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ABSTRACT OF THE THESIS
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Curvature is fundamental to the study of differential geometry. It describes different

geometrical and topological properties of a surface in R3. Two types of curvature are

discussed in this paper: intrinsic and extrinsic. Numerous examples are given which

motivate definitions, properties and theorems concerning curvature.
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1 Introduction

For surfaces in R3, there are several different ways to measure curvature. Some

curvature, like normal curvature, has the property such that it depends on how we

embed the surface in R3. Normal curvature is extrinsic; that is, it could not be

measured by being on the surface. On the other hand, another measurement of

curvature, namely Gauss curvature, does not depend on how we embed the surface

in R3. Gauss curvature is intrinsic; that is, it can be measured from on the surface.

In order to engage in a discussion about curvature of surfaces, we must introduce

some important concepts such as regular surfaces, the tangent plane, the first and

second fundamental form, and the Gauss Map. Sections 2,3 and 4 introduce these

preliminaries, however, their importance should not be understated as they lay the

groundwork for more subtle and advanced topics in differential geometry. For exam-

ple, the first fundamental form plays a very special role in the calculation of curvature.

It also provides a way of calculating angles between vectors and distance at a point

p on a regular surface.

Once these preliminary concepts are introduced, it is then possible to define the

different types of curvature and how to calculate them. Of particular importance

is Gauss’s Theorema Egregium, which is discussed in section 4. Gauss was able

to prove that Gauss curvature K is an intrinsic quantity even though it can be

calculated in terms of extrinsic quantities. Section 4 offers several examples to go over

the geometry of points on a regular surface for different values of Gauss curvature

K. Section 5 offers a potpourri of some geometrical and topological facts concerning

curvature, including mean curvature, and a counterexample to show that the converse

of Theorema Egregium is false. Section 6 offers some closing remarks about the

importance of curvature in differential geometry, which is central to the study of the
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differential geometry of surfaces.

2 Surfaces and Tangent Planes in R3

In differential geometry, we require that our surfaces are smooth so that they provide

the means to do calculus. To do this, we must map points of an open set in R2

to points in R3, namely, our regular surface S. However, since we require that S be

smooth, we must map in such a way that the mapping is differentiable. The mapping

must also be continuous, injective, with continuous inverse, and the differential of the

mapping must also be injective. The result is called a regular surface. Intuitively,

this means that we are deforming pieces of a plane (the open set in R2) in such a

way that what we end up with is something that does not have sharp edges or self

intersections. More formally, we state the definition the following definition.

Definition 1. We call S ⊂ R3 a regular surface if for each V ⊂ R3 there is a map

x:U→ V ∩ S, where U ⊂ R2 is an open set, such that the following are satisfied

1. The map x(u,v) = (x(u, v), y(u, v), z(u, v)) has continuous partial derivatives.

2. x is a homeomorphism. That is, x is a one-to-one correspondence between U

and V ∩ S and this correspondence is continuous. Additionally, the inverse of

x is continuous.

3. The differential dxp is one to one for each p in U.

The map x is called a parameterization. Property (1) is essential for us to be able

to do calculus. Property (2) guarantees that there won’t be any self intersections.

Property (3) guarantees that at each point p in S there is a tangent plane (see section

2.4 of [1] for a proof of this). Note that it may take more than one parameterization x
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to cover all of S. For example, if we consider the unit sphere in cartesian coordinates

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}, it would take six parameterizations to cover

all of S2:

x1 = (x, y, +
√

1− (x2 + y2)

x2 = (x, y,−
√

1− (x2 + y2)

x3 = (x, +
√

1− (x2 + z2), z)

x4 = (x,−
√

1− (x2 + z2), z)

x5 = (
√

1− (y2 + z2), y, z)

x6 = (−
√

1− (y2 + z2), y, z)

Also note that the parameterization for a regular surface need not be unique; that

is, in our particular example, the fact that the sphere is a regular surface does not

depend on the choice of parameterization [1]. This can be to our advantage as some

parameterizations lend themselves to simpler calculations. Consider the following

example.

Example 1. Let x(θ, φ) = (sin θ cos φ, sin θ sin φ, cos θ) where 0 < θ < π and 0 <

φ < 2π. Notice that x(u, v) is the standard representation of the unit sphere in

spherical coordinates. We can verify that the unit sphere is in fact a regular surface by

verifying that properties 1-3 from Definition (1) hold. Property 1 is easily satisfied as

sin θ cos φ, sin θ sin φ and cos θ are continuously differentiable functions. For property

2, first notice that our parameterization leaves out a semicircle (including the north

and south poles) C = {(x, y, c)|y = 0, x ≥ 0}. Since z = cos θ, then θ = cos−1 z is
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uniquely determined for a given z. Now given

x = sin θ cos φ

y = sin θ sin φ

defined on S2 − C, we can rewrite the above equations as

x

sin θ
= cos φ

y

sin θ
= sin φ.

That is, we’ve found φ uniquely in terms of θ and so x(θ, φ) is one-to-one which means

x−1 exists. The fact that x(θ, φ) is differentiable implies that it is also continuous and

so x(θ, φ) is a homeomorphism. For property 3, notice that the differential is

dxp =





∂x
∂θ

∂x
∂φ

∂y
∂θ

∂y
∂φ

∂z
∂θ

∂z
∂φ




=





cos θ cos φ − sin θ sin φ

cos θ sin φ sin θ cos φ

− sin θ 0




.

Calculating the cross product of xθ and xφ,

xθ × xφ =





$i $j $k

cos θ cos φ cos θ sin φ − sin θ

− sin θ sin φ sin θ cos φ 0





= $i(sin2 θ cos φ)−$j(sin2 θ sin φ) + $k(sin θ cos φ), (1)

we note that the length of (1) is

= |$i(sin2 θ cos φ)−$j(sin2 θ sin φ) + $k(sin θ cos φ)|
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=
√

sin4 θ cos2 φ + sin4 θ sin2 φ + sin2 θ cos2 θ

=
√

sin4 θ + sin2 θ cos2 θ

=
√

sin2 θ = sin θ

which is nonzero when 0 < π < θ. As such, the differential is one to one and property

3 is satisfied. Since properties 1-3 are satisfied, the sphere is a regular surface.

It would be much simpler if we did not have to verify properties 1-3 in the definition

of a regular surface each time we wanted to check if a given set is a regular surface.

Fortunately, there are easier ways. Suppose that your parameterization x(u,v) =

(u, v, z(u, v)) where z(u, v) is differentiable with respect to u and v. That is, x is

the graph of a differentiable function. Then x is a regular surface. To demonstrate

this, first note that xu = (1, 0, zu) and xv = (0, 1, zv). Since z is differentiable with

respect to u and v, condition 1 for a regular surface is satisfied. Note that if we

have points u1, v1, u2, v2 ∈ U where u1 (= u2 and v1 (= v2, then the image under x

produces two unique points (u1, v1, z(u1, v1)), (u2, v2, z(u2, v2)) and so x is one-to-one.

Since x is injective, x−1 exists. It is clearly continuous as each component of x(u, v)

is a continuous function. We note that x−1 is simply the projection of the point

(u, v, z(u, v)) to the point (u, v) and thus is a continuous function. Condition 2 is

now satisfied (x is a homeomorphism). Finally, note that for some point p ∈ U, the

columns of the differential

dxp =





1 0

0 1

∂z(u,v)
∂u

∂z(u,v)
∂v





are linearly independent, which means that we have satisfied condition 3. Therefore,
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the graph of a differentiable function f(x, y) is a regular surface.

Example 2. Consider the set S = {(x, y, z) ∈ R3 where z = x2 − y2}. Note that we

can write S = {(u, v, f(u, v)}, a hyperbolic paraboloid, where f(u, v) = u2 − v2 is a

differentiable function. Using the fact that we wrote S as the graph of a differentiable

function, then S is a regular surface.

Other examples of regular surfaces are provided by the level sets of a differentiable

function. Recall that a level set of a differentiable function f : Rn → R corresponding

to some real number k is the set {(x1, x2, ..., xn) where f(x1, x2, ..., xn) = k}. The

sphere provides a familiar example of a level set of the function f(x, y, z) = x2 + y2 +

z2 = k (in the case of the unit sphere, k = 1). To make the notion precise, consider

the following definition.

Definition 2. Suppose we have a differentiable mapping F : U ⊂ Rn → Rm where

U is an open set. We call a point p ∈ U a critical point of the mapping F if dxp is

not an onto mapping. Similarly, we call the point F (p) a critical value of F . Points

in the image of F that are not critical values are called regular values.

