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ABSTRACT OF THE THESIS

Model calculations of Raman responses for multiband

iron-based superconductors

by Christoph Sauer

Thesis Director: Prof. Girsh Blumberg

In this thesis I compute Raman responses for a free electron band structure model based

on ARPES measurements on multiband iron-based superconductors. First a constant and

then a k-dependent superconducting gap is used. Applying an effective mass approximation

leaves A1g and B2g as the only nonvanishing symmetry channels. In the latter only one

band contributes and a square root singularity is observed for a constant gap. The k-

dependent gap leads to a threshold-log-singularity structure. The unscreened A1g channel

shows the same features but all bands contribute and sum up. The screened single band

A1g response vanishes for both gaps. Two band responses with the same constant gap are

perfectly screened with identical Raman verteces, unscreened with opposite signs and equal

mass ratios and partially screened in all other cases. With two different constant gaps the

singularities are removed and a dome-like shape appears except for the vanishing case of

equal verteces. The n-band response consists of a sum of two band terms normalized by all

n bands and the singularities corresponding to all uniquely present gap values are removed.

With the k-dependent gap the singularities are removed and a dome-like shape appears in

all combinations of two band responses and in the response for all bands. The dome in

the response for all bands shows a flat continuum in between a threshold and a sharp peak

produced by the two band terms containing bands of opposite signs.
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Chapter 1

Introduction

With the discovery of superconductivity in a mercury probe by H. Kamerlingh Onnes in

1911 [1], only three years after he managed to liquefy helium, a whole new field of physics

opened up. Below 4.2K, now reachable with the new refrigeration technique, the specimen

showed a vanishing DC electrical resistance and a persistent current could be observed in

a loop which he graphically demonstrated later by carrying such a superconducting loop

from Leiden to Cambridge [2]. In 1933 another characterizing feature of superconductors

was discovered by W. Meissner and R. Ochsenfeld [3]. They found that superconducting

specimen act like perfect diamagnets, so that magnetic fields cannot exist in the bulk and

can only penetrate a superconductor up to a certain penetration length λ. One year later

C. J. Gorter and H. G. B. Casimir [4, 5] came up with a phenomenological two fluid

model seperating the electron fluid in a superconducting and a normal part and in 1935

the London-theory [6, 7] was published. In this famous phenomenological theory Fritz and

Hans London explained the electrodynamic properties of the superconducting state on the

assumption that the diamagnetic rather than the electric aspects are basic. This theory

was extended in 1950 by V. L. Ginzburg and L. D. Landau [8] who allowed the super fluid

density to vary in space and introduced the coherence length ξ(T ) as an important length

scale and the Ginzburg-Landau-parameter κ as the quotient of λ(T ) and ξ(T ). In the

same year E. Maxwell [9] and, independently, C. A. Reynolds [10] discovered the isotope

effect which showed that electron-lattice interactions were important for the microscopic

mechanism of superconductivity. This supported the theory by H. Fröhlich [11] which

was based on those interactions and yielded the isotope effect but was unable to obtain

superconducting properties. A nonlocal generalization of the London-theory was done by

A. B. Pippard [12] in 1953. Based on experimental facts he emphasized the importance of a
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coherence length ξ0 which determines the distance from a certain point which is influenced

by a perturbation at that point. Then in 1955 J. Bardeen [13, 14] showed that this nonlocal

behavior follows from an energy gap model. One year later L. N. Cooper [15] managed to

derive the formation of a bound state within an isolated pair model including an attractive

interaction between the pair of electrons. Then finally, almost 50 years after the discovery

of superconductivity, a microscopic theory was published by J. Bardeen, L. N. Cooper and

J. R. Schrieffer [16, 17] named the BCS-theory after the names of its inventors. Based

on the pairing of two electrons, a Cooper-pair, by an attractive interaction mediated by

phonons leading to a split off of the superconducting ground state by an energy gap this

theory explained almost every aspect of superconductivity observed so far. After that in the

same year theoretical investigations of A. A. Abrikosov [18] on the Ginzburg-Landau-theory

(GL-theory) assuming κ to be large lead to a different behavior of the superconductor in

an external magnetic field and Abrikosov called such materials type II superconductors.

In 1959 L. P. Gor’kov [19] managed to derive the GL-theory from the microscopic BCS-

Theory with the GL wave function Ψ being proportional to the BCS order parameter ∆

near the transition temperature Tc. This was extended to all temperatures under suitable

conditions by N. R. Werthamer [20] and L. Tewordt [21] in 1963. Another important

feature of superconductivity was discovered in 1961 by B. S. Deaver and W. M. Fairbank

[22] and independently by R. Doll and M. Näbauer [23] who observed the quantization of

magnetic flux previously introduced by F. London [24]. The prediction of an entirely new

aspect was made in the following year by B.D. Josephson [25]. He stated that between a

superconductor-isolator-superconductor junction a DC current should be observed without

a bias voltage which was later used by tunneling spectroscopic measurements of the density

of states. Furthermore he predicted an AC current when a bias voltage is applied to the

junction which lead to high precision measurements of the fundamental constants of the

electrons charge e and Planck constant h and the currently used definition of the unit Volt.

Despite its complexity and richness of different applications the field of superconductivity

became less exciting within the following two decades and part of that was the problem of

the still quite low transition temperatures with the record (at that time) of 26K obtained

by J. R. Galaver in 1973 [26]. The discovery of High-Tc superconductivity in the cuprates in
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1986 by Bednorz and Müller [27] can therefore be seen as a revolution in the field. Quickly

reaching temperatures above the boiling point of liquid N2, up to about 130K and even

higher under pressure, a whole new world of applications opened up. Recently a new family

of interesting materials also showing superconducting behavior was found with iron-based

superconductors [28] with transition temperatures up to 56K [29]. The similarities of this

material to the cuprates and its own unique features gave rise to tremendous research efforts

and raised hope to finally solve the so far unsolved problem of the microscopic mechanism

responsible for high temperature superconductivity.

In this thesis model calculations of Raman responses will be performed with a free

electron band structure model of a multisheeted Fermi surface based on data obtained by

Angular Resolved Photo Emission Spectroscopy (ARPES) on a member of the iron-based

superconductor family. With the assumption of a constant superconducting gap parameter

an analytical treatment will be possible and single band, two band and n-band responses

including screening effects for the fully symmetric A1g channel will be discussed. The results

from the constant gap case will then be used to explain the numerically computed Raman

responses with a k-dependent gap of extended s-wave symmetry together with a simplifying

model of a gap with just an angular dependence. Finally the expected Raman response

of the entire first Brillouin zone will be calculated for both gaps which will serve as a

help for interpreting data of electronic Raman scattering on this material in the future.

Raman scattering experiments might be able to give clear evidence for the nature of the

gap parameter which is crucial for revealing the superconducting pairing mechanism present

in these materials.

This thesis will start with an overview of the phenomenology and theory of superconduc-

tivity together with examples of experiments verifying the microscopic BCS theory. Then

the lattice structure of the iron based superconductors will be discussed and a classification

of the different families will be done. Moreover the electronic structure with an emphasis on

the superconducting gap will be presented and a brief summary of the physical properties

including the phase diagram will be given. After that the theory of Raman scattering will

be discussed with a short development of the general theory followed by the application of

the effective mass approximation for the Raman vertex and a specialization of the theory
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on electronic Raman scattering on superconductors. Examples for electronic Raman spec-

troscopy on different kinds of superconductors done in the past will also be shown. Then

the original work of this thesis will be presented. It consist of model calculations of Raman

responses of a multiband iron-based superconductor in a free electron model with a constant

and an angular dependent gap.
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Chapter 2

Superconductivity

This chapter is an overview of superconductivity containing phenomenology, theories and

examples for experimental verification of the BCS-theory. In the first part the unique elec-

tromagnetic properties of superconductors will be summarized and the difference between

type I and type II superconductors will be explained. After that the basic aspects of high

temperature superconductors will be presented. The second part will start with a discus-

sion of the thermodynamics of superconductors followed by a short overview of the different

phenomenological theories. Then the BCS-theory, the microscopic theory of superconduc-

tivity, will be presented briefly. The third part will show two experimental verifications of

the BCS-theory namely original measurements of the superconducting density of states by

tunneling spectroscopy and a verification of the coherence factors by nuclear spin relaxation.

2.1 Phenomenology

2.1.1 Electromagnetic properties

The probably most characteristic feature of superconductivity and therefore responsible for

its name is the perfect conductivity or in other words the vanishing resistivity below the

transition temperature Tc. As shown in Fig. 2.1 the DC resistivity ρDC drops within a tiny

temperature interval to a vanishingly small value. In a superconducting loop a persistent

current for over a year has been observed and with nuclear resonance measurements of

the produced magnetic field the decay time of the current was found to be at the order of

105 years [30]. So the resistivity is in fact zero and superconductors are actually perfect

conductors. Below Tc the AC resistivity, also shown in Fig. 2.1, is vanishing as well as long

as one does not apply a voltage of frequency larger than ωg. Above this certain frequency,
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Figure 2.1: Resistivity of a superconductor in the superconducting (shaded) and the normal
state (unshaded) denoted with s and n respectively. Left: DC resistivity as a function of
temperature. Approaching the critical temperature from above the resistivity suddenly
drops to zero. Right: AC resistivity as a function of frequency. Below a certain frequency
ωg the resistivity is vanishingly small and converges to the normal resistivity for higher
frequencies. Taken from [31].

related to the critical temperature by ~ωg ≈ 3.5kBTc [31], the superconducting AC resistance

ρ
(s)
AC is approaching its normal value ρ(n)

AC , visible as the horizontal line in Fig. 2.1, with

increasing frequency. This points towards an energy gap dividing the superconducting

and the normal state which has to be overcome before a scattering mechanism leading to

resistance is possible. A superconductor undergoes the phase transition to the normal state

not only if it is heated up above its critical temperature but also if a sufficiently large

magnetic field Hc is applied. Thus magnetism also plays an important role.

Below the critical magnetic field Hc a superconductor acts like a perfect diamagnet

expelling a magnetic field completely from its bulk region. This is done by dissipationless

surface currents that produce a magnetic field shielding the interior of the specimen. So

magnetic fields do only penetrate superconductors up to a characteristic length λ and are

eliminated further inside by a negative magnetization M = 4πm [31], see Fig. 2.2 left.

The exclusion of the magnetic field is influenced by the geometry of the specimen and it

can happen that superconductivity only breaks down in certain regions while others stay

superconducting, called the intermediate state. Those areas extend over macroscopic scales

and changes in magnetization happen abruptly since they are coupled to a phase transition.

The preceding behavior in a magnetic field is observed in so called type I superconductors

which exhibit a small penetration depth λ and a rather long coherence length ξ. The latter

is a length scale which determines the ability of the superconducting electrons to react on
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Figure 2.2: Magnetic field B and magnetization M = 4πm inside type I and type II super-
conductors as a function of external field H in the superconducting (shaded) and normal
(unshaded) state denoted by s and n respectively. Left: In a type I superconductor total
shielding of H by magnetization is observed up to the critical field Hc and completely breaks
down above. Right: In a type II superconductor the magnetization shields the external
field only until a lower critical field Hc1 is reached. Then the external field partially pene-
trates the superconductor which is now in the vortex state denoted by v. Superconductivity
breaks down above the upper critical field Hc2 and total penetration occurs. Taken from
[31].

a perturbation as well as the distance of strong correlations stabilizing superconductivity

and is discussed in detail later on in Pippard’s non local theory and the Ginzburg-Landau

Theory. The important thing at this point is only the size of the quotient of these two length

scales κ = λ/ξ called the Ginzburg-Landau Parameter. If it is small the surface energy of

a superconducting-normal interface is positive, the surface will therefore be minimized and

the superconductor is of type I. If it gets large, κ > 1/
√

2 as shown by Abrikosov [18], the

surface energy will get negative, the formation of superconducting-normal interface will be

energetically favorable and a different behavior will be observed. Such superconductors are

called type II and above a certain applied magnetic field Hc1 the external field starts to

penetrate the specimen. This state is called vortex state and consists of vorteces containing

a microscopic cylindrical normal core region in which the external magnetic field is nonzero.

Such cores contain exactly one flux quantum Φ0 = hc/2e [30] and form a triangular lattice

on a plane perpendicular to the lines. The superconductivity breaks down completely at

a larger field Hc2 and the external field completely penetrates the specimen, see Fig. 2.2

right.
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Figure 2.3: Comparison of the penetration depth λ and coherence length ξ in type I and

type II superconductors and their consequences on magnetic field penetration. The shaded

areas represent the superconducting and the white areas the normal phase. In the dashed

area the magnetic field decays to zero from the normal to the superconducting phase and

the density of superconducting electrons decays to zero in the opposite direction. Magnetic

field lines are shown as black dots. Upper panel: A typical type I superconductor with ξ

being larger than λ causing a superconducting phase that is too rigid to shield the magnetic

field inside the specimen so it is energetically favourable to exclude it. Lower panel: Now

λ is larger than ξ characteristic for a type II superconductor resulting in a superconducting

phase nimble enough to shield the magnetic field surrounded by a normal area inside the

bulk of the probe. Taken from [31].
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In Fig. 2.3 a heuristic explanation of the microscopic causes for this behavior is displayed.

The upper part shows the total exclusion of the magnetic field in a type I superconductor

with a small Ginzburg-Landau Parameter κ and thus ξ being larger than λ. The coherence

length ξ can be seen as the distance between two correlated electrons that are responsible for

the superconducting behavior. (They are called cooper pairs and are discussed extensively

in the BCS-Theory section.) Therefore the superconducting electron fluid is not flexible

enough to react on perturbations, like a magnetic field, on scales smaller than ξ. So with

λ being smaller than that flexibility scale the magnetic field can not be effectively shielded

inside the specimen and it is energetically favorable to completely exclude it. In the lower

part the situation is reversed with ξ being smaller than λ. This results in a superconducting

condensate flexible enough to shield the magnetic field in the bulk region and magnetic field

lines may penetrate the superconductor. This is now energetically favorable since bending

the field lines around the specimen is related to a cost of energy.

The above mentioned flux quantization can also be observed in a superconducting loop

carrying a current. The trapped flux within the loop can only take integer values of Φ0

which can be explained by the phase coherence of the superconducting condensate. As it

will be seen in the following theoretical discussions this turns out to be a real macroscopic

quantum phenomenon with a large number of quantum particles occupying a single state.

2.1.2 High temperature superconductors

Beside the just discussed type I and type II superconductors composed of elementary metals

or alloys of metals there are much more complex materials displaying superconducting

behavior called high temperature superconductors. While the previous two could not exceed

transition temperatures of 30K the high Tc materials rapidly reached Tc’s of 130K and above.

The first discovered high temperature superconductor was a mixed oxide of lanthanum,

barium and copper called LBCO [27] having a transition temperature of about 35K. A huge

jump in Tc was made by the discovery of Y1Ba2Cu3O7−δ (YBCO) a so called “123”-material

with a Tc=93K [32]. Even higher Tc’s were found in mixed oxides of bismuth, strontium,

calcium and copper (BSCCO) [33] and mixed oxide of thallium, barium, calcium and copper

(TBCCO) [34] with Tc’s of about 110K and 130K respectively. The common feature of all
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those materials are the CuO2 planes which most probably dominate the superconducting

behavior. Their number varies within the different structures and the “123”-materials have

an additional CuO chains that influence the electron density in the planes [30]. In between

those planes are block layers of the different mentioned elements serving as charge carrier

reservoirs donating holes or electrons to the copper oxide planes. Two examples of such

superconducting cuprates are shown in Fig. 2.4 one of them of the hole-doped the other

one of the electron doped type. With the lattice constants in the ab-plane (copper oxide

plane) being much smaller than the lattice constant in the perpendicular c-direction these

materials are highly anisotropic and they can be seen as essentially two-dimensional in their

physical properties.

Figure 2.4: Examples for the lattice structure of the high temperature superconducting
cuprates together with a schematic phase diagram. The colors symbolize Cu: red; O: blue;
La,Sr and Nd,Ce: yellow. On the left hand side Nd2−xCexCuO4 is shown as an example
for an electron-doped (n) compound. It crystallizes in the T’ structure in which the top and
bottom O-atoms are missing in the ocrahedra. The displayed example for a hole-doped (p)
compound is La2−xSrxCuO4 crystallizing in T stucture with complete O octahedra. The
phase diagram shows antiferromangetic (AF) and superconducting (SC) regions depending
on doping as well as on temperature. With higher doping the antiferromagnetic ordering
disappears and a superconducting phase is reached at low enough temperatures. In the
electron doped case the antiferromagnetism survives up to higher dopings and the super-
conducting phase extends over a smaler doping and temperature region than in the hole
doped case. The dashed T* curve sybolizes the crossover temperature to the pseudogap
regime in the middle. Taken from [35].

The high temperature superconductors show a very interesting phase diagram, see Fig.

2.4, consisting of several different phases with some of them not well understood at the time

of this writing. The undoped parent compounds are antiferromagnetic Mott insulators with
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one hole per CuO2 plane and therefore at half filling. With the Cu-3d orbitals being very

localized at the Cu sites screening is not effective enough to overcome the repulsive Coulomb

force in between the holes at neighboring sites which results in the insulating behavior. The

antiferromagnetic ordering is a consequence of a superexchange interaction between two Cu

sites. Only if the spins are aligned antiparallel a virtual hopping of the neighboring holes

is allowed according to the Pauli exclusion principle and thus this ordering is energetically

favorable [36]. The antiferromagnetic 3D long range order gets lost above a Néel temperature

of about 300K and disappears quickly with hole doping at lower temperatures. In the

electron doped case it breaks down at higher doping levels but in both cases short-ranged

antiferromagnetic correlations are still present at high doping levels. So strong electronic

correlations are not only present in the undoped case but exist almost over the entire

phase diagram [35]. After the the antiferromagnetic phase is destroyed by doping a less

understood phase, called pseudogap phase, is observed, shown in Fig. 2.4 between the

dashed line and the orange AF-phase. Here the Fermi surface is gaped with the gap evolving

continuously into the superconducting gap [36]. At lower temperatures the superconducting

phase is reached with a dome shaped form in the phase diagram. On the hole-doped side

the dome extends over a larger doping and temperature range than on the electron-doped

side and the SC-phase does not directly emerge from the AF-phase. Superconductivity

in the cuprates is also caused by electron pairs but the cause of the necessary attractive

interaction between those pairs is still not definitely known. Magnetic interactions are a

good candidate simply by their vicinity to the superconducting phase in the phase diagram

but at this point no total consensus is reached. Furthermore the superconducting gap is

highly anisotropic and even nodes in some directions are observed [37, 38]. With in plane

coherence lengths of ξab ∼ 20Å, out of plane coherence lengths of ξc ∼ 3Å and penetration

depths of λab ∼ 3000Å for the hole doped compounds [39, 40] these materials are extreme

type II superconductors with huge upper critical magnetic fields Hc2. In the electron doped

case the coherence length is larger and thus the upper critical fields are smaller which means

they are accessible in a laboratory in contrast to those of the hole doped cuprates. The

region above the superconducting dome also shows strange behavior and is often referred to

as a strange metal phase. Here the Fermi liquid theory, with its one to one correspondence
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between the noninteracting Fermi gas and the weakly interacting electron liquid, is unable

to describe the observations. This shows that strong correlations must be present and the

assumption of weak interaction is inappropriate. With very high doping the strange metal

behavior disappears and rather normal metal features are present on both sides of the phase

diagram.

2.2 Theory

2.2.1 Thermodynamics

With all the interesting features of the superconducting state mentioned above the question

arises why this state is energetically favorable and what happens at the point of the phase

transition. Answers based on first physical principles can only be given by the microscopic

BCS-Theory but a brief thermodynamical investigation can at least deepen the insight into

the properties of the superconducting phase in a more phenomenological way. We start

with a simplified model of a superconducting probe of type I in a homogeneous external

magnetic field H and a complete magnetization of M = −Ωs
4πH in the Volume Ωs of the

superconducting part of the specimen. The usual form of the variation of the Gibbs free

energy is given by [31]

dG = −SdT −MdH (2.1)

Taking the temperature to be constant and inserting the above given magnetization the

superconducting dGs becomes

dGs =
Ωs

4π
HdH (2.2)

Now integrating Eq. (2.2) we obtain for the change in the Gibbs free energy per volume

gs(H)− gs(0) =
H2

8π
(2.3)

Neglecting the small susceptibility of a normal metal the magnetization M = 0 and so the

Gibbs free energy is independent of the field

gn(H) = gn(0) (2.4)
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Since the superconducting and the normal Gibbs free energy are equal at the critical field

we can write using Eq. (2.3)

gn(Hc) = gs(Hc) = gs(0) +
H2
c

8π
(2.5)

And inserting Eq. (2.4) leads to

gs(0)− gn(0) = −H
2
c

8π
(2.6)

Eq. (2.6) shows that there is a finite difference between the Gibbs free energy in the normal

and the superconducting state and with the right hand side being negative it is obvious

that the superconducting state is energetically favorable at zero magnetic field. The whole

argumentation breaks down as soon as either Tc or Hc is reached and the normal state will

be realized.

Figure 2.5: Critical magnetic field Hc and specific heat C as functions of temperature.
The superconducting (shaded) and normal (unshaded) areas are denoted with s and n
respectively. Left: Hc shows a square like temperature dependence with a nonvanishing
slope at Tc. Right: C has a discontinuity at Tc and jumps to a higher value in the
superconducting phase. Taken from [31].

Now a specimen consisting of a superconducting an a normal part with a volume of

Ω = Ωs + Ωn is considered. The magnetic field is given by B(r) = H + 4πm(r) and

vanishing in the superconducting part while it is equal to H in the normal part of the

probe. This results in a Gibbs free energy of

G = F0 +
1

8π

∫
Ω

[B(r)]2dr−HM = F0 +
1

8π
H2Ωn −H

(
− 1

4π
HΩs

)
(2.7)

where F0 stands for the Helmholtz free energy arising from the nonmagnetic contributions

[31]. With the nonmagnetic contributions per volume written as f (n)
0 and f

(s)
0 for the
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normal and superconducting part respectively and H = −4πm in the superconducting part

we obtain

G = f
(n)
0 Ωn + f

(s)
0 Ωs +

1
8π
H2Ω + 2πm2Ωs (2.8)

In equilibrium the derivative of G with respect to Ωn and Ωs is equal to zero because of a

balance between the two parts determined by H and T . Furthermore dΩn = −dΩa since

the growth of one is the shrinking of the other part. Taking the derivative with respect to

either one of the Ω’s therefore results in

f
(s)
0 − f (n)

0 = −2πm2 = − 1
8π
H2 (2.9)

Now taking the derivative with respect to T together with the standard definition of entropy

[31] (
∂f (i)

∂T

)
M=0

= −s(i)
0 (2.10)

with i = s, n leads to

s(n) − s(s) = −Hc

4π
dHc

dT
(2.11)

in which the 0 index of the entropies has been dropped. Since Eq. (2.10) only holds true

in the superconducting part if H = Hc this had to be inserted to obtain Eq. (2.11). The

observed temperature dependence of the critical magnetic field is shown in the left hand

side of Fig. 2.5 and can be well described with [31]

Hc(T ) = H0

[
1−

(
T

Tc

)2
]

(2.12)

where H0 is a material specific constant. With Eq. (2.12) one can see that dHc
dT is always

negative for finite temperatures. This leads to the right hand side of Eq. (2.11) being

positive and thus the entropy being larger in the normal state. In Fig. 2.6 this behavior

is displayed for an aluminum probe. Below Tc the entropy in the superconducting phase is

always smaller than that in the normal phase so the superconducting phase is more ordered.

