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ABSTRACT OF THE DISSERTATION

An Investigation of Clinical Trial Supply Chains

by Adam Fleischhacker

Dissertation Director: Dr. Yao Zhao

This dissertation investigates production and inventory decisions made within clinical

trial supply chains in order to reduce drug supply costs. By investigating the SEC

filings of public companies, we find that drug supply costs frequently account for a

significant portion of pharmaceutical companies’ R&D spending. To unlock value tied

up in clinical trial supply chains, three unique aspects of clinical trial supply chains are

explored and associated supply chain decisions are optimized. The first unique factor

that differentiates the supply chains for clinical trials is the risk of failure, meaning that

the investigational drug is proven unsafe or ineffective during human testing. Upon

failure, any unused inventory is essentially wasted and needs to be destroyed. We ex-

plore the effect of this failure on production planning decisions and find the planner’s

decision to be a balancing act between waste and destruction costs versus production

inefficiency. To optimally achieve this balance, we generalize the Wagner-Whitin model

(W-W model) to incorporate the risk of failure. A second unique aspect of clinical trials

is that demand can go from being quite unpredictable to fully predictable during the

course of a trial. To take advantage of this demand learning, intra-trial batches can

be produced, but at the expense of scale economies. Using various learning curves, we
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study this balance between learning and economies of scale in a finite horizon inventory

model with fixed production costs and two production options: the pre-trial batch and

the intra-trial batch. We characterize the optimal policy for both production batches

in regards to optimally scheduling and sizing production. Lastly, we analyze the dis-

tribution networks of global clinical trial supply chains. Unique to these networks is

their temporary existence; trials are ceased after patient enrollment goals are met. To

manage these networks, we present a new class of multi-echelon inventory models to

make stock positioning decisions, develop algorithms to identify lower and upper bounds

on the optimal objective function for this new class, and leverage those algorithms to

provide insights into optimal supply chain configurations.
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Chapter 1

Introduction

This dissertation investigates production-inventory decisions made within clinical trial

supply chains in order to reduce drug supply costs. In this chapter, we describe current

clinical trial practices and review the role that academics have played in studying the

unique aspects of clinical trial supply chains. In the proceeding chapter, Chapter 2,

we confirm that the costs of clinical trial supply chains are indeed an area worthy of

study. By investigating the SEC filings of public pharmaceutical companies, we find

that clinical drug supply costs account for a significant portion of the R&D spending.

Given this large expense, we believe that this is a portion of drug development that

is ripe for improvement and in Chapters 3-5 we improve upon existing supply chain

models to incorporate aspects that are unique to clinical trial supply chains. For these

models, we are rewarded with both techniques and insights to reduce drug supply costs

for clinical trials.

1.1. Clinical Trials

Clinical trials are one of the most important hurdles that a drug candidate must over-

come prior to regulatory clearance. Before the U.S. Food and Drug Administration’s

(FDA) approval of a new drug, testing of a drug candidate in clinical trials is performed

to ensure both the safety and effectiveness of the treatment in human subjects. Three

phases of clinical trials are usually required and in each phase, the drug candidate is
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tested against either a placebo and/or an already commercialized medication. Typi-

cally, Phase I involves 50 to 100 healthy individuals and is testing the safety of the

medicine in human subjects for the first time. Assuming Phase I is successful, Phase

II recruits a few hundred potential patients and further tests safety while also looking

at treatment efficacy. Lastly, upon success of Phase II, Phase III seeks to test the drug

candidate in a few thousand patients to confirm both the efficacy and the safety of the

medication. From initiating Phase I trials to awaiting final FDA approval after Phase

III trials have been concluded, the development pipeline is filled with potential:

Today there are more than 2,900 medicines in the development pipeline.

Researchers are armed with vast amounts of new information on the genetic

and molecular underpinnings of disease, and they are working to translate

this knowledge into treatments that can ease symptoms, slow progression

and, ultimately, prevent or halt disease. (Pharmaceutical Research and

Manufacturers of America, 2009)

For each of the 2,900 medicines referred to above, some of which hope to cure

cancer or prevent heart disease, there is a long and expensive journey ahead of them

towards either commercialization or failure. In efforts to find successful treatments,

drug companies in the United States spend around 20% of their sales on research and

development (R&D) activities. Worldwide, it is estimated that this spending exceeds

$65 billion per year with some estimates topping $100 billion (Pharmaceutical Research

and Manufacturers of America, 2009; Thomson CenterWatch, 2007). On average, 37%

of the $100 billion R&D spending by pharmaceutical companies is spent on the clinical

trial process (Thomson CenterWatch, 2007). Despite these vast sums of money being

invested, only about 20% of drug candidates that enter clinical trials actually succeed

(DiMasi, Hansen, and Grabowski, 2003). Given these large sums of money being spent

on research, the small percentage of successful drug candidates, and revenues that are

proving harder to come by, it is natural that pressure exists to reduce costs in the

industry (Shah, 2004).
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The most challenging issues in managing today’s clinical trials are patient recruit-

ment and securing drug supply. Patients are enrolled into trials through both doctors

and hospitals that agree to aid the study. For a pharmaceutical company, enrollment

is often considered the bottleneck that prevents timely completion of trials and 80%

of clinical studies fail to meet their recruitment goals (Drennan, 2002). As a result of

slow patient recruitment and also high patient costs in the United States, clinical trials

are increasingly going global (Rowland, 2004). As a result of globalization, drug supply

must now address the needs of multiple international regulatory bodies, multiple lan-

guages and cultures, and multiple investigative sites. Thus, it is not surprising to hear

the sentiment that “Most current supply chains are entirely inadequate for the realities

of global trials today.” (Neuer, 2008).

1.2. Clinical Trial Supply Chains

Clinical trial supply chains of today are unique and challenging. While in the past

pharmaceutical companies considered drug supplying costs (e.g., manufacturing and

logistics costs) to be negligible, it is now recognized that these costs can absorb 20%

of the final value of a drug (Papageorgiou, Rotstein, and Shah, 2001). And just as the

attention of pharmaceutical executives has shifted from increasing revenues towards

reducing costs, so has the attention of academics. Around the turn of the millenium,

there is noticeable increase in attention devoted to drug supply issues during clinical

trials (Bernstein and Hamrell, 1999, 2000).

Papageorgiou, Rotstein, and Shah (2001) is one of the first papers to advocate opti-

mization methodologies for capacity planning that includes clinical trial manufacturing

as part of the decision process. Their research presents a mixed integer linear program

for modeling a pharmaceutical company’s supply chain. In an offshoot of their work,

Rogers, Gupta, and Maranas (2002) present a methodology to create an optimal port-

folio of drug candidates. Other papers for choosing the right portfolio of candidates to
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enter or continue clinical trials followed (Levis and Papageorgiou, 2004; Maravelias and

Grossmann, 2004). It is around the time of these articles that Nilay Shah notes “A

great deal of research has been undertaken on facility location and design, inventory

and distribution planning, capacity and production planning and detailed scheduling.

Only a small proportion of this work directly addresses the issues faced in the pharma-

ceutical sector. On the other hand, this sector is very much ready for and in need of

sophisticated supply chain optimisation techniques.” (Shah, 2004)

Sophistication in the clinical trial supply chain has often been implemented because

of enabling technologies. One such technology is Interactive Voice Response Systems

(IVRS). IVRS is a system that enables real-time monitoring of inventory in the clinical

trial supply chain. Leveraging Figure 1.1 which is presented in Byrom (2002), we are

able to describe the operational aspects of an IVRS system within a clinical trial.

Figure 1.1: Medication dispensing and automated site inventory control using IVR

When a qualifying patient arrives to a clinical trial site, the participating physician

calls into the IVRS system alerting the system to the new patient (step 1). With

a database of site-level inventory, the IVRS system returns the kit number or pack

number of the medication that is to be assigned to this patient (step 2). While neither

doctor nor patient knows if this particular kit is a placebo or the actual drug candidate,

the IVRS has allocated the most appropriate inventory to ensure a randomized trial

(McEntegart and O’Gorman, 2005, present an overview of randomization using IVRS).
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Once inventory levels at the site fall below a pre-determined trigger point, a re-order

is placed to a central or regional depot for resupply (steps 3-5). Finally, the order

is shipped and upon arrival is properly inventoried for potential dispensing to future

patients via the IVRS system (steps 6-8).

While IVRS provides a method of executing an operational plan, simulation is the

enabling technology for creating the operational plan. This plan would have to answer

a myriad of questions:

• How much drug will need to be supplied?

• How many clinical trial sites should I open and when should I open them?

• How and when should I change operational policies in response to demand?

• Should I ship direct to sites or should I open regional warehouses to cut leadtimes?

The above questions, which are purely tactical in nature (as opposed to strategic or op-

erational), have not secured the much needed academic attention, but many in industry

have advocated the use of simulation for answering these and other tactical questions

(Peck, 1997; Dowlman, Lang, McEntegart, Nicholls, Bacon, and Star, 2004). In prac-

tice, simulation has been used for several decades as part of the clinical trial decision

making process (Chow and Chang (2006)).

While technologies, like IVRS and simulation software, have certainly played a key

role in advancing the efficiency of clinical trial supply chains, one idea is being promoted

to enhance the effectiveness of clinical trials. Specifically, adaptive clinical trials are

being proffered as a means to both increase successes and weed out failures earlier in

the clinical trial process (Lowe, 2006). Instead of the traditional rigid approach to

clinical trials where a dosage, a patient population, a length of treatment, and specific

measures of success are chosen all prior to commencement of the trial, adaptive clinical

trials allow for flexibility in how a trial is conducted (Lesko, 2007). For example, an

adaptive approach allows for different dosages during the same trial and to drop dosages
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that prove toxic or non-therapeutic as trial data is collected and analyzed. While this

flexible dosing paradigm does aim at increasing the success of the drug, it effectively

creates one more unknown for the supply chain as doubling a doseage is essentially

doubling demand for a drug. In addition, packaging and shipping considerations must

now meet the needs of supporting this flexibility.

Given the dearth of research on tactical decision-support that fulfills the need for

current sophistication in clinical trial supply chain and the added pressures of globaliza-

tion and adaptive designs, the core of this dissertation (Chapters 3-5) provides tactical

decision-support models for this changing industry. In answering a call for less waste

and overage during clinical trials, we construct and analyze a production planning model

in Chapter 3 that incorporates the risk of a trial being halted because the drug proves

unsafe or ineffective. In Chapter 4, we model an adaptive clinical trial and study the

effect of demand learning on initial batch sizes and replenishment timing. In Chapter 5,

we address the issues of stock positioning and supply chain configuration to simultane-

ously support fast recruitment while ensuring appropriate fill rates at clinical sites. In

summary, this dissertation is designed to support many of the key production-inventory

decisions that a supply manager faces when supporting clinical trials.
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Chapter 2

Clinical Trial Supply Chain Spend-
ing

In this chapter, we present empirical evidence that highlights the financial significance

of the clinical trial supply chain. The clinical trial supply chain is an enormously com-

plex process and the money flow within this chain lacks detailed breakdowns in the

literature. We investigate the Securities and Exchange Commission filing’s of publicly

traded companies to identify supply chain costs associated with new drug development.

We specifically look for smaller publicly traded companies to avoid the intentional ambi-

guity in larger company statements that makes it difficult to follow the costs associated

with any one drug or specific clinical trial. In our search of public records, we found

three companies’ filings that allow for a more detailed look at clinical trial spending

(Acusphere Inc., 2004–2007; Ariad Pharmaceuticals Inc., 2004–2007; Allos Therapeutics

Inc., 1996–2007, see).

The first company is Ariad Pharmaceuticals Inc, whose lead product candidate,

Deforolimus, remains in Phase III trials as of January 2008. The product is a small

molecule compound for treating certain types of cancer. Manufacturing of the product

is not enormously complex and the product is readily synthesized using conventional

fermentation techniques. Although the manufacturing process was developed in-house,

the company has relied on third-party manufacturers to supply its clinical trial material.

Because of Ariad’s reliance on third-party manufacturers, Ariad’s 10-K’s from fiscal
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2003 2004 2005 2006 Total
Clinical Trial Phase Phase I Phase II Phase II Phase II –

Manufacturing Spend (in millions) $1.27∗∗ $5.87 $9.37 $5.27 $21.78
Total Clinical Spending (in millions) $2.54 $11.54 $26.31 $15.58 $55.97
Manufacturing Spend as % of Total 50% 51% 36% 34% 39%
** manufacturing spend is estimated at 50% of total clinical spending for 2003

Table 2.1: Percentage of Clinical Trial Expenses Spent of Manufacturing-Related Ac-
tivities for Ariad Pharmaceutical’s Deforolimus Drug Candidate.

years 2004 to 2006 specifically mentions changes to clinical trial expenses as a result of

changes in manufacturing-related costs. For fiscal year 2003, a breakdown of clinical

trial costs is not given so we estimate the manufacturing spend in this year. For 2007,

clear breakdowns of manufacturing-related costs are no longer available due to a 2007

deal between Ariad and Merck which allows for the sharing of Deforolimus development

costs. Using the available data, we estimate that approximately 39% of Ariad’s overall

clinical trial spending was spent on manufacturing-related activities (i.e. part of supply

chain costs). The supporting data are shown in Table 2.1.

Similar to our analysis of Ariad’s annual filings, we find cost information available

from the 10-K filings of Acusphere, Inc. This company’s lead product candidate, Imag-

ify, is a cardiovascular drug that has completed Phase III clinical trials and filed a

new drug application with the FDA in April 2008. Unlike Ariad’s Deforomilus, Acush-

pere’s Imagify requires custom and proprietary manufacturing technology. Despite this

difference, the percentage of clinical trial spending dedicated to manufacturing-related

activities is similar to that of Ariad’s. As shown in Table 2.2, around 40% of Acusphere’s

clinical trial spending has gone towards manufacturing-related activities for the fiscal

years 2003 through 2006. 1

In contrast to the previous two companies, Allos Therapeutics has multiple product

candidates, nonetheless their annual filings provide usable detail on their clinical man-

ufacturing costs. These costs are separated from all other research and development

1Acusphere went public in October 2003, thus earlier expense data relevant to our analysis is not
available.
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2003 2004 2005 2006 Total
Clinical Trial Phase Phase II/III Phase III Phase III Phase III –

Manufacturing Spend (in millions) $1.7 $7.9 $8.0 $11.4 $29.0
Total Clinical Spending (in millions) $8.6 $18.5 $24.3 $21.9 $73.3
Manufacturing Spend as % of Total 20% 43% 33% 52% 40%

Table 2.2: Percentage of Clinical Trial Expenses Spent of Manufacturing-Related Ac-
tivities for Acushpere Incorporated’s Imagify Drug Candidate.

1995 - 1998 1999 - 2002 2003 - 2006 Total
Manufacturing Spend (in millions) $3.7 $11.5 $13.9 $29.1
Total R&D Spending (in millions) $18.2 $56.7 $61.6 $136.4

Manufacturing Spend as % of Total R&D 20.4% 20.3% 22.6% 21.3%

Table 2.3: Percentage of Research and Development Spending on Clinical Trial
Manufacturing-Related Activities for Allos Therapeutics’ Three Product Candidates.

costs. Unfortunately, total clinical trial costs are lumped into Allos Therapeutics’ R&D

number, so a direct comparison of Allos’ spending to our previous two examples is not

possible. However, we do have data on twelve years of clinical trial manufacturing costs

as a percentage of total research and development spending. Through analysis of these

12 years, we find that 21.3% of Allos Therapeutics’ R&D spending from 1995-2006 has

been spent on clinical trial manufacturing-related activities. See Table 2.3 for the yearly

breakdown of spending:

It is worth noting that the two drug candidates in the first two examples are small

molecule drugs. Discussions with pharmaceutical R&D researchers and industry consul-

tants unanimously indicate that large molecule treatments, such as those developed by

bio-tech companies using live organisms or their components, tend to have much more

significant drug supply costs during clinical trials than small molecule chemical (non-

biologic) compounds. This is true because large molecule drugs typically require many

more steps in production, have much lower yield, and require extra costs on shipping

and storage. Our third example comes from a large molecule bio-tech company, and

anecdotally, this supports the idea that large molecule manufacturing costs are more

costly than small molecule manufacturing costs (this is true because the total R&D cost

also covers drug discovery and pre-clinical trial costs, and the total clinical trial cost is
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about 40% of the total R&D cost).

Although the above analysis of clinical trial supply chain spending is limited to

three data points, it is readily apparent that manufacturing-related activities can be a

significant source of costs during clinical trials. In the first two examples, roughly 40%

of clinical trial spending is attributable to supplying the investigational drugs. Given

our previous estimate of 37% of research and development spending being attributable

to clinical trials, a potentially unjustifiable extrapolation of our data points suggests

that 14.8% of the $100 billion spent annually on R&D is for clinical trial supply chain

activities. Our analysis of Allos Therapeutics shows that they spent 21.3% of their

R&D on clinical trial supply chain activities. Thus, even the very rough estimate of

14.8% of pharmaceutical R&D being spent on the clinical trial supply chain has some

confirmatory evidence towards the significant magnitude of spending devoted to the

clinical trial supply chain.
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Chapter 3

Production Planning Under Failure
Risk

For every new drug that reaches a pharmacy’s shelf, roughly 5,000 to 10,000 other po-

tential medicines have failed to achieve commercialization (Pharmaceutical Research

and Manufacturers of America 2007). For a pharmaceutical or bio-tech company at-

tempting to create a new medicine or treatment, failure is not a surprise, but rather an

event to be planned for. In this chapter, we analyze the impact of failure during clin-

ical trials on the production-inventory decisions for investigational drugs and discover

that an extension of the Wagner-Whitin model (Wagner and Whitin, 1958) can greatly

improve efficiency in the clinical trial supply chain.

One of the most important hurdles prior to the U.S. Food and Drug Administration’s

(FDA) approval of a new drug is the testing of a drug candidate in clinical trials. Three

phases of clinical trials are usually required to test both safety and efficacy of a potential

treatment in human subjects. Typically, Phase I involves 50 to 100 healthy individuals,

Phase II recruits a few hundred potential patients, and Phase III seeks to test the drug

candidate in a few thousand patients. While we may know how many patients are

needed in each phase of the clinical trial, there is an inherent uncertainty associated

with each trial: the risk of failure. Indeed, only 21.5% of drug candidates entering

clinical trials actually achieve FDA approval (DiMasi, Hansen, and Grabowski, 2003).