Now that we know what a regular value is, we can relate level sets to regular

surfaces with the following theorem.

Theorem 1. Suppose k is a regular value of a differentiable function F : R3 → R.

Let S = {(x, y, z)wheref(x, y, z) = k}. Then F−1(k) is a regular surface.

For a proof of Theorem 1, refer to [1].

Example 3. Consider the differentiable function F (x, y, z) = x2 + y2 − z2. The

differential dx will not be a matrix but rather just the gradient of F, and so dx =

(2x, 2y,−2z). Now note that dx fails to be surjective when x = y = z = 0; that is,
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dx = 0 at the point (0, 0, 0). In fact, it is the only critical value of F . It is safe to

say that 1 would then be a regular value of F . By Theorem 1, we have that the level

surface F (x, y, z) = x2 + y2 − z2 = 1, which is a hyperboloid, is a regular surface.

Now that we’ve defined a regular surface, we introduce the definition of the tangent

plane.

Definition 3. We say v is a tangent vector at a point p ∈ S if there is a differentiable

curve α : (−ε, ε) → S with α(0) = p and α′(0) = v. The set of all tangent vectors at

a point p ∈ S is called the tangent space or tangent plane, denoted by TpS.

Property 3 in the definition of a regular surface is important because it allows us

to assign a set of tangent vectors for each point p ∈ S. In fact, given a regular surface

S parameterized by x : U ⊂ R2 → S, the differential dxq gives a set of linearly

independent tangent vectors at a point q ∈ U . Our parameterization x determines a

basis {∂x
∂u , ∂x

∂v } that we call the tangent space of S at p, or TpS.

Given a level surface of a differentiable function, f(x, y, z) = 0, where 0 is a

regular value of f , we can write down the tangent plane at a point (x0, y0, z0) with

the equation

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0 (2)

Given a point p = (x0, y0, z0) ∈ S, define a curve α(x(t), y(t), z(t)) where x(t), y(t)

and z(t) are differentiable functions of t and α(0) = p. Now

f(α(t)) = f(x(t), y(t), z(t)) = 0 (3)
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and by differentiating both sides of (3), we have

f ′(x(0), y(0), z(0)) =

fx · x′(0) + fy · y′(0) + fz · z′(0) =

(fx, fy, fz) · (x′(0), y′(0), z′(0)) =

∇f · (x′(0), y′(0), z′(0)) = 0 (4)

Equation (4) tells us that∇f , the gradient of f , is perpendicular to the vector tangent

to the curve α(0) = p, namely, (x′(0), y′(0), z′(0)). This implies that ∇f is the normal

to the surface at the point p = (x0, y0, z0). Since the plane goes through (x0, y0, z0),

the equation of the plane TpS is simply (2).
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3 The First Fundamental Form

The notion of a tangent plane plays an important role in differential geometry: it

allows one to assign a metric, or a way of measuring distance, to the regular surface.

This metric is called the First Fundamental Form. Let w ∈ Tp(S) at a point p ∈ S.

As in the previous section, we know that there is a differentiable curve, α(t) =

x(u(t), v(t)) such that α(0) = p and using the inner product of R3 and the chain rule

to compute the length of the tangent vector α′(0) at p,

‖α′(0)‖2 = 〈α′(0), α′(0)〉

= 〈xuu′ + xvv
′,xuu′ + xvv

′〉

= 〈xuu′,xuu′〉+ 〈xuu′,xvv
′〉+ 〈xuu′,xvv

′〉+ 〈xvv
′,xvv

′〉

= 〈xu,xu〉 (u′)2 + 2 〈xu,xv〉 (u′v′) + 〈xv,xv〉 (v′)2.

We define the first fundamental form for a regular surface S at a point p, Ip, as

Edu2 + Fdudv + Gdv2

where the coefficients

E = 〈xu,xu〉

F = 〈xu,xv〉

G = 〈xv,xv〉

are called the coefficients of the first fundamental form. An important thing to note

about the first fundamental form is that it is an intrinsic quantity of S. That is,

we can refer to measurements such as length without ever leaving the surface. Put
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another way, that means we need not refer to the space that S lies in, which is R3

(i.e it does not matter how we embed S in R3).

Example 1. Consider the cylinder with radius 1 parameterized by x(u, v) = (cos u, sin u, v)

where 0 < u < 2π and v ∈ R. To find the coefficients of the first fundamental form,

first we compute xu and xv

xu = (− sin u, cos u, 0)

xv = (0, 0, 1)

and then find E, F , and G

E = 〈xu,xu〉 = 〈(− sin u, cos u, 0), (− sin u, cos u, 0)〉

= sin2 u + cos2 u = 1

F = 〈xu,xv〉 = 〈(− sin u, cos u, 0), (0, 0, 1)〉 = 0

G = 〈xv,xv〉 = 〈(0, 0, 1), (0, 0, 1)〉 = 1

Therefore, the first fundamental form for the cylinder of radius 1 is

Ip = du2 + dv2.

As mentioned before, the first fundamental form provides a natural way to measure

distance. To illustrate this, take the cylinder from the previous example and consider
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a helix on the cylinder that is parameterized by a curve α(t) where

α(t) = (cos t, sin t, t).

From standard results of calculus, we know that we could find the length of the

curve α, denoted by s(t), from 0 to 2π by first differentiating α with respect to the

parameter t, then finding the length of α′ by taking the inner product, and finally

integrating the result from 0 to 2π. More precisely, we have the formula,

L = s(t) =

∫ 2π

0

|α′(t)| dt

For a good derivation of the formula for arc length of a curve, see any standard

calculus text, such as [4] or [2]. Computing arc length for the cylinder, we have

α(t) = (cos t, sin t, t)

α′(t) = (− sin t, cos t, 1)

|α′(t)| =
√

cos2 t + sin2 t + 1 =
√

2

and so

L =

∫ 2π

0

√
2 dt

= 2
√

2π. (5)

Note that we could also use the definition of the first fundamental form to calculate

arc length as it provides a metric for doing so. For the cylinder with parameterization
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given in Example 1, observe that

du

dt
= 1

dv

dt
= 1

and so using the definition of Ip, this is the same as if we had calculated

L =

∫ 2π

0

(Ip(α′(t))1/2 dt

=

∫ 2π

0

(E(u′)2 + 2Fu′v′ + G(v′)2)1/2 dt

=

∫ 2π

0

√
2 dt (6)

where equation (6) will yield the same result as equation (5).

Figure 1: A Helix superimposed on a Cylinder. Image produced with Mac OS X
Grapher

We introduce our next concept with another example:

Example 2. Two orthonormal vectors v1, v2 ∈ R3 parameterize a plane in R3 passing

through a point p0 = (x0, y0, z0) via the parameterization x(x, y) = p0 + xv1 + yv2.
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Computing E, F, G, we have

E = 〈xx,xx〉 = 〈v1, v1〉 = 1

F = 〈xx,xy〉 = 〈v1, v2〉 = 0

G = 〈xy,xy〉 = 〈v2, v2〉 = 1

as the dot product of orthonormal vectors vi and vj is 1 if i = j and 0 if i (= j.

Therefore, the first fundamental form for the plane is

Ip = dx2 + dy2.

Note that from examples 1 and 2, the first fundamental form for the plane is the

same as that of the cylinder. The reason is that the first fundamental form is an

intrinsic geometric property. That is, our notion of measuring distance is the same

whether the plane is flat or it is rolled up into a cylinder. To make this notion precise,

we require two definitions.

Definition 4. Given two regular surfaces S1, S2, we say that S1 is diffeomorphic to S2

if there is a differentiable map ψ : S1 → S2 with differentiable inverse ψ−1 : S2 → S1.

We call this kind of map a diffeomorphism.

The concept of diffeomorphism is similar to the concept of isomorphism. That is,

two surfaces that are diffeomorphic to each other are essentially equivalent to each

other with respect to differentiability.

Definition 5. Let ψ : S1 → S2 be a diffeomorphism. We say that ψ is an isometry

if it preserves the inner product. That is, for all w1, w2 ∈ Tp(S1),

〈w1, w2〉 = 〈dψ(w1), dψ(w2)〉 .
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Since ψ preserves the metric, it follows that the coefficients of the first fundamen-

tal forms between the two surfaces would be equal. However, we must take care to

note that this concept is a local one. For example, the cylinder and the plane are

not globally isometric to each other. This is due to the fact that there isnt a global

homeomorphism between the two ob jects. To see this, note that any curve in the

plane can be continuously deformed to a point, yet, we can nd a curve on the cylinder

(slice the cylinder perpendicularly with a plane) that cannot be deformed to a point.

