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ABSTRACT OF THE DISSERTATION

GAMBLING THEORY AND STOCK OPTION

MODELS

by Jianxiong Lou

Dissertation Director: Professor Larry Shepp

This thesis investigates problems both in gambling theory and in stock option

models. In gambling theory, we study the difference between the Vardi casino

and the Dubins-Savage casino. In the simple Dubins-Savage casino there is only

one table in which a sub-fair gamble is available fixed odds ratio, r and the problem

is to change a fortune of size f to a fortune of size 1 with maximum probability

before going broke. Vardi proposed the casino where there is available a table for

each odds ratio r. Since the Dubins-Savage casino can be duplicated in the Vardi

casino, it is clear that the Vardi casino will provide a bigger probability to achieve

the goal than the Dubins-Savage casino. A main result of the thesis is to show

that the advantage of the Vardi casino is surprisingly small. This implies the

surprising conclusion that it does not really help the gambler to have a variety

of gambles available, and raises the question of why casinos in the real world

have such a variety of gambles. In particular, the optimal probabilities of the

Vardi casino and the Dubins-Savage casino with odds ratio r = 1 (red-and-black)

agree to three decimal places. We further conjecture that the largest difference
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between the Vardi and the Dubins-Savage optimal probabilities occurs at f =

1/3. The thesis also studies the two classic stochastic models involved in finance

and economics, the additive Bachelier model and the multiplicative Black-scholes

model. Both models have advantages and shortcomings. Chen et al [6] introduced

a general class of models with decreasing-return- to-scale indexed by a parameter

interpolating between the additive (θ = 0) and the multiplicative ( θ = 1) cases.

We study the American and the Russian option under the decreasing-return-to-

scale models and give the optimal policy of each option for these new models.

The two parts of the thesis are related through the fact that gambling is involved

in each case, this despite the fact that investors often prefer to believe there is

no gambling involved in their activity. Of course gamblers often believe this as

well. Furthermore, among the stocks with the same negative drift, in order to

maximize the probability to achieve a particular amount of fortune to survive for

the gamblers problem of stocks (see [29] [30]), they need to buy those stocks with

big volatilities (odds ratios).
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Preface

Gambling is one of the oldest businesses in the world. Lots of people are drawn to

it. They spend lots of time and money on gambling. Some become rich, but most

of them lose their money. For us, it may be more important that gambling has

helped develop both statistics and probability theory. To quote the pioneer Louis

Bachelier [1], ‘It is almost always gambling that enables one to form a fairly clear

idea of a manifestation of chance; It is gambling that gave birth to the calculus of

probability; it is to gambling that this calculus owes its first faltering utterances

and its most recent developments; it is gambling that enables us to conceive of

this calculus in the most general way; it is, therefore, gambling that one must

strive to understand, but one should understand it in a philosophic sense, free

from all vulgar ideas.

Stock and derivatives, in some sense, are simply a fancy version of gambling.

The only difference is that gambling is discrete while stock and derivatives are

continuous and gambling has a clear winning odds ratio and probability while

stock and derivatives don’t. Actually, the stock and derivatives market are the

biggest casino in the world. Lots of people study them and build models for stock

and economic fluctuations. However, today’s finance crisis proved that no model

can perfectly fit the real world. And failure to understand the model, especially

the assumptions of the model, will lead to serious consequences, not only for

individuals, but for their countries as well.
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Chapter 1

Introduction

In the Dubins-Savage book [1] it is supposed that a gambler, with an initial

fortune, f , less than 1, has to achieve fortune 1. For us, there are two casinos

available: the Dubins-Savage casino and the Vardi casino. The Dubins-Savage

casino has only one table while the Vardi casino has an infinity of tables. Different

tables have different odds ratios, r but the same expected unit return c. To

maximize the probability to achieve the goal, the gambler needs to play boldly in

the Dubins-Savage casino, which is a subtle and celebrated theorem of Dubins and

Savage. The optimal strategy in the Vardi casino is to play timidly. Of course,

the Vardi casino provides a bigger probability to achieve the goal. However,

the difference is, surprisingly, not big. Particularly, for c = −.02, the difference

between the utility function of the Vardi casino and the Dubins-Savage casino

with odds ratio r = 1 (red-and-black) agree to three decimals. And we further

conjecture that the biggest difference happens at f = 1/3, where the difference is

0.007814498.

Stock and derivative markets are just a version of gambling. However, unlike

the real casinos, the apprepriate models are not so clear. Of the two classic

stochastic models in finance and economics, the Bachelier model and the Black-

Scholes model, one is additive and one is multiplicative in the action of noise

on price. Both have their own advantages and shortcomings. Ren-raw Chen,

Oded Palmon and Larry Shepp [5] introduced a general class of models with

“decreasing-return-to-scale”, indexed by a parameter θ interpolating between the

additive (θ = 0) and the multiplicative (θ = 1) cases. We show that among
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the stocks with the same negative drift, investors need to buy those with higher

volatility to maximize the probability to achieve a certain amount of fortune.

Thich is just like the case of the Vardi casino. We also study the American and

so-called Russian option under the ‘decreasing-return-to-scale’ models and give

the optimal policy of American option and Russian option problem for each of

these new models.

1.1 Gambling theory

Mr. A owns $100,000 to a loan shark and will be killed at dawn if the loan is

not repaid in full, but he only has $10,000. Mr. B wants to buy a TV (price

$1000), although he only has $100. The only way that Mr. A and Mr. B can

make enough money is through gambling in a casino. So basically, each gambler

starts with a fortune f < 1 and can stake any amount of money in his possession,

gaining r times the stake with probability ω and losing the stake with probability

ω = 1 − ω (r > 0, 0 < ω < 1). Gamblers want to find the optimal strategy to

maximize the probability to achieve the goal, i.e. f = 1. Hence, as in [1], the

gambler’s problem is formulated as following:

A gambler begins with a fortune f0, and as play progresses he moves succes-

sively through a sequence of fortunes f1, f2, · · ·. Let F be the set of all fortunes.

A gamble is a probability measure γ on subsets of fortunes. A casino is a function

Γ that associates with each f a nonempty set Γ(f) of gambles γ among which

the gambler is allowed to choose when his fortune is f . A partial history p is

a finite (possible vacuous) sequence of fortunes (f1, · · · , fn), and a strategy is a

function σ associating a gamble σ(p) with each partial history p. Equivalently, a

strategy σ is a sequence σ0, σ1, · · ·, where σ0 is a gamble, and for each positive n,

σn is a function that associates with each finite sequence of fortunes (f1, · · · , fn)

a gamble σn(f1, · · · , fn).
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The gambler’s desire or aspiration is to maximize the probability of terminat-

ing play at a fortune that is satisfactory. It can be summarized by a function u

from fortunes to real numbers, called the utility function. The worth or utility

of the fortune f to the gambler is u(f). Since the gambler’s only objective is to

cease gambling with a numerical fortune as large as f
′

if possible, then u(f) can

be taken to be 0 or 1 according as f is or is not exceeded by f
′
. In this paper,

f
′
= 1 and u(f) = 1 (0) if f ≥ (≤)1. According to the intended interpretation of

utility, the gambler will value a policy π according to the expected value under π

of the utility of its terminal fortune ft. The gambler’s objective is to make u(π)

as large as possible subject to his initial fortune f and the rules of the gambling

house Γ or, if he finds that preferable, to settle for u(f). Therefore, let

U(f)=the maximum of sup u(π) and u(f)

confining the supremum to those policies π that are available in Γ at f , and call

the number U(f) the utility of Γ at f . Hence, the “gambler’s problem” is to

find U when Γ and u are given and to determine policies that are optimal or

nearly optimal. Like other problems dealing with an “unknown future”, we need

some kind of martingale tools to solve the problem. Here in order to prove some

function Q is the utility funcction we need to show that it is excessive [1] for Γ,

i.e. γQ ≤ Q(f) for all the f and γ in Γ(f).