Many of these drug candidates that fail to pass through the clinical trial hurdle are well
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documented in the financial press. Below is just one example from the New York Times

(Berenson, 2006):

The news came to Pfizer’s chief scientist, Dr. John L. LaMattina, as he was

showering at 7 a.m. Saturday: the company’s most promising experimental

drug, intended to treat heart disease, actually caused an increase in deaths

and heart problems. Eighty-two people had died so far in a clinical trial,

versus 51 people in the same trial who had not taken it.

Within hours, Pfizer, the world’s largest drug maker, told more than 100 trial

investigators to stop giving patients the drug, called torcetrapib. Shortly

after 9 p.m. Saturday, Pfizer announced that it had pulled the plug on the

medicine entirely, turning the company’s nearly $1 billion investment in it

into a total loss.

The small success rate of clinical trials is painful to a pharmaceutical company’s

balance sheet because of the enormous amounts of time, labor, and materials required

to perform a clinical trial. Annual supply chain spending for drugs under clinical trials

can be substantial, e.g., accounting for 40% or more of the total clinical trial spending

(see Chapter 2). For just one drug candidate, a company can spend millions of dollars

every quarter to produce supplies for the clinical trial. When failure in a clinical trial

occurs, every dollar spent on manufacturing, packaging, and distribution of unused

clinical trial supplies is wasted and in most cases, unused material must be returned to

a proper disposal facility for destruction (English and Ma, 2007). For example, Cotherix

Inc., estimated $126,000 in destruction costs for an obsolete drug that was valued at

$1.5 million (Cotherix Inc., 2006).

It would be unfair of us to label all post-failure drug supply as waste. Inventory

is needed to ensure that as patients are recruited to participate in the study, drug

supply is available. Any delays in this phase of testing become one less day of patent

protection available to the drug. According to Clemento (1999), every extra day of
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patent availability is worth $1 million for a typical drug. Since patient recruitment is the

typical bottleneck in conducting clinical trials, shortages of clinical drug is considered

an unacceptable delay and our model assumes no backlogging of demand. That being

said, one would usually be economically foolish to produce enough supply to support

all three phases of a clinical trial at once.

Production of investigational drugs is typically characterized by high costs (both

fixed and variable) due to the low demand volume, low yield and the premature manu-

facturing process. In addition, at each step in the synthesis of the chemical compounds,

rigorous quality control procedures are required to ensure that investigational drugs “are

consistently produced and controlled to the quality standards appropriate to their in-

tended use.” (George, 2005) Often, active ingredient production for a drug candidate is

a costly process and may require unique manufacturing equipment and processes. Thus,

both the fixed and variable production costs tend to be much higher for investigational

drugs than approved drugs which have been scaled up for mass production.

In the remainder of this chapter, we present a mathematical model for production

planning to balance the two opposing forces of 1) high fixed production costs pushing

for large lot sizes and 2) high failure costs which favor smaller lot sizes. High fixed

costs for production, in the form of both time and money, lend support to producing

large lot sizes. Alternatively, the high risk of failure, the high production variable cost

and inventory carrying cost argue for smaller lot sizes. Smaller lot sizes would avoid

wasting unused clinical drug supplies as well as the significant cost of destroying the

unused material, but can result in high costs due to multiple production setups and

more numerous quality control activities. We accommodate this environment by gen-

eralizing the Wagner-Whitin (W-W) model (Wagner and Whitin, 1958) to incorporate

a stochastic component, namely, the risk of failure, we will refer to this model as the

failure-risk model. We make the following contributions:

• Every failure-risk model is equivalent to a corresponding deterministic W-W



14

model if one adjusts the cost parameters properly to reflect failure risk and de-

struction costs, so many classic results of the W-W model still apply. Most in-

terestingly, the planning horizon theorem indicates that in the failure-risk model,

learning (e.g., the failure probability) as the clinical trial proceeds does not affect

optimal supply decisions under certain conditions.

• We conduct a comprehensive numerical study using various environments that

clinical trial manufacturers may face. We show that the failure-risk model can

lead to substantial costs savings as compared to using the W-W model which

ignores the risk of failure.

The remainder of this chapter is organized as follows. We review the related liter-

ature in §3.1. The model and analysis are presented in §3.2, and their extensions are

discussed in §3.3. The potential benefits of properly accounting for failure are shown

in an illustrative example in §3.4. A more thorough numerical study to test the ef-

fectiveness of the model under real-world scenarios is performed in §3.5. Finally, we

summarize the results in §3.6.

3.1. Literature Review

Because of the interdisciplinary nature of this work, we shall first review literature that

relates the disciplines of production planning and clinical research. Then, we highlight

papers on dynamic economic lot size models and stochastic inventory models. Finally,

we turn our attention to literature on research and development (R&D) supply chains.

Investigations of integrating drug supply with the clinical trial process are found

in the medical and pharmaceutical literature. For example, George (2005) presents

common issues encountered during clinical trial supply management and proposes co-

ordination and flexibility as keys to success. A thorough description of clinical material

manufacturing practices is provided by Bernstein and Hamrell (2000). In their paper,
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the authors advocate coordinating the disciplines of manufacturing and clinical pro-

grams to achieve efficient execution of drug development. Their study is conceptual

and qualitative.

Quantitative research on production planning and capacity expansion under clinical

trial uncertainty has been conducted in the chemical engineering literature. Gatica,

Papageorgiou, and Shah (2003) simultaneously determines the optimal capacity and

production decisions for multiple clinical trial drugs in different stages of their life-

cycle. The underlying problem is a large-scale multi-stage stochastic program with

integer and continuous variables and is solved as a mixed-integer linear program. Shah

(2004) provides a recent survey for this line of research and an article by Colvin and

Maravelias (2008) highlights more recent advances.

The work contained here differs from the previous work on clinical trial supply

chains by its focus. We study a simpler model with one drug candidate and aim at de-

riving structural results which provide managerial insights and enable efficient solution

algorithms. Thus, our work is more closely related to the dynamic economic lot size

(DEL) models and stochastic inventory models studied in the operations management

literature.

There is a long lasting interest and huge body of literature on DEL models for

production-inventory systems with time-varying but known demand. Wagner and

Whitin (1958) proposes the basic model (referred to as the W-W model hereafter).

The paper characterizes several important system properties and develops a polyno-

mial solution algorithm. Since then, many extensions and variations of the model have

been studied. For more efficient solution algorithms, see AggarwalL and Park (1993),

Federgruen and Tzur (1991), and Wagelmans, Van Hoesel, and Kolen (1992). For DEL

models with various capacity constraints, see, e.g., Florian, Lenstra, and Rinnooy Kan

(1980) and Shaw and Wagelmans (1998). For more general cost functions, see Eppen,

Gould, and Pashigian (1969), Veinott Jr (1963), and Zangwill (1969). More recently,

Chu, Hsu, and Shen (2005) study a lot sizing problem with general economies of scale
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cost functions. Realizing the problem is NP-hard, they develop approximation solutions

and perform a worst-case analysis. Zipkin (2000) provides a thorough review of models

and solution techniques on this topic.

In §3.2, we extend the classical W-W model to include the risk of failure. This feature

transforms the W-W model into a stochastic production-inventory model. The most

related stochastic inventory models to this work are those on single-stage systems with

world-driven demand. Iglehart and Karlin (1962) analyzes optimal inventory ordering

policies for non-stationary stochastic demand. Johnson and Thompson (1975) models

demand as mixed autoregressive-moving average time series. Song and Zipkin (1993)

and Sethi and Cheng (1997) characterize the optimal inventory control policies for

various inventory systems with Markov-modulated demand. Comprehensive reviews

are provided by Zipkin (2000) and Porteus (2002).

The failure-risk model studied here can be regarded as a special case of the models

with Markov-modulated demand. Here demand in each period is a Bernoulli random

variable, and if demand ever becomes zero, it stays zero for the rest of the planning

horizon. While it is known that under certain regularity conditions, the state-dependent

(s, S) policy is optimal for such systems with fixed production costs, the special struc-

ture of the demand process in a clinical trial supply chain allows us to develop much

stronger results (e.g., equivalence to W-W model) and new insights (e.g., impact of

failure risk).

The demand structure we use is similar to those analyzed in the inventory mod-

els with “sudden death obsolescence”. Brown, Lu, and Wolfson (1964) introduces the

model under periodic-review where demand may cease at an uncertain future date. A

Bayesian procedure is employed to update demand distribution and a dynamic pro-

gram is proposed to find the optimal solution. Pierskalla (1969) considers a model with

stochastic demand and convex cost functions, and shows that the base-stock policy is

optimal. Song and Zipkin (1996) generalizes the model to treat Markov-modulated de-

mand. Katok, Lathrop, Tarantino, and Xu (2001) considers a model similar to ours but
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with random demand. To derive simple heuristic solutions, the authors analyzed their

model with deterministic demand and found that it is a variant of the W-W model.

Both our study and a similar study of obsolescence by Jain and Silver (1994) prove

only the zero-inventory property for the deterministic model and derive heuristic solu-

tions to the stochastic problem based on this property. Katok and Xu (2001) provides

more details on the mathematic model and technical development which expand the

Katok, Lathrop, Tarantino, and Xu (2001). While we study a similar model (with some

differences on the cost structure) as the previous three papers, we takes the analysis

of the deterministic demand case further by proving the full equivalence of produc-

tion planning in a demand failure environment to a re-parameterized Wagner-Whitin

model. We also leverage this equivalence to show conditions under which savings may

be achieved. Lastly, a few authors have studied sudden death obsolescence models in

continuous time with deterministic demand and developed EOQ types of solutions, see,

David, Greenshtein, and Mehrez (1997) and references therein.

To overcome the complexities of existing stochastic obsolescence models, we study

failure in the supply chain by focusing on a particular type of demand uncertainty that

we term demand failure. Demand failure is defined as the sudden ceasing of a deter-

ministic non-stationary demand stream. While the point of failure is not known, we do

assume that failure probabilities in each period are known (DiMasi, 2001). By employ-

ing the assumption of demand failure, we are able to yield both clean and insightful

results. As Song and Zipkin (1996) note in their study of obsolescence, which assumes

a stochastic demand stream with random lifetime, clean results are not forthcoming in

fully stochastic models:

Generally, we find that obsolescence does (or should) have a substantial

impact in the way inventories are managed. The nature of these effects,

moreover, is fairly intricate. It appears that obsolescence cannot be captured

in a simpler model through parameter adjustments.
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Leveraging the deterministic demand assumption, we can formulate the failure-risk

model into the simpler W-W model where the adjusted cost parameters incorporate

the costs of failure. This result connects the failure-risk model with the vast literature

of the W-W models, and thus, many results of the latter directly apply here. In ad-

dition, adjusting parameters of the W-W model is a simple way to include failure into

production planning and thus, is more likely to be implemented than more complex

obsolescence models. Lastly, we believe the demand failure assumption to be tenable to

practitioners when they can accurately predict demand. According to a recent survey of

clinical supply managers conducted by Bearing Point, 75% of Phase I and roughly 50%

of Phases II-III SKU-level clinical supply forecasts are within 10% of actual demand

(Kumar, 2008).

Our work is also related to the literature on R&D supply chains. Most of this liter-

ature focuses on supply chain design to support a product entering the market for the

first time. However, much less attention has been devoted to the actual development

supply chain (Krishnan and Ulrich, 2001; Pisano, 1997). At a pharmaceutical company,

both the supply chain design for production ramp-up and the material supply during

the development stage are important decisions. The focus of this study is on creating a

model for the latter. More recently, there is a growing interest in combining R&D and

supply chain decisions. Tomas and Hult (2003) provides a conceptual framework to ana-

lyze the interdependencies of product development and supply chain activities. Specific

to the pharmaceutical world, Pisano (1997) presents strategic guidelines for effectively

linking manufacturing strategy with the highly uncertain world of drug candidate de-

velopment. Lastly, allocating scarce resources to an R&D pipeline of promising drug

candidates is taken up as a portfolio problem (Girotra, Terwiesch, and Ulrich, 2007;

Blau, Pekny, Varma, and Bunch, 2004).
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3.2. The Model

Consider an investigational drug in a clinical trial over a finite time horizon with periods

ranging from t = 1, 2, . . . , N . We assume that demand is known for the drug in all

periods (see justifications in §3.1). Demand and costs in each period are nonnegative.

If the trial succeeds at the end of period t, we make production decisions and move to

next period. Otherwise, we stop and all remaining inventory is wasted and is recycled

or destroyed. The known demand must be satisfied and no backorders are allowed.

Because the production cycle time is often much shorter than a clinical trial duration,

we assume zero lead-time for production.

The system has the following state variables at the beginning of period t:

• I: inventory level.

• θ: system status indicator, success (θ = 1), failure (θ = 0).

The system has the following parameters,

• ht: holding cost for inventory carried from period t to period t+ 1.

• st: fixed production cost at period t if a production is initiated.

• αt: failure probability at the end of period t.

• βt ≡ 1− αt: success probability at the end of period t.

• dt: demand in period t.

• ct: production variable cost at period t.

• rt: recycle/destruction cost at period t for any inventory un-used.

The estimates of failure probabilities in various therapeutic classes are readily avail-

able from the literature (Gatica, Papageorgiou, and Shah, 2003). It is possible that the

failure probability of a trial does not depend on the results of previous trials if they are
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testing on different criteria, e.g., efficacy vs. safety. In this case, αt is the unconditional

probability of failure in the trial. It is also possible that the failure probabilities depend

on the results of previous tests. For instance, during multiple trials for effectiveness,

success in early trials can provide a strong indicator for success in on-going trials. In

this case, αt is effectively the failure probability conditioning on successes to date.

The action at period t is to produce xt ≥ 0. Let initial inventory level I0 = 0. Define

ft(θ, I) to be the minimum expected cost for period t through N with initial inventory

I and system status θ. Let δ(xt) be the indicator function of xt > 0, and h0 = 0. The

dynamic programming recursion can be written as follows,

ft(0, I) = rtI, 1 ≤ t ≤ N (3.1)

ft(1, I) = min
{xt≥0, I+xt≥dt}

{ht−1I + δ(xt)st + ctxt + αtft+1(0, I + xt − dt) +

βtft+1(1, I + xt − dt)}, t = 1, 2, . . . , N − 1 (3.2)

fN(1, I) = min
{xN≥0, I+xN=dN}

{hN−1I + δ(xN)sN + cNxN}. (3.3)

Combining Eqs. (3.1)-(3.2), and noting that I + xt − dt is the inventory at the

beginning of period t+ 1, we can make the following transformation,

gt(I) =
αt−1rt
βt−1

I + ft(1, I),∀t = 1, 2, . . . , N, (3.4)

where α0 = 0. Then, gt(I) satisfies the following recursive equations,

gt(I) = min
{xt≥0, I+xt≥dt}

{αt−1rt + βt−1ht−1

βt−1

I + δ(xt)st + ctxt + βtgt+1(I + xt − dt)},

t = 1, 2, . . . , N − 1

gN(I) = min
{xN≥0, I+xN=dN}

{αN−1rN + βN−1hN−1

βN−1

I + δ(xN)sN + cNxN}.

Note that this formulation is identical to the W-W model with modified inventory
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holding cost and a time discount factor βt at period t. One can adjust the cost param-

eters at each period, and by doing so, the dynamic program reduces to the Wagner-

Whitin model with variable production costs. Let h′0 = 0, and define the effective

production costs and holding costs as follows,

s′1 = s1

s′t = st · Πt−1
j=1βj, 1 < t ≤ N

c′1 = c1

c′t = ct · Πt−1
j=1βj, 1 < t ≤ N

h′1 = α1r2 + β1h1

h′t = (αtrt+1 + βtht) · Πt−1
j=1βj, 1 < t < N.

Hence,

g′t(I) = min
{xt≥0, I+xt≥dt}

{h′t−1I + δ(xt)s
′
t + c′txt + g′t+1(I + xt − dt)}, t = 1, 2, . . . , N − 1(3.5)

g′N(I) = min
{xN≥0, I+xN=dN}

{h′N−1I + δ(xN)s′N + c′NxN}. (3.6)

Eqs. (3.5)-(3.6) show that one can transform the stochastic failure-risk model to

an equivalent deterministic W-W model with properly adjusted production and inven-

tory holding costs. Note that the adjusted (or effective) inventory holding cost is the

weighted average of the destruction cost and the regular inventory holding cost which

is discounted by the success probabilities to date.

Because all cost parameters defined in Eqs. (3.5)-(3.6) are nonnegative, by Zip-

kin (2000, §4.3.3), the “zero-inventory property” holds. Specifically, let It be initial

inventory level at period t, and we can formally state the “zero-inventory property”.

Theorem 1 (The Zero Inventory Property) For the dynamic program defined in

Eqs. (3.1)-(3.3), the following claims hold.
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1. For each period t, It · xt = 0.

2. xt = 0 or xt =
∑k

j=t dj.

3. If dt is satisfied by some xτ for τ < t, then dj, j = τ + 1, . . . , t− 1 is also satisfied

by xτ .

4. Given that It = 0 for period t, it is optimal to consider periods 1 through t − 1

independent of other periods.

For ease of analysis, we further transform the dynamic program into the W-W

model without variable production costs. Note that c′txt = c′t(I + xt − dt) − c′t(I − dt)

for t = 1, 2, . . . , N .

g′t(I) = min
{xt≥0, I+xt≥dt}

{(h′t−1 − c′t)I + δ(xt)s
′
t + c′t(I + xt − dt) + c′tdt + g′t+1(I + xt − dt)},

t = 1, 2, . . . , N − 1

g′N(I) = min
{xN≥0, I+xN=dN}

{(h′N−1 − c′N)I + δ(xN)s′N + c′NdN}.

