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ABSTRACT OF THE THESIS

The Role Of Texture Evolution and Strain Hardening on

The Anisotropic Response of Polycrystalline Metals

by E. Alisar Tuncer

Thesis Director: Dr. Alberto M. Cuitiño

Anisotropy and texture plays an important role in deformation of Aluminum alloy

sheets. The development of anisotropy during metal forming is a key factor as in the

standard industrial use of AA− 6022 as stamped automotive body enclosures where a

close estimation of anisotropy can deduct costs on both machinery and inventory. In this

thesis, we provide a methodology to predict the anisotropic behavior of polycrystalline

metals depending on its processing history. The methodology suggested is based on

single crystal plasticity model of Cuitiño and Ortiz where the mechanics of dislocation

motion through forest dislocations is estimated statistically. In that context, we first

study the role of uncertainties and responses of the initial parameters such as initial yield

stress and dislocation density. R-values, which is a measure of anisotropy, of a sample

undergone hydraulic bulge test are obtained by a uniaxial tensile test simulation and

found to be in good agreement with the experimental findings. An optimization method

to capture the texture while reducing the number of orientations is introduced and

compared with random sets of orientations. Gradual work hardening effect is captured

by adjusting the dislocation density carried over through consecutive simulations of

rolling and uniaxial stretching. However more accurate models of rolling simulations is

necessary to provide r-values and work hardening effect without the need of texture.
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Chapter 1

Introduction

Isotropy (from the Greek isos:equal and tropos:rotation) refers to the independence of

a feature from the direction. Anisotropy can be defined as the dependence of certain

properties on the orientation of the sample with respect to an external frame. In ma-

terials science, anisotropy describes the phenomena of chemical bond strengths being

directionally dependent. Hence, anisotropy of a property is a result of the arrange-

ment of the structure of the material. The concept of anisotropy has been researched

extensively, due to the importance of material deformation during many manufactur-

ing processes, mainly rolling and deep-drawing. Being able to estimate the response

to a manufacturing process is of great importance, given the costs of manufacturing

equipment, fixtures and dies.

The work presented in this thesis contributes to the understanding of the ma-

terial behavior exhibited by a large grained aluminum alloy sample AA-6022-T43, con-

sequently giving hints on understanding of the response of materials in general. In

automobile industry, there is a constant search for better materials to produce more

efficient and environment friendly vehicles without sacrificing safety. Currently, cast

aluminum components are being used but aluminum alloy sheet materials are about

to make their impact as the structural elements for outer and inner body panels. AA-

6022-T43 is one of these aluminum alloy sheet products specifically designed to use

in automotive industry. Developed and commercialized by Alcoa, AA-6022-T43 series

aluminum alloys fulfill the needs of the automotive industry. AA-6022-T43 is easily

formable by stamping, which is the most common method to produce enclosure panels,

and possesses adequate yield strength to resist dents during service in addition to its

resistance to corrosion and good surface finish properties.
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This chapter presents an introduction to the field of texture and anisotropy as

well as a small introduction to AA-6022-T43.

1.1 Background

In crystals, almost all materials of interest are made up from aggregates of single crys-

tals. Single crystals are solid aggregates where the crystal lattice is continuous, in other

words without grain boundaries. Most commercial metals are composed of aggregates

of single crystals, with different atomic orientations with respect to a predetermined

external frame, stacked to form polycrystals with grain boundaries. Polycrystals are

collection of different orientations of the atomic structure. Deformation processes in

polycrystalline metals are always accompanied by a change of crystallographic orien-

tation of each grain, which is often referred as texture evolution. The control of the

texture evolution in metal-forming processes is of significant interest in modern indus-

try for the purpose of specific anisotropic mechanical properties in the final products.

With the advance of computational materials science in recent years, modeling and sim-

ulation has provided powerful tools both for theoretical investigations and industrial

applications of texture evolution in polycrystalline metals [29].

