
Endoscopic Codes For Unitary Groups Over
The Reals

By Dmitry Rubanovich

A thesis submitted to the

Graduate School-Newark

Rutgers, The State University of New Jersey

for the degree of

Philosophy Doctor

Graduate Program in Mathematical Sciences

Written under the direction of

Professor Diana Shelstad

and approved by

Newark, New Jersey

October, 2009

ABSTRACT OF THE DISSERTATION

Endoscopic Codes For Unitary Groups Over The Reals

By DMITRY RUBANOVICH

Dissertation Director:

Diana Shelstad

Transfer factors, originally defined by Langlands and Shelstad for the transfer

of orbital integrals, play a central role in the theory of endoscopy. Spectral

transfer factors, for the dual transfer of traces, have been defined for real

groups by Shelstad. The theory shows that for discrete series representations

of unitary groups the spectral transfer factors determine a bijection between

the representations in a packet and certain binary words. The binary word

thus associated to a representation may be called its endoscopic code. Such

a code is difficult to calculate from the definition by transfer factors. Low

dimensional examples suggest that there is an alternative approach, directly

in terms of the Harish-Chandra data of the representation, which provides

fast calculation of spectral transfer factors.

This thesis presents a new direct construction of the endoscopic code of a

discrete series representation of any unitary group directly from its Harish-

Chandra data and, conversely, identifies a discrete series representation from

any particular given endoscopic code. An explicit algorithm is given and

implemented in MathematicaTM .

ii

Acknowledgement

I would like to thank Rutgers University, Newark, for the support during the

studies and research that lead to this dissertation. I would also like to thank

the Department of Mathematics and Computer Science at Rutgers, Newark,

for this opportunity.

Lastly, while it is a given that every PhD student’s work stems from the work

of their adviser, full credit would not be given if I did not also thank Professor

Shelstad both for her ability to bring clarity to a number of immeasurably

sophisticated topics and for her patience with me at times when providing

such clarity must had seemed an insurmountable task.

Thank you.

iii

Contents

1 Introduction 1

2 Unitary Groups 2

2.1 Classical Unitary Group . 2

2.2 U(p, q) . 4

2.2.1 Real Forms . 4

2.2.2 Compact and Non-compact Forms 5

2.2.3 Complex Form . 8

2.3 Maximal Compact and Diagonal Subgroups 9

2.4 Ω/ Ω
j
R . 9

2.5 Roots and Coroots . 9

3 Discrete Series Representations of Unitary Groups 10

3.1 Discrete Series . 10

3.2 Compact Real Form . 11

3.2.1 Weyl’s Unitary Trick 11

3.2.2 Harish-Chandra’s Isomorphism 12

3.2.3 su(3) example of Harish-Chandra Isomorphism 13

3.2.4 Reparametrization . 16

3.2.5 Weyl Character Formula 18

3.2.6 n=2 example . 19

3.3 Noncompact Forms . 21

3.3.1 Space of Infinite Dimensional Action 21

3.3.2 Trace Character . 22

iv

3.3.3 Infinitesmal Character 22

3.3.4 Weyl Character Formula 23

3.4 L-packet . 24

4 K-group 24

5 Regular Elliptic Parameter ϕ For An L-Packet Of Discrete

Series Representations 25

5.1 1 → Zsc → Ssc → S→ 1 extension 27

5.1.1 n Odd . 28

5.1.2 n Even . 29

5.2 Characters on S . 29

5.2.1 n odd . 30

5.2.2 n even . 30

5.3 Characters on Ssc and L-packets 30

6 Classification Of Representations Of U(n− j, j) By Endoscopic

Codes 31

6.1 Notation . 31

6.2 Cosets Of The Weyl Group (Ω/ Ω
j
R) 32

7 Calculation Of The Codes 36

7.1 Shuffle Product . 36

7.2 Chamber . 36

7.2.1 bδ . 39

7.3 Codes Attached to K-group G 40

7.3.1 n Odd . 40

v

7.3.2 n Even . 41

7.4 Codes Attached to K-group G′ 41

8 Application: Characters Of U(n− 1, 1) for odd n 42

9 Recovering Chambers From Codes 43

9.1 n Odd . 45

9.2 n Even . 47

9.2.1 Quasi-split Case (m− j Even) 47

9.2.2 Non-quasi-split Case (m− j Odd) 49

A Appendix: MathematicaTM Module For Computing Endo-

scopic Codes Over Reals 51

B Appendix: Codes For Dimensions 2-7 61

C Appendix: Calculating Harish-Chandra Data From A Code

And Other Auxiliary Functions 72

vi

1

1 Introduction

Endoscopic codes are binary words related to the tranfer factors which arise

in the theory of endoscopy. Transfer factors were originally defined by Lang-

lands and Shelstad for the transfer of orbital integrals in [LS87]. Spectral

transfer factors, for the dual transfer of traces, have been defined for real

groups in [She09]. Their definition is similarly complicated.

We study discrete series representations of unitary groups over the field of

real numbers. The unitary groups U(p, q), which are described in Section

2.2, will be clustered into K-groups. Suppose n = p + q is fixed. The simple

case is that of n odd. In this case, there is exactly one copy of each real

form U(p, q) in the K-group. In the case of n even, there are two K-groups

and two copies of each real form in the K-group containing them, with the

exception of the quasi-split form U(n
2
, n

2
). The idea of considering several

groups together is due to Vogan. The version we use is due to Kottwitz, as

reported by Arthur in [Art99].

Each discrete series representation of a K-group of unitary groups has an

endoscopic code defined using the theory of transfer factors ([She08]). The

coding is unique for n odd, and is unique module obvious modifications for

n even. In this thesis we give a new construction of the code directly in

terms of the Harish-Chandra data of the representation. We give an explicit

algorithm and implement it in MathematicaTM .

Discrete series representations have various concrete realizations. We will

identify them by their characters, using Harish-Chandra’s existence and

uniqueness results in “Discrete series for semisimple Lie groups II.” [HC66].

2

The references to the details of these results appear in the text as references

to [Wal98].

A particular character is determined by Harish-Chandra’s data comprised of

integers m1 > m2 > . . . > mn, with mi’s parities opposite to the parity of n

(which fixes the infinitesimal character); a particular real form U(n − j, j);

and a particular coset element in the quotient Ω/Ω
j
R of complex Weyl group

by the real Weyl group of that form.

The construction of the codes is based on the fact that the multiplicative

group of diagonal matrices with ±1 on diagonals is isomorphic to the bit-

wise “exclusive or” operation on binary strings. The codes are constructed by

adding a binary string that is unique to a coset ωΩ
j
R for a fixed j and a string

that provides a unique twist which is distinct for all n, j. The construction

of the strings is different for each K-group.

A general application is the calculation of transfer factors. As a particular

application of our method, we prove a separation lemma for discrete series

L-packet of the real unitary group U(n− 1, 1).

2 Unitary Groups

2.1 Classical Unitary Group

There is a number of equivalent ways to define the classical unitary group

of n × n matrices. Probably the most natural way in which it arises is as

the self-adjoint invariant of the standard hermitian inner product on the

n-dimensional inner space. That is as the set of all matrices U such that

< vU, wU >=< v, w > for all v, w ∈ Cn. Defining more precisely what the

3

standard hermitian inner product < ·, · > means, gives < a, b >= atb.

Rewritting the definition of self-adjoint in this manner, says that the unitary

group is all matrices U that satisfy vtw = vUt(wU) for all v, w ∈ Cn. Which

immediately gives the definition of unitary matrices as those which satisfy

UtU = I (0)

Let v be an eigenvector of U with eigenvalue λ. Then

0 < < v, v > = < vU, vU > = < λv, λv > = λλ< v, v >

So

λλ = 1, (0)

for all eigenvalues λ of U.

It follows immediately from (2.1) that all elements of the unitary group must

be diagonalizable. So every element of an n-dimensional unitary group, U(n),

can be written as

U = E




λ1

. . .

λn


E−1 = E




eiθ1

. . .

eiθn


E−1,

where the rows of E are orthonormal eigenvectors of U . So E is unitary.

Let D denote the diagonal matrix in this decomposition. Then we have the

following:

1 = det(UtU) = det(EDE−1EtDE−1) = det(DtD)

The first equality is a polynomial condition on entries of elements of U(n).

It is, however, satisfied not only by the elements of U(n), but by all of

SL(n,R)U(n) = {n× n diagonal matrices in SL(n,R)}U(n)

4

We want to define U(n) as an algebraic group. Following [GW98], we define

J =


 −I

I




and associate M(n,C) with the elements A ofM(2n,R) such that AJ = JA.

Which, of course, yields the usual

 A B

−B A


 .

as the M(2n,R) equivalent of A + iB. The advantage of this association is

that it allows complex conjugation to be treated as a permutation of matrix

elements. So it allows for polynomials not only in C[x11, x12, . . . , xnn] but

also in C[x11, x12, . . . , xnn, x11, x12, . . . , xnn] to be used in defining algebraic

groups. In particular, (2.1) can now be regarded as an algebraic definition of

U(n).

[GW98, sec 1.4.1] also shows that under this association Lie algebra of any

Lie group in GL(n,C) is the same as the Lie algebra of the Lie subgroup of

GL(2n,R) associated to it. That is, if we call the association map r:

r : A + iB →

 A B

−B A


 ,

then Lie(r(G)) = r(Lie(G)) for any Lie group G in GL(n,C).

2.2 U(p, q)

2.2.1 Real Forms

We continue following definitions in [GW98]. A linear algebraic group G ⊂
GL(n,C) is said to be defined over R if the polynomials which generate

5

it as a variety produce points in R when these polynomials are evaluated at

GL(n,R) (that is when B above is 0 or, equivalently, when all the polynomials

have real coefficients).

The GR = G ∩GL(n,R) is the R-rational points of G.

Define

Aff(G) =
⋃
j≥0

det−j C[x11, x12, . . . , xnn, x11, x12, . . . , xnn],

where xj,k are matrix entries of elements of G. Let τ be a group homomor-

phism (and not necesserily a Lie group homomorphism) of G. Then τ is

called a complex conjugation of G if f τ (·) def
= f(τ(·)) is in Aff(G) for all

f ∈ Aff(G). A subgroup H of G is called a real form of G if H is fixed by

some complex conjugation of G.

For example τ defined by τ : g 7→ tg−1 (which happens to be identity on

U(n)) is a complex conjugation of U(n) because for any f ∈ Aff(U(n)),

f(τ(g)) = f(g) and the definition of Aff allows for polynomials in both

matrix entries and their complex conjugates (f here stands for polynomial

with coefficients conjugate to the coefficients of f).

2.2.2 Compact and Non-compact Forms

Let G be a linear group. Let {bα} be a set of basis of the linear space on

which G operates. Then matrix coefficient aαβ of A ∈ G is < bαA, bβ >.

A group is compact if it is topologically closed and all matrix coefficients are

bounded.

A compact form is a real form that is compat as a linear group. U(n) above

is an example of a compact form. A non-compact form is a linear form

6

that is not compact as a group.

In what follows, we define complex conjugation σ as σ(A) = Ip,qtA−1Ip,q,

where

Ip,q =


 Ip

−Iq




and Ip,Iq are identity matrices of indexed sizes. Which p and q are used for

a particular σ will be clear from the context. In cases where it will not be

clear (or more than one type of σ is used), they’ll be labeled.