This indicates that topologically speaking, the plane and cylinder are different. How-

ever, as we saw, the plane and cylinder do share the same rst fundamental form for

coordinate neighborhoods and so they are locally isometric.
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4 Curvature of a surface in R3

Let S be a surface in R3. For each point p ∈ S, we can write down the formula for

the unit normal as

N =
xx × xy

| xx × xy | .

N has a more special role in differential geometry than merely being the unit normal

at a point p. Note that N takes it’s values in the unit sphere S2.

Definition 6. Let S be a regular surface with a differentiable field of unit normal

vectors N . We call the map N : S → S2 the Gauss map of S.

If you consider a curve α on a regular surface S, notice that at each point p ∈ S,

the unit normal N will map to a point on the unit sphere; that is, as you travel

along α, N will sweep out points on S2. In differential geometry, what we’re really

interested in is the differential of the Gauss map at a point p as it gives us information

on how a regular surface S curves near the point p. There are two properties of the

differential of the Gauss map that we’d like to exploit.

Lemma 1. For each point p ∈ S, the differential dN is self adjoint or symmetric.

For a proof of this lemma, refer to page 140 of [1]. The fact that dN is linear

and symmetric is important. In fact, we can write down a matrix for dN , which will

be explained later in this paper. But first a little linear algebra. Recall from linear

algebra that a quadratic form on Rn is a function Q(x) = xTAx where x is a vector

in Rn and A is a symmetric n × n matrix. Conversely, given any symmetric matrix

A, we can associate a quadratic form Q using the same formula. For more properties

of quadratic forms, the reader may refer to [3] , [7] or any text on linear algebra. For

a more concrete introduction, consider the following example.
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Example 1. Let A =




2 7

7 2



 be a symmetric matrix and x =




x1

x2



 be any

vector in R2. Then the quadratic form Q associated with the matrix A is

Q(x) =

(
x1 x2

)



2 7

7 2








x1

x2





=

(
x1 x2

)



2x1 + 7x2

7x1 + 2x2





= x1(2x1 + 7x2) + x2(7x1 + 2x2)

= 2x2
1 + 7x1x2 + 7x1x2 + 2x2

2

= 2x2
1 + 14x1x2 + 2x2

2

Note that Q has a cross term x1x2. This can actually be removed via a change of

variables that orthogonally diagonalizes our matrix A. To do so, first note that the

characteristic equation of our matrix A is

(2− λ)(2− λ)− 49 = λ2 − 4λ− 45 (7)

and so A has eigenvalues λ = 9,−5. The corresponding normalized eigenvectors are

v1 =




1/
√

2

1/
√

2





v2 =




−1/

√
2

1/
√

2



 .

Note that the vectors are also orthonormal, as they should be since A is a symmetric
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matrix. This is known as the Spectral Theorem (for the precise statement of the

theorem, see [7]). Since our vectors are orthonormal, they provide a basis for R2. We

can then rewrite A as PDP−1 = PDPT, where

P =




1/
√

2 −1/
√

2

1/
√

2 1/
√

2





D =




9 0

0 −5





Now we make the change of variables x = Py where P is our matrix defined above

and y is a new vector in R2. Making the change of variables for Q,

2x2
1 + 14x1x2 + 2x2

2 = xTAx

= (Py)T A(Py)

= yT P T APy

= yT Dy

= 9y2
1 − 5y2

2.

The above example prompts the following theorem known as the Principle Axes The-

orem.

Theorem 2. Let A be an n × n symmetric matrix. Then there exists an orthogo-

nal change of variables, x = Py, that transforms the quadratic form xT Ax into a

quadratic form yT Ay such that the new quadratic form does not have a cross term.

The proof of the above theorem can be found in [3], page 453. Continuing on,
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suppose we constrain the length of our vector y to have length equal to 1. Note that

−5y2
2 ≤ 9y2

2

and so

Q(y) = 9y2
1 − 5y2

2

≤ 9y2
1 + 9y2

2

= 9(y2
1 + y2

2)

= 9.

The last equation says that 9 is the maximum value of Q. Similarly,

−5y2
1 ≤ 9y2

1

and so

Q(y) = 9y2
1 − 5y2

2

≥ −5y2
1 − 5y2

2

= −5(y2
1 + y2

2)

= −5,

which says that -5 is the minimum value of Q. Notice that -5 = m =min{xT Ax} and

9 = m =max{xT Ax} also correspond to the minimum and maximum eigenvalues of

our symmetric matrix A. To summarize, we state the following theorem (refer to [3]

for a proof).
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Theorem 3. Let A be an n × n symmetric matrix and define m and M as above.

Then M is the greatest eigenvalue of A and m is the least eigenvalue of A. The value

of xT Ax is M when x is a unit eigenvector v1 corresponding to M and the value of

xT Ax is m when x is a unit eigenvector v2 corresponding to m.

The columns of P , which form an orthonormal basis are called the principle di-

rections associated to the quadratic form Q. Theorems 2 and 3 tell us that the value

of our quadratic form Q is smallest in the principal direction that corresponds to the

smallest eigenvalue and greatest in the principal direction that corresponds to the

greatest eigenvalue.

Returning back to differential geometry, we now know that we can associate a

quadratic form to our symmetric linear map dN . This prompts the following defini-

tion:

Definition 7. Let S be a regular surface with a differentiable field of unit normal

vectors N and let v be a vector in Tp(S). We associate a quadratic form, IIp, to

the Gauss Map, dN , defined by IIp = −vT dN(v)v = −〈dN(v), v〉 called the second

fundamental form of S at a point p.

However, the second fundamental form IIp is more than just a quadratic form.

To give it a geometric meaning, suppose we have a differentiable curve parameterized

by arc length, α(s), on a regular surface S with α(0) = p ∈ S. Restrict our unit

normal N to the curve α(s). That is, consider (N ◦ α)(s) = N(α(s)) = N(s). If

we differentiate α at p, then α′ is a unit tangent vector at the point p. As a result,

N(s) is perpendicular to α′ as N(s) is normal to the surface S and α′ is tangent to

S (at a point p). To be more precise, we have 〈N(s), α′(s)〉 = 0. Note that since α is
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parameterized by arc length,

d

dt
N(s) =

d

dt
N

ds

dt
= N ′

and so writing out IIp at p in terms of α, we have

IIp(α′(0)) = −〈dN(α′(0)), α′(0)〉 = −〈N ′(0), α′(0)〉 (8)

We can simplify (8) by differentiating the expression 〈N(s), α′(s)〉 = 0. We have

0 =
d

ds
〈N(s), α′(s)〉 = 〈N ′(s), α′(s)〉+ 〈N(s), α′′(s)〉 (9)

⇔ −〈N ′(s), α′(s)〉 = 〈N(s), α′′(s)〉 (10)

and substituting the last equation back into (8), we obtain

−〈N ′(0), α′(0)〉 = 〈N(0), α′′(0)〉 . (11)

However, note that in the last expression, we can use the Frenet formula (see [1])

α′′ = kn where n is the normal vector to the curve α and k is the curvature. So we

have

〈N(0), α′′(0)〉 = 〈N(0), kn(0)〉

The last expression says that IIp is the projection of α′′ = kn onto the unit normal N .

We call this value the normal curvature kn(p). That is, the second fundamental form

IIp for a unit vector v in Tp(S) is equal to the normal curvature of a regular curve

α passing through p and whose tangent is v. Furthermore, recall from Theorems

2 and 3 that if {v1, v2} is an orthonormal basis then for each p ∈ S our linear
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symmetric matrix dN has principal directions and minimal and maximal eigenvalues

that correspond to the principal directions. By convention, we have dN(v1) = −k1v1,

dN(v2) = −k2v2 and call k1, k2 the maximum and minimum curvature of IIp in the

direction of the eigenvectors v1, v2, respectively. Computing kn(p) is not very difficult

if you are working in an orthonormal basis. So suppose that the tangent space Tp(S)

for a regular surface S is given by an orthonormal basis {v1, v2}. Then we can express

any vector v ∈ Tp(S) as a linear combination of v1 and v2. In fact, if we let θ be the

angle from v1 to v, we can express v as

v = v1 cos θ + v2 sin θ.

