ∗ 31 square patch and their corresponding
texton histograms. See text.

Figure 3.3: An illustration of spatial keyton histogram,where we only show r = 1, 2,
and 3 in relative distance and θ = 0, π

2 , π and 3π
2 .The yellow region is the 10th(2∗4+2,

r = 3 and θ = π
2 ) bin (10, ♦) of the coordinate system with the position of the center

♦ as the origin.

3.1.2 Spatial Keyton Histogram

Given a training image, the Harris corner detector is applied on the gray-level im-

age to detect the interesting points. Affine invariant features are extracted from the

neighborhood of the detected points. We choose the 20 dimensional moment invariants

[51] as keypoint descriptors because of their low dimensionality and satisfactory perfor-

mance. Although SIFT features [89] are shown to be superior to other local descriptors

for recognition [96], it did not provide better results in our segmentation experiments.

This observation is also shown in [104, p.81] for Fergus et al. dataset [41].



35

Figure 3.4: Two spatial keyton histograms h(i, j) with three keytons �,∆ and ♦ denot-
ing the 1st, 2nd and 3rd keyton. Affine transformations are performed on the keypoints
belong to each keyton separately in the upper-left to produce the upper-right configu-
ration. Nine h(i, j) are shown for each of the two configurations.

The descriptors of all the keypoints in the training set are put together and K-

means clustering is used to build the dictionary of the cluster centers. Similar to the

definition of textons, we call the cluster centers of keypoints as ”keytons”. Each object

in the training image is represented by a histogram, h(i), of the keytons calculated

from the keyton dictionary. Each keypoint is assigned to its closest keyton based on

the Euclidean distance

h(i) =
∑
j∈O

count(O(j) = i) (3.2)

where O denotes the set of keypoints of a given object in the image. The O(j) returns

the keyton assigned to the ith keypoint.

Although bag of keypoints model, which we call the keyton histogram, has been

successfully used for object classification in many applications [93], [126], it has been

shown that recognition accuracy is increased by considering the spatial correlation of

keypoints [93], [78]. We propose a novel spatial keyton histogram to model the spatial

configuration of keypoints.

The Figure 3.3 shows a set of keypoints which belong to three different keytons,

noted as �,∆ and ♦. For each keypoint in the image, we separate the image plane into
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co-centered circles using this keypoint position as the origin. In general, the range of r

is from 1 to 5 in relative distance, and θ has four values. Assume the ith keyton has

Ni keypoints, then the spatial keyton histogram h(i, j) is defined as the average of the

jth keytons spatial distribution relative to all the keypoints of the ith keyton. It can

be calculated as

h(i, j)k =
1
Ni

Ni∑
m=1

∑
j∈bin(k,m)

count(j) (3.3)

where k denotes the kth bin of h(i, j) and it is defined from r = 1 and θ = 0 to r = 5

and θ = 3π/2, a total of 20 values. The bin(k,m) is the kth bin of the coordinate system

with mth keypoint as the origin (refer to Figure 3.3). A four-tap Gaussian smoothing

filter is used to postprocess the histograms. The proposed spatial keyton histogram is

quasi affine invariant.

In Figure 3.4, we show two sets of data where each keyton has the same number of

keypoints but different spatial configurations (upper part of Figure 3.4). They can not

be separated by the bag of keypoints model, but have different spatial keyton histograms

(lower part of Figure 3.4). For each configuration, note that the affine invariant is shown

in h(1, 1), h(2, 2), h(3, 3) and the different spatial relationships between �,∆ and �,♦

are captured in h(1, 2), h(2, 1) and h(1, 3), h(3, 1) in bottom-left and bottom-right of

Figure 3.4.

3.1.3 Global Shape Model

The global shape model is the top-down constraint used to group the image patches into

real objects. The pictorial structure model and PCA was used to encode the appearance

and represent the shape in a joint density for object recognition [41]. Instead of using

complex shape model, the Elliptic Fourier Descriptor (EFD), which was shown to be

successful in [23], is chosen to model the global shape of the objects. There are several

reasons to use EFD:

• the EFD has a simple histogram-like representation. In our algorithm we use the

first 32 (4 ∗ 8) coefficients;

• the normalized EFD is invariant to rotation, translation and scaling;



37

Figure 3.5: Examples of the Elliptical Fourier Descriptors (EFD). The contour is su-
perimposed on original image.

• the close contour reconstructed from EFD is always closed.

EFD is the Fourier expansion of the chain coding. Assume we have M points on the

close contour. Following the approach of Kuhl and Giardina [74], the EFD coefficients

of the nth harmonic are:

an =
S

2n2π2

M∑
i=1

∆xi

∆si

[
cos

2nπsi

S
− cos

2nπsi−1

S

]

bn =
S

2n2π2

M∑
i=1

∆xi

∆si

[
sin

2nπsi

S
− sin

2nπsi−1

S

]

cn =
S

2n2π2

M∑
i=1

∆yi

∆si

[
cos

2nπsi

S
− cos

2nπsi−1

S

]

dn =
S

2n2π2

M∑
i=1

∆yi

∆si

[
sin

2nπsi

S
− sin

2nπsi−1

S

]
(3.4)

where si, S =
∑i(M)

j=1 ∆sj , ∆si =
√

(∆xi)
2 + (∆yi)

2, ∆xi = (xi − xi−1), ∆yi =

(yi − yi−1) . The ∆xi and ∆yi are the changes in the x and y projection of the chain

code at the ith contour point.

Figure 3.5 shows the 32 EFD coefficients for six images. It was found that the first

4 ∗ 8 EFD coefficients already contain enough information for separating the objects
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Input: Given a test image x and the training histogram dictionaries T, K, S and possible
G. The number of classes is L, l = 1, ..., L.

• Apply Harris corner detector and extract the moment invariant descriptors from the
gray level image.

• Calculate the mean-shift patches and represent the likelihoods of each patch as pt(j, l),
pk(j, l) and ps(j, l) where j = 1...J , the number of patches in image x is J .

• For j = 1...J

– Build texton histogram κt(j).

– For l = 1...L: calculate svmt
l(κt(j)) using (5.3.3) and the negative outputs of

svm are forced to be 0.

– For l = 1...L: if svmt
l(κt(j)) > 0, use (3.8) to calculate appearance likelihood

pt(j, l).

• For l = 1...L

– Record the patches satisfied pt(j, l) > 0 as set J ′, generate hypothesis H(l) =
J′⋃

j=1

M (j).

– Collect all the keypoints inside H(l) and compute the keyton histogram and com-
pact spatial keyton histogram κk(l), κs(l).

– Using (5.3.3), calculate svmk
l (κk(l)) and svms

l (κs(l)).

– For all patches j ∈ J ′, compute pk(j, l) and ps(j, l) using (3.8).

• For j = 1...J
label(j) = arg max

l
log
(
pt(j, l) ∗ pk(j, l) ∗ ps(j, l)

)
(3.5)

Figure 3.6: Segmentation algorithm and testing procedure.

into different classes.

3.2 Training Procedure

The training set contains images which were manually segmented into different objects.

All the features of the training images are put together and K-means are used to

generate the texton library. The exact value of K will be given in the experimental

section. The mean-shift patches are generated from each training image. The texton

histograms are calculated for each patch and saved in the training texton histogram

dictionary. In our model each histogram corresponds to one mean-shift patch.

The training images are transformed into gray-level and the Harris corner detector

is applied to detect the keypoints. The moment invariants are extracted and a keyton
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library is constructed using K-means. For each training image, the keyton histogram is

computed to record the frequency of occurrence of each keyton. In order to save space

and computation time, we are using a more compact way to record the spatial keyton

histogram.

Assume we have n = 1...N training images and each image contains keypoints

from k = 1...Mn keytons. The spatial keyton histogram h(i, j) of each training image

contains Mn ∗Mn histograms. For all training images, we get
N∑

n=1
Mn ∗Mn histograms.

All the histograms are clustered using K-means with K equal to 50 and the clustering

centers are recorded. For each training image, we assign each histogram of h(i, j) into

its closest clustering center. The number of the histograms for the nth training image

is decreased from Mn ∗Mn to 50. This compact spatial keyton histogram represents

the patterns of spatial arrangement among keypoints in the training image.

The last step for training is the shape modeling using EFD. For each training image,

we extract the contours of the object from the masks and represent each contour using

the first 32 EFD coefficients. Note that the shape training based on EFD is optional

because only certain type of objects have discriminative contour information. Cars,

airplanes, and tigers, etc. have distinct contour shape but this is not the case for sky,

water, etc. After the EFD coefficients of all the exemplars contours are calculated, a

simple agglomerative clustering is applied over EFD descriptors to find the clustering

centers for each class of objects.

3.3 Segmentation Algorithm and Testing

In this section we will explain the segmentation algorithm and testing procedure shown

in Algorithm 3.6. The T, K, S, G represent the four training dictionaries: texton,

keyton, compact spatial keyton, and EFD shape descriptors (refer to Figure 3.1). Given

a test image, each detected keypoint is assigned to a mean-shift patch based on its

spatial coordinates. Because some keypoints may locate on the borders of the patches,

we inflate each patch with four pixels. For each mean-shift patch j, the label(j) is the

final label of this patch. The pt(label(j) = l|l), pk(label(j) = l|l) and ps(label(j) =
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l|l) are used to describe the likelihoods given label l based on texton, keyton and

compact spatial keyton histogram similarities with the three dictionaries T, K, S. For

abbreviation we write them as pt(j, l), pk(j, l), ps(j, l) and define a set fv = {t, k, s}.

For classification we are using the nonlinear support vector machine (SVM) with a

Mercer kernel [43]. Using the training dictionaries T, K and S, we train a svmfv
l for

each class l.The SVM decision function in kernel formulation is

svmfv
l (x) =

∑
i

yiαiκ(x, xi) + b (3.6)

where κ is the Mercer kernel defined as κ(h1, h2) = exp(− 1
τ χ

2(h1, h2)). The xi ∈

{T,K,S}, yi ∈ {−1,+1} are the training samples and their labels. The αi and b are

the learned weights and learned threshold. The τ is the mean value of χ2 distances

between 100 pairs randomly selected training histograms. The χ2 distance is

χ2(h1, h2) =
1
2

P∑
t=1

(h1(t)− h2(t))
2

h1(t) + h2(t)
(3.7)

where h1 is the histogram of test patch and h2 is a member of {T,K,S} with P

denoting the dimension. Multiple object labels are assigned to the jth test patch with

probabilities calculated using the positive raw output of (5.3.3)

pfv(j, l) =
svmfv

l (κfv(j))∑L
l=1 svm

fv
l (κfv(j))

(3.8)

where κfv(j) is the histogram of test patch j.

Based on texton histogram, the appearance likelihood pt(j, l) for each patch j is

calculated first. Then multiple hypotheses are generated using the keypoints located

in set J ′ (please refer to Algorithm 3.6 for definition). The likelihoods pk(j, l) and

ps(j, l) are computed using (3.8). This procedure form a loop until all the hypotheses

are scored. The final label(j) for each mean-shift patch j is decided by maximizing the

sum of the log likelihoods.