Another very interesting result can be extracted from Eq. (2.11) when the definition of the

latent heat L = T∆s is inserted (∆s = s(n) − s(s)):

dHc

dT
= − 4π

Hc

L

T
(2.13)
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As discussed above the right hand side of Eq. (2.13) is negative which makes L a positive

quantity since Hc and T are assumed to be positive as well. This means that with a

nonvanishing critical magnetic field the superconducting phase transition is of first order

since this is associated with a positive latent heat. At Tc these arguments can not be made

because Hc = 0 at this point. Therefore L has to be zero as well since otherwise Eq. (2.13)

would not be fulfilled because of the finite value of the left hand side. A vanishing latent

heat at Tc shows that the superconducting phase transition is of second order at this point.

Figure 2.6: Entropy S of aluminum in the superconducting (SS) and normal (SN ) state.
Below Tc the entropy is smaller in the superconducting state which shows that this state is
more ordered. No discontinuity is seen at the phase transition. Taken from [41].

Using the standard definition of the specific heat C = T dS
dT one can obtain a temper-

ature dependent expression for the difference of the specific heat per volume between the

superconducting and normal state from Eq. (2.11). Differentiating Eq. (2.11) with respect

to T and inserting Eq. (2.12) leads to

c(s)(T )− c(n)(T ) =
H2

0

2π
T

T 2
c

[
3
(
T

Tc

)2

− 1

]
(2.14)

and at T = Tc we obtain

c(s)(Tc)− c(n)(Tc) =
H2

0

πTc
(2.15)

Eq. (2.15) shows that there is a discontinuity in the specific heat at the superconducting

phase transition. It jumps to a higher value when entering the superconducting phase which
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can be seen in the right hand side of Fig. 2.5. From Eq. (2.14) one obtains that in between

Tc and Tc√
3

the superconducting specific heat keeps being bigger than the normal one and is

smaller below T = Tc√
3
. This behavior is also displayed in the right hand side of Fig. 2.5.

2.2.2 Phenomenological theories

After the discussion of the superconducting phase transition and basic thermodynamic

properties in the preceding section a phenomenological approach towards the electrody-

namic characteristics of superconductivity will be given now. As a first phenomenological

theory the London-Theory by the London brothers [6, 7] was able to describe the observed

electromagnetic phenomena of a superconductor. By writing down two basic equations and

combining them with the Maxwell equations the observed superconducting properties could

be obtained. I will start here with a quantum mechanical motivation given by F. London

himself [24] which uses an extension of the momentum with the vector potential A as a

starting point. In quantum mechanics the canonical momentum p is given by p = mv+ eA
c

which is called principle of least coupling since for example orbit spin coupling is neglected.

Now taking the net momentum to be zero in the absence of an applied external field, accord-

ing to a famous but unpublished [30] theorem of Bloch, leads to the following expression of

the local average velocity:

〈vS〉 = −eA
mc

(2.16)

This relates 〈vS〉 to an external field and one could think that the above theorem is violated

and Eq. (2.16) does not hold true but the superconducting ground state exhibits a rigidity

towards perturbations so that 〈p〉 = 0 is still the case. The superconducting current density

follows as:

JS = nSe 〈vS〉 = −nSe
2A

mc
= −A

Λc
(2.17)

with nS being the number density of electrons participating in the super-current and Λ =

m
nse2

. Super-current conservation requires a proper gauge choice with ∇A = 0, called the

London gauge. Taking the time derivative of both sides and using the fact that E = −1
c
∂
∂tA

we obtain

E =
∂

∂t
(ΛJS) (2.18)
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This is the first London equation which describes a perfect conductor since a microscopic

local value of an electric field E leads to a change in time of the current density. There

is no dissipation term and therefore no resistivity. Eq. (2.18) additionally shows that the

above defined Λ is the proportionality constant in this relation of perfect conductivity. Now

taking the curl of both sides of Eq. (2.17) and using h = curl (A) leads to

h = −c curl (ΛJS) (2.19)

This is the second London equation that, combined with the Maxwell equation curl (h) =

4π
c J, results in

∇2h =
1
λ2

h (2.20)

with the definition of λ =
√

c2Λ
4π =

√
mc2

4πnSe2
. The solution of this differential equation

is an exponentially decreasing local magnetic flux density h with a penetration depth λ

after which the field reached 1
e -th of its value. So Eq. (2.19) describes, together with the

mentioned Maxwell equation, the perfect diamagnetism inside the bulk beneath a material

dependent length scale λ. The value of nS remains unspecified but has an upper limit

with the total electron density n. Another problem of the London-Theory is that even

if the experimental results of the penetration depth are extrapolated to T = 0, where

nS = n is assumed, they are still too large compared to the theoretical ones. A quantitative

explanation of this is possible with the concept of nonlocality and the introduction of a

coherence length ξ0.

The principle of nonlocality was already introduced by Chambers to generalize Ohm’s

law J(r) = σE(r) in a way that a current at a point r depends on an electric field E(r′)

throughout a volume around r [30]. The radius of this volume is given by the mean free

path l in the material. This means that the local field dependence, in other words the

relation of the current and the field at the same point, is replaced by a space average

field dependence. Pippard applied that concept on Eq. (2.17) with the coherence length ξ

replacing l [12]. In the case that l is smaller than ξ0 the actual coherence length ξ should

be further reduced. Thinking about ξ0 as a minimum size for a wave packet formed by

superconducting electrons, the super-current response to a vector potential A(r) would be

reduced if A(r) decreases within a volume of radius ξ0 around r. Since the penetration
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depth λ � ξ0 in a type I superconductor there actually is such a decrease of A(r) and

therefore a weakened super-current shielding of an external field. Hence this explains the

larger value of the observed penetration depths. The generalization of Eq. (2.17) with this

concept can be written as [30]

JS(r) = − 3
4πξ0Λc

∫
R[R ·A(r′)]

R4
e
−R
ξ dr′ (2.21)

with R = r−r′. Pippard assumed the actual coherence length to be related to the scattering,

determined by l, and the coherence length of the pure metal ξ0 in the following way

1
ξ

=
1
ξ0

+
1
l

(2.22)

Now one needs a good estimate for the value of ξ0 which can be given by a uncertainty-

principle argument. Since only electrons within ∼ kBTc of the Fermi energy can be respon-

sible for a phenomenon that occurs below Tc, the superconducting electrons should have a

momentum range of

∆p ≈ kBTc
vF

(2.23)

with vF representing the Fermi velocity. The combination of Eq. (2.23) with the Heisenberg

uncertainty-principle leads to

∆x &
~

∆p
≈ ~vF
kBTc

(2.24)

which can be used to define the value of the pure metal’s coherence length

ξ0 = a
~vF
kBTc

(2.25)

The parameter a is supposed to be at the order of unity and fits to experimental data gave

a value of a = 0.15 in tin and aluminum [42]. With type II superconductors often being

alloys with small mean free paths Eq. (2.22) explains why they have small coherence lengths

leading to the behavior shown in Fig. 2.3 in the previous section.

The most advanced phenomenological treatment of superconductivity was given by Gins-

burg and Landau [8]. In the Ginsburg-Landau theory (GL-theory) the focus lies on the su-

perconducting electrons rather than on excitations from the superconducting ground state.

A pseudo wave function ψ with a spacial dependence is introduced as an order parameter in

Landau’s general theory of second order phase transitions. This ψ can be interpreted in a
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physical way, being the wave function of the center of mass motion of the superconducting

electron pairs. It is related to the density of the superconducting electrons in the following

way [30]:

nS = |ψ(r)|2 (2.26)

Therefore nS is allowed to vary in space and react on perturbations for example by an

external field. Hence a theoretical description of superconductivity in fields, strong enough

to influence nS , is possible for example the intermediate state in type I superconductors

near H = Hc. The GL-theory uses an expansion of the total free energy density in orders

of |ψ|2 and |∇ψ|2 [30]

f = fn0 + α |ψ|2 +
β

2
|ψ|4 +

1
m∗

∣∣∣∣(~
i
∇− e∗

c
A
)
ψ

∣∣∣∣2 +
h2

8π
(2.27)

with α and β being temperature dependent expansion coefficients. To make this a good

approximation |ψ| must be small and should not vary extremely in space to keep |∇ψ| small

as well. The former is satisfied if T is near Tc but of course still smaller. Now a variational

approach is done minimizing f in Eq. (2.27) with respect to the order parameter leading

to a differential equation [30]

1
m∗

(
~
i
∇− e∗

c
A
)
ψ + β |ψ|2 ψ = −α(T )ψ (2.28)

Here only the leading temperature dependence, the one in α, is kept making β approximately

temperature independent. Eq. (2.28) looks exactly like the Schrödinger equation for a free

particle including a magnetic field coupling except for the nonlinear term in ψ. It thus leads

to a form of the super-current that is also equivalent to the quantum mechanical one [30].

JS =
e∗~
i2m∗

(ψ∗∇ψ − ψ∇ψ∗)− e∗

m∗c
|ψ|2 A (2.29)

The best agreement with experimental data is obtained when the values of the effective

charge e∗ and the effective mass m∗, used in Eq. (2.28) and Eq. (2.29), are taken to

be m∗ = 2m and e∗ = 2e. This points towards pairs of electrons being responsible for

superconducting behavior. Furthermore a temperature dependent characteristic length scale

ξ(T ), called the GL coherence length, has to be introduced. It describes the distance over

which the pseudo wave function can vary without undue energy increase. Despite the usage
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of the same symbol as the Pippard coherence length, ξ(T ) has a diffenrent origin and is in

general a different quantity. Only in pure superconductors far below Tc it is possible to say

that ξ0 ≈ ξ(T ). The GL coherence length can be written as [30]

ξ(T ) =
~

|2m∗α(T )|
1
2

(2.30)

Also introduced within the GL theory is the GL parameter [30]

κ =
λ

ξ
(2.31)

which is, due to the same temperature dependences of λ and ξ near Tc, approximately

temperature independent. As seen in the discussion of the magnetic properties of supercon-

ductors, the value of this parameter distinguishes between type I and type II. In Fig. 2.7

the behavior of the magnetic field and the value of the pseudo wave function are shown as

they determine the two just mentioned length scales λ and ξ. Using a variational method

Figure 2.7: Spatial variation of the magnetic field B(x) and the order parameter |ψ(x)| of the
Ginzburg-Landau Theory inside a type I superconductor. Both quantities are normalized
to unity. The superconducting region begins at x = 0 and continues up to larger x-values.
The decay of B(x) and the growth of |ψ(x)| determine the value of the penetration length
λ and the coherence length ξ respectively. Taken from [31].

on a thermodynamical quantity certainly makes the GL-theory a rather macroscopic one

but surprisingly it is closely tied to the microscopic BCS-theory. As shown by Gor’kov
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[19] it can be derived directly from the BCS-theory if it is suitably reformulated in terms

of Greens functions. The GL theory turns out to be an expansion of BCS for fields that

are too large to be treated perturbatively but is limited to temperatures near below Tc.

(Under suitable conditions it was extended to all temperatures by Werthamer [20] and by

Tewordt [21].) In this case ψ(r) is proportional to the BCS gap parameter ∆(r) which will

be discussed in detail in the following part.

2.2.3 BCS-Theory

As pointed out before there was much evidence that pairs of electrons were responsible

for superconductivity but an exact mechanism of how this pairing occurs and why it is

energetically favorable was unknown. A first step towards the correct solution, given in the

BCS-Theory, was a simplified model by Cooper [15] with one pair of electrons above the

fully occupied Fermi sea. The two electrons interact with each other but the noninteracting

Fermi sea only acts as a background, blocking the states below the Fermi energy through the

Pauli exclusion principle. Additionally the ground state of the electron pair is assumed to

have zero momentum which means that the two electrons have momentum k and −k. This

leads to an expansion into plane waves which depends on k as well as on the difference of the

two electrons positions r1− r2. Since the interaction potential is taken to be attractive, the

cosinusodial and therefore symmetric part of the wave function is a better choice because it

gives a larger probability amplitude when the electrons are close to each other. This forces

an antisymmetric spin singlet function, with the spins pointing in opposite directions, giving

the total wave function the necessary antisymmetry. Hence the wave function has the form

[30]

ψ0(r1 − r2) =

∑
k>kF

gk cos k(r1 − r2)

 (α1β2 − β1α2) (2.32)

with α1 denoting particle 1 being in spin up state and β1 meaning particle 1 being in

spin down state. The sum runs over all k above the Fermi surface since the states below

are occupied and are thus blocked for the pair electrons. Inserting Eq. (2.32) into the

Schrödinger equation with an interaction potential V (r1 − r2) results in [30]

(E − 2εk)gk =
∑
k′>kF

Vkk′gk′ (2.33)
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Here εk stands for the unperturbed plane-wave energy and Vkk′ represents the regular

Fourier transform of the interaction potential which describes the strength of electron pair

scattering. A solution of Eq. (2.33) with a set of gk having energies E < 2EF would

symbolize a bound state for electron pairs within the system. To find such a solution with a

general Vkk′ is quite difficult so an approximation is made which seems to be very crude at

the moment. Vkk′ is taken to be constant and negative within an energy interval ~ωc and

zero outside, with ωc denoting the corresponding cutoff frequency. This will actually turn

out to be a good approximation since the physically important changes will take place in the

very vicinity of the Fermi energy. This then allows to cancel out the weighting coefficients

in Eq. (2.33) and after a transformation of the sum into an integral and the assumption of

a constant density of states N(0) at the Fermi level we arrive at [30]

1
V

= N(0)
∫ EF+~ωc

EF

dε

2ε− E
=

1
2
N(0) ln

2EF − E + 2~ωc
2EF − E

(2.34)

In the weak coupling limit, meaning N(0)V � 1, one can write this as [30]

E ≈ 2EF − 2~ωce
− 2
N(0)V (2.35)

This result shows that there is negative binding energy, no matter how small the interaction

between the electrons is, and therefore a bound state for a pair exists. This is a remarkable

result since these electrons have larger kinetic energies than those in the Fermi sea but

occupy an energetically lower and thus favorable state. It is important to note that the

binding energy term in Eq. (2.35) is nonanalytic at V = 0 which makes a perturbational

treatment impossible and explains the mathematical difficulties earlier approaches faced.

Although this model obtains a bound pair state it still leaves some questions open. Yet

there is no energy gap in the model, which is observed in experiments, and the the treatment

of isolated pairs is questionable. Taking the estimate for ξ0 of Eq. (2.25) as the size of the

pair, which is at the order of ∼ 104 Å, the necessary distance of the pairs to be able to

treat them as separated would lead to a density of superconducting pairs that is much too

small to fit the experiments [43]. Furthermore there is nothing explaining the origin of the

attractive interaction between two negatively charged particles.

A first important fact that helps to solve this problem is that the usually strong and

long range Coulomb repulsion is screened inside a solid by the other electrons. This reduces
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the repulsion dramatically at distances of the above mentioned intrapair distance ξ0 and

allows a weaker attractive interaction to dominate. Fröhlich suggested that electron-lattice

interactions could lead to an effective attractive interaction between two electrons [11] via

the mechanism displayed in Fig. 2.8. The idea is that an electron moving through the solid

Figure 2.8: Schematic illustration of phonon mediated attractive effective interaction be-
tween two electrons. Left: The first electron distorts the lattice creating inhomogeneities
in the distribution of the positive charges of the ions. This charge inhomogeneity decays
away with the frequency of the excited phonon. Right: A second electron with opposite
momentum is attracted by the more positively charged space at a later time but before the
inhomogeneity had time to decay away. Taken from [31].

polarizes the lattice by attracting the positive ions. In other words the electron excites a

phonon since the ions relax back into their equilibrium position in an oscillatory movement.

The distortion thus decays away with the frequency of the excited phonon which means that

for an other electron reaching this point soon enough the polarization is still present. Hence

the second electron is attracted by the first one through a lattice distortion that is a lot less

mobile than the electrons themselves. This allows the necessary intrapair distance to be

large enough for the screened Coulomb repulsion to be overcome by the phonon mediated

attraction. Mathematically this can be shown by using a phonon Hamiltonian of the form

[44]

Ĥph =
∑
q,j

ωqa
†
q,jaq,j + const. (2.36)

together with an electron-phonon Hamiltonian that is written as [44]

Ĥel−ph = γ
∑
k,q,j

iqj

(2mωq)1/2
n̂q(aq,j + a†−q,j) (2.37)

with ωq being the phonon dispersion and the index j = 1, 2, 3 denoting the three spacial

dimensions. aq,j and a†q,j are the bosonic annihilation and creation operators of the second

quantization formalism respectively. n̂q ≡
∑

k c
†
k+qck represents the electronic density

expressed in terms of fermionic creation and annihilation operators and γ is a coupling
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constant. With the introduction of Grassmann fields ψ (ψ̃) and complex fields φ (φ̃) as a

representation of the fermionic and bosonic operators respectively the Hamiltonians in Eq.

(2.36) and Eq. (2.37) can be used to formulate the coherent state actions S in the coherent

state field integral.

Z =
∫

D [ψ̃, ψ]
∫

D [φ̃, φ]e−Sel[ψ̃,ψ]−Sph[φ̃,φ]−Sel−ph[ψ̃,ψ,φ̃,φ]

=
∫

D [ψ̃, ψ]e−Sel[ψ̃,ψ]+ln(
∫

D [φ̃,φ] exp(−Sph[φ̃,φ]−Sel−ph[ψ̃,ψ,φ̃,φ]))

≡
∫

D [ψ̃, ψ]e−Seff [ψ̃,ψ]

(2.38)

The effective action Seff defined in Eq. (2.38) can then be calculated by integrating out

the bosonic fields which results in

Seff [ψ̃, ψ] = Sel[ψ̃, ψ]− Γ
2m

∑
q

q2

ω2
q − ω2

ρqρ−q (2.39)

with ρq =
∑

k ψ̃k+qψk describing the electron density written in terms of Grassmann fields.

The electron action Sel, not written out explicitly, is reduced by the second term on the

right hand side as soon as ω < ωq for every q. So this result shows that the Coulomb

repulsion can indeed be weakened and with a large enough electron phonon coupling γ (Γ

is a function of γ) even overcome, resulting in a negative effective action and therefore an

attractive interaction. Short after the proposal of such a phonon mediated mechanism the

isotope effect was discovered [9, 10] showing a dependence of the critical temperature on

the mass of different isotopes of the same element in the form

Tc ∼Mα (2.40)

For most regular superconductors α ≈ −1
2 . This is a clear evidence for phonons being

involved in the microscopic mechanism of superconductivity because of the same inverse

square root dependence of the phonon frequency on the ions mass. This leads to the

identification of the previously mentioned cutoff frequency ωc with the Debye frequency

ωD which characterizes the cutoff in the phonon spectrum. Hence the binding energy in

Eq. (2.35) can be rewritten and we obtain for the energy of paired electrons in Coopers

simplified model

E ≈ 2EF − 2~ωDe
− 2
N(0)V (2.41)
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with now ~ωD being the important energy scale.

After having realized that the usual ground state, with all states being occupied to the

Fermi energy and all states being unoccupied above, is unstable towards the formation of

pairs as soon as there is an attractive interaction and having found an explanation for that

interaction it is now the task to find an expression for that new ground state. Such an

expression was formulated in the original BCS-theory [16, 17] with a mean-field approach

justified by the large number of involved particles. Here the approximation is made that

the occupancy of a state with wave vector k only depends on the average occupancies of

the other states which leads to the average of the particle number N̄ being fixed instead of

N itself. This statistical treatment of occupancies certainly needs to be done in the grand

canonical ensemble. Furthermore the following treatment is restricted to T = 0 so that

there are no thermal excitations present. The BCS ground state wave function [30]

|ψG〉 =
∏

k=k1,...,kM

(
uk + vkc

†
k↑c
†
−k↓

)
|φ0〉 (2.42)

consists of the vacuum state |φ0〉 out of which the fermionic creation operators c†k↑c
†
−k↓ create

cooper pairs with opposite momentum and spin. |vk|2 represents the probability that a pair

(k ↑,−k ↓) is occupied and |uk|2 denotes the probability that this pair is unoccupied. This

implies the proper normalization condition |vk|2+|uk|2 = 1. To extract physical information

out of the ground state in Eq. (2.42) the two parameters vk and uk have to be calculated.