In the case of superfair casino, the law of large numbers will guarantee the

gambler achieves his goal if he plays timidly each time. So the gambler’s problem

will focus on the sub-fair casino cases. There are some variations of the gambler’s

problem. In the well-known casino of Dubins and Savage, there is only one table

n the casino and the gambler starts with initial fortune of size 0 < f < 1, and

wants to achieve fortune of size 1. He can bet any amount 0 < s ≤ f , gaining

a fixed odds ratio r times the stake with probability ω or losing the stake with

probability ω = 1− ω. The expected return on a dollar bet is

r ∗ ω − 1 ∗ ω = (r + 1) ∗ ω − 1 = c < 0.
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Dubins and Savage [1] showed that the gambler maximizes the chance to

achieve the goal if he plays “boldly”: he should bet his entire fortune or just

enough of it to reach the goal. Some may think that this is so obvious it does

not even require proof, but there are variants which are even more “obvious”

that are false. For example, suppose the gambler’s entire fortune is reduced by

dividing by 1 +α, where α is a small positive number, after every bet. It is called

a casino with presence of inflation. Now it is even more obvious that you want

to minimize the number of bets by playing boldly. Although the bold strategy

is indeed optimal for sub-fair primitive casinos with inflation for certain initial

fortunes or odds ratios [6] [9], in general, bold play is not optimal; the gambler can

get a strictly greater survival probability by making a smaller bet when the initial

fortune belongs to a certain infinite set [7]. Yehuda Vardi raised the question of

how-to-gamble-if-you-must in a casino where any bet is available as long as its

expected value is less than or equals to some particular number c. We call this

casino Vardi’s casino. Vardi’s casino is a typical casino in which there are a variety

of bets available such as roulette or slots with long odds. He asked whether this

would give a much better chance for the gambler to achieve the goal under the

optimal play. Larry Shepp [11] showed that the gambler’s optimal probability to

achieve fortune 1 with initial fortune f is

V (f) = 1− (1− f)(1+c), 0 ≤ f ≤ 1.

It is only attainable within ε, and an ε-optimal betting strategy is to bet small

amounts at the odds just enough to provide a fortune 1 if the gambler wins. For

Vardi’s casino with inflation, Grigorescu et al. [13] showed that whether the bold

play is optimal also depends on the choice of parameters.

So what is the advantage of the Vardi’s casino over the Dubins-Savage casino

for real gambling? Say, ω = 0.49 and c = ω ∗ 1 + (1 − ω) ∗ (−1) = −0.02 in the

Dubins-Savage casino. This is roughly the case for the pass bet at the craps table.

One might believe that this quantity would be large for c = −0.02 because of the
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existence of casinos in which there are a wide variety of odds available, but it is

not so. This thesis shows that the two casinos give nearly the same value and

the difference is less than 0.008. The fact that the difference is so small makes

one wonder why there are casinos with a wide variety of odds. A gambler who

wants to turn a fortune of size f < 1 into one of size one hardly does better in

the Vardi’s casino than in the Dubins-Savage casino. This means that in a real

casino it does not really help the gambler to have variety of gambles available.

This is quite surprising.

1.2 Stock model

Playing the stock and derivatives markets, in some sense, is simply a fancy ver-

sion of gambling. The only difference is that gambling is discrete while stock

and derivatives are continuous and gambling has a clear winning odds ratio and

probability while playing the stock and derivatives market don’t. So analogous to

the theorem of the Vardi casino, one would expect that one should invest in those

stocks with higher volatility in order to achieve a certain fortune. However, in

order to measure the odds and the expected return, we need models to formulate

the stock and derivatives problems.

In 1900, mathematician Louis Bachelier at the Sorbonne said in his thesis,

“Theorie de la speculation”, the price of an asset underlying an option could be

modeled as a Brownian motion, also known as a continuous random walk. Just

as a drunken sailor is equally likely to wander left or right, Bachelier assumed

that financial assets are priced so that they’re equally likely to rise or fall by the

same amount. This leads to the Bachelier model:

dX(t) = µdt+ σdW (t)

or equivalently

X(t) = x0 + µt+ σW (t)
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where X(t) is the stock price, µ is the drift, σ is the diffusion, W (t) is the

standard Brownian motion and x0 = X(0) is the stock price at time 0. The

Bachelier model is effective in the sense that the optimal decisions made within

the model are at least qualitatively consistent with observed decisions made by

real firms [2]. However, some people don’t like to use it to model the stock

price. In the Bachelier model, the price of the stock could take negative values

with probability e
−2µx

σ2 , and negative value is an ‘impossibility’ for stocks. In

early days of market modelling, it was seen as a disadvantage, and in 1965, Paul

Samuelson [14] [15] proposed that price changes should instead be proportional to

the level of the asset price. Under Samuelson’s geometric Brownian motion, even

long stream of bad luck would leave the price positive. Based on Samuelson’s

work, in 1973 Fischer Black, Myron Scholes and Robert Merton [4] introduced

the Black-Scholes-Merton model:

dX(t) = X(t)(µdt+ σdW (t))

or equivalently,

X(t) = x0e
µt− 1

2
σ2t+σW (t)

where X(t) is the stock price, µ is the growth rate, σ is the volatility, W (t) is

the standard Brownian motion and x0 = X(0) is the stock price at time 0. As

we can see, X(t) will never go negative or hit zero in this model. There were

other “returns-to-scale” reasons advanced in [4] for preferring a multiplicative

model. So the Black-Scholes-Merton model soon became the fundamental model

for financial engineering.

The derivatives market today is huge. At the end of June 2007, the no-

tional value of over-the-counter derivatives was $516 trillion, according to the

Basel, Switzerland-based Bank for International Settlements, the bank for cen-

tral banks. The fundamental theory of derivatives is based on the Black-Scholes-

Merton model and martingale theory. However, a model is only a model. Al-

though the Black-Scholes-Merton model is very successful and the idea that ‘the
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price change should be proportional to the level of the asset price’ does somehow

reflect the reality, there are some potential dangers in using it in modeling a stock

and derivative price. And failure to understand the model, especially the assump-

tions of the model, will lead to serious consequences. As Samuelson said, “I’m

never sure of the more than 10 million people who are exposed to that, whether

there are more than 10 of them who understand my nuances”. And the stock

market crash of 2008 seems to have justified his words.

The first danger is that, in the model, parameters like interest rate and volatil-

ity are fixed, while in reality they are not. And in the model, the price is marko-

vian. But in reality people never treated stock prices as Markovian. They always

want to predict the future by estimating the past. Today the world is facing

the worst financial crisis since WW2. The Dow Jones Industrial Average index

(DJIA) fell from the peak of 14,000 points to nearly 8,000 points. SP 500 and

NASDAQ and all the other stock indices around the world sank as well (see figure

1.1, 1.2, 1.3). The bank system froze up. The whole world is in the shadow of

recession. No doubt that there is a strong relationship between interest rate and

stock market. The interest rate of the United States was very low since 1990s.

The Federal funds overnight interest rate historical data is showed in figure 1.4.