Some segmented objects can be refined using EFD shape descriptors. This step is

completely unsupervised. Only if the proposed objects contain distinctive contours,

which are known in the training stage, the EFD descriptors are applied for shape

matching.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.7: A testing example. (a) The original test image. (b) The mean-shift seg-
mentation results. (c) The object labeling using appearance only. Different colors
corresponding to different objects. (d)-(g) Four hypothesis for car, building, chair and
cow. The brighter intensity means higher probability. (h) The object labeling which
maximizes the sum of the log likelihood. (i) The refined segmentation result using the
global shape of the car. (j) The hand-draw segmentation by a human.

Table 3.1: The segmentation accuracy for MHMS 11 database.

Plane Car Tiger Zebra Grass Road
73.2 73.9 90.1 88.6 94.5 93.4

Water Sky Forest Rock Building Overall
72.7 88.1 89.3 78.2 71.9 88.9

Figure 3.7 shows one complete procedure of segmentation. We generate several hy-

potheses and marked each patch by maximizing the likelihoods obtains from appearance

and keypoints. The final result is refined using global shape information. We also show

in Figure 3.7j the hand-drawn segmentation result rendered by a human.

3.4 Experiments

We used real images to test our algorithm on three different datasets:

• our MHMS 11 which is composed of images taken from Caltech101 [39], COREL

[11] and Google search;

• the Sowerby 7 dataset [57], [125];

• the MSRC 21 dataset [125].
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Figure 3.8: The confusion matrix for the MSRC dataset with row labels as inferred
class and column as ground true class.

All the datasets contain multiple objects with different viewpoints, illuminations

and scales. For all the experiments we chose only 40% of the images for training and

the remaining 60% for testing. For the Sowerby image database, in order to get enough

sampling from the objects that only shown in part of the images, such as car and road

marking, we manually selected the training images that do contain these objects.

MHMS 11: This dataset contains 100 color images of 192 × 128 and eleven dif-

ferent classes. We use mean-shift segmentation with minimum region size of 100. The

dimension of the texton library and keyton library is 11 ∗ 50 and 11 ∗ 100. The segmen-

tation accuracy of each class is shown in Table 3.1. The overall pixelwise segmentation

accuracy is 86.0%. For class plane, car, tiger and zebra in this dataset, global shape

prior is applied and found to be useful. It increases the segmentation accuracy by 2.7%.

Sowerby 7: This dataset [57] contains 104 color images of 96 × 64 and seven

different classes. We use mean-shift segmentation with minimum region size of 40

because of the smaller image size. The dimension of the texton library and keyton

library is 7 ∗ 50 and 7 ∗ 100. The overall pixelwise segmentation accuracy we obtained

is 88.9%. Compared with the results reported in [57] 89.5%, and [125] 88.6%, where

the highest percentage is obtained using about half for training and context depended

information. We have only used 40% images for training and did not consider context
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Figure 3.9: Some segmentation results using our algorithm. The first row is the original
image. The second row is the mean-shift segmented patches. The third row is the Harris
corner detector results with red circles marking the keypoints. The fourth row is the
labels provided by the algorithm. The fifth row is the hand-draw label by human.

information.

MSRC 21: This is one of the most complete multiple object database for segmen-

tation. This dataset contains 592 color images of 320×213 and twenty-one objects. We

use mean-shift segmentation with minimum region size of 150. The dimension of the

texton library and keyton library is 21 ∗ 50 and 21 ∗ 100. The overall pixelwise segmen-

tation accuracy we obtained is 75.1%, which is higher than the accuracy reported in

the literature [125] 72.7%. Our algorithm also provides higher segmentation accuracy

for 18 classes out of 21 classes than [125], which are marked in grey in Table 3.8. When

the segmented objects contain car, airplane, tree, face or sign, EFD shape descriptors

are used to refine the labeling. However, because of the inter-class variability of this

database, especially in some cases there exist multiple objects which belong to the

same class in one image, global shape prior doesn’t provide big improvement. Figure

3.9 provides some segmentation results.

One of the major advantages of our method is the speed. As each mean-shift patch

is labeled once, we save the time. A 320×213 image can be processed less than 1 minute
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with a P3 1.5G Hz processor with 1G RAM using the MATLAB implementation. It

can be much faster using C++.

3.5 Discussion

It is worth analyzing why this simple framework works well for multiple class object

segmentation. From our research we conclude that interleaved recognition and seg-

mentation might increase the accuracy for both tasks. Mean-shift patches provide a

natural link between recognition and segmentation with the reduction of the computa-

tional time as a valuable side benefit. The keyton histogram, coupled with the spatial

keyton histogram, gained benefits from the bottom-up appearance information. How-

ever, mean-shift segmentation itself can provide errors. It is also possible that the

proposed method make mistakes for visually similar objects. The ambiguity of sharing

features between different classes makes the generic object segmentation a very difficult

problem.
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Chapter 4

Robust 4D Segmentation Using Prediction and

Collaborative Models

The 3D Echocardiography is one of the emerging diagnostic tools among modern imag-

ing modalities for visualizing cardiac structure and diagnosing cardiovascular diseases.

Ultrasound imaging is real-time, noninvasive and less expensive than CT and MR.

However, ultrasound normally produces noisy images with poor object boundaries.

Recently, the problem of unsupervised detection, segmentation and tracking of heart

chambers have received considerable attention [30], [52], [62], [68], [166]. Among these

applications, segmentation and tracking of the left ventricle (LV) have attracted partic-

ular interests. It provides clinical significance for radiologists to evaluate disease, such

as acute myocardial infarction. Several difficulties exist compared with traditional 2D

tracking algorithms:

• The computation demand is much higher for 3D volumetric data.

• Feature point based tracking has difficulty for ultrasound images because they

lack reliable landmarks.

• In order to provide a practical diagnosis tool for radiologists, a tracking algorithm

should be able to recover from failures.

The widely used 2D tracking algorithms [162] won’t provide good results if directly

applied on 3D ultrasound tracking applications. In order to achieve robust tracking in

3D ultrasound which is characterized by low image quality, learning based detector and

boundary classifiers are used to track the LV boundary in each frame. This tracking

by detection strategy can avoid accumulating errors and is proven to be quite effective

in recent literature [5], [86], [165]. However, it still has several problems:
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• The boundary classifiers are sensitive to initial positions [25] and good initializa-

tions have to be provided because we can not exhaustively search all the possible

configurations in the whole 3D volume. Considering the speed, the current search

range is constrained on the normal directions within ±12 mm.

• Tracking by detection applies an universal description of the objects without con-

sidering any temporal relationship, which leads to temporal inconsistence between

adjacent frames.

In this chapter, we propose a fast and novel unsupervised 4D ultrasound segmenta-

tion algorithm which address these difficulties [155], [154]. The contributions are:

• We propose a novel one-step forward prediction using motion manifold learning,

which respects the geodesic distances of both the shape and motion of the heart.

The motion priors can provide good initial positions for the boundary classifiers.

• A collaborative 3D template tracker is applied to erase the temporal inconsistence

introduced by 3D detection tracker.

• A rectangle filter is used to reject outliers and achieve robust data fusion. Smooth

boundary tracking is obtained by projecting the tracking points in each frame to

the constrained shape boundary.

• The algorithm can process a 3D volume, e.g., 160× 144× 208 voxels, in less than

1.5 seconds and we obtain subvoxel tracking accuracy.

In Section 4.1 we introduce the Bayesian tracking framework. In Section 4.2 and

Section 4.3, we describe the learning methods and tracking algorithm. Section 4.4

provides the experimental results.

4.1 Bayesian Tracking Framework

Define xt as the true position of each 3D boundary point of the left ventricle (LV) at

time t and let zt to represent the measurement. The tracking problem can be formulated
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as an estimation of A posterior probability p(xt|z1:t), where z1:t = {z1, ...zt} represents

the past t measurements. Sequential Bayesian tracking based on Markovian assumption

is performed recursively in a prediction

p(xt|z1:t−1) =
∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (4.1)

and updating step

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1). (4.2)

Bayesian tracking assumes that the following densities are known. The p(x0) denotes

the distribution of the 3D LV surface points in the first frame. In our algorithm p(x0)

is automatically calculated using the trained detector and boundary classifiers. The

p(xt|xt−1) represents the motion prior (state model) and is predicted for the next frame.

The p(zt|xt) represents the measurement density.

If all the densities in (4.1) and (4.2) are Gaussian, Bayesian tracking can be formu-

lated as the Kalman filter, otherwise a particle filter can be applied. The CONDENSA-

TION algorithm [65] can be used to sample the posterior probability for single object,

and Markov Chain Monte Carlo (MCMC) [71] sampling can be used for multiple ob-

jects tracking. Both Kalman filtering and particle filter assume a Markov model, which

only considers the previous state xt−1 to estimate the density of current state xt. The

p(xt|xt−1, z1:t−1) is therefore equal to p(xt|xt−1) in (4.1) and is often modeled using a

predetermined distribution.

In real tracking problems, the motion prior (state model) p(xt|xt−1, z1:t−1) may

not follow a Markovian assumption and it could be of any form. In our algorithm, we

model the p(xt|xt−1, z1:t−1) to be dependent on both xt−1 and z1:t−1. One-step forward

prediction using motion manifold learning is applied to estimate this motion prior.

For the measurement densities p(zt|xt), we select two collaborative trackers: the

detection tracker and the template tracker, which can mutually benefit each other. The

detection tracker can discriminate the 3D target from background in low image quality

and noisy environment. The template tracker respects the local image information and

preserves the temporal consistence between adjacent frames. The trackers are modeled
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as rk, k = 1 for detection tracker and k = 2 for template tracker, then

p(zt|xt) = p(zt|xt, r1)p(r1) + p(zt|xt, r2)p(r2). (4.3)

Substituting (4.3) in (4.2) and replacing p(xt|xt−1) with p(xt|xt−1, z1:t−1) in (4.1), the

final posterior probability p(xt|z1:t) is obtained from the robust data fusion and the

xt = arg maxxt p(xt|z1:t).

4.2 Motion Learning and Classifiers Training

Each training sequence contains a heart motion cycle which starts from the end-diastolic

(ED) phase, passes through the end-systolic (ES) phase and comes back to ED. The

training procedure is in a batch mode where all the annotated sequences are used at

the same time. It contains three steps. First the motion modes are learned using

manifold learning and hierarchical K-means. Next, an ED detector is trained to locate

the position of the object in the first frame. Finally, two boundary classifiers (one

for ED and one for ES) are trained using the annotated sequences to delineate the

boundary.

4.2.1 Learning the Motion Modes

Motion Alignment Using 4D Generalized Procrustes Analysis. Our training

sequences contain 11-25 time frames and 16 frames are chosen to resample each motion

sequence. In this way we generate 4D motion vectors containing the same dimension-

ality d, where d = Nf × 3× 16, Nf = 289 is the number of boundary points and three

represents x, y and z dimensions.

Generalized procrustes analysis (GPA) is used to align all resampled motion vectors

to remove the translation, rotation and scaling [32, ch. 5]. However, the shape differ-

ences and motion patterns are still preserved. After the 4D GPA, these aligned motion

vectors are decomposed into separated 3D shapes. All the following learning steps are

performed on the aligned 3D shape vectors.