With this in mind, let’s express kn(p) in terms of v. We write

kn(p) = −〈dN(v), v〉

= −〈dN(v1 cos θ + v2 sin θ), v1 cos θ + v2 sin θ〉

and since dN is linear the above becomes

−〈dN(v1 cos θ) + dN(v2 sin θ), v1 cos θ + v2 sin θ〉 . (12)

Now using the fact that dN(v1) = −k1v1, dN(v2) = −k2v2 and that {v1, v2} is an

orthonormal basis, equation (12) becomes

= −〈−k1(v1 cos θ)− k2(v2 sin θ), v1 cos θ + v2 sin θ〉

= 〈k1(v1 cos θ) + k2(v2 sin θ), v1 cos θ + v2 sin θ〉

= k1v1 · v1 cos2 θ + 2k1v1 · v2 sin θ cos θ + k2v2 · v2 sin2 θ
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= k1 cos2 θ + k2 sin2 θ = kn(p).

A nice little fact about normal curvature is the following:

Lemma 2. The sum of the normal curvatures for any pair of orthogonal directions

at a point p ∈ S is constant.

Proof. Let {v1, v2} be an orthonormal basis for Tp(S) and choose a vector v ∈ Tp(S).

Then as we saw earlier, we can express v as v = v1 cos θ + v2 sin θ and the normal

curvature, kn(p) in the direction of θ is just k1 cos2 θ + k2 sin2 θ. Now, if θ was our

given direction, a direction orthogonal to θ would be just (θ + π
2 ). So we can choose

a vector v̂ = v1 cos(θ + π
2 ) + v2 sin(θ + π

2 ) and compute the normal curvature at v̂.

Hence we compute the normal curvature at v̂,

k̂n = k1 cos2(θ +
π

2
) + k2 sin2(θ +

π

2
) = k1 sin2 θ + k2 cos2 θ

where the last step is justified as sin and cos are orthogonal functions. Now

kn + k̂n = k1 cos2 θ + k2 sin2 θ + k1 sin2 θ + k2 cos2 θ

= k1(sin
2 θ + cos2 θ) + k2(cos2 θ + sin2 θ)

= k1 + k2.

Note that the expression kn + k̂n is not dependent on θ; therefore, we have the sum of

the normal curvatures for any pair of orthogonal directions at a point p is constant.

It is convenient to introduce three more definitions related to normal curvature.

Suppose we have a curve α such that for each point p on α, the tangent vector α′

is a principal direction. We then say α is a line of curvature. Additionally, suppose
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that kn = 0 at a point p in some direction v ∈ Tp(S). Then we say v is an asymptotic

direction. Furthermore, we call α an asymptotic curve if for each point p on α, the

tangent vector is an asymptotic direction.

All of the calculations above were done assuming that Tp(S) was given by an

orthonormal basis {v1, v2}. However, when we have a regular surface S parameter-

ized by x(u, v), Tp(S) has a natural basis given by {xu,xv} which isn’t necessarily

orthonormal (or even orthogonal). So we need a way to express dN as a matrix in

terms of the basis {xu,xv}. To start, let α(t) = x(u(t), v(t)) be a curve on S such

that α(0) = p. Then the tangent vector, α′ = xuu′ + xvv′ is in Tp(S) and

dN(α′) = N ′(u(t), v(t)) = Nuu
′ + Nvv

′.

Earlier, we noted that Nu and Nv were in Tp(S). Hence we can express them as linear

combinations of xu and xv

Nu = axu + bxv (13)

Nv = cxu + dxv (14)

and then rewrite dN as

dN(α′) = (axu + bxv)u′ + (cxu + dxv)v′

= (au′ + cv′)xu + (bu′ + dv′)xv

⇔ dN =




a c

b d








u′

v′



 .



24

In order to find a, b, c, d, we need to first calculate IIp(α′)

= −〈dN(α′), α′〉

= −〈Nuu
′ + Nvv

′,xuu′ + xvv
′〉

= −(〈Nu,xu〉 (u′)2 + 〈Nu,xv〉 (u′v′) + 〈Nv,xu〉 (u′v′)

+ 〈Nv,xv〉 (v′)2). (15)

We can further simplify equation (15) by noting the following. Since N is perpendic-

ular to xu and xv,

0 =
d

dv
〈N,xu〉 = 〈Nv,xu〉+ 〈N,xuv〉

⇔ 〈Nv,xu〉 = −〈N,xuv〉

0 =
d

du
〈N,xv〉 = 〈Nu,xv〉+ 〈N,xuv〉

⇔ 〈Nu,xv〉 = −〈N,xuv〉

⇒ 〈Nu,xv〉 = 〈Nv,xu〉 .

Using the last equation, we can rewrite (15) as

−(〈Nu,xu〉 (u′)2 + 2 〈Nu,xv〉 (u′v′) + 〈Nv,xv〉 (v′)2)

= e(u′)2 + fu′v′ + g(v′)2

where

e = −〈Nu,xu〉

f = −〈Nu,xv〉 = −〈Nv,xu〉

g = −〈Nv,xv〉
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are called the coefficients of the second fundamental form. Now given (13) and (14),

−e = 〈axu + bxv,xu〉 = a 〈xu,xu〉+ b 〈xu,xv〉

= aE + bF

−g = 〈cxu + dxv,xv〉 = c 〈xu,xv〉+ d 〈xv,xv〉

= cF + dG

and

−f = 〈cxu + dxv,xu〉 = c 〈xu,xu〉+ d 〈xu,xv〉

= cE + dF

−f = 〈axu + bxv,xv〉 = a 〈xu,xv〉+ b 〈xv,xv〉

= aF + bG

where E, F, G were the coefficients of the first fundamental form. What we have done

is written a matrix whose coefficients are the coefficients second fundamental form as

the product of our matrix dN and a matrix whose coefficients are the coefficients of

the first fundamental form. That is, from the equations above, we have




−e −f

−f −g



 =




a b

c d








E F

F G



 (16)

We can finally solve for dN by computing the inverse of




E F

F G




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and multiplying on the right of (16) by the inverse. That is,

dN =
1

EG− F 2




−e −f

−f −g








G −F

−F E





=
1

EG− F 2




−eG + fF eF − fE

−fG + gf fF − gE





Now, if we calculate the determinate of dN , we have

det(dN) =
1

(EG− F 2)2
((−eG + fF )(fF − gE)− (−fG + gf)(eF − fE))

=
1

(EG− F 2)2
(−eGfF + eGgE + f 2F 2 − gFgE + fGeF − f 2GE

−geF 2 + gFfE)

=
1

(EG− F 2)2
((efGE − f 2GE) + f 2F 2 − fFgE + fFgE − egF 2)

=
1

(EG− F 2)2
(EG(eg − f 2)− F 2(eg − f 2))

=
1

(EG− F 2)2
((EG− F 2)(eg − f 2)

=
eg − f 2

(EG− F 2)

= K

and we call K the Gaussian curvature of S at a point p. Additionally, define

H =
1

2
trace(dN) =

1

2

eG− 2fF + gE

EG− F 2

to be the mean curvature of S at a point p. Here, K and H were defined in terms

of the first and second fundamental forms; that is, in terms of the basis {xu,xv}.

However, if we’re working with an orthonormal basis for Tp(S), then K = k1k2 and
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H = 1
2(k1 +k2) as the determinant and trace for our symmetric matrix dN is just the

product and sum of our eigenvalues of dN , respectively. Furthermore, we can classify

a point p on a surface S by examining the value of K.

Definition 8. We say a point p on S is

1. Elliptic if K > 0

2. Hyberbolic if K < 0

3. Parabolic if K = 0 but the matrix dN (= 0

4. Planar if the matrix dN = 0

That is, K tells us something about the local geometry of the surface.