We label the real form corresponding to the complex conjugation σj as

U(n− j, j). It happens to be an example of a non-compact form. To see this,

consider a matrix that has elements a, b, c, d in positions (i, i), (i, k), (k, i), (k, k),

1’s in other places on the diagonal and 0’s everywhere else:

A =




1

. . .

1

a · · · b

...
. . .

...

c · · · d

1

. . .

1




and the effect of σj (where i ≤ n− j < k ≤ n). To simplify the calculations,

let G = SL(n,C) rather than GL(n,C). This is justified because showing

that SL(n,C) ∩ U(n − j, j) is unbounded will surely show that U(n − j, j)

is unbounded. Because the only entries effected will be a, b, c, d, we can,

7

without loss of generality, consider n = 2, j = 1. So In−j,j =


 1 0

0 −1


 and

A =


 a b

c d


. Calculating σ(A) gives

σ(A) =


 d c

c d




Elements of the real form are the matrices that satisfy σ(A) = A. This

restriction yields the relation a = d and b = c. So

SU(1, 1) ≡ SL(2,C) ∩ U(1, 1) =






 a b

b a


 ∈ SL(2,R) | aa− bb = 1





a = cosh(θ), b = sinh(θ) satisfy aa − bb = 1 for all θ ∈ R. And sinh is

unbounded. So U(n− j, j) (for j > 0), which contains elements of the form

A =




1

. . .

1

cosh(θ) · · · sinh(θ)

...
. . .

...

sinh(θ) · · · cosh(θ)

1

. . .

1




is non-compact.

8

2.2.3 Complex Form

A complex form of a Lie group G is a Lie group G′ such that the complex

Lie algebra g′ of G′ is equal to the complexification of the real Lie algebra g

of G. So g′ = gC = g⊕ ig.

In case of G = U(p, q),

g =




ia1 b12

−b12 ia2

. . .

iap−1 bp−1,p

−bp−1,p iap

C

−tC

iap+1 bp+1,p+2

−bp+1,p+2 iap+2

. . .

iap+q




As a real vector space it has 1 imaginary dimension for each diagonal entry

and 1 complex dimension for each entry above the diagonal. As a real vec-

tor space ig adds 1 real dimension for each diagonal entry and 1 complex

dimension for each entry above the diagonal. For a total of (p + q)2 com-

plex dimensions. So it’s must take up all of gl. Thus the complex form of

U(n− j, j) is GL(n,C) for all j. Given a real form G, [She08] refers to G as

real points of G and to complex form as complex points of G.

9

2.3 Maximal Compact and Diagonal Subgroups

U(n − j) × U(j) is a maximal compact subgroup of U(n − j, j). Because σ

preserves the real points of the diagonal subgroup of GL(n,C), it preserves

the diagonal subgroup of each U(n− j, j) and each U(n− j)×U(j). Thus all

U(n−j, j) share the compact Cartan subgroup T (R) = {diag(eiθ1 , . . . , eiθn)}.

2.4 Ω/ Ω
j
R

The complex Weyl group, Ω, is the the group of permutation of roots of

the complex form (which, again, coincides for all U(n− j, j)) GL(n,C). This

is the group of all permutations of n×n matrices, Sn. The real Weyl group,

Ω
j
R, is the group of permutation of roots of the real form U(n − j, j) by a

matrix in U(n−j, j). It also happens to be the Weyl group of U(n−j)×U(j):

Ω
j
R =


 Sn−j

Sj


 .

2.5 Roots and Coroots

As basis for the simple root and coroot system, we pick

tj : diag(t1, t2, . . . , tn) 7→ tj

and

zk : diag(z1, z2, . . . , zn) 7→ zk.

Then < tj, zk >= δjk. The standard simple positive root system is com-

prised of t1− t2, t2− t3, . . . , tn−1− tn. For any U(n− j)×U(j), the ti− tj will

be called a compact root if ti− tj lies in the copy of U(n− j) or the copy of

U(j). Roots which are not compact roots will be called noncompact roots.

10

Compact Roots:


. . .

ti
. . .

−tj
. . .

0







0

. . .

ti
. . .

−tj
. . .




Noncompact Roots:


. . .

ti
. . .

. . .

−tj
. . .




3 Discrete Series Representations of Unitary

Groups

3.1 Discrete Series

A discrete series representation of a topological group G is one of irre-

ducible smooth representations of G which are square-integrable modulo the

center of G (with respect to an appropriate Haar measure). A represenation

is square-integrable in the sense that all its matrix coeffiecients are square-

integrable.

11

Since discrete series representation determines a representation on G/Z(G),

it can be used, together with a character on the center Z(G) of G, to construct

a representation on G.

Discrete series representations of a reductive group can be classified by classi-

fying all equivalent irreducible represenations. Finite dimensional irreducible

discrete series representations of GL(n,C) arise as representations on com-

pact form U(n) while the infinite dimensional ones arise as representations

on noncompact forms U(n− j, j).

3.2 Compact Real Form

3.2.1 Weyl’s Unitary Trick

Using Weyl’s unitary trick, it can be shown that finite dimensional represen-

tations of GL(n,C) correspond to finite dimensional representations of U(n)

([Kna05]).

Because Weyl’s unitary trick requires the compact real form to be simply-

connected, this requires considering GL(n,C) as ZSL and U(n) as Z0SU,

where Z is the group of scalar matrices of GL and Z0 is the group of scalar

matrices of U. SU(n,C) is a compact real form of SL(n,C). [Hal04] shows

construction of highest weight representations of su(2,C) and su(3,C). The

su(3,C) case shows the inductive step necessery to construct su(n,C).

Clearly, Z is complexification of Z0:

Z =
{
eθ1+iθ2I

}
Z0 =

{
eθI

}

Let T denote a compact connected abelian Lie subgroup of U, it is a torus

of U. We’ll, further, denote its Lie algebra by t and the complexification of t

12

by tC. Because tC is also the Cartan subalgebra of sl, we may at times also

denote it by h.

3.2.2 Harish-Chandra’s Isomorphism

Harish-Chandra’s isomorphism allows for a basis-independent calculaton of a

infinitesmal character on an element of h. The full construction with proofs

is shown in [Kna05, pp 300-313], but we’ll show the calculation here. This

construction works for an arbitrary complex semisimple Lie algebra g with

Cartan subalgebra h. So, in particular, it works for the h we are using.

Given a Lie algebra a, let U(a) denote its universal algebra. DefineH = U(h).

H is the symmetric algebra of h. Let HW denote the orbits of Weyl action

on H.

There are two facts that simplify classification of characters of an irreducible

finite-dimensional represenation of U(n).

First, by Schur’s Lemma, every element of the center of must act by a scalar.

Denote the center of U(g) by Z(g). Extend action of representation π of g

to action on all of U(g). For any element z ∈ Z(g), π(zu) = χ(z)π(u). χ is

the infinitesmal character of π. Because they must agree on the center,

π(z) = χ(z)I.

Second, each element of the compact connected group SU(n,C) is conjugate

to an elment of T by [Kna05, thm 4.36]. Since tr π(·) is invariant under

the operation of taking a complex conjugate of the argument, all equivalent

irreducible finite-dimensional representations of SU(n,C) can be classified

by classifying irreducible finite-dimensional representations of T . Because

we have a choice of conjugates as candidates for T, we may as well pick the

13

one that simplifies the calculations – the one that coincides with the diagonal

subgroup of SU.

Let λ be the highest weight of representation of g with highest weight vector

vλ (ie, the module U(g)vλ). We can extend action of β ∈ h∗ to action onH by

< β, H1⊗H2⊗ . . .⊗Hi >=< β, H1 >< β, H2 > . . . < β,Hi >. Which makes

β “plug-in” values into elements of H. So, in particular, Hp1
1 Hp2

2 . . . Hpi

i acts

by λ(H1)
p1λ(H2)

p2 . . . λ(Hi)
pi on vλ.

Define ∆ to be a root system with respect to Lie group g and Cartan subgroup

h. Let ∆+ be a collection of positive roots of ∆. Let Eα denote a root vector

of root α with respect to this root system. Define P =
∑

α∈∆+ U(g)Eα and

N =
∑

α∈∆+ E−αU(g). Finally, denote the half-sum of positive roots by

δ = 1
2

∑
α∈∆+ α.

[Kna05] shows that U(g) = H⊕ (P +N). Denote the projection on H by

γ′ : U(g) → H.

Let τ(H) = H− δ(H)I. γ = τ ◦ γ′ is The Harish-Chandra’s isomorphism

γ : Z(g) → HW .

And infinitesmal character can be calculated as χλ(z) = λ(γ(z)). The in-

finitesmal character of the representation U(g)vλ is χλ+δ.

3.2.3 su(3) example of Harish-Chandra Isomorphism

H1 =




1

−1

0


 H2 =




0

1

−1




14

X1 =




0 1

0

0


 X2 =




0

0 1

0


 X3 =




0 1

0

0




Y1 =




0

1 0

0


 Y2 =




0

0

1 0


 Y3 =




0

0

1 0




Using the adjoint relations calculated in [Hal04, ch 5.2], we calculate the

Killing form B(M, N) = tr(ad M ad N) to be

H1 H2 X1 X2 X3 Y1 Y2 Y3

H1 12 −6

H2 −6 12

X1 6

X2 6

X3 6

Y1 6

Y2 6

Y3 6

We calculate dual basis such that B(M̃i,Mj) = δij to be

H̃1 =
1

9
H1 +

1

18
H2 H̃2 =

1

18
H1 +

1

9
H2

X̃1 =
1

6
Y1 X̃2 =

1

6
Y2 X̃2 =

1

6
Y3

Ỹ1 =
1

6
X1 Ỹ2 =

1

6
X2 Ỹ2 =

1

6
X3

Finally, we can calculate the Casimir element Ω as in [Kna05, p293]:

Ω =
∑
i,j

B(Mi,Mj)M̃iM̃j =
H2

1

9
+

H2H1

18
+

H1H2

18
+

H2
2

9
+

3∑
i=1

YiXi

6
+

3∑
i=1

XiYi
6

15

using XiYi = [Xi, Yi]+YiXi (for i = 1, 2), H1H2 = H2H1, [X3, Y3] = H1 +H2

and making the choice that the positive root vectors are Xi

=
H2

1

9
+

H1H2

9
+

H2
2

9
+

H1

3
+

H2

3
+

3∑
i=1

YiXi

6
︸ ︷︷ ︸

in N+P

So γ′(Ω) =
H2

1

9
+ H1H2

9
+

H2
2

9
+ H1

3
+ H2

3
.

δ =
α1 + α2 + α3

2

gives δ(H1) = 1, δ(H2) = 1. So

τ(γ′(Ω)) =
(H1 − 1)2

9
+

(H1 − 1)(H2 − 1)

9
+

(H2 − 1)2

9
+

(H1 − 1)

3
+

(H2 − 1)

3

=
1

9
(H2

1 + H1H2 + H2
2 − 3)

The Weyl group is generated by ω1(H1) = −H1, ω2(H2) = −H2, which

are reflections across the line perpendicular to the respective roots in the

su(3,C) root-system diagram. From the same diagram it can be read off

that ω1(H2) = H1 + H2 and ω2(H1) = H1 + H2.