Motion Manifold Learning. Because the actual number of constraints that



49

(a) (b)

Figure 4.1: Manifold embedding for LV motion patterns. (a) Two LV boundary mesh
sequences. (b) The 11 sequences embedded in a 2D subspace. Note: The end diastolic
(ED) phase has larger volumes and represented as stars in (b), while the end systolic
(ES) phase has smaller volumes and represented as squares in (b).

control the LV motion are much less than its original dimensionality, the aligned 3D

shape vectors lie on a low-dimensional manifold. Given the whole set of 3D training

shape vectors, M = {m0, ...,mi, ...,mn} where mi ∈ Rd, there exists a mapping z

which represents mi in the low-dimensions as

mi = z(vi) + ui i = 1, 2, ..., n (4.4)

where ui ∈ Rd is the sampling noise and vi ∈ Rq denotes the original i-th shape

mi in the low-dimensional subspace. We set q = 2 because the higher dimensions did

not provide additional accuracy in our experiments. The nonlinear mapping z is the

transformation from the low-dimensional subspace to the original space.

We apply ISOMAP [130] to embed the nonlinear manifold into a low-dimensional

subspace. We start by finding the seven closest neighbors (seven was found to be the

best) of each point mi in the original space Rd and connect the neighbors to form a

weighted graph G. The weights are calculated based on the Euclidean distance between

each connected pair of vectors. We then calculate the shortest distance dG(i, j) between

any pair of points mi and mj in the graph G. The final step is to apply the standard

multiple dimensional scaling (MDS) to the matrix of graph distance {dG(i, j)}. In this

way, the ISOMAP applies a linear MDS on the local patch but preserve the geometric



50

distance globally using the shortest path in the weighted graph G.

Figure 4.1a shows two annotated LV motion sequences. Figure 4.1b shows several

LV motion representations in a low-dimensional subspace. An interesting but expected

observation is illustrated in Figure 4.1b. The LV motion is almost periodic because one

cycle of heart beat starts from ED and returns to ED. In total we applied manifold

learning on 36 annotated LV motion sequences. In order to make the figure readable,

we only show 11 sequences in Figure 4.1b.

Hierarchical K-means Clustering. Given all the motion cycles shown on the

embedded subspace, we applied a hierarchical K-means to learn the motion modes.

First, we apply K-means on all the training ED shapes and K is taken as four. (Four

was chosen using a pilot experiment.) After this step, we align all motion sequences in

one group by moving their ED vectors to their cluster center. In this way we cancel the

translation among the shapes in one subgroup, but focus on the difference in motion

patterns. Each aligned sequence is transformed to a 2×16 dimensional vector, where two

represents the reduced dimensionality and 16 represents the number of frames. K-means

is applied again within each group and the cluster center in the 32 dimensional space

corresponds to a motion mode. In this step the K is decided by evaluating the difference

between the cluster center and each vector within the group. Each motion mode is a

weighted sum of all sequences that are clustered into the same group. The weights

are proportional to their Euclidean distance from the cluster center. The geodesic

distance in the original manifold is modeled by Euclidean distance in the embedded

low-dimensional subspace.

4.2.2 Learning the ED Detector

In this step we train a 3D detector to locate the pose of LV in the motion sequence.

We first calculate a mean shape by averaging all the LV in the ED frames of the

annotated training sequences. A principal component analysis (PCA) shape space is

calculated for all the ED shapes at the same time. In order to automatically initialize

the tracker, we need to find the similarity transformation from the mean shape to the

LV in the ED frame for each sequence. Discriminative learning based approaches have
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(a) (b)

(c) (d)

Figure 4.2: The positive (a), (c) and negative samples (b), (d) used for training. (a)
and (b) Training samples for the detector. (c) and (d) Training samples for the the
boundary classifiers.

proven to be efficient and robust for 2D object detection [142]. The object is found by

scanning the classifier over an exhaustive range of possible locations, orientations and

scales in an image. However, it is challenging to extend them to 3D objection detection

problems since the number of hypotheses increases exponentially with respect to the

dimensionality of the parameter space. As the posterior distribution is often clustered

in a small region, it is not necessary to search the parameter space exhaustively.

Marginal space learning (MSL) [166], [6] is used to learn an ED detector to locate

LV in the first frame efficiently. The idea for MSL is to incrementally learn classifiers

on projected marginal spaces. We split the estimation into position detection, position-

orientation detection and full similarity transformation detection. The MSL reduces

the number of testing hypotheses by six orders of magnitude in our applications, which

makes the directly training of the detector on 3D volumetric data a feasible procedure.

4.2.3 Learning the Boundary Classifiers

After we obtain the pose of the LV in the ED frame, we need to segment its bound-

ary to automatically start the trackers. Active shape models (ASM) [25] is used to

deform an initial estimate of a nonrigid shape. The non-learning boundary classifier
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using gradients in the original ASM does not work in our application due to the com-

plex background and weak edges in 3D ultrasound. Learning based methods can exploit

image evidences to achieve robust boundary detection. Boundaries with different orien-

tation are usually detected on prerotated images [31]. Since 3D volume rotation is very

time consuming, we use steerable features for boundary detection and avoid rotating

the 3D volume. For each boundary point (289 in total), we sample several points from

the volume around it under a special pattern, which embed the orientation information

into the distribution of the sampling. A few local features for each sampling point,

such as voxel intensity and gradients, etc., are calculated. The advantages of steerable

features are that they combine the advantages of both local and global features.

Two boundary classifiers, one for LV motion close to the ED phase and the other for

LV motion close to ES, are trained using probabilistic boosting tree (PBT) [135]. The

PBT ensembles many strong classifiers into a tree structure. The widely used cascade

boosting [142] can be treated as a special case in PBT. The learned boundary classifiers

are used to automatically segment the boundary of LV, to initialize the trackers, and

also used as the detection tracker for the following frame. In Figure 4.2 we show some

positive and negative training samples used for training both the detector and the

boundary classifiers.

4.3 Tracking Procedure

The tracking procedure on a testing sequence contains four steps. The p(x0) is ini-

tialized using the learned ED detector and the ED boundary classifier. At time t − 1,

registration based reverse mapping and one-step forward prediction are used to estimate

the next state p(xt|xt−1, z1:t−1). We then apply two collaborative trackers and robust

data fusion to estimate the measurement density p(zt|xt). In order to obtain smooth

tracking of LV, each boundary point is mapped to a shape constrained 3D boundary.

The final results are obtained by maximizing the posterior probability in (4.2). These

prediction (4.1) and updating (4.2) steps are performed recursively for each frame in

one sequence.
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Figure 4.3: The four canonical view and 3D representations of the segmentation result
(automatic tracking initialization) of LV.

4.3.1 Initialization of Tracking

In order to initialize the boundary tracking of LV in an unsupervised manner, we need

to automatically detect and segment LV in the ED frame of a testing sequence. Given

the ED frame, all positions are scanned by the trained position detector. The top

100 candidates (xi, yi, zi), i = 1, 2, ..., 100 are kept. Each candidate is then expanded

using 1000 hypothesis on orientations (ψij , φij , θij), j = 1, 2, ..., 1000. The trained

position-orientation detector is applied for each candidate and the best 50 are kept.

These 50 candidates are scaled using 1000 hypothesis (sxkl, sykl, szkl), k = 1, 2, ..., 50,

l = 1, 2, ..., 1000. Evaluated by the position-orientation-scale detector, the best 100

candidates are averaged to produce the final similarity transformation estimation.

After the similarity transformation is calculated, the LV mean shape is registered

and superimposed on the ED frame of the testing sequence as the initial position.

For each boundary point we search ±12 mm range on the normal directions of the

boundary. (The value ±12 mm was set considering both speed and accuracy.) The

learned boundary classifier is used to move each boundary point to its optimal position

where the estimated boundary probability is maximized. Figure 4.3 shows the tracking

initialization result.
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4.3.2 One-Step Forward Prediction

In this step we calculate the motion prior (state model) p(xt|xt−1, z1:t−1) using the

learned motion modes. At time t−1, we first transform the current 3D shape p(xt−1|z1:t−1)

to the corresponding frame of each motion mode in the 4D GPA coordinate system.

Thin plate spline (TPS) transformation [87] is applied to perform this mapping. The

TPS is a nonrigid transformation between two 3D point sets. The transformation T

contains an affine mapping plus a wrapping coefficient matrix. We used 72 uniformly

sampled points from 289 boundary points to estimate the TPS transformation T by

minimizing

ETPS(T ) =
72∑
i=1

‖wi − T (bi)‖2 + λf(T ) (4.5)

where wi denote the 3D mesh point on the learned motion modes and bi denote the

points on the testing object’s boundary. The f(T ) is a function containing a kernel

which represents the internal structure relationship of the point set. The regularization

parameter λ is chosen as 1.5. We refer the readers to [87] for more details.

The prediction is applied on the motion mode which minimizes the previous 1 to

t− 1 accumulated TPS registration errors

I = arg min
i

t−1∑
j=0

min
T
ETPS(xj ,qi,j , T ) (4.6)

where i = 1, ..., Q represents the number of motion modes. The qi,j is the i-th motion

mode in the j-th frame and the ETPS(xj ,qi,j , T ) is the registration error.

After we found the correct motion mode qI,t using (4.6), the final prediction result

in the real world coordinate system of the p(xt|xt−1, z1:t−1) is obtained using the reverse

mapping T−1. A motion mode generated by reverse mapping using TPS is shown in

Figure 4.4.

There could be motion mode changes during the prediction when the prediction

starts from one motion mode and jumps to another mode during tracking. This corre-

sponds to the LV motion which starts from an ED shape in one learned motion mode,

but has a motion trajectory close to another mode. This is the reason we apply the

accumulated TPS registration error based one-step forward prediction. The algorithm
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Figure 4.4: The LV boundaries in 3D world coordinates of a motion mode. The results
are calculated using TPS reverse mapping and superimposed in the two-dimensional
reduced subspace.

provides accurate motion prior for boundary tracking.

4.3.3 Collaborative Trackers

Given the motion prior p(xt|xt−1, z1:t−1) learned using one-step forward prediction on

the motion manifold, for each boundary point the learned boundary classifiers are used

to search in its ±12 mm range on the normal direction. The optimal position is found

by maximizing the boundary probability. The ED boundary classifier is used when the

frame index is close to ED and the ES boundary classifier is used when it is close to

ES. The final position using detection tracker is obtained by maximizing p(zt|xt, r1) in

(4.3).

In order to compensate the disadvantages of detection tracking mentioned in the

introduction, a 3D template tracker is also applied. Given xt a 3D boundary point and

its neighborhood N(xt), let G(xt, µ) denotes the transformation of the template. (The

neighborhood was chosen to be a 13× 13× 13 cube based on experiments.) The goal is

to search the best transformation parameters which minimize the error between N(xt)

and G(xt, µ).

µ = arg min
µ

∑
xt∈N(xt)

[G(xt, µ)−N(xt)]
2 . (4.7)

Because there is only a small change of parameter µ between adjacent frame, the



56

Figure 4.5: The prior p(r1) for detection tracker (red solid line) and p(r2) for template
tracker (blue dotted line). The ED phase has frame index zero and ES phase is around
frame six.

minimization of (4.7) can be solved by linearizing the expression

G(xt, µ) = G(xt) +
∂G(xt, µ)

∂µ
dµ. (4.8)

At the end the result p(zt|xt, r2) is obtained.