Example 2. Let x(θ, φ) = (a sin θ cos φ, a sin θ sin φ, a cos θ) where 0 < θ < π, 0 <

φ < 2π, and a > 0 be a parameterization for a sphere with radius a. Computing the

first order partial derivatives for x(θ, φ),

xθ = (a cos θ cos φ, a cos θ sin φ,−a sin θ)

xφ = (−a sin θ sin φ, a sin θ cos φ, 0)

we can then find the coefficients of the first fundamental form:

E = 〈xθ,xθ〉 = a2 cos2 θ cos2 φ + a2 cos2 θ sin2 φ + a2 sin2

= a2(cos2θ(cos2 φ + sin2 φ) + sin2 θ) = a2

F = 〈xθ,xφ〉 = −a2 cos θ cos φ sin θ sin φ + a2 cos θ cos φ sin θ sin φ + 0

= 0

G = 〈xφ,xφ〉 = a2 sin2 θ sin2 φ + a2 sin2 θ cos2 φ + 0

= a2 sin2 θ(cos2 φ + sin2 φ) = a2 sin2 θ.
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Computing the second order partial derivatives, we obtain

xθθ = (−a sin θ cos φ,−a sin θ sin φ,−a cos θ)

xθφ = (−a cos θ sin φ, a cos θ cos φ, 0)

xφφ = (−a sin θ cos φ,−a sin θ sin φ, 0)

To calculate the unit normal to the surface, N , we first calculate the vector cross

product of xθ and xφ:

xθ × xφ =





$i $j $k

a cos θ cos φ a cos θ sin φ −a sin θ

−a sin θ sin φ a sin θ cos φ 0





= (a2 sin2 θ cos φ, a2 sin2 θ sin φ, a2 sin θ cos θ)

Normalizing the result,

‖xθ × xφ‖ =
√

a4(sin4 θ cos2 φ + sin4 θ sin2 φ + sin2 θ cos2 θ

=
√

a4(sin4 θ(cos2 φ + sin2 φ) + sin2 θ cos2 θ)

=
√

a4(sin4 θ + sin2 θ cos2 θ)

=
√

a4(sin2 θ(sin2 θ + cos2 θ)

=
√

a4 sin2 θ = a2 sin θ

and so

N =
xθ × xφ

‖xθ × xφ‖
= (sin θ cos φ, sin θ sin φ, cos θ).
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Now we find the coefficients of the second fundamental form:

e = 〈N,xθθ〉 = −a(sin2 θ cos2 φ + sin2 θ sin2 φ + cos2 θ) = −a

f = 〈N,xθφ〉 = −a sin θ cos φ cos θ sin φ + a sin θ cos φ cos θ sin φ = 0

g = 〈N,xφφ〉 = −a sin2 θ cos2 φ− a sin2 θ sin2 φ = −a sin2 θ.

Since we have the coefficients of the first and second fundamental forms, we can easily

write down the Gaussian curvature, which is

K =
eg − f 2

EG− F 2
=

a2 sin2 θ

a4 sin2 θ
=

1

a2
.

Notice that the sphere has constant Gaussian curvature; each point on the surface is an

elliptic point. This means that both principal curvatures k1, k2 have the same sign and

that any pair of curves passing through a point p on the sphere have their respective

normal vectors pointing toward the same side of the tangent plane. Additionally, the

mean curvature is

H =
1

2

eG− 2fF + gE

EG− F 2
=

1

2

−a(a2 sin2 θ) + a2(−a sin2 θ)

a4 sin2 θ
=
−1

a

and is also constant over the entire surface. Also note that as the radius a increases,

K decreases; the sphere appears more plane like as a gets larger.

It is clear that the plane is a trivial example of a surface that has a point p such

that p is a planar points. However, the next example shows a surface that has exactly

one planar point.

Example 3. The graph of z = x3 − 3y2x is a regular surface known as the monkey

saddle. We can parameterize the surface with x(u, v) = (u, v, u3 − 3v2u). Computing
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Figure 2: The Monkey Saddle. Produced with Mac OS X Grapher

the first order partial derivatives for x(u, v),

xu = (1, 0, 3u2 − 3v2)

xv = (0, 1,−6uv)

we can then find the coefficients of the first fundamental form:

E = 〈xu,xu〉 = 1 + (3u2 − 3v2)2 = 1 + 9(u2 − v2)2

F = 〈xu,xv〉 = −6uv(3u2 − 3v2) = −18uv(u2 − v2)

G = 〈xv,xv〉 = 1 + (−6uv)2 = 1 + 36u2v2

Computing the second order partial derivatives, we obtain

xuu = (0, 0,−6u)

xuv = (0, 0,−6v)

xvv = (0, 0,−6u)
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To calculate the unit normal to the surface, N , we first calculate the vector cross

product of xu and xv:

xu × xv =





$i $j $k

1 0 3u2 − 3v2

0 1 −6uv





= (3v2 − 3u2, 6uv, 1)

Normalizing the result,

‖xu × xv‖ =
√

1 + 36(uv)2 + 9(v2 − u2)2

=
√

1 + 9(u2 + v2)

and so

N =
xu × xv

‖xu × xv‖
=

(3v2 − 3u2, 6uv, 1)√
1 + 9(u2 + v2)

.

Now we find the coefficients of the second fundamental form:

e = 〈N,xuu〉 =
−6u√

1 + 9(u2 + v2)

f = 〈N,xuv〉 =
−6v√

1 + 9(u2 + v2)

g = 〈N,xvv〉 =
−6u√

1 + 9(u2 + v2)
.

We can now write down the Gaussian curvature

K =
eg − f 2

EG− F 2
=

−36(u2 + v2)

(1 + 9(u2 + v2))2

Note that the point (0, 0, 0) on the monkey saddle is the image of the point (0, 0) and
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that K = 0. Not only is the Gaussian curvature 0, but given that e = f = g = 0 at

(0, 0), then

dN =
1

EG− F 2




−e −f

−f −g








G −F

−F E





=
1

EG− F 2




0 0

0 0








G −F

−F E





= 0

and so the point (0, 0) is a planar point. Additionally, for any other point (u, v)

where u, v are not both equal to 0, each point is classified as a hyperbolic point as K

will be less than 0. Because k1, k2 must have opposite sign at a hyperbolic point p,

curves passing through p can have their normal vectors point towards either side of

the tangent plane.

When a regular surface is given by the graph of a differentiable function f , cal-

culations tend to be easier. We can write down a formula for K in terms of our

differentiable function f . That is, we don’t have to compute e, f, g, E, F,G if we

know the surface is given as a graph of a differentiable function. As with the monkey

saddle example, parameterize the surface with x(u, v) = (u, v, f(u, v)). The coeffi-

cients of the first fundamental form are given by

E = 〈xu,xu〉 = 〈(1, 0, fu), (1, 0, fu)〉 = 1 + f 2
u

F = 〈xu,xv〉 = 〈(1, 0, fu), (0, 1, fv)〉 = fufv

G = 〈xv,xv〉 = 〈(0, 1, fv), (0, 1, fv)〉 = 1 + f 2
u .
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The vector cross product of partial derivatives xu and xv is

xu × xv =





$i $j $k

1 0 fu

0 1 fv





= (−fu,−fv, 1)

and so the unit normal is just

N =
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

.

The coefficients of the second fundamental form are then

e = 〈N,xuu〉 =

〈
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

, (0, 0, fuu)

〉
=

fuu√
1 + f 2

u + f 2
v

f = 〈N,xuv〉 =

〈
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

, (0, 0, fuv)

〉
=

fuv√
1 + f 2

u + f 2
v

g = 〈N,xvv〉 =

〈
(−fu,−fv, 1)√

1 + f 2
u + f 2

v

, (0, 0, fvv)

〉
=

fvv√
1 + f 2

u + f 2
v

.

We now have all we need to write down a formula for Gaussian curvature:

K =
eg − f 2

EG− F 2
=

fuufvv − f 2
uv

(1 + f 2
u + f 2

v )2
.

In section (2), we demonstrated that the graph of a differentiable function f(x, y) is

a regular surface and it turns out that the converse is also true (see page 63 of [1]).

Equally as important, we can write the second fundamental form in as the Hessian

of f(x, y). For a thorough treatment of regular surfaces as a graph of a differentiable

function, see [6].



34

There is a very important link between Gaussian Curvature and the First Funda-

mental Form. The formula for the Gaussian curvature involves the first and second

fundamental forms, or, when working in an orthonormal basis, the principal curva-

tures. We discussed earlier that the first fundamental form is an intrinsic quantity,

however, the second fundamental form is not. Before we state a very important

theorem, consider the following two examples.

Example 4. Let x(u, v) = (cosh u cos v, cosh u sin v, u) be a parameterization for the

catenoid, which is the surface of revolution of the catenary. Computing the first order

partial derivatives

xu(u, v) = (sinh u cos v, sinh u sin v, 1)

xv(u, v) = (− cosh u sin v, cosh u cos v, 0)

we can then find the coefficients of the first fundamental form

E = 〈xu,xu〉 = sinh2 u cos2 v + sinh2 u sin2 v + 1

= sinh2 u + 1 = cosh2 u

F = 〈xu,xv〉

= − sinh u cosh u cos v sin v + sinh u cosh u cos v sin v = 0

G = 〈xv,xv〉 = cosh2 u sin2 v + cosh2 u cos2 v

= cosh2 u.