To remove the constants ctdt and combine terms which are functions of I + xt − dt,

we define,

Gt(I) = c′t−1I + g′t(I)− [c′tdt +
N∑

n=t+1

(c′ndn · Πn−1
j=t βj)], t = 1, 2, . . . , N − 1

GN(I) = c′N−1I + g′N(I)− c′NdN ,

where c′0 = 0. The recursion for Gt is as follows,

Gt(I) = min
{xt≥0, I+xt≥dt}

{Ht−1I + δ(xt)St +Gt+1(I + xt − dt)}, t = 1, 2, . . . , N − 1(3.7)

GN(I) = min
{xN≥0, I+xN=dN}

{HN−1I + δ(xN)SN}, (3.8)
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where

St = s′t, 1 ≤ t ≤ N

H1 = c1 − c2 + α1(c2 + r2) + β1h1 (3.9)

Ht = [ct − ct+1 + αt(ct+1 + rt+1) + βtht] · Πt−1
j=1βj, 1 < t < N. (3.10)

Note that Ht consists of two parts: the first part is the difference between production

costs in two successive periods; the second part is the weighted average of the total loss

due to failure (including the production and destruction costs, referred to as the failure

cost) and the regular inventory holding cost.

Define F (j, i) to be the minimum cost to cover all demands in periods j, j + 1, . . . , i

with Ij = 0 and Ii+1 = 0 if j ≤ i; let F (j, i) be zero otherwise. The forward formulation

to compute F (j, i) is as follows.

F (j, i) = min{ min
j≤k<i

{Sk+
i−1∑
n=k

Hn

i∑
l=n+1

dl+F (j, k−1)}, Si+F (j, i−1) }, j < i. (3.11)

The backward formulation works as follows,

F (j, i) = min{ Sj+F (j+1, i), min
j<k≤i

{Sj+
k−1∑
n=j

Hn

k∑
l=n+1

dl+F (k+1, i)} }, j < i. (3.12)

To compute the optimal solution and optimal cost functions, one can use the well

known algorithms of Wagner and Whitin (1958), Federgruen and Tzur (1991) and

Wagelmans, Van Hoesel, and Kolen (1992).

Because the failure probability αt only affects the holding costs Hj for j ≥ t, it

follows from the forward formulation, Eq. (3.11), that the Planning horizon Theorem

of Wagner-Whitin can be applied and interpreted in our model as follows.

Theorem 2 (The Planning Horizon Theorem) If Ht ≥ 0 for all 1 ≤ t < N , then
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1. If the optimal solution for F (1, t) in Eq. (3.11) is t∗ ≤ t, then to solve F (1, τ)

with τ > t, one only needs to consider F (t∗, τ). In other words, if it is optimal

to incur a set-up cost at period t∗ when periods 1 through t are considered alone,

then it is optimal to incur a set-up cost at period t∗ in any τ -period model.

2. The optimal solution for periods 1 to t∗ does not change even if we can update αj

for j ≥ t∗ along with time.

If Ht < 0, Theorem 2 may not hold, see Eppen, Gould, and Pashigian (1969) for

more discussion. Due to the high destruction cost and failure risk, Ht will be positive

in clinical trial supply chains. Hence, we assume Ht ≥ 0 for all 1 ≤ t < N for the

remainder of this chapter.

One question that could be asked is, does there exist a threshold on αk, the failure

probability, so that above which, it is optimal to produce in each period? The following

Theorem answers this question.

Theorem 3 (The High Failure Risk Property) If βj < (cj + rj+1)/[sj+1/dj+1 +

cj+1 + rj+1− hj] for all j = 1, 2, . . . , N − 1, then it is optimal to produce in each period

from 1 to N.

Proof. By Theorem 2, it suffices to consider F (j, j + 1) for j = 1, 2, . . . , N − 1.

F (j, j + 1) = min{Sj + F (j + 1, j + 1), Sj +Hj · dj+1} (3.13)

= min{Sj + Sj+1, Sj +Hj · dj+1}. (3.14)

Clearly, if Sj+1 < Hj · dj+1, then it is optimal to produce in both periods j and j + 1.

Simple derivation shows that the condition Sj+1 < Hj · dj+1 is equivalent to βj <

(cj + rj+1)/[sj+1/dj+1 + cj+1 + rj+1 − hj]. 2

To interpret Theorem 3, let cj = c and rj = r for all j. If sj+1/dj+1 < hj for all j, it

is optimal to produce at each period even if αj = 0 for all j. Otherwise, if sj+1/dj+1 > hj

for all j, then the condition reduces to βj < 1/[(sj+1/dj+1− hj)/(c+ r) + 1]. Clearly, if
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the production cost, the recycle cost or the demand quantity increases, the likelihood

of producing in each period increases.

Finally, we study the impact of failure risk on the optimal expected total cost, C∗.

C∗ =
N−1∑
t=1

h′t · I∗t+1 +
N∑
t=1

δ(x∗t ) · s′t +
N∑
t=1

c′tx
∗
t , (3.15)

where x∗t and I∗t are the optimal production and inventory decisions.

Proposition 1 C∗ is a piecewise linear concave function for each αt, t = 1, 2, . . . , N .

In addition, C∗(α2
t ) ≤ (1 + αt)C

∗(αt) for each t.

Proof. The proof of the first statement follows that of Zipkin (2000) problem 4.6.

Briefly, for any fixed sequence of production times, we note that h′j, s
′
j and c′j are either

independent of αt or linear functions of αt. Therefore, given the sequence of production

times, C∗ is linear in every αt. C∗ is concave in αt because C∗ is the minimum cost

over all possible sequence of production times.

To prove the second statement, we consider α1 as a special case. For α2
1, s′1 = s1

and c′1 = c1,

s′t = st · Πt−1
j=1βj(1 + α1), t > 1

c′t = ct · Πt−1
j=1βj(1 + α1), t > 1

h′1 = α2
1(r2 − h1) + h1 ≤ [α1(r2 − h1) + h1](1 + α1)

h′t = (αtrt+1 + βtht) · Πt−1
j=1βj(1 + α1), t > 1.

Suppose that the optimal sequence of production times remains the same for both α1

and α2
1. Then C∗(α2

t ) ≤ (1 + αt)C
∗(αt). Otherwise, the same inequality also holds

because C∗(α2
t ) becomes even smaller. The same proof applies to all αt for t > 1. 2

C∗(α) is generally not a monotonic function of αt. Consider the special case of

αt → 1 for all t. C∗ effectively reduces to a single-period cost function, which is clearly
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less than the multi-period cost function as αt → 0 for all t. Proposition 1 gives a upper

bound on the diminishing rate for C∗ as αt increases. On the other hand, if the optimal

sequence of production times is to produce at period N − 1 to cover demand in both

N − 1 and N , then C∗(αN−1 + ∆) > C∗(αN−1) can hold for sufficiently small ∆ if

rN > hN−1.

3.3. Extensions

In this section, we consider two extensions of the model in §3.2 to incorporate real-world

situations: general concave cost functions and production/storage constraints.

3.3.1 Concave Cost Functions

Let ct(x) be the production cost function, ht(I) be the inventory cost function, and rt(I)

be the destruction/recycle cost function. In line with economies of scale, we assume

that ct(x), ht(I) and rt(I) are concave and increasing.

Under these cost functions, the dynamic program recursion, Eqs. (3.1)-(3.3), can

be written as follows,

ft(0, I) = rt(I), 1 ≤ t ≤ N (3.1)

ft(1, I) = min
{xt≥0, I+xt≥dt}

{ht−1(I) + ct(xt) + αtft+1(0, I + xt − dt) +

βtft+1(1, I + xt − dt)}, t < N (3.2)

fN(1, I) = min
{xN≥0, I+xN=dN}

{hN−1(I) + cN(xN)}. (3.3)

Similar to §3.2, define gt(I) = αt−1

βt−1
rt(I) + ft(1, I) for t = 1, 2, . . . , N , where α0 = 0.

Then

gt(I) = min
{xt≥0, I+xt≥dt}

{αt−1

βt−1

rt(I) + ht−1(I) + ct(xt) + βtgt+1(I + xt − dt)}, t < N(3.4)

gN(I) = min
{xN≥0, I+xN=dN}

{αN−1

βN−1

rN(I) + hN−1(I) + cN(xN)}. (3.5)
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Discounting cost functions in each period by βt, we define,

c′1(x) = c1(x)

c′t(x) = ct(x) · Πt−1
j=1βj, t > 1

h′1(I) = α1r2(I) + β1h1(I)

h′t(I) = [αtrt+1(I) + βtht(I)] · Πt−1
j=1βj, 1 < t < N.

Finally,

g′t(I) = min
{xt≥0, I+xt≥dt}

{h′t−1(I) + c′t(xt) + g′t+1(I + xt − dt)}, t < N (3.6)

g′N(I) = min
{xN≥0, I+xN=dN}

{h′N−1(I) + c′N(xN)}. (3.7)

Note that the effective cost functions, h′t−1(I) and c′t(x), are still concave and in-

creasing. By Eqs. (3.6)-(3.7), the stochastic failure-risk model is equivalent to the

deterministic W-W model with general concave and increasing cost functions. By Zip-

kin (2000, Sections 4.3.3 and 4.4.6), The “Zero Inventory Property” (Theorem 1) holds

here. One can derive the forward and backward formulations in a similar way as Eqs.

(3.11)-(3.12), for brevity, we omit the details. As Veinott Jr (1963) and AggarwalL

and Park (1993) point out, the W-W model with general concave cost functions can

be solved using the forward formulation with complexity O(N2). However, Theorem 2

does not hold because of the general form of the concave production cost functions.

3.3.2 Additional Constraints

We discuss three types of constraints: the production capacity constraint, the inven-

tory shelf-life constraint and the storage capacity constraint. The inventory shelf-life

constraint specifies the number of periods that a unit can be carried in inventory, which

limits the number of future periods that can be covered by a production batch. Thus,

it is effectively a production capacity constraint. It is easily seen that with any subset
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of these constraints, one can use the same technique in §3.2 to reduce the stochastic

failure-risk model to an equivalent deterministic W-W model with adjusted cost param-

eters and the same set of constraints. For the W-W model with production capacity,

inventory shelf-life and storage capacity constraints, one can find the solution using well

established algorithms, see, e.g., Shaw and Wagelmans (1998).

3.4. An Illustrative Example

In this section, we demonstrate that accounting for demand failure when planning a

production schedule can lead to substantial cost savings over using the Wagner-Whitin

model ignoring the failure risk. To develop insight, we consider a special case of Phase

II clinical trials with stationary data where ct = $75, rt = $25, ht = $5, dt = 250

and st = $50, 000 (∀t ∈ 1, 2, ..., 12). Note that both ht and dt are defined per period

where a period equals two months here. We consider a 12-period (two years) planning

horizon and a 7% probability of failure in each period (i.e. approximately a 42% chance

of success for phase II trials). Further justification of the parameters chosen here is

provided in the next section.

For stationary production variable costs, it makes sense to utilize Eqs. (3.7)-(3.8),

which ignore the production variable costs except as included in the failure costs. We

first consider the classic W-W model ignoring the risk of failure. Figure 3.1a shows the

production-inventory costs, excluding the risk of failure, as a function of production

schedule. From Figure 3.1a, we see that satisfying 12 periods of demand with just one

production run, is both the optimal plan as calculated by the W-W model and also

represents a typical heuristic of pharmaceutical manufacturers (Shah, 2004).

Figure 3.1b shows the same example, but now the costs account for the 7% prob-

ability of failure in each period. The optimal plan is now to produce batches which

satisfy six periods of demand. This plan, which minimizes total expected costs, calls

for two batches during the planning horizon as compared with the one batch that is
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Figure 3.1: Production Costs Excluding & Including the Risk of Failure

prescribed by the W-W model. From Figure 3.1b, one easily sees that using the plan

of satisfying all 12 periods of demand with one production run as prescribed by the

W-W model would lead to very high failure costs. This is a direct consequence from

carrying large amounts of inventory that will likely be wasted due to demand failure.

In fact, the optimal schedule generated by the failure-risk model is expected to be 28%

less costly than the optimal plan of the W-W model. Even with the high fixed costs

of this example, failure costs lead to reducing the optimal lot size and scheduling more

frequent production runs.

3.5. Numerical Study of Potential Savings

In this section, we conduct a comprehensive numerical study to gauge the potential

savings of incorporating failure risk into production planning by solving various envi-

ronments that clinical trial manufacturers may face. From our discussions with industry

professionals, most clinical supply managers plan for success despite knowing that fail-

ure is both likely and costly. Our objective is to quantify the savings and identify

conditions under which the savings of incorporating failure into production planning

are likely to be substantial. We vary our key parameters, namely, production costs,

holding costs, and failure probability based on our observations of the industry. Please

note that we do not explicitly model destruction costs because including them in pro-

duction costs is mathematically equivalent when production variable costs are constant
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(see Eqs. 3.7-3.10).

In our estimates of production costs, we estimate the variable cost of the active

ingredient, the cost of packaging, the cost of distribution and tracking, and the cost of

destruction as a percentage of the fixed set-up cost of production. In addition, the cost

of manufacturing a placebo drug must also be included in the cost of each treatment.

As all of the above costs can vary widely based upon the production of active ingredient,

packaging requirements, formulation requirements, and the dosing schedule, we employ

a wide range of production costs. To get the magnitude of our estimates, we look to

vaccine production, which, like clinical trial production, is less standardized and less

predictable than typical commercial drug production (Institute of Medicine 2004). As a

rough proxy for clinical trial production, we expect the total variable cost to fixed set-up

cost ratio to be 3:5.1 Assuming that we obtain this ratio when we are producing 103

treatments per batch, we get variable production cost per treatment of approximately

0.06% of the setup cost per batch. Using this estimate as a reference, we employ a

wide range for simulating variable production costs per treatment of between 0.01%

and 1.25% of the fixed set-up costs.

Holding costs in the clinical trial supply chain are most likely higher than incurred in

typical pharmaceutical supply chains due to costly tracking and auditing of inventory

levels. In addition, bio-tech molecules often require controlled storage environments

which may add to the cost. For a lower bound on annual holding costs, we take the

conservative estimate of DiMasi, Hansen, and Grabowski (2003) of 11% as the phar-

maceutical industry’s real cost-of-capital for money tied up in inventory. We choose an

upper bound of 80% which may better reflect the potentially high costs of storing and

tracking each treatment and the corresponding placebo.

Failure probability in drug development is well documented in the literature. If

we ignore Phase I trials because of the relatively small drug supply that is required,

1From the 2002 Mercer Management study we see that variable costs are 15% of total production
costs and batch costs are 25% of total production costs. Thus, a 3:5 ratio seems appropriate.
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Parameter Average Value Lower Bound Upper Bound
Production Cost Per Treatment

0.63% 0.01% 1.25%
(as % of Set-Up Cost)
Annual Holding Cost

45.5% 11% 80%
(as % of Prod. Cost)

Phase II Failure Probability 59% 45% 73%
Phase III Failure Probability 21.5% 13% 30%
Duration of Phase II Trial 2 Years – –
Duration of Phase III Trial 3 Years – –
Annual Phase II Demand 150 Treatments – –
Annual Phase III Demand 1,200 Treatments – –

Planning Period Two Months – –

Table 3.1: Parameters for Phase II and Phase III Simulations

we apply our analysis to the failure probability that is present in Phase II and Phase

III of clinical trials. Typically, failure is mostly likely to occur in Phase II where the

phase II attrition rate (i.e. probability of failure) is around 58.8%. Phase III performs

better with an average failure rate of 21.5% (DiMasi, 2001). Based on these numbers

and noting that the average length of Phase II and Phase III trials for new chemical

entities are 26.0 months and 33.8 months, respectively (DiMasi and Grabowski, 2007),

or roughly 2 and 3 years respectively, we perform our parametric study around these

industry averages as shown in Table 3.1.

The Phase II Simulation: We randomly generated 1,000 scenarios for Phase II clini-

cal trails with parameters being uniformly distributed over the range of possible values.

For each scenario, two optimal production plans were generated: 1) a Wagner-Whitin

production plan and 2) a failure-risk production plan. Since our goal is to understand

under what circumstances the failure-risk model is likely to outperform the Wagner-

Whitin model, we calculate, for each scenario, the percentage cost reduction by the

failure-risk model relative to the Wagner-Whitin model. We then plot the percentage

savings against various system parameters to gain insight. The results are shown in

the four graphs in Figure 3.2 with each diamond on the graphs representing one of the
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1,000 scenarios. In 419 of the scenarios, the failure-risk model led to savings with an

average of 11%.

Since the traditional Wagner-Whitin model, like current industry practice, does not

incorporate demand failure, it is quite intuitive that an increase in the likelihood of

failure would reduce the W-W model’s effectiveness. As shown in Figure 3.2a, the

failure-risk model’s maximum potential savings over the W-W model does increase in

failure probability. Nonetheless, the presence of many scenarios with 0% savings at all

failure probabilities demonstrates that even high failure probabilities do not always lead

to different solutions by the two planning models. The solutions also depend on other

system parameters, such as production costs and inventory holding cost.

Figure 3.2b shows the impact of the variable production cost to fixed setup cost

ratio in our Phase II simulation. A threshold appears where the variable production

costs, which in our model include destruction costs, need to be sufficiently high for

savings to be realized. In particular, to achieve savings in our test scenarios, variable

production costs must exceed 0.39% of the fixed set-up costs. This is true because when

variable production costs are low, the costs of failure in the form of wasted production

are also low. As the variable to fixed cost ratio increases beyond the threshold, the

increased cost of failure leads to an increase in expected magnitude of savings, because

the production frequency under the failure-risk model increases faster than that of the

W-W model.

The impact of holding costs are studied in Figure 3.2c. It is interesting to note that

in our test scenarios, to achieve any savings, the ratio of holding costs to set-up costs

must be within a range of 0.017% to 0.111%. To see what is behind this observation, we

present the production frequency information in Figure 3.2d. On the secondary vertical

axis, we present the planned number of setups that each model recommends for each

of the 1,000 scenarios. Combining the information of production frequency and the

percentage savings, we make the following observations about this Phase II simulation:

• Both models call for either one or two setups during the 2-year planning horizon.
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Figure 3.2: Expected Reduction in Costs Using F-R Algorithm in Phase II Simulations
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• The failure-risk model is most beneficial when holding costs are not too low. When

holding costs are too low, both the failure-risk and W-W models will both call for

producing just one big lot.

• The failure-risk model is most beneficial when holding costs are not too high.

When holding costs are too high, both models have the same plan of producing

two times over the planning horizon.

• The range of holding to fixed cost ratio observed above (where savings are possible)

approximately corresponds to the range within which the failure-risk model plans

for two setups while the Wagner-Whitin model calls for one setup. In this range of

scenarios, the potential benefits of the failure-risk model increase with increasing

holding costs. This is a simple reflection of the larger average inventory level,

some of which is more likely to be wasted, under the plan of the W-W model.