Although the template matching algorithm is not robust and only works under

the assumption of small inter-frame motions, it preserves temporal consistence and its

disadvantages can be compensated by the one-step forward prediction and the detection

tracker. Template updating is a key issue in template tracking. If we update the

template in each frame only based on the previous template tracking result, the error

will be inevitably accumulated and finally results in the template drifting mentioned

in [15], [94]. Generally it is difficult for template tracking to recover from drifting

without special processing. In our method we update the template using the previous

collaborative tracking result. Because the learned motion prior is enforced and detection

is used, this updating scheme can help the template tracker to recover from the template

drifting. As shown in [107], [138], learned motion prior is quite effective to help tracking

to recover from failures.

4.3.4 Data Fusion

Fusion of the collaborative tracking is obtained by defining prior distribution p(r1),

p(r2) in (4.3). Based on domain expert’s knowledge, both priors were designed as the

exponential functions of t, which is illustrated in Figure 4.5. We show only one heart

beat cycle which contains 17 frames. In order to reject outliers and achieve robustness,

we apply a rectangle filter of [−12 12]3 mm on the final data fusion results to erase
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the motion replacements which are larger than this size between adjacent frames. The

corresponding position of the eliminated boundary point is recalculated based on the

bicubic interpolation of its neighbors. After this step we obtained the p(zt|xt).

4.3.5 Postprocessing and Projection

Due to speed considerations, the detection tracker is designed to search on the normal

direction of the boundary, and the template tracker is searching along the direction of

the gradients. Both of them can not provide smooth tracking results. Let Bf denotes

the 3D boundary point-set after the data fusion step. We project Bf onto the PCA

shape space calculated from the training stage, and obtain a smooth boundary point set

Bs. A surface of the smooth boundary Bs is constructed using the 3D triangulation.

Each boundary point P on Bf is projected onto the smooth surface by finding the

triangle S ∈ T = {all triangles of Bs} which minimize the square distance

dist(s, t) = [S(s, t)− P ]2 (4.9)

where S(s, t) = b + se0 + te1 with (s, t) ∈ D = {(s, t) : s ∈ [0 1], t ∈ [0 1], s+ t ≤ 1}.

The b is one vertex in the triangle and e0 and e1 represent two edges. In this way, we

keep the tracking results and achieve smooth motion tracking of the LV.

4.4 Experimental Results

We collected 67 annotated 3D ultrasound LV motion sequences. The 4D (x, y, z, t)

motion sequences contain from 11 to 25 3D frames. In total we have 1143 ultrasound

volumetric data. Our dataset is much larger than those reported in the literature, e.g.,

29 cases with 482 3D frames in [68], 21 cases with about 400 3D frames in [106] and 22

cases with 328 3D frames in [167].

The imaging protocols are heterogeneous with different capture ranges and reso-

lutions along each dimension. The dimensionality of 27 sequences is 160 × 144 × 208

and the other 40 sequences is 160 × 144 × 128. The x, y and z resolution ranges are

[1.24 1.42], [1.34 1.42] and [0.85 0.90] mm. In our experiments, we randomly select 36

sequences for training and the rest are used for testing.
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Table 4.1: The point-to-mesh (PTM) errors measured in millimeters using three track-
ing algorithms.

Mean Variance Median
3D optical flow 2.68 1.28 2.39

Tracking by detection 1.61 1.24 1.31
Collaborative trackers 1.28 1.11 1.03

Min Max 80%
3D optical flow 0.94 10.38 3.23

Tracking by detection 0.59 9.89 1.89
Collaborative trackers 0.38 9.80 1.47

The accuracy is measured by the point-to-mesh (PTM) error. All 3D points on each

frame of the testing sequence are projected onto the corresponding annotated boundary

of the test set. The projection distance from the point to boundary is recorded as the

PTM error, eptm. For a perfect tracking, the eptm should be equal to zero for each 3D

frame. In Table 6.2, we compared the quantitative eptm using our proposed algorithm,

with tracking by 3D optical flow [33] and tracking by detection [165].

The 80% column in Table 6.2 represents the sorted 80% smallest error of all eptm,

and is commonly used by doctors to evaluate the usability of the system. For example,

if the doctor can tolerate an error of 1.5 mm, they normally expect 80% of the errors to

be smaller than this number. The mean eptm we obtained is 1.28 mm with a 80% error

below 1.47 mm. These are the best results in the literature as far as we know (mean

error 1.45 mm in [167], 2.5 mm in [99] and 2.7 mm in [106]). Considering the range of

resolution in the test set, we actually obtained subvoxel tracking accuracy on the mean

eptm.

The systolic-diastolic function is the volume-time curve which represents continuous

LV volume change over the time t. It is an important diagnosis term to evaluate the

health condition of the heart. In Figure 4.6, we illustrate one heart cycle of two systolic-

diastolic functions. The curves for all three tracking algorithms and the ground-truth

annotation are shown. Our algorithm (Tr. collab.) provides the most similar functions

to the ground truth curves.

Two types of errors are frequent in tracking LV in 3D ultrasound. The first type is

the leakage error, eleakage, which happens on the mitral valve region. This is introduced
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Figure 4.6: Two volume-time curves demonstrate the whole cardiac cycle, which in-
cludes the systole stage and the diastole stage.

by the similar appearance of the mitral valve to the LV boundary. A good LV boundary

tracking algorithm should not follow the motion of the leaflets of the mitral valve.

Tracking by detection failed on frame 8 (row 3, columns 3 and 4 in Figure 4.7b) because

it always searches for what it learned in the training stage, but ignores all the local image

information and temporal consistency.

The second type is the shrinkage error, eshrink, which happens on the apex region.

The 3D optical flow failed on the frame 6 (row 2, columns 5 and 6 in Figure 4.7c)

because of the low image quality around the apex region. This proves that motion prior

is necessary to obtain enough shrinkage for LV tracking in the 3D echocardiography

because of the low quality of ultrasound imaging.

Using our algorithm, shown in Figure 4.7a, none of the errors are observed. The most

important practical consideration for 3D tracking is computational complexity. One of

the major reasons to propose marginal space learning, steerable features, registration

based reverse mapping and one-step forward prediction is the speed. Our currently

C++ implementation requires 1− 1.5 seconds per frame containing 160× 148× 208 =

4, 925, 440 voxels and about 20 seconds for the whole sequence. Our implementation is

at least two times faster than the slice-cut algorithm presented in [62], even if they are

not working on 3D volumetric data directly, and about hundreds of times faster than
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(a) (b) (c)

Figure 4.7: Comparative tracking results on a testing sequence with 12 frames. (a)
Tracking results using the proposed method. (b) Tracking by detection. (c) Tracking
using 3D optical flow. The rows correspond to frame index 1, 6, 8 and 10.

[99] which reported using a MATLAB implementation.
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Chapter 5

Multiple Class Object Recognition in Medical Images

Breast cancer is a malignant neoplasm that can affect both women and men. It is the

leading cancer in both white and African American women, with more than 178,480

new cases for an estimated to be diagnosed in 2007 where 2030 cases are men, and will

be responsible for estimated 40,460 deaths [3]. It is the second most common cause

of cancer death in white, black, Asian/Pacific Islander and American Indian/Alaska

Native women [3], [137]. The incidence of breast cancer among women has increased

gradually from one in 20 in 1960 to one in eight today. At this time there are slightly

over 2 million breast cancer survivors in the United States. Women living in North

America have the highest rate of breast cancer in the world [3].

In spite of the increase in the incidence of the disease, the death rates of breast

cancer continue to decline. This decrease is believed to be the result of earlier detection

through screening and analysis as well as improved treatment [3]. Some of the common

methods screening of breast cancer include examination by a physician, self-performed

routine examinations and routine mammograms. When suspicious lesions are detected

by these methods, a fine needle aspirate or biopsy can be performed and the obtained

tissue is examined [116]. The extracted tissue is mounted on glass slides and examined

by a surgical pathologist to make decision of benign or cancer. Diaminobenzidine (DAB)

and hematoxylin are standard staining methods used for breast cancer.

There has been increasing interest in investigating computer assisted diagnosis

(CAD) system to help breast cancer diagnosis, e.g. [128]. However, to our knowl-

edge, most of these studies were relatively limited in scale because the computation is

often a bottleneck. In this chapter, we report a Grid-enabled framework for analyzing

imaged breast tissue specimens [150], [151]. We discriminate between benign and cancer
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Figure 5.1: A screenshot of Help Defeat Cancer (HDC) clinet running on IBM world
community grid (WCG).

breast tissues using the results obtained from the Grid. Without using the Grid, the

filtering and generation of universal texture library would require 210 days of compu-

tation for 3744 samples because of the large image size and computational complexity

of the process.

In Section 5.1 we introduce the IBM World Community Grid (WCG). In Section

5.2 and Section 5.3, we describe the data generation and analysis procedures. Section

5.4 provides the experimental results.

5.1 IBM World Community Grid

We recently undertook a collaborative project with IBM, the ”Help Defeat Cancer”

(HDC) [63] project, which enabled us to utilize the massive computational power of

the World Community Grid (WCG) to analyze the breast cancer specimens. A screen-

shot of one of the thousands of distributed client computers participating in the HDC

is shown in Figure 5.1. IBM World Community Grid [64] (WCG) is a philanthropic

project which utilizes otherwise unused CPU cycles from personal computers around
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the world and aggregates the combined computational power. WCG was established to

address challenging large scale non-profit research projects which can benefit humanity.

It takes advantage of otherwise wasted energy and at the same time creates a virtual

supercomputer that by some measures exceeds the capacity of traditional supercom-

puters. The result is that some otherwise impractical or intractable research projects

can be brought to successful completion. Investigators can submit a research proposal

for consideration by the WCG project committee. If approved by the advisory board,

the project is run at no cost to the research team. Findings are subsequently placed in

the public domain. Suitable research areas include, but are not limited to biomedical,

climatology, environment, conservation and emergency preparedness.

WCG enabled the most computationally intensive components of the Help Defeat

Cancer (HDC) project to run at optimal speed, thereby increasing the accuracy and

sensitivity with which expression calculations and pattern recognition procedures were

conducted. By harnessing the collective computational power of WCG, we were able

to analyze a larger set of cancer tissue specimens than what would be possible using

traditional computer resources. This added level of speed and sophistication led to

improved capacity to detect subtle changes in measurable parameters, and prognostic

clues which are difficult to observe by visual inspection alone.

Imaged pathology specimens were generated using a high-throughput whole slide

scanner and transferred from laboratories within Robert Wood Johnson Medical School

(RWJMS) and The Cancer Institute of New Jersey (CINJ) to the secure Boulder Col-

orado IBM hosting site where World Community Grid servers reside. As results were

computed, they were returned to the servers at RWJMS and CINJ. The total of the

transfers approached one terabyte of data. About 2909 years of run-time in the form

of slightly more than 5 million work packages were harvested from the personal com-

puters contributed to World Community Grid. This includes an approximate 3 times

redundancy of work to ensure that the computations were not in error or tampered

with. Because of the fairly large working set memory required for the program, only

machines with over 1 GB of RAM were selected to run the project.
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Figure 5.2: The work-flow and logical units of the Grid-enabled tissue microarray.