Computing the second order partial derivatives, we obtain

xuu(u, v) = (cosh u cos v, cosh u sin v, 0)
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xuv(u, v) = (− sinh u sin v, sinh u cos v, 0)

xvv(u, v) = (− cosh u cos v,− cosh u sin v, 0)

To calculate the unit normal to the surface, N , we first calculate the vector cross

product of xu and xv:

xu × xv =





$i $j $k

sinh u cos v sinh u sin v 1

− cosh u sin v cosh u sin v 0





= (cosh u cos v, cosh u sin v, sinh u cosh u)

Normalizing the result, we have

‖xu × xv‖ =
√

cosh2 u cos2 v + cosh2 u sin2 v + sinh2 u cosh2 u

=
√

cosh2 u + sinh2 u cosh2 u

=
√

cosh2 u(1 + sinh2 u)

= cosh2 u

and so

N =
xu × xv

‖xu × xv‖
= (

cos v

cosh u
,

sin v

cosh u
, tanh u).

We can now find the coefficients of the second fundamental form

e = 〈N,xuu〉 = cos2 v + sin2 v = 1

f = 〈N,xuv〉 = − tanh u cos v sin v + tanh u sin v cos v = 0

g = 〈N,xvv〉 = − cos2 v − sin2 v = −1.
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Since we have the coefficients of the first and second fundamental forms, we can easily

write down the Gaussian curvature, which is

K =
eg − f 2

EG− F 2
=

−1

cosh4 u
.

Figure 3: The Catenoid. Produced with Mac OS X Grapher

Example 5. Let σ(u, v) = (u cos v, u sin v, v) be a parameterization for the helicoid.

Now make the change of parameters û = sinh u, v̂ = v and we get a new param-

eterization σ̂(u, v) = (sinh u cos v, sinh u sin v, v). Computing the first order partial

derivatives of σ̂

σ̂u(u, v) = (cosh u cos v, cosh u sin v, 0)

σ̂v(u, v) = (− sinh u cos v, sinh u cos v, 1),

we can then find the coefficients of the first fundamental form

Ê = 〈σ̂u, σ̂u〉 = cosh2 u cos2 v + cosh2 u sin2 v



37

= cosh2 u(cos2 v + sinv) = cosh2 u

F̂ = 〈σ̂u, σ̂v〉

= − cosh u sinh u cos v sin v + cosh u sinh u cos v sin v = 0

Ĝ = 〈σ̂v, σ̂v〉 = sinh2 u sin2 v + sinh2 u cos2 v + 1

= sinh2(sin2 v + cos2 v) + 1 = sinh2 +1 = cosh2 u.

From the above calculations, we see that E = Ê, F = F̂ , G = Ĝ where E, F, and

G were the coefficients of the first fundamental form for the catenoid. That is, the

catenoid and helicoid are locally isometric. To carry this example further, we compute

the second order partial derivatives of σ̂

σ̂uu(u, v) = (sinh u cos v, sinh u sin v, 0)

σ̂uv(u, v) = (− cosh u sin v, cosh u cos v, 0)

σ̂vv(u, v) = (− sinh u cos v,− sinh u sin v, 0).

To calculate the unit normal to the surface, N̂ , we first calculate the vector cross

product of σ̂u and σ̂v:

σ̂u × σ̂v =





$i $j $k

cosh u cos v cosh u sin v 0

− sinh u cos v sinh u cos v 1





= (cosh u sin v,− cosh u cos v, sinh u cosh u)

Normalizing the result, we obtain

‖σ̂u × σ̂v‖ =
√

cosh2 u sin2 v + cosh2 u cos2 v + sinh2 u cosh2 u
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=
√

cosh2 u + sinh2 u cosh2 u

=
√

cosh2 u(1 + sinh2 u)

= cosh2 u

and so

N̂ =
σ̂u × σ̂v

‖σ̂u × σ̂v‖
= (

sin v

cosh u
,
− cos v

cosh u
, tanh u).

We can now find the coefficients of the second fundamental form

ê =
〈
N̂ , σ̂uu

〉
= tanh u cos v sin v − tanh u cos v sin v = 0

f̂ =
〈
N̂ , σ̂uv

〉
= − sin2 v − cos2 v = −(sin2 v + cos2 v) = −1

ĝ =
〈
N̂ , σ̂vv

〉
= − tanh u cos v sin v + tanh u cos v sin v = 0.

Since we have the coefficients of the first and second fundamental forms, we can easily

write down the Gaussian curvature for the helicoid, which is

K̂ =
êĝ − f̂ 2

ÊĜ− F̂ 2
=

−1

cosh4 u
.

Below is a sequence of figures illustrating the continuous deformation of the helicoid

into the catenoid given by the parameterization





x

y

z




=





(cos θ) (sinh v) (sin u) + (sin θ) (cosh v) (cos u)

(− cos θ) (sinh v) (cos u) + (sin θ) (cosh v) (sin u)

(u) cos θ + (v) sin θ





where −π < u < π,−∞ < v < ∞, 0 < θ < π [Weinstein].

As discussed before Examples 4 and 5, the formula for Gaussian curvature depends
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(a) θ = 0 (b) θ = 0.5 (c) θ = 1.5 (d) θ = π
2

Figure 4: Various stages of the continuous helicoid to catenoid deformation. Images
produced with Mac OS X Grapher

on both the first and second fundamental forms, where the second fundamental form

is not an intrinsic quantity. As such, it is surprising that K = K̂. The two previous

examples suggest perhaps that Gaussian curvature itself is an intrinsic quantity, and

it turns out that this suggestion would be true. More precisely, we state Gauss’s

Theorema Egregium:

Theorem 4. The Gaussian curvature K of a surface is invariant by local isometries

[1].

That is, one regular surface S1 can be mapped isometrically into another regular

surface S2 only if the Gaussian curvature for each point p ∈ S1 is equal to the Gaussian

curvature for the corresponding point in S2. Gauss proved his theorem by writing

K in terms of the first fundamental form, which indicates that K is an intrinsic

quantity and is thus invariant by local isometries (isometries preserve distance). In

order to do so, we need to introduce the Christoffel symbols, Γk
ij, i, j, k = 1, 2, which

are quantities that can be expressed in terms of the derivatives of the coefficients

of the first fundamental form. First, Gauss defined a set of equations, called the

Gauss Equations, which expressed the derivatives of xu,xv, and N (where x is a
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parameterization for a regular surface) in the basis {xu,xv, N}:

xuu = Γ1
11xu + Γ2

11xv + eN (17)

xuv = Γ1
12xu + Γ2

12xv + fN (18)

xvu = Γ1
21xu + Γ2

21xv + fN (19)

xvv = Γ1
22xu + Γ2

22xv + gN (20)

Nu = axu + bxv (21)

Nv = cxu + dxv. (22)

We’ve seen the last two expressions when we wrote down the matrix for the Gauss

Map. We can write down an explicit formula for Γk
ij, but in R3, it is easier to express

these symbols via a system of equations. To derive such a system, we take the dot

product of equations 17 through 22 with xu and xv:

〈xuu,xu〉 =
〈
Γ1

11xu,xu

〉
+

〈
Γ2

11xv,xu

〉
+ 〈eN,xu〉

= Γ1
11E + Γ2

11F =
1

2
Eu

〈xuu,xv〉 =
〈
Γ1

11xu,xv

〉
+

〈
Γ2

11xv,xv

〉
+ 〈eN,xv〉

= Γ1
11E + Γ2

11G = Fu −
1

2
Ev

〈xuv,xu〉 =
〈
Γ1

12xu,xu

〉
+

〈
Γ2

12xv,xu

〉
+ 〈fN,xu〉

= Γ1
12E + Γ2

12F =
1

2
Ev

〈xuv,xv〉 =
〈
Γ1

12xu,xv

〉
+

〈
Γ2

12xv,xv

〉
+ 〈fN,xv〉

= Γ1
12F + Γ2

12G =
1

2
Gu

〈xvv,xu〉 =
〈
Γ1

22xu,xu

〉
+

〈
Γ2

22xv,xu

〉
+ 〈gN,xu〉

= Γ1
22E + Γ2

22F = Fv −
1

2
Gu
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〈xvv,xv〉 =
〈
Γ1

22xu,xv

〉
+

〈
Γ2

22xv,xv

〉
+ 〈gN,xv〉

= Γ1
22F + Γ2

22G =
1

2
Gv

Differentiating xuu and xuv by v and u, respectively, we have

(xuu)v = Γ1
11xuv + Γ2

11xvv + eNv + (Γ1
11)vxu + (Γ2

11)vxv

+evN (23)

(xuv)u = Γ1
12xuu + Γ2

12xvu + fNu + (Γ1
12)uxu + (Γ2

12)uxv

+euN. (24)

Substituting the Gauss equations back into the above, we obtain

Γ1
11xuv = Γ1

11(Γ
1
12xu + Γ2

12xv + fN) (25)

= Γ1
11Γ

1
12xu + Γ1

11Γ
2
12xv + fΓ1

11N (26)