Figure 1: gl(3,C) root system

16

An algebraic calculation shows that ωi(H
2
1 +H1H2 +H2

2) = H2
1 +H1H2 +H2

2 .

So γ(Ω) = τ(γ′(Ω)) is, indeed, in HW .

Because Z(g) is generated by Ω, the fact that Harish-Chandra’s map is an

isomorphism shows that HW is C[H2
1 + H1H2 + H2

2].

3.2.4 Reparametrization

Because any element of the center of U(n) is a scalar multiple of a central

element of SU(n), adding additional parameter and normalizing allows for

an n-parameter highest weight representation of the center of U(n). [GW98,

theorem 5.2.1] does this construction.

The highest weight character can be parametrized by tuples (m′
1,m

′
2, . . . , m

′
n)

such that m′
i ∈ Z and m′

1 ≥ m′
2 ≥ . . . ≥ m′

n. So that

χ′(t) = t1m
′
1 + t2m

′
2 + · · ·+ tnm

′
n

for t ∈ tC.

Using the Harish-Chandra’s Isomorphism [She08] calculates that the highest

weight representation parametrized by (m′
1,m

′
2, . . . , m

′
n) corresponds to the

ininitesmal character χ(m1,m2, . . . , mn), where

χ(m1, m2, . . . ,mn)(t) = t1(
m1

2
) + t2(

m2

2
) + · · ·+ tn(

mn

2
)

and

m1 = 2m′
1 + n− 1,m2 = 2m′

2 + n− 3, . . . ,mn = m′
n − n + 1,

where m1 > m2 > . . . > mn and (clearly) mi’s have parity opposite of n’s.

To elaborate how this calculation arises out of the Harish-Chandra’s isomor-

phism, it’s the image of the χλ+δ(z). So n−2i+1
2

arises as δ(ti). The easiest

17

way to see why is to produce a list of positive roots (because δ(ti) is a half-

sum of positive roots). We can use any positive root system. Let’s use the

one generated by base root system ti − ti+1:

t1 − t2, t2 − t3, . . . , tn−1 − tn

Then the positive roots are all sums of the form ti−tj (where i < j). Summing

over all of them
n−1∑
i=1

n∑
j=i+1

ti − tj

we can rearrange as

n−1∑
i=1

ti

n∑
j=i+1

(−tj) =
n∑
j=1

(n− j)(tj)− (j − 1)(tj) =
n∑
j=1

(n− 2j + 1)tj

Or even more cocretely, the first sum adds the rows first and the last sum

18

adds the columns first in the following enumeration of roots:

t1 −t2

t1 −t3

. . .

t1 −tn

t2 −t3

t2 −t4

. . .

t2 −tn

. . .

tn−2 −tn−1

tn−2 −tn

tn−1 −tn

and δ is half of this sum.

3.2.5 Weyl Character Formula

We will adapt the notation ωj = ω−1(j), where 1 ≤ j ≤ n and ω is some
notation

element of Sn.

Since character is a class function, it is sufficient to define it on diagonal

entries. The formula below is only well-defined for group elements with

19

distinct eigenvalues, but all entries that don’t have distinct eigenvalues are

contained in a set of measure zero.

Θ∗(diag(eiθ1 , eiθ2 , . . . , eiθn)) =

∑
ω∈Sn

sign(ω)ei(mω1θ1+mω2θ2+...+mωnθn)/2

∏
j<k(e

i(θj−θk)/2 − ei(θk−θj)/2)
=

=

∑
ω∈Sn

sign(ω)ei((mω1−n+1)θ1+(mω2−n+3)θ2+...+(mωn+n−1)θn)/2

∏
j<k(1− e−i(θj−θk))

(0)

The last expression is well-defined because the eigenvalues are distinct and

all mωi
− n + 2i− 1 values are even because mωi

− n + 2i− 1 = 2m′
ωi

+ n−
2i + 1− n + 2i− 1 = 2m′

ωi
.

3.2.6 n=2 example

The calculation in this section is due to Diana Shelstad. Any diagonal ele-

ment, u of U(2) can be decomposed as u = ds, where s ∈ SU(2) and d is a

diagonal element such that det(d) = det(u) and d /∈ SU(2) unless u ∈ SU(2).

So

d =


 eiλ1

eiλ2




and

s =


 eiθ

e−iθ




The standard result in representation theory of SU(2) shows that represen-

tations of SU(2) are parametrized by an integer m (ie, the “highest weight”).

A trace of an image of representation, πm, is the sum of all eigenvalues of

that image. In other words, it is (the Weyl Character Formula):

eimθ + ei(m−1)θ + . . . + e−imθ =
ei(m+1)θ + e−(m+1)θ

eiθ − e−iθ
(0)

20

And element of the center of U(2) is of the form


 eiψ

eiψ




Because a represenation must send I to 1, the only representations on the

center are homomorphisms


 eiψ

eiψ


 7→ eilψ, (0)

for some l ∈ Z. Evaluating Weyl Character Formula at θ + π, we get

ei(m+1)(θ+π) + e−(m+1)(θ+π)

ei(θ+π) − e−i(θ+π)
= eiθm

ei(m+1)θ + e−(m+1)θ

eiθ − e−iθ
= (−I)m

ei(m+1)θ + e−(m+1)θ

eiθ − e−iθ

Which has to be consistent with


 ei(θ+π)

e−i(θ+π)


 =


 eiθ

e−iθ





 eiπ

e−iπ


 =


 eiθ

e−iθ


 (−I)

Since all the representations of the center are of the form in (3.2.6), (−I)l =

πm(−I) = (−I)m. So m ≡ l(2). And representations of U(2) can be

parametrized by such m, l pairs.

Using the first general form of the Weyl Character Formula (3.2.5),

πm1,m2





 eiθ1

eiθ2





 =

ei(m1θ1+m2θ2)/2 − e−i(m1θ2+m2θ1)/2

ei(θ1−θ2)/2 − e−i(θ1−θ2)/2
(0)

Multiplying numerator and denominator by e−i(θ1−θ2)/2 and plugging θ1 = θ

and θ2 = −θ, we get:

ei(m1−m2)θ/2 − e−i(m1−m2)θ/2

eiθ − e−iθ

21

In order for it to agree with (3.2.6), we must have m1−m2

2
= m + 1. Because

m > 0, that immediately gives that m1 > m2 and m1,m2 must have the

same parity. Plugging θ1 + π and θ2 + π into (3.2.6):

ei(m1(θ1+π)+m2(θ2+π))/2 − e−i(m1(θ2+π)+m2(θ1+π))/2

ei((θ1+π)−(θ2+π))/2 − e−i((θ1+π)−(θ2+π))/2
=

= ei(π
m1+m2

2
) e
i(m1θ1+m2θ2)/2 − e−i(m1θ2+m2θ1)/2

ei(θ1−θ2)/2 − e−i(θ1−θ2)/2

So (−I)l = πm1,m2(−I) = (−I)
m1+m2

2 . Calculating (mod 2), we get m1+m2

2
≡

l ≡ m ≡ m1−m2

2
− 1 ≡ m1+m2

2
− (m2 + 1). Thus m2 and m1 are odd.

So m1,m2 ∈ Z such that m1 > m2 parametrize irreducible unitary represen-

tations of U(2) via (3.2.6).

3.3 Noncompact Forms

By the Theorem of the Highest Weight [Hal04, p 197], every irreducible finite

dimensional representation of GL(n,C) occurs on the compact form U(n).

So the irreducible discrete series representations of U(p, q) must be infinite

dimensional.

3.3.1 Space of Infinite Dimensional Action

To have an infinite dimensional representation, we first must define the “vec-

tors” on which the group would act. Let H be a Hilbert space. And let H∞

denote all the C∞ elements of H. H∞ is dense in H. So H∞ can be taken

to be the linear space on which the representation acts.

[Wal98, p 32] does the usual construction of Lie algebra representation of g

on H∞ by taking a derivative at 0 of exp(t·) action on H∞. He, further,

22

shows that g 7→ π(g)v (for v ∈ H∞) is a smooth Lie algebra representation.

π extends to a representation of universal algebra of gC on H∞. Both the

representation of g and the representation of U(g) are denoted as (π, H).

3.3.2 Trace Character

A character on the linear operator π is defined as a functional. Let C∞
c

denote smooth functions with compact support. Let C (G) be the Schwartz

space defined by Harish-Chandra. Of note is the fact that functions of C (G)

are K-bi-invariant and rapidly decreasing.

An operator π(f) : V → V , where f ∈ C∞
c (G) is defined by

π(f)v =

∫

G

f(x)π(x)V dx,

where the integration is with respect to a Haar measure. π is an operator

of trace class. f 7→ tr π(f) is a continuous linear functional on C∞
c (G). π

extends to a continuous linear functional on C (G). [Wal98, p 313]

Set Θπ(f) = tr π(f). Then

Θπ(f) =

∫

G

Θπ(x)f(x)dx

defines a real analytic function Θπ on regular semisimple elements of G. Θπ

(on G) is called the trace character of π.

3.3.3 Infinitesmal Character

Following [Wal98], let E 2(G) denote the set of equivalence classes of irre-

ducible square integrable representations of G. [Wal98, thm 7.2.1] (due to

Harish-Chandra) states that

23

Theorem 3.1. E 2(G) is non-empty if and only if G has a compact Cartan

subgroup.

Further, [Wal98, thm 7.7.2] states that for any σ ∈ E 2(G) there is an irre-

ducible unitary representation of T , µ, such that the infinitesmal character

of σ is χµ. So the same infinitesmal characters come up for the infinite

dimensional case as for the finite dimensional case.

[Wal98, sec 3.2] uses Harish-Chandra’s Isomorphism to show that π acts by

a constant on the center of U(g), Z(g). [Wal98, thm 3.2.4] shows that this

infinitesmal character χ, which is determined by π(z)v = χ(z)v, is invariant

under the action of Weyl group WC.

3.3.4 Weyl Character Formula

First, we define a (g, K)-module. Following [Wal98, p 80], let G be a real

Lie group with Lie algebra g. Let K be a compact subgroup of G. Let V

be a g-module that is also a K-module. Then V is a (g, K)-module if the

following three conditions are satisfied:

(1) k.(X.v) = Ad[k](X).v for all v ∈ V, k ∈ K, X ∈ g

(2) If v ∈ V then Kv spans a finite dimensional vector subspace of V ,Wv,

such that the action of K on Wv is continuous.

(3) If Y ∈ t and if v ∈ V then d/dtt=0 exp(tY)v = Y v

Now to use [Wal98, secs 8.1.2,8.1.4], set K = U(p) × U(q). Then the

class function Θπ must assume a distinct value on each coset of WR-orbit

of K-module. And according to Harish-Chandra (as quoted in [She08])

24

there exists a tempered invariant eigendistribution with infinitesmal char-

acter χ(m1,m2, . . . , mn) on the matrices T for each such distinct Θπ.