5.2 Data Generation and System Framework

The Tissue microarrays (TMA) used in the HDC project was collected from The Cancer

Institute of New Jersey, Yale University, University of Pennsylvania and Imagenex

Corporation (San Diego, CA). To date over 300 slides containing cohorts of hundreds

of tissue discs each and originating from 45 TMAs were digitized at 40× resolution

using a Trestle MedMicro virtual microscopy system. The output images typically

contain 1-3 billions of pixels and were stored as a compressed tiled TIFF file sized

at 0.5 to 2 Gigabytes. Our registration protocols [16] were applied to the scanned

images to identify rows and columns of the tissue arrays. Any tissue cores that suffered

from exceedingly pronounced artifacts were excluded from the study. Images of each

tissue core were systematically extracted from the archive and packaged as workunits

for the HDC project. The dimension of each image was 1200 × 1200. The specimens

under study had previously been stained with hematoxylin and hematoxylin & eosin.

A texton extraction algorithm was applied on the staining maps of the two dyes which

were generated using color decomposition [16]. Each of the resulting staining maps as

well as the luminance measure generated from the original color image were uploaded

as separate workunits to the WCG. The work-flow and logical units are shown in Figure

5.2.
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5.3 Data Analysis

In this section, we explain the methods used to generate and analyze the image features

for automatic classification of breast tissue specimens. Textures and intensities were

used as feature measures to classify the staining profiles of the imaged tissues. Because

the feature vectors lie in a high dimensional space, we applied a nonlinear dimension

reduction method to decrease the dimensionality. Through iterative experiments we

determined that among several different classification algorithms, the gentle AdaBoost

classifier provided the best overall performance in the reduced subspace.

5.3.1 Features

It can be found that the difference in texture can be used as the discriminative features

to separate different types of breast tissues. Traditional texture analysis includes Law’s

moment [76], cooccurrence matrices [56], run length matrices [46] and autoregressive

models [92] et. al.

In recent studies, texture has been represented using texton. Textons are defined

as conspicuous repetitive local features that humans perceive as being discriminative

between textures. Unlike many other texture features that describe each texture as

a constant relationship – a number, a data vector or a set of model parameters –

between each pixel and its surroundings, the concept of a texton supports the existence

of numerous distinct textual components in each texture. Therefore, it has advantages

in describing textures that have high-level components. Texton based texture analysis

has been widely used in many fields of texture related research, including classification

[81], [140], [28], [136], segmentation [159] and synthesis [58].

The feature vector is composed of eight LoG filter responses, four Gaussian filtering

responses and the bar and edge filtering response within six different directions. In

total, each image pixel was represented by a 48 dimensional feature vector. The image

filtering response generated using the collective computation power of the World Com-

munity Grid were gathered together and clustered using K-means, where K was set

to 4000 in our experiments. The cluster centers, called textons, were used to generate
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Figure 5.3: Two breast tissue images on the left, benign (on the top) cancer (on the
bottom). In order to keep the figure readable, only the texton maps of red rectangle
regions were shown in the middle with different colors representing different textons.
In practice the texton histograms of full images, shown on the right, were used for
classification.

the texton library. The appearance of each breast tissue image was modeled by a com-

pact quantized description called texton histograms. Texton histograms are created by

assigning each pixel filter response in the image to its closest texton in the generated

texton library, which was calculated using

h(i) =
∑
j∈I

count(T (j) = i) (5.1)

where I denotes breast tissue image, i is the ith element of the texton dictionary, T (j)

returns the texton assigned to pixel j. In this way, each breast tissue image was modeled

as a texture modes distribution, the texton histogram. Each image was mapped to one

point in the high dimension space Rd, where d = K = 4000 is the number of textons.

Figure 5.3 shows the texton histograms of two breast tissue images.
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5.3.2 Dimension Reduction

Each breast cancer image is represented by a vector in the d = 4000 dimension space in

which we have to consider the “curse of dimensionality”. Traditionally, linear dimen-

sion reduction methods like multidimensional scaling (MDS) and principle component

analysis (PCA) [35] have been used, which assume that the data can be represented

by a lower dimensional linear subspace. In other cases, the data can be modeled by

a low-dimensional nonlinear manifold, and nonlinear methods such as locally linear

embedding (LLE) [117], isometric feature mapping (ISOMAP) [130] and local tangent

space alignment (LTSA) [164] are more appropriate.

Given a set of feature vector Z = {z1, ...zi, ..., zn} where zi ∈ Rd. There exists a

mapping T which can represent zi in the low dimension as

zi = T (xi) + ui i = 1, 2, ..., n (5.2)

where ui ∈ Rd is the sampling noise and xi ∈ Rd′
denotes the representation of zi in

low-dimensional space.

PCA finds the mapping T which best represents the variance of data zi in the

original high-dimensional space. The low-dimensional space Rd′
is spanned by the d′

largest eigenvectors of the covariance matrix of zi. MDS finds the mapping T which

preserves the pairwise distances between zi-s in Rd′
. If the data have certain geometric

structure which can be modeled as a low-dimensional linear manifold, they are not

expected to perform well.

Although most of the geometric distances can not be used directly on the manifold,

linear dimension reduction methods can be applied locally and Euclidean distances are

valid on the local tangent space. The LLE preserves the geometry of the data points by

representing points using their local neighbors. The ISOMAP approach applies a linear

MDS on the local patch, but aim to preserve the geometric distance globally using the

shortest path in the graph. The LTSA method maps each data point from the original

space into the tangent space and align it to give a global coordinate.

If the data are approximately sampled from a low-dimensional manifold, the non-

linear methods generally perform better [117]. Otherwise the linear methods may be
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Figure 5.4: The five different dimension reduction algorithms shown as five-fold cross-
validation errors for different reduced dimensions.

preferred because of their simplicity. In order to compare the performance of these

methods, we used cross-validation (CV)

CV (γ) =
1
N

N∑
i=1

∣∣∣yi − f−k(i) (xi, γ)
∣∣∣ (5.3)

where xi is the feature vector in Rd′
, yi = {+1,−1} represents the cancer and benign

breast tissue labels. The f−k (xi, γ) denotes the classification results using the γ-th

dimension reduction method with the k-th part removed from the training data, and

the number of partitioning k = 5 in our experiments. We tested the five different algo-

rithms from 3 to 4000 dimensions and determined that ISOMAP is better (Figure 5.4).

Good performance using ISOMAP was also reported in [79] for tissue characterization.

Based upon these comparative results, ISOMAP with 500 dimensions are used for all

subsequent operations.

5.3.3 Classification

In [103], the k-nearest neighbor (kNN) and classification tree (C4.5) were integrated

into a Bayesian framework for characterizing breast tissues. However, in our case, each

training sample was represented by a feature vector xi in the reduced subspace Rq

where q = 500. This is still a relatively high dimension where the maximal margin clas-

sifiers such as support vector machine (SVM) [26] and boosting [44] are better suited.

We conducted experiments to compare the performance of four boosting algorithms,

the standard AdaBoost, the gentle AdaBoost, the real AdaBoost and LogitBoost with
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Input: Given n features xi in Rq and their corresponding labels yi = {−1, 1}.
Training:

• Initialize the weights wi = 1/n, i = 1, ..., n. Set b(x) = 0 and the number
of nodes M = 8 in the CART decision tree.

• For j = 1...J

– Each training sample is assigned its weight wi. The weighted tree
growing algorithm is applied to build the CART decision tree hj(x).

– Update using b(x) = b(x) + hj(x).

– Update the weights wi = wie
−yihj(x) and renormalize wi.

– Save the j-th CART decision tree Hj(x).

Testing:

• Output the classification: sign [b(x)] = sign
[∑J

j=1Hj(x)
]
.

Figure 5.5: The binary gentle AdaBoost using an eight nodes classification and regres-
sion tree (CART) as the weak learner.

kNN , Bayesian classifier and SVM. The results showed that the maximal margin classi-

fiers [26], [44], such as SVM and boosting, which simultaneously minimize the empirical

classification error and maximize the geometric margin, outperformed all the other al-

gorithms. In order to separate two subtypes of breast cancers from the benign, the best

binary classifier in our experiments (the gentle AdaBoost) was extended to a multi-class

algorithm

The kNN consists of assigning all the features into k most similar cluster centers

based on certain similarity measurements. The final label was determined by majority

voting from k candidates.

Let x ∈ X represent the low level feature in the reduced subspace Rq, the Bayesian

classifier is designed to maximize a-posterior (MAP ) probability

p(Ci|x) =
p(x|Ci)p(Ci)∑K

i=1 p(x|Ck)p(Ck)
(5.4)

and the Bayesian classifier determines the class Ci by maximizing the posterior proba-

bility p(Ci|x).

The support vector machine (SVM) was first introduced in [26] for binary classifi-

cation problem. The strategy is to construct the linear decision boundaries in a large
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transformed version of the original feature space. The SVM simultaneously minimizes

the empirical classification error and maximizes the geometric margins by minimizing

the regularization penalty

1
2
‖w‖2 , subject to yi(w0 + wTxi)− 1 ≥ 0 (5.5)

When the examples are not linearly separable, the optimization can be modified by

adding a penalty for violating the classification constraints. This is called soft margin

SVM which minimizes

1
2
‖w‖2 + C

N∑
i=1

ξi, subject to yi(w0 + wTxi)− 1 + ξi ≥ 0 (5.6)

where ξi are called slack variables which store the deviation from the margin and C is

the soft penalty to balance the training errors and margins. In (5.5) and (5.6), w is

the slope of the decision hyperplane and w0 is the offset. The xi denotes the feature

vector, and yi is the ground true labels. We minimize (5.6) by maximizing the dual

problem of (5.6) which involve a feature mapping φ(x) through an inner product. The

inner product can be evaluated without ever explicitly constructing the feature vectors

φ(x) but through a kernel function κ(x,x′). In our algorithm, we proposed to use a

nonlinear Mercer kernel [122] based on χ2 distance. It was shown that among other

choices of distance functions between histograms, χ2 distance performed the best for

the texture similarity measure. The kernel function is defined as

κ(x,x′) = exp
(
−1
τ
χ2
(
x,x′)) (5.7)

where

χ2
(
x,x′) =

1
2

500∑
l=1

(x(l)− x′(l))2

x(l) + x′(l)
. (5.8)

The detailed description is given in Figure 5.6.

Boosting works by sequentially applying a classification algorithm on a reweighted

version of the training data and producing a sequence of weak classifiers hj(x), j =

1, 2, ...,W where W = 40 in our case represents the number of iteration rounds of each

boosting algorithm. The strong classifier is assembled from all the weak classifiers hj(x)
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Input: Given n features xi ∈ Rd′
and their corresponding labels yi = {−1, 1}.

Training:
• Pick up 100 random pairs. Compute
τ = 1

100

∑100
i,j=1 χ

2(xi,xj) where χ2(xi,xj) = 1
2

∑500
l=1

(xi(l)−xj(l))
2

xi(l)+xj(l)
.

• Build the Mercer kernel κ(xi,xj) = exp(− 1
τ χ

2(xi,xj)).

• Select the penalty parameter C and train the soft margin SVM(κ,C).
Record the model parameters.

Testing:
• Output the classification: sign [SVM(x)] = sign

[∑
i

yiαiκ(x,xi) + b

]
where αi and b are the learned weights and learned threshold.