This is done by a variational approach with the so called pairing Hamiltonian [30]

Ĥ =
∑
kσ

εknkσ +
∑
kl

Vklc
†
k↑c
†
−k↓c−l↓cl↑ (2.43)

with σ being the spin of the particle. The first term, containing the particle number operator

nkσ = c†kσckσ, describes the kinetic energy and the second term stands for pair scattering

with the scattering potential Vkl. In order to regulate the mean number of particles N̄ the

term −µNOP has to be added to the Hamiltonian, as usual in the grand canonical ensemble,

with NOP =
∑

kσ nkσ. This is equivalent to a shift in energy with the chemical potential

µ. Thus with the definition of ξk = εk − µ as the single particle energy relative to the
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Fermi energy only εk has to be substituted with ξk in Eq. (2.43) to obtain Ĥ −µNOP . The

expectation value of this operator in the BCS ground state turns out to be [30]

〈ψG| Ĥ − µNOP |ψG〉 = 2
∑
k

ξkv
2
k +

∑
kl

Vklukvkulvl (2.44)

where uk and vk are taken to be real for simplicity. The variation is done by applying

the derivative with respect to one of the parameters to the right hand side of Eq. (2.44)

while keeping the others fixed and setting the result equal to zero. Carrying out the further

calculation the definitions ∆k = −
∑

l Vklulvl and Ek =
(
ξ2
k + ∆2

k

)1/2 are made because

those quantities turn to be of certain interest later on. After that the same approximation

as in Coopers one pair model is made meaning in this case [30]

Vkl =


∆ if |ξk| and |ξl| ≤ ~ωc

0 otherwise
(2.45)

This leads to a big simplification of the above defined ∆k

∆k =


∆ for |ξk| < ~ωc

0 for |ξk| > ~ωc
(2.46)

which is now independent of k. After some mathematical manipulations that are not of

great physical interest one gets for ∆ [30, 31]

∆ =
~ωc

sinh [N(0)V ]
≈ 2~ωDe

− 1
N(0)V (2.47)

In the last step the weak coupling limit is assumed with N(0)V � 1 and the cutoff frequency

is again taken to be the Debye frequency. For the parameters vk and uk the following result

is obtained [30]

v2
k =

1
2

(
1− ξk

Ek

)
=

1
2

[
1− ξk(

ξ2
k + ∆2

k

)1/2
]

u2
k =

1
2

(
1 +

ξk
Ek

)
= 1− v2

k

(2.48)

This result is plotted in Fig. 2.9 neglecting the k-dependence of all quantities. The occupa-

tion fraction of Cooper pairs |v|2 is 1 far below and 0 far above the Fermi level and 0.5 at the

Fermi energy. These features are the same as for the Fermi occupation at zero temperatures

but in contrast to this |v|2 shows an asymptotical behavior towards those values instead of
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a sudden jump. Thus there is a change in occupation from the normal to the supercon-

ducting phase but this only effects an energy range of about ∆ around the Fermi energy.

So only a tiny fraction of the electrons is energetically shifted to lager kinetic energies and

the majority remains unchanged in this picture. The dramatic change takes place in the

probability of k-space occupation since there is a much larger chance of k being occupied

if -k is occupied. This direct correspondence of the paired electrons together with the fact

that all pairs are described by one wave function, shown in Eq. (2.42) is the essence of

superconductivity. Under the assumption that the number of electronic states is conserved

Figure 2.9: Cooper pair occupation parameters |v|2 and |u|2 as a function of ξ. k-
dependencies are neglected. The Cooper pair occupation fraction |v|2 approaches 1 asymp-
totically for negative ξ and 0 for positive ξ. |u|2 shows exactly inverse behavior. There
is a startling resemblance between |v|2 and the Fermi distribution for finite temperatures.
Taken from [31].

during the superconducting phase transition it is possible to compute the superconducting

density of states Ns(E) [30].

Ns(E)dE = Nn(ξ)dξ ⇒ Ns(E) = Nn(ξ)
dξ

dE
(2.49)
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Using the definition of E =
(
ξ2 + ∆2

)1/2 given above, without the k-dependencies, and the

simplification of ∆ given in Eq.(2.46) this results in

Ns(E) =


N(0) E

(E2−∆2)1/2
for|E| > |∆|

0 for|E| < |∆|
(2.50)

Here the normal state density of states Nn(ξ) was taken to be a constant N(0) since it is

in a very close range to the Fermi energy. The plot of Eq. (2.50) is displayed in Fig. 2.10.

Ns(E) shows a gap in an energy range of ∆ above the Fermi energy and diverges in the

Figure 2.10: Density of states as a function of E. Ns(E) shows a huge deviation from
the normal state density at the Fermi level N(0). There is a gap with no allowed states
beginning at ∆ above the Fermi level and Ns(E) diverges when it approaches this gap.
Taken from [30].

vicinity of the gap. This leads to a heavily increased density of states right above the gap.

Since ∆ is related to the pair scattering potential this effect is a direct consequence of the

Cooper pairing. As a result of this gap in Ns(E) there are no possible excitations of energies

smaller than 2∆ since the cooper pairs have to be broken first. This means that it is not

possible to drive the superconducting condensate out of its ground state unless this energy

is applied which explains the previously mentioned rigidity and leads to the remarkable
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effects discussed in the first part of this chapter. At this point it is easily understood why

the definition of the quantities ∆k and Ek were made. ∆ denotes the size of the energy gap

in Ns(E) and E has the meaning of a quasi particle energy of excited quasi particles out

of the superconducting ground state. So both are important in describing superconducting

properties and thus of physical interest. Another important quantity that can be computed,

with the parameters u and v being determined and therefore also the ground state wave

function |ψG〉 entirely known, is the ground state energy. The combination of Eq. (2.44),

the definition of ∆k and Eq. (2.48) leads to the expectation value [30]

〈ψG| Ĥ − µNOP |ψG〉 =
∑
k

(
ξk −

ξ2
k

Ek

)
− ∆2

V
(2.51)

In order to compare this result to the normal state and find an expression for the conden-

sation energy we need to set the energy gap in Eq. (2.51) equal to zero since that refers to

the normal state at T = 0. This leads to

〈ψN | Ĥ − µNOP |ψN 〉 =
∑
|k|<kF

2ξk (2.52)

with the summation only going to kF since all states above are empty at T = 0. Subtracting

Eq. (2.51) from Eq. (2.52) gives the condensation energy [30]

〈E〉s − 〈E〉n =
∑
|k|>kF

(
ξk −

ξ2
k

Ek

)
−
∑
|k|<kF

(
−ξk −

ξ2
k

Ek

)
− ∆2

V

= 2
∑
|k|>kF

(
ξk −

ξ2
k

Ek

)
− ∆2

V

(2.53)

Here the symmetry of all quantities about the Fermi energy was used in the second equality.

The first term of Eq. (2.53) describes the excess energy of the above mentioned kinetic

energy shift and the second term reflects the change in potential energy due to pairing.

By replacing the sum with an integral over ξ from 0 to ~ωc, justified by the huge particle

number, and again using the weak coupling limit N(0)V � 1 Eq. (2.53) results in [30]

〈E〉s − 〈E〉n =
[

∆2

V
− 1

2
N(0)∆2

]
− ∆2

V
= −1

2
N(0)∆2 (2.54)

So the condensation energy at T = 0 is negative showing again that the superconducting

state is energetically favorable over the normal state and thus realized. The energy in Eq.

(2.54) has to be the same as in Eq. (2.6) obtained earlier.
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The just used variational approach leads to the right results but as soon as finite temper-

atures are included it is simpler to use another treatment. With the introduction of quasi

particle operators that represent excitations which have Ek as their energies the probability

that a quasi particle is excited in thermal equilibrium is just [30]

f(Ek) =
1

eβEk + 1
(2.55)

This is simply the Fermi function with the usual definition of β = 1
kBT

. Noting that Ek ≥ ∆

and therefore finite for a nonvanishing energy gap it is obvious that f(Ek) goes to zero at

T = 0 for all k, including those with |k| < kF . So there are no quasi particles at absolute

zero temperature. The average value of the usual particle occupation operator, formed

by the quasi particle operators, can be substituted by f(Ek) of Eq. (2.55) and so the

temperature dependence of the superconducting energy gap can be computed. First of all

one obtains [30]
∆(0)
kBTc

= 1.764 (2.56)

which shows that the energy gap at zero temperature is about the same value as kBTc.

Furthermore the temperature dependence of the energy gap ∆(T ) itself can be evaluated

numerically in the weak coupling limit and the result is shown in Fig. 2.11. The energy gap

Figure 2.11: Superconducting energy gap as a function of temperature. At low temperatures
∆ shows an almost constant value and near Tc a square root temperature dependence is
observed. Taken from [30].
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decreases monotonically from its zero temperature value to zero at Tc where the temperature

dependence can be approximated by [30]

∆(T )
∆(0)

≈ 1.74
(

1− T

Tc

) 1
2

(2.57)

At very low temperatures ∆ is nearly constant which can be physically interpreted as the

fact that a significant number of quasi particles have to be excited before the energy gap

value is effected by temperature variations.

Having talked about excitations from the BCS ground state in Eq. (2.42) it will now be

discussed how those excitations actually take place within the superconducting condensate.

Here another characteristic feature of superconductivity comes into play with the ground

state not only being macroscopic but phase coherent. This has huge effects on the interaction

Hamiltonian [30]

ĤI =
∑

kσ,k′σ′

Bk′σ′,kσc
†
k′σ′

ckσ (2.58)

with Bk′σ′,kσ standing for the matrix elements of the perturbating operator between regular

one-electron states. In the normal state the transition probability is simply proportional to

the square of the particular Bk′σ′,kσ since all terms in the sum of Eq. (2.58) are independent

in this case. In the superconducting state this changes dramatically because the phase

coherence produces interference terms that lead to coherence factors which have to be

multiplied to
∣∣Bk′σ′,kσ

∣∣2. For the scattering of quasi particles the proper coherence factor

is (ukuk′ ∓ vkvk′)
2 and for the creation or annihilation of two quasi particles the coherence

factor turns out to be (vkuk′ ± ukvk′)
2. In both expressions the upper sign corresponds to

case I which is even under time reversal of the electronic states. The lower sign corresponds

to case II with odd symmetry under this transformation that interchanges the partners in

the Cooper-pairing scheme. An example for case I is ultrasonic attenuation and for case II

it is spin relaxation. With the result obtained in Eq. (2.48) these coherence factors can be

evaluated as functions of the involved energies [30].

(ukuk′ ∓ vkvk′)
2 =

1
2

(
1∓ ∆2

EkEk′

)
(2.59)

for the scattering of quasi particles and

(vkuk′ ± ukvk′)
2 =

1
2

(
1± ∆2

EkEk′

)
(2.60)
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Figure 2.12: Comparison of the temperature dependence of the transition rates α in the
superconducting (s) and normal (n) state. Also shown, as the dashed line, is the (T/T )4

dependence predicted by a super fluid model. Case I does not deviate too much from
the oversimplified super fluid model but case II shows a significantly different behavior,
especially near Tc. Taken from [30].

for quasi particle creation and annihilation. Actual calculations of transition rates for both

cases are shown in Fig. 2.12. Case I is not to far away from the super fluid approximation

which is plotted as the dashed line and deviates only slightly in the vicinity of Tc. A whole

different shape is observed for case II which increases below Tc and has a clear peak. Here

the coherence factors produce completely different behavior than predicted by a two fluid

model demonstrating its oversimplified character.

2.3 Examples for experimental verification of the BCS-Theory

2.3.1 Superconducting density of states

A convincing way to verify the BCS theory would be a direct measurement of the den-

sity of states which shows a large difference between the normal and the superconducting

state (see Fig. 2.10). This can be done by tunneling spectroscopy at a normal-insulator-

superconductor junction. The charge transfer through such an insulating barrier is nonzero
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due to quantum mechanical tunneling and varies exponentially with the width of the insu-

lator. It turns out that the transition probability of the charge carriers is independent of

the BCS occupancy factors uk and vk and the process can be described by the semiconduc-

tor model. Here the density of states of the normal metal is seen to be constant near the

chemical potential and the superconductor is taken to be a simple semiconductor with an

independent particle density of states that exhibits the form of the the density of states in

Fig. 2.10. It is symmetric with respect to the chemical potential and the superconducting

character is most dominant directly above and below the gap where the density of states

diverges. An applied potential difference eV (electronic charge e, applied voltage V ) shifts

the chemical potential and wherever there are occupied states at the same energy level on

one side of the barrier as there are free states on the other side a horizontal transition is

possible. In the semiconductor model the tunneling current between a superconductor and

a normal metal can be written as [30]

Ins =A |T |2N1(0)
∫ ∞
−∞

N2s(E) [f(E)− f(E + eV )] dE

=
Gnn
e

∫ ∞
−∞

N2s(E)
N2(0)

[f(E)− f(E + eV )] dE
(2.61)

with the normal-normal tunneling conductance Gnn defined as

Gnn ≡ eA |T |2N1(0)N2(0) (2.62)

A is a proportionality constant, T is the constant tunneling-matrix element and N1(0) and

N2s(E) denote the normal density of states of metal 1 and the superconducting density of

states of metal 2 respectively. f represents the regular Fermi function. To directly compare

the theory to the experiment one has to study the differential conductance dI
dV of the current

in Eq. (2.61) as a function of V .

Gns =
dIns
dV

= Gnn

∫ ∞
−∞

N2s(E)
N2(0)

[
−∂f(E + eV )

∂(eV )

]
dE (2.63)

The term
[
−∂f(E+eV )

∂(eV )

]
is a bell-shaped weighting function with its peak located at E =

−eV , a width ∼ 4kBT and a unit area under the curve. Thus in the limit of T → 0 Eq.

(2.63) becomes

(Gns)T=0 = Gnn
N2s(e|V |)
N2(0)

(2.64)
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Here the absolute value of the voltage is taken since both signs are equal because excitations

of electrons and holes have equal energies. Eq.(2.64) shows that for very low temperatures

the differential conductance is proportional to the superconducting density of states and this

quantity can directly be observed. At absolute zero one would indeed measure a vanishing

current until e|V | & ∆ since the shift in the chemical potential must be large enough to

create an excitation in the superconductor. A finite temperature smears out the peak at ∆

Figure 2.13: Slope dI
dV as a function of applied voltage of a junction of superconducting

Pb and normal Al with a Al2O3 insulating barrier normalized to the slope of the same
junction in the normal state. The measurement was performed by Ivar Giaever at T =
1.6K [45]. This measures directly the superconducting density of states normalized to the
nonsuperconducting density of states in Pb.

by ∼ ±2kBT and a finite density of states is obtained below the peak since some excitations

are already thermally created. In Fig. 2.13 original data from Ivar Giaever [45] obtained

in 1960 is presented. He measured the tunnel current as a function of applied voltage on a

junction of superconducting Pb and normal Al with a Al2O3 insulating barrier. To obtain

the curve for the normalization to the nonsuperconducting conductance a magnetic field was

applied to drive the Pb layer into the normal state. The slope of the former curve divided

through the slope of the latter curve is displayed in the graph. According to Eq. (2.64)

this serves as a direct measurement of the superconducting density of states normalized to
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the normal density of states. The curve can be seen as a thermally smeared version of Fig.

2.10 with the features discussed above and therefore validates the BCS theory.

2.3.2 Coherence factors

Another unique feature of the superconducting state are the coherence factors appearing in

the transition probabilities of quasi particle scattering (Eq. (2.59)) and creation and anni-

hilation of quasi particles (Eq. (2.60)). To experimentally verify the existence of the effects

Figure 2.14: Ratio of normal to superconducting relaxation time of nuclear spin relaxation,
which is equal to the ratio of the superconducting to the normal transition rate, as a function
of temperature normalized to the transition temperature. The increase of the transition rate
below the critical temperature is shown together with three theoretical curves calculated on
the basis of the BCS theory. Original data from Hebel and Slichter [46] published in 1959.

of these coherence factors would be a direct validation of the BCS theory. Furthermore the

fact that there are two different cases for both coherence factors, depending on the sym-

metry of the involved process under time reversal, gives an excellent opportunity for very

convincing verification of the BCS theory by predicting experimental results for the two

different cases. Since the scattering of quasi particles is involved in ultrasonic attenuation

as well as in spin relaxation both experiments can serve as a proving ground. The former is

of case I thus the ratio of the transition rates in the superconducting and the normal state

should show the behavior of the lowest curve in Fig. 2.12. However the more interesting
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case is certainly case II since here the normalized transition rate αs
αn

increases directly be-

low Tc before it goes to zero for T → 0, as seen in Fig. 2.12. In 1959 Hebel and Slichter

[46] obtained this form in their data of nuclear spin relaxation times. The graph shown in

Fig. 2.14 exhibits an increase of the transition rate ratio (here denoted by Rs
Rn

) below the

critical temperature (here denoted by θc). The dashed line is a calculation based on the

BCS theory and only predicts the qualitative behavior of the data while modified models

by Hebel and Slichter are able to reach also quantitative consensus. This measurement of

the influence of the coherence factors is an outstanding visualization of the superconducting

phase coherence and a historically decisive proof of the BCS theory.
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Chapter 3

Iron-based superconductors

In this chapter an overview of the recently discovered new high temperature superconduc-

tors based on iron compounds is done. Considering the large number of publications and

the fast progress in this field of research this overview is not intended to be complete but

only tries to summarize the basic properties by selected examples of materials and mea-

surements. First the lattice structure of the different families is shown and the conditions

under which they actually become superconducting are presented. Second a short overlook

on calculations and measurements of the electronic structure is given. Also the size and

momentum distribution of the superconducting gap parameter is shown followed by a short

discussion of its symmetry. In the last section an example of a phase diagram is presented

and compared to several others. Furthermore possible candidates for the superconducting

pairing mechanism are discussed.

3.1 Lattice structure of different families

The discovery of superconductivity with a transition temperature as high as Tc = 26K in

LaOFeAs by Kamihara et al [28] in the beginning of 2008 opened up a hole new field of

research. It was quite a surprise that the ferromagnetic atom iron could be used to produce

superconducting compounds with such a high Tc that could be even raised to Tc = 43K in

this compound by applying pressure [47]. To achieve superconductivity in this material the

parent compound had to be doped with fluorine replacing oxygen in the LaO layer adding

an extra electron to the FeAs plane (see lower left in Fig. 3.1) similar to the cuprate

superconductors. LaOFeAs condenses in the ZrCuSiAs type structure (space group

P4/nmm) and by substituting La by different rare earth metals a lot of other materials
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Figure 3.1: Illustration of the four different families of iron-based superconductors. Upper
left: FeSe as an example for the so called 11-family. Taken from [48]. Upper right:
LiFeAs exhibiting the 111-structure with a layer of Li in between the iron-arsenide layers.
Taken from [49]. Lower left: LaOFeAs representative for a 1111-family compound having
a LaO spacer layer in between the FeAs layers. One O-atom is replaced by flouride donating
an extra electron to the iron-arsenide layer. Taken from [47]. Lower right: BaFeAs from
the 122-family with a Ba layer in between the FeAs layers. Taken from [50].

with similar properties can be created. Many other compounds with this so called 1111-

structure (name caused by the stoichiometry) exhibiting superconducting behavior were

found, some of them with even higher transition temperatures, for example Tc = 56K in

GdFeAsO [29]. Here Th doping istead of F doping lead to superconductivity. Another

way to induce superconductivity in this structure of iron-arsenide is realized by oxygen-

deficiency for example in the compound NdFeAsO [51]. Moreover even doping directly

into the iron-arsenide plane with Co in CaFeAsF lead to superconductivity [52] which is

quite remarkable since this introduces possible scattering centers into the plane where the

important physics is happening. Besides the 1111-structure there are three other families of
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iron based superconducting materials which are shown in Fig. 3.1 each of them represented

by a specific example compound. They all share a layered structure containing a layer

with an iron compound that is responsible for the superconductivity which makes their

physical properties being considered highly two-dimensional. These compounds are usually

referred to as iron-pnictide superconductors in the literature which is a proper name for

the materials containing a layer that consist of iron and a member of the nitrogen group

(pnictogens). However a strict interpretation of this name would exclude the compounds

without a pnictogen that have to be included into this group of materials. Thus the name

iron-based superconductors is chosen in this chapter as a general term for these materials.

An example for a non-pnictide member of this material group is FeSe which condenses in

the PbO type structure (space group P4/nmm) displayed in the upper left of Fig. 3.1. This

so called 11-structure is the simplest of the families having only layers of FeSe without any

spacing layers. Superconductivity is observed only with an intentional Se-deficiency with a

Tc of 8K in FeSe [48] and can be raised to Tc = 27K under high pressure [53]. Furthermore

it is reported that the substitution of Se with Te raises the transition temperature to a

maximum of 15.2K at about a content of 50% Te in the compound [54] but FeTe itself is

not superconducting. The structure shown in the upper right of Fig. 3.1 is a Cu2Sb type

tetragonal structure (space group P4/nmm) called 111-structure and is represented by the

compound LiFeAs. Li-deficiency leads to superconductivity with a maximum Tc = 18K

in the displayed material. In the lower right BaFeAs as an example of the last structural

family is illustrated. It condenses in ThCr2Si2-type structure (space group I4/mmm)

which is called the 122-structre here. Superconductivity with a Tc = 38K evolves with

hole doping, explicitly meaning replacing Ba by K, in the displayed structure of BaFeAs

[50]. Also electron doping which is realized by inserting for example Co instead of Fe

into the FeAs plane of BaFeAs [55] leads to superconductivity with a Tc of 22K in this

example. Furthermore it is also possible to induce superconductivity by applying pressure

to compounds of the 122-family reaching a maximum Tc of 29K [56, 57].
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3.2 Electronic structure and superconducting gap

Short after the discovery of the iron-based superconducters the band structure was calcu-

lated for several different compounds. Density Functional Theory (DFT) studies in Local

Density Approximation (LDA) were performed on LaFeAsO (1111-family) [58] and showed

a multi sheeted Fermi surface with two electron-like high-velocity cylinders around the zone

edge M − A line (corner of the 1. BZ), two hole-like lower-velocity cylinders around the

Γ− Z line (zone center) and an additional heavy 3D hole pocket that is centered at Z and

intersects and anticrosses with the hole-like cylinders. Except for the latter one all other

bands were found to be nearly two-dimensional and electron doping leads to a shrinking of

the hole-like pockets because of their larger masses, especially the 3D hole pocket, making

the Fermi surface even more 2D-like. Other DFT calculations with LDA for BaFe2As2

(122-family) and LiFeAs (111-family) [59] lead to a very similar band structure with again

two hole cylinders in the zone center for BaFe2As2 and an additional 3D hole pocket around

Γ for LiFeAs and two electron cylinders around the zone corner. This band structure

was at first confirmed by Angular Resolved Photo Electron Spectroscopy (ARPES) mea-

surements on F -doped NdFeAsO (1111-family) showing a bigger hole-like nearly circular

Fermi surface sheet (in higher resolution probably two distinct sheets) in the center of the

1. BZ and a smaller electron like pocket (also likely to be two) in the corner [62]. ARPES

measurements on normal state BaFe2As2 (122-family) showed two hole-like Fermi surface

sheets at the Γ-point and an electron-like pocket in the M -point with a four leaf-like de-

viation from a circle [63]. Another publication of ARPES measurements on the optimally

(x = 0.4) K-doped superconducting Ba1−xKxFe2As2 found evidence that this structure in

the corners are two distinct sheets with the inner one being almost circular and the outer one

exhibiting the four leaf-structure [64] the two Γ-sheets were rather unchanged. More recent

ARPES measurements on Ba1−xKxFe2As2 in the superconducting state [60] resolved that

structure and showed that it consist of an electron pocket at the M point and four blades

around it resulting in a propeller-like structure which was confirmed by another publication

of the same group [61]. This data is displayed in Fig. 3.2 and will be used in Chapter

5 within a Free Electron Model to construct a Fermi surface that consists of two circular
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Figure 3.2: Top: ARPES measurements of the Fermi surface of superconducting
Ba1−xKxFe2As2 with two different photon energies (left: 80eV , right: 50eV ) at T = 14K.
The two circles in the middle of both pictures (displayed three times) are the hole-like pock-
ets around the Γ-point and the propeller-like structure is centered in the M -point. Taken
from [60]. Bottom: Illustration of the above shown Fermi surface sheets with the corre-
sponding superconducting gap value. The inner Γ-pocket and the bands in the propeller
structre at the M -point have a bigger gap value than the outer Γ-pocket. Taken from [61].

hole-like bands in the Γ-point and a circular electron like band in the M -point surrounded

by four elliptical blades. Moreover APRES measurements are capable of investigating the

momentum dependence and value of the superconducting gap. It was shown that the gap

of Ba1−xKxFe2As2 in the inner hole-like Γ-pocket as well as the one of the electron-like

M -pocket exhibit a value of ∆big ≈ 12meV and that the outer hole-like Γ-pocket has a

smaller gap with about ∆small ≈ 6meV [65]. Another publication obtains gap values for

the bigger gap being ∆big ≈ 9meV [61] and the smaller gap being ∆small ≈ 1.1meV [66].