And when the interest rate is low, the stock price goes up. The reason is that

when r < µ, by the Black-Scholes-Merton model,

EX(t)e−rt = Ex0e
(µ−r)t−σ

2

2
t+σW (t) = x0e

(µ−r)t →∞ as t→∞.

So everyone will buy the stock. Furthermore, as stated in chapter 3, when

µ > r, the value of some options like the American call option will go to∞ under

the Black-Scholes-Merton model. So low interest rate can easily blow up a bubble

of prosperity and make every one rich, at least at first. But when the interest

rate changed, everything changed immediately.

The second danger of the Black-Scholes-Merton model is that under the model,

the stock price will never go to zero. Under the Bachelier model, X(t) could reach
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Figure 1.1: DJIA 2003-2008

Figure 1.2: SP 500 2003-2008
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Figure 1.3: NASDAQ 2003-2008

Figure 1.4: federal reserve overnight interest rate 1970-2008
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Figure 1.5: Lehman brothers stock price 1998-2008

zero. It would be reasonable to simply regard reaching zero level as bankruptcy,

so negative values can’t occur in the Black-Scholes-Merton model which means

that a company will never go bankrupt. But in reality, no company lasts forever.

When the market situation is good, the Black-Scholes-Merton model seems to

be OK. However, when the market situation goes bad, the stock price drops

dramatically and will go to zero when the company goes bankrupt, just like the

Lehman Brothers and Bear Sterns (see figure 1.5). In these cases, the Black-

Scholes-Merton obviously failed and investors lost their money. Hence, investors

who have observed the market closely might consider this aspect of the Black-

Scholes-Merton highly unrealistic and any conclusions based on such a model

dangerous.

So the ‘never goes to zero’ thing is not all good. Samuelson said that financial

engineering is like the science that can help mankind or create atomic bombs.

“Under proper regulation and with optimal transparency, it can spread risk ef-

ficiently and in that sense reduce intrinsic riskiness, But sans transparency and

lacking understanding of the arithmetic of cancerous leveraging, maybe it intro-

duces into modern finance new fragility?” What he said become true. Now the
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‘atomic bomb’ called ‘subprime mortgage’ has exploded and the whole world is

in serious trouble.

Because both of the models have their own advantages and shortcomings, Ren-

raw Chen, Oded Palmon and Larry Shepp [5] introduced a general class of models

with “decreasing-return-to-scale” indexed by a parameter θ interpolating between

the Bachelier model (θ = 0) and the Black-Scholes-Merton model (θ = 1). i.e.

The price of a company X(t) at each time t is assumed to vary according to the

stochastic differential equation

dX(t) = Xθ(t)(µdt+ σdW (t)), t > 0, X(0) = x,

where the exponent 0 ≤ θ ≤ 1 is fixed, µ, known, is a measure of the rate of

growth, σ, known , is volatility, r, known, is the fixed rate of interest. This

class of models is somewhere between the Bachelier model and the Black-Scholes-

Merton model. For 0 < θ < 1, the group of models are robust under the change

of interest rate because X(t)e−rt is dominated by the e−rt term.

dX(t)e−rt = e−rt(−rX(t) + µXθ(t))dt + e−rtσXθ(t)dW (t). So when X(t)

becomes big, the −rX(t) + µXθ(t) term will become negative no matter how big

or small the r is. Hence, the X(t)e−rt will not go to ∞ even when the interest

rate is small. Furthermore, for 0 < θ < 1, under optimal profit taking, the firm

goes bankrupt w.p.1 in a finite time as in the case θ = 0, the probability, Q(x),

of the firm reaching zero starting from x, i.e., going bankrupt in finite time, is

positive and is given by :

Q(x) =

∫∞
x

e
− 2µ

σ2(1−θ)
u(1−θ)

du∫∞
0

e
− 2µ

σ2(1−θ)
u(1−θ)

du

which reduced to the started value e−
2µx

σ2 when θ = 0. Thus the new θ-model al-

lows bankruptcy while incorporating the advantage of variable “returns-to-scale”

present in the Black-Scholes-Merton model. Furthermore, this group of mod-

els are robust against the change of interest rate. Shepp et al. [5] introduced

the optimal policy for profit taking under “decreasing-return-to-scale” model. In
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chapter 3, we show that the result of gambler’s problem under “decreasing-return-

to-scale” models is consistent with the gambling theory in the Vardi casino. i.e.

investors need to buy those stocks with higher volatility when market is going

down. We also study the American and Russian option under the “decreasing-

return-to-scale” models. The American option and Russian option are two classic

options widely used in finance engineering. Here we give the optimal policy and

the price formula of American option and Russian option problem for each of

these new models. In chapter 4, we conclude our work and discusses some related

open research questions.
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Chapter 2

How to gamble if you must: the difference

between two casinos

A gambler plays in two different casinos: the Vardi casino and the Dubins-Savage

casino. One has infinitely many tables and one has only one table available. All

the tables have the same expected unit return. No doubt that the Vardi casino

will provide bigger utility value(i.e. bigger probability to achieve the goal). But

the difference is actually surprisingly small.

2.1 Introduction

Mr. A owns $100,000 to a loan shark and will be killed at dawn if the loan is

not repaid in full but he only has $10,000. The only way that Mr. A can make

enough money is through gambling at a casino. Mr. A starts with a fortune of

size f < 1 and plays in a casino with tables indexed by the odds r ≥ 0. There

are two casinos available. One is the Dubins-Savage casino where there is only

one table available and the gambler can bet any amount 0 < s ≤ f , gaining a

fixed odds ratio r times the stake with probability ω or losing the stake with

probability ω = 1− ω. The expected return on a dollar bet is

r ∗ ω − 1 ∗ ω = (r + 1) ∗ ω − 1 = c < 0.

The other one is the Vardi casino where there are infinitely many tables and

the gambler can stake any amount in his possession on any table indexed by

odds r ∈ < with the same expected winnings c. Obviously the Vardi Casino

will provide a bigger chance to achieve the goal because it offers more choices.
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So what is the advantage of having infinitely more choice of tables? What’s the

difference between the maximal probability to achieve the goal (reach fortune

one) in two Casinos? One might believe that it would be large because of the

existence of casinos in which there are a wide variety of odds available. However,

we will show that the Vardi casino gives an advantage but not a very large one.

For example, the two probability functions agree to 3 decimals when c = -0.02

(roughly the expected unit return for ‘craps’ game). And we conjecture that

the biggest difference access at the fortune of size 1/3, where the difference is

0.007814498.

2.1.1 Formulation of the problem

As in [1],we formally formulate the above problem as a Dubins-Savage gambling

problem in which the set of fortunes, the utility function, and the set of available

gambles are, respectively, as follows:

F = [0,∞),

u(f) =


0, if 0 ≤ f < 1

1, if f ≥ 1

Γ(f) =


ωδ(f + rs) + ωδ(f − s) : 0 ≤ s ≤ f, if 0 ≤ f < 1

δ(f), if f ≥ 1

Here, for 0 ≤ x <∞, δ(x) denotes the probability measure that assigns prob-

ability 1 to {x}. The reason that Γ(f) consists only of δ(f) for f ≥ 1 is that,

when the gambler has a fortune f ≥ 1, he has reached the goal already and need

not gamble any more.