Γ2
11xvv = Γ2

11(Γ
1
22xu + Γ2

22xv + gN) (27)

= Γ2
11Γ

1
22xu + Γ2

11Γ
2
22xv + gΓ2

11N (28)

Γ1
12xuu = Γ1

12(Γ
1
11xu + Γ2

11xv + eN) (29)

= Γ1
12Γ

1
11xu + Γ1

12Γ
2
11xv + eΓ1

12N (30)

Γ2
12xvu = Γ2

12(Γ
1
12xu + Γ2

11xv + fN) (31)

= Γ2
12Γ

1
12xu + Γ2

12Γ
2
12xv + fΓ2

12N. (32)

Since mixed partial derivatives commute, we set equation (23) equal to equation

(24). Furthermore, if we use the above values to substitute back into (23) and (24),
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we obtain the equality

Γ1
11(Γ

1
12xu + Γ2

12xv + fN) + Γ2
11(Γ

1
22xu + Γ2

22xv + gN) + eNv + (Γ1
11)vxv +

evN

= Γ1
12(Γ

1
11xu + Γ2

11xv + eN) + Γ2
12(Γ

1
12xu + Γ2

11xv + fN) + fNu + (Γ1
12)uxu +

(Γ2
12)uxv + euN (33)

Using the fact that {xu,xv, N} are linearly independent vectors, the above equality

implies that the coefficients of xv from both sides of the above equations are equal.

Furthermore, equations (21) and (21) allow us to write Nu, Nv in terms of the coeffi-

cients a, b, c, d and xu,xv where a, b, c, d were entries of the matrix that represented

the Gauss map dN . So with the above, we have

Γ1
11Γ

2
12 + Γ2

11Γ
2
22 + (Γ2

11)v + ed = Γ1
12Γ

2
11 + Γ2

12Γ
2
12 + (Γ2

12)u + fb

⇔

Γ1
12Γ

2
11 + Γ2

12Γ
2
12 + (Γ2

12)u − Γ1
11Γ

2
12 − Γ2

11Γ
2
22 − (Γ2

11)v = ed− fb

= 1
EG−F 2 (e(fF − gE)− f(eF − fE)) = 1

EG−F 2 (−E(eg − f 2)

= −EK .

The last equation shows that we can write K in terms of the coefficients of the first

fundamental form and their derivatives, thus showing that K is an intrinsic quantity

and thus invariant under isometries. This is indeed surprising since the formula for

K can also be expressed as

K =
eg − f 2

EG− F 2
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K = k1k2

where the principle curvatures k1, k2 and the coefficients of the second fundamental

form e, f, g are all extrinsic quantities. This is the reason why Gauss’s theorem is

appropriately named Theorema Egregium, which in English translates to ”remarkable

theorem.”



44

5 Some Important Facts About Curvature

For a more intuitive flavor of K and Theorema Egregium, consider the plane and

the cylinder. In section two, we spoke about how the cylinder and plane were locally

isometric to each other. If one considers a piece of paper to be the plane, then

our isometry simply rolls the paper into a cylinder (note this is a local isometry).

This mapping preserves distances and angles (i.e the metric); an isometry would

not stretch, crumple, or shrink the plane into the cylinder. So at a given point on

the cylinder, the Gaussian curvature K will equal 0, which is the same as for the

plane, and is guaranteed by Gauss’s Theorema Egregium. This is very different from

attempting to wrap a ball with a piece of paper; it cannot be done without distorting

the paper. In doing so, we cannot possibly find a way to conform the paper to the

ball isometrically. More precisely, Theorema Egregium guarantees that this is true

since each point in a plane has K = 0 while given a sphere of radius r, each point of

the sphere has K = 1/r2. Therefore the plane cannot be mapped isometrically into

the sphere.

While the last section showed that the Gaussian Curvature K of a regular surface

is an intrinsic quantity, the converse of Theorema Egregium does not hold. That is,

given two regular surfaces S1 and S2 with Gaussian Curvature K1 and K2, respec-

tively, and a function f : S1 → S2 such that K1(f(p)) = K2(p) for all p ∈ S1, then it

does not follow that f is an isometry. To illustrate the point, consider the following

regular surfaces parameterized by

x(u, v) = (u cos v, u sin v, log u)

x̂(u, v) = (u cos v, u sin v, v)
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Computing the partial derivatives of x(u, v),

xu = (cos v, sin v, 1/u)

xv = (−u sin v, u cos v, 0)

we can then compute the coefficients of the first fundamental form

E = 〈xu,xu〉 = 1 + 1/u2

F = 〈xu,xv〉 = 0

G = 〈xv,xv〉 = u2.

Since we have E, F, G, we can find the unit normal

N =
xu × xv

‖xu × xv‖
=

1√
1 + u2

(− cos v, sin v, u)

and the coefficients of the second fundamental form

e = 〈N,xuu〉 =
−1

u
√

1 + u2

f = 〈N,xuv〉 = 0

g = 〈N,xvv〉 =
u√

1 + u2
.

From the coefficients of the first and second fundamental forms, we compute

K1 =
eg − f 2

EG− F 2
= (

−1

1 + u2
)(

1

1 + u2
) =

1

(1 + u2)2
.
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In the same fashion, we compute the partial derivatives of x̂(u, v),

x̂u = (cos v, sin v, 0)

x̂v = (−u sin v, u cos v, 1)

The coefficients of the first fundamental form are

Ê = 〈x̂u, x̂u〉 = 1

F̂ = 〈x̂u, x̂v〉 = 0

Ĝ = 〈x̂v, x̂v〉 = u2 + 1.

Since we have Ê, F̂ , Ĝ, we can find the unit normal

N̂ =
x̂u × x̂v

‖x̂u × x̂v‖
=

1√
1 + u2

(sin v,− cos v, u)

and the coefficients of the second fundamental form

ê = 〈N, x̂uu〉 = 0

f̂ = 〈N, x̂uv〉 =
−1√
1 + u2

ĝ = 〈N, x̂vv〉 = 0.

From the coefficients of the first and second fundamental forms, we compute

K2 =
eg − f 2

EG− F 2
= (

1

1 + u2
)(

−1

1 + u2
) =

−1

(1 + u2)2
.

So we see that while S1 and S2 have the same Gaussian Curvature, the coefficients

of the first fundamental form for S1 and S2 are not equal. Therefore they cannot be
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isometric to each other.

Up to this point, we’ve concentrated mainly on the Gaussian Curvature K. How-

ever, in the previous section, we noted another type of curvature, namely the mean

curvature given by the formula

H =
1

2
trace(dN) =

1

2

eG− 2fF + gE

EG− F 2

where dN is the matrix for the Gauss Map. Unlike the Gaussian curvature K, H

is not intrinsic. As a simple example, consider the plane and cylinder (assume the

cylinder has radius 1 for simplicity). We already know that E = Ê, G = Ĝ, F = F̂

where E, G, F are coefficients of the first fundamental form for the plane and Ê, F̂ , Ĝ

are the coefficients of the first fundamental form for the cylinder. Additionally, we

know that the plane and cylinder are isometric and have equal Gaussian curvature.

Computing the mean curvature for the plane is simple: in the plane, if we intersect the

plane with another, we get a straight line. In fact, any intersection yields a straight

line. Since a straight line has 0 curvature, the principle curvatures k1 = k2 = 0. In

addition to the formula above, we can also compute H = (k1+k2)
2 which is just 0 for

the plane. Similarly, when we cut the cylinder with a plane perpendicularly, we’re

left with a circle of radius 1, which has curvature equal to 1. Continuing to slice the

cylinder, the normal sections will vary from the circle to a straight line parallel to

the cylinder, which has 0 curvature; the maximum and minimum principle curvatures

are 1 and 0, respectively. So H = 1/2 for the cylinder, which is not equal to the

mean curvature for the plane, even though the two surfaces are isometric. That is,

H depends on the way in which a surface is embedded in Rn and hence is extrinsic.