The latter one is not directily measured but obtained through a fit within the comparison

of the penetration depth λ(T ) from ARPES and the muon-spin depolarization rate in muon
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spin rotation measurements (µSR). Furthermore different µSR measurements find a bigger

gap value of ∆big ≈ 6meV and a smaller gap value of ∆small ≈ 3meV [67]. An illustration

of the distribution of the two different gap values throuout the 1. BZ is shown in Fig. 3.2.

The smaller gap value is present at the outer hole-like sheet around Γ and all other bands

show the bigger value. The ARPES measurements all show only a little variation of the gap

(seen in Fig. 3.2 for the inner Γ-pocket) along the particular Fermi surface sheet and no

evidence for gap nodes was obtained. The same is true for electron tunneling experiments

[68] but Nuclear Magnetic Resonance (NMR) measurements point towards nodes in the

gap [69]. This makes the question of the symmetry of the superconducting gap paremeter

quite complicated since a nodeless gap excludes p-wave and d-wave pairing an favors an

s-wave symmetry that is inconsistent with the NMR data. The symmetry favored by most

publications, for example [70, 71], is and extended s-wave symmetry (or s±-symmetry) that

switches sign in between the Γ-point and M -point but has no nodes on the Fermi surface

sheets. Inelastic neutron scattering measurements also point into this direction [72] and flux

quantum transition measurements [73] claim to proof that the pairing must be spin-singlet

with a sign change which also supports extended s-wave symmetry. Other theoretical studies

show that the proposed extended s-wave gap parameter can explain the NMR data as well

as the experiments showing a nodless gap [74]. Since most publications favor the extended

s-wave symmetry this one will be chosen for the investigations including a nontrivial gap in

Chapter 5. The analytical expression used there requires a maximum gap value ∆0 which

will be chosen to be ∆0 = 10meV in sufficient agreement with the values given above. It

has to be mentioned at this point that the issue of the gap symmetry is not entirely solved

despite of all the experimental as well as theoretical work mentioned above supporting the

extended s-wave gap with a sign change in between the Fermi surface sheets.

3.3 Phase diagram and physical properties

In contrast to the parent compounds of the high temperature superconducting cuprates,

which are Mott insulators, the iron arsenide compounds, for exapmle LaFeAsO [28], are

found to be bad metals. Furthermore this material showed anomalies near 150K in both

resistivity and DC magnetic susceptibility. Neutron scattering measurements revealed that
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LaFeAsO undergoes a structural phase transition at 155K where it changes its latice sym-

metry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) [75].

Another phase transition occurs at about 137K and the material develops a long-range

spin density wave (SDW) type antiferromagnetic order below that temperature [75]. Flu-

orine doping suppresses both of these orderings and leads to superconductivity. Detailed

Figure 3.3: Phase diagram of CeFeAsO1−xFx. Ts is illustrated by the red circles and TN for
Fe and Ce are shown with black squares and green triangles respectively. All of these values
are obtained by neutron scattering measurements of [76]. Tc obtained by susceptibility
measurements in [76] is shown with open triangles and results from resistivity measurements
of [77] are displayed with blue diamonds. The inset shows the doping dependence of the
magnetic moment of the iron atoms at 40K where the influence of Ce on the Bragg peak
of Fe is negligible. The error bars correspond to one standard deviation. Taken from [76].

measurements of the different critical temperatures (Tc for superconductivity, TN for the

antiferromagnetic ordering and Ts for the structural phase transition) were made on another

member of the 1111-family, namely CeFeAsO1−xFx [76, 77]. Here again a structural phase

transition occurs at Tc = 155K this time from the tetragonal (space group P4/nmm) to

orthorhombic (space group Cmma) symmetry. The doping dependence of this structural

transition is displayed in Fig. 3.3 by the red circles. The picture also shows the doping

dependence of the antiferromagnetic transition TN for Fe (black squares) as well as Ce
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(green triangles), all obtained from neutron measurements. The critical temperature for

superconductivity Tc obtained from resistivity measurements of a different publication [77]

(blue diamonds) together with Tc results from susceptibility measurements (open triangles)

are also displayed. The antiferromagnetic ordering of the parent compound is destroyed by

doping and at a doping level of x = 0.06 superconductivity occurs with a rather smooth

second order phase transition. This phase diagram is quite reminiscent of the one for the

cuprates (for example Fig. 2.4). The phase diagram of LaFeAsO1−xFx obtained from X-ray

scattering, muon spin relaxation and Mössbauer spectroscopy [78] shows a different behavior

with a much more abrupt (first order) phase transition from the SDW antiferromagnetism

to superconductivity. For BaFe2−xCoxAs2 a member of the 122-family the phase diagram

does not show distinct phase transitions for the structure and the magnetic ordering [79].

Furthermore the antiferromagnetic order and suprconductivity seem to coexist at interme-

diate doping. The same was reported in Ba1−xKxFe2As2 [80]. Regarding the different

results in compounds that all exhibit the same FeAs layers it is obvious that at this point

there is no consensus on a common behavior of the phase diagram. Also the exact character

of the magnetic ordering is still under debate and the only thing that can be said at this

early stage of this field of research is that more data is needed to unambiguously determine

those properties. Also the pairing mechanism is far from being nailed down to one candi-

date. While some authors predict that superconductivity is mediated by antiferromagnetic

spin fluctuations, for example [70], which is quite tempting due to the vicinity of magnetic

ordering to the superconducting phase, the influence of phonons is also considered because

of a strong Fe isotope effect of α = 0.35 [81]. In other publications, for example [82], phonon

mediated pairing is excluded because of the calculated phonon coupling constants being too

small to explain the experimentally found Tc’s. Furthermore the angle in between Fe and

As and thus the perfection of the Fe−As tetrahedron seems to have a big influence on Tc

and with that on the superconducting mechanism [76]. Various other pairing mechanisms

are also proposed but will not be mentioned here. An extensive theoretical review on the

pairing symmetry and the pairing state in the iron-based superconductors is provided by

[83].
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Chapter 4

Raman Spectroscopy

In this chapter the theory of Raman scattering and several examples of experimental data

of electronic Raman scattering will be presented. First the general theory, beginning with

the perturbation Hamiltonian, will be shown and a direct proportionality of the scattering

intensity to the imaginary part of the Raman susceptibility (or response function) will be

developed. After that the effective mass approximation will be introduced for the com-

putation of the Raman vertex and then the theory of electronic Raman scattering on a

superconductor will be presented. In the second part an example for data of electronic

Raman spectroscopy on a single band s-wave (BCS) superconductor will be illustrated first.

Following that examples for Raman data on high temperature cuprate superconductors,

hole and electron doped, and the multiband superconductor MgB2 will be shown. These

examples will demonstrate the possibilities of results obtained through electronic Raman

scattering.

4.1 Theory of Raman scattering

4.1.1 General theory

Raman scattering is inelastic scattering of light, usually within or in the vicinity of the

visible spectrum, by gaseous, liquid or solid matter. The intensity of the scattered light

as a function of energy shift between the incoming and outgoing photons is measured with

spectroscopic methods. Since this energy change of the photons corresponds to elementary

excitations of the scattering material one gains information of the physics taking place in

that material. Examples for those elementary excitations are phonons in solids and vibra-

tions of molecules, which are historically the most important, but also electronic excitations
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like magnons, excitons and, in the case of a superconducting probe, the breaking of Cooper

pairs. At zero temperature the energy shift is always positive and the scattered photons

loose part of their energy by creating such excitations. If excitations are already thermally

created at finite temperatures the incident photon can gain energy and the energy shift is

negative. The former is called Stokes and the latter anti-Stokes process. The interaction

of light with electrons can be described by integrating the vector potential A(rj) into the

Hamiltonian via the principle of least coupling to the momentum pj of the jth electron,

meaning pj → pj − e
cA(rj). This leads to a perturbation Hamiltonian [84]

H ′ =
1

2m

∑
j

∣∣∣pj − e

c
A(rj)

∣∣∣2 − 1
2m

∑
j

p2
j (4.1)

where m is the electrons mass, e its charge (e > 0) and c the speed of light. Since Raman

scattering is a two photon process one has to treat the part of H ′ proportional to A(rj),

that is HA = − e
mc

∑
j A(rj)pj (using transverse gauge: ∇A(rj) = 0), in second order

perturbation theory. The part of H ′ being quadratic in A(rj), that is HAA = r0
2 A2(rj)

(with the definition of the classic electron radius r0 = e2

mc2
), has to be treated in first order

perturbation theory. The two Hamiltonians HAA and HA can be included in one effective

Hamiltonian HR, contributing to Raman scattering in linear response theory [85].

HR = r0

〈
A†SAL

〉
ρ̃q (4.2)

Here q = kL − kS stands for the momentum transfered by the photon field to the sample

with the momentum of the incident photon kL and the scattered photon kS . The operators

A†S and AL contain the creation operator for the scattered photon and the annihilation

operator for the incident photon respectively. Furthermore ρ̃q denotes the effective density

operator [85]

ρ̃q =
∑
n,k

γn(k)c†n,kcn,k (4.3)

where c†n,k creates and cn,k annihilates a Bloch electron in band n with momentum k.

The Raman vertex represented by γn(k) will be specified later on. It is now the task

to find an expression for the Raman scattering efficiency d2R
dΩdω into a region in k-space

dΩdω, with a Raman shift ω = ωL − ωS and a solid angle Ω, which has a relation to the
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Raman susceptibility χRaman(q, t). The latter quantity can be defined as the usual quantum

mechanical thermal average of an operator in linear response theory [85]

χRaman(q, t) =
i

~
Tr

{
e−βH0

Z
[ρ̃q(t), ρ̃−q(0)]

}
(4.4)

with the partition function Z, the trace Tr and the usual thermodynamic definition of

β = kBT . A first step is made by multiplying the effective Hamiltonian in Eq. (4.2) with

the time evolution factor e−iωt and inserting it into Fermi’s golden rule.

Γ(kL, eL,kS , es) =
2π
~
|〈f |HR| i〉|2 δ (Ef − Ei − ~ω) (4.5)

Then a summation over the final states |f〉 of the the sample is made together with a

thermal average over the initial states |i〉 giving a factor of
∑

i,f
e−iβEi
Z in the transition rate

ΓT [85]

ΓT (kL, eL,kS , es) =
2π
~
r2

0

∣∣∣〈A†SAL〉∣∣∣2∑
i,f

e−iβEi

Z
|〈f |ρ̃q| i〉|2 δ (Ef − Ei − ~ω) (4.6)

Here |〈f |ρ̃q| i〉|2 represents a transition matrix element of the effective density operator be-

tween final and initial states. Since ρ̃q contains the Raman vertex the transition probability

also depends on this quantity leading to important consequences which will be discussed

later. The delta distribution in Eq. (4.6) takes care of the necessary energy conservation,

emphasizing the fact that the Raman shift equals the elementary excitation in the sample.

The last part of Eq. (4.6) is usually referred to as the generalized dynamical structure

factor S̃T of the sample [85].

S̃T (q, ω) =
∑
i,f

e−iβEi

Z
|〈f |ρ̃q| i〉|2 δ (Ef − Ei − ~ω) (4.7)

Next a summation over all final states within a region dΩdωS around kS in k-space of Eq.

(4.6) and a normalization to the incoming flux ~cnL is performed. The obtained differential

Raman cross section d2σ
dΩdω is equal to the above mentioned Raman scattering efficiency d2R

dΩdω

with the definition of the scattering volume as the unit volume [85]. Thus it follows

d2R

dΩdω
=
ωS
ωL

r2
0S̃

T (q, ω) (4.8)

which shows a direct proportionality of the generalized dynamical structure factor to the

Raman scattering efficiency. In the last step the fluctuation dissipation theorem [86] will



48

be used, which generally relates the imaginary part of the response function, representing

energy dissipation, to a thermal fluctuation in the probe. In this case it leads to a direct

correspondence of the dynamical structure factor S̃T (q, ω) to the imaginary part of the

Fourier transformed Raman susceptibility χRaman(q, ω) [85].

S̃T (q, ω) = − 1
π

(1 + nω)Im [χRaman(q, ω)] (4.9)

where nω denotes the Bose factor nω = 1
eβ~ω−1

. Now inserting Eq. (4.9) into Eq. (4.8) leads

to
d2R

dΩdω
= −ωS

ωL

r2
0

π
(1 + nω)Im [χRaman(q, ω)] (4.10)

This shows the requested direct relation of the scattering efficiency to the imaginary part

of the Raman susceptibility which allows us to predict the basic behavior of the Raman

spectra with a calculation of the susceptibility of the examined material.

4.1.2 Effective mass approximation

The next important step, in order to arrive at a result that allows calculations for a real

material, is to find a good approximation for the in Eq. (4.3) appearing Raman vertex. It

can be written in the following way [85]

γn(k) = e∗SeL +
∑
nm

〈nk + q |e∗Sp|nmk + kL〉 〈nmk + kL |eLp|nk〉
εnk − εnmk+kL + ωL + i0

+
〈nk + q |eLp|nmk− kS〉 〈nmk− kS |e∗Sp|nk〉

εnk − εnmk−kS − ωS + i0

(4.11)

where nm denotes the band of the intermediate state, ε is the band energy dispersion and

eS and eL are the polarization vectors of the scattered and incoming light respectively.

Real interband transitions, meaning that the final and the initial states belong to different

bands, are neglected. The first term arises from first order perturbation theory on the

Hamiltonian HAA and is only nonzero if the polarization vectors are not perpendicular to

each other. The second and the third term are the result of second order perturbation

theory of the Hamiltonian HA. It can contribute to the Raman vertex, and therefore to the

scattering efficiency, in various combinations of the polarization vectors, depending on the

involved bands and their energy dispersion. It turns out that virtual intraband transitions

(n = nm) are, up to first order in vF
c , compared to virtual interband transitions of the order
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of ω
ωL
� 1 and therefore negligible. Furthermore neglecting the incoming and scattered light

frequencies ωL and ωS in the denominator of Eq. (4.11) and disregarding any resonance

case the Raman vertex is brought into a form that is equivalent to the inverse effective

mass in k · p theory. The effective mass tensor is defined as the inverse of the second

derivative of the energy band dispersion with respect to k in the particular direction and

can be seen as a way to remain a Newtonian form of mechanics within a periodic crystal

potential. Performing this effective mass approximation on Eq. (4.11) the Raman vertex

can be written as [85]

γn(k) =
m

~2

∑
i,j

e∗S,i
∂2εnk
∂ki∂kj

eL,j (4.12)

Here one can see that it is the curvature of the energy band dispersion together with the light

polarization vectors that determines which combinations of directions i and j contribute to

Raman scattering and which ones vanish.

4.1.3 Theory of electronic Raman scattering on superconductors

After the general treatment of Raman scattering in the two previous subsections, now a

specialization for the superconducting state is made. The quantity of interest is the Raman

susceptibility according to the direct proportionality of its imaginary part to the scattering

efficiency shown in Eq. (4.10). A first further simplification of χRaman(q, ω) can be made

by restricting the treatment to the q → 0 limit. Since the incoming light wavelength is

somewhere in or near the visible spectrum, with λ being in between 400Å and 800Å, and

the usual order of a lattice constant a is of about 10Å it follows that π
a �

2π
λL

= kL. So

the value of the momentum difference q = kL − kS is a lot smaller than the the Brillouin

zone boundary value π
a and the limitation to the Brillouin zone center, meaning q ≈ 0, is

certainly justified. An important fact that has to be taken into account is the Coulomb

screening in the solid because the charge fluctuations excited by the Raman photons can

be affected by it. Including screening the Raman susceptibility in the q → 0 limit can be

written as [85]

χRaman(q→ 0, ω) = χγγ(ω)−
χ2
γ1(ω)
χ11(ω)

(4.13)
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with

χab(q→ 0, ω) =
∑
k

akbkλk(ω) (4.14)

The last expression includes the Tsuneto function λk(ω) [87]. For q being a lot smaller than

the inverse of the coherence length ξ and the value of the Fermi wave vector kF and for

frequencies way below the Plasma frequency ωp the Tsuneto function turns out to be [85]

λk(ω) =
∆2

k

E2
k

tanh
(

Ek

2kBT

)(
1

2Ek + ~ω + iα
+

1
2Ek − ~ω − iα

)
(4.15)

Here ∆k is the superconducting gap function and E2
k = ξ2

k + ∆2
k denotes the quasi particle

excitation energy with the band dispersion relation ξk = εk−εF relative to the Fermi energy

as previously mentioned in the BCS theory. It is important to note that the second term

in Eq. (4.13) which represents the screening vanishes if the average of γk · λk does. This is

the case when the vertex does not transform according to the fully symmetric irreducible

representation of the point group of the crystal since the Tsuneto function is always fully

symmetric. Thus it is important what symmetry the vertex has and screening does not

have to be taken into account for all symmetry channels.

4.2 Examples for electronic Raman spectroscopy experiments on super-

conductors

4.2.1 Single band s-wave superconductors

The first measurements which showed a new peak in the superconducting state that de-

creased with an external magnetic field were made by Sooryakumar and Klein [88] in 1980

on 2H −NbSe2. The example for electronic Raman scattering on regular s-wave supercon-

ductors with phonon mediated pairing presented here is data from experiments on Nb3Sn.

Since the gap in an s-wave superconductor is isotropic the peak referring to cooper pair

breaking should be observed at the same energy in all symmetries. The data presented in

Fig. 4.1 shows these peaks for the three symmetries Eg, T2g and A1g in Nb3Sn with a

critical temperature of Tc = 18.0K [89]. In (a) the Eg symmetry is shown with the upper

curve taken at T = 1.8K and the lower curve at T = 40K. The larger peak corresponds to a
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phonon and the additional peak below Tc has to arise from Cooper pair breaking. In (d) the-

oretical fits of those contributions are separately shown for the curve in the superconducting

state together with a background contribution of electronic interband excitations. In the

T2g symmetry in (b) there is only a weak phoninic peak in the upper (T = 1.8K) as well as

in the lower (T = 40K) curve and again a clear contribution from a superconducting gap

below Tc could be measured. The lowest curve in (c) is the A1g symmetry channel which

Figure 4.1: Raman spectra of Nb3Sn. (a) Data and theoretical fits (solid curves) in Eg
symmetry. In the upper curve (T = 1.8K) an additional peak to the phonon peak in the
lower curve (T = 40K) appears. (b) The T2g symmetry data and theoretical fits (solid
curves) also show a new peak in the upper curve (T = 1.8K) that was not present in the
lower curve (T = 40K). The phonon peak is very weak at both temperatures. (c) The
top curve is data of Eg + A1g symmetry, the middle curve is data of Eg symmetry and
the bottom curve is data of A1g symmetry obtained by subtracting the middle curve from
the top curve, all at T = 1.8K. The A1g symmetry also shows a clear peak due to a
superconducting gap and no phononic peak. The solid curve at the bottom is a theoretical
fit. (d) The upper curve from (a) is shown with the three contributions that sum up to
the theoretical fit. The smaller peak on the left arises from the superconducting gap, the
large peak from the phonon and the linear part is the background contribution of electronic
interband excitations. Original data from Dierker/Klein and Webb/Fisk [89].

was obtained by subtracting the middle curve from the top curve. Since there is no phonon
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in this channel the peak can only be due to a direct measurement of the superconducting

gap. In spite of the isotropy of the gap in this material, measured with other techniques, the

Eg Cooper pair breaking peak is at lower energy than the ones in the other symmetry chan-

nels pointing towards a gap anisotropy. Furthermore the peaks are all smaller than those

obtained by bulk methods. This lead to extensive discussions that first included the general

fact that Raman spectroscopy is a surface sensitive method which usually obtains smaller

gap values due to impurities on the surface. Measurements on freshly cleaved surfaces could

rule out that explanation and showed that the gap values for the A1g and T2g symmetries

are close to the ones obtained by bulk methods [90]. So the source of anisotropy had to

be especially present in the Eg channel which points at the phonon that is quite dominant

in the spectrum in this case. A final state interaction, meaning an interaction of the two

single electrons of the broken Cooper pair with a channel orthogonal to the pairing channel,

became a reasonable explanation since the strongly coupled Eg phonon is indeed orthog-

onal to the fully symmetric s-wave pairing channel. Together with symmetry arguments,

the unique line shape of the Eg phonon and comparison to other gap measurements it were

integrated spectral weight investigations that supported this explanation [90]. In the latter

it was obvious that in the A1g symmetry a new channel opened up below Tc which gained

weight with decreasing temperature while the weight in the Eg channel was only slightly

effected by temperature variation. It could be seen that the weight was transformed from

the phonon to the bound state of the final state interaction with decreasing temperature

which gave further evidence to that model. Thus no gap anisotropy had to be explained.

4.2.2 High temperature superconducting cuprates

Raman scattering measurements also played a role in revealing the nature of superconductiv-

ity in the high temperature cuprate superconductors. Fig. 4.2 shows one of the first Raman

measurements on a hole doped cuprate superconductor, in this caseBi2.2Sr1.8CaCu2Oy [37].