For each integer n ≥ 1, let fn−1 be the gambler’s fortune before the nth play

(with f0 denoting the initial fortune). A strategy σ = {s1, s2, · · ·} is a sequence

of stakes, where 0 ≤ sn ≤ fn−1 is the gambler’s stake on the nth play. Given the

gambler’s fortune fn−1 < 1 before the nth play and the stake sn on the nth play,

his fortune fn (after the nth play and before the (n+1)th play) will be fn−1 + rsn
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with probability ω and fn−1 − sn with probability ω = 1 − ω. The utility of

the strategy σ is Uσ(f) = P{fn ≥ 1 for some n ≥ 0|f0 = f} for f ≥ 0. The

utility of the game, i.e. the maximum probability to achieve the goal, is defined

as U(f) = sup{Uσ(f)}, where the supremum is taken over all possible strategies.

2.1.2 The Dubins-Savage casino

In the Dubins-Savage casino, the gambler can bet any amount 0 < s ≤ f , gaining

a fixed odds ratio r times the stake with probability ω or losing the stake with

probability ω = 1− ω. The expected return on a dollar bet is

r ∗ ω − 1 ∗ ω = (r + 1) ∗ ω − 1 ≤ c < 0.

Dubins and Savage[1] showed that the optimal strategy is to play boldly. The

bold stake at the fortune f is defined by b(f) = min{f, (1 − f)/r} if 0 ≤ f < 1

and b(f) = 0 if f ≥ 1. The gambler is said to use the bold strategy if he stakes

the bold stake b(f) whenever he has a fortune f (and stops playing as soon as

he is either ‘broke’, i.e. his fortune equals 0, or reaches his goal). Let ‘D’ denote

the Dubins-Savage casino and D(f) the utility of the bold strategy under the

Dubins-Savage casino. It is obvious that D(0) = 0 and D(f) = 1 for f ≥ 1. For

0 < f < 1, we have, by considering one play,

D(f) = ωD(f − b(f)) + ωD(f + rb(f)).

Therefore,

D(f) =


ωD((1 + r)f), for 0 ≤ f ≤ 1/(1 + r),

ω + ωD(f − 1/(1 + r)), for 1/(1 + r) ≤ f < 1,

1, for f ≥ 1,

Clearly, the utility function of bold strategy satisfies (as Dubins and Savage

showed)

D( 1
1+r

) = ω

D(( 1
1+r

)2) = ω2

D(( 1
1+r

) + ( 1
1+r

) ∗ ( r
1+r

)) = ω + ω ∗ ω, etc.
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Figure 2.1: The utility function for the Dubins-Savage casino

In general, D(f) is given explicitly at

f =
∑
i≥0

ri

(1+r)ni
, 1 ≤ n0 < n1 < · · ·, by

D(f) =
∑
i≥0 ω

ni−i(1− ω)i.

It is a singular function. Figure 2.1 shows the utility function D(f) for c =

−0.6 and c = −0.2,r = 1 (black & red).

Particularly, for r = 1, ω = 0.49 and c = −0.02 (roughly the case for the pass

bet at the craps table)

D(f) =
∑
i≥0 ω

ni−i(1− ω)i =
∑
i≥0 0.51i ∗ 0.49ni−i

at f =
∑
i≥0

1
2ni

, 1 ≤ n0 < n1 < · · ·.

2.1.3 The Vardi Casino

Yehuda Vardi asked the question of how-to-gamble-if-you-must in a casino where

any bet is available as long as its expected return on a dollar bet is the same. We

call this casino the Vardi casino. The Vardi casino is a typical casino in which

there are a variety of bets available, as with roulette or slots with long odds. He

asked whether this would give a much better chance for the gambler to achieve the

goal under the optimal play. Let ‘V’ denote the Vardi casino and V (f) denote the
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Figure 2.2: The utility function for the Vardi casino

utility function of the Vardi casino. Larry shepp [11] showed that the gambler’s

optimal probability to achieve fortune 1 with initial fortune f is

V (f) = 1− (1− f)(1+c), 0 ≤ f ≤ 1.

And it is only attainable within ε, and an ε-optimal betting strategy is to bet

small amounts, say δ at the odds 1−f
δ

.

Figure 2.2 shows the utility function of the Vardi casino at c=-0.6.

So what is the advantage of the Vardi’s casino over the Dubins-Savage casino

for real gamble, say craps game or ω = 0.49 r = 1 and c = ω ∗1+(1−ω)∗ (−1) =

−0.02 in the Dubins-Savage casino. One might believe that this quantity would

be large for c = −0.02 because of the existence of casinos in which there are a

wide variety of odds available. But it is not so. This thesis shows that the two

casinos give nearly the same value and the difference is less than 0.008. The fact

that the difference is so small makes one wonder why there are casinos with a

wide variety of odds. A gambler who wants to turn a fortune of size f < 1 into

one of size one hardly does better in the Vardi’s casino than in the Dubins-Savage

casino. This seems quite surprising.

The difference between two casinos
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The limit of the Vardi casino actually can be approached by the Dubins-Savage

casino while we let the odds ratio r →∞.

For any f ∈ (0, 1),

( r
1+r

)n+1 ≤ 1− f ≤ ( r
1+r

)n,where n = [ log(1−f)
log( r

1+r
)
],

hence, 1− ( r−c
1+r

)n+1 ≤ D(f) ≤ 1− ( r−c
1+r

)n.

When r → ∞, D(f, r) → 1 − (1 − f)1+c, which means that, essentially, a

larger odds ratio will provide a better chance to achieve the goal.

We still need to answer the question of whether the various different casinos

give very different values for the utility function or not. Thus if D(f, r) is the

utility function of the Dubins-Savage casino with odds r, and V (f) is the utility

function of the Vardi casino with the same value of c, then clearly

V (f) ≥ D(f),

but define δ(f, r, c) = V (f) − D(f, r), 0 < f < 1 and θ(r, c) = sup0<f<1δ(f, r)

which measure the improvement that the Vardi casino achieves over the Dubins

casino. One might believe it would be large for c = −0.02 because of the existence

of casinos in which there are a wide variety of odds available. But it is not so:

the two casinos give nearly the same value and θ(1,−0.02) < 0.008.

Theorem: For c=-0.02, θ(1, c) < 0.008.

Proof: Let fi = i/2n, i = 1, 2, · · · , 2n. For fi−1 < f < fi, δ(f) < V (fi) −

D(fi−1) = V (fi)− V (fi−1) + V (fi−1)−D(fi−1).

So, θ(1, c) ≤ maxi=1,···2n(V (fi)−D(fi)) +maxi=1,···2n(V (fi)− V (fi−1)) = Mn1 +

Mn2.

For n = 10, Mn1 = 0.007804855, Mn2 = 0.001121776,

For n = 14, Mn1 = 0.00781388, Mn2 = 7.410857e− 05,

For n = 16, Mn1 = 0.007814341, Mn2 = 1.904801e− 05,

So, θ(1, c) < 0.008.

Figure 2.3 shows the difference between two utility functions as r = 1 and
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Figure 2.3: The difference between two utility functions

c = −0.02 in the Dubins casino. This result is quite surprising. People can’t

really expect too much by trying all kinds of games. What really matters is the

expected unit return. Then why would casinos in the real world have such a

variety of gambles, since they aren’t really producing any advantage?

Corollary: For the r satisfies D(1
2
, r) ≥ 0.49, θ(r,−0.02) ≤ 0.008.

Proof: Based on the Dubins and Savage’s theorem (see [1] p112-113), if

D(1
2
, r) ≥ 0.49, then D(f, r) majorzes D(f, 1), i.e. D(f, r) ≥ D(f, 1). Hence,

θ(r,−0.02) ≤ 0.008.

Conjecture 1. For r = 1, the biggest δ(f, r) would happen at f = 1
3
.

Conjecture 2. θ(r, c) is decreasing on r. Hence,

sup0<f<1[V (f)− infr≥1D(f, r)] < 0.008.