In section 3, we defined points of a regular surface S based on the value of K. That

is, a point could be called elliptic, hyperbolic, parabolic or planar depending on the
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value of K (and in the case of planar, if the matrix dN = 0). On a similar note, when

H = 0 for all points p ∈ S, we say that S is a minimal surface. The word ”minimal”

is used to describe such surfaces because surfaces with mean curvature 0 minimize

surface area. For surfaces of revolution, this is a classical variational problem. That

is, given some curve y = f(x) on the interval [a, b], which function f produces the

least surface area when revolved around the y−axis [5]? When a surface is given by

the graph of a function, we can produce a partial differential equation to solve which

would produce an f that minimizes surface area. So let x(x, y) = (x, y, f(x, y)) be a

parameterization for a regular surface given by the graph of a function f . In section

4 we wrote down all we need to compute H. We had calculated the following:

xx = (1, 0, fx)

xy = (0, 1, fy)

xxx = (0, 0, fxx)

xxy = (0, 0, fxy)

xyy = (0, 0, fyy)

E = 〈xx,xx〉 = 1 + f 2
x

F = 〈xx,xy〉 = fxfy

G = 〈xy,xy〉 = 1 + f 2
y

e = 〈N,xxx〉 =
fxx√

f 2
x + f 2

y + 1

f = 〈N,xxy〉 =
fxy√

f 2
x + f 2

y + 1

g = 〈N,xyy〉 =
fyy√

f 2
x + f 2

y + 1

With the above we can write down the mean curvature for the surface parameterized
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by the graph of a function f as

H =
fxx(1 + f 2

x)− 2fxyfxfy + fyy(1 + f 2
y )

2(
√

f 2
x + f 2

y + 1)(1 + f 2
y + f 2

x + f 2
xf 2

y )
.

When we set H = 0, the following equation

0 = fxx(1 + f 2
x)− 2fxyfxfy + fyy(1 + f 2

y ) (34)

is known as the minimal surface equation and can be solved to produce an f such

that the surface given by the graph of f is a minimal surface. For information on how

to solve (34), consult a text on partial differential equations, such as [8]. There are

numerous examples of minimal surfaces, however, other than the plane, the earliest

non-trivial examples of minimal surfaces were the helicoid and catenoid, discovered

by Meusnier in 1776 (see [1] page 205). Interestingly, the catenoid is the only surface

of revolution which is minimal (see [1] page 202). An example of a recently discovered

minimal surface is the genus one helicoid pictured below.

Figure 5: Genus 1 Helicoid discovered by Hoffman, Karcher and Wei [9]. Reproduced
under Creative Commons License 3.0

The mean curvature, and in particular, when H = 0, can give us some insight
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into the geometry and topology of a regular surface. Recalling that given a vector

v ∈ Tp(S) is an asymptotic direction if the normal curvature, kn is 0, then consider

the following lemma.

Lemma 1. If the mean curvature is zero at a non-planar point p, then p has two

orthogonal asymptotic directions.

Proof. If p is a non-planar point, then our principle curvatures k1, k2 are non zero at

p. Let {e1, e2} be an orthonormal basis of Tp(S) and let v ∈ Tp(S). Since our basis

for the tangent space is orthonormal, we may write v = e1 cos θ + e2 sin θ. Now v is

an asymptotic direction if

kn = 〈dN(v), v〉 = k1 cos2 θ + k2 sin2 θ = 0.

Since H = 0 at p, then k1 = −k2 and our above equation can be written as

k1(cos2 θ − sin2 θ = 0

⇒ cos2 θ = sin2 θ

⇒ θ = π
4 , 3π

4 .

Plugging in θ, we can write our two asymptotic directions as

v1 =

√
2

2
e1 +

√
2

2
e2

v2 = −
√

2

2
e1 +

√
2

2
e2

and observe that

〈v1, v2〉 = −1

2
e1e1 +

1

2
e1e2 −

1

2
e1e2 +

1

2
e2e2
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= −1

2
+

1

2
= 0

which shows that v1, v2 are two orthogonal asymptotic directions.

As far as topology is concerned, recall that a compact surface is one that is closed

and bounded. Examples of compact surfaces include the sphere and torus. Note how

the plane and catenoid, both minimal surfaces, are not compact. This prompts the

following lemma.

Lemma 2. There are no compact (closed and bounded) minimal surfaces.

Proof. Let’s assume that there is a compact minimal surface S. Since S is closed and

bounded, we can enclose S in a sphere Ŝ centered at a point O such that there is some

point p in S that touches Ŝ. Let α(s) be any curve on S parameterized by arc length

such that α(0) = p. Since α(s) is a vector valued function, note that |α(s)| is equal

to the distance of a point on the curve to the origin O and observe that α(0) = p is

a local maximum. Let h(s) = |α(s)|2. Since α(0) is a local maximum, h′(0) = 0 and

h′′(0) ≤ 0. Computing h′(s) and h′′(s),

h′(s) =
d

ds
(|α(s)|2) = 2 〈α(s), α′(s)〉

h′′(s) =
d

ds
(2 〈α(s), α′(s)〉) = 2 〈α′(s), α′(s)〉+ 〈α(s), α′′(s)〉 (35)

Since h′(0) = 0 = 2 〈α(s), α′(s)〉, the vector α(0) = $OP is orthogonal to the tangent

vector α′(0) where $OP is the vector from the origin O to the point P . Since α′(0) is

a vector in Tp(S), it follows that $OP is normal to S. If we plug in s = 0 in equation

(35), we have

h′′(0) = 2|α′(0)|2 + 2
〈

$OP , α′′(0)
〉

(36)
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and using the Frenet Relation α′′ = kn (see [1]) where k is the curvature of α and n

is the unit normal, equation (36) becomes

h′′(0) = 2|α′(0)|2 + 2
〈

$OP , kn(0)
〉
≤ 0. (37)

Since |α′(0)| = 1,

h′′(0) = 2|α′(0)|2 + 2
〈

$OP , kn(0)
〉

= 2 + 2
〈

$OP , kn(0)
〉

= 2 + 2

〈
$OP

| $OP |
, kn(0)

〉
| $OP |

= 2 + 2 〈N,n〉 k| $OP |

= 2 + 2kn(p)| $OP | ≤ 0 (38)

where N is the unit normal to S and kn(p) is the normal curvature. Using equation

(38) and the definition of normal curvature, we have

1 + 〈dN(v), v〉 | $OP | ≤ 0

⇒ 〈dN(v), v〉 ≤ −1
| %OP | .

From the above equation, if v1, v2 are principle directions in Tp(S), then

〈dN(v1), v1〉 = k1 ≤
−1

| $OP |

〈dN(v2), v2〉 = k2 ≤
−1

| $OP |

where k1 < 0, k2 < 0 are the principle curvatures. If both principle curvatures are less

than 0, then k1 (= −k2, however, this is what would be required for S to be a minimal
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surface. Therefore, this contradicts the assumption that S is a minimal surface and

so we conclude that there are no compact minimal surfaces.

Note that since k1 < 0, k2 < 0, K = k1k2 > 0. Thus the above calculations also

show that if a regular surface S is closed and bounded, than it has at least one elliptic

point.
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6 Conclusion

Curvature is fundamental to the study of differential geometry. In this paper, two

types of curvature for surfaces were discussed: intrinsic (Gaussian) and extrinsic

(normal, principle and mean). It is rather remarkable that even though we can

express Gaussian curvature K in terms of the first and second fundamental forms,

where the second fundamental form is not an intrinsic quantity, K is still intrinsic.

Additionally, if we do the calculations with an orthonormal basis, we can express

K as the product of principle curvatures k1 and k2, where the principle curvatures

are the maximum and minimum normal curvatures (obtained from intersecting the

surface with a plane) and are extrinsic quantities. Yet K is still intrinsic. We also saw

how the value of K at a point p describes the geometry near p. For example, when

K > 0 at a point p, we find that the normal vectors for any curve going through p

all point towards the same side of the tangent plane at p. When K < 0, the normal

vectors can point towards either side of the tangent plane. Additionally, we saw how

curvature plays a role in the topology of regular surfaces (i.e compact surfaces have

at least one elliptic point). A far more complicated example of this which is beyond

the scope of this paper is Hilbert’s theorem, which states that a complete surface S

with constant negative curvature cannot be isometrically immersed in R3 [1].

There are still numerous topics in differential geometry, such as geodesics and the

exponential map that are beyond the scope of this paper. Additionally, the concepts

that were discussed in this paper also extend to n dimensional space and to abstract

manifolds, which is the branch of mathematics called Riemannian Geometry. In Rie-

mannian Geometry, the Riemannian curvature tensor Rijkl is analogous to the matrix

dN that was discussed. That is, from it, we can extract quantities such as sectional

curvature, which is the n dimensional analogue of Gauss Curvature. Also, the ideas
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presented in this paper extend to physics in the area of study called general relativ-

ity. For example, Einstein considered space and time to be a 4 dimensional manifold

endowed with a metric. With this, he was able to describe gravity mathematically

by quantifying how much space time curves in the presence of mass (although this

is a rather simplistic explanation). All of these concepts are explained in terms of

curvature of manifolds, and as such, curvature represents the most important and

essential ingredient in the subject.
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