Figure 5.6: Soft Margin SVM using the Mercer kernel based on χ2 distance.

to minimize the exponential cost function exp(−yhj(x)), where y represents the label

of the training sample x. In the standard binary AdaBoost classification, the labels

were decided by weighted voting to produce the final prediction

ŷ = sign

 W∑
j=1

αjhj(x)

 = sign(H(x)) (5.9)

where H(x) is the learned strong classifier. The αj is the weight of the j-th weak

classifier hj(x) and is computed during training. All the boosting algorithms are de-

signed to minimize an exponential cost function exp
(
−y
∑W

j=1 αjhj(x)
)
. If the weak

classifier hj(x) returns a discrete class label {−1,+1}, the boosting algorithm is called

AdaBoost. Instead of making a hard decision, if the weak classifier hj(x) returns a

real value prediction like a probability mapped to the interval [−1,+1], it is called real

AdaBoost. The gentle AdaBoost is a modified version of the real AdaBoost algorithm,

which applies Newton step rather than exact optimization at each step of minimizing

the loss function. The LogitBoost is another boosting algorithm which uses Newton

steps to fit an additive logistic regress model based on maximum likelihood. The weak

classifier we used was an eight node classification and regression tree (CART ).

We experimentally tested each of the classification algorithm. The gentle AdaBoost

using an eight node CART decision tree provided the best results for binary classifica-

tion problem. Figure 5.5 shows the details of the gentle AdaBoost algorithm.

Multi-class experiments were designed to determine the capacity of the system to
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Input: Given n features xi in Rq and their corresponding labels yi =
{1, 2, ...,M}, where M represents the number of classes.
Training:

• Using the original n training samples to compose a n∗M observation ma-
trix of training samples {(xi, 1), yi1}, ..., {(xi, j), yij}..., {(xi,M), yiM},
where yij is the {−1,+1} response for j-th class of training sample xi.

• Generate the j-th strong classfierHj(x) by applying the gentle AdaBoost
algorithm in Figure 5.5 on the j-th row of the observation matrix. Con-
tinue this step for each class.

Output:

• Output the final classification result by maximizing argmaxjHj(x).

Figure 5.7: The multi-class gentle AdaBoost using an eight nodes classification and
regression tree (CART) as the weak learner.

subclassify different types of cancer. Given a M -class classification problem and N

training samples {x1, y1}, ..., {xN , yN}. The xi ∈ Rq denotes the i-th feature vector

in the reduced subspace and yi ∈ {1, 2, ...,M} represents the corresponding ground-

truth class labels. The target is to find a strong classifier which minimizes a multi-class

exponential loss function
∑M

j=1 exp(−yiHj(x)) where Hj(x) is the j-th strong classifier.

This is equivalent to run separate boosting algorithms in an one-against-all manner.

One-against-all boosting constructsM binary classifier, each of which is used to separate

one class from all the others. The j-th strong classifier was trained using boosting with

all the training samples satisfying yi = j, i = 1, 2, ..., N as positive and all the others

as negative. As the gentle AdaBoost outperformed the other methods in the previous

binary classification, we extended it to classify two different subtypes of cancers from

benign tissue images in the multi-class experiment. The multi-class gentle AdaBoost

algorithm is shown in Figure 5.7.

5.4 Experiments

The tissue microarrays used in our experiments were prepared by different institutes:

the Cancer Institute of New Jersey, Yale University, University of Pennsylvania and

Imgenex Corporation, San Diego, CA. To date over 300 immunostained microscopic

specimens, each containing hundreds of tissue image, were digitized at 40× volume
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Table 5.1: The confusion matrix of three classes with column labels as inferred class
and row labels as ground-truth classes

(%) Benign Cancer I Cancer II
Benign 84.5 6.4 7.1

Cancer I 6.8 81.2 13.8
Cancer II 8.7 12.4 79.1

scan using the Trestle MedMicro, a whole slide scanner system. The output images

typically contain a few billions of pixels and are stored as a compressed tiled TIFF file

sized at about two gigabytes. The registration protocol proposed by [16] was applied to

automatically identify the rows and columns of the tissue arrays. Staining maps of the

two dyes, diaminobenzidine (DAB) and hematoxylin, were generated from specimens

and each of the two staining maps as well as the luminance of the original color image

were submitted to the IBM World Community Grid for batch processing.

We have analyzed 3744 breast cancer tissues (674 hematoxylin and 3070 DAB stain-

ing) from the 100,000 images processed on the Grid. Without the Grid, it would require

about 210 days of computation to generate the texton library even with an efficient C++

implementation on a PC with P3 1.5GHz processor and 1G RAM. However, we can

build this universal texton library in less than 40 minutes in the largely distributed

computing system [7].

The labels of all breast tissues from the hospitals and institutions are independently

confirmed by certificated surgical pathologists. The dataset used in these experiments

consisted of 611 benign and 3133 cancer samples. Each of the five algorithms was

applied 10 times, using different parts of the training images drawn by random sampling.

Figure 5.8 shows the average classification results. Because there were more positive

samples than the negative samples, we obtained higher false positive errors but lower

false negative errors (Figure 5.8b) than the average error (Figure 5.8a).

The experimental results are presented for studies in which the original gentle Ad-

aBoost algorithm was modified to accommodate multi-class classification. Based on

the direction of the clinical pathologist, we separated six subtypes of cancer tissues

into two sub-groups: cancer class I which contains DCIS and LCIS and cancer class
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(a)

(b) (c)

Figure 5.8: The classification results. (a) The accuracy as the function of the size of
training set using Gentle Boosting, Soft Margin SVM, KNN with K = 3 or 5 and
naive Bayesian. (b) The false positive and false negative errors using 20% images as
training set. (c) Some misclassified samples. The upper row is false positive and lower
row is false negative.

II containing IDC, ILC, LNN and STM. The dataset is consisted of 611 benign, 1103

cancer class I and 2030 cancer class II. 30% of the images in each class were randomly

selected for training and the remaining 70% was used for testing. The classification

accuracy is reported on the left of Figure 5.1. The confusion matrix is presented on

the right of Figure 5.1. Figure 5.9 shows some correct classification samples and failed

cases. The left most three columns are correctly classified samples, and the right most

fourth column shows the failed cases. The first row is the benign tissue where the last

one is misclassified as cancer class II. The second row represents cancer I while the last

tissue image is misclassified as benign. The last row is the cancer II, and the last image

is misclassified as cancer I. In Figure 5.9 we show the large intra-class variances and

inter-class similarities which produced the classification errors.

From all these experiments, it was shown that the gentle AdaBoost provided sat-

isfactory results on both binary and multi-class classification of breast tissue images.
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Figure 5.9: The multi-class classification results using the gentle AdaBoost. The left
three columns are correct classified samples and the right fourth column shows the
failed cases. The first row is the benign samples. The second and third rows are the
cancer samples.

We obtained an average 89% accuracy in separating benign from cancer tissue and an

average accuracy of 80% in classifying two types of breast cancers from benign. In both

cases only 30% of the images were used in the training.
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Chapter 6

A Fast Nonlinear Image Registration Using Landmarks

and Robust Estimation

6.1 Introduction

A set of image acquired at different time, or from different perspectives, will be in

different coordinate systems. It is therefore critical to align those images into the same

coordinate system before applying any image analysis. Image registration is the process

to determine the linear/nonlinear mapping T between two images of the same object or

similar objects. Throughout the whole chapter, we will define one of the image as the

fixed image, the other image which will be registered to the fixed image is defined as

moving image. Image registration is widely used in remote sensing, image fusion, image

mosaicing and especially medical image analysis. Different imaging modalities, such as

CT, MRI, ultrasound and PET, etc., have their own advantages and disadvantages.

It would be useful for the doctors to make the decision based on different imaging

modalities. However, it is very common that a patient’s image, either same modality

or multiple modalities, was acquired under different positions or deformations when

it was taken. In Figure 6.1, we show two sets of examples which require the image

registration. Figure 6.1a shows three images of the same person which have different

viewpoints. In Figure 6.1b, although all the images are roughly aligned, they were

taken from three different persons. For either situation, the image registration is one

of the key challenges.

Image registration can be separated as rigid registration [90, 59] and non-rigid reg-

istration [80, 168]. Given the fixed and moving images, both of the problems can be

described as finding a linear/nonlinear transformation which maps each point in the

fixed image to a point in the moving image. There are usually two ways to describe
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(a)

(b)

Figure 6.1: The image registration examples. (a) Three images which have different
view points. (b) Three side view images which were taken for three different persons.

the transformations. The first method is to define a dense nonparametric model and

estimate the position of each point after the registration. Many nonrigid registration

algorithm based on elastic deformations, such as fluid deformation based algorithm

[13, 2] and Demon’s algorithm [133, 141], fall into this category. The second approach

is to model the transformation by a function with some parameters. By estimating

the parameters, the algorithm can register each point in the fixed image with the mov-

ing image. B-spline based image registration algorithm belongs to this group. The

modeling of the nonlinear deformation using B-spline was introduced in [129]. Mutual

information was used in [115] as the cost function where the transformation is modeled

as B-spline. A block nonlinear Gauss-Seidel algorithm is used in [98] to minimize the

cost function in 2D image registration, where the transformation is modeled as B-spline.

B-spline transformation is extended to model transformation for 3D image registration

in [101].

In this chapter, we will introduce a fast and robust image registration algorithm for

both 2D and 3D images which belongs to the second category. The algorithm starts from

an automatically detection of the landmarks followed by a coarse to fine estimation of
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the nonlinear mapping. For 2D images, multiple resolution oriental histograms is used

to obtain fast affine invariant local descriptor of the detected landmarks. For 3D images,

considering both the speed and accuracy, the global nonrigid linear registration is first

applied to pre-align two 3D images. Simple template matching is further used to obtain

the point correspondence between landmarks in the fixed and moving images. Because

there is a large portion of outliers in the initial landmark correspondence, a robust

estimator, RANSAC [42], is applied to reject outliers. The final refined inliers are used

to robustly estimate a thin spline transform (TPS) [20] to complete the final nonlinear

registration. The algorithm is completely unsupervised and computationally efficient.

Due to the small number of landmarks, the method runs significantly faster than many

widely used nonlinear registration algorithms, such as Demon’s and B-spline. Compared

with the state-of-the-art, the proposed algorithm can also handle large transformation

and deformation while still provide good registration results. The parallelization of the

proposed algorithm on an IBM Cell/B.E. processor was also explained in details.

In Section 6.2 we introduce the image registration algorithm. In Section 6.3 we will

review the current parallelization algorithm for image registration. In Section 6.4, we

describe the parallelization implementation using a IBM Cell/B.E. The experimental

results were shown in Section 6.5 and Section 6.6 concludes the paper.

6.2 Image Registration

The image registration algorithm starts from automatic detection of a set of landmarks

in both fixed and moving images, followed by a coarse to fine estimation of the nonlinear

mapping using the landmarks. Robust estimation is used to find the robust correspon-

dence between the landmarks in the fixed and moving image. The refined inliers are

used to estimate a nonlinear transformation T and also wrap the moving image to the

fixed image.
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(a)

(b)

Figure 6.2: The landmark detection using Harris corner detector. (a) The original
images. (b) The images with the landmarks overlayed.