The responses on the left hand side correspond to the A1g + B2g symmetry channel and

the ones on the right hand side to the B1g + (A2g) symmetry channel ((A2g) is in brackets

since its contribution is usually negligible). The peaks observed in the normal state (a) at

T = 140K are phonon excitations. In the superconducting state (b) the spectral weight gets
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Figure 4.2: Data from Raman spectroscopy on the hole doped high temperature supercon-
ductor Bi2.2Sr1.8CaCu2Oy. The left panel shows A1g +B2g symmetry and the right panel
B1g + (A2g) symmetry in the normal (a) and superconducting state (b). In the latter one
the response shows a redistribution at low energies and a broad peak at about 400cm−1

appears in the B1g + (A2g) symmetry. Taken from [37].

significantly redistributed and is much smaller at low energies. Furthermore a new peak is

clearly seen in B1g symmetry at about 400cm−1 and in A1g +B2g symmetry a less obvious

peak structure appears around roughly 300cm−1. While in the BCS-type superconductors a

sharp onset of the new peaks at a threshold was observed in the superconducting state (see

Fig. 4.1), corresponding to a fully gaped Fermi surface, the scattering intensity is increasing

continuously at low energies in this material. A possible interpretation of this behavior was

given by a superconducting gap with nodes along certain lines of the Fermi surface (later

confirmed as d-wave pairing, see discussion in the extensive review [35]) and the difference

in the position of the pair breaking peaks in the superconducting state can be seen as the

first spectroscopic evidence for an anisotropic gap.

Raman response measurements also obtained results for electron doped cuprate su-

perconductors which were discovered later than their hole doped relatives. The example

presented in Fig. 4.3 shows Raman scattering on Nd2−xCexCuO4 in A1g, B1g and B2g

symmetry [38]. In all symmetry channels the normal state response is almost constant

and featureless in the shown energy range and in the superconducting state clear broad

peaks appear at slightly different energies. An explanation for this difference requires a
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Figure 4.3: Raman scattering intensity of the electron doped superconductor
Nd2−xCexCuO4 in A1g, B1g and B2g symmetry. The solid lines denote the response in
the superconducting state at T = 11K and the dashed lines denote the normal state re-
sponse at 35K. The ticks represent the shifts on the baselines. In the inset the temperature
dependence of the 2∆ peak energy in the B1g is shown together with the BCS mean field
temperature dependence (solid line). Taken from [38].

knowledge about the measurement geometry and the form factor of each channel. The

B2g(+A2g) (A2g is again negligible) channel is measured in the (ei, es) = (xy) (x = [100],

y = [010]) geometry with ei being the polarization direction of the incident and es the one

of the scattered photon. Its form factor has dx2+y2 symmetry which vanishes along the

BZ diagonal ((0, 0) → (π, π) and equivalent lines) meaning the major contribution in this

channel comes from the vicinity of the (0, π) and equivalent points. The B1g(+A2g) channel

is obtained in (x′y′) geometry (x′ = [110], y′ = [1̄10]) and has a form factor of dxy symmetry

that vanishes along (0, 0) → (0, π) and equivalent lines exhibiting the major contribution
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from the diagonal lines in the BZ and thus the (π/2, π/2) and equivalent points with the

here investigated Fermi surface. The (xx) geometry measures A1g +B1g and the A1g data

is obtained by subtracting the (x′y′) response. The A1g form factor is nonvanishing ev-

erywhere resulting in a contribution from the entire BZ. These form factors have a crucial

influence on the interpretation of the data illustrated in Fig. 4.3 since the Cooper-pair

breaking 2∆ peak in B1g symmetry is at lower energies than the one in B2g symmetry. This

difference is evidence for the gap maximum being located near the (π/2, π/2) point because

this region is suppressed in the B1g channel. The intensity differences of the peaks are ex-

plained through resonance effects and their general shape with a continuous onset instead

of a threshold is evidence for nodes. In the inset of Fig. 4.3 the temperature dependence of

the 2∆ peak location and thus its magnitude is compared to the mean field BCS behavior

and a clear deviation is observed. In summary one can say that this data is an example for

the possibilities of electronic Raman spectroscopy which is able to detect the presence of

gap notes in a superconductor and to measure the magnitude as well as the anisotropy of

the gap.

4.2.3 Multiband superconductor MgB2

Electronic Raman scattering experiments were also performed on the multiband supercon-

ductor MgB2 with a Fermi surface of four bands with two different gaps. Fig. 4.4 shows

Raman data of this material in E2g (top row) and A1g (bottom row) symmetry for different

excitation energies increasing from the left to the right [91]. The lager response in panel

c is due to coherence effects of the band structure and is not seen in that magnitude in

A1g symmetry which can be explained by the screening in this channel. The normal state

response (red) only shows a moderately featureless continuum that most likely has its ori-

gin in finite wave-vector effects. In the superconducting state (blue) the Raman response

shows a redistribution with a broadened threshold structure at twice the smaller gap value

∆0 without a peak. This is expected for a fully gaped superconductor with a coherence

length larger than the optical penetration depth [84]. At twice the larger gap value ∆l the

coherence peak is obviously seen and its contribution to the solid line fit is shown in shaded

violet. This peak exhibits a broadened square root singularity like structure expected for
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Figure 4.4: Raman response in E2g and A1g symmetry of the multiband superconductor
MgB2 for different excitation energies. The red responses are in the normal state at T =
40K or in an external magnetic field of 5T and the blue responses are in the superconducting
state at T = 5− 8K. The solid lines are fits to the data which are solely determined by an
electronic background continuum produced by finite wave-vector effects in the normal state.
In E2g symmetry (top row) the fits in the superconducting state consist of the electronic
background continuum, a threshold at twice the smaller gap ∆0 and a broadened peak at
twice the larger gap ∆l (shaded in violet). The superconducting A1g (bottom row) response
is fitted with the same electronic background continuum and threshold but with two peaks
(sum denoted by thin green line) arising from collective modes at ωLR (shaded in dark
green) and ωLR2 (shaded in light green) caused by multiband effects. Taken from [91].

a constant gap superconductor. With the E2g channel not transforming according to the

fully symmetric irreducible representation of the crystals point group there are no screening

effects in this channel. In contrast to that one would expect strong screening effects in

the A1g channel but there are clear peak structures seen in the response. The origin of

those peaks are multiband effects in between the two distinct superconducting condensates

explicitly meaning simultaneous cross tunneling of Cooper pairs from one condensate to the

other and vice versa. This interband quasi particle scattering is only resulting in relative

phase fluctuation of the two condensates and there is no net charge density fluctuation. So

this mode is neutral and no screening occurs. Furthermore the strength of this peak can be
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explained by the opposite signs of the two different bands involved. It can be shown that

this mode is fully symmetric and hence only contributes to the A1g symmetry response.

The theoretical fits are shown in light and dark green and their sum is represented by the

thin green line. While the sharper peak at ωLR is shown to be due to the so called Leggett’s

mode [92] explained above the second one at ωLR2 might be of the same origin or an inter-

ference between superconducting contributions from two different bands. In the two panels

on the very right the high energy contribution of phonons is also shown. In conclusion this

data is another example for results obtained by Raman spectroscopy this time detecting a

collective mode previously predicted by theory.
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Chapter 5

Model calculations of Raman responses of multiband

iron-based superconductors

In the beginning of this chapter the unscreened superconducting Raman response within a

free electron model and at zero temperature will be calculated for an only angular dependent

superconducting gap. The result will later be used to calculate the imaginary and with the

Kramers-Krönig relation the real part of the Raman response function with a constant gap.

This will make an analytical treatment of the Raman response including the screening term

possible. Vertex corrections that take into account final state interactions of the excited

quasi particles will not be considered and the Raman vertex will be obtained trough calcu-

lations using the effective mass approximation. Next investigations of multiband responses

with a constant gap will be done analytically for all possible cases which will then be used

to explain the Raman response of a multiband iron-based superconductor within a free

electron band structure model based on ARPES measurements. After that a momentum

dependent gap of extended s-wave symmetry will be introduced and the response will be

calculated numerically with this gap. The obtained single band responses will be explained

within a slightly simpler model of an only angular dependent gap and the investigated con-

stant gap cases will be used to interpret the multiband features including screening. Finally

the shortcomings of the applied model will be discussed and a comparison to earlier work

will be presented before the results of the original work in this chapter will be summarized.

5.1 Raman response of a parabolic band structure without screening

As a first approach towards a realistic prediction of the Raman scattering efficiency given by

Eq. (4.10) the simplifications of a free electron model will be applied leading to a parabolic

band structure which symbolizes circular Fermi surface sheets. Furthermore the screening
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term, second term on the right hand side of Eq. (4.13), will be neglected as well. This

results in the direct proportionality of the Raman scattering efficiency to the imaginary

part of the first term on the right side of Eq. (4.13). For n bands crossing the Fermi level

the Raman response χγγ(ω) can be written, according to Eq. (4.14), in the following way

χγγ(ω) =
1
N

∑
k

∑
n

γ2
n(k)λn(k, ω) (5.1)

with γn(k) denoting the Raman vertex and λn(k, ω) representing the Tsuneto function for

the nth band. The expression of λn(k, ω) in Eq. (4.15) is brought to the form

λn(k, ω) = tanh
(
En(k)
2kBT

)
4 |∆n(k)|2

En(k)[4E2
n(k)− (ω + iα)2]

(5.2)

En(k) denotes the quasi particle energy of excited quasi particles from the superconducting

condensate with E2
n(k) = ε2n(k) + |∆n(k)|2. Here again εn(k) is the band dispersion and

∆n(k) stands for the superconducting energy gap parameter. Furthermore ~ has been

absorbed in ω which has now energy units. For a further simplification of the treatment

only the case of absolute zero temperature will be considered at this point. At T = 0 we

can set tanh
(
En(k)
2kBT

)
= 1 and after taking the imaginary part of Eq. (5.1) we arrive at

Im (χγγ(ω)) =
1
N

∑
k

∑
n

γ2
n(k)

4 |∆n(k)|2

En(k)
2ωα

(4E2
n(k)− ω2 + α2)2 + (2ωα)2

(5.3)

Now taking limα→0 of Eq. (5.3) and using the representation of the delta distribution as a

limit of a Lorentzian function

lim
a→0

1
π

a

x2 + a2
= δ(x) (5.4)

we obtain

Im (χγγ(ω)) =
1
N

∑
k

∑
n

γ2
n(k)

4 |∆n(k)|2

En(k)
πδ(4E2

n(k)− ω2) (5.5)

Here it is important to note that Eq. (5.4) is restricted to a > 0 this means that ω has to

be a finite positive quantity. For the case of T = 0 this is certainly true since there are no

thermal excitations of which the photon can gain energy from but for finite temperatures

also negative ω have to be considered. However, at this point ω is taken to be positive. After

exchanging the sum over k, meaning a double sum over kx and ky, by a two dimensional

integral in k-space and going to polar coordinates in the following way∑
k

→ NA

(2π)2

∫
dkx

∫
dky =

NA

(2π)2

∫ 2π

0
dθ

∫ ∞
0

kdk =
NA

(2π)2

∫ 2π

0
dθ

∫ ∞
0

1
2
d(k2) (5.6)
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with N being the number of unit cells and A denoting the unit cell area, further specification

of En(k) has to be made. Assuming the paraboloid band dispersion of a free electron model

with the Fermi energy εF , that is equal to the chemical potential µ at T = 0, as the zero

energy value and the energy gap only depending on the angel the quasi particle energy

becomes

E2
n(k) =

(
k2

2m∗
− µ

)2

+ |∆n(θ)|2 = x2 + |∆n(θ)|2 (5.7)

Here the transformation x = k2

2m∗−µ was made leading to d(k2) = 2m∗dx in the integration.

The quantity m∗, in which ~2 and several other constants for a convenient transformation

into the later used units (defined in the next section) have been absorbed, is the effective

mass of the free electron band that corresponds to the curvature of the parabolic band.

Also taking the vertex to be only angle dependent Eq. (5.5) results in

Im (χγγ(ω)) =
∑
n

m∗A

π

∫ 2π

0
dθ

∫ ∞
0

dxγ2
n(θ)

|∆n(θ)|2√
x2 + |∆n(θ)|2

× δ
(

4x2 + 4 |∆n(θ)|2 − ω2
) (5.8)

To execute the delta distribution, containing a function of more than one root, one has to

use the formula

δ (g(x)) =
∑
n

1
|g′(xn)|

δ (x− xn) (5.9)

with g′(xn) denoting the first derivative of g(x) at the nth root xn of g(x). In this case

g(x) ≡ 4x2 + 4 |∆n(θ)|2 − ω2

x1/2 = ±1
2

√
ω2 − 4 |∆n(θ)|2

g′(x1/2) = ±4
√
ω2 − 4 |∆n(θ)|2

(5.10)

Now inserting Eq. (5.9) and Eq. (5.10) into Eq. (5.8) I get

Im (χγγ(ω)) =
∑
n

m∗A

π
Re

∫ 2π

0
dθ

∫ ∞
0

dxγ2
n(θ)

|∆n(θ)|2√
x2 + |∆n(θ)|2

×

 1

4
√
ω2 − 4 |∆n(θ)|2

δ

(
x− 1

2

√
ω2 − 4 |∆n(θ)|2

)

+
1

4
√
ω2 − 4 |∆n(θ)|2

δ

(
x+

1
2

√
ω2 − 4 |∆n(θ)|2

)
(5.11)
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The Re[ ] is inserted to keep the whole function real if the argument of the square root

gets negative for ω2 < 4 |∆n(θ)|2 and produces an i. After executing the delta distributions

together with the integral over x I obtain

Im (χγγ(ω)) =
∑
n

m∗A

4π
Re

∫ 2π

0
dθγ2

n(θ)
|∆n(θ)|2√

ω2 − 4 |∆n(θ)|2

[
2
ω

+
2
ω

]
=
∑
n

m∗A

π

1
ω
Re

∫ 2π

0
dθγ2

n(θ)
|∆n(θ)|2√

ω2 − 4 |∆n(θ)|2

 (5.12)

Using NF,n for the density of states in 2D with NF,n =
∣∣m∗A

π

∣∣ this can be written as

Im (χγγ(ω)) =
∑
n

NF,n

ω
Re

∫ 2π

0
dθγ2

n(θ)
|∆n(θ)|2√

ω2 − 4 |∆n(θ)|2

 (5.13)

Taking the density of states to be a constant is certainly reasonable in the vicinity of the

Fermi level but if one looks further apart of the Fermi energy and reaches the bottom or top

of the parabola this is no longer true. Above the top of the band or below its bottom the

density of states should be vanishing which could be realized by a cutoff at the particular

energy (chemical potential) of the band. Since the focus of the Raman responses calculated

in this chapter lies on the energy region near the Fermi level the cutoff will be neglected at

this point. However for the k-dependent gap used later on this feature will reappear since

the simplification done at this point is tied to the analytical calculations which are replaced

by numerics in that case. If one only considers one band in Eq. (5.13) complications from

interplay of different bands don’t exist and the sum over n can be dropped in this expression.

In the simplest case the energy gap ∆ is a constant and has no angular dependence. Then

the whole fraction containing ∆ can be put out of the integral which turns out to be just

a constant for a nonvanishing vertex of a form transforming according to the crystal’s

symmetry point group. It can easily be seen now that there is square root singularity at

ω = 2∆ and that the function is equal to zero below that singularity since the square root

gets imaginary in this region.
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5.2 Raman response of a free electron band structure based on data from

ARPES experiments

5.2.1 Band structure

In the next step the preceding calculations for one parabolic band will be extended by inte-

grating experimental results from Angular Resolved Photo Electron Spectroscopy (ARPES).

Recent publications [60, 61, 66] showed that several bands are crossing the Fermi level

(see Fig. 3.2). There are two hole-like bands around the Γ-point and an electron-like

band around the M -point which is surrounded by four additional hole-like bands forming a

propeller-like structure. This experimentally observed structure will be approximated with

a free electron model which is actually a reasonable starting point since the deviation from

parabolicity is only small at the Fermi level. The hole-like pockets around the Γ-point and

the electron-like pocket around the M -point will be represented as parabolas including the

experimentally observed effective masses, crossing points with the Fermi level and the cor-

responding top or bottom of the band. The blades of the propeller show a more elliptical

shape which will be taken into account by different effective masses along the kx + ky and

kx − ky directions so that the top of the band and the crossing point with the Fermi level

fit the data. These assumptions lead to the following representations for the parabolas

εi(k) =
1

2m∗i

(
(kx − n)2 + (ky − h)2

)
− µi (5.14)

Here i means the inner Γ-parabola (Γi), the outer Γ-parabola (Γo) or the M -pocket (Mp)

and m∗i and µi are the corresponding effective mass and chemical potential respectively.

The effective mass is in this case defined as m∗i = xmea2

~2π2 × 10−3 where x is a the number of

electron masses m describing the curvature of the particular band, e is the absolute value

of the electrons charge and a is the lattice constant of the back folded BZ (doubled unit

cell in real space) and will be taken
√

2 · 3.90Å according to [93]. This definition is chosen

in this way to carry the units of inverse energy and to transform the effective mass for the

inserted number of electron masses to the same units as µ which is used in meV . This also
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Figure 5.1: Illustration of the bands crossing the Fermi level in the free electron model.
The inner Γ-parabola is blue, the outer Γ-parabola is yellow, the M -pocket is green and the
propeller blades are magenta and brown. The M -pocket is electron-like and the rest of the
band is hole-like. The red dashed square encloses the 1. BZ.

means that kx and ky run from -1 to 1 for the first BZ and are bare numbers. The ellipses

will be represented by

εbl(k) =
1

2m∗x+y


[(
kx −

(
n+ 0.346√

2
ξ1

))
+
(
ky −

(
h+ 0.346√

2
ξ2

))]
√

2


2

+
1

2m∗x−y


[(
kx −

(
l + 0.346√

2
ξ3

))
−
(
ky −

(
o+ 0.346√

2
ξ4

))]
√

2


2

− µbl

(5.15)

with m∗x+y being the effective mass in the kx + ky direction, m∗x−y the effective mass in

the kx − ky direction, defined analog to m∗i , and µbl denoting the chemical potential of the

blades. In both equations n, h, l, o ∈ Z and ξ1,2,3,4 = −1, 0, 1. The value 0.346√
2

is extracted

from [60]. The crossing of the Fermi level in free electron approximation of the ARPES
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Table 5.1: Effective masses and chemical potentials used for Fig. 5.1.
band inner Γ-par. outer Γ-par. M -pocket blade

effective mass [me] -2.1 -6 0.8 -0.61, -2.46
chemical potential [meV ] 35 45 -17 10

data is shown in Fig. 5.1. The first BZ contains one inner Γ-parabola (blue), one outer

Γ-parabola (yellow), one M -pocket (green) and four blades (two bown and two magenta

ones) and is illustrated by the red dashed square. For presentation purposes a larger area is

shown where the propeller structure is more obvious. The chemical potentials and effective

masses used for this illustration are shown in Table 5.1.

5.2.2 Raman verteces

The calculations for the Raman response with the bands in Eq. (5.14) and Eq. (5.15) are

almost entirely analog to those done in the previous section. The main difference now will be

that an explicit form of the Raman vertex is obtained by the effective mass approximation

in Eq. (4.12). Furthermore group theoretical arguments determine the composition of the

different entries of the effective mass tensor to the particular Raman vertex. A matrix

element MF,I = Mα,β
I,F e

α
i e
β
s can be decomposed into the basis functions of the irreducible

representations of the point group describing the crystal. Here the assumption of tetragonal,

two dimensional lattice structure will be made which results in the decomposition [35]

MF,I =
1
2
OA1g(e

x
i e
x
s + eyi e

y
s) +

1
2
OB1g(e

x
i e
x
s − e

y
i e
y
s)

+
1
2
OB2g(e

x
i e
y
s + eyi e

x
s ) +

1
2
OA2g(e

x
i e
y
s − e

y
i e
x
s )

(5.16)

Here Oµ is the projected operator into the particular irreducible representation and eαi,s is

the incident (i) and scattered (s) light polarization. For q = 0 there is no mixing between

the representations which means that the correlation functions of the Operators Oµ are
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independent of each other. This leads to the following Raman verteces for the parabolic

band in Eq. (5.14)

γiA1g
=
m

2~2

(
∂2εi(k)
∂kx∂kx

+
∂2εi(k)
∂ky∂ky

)
=

1
~2

m

m∗i

γiB1g
=
m

2~2

(
∂2εi(k)
∂kx∂kx

− ∂2εi(k)
∂ky∂ky

)
= 0

γiB2g
=
m

2~2

(
∂2εi(k)
∂kx∂ky

+
∂2εi(k)
∂ky∂kx

)
= 0

γiA2g
=
m

2~2

(
∂2εi(k)
∂kx∂ky

− ∂2εi(k)
∂ky∂kx

)
= 0

(5.17)

So the only channel contributing to the Raman response for a parabolic band is the fully

symmetric A1g channel all others vanish. For the elliptical band in Eq. (5.15) one obtains

the verteces

γblA1g
=
m

2~2

(
∂2εbl(k)
∂kx∂kx

+
∂2εbl(k)
∂ky∂ky

)
=

m

2~2

(
1

m∗x+y

+
1

m∗x−y

)

γblB1g
=
m

2~2

(
∂2εbl(k)
∂kx∂kx

− ∂2εbl(k)
∂ky∂ky

)
= 0

γblB2g
=
m

2~2

(
∂2εbl(k)
∂kx∂ky

+
∂2εbl(k)
∂ky∂kx

)
=

m

2~2

(
1

m∗x+y

− 1
m∗x−y

)

γblA2g
=
m

2~2

(
∂2εbl(k)
∂kx∂ky

− ∂2εbl(k)
∂ky∂kx

)
= 0

(5.18)

Here A1g as well as B2g are nonzero so two channels contribute to the Raman response.

It is important to note that the magenta blades in Fig. 5.1 have the larger effective mass

along the kx + ky direction while the larger effective mass of the brown blades is the one

along the kx − ky direction.
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5.2.3 Constant superconducting gap parameter

Unscreened Raman responses

The assumption of T = 0 and thus ω > 0 is still applied. Furthermore the energy gap

parameter ∆ will now taken to be just a constant. Hence the calculation of the imaginary

part of the Raman response for the parabolic bands for the A1g channel results in

Im
(
χ
i,A1g
γγ (ω)

)
=

2π
~4
NF,i

(
m

m∗i

)2

Re

 ∆2
i

ω
√
ω2 − 4∆2

i

 (5.19)

Since the inner and outer Γ-parabola are centered around the point of origin in k-space no

coordinate shift had to be done while performing the calculation. For the M -pocket the

point of origin is taken to be the M -point by shifting kx,y → k
′
x,y + 1. The transformation

to polar coordinates is analog to the one in the previous section and the variable x over

which the delta distribution is executed is again x = k2

2m∗i
− µi leading to d(k2) = 2m∗i dx

and the density of states is NF,i =
∣∣∣m∗iAπ ∣∣∣. Realizing that there is no angular dependence

the integral over θ gives the extra factor of 2π while the remaining difference to Eq. (5.13)

evolves from the now explicitly evaluated Raman vertex γiA1g
in Eq. (5.17). For the now

following evaluation of the imaginary part of the Raman response of the elliptical bands

εbl(k) one has to be a little more careful. First of all the point of origin is is taken to be

in the middle of the ellipse which is realized by setting all parameters (n, h, l, o, ξ1,2,3,4) to

zero. Then transformation Kx = kx+ky√
2

and Ky = kx−ky√
2

is done. The absolute value of

the Jacobi determinant for this transformation is unity showing that it is area conserving

and thus dkxdky = dKxdKy. To be able to evaluate the integral in the same way as before

another transformation Ky =
√

m∗x−y
m∗x+y

K
′
y is applied in order to rescale the coordinate axes.