Phase III Simulation: Phase III clinical trials differ from Phase II trials due to their

longer duration, higher demand for treatments, but lower probability of failure. Our

Phase III simulation adjusts these parameters accordingly. One result of these changes

is that out of the 1,000 scenarios investigated, savings were achieved in 55.4% of the

trials. This is more frequent than the 41.9% frequency in which savings were achieved

in the Phase II simulation. However, Phase III savings, when they occurred, averaged

about 2.85% which is significantly less than the average savings of 11.0% observed in

Phase II. The first difference is due to the longer planning horizon, because with more

periods, it is more likely that the two models yield different solutions. The second

difference is largely due to the lower failure rate.

Similar to our Phase II investigation, we look to a graphical representation of the

percentage savings against certain key parameters of the model. These graphs are

shown in Figure 3.3. As seen in Phase II, the failure-risk model in Phase III has larger

potential benefits as the probability of failure increases (see Figure 3.3a). However, in

contrast to our Phase II results, Phase III has some noteworthy differences in regards
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Figure 3.3: Expected Reduction in Costs Using F-R Algorithm in Phase III Simulations

to the potential for savings against other parameters.

First, as shown in Figure 3.3b, the larger demand for treatments and longer planning

horizon substantially reduce the minimum production cost threshold. We see that

savings are achievable at almost any level of production cost. We also see a saw-blade

pattern in the diagram of these costs which is best explained by the data shown in

Table 3.2. We see that the maximum potential savings are achieved when the Failure

Risk (F-R) algorithm plans two setups while the W-W model plans only one setup.

While production costs are not directly responsible for the drop in savings that we see

when production costs reach about 0.47% of setup costs, they directly affect holding

costs, which have been defined as a percentage of production costs. At production costs

of about 0.47%, holding costs are driven sufficiently high such that the W-W model

will perform a minimum of at least two setups over the planning horizon. As seen in

Table 3.2, once the W-W model plans for more than one setup, the maximum potential
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Planned Number
of Setups Using
W-W Algorithm

Planned Number
of Setups Using
F-R Algorithm

Maximum % Sav-
ings Observed

1 2 26.7%

2
3 12.1%

4 16.7%

3 4 5.5%

4
4 0.2%

5 3.1%

6 4.5%

5
5 0.1%

6 2.3%

Table 3.2: Maximum Observed % Savings Versus Number of Setups During Phase III
Simulation

savings drops significantly.

In the Phase II simulation, we saw that holding costs were required to be within

a certain range for savings to occur. From our Phase III chart of holding costs (Fig-

ure 3.3c), we see several ranges of holding costs that have different effects on the savings

achieved. In Figure 3.3d, we overlay the frequency of production that the two mod-

els call for on the second vertical axis. As we increase the holding costs, we notice a

transition in the failure-risk production plans from one of less frequent setups to one

of more frequent setups. This transition is then followed by a similar transition of the

W-W plan to one of more frequent setups. As shown in both Table 3.2 and Figure 3.3d,

savings are achieved every time the failure-risk model makes the jump to a production

plan that has more frequent setups than the W-W model. Savings then return to zero

once the W-W model transitions to the same schedule that the failure-risk model calls

for.
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Industry Notes: Mapping the results of our analysis to industry, we expect the failure-

risk model to have the most significant impact for drugs that have a high probability

of failure, sufficiently high production costs and relatively low inventory holding costs.

Since it is hard to characterize holding and production costs for a certain clinical trial

environment, we comment only on the probability of failure that is seen during clinical

trials. In pharmaceutical and bio-tech industries, we see below-average success prob-

abilities for drugs in the following therapeutic classes: antineoplastic, cardiovascular,

central nervous system, immunologic, and respiratory medicines (DiMasi, 2001; DiMasi,

Grabowski, and Vernon, 2004).

3.6. Summary Remarks

This chapter applies operations management models to clinical trial drug supply chains

and demonstrates their potential impact. Specifically, we consider a class of dynamic

economic lot size models under the risk of demand failure – the failure-risk models. We

show that the stochastic failure-risk models can be transformed to corresponding W-W

models where only the cost parameters need to be adjusted according to the failure risk

and destruction cost. Therefore, many of the classic results for W-W models directly

apply here. Most interestingly, the planning horizon theorem (Theorem 2) indicates that

learning during clinical trials does not affect supply decisions under certain conditions.

Our numerical study (based on our observation of the industry) reveals that while the

failure-risk model does not always call for a production plan different from the W-W

model, certain combinations of holding, production, and setup costs lead to substantive

savings.

The model and insights developed in this research indicate ways to improve the cur-

rent practice of clinical trial supply chains. Often, pharmaceutical/bio-tech companies

employ different teams to plan for clinical trial activities and clinical drug supplies,

where each team reports to its own Vice President. There is little connection between
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the teams beyond the direct supply and demand relationship, and the supply team

typically plans for success (i.e., ignores failure in planning). This study shows that

proper communication between the teams about the failure probabilities and properly

accounting for failures in drug supplies can help the supply team substantially reduce

drug manufacturing cost without harming service. We should point out that the models

and results developed here also apply to other business practices where demand may

cease to exist at a uncertain future date.
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Chapter 4

Adaptive Clinical Trials: Balancing
Learning and Economies of Scale

Before an investigational drug can obtain FDA approval, the drug must be proven

both safe and effective in humans. Unfortunately, only one in five drugs that enter

this human testing hurdle of the FDA approval process, also known as clinical trials,

actually obtains approval (DiMasi, 2003). This failure to obtain approval does not

always mean that the drug is truly unsafe or ineffective; it may simply be the test was

not setup for success. Possibly, a different dosage or a different length of treatment

may have led to a better outcome for the clinical trial. In an effort to achieve more

successes, the pharmaceutical industry is moving towards adaptive clinical trials which

allow for flexibility in how a trial is conducted (Lesko, 2007). For example, an adaptive

approach allows for different dosages during the same trial and to weed out the dosages

that prove toxic or non-therapeutic as trial data is collected and analyzed. This is in

stark contrast to the traditional, more rigid approach to clinical trials where a dosage,

a patient population, a length of treatment, and specific measures of success are chosen

all prior to commencement of the trial.

Of course, the purely rigid approach is a supply manager’s dream because demand

is more certain. However, in an adaptive trial, more uncertainty about demand is

introduced. For example, if during an adaptive trial the recommended dosage of an

investigational treatment goes from 10mg to 20mg, the demand has just been effectively
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doubled. As a result, we see that the increased probability of a successful trial for FDA

approval comes at the expense of the supply chain. Many of the key parameters used

for forecasting supply are now subject to change during the trial.

To ensure supply for the start of a trial, clinical supply managers are forced to

“forecast based on a limited number of variables before the cost of the supply chain

overshadows the risk of excluded variables impacting supplies.” (Hall, 2008). Given

more time, all of the variables impacting clinical supply requirements become less fluid

and a better forecast of demand can be made. Given the need to start clinical production

before demand is known leads to two possible strategies. If we assume a sufficient shelf

life of the investigational drug, one supply strategy is to produce enough material in the

initial production run to accommodate any potential scenario for clinical trial demand.

Alternatively, a supply manager can break production into two production runs. The

first production run is made to ensure enough supply is available to start the trial. The

second production run ensures enough supply to end the trial and is made with greater

precision in forecasted demand. For example, a clinical trial, with globally distributed

testing centers, will start with enough supply to satisfy a launch of the trial in the

United States. Once launched in the United States, international testing centers are

opened and most demand for these sites will be satisfied using supply from a second

production run.

Supply from a second production run is committed to with greater certainty as to

dosage and study enrollment parameters. A trial that begins with a range of possible

dosages, also called treatment arms, also begins with high demand uncertainty. How-

ever, as the trial continues patient allocation to dosages becomes concentrated on the

most promising of the initial dosages (see e.g. Krams, Lees, Hacke, Grieve, Orgogozo,

and Ford, 2003). Thus, the longer the trial continues, the longer the supply man-

ager learns about demand and the more certain he can be about the remaining supply

requirements.

Unfortunately, reducing the costs of supply-demand mismatches can only be realized
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by increasing the number of production runs. The additional runs, while costly, can

be planned for using a more accurate forecast of trial demand. By incurring multiple

setups, the high fixed costs of physical drug production and the associated quality

control activities are amortized over less inventory and economies of scale are sacrificed.

The essence of this research is to understand this sacrifice of economies of scale and to

optimally balance the benefits of learning against higher costs for physical supply.

In this research, we construct a model to plan drug supply for adaptive clinical

trials. While minimizing inventory costs, the model explicitly incorporates the learning

that takes place during a clinical trial. At the beginning of a clinical trial, both dosage

and patient recruitment requirements are very uncertain. As a trial is underway and

continues, the ideal dosage and the desired patient enrollment are zeroed in and a more

accurate forecast can be made. Various rates of demand learning are considered through

the use of learning curves that are a function of time. In addition to demand learning,

the model incorporates setup costs (i.e., fixed costs in production) for both pre-trial

and intra-trial production. Thus, the model enables us to weigh the benefit of demand

uncertainty reduction against the cost of incurring a second setup cost for production.

The objective is to study the impact of fixed costs and demand learning rates on the

value and the optimal timing of demand learning.

We organize the rest of this chapter as follows. We review the related literature in

§4.1. The model and analysis are presented in §4.2. A numerical study is presented in

§4.3. Finally, we summarize the study in §4.4.

4.1. Literature Review

While our model is motivated by challenges of the pharmaceutical industry, it is both

applicable and similar to the problems faced by production planners of many short

lifecycle products with uncertain demand. In one of the most cited works on production

planning for short lifecycle products, Fisher and Raman (1996) pioneered an approach to
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reduce stock-out and markdown costs for a set of seasonal fashion products based on the

idea that sufficiently short manufacturing lead times allow for a portion of production

to occur after some initial demand is observed. This initial demand could then be used

to better forecast actual demand for a set of new products. They described this logic

as follows:

The dramatic improvement in forecast accuracy after observing only 20% of

initial demand suggests a strategy for reducing the cost of too much or too

little inventory: commit to a modest amount of initial inventory for each

product, observe initial demand, and then produce an additional amount of

each product based on improved forecasts.

Consistent with the above logic, the authors present a two-stage model that in-

corporates second stage forecast uncertainty reduction, which we will also refer to as

demand learning, through the correlation of demand between observed first stage de-

mand and total expected demand. Through this correlation, the authors captured how

the second-stage production enables a more accurate match of supply and demand. As

a result of decreased supply-demand mismatch costs, it is shown that use of the authors’

methodology at Sport Obermeyer can potentially quadruple profits.

As our work in this chapter is highly motivated by the vein of research in Fisher

and Raman’s seminal work, we highlight three key distinctions between our model and

theirs. First, we allow the second production run to occur at different time points and

thus, the scheduling of the second production run is also a decision variable. Second, we

include setup costs directly whereas their work includes minimum lot size requirements

as a proxy for these costs. Lastly, we study the impact of learning rate on the system

performance by incorporate learning curves in the demand learning process. This enable

us to connect the amount of learning with the amount of time we have available to learn.

Combined, these three distinctions allow us to weigh the benefits of demand learning

against the fixed costs of introducing a second production run.
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If we abstract from adaptive clinical trials, the general idea we seek to model is that

forecasts and planning decisions can be improved based on observation of a full or partial

season’s demand. Within this abstraction, we can find papers that address a similar

problem to ours. For example, Parlar and Weng (1997) research a two-period production

decision where a second production run is possible. However, this second production

run occurs after the realization of demand and thus, full learning has occurred. As

an example of partial learning, Eppen and Iyer (1997) study a large catalog retailer’s

decisions of how much of a women’s fashion product to order and then how much to

divert to outlet stores upon observation of a portion of demand. They continue a

long-line of studies that utilize bayesian updating for forecast revision. A much earlier

paper recognizing the importance of adaptively revising forecasts is given by Murray

and Silver (1966). They employ a Bayesian methodology for updating an unknown sales

probability of an item based on a known amount of potential customers.

In our work, we employ a learning curve approach to study the effect that differ-

ent rates of demand learning have on the optimal first period batch size and second

period production quantity. As detailed in the survey by Yelle (1979), learning curve

applications have extended far beyond the more traditional applications of modeling

the decrease in per unit manufacturing costs or the increase in labor productivity due

to organizational experience. To our knowledge, this study is among the first to apply

a learning curve model that predicts forecast uncertainty as decreasing with the log of

time allotted to observe demand. While the application is new, previous studies sug-

gest the applicability of its use. For example, Bitran, Haas, and Matsuo (1986)’s study

of production planning at a consumer electronics company notes the reduction in the

coefficient of variation (CV) between forecasts that are made in January (CV = 1),

April (CV = 0.5), and October (CV = 0.2) and actual sales for the Christmas season.

As opposed to using a learning curve to model this reduction in forecast uncertainty,

the author’s simply assume forecast error in each period is normally distributed with a

known and decreasing standard deviation over time.
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Even though our use of learning curves to model forecast uncertainty reduction is

unique, the use of learning curves to understand the benefits of learning in production

planning is not. Terwiesch and Bohn (2001) study whether learning to ramp up the

yield of a supply process and thus, delaying time to market and foregoing early demand,

is preferable to producing first to satisfy early market demand and then investing in

learning to achieve greater yield. Using a dynamic programming approach, the au-

thors prescribe that manager’s experiment early during production ramp up to increase

learning early on. Despite this early learning taking time from production when prices

are at their highest, the authors argue that this is the right time to devote production

capacity towards engineering trials and efforts to improve yield and production rates.

In another interesting study of learning and production, Kornish and Keeney (2008)

study the tradeoff of learning against capacity. Their model, motivated by the annual

decision of which strains of flu to vaccinate against, address “a trade-off between quan-

tity (producing more) and quality (produce a more effective vaccine because you know

more).” By delaying the commitment to which flu strains will be targeted by the

produced vaccine, a more effective vaccine can be made, but there is less time for pro-

duction. The optimal policy is discussed and its implications for choosing to commit

to production or wait for more information are detailed in their study.

The inclusion of a second production run, or mid-season replenishment option if in a

retail setting, for short lifecycle products is a logical extension to the classical newsboy

model. Lau and Lau (1997) study a mid-season replenishment possibility, but do not

include set-up costs and only uniformly distributed demand is addressed in their model.

While they consider making the time of the replenishment a decision variable prior to

the selling season, their use of modeling each period’s demand as a uniform distribution

restricts this possibility. Milner and Rosenblatt (2002) study of the buyer’s perspective

when making a supply contract for a short life-cycle product is more amenable to

making the timing of the second production run a decision variable. While the focus

of their two-period model is on the contract form, they have a secondary contribution
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which is to consider the duration of the first and second period as a decision variable.

Fisher, Rajaram, and Raman (2001) explicitly consider time as a decision variable

when planning mid-season replenishment and use a heuristic solution to help a catalog

retailer. More recently, Li, Chand, Dada, and Mehta (2009) have relaxed many of the

assumptions in Fisher et al. (2001) and yield more structural results on the form of

the optimal policy. Our work differs from all of these mid-season replenishment models

through the inclusion of setup costs and learning curves in our model.

The inclusion of setup costs in a production planning model for short lifecycle prod-

ucts with forecast updating has also been addressed in the literature. For example, the

previously mentioned study by Bitran, Haas, and Matsuo (1986) includes the effect of

setup costs for a family of products in their model. In a more recent study, Weng (2004)

includes setup costs in his model to study the effects of those costs on coordination of

ordering quantities between manufacturer and retailer. They find that as setup costs

increase, the importance of a coordinating contract also increases. Our inclusion of both

setup costs and learning allows us to find a balance between sacrificing economies of

scale with additional production and benefiting from production made with less demand

uncertainty.

4.2. The Two-Period Model

In this section, we first introduce the notation and the model in Subsection 4.2.1. We

then characterize the optimal ordering policy in Subsection 4.2.2. Next we introduce

the demand learning model in Subsection 4.2.3 and finally we study the impact of fixed

cost in Subsection 4.2.4.

4.2.1 Notation and Model

Let the planning horizon be [0, T ] and assume zero lead time. We will use the following

notation throughout this chapter:
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• t: Length of the learning period (i.e. the first period) where 0 ≤ t < T . In the

case of one production batch, t = 0.

• D: Total demand in period [0, T ].

• D1: Demand in the 1st period, [0, t].

• D2: Demand in the 2nd period, [t, T ].

• D2|D1=ξ: Demand in the 2nd period [t, T ] given D1 = ξ where ξ is the realization.

• x1: Production quantity for the first period and made available at time 0.

• x2: Production quantity for the second period and made available at time t.

• κ: Setup cost of production.

• πb: Backorder penalty per unit short after the first period that is ultimately

satisfied.

• πs: Shortage penalty per unit of unmet demand at the end of the time horizon.

• r: Overage penalty (destruction/recycle cost) per unit leftover item at the end of

the time horizon.

• y2: Order up to level for the second period.

To avoid trivial cases and ensure a realistic model, we make the following assump-

tion.

Assumption 1 πs > πb > c ≥ 0, πs − πb > c and demand is non-negative.

Assuming zero initial inventory, we let f1(t) be the optimal expected inventory cost

for the two-period problem with t being the duration of the learning period and let

δ(xt) be the indicator function of xt > 0. Then, the optimal cost is expressed as

f1(t) = min
x1≥0

{
δ(x1)κ+ cx1 + πbED1

[
(D1 − x1)

+]+ ED1

[
f2 (x1 −D1, t) |D1

]}
, (4.1)
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where f2(I, t)|D1 represents the optimal expected inventory costs for the second period

conditioning on D1, given a starting inventory of I = x1−D1 and the length of the first

period, t.

f2(I, t)|D1=ξ = minx2≥0

{
δ(x2)κ+ cx2 − πb (−I − x2)

+ +

πsED2|D1=ξ

[
(D2|D1=ξ − I − x2)

+]+ rED2|D1=ξ

[
(I + x2 −D2|D1=ξ)

+] }.
(4.2)

Thus, the optimal first period cost is the sum of the first period setup costs, first

period variable production costs, first period backorder penalty costs, and the expected

second period costs. The second period costs consist of a setup cost for a second

period production, variable production costs for the second production run, a rebate on

backorder penalties charged in the first period that turn out to be lost sales (i.e. second

period production does not satisfy the unmet demand of the first period), a lost sales

penalty, and destruction costs. Note that in adding an additional replenishment option,

we also must introduce in intra-period shortage penalty. We consider this a backorder

penalty which is much less costly than the shortage penalty charged at the end of the

horizon. The second period shortage penalty, since there is no additional recourse for

additional replenishment, is analogous to a lost sales penalty.