6.2.1 Landmark Detection and Matching

The automatic landmark detection is the procedure of accurate detection of the promi-

nent or salient points in the image. Harris corner detector is applied to find the point

with the large gradient on all the directions (x and y direction for 2D image and x, y

and z directions for 3D image). The original computation in the Harris corner detector

involves the exact computation of eigenvalues. Instead, we are using determinant and

trace to find the corners where α is chosen as 0.1.

F = det(A)− αtrace(A) (6.1)

Some landmark detection examples are shown in Figure 6.2.

After we detect the landmarks, we can extract features from the neighborhood of

each landmark. For 2D images, the local orientation histograms are used as the features

for landmark matching. The image is first convolved with the orientation filters. The

filtering response in the neighborhood around the landmarks is computed to form the

orientation histogram. Let Gx(i, j) and Gy(i, j) represent the gradients on pixel p(i, j)

along x and y direction, respectively. The orientation histogram hk is defined as

hk(i, j) =

 C(i, j), θ(i, j) ∈ bink

0, otherwise
(6.2)
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(a) (b)

Figure 6.3: The procedure for 3D image registration. (a) The procedure for the re-
gion based image registration. (b) The flowchart for the whole coarse to fine image
registration algorithm.

where

C(i, j) =
√
Gx(i, j) +Gy(i, j) (6.3)

and

θ(i, j) = arctan
(
Gy(i, j)
Gx(i, j)

)
. (6.4)

The orientation histogram encodes the directions of the edges at each landmark point

and is proven to be an effective when the training samples are small [83].

For 3D image, considering speed, image intensity template in the neighborhood of

pixel p(i, j) is used for 3D landmark matching. Region based coarse to fine image

registration was also used in 3D image to increase the accuracy for landmark matching

considering both the speed and robustness. In Figure 6.3a we show the procedure for

the region based 3D image registration. The cost function used in our algorithm is

the mean square distance metric for single modality image registration and the mutual

information [109] for multiple modalities. The optimization is the simple gradient

decent method. However, for 3D similarity transformation, because rotation is not on

the vector space, quaternion [55] based gradient decent is used instead for optimization.

The region based and landmark based image registration can benefit each other because:

• the coarse to fine region registration increase the robustness of landmark based

registration;
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Figure 6.4: An example of a three layer Gaussian image pyramid and their correspond-
ing 3D volumetric data.

• the landmark based registration increase the speed and help the region based

optimization to recover from local minimal.

The whole coarse to fine image registration procedure using both region and land-

marks is shown in Figure 6.3b. We should emphasize that the Gaussian image pyramid

was applied to reduce the noise and increase the robustness. The levels of the pyramid

is automatically calculated by setting a fixed size (64 × 64 × 64) in the lowest resolu-

tion. The number of pyramid levels is then calculated given the actual size of the input

image. The Gaussian kernel is 0 mean and σ = 5. This adaptive selection of the image

pyramid levels can improve the scalability of the algorithm, because large image will

be assigned more levels while smaller image will has less levels. One example of a three

layers Gaussian pyramid built on the whole body MRI image is shown in Figure 6.4.

6.2.2 Robust Estimation and Nonlinear Image Registration

Because the original matching landmark sets contain missing landmark matching or

error landmark matching. RANdom SAmple Consensus (RANSAC) [42] is used to

reject outliers and robustly estimate the transformation. The algorithm is listed in

Figure 6.5. The RANSAC robust estimator randomly choose the minimal subset of the

landmarks to fit the model. Measured by a cost function, the points within a small

distance will be considered as a consensus set. The size of the consensus set is called

the model support M . The algorithm is repeated multiple times and the model with

largest support is called the robust fit. In Figure 6.6 we show the results of applying

robust estimation to reject the outliers in the original matching landmarks. The Harris
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Input: Given N m-tuples of data, threshold τ , and probability p
Algorithm:

• K = ∞, k = 0, p∗ = [],M∗ = 0

• while K > k do

– Choose a sample set S from N with size m

– Compute the model parameter p from the sample set S

– Count the number M of inliers using p and τ

– if M > M∗

∗ M∗ = M

∗ p∗ = p

∗ w = M/N

∗ K = ceil
(

log(1−p)
log(1−wm)

)
∗ k = k + 1

– end if

• end while

Output: parameter p∗

Figure 6.5: The RANSAC algorithm

corner detector detected 32 landmark pairs in Figure 6.6(b). Based on the assumption

of an affine transformation, the RANSAC found 8 inliers (shown in Figure 6.6(c))and

the rest 24 matching landmarks are rejected as outliers under the assumption for Affine

transformation.

The thin plate spline transform (TPS) is used to estimate the nonlinear transforma-

tion between the fixed and moving image based on the robust landmark correspondence.

By minimizing the bending energy of the mapping transformation T defined in equa-

tion (2.33), TPS can provide a smooth matching function for each point in both images.

The resulting nonlinear transformation is applied to map the moving image to the fixed

image.
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(a) (b) (c)

Figure 6.6: Apply the robust estimation to find the robust landmark correspondence.
(a) The original fixed and moving image. (b) The original pairs of matching points. (c)
The robust matching points after rejecting the outliers.

6.3 Current Parallelization Method For Image Registration

While research effort continues to explore methods and strategies for more efficient and

rapidly converging computational methods, increasing attention has been given to hard-

ware architecture-based parallelization and optimization algorithms for the emerging

high performance architectures, such as cluster and grid computing, advanced graphi-

cal processing units (GPU) and multicore computers. In [19] a parallel implementation

of multimodal registration is reported for image guided neurosurgery using distributed

and grid computing. The registration time was improved dramatically to near real-

time. In [144] a distributed computation framework is developed, which allowed the

parallelization of registration metrics and image segmentation/visualization algorithms

while maximizing the performance and portability. One key deterring factor in adopt-

ing supercomputer-based, cluster-based or grid computing architectures is availability

and cost. Even for some large clinical institutions, financial limitations can be a major

hurdle. The recent emergence of low cost, high computing power, multi-core processor
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Figure 6.7: The time profile for the entire nonlinear registration algorithm

systems have opened up an alternative venue for developing cost-effective high perfor-

mance medical image registration techniques. In [102], a close to real time implemen-

tation of a mutual information based linear registration is reported. The algorithm is

designed based on the Cell Broadband Engine (Cell/B.E.) multicore processor architec-

ture. General parallel data mining algorithms on the Cell/B.E. are reported in [10, 34].

In [47], a high performance distributed sort algorithm is proposed for the Cell proces-

sor. As an application, the implementation of the Radioastronomy image synthesis on

the Cell/B.E. is discussed in [139]. According to our knowledge, this is the first study

reporting fast and robust landmark based nonlinear image registration algorithm on a

multicore platform.

6.4 Parallelization on the IBM Cell/B.E.

The adaptive multi-resolution region and landmark based image registration algorithm

can provide good registration results, but requires relatively time consuming point

matching procedure. In Figure 6.7 we show the executive time profile for each step

in our algorithm for 2D image registration. It is quite obvious that the bottleneck is

the landmark matching part. Therefore we implemented the whole landmark matching

routine on the IBM Cell/B.E. processor.

The IBM Cell/B.E. [69, 15] is a multi-core chip with a relatively high number of

cores. It contains a Power Processing Element (PPE) which has the similar function

and configuration as the regular CPU. It also has multiple cores which are optimized for
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Figure 6.8: The multi-core architecture of the IBM Cell/B.E.

single precision float point algorithm, the Synergistic Processing Element (SPE). The

PPE contains 32K L1 cache, 512K L2 cache and a large amount of physical memory

(2G in our case). Unlike the PPE, the SPE has a quite different architecture compared

with the standard CPU. The SPE operates on a 256KB local store to hold both code

and data. The SPE also support 128 bit Single Instruction, Multiple Data (SIMD)

instruction set for effective vector operations. The data transfer between SPE and

PPE is through the direct memory access (DMA). DMA is quite time consuming so

that a good parallel implementation should minimize the number of DMA operations.

The heterogeneous multi-core architecture of the Cell/B.E is shown in Figure 6.8. The

parallel implementation of a linear registration algorithm was reported in [102]. To

our knowledge, our work is the first parallel implementation of a hybrid landmark and

region based nonlinear image registration on the cell/B.E..

6.4.1 Data Partitioning and Parallelization

Given all the detected landmarks in the fixed image, we first apply the K-means algo-

rithm to cluster them based on their Euclidean distance in the image, where K = 16

is set to be the number of the computing units in the IBM Cell Blade machine. Based

on the boundary landmarks in each cluster center, we can calculate the largest and

smallest coordinates to crop the sub-image accordingly. Because we know the size of

the code running on the SPE unit in advance, we can compute the maximal size of the

sub-image that can be stored on a single core (e.g. single SPE). If the image patch can
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(a)

(b)

Figure 6.9: The procedure of the parallel image registration algorithm. (a) The flow
chart of the parallelization. (b) The data partitioning using K-means clustering.

fit into the local storage, the whole cluster of landmarks and their corresponding image

patch are sent to the SPE for parallel processing using just one direct memory access

(DMA). Because the number of DMA is critical for the performance of the parallel

algorithm, the advantage of applying K-means to group the landmarks into clusters

is to minimize the number of direct memory access operations. Landmarks which are

spatially close to each other are grouped together and transferred into one computing

core (e.g. one SPE in a Cell Processor) using one DMA call. In Figure 6.9a we show

the procedure of parallelizing the registration algorithm. The K-means clustering and

job scheduling to 16 PPEs are illustrated in Figure 6.9b.

Thread for each core or Synergistic Processing Element (SPE) is created only once

in order to reduce the overhead related to thread creation. The point matching for our

registration implementation is executed twice, one during the stage of linear registration

and on during the stage of nonrigid registration. If we create an SPE thread each time

when a point matching process starts, then all the SPE threads have to be created
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Figure 6.10: The landmark distribution on each SPE unit of the IBM Cell/B.E.

and destroyed repeatedly resulting additional execution time. In our implementation,

all SPE threads are created before the first execution of the point matching process.

These threads will be kept alive until the second point matching process is completed.

It is true that the created SPE threads will be idle between the end of the first pass

and the start of the second pass point matching processes, since the tasks in between

are executed on PPE. This however does not cause any performance problem because

those idle threads remain in the SPE spaces, which essentially has no impact to the

main PPE thread.

Both the main core Power Processing Element (PPE) and SPEs are kept busy in

sharing the point matching tasks. Initially we partitioned the landmark points into

clusters and distribute evenly the clusters to the available SPEs. The main PPE thread

waits for the completion of all active SPE threads before it proceeds to the next step

of the registration process. Apparently this design overlooked the PPE computing

resource, though it is indeed a different type of processor from SPE processors. It turns

out that for some images, there may exist situations in which the sub-image enclosing

the cluster is a little bit too large to send to a SPE by one DMA command and the

space has to be further partitioned and then transferred to the SPE in more than one

step. Even though such cases are rare, the second round partition is still critical to

speed up the whole registration process.