An element of T is regular if all eigenvalues are distinct. Regular element

are dense in T and character is a continuous function. So it is sufficient to cal-

culate characters on regular elements. The calculation in [She08]) shows that

for a fixed coset ωΩ
j
R and fixed infinitesmal character χ(mω1 , mω2 , . . . ,mω3)

the character Θ is

Θχ,ω,j =
(−1)pq det ω

∑
ω0∈Ω

j
R
det ω0Λωω0∏

α>0(1− α−1)
, (0)

where Λω is the character exp(ω−1µ−δ) and µ is linear form which is regular

dominant for standard ordering of roots.

3.4 L-packet

Equation (3.3.4) shows that to each infinitesmal character χ(m1,m2, . . . , m3)

determines a set of of irreducible discrete series representations parametrized

by real Weyl groups Ω
j
R and their cosets ωΩ

j
R. This set of representations is

the L-packet of the χ.

4 K-group

Fix an infinitesmal character χ(m1,m2, . . . ,mn). A K-group will be an

algebraic variety over R comprised of disjoint union of real forms which are

inner forms of each other.

Following [She08], denote Gj = U(n − j, j), where j ≤ m and m ≤ n
2
. The

reason that only (n − 1, 1), (n − 2, 2), . . . , (n −m,m) pairs are used is that

25

U(n − j) × U(j) is isomorphic to U(j) × U(n − j). And, in case m = n
2
,

U(n−m)×U(m) is actually equal to U(m)×U(n−m). The Gn−m case will

be referred to as quasi-split.

Determining which K-group a particular representation belongs to will be

part of the process of calculating an endoscopic code. If n is odd, then all

Gj will be in one K-group called G.

G = G0 qG1 q . . .qGm

If n is even, then there will be two K-groups: G,G’. G will be comprised of

the quasi-split group and two copies of each Gj with m− j even:

G = Gm qGm−2 qGm−2 q . . .

G’ will be comprised of two copies of each Gj with m− j odd and j > 0

G′ = Gm−1 qGm−1 qGm−3 qGm−3 q . . .

K-group, G, contaning the quasi-split group Gm−n will be referred to as

quasi-split K-group.

5 Regular Elliptic Parameter ϕ For An L-

Packet Of Discrete Series Representations

This section follows [She08] in defining Langland regular elliptic parameter

but specializes it to unitary groups.

26

Let

Jn =




1

−1

1

. . .

(−1)n+1




Define conjugation of GL(n,C), σ, by σ(g) = Jn
tg−1J−1

n .

Conjugation σ determines Galois group Γ of (GL(n,C)/U(n−m,m)) exten-

sion to be {1, σ}. Define

W = WR = {z × τ : z ∈ C×, τ ∈ Γ},

an extension of Γ by C× with multiplication defined by (ε, σ)(ε, σ) = −1,

where ε is 2nth root of unity.

Then L-group is defined as semi-direct product

LG = GL(n,C)oW,

with typical element written as g × τ . A regular elliptic parameter is a

GL(n,C)-conjugacy class of the homomorphism ϕ : W → LG:

ϕ(ω) = ϕ0(ω)× ω,

where ϕ0 is a continuous map of W into GL(n,C) such that

ϕ0(z × 1) =




(z/z)m1/2

(z/z)m2/2

. . .

(z/z)mn/2




27

and ϕ0(1× σ) = Jn.

Proposition in [She08] states that

Proposition 5.1. Regular elliptic parameters ϕ are in 1-1 correspodence

with tuples (m1,m2, . . . , mn) of integers, where m1 > m2 > . . . > mn and

each mi is of parity opposite to n. Given such a tuple, the corresponding

parameter

ϕ = ϕ(m1, m2, . . . ,mn)

has representative ϕ given by

ϕ(z × 1) =




(z/z)m1/2

(z/z)m2/2

. . .

(z/z)mn/2



× (z × 1), z ∈ C×

and

ϕ(1× σ) = Jn × (1× σ).

5.1 1 → Zsc → Ssc → S→ 1 extension

Let S be the centralizer in GL(n,C) of φ. Then S consists of elements of

order 2 in T . Ie, it is the group of matrices of the form




±1

±1

. . .

±1




28

Define S to be the image of S under canonical p : GL(n,C) → PGL(n,C)

homomorphism. So, in particular, S contains all matrices of the form




±ε

±ε

. . .

±ε




,

where ε is 2nth primitive root of unity. That is, for any D ∈ S, D = εD in

S. S is isomorphic to
n−1⊕ Z2.

Define Ssc to be SL(n,C) ∩ p−1(S). Also denote the center of SL(n,C) by

Zsc. Zsc consists of matrices of the form




(ε2)k

(ε2)k

. . .

(ε2)k




,

where k is an integer 0, . . . , n− 1.

5.1.1 n Odd

If n is odd, then p |Ssc : Ssc → S is injective because −I /∈ SL(n,C). And

since the only elements of Zsc that are in Ssc are ±I (which are in the same

equivalence class in Ssc), the extension 1 → Zsc → Ssc → S→ 1 splits.

29

5.1.2 n Even

If n is even, then Ssc is generated by matrices in S which have an even number

of −1’s on the diagonal an the matrix

E =




ε

ε

. . .

ε

−ε




,

where E is in Ssc because εn(−1) = 1 and p(E) is in the equivalence class of




1

1

. . .

1

−1




in S. 1 → Zsc → Ssc → S → 1 does not split because p(E2) = I, p(I) = I in

S and E2 6= I in Ssc.

5.2 Characters on S

Still following [She08] characters on S are binary words δ1δ2 . . . δn where each

δi is a bit. These are characters are linearly independant on each position

of diagonal elements of S, the addition is without carry over. So the group

of characters on S of GL(n,C) can be identified with a subgroup of
n⊕Z2

considered as an additive group.

30

5.2.1 n odd

Consider the group of “even” binary strings with even number of 1-bits. Let

it operate on S element diag(ε1, ε2, . . . , εn) by

δ1δ2 . . . δn 7→ εδ11 εδ22 . . . εδnn

In the case of n odd, Zsc ∩ S is {±I}. So this character is trivial on Zsc ∩ S.

And since the extension splits, it is a characer on Ssc. Since the order both

Ssc and the group of such characters is 2n−1, these are all the characters on

Ssc. Because the number of 1’s is even in these characters, they will be called

the even characters.

5.2.2 n even

All the characters of Ssc defined the same way as the ones for the odd n

are well-defined for even n. But additional 2n−1 characters on Ssc can be

defined by adding 011 . . . 1 to the even characters. These odd characters

are distinct from the even characters on E because they happen to evaluate

to an odd power of ε. This brings the total number of characters on Ssc to

2n. Since this is the cardinality of Ssc, these must be all the characters.

5.3 Characters on Ssc and L-packets

Since an L-packet of a fixed representation χ is determined by j and coset

ωΩ
j
R, if it were to be shown that there is a correspondence between characters

of Ssc and the data consisting of j,ωΩ
j
R and an ω-orbit of a diagonal matrix

(considered as a tuple) diag(m1,m2, . . . ,mn), then the characters of Ssc would

determine a particular discrete series representations of GL(n,C).

31

6 Classification Of Representations Of U(n− j, j)

By Endoscopic Codes

We now come to the actual purpose of this thesis: following [She08] to clas-

sify discrete series representations with a particular infinitesmal character

χ(m1, . . . , mn) by binary codes.

6.1 Notation

First, we note that for a fixed n the multiplicative group of diagonal real

unitary n × n matrices (ie, S) is group-isomorphic to the additive group
⊕

n copies

Z2.

S =








±1

±1

. . .

±1

±1




︸ ︷︷ ︸
n





The isomorphism identifies 1’s on the digonals with 0’s in the binary strings

and -1’s on the diagonals with 1’s in the binary strings. We’ll call this

isomorphism β. This is a slight abuse of notation because β is really a

covariant functor between two isomorphic categories of groups. We’ll use β

though as if it were β : S → ⊕
n copies

Z2 rather than β : S 7→ ⊕
n copies

Z2. To
notation

further facilitate notation, we’ll adopt the practice of labeling anything in

the image of β by a letter “b” in the upper left corner of whatever object or

32

morphism β operates on. For example, if

I3,2 =




1

1

1

−1

−1




and ω is the permutation matrix that corresponds to reflection (34), then in

this notation

β(I3,2) = bI3,2 = 00011

β(ω) = bω

β(ω.I3,2) = β(ω).β(I3,2) = bω.β(I3,2) = β(ω).bI3,2 = bω.bI3,2 = 00101

The operation of addition of binary strings without carry over (ie, the addi-

tion in
⊕

n copies

Z2) has a well-accepted name in computer science. The name

is “exclusive or”. We’ll take advantage of this and use the symbol “ xor ” for

this abelian group addition operation. For example, 0110 xor 1100 = 1010.

The following should be obvious:

Lemma 6.1. Let τ act on binary strings by some permutation of bits. Then

τ.(x xor y) = τ.x xor τ.y.

6.2 Cosets Of The Weyl Group (Ω/ Ω
j
R)

An element of Ω/Ω
j
R has a well-defined action on the matrix In−j,j. That

is because permutting 1’s or -1’s among themselves does not change In−j,j,

the actual effect of such an element is to exchange r “1”’s with r “−1”’s,

33

where r ≤ j ≤ n − j. In the binary-string view, this is the equivalent of

interchanging r 0’s with r 1’s in the string 0 . . . 0︸ ︷︷ ︸
n−j

1 . . . 1︸ ︷︷ ︸
j

.

Theorem 6.2. Let ωΩ
j
R ∈ Ω/Ω

j
R. Let bI ′ = β(ω.In−j,j). Let {u1, . . . , ur} be

positions of 1’s in the first n− j fields of bI ′ and {v1, . . . , vt} be positions of

0’s in the last j fields of bI ′. Let s be a binary string of length n which has

1’s in positions {u1, . . . , ur, v1, . . . , vt} and 0’s in all other positions. Then

(a) r = t,

(b) Ω
j
R action does not change In−j,j (so ωΩ

j
R.In−j,j = ω.In−j,j),

(c) β(ω.In−j,j) = bI ′ = s xor bIn−j,j. In other words,

In−j,j

ωΩ
j
R−−−→ ω Ω

j
R .In−j,j = bI ′n−j,j

β

y
yβ

bIn−j,j −−−−→
s xor ·

s xor bIn−j,j

commutes.

Proof. (a) Any permutation of bits leaves the total number of 0’s and the

total number of 1’s fixed. bIn−j,j has n − j 0’s. So bI ′ must have n − j

0’s as well. Since bI ′ has r 1’s in the first n− j positions, it must have

n − j − r 0’s in the first n − j positions. Which means it must have

n−j−(n−j−r) = r 0’s in the remaining j positions. And t is precisely

the number of 0’s in the last j positions. So r = t.

(b)


 Sn−j

Sj





 In−j

−Ij





 Sn−j

Sj



−1

=


 In−j

−Ij




34

(c) By hypothesis, all ui’s are distinct. So are all vi’s. Further, ui < vk

for all i, k. Taking xor with any binary string, s′, is equivalent to

reversing all bits in the positions where s′ has 1’s. This is the “masking”

operation in computer science. So taking xor with s will reverse all bits

in positions {u1, . . . , ur, v1, . . . , vr} and leave all other bits fixed. Since

1 ≤ ui ≤ n − j < vk ≤ n and bIn−j,j has 0’s in the first n − j positions

and 1’s in the remaining j positions, (bIn−j,j xor s) must have 1′s in

{u1, . . . , ur} positions and 0’s in {v1, . . . , vr} positions. Which makes

bI ′n−j,j = (bIn−j,j xor s) by definition of ui’s and vk’s.