Figure 2.4 shows the difference between two utility functions for c=-0.02 and

r = 3 in the Dubins-Savage casino:

Figure 2.5 shows the maximum difference between two utility functions for

c=-0.02 and different choices of r in Dubins-Savage casino. We can see that the

maximum differnce is decreasing in the odds ratio r, which is quite reasonable

since V (f) = limr→∞D(f). (This shows that high risk does give some kind of
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Figure 2.4: The difference between two utility functions, r=3

advantage in gambling, although it is really very small).
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Figure 2.5: The difference between two utility functions for c=-0.02 and different
r



22

Chapter 3

American option and Russian Option for

decreasing-return-to-scale model

The Black-Scholes-Merton model and the Bachelier model each have advantages

and shortcomings. Ren-raw Chen, Oded Palmon and Larry Shepp introduced a

general class of models with “decreasing-return-to-scale” indexed by a parameter θ

interpolating between the Bachelier model (θ = 0) and the Black-Scholes-Merton

(θ = 1) model. Here we study the American option and Russian option under

“decreasing-return-to-scale” model.

3.1 Introduction

There are two classic stochastic models in economy and finance, the Black-Scholes-

Merton model and the Bachelier model. One is multiplicative and one is additive.

Suppose that the stock price (or the value) of a firm at time t is X(t). In the

Black-Scholes model, X(t) is assumed to vary according to the following stochastic

differential equation

dX(t) = X(t)(µdt+ σdW (t)), t > 0, X(0) = x

where X(t) is the stock price, µ is the drift, σ is the diffusion, W (t) is the

standard Brownian motion and x0 = X(0) is the stock price at time 0. Hence,

X(t) = X(0)eµt−σ
2/2t+σW (t), t > 0. It is a very useful in a model for optimal hiring

and firing decisions in corporate planning. The size of the company, measured in

number of personnel, naturally enters multiplicatively and this model does give

effective results for the problem of when to hire and fire. And it is widely used in
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stock option modeling. The idea that ‘price change should be proportional to the

level of the asset price’ does somehow reflect the reality. There are some other

“returns-to-scale” reasons advanced in [4] for preferring the Black-Scholes-Merton

model to the Bachelier model. However, as we can see, X(t) will never go below

or hit 0. This may be a problem when you use it to make economic decisions

because all the companies will go bankrupt, eventually.

In the Bachelier model, X(t) is assumed to vary according to the following

stochastic differential equation:

dX(t) = µdt+ σdW (t), t > 0, X(0) = x

where X(t) is the stock price, µ is the drift, σ is the diffusion, W (t) is the

standard Brownian motion and x0 = X(0) is the stock price at time 0. Hence,

X(t) = X(0) + µt + σW (t), t > 0. It is effective in the sense that the optimal

decisions made within the model are at least qualitatively consistent with observed

decisions made by real companies. It uses additive Brownian motion to model

the underlying economic fluctuations, and it was noted in [2] that unrealistic

results are obtained if multiplicative rather than additive Brownian motion is

used instead to model the economic fluctuations.

Because both of the models have their own advantage and shortcomings, Ren-

raw Chen, Oded Palmon and Larry Shepp introduced a general class of models

with “decreasing-return-to-scale” indexed by a parameter θ interpolating between

the additive (θ = 0) and the multiplicative (θ = 1) cases. That is, the price of

a company X(t) at each time t is assumed to vary according to the stochastic

differential equation

dX(t) = Xθ(t)(µdt+ σdW (t)), t > 0, X(0) = x,

where the exponent 0 ≤ θ ≤ 1 is fixed, µ, known, is a measure of the rate of

income, σ, known , is volatility, and r, known, is the fixed rate of interest. This

class of models is somewhere between the Bachelier model and the Black-Scholes

model. This new θ-model allows bankruptcy while incorporating the advantage
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of variable “returns-to-scale” present in the Black-Scholes-Merton model. Also, it

is robust against the change of parameters. Finally, it is consistent with gambling

theory, i.e. you need to invest in those stocks with higher volatility when the

market is going down.

Suppose a gambler is gambling in a Vardi casino of stocks. All stocks have the

same negative drift µ. His initial fortune is f and he wants to make his fortune

1. In the original Vardi casino, a gambler needs to stake on the table with odds

ratio as large as possible to maximize the probability to achieve the goal. In the

stock market which follows the “decreasing-return-to-scale” model we also need

to invest in those stocks with higher volatility (odds).

Actually, for 0 ≤ θ < 1, the probability, Q(x), of the stock price reaching a

particular value xu before 0 starting from x is positive and is given by:

Q(x) =

∫ x
0
e
−2µ

σ2
s1−θ
1−θ ds∫ xu

0
e
−2µ

σ2
s1−θ
1−θ ds

It is increasing in the volatility σ, which means investor needs to buy those

stocks with higher volatility. And Q is bounded above by x
xu

. Indeed, it is clear

because the process X(t) is a supermartingale. Hence EX(τ) ≤ X(0) = x for any

stopping time τ which implies that Q(x)xu ≤ x. (See Appendix for more details)

In [5], Ren-raw Chen, Oded Palmon and Larry Shepp gave the optimal strat-

egy for corporate policy. Here, we study the American and the Russian option

under the ‘decreasing-return-to-scale’ models and give the optimal policy for each

of these new models.

3.2 American option

Suppose an employee of the firm is offered the choice of taking a bonus of Y

dollars at time t = 0, or the right to an amount Z times (X(τ, ω) − k)+ where

Y, Z, k are specified numbers. The employee can execute the second choice only

once at any future time τ . Suppose the employee considers that the true interest
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rate is r and that the second choice is really worth Z times

V (x) = supτ V (x, τ), where V (x, τ) = Ex(X(τ)− k)+e−rτ .

where X(t) is the stock price of a firm at each time t and is assumed to vary

according to the stochastic differential equation

dX(t) = Xθ(t)(µdt+ σdW (t)), t > 0, X(0) = x,

where the exponent 0 ≤ θ ≤ 1 is fixed, µ, known, is a measure of the rate of

income, σ, known , is volatility, and W (t) is the standard Brownian motion. The

additive and multiplicative cases are θ = 0 and θ = 1 respectively.

In the Black-Scholes model, θ = 1. For this θ, Vθ(x) = supτExe
−rτ (X(τ)−k)+,

where τ is any stopping time of X(t), satisfies for µ < r,

V1(x) = Axγ+ , x < α;

V1(x) = (x− k)+, x ≥ α.

where γ+ =
σ2

2
−µ+

√
(σ

2

2
−µ)2+2rσ2

σ2 ,

α = k
1− 1

γ+

,

A = α1−γ+

γ+
.

When µ > r, V1(x) =∞, since Exe
σW (t)+(µ−r−σ

2

2
)t = e(µ−r)t →∞ as t→∞.

When µ = r, there is no optimal solution. But one can achieve any close to x.

Then the employee can compare the V1(x) with Y and make his optimal decision.

Would the result be similar when 0 < θ < 1?

3.2.1 Statement of results

For 0 < θ < 1, the process is now defined by

dX(t) = Xθ(t)(µdt+ σdW (t)), t > 0, X(0) = x,

And we need to find out Vθ(x;µ, θ, r) = supτExe
−rτ (X(τ)− k)+?