The purpose of applying K-means clustering for data partitioning is to decrease the

number of direct memory access (DMA) operations. In order to fully utilize each SPE
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Table 6.1: The break points for the three algorithms

Translation(Voxel) Scale Rotation(degree)
ITK >20 >1.4 >15

MedINRIA >20 >1.3 >15
Our algorithm >30 >2.5 >45

computing unit, the work load should be balanced. Because our algorithm selects the

landmarks considering their spatial relationships, the K-means clustering intends to

provide similar amount of landmarks in each cluster. In Figure 6.10 we show a typical

work load distribution for one image pair on 16 SPE, it is clear that the number of

landmarks assigned to each cluster roughly form a uniform distribution.

6.4.2 Landmarks assembling and transformation estimation

The main processor or main core (e.g. PPE) is responsible to spool and destroy all

the threads of computing cores (e.g. SPE). As we shown in Figure 6.9a, the PPE

is also in charge of assembling all the matching points returned from each SPE and

converts the results back to the original image coordinate systems. Robust estimation

is applied to reject outliers and preserve the robust landmark correspondence. Nonlinear

transformation is finally estimated to register the fixed image and the moving image.

6.5 Experimental Results

We first test our algorithm using the simulated affine transformations. Forty simulated

3D human abdomen MRI images are generated by applying forty simulated deforma-

tions. The algorithm is compared with the multiple resolution affine registration im-

plemented in ITK [66] and also the free software MedINRIA developed by INRIA [95].

The registration accuracy is evaluated based on whether the algorithm can successfully

recover the affine transformation parameters.

E = max
{
|p∗t − pt|

δt
,
|p∗r − pr|

δr
,
|p∗s − ps|

δs

}
. (6.5)
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(a) (b) (c) (d) (e)

Figure 6.11: Comparative registration results on the human abdomen CT image pair.
(a) The fixed image. (b) The moving image. (c) The registration algorithm using the
MedINRIA [95]. (d) The registration algorithm using ITK [66]. (e) The registration
results using our algorithm.

The p∗t , p
∗
r , p

∗
s represent the estimated translation, rotation and scale parameters. The

pt, pr, ps are the ground true transformation parameters. The δt = 1, δr = 0.5, δs = 0.01

are the normalization factors for translation, rotation and scale, respectively. The

registration is treated as success if E ≤ 1.0. Our proposed algorithm can recover 95%

of the image pairs while the ITK and MedINRIA can only recover 70% and 50% for

the image pairs with large deformation. We also list the parameters which will fail the

algorithms (break points) for all three methods in Table 6.1. From the experimental

results we show that the proposed algorithm can accurately register two images even

with 2.5 times scale difference and 45 degree of rotation. It is clear from this study that

our algorithm demonstrate more robust registration for large deformations compared

with commonly used registration algorithm [66, 95]. Some representative results are

shown in Figure 6.11.

The parallelization code was built for two different platforms. The parallel version

was tested on an IBM BladeCenter Q21 featuring 2GB of RAM and two processors

running at 3.2 GHz configured as a two-way, symmetric multiprocessor (SMP) [100].
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Table 6.2: The statistics of the running speed for 10 trials using the sequential and
parallel multicore platform

Mean Variance Median
x86 5.95 0.26 5.82

Cell/B.E. (PPE only) 6.13 0.001 6.12
Cell/B.E. (16 SPEs) 0.60 0.0067 0.60

Min Max 80%
x86 5.33 6.93 6.22

Cell/B.E. (PPE only) 6.12 6.14 6.13
Cell/B.E. (16 SPEs) 0.50 0.70 0.70

A thread running on a PPE can communicate with all 16 SPEs. The Cell/B.E. SDK

3.0 and GCC compiler were used to implement and compile the algorithm. In all our

experiments, there was one main thread running on one of the PPEs and up to 16

threads on the SPEs. The sequential version was running on an x86 machine at 2.6

GHz and 4G memory. The compiler is also GCC.

All the image pairs used for testing have dimensionality (192 × 192). Because the

point matching procedure dominates the running time of the registration algorithm,

this step is the only part parallelized on the Cell/B.E. For fair comparison we run

each implementation (sequential and parallel) 10 times. The statistics of the running

speed on two platforms are shown in Table 6.2. Please notice that x86 refers to the

sequential implementation on a x86 machine running with Linux. The Cell/B.E. (PPE

only) denotes the running time on the multicore Cell processor using only the main

processor PPE. The Cell/B.E. (PPE only) represents the parallel running time by fully

utilizing all the 16 computing cores (SPEs). The 80% column in Table 6.2 represents

the sorted 80% smallest running times of all 10 trials, and is commonly used to evaluate

the performance of the system. Using the multicore platform, we roughly achieved 10

times of speedup over its corresponding sequential implementation. In total, the parallel

version of the algorithm can register a pair of image (192×192) in less than five seconds.
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6.6 Conclusion

In this chapter, we have described a a robust and accurate 2D/3D image registration

algorithm. The 2D version of the image registration algorithm is implemented on the

IBM Cell/B.E. We have achieved about 10 times speed up, which allows our algorithm

to complete the nonlinear registration of a pair of images (192 × 192) in less than

five seconds. Our proposed data partitioning approach and the parallelization schema

are independent to the parallel platforms and generic by its design, therefore it can be

extended to other point matching related applications and other parallel platforms. The

work discussed here is a part of an ongoing effort in developing full scale parallelization

of a set of registration algorithms including the one reported in this paper. Future

work will also include the generalization of the parallelization algorithm to handle 3D

images.
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Chapter 7

Conclusions

This thesis proposed several novel algorithms for multiple class image segmentation.

For the blood smear image, the L2E robust estimation and robust color GVF snake are

applied to delineate both the nuclear and cytoplasm of the imaged cells. A multiple

object segmentation algorithm based on concave vertex graph is proposed to separate

touching cells. A variational framework using coarse to fine shape alignment and semi-

parametric density approximation are proposed to handle occluded image segmentation.

We also present an object-based segmentation on a large number of objects. Using

mean-shift patches, the multiple class object-based segmentation is achieved by combing

top-down and bottom-up information. A novel affine invariant descriptor is proposed

to model the spatial configurations of the landmarks. The algorithm is computationally

efficient and has been tested for three real datasets where the largest one contains 21

different classes.

Tracking the left ventricle (LV) in 3D ultrasound data is a challenging task because

of the poor image quality and speed requirements. Many previous algorithms applied

standard 2D tracking methods to tackle the 3D problem. However, the performance is

limited due to increased data size, landmarks ambiguity, signal drop-out or non-rigid

deformation. We present a robust, fast and accurate 3D LV tracking algorithm in this

thesis. A novel one step forward prediction is utilized to generate the motion prior

using motion manifold learning. Collaborative trackers are integrated to achieve both

temporal consistency and failure recovery.

Next we also introduce a Grid-enabled computer aided diagnosis system to perform

automatic analysis of imaged histopathology breast tissue specimens. Both linear and

nonlinear dimension reduction techniques are compared, and the best one (ISOMAP)
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Input: Given the i-th feature xi in Rq and their corresponding labels yi =
{−1, 1}.
Online Bagging:

• For each hj where j = 1, ...,M represents the ith base model.

– Draw k from the Poisson distribution with λ = 1.

– Iterate k times to update the base model hj .

Figure 7.1: The online bagging algorithm.

was applied to reduce the dimensionality of the features. The experimental results show

that the Gentle Boosting using an eight node decision tree as the weak learner provides

the best result for classification.

Finally we present an image registration algorithm for both 2D and 3D images.

This hybrid framework combine the advantages of both region based and point based

approach. The parallelization of the algorithm is further implemented on an IBM Cell

Broadband Engine. The speed up version of the algorithm can register two 2D image

pairs (128× 128) in less than 5 seconds.

7.1 Direction for Future Research

7.1.1 Online Learning for Object Recognition and Tracking

Boosting is one of the most successful machine learning algorithms in recent literature.

However, most of the current boosting algorithm is trained on batch mode. This is

not the case for many real applications because the entire training set may not be

available at the training time. It might be impossible or inconvenient to retrain all the

classifiers when new training samples arrive. Online learning algorithms can process

each training sample when it arrives individually. It also requires the classifiers to

reflect the properties learned from the previous training samples.

The idea of online boosting is generated from the online bagging [108]. Given a

training set T with N training samples {x1, y1}, ..., {xN , yN}. The xi ∈ Rq denotes

the i-th feature vector and yi ∈ −1, 1 represents the corresponding ground-truth class

labels. The standard bagging creates M models. Each model is trained on a bootstrap
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Input: Given the i-th features xi in Rq and their corresponding labels yi =
{−1, 1}.
Training:

• Set the initial λ = 1.

• For each hj where j = 1, ...,M represents the ith base model.

– Draw k from the Poisson(λ).

– Iterate k times to update the base model hj .

– If the result is the correct label, we increase the value of λ, otherwise
we decrease the value of λ.

Figure 7.2: The online boosting algorithm.

sample of size L which is randomly sampled from T with replacement.

Each base model contains K copies of the original training sample which is a

Binomial distribution

p(K = k) =
(
N

K

)(
1
N

)k (
1− 1

N

)k

. (7.1)

It is well known that the Poisson distribution can be derived as a limited case of

the Binomial distribution. When N → ∞, the distribution of K tends to become a

Poisson distribution.

p(K = k, λ) =
λke−λ

k!
(7.2)

where λ represents the Poisson distribution parameter. In the online bagging, as each

training sample arrived, we can make a draw from the Poisson distribution and update

the based model accordingly. The online bagging algorithm is listed in Figure 7.1.

Similar idea can be extended to boosting. Instead of train the weak learner directly on

the weighted training samples, we can draw samples according to Poisson distribution

with the parameter λ modified by the classification errors as shown in Figure 7.2.

In online boosting, it might not be difficult to estimate the corresponding voting

weights because we know the classification errors of the weak learner, although the

error is only based on the current training sample instead of the whole set in the off-

line version. The major difficulty comes from the weight distribution for the training

samples because we disregard all the previous samples in the online version. Assume

we have a training set which contains 1000 samples. In original AdaBoost, the classifier
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is trained on all the 1000 samples before it is tested on, e.g., the 100th testing sample.

In the online version of AdaBoost, the classifier is only trained on the first 99 training

samples when it is tested on the 100th test sample. If there exists a large nonlinearity

between the first 99 training samples and the rest of the training set, the weak learners

will be quite different. The offline classifier can be treated as the global optimal solution

on the whole training set while the online classifier is only locally optimal.

Since the members of the final classifier is not fixed after the initial learning period,

the online boosting is able to adapt rapidly to non-stationary environment. However, it

is not able to perform better than offline boosting using a fixed set of training samples

in general [108]. It is worth to research on the online learning algorithm which can

produce close performance to offline boosting.

7.1.2 Registration Based Heart Torsion Modeling

The motion of the myocardial region in the left ventricles can be critical to decide the

health condition of the heart. Speckle tracking is widely used to track the motion in the

myocardial region in the left ventricles of the human hearts. However, there are a lot

randomness if we track the speckles independently. In order to keep the correspondence

between frames in tracking, the registration algorithm proposed in Chapter 7 can be

applied to constrain the torsion type of motion. If we decomposed the motion of the

left ventricles as contraction and torsion. The torsion part can be modeled as on

surface movement which is perpendicular to the contract direction. By applying mesh

registration between adjacent frames, it can be shown that the torsion can be modeled

accurately.
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