Let ui’s and vk’k be as in theorem 6.2. Now define

si
def
= 000 . . . 0000100 . . . 0000100 . . . 000

↑
position ui

↑
position vi

By induction, s = s1 xor s2 xor . . . xor si xor . . . xor sr.

Lemma 6.3.

s = s1 xor s2 xor . . . xor si xor . . . xor sr

is well-definied even though any particular si depends on a particular choice

among all of the choices of permutations of {u1, . . . , ur} and all of the choices

of permutations of {v1, . . . , vr}.

Proof. This follows immediately from the fact that all ui and vj are distinct

from each other.

Corollary 6.4. Each coset ωΩ
j
R in the set Ω/Ω

j
R has a coset representative

which can be written as a product of commuting reflections (ie, 2-element

permutations)

35

Proof. Fix j and ωΩ
j
R. This fixes the sets {u1, . . . , ur} and {v1, . . . , vr} (as

they are defined in theorem 6.2). Define τi as the reflection that permutes

positions ui and vi. Then β(τi.In−j,j) = si xor bIn−j,j. Because ui’s and vk’s

are all distinct, τi’s all commute with each other. So

β(τrτr−1 . . . τ1.In−j,j) = β(τrτr−1 . . . τ2).β(τ1.In−j,j) = (0)

β(τrτr−1 . . . τ2).(s1 xor bIn−j,j) = β(τr . . . τ2).s1 xor β(τr . . . τ2).
bIn−j,j (0)

The equality in (6.2) follows from lemma 6.1. But bτi has no effect on s1 if

i 6= 1. So

β(τr . . . τ2).s1 = s1 (0)

Plugging (6.2) into (6.2) gives s1 xor β(τrτr−1 . . . τ2).
bIn−j,j. Proceeding by

induction, this is equal to (s1 xor s2 . . . xor sr) xor bIn−j,j = s xor bIn−j,j.

Which by theorem 6.2(c) is equal to bI ′. Applying β−1 to both sides, we get

that τrτr−1 . . . τ1 acts the same way on In−j,j as ωΩ
j
R. So τrτr−1 . . . τ1 ∈ ωΩ

j
R

is the desired product of commuting reflections.

Corollary 6.5. Coset represantative whose existence is guaranteed by corol-

lary 6.4 can be picked to be an involution.

Proof. Immediate from corollary 6.4.

Since all characters on Ssc are quadratic, this establishes that each endoscopic

code does correspond to a character of Ssc and thus there is a correspondence

between j, ωΩ
j
R data and an L-packet of a particular representation χ.

36

7 Calculation Of The Codes

7.1 Shuffle Product

As it turns out a number of calculations can be expressed much more suc-

cinctly using the “shuffle product”. It will be denoted by φ from now on. We

define it as a permutation of a finite sequence best defned by its inverse:

φ−1(i) =





2(i− 1) + 1 1 ≤ i ≤ n−m,

2(n− i + 1) n−m + 1 ≤ i ≤ n

φ−1 has the following effect on the sequence {1, n, 2, n− 1, . . . , n−m + 1}:

{1, n, 2, n− 1, 3, . . . , n−m + 1} φ−1

−−−→ {1, 2, 3, . . . , n}

Giving φ the following effect on the sequence {1, 2, 3, . . . , n}:

{1, 2, 3, . . . , n} φ−−−→ {1, n, 2, n− 1, 3, . . . , n−m + 1}

We will also abuse notation and allow φ operate on binary strings in the

same manner as it operates on sequences. That is if b′ = φ(b), then bit φ(i)

of b′ will be equal to bit i of b. For example,

φ(00 . . . 00︸ ︷︷ ︸
m+1

11 . . . 11︸ ︷︷ ︸
m

) = 01010101 . . . 1010,

φ(00 . . . 00︸ ︷︷ ︸
m

11 . . . 11︸ ︷︷ ︸
m

) = 01010101 . . . 101

If we treat each binary string as a function b : {1, . . . , n} → {0, 1}, that

amounts to saying that b(φ(i)) = (φ(b))(i).

7.2 Chamber

For the χ that results from ϕ-parameter acted on by ω ∈ Ω, the represen-

tation is determined by the ineqaulity mω1 > mω2 > . . . > mωn . And the

37

representation does not change if we pick another in ω′ ∈ ωΩ
j
R. So this rep-

resentation does not change if it is defined by mω′1 > mω′2 > . . . > mω′n . For

example (in terms of standard positive root system)

m1 > m2 > m3 > m4 > m5

and

m3 > m1 > m2 > m5 > m4

define the same representation of U(3, 2). That is, rather than the inequality

itself, the represenatation is determined by the Weyl chamber of the roots

under the real Weyl group, Ω
j
R.

Instead of using the standard simple positive root system, we’ll use a positive

root system that is non-compact for quasi-split Gm. More specifically, we pick

the system of non-compact simple positive roots

tφ(1) − tφ(2), tφ(2) − tφ(3), . . . , tφ(n−2) − tφ(n−1), tφ(n−1) − tφ(n)

For example, t1− t3, t3− t2 for n = 3 and t1− t4, t4− t2, t2− t3 for n = 4. In

terms of these roots, the chamber of the Ωm
R (ie, the orbit of identity element

in Ω/Ωm
R) is

m1 > mn > m2 > mn−1 > . . . > mm > mn−m+1 = mm+1 if n is even,

m1 > mn > m2 > mn−1 > . . . > mm+1 > mn−m+1 = mm+2 if n is odd.

This special chamber, to be denoted C∗, can be more clearly rewritten in

terms of the shuffle product as

mφ(1) > mφ(2) > mφ(3) > . . . > mφ(n)

38

An element ω of Ω acting on the roots can be considered as element ω−1 acting

on the chamber. Together with corollary 6.4 this implies that the action of

ω−1Ω
j
R on a chamber C is equivalent to the action of ωΩ

j
R on φ(In−j,j) (and

consequently to the action of bωΩ
j
R on φ(bIn−j,j)), where C is a chamber of

Gj. Denoting the 1’s by the black balls and 0’s by the white balls, it’s the

ω−1 permutation of the balls in figure 7.2. Using the ωj = ω−1(j) notation

Figure 2: Standard chamber of non-compact roots C∗

from section 3.2.5, this is the chamber

mωφ(1)
> mωφ(2)

> mωφ(3)
> . . . > mωφ(n)

For example, for n = 5, the special chamber C∗ is (the elements corresponding

to −1’s in In−m,m are boxed for clarity)

m1 > m5 > m2 > m4 > m3

the chamber of identity element of Ω/Ω1
R is

m1 > m5 > m2 > m4 > m3

while the chamber of the ω that corresponds to the reflection that exchanges

elements 3 and 5 is

m1 > m3 > m2 > m4 > m5

Now extend the b · notation to chambers by denoting the 1’s in bIn−j,j of Gj

by 0 in the binary string and −1’s in bIn−j,j of Gj by 1’s in the binary string.

So that for a chamber C of Gj, bC∗ = φ(bIn−j,j) and

ω(C∗) = φ(ω(In−j,j)) (0)

39

and consequently

b(ω(C∗)) = φ(bω(bIn−j,j)). (0)

The order of applying shuffle and permutation have to be φ ◦ ω for indices

of mi’s of a chamber and ω ◦ φ for binary strings because they are applied

to the indices when operating on mi’s and to the position in the string when

operating on binary strings.

7.2.1 bδ

We define bδ as the binary string associated to a given chamber C such that

if C = ωΩ
j
R(C∗), then

bδ xor bIn−j,j = bω(bIn−j,j).

Lemma 7.1. bδ = φ−1(bC) xor bIn−j,j

Proof. Because xor addition with a particular string is an involution,

bδ = bIn−j,j xor bω(bIn−j,j). (0)

C = ωC∗ by definition of bδ. So bC = b(ωC∗). b(ωC∗) = φ(bω(bIn−j,j)) by (7.2).

Applying φ−1 to both sides and plugging into (7.2.1), we get

bδ = bIn−j,j xor bω(bIn−j,j) = bIn−j,j xor φ−1(b(ωC∗)) = bIn−j,j xor φ−1(bC)

In the following examples the boxed mi’s correspond to −1’s in In−j,j. So

it should be clear which Gj each chamber belongs to (j will be equal to the

total number of boxed elements).

40

C bC φ−1(bC) bIn−j,j bδ ω

m1 > m3 > m2 010 001 001 000 id

m3 > m1 > m2 100 100 001 101 (13)

m1 > m3 > m2 > m4 > m5 00001 00100 00001 00101 (35)

m1 > m4 > m3 > m2 0110 0101 0011 0110 (23)

m5 > m2 > m6 > m1 > m3 > m4 101000 110000 000011 110011 (26)(15)

7.3 Codes Attached to K-group G

For the quasi-split K-group the codes are produced by twisting bδ through

addition of a binary string bt which is uniquely determined by j. t is defined

as the unique element of T ∩ SL(n,C) whose conjugation action on T (R)

is equal the action of σmσj. For a fixed m (and, therefore, fixed n), this t

depends only on the choice of j.

To calculate t, we first calculate t′ = In−m,mIn−j,j. And then calculate t

as the element of {t′,−t′} which is in SL(n,C). This is justified because

conjugaton by −I does not change anything. bt is calculated as bt = β(t).

An equivalent method of computation of bt is to, first, set bt′ = bIn−m,m xor bIn−j,j;

and then set bt to either bt′ or (111 . . . 1 xor bt′) depending on which one of

them has an even number of bits.

7.3.1 n Odd

For n odd the endoscopic code attached to a particular chamber is φ(bt xor bδ).

This addition of bt is the twist that makes the codes of a particular inequality

mi1 > mi2 > . . . > min

41

(which is used to define a chamber) unique across all Gj.

7.3.2 n Even

In case of n even, the quasi-split case is calculated the same. But the other

Gj have 2 codes attached to each chamber. The first one is calculated the

same way as for the n odd case. And the second one is calculated by taking

xor with 111 . . . 1 (or equivalently by reversing all bits) of the first one.

7.4 Codes Attached to K-group G′

As described in section 4, G′ will contain 2 copies of each of Gm−1, Gm−3, . . .

and it is only defined for even n.

To calculate the code attached to the first copy, we need a bδ and a twist bt.

Because, after all, the codes are used to enumerate the bδ’s by ditinguishing

them from each other by a twist.

bδ is calculated in the same way as it is for the groups in the K-group G: via

the result of lemma 7.1. bt is calculated by adding an arbitrary odd character

(we pick 011 . . . 11) to the twist

bt′ = β(t′),

where t′ is the element of T ∩ SL(n,C) whose conjugation action is equal to

the action of σm−1σj. t′ = In−m+1,m−1In−j,j.

Because m− j is odd for all Gj in K-group G′, t′ will have an even number

of −1’s. So bt′ is an even code and bt = (bt′ xor 011 . . . 11) is an odd code.

Thus the actual code is φ(bδ xor bt).