In our analysis of the timing of the first period, three points are worthy of mention.

First, our model explicitly excludes lead time in the consideration. Second, our model

requires that the timing of the second production run be scheduled in advance of the

season. Third, our model excludes the substantial risk of the trial being halted prior to

the end of the time horizon. This risk, which we call failure risk, is due to the possibility

of a trial showing that a drug is unsafe or ineffective prior to the conclusion of the trial.

For certain types of clinical drug supply the zero lead time assumption may be

untenable. However, for other types this assumption is valid. For example, when NeoRx

Corporation outsourced clinical trial supply to International Isotopes Inc., purchase

orders were only placed one week in advance and rolling forecasts were provided for 3
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months of future demand (NeoRX, 10-Q Filed on May 9, 2000.). These durations are

much shorter than the overall duration of the trial, which may take as long as 2-3 years.

Please note that these purchase orders are for batches produced after the first batch.

The lead time on the first batch may still be lengthy as manufacturing facilities are

configured for initial production. Once production facilities and processes are in place,

lead time on additional batches can be much shorter than that of the first batch.

The timing of the intra-trial batch being determined prior to commencement of

the actual trial is consistent with outsourcing contracts for clinical supply where the

availability of manufacturing capacity is reserved in advance. It is also worth noting that

Li, Chand, Dada, and Mehta (2009) have found little value to dynamically determining

the timing of the second production run. We do not consider the effects of cancellation

fees on the supply manager’s decisions, although we believe this might be an interesting

area for future research.

Lastly, the risk of failure risk, although important, is excluded from our analysis and

reflects the typical supply philosophy of planning for success during a clinical trial. If

failure were to occur during time (0, t), it is as if the second production option would go

unutilized. By applying a discount factor to the cost of producing in the second period,

this aspect of clinical trials could be captured. To keep our analysis to the balancing of

economies of scale and uncertainty reduction, we propose that inclusion of failure risk

may be an interesting area of future research.

4.2.2 Optimal Ordering Policy

It is more convenient to use y2 = I + x2 and thus Eq. (4.2) becomes,

f2(I, t)|D1=ξ = −cI + min
y2≥I

{
δ(y2 − I)κ+ cy2 − πb (−y2)

+ + Lξ(y2, t)
}
, (4.3)

where Lξ(y, t) = πsED2|D1=ξ

[
(D2|D1=ξ − y)+]+ rED2|D1=ξ

[
(y −D2|D1=ξ)

+].
To further analyze Eq. (4.3), we note that we can either produce (i.e. x2 > 0) or
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not produce,

f2(I, t)|D1=ξ = −cI + min
{

miny2>I

{
κ+ cy2 − πb (−y2)

+ + Lξ(y2, t)
}
,

cI − πb (−I)+ + Lξ(I, t)
}
.

(4.4)

Observation 1 If y2 > I, then the optimal order-up-to level for the second period

y∗2 ≥ 0.

Proof. If I ≥ 0, y∗2 ≥ 0 by definition. If I < 0, consider a y2 ≤ 0. By Assumption 1

and Eq. (4.3),

κ+ cy2 − πb (−y2)
+ + Lξ(y2, t) = κ+ cy2 − πb(−y2) + πsED2|D1=ξ

[D2|D1=ξ − y2]

= κ+ cy2 + ED2|D1=ξ
[πsD2|D1=ξ + (πs − πb)(−y2)] .

By Assumption 1, the cost function is decreasing in y2 for y2 ≤ 0. Thus y∗2 ≥ 0. 2

By Observation 1, Eq. (4.4) can be reduced to,

f2(I, t)|D1=ξ = −cI + min
{

min
y2>I

{
κ+ cy2 +Lξ(y2, t)

}
, cI − πb (−I)+ +Lξ(I, t)

}
. (4.5)

The following observation shows that the second period cost function is not convex

and thus we cannot directly apply the classical result of (s, S) policy (e.g., see Zipkin

(2000, Section 9.5)) to this problem.

Observation 2 The second period cost function cI − πb (−I)+ +Lξ(I, t) is not convex

in I, but it is unimodular in I and approaches infinity as I → ±∞.

Proof. First, we note that −πb (−I)+ is concave in I. For I < 0, it follows by

Assumption 1 that the second period cost function reduces to

cI − πb(−I) + πsED2|D1=ξ
[D2|D1=ξ − I] = πsED2|D1=ξ

[D2|D1=ξ]− (πs − πb − c)I,

which is clearly convex in I. For I ≥ 0, the second period cost function reduces to
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cI +Lξ(I, t), which is also convex in I. However, the left derivative of the cost function

at I = 0 equals −(πs − πb − c) < 0 (by Assumption 1), which is greater than the right

derivative of the cost function at I = 0, −(πs−c). Thus, the cost function is not convex

in I for I ∈ (−∞,∞).

To show the cost function is unimodular, we note that it is convex and decreasing in

I for I ∈ (−∞, 0]. Because it is also convex in I for I ∈ [0,∞), it must be unimodular.

Finally, as I → −∞, the slope of the cost function is −(πs− πb− c); as I →∞, the

slope approaches c+ r. The proof is now completed. 2

Now we are ready to identify the optimal ordering policy for the second period

given D1 = ξ. Let S2(ξ) be the smallest global minimizer of cy + Lξ(y, t), and s2(ξ)

be the largest I (but smaller than S2(ξ)) such that cI − πb(−I)+ + Lξ(I, t) = κ +

cS2(ξ) + Lξ(S2(ξ), t). Indeed, S2(ξ) = Φ−1
D2|D1=ξ

(
πs − c
πs + c

)
≥ 0, where ΦD2|D1=ξ

(·) is the

probability density function of D2|D1=ξ. s2(ξ) must exist by the unimodularity and

asymptotic properties shown in Observation 2.

Theorem 4 The optimal ordering policy for the second period is a (s, S) type of policy

depending on D1 = ξ, where s = s2(ξ) and S = S2(ξ). In other words, if the beginning

inventory position I < s2(ξ), we order up to S2(ξ); otherwise, we do not order.

Proof. The proof follows directly from the definition of s2(ξ), S2(ξ) and Observation

2. 2

Note that s2(ξ) and S2(ξ) are dependent on D1 = ξ but independent of second

period starting inventory I.

By Theorem 4, we can write f2(I, t)|D1=ξ as follows,

f2(I, t)|D1=ξ = −cI +

 κ+ cS2(ξ) + Lξ(S2(ξ), t), I ≤ s2(ξ)

cI − πb(−I)+ + Lξ(I, t), I > s2(ξ).
(4.6)

We now show f2(I, t)|D1=ξ is κ-convex for any ξ. By Zipkin (2000, Section 9.5), we

have the following definition.
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Definition 1 We call a function f(x) k-convex if for any x, and nonnegative u and v,

f(x) satisfies

f(x) + v
f(x)− f(x− u)

u
≤ f(x+ v) + k.

Lemma 1 f2(I, t)|D1=ξ is k-convex in I for any ξ.

Proof. For simplicity, we drop ξ from our notation without causing confusion. We also

define f̃(I, t) = f2(I, t) + cI. Clearly if f̃(I, t) is k-convex, f2(I, t) is also k-convex.

If s2 ≥ 0, then

f̃2(I, t) =

 k + cS2 + L(S2, t), I ≤ s2

cI + L(I, t), I > s2.

By Zipkin (2000, Section 9.5), f̃2(I, t) and thus f2(I, t) is k-convex.

If s2 < 0, we first consider any I ≤ s2. By the definition of the (s2, S2) policy,

we must have f̃2(I, t) + v
f̃2(I, t)− f̃2(I − u, t)

u = f̃2(I, t) = f̃2(S2, t) + k ≤ f̃2(x, t) + k

for all x. Next we consider I ≥ S2. The k-convexity inequality must hold because

f̃2(I, t) is convex and increasing. Finally, we consider s2 < I ≤ S2. Note that f̃2(I, t)

is decreasing for I < S2 by Observation 2, thus f̃2(I, t) + v
f̃2(I, t)− f̃2(I − u, t)

u ≤

f̃2(I, t) ≤ f̃2(S2) + k ≤ f̃2(I + v) + k. The proof is now completed. 2

Theorem 5 The optimal ordering policy for the first period is a (s, S) type of policy.

Proof. By Lemma 1, f2(I, t)|D1=ξ is k-convex. By Lemma 9.5.1 of Zipkin (2000),

ED1 [f2(x1 −D1, t)|D1 ] is also k-convex, and so is

cx1+πbED1

[
(D1 − x1)

+]+ED1

[
f2 (x1 −D1, t) |D1

]
. By Theorem 9.5.2 of Zipkin (2000),

the proof is completed. 2

Let (s1, S1) be the optimal (s, S) policy for the first period. Thus, if s1 > 0, then

we produce up to S1 in the first period. Otherwise, we do not produce.
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4.2.3 Demand Learning Model

The initial belief of the total demand during the planning horizon is that D is normally

distributed with mean µ and standard deviation σ. We model demand learning by the

dependent demand in periods 1-2: D1 and D2 (D = D1 + D2). Our demand learning

model follows that of Fisher and Raman (1996) and Fisher, et al. (2001). Specifically,

we assume (D1, D2) follows a bivariate normal distribution with correlation coefficient

ρ(t), where ρ(t) depends on the amount of learning that can take place by time t. In

Section 3.5, we borrow methodology from the learning curves literature to model this

function. The marginal distribution D1 is also normal with mean µ1 and standard

deviation σ1. We assume that for t ∈ [0, T ],

E(D1) = µ1 = α(t)µ, σ2(D1) = σ2
1 = β(t)σ2,

where α(t) and β(t) are fractions increasing from 0 to 1 as t increases from 0 to T . For

example, α(t) = t/T and β(t) = t/T . Then the marginal distribution of D2 is normal

with

E(D2) = µ2 = (1− α(t))µ, σ(D2) = σ2 = −ρ(t)σ1 +
√
ρ2(t)σ2

1 + σ2 − σ2
1.

Conditioning on D1 = ξ, D2 follows a normal distribution with the following parameters

(Fisher and Raman 1996):

µ2(ξ) = µ2 + ρ(t)σ2
ξ − µ1

σ1

, σ2(ξ) = σ2

√
1− ρ2(t).

It is easy to see that given t, as ρ increases, σ2 decreases and thus σ2(ξ) decreases.
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4.2.4 Impact of The Fixed Cost

Intuitively, as the fixed cost, κ, increases, the two-period model reduces to the newsven-

dor model. This intuition is confirmed by the following proposition.

Proposition 2 S1 tends to the newsvendor quantity as κ→∞.

Proof. For simplicity, we drop the dependence on D1 for (s2, S2) without causing

confusion. Suppose we produce in the first period, the total cost function can be

expressed as follows,

κ + min
x1>0

{
cx1 + πbED1 [(D1 − x1)

+] +

+ED1 [−c(x1 −D1) + κ+ cS2 + LD1(S2, t)|D1 ≥ x1 − s2]

+ED1 [−πb(D1 − x1)
+ + LD1(x1 −D1, t)|D1 < x1 − s2]

}
.

As κ → ∞, s2 → −∞ (by Observation 2) for each realization of D1. Thus, the cost

function tends to

κ+ min
x1>0

{
cx1 + ED1 [LD1(x1 −D1, t)]

}
,

where ED1 [LD1(x1 −D1, t)] = ED1 [ED2 [πs(D1 + D2 − x1)
+ + r(x1 −D1 −D2)

+|D1]] =

ED1+D2 [πs(D1+D2−x1)
++r(x1−D1−D2)

+]. The last equality comes from the definition

of conditional expectation. Note that ED1+D2 [πs(D1 +D2 − x1)
+ + r(x1 −D1 −D2)

+]

represents the cost function of the newsvendor model without the second period, the

proof is now completed. 2

In general, as the fixed cost κ increases, S1 will be more likely used to cover both

D1 and D2, and thus S1 typically increases.

4.3. Numerical Analysis

The objective of this section is to quantify the effects of setup costs, learning rates,

and penalty costs on the value of the second production option, the optimal timing of
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learning, and the optimal first batch size. The penalty costs include the overage penalty

cost, r + c, and underage penalty costs, πs − c and πb − c.

As a starting point for the analysis, a baseline problem is created where we assume

mean demand over the time horizon is 1,000 units and the standard deviation of demand

is 300 units. We assume demand for the time horizon is normally distributed and since

this distribution is divisible, we can mathematically divide demand between two periods.

Thus, the fraction, t
T

, represents the percentage of total demand expected to occur in

the first period. The parameters of our baseline model, in the absence of demand

learning (i.e. γ = 0), are shown in Table 4.1.

Parameter Description Baseline Value

t Length of first (learning) period. 5

T Length of planning horizon. 10

γ Rate of demand learning. 0

D(0, t) First Period Demand N(µ, σ) N(1000 ∗ 5
10
,
√

3002 ∗ 5
10

)

D(t, T ) Second Period Demand N(µ, σ) N(1000 ∗ 10−5
10
,
√

3002 ∗ (1− 5
10

)

κ Setup cost of a production run 0

πb Backorder penalty 20

πs End of horizon shortage penalty 50

c Variable production cost 2

r Destruction Cost 1

Table 4.1: Baseline Parameter Values

In Figure 4.1, we compare the expected costs of our baseline model with the ex-

pected costs of a newsvendor model (i.e. a single production run at t = 0). For our

baseline model, we have arbitrarily scheduled an additional replenishment option mid-

way through the planning horizon. As can be seen from the graph, the additional

replenishment opportunity leads to a greater than 10% reduction in costs. It is also

interesting to note that the expected costs of the baseline model are less sensitive than
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the newsvendor model to first period order quantity. At this point, one might conclude

that a mid-season replenishment can reduce expected costs and lead to a decision that

is less sensitive to model parameters. However, the comparison we made ignores several

key components that constitute the motivation for this study. First, setup costs are zero

and when producing clinical trial drug supply, large setup costs are a reality that must

be accommodated. And second, our comparison fails to account for demand learning

and the freeing of the variable, t, so that this additional production can be optimally

scheduled.

We now introduce setup costs into our analysis without considering demand learning.

From the proof of Proposition 2, we know that as setup costs increase the two-period

model reduces to the newsvendor model. We can see this effect by comparing Figure 4.2

which includes a setup cost (κ = $1, 600) to Figure 4.1 which assumes there are zero

fixed costs when producing. With setup costs introduced, we can see that the value

of an additional replenishment midway through the planning horizon yields minimal

savings of 2% of the newsvendor solution’s inventory costs.

Counteracting this decrease in value from our baseline model, we can free the

scheduling of the second replenishment and show the effects of this scheduling on ex-

pected costs. To analyze this, we graph expected costs as a function of the first period

length (t) as seen in Figure 4.3. For every choice of first period length, t, the optimal

first period order quantity has been numerically determined. We see the optimal first

period length is close to the entire planning horizon (t ≈ 8.5) and not the arbitrarily

chosen mid-horizon production (t = 5). As might be expected, the mid-horizon pro-

duction case with setup costs leads to reduced savings over the newsvendor solution

as compared to an available second production run without setup costs. Interestingly,

we see that when t = T , the solution still outperforms the newsvendor solution. In

this case, the value of the additional replenishment (when optimally planned) is purely

derived from replacing the expected end of horizon shortage penalty with a backorder

penalty in cases of high demand. In contrast, when t = 8.5, some of the value provided
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by this model as compared to the neswvendor solutions is from the ability to effectively

match supply and demand for a portion of the horizon.

      Expected

Newsvendor Cost

Expected Cost of Single

Production Run at t=0.

    Expected Cost of Production Run

at t=0 and Available Production at t=5.

      % Cost Reduction from

Mid-Season Replenishment Option

600 800 1000 1200 1400 1600 1800 2000

1st Period
Order Quantity

0.8

0.9

1.0

1.1

1.2

Expected Costs

H% of exp. newsvendor costsL

Figure 4.1: Expected Costs when κ = $0

While setup costs have reduced some of the benefit of the intra-season replenishment

option, demand learning creates greater incentives to plan an additional replenishment

and counter-balance the costs imposed by an additional setup. In Section 4.2.3, we in-

troduced the notion that demand learning will be modeled through correlation between

first and second period demand. Through correlation, a fraction of the variance in the

second period’s demand is explained by the realization of the first period’s demand.

Mathematically, this fraction is simply ρ(t)2 and the fraction of variance that remains

unexplained in the second period is 1 − ρ(t)2. Consistent with this mathematical in-

terpretation, we will model demand learning as a reduction in unexplained variance.

Intuitively, the fraction of unexplained variance in second period demand should be

close to one early in the time horizon and closer to zero at the end of the horizon. To

study different rates of learning, we will assume that learning, more specifically the

reduction in uncertainty surrounding second period demand, 1− ρ(t)2, follows a power

law form that was introduced as a learning curve model by Wright (1936). Modifying
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Expected Cost of Single

Production Run at t=0.

    Expected Cost of Production Run

at t=0 and Available Production at t=5.

      Expected

Newsvendor Cost
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Figure 4.2: Expected Costs when κ = $1, 600

Wright’s learning curve to represent a supply manager’s ability to remove uncertainty

in the variance of second period demand, we have 1− ρ(t)2 =
(
T−t
T

)γ
and thus:

ρ(t) =

√
1−

(
T − t
T

)γ
(4.7)

where γ > 0 is the shape parameter of the learning curve. When γ = 1 the amount of

learning is linear in time, when γ < 1, learning is slow and the uncertainty parameter,

1− ρ(t)2, will be a concave function of time. Lastly, when γ > 1, learning occurs more

rapidly and 1− ρ(t)2 is a convex function of time.