We will guess the optimal policy as in the case θ = 1, namely that there is a

constant α = α(θ, µ, σ, r) so that while X(t) < α, one does not execute the option

and when X(t) ≥ α, one executes the option immediately. We will prove that if
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we can find a number α and a function V̂ (x), x > 0 satisfying the five conditions:

I. V̂ (x) ∈ C2, V̂ (x) ≥ (x− k)+, x ≥ 0

II. σ
2

2
x2θV̂

′′
(x) + µxθV̂

′
(x)− rV̂ (x) = 0, for 0 < x ≤ α

III. σ
2

2
x2θV̂

′′
(x) + µxθV̂

′
(x)− rV̂ (x) ≤ 0, for x ≥ α,

IV. 0 ≤ V̂
′
(x) ≤ 1, 0 ≤ x ≤ a, V̂

′
(x) ≡ 1, x ≥ α,

V. V̂ (0) = 0

then Vθ(x) = V̂ (x).

To prove this, let’s look at the process

Y (t) = e−rtV̂ (X(t), S(t)).

dY (t) = −re−rtV̂ (x)dt+ e−rtV̂
′
(x)dx+ 1/2e−rtV̂

′′
(x)(dx)2

= e−rt(−rV̂ (x) + xθµV̂
′
(x) + σ2

2
x2θV̂

′′
(x))dt+ e−rtσV̂

′
(x)dW (t)

Based on the conditions above, the process Y (t) is a super-martingale. Then

we can use the fact that a non-negative supermartingale satisfies for every stop-

ping time τ , EY (τ) ≤ EY (0). i.e.

EY (τ) ≤ Y (0) = V̂ (x),

and since this holds for every stopping time, we also have Vθ(x) ≤ V̂ (x).

To prove the reverse inequality we have from the first two conditions that

if one uses the right stopping time τ , which is the first hitting time of α, then

equality holds throughout the last line and since Vθ(x) ≥ V (x, τ) = V̂ (x), we see

that Vθ = V̂ .

Theorem: For µ < r, the optimal strategy under the θ model is to execute

the option at the first time that X(t) is larger than or equal to some particular

level α, And the value of the option is V (x) = Af(x), 0 ≤ x ≤ α

V (x) = x− k, α ≤ x <∞

where α = ( z(1−θ)
c

)
1

1−θ ,

z is the largest negative root of

zM
′
(1+a−b,2−b,z)

M(1+a−b,2−b,z) = 1−θ
c

r
µ
z − µ− 1−θ

c
γµz.
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and A = α−k
f(α)

.

3.2.2 Solution and proof

If we guess that the best τ = τa for some α, where τα is the first hitting time of

α, then we ‘know’ that α > k of course. We would expect that if X(t) = x < α,

then Y (t) = V̂ (X(t))e−rt would be a local martingale in the ‘continue-to-observe’

region, x < α, i.e. the process Y(t) would have no drift term.

dY (t) = −re−rtdtV̂ (x) + e−rt d
dx
V̂ (x)xθ(µdt+ σdW ) + 1

2
e−rt d

2

dx2
V̂ (x)x2θσ2dt

and there will be no drift term if and only if for x < α,

0 = −rV̂ (x) + d
dx
V̂ (x)xθµ+ 1

2
d2

dx2
V̂ (x)x2θσ2.

Suppose f(x) solves the differential equation for V̂ then

σ2

2
x2θf

′′
(x) + µxθf

′
(x)− rf(x) = 0.

let f(x) = eγ
x1−θ
1−θ h(−(2γ+ 2µ

σ2 )x
1−θ

1−θ ), where γ is any root of σ2

2
γ2 +µγ− r = 0,

then

−(2γ + 2µ
σ2 )σ

2

2
x1−θ

1−θ h
′′
(−(2γ + 2µ

σ2 )x
1−θ

1−θ ) + ((σ2γ + µ)x
1−θ

1−θ −
θ

1−θ
σ2

2
)h
′
(−(2γ +

2µ
σ2 )x

1−θ

1−θ )− σ2

2
γ

−(2γ+ 2µ

σ2
)

θ
1−θh(−(2γ + 2µ

σ2 )x
1−θ

1−θ ) = 0

i.e.

h
′′
(z) + (z − θ

1−θ )h
′
(z) + γ

2γ+ 2µ

σ2

θ
1−θh(z) = 0

This is Kummer’s equation and has a general solution,

h(z) = AM(a, b, z) +Bz1−bM(1 + a− b, 2− b, z), where

a = γ
c

θ
1−θ ,

b = − θ
1−θ ,

c = −(2γ + 2µ
σ2 ) and

M(a, b, z) = 1 + az
b

+ · · ·+ (a)nzn

(b)nn!
+ · · · is the standard hypergeometric function

[3].

Since V̂ (0) = 0, f(x) = Axeγ
x1−θ
1−θ M(1 + a− b, 2− b, cx1−θ

1−θ ).

We can now construct V̂ in terms of f as follows:
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V̂ (x) = Af(x), 0 ≤ x ≤ α

V̂ (x) = x− k, α ≤ x <∞

Since V̂
′
(α) = 1 and V̂

′′
(α) = 0, we have µαθ = rV̂ (α) and we see that

α = ( z(1−θ)
c

)
1

1−θ

where z is the largest negative root of

zM
′
(1+a−b,2−b,z)

M(1+a−b,2−b,z) = 1−θ
c

r
µ
z − µ− 1−θ

c
γµz.

And A = α−k
f(α)

.

Now we still need to prove that equality holds for the stopping time τα. If we

define Y (t) = Y (τα) for t > τα, then Y is a uniformly integrable martingale and

this means equality holds in

EY (τα) = Y (0) = V̂ (x).

qed.

3.3 Russian option

The Russian option was first introduced by L.A. Shepp and A.N.Shiryaev [20] [17].

It’s payoff is the maximum value of the underlying asset(stock) price attained over

some interval of time. Because it depends on the value of the past, it is called

‘path-dependent’ option. Say, the stock price at time t is X(t) and the maximum

price over the time period (0,t) is S(t) = s∨max0≤u≤tX(u) where s is the initial

value of S(t). One can get the payoff S(t) upon executeing the option at time t.

So the Russian option is some kind of ‘reduced regret’ option. In order to find

the optimal execution time, we need to find

Vθ(x, s) = Vθ(x, s, r, µ, σ) = supτVθ(x, s, τ) = supτEx,se
−rτS(τ),

where X(t) follows the stochastic differential equation

dX(t) = Xθ(t)(µdt+ σdW (t)), t > 0, X(0) = x,

and the supremum is taken over all stopping times τ . Note that the process S(t)

alone is not Markovian, we need to study the joint process (X(t), S(t)). Hence the
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Figure 3.1: the state space of (X(t),S(t))

“state space” of the problem is the set of (x, s) with x ≤ s, as pictured in figure

3.1, where the dotted line represents an unknown “free boundary”, x = f(s). We

want to find this function f(s) and then for f(s) < x ≤ s we should continue

observing the fluctuations, while for 0 < x ≤ f(s) we should stop immediately

(execute the option). Once we guess the answer, we will give a rigorous proof of

its correctness.

In the Black-Scholes model, θ = 1, and it was shown that for this θ, when

r > max(0, µ),

V (x, s) =


s

γ+−γ− (γ+(αx
s

)γ− − γ−(αx
s

)γ+), f(s) ≤ x ≤ s,

s, 0 ≤ x ≤ f(s),

with f(s) ≡ s/α, and where

α = (
1− 1

γ−
1− 1

γ+

)
1

γ+−γ−

and γ± =
σ2

2
−µ±

√
(σ

2

2
−µ)2+2rσ2

σ2 are the solutions to r = µγ + 1
2σ2γ(γ − 1). The

optimal strategy is to execute the option immediately as X(t) ≤ f(S(t)).