42

The code attached to the second copy of a particular chamber is 111 . . . 1

“xor”’ed with the first copy. It is still an odd character (because n is even).

Equivalently, it can be calculated as φ(100 . . . 0 xor bδ xor bt′) because

011 . . . 1 xor 111 . . . 1 = 100 . . . 0.

8 Application: Characters Of U(n − 1, 1) for

odd n

Lemma 8.1. To each code c associated to G1(R) there corresponds a unique

binary string s with exactly one 1-bit (and consequenctly diagonal matrix

β−1(s) with exactly one -1) such that for all other codes c̃ associated to G1(R)

it is true that πc̃(β
−1(s)) 6= πc(β

−1(s)).

Proof. bt will denote the twist for j = 1. Given a coroot, the representation

associated to it is πc, where c = φ−1(bδ xor bt). φ−1 is an isomorphism with

respect to the addition xor (because φ is just a permutation of bits). So

φ−1(bδ xor bt) = φ−1(bδ) xor φ−1(bt). Because πc xor r = πcπr and because

φ−1(bt) is a constant for all elements of U(n− 1, 1), we only need to consider

πφ−1(bδ). Also (again because φ is just a permutation of bits), it is true that

πc(s
′) = πφ(c)(φ(s′)). So we can consider just πbδ(φ(s′)). Further, because

the statement is that some string c exists, we can ignore the isomorphism φ

43

and only consider πbδ(s
′). The following is the list of all bδ’s for U(n− 1, 1):

00 . . . 0000

00 . . . 0011

00 . . . 0101

00 . . . 1001

. . .

01 . . . 0001

10 . . . 0001

We can now prove the existence part of the lemma by stating which string

corresponds to which bδ:

bδ s′

00 . . . 0000 00 . . . 0001

00 . . . 0011 00 . . . 0010

00 . . . 0101 00 . . . 0100

. . .

01 . . . 0001 01 . . . 0000

10 . . . 0001 10 . . . 0000

The uniqueness comes from the fact that all the strings with exactly one

1-bit have been used.

9 Recovering Chambers From Codes

The point that has not been addressed yet is why the endoscopic twists make

the codes unique (up to “1”’s complement) across all Gj for a given n. This

44

uniqueness will follow from the results of this section. In this section, we

will calculate the Harish-Chandra data associated to a particular endoscopic

code. That is the sequence {i1, i2, . . . , in} and j such that the chamber

mi1 > mi2 > . . . > min

will correspond to the given code in Gj.

In a case of n odd, there will be
∑n−1

2
j=0


 n

j


 = 2n−1 such codes. In a case

of n even, there will be
∑n

j=0


 n

j


 = 2n such codes. Thus the number of

codes will correspond to the number of orbits of Ω/Ω
j
R’s (with appropriate

orbits’ elements counted twice). Establishing that the number of codes cor-

responds to the number of chambers will show that the endoscopic twists do,

indeed, produce distinct codes for all Gj: if two different twists produced the

same code, then the total number of codes would end up being less than the

total number of chambers.

In order to produce the inverses, it will be helpful to consider codes in terms

of standard basis rather than non-compact basis (ie, the de-shuffled version

of each code). So that the code for bI3,2 would be 00011 rather than 01010.

So the first step in calculating the inverse is to take φ−1.

Then each code will be considered as composed of 3 parts in such a way that

when bt is broken into 3 parts in the same way as the code, each part of bt

will have only 1’s or only 0’s in it. For example, for

bt = 00000 11 00 ,

the code will be broken into parts composed of the first 5 digits, the following

45

2 and the last 2. While for

bt = 00000 000 ,

the code will be broken into parts composed of the first 5 digits, the following

0 and the last 3 (this is a code attached to G3,1 in the nonquasisplit K-group

of GL(8,C).

The three parts of the code will be refered to as box 1, box 2 and box 3

from now on. They codes will be considered as subdivided into 3 boxes even

if box 2 or box 3 is empty. The inverses will be calculated by first examining

the invariants of the codes.

9.1 n Odd

For a fixed j, boxes 1,2,3 will have m + 1,m− j,j elements respectively. Let

r be as in theorem 6.2. So r is the number of 0’s in box 3 before the twist

is applied. Before the twist, the total number of 1’s in boxes 1 and 2 has to

be r as well. Let k denote the number of these 1’s in box 2. So there will be

r − k 1’s in box 1.

Assume, for now, that m − j is such that the twisting element bt will have

1’s in box 2 and 0’s in boxes 1 and 3. This means that m− j is even.

After the twist is applied, the number of 0’s and 1’s will be as following:

box 1 box 2 box 3

1′s r − k m− j − k r

0′s m + 1− r + k k j − r

While trying to recover the Harish-Chandra data from the code, the value of

j is not yet known. But m is known and so is the total number of 0’s and

46

1’s in boxes 2 and 3. The total number of 0’s in boxes 2 and 3 is j + k − r

while the number of 0’s in box 1 is m + 1− (r − k). And

j + k − r < m + 1− (r − k)

because j ≤ m.

Now let m − j be odd. The twisting element can be considered as an xor

of 11 . . . 11 with an element which has 1’s in box 2 and 0’s in boxes 1 and 3.

So in effect the only change that needs to be made to the table above is that

the rows of 0’s and 1’s need to be interchanged:

box 1 box 2 box 3

1′s m + 1− r + k k j − r

0′s r − k m− j − k r

In this case, the total number of 0’s in boxes 2 and 3 is m− j − k + r while

the total number of 0’s in box 1 is r − k. And

r − k < m− j − k + r

because m− j is odd (in particular m− j > 0).

Thus comparing the number of 0’s in box 1 with the combined number of 0’s

in boxes 2 and 3 will reveal whether we are dealing with m− j odd or even

case without knowing a priori what the value of j is.

Depending on which of the two cases is applicable, we can retrieve r − k

as the count of 0’s or 1’s in box 1. Also we can retrieve j − r + k as the

combined count (of 0’s or 1’s) of boxes 2 and 3. This allows to retrieve j as

j = j − r + k + (r − k). Once j is known, bt can be calculated and xor ’ed

with the code to retrieve the cocycle of real Weyl group. And that’s enough

to calculate the chamber.

47

CodeToChamberOdd MathematicaTM function in the appendix A performs

this calculation. The general entry point for calculating of Harish-Chandra

data CodeToHCData can also be used because it distiguishes between n even

and n odd.

9.2 n Even

First step to determine the Harish-Chandra data in this case is to identify

which K-group the code is associated to. If the binary word is even, it’s the

quasi-split one and if the binary word is odd, it’s the non-quasi-split one.

Just as in the case of n odd, we’ll use an invariant to check whether 11 . . . 11

string was applied to the code. Unlike the case of n odd, this will result in

two codes producing the same Harish-Chandra data, but that is as expected.

9.2.1 Quasi-split Case (m− j Even)

For a fixed j, boxes 1,2,3 will have m,m− j,j elements respectively. Again,

let r be as in theorem 6.2. Just as in the case of n odd, let k be the number

of 1’s in box 2 before any twisting binary codes are applied. So the string

corresponding to the cocycle will have r − k 1’s in box 1, k 1’s in box 2

and r 1’s in box 3. Assuming the 11 . . . 11 string was not applied, the string

corresponding to the code will have 1’s and 0’s as following:

box 1 box 2 box 3

1′s r − k m− j − k r

0′s m− r + k k j − r

48

The second code for the same data will have the 1’s and 0’s lines exchanged:

box 1 box 2 box 3

1′s m− r + k k j − r

0′s r − k m− j − k r

We don’t know a priori which of the two codes is given. Relabeling r − k as

x, we do, however, know that in the case of the second code:

box 1 total of box 2 and box 3

1′s m− x j − x

0′s x m− j + x

and m > j (because there is only 1 copy of each code for Gm). Which allows

for the invariant

(m− x) + (m− j + x) = 2m− j > j = x + (j − x).

Whereas in the case of the first code:

box 1 total of box 2 and box 3

1′s x m− j + x

0′s m− x j − x

And

x + (j − x) = j ≤ 2m− j = (m− x) + (m− j + x).

Which allows to distiguish between first and second code by comparing the

sum of the number of 1’s in box 1 with the combined sum of the number

of 0’s in boxes 2 and 3 to the sum of the number of 0’s in box 1 with the

combined sum of the number of 1’s in boxes 2 and 3.

49

Once it is clear which of the codes it is, the 111 . . . 11 can be unmasked from

the code. Thus guaranteeing that we are dealing with the first code. Then j

can be retrieved as m− ((m− j + x)− x). Ie, as m minus the difference in

the number of 1’s in the combined boxes 2,3 with the number of ones in box

1.

Once j is known the twisting binary string bt can be calculated and unmasked

from the code. The remaining string is the cocycle binary string and it can

be used to calculate the chamber.

CodeToChamberEvenQuasiSplit MathematicaTM function in appendix A cal-

culates Harish-Chandra data for the codes for which n is even and m− j is

even. As with all codes, the generic entry point function CodeToHCData

can be used as well.

9.2.2 Non-quasi-split Case (m− j Odd)

In this case, for a fixed j, the boxes 1,2,3 will have m+1,m−1−j,j elements

respectively.

The first step is to unmask the 011 . . . 111 string that was xor ’ed to the

code to make it an odd character.

Let r, k and x be as in the previous section. Then the counts of 1’s and 0’s

are as following for the first code:

box 1 total of box 2 and box 3

1′s x m− 1− j + x

0′s m + 1− x j − x

,

50

and as following for the second code:

box 1 total of box 2 and box 3

1′s m + 1− x j − x

0′s x m− 1− j + x

.

The invariant

(m + 1− x) + (m− 1− j + x) = 2m− j > j = x + (j − x)

is more straight forward in this case because j < m implies that 2m − j is

strictly greater than j. So the count of 1’s on the left plus the 0’s on the

right is eiher strictly greater or strictly lesser than the count 0’s on the left

plus the count of 1’s on the right. Which allows to easily identify whether

this is the first or the second code and unmask 111 . . . 111 if necessery.

Then j can be calculated as x+(j−x). Which allows to calcualte the binary

string for bt and unmask it from the remaining code string to retrieve the

binary string corresponding to the cocycle of the real Weyl group’s coset.

This allows to calculate the chamber.

CodeToChamberEvenNonQuasiSplit MathematicaTM function in appendix

A calculates Harish-Chandra data for the codes for which n is even and m−j

is even. As with all codes, the generic entry point function CodeToHCData

can be used as well.

51

A Appendix: MathematicaTM Module For Com-

puting Endoscopic Codes Over Reals

Below is the MathematicaTM module tested on version 5.1 of Mathematica.

Function PrintCodesForDimension of the module will be used in Appendix

B to calculate a few low-dimensional codes. Function EndoscopicCode can

be used to calculate codes for a given module (specified as a list of indecis of

mi’s) and a given j.

(*----cut----CodesFunctions Package Begin----cut----*)

(*

* Author: Dmitry Rubanovich

* Copyright 2009 by Dmitry Rubanovich

*

* The copyright and the rest of this notice pertains to the

* content between the "cut" lines.

*

* This module is part of a doctorate thesis to be submitted

* at Rutgers University, Newark. This notice acts as permission

* to use and distribute, but not modify, without limitation.