Intuitively, faster rate of demand learning encourages earlier scheduling of the po-

tential second production run. To see this in our example, we now analyze the baseline

model with setup costs for various rates of demand learning. We pick various values of

our learning parameter, γ, to represent different rates of uncertainty reduction and plot

the expected costs of our baseline model with setup costs (κ = $1, 600) and learning

in Figure 4.4. We see from this graph that faster learning leads to both an earlier

scheduling for the second production run and larger cost reductions versus the single
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Figure 4.3: Expected Costs Versus Timing of Second Replenishment with Setup Costs

newsvendor production. More importantly, the cost benefit of learning has effectively

nullified the substantial setup cost. We see that when the rate of learning is simply

linear in time (γ = 1), we can achieve savings of greater than 10% over the single

production solution. This linear learning rate would yield a correlation coefficient of

0.82 at the optimal duration of the first period (t ≈ 6.75) which is consistent with the

correlations used in (Fisher, Rajaram, and Raman, 2001).

While the scheduling decision is important, it is not made in isolation. The optimal

supply strategy will simultaneously consider the timing of the second production and

the sizing of the first batch. In Figure 4.5, we analyze the interplay of production

scheduling and optimal first batch size for various setup costs and linear learning (γ =

1). In the absence of setup costs (i.e. κ = 0) and when replenishment is planned after

observing a small fraction (roughly 10%) of demand, we observe that the optimal first

period batch is less than half the newsvendor batch size. However, with even modest

setup costs of $100, the optimal batch sizing this early in the season is much closer to

the newsvendor quantity. This is a key observation that the suggestion of a ”modest

amount of initial inventory” (Fisher and Raman (1996)) is less appropriate when setup
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Figure 4.4: Expected Costs Versus Timing of Second Replenishment with Setup Costs
and Demand Learning

costs are factored into the decision making. The benefits of ample inventory, including

avoiding additional setup costs and first period backorder costs, outweigh the benefits

of uncertainty reduction afforded by a second production.

In the absence of setup costs and in the presence of demand learning, a second

production run is a likely event. For our baseline model with linear learning and zero

setup costs, the second production run is optimally scheduled at around t ≈ 5.5 and it

is expected that 71% of the time the production run will be utilized. The other 29%,

demand is so low in the first 55% of the planning horizon that a second production is

not needed. Even though overage risk is present, this risk is offset by having enough

inventory to avoid intra-period backorder costs.

As soon as we introduce setup costs, we also introduce a notion of economies of scale

in production. A manager’s expectation of producing more than once reflects his will-

ingness to sacrifice scale economies to achieve savings. The tradeoff between sacrificing

scale economies to better match supply and demand is summarized in Table 4.2. We

see from this table that setup costs significantly decrease the probability of a second

production. For example, in the case of linear learning (γ = 1), the introduction of
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Figure 4.5: Optimal First Batch Size Versus Timing of Second Replenishment with
Setup Costs and Demand Learning

setup costs of $1,600 reduces the likelihood of producing a second time from 71% to

21%. Further increases in setup costs drastically reduce the likelihood of producing a

second time. From a planning perspective, mid-season replenishment in the presence

of high setup costs is really an emergency supply option for cases of extremely high

demand.

Even though the likelihood of producing a second time can be small, the value

of this option remains significant in the presence of learning. This can be seen in

Table 4.3 which shows the expected savings over the newsvendor model when optimally

scheduling potential replenishment. From this table, we can see that with linear learning

and setup costs of $1,600, a 10.7% reduction in costs can be expected by just having

a resupply option available. From Table 4.2, we know that this resupply option will

only be exercised about 21% of the time. Digging deeper into Table 4.3, we see that

even with higher levels of setup costs (e.g. $3,200), savings of greater than 5% are

achievable. While in a pharmaceutical setting, these cost reductions are significant, in

a retail setting Fisher et al. (2001) show how much smaller cost savings can translate

into big gains in profitability.
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Learning Rate (γ)
κ 0 0.5 1 2 4

- 66.7% 66.3% 70.6% 74.1% 77.4%
100 50.2% 59.4% 64.5% 69.1% 73.6%
200 41.1% 52.1% 57.5% 63.0% 68.1%
400 30.5% 43.3% 48.8% 54.4% 60.6%
800 19.8% 31.9% 36.8% 40.0% 47.5%

1,600 10.4% 18.7% 21.4% 24.4% 27.2%
3,200 4.8% 9.2% 10.2% 11.0% 11.9%
6,400 1.6% 3.4% 3.6% 3.8% 4.0%

12,800 0.1% 0.7% 0.7% 0.8% 0.8%

Table 4.2: Probability of Mid-Season Replenishment for Various Setup Costs and Learn-
ing Rates

Learning Rate (γ)
κ 0 0.5 1 2 4

- 16.5% 28.8% 31.7% 34.8% 38.2%
100 14.7% 26.5% 29.1% 32.1% 35.3%
200 13.1% 24.4% 26.9% 29.7% 32.7%
400 10.9% 20.9% 23.1% 25.5% 28.0%
800 7.8% 15.8% 17.4% 19.1% 20.8%

1,600 4.6% 9.8% 10.7% 11.6% 12.4%
3,200 1.9% 4.5% 4.9% 5.2% 5.5%
6,400 0.4% 1.3% 1.4% 1.5% 1.6%

12,800 0.0% 0.2% 0.2% 0.2% 0.2%

Table 4.3: Table of Savings for Various Setup Costs and Learning Rates
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Another consideration in this mid-season replenishment environment is how penalty

costs (i.e. overage, lost sales, and intra-period backorder penalties) impact our decisions

of replenishment timing and first period batch size. And even more importantly, how do

changes in these parameters affect the magnitude of savings over a simpler newsvendor

solution? The clinical trial supply environment is driven by a fear of delaying a trial due

to insufficient supply and intuitively, one would think increasing underage penalties (πs

or πb) would lead to greater expected savings of a second production. In studying this

numerically, we surprisingly find the advantage of having an intra-season replenishment

option is not dramatically improved by dramatically increased underage penalties. For

example, our numerical study has found that doubling the two underage penalties of

our baseline model with setup costs (κ = $1, 600, πb = 40, πs = 100) only increases

expected savings over the newsvendor solution an additional 2.8% from 10.7% to 13.5%.

Further increases to these underage penalties, as shown in Table 4.4, yield similarly

modest results with the reason being that avoiding these underage penalties is relatively

inexpensive; overage costs are only $3 which is small in comparison to the end of horizon

shortage penalty of $50 of our baseline model. Basically, it is cheap to hedge against

having too little inventory by simply producing more.

πb / πs % Savings

20 / 50 10.7
40 / 100 13.5
80 / 200 15.8

160 / 400 17.7
320 / 800 19.35

Table 4.4: Expected Savings Over a Newsvendor Solution for Increasing Underage Costs

In studying the effect of changes to the overage penalty, we find that increasing the

overage penalty leads to greater jumps in savings magnitude than increasing underage

costs. For example, if we look at the case where πb = 40, πs = 100, and κ = $1, 600,

we find that savings of greater than 50% over the newsvendor solution can be expected

when overage costs are 64% of the end of horizon shortage costs. A selection of overage
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cost penalty values and expected savings are shown in Table 4.5. Less dramatic than

the changes in savings, both optimal batch sizes and optimal timing values fall within

small ranges as the overage penalty is adjusted. Optimal batch sizes fall between 71%

and 79% of their respective newsvendor optimal order sizes and optimal timing for the

second production run is between 62% and 68% of the planning horizon.

While increases to both overage and underage penalties will always increase savings

over a newsvendor solution, the increase in percentage savings can be both small and

large. Percentage savings increases per dollar of increased penalty cost are fastest when

overage and underage costs are highly unbalanced and increases are made to the lower of

the two costs. Conversely, when increases are made to the higher of the two costs, only

marginal benefits will be realized. In a pharmaceutical setting where underage costs

far exceed overage costs, the observation on the effects of increasing overage penalties

suggests that increases in variable production costs, which effectively reduce the lost

sales penalty and increase the overage penalty, will greatly increase the attractiveness

of intra-season replenishment.

r % Savings

1 13.5
2 16.9
4 22.4
8 29.9
16 38.1
32 45.4
64 50.7
128 53.9

Table 4.5: Expected Savings Over a Newsvendor Solution for Increasing Destruction
Costs

In summary, our numerical study pursued an understanding of the value of an intra-

season replenishment over the newsvendor solution. The value that is created depends

on two key decisions in planning for this intra-season option. First, how is our first

batch size decision affected by the presence of a resupply option and second, when
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should the potential resupply be planned for. These two decisions, and the potential to

achieve meaningful savings are affected by a multitude of parameters and for simplicity,

we now summarize our findings in Table 4.6.

relative to newsvendor solution

Parameter
% Savings 1st Batch Size (%) 1st Batch Size 1st Period Length(

f1(0)−f1(topt)
f1(0)

) (
x1

xnewsv

)
(x1) (t)

Learning (γ)
Setup Costs (κ)

Backorder Penalty (πb)
Shortage Penalty (πs)
Destruction Costs (r)

Table 4.6: Effect of Parameter Increases on Performance and Decision Variables

4.4. Summary Remarks

The inclusion of setup costs and learning curves in our study leads us to many con-

clusions that add to the body of literature dealing with an additional replenishment

options for products with short lifecycles. When setup costs are present, the first batch

remains large as compared to a newsvendor batch. As opposed to a smaller batch, the

inventory helps to potentially avoid incurring setup costs a second time and avoiding

intra-season backorder penalties.

Selection of learning period length is driven by both changes in setup costs and

learning. We observe that increasing setup costs will initially increase optimal period

length and then decrease it. At lower levels of setup costs, when these costs increase, it is

advantageous to have a longer learning period to permit greater observation of demand

and a more certain second period forecast. Eventually, further increases to setup costs

decrease the learning period to avoid backorder costs in the cases of extremely high

demand that would actually warrant incurring a second setup.

Our study is the first to look at the tradeoff between sacrificing economies of scale

by planning for multiple batches and benefiting from demand learning so that a better
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match of supply and demand can be made. We have found that the ideal conditions for

consideration of an additional production run are when setup costs are low, learning is

fast, and both overage and underage penalties are significant. In certain examples, we

find savings to exceed 50%. Admittedly, these high-value examples are less applicable

to clinical trials where underage costs far exceed overage costs. However, these high

value examples are realistic when extending this model to a fashion environment or

other short lifecycle product where underage and overage costs are not so lop-sided.



66

Chapter 5

Inventory Positioning in Clinical Trial
Supply Chains

Every second of delay in a clinical trial costs Bristol-Meyers Squibb $17.1

At a cost of $17 per second, clinical trial delays are to be avoided. Unfortunately,

avoiding clinical trial delays is easier said than done. The biggest stumbling block is

often patient recruitment. According to Getz and de Bruin (2000), 80% of clinical trials

fail to meet their patient recruitment deadlines. As a result of slow patient recruitment

and also high patient costs in the United States, clinical trials are increasingly going

global (Rowland, 2004). In quantifying this globalization, Thiers, Sinskey, and E.R.

(2008) report the following data on the growth in the number of clinical trial sites for

various countries:

Country Annual Growth Rate (%)

China 47.0
Russia 33.0
Argentina 26.9
Czech Republic 24.6
Mexico 22.1

United States -6.5

Table 5.1: Growth in Number of Offshore Clinical Trial Sites

1Paul Loveday (CEO, ClinStar) at the Clinical Research in Emerging Countries Third Annual
Marcus Evans Conference 21-22 July 2008, Washington DC, USA
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We see from Table 5, that clinical trial growth in emerging markets far outpaces

that in the United States. In fact, the United States is experiencing declines in the

number of trial sites being used. In addition to the relocation of trials, more clinical

trials are seeking participants in multiple countries simultaneously. In 2005, 7.8% of

the trials reported in three top medical journals were being conducted in 10 or more

countries while in 1995, none of the articles in those journals reported such high levels

of globalization (Glickman, McHutchison, Peterson, Cairns, Harrington, Califf, and

Schulman, 2009).

Unfortunately, while recruitment efforts benefit from a larger global footprint, the

supply chain has to work much harder at getting the right drug supply, usually in the

form of patient kits, to the right place, at the right time. Subjected to sets of local

regulations and various levels of supporting infrastructure, a supply chain for global

clinical trials becomes much more complex than the supply chain of a one country trial.

Supported by results of a BearingPoint and AMR Research survey which found that

only 13% of clinical trial products are received on time at investigative sites, one senior

industry consultant comments that “Most current supply chains are entirely inadequate

for the realities of global trials today.” (Neuer, 2008).

In addition to the complexity of a global supply chain, simply spreading out demand

over numerous sites increases the amount of inventory required. Let’s give a simple

example to demonstrate this. Let’s assume we have a goal of recruiting 612 patients

for our trial (this example is stylized from the 612 patient, 45 site trials described in

Le Chevalier, Brisgand, Douillard, Pujol, Alberola, Monnier, Riviere, Lianes, Chomy,

and Cigolari (1994)). If one were to recruit all 612 patients from one clinical trial site,

then we would simply send 612 patient kits to the site. Now, let’s assume we open

two sites and in an effort to get to 612 patients as fast as possible, we aim for a 99%

service level (non-rejection) at each of the sites. Assuming the sites are identical in

their patient recruiting rates, i.e., there is a 50% chance that the first patient goes to

site one and a 50% chance that this patient goes to site two, and so on. Extending
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this 50/50 logic to our first 612 patients, the distribution of the number of patients at

site one is a binomial distribution with 612 trials and a 50% probability of success. To

maintain a 99% service level, we would ship 335 patient kits to site one. Since, the

sites are identical, we would also ship 335 patient kits to site two. This is a somewhat

palatable increase in inventory of 9.5% over the one site case. Now let’s extend this

logic to 45 identical sites. In this example, we now must increase inventory by 69.1%

over the one site trial and 423 patient kits will ultimately be unused overage.

It now becomes clear that both the demand chain and the supply chain for clinical

trials are in flux. The demand chain, in its effort to increase patient recruitment rates,

is going global with an increasing number of investigative sites. The supply chain,

which may have been adequate for domestic trials, is now struggling with meeting the

increased demands imposed by a global footprint and an increased number of investiga-

tive sites. Simply assuming that supply can match globally dispersed demand is not a

good strategy. The supply chain will inevitably fall short of these expectations. The

right strategy will shape demand (through the opening and closing of sites) to match a

realistic supply strategy. One might now think that all supply strategies are possible,

but the supply of clinical material is limited by capacity, drug expiry, and cost among

other factors.

In this chapter, we commence a stream of academic literature to address some of the

main challenges in clinical trial supply chains: How many sites are needed and where

to locate them? How to balance the trade-off between faster patient recruiting rate

and more excessive drug supply requirements (thus longer production time)? Given a

configuration of clinical trial supply chain, how to place inventory in the central distri-

bution center (CDC), the regional warehouse (RWH) and sites? As a step in towards

answering all of these questions, we develop mathematical models to aid decision mak-

ing in stock positioning and site selection in the clinical trial supply chain. We derive

the following results: (1) We first present a new class of multi-echelon inventory models

to make stock positioning decisions, (2) we develop algorithms to identify lower and
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upper bounds on the optimal objective function for this new class, and (3) we leverage

the algorithms to provide insights into optimal supply chain configurations.

The remainder of this chapter is organized as follows: After reviewing the relevant

literature in §5.1, we introduce basic modeling assumptions and study two extreme

cases in §5.2. The two cases include one with a central warehouse and one without

warehouses. In §5.3, we consider the general clinical trial supply chain and develop

solution algorithms for stock positioning. In §5.4, we present a numerical study to test

the effectiveness of the solution and to quantify the impact of various supply chain

configurations and parameters. §5.5 concludes the chapter.

5.1. Literature Review

A good introduction to the challenges in managing a global clinical trial supply chain

can be found in Lis, Gourley, Wilson, and Page (June 1, 2009) where it is succinctly

noted that “the key challenge clinical trial supply chain (CTSC) managers face in global

distribution is ensuring that supplies arrive at the trial sites on time and in good con-

dition.” To be on time, the inventory must not only be produced in sufficient quantity

to meet demand, but must also be positioned in the supply chain to satisfy demand as

it is realized.

The management of inventory in these supply chains hasn’t attracted much attention

within industry literature, and has attracted even less attention from academics. In

industry literature, it is advocated that operational policies in the clinical trial supply

chain are usually created and managed using simulation (Peterson, Byrom, Dowlman,

and McEntegart, 2004). In addition, it is often assumed within these simulations that an

integrated voice response system (IVRS) is available so that inventory can be monitored

continuously (McEntegart and O’Gorman, 2005) and as inventory at a location falls

below a specified trigger, more inventory is ordered. Despite the availability of more

sophisticated alternatives, inventory policies in the clinical trial supply chain are still
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often set using experience and by looking at the patterns from previous clinical trials.

To supplement the utility of experience, academics have created more sophisticated

models for managing inventory in distribution networks (e.g., for spare parts) similar

to the one we model for a clinical trial supply chain. However, these models have

yet to find their way to the problems faced by clinical trials and yet, it is noted that

these models are needed. Shah (2004) points out that many of the key challenges faced

by pharmaceutical supply chains in general and surveys the literature that addresses

those challenges. Of particular interest is the recent focus of academics on capacity

planning for clinical trial supply. Our work differs from this surveyed work in that we

assume the capacity decision has already taken place and we now focus on the more

executional/tactical policy details of managing inventory for a given supply chain.

Within the context of multiechelon inventory research, our models are most closely

related to work done for service parts where end-user demand is low and one-for-one

base stock policies are employed (see reviews by Zipkin 2000, Simchi-Levi and Zhao

2006, and Muckstadt 2005). One of the seminal works in this stream of literature is

Sherbrooke (1968). He approximated the distribution of the backorder at the depot

by its first moment in a two-echelon supply chain when one-for-one ordering policies

are used. Improving on this approximation is the approximation by Graves (1985) who

shows how to effectively approximate backorder and lead time demand by a negative

binomial distribution. We leverage the work of Graves (1985) to optimize certain subsys-

tems within a three-echelon supply chain that includes one central warehouse, multiple

regional depots and multiple sites, where sites can be either supplied directly by the

central warehouse or indirectly by a regional warehouse. Svoronos and Zipkin (1991)

refines the approximation by Graves (1985) and extends it to evaluate multi-echelon

distribution systems.