This effects the integration since dKy =
√

m∗x−y
m∗x+y

dK
′
y. The resulting band equation is

ε̃bl(k) =
1

2m∗x+y

(
K2
x +K

′2
y

)
+ µbl (5.20)

This looks entirely equal to Eq. (5.14) with n = h = 0 so the computation is again analog

to the one for a parabolic band. Transforming again into polar coordinates, using this time
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x = K2

2m∗x+y
− µbl with K2 = K2

x + K
′2
y and inserting the Raman vertex for A1g symmetry

one obtains

Im
(
χ
bl,A1g
γγ (ω)

)
=

2π
~4
NF,bl

m2

4

(
1

m∗x+y

+
1

m∗x−y

)2

Re

 ∆2
bl

ω
√
ω2 − 4∆2

bl

 (5.21)

With the Raman vertex in B2g symmetry the result is

Im
(
χ
bl,B2g
γγ (ω)

)
=

2π
~4
NF,bl

m2

4

(
1

m∗x+y

− 1
m∗x−y

)2

Re

 ∆2
bl

ω
√
ω2 − 4∆2

bl

 (5.22)

Here the density of states is taken to be NF,bl =
√
m∗x+ym

∗
x−yA

π . Both the A1g and the B2g

result show an invariance towards exchange of the effective masses m∗x+y and m∗x−y which

means that all four blades contribute in the same way despite of their different orientation.

Furthermore both results properly reduce to the parabolic case if one sets the two effective

masses equal meaning the result displayed in Eq. (5.21) is equal to the one in Eq. (5.19)

and the one in Eq. (5.22) is equal to zero. The entire Raman response without screening is

just the sum of the responses of the different bands resulting for A1g symmetry in

Im
(
χ
A1g
γγ (ω)

)
= Im

(
χ

Γi,A1g
γγ (ω)

)
+ Im

(
χ

Γo,A1g
γγ (ω)

)
+ Im

(
χ
Mp,A1g
γγ (ω)

)
+ 4× Im

(
χ
bl,A1g
γγ (ω)

) (5.23)

In B2g symmetry only the blades contribute and the response is

Im
(
χ
B2g
γγ (ω)

)
= 4× Im

(
χ
bl,B2g
γγ (ω)

)
(5.24)

Real part of the response function

The last thing that has to be added to the free electron band structure model in order to

calculate a realistic Raman response is the screening represented by the second term on

the right hand side of Eq. (4.13). This term is only nonvanishing in the totally symmetric

A1g symmetry. In contrast to the unscreened term there is now a possibility of cross terms

between the response functions of different bands in the numerator leading to a dependence

of the Raman response on the real part of the response function. Thus this term has

to be calculated as well. This calculation can be done with the Kramers-Krönig relation
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which relates the real part of a response function χ
′
(ω) to the imaginary part χ

′′
(ω) via the

equation [86]

χ
′
(ω) =

1
π
P

∫ ∞
−∞

χ
′′
(ω
′
)

ω′ − ω
dω
′

(5.25)

P denotes the Cauchy principle value of the integral which usually contains singularities that

require special care during the calculation. Using that χ
′
(ω) is always an even and χ

′′
(ω) is

always an odd function of ω one obtains the Kramers-Krönig relation in the following form

χ
′
(ω) =

2
π
P

∫ ∞
0

ω
′ · χ′′(ω′)
ω′2 − ω 2

dω
′

(5.26)

Now inserting the previously obtained imaginary part of the response function Im
(
χ
n,A1g
γγ

)
for the nth band leads to

Re
(
χ
n,A1g
γγ (ω)

)
= 2πNF,n

(
γnA1g

)2
× 2
π
P

∫ ∞
2∆n

∆2
n

(ω′2 − ω 2)
√
ω′2 − 4∆2

n

dω
′

(5.27)

The lower integration boundary here is 2∆n since for smaller values of ω
′

the square root

would get imaginary but the result is meant to be the real part of χn,A1g
γγ (ω) so the imaginary

case has to be excluded. The evaluation of the integral for ∆n > 0 leads to

Re
(
χ
n,A1g
γγ (ω)

)
= 2πNF,n

(
γnA1g

)2
×Re

[
2
π

∆2
n

ω
√

4∆2
n − ω2

arcsin
(

ω

2∆n

)]
(5.28)

The function in the argument of the Re is entirely real below ω = 2∆n since the square

Figure 5.2: Real part (blue) and imaginary part multiplied with minus unity (red) of the
response function in A1g symmetry as a function of ω in units of ∆n. The effective masses
used correspond to one electron mass. The singularity occurs at ω = 2∆n in both plots and
the real part has a sign change at this point.

root is real and the imaginary part of the arcsin is zero. At ω = 2∆n it has a singularity in

the real as well as in the imaginary part and a sign change in the real part. Above ω = 2∆n
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the function has both an imaginary and a real part. The latter one consists of the square

root with the signs switched in the argument multiplied with the imaginary part of the

arcsin. The imaginary part shows an interesting feature. With the real part of the arcsin

being a constant of π
2 that cancels with the factor of 2

π and the switched signs under the

square root the previously obtained result for Im
(
χ
n,A1g
γγ

)
is reproduced with a minus sign

in front that appears by moving the i coming from the square root from the denominator

into the numerator. Thus the function

χ
n,A1g
γγ (ω) = 2πNF,n

(
γnA1g

)2
× 2
π

∆2
n

ω
√

4∆2
n − ω2

arcsin
(

ω

2∆n

)
(5.29)

is the total response function with the proper real part and the imaginary part with a

switched sign. This minus will be absorbed in the definition of the Raman response. The

real and the imaginary part multiplied with minus unity of χn,A1g
γγ are shown in Fig. 5.2

for effective masses corresponding to one electron mass and and ω in the units of ∆n. For

the following discussion χn,A1g
γγ (ω) will be transformed into a slightly simpler form with the

definition of xn = ω
2∆n

. This results in

χ
n,A1g
γγ (ω) = NF,n

(
γnA1g

)2 arcsin(xn)
xn
√

1− x2
n

(5.30)

Interplay of two screened bands in A1g symmetry

With the entire response function for the used model known it is now possible to investigate

the effect of screening, which is only present in A1g symmetry, for one and two bands. The

latter one is the much more interesting case since for only one band the screening is perfect

in the applied approximations. This can be easily seen in the general expression for the

screened Raman response for the nth band which is

Im
[
NFnγ

2
nFn

]
− Im

[
(NFnγnFn)2

NFnFn

]
(5.31)

with the definition

Fn =
arcsin(xn)
xn
√

1− x2
n

(5.32)

and dropping the index of the symmetry channel of the vertex for a more condensed notation.

It clearly shows that the screening term exactly cancels the unscreened term. This is the
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case for parabolic as well as elliptical shaped Fermi surface sheets and has its origin in the

fact that for both the Raman verteces are constants. Furthermore the density of states in

two dimensions is also a constant, meaning it is independent of energy and solely determined

by the effective masses of the band and the area of the unit cell. The general form of the

screened Raman response for two bands which is

Im
[
NF1γ

2
1F1 +NF2γ

2
2F2

]
− Im

[
(NF1γ1F1 +NF2γ2F2)2

NF1F1 +NF2F2

]
(5.33)

leaves a lot more room for variation of the different parameters and shows a wide range of

different possible cases. The alterable parameters are the effective masses m∗n1 and m∗n2 (n

is the band index and 1 and 2 correspond to the kx +ky and the kx−ky direction) that can

be adjusted to a parabolic band and an elliptical band with variable ellipticity. Furthermore

the absolute value as well as the sign of the effective mass represent a huge play ground

themselves. Also the gap parameter can be altered and hence Fn in Eq. (5.32).

At this point all parts of the two bands will be taken to be different which makes the

further discussion remain general. Expanding out the bracket in the numerator of the

screening term and multiplying a nontrivial form of unity to the terms containing N2
Fnγ

2
nF

2
n

results in

Im [ NF1γ
2
1F1 +NF2γ

2
2F2

]
− Im

[
N2
F1γ

2
1F

2
1

NF1F1 +NF2F2

(
NF1F1 +NF2F2

NF1F1
− NF2F2

NF1F1

)
+

N2
F2γ

2
2F

2
2

NF1F1 +NF2F2

(
NF1F1 +NF2F2

NF2F2
− NF1F1

NF2F2

)
+

2NF1NF2γ1γ2F1F2

NF1F1 +NF2F2

] (5.34)

The first fraction of the nontrivial unity bracket gives together with the term in front of the

bracket for both brackets a term that cancels exactly with one in the unscreened response.

The remaining fractions of the screening term can be brought to the simpler form

Im

[
(γ1 − γ2)2 NF1F1NF2F2

NF1F1 +NF2F2

]
(5.35)

This represents the entire Raman response and can be seen as a cross term of the two bands

since the response of the two single bands and their screening were separated and canceled

by each other. It is now very easy to see that the entire response is vanishing and therefore

the screening is perfect if the γ’s are equal. This is the case when m∗1 = m∗2 for the parabolic

band and m∗11 = m∗21 and m∗12 = m∗22 or m∗11 = m∗22 and m∗12 = m∗21 for the elliptic band
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Figure 5.3: Comparison of unscreened (black) and screened Raman response (red) of two
electron-like bands with identical Raman verteces in A1g symmetry. For parabolic bands
with a mass ratio (MR) of 1 and elliptical bands of MR’s 2 and 10 the screening is perfect
and the screened response vanishes. This is true for equal and different gap parameters ∆n.

and is shown in Fig. 5.3. The displayed plots further demonstrate that the gap values

have no influence at all on this behavior and that for different ∆n’s the screened response

also vanishes as expected from Eq. 5.35.

Another easily recognizable fact of Eq. (5.35) is that for γ’s with opposite signs, refering

to one electron and one hole band, the response will reach a maximum. The question arises

at this point if that corresponds to a vanishing screening or some intermediate case of partial

screening. A closer look at the general screening term, the second term in Eq. (5.33), shows

that the screening certainly vanishes for the same gap value and the same absolute value

of the effective masses but different signs for the different bands (different signs within one

band make no physical sense). As soon as one of those parameters differs in between the

two bands the situation becomes nontrivial and requires more detailed investigation. First

the gap parameter will be set equal in both F ’s which are then equal to each other and can

be put out of the bracket in the numerator of the screening term. Hence this term will be

Im

[
(NF1γ1 +NF2γ2)2

NF1 +NF2
F

]
(5.36)
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Figure 5.4: Comparison of unscreened (black) and screened (red) Raman responses for two
parabolic bands of opposite signs with equal gap values and different absolute values of the
effective masses in A1g symmetry. The given numbers correspond to the number of electron
masses. The screening vanishes for all mass differences.

The fraction in front of F is a function of the effective masses which is written out explicitly

as

1
M∗

= B

(√
m∗11m

∗
12

(
1
m∗11

+ 1
m∗12

)
+
√
m∗21m

∗
22

(
1
m∗21

+ 1
m∗22

))2

√
m∗11m

∗
12 +

√
m∗21m

∗
22

(5.37)

with all common constants absorbed in B. This can be brought to a more transparent form

by taking one of the inverse effective masses out of the bracket. It is important to note that

in this case, where the interplay of an electron-like and a hole-like band is investigated, the

masses of one band are negative quantities. Without loss of generality the masses of band 2

will be taken to be hole-like and thus negative meaning m∗21 = − |m∗21| and m∗22 = − |m∗22|.

This turns the sign in between the terms in the numerator to a minus and Eq. (5.37)

transforms into

1
M∗

= B

(√
m∗12
m∗11

(
1 + m∗11

m∗12

)
−
√

m∗22
m∗21

(
1 + m∗21

m∗22

))2

√
m∗11m

∗
12 +

√
m∗21m

∗
22

(5.38)

The absolute value brackets are thrown away here since 1
M∗ is a function of the mass ratios

MRn = m∗n2
m∗n1

of the bands which are always positive. In the parabolic case all these mass

ratios (MR’s) are unity and there are two constants left in the numerator that cancel each

other. Hence the whole term and thus the screening vanishes. It is a remarkable result that

the absolute value of the masses has no influence if both bands are parabolic. This means
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that different parabolic bands with dramatically different effective masses with opposite

signs are entirely unscreened as long as they have the same gap value. Fig. 5.4 displays

the corresponding Raman responses for a mass difference of a factor of 10 and 100. In both

cases the unscreened (black) and screened (red) responses are exactly the same and thus

there is no screening. Furthermore the screening term also vanishes if the MR’s of the two

bands are equal. That means that for elliptical bands of the same ellipticity it also does

not matter what absolute value the masses have. As long as the band masses have opposite

signs and the gap value is the same for both they are totally unscreened. This corresponds

to the plots on the diagonal of Fig. 5.5. Here the screened Raman response looks entirely

Figure 5.5: Comparison of the unscreened (black) and screened (red) Raman responses in
A1g symmetry of two elliptical bands with opposite signs and equal gap values for different
combinations of mass ratios (MRn) for the nth band. The diagonal shows no difference
between unscreened and screened response since the MR’s are equal. A real difference
between the screened and the unscreened response is first seen with a difference of a factor
of 10 between the MR’s. The response below ω = 1∆ is not shown since it is zero.

equal to the unscreened one. The independence of the masses absolute value is restricted
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to the two dimensional case. In 1D as well as in 3D the density of states is not a constant

Figure 5.6: Comparison of unscreened (black) and screened (red) Raman responses in A1g

symmetry for two bands with the same sign, same gap value and different combinations of
effecitve masses m∗1 and m∗2 for band 1 and 2 respectively. The given numbers correspond
to the number of electron masses and the second effective mass of the band in the elliptical
case is given by the mass ratio (MR). The first row shows two parabolic bands, the second
row two elliptical bands with equal ellipticity and the third row displays two elliptical bands
with different ellipticities. The screening is never perfect and gets less effective for bigger
differences between the effective masses.

any more and shows an energy dependence. Furthermore the term in the density of states

that includes the effective mass of the band has not the dimension of mass to the power of

one in both cases. Thus it is simply by dimensional analysis impossible that the effective

mass dependence of the density of states cancels with the effective mass dependence in the

Raman vertex.

The next interesting scenario that can be studied in more detail is the change of ellipticity

in between the two bands of opposite signs. The gap is still assumed to be the same for

both bands thus Eq. (5.38) will still apply. With a different mass ratio (MR) the terms



75

in the numerator do not cancel anymore and the screening will affect the Raman response.

The effects of different MR’s are displayed in Fig. 5.5. The diagonal still has the same

MR for the two bands and thus shows no difference in between the unscreened (black) and

screened response (red). The invariance towards band switching of Eq. (5.38) results in

the plot array being a symmetric matrix. The deviation from the unscreened term in the

offdiagonal plots is first obviously seen for a difference of the MR’s by a factor of 10. For a

difference by a factor of 5 there is almost no recognizable deviation and for a factor of 100

between the MR’s the deviation becomes more noticeable.

Another case of intermediate screening will be observed if two bands of the same sign

but with different absolute values of the effective masses are considered. This makes the

Raman verteces of the two bands having the same sign but a different absolute value and

the bracket in Eq. (5.35) not vanishing nor maximal. To study the simplest case of this

scenario first the gap value will be taken to be equal for the two bands which transforms

Eq. (5.35) to the following form.

Im

[
(γ1 − γ2)2 NF1NF2

NF1 +NF2
F

]
(5.39)

This time the total response is determined by the difference of the verteces and the fraction of

the densities of state. Unscreened (black) and screened (red) Raman responses for different

combinations of effective masses for parabolic and elliptical bands of the same as well as

different ellipticities are shown in Fig. 5.6. For small differences between the effective

masses the verteces in Eq. (5.39) almost cancel each other and the screened response is

small. The bigger the difference of m∗1 and m∗2 gets the bigger is the total response.

So far all investigations were tied to the simplification of equal gap values in both

bands, except for the trivial case of equal verteces and therefore vanishing response. Now

this assumption will be dropped and the case of different gap values will be discussed which

makes the Fn’s different for the two bands. Without loss of generality ∆1 < ∆2 is assumed

in the following. In order to gain more insight in the exact nature of Eq. (5.35) the

simplifying definitions in Eq. (5.32) will be partially reinserted. This leads to

Im

(γ1 − γ2)2
NF1NF2

AS(1)

x1

√
1−x2

1

AS(2)

x2

√
1−x2

2

NF1
AS(1)

x1

√
1−x2

1

+NF2
AS(2)

x2

√
1−x2

2

 (5.40)
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Figure 5.7: Illustration of the Raman response of two parabolic bands with different gap
values of 2∆1 = ∆2, different signs and equal absolute values of the effective masses m∗1
and m∗2. The region of ω < 2∆1 < 2∆2 is displayed in black, the region of 2∆1 < ω < 2∆2

in red and the region of 2∆1 < 2∆2 < ω in yellow. There are no singularities at twice the
gap values.

with the new short representation of the arcsin

AS(n) = arcsin (xn) (5.41)

Eq. (5.40) immediately simplifies to

Im

[
(γ1 − γ2)2 NF1NF2AS(1)AS(2)

NF1AS(1)x2

√
1− x2

2 +NF2AS(2)x1

√
1− x2

1

]
(5.42)

This equation shows another remarkable fact that was not obvious in the general form. At

ω = 2∆1, where x1 = 1 and x2 = ∆1
∆2

, the square root in the second term in the denominator

vanishes and so does the whole term while the square root in the first term in the denomiator

stays real and finite. AS(1) cancels because it is present in the numerator as well and AS(2)

is an entirely real function since its imaginary part is zero for the argument being smaller

than 1. Thus Eq. (5.42) takes the following value at ω = 2∆1 and hence x1 = 1 and

x2 = ∆1
∆2

Im

(γ1 − γ2)2NF2

arcsin
(

∆1
∆2

)
∆1
∆2

√
1− ∆2

1

∆2
2

 = 0 (5.43)
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Figure 5.8: Comparison of unscreened (black) and screened Raman responses in A1g sym-

metry for two bands with different gap values 2∆1 = ∆2 and different combinations of

effective masses. The yellow plots correspond to two screened electron-electron bands and

the red plots to two screened electron-hole bands. The given numbers for the effective

masses correspond to the number of electron masses. It is the sign of m∗2 that is altered

and the values of the second band mass in the elliptical case are given through the mass

ratio (MRn). For the verteces being of the same sign and value (two upper yellow plots in

the first column) the response is again vanishing. This is not the case for the lowest yellow

plot in the first column which is only vanishingly small but not exactly zero. The larger

the masses get the sharper gets the peak and the closer it is located to the the position

of the singularity of the band with the smaller masses. The peaks moved from the mid-

dle exhibit a more similar shape to the square root singularity the sharper they get. The

electron-electron band response (yellow) is always smaller than the electron-hole response

(red).
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This means that the first singularity, meaning the one at twice the smaller gap value,

is removed and the whole response vanishes at this point. At ω = 2∆2 and thus x1 = ∆2
∆1

and x2 = 1 the first term in the denominator vanishes and the square root in the second

term gets imaginary. This time AS(2) cancels out and the argument of AS(1) is bigger than

unity making it imaginary with a real part being a constant of π
2 . Hence at ω = 2∆2 Eq.

(5.42) is

Im

(γ1 − γ2)2NF1

π
2 + iIm

[
arcsin

(
∆2
∆1

)]
i∆2

∆1

√
∆2

2

∆2
1
− 1

 = −π (γ1 − γ2)2NF1∆2
1

2∆2

√
∆2

2 −∆2
1

(5.44)

So the singularity at twice the bigger gap value is also removed but remains finite. The

removal of the singularities will no longer be present if the gap values ∆1 and ∆2 are taken

to be equal again since then the two terms in the denominator of Eq. (5.42) vanish at

the same point and the whole term approaches infinity. Hence this case properly reduces

to the simpler case of similar gap values discussed earlier. After realizing the removal

of the singularities the behavior of the response in the three regions ω < 2∆1 < 2∆2,

2∆1 < ω < 2∆2 and 2∆1 < 2∆2 < ω will be studied. In the first region the arguments of

both arcsin’s are smaller than one and both square roots are real which makes the whole

argument of Im[...] in Eq. (5.42) real and thus the function equal to zero. So the entire

response below twice the smaller gap value vanishes. In the region where 2∆1 < ω < 2∆2,

corresponding to x1 > 1 and x2 < 1, AS(1) becomes a function with a real as well as an

imaginary part and the square root including x1 is entirely imaginary while AS(2) and the

square root containing x2 stay real. After separating the real from the imaginary parts one

obtains

−
(γ1 − γ2)2NF1N

2
F2 (Re [AS(2)])2 SQ1

2
π

[(
π
2NF1S̃Q2

)2
+
(
NF1Im [AS(1)] S̃Q2 +NF2Re [AS(2)]SQ1

)2
] (5.45)

with the following definitions for a shorter notation

S̃Qn = xn
√

1− x2
n

SQn = xn
√
x2
n − 1

(5.46)



79

In the region where 2∆1 < 2∆2 < ω, meaning x1 > 1 and x2 > 1, both arcsin’s have a real

and an imaginary part and both square roots are imaginary. The separation of the real and

the imaginary part leads to

−
(γ1 − γ2)2NF1NF2

[
NF2

(
(2Im [AS(2)])2 + π2

)
SQ1 +NF1

(
(2Im [AS(1)])2 + π2

)
SQ2

]
8
π

[
(NF1Im [AS(1)]SQ2 +NF2Im [AS(2)]SQ1)2 +

(
π
2NF1SQ2 + π

2NF2SQ1

)2]
(5.47)

A plot of the three different regions with ω < 2∆1 < 2∆2 (x1 < 1 and x2 < 1) in black,

2∆1 < ω < 2∆2 (x1 > 1 and x2 < 1) in red and 2∆1 < 2∆2 < ω (x1 > 1 and x2 > 1)

in yellow is shown in Fig. 5.7. As expected from the preceding argumentation there are

Figure 5.9: Same plots as in Fig. 5.8 but with ∆1 = 2∆2. For the peaks of the screened
responses located in the middle of the singularities there is no change but all the other
peaks now move towards the singularity of the bigger gap value since this is now the one of
the band with the smaller masses. The overall shape of the peaks that are moved from the
middle is now less square root singularity like but looks more like a sharper getting bell.

no singularities at twice the gap values and the function is zero at twice the smaller and

finite at twice the bigger gap value. In between those two removed singularities is a bell
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shaped peak located in the middle and above twice the larger gap value the function falls

off. Fig. 5.8 shows the unscreened (black) and screened Raman responses for two bands

with the same sign (yellow) and with different signs (red). The different combinations of

effective masses influence the peak position as well as its shape. The larger the masses

get the sharper gets the peak and it approaches more and more the form of a square

root singularity. Furthermore the peak moves towards twice the smaller gap value which

corresponds to the band with the smaller effective masses. If both verteces are equal the

peak is located in the middle of the two singularities for the electron-hole case (red) and

the entire response vanishes for the electron-electron case (yellow) since the verteces are

exactly equal. It is important to note that the lowest plot in the first column does not

have a vanishing electron-electron band response but a very small one which is rooted in

the small difference of the verteces. In Fig. 5.9 the same case as in Fig. 5.8 except for now

∆1 = 2∆2 is displayed. The obvious difference here is that the peak moves towards the

larger gap value now which is again the one corresponding to the band with the smaller

effective masses. The shape also changes in the cases of the peak being moved from the

middle. Now the response exhibits a more bell like shape that gets sharper and sharper for

increasing effective masses. In both cases the response with the two bands having opposite

signs (red) is always larger than the one with equal signs of the effective masses since the

verteces add up in the former case instead of subtracting from each other in the latter one.