*

* Permission to modify is granted with the only limitation

* that any modified version must contain an attribution to the original

* and the original’s author.

*)

52

BeginPackage["CodesFunctions‘"];

Shuffle[L_List] := Module[{len,halfLen},

len = Length[L];

halfLen = Floor[(len + 1)/2];

Take[

Flatten[

Transpose[{

Take[L, {1, halfLen}],

PadRight[

Reverse[Take[L, {halfLen + 1, -1}]],

halfLen

]

}]

],

{1, len}

]

];

DeShuffle[L_List] := Module[{len},

len = Length[L];

Join[

L[[Range[1, len, 2]]],

Reverse[L[[Range[2, len, 2]]]]

]

];

53

IPQBits[p_Integer, q_Integer] := Join[Table[0, {p}], Table[1, {q}]];

ListXor[L_List, n_Integer] := IntegerDigits[

Fold[BitXor, 0, Map[(FromDigits[#1, 2]) &, L]],

2, n

];

QuasiSplitTwist[n_Integer,j_Integer] := Module[{m},

m = Floor[n/2];

ListXor[{

IPQBits[n - m, m],

IPQBits[n - j, j],

Table[1, {n}]*Mod[m - j, 2]

},

n

]

];

NonQuasiSplitMask[n_Integer] := Prepend[Table[0,{n-1}],1];

NonQuasiSplitTwist[n_Integer,j_Integer] := Module[{m},

m = Floor[n/2];

ListXor[{

NonQuasiSplitMask[n],

IPQBits[m+1, m-1],

IPQBits[n - j, j]

}, n]

];

EndoscopicTwist[n_Integer,j_Integer] := Module[{m},

54

m = Floor[n/2];

If[Mod[n, 2] == 1,

QuasiSplitTwist[n, j],

If[Mod[m - j, 2] == 0,

QuasiSplitTwist[n, j],

NonQuasiSplitTwist[n, j]

]

]

];

ChamberCocycle[M_List,j_Integer] := Module[{halfLen,lambda},

halfLen = Length[M] - j;

lambda=(Block[{i},i=#1;

Piecewise[{ {1,(i > halfLen)} , {0, (i <= halfLen)} }]

])&;

Map[lambda,M]

];

EndoscopicCode[Ms_List,j_Integer] := Module[{n},

n = Length[Ms];

Shuffle[ListXor[{

ChamberCocycle[Range[n], j],

ChamberCocycle[DeShuffle[Ms], j],

EndoscopicTwist[n, j]},

n

]]

];

55

SecondEndoscopicCode[Ms_List] := BitXor[Ms,1];

StandardBasisChamber[Ms_List] := Module[{i = 1, j = Length[Ms]-Total[Ms]+1},

Map[(If[(#1 == 0), i++, j++]) &, Ms]

];

NonCompactBasisChamber[Ms_List] := Shuffle[StandardBasisChamber[Ms]];

CodeToString[cl_List] := Fold[

(StringJoin[ToString[#1],ToString[#2]])&,

"",

cl

];

ChamberToString[chl_List] := Apply[Greater,Map[(\!\(m_#1\))&,chl]];

PrintEndoscopicCodes[p_Integer,q_Integer] :=

Module[{useSecondCode,headings},

useSecondCode = (Mod[p+q,2]==0 && (p != q));

headings = {

"Chamber",

"Code"};

If[useSecondCode,headings=Append[headings,"Second Code"]];

TableForm[Map[(

Block[{l=#1,code,code2,chamber,row},

chamber = NonCompactBasisChamber[l];

code = EndoscopicCode[chamber, q];

code2 = SecondEndoscopicCode[code];

row={

ChamberToString[chamber],

56

CodeToString[code]

};

If[useSecondCode,

Append[

row,

CodeToString[code2]

],

row

]

])&,

Permutations[IPQBits[p,q]]

],

TableDirections -> {Column, Row, Row},

TableHeadings -> {None,headings}

]

];

PrintCodesForDimension[n_Integer]:=Module[{j},

For[j = Floor[n/2],

j >= 0,

j--,

Print[

"U(" <>

ToString[n - j] <>

"," <>

ToString[j] <>

57

"):"

];

Print[PrintEndoscopicCodes[n - j, j]]

]

];

StringToCode[s_String] := ToExpression[StringSplit[s,""]];

CodeToChamberOdd[Code_List]:=

Module[{LeftZeros,RightZeros,mjEven,j,t,cocycle,n,m,LeftOnes,RightOnes},

n = Length[Code];

m = Floor[n/2];

LeftZeros = Count[Take[Code,{1,m+1}],0];

RightZeros = Count[Take[Code,{m+2,n}],0];

LeftOnes = m+1-LeftZeros;

RightOnes = m-RightZeros;

If[LeftZeros > RightZeros, mjEven=True, mjEven=False];

If[mjEven, j=LeftOnes+RightZeros,j=RightOnes+LeftZeros];

t = QuasiSplitTwist[n,j];

cocycle = ListXor[{Code,t,IPQBits[n-j,j]},n];

{NonCompactBasisChamber[cocycle],j}

];

CodeToChamberEvenQuasiSplit[Code_List]:=

Module[{LeftZeros,RightZeros,LeftOnes,RightOnes,j,t,cocycle,n,m},

n = Length[Code];

m = Floor[n/2];

LeftZeros = Count[Take[Code,{1,m}],0];

58

RightZeros = Count[Take[Code,{m+1,n}],0];

LeftOnes = m - LeftZeros;

RightOnes = m - RightZeros;

t = QuasiSplitTwist[n,j];

If[LeftOnes+RightZeros > RightOnes+LeftZeros

,

j = RightOnes+LeftZeros;

t = BitXor[t,1];

,

j = LeftOnes+RightZeros

];

cocycle = ListXor[{Code,t,IPQBits[n-j,j]},n];

{NonCompactBasisChamber[cocycle],j}

];

CodeToChamberEvenNonQuasiSplit[Code_List]:=

Module[{LeftZeros,RightZeros,LeftOnes,RightOnes,

j,t,invMask,cocycle,unmaskedCode,n,m},

n = Length[Code];

m = Floor[n/2];

unmaskedCode = ListXor[{NonQuasiSplitMask[n],Code},n];

LeftZeros = Count[Take[unmaskedCode,{1,m+1}],0];

LeftOnes = m+1-LeftZeros;

RightZeros = Count[Take[unmaskedCode,{m+2,n}],0];

RightOnes = m-1 - RightZeros;

If[LeftOnes+RightZeros > RightOnes+LeftZeros

59

,

j = RightOnes+LeftZeros;

invMask = Table[1,{n}]

,

j = LeftOnes+RightZeros;

invMask = Table[0,{n}]

];

t = NonQuasiSplitTwist[n,j];

cocycle = ListXor[{Code,t,IPQBits[n-j,j],invMask},n];

{NonCompactBasisChamber[cocycle],j}

];

CodeToChamberEven[Code_List]:=

Module[{mjEven,n,m},

n = Length[Code];

m = Floor[n/2];

If[Mod[Count[Code,1],2]==0, mjEven=True, mjEven=False];

If[mjEven,

CodeToChamberEvenQuasiSplit[Code],

CodeToChamberEvenNonQuasiSplit[Code]

]

];

CodeToHCData[C_List]:=Module[{n,m,Code},

n=Length[C];

m=Floor[n/2];

Code=DeShuffle[C];

60

If[Mod[n,2]==1,CodeToChamberOdd[Code],CodeToChamberEven[Code]]

];

HCDataToString[HCData_List] := Module[{j,chamber},

{chamber,j} = HCData;

TableForm[{"j="<>ToString[j]<>", ", ChamberToString[chamber]},

TableDirections->{Row}]

];

VerifyCodeInverse[chamber_List,j_Integer] :=

Module[{useSecondCode,code,code2,n,check},

n = Length[chamber];

useSecondCode = (Mod[n,2]==0 && (n-j != j));

code = EndoscopicCode[chamber,j];

code2 = SecondEndoscopicCode[code];

check = (code == Apply[EndoscopicCode,CodeToHCData[code]]);

If[useSecondCode,

check = check &&

(code == Apply[EndoscopicCode,CodeToHCData[code2]])

];

{{ChamberToString[chamber],j},check}

];

VerifyCodeInverses[p_Integer,q_Integer] := TableForm[Map[

VerifyCodeInverse[NonCompactBasisChamber[#1],q]&,

Permutations[IPQBits[p,q]]

],TableDirections->{Column,Row,Row}

61

];

VerifyCodeInverses[n_Integer] := Module[{j},

For[j=Floor[n/2],j>=0,j--,Print[VerifyCodeInverses[n-j,j]]]

];

EndPackage[];

(*----cut----CodesFunctions Package End----cut----*)

B Appendix: Codes For Dimensions 2-7

These codes were produced by running the first line below.

62

For[i = 2, i ≤ 7, i++, PrintCodesForDimension[i]]For[i = 2, i ≤ 7, i++, PrintCodesForDimension[i]]For[i = 2, i ≤ 7, i++, PrintCodesForDimension[i]]

U(1,1):

Chamber Code

m1 > m2 00

m2 > m1 11

U(2,0):

Chamber Code Second Code

m1 > m2 10 01

U(2,1):

Chamber Code

m1 > m3 > m2 000

m1 > m2 > m3 011

m3 > m2 > m1 110

U(3,0):

Chamber Code

m1 > m3 > m2 101

63

U(2,2):

Chamber Code

m1 > m4 > m2 > m3 0000

m1 > m4 > m3 > m2 0011

m1 > m2 > m3 > m4 0110

m3 > m4 > m1 > m2 1001

m3 > m2 > m1 > m4 1100

m3 > m2 > m4 > m1 1111

U(3,1):

Chamber Code Second Code

m1 > m4 > m2 > m3 1000 0111

m1 > m3 > m2 > m4 1101 0010

m1 > m3 > m4 > m2 1110 0001

m4 > m3 > m1 > m2 0100 1011

U(4,0):

Chamber Code Second Code

m1 > m4 > m2 > m3 0101 1010

64

U(3,2):

Chamber Code

m1 > m5 > m2 > m4 > m3 00000

m1 > m5 > m2 > m3 > m4 00011

m1 > m3 > m2 > m5 > m4 01001

m1 > m5 > m4 > m3 > m2 00110

m1 > m3 > m4 > m5 > m2 01100

m1 > m3 > m4 > m2 > m5 01111

m4 > m5 > m1 > m3 > m2 10010

m4 > m3 > m1 > m5 > m2 11000

m4 > m3 > m1 > m2 > m5 11011

m4 > m3 > m5 > m2 > m1 11110

U(4,1):

Chamber Code

m1 > m5 > m2 > m4 > m3 11101

m1 > m4 > m2 > m5 > m3 10111

m1 > m4 > m2 > m3 > m5 10100

m1 > m4 > m5 > m3 > m2 10001

m5 > m4 > m1 > m3 > m2 00101

U(5,0):

Chamber Code

m1 > m5 > m2 > m4 > m3 01010

65

U(3,3):