When r < 0 or r ≤ µ, V (x, s, r, µ, σ) =∞.

How about 0 < θ < 1?
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3.3.1 Statement of result

The case, 0 < θ < 1, is similar to the θ = 1 case. The “state space” of (X(t), S(t))

is separated by a ‘free boundary’, x = g(s). We want to find this function g and

then for g(s) < x ≤ s we should continue observing the fluctuations, while for

0 < x ≤ g(s) we should stop immediately (execute the option). So if we can find

the boundary g(s) and function V̂θ(x, s), x > 0 satisfying the following conditions:

I. V̂ (x, s) ∈ C2, V̂ (x, s) ≥ s, V̂1(x, s) ≥ 0, 0 < x ≤ s, s > 0,

II. σ
2

2
x2θV̂11(x, s) + µxθV̂1(x, s)− rV̂ (x, s) = 0, for g(s) < x ≤ s

III. σ
2

2
x2θV̂11(x, s) + µxθV̂1(x, s)− rV̂ (x, s) ≤ 0, for 0 < x ≤ g(s),

IV. V̂2(s, s) ≡ 0,

V. V̂ (x, s) = s, for 0 < x ≤ g(s),

then Vθ(x, s) = V̂θ(x, s).

To prove this, let’s look at the process

Y (t) = e−rtV̂ (X(t), S(t)).

dY (t) = −re−rtV̂ (x, s)dt+e−rtV̂1(x, s)dx+1/2e−rtV̂11(x, s)(dx)2+e−rtV̂2(x, s)ds

= e−rt(−rV̂ + xθµV̂1 + σ2

2
x2θV̂11)dt+ e−rtV̂2ds+ e−rtσV̂1dW

On account of the second, third and fourth conditions, Y (t) is a super mar-

tingale. Hence for τ ≤ ∞, the first hitting time of zero, we have

Vθ(x, s) ≤ Y (0) = V̂ (x, s).

and since this holds for every τ , we also have Vθ(x, s) ≤ V̂ (x, s).

Now we need to prove the reverse inequality. We have to find a stopping time

which realizes the value V (x, s). Of couse this will be the first time t for which

X(t) ≤ g(S(t)). Then Vθ(x, s) ≥ Vθ(x, s, τ) = V̂ (x, s). So we have

Theorem: For 0 < θ < 1, the optimal strategy of Russian option under θ model

is to execute the option at the first time that X(t) ≤ g(S(t)) and the optimal

value of the option is V (X(t), S(t)) = V̂ (X(t), S(t)) where g(s) and V̂ (x, s) are

given by equations 3.1 and 3.2 below.
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3.3.2 Solution

We guess the best τ would be the first time that X(t) falls into the region X(t) ≤

g(S(t)) for some function x = g(s) and we would expect that if X(t) > g(S(t)),

then Y (t) = V̂ (X(t))e−rt would be a local martingale in the ‘continue-to-observe’

region, x > g(s), i.e. the process Y (t) = e−rtV̂ (X(t), S(t)) would have no drift

term.

dY (t) = e−rt(−rV̂ + xθµV̂1 + σ2

2
x2θV̂11)dt+ e−rtV̂2ds+ e−rtσV̂1dW

and there will be no drift term if and only if for s ≥ x ≥ g(s),

0 = σ2

2
x2θV̂11(x, s) + µxθV̂1(x, s)− rV̂ (x, s)

and V̂2(x, s) = 0 when x = s.

The equation above has a general solution:

V̂ (x, s) = A(s)f1(x) + A2(s)f2(x)

where f1(x) = eγ
x1−θ
1−θ M(a, b, cx

1−θ

1−θ )

f2(x) = xeγ
x1−θ
1−θ M(1 + a− b, 2− b, cx1−θ

1−θ )

a = γ
c

θ
1−θ ,

b = − θ
1−θ ,

c = −(2γ + 2µ
σ2 ) and

M(a, b, z) = 1+ az
b

+ · · ·+ (a)nzn

(b)nn!
+ · · · is the standard hypergeometric function.

Hence, we have

V̂ (x, s)|x=g(s) = A1(s)f1(g(s)) + A2(s)f2(g(s)) = s,

V̂1(x, s)|x=g(s) = A1(s)f
′
1(g(s)) + A2(s)f

′
2(g(s)) = 0 ,

V̂2(x, s)|x=s = A
′
1(s)f1(s) + A

′
2(s)f2(s) = 0,

Hence,

A1(s) =
sf
′
2(x)

f1(x)f
′
2(x)−f

′
1(x)f2(x)

|x=g(s),

A2(s) = − sf
′
1(x)

f1(x)f
′
2(x)−f

′
1(x)f2(x)

|x=g(s),

Let f1(x) = eγ
x1−θ
1−θ y1(x), f2(x) = eγ

x1−θ
1−θ y2(x),

Then,
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f
′
1(x) = eγ

x1−θ
1−θ (γx−θy1(x) + cx−θy

′
1(x))

f
′
2(x) = eγ

x1−θ
1−θ (γx−θy2(x) + cx−θy

′
2(x))

f1(x)f
′
2(x)− f ′1f2(x) = e2γ

x1−θ
1−θ cx−θ(y1(x)y

′
2(x))− e2γ

x1−θ
1−θ cx−θ(y

′
1(x)y2(x))

= e2γ
x1−θ
1−θ cx−θ(y1(x)y

′
2(x)− y′1(x)y2(x))

= e(2γ+c)
x1−θ
1−θ cx−θ(1− b)(cx1−θ

1−θ )−bec
x1−θ
1−θ

= c
1

1−θ (1− θ)
−1
1−θ e−

2µ

σ2
x(1−θ)
1−θ .

Hence,

A1(s) = sf
′
2(x)( c

1−θ )
1

1−θ e−
2µ

σ2
x(1−θ)
1−θ |x=g(s) = se(γ+

2µ

σ2
)x

(1−θ)
1−θ x−θ(γy2(x)+cy

′
2(x))|x=g(s),

A2(s) = −sf ′1(x)( c
1−θ )

1
1−θ e−

2µ

σ2
x(1−θ)
1−θ |x=g(s) = se(γ+

2µ

σ2
)x

(1−θ)
1−θ x−θ(γy1(x)+cy

′
1(x))|x=g(s),

V̂ (x, s) = se(γ+
2µ

σ2
)x

(1−θ)
1−θ x−θ(γy2(x) + cy

′
2(x))f1(x) + se(γ+

2µ

σ2
)x

(1−θ)
1−θ x−θ(γy1(x) +

cy
′
1(x))f2(x)|x=g(s)(3.1)

and

[(γy2(g(s))+cy
′
2(g(s)))+s(g−θ(s)−θg−1(s))(γy2(g(s))+cy

′
2(g(s)))g

′
(s)+scg−θ(s)

(γy
′
2(g(s))+cy

′′
2 (g(s)))g

′
(s)]y1(s)−[(γy1(g(s))+cy

′
1(g(s)))+s(g−θ(s)−θg−1(s))

(γy1(g(s))+cy
′
1(g(s)))g

′
(s)+scg−θ(s)(γy

′
1(g(s))+cy

′′
1 (g(s)))g

′
(s)]y2(s) = 0.(3.2)

This equation has a unique solution. If there were two solutions, say g1(s) and

g2(s), and g1(s) ≤ g2(s). Then for g1(s) ≤ x ≤ g2(s), V̂ (x, s) = s and V̂1(x, s) =

V̂11(x, s) = 0. But in this case, condition II fails. σ2

2
x2θV̂11(x, s) + µxθV̂1(x, s) −

rV̂ (x, s) = −rs < 0, for g1(s) ≤ x ≤ g2(s). Hence, g1(s) = g2(s), 0 < s < ∞.

i.e. the solution is unique. Unfortunately, there is no simple expression of the

solution. We can only numerical approximate it. The figure 3.2 shows a numerical

calculation of g(s) for r = 0.05, µ = 0.04, σ = 0.2. As long as we have g(s), we

can get V̂ (x, s) and complete the whole argument.
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Figure 3.2: the state space of (X(t),S(t)) and the boundary g(s)

3.4 Appendix

Suppose a gambler is gambling in a Vardi casino of stocks. All stocks have the

same negative drift µ. His initial fortune is f and he wants to make his fortune 1.