Interplay of multiple screened bands

After having studied the interplay of two bands in all kinds of different cases it is certainly

interesting to generalize the investigations to more than two and finally n bands. First the

Raman response for three bands is considered which has the form

Im
[
NF1γ

2
1F1 +NF2γ

2
2F2 +NF3γ

2
3F3

]
−Im

[
(NF1γ1F1 +NF2γ2F2 +NF3γ3F3)2

NF1F1 +NF2F2 +NF3F3

] (5.48)
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With an entirely similar calculation as in the two band case this can be transformed to

Im

[
NF1F1NF2F2

NF1F1 +NF2F2 +NF3F3
(γ1 − γ2)2

+
NF1F1NF3F3

NF1F1 +NF2F2 +NF3F3
(γ1 − γ3)2

+
NF2F2NF3F3

NF1F1 +NF2F2 +NF3F3
(γ2 − γ3)2

] (5.49)

For four bands the calculations are again analog and the Raman response

Im
[
NF1γ

2
1F1 +NF2γ

2
2F2 +NF3γ

2
3F3 +NF4γ

2
4F4

]
−Im

[
(NF1γ1F1 +NF2γ2F2 +NF3γ3F3 +NF4γ4F4)2

NF1F1 +NF2F2 +NF3F3 +NF4F4

] (5.50)

is brought to the more transparent form

Im

[
NF1F1NF2F2

NF1F1 +NF2F2 +NF3F3 +NF4F4
(γ1 − γ2)2

+
NF1F1NF3F3

NF1F1 +NF2F2 +NF3F3 +NF4F4
(γ1 − γ3)2

+
NF1F1NF4F4

NF1F1 +NF2F2 +NF3F3 +NF4F4
(γ1 − γ4)2

+
NF2F2NF3F3

NF1F1 +NF2F2 +NF3F3 +NF4F4
(γ2 − γ3)2

+
NF2F2NF4F4

NF1F1 +NF2F2 +NF3F3 +NF4F4
(γ2 − γ4)2

+
NF3F3NF4F4

NF1F1 +NF2F2 +NF3F3 +NF4F4
(γ3 − γ4)2

]

(5.51)

Taking a closer look at Eq. (5.49) and Eq. (5.51) makes it easy to find the general form for

the interplay of n bands which can be written as

Im

∑
i,j

(γi − γj)2 NFiFiNFjFj
(
∑

lNFlFl)

 (5.52)

with all i, j, l running from 1 to n. The case of i = j does not have to be excluded since

the bracket containing the verteces is equal to zero for that case and automatically cancels

the whole term. This form shows that for any verteces γi and γj being equal to each other

the corresponding term containing the functions Fi and Fj vanishes. Furthermore with

the numerator of each term only containing two functions Fi and Fj and the corresponding

densities of state NFi and NFj most of the results obtained in the two band case are still true

for each single term in the sum of Eq. (5.52). The single term of two bands having opposite
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signs will still be unscreened if the bands are parabolic or have the same ellipticity and the

two gap values are equal. For two bands with opposite signs and different ellipticities and

for two bands with equal signs and different verteces the screening will still be partial if the

gap parameters are equal. The removal of the singularities in the case of different gap values

for each single term will now be more complicated since there are now n gap parameters

and n terms in the denominator that have to vanish at the same time in order to produce a

singularity. For reasons of simplification and since this is assumed in the applied model for

the pnictide band structure the case of n = 4 bands will now be studied in detail to clarify

the conditions for the removal and the presence of a singularity. Expanding Eq. (5.40) to

the four band case results in the single term for the bands i and j

Im

(γi − γj)2

Ki
S̃Qi

Kj

S̃Qj
K1

S̃Q1

+ K2

S̃Q2

+ K3

S̃Q3

+ K4

S̃Q4

 (5.53)

with further simplifying definitions

Kn = NFnAS(n)

S̃Qn = xn
√

1− x2
n

(5.54)

(The second one is previously defined in Eq. (5.46) but repeated for the readers conve-

nience.) This can be transformed into the following form

Im

(γi − γj)2 KiKj

K1
S̃QiS̃Qj

S̃Q1

+K2
S̃QiS̃Qj

S̃Q2

+K3
S̃QiS̃Qj

S̃Q3

+K4
S̃QiS̃Qj

S̃Q4

 (5.55)

Here it is very important which S̃Q’s have the same or different gap values and can be

canceled with each other in the terms in the denominator. The symmetry of this expression

allows to set i and j equal to any number of the four bands thus they will be set to i = 1 and

j = 2 for a more transparent discussion of the possible cases. First all four gap parameters

will be taken to differ from each other resulting in S̃Q1 6= S̃Q2 6= S̃Q3 6= S̃Q4. Eq. (5.55)

then will be

Im

(γ1 − γ2)2 K1K2

K1S̃Q2 +K2S̃Q1 +K3
S̃Q1S̃Q2

S̃Q3

+K4
S̃Q1S̃Q2

S̃Q4

 (5.56)
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Figure 5.10: Comparison of unscreened (black) and screened (red) Raman response for
four bands of unequal Raman verteces and different combinations of gap values in A1g

symmetry. For all gaps being different all singularities are removed and in between twice
the gap values there are the bell shaped peaks discussed in the two band case. Whenever
a gap value appears in more than one band the singularity at twice this gap value is not
removed.

When S̃Q1 hits zero the second term in the denominator vanishes as well as the third and

the fourth term but the first term still remains finite and there is no singularity. When

S̃Q2 vanishes it is the second term in the denominator that is still finite also resulting in

a removal of this singularity. If S̃Q3 is zero the third term in the denominator approaches

infinity and the same thing happens with the fourth term when S̃Q4 vanishes. Hence the

whole fraction vanishes for those two cases and all possible singularities are removed. This

is true for all terms of the sum over i, j since they are symmetric in exchanging the four

band numbers. Now the assumption of only three gap parameters being different will be

made and first I choose S̃Q1 6= S̃Q2 6= S̃Q3 = S̃Q4. This leads to the following form of the

single term in the sum of the total response

Im

(γ1 − γ2)2 K1K2

K1S̃Q2 +K2S̃Q1 +K3
S̃Q1S̃Q2

S̃Q3

+K4
S̃Q1S̃Q2

S̃Q3

 (5.57)
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This is entirely equal to the situation in Eq. (5.56) and all singularities are removed in

this particular term but for the term with i = 3 and j = 1 or 2 (or the other way around)

something else might happen. Looking at one of those terms

Im

(γ2 − γ3)2 K2K3

K1
S̃Q2S̃Q3

S̃Q1

+K2S̃Q3 +K3S̃Q2 +K4S̃Q2

 (5.58)

Here the whole term vanishes for S̃Q1 = 0 and for S̃Q2 = 0 and S̃Q3 = 0 there is always

one finite term left in the the denominator. So in this particular term of the sum also all

singularities are removed. The last term that could show a different behavior is the one

with i = 3 and j = 4

Im

(γ3 − γ4)2 K3K4

K1
S̃Q

2

3

S̃Q1

+K2
S̃Q

2

3

S̃Q2

+K3S̃Q3 +K4S̃Q3

 (5.59)

Here the whole term vanishes for S̃Q1 = 0 and S̃Q2 = 0 and when S̃Q3 hits zero it

approaches infinity. So if the two gap parameters ∆i and ∆j are equal the corresponding

term in the sum of Eq. (5.52) exhibits a singularity at ω = 2∆i. This means that for the

other cases of S̃Q1 = S̃Q2 6= S̃Q3 = S̃Q4 and S̃Q1 6= S̃Q2 = S̃Q3 = S̃Q4 there will also be

a singularity at any gap value that is present in more than one band. Explicitly meaning

that the former case shows two and the latter one only one singularity. In general one can

say that the singularities at uniquely present gap values get removed and the other ones

don’t. This behavior is displayed in Fig. 5.10 for four bands with different verteces.

Raman response of the 4 band Fermi surface with the ARPES data

Now the effective masses of Table 5.1 will be used for plotting the Raman response of

the band structure displayed in Fig. 5.1. Recent Muon Spin Rotation measurements of

the magnetic field penetration depth of a member of the ironpnictide family point towards

a multi-gapped Fermi surface with two gaps that differ roughly by a factor of two [67].

Furthermore ARPES measurements show that the smaller gap value corresponds to the

outer Γ barrel (yellow circle in Fig. 5.1) and that all other bands exhibit the larger gap value

[61] (for a more detailed discussion of gap distribution and values see Chapter 3, Section 2).

These results will now be used to plot the unscreened and screened Raman response in A1g
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Figure 5.11: Left: Comparison of the unscreened (black) and screened (red) Raman re-
sponse for the bands displayed in Fig. 5.1 with the effective masses in Table 5.1 in A1g sym-
metry. There are two hole-like parabolic, one electron-like parabolic and four equal hole-like
elliptical bands in the first Brioullin zone that contribute to this plot. One parabolic band
is taken to have a different gap value ∆1 with 2∆1 = ∆2. The singularity at twice the
smaller gap value is removed since it is unique and the singularity at twice the bigger gap
value remains since three bands share this gap value. In between the two locations of twice
the gap values there is a bell shaped peak. Right: Raman response of the same bands as in
the left panel in B2g symmetry. Only the four elliptical bands with the same gap contribute
in this channel resulting in the trivial square root singularity response.

symmetry and the unscreened response in B2g symmetry which is the only non-symmetric

contributing channel in the applied model. The response in A1g symmetry is shown in the

left hand side of Fig. 5.11. The unscreened (black) response shows the two square root

singularities at twice the gap values and the screened (red) response exhibits exactly the

behavior expected from the discussion in the preceding subsection. The singularity at twice

the uniquely present gap value is removed while the one at twice the gap value of the three

other bands remains. In between the two singularities a bell shaped peak is observed which

is explained by the extensive investigations in the two band case. There is a term with

different gaps and different verteces in the sum of the four band response which produced

this shape in the the corresponding two band case (see Fig. 5.8 and Fig. 5.9). The response

in B2g symmetry, displayed in the right hand side of Fig. 5.11, does not show any nontrivial

features. Since only the elliptical bands contribute to the response because the verteces of

all not fully symmetric channels are vanishing for parabolic bands and since those four
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elliptical bands (two brown and two magenta ones from Fig. 5.1) all have the same vertex

and gap value only a simple square root singularity is produced. Possible nontrivial features

through screening are also not present for the entirely unscreened B2g channel.

5.2.4 Superconducting gap parameter of extended s-wave character

Momentum dependence of the gap

The so far done investigations all included a constant gap parameter over the whole BZ

which means that it did not have any k-dependence and thus it did not matter where

the particular band crossed the Fermi surface. Only the effective mass of the band was

important for the Raman response since it solely determined the Raman vertex and set the

value of the density of states together with the area of the unit cell. With a k-dependent

Figure 5.12: Left: Contourplot of the extended s-wave gap. The darkest area in the middle
is the maximum and the lightest areas in the corners are the minimums. Right: Fermi
surface sheets of the free electron bands of the used model (coloring equal to Fig. 5.1). The
red square represents the nodes of the extended s-wave gap.

gap parameter it is crucial where the band hits the Fermi surface since the value of the gap

parameter at this point in k-space determines the minimum energy to excite a quasi particle

out of the condensate. Unless the k-dependence of the gap is equal to the one of the band

there are now different values of the gap along the Fermi surface sheet with a minimum

as well as a maximum gap value and depending on the chosen gap symmetry even nodes
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are possible. Such nodes result in a vanishing gap and thus every finite energy is able to

excite quasi particles at the points of the nodes in k-space. Recent measurement of flux

quantum jumps in rings of ironpnictide superconductors [73] show that the pairing in these

material is spin-singlet with even parity and that the gap parameter changes its sign. This

points towards an extended s-wave symmetry of the gap parameter that can be analytically

expressed by ∆(k) = ∆0 (cos(πkx) + cos(πky)) [94] with kx and ky again running from −1

to 1 like in the previous sections (a more detailed discussion of gap symmetry can be found

in Chapter 3, Section 2). The contour of this gap is shown on the left hand side of Fig. 5.12

and one can see that it exhibits a squarish k-dependence resulting in a variation of the gap

value along the circular or elliptical Fermi surface sheets of the used bands. Furthermore

this gap has a sign change between the Γ and the M point with the nodes located on the

red line shown on the right hand side of Fig. 5.12 together with the free electron bands of

the applied model. These nodes do not cross the Fermi surface sheets of any band and thus

the gap value remains finite on all of them but through the different Fermi momenta of the

bands the gap value will now differ from one to another.

Numerical calculation of the Raman response

Introducing the above mentioned k dependent gap makes it no longer possible to calculate

the Raman response entirely analytical like it was done in the previous section. Here the

evaluation of the Raman response for the nth band

χγγ,n(ω) =
1
N

∑
k

γ2
n

4∆2
n(k)

En(k) [4E2
n(k)− (ω + iα)2]

(5.60)

will be done entirely numerically with the program Mathematica. Replacing the sum over

k by two integrals over kx and ky and then transforming into polar coordinates results in

χγγ,n(ω) =
A

(2π)2
γ2
n

∫ 2π

0
dθ

∫ k1stBZ

0
kdk

4∆2
n(k, θ)

En(k, θ) [4E2
n(k, θ)− (ω + iα)2]

(5.61)

where k1stBZ stands for the k-value corresponding to the rim of the 1st BZ. First of all the

two Γ-parabolas will be considered since those are the easiest cases. They are written out

explicitly in polar coordinates

εΓ(k, θ) =
k2

2m∗Γ
− µΓ (5.62)
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With both bands being centered in the middle of the BZ shown in Fig. 5.12 no shift has

to be done and with the already circular Fermi surface sheet no transformation has to be

done either to simplify the numerical integration in polar coordinates. For the M -pocket

band a coordinate shift of ksx = ksy = 1 has to be done to place the circular Fermi surface

sheet of the band in the middle of the BZ. This shift has to be done for the gap as well

resulting in a shift by π in the argument of both cosines which is equal to a sign switch of

the entire gap function. Since the gap only enters squared in Eq. (5.61) (in the numerator

as well as in the quasi particle energy En(k, θ)) this sign switch will have no influence on

the response and thus the M -pocket can be evaluated in the same way as the Γ-parabolas.

Taking a closer look at the integrand of Eq. (5.61) reveals its 8-fold symmetry and thus

only 1
8th of the BZ has to be integrated. This leads to the following integral for all circular

bands in the used model

χγγ,i(ω) = 8× A

(2π)2
γ2
i

∫ π
4

0
dθ

∫ 1
cos(θ)

0
kdk

4∆2
i (k, θ)

Ei(k, θ)
[
4E2

i (k, θ)− (ω + iα)2
] (5.63)

Here the index i stands for all the parabolic bands as in the previous section. The evaluation

of the blades needs a little more care since they are not centered at a high symmetry point.

The explicit representation of the magenta blade in the upper right of the picture on the

Figure 5.13: Comparison of the absolute value of the extended s-wave gap at the Fermi
momentum for the different bands after the transformation into polar coordinates. The
colors correspond to the bands in Fig. 5.12. All bands are π

2 -periodic except the one for the
blade (magenta). The variation of the gap corresponding to the M -pocket (green) is not
resolved in this energy scale but is the same as for the ones corresponding to the Γ-parabolas
(yellow, blue).
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left hand side in Fig. 5.12 is

εbl(k, θ) =
1

m∗x+y

(
(kx − k0) + (ky − k0)√

2

)2

+
1

m∗x−y

(
(kx − k0)− (ky − k0)√

2

)2

−µbl (5.64)

with k0 = 1− 0.346√
2

. After a shift by ksx = ksy = k0 and the transformation of

Kx =
kx + ky√

2

Ky =
m∗x−y
m∗x+y

kx − ky√
2

(5.65)

polar coordinates can be introduced in the same way as before and the energy band of the

blade is

εbl(K, θ) =
K2

2m∗x+y

− µbl (5.66)

This exhibits the same form as the parabolic bands with a constant Fermi momentum

which makes the numerical integration in polar coordinates easier. The disadvantage of

this transformation is that the energy gap will look more complicated in this case. The

momenta kx and ky have to be expressed in the new coordinates which leads to

kx = k0 +
Kx +

m∗x+y
m∗x−y

Ky
√

2

ky = k0 +
Kx −

m∗x+y
m∗x−y

Ky
√

2

(5.67)

Inserting these into the gap and transforming into polar coordinates with the new K’s gives

the gap in the following form.

∆bl(K, θ) = ∆0

cos

π
k0 +

K cos(θ) +
m∗x+y
m∗x−y

K sin(θ)
√

2


+ cos

π
k0 +

K cos(θ)− m∗x+y
m∗x−y

K sin(θ)
√

2


(5.68)

This gap shows no more symmetry in θ and the integration has to run from 0 to 2π which

can be explicitly seen in the angular variation of the absolute value of the gaps for all bands

at the Fermi momentum in Fig. 5.13. In the new polar coordinates the Raman response

for the blade can be written as

χγγ,bl(ω) =
A

(2π)2
γ2
n

m∗x+y

m∗x−y

∫ 2π

0
dθ

∫ K1stBZ

0
KdK

4∆2
bl(K, θ)

Ebl(K, θ)
[
4E2

bl(K, θ)− (ω + iα)2
] (5.69)



90

K1stBZ is taken to be simply 1 which misses the corners of the 1st BZ but those only have

a vanishingly small contribution and can be neglected. To run the numerical integration

the value of ∆0 = 10meV is chosen which is ruffly the same as the one obtained by ARPES

measurements in [61] and still in the same order of magnitude as the measured value by

muon spin rotation in [67] (more gap mesurements are cited in Chapter 3, Section 2). The

broadening parameter α will be chosen to be α = 0.01meV and is caused by impurity

scattering in the material. In order to simplify the numerical integration the momentum

integration is split into several parts wherever the integrand shows roots in the denominator.

The upper integration boundary of the integral over the smaller momenta and the lower

integration boundary of the integral over the bigger momenta will be at exactly those k-

values of the roots. This helps the program to deal with the singularities and speeds up the

evaluation tremendously.

Single band responses

The Raman responses of the single bands are shown in Fig. 5.14. The real parts of the

single band response with the extended s-wave gap are displayed in brown for all bands

and the imaginary parts are again colored like in Fig. 5.12. The inner Γ-parabola (blue)

has the minimum gap value at kF of about ∆min,Γi = 8.57meV and the maximum gap

value at kF of about ∆max,Γi = 8.60meV which is roughly seen in the right panel of Fig.

5.13. At twice the minimum gap value at kF the response shows a threshold which slowly

develops into a peak at twice the maximum gap value. This behavior can only be seen

in the zoomed in response shown in the inset of this plot since the values are too close

together to be resolved in the entire plot. The M -pocket (green) shows the exact behavior

with the only difference that because of the even closer minimum ∆min,Mp = 9.730meV

and maximum ∆max,Mp = 9.731meV gap values at kF an even closer zoom was necessary

to resolve the structure. The tiny separation between the extreme values of the gap at

kF for those two bands was already shown in Fig. 5.13 and has its origin in the flatness

of the gap near the extremal points in the middle and the corners of the BZ. Since the

crossing with the Fermi surface of the outer Γ-parabola (yellow) is located further away

from the Γ-point the minimum ∆min,Γ0 = 5.08meV and maximum ∆max,Γo = 5.51meV
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Figure 5.14: Real (brown) and imaginary (coloring as in Fig. 5.12) parts of the Raman
response of all single bands with extended s-wave gap. All bands show a threshold at twice
the minimum gap value and a peak at twice the maximum gap value which is shown in the
insets for the bands where the extreme values of the gaps are to close to each other to be
resolved in the larger image. The orange dotted line in the upper right plot is the outer
Γ-parabola with a ten times larger broadening parameter α. The comparison of both peaks
with different broadening shows how a lager broadening effects the shape of the peaks.

Fermi level gap values are further apart (see left hand side of Fig. 5.13) and the threshold-

peak structure is resolved in the total plot of the response. The orange dotted line in

the upper right panel is also the response of the outer Γ-parabola but with a broadening

factor of α = 0.1meV which is ten times larger than the one used for the other responses.

The larger broadening rounds up the threshold and the peak size decreases. The response

which shows the clearest threshold-peak structure is the one of the blade (magenta) since

its Fermi surface sheet is located in a region where the gap changes quite drastically and its

minimum and maximum gap values at kF are ∆min,bl = 4.70meV and ∆max,bl = 8.98meV

respectively (see also left hand side of Fig. 5.13). Another interesting feature of the blade
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is a step discontinuity above the singularity at about 25meV . Closer investigations of the

integrand show that the denominator looses one of its two roots at exactly this point which

results in a sudden fall of the response. The energy value of this feature corresponds exactly

to ω = 2
√
µ2
bl + ∆2

bl,center where ∆bl,center is the gap value at the center of the blade. This

ω denotes the top of the blade bands in the superconducting state above which no more

quasi particles can be excited. At all discontinuities of the imaginary parts of the responses

the real parts exhibit a peak and at peaks of the imaginary parts the real parts show a

discontinuity.