Chamber Code

m1 > m6 > m2 > m5 > m3 > m4 000000

m1 > m6 > m2 > m5 > m4 > m3 000011

m1 > m6 > m2 > m3 > m4 > m5 000110

m1 > m3 > m2 > m6 > m4 > m5 010010

m1 > m6 > m4 > m5 > m2 > m3 001001

m1 > m6 > m4 > m3 > m2 > m5 001100

m1 > m3 > m4 > m6 > m2 > m5 011000

m1 > m6 > m4 > m3 > m5 > m2 001111

m1 > m3 > m4 > m6 > m5 > m2 011011

m1 > m3 > m4 > m2 > m5 > m6 011110

m4 > m6 > m1 > m5 > m2 > m3 100001

m4 > m6 > m1 > m3 > m2 > m5 100100

m4 > m3 > m1 > m6 > m2 > m5 110000

m4 > m6 > m1 > m3 > m5 > m2 100111

m4 > m3 > m1 > m6 > m5 > m2 110011

m4 > m3 > m1 > m2 > m5 > m6 110110

m4 > m6 > m5 > m3 > m1 > m2 101101

m4 > m3 > m5 > m6 > m1 > m2 111001

m4 > m3 > m5 > m2 > m1 > m6 111100

m4 > m3 > m5 > m2 > m6 > m1 111111

66

U(4,2):

Chamber Code Second Code

m1 > m6 > m2 > m5 > m3 > m4 100000 011111

m1 > m6 > m2 > m4 > m3 > m5 100101 011010

m1 > m4 > m2 > m6 > m3 > m5 110001 001110

m1 > m6 > m2 > m4 > m5 > m3 100110 011001

m1 > m4 > m2 > m6 > m5 > m3 110010 001101

m1 > m4 > m2 > m3 > m5 > m6 110111 001000

m1 > m6 > m5 > m4 > m2 > m3 101100 010011

m1 > m4 > m5 > m6 > m2 > m3 111000 000111

m1 > m4 > m5 > m3 > m2 > m6 111101 000010

m1 > m4 > m5 > m3 > m6 > m2 111110 000001

m5 > m6 > m1 > m4 > m2 > m3 000100 111011

m5 > m4 > m1 > m6 > m2 > m3 010000 101111

m5 > m4 > m1 > m3 > m2 > m6 010101 101010

m5 > m4 > m1 > m3 > m6 > m2 010110 101001

m5 > m4 > m6 > m3 > m1 > m2 011100 100011

67

U(5,1):

Chamber Code Second Code

m1 > m6 > m2 > m5 > m3 > m4 000101 111010

m1 > m5 > m2 > m6 > m3 > m4 010001 101110

m1 > m5 > m2 > m4 > m3 > m6 010100 101011

m1 > m5 > m2 > m4 > m6 > m3 010111 101000

m1 > m5 > m6 > m4 > m2 > m3 011101 100010

m6 > m5 > m1 > m4 > m2 > m3 110101 001010

U(6,0):

Chamber Code Second Code

m1 > m6 > m2 > m5 > m3 > m4 110100 001011

68

U(4,3):

Chamber Code

m1 > m7 > m2 > m6 > m3 > m5 > m4 0000000

m1 > m7 > m2 > m6 > m3 > m4 > m5 0000011

m1 > m7 > m2 > m4 > m3 > m6 > m5 0001001

m1 > m4 > m2 > m7 > m3 > m6 > m5 0100001

m1 > m7 > m2 > m6 > m5 > m4 > m3 0000110

m1 > m7 > m2 > m4 > m5 > m6 > m3 0001100

m1 > m4 > m2 > m7 > m5 > m6 > m3 0100100

m1 > m7 > m2 > m4 > m5 > m3 > m6 0001111

m1 > m4 > m2 > m7 > m5 > m3 > m6 0100111

m1 > m4 > m2 > m3 > m5 > m7 > m6 0101101

m1 > m7 > m5 > m6 > m2 > m4 > m3 0010010

m1 > m7 > m5 > m4 > m2 > m6 > m3 0011000

m1 > m4 > m5 > m7 > m2 > m6 > m3 0110000

m1 > m7 > m5 > m4 > m2 > m3 > m6 0011011

m1 > m4 > m5 > m7 > m2 > m3 > m6 0110011

m1 > m4 > m5 > m3 > m2 > m7 > m6 0111001

m1 > m7 > m5 > m4 > m6 > m3 > m2 0011110

m1 > m4 > m5 > m7 > m6 > m3 > m2 0110110

m1 > m4 > m5 > m3 > m6 > m7 > m2 0111100

m1 > m4 > m5 > m3 > m6 > m2 > m7 0111111

m5 > m7 > m1 > m6 > m2 > m4 > m3 1000010

m5 > m7 > m1 > m4 > m2 > m6 > m3 1001000

m5 > m4 > m1 > m7 > m2 > m6 > m3 1100000

69

U(4,3) (...Continued):

Chamber Code

m5 > m7 > m1 > m4 > m2 > m3 > m6 1001011

m5 > m4 > m1 > m7 > m2 > m3 > m6 1100011

m5 > m4 > m1 > m3 > m2 > m7 > m6 1101001

m5 > m7 > m1 > m4 > m6 > m3 > m2 1001110

m5 > m4 > m1 > m7 > m6 > m3 > m2 1100110

m5 > m4 > m1 > m3 > m6 > m7 > m2 1101100

m5 > m4 > m1 > m3 > m6 > m2 > m7 1101111

m5 > m7 > m6 > m4 > m1 > m3 > m2 1011010

m5 > m4 > m6 > m7 > m1 > m3 > m2 1110010

m5 > m4 > m6 > m3 > m1 > m7 > m2 1111000

m5 > m4 > m6 > m3 > m1 > m2 > m7 1111011

m5 > m4 > m6 > m3 > m7 > m2 > m1 1111110

70

U(5,2):

Chamber Code

m1 > m7 > m2 > m6 > m3 > m5 > m4 1111101

m1 > m7 > m2 > m5 > m3 > m6 > m4 1110111

m1 > m5 > m2 > m7 > m3 > m6 > m4 1011111

m1 > m7 > m2 > m5 > m3 > m4 > m6 1110100

m1 > m5 > m2 > m7 > m3 > m4 > m6 1011100

m1 > m5 > m2 > m4 > m3 > m7 > m6 1010110

m1 > m7 > m2 > m5 > m6 > m4 > m3 1110001

m1 > m5 > m2 > m7 > m6 > m4 > m3 1011001

m1 > m5 > m2 > m4 > m6 > m7 > m3 1010011

m1 > m5 > m2 > m4 > m6 > m3 > m7 1010000

m1 > m7 > m6 > m5 > m2 > m4 > m3 1100101

m1 > m5 > m6 > m7 > m2 > m4 > m3 1001101

m1 > m5 > m6 > m4 > m2 > m7 > m3 1000111

m1 > m5 > m6 > m4 > m2 > m3 > m7 1000100

m1 > m5 > m6 > m4 > m7 > m3 > m2 1000001

m6 > m7 > m1 > m5 > m2 > m4 > m3 0110101

m6 > m5 > m1 > m7 > m2 > m4 > m3 0011101

m6 > m5 > m1 > m4 > m2 > m7 > m3 0010111

m6 > m5 > m1 > m4 > m2 > m3 > m7 0010100

m6 > m5 > m1 > m4 > m7 > m3 > m2 0010001

m6 > m5 > m7 > m4 > m1 > m3 > m2 0000101

71

U(6,1):

Chamber Code

m1 > m7 > m2 > m6 > m3 > m5 > m4 0001010

m1 > m6 > m2 > m7 > m3 > m5 > m4 0100010

m1 > m6 > m2 > m5 > m3 > m7 > m4 0101000

m1 > m6 > m2 > m5 > m3 > m4 > m7 0101011

m1 > m6 > m2 > m5 > m7 > m4 > m3 0101110

m1 > m6 > m7 > m5 > m2 > m4 > m3 0111010

m7 > m6 > m1 > m5 > m2 > m4 > m3 1101010

U(7,0):

Chamber Code

m1 > m7 > m2 > m6 > m3 > m5 > m4 1010101

72

C Appendix: Calculating Harish-Chandra Data

From A Code And Other Auxiliary Func-

tions

The general entry point to calculate the chamber and the j (of Gj) is function

CodeToHCData. For example,

CodeToHCData[{1, 1, 0, 1, 1}]CodeToHCData[{1, 1, 0, 1, 1}]CodeToHCData[{1, 1, 0, 1, 1}]

produces

{{4, 3, 1, 2, 5}, 2}

So the code 11011 corresponds to a representation of G2 with chamber

m4 > m3 > m1 > m2 > m5. This can be printed more clearly with

HCDataToString:

HCDataToString[CodeToHCData[{1, 1, 0, 1, 1}]]HCDataToString[CodeToHCData[{1, 1, 0, 1, 1}]]HCDataToString[CodeToHCData[{1, 1, 0, 1, 1}]]

which outputs

j = 2, m4 > m3 > m1 > m2 > m5

The code entry can be simplified with StringToCode function:

73

StringToCode[“11011”]StringToCode[“11011”]StringToCode[“11011”]

{1, 1, 0, 1, 1}

And putting it all together:

HCDataToString[CodeToHCData[StringToCode[“11011”]]]HCDataToString[CodeToHCData[StringToCode[“11011”]]]HCDataToString[CodeToHCData[StringToCode[“11011”]]]

j = 2, m4 > m3 > m1 > m2 > m5

And to verify that this Harish-Chandra data will produce the same code:

Apply[EndoscopicCode,Apply[EndoscopicCode,Apply[EndoscopicCode,

CodeToHCData[StringToCode[“11011”]]]CodeToHCData[StringToCode[“11011”]]]CodeToHCData[StringToCode[“11011”]]]

{1, 1, 0, 1, 1}

The module also has two functions (both with the same name) VerifyCodeInverses

which will calculate all codes and their inverses. They, then, verify that the

codes are what they should be. The first of these functions takes an p, q

pair and checks all the codes for Gq for n = p + q while the second of these

functions takes just n and verifies all codes for dimension n.

74

References

[Art99] J. Arthur. On the transfer of distributions: weighted orbital inte-

grals. Duke Math, 99:209–283, 1999.

[GW98] Roe Goodman and Nolan R. Wallach. Representations and Invari-

ants of the Classical Groups. Cambridge University Press, 1998.

[Hal04] Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An

Elementary Introduction. Springer, first edition, 2004. 2nd printing

(corrected).

[HC66] Harish-Chandra. Discrete series for semisimple lie groups II. Explicit

determination of characters. Acta Mathematica, 116, 1966.

[Kna05] Anthony W. Knapp. Lie Groups Beyond an Introduction.

Birkhäuser, second edition, 2005.

[LS87] R.P. Langlands and D. Shelstad. On the definition of transfer fac-

tors. Mathematische Annalen, 278:219–271, 1987. To Friedrich

Hirzebruch on his sixtieth birthday.

[She08] Diana Shelstad. Examples in endoscopy for real groups. Part A of

the notes on talk given at Banff, 2008.

[She09] Diana Shelstad. Tempered endoscopy for real groups II: spectral

transfer factors. In Automorphic Forms and the Langlands Program,

pages 236–276. International Press, 2009.

[Wal98] Nolan R. Wallach. Real Reductive Groups I. Academic Press, 1998.