Graves (1985) and Axsater (1990) provide means to exactly evaluate the distribution

of net inventory levels in a multi-echelon supply chain, but these methods require the
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convolution of multiple probability distributions and thus are computationally inten-

sive. Simchi-Levi and Zhao (2005) extends the exact approach to evaluate tree structure

supply chains subject to fill rate constraints, but in making the stock positioning deci-

sions, approximations in line with Graves (1985) and Svoronos and Zipkin (1991) are

utilized. For other recent work on evaluation and/or optimization of stock positioning

in distribution systems for service parts, we refer to Caglar, Li, and Simchi-levi (2004)

and Caggiano, Jackson, Muckstadt, and Rappold (2007).

The stock positioning problem in clinical trial supply chains represents a new varia-

tion of the classical multi-echelon inventory models because it differs from the literature

in a key aspect; specifically, system performance concerns are only relevant until an ad-

equate number of patients are recruited. In addition, clinical trial supply chain cannot

afford to reject patients due to supply shortages and therefore have to place enough

stock in the system to satisfy all recruited patients up to the pre-determined limit on

the number of subjects needed to complete the trial. This difference results in non-trivial

modification of the objective and in different solution algorithms and new insights.

5.2. Two Special Cases

For this work, we assume the following timeline:

time
t0 T

production
begins

trial sites
open

patient
recruitment ends

1st batch
shipped

t + l

Figure 5.1: Timeline of Events

• t: Time of material shipment.
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• t+ l: Time of trial site opening after receiving shipped drug supply.

• λ: Rate of patient recruitment at each site (assuming Poisson arrivals).

• C(s): Per patient recruiting costs when number of sites is equal to s. Assume

convex and increasing.

• ρ: Rate of production given in kits per unit time.

• ζ: The service level of not rejecting patients due to drug supply shortage.

• ζ ′: The service level of not backordering patients due to drug supply shortage,

i.e., the immediate fill-rate of demand upon its arrival.

• n: Number of sites to open.

• S: Patient horizon or number of subjects needed to complete the trial.

• I: Site level inventory.

• T : Time at which patient recruitment is done.

In this section, we focus on sites with identical patient/demand arrival rates, lead

times and cost structures. Throughout this paper, we assume independent Poisson

arrivals of demand at each site. Demand cannot be transferred among different sites.

Excessive drug inventory at different locations cannot be transferred.

Inventory at Sites Only.

In this case, we assume that all material is distributed once to each site without

opportunity for replenishment. To guarantee fulfillment of all demand, the system has

to set I = S at each site. The problem becomes,

min
n>0

S

nλ
+
nS

ρ
(5.1)
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The above equation is reminiscent of an EOQ type of model with an even simpler result

of n∗direct =
√

ρ
λ

and T ∗direct = 2S√
λρ

.

Clearly, stocking enough drug supply at each site to never miss a potential demand

is very costly. Alternatively, one can stock each site enough inventory to guarantee a

certain service level (ζ). In clinical trials, it is common to have adequate safety stock

to support service levels of upwards of 99%. This requirement is driven by the need to

finish a trial as fast as possible. The required inventory level, I(n), at each site is given

as follows:

I(n) = min
I>0

Pr{I ≥ DS} ≥ ζ,

where DS is the demand faced by one site until the system-wide total reaches S. Since

all sites are identical, DS follows a binomial distribution with parameters (S, 1/n).

Thus,

I(n) = min
I>0

I s.t. ζ ≤
bIc∑
i=0

(
S

i

)(
1

n

)i(
1− 1

n

)S−i
. (5.2)

Given that the overall patient arrival to the trial is a Poisson process with rate nλ,

the waiting time until the Sth arrival, assuming no stockouts, would follow an Erlang

distribution with shape parameter, S, and rate parameter, nλ. Thus, the expected time

to complete recruitment is simply S
nλ

. Our mathematical program for minimizing the

total production and recruitment completion time is therefore:

min
n>0

S

nλ
+
nI(n)

ρ
(5.3)

Note Eq. (5.3) is an approximation because a site can stockout, and thus some demand

may not be satisfied. Given that some patients may be rejected due to drug shortage, it

may take longer to get S patients recruited than indicated by the above formula. How-

ever, if ζ is very close to 1, as would be expected for clinical trials, this approximation

can be very accurate.
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To yield tractable results, we approximate the discrete distribution of Eq. (5.2)

using a normal approximation. This is justified given patient horizons in the hundreds.

For any one site, the number of patients is the sum of S identical Bernoulli trials with

success probability 1
n
. Thus,

I(n) = Φ−1 (ζ) where Φ ∼ N

(
S

n
,
S

n

(
1− 1

n

))
(5.4)

For any given ζ, we can now numerically approximate I(n). For example, if ζ = 0.99,

then:

I(n) =
S

n
+ 2.32635

√
S

n

(
1− 1

n

)
(5.5)

where z = 2.32625 is the z-score associated with service level ζ.

The minimization problem (5.3) now becomes:

min
n>0

S

nλ
+
n

ρ

(
S

n
+ z

√
S

n

(
1− 1

n

))
= min

n>0

S

nλ
+
S

ρ
+
z
√
S(n− 1)

ρ
. (5.6)

For simplicity, assuming that n ≥ 1 is a continuous variable. Then the first derivative

is S
λ
(− 1

n2 + zλ
2ρ
√
S

1√
n−1

), which leads to the first order condition as,

S

n2λ
=
z
√
S

2ρ

1√
n− 1

Let a =
(

2ρ
√
S

zλ

)2

, we have

n4 − a(n− 1) = 0.

It is easy to see that we have two cases: Case 1, there is no solution or one solution

to the above equation. Then the first derivative must be non-negative for all n, so the

optimal solution n∗ = 1. Case 2, there are two solutions to the above equation. Then

the first solution is a local maximum while the second is a local minimum. We can

compare n = 1 and the second solution to identify the global minimum.
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One Central Warehouse.

Now, we consider another special case with a central warehouse. In this case, we

hold inventory at two locations: 1) at the clinical trial sites, and 2) at the warehouse.

We assume that each clinical trial site will now initially stock lead-time demand plus

lead-time safety stock. Each trial site will follow an (S − 1, S) policy or equivalently a

continuous-time base-stock policy. The warehouse needs to carry enough stock so that

no patient will be rejected from any site because the warehouse and the site runs out

of stock (i.e., ζ = 100%).

Given that demand at each site is Poisson, we calculate the required initial stock

level at each site as follows:

I = Φ−1 (ζ ′) where Φ ∼ Poisson (λl) (5.7)

I = min
I>0

I s.t. Pr{I ≥ Dl} ≥ ζ ′, (5.8)

where Dl is the lead time demand and ζ ′ is the backorder service level during lead time

(not the lost-sales service level ζ). Due to Poisson distributed demand, the service level

constraint can be written as
∑bIc

i=0
e−λl(λl)i

i!
≥ ζ ′.

For tractability, we approximate the discrete Poisson distribution using a normal

approximation and we now have that:

I = Φ−1 (ζ ′) = λl + z′
√
λl where Φ ∼ N (λl, λl) , (5.9)

where z′ is the z-score of ζ ′. For simplicity, let θ = λl + z′
√
λl.

Analogous to Eq. (5.6), we seek to minimize the sum of stock production time and

patient recruitment time (100% ζ service level at warehouse):

min
n>0

S

nλ
+
n

ρ
θ +

S − θ
ρ

= min
n>0

S

nλ
+
n− 1

ρ
θ +

S

ρ
, (5.10)
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where the warehouse stock is chosen to fulfill each of the first S demand from sites. In

this case, clearly, it is S − I. Because when the warehouse runs out of stock, each site

still has I units inventory and there are I patients remain to be served.

Taking the derivative and setting it equal to zero yields (2nd derivative is always

positive):

n∗warehouse =

√
Sρ

λθ
. (5.11)

The optimal expected completion time is

T ∗warehouse =
S

ρ
− θ

ρ
+ 2

√
Sθ

λρ
. (5.12)

Comparing the first case (Eq. 5.1) and the second case (Eq. 5.10), clearly if S > θ,

then the first case requires more stock and takes longer time than the second case.

However, the second case may have temporary stockout (ζ < 100%) while the first case

has no stockout at all (ζ = 100%).

5.3. General Clinical Trial Supply Chains

The special cases in §5.2 represent extreme cases of possible clinical-trial drug supply

chain configurations. In this section, we consider a supply chain of general distribution

topology, pictured in Figure 5.2, where a central warehouse (CW), indexed as 0, supplies

multiple regional warehouses (RWH), indexed by i = 1, 2, ..., and some sites directly,

which are indexed by 0j where j = 1, 2, .... Each regional warehouse, i, supplies a set of

sites indexed by ij where j = 1, 2, .... Keeping the assumption of independent Poisson

demand and constant lead times as in §5.2 but relaxing the assumption of identical

sites, our objective is to minimize the system-wide inventory investment subject to

100% fulfillment, ζ, and high immediate satisfaction (ζ ′), by setting the stock levels at

each location appropriately.

For large global studies, the topology pictured in Figure 5.2 closely resembles that of
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Figure 5.2: Picture of Model’s Supply Chain Topology

actual physical supply chains. Often, because of required regulatory clearance time and

the time required to simply transport supplies over large distances, regional warehouses

or depots are used to ensure more reliable and timely shipments to clinical trial sites.

An article in the trade magazine Applied Clinical Trials (June 1, 2009) offered this rule

of thumb:

In countries such as Canada, for example, depot delivery is unnecessary, as

the domestic delivery system is similar to that in the United States and there

are simplified customs procedures between the two countries. But in other

countries, such as Argentina, Russia, China, and India, a depot is preferable

because of sheer distance, and these countries require considerable time to

clear materials. (Lis, Gourley, Wilson, and Page, June 1, 2009)

In addition to topology, we make the assumption of a continuous-review base-stock

policy at both the sites and the regional warehouses. This too closely resembles the more

modernized clinical trial supply chains. Through the use of integrated voice response
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systems (IVRS), all doctors administering clinical trial drugs to patients are required

to call in to a system for instructions on which of the patient kits on site are to be

administered to the patient. Through this system, both real-time inventory information

is maintained and automated shipments to replenish site-level inventory are triggered

(Byrom (2002)). While sometimes it will take multiple demands at a site to trigger an

order, we make the equally realistic assumption that an order is triggered each time a

demand occurs. Since clinical trial production is often associated with long lead times

and is done in large batches, we assume the central warehouse does not have available

resupply.

To represent the above inventory policy in our model, we use decision variables:

s0, si, sij, s0j, where si, sij, s0j are base-stock levels at locations i, ij and 0j respec-

tively and s0 is the initial stock at the central warehouse (which does not have the

availability of additional replenishment). Since there is already inventory allocated

to sites and regional warehouses downstream of the central warehouse, s0 can be

less than the required number of patient recruits, S. Planning for the worst case-

scenario of demand only arriving through one site and given si, sij and s0j, we must

set s0 = S −min{mini{si + minj sij},minj s0j} to guarantee 100% recruitment supply

(i.e., ζ = 100%). Given the above definitions, the problem of minimizing inventory

investment subject to service level constraints (ζ ′) can be formulated as follows,

min{s0 +
∑
i

[si +
∑
j

sij] +
∑
j

s0j}

s.t. Fill rate at site ij ≥ ζ ′, ∀ij,

Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j,

s0 = S −min{min
i
{si + min

j
sij},min

j
s0j},

s0, si, sij, s0j ≥ 0, ∀i, j.

(5.13)

Clearly, this model differs from the classical multi-echelon model of inventory in-

vestment minimization subject to service level constraints due to the constraint on s0,
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which comes from the finite patient horizon. The constraint on s0 effectively connects

different regional warehouse systems and the problem cannot be decomposed.

5.3.1 Sub-models

To solve the problem in Eq. (5.13), we first make the following observations for two

specific sub-models:

Observation 1: Each direct ship distribution system, as shown in Figure 5.3, is an

example of the second special case in §5.2 with the exception that the sites no

longer need to have identical demands and lead times.

Observation 2: The performance of each regional distribution system – the subsystem

of the regional warehouse i and the sites ij as shown in Figure 5.4, can be evaluated

as a classical two-echelon distribution system in steady state. This holds because

of the large number of patients required for the trial.

By Observation 2, we can write the fill rate constraints in Eq. (5.13) as follows,

Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij,

where Bi
j is the steady-state backordered demand from site j at RWH i.

We first focus on the sub-model noted in Observation 1. If we choose to minimize

inventory investment for this topology (Figure 5.3), the minimization of Eq. (5.13) is

simplified to:

min{s0 +
∑
j

s0j}

s.t.Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j

s0 = S −min
j
s0j

s0, s0j ≥ 0, ∀j.

(5.14)
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Figure 5.4: Regional Warehouse Supply
chain

Replacing s0 in the objective function by its constraint yields,

min{S +
∑
j

s0j −min
j
s0j}

s.t.Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j

s0, s0j ≥ 0, ∀j.

(5.15)

Clearly, the optimal solution is to choose the smallest s0j that achieves the desired fill

rate at site 0j for all j.

Now, we look at the sub-model of Observation 2. In this sub-model, the objective

is to minimize inventory investment for the topology shown in Figure 5.4. For this
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sub-model, the minimization of Eq. (5.13) is reduced to:

min{s0 + si +
∑
j

sij}

s.t. Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀j

s0 = S − si −min
j
sij

s0, si, sij ≥ 0, ∀j.

(5.16)

To simplify further, we place the no lost demand constraint, s0 = S− si + minj sij, into

the objective function, then we have an equivalent problem:

min{S +
∑
j

sij −min
j
sij}

s.t. Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀j 6= j̃

s0, si, sij ≥ 0, ∀j.

(5.17)

From Eq. (5.17), the optimal inventory policy is revealed. For both identical and non-

identical sites, the objective function reduces to minimizing site level inventory. This

result is summarized in the following proposition.

Proposition 3 The solution to the following problem,

min{S +
∑
j

sij}

s.t. Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀j 6= j̃

s0, si, sij ≥ 0, ∀j,

(5.18)

is also the solution to Problem (5.17).

Proof. We first note that given si, sij are uniquely determined by the service levels in

both Problem (5.17) and (5.18). In addition, sij is decreasing in si.
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Denote the solution of Problem (5.18) to be s′. Suppose the proposition is not true,

then the solution of Problem (5.17), s′′, must not minimize
∑

j sij (subject to service

level constraints). Thus s′′ must have a smaller si than s′, and s′′ij ≥ s′ij for all j. We

discuss two cases:

• Case 1: argminj{s′′ij} = argminj{s′ij}. Then
∑

j s
′′
ij −minj s

′′
ij ≥

∑
j s
′
ij −minj s

′
ij.

If > holds, then this creates a contradiction to the statement that s′′ is the optimal

solution to Problem (5.17). If = holds, then s′ is also optimal in Problem (5.17)

which contradicts to the assumption that this proposition is not true.

• Case 2: argminj{s′′ij} 6= argminj{s′ij}. Let j̃ = argminj s
′
ij, then s′′

ij̃
> s′

ij̃
. Since

s′′ij ≥ s′ij for all j, thus
∑

j s
′′
ij − minj s

′′
ij >

∑
j s
′
ij − minj s

′
ij which creates a

contradiction. 2

Intuitively, Proposition 3 indicates that one should stock inventory at the regional

warehouse i as much as possible to reduce the needed stock at sites. Effectively, one

can increase si as long as s0 is non-negative.

Expanding the one warehouse case to include multiple warehouses (but not direct

shipment), Eq. (5.13) becomes:

min{s0 +
∑
i

[si +
∑
j

sij]}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij

s0 = S −min
i
{si + min

j
sij}

s0, si, sij ≥ 0, ∀i, j.

(5.19)
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Replacing s0 by its constraint in the objective function, and defining ĩ = argmini{si +

minj sij} and j̃ = argminj{sĩj}, the above becomes:

min{S +
∑
i 6=ĩ

[si +
∑
j

sij] +
∑
j 6=j̃

sĩj}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij

s0, si, sij ≥ 0, ∀i, j.

(5.20)

Inspired by this formulation, we design the following algorithm to identify heuristic

solutions which yield lower and upper bounds for the optimal objective function.

Lower Bound Solution

1. For i = 1, 2, ..., set it to be ĩ.

2. For i 6= ĩ, minimize total inventory investment in the regional warehouse subsys-

tem (Figure 5.4) subject to the fill rate constraints.

3. For i = ĩ, minimize inventory investment at the sites and push inventory to

warehouse ĩ until either s0 becomes negative or increasing si no longer leads to

lower sij for any j.

4. Enumerate over all i = 1, 2, ... to find the one with minimum objective function.

This solution clearly provides a lower bound on the optimal objective function. This

is true because if the condition ĩ = argmini{si + minj sij} always holds, one cannot do

better than this solution. However, the solution found may violate this condition. When

this condition ĩ = argmini{si + minj sij} holds in the solution found, then solution is

also feasible and thus indeed optimal.

Slightly revising the lower bound solution results in an upper bound solution.

Upper Bound Solution

1. For i = 1, 2, ..., set it to be ĩ.
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2. For i 6= ĩ, minimize total inventory investment in the regional warehouse subsys-

tem (Figure 5.4) subject to the fill rate constraints.

3. For i = ĩ, minimize inventory investment at the sites and push inventory to

warehouse ĩ as long as ĩ = argmini{si + minj sij} holds until either s0 becomes

negative or increasing si no longer leads to lower sij for any j.

4. Enumerate over all i = 1, 2, ... to find the one with minimum objective function.

This solution may not be optimal but it is indeed feasible and thus provides a upper

bound on the optimal objective function.

5.3.2 Minimizing Inventory Investment in a Clinical Trial Sup-

ply Chain

We now combine the results of our observations above into a completely generalized

topology as pictured in Figure 5.2. We now rewrite Eq. (5.13) which governs the

optimal inventory investment for the general system as follows:

min{s0 +
∑
i

[si +
∑
j

sij] +
∑
j

s0j}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij

Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j

s0 = S −min{min
i
{si + min

j
sij},min

j
s0j}

s0, si, sij, s0j ≥ 0, ∀i, j.

Suppose in the above, min{mini{si + minj sij},minj s0j} = minj s0j, then we can
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reduce Eq. (5.13) to the following:

min{S −min
j
s0j +

∑
i

[si +
∑
j

sij] +
∑
j

s0j}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij

Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j

s0, si, sij, s0j ≥ 0, ∀i, j.