At this point it is very interesting to investigate whether the peak at twice the larger

gap value is a singularity that appears to be finite because of the included broadening or

has a finite value by itself making it a cusp rather than a singularity. Furthermore it is

interesting why the response starts with a threshold and not with a power law onset or a

singularity. To clarify those issues a simpler analytical representation of the gap is chosen

that only has an angular dependence but exhibits an equal behavior to the extended s-wave

gap. The model gap will be taken to be

∆(θ) = ∆off + ∆0 cos(4θ) (5.70)

This gap shows a very similar angular dependence as the ones for all parabolic bands (see

Fig. 5.13) and the two parameters ∆off and ∆0 define the size of the offset and the angular

variation, respectively. It is important that ∆off > ∆0 so that there are no nodes in the

gap contrary to the one used above. The integral that has to be evaluated is the same as

in Eq. (5.13). With the new gap and after dropping the sum and the band index n it is

Im (χγγ(ω)) = γ2 8NF

ω

∫ π
4

a
dθ

(∆off + ∆0 cos(4θ))2√
ω2 − 4 (∆off + ∆0 cos(4θ))2

(5.71)

The lower integration boundary a is chosen to make sure that the square root stays real

and will be a = 1
4 arccos

(
ω−2∆off

2∆0

)
from ω = 2∆off − 2∆0 until ω = 2∆off + 2∆0 which

corresponds to twice the minimal and maximal gap values respectively. Above the latter

value the integration will start at a = 0 and below the former value it will start at a = π
4

which makes the integral vanishing. The extra 8 comes from the initial integral running
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from 0 to 2π which was reduced to 1
8 because of the 8-fold symmetry of the integrand.

Applying the transformation

x = ∆0 cos(4θ) (5.72)

leads to

Im (χγγ(ω)) = γ2 NF

ω

∫ b

−∆0

dx
2√

(∆0 + x)(∆0 − x)

×
(∆off + x)2√

(ω + 2∆off + 2x) (ω − 2∆off − 2x)

(5.73)

The integrand has square root singularities one at x = ±∆0 and at x = ±ω
2 −∆off . Since

the integration over θ ran from a to π
4 the new boundaries are b and −∆0. The integration

has to cancel below ω = 2(∆off −∆0) and only runs from −∆0 to ω
2 −∆off until this value

reaches ∆0 so b = −∆0 if ω
2 −∆off < −∆0, b = ω

2 −∆off if −∆0 ≤ ω
2 −∆off < ∆0 and

b = ∆0 if ω
2 − ∆off > ∆0. Hence the integral is zero below ω = 2(∆off − ∆0) which is

twice the minimal gap value. Above ω = 2(∆off + ∆0) there are no singularities since x

only runs from −∆0 to ∆0 but in between those values where b = ω
2 − ∆off special care

has to be taken to find out what exactly happens at the values of interest which are twice

the extremal gap values. A twice the minimal gap value the integral can be written as

Im (χγγ(2(∆off −∆0))) = lim
ε→0

γ2 NF

ω

∫ −∆0+ε

−∆0

dx
1√

(∆0 + x)(∆0 − x)

×
(∆off + x)2√

(2∆off −∆0 + ε+ x) (−∆0 + ε− x)

(5.74)

At this particular ω two of the square root singularities coincide and become a singularity at

x = −∆0 with the power 1 but since the integration runs only over an infinitesimally small

value ε the integral remains finite. This explains why the threshold observed at twice the

minimal gap value in Fig. 5.14 is not singular nor a power law onset but a step discontinuity.

At twice the maximal gap value the integral is equal to

Im (χγγ(2(∆off + ∆0))) = lim
ε→0

γ2 NF

ω

∫ ∆0−ε

−∆0

dx
1√

(∆0 + x)(∆0 − x)

×
(∆off + x)2√

(2∆off + ∆0 − ε+ x) (∆0 − ε− x)

(5.75)

The square root singularity at x = −∆0 is now present only once so it remains integrable

and is removed after the integration. Whereas there are again two square root singularities

coinciding to form a singularity of power 1 at x = ∆0 − ε but this time the integration
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is running over a finite value thus the integral has a log-singularity at this point. This

clarifies the issue of the finite value at twice the maximum gap value in Fig. 5.14. It is a

log-singularity that just appears to be finite because of the broadening factor α. As soon as

one takes the gap value to be constant again by setting the size of the angular variation to

∆0 = 0 it is possible to take the whole fraction containing the gap out of the integral. This

will be just a constant and the square root singularity at twice the gap value is reproduced.

Hence the model above properly reduces to the constant gap case discussed in the previous

part of this chapter. In conclusion one can say that an angular dependence in the gap does

not entirely remove the singularity in the constant gap case but it significantly weakens it

and instead of a square root singularity a log-singularity an a threshold are obtained.

Screened multiband responses in A1g symmetry

Figure 5.15: Comparison of the unscreened (black) and screened (red) Raman responses in
A1g symmetry for two outer Γ-parabolas. The regular hole-like Γ-parabola is denoted with
Γo and the electron-like Γ-parabola with ΓoMinus. Left: Both bands are hole like and the
screened response is vanishing due to the exactly equal verteces of both bands that cancel
each other. Right: One band is electron and the other is hole like which makes the equal
verteces add up and the unscreened and screened responses equal since the screening term
is vanishing.

Now the interplay of two bands will be considered with all the single bands of the applied

free electron model. First the extreme cases of perfect and vanishing screening that occurred

in the constant gap case are reproduced. In order to have the case of equal verteces for

two bands, which led to vanishing response and thus perfect screening, the unscreened and

screened response of two outer Γ-parabolas (Γo) is plotted. This is displayed in the left
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hand side of Fig. 5.15 and indeed the screened response (red) is vanishing for all energies.

The other extreme case of vanishing screening, that occurred for equal absolute values of

the verteces but opposite signs, is realized by transforming the outer Γ-parabola into an

electron-like band by flipping the sign of the effective mass and the sign of the chemical

potential. The interplay of the hole-like outer Γ-parabola and the electron-like outer Γ-

parabola (ΓoMinus) is plotted in the right hand side of Fig. 5.15. Here the unscreened

(black) and screened (red) responses are equal for all energies which shows that the screening

term indeed vanishes. So both of the extreme constant gap cases are succesfully reproduced

with the k-dependent extended s-wave gap. The interplay of all the other bands with

each other, not with themselves of course, should show a behavior similar to the different

vertex and different gap cases shown in Fig. 5.8 and Fig. 5.9 since the different bands have

different masses and different Fermi momenta which produce different verteces and different

minimum and maximum gap values respectively. The latter ones are responsible for the

thresholds and the log-singularities which certainly are different for all the bands as seen

in Fig. 5.14. In Fig. 5.16 the A1g channel Raman responses for all possible combinations

of two different bands are shown. The black curve is the unscreened, the red curve the

screened response and the cyan curve represents the screening term without the minus. In

the left column the interplay of two hole-like bands is displayed. The log-singularities in the

unscreened response are removed in the screened one since the screening term exhibits the

same log-singularities. What is left in the screened response is the same dome-like shape as

in Fig. 5.8 and Fig. 5.9 in between the positions of the two log-singularities. This shape

is slightly altered in the two lower cases by the additional features of the threshold-log-

singularities structure caused by the angular variation of the gap along the Fermi surface

sheet. The vertex difference is rather small in all three cases since in the hole-hole case the

verteces are subtracted from each other (see Eq. (5.52)) which makes the the whole response

smaller than for verteces with opposite signs. This vertex-difference is increasing from the

top to the bottom plot resulting in the increasing response especially for the bottom plot.

The low response for the middle plot is a consequence of the log-singularity positions being

located close to each other.
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Figure 5.16: Comparison of the unscreened (black) and screened (red) Raman responses

with the extended s-wave gap parameter for all possible combinations of two bands in A1g

symmetry. The screening term without the minus is shown in cyan. In the left column the

response of two hole-like bands and in the right column the one for an electron-like and a

hole-like band is displayed. In all plots the log-singularities of the unscreened response are

removed by similar ones occurring in the screening term and a dome-like shape in between

the positions of the singularities is produced.
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Short after the increase above the energetically lower log-singularity the screened re-

sponse is dominated by the fall off above the energetically higher log-singularity making

the width of the dome very small. The log-singularity positions are way further apart in

the bottom plot which leads to a much broader response in the screened case. The right

column shows the possible electron-hole responses with the four used bands of the model.

As expected the screened responses are now bigger than for the bands with equal signs

since the verteces now add up in Eq. (5.52). The peaks are getting bigger and sharper for

Figure 5.17: Raman response for all four bands in the 1st BZ with extended s-wave gap
parameter in A1g and B2g symmetry. Left: Comparison of the unscreened (black) and
screened (red) response in A1g symmetry. The screening term without the minus is shown
in cyan. The screened response is dominated by the sharp, almost singularity-like dome
slightly below the position of the log-singularity of the M -pocket and has a flat structure
below it starting at the location of the threshold of the blade. Right: Raman response in
B2g symmetry. Since the verteces of all other bands are equal to zero it is only the four
blades that contribute to this channel.

the increasing vertex difference from the top to the bottom and they are located close to

the position of the log-singularity of the M -pocket which means the band with the smaller

mass, again similar to the plots in Fig. 5.8 and Fig. 5.9. Furthermore Eq. (5.52) shows

that the screened multi-band response is a sum of all possible screened two-band responses

normalized by a sum including all bands. This explains the Raman response including all

four bands for A1g symmetry displayed in the left hand side of Fig. 5.17. The unscreened

response is again black, the screened one is red and the screening term without the minus is

shown in cyan. It is obvious that the dominating terms in the sum of the two band responses

are the ones including the M -pocket since those are the ones with the biggest responses



98

in Fig. 5.16 because of the much larger vertex difference. Thus the main feature of the

screened four-band response is a sharp peak close to the position of the log-singularitiy of

the M -pocket produced by the peaks of response terms including the M -pocket summing

up at this point. The features of all other two band responses are small compared to this

and result in a broad flat region in between the threshold of the blade, which is energetically

the smallest point of twice an extremal value of a gap, and the M -pocket log-singularity.

The right hand side of Fig. 5.16 shows the four-band response in B2g symmetry. It only

consists of the four blades since for all other bands the vertex in this symmetry channel

is vanishing. Without any screening in this channel the response shows exactly the same

behavior as the single band response of the blade.

5.2.5 Shortcomings of the applied model

The free electron model used in this chapter together with ARPES data for the effective

masses and chemical potentials had the advantage that as long as the gap was taken to be

constant everything could be investigated entirely analytical but through this simplification

several things were not taken into account. By assuming a parabolic or elliptical band

structure the effective masses of the bands are constants and do not have any k-dependence

except for differing in between the two directions along the axes of the ellipse. Together with

the effective mass approximation for the Raman verteces this resulted in those quantities

being constants as well. Thus the verteces could be taken out of any integral and there was

no other influence by them than being a different weighting factor for the different bands.

Furthermore the verteces were vanishing in all other channels than the A1g channel for the

parabolic bands and for the B1g as well as the A2g channel for the elliptical bands. Hence

the response in the B2g symmetry had only a contribution from the elliptical bands and the

B1g and A2g channels showed no response at all. Especially for the B1g channel one would

expect some features in the Raman response while the A2g is usually not important and thus

neglected. A next step in order to include these nontrivial features in the calculation of the

Raman response could be done by using a tight binding model for the band structure fitted

to the known Fermi momenta and velocities from ARPES measurements. This would lead

to a k-dependence in the effective mass and with that also in the Raman vertex. In addition
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it is very likely that the B1g channel would not be vanishing any more in such a model.

Moreover the performed investigations treated the excited quasi particles as completely

noninteracting with each other as well as with the superconducting condensate out of which

they are excited. In Raman scattering the incoming photon excites an electron from an

occupied state below the Fermi level into an unoccupied state above which means it is

a particle-hole excitation. Then the electron falls back on a lower state and a photon is

excited. In this so called virtual interband transition the ingoing and outgoing photons have

the same difference in energy and momentum as the initial and final states in the clean limit

while the electron spin remains unchanged. This process leads to a perturbation H ′ in the

form of an electron density wave that is proportional to the inverse effective mass of the

band for photon energies below optically allowed interband transitions [95]. The effect of the

perturbation H ′ in a superconducting material is the breaking of a pair which excites two

quasi particles out of the superconducting condensate that continue to interact with each

other as well as with the holes left behind in the superconducting condensate. Including

those interactions leads to so called vertex-corrections which are for example taken into

account in [94] where three types of corrections are considered. Those are particle-particle

interactions of the two excited quasi-particles with each other, particle-hole interactions

of an excited quasi particle with the hole left behind in the condensate and long-range

Coulomb interactions. The latter one is taken into account by including the screening term

in A1g symmetry but no detailed diagrammatic treatment comparable to [84] was done in

this work.

5.2.6 Comparison to earlier work

An earlier publication by Boyd et al. [96] on theoretical calculations of Raman responses of

a Fermi surface with the multi band structure of iron-pnictide superconductors is dealing

with similar issues as the work presented in this thesis. The Fermi surface sheets in this

paper are taken to be circles and two of them are centered around the Γ-point while two

other ones are centered around the X (π, 0) and the Y (0, π) points. This seems to differ

from the observed structure presented in Chapter 3 but is equal since in this publication

the electronic BZ and not the BZ of the lattice is used. Thus the BZ is rotated by 45
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degrees as well as the symmetry channels B1g and B2g are exchanged in this notation. The

Fermi surface of [96] is not taking into account the propeller structure that was recently

resolved by ARPES measurements [60, 61] and instead of the propeller a single circle is

used. However the main difference between the work done in this thesis and [96] is that

Boyd et al. do not use the effective mass approximation which leads to constant verteces

for the Free Electron Model with parabolic bands and thus circular sheets. Instead angular

dependent verteces are obtained by an expansion in Fermi surface harmonics for cylindrical

Fermi surfaces with angle independent prefactors. This leads to nonvanishing verteces in all

symmetry channels, except A2g which is not taken into account, in contrast to this thesis

where only A1g for all and B2g for the blades contribute. Furthermore the gap is taken to

be angular dependent from the beginning on by defining an analytical form that has only

an angular dependence, making it vary along the Fermi surface circle, and a parameter to

adjust the analytical form to a gap with and without nodes. Screening is included for the

A1g channel and later also for not fully symmetric channels which has to be interpreted

as at least controversial. Later in that work also other vertex representations allowed by

the D4h symmetry, including constants of different signs, and constant gaps of different

values are considered. The publication only runs numerical integrations and no analytical

explanations for the observed responses are given. The obtained single band responses for

the case of a gap without nodes in [96] show the similar main features as in the extended s-

wave gap case of this thesis with the threshold onset and the log-singularity. The difference

in between their responses and the ones in this thesis comes from the angular dependent

verteces that slightly alter the shape of the plots and create different onset behavior where

the verteces have nodes. Moreover [96] has responses for all symmetry channels because

of the nonvanishing verteces and for the single screened band in A1g symmetry the log-

singularity is removed but the entire response it is not vanishing. The case with nodes in

the gap shows power law onsets for small energies but since this case is not investigated

in this thesis no comparison can be made. In the two band response in A1g symmetry

for two bands with the same angular dependent gap with different maximum gap values

the peaks of the two bands do not get completely removed as in the constant gap as well

as the angular dependent gap case in this thesis. The dome-like shape that is obtained



101

in the different maximum gap value case (different gap case for the constant gap) is only

seen in [96] in the very end where constant gaps of different values are inserted. Boyd et

al. show a huge number of cases for the gaps and verteces in their publication but non

of the obtained features is closely investigated and the reasons for the threshold, the log-

singularities or the removal of those singularities in the screened case remain unexplained.

In contrast to that this thesis shows simpler cases of constant verteces a constant gap with

varying magnitude on different bands and later on one angular dependent gap with a single

analytical form that determines the gap value along the Fermi surface sheets of all bands

depending on their location. This makes it possible to explain every observed feature with

analytical calculations for the constant gap case and within a slightly simplifying model

for the extended s-wave gap case. Thus the presented work certainly adds some deeper

understanding to the cases in [96] that are similar to the ones investigated here and draws a

complete picture of the Free Electron Raman response in the superconducting state within

the effective mass approximation and a constant gap. Furthermore the differences that

appear by adding an angular variation to the gap are clearly pointed out and explained

completely by analytical calculations. Finally the shown multi band responses could be

explained by the features seen in the two band cases through the obtained relation in

between the two band and the n band case.

5.3 Summary

The original work presented in this chapter started with the calculation of the unscreened

Raman response in a free electron model and further simplifications of zero temperature

and a superconducting gap which only had an angular dependence. After that a band

structure within a free electron model based on ARPES data consisting of four different

bands crossing the Fermi surface was introduced. For these parabolic and elliptical bands

the Raman verteces were computed in the effective mass approximation and for a constant

gap the real and imaginary part of the single band Raman response were calculated entirely

analytically based on the calculations in the first section. With both parts of the Raman

response function known analytically a complete picture of the screened multiband Raman

response inA1g symmetry could be presented including explanations for all observed features
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Figure 5.18: Summary map of the effect of screening on the Raman response of one, two

and four bands in A1g symmetry for all cases with a constant gap.

by analytical calculations. As a consequence of the applied free electron model with the

effective mass approximation for the verteces the other symmetry channels (B1g and A2g)
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were vanishing or only had a contribution from the elliptical bands (B2g). Fig. 5.18 shows

a map that summarizes the different cases of the one, two and four band Raman responses

in A1g symmetry with a constant gap that can occur when screening is taken into account.

One band shows a square root singularity at twice the gap value in the unscreened case

(black curves) and is perfectly screened (screening is represented by the green arrow) hence

the screened response (red curves) is vanishing. The same is true for two bands when their

verteces are identical regardless of the two gaps being equal or different which is obviously

seen in the representation of the screened two band Raman response in Eq. (5.35). The

exact opposite namely vanishing screening is obtained if two bands with equal gap values

have opposite signs (one electron-like the other one hole-like) and the two effective masses of

both bands share the same mass ratio (MRn = m∗n2
m∗n1

, m∗n1,2 are the effective masses of band

n in kx+ky and kx−ky direction, see 5.2.1). Explicitly this means that two parabolic bands

(MRn = 1) of opposite signs are always entirely unscreened in the applied model no matter

how different their effective masses are and that the same is true for two elliptical bands

(MRn 6= 1) of opposite signs as long as their MR’s are equal (see Eq. (5.38)). All other

cases for two bands with equal gap values (opposite signs and different MR’s, equal signs

and different verteces) lead to partial screening that is generally more effective for bands of

equal signs and mainly depends on the vertex difference of the two bands (see Eq. (5.35)).

A whole new shape is obtained for two screened bands with different gap values and any

difference in the verteces. Both singularities are removed and a dome-like shape in between

twice the two gap values remains with the exact shape depending on the combination of

the effective masses of the two bands (see Fig. 5.8 and Fig. 5.9). Analytical calculations

explaining this behavior are given from Eq. (5.40) to Eq. (5.47). By transforming the

general form of the screened multiband response into the form presented in Eq. (5.52) it

was shown that all combinations of terms of two bands, normalized by all n bands taken

into account, sum up to the total n band Raman response. Thus all the results in the two

band response investigations can be transfered to the multiband case except the removal of

the singularities since this one is influenced by the n band normalization. It turned out that

all singularities at twice the uniquely present gap values are removed while singularities at

twice a gap value existent on more than one band remain. This is illustrated in the bottom



104

of Fig. 5.18 for all gaps being different, two being equal, two equal pairs and all gaps

exhibiting the same value. The final result in the four band case for the effective masses

and gap distribution obtained by ARPES measurements showed a screened A1g response

with the square root singularity at twice the smaller gap being removed and the one at twice

the larger gap remaining. The B2g response exhibits one simple square root singularity at

twice the gap value of the blades since those are the only bands contributing to this channel

while the other symmetry channels have no contribution at all (see Fig. 5.11).

In a next step a k-dependent gap was introduced of, the at this moment most promising,

extended s-wave symmetry (see upper left of Fig. 5.19) which lead to a threshold at twice the

minimum gap value and a log-singularity at twice the maximum gap value in the unscreened

single band responses (see upper right Fig. 5.14). Calculations of the responses were done

numerically since a completely analytical treatment was no longer possible but the nature of

the threshold and the log-singularity could be obtained in an only slightly simplified model

(see Eq. (5.70) to Eq. (5.75)). With the vertex and the density of states still being a constant

one single band was still perfectly screened (see upper right Fig. 5.19). The two band cases

of perfect and vanishing screening (see Fig. 5.15) could only be reproduced with two equal

bands (perfect screening) and two equal bands with one of them transformed from hole-

like into electron-like (vanishing screening). All other combinations of two different bands

corresponded to the different gap and different vertex case since the Fermi momentum,

which is different for all bands, determines the extremal gap values with a k-dependent gap.

Thus all singularities were removed in the screened two band responses (see middle of Fig.

5.19) as expected from the analytical results in the constant gap case. The contribution

of the two band responses to the sum forming the final four band Raman response of the

whole 1st BZ (see bottom of Fig. 5.19) is dominated by the features of the terms containing

the only electron-like band (see right side of the middle of Fig. 5.19). This was also not

surprising since those terms are the ones with verteces of different signs that showed much

larger responses in the constant gap cases already. This lead to a screened entire 1st BZ

response in A1g symmetry with a sharp peak slightly below twice the maximum gap value

of the electron-like M -pocket and a flat broad continuum down to twice the minimal gap
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Figure 5.19: Summary map of the effect of screening on the Raman response of one, two

and four bands in A1g symmetry for all cases with the extended s-wave gap which is also

displayed.
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value of the blade (see bottom of Fig. 5.19). The B2g symmetry response again showed

the same character as the single band response of the blade with a broad threshold-log-

singularity structure and all other channels were again vanishing (see Fig. 5.17). The effect

of screening in A1g symmetry on all four single band responses, all possible combinations of

two band responses and the four band response is summarized in Fig. 5.19 together with a

contour plot and the node of the extended s-wave gap in the 1st BZ.

In the end of this chapter the shortcomings of the applied model are discussed with

the main missing feature being vertex corrections that take into account the final state

interactions. Finally a comparison to the earlier work of Boyd et al. is done and it is

discussed that this thesis provides detailed explanations to the origin of features seen in

parts of that earlier publication.
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