In the original Vardi casino, a gambler needs to stake on the table with odds ratio

as large as possible to maximize the probability to achieve his goal, to make his

forture reach some level f
′
. In a stock market following the “decreasing-return-to-

scale” model we also need to invest in those stocks with higher volatility (odds).

Actually, for 0 ≤ θ < 1, the initial stock price is x and the gambler quits

when the stock price hits xu > x or zero. The probability, Q(x), of the stock

price reaching value xu before 0 starting from x, is positive and is given by:

Q(x) =

∫ x
0
e
−2µ

σ2
s1−θ
1−θ ds∫ xu

0
e
−2µ

σ2
s1−θ
1−θ ds

Proof:

Let Y (t) = f(x(t)).

dY (t) = f ′(X(t))dX(t) + 1
2
f ′′(X(t))(dX(t))2

= f ′(X(t))Xθ(t)(µdt+ σdW (t)) + 1
2
f ′′(X(t))σ2X2θ(t)dt

Let Y (t) be a martingale, i.e.
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f ′(x)xθµ+ σ2

2
f ′′(x)x2θ = 0

We can easily get the solution

f(x) =
∫ x
0 e

−2µ

σ2
s1−θ
1−θ ds

Let τ = min(τxu , τ0), where τ0 and τxu are the first hitting time of 0 and xu.

Since Y (t) is bounded for 0 ≤ t ≤ τ , we have

EY (τ) = Y (0) = f(x)

But if p = P (τ0 > τxu) and q = 1− p, then

EY (τ) = pf(xu) + qf(0)

It follows that

p = p(σ) = f(x)−f(0)
f(xu)−f(0) =

∫ x
0
e
−2µ

σ2
s1−θ
1−θ ds∫ xu

0
e
−2µ

σ2
s1−θ
1−θ ds

It is clear that p(σ) is a monotone increasing function in σ, which means that

higher volatility will provide a higher chance to reach the goal.

Of course we really need to prove that τ < ∞ w.p. 1. To do this it seems

easiest to evaluate Eτ ; once this is finite then of course τ is finite. Let φ(x) = Exτ .

Then φ(0) = φ(xu) = 0 are boundary conditions for φ, and that φ satisfies the

local equation

φ(x) = dt+ Eφ(x+ dx), 0 < x < xu.

Using Ito calculus, this leads directly to the equation

0 = 1 + xθµφ′(x) + x2θ σ
2

2
φ′′(x).

The solution via the Green function is, as is easily verified, for any 0 < θ < 1,

φ(x) =
∫ x
0 g(s)h(s)ds+ g(x)

∫ xu
x h(s)ds

where

g(x) =
∫ x
0 e

−2µ

σ2
s1−θ
1−θ ds

and

h(x) = 2
σ2x

−2θ 1
g′(x)

, where g′(x) = −2µ
σ2

x1−θ

1−θ .

qed.
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Chapter 4

Conclusions and Future Work

Larry Shepp [11] showed the ε-optimal strategy for Vardi casino without inflation

and Grigirescu et al. [13] showed the optimal strategy for the Vardi casino with

inflation. We showed that the difference between the Dubins-Savage casino and

the Vardi casino is not big. However, in real casino, you can’t have an infinitely big

odds ratio. So what is the optimal strategy and maximal probability to achieve

the goal for a casino that has two tables with odds ratio r1 and r2 or talbes with

odds ratio r ∈ [r1, r2]? This problem remains open.

For stock and derivatives, the Black-Scholes-Merton model seems to be good

in the short term, since the parameters will not change too much, hence could be

treated as fixed and the company won’t bankrupt so fast. But in the long term,

we have to consider the potential risk of bankruptcy and change of parameters,

especially in the risk free interest rate r and the volatility σ. The “decreasing-

return-to-scale” model is a good try. We can also try to use multi-dimensional

stochastic process to model the stock price and the underlying company. i.e.

X(t) = (X1(t), X2(t))

where X1(t) stands for the stock price and X2(t) stands for the underlying com-

pany, and

dX1(t) = µ1(X1(t), X2(t))dt+ σ1(X1(t), X2(t))dW1(t)

dX2(t) = µ2(X1(t), X2(t))dt+ σ2(X1(t), X2(t))dW2(t)

We can choose the right µ1, µ2, σ1, σ2 to formulate the stock price. For exam-

ple,
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dX1(t) = X1(t)(µ1 − λ log X1(t)
X2(t)

)dt+ σ1X1(t)dW1(t)

dX2(t) = µ2(X1(t), X2(t))dt+ σ2(X1(t), X2(t))dW2(t)

The idea of this model is that the price of the stock should reflect the true

value of the underlying company. As we can see, when the stock price goes to

high or too low away from the true value of the company, the drift will make it

return to the true value. And when the company go bankrupt, the stock price

will go to zero as well. However, it is hard to describe the true value of the

underlying company. If one treats the stock price as the value of the company,

then X2(t) = X1(t), and hence the model reduces to the Black-Scholes-Merton

model. If we use a jump process to describe X2, then within two adjacent jumps,

dX1(t) = X1(t)(µ1 − λ logX1(t))dt+ σ1X1(t)dW1(t)

In this case,

d logX1(t) = (µ1 − σ2
1

2
− λ logX1 + λ logX2)dt+ σ1dW1(t)

deλt logX1(t) = eλt(λ logX1(t)dt+d logX1(t)) = eλt((µ1− σ2
1

2
+ logX2(t))dt+

σ1dW1(t))

Hence,

logX1(t) = e−λt logX1(0)+
∫ t
0 e
−λ(t−u)(µ1−σ2

1

2
+λ logX2(u))du+

∫ t
0 e

λuσ1dW1(u)

and

X1(t) = X1(0)e
−λt
e(µ1−

σ21
2
) 1−e

−λt
λ

+
∫ t
0
λe−λ(t−u) logX2(u)du+σ1W ∗(

e2λt−1
2λ

)

If we further assume that the X2(t) is a constant before there comes any new

information about the company, then

X1(t) = X2(0)1−e
−λt
X1(0)e

−λt
e(µ1−

σ21
2
) 1−e

−λt
λ

+σ1W ∗(
e2λt−1

2λ
)

If we assume that the X2(t) increases at an exponential rate, i.e. X2(t) =

X2(0)eµ2t, before new information comes, then

X1(t) = X2(0)1−e
−λt
X1(0)e

−λt
e(µ1−

σ21
2
) 1−e

−λt
λ

+
µ2
λ
(λt−1+e−λt)+σ1W ∗( e

2λt−1
2λ

)

= X2(t)(
X1(0)
X2(0)

)e
−λt
e(µ1−µ2−

σ21
2
) 1−e

−λt
λ

+σ1W ∗(
e2λt−1

2λ
).

Based on the above formula, we can get the option price under this model.
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