(5.21)

In this case, we can separate the above problem into two minimization problems:

1. The minimization shown in Eq. (5.15):

min{
∑
j

s0j −min
j
s0j}

s.t.Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j.
(5.22)

2. A minimization problem of regional warehouse sub-systems:

min{
∑
i

[si +
∑
j

sij]}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij

si, sij ≥ 0, ∀i, j.

(5.23)

Note that this problem can be separated into multiple problems, one for each

regional warehouse sub-system.

From the two separate minimization problems, our inventory strategy is revealed.

For the direct shipment sites, the base stock policy at the sites is set at the minimum

amount that is sufficient to satisfy the fill rate constraint. For the regional warehouse

sites, solve each regional warehouse sub-systems to minimize its total inventory invest-

ment si +
∑

j sij.
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Alternatively, if the min{mini{si + minj sij},minj s0j} = mini{si + minj sij}, then

we simplify Eq. (5.13) as follows:

min{S −min
i
{si + min

j
sij}+

∑
i

[si +
∑
j

sij] +
∑
j

s0j}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀ij

Pr{s0j ≥ lead time demand at site 0j} ≥ ζ ′, ∀0j

s0, si, sij, s0j ≥ 0, ∀i, j.

(5.24)

This equation separates into Eq. (5.20) and a minimization of site inventories for

direct shipment. Intuitively, our strategy now is to do the following:

• For all regional warehouses except for ĩ, we minimize inventory investment in the

regional system (i.e. minimize si +
∑

j sij).

• For the regional warehouse, ĩ, minimize inventory at the sites.

• For all direct shipment sites, indexed 0j, inventory is also minimized at the sites.

Assuming that S is greater than the minimum total inventory investment of any

regional warehouse sub-system, we now summarize the inventory strategies discovered

in this section by presenting the following algorithm for a general clinical trial supply

chain.

Lower Bound Solution

1. Let s0j = Φ−1
0j (ζ ′) ,∀j, where Φ0j(·) is the cdf function of lead time demand at

site 0j.

2. Solve si and sij by the following mathematical programming problem for all re-

gional warehouses, i:
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min{si +
∑
j

sij}

s.t.Pr{sij −Bi
j ≥ lead time demand at site ij} ≥ ζ ′, ∀j

si, sij ≥ 0, ∀i, j.

(5.25)

3. Suppose minj s0j = min{mini{si+minj sij},minj s0j}, then let si and sij be found

by the mathematical programming problem (5.25).

4. Suppose mini{si + minj sij} = min{mini{si + minj sij},minj s0j}. Set i = 1, 2, ...

to be ĩ, then

(a) For i 6= ĩ, let si and sij be found by the mathematical programming problem

(5.25).

(b) For i = ĩ, minimize inventory investment at the sites and push inventory to

warehouse ĩ until either s0 becomes negative or increasing si no longer leads

to lower sij for any j.

(c) Enumerate over all feasible i = 1, 2, ... to find the one with minimum objec-

tive function:

• Note on Feasibility: To tighten the lower bound, we eliminate certain

regional warehouses that are unable to optimally satisfy the condition

mini{si + minj sij} = min{mini{si + minj sij},minj s0j}. Specifically,

for each i = 1, 2, ..., we find the maximum possible si + minj sij by

increasing si until all sij achieve their minimal values assuming infinite

supply is available from the warehouse. We then compare sĩ + minj sĩj

to the calculated maximums. If sĩ + minj sĩj is not lower than all of

the calculated maximums, the ĩ regional warehouse subsystem cannot

deviate from the solution to 5.25 for the network to achieve its optimum.

5. Compare the solution found in Steps 3 and 4 to find the minimum.
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Clearly, this algorithm generates a solution that provides a lower bound on the opti-

mal objective function. The solution is indeed optimal if minj s0j = min{mini{si +

minj sij},minj s0j} holds when Step 3 generates the solution or if mini{si + minj sij} =

min{mini{si + minj sij},minj s0j} holds when Step 4 generates the solution. The al-

gorithm runs in polynomial time with a complexity at most of O(Sn) where S is the

patient horizon and n is the total number of locations in the system.

We can also construct a upper bound solution as follows.

Upper Bound Solution

1. Same as Lower Bound Solution.

2. Same as Lower Bound Solution.

3. Suppose minj s0j = min{mini{si+minj sij},minj s0j}, then let si and sij be found

by the mathematical programming problem (5.25) with an additional constraint

of si + minj sij ≥ minj s0j.

4. Suppose mini{si + minj sij} = min{mini{si + minj sij},minj s0j}. Set i = 1, 2, ...

to be ĩ, then

(a) For i 6= ĩ, let si and sij be found by the mathematical programming problem

(5.25).

(b) For i = ĩ, minimize inventory investment at the sites and push inventory to

warehouse ĩ as long as sĩ+minj sĩj = min{mini{si+minj sij},minj s0j} holds

until either s0 becomes negative or increasing si no longer leads to lower sij

for any j..

(c) Enumerate over all i = 1, 2, ... to find the one with minimum objective func-

tion.

5. Compare the solution found in Steps 3 and 4 to find the minimum.
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This solution may not be optimal but is feasible and thus provides a upper bound on

the optimal objective function. In the next section we test the effectiveness of this

algorithm. In lieu of calculating exact distributions of net inventory levels in solving

the mathematical programming problem (5.25), we employ Graves (1985)’s negative

binomial approximation of backorders and lead time demand which has been shown

to perform well in a variety of multi-echelon settings (Caggiano, Jackson, Muckstadt,

and Rappold, 2009). In addition, Caggiano, Jackson, Muckstadt, and Rappold (2009)

points out the computational simplicity of calculating fill rates using Graves algorithm as

compared to using exact methods which require the convolution of multiple probability

distributions.

5.3.3 Solving Mathematical Program (5.25) Using Graves Ap-

proximation

Our objective in mathematical programming problem (5.25) is to minimize inventory

investment in the regional warehouse subsystem subject to site level fill rate constraints.

In this section, we provide details on how to leverage the work of Graves (1985) to solve

this problem in a computationally efficient manner. To that end, we define Qij to be

the outstanding orders at site ij, Qi to be the outstanding orders at regional warehouse

i, and B(si) to be the regional warehouse backorder level assuming si units are stocked

at the regional warehouse. Note that any site-level outstanding orders will always be

in-transit from the regional warehouse or backordered at the regional warehouse.

The key algorithmic insight of Graves (1985) is that the distribution of outstanding

orders for a site (Qij) can be approximated using a negative binomial distribution (as-

suming independent Poisson demand at the sites, regional warehouses fill demand on a

first-come first-serve basis, and deterministic leadtimes). This two-parameter distribu-

tion can then be used to ensure compliance with any fill rate constraint, mathematically

represented as Pr{Qij(t) ≤ sij} ≥ ζ ′.
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Recognizing that the distribution of outstanding orders for a site (Qij) will be a

function of the distribution of backorders at the regional warehouse, we first character-

ize, through a recursive calculation, the warehouse level backorder distribution by its

mean and variance:

E [B(si)] = E [B(si − 1)]− Pr{Qi ≥ si}

V ar [B(si)] = V ar [B(si − 1)]− [E [B(si)] + E [B(si − 1)]] · [1− Pr{Qi ≥ si}]
(5.26)

where starting values of the recursion at si = 0 are the first two moments of the sum

of all site level demands (which are Poisson and thus sum to, λi, a Poisson distributed

variable). Using (5.27), we now find approximations for the first two moments of Qij

where we assume leadtimes from the warehouse to each of the sites, Lij, are all equivalent

(this assumption can be relaxed with some minor modifications):

E [Qij] =
λij
λi
E [B(si)] + λijLij

V ar [Qij] =
λij
λi

2

V ar [B(si)] +
λi − λij
λi

λij
λi
E [B(si)] + λijLij.

(5.27)

The key idea is to approximate Qij by a negative binomial random variable. Given

the first two moments of Qij, we then solve for the corresponding shape and scale

parameters of the target negative binomial distributed variable. From this point, we

use the inverse cumulative distribution of a negative binomial variable to calculate site-

level inventory stocking policies. Note that for each policy si, all site level policies must

be recalculated.

The final step to find the minimal possible inventory in the system is to calculate

for each possible warehouse stocking level the corresponding site-level inventories. For

each potential policy, record the sum of warehouse plus site level inventories and pick

the lowest value over all possibilities as the solution. For this last step, choose the

smallest possible value of si to be zero as negative inventory is not possible and iterate

by one extra unit of inventory in the warehouse. This iteration continues until either:
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1) all calculated site level inventories are equal to their minimal quantity as calculated

assuming infinite supply at the warehouse or 2) the warehouse stocking level is equal to

S which because of the structure of the problem would guarantee enough supply at the

regional warehouse to complete the trial. To break ties, we chose the solution with the

largest si as this solution would present more flexibility should demand rates change.

5.4. Numerical Analysis

The objective of this section is two-fold: (1) To test the effectiveness of the solution

algorithms (2) To study the effect of leadtimes and recruiting rates on optimal supply

chain configurations.

5.4.1 Solution Algorithm Effectiveness

To test the effectiveness of our solution algorithm, we examine the scenario of a three-

country trial. In each of the three countries, we consider putting a regional depot

or shipping direct. In each country the arrival rate of patients, λ, in that country is

disaggregated among four sites such that λ1/λ = 0.1, λ2/λ = 0.2, λ3/λ = 0.3, and

λ4/λ = 0.4 (similar to the test scenario of Graves (1985)). The patient arrival rate, λ,

of the three countries will be 3, 5, and 7 patient arrivals per day respectively(i.e. one

slow recruiting rate country like the United States, one medium recruiting rate country,

and one fast recruiting rate country like India, Russia, or China). Lead time to the

warehouse, Li, may be 1, 3, 7, or 14 days with lead time from warehouse to site, Lij

being 1, 3, or 7 days, but always equal to or less than Li (9 cases per country when

using a warehouse). In examining direct shipment, we assume that the direct shipment

lead-time to the warehouse is equal to the direct shipment lead time to the site. As

such, direct shipment times may be 1, 3, 7, or 14 days (4 cases if direct shipment is

used). In other words, we assume that the lead times of getting shipments from the

central warehouse into a country’s regional warehouse or a country’s site is identical. In
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summary, each country may have one of 13 possible shipping/lead time configurations

and thus, 2197 (i.e. 133) possible test cases are examined.

In summary, the results based on the above test problems are encouraging. The

algorithm provides a feasible and optimal solution in 1,000 of the 2,197 scenarios or

45.5% of the cases. As summarized in Table 5.2, the average performance gap, i.e.,

the difference in objective function between upper bound and lower bound over lower

bound objective function (which is the measure of potential percentage increase in the

objective function over the lower bound) is 11.2%.

# of Regional Warehouses % Gap # of Optimal Solutions # of Scenarios

0 0.0% 64 64
1 1.0% 360 432
2 4.7% 519 972
3 26.9% 57 729

Average 11.2% Total 1000 2197

Table 5.2: Algorithm Performance for Various Supply Chain Configurations

5.4.2 Optimal Supply Chain Configuration

Given the effectiveness of the algorithm in finding the optimal solution, we now leverage

those solutions to develop insight into optimal configuration decisions. Specifically, we

focus on the impact of recruitment rates and lead times on the supply chain config-

uration (i.e., using a warehouse or shipping directly). Using the same parameters as

used in §5.4.1 we look at the 9 possible warehouse/site leadtime combinations that are

possible for each country. Given our example of three countries, we have 93 = 729

possibilities. In addition, for each country, we make a decision as to whether to use a

regional warehouse in that country or to ship direct to the sites. Thus, for each coun-

try/warehouse leadtime/site leadtime combination, we compare eight (i.e. 23) possible

warehouse versus direct combinations and choose the best configuration determined as

the one having the lowest upper bound. The results are summarized in Table 5.3.
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Scenarios Using Direct Shipping
Country # of Scenarios % of Scenarios

Slow Recruiting 303 41.6%
Medium Recruiting 438 60.1%

Fast Recruiting 473 64.9%

Table 5.3: Out of 729 test scenarios, frequency of configurations prescribing direct
shipment to sites for that country

From Table 5.3, we see that in the fastest recruiting rate country, there appears to

be the smallest need for aggregating demand through a regional warehouse. Only in

instances where the warehouse leadtime is high (i.e., 7 or 14) and the site level leadtime

from the warehouse is very low (i.e. 1 day or in some rare instances 3 days) do we

find it optimal to introduce a regional warehouse in the fastest recruiting rate country.

More generally, we show the frequency of the optimal supply chain configurations for

our test scenarios as shown in Table 5.4.

Country1 Country2 Country3 Frequency %
λ1 = 3 λ2 = 5 λ3 = 7

Direct Direct Direct 198 27%
Warehouse Warehouse Warehouse 156 21%
Warehouse Direct Direct 145 20%
Warehouse Warehouse Direct 80 11%

Direct Warehouse Direct 50 7%
Direct Direct Warehouse 50 7%

Warehouse Direct Warehouse 45 6%
Direct Warehouse Warehouse 5 < 1%

Total 729 100%

Table 5.4: Frequency of Optimal Supply Chain Configurations

The impact of recruiting rate on choosing a supply chain configuration seems some-

what counter-intuitive. In the slow recruiting country, a warehouse is recommended for

a majority of scenarios if we exclude cases where all countries are going to receive direct

shipment. For the fastest recruiting country, the opposite is true; a warehouse is rarely

recommended in the optimal configuration. In practice, it is often recommended to
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consider putting a regional warehouse in countries with long lead times and the reason

these countries are even considered to be included in the trial in the first place is often

because of their fast recruitment. So interestingly, in countries where we’d expect a

warehouse to almost definitely be included as part of the optimal configuration, the

numerical study indicates otherwise.

Lastly, we examine how lead times affect the optimal supply chain configuration.

Table 5.5 shows us the frequency with which it is optimal to ship direct or to use a

warehouse for various leadtimes to both regional warehouse and site. As we examine

this table, it is worth remembering the assumption that when we ship direct, it is

the lead time to the warehouse that is used for shipping time directly to the sites.

Interestingly, it appears that regional warehouses are only to be used if they offer a

shipping time advantage over the direct shipment case. For example, all cases where

warehouse leadtime is 7 days and site leadtime is also 7 days should be handled via

direct shipment regardless of the country’s recruiting rate. Consistent to Table 5.3,

Table 5.5 implies that a regional warehouse is more likely to be optimal when the lead

time from regional warehouse to sites is much shorter than the lead time from the

central warehouse to the regional warehouse.

LT To Regional Whse 1 3 7 14

LT From Whse to Site 1 1 3 1 3 7 1 3 7

Country1 56% 0% 90% 0% 54% 95% 0% 0% 79%
Country2 63% 51% 93% 0% 74% 100% 0% 68% 93%
Country3 85% 49% 95% 0% 81% 100% 0% 73% 100%

Table 5.5: Frequency of Shipping Direct in an Optimized Supply Chain

5.5. Summary Remarks

In this chapter, we have illuminated the supply issues that spreading clinical trial de-

mand over multiple sites can cause. Specifically, getting the right inventory, to the right
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place, at the right time becomes increasingly difficult as both countries and sites are

added to the study. We have constructed a model for the general clinical trial supply

chain that can optimally position inventory in support of the trial’s service level require-

ments. To aid implementation of this model, we presented an heuristic algorithm that

reduces the complexity of the exact model without greatly sacrificing the performance of

the model. Using this algorithm and a representative example, we obtain some insights

into configuring the supply chain.
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Chapter 6

Concluding Remarks

In the introductory chapter of this dissertation, we have motivated the need for provid-

ing tactical decision support to managers of clinical trial supply chains. Through the

analysis of SEC filings, we see the enormity of expense devoted to clinical trial supply

chains and the opportunity which exists to create value for these companies. That op-

portunity, as is shown in Chapters 3-5, can be seized by tailoring supply chain models to

the unique needs of clinical trial supply chains. Chapter 3 looks at the unique aspect of

having a deterministic demand stream that may simply disappear and its effect on batch

sizing and production frequency. Chapter 4 addresses the effects of learning during a

trial and incorporates this learning into production planning decisions. Effectively, the

model of Chapter 4 balances economies of scale against the benefits of more accurate

forecasts. In Chapter 5, we examine how the presence of a definitive trial ending after

enrolling the desired number of patients affects the optimal supply chain configuration

and we use the model to prescribe optimal inventory policies for a given configuration.

Going forward beyond the scope of the dissertation, clinical trial supply chain re-

search promises to be both fruitful to practitioners because of the need for tailored

models and of interest to academicians due to the unique components of clinical trial

supply chains. The huge potential in optimizing the drug supply chain has recently

been recognized both in academia and in industry. While there is ample work to be

done, we suggest the following specific research directions:
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1. An Empirical Study: This dissertation provides some empirical evidence of the

magnitude of spending needed to support clinical trial supply chains. A more

comprehensive empirical study is needed to verify the financial significance and

determine the impacting factors.

2. Multi-Product/Multi-echelon Optimization: Drug supply chains often consist of

multiple manufacturing steps that are done in geographically dispersed facilities,

e.g., the active pharmaceutical ingredients (API) manufacturing, formulation and

packaging (Bernstein and Hamrell, 2000). Furthermore, companies may have mul-

tiple investigational drugs in clinical trials simultaneously. Thus, it is important

to generalize the model of multi-echelon clinical trial supply chains to coordinate

multiple drugs.

3. Outsourcing Contracts: While many large pharmaceutical companies produce in-

vestigational drugs in-house, most smaller companies outsource production to 3rd

party manufacturers. Given the potential failure risk and the large costs of pro-

duction, constructing efficient and fair outsourcing contracts is important to both

clinical trial suppliers and pharmaceutical companies.

4. Applications of Models: While the models presented in this dissertation illustrate

enormous opportunities to provide value for clinical trial supply chains, applying

these models in the real-world practice would help refine and validate them.

5. Stochastic Lead Times: For all of the models presented, finding mechanisms to

incorporate stochastic leadtimes would be a valuable way to expand the scope of

their utility.

6. Tightening bounds for the multi-echelon model: While an approximately 11% per-

formance gap of our algorithms to support clinical-trial inventory positioning de-

cisions is not bad, ways to further tighten this gap should be explored.

7. Batch ordering policy in the multi-echelon model: In this thesis, we analyze the
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clinical trial supply chain under the assumption of one-for-one ordering policies.

Expanding these models to include batch ordering policies is one other area worthy

of future study.
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