Predicting the anisotropy of polycrystals involves modeling of single crystals

and execution of a physically correct averaging technique for combining single crystal

properties into polycrystal behavior. Plastic yielding of single crystals generally occurs

by shearing on selected crystallographic slip systems according to Schmid Law. Exper-

iments showed that slip occurs when the shear stress acting in the slip direction on the

slip plane reaches some critical value. This critical shear stress is related to the stress

required to move dislocations across the slip plane. Consider applying a tensile stress

along the long axis of a cylindrical single crystal sample with cross-sectional area A, as

shown in figure 1.1.

The applied force along the tensile axis can be defined as F = σA. If slip occurs

on the slip plane shown in the diagram, with plane normal n, then the slip direction will

lie in this plane as shown in the figure. We can calculate the resolved shear stress acting

parallel to the slip direction on the slip plane as follows. The area of the slip plane is
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A/cos(φ), where φ is the angle between the tensile axis and the slip plane normal. The

Figure 1.1: Schmid Law

component of the axial force, F, that lies parallel to the slip direction is F cosλ. The

resolved shear stress on the slip plane parallel to the slip direction is therefore given by:

τR =
resolved force acting on the slip plane

area of the slip plane
=

F cosλ

A/ cosφ
= σ cosλ cosφ (1.1)

Schmid Law states that the resolved shear stress, τR, is constant in a given ma-

terial with specified dislocation density and purity. This resolved shear stress is called

critical shear stress, τC and used as an important parameter to define the deforma-

tion of materials. As a result of this mechanism, the plastic flow comes along with

an anisotropy of stress and strain components and with lattice rotations that cause

orientation changes.

The orientation distribution in a polycrystal is the result of the manufacturing

process and thus texture contains detailed information about the history of the piece.

Texture has huge influence on properties that it contains information on the relation

between parameters of processes and performance of material. For instance, in many

materials, during solidification from the melt the crystallites grow in a way that the

lattice direction is aligned with the direction of the heat flow. Even this information is

good enough to realize the heat flow direction by only looking at the texture orientation.
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Conversely, the preferred texture orientation can be obtained by changing the heat flow

direction as well as other solidification conditions and manufacturing techniques. These

preferred texture orientations may lead to tougher, more resistive or easily deformable

products.

The combined effect of deformation and recrystallization is not easily treated

theoretically and offers a wide variety of possibilities but for metallurgical applications

huge amount of empirical data has been collected and using these knowledge, standard-

ized treatment procedures has been prepared.

During the manufacturing process of face-centered cubic (fcc) wires the defor-

mation causes the 〈111〉 crystal directions to align with the drawing direction. Primary

recrystallization relaxes this texture into a 〈100〉 fiber. Applying suitable combina-

tion of drawing and annealing the distribution can be varied between these two fibers.

In gold wires, 〈111〉 fiber produces higher tensile strength. By carefully controlling

the drawing and annealing processes two samples from same batch can accommodate

different rupture stresses.

Figure 1.2: Cup formed by deep-drawing a rolled sheet. The ’ears’ are evidence of
texture-caused anisotropy. [aluminium.matter.org.uk]

For more complex processes, crystallographic texture also has a remarkable

effect on the performance of commercial products. One of the most significant example

is earing of sheet materials [figure 1.2]. These steel and aluminum sheet products are

widely used in automotive industry. Sheet products are stamped and stretched to form

the panels of the body. Texture analysis provides the necessary feedback to better

the results of the manufacturing by adjusting the thermo-mechanical history of the
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material.

Some ferromagnetic materials are also a target of great interest due to their

commercial and technological uses. For instance, in iron-silicon alloys with the cube

texture, magnetic saturation is achieved by aligning the 〈001〉-directions with the pre-

ferred direction of the magnetic field.

Another peculiar area of texture research is earth sciences. The aim of geology is

to analyze the thermo-mechanical history of the Earth. As in material sciences, lattice

rotations along specific positions are characteristic of a certain deformation directions.

Thus, the analysis of the texture evolution during deformation can be used to determine

the slip properties of the process and, conversely, the deformation history can also be

deduced from the texture analysis.

Texture and anisotropy is a traditional field of materials science which has

seen progress during the past few decades including the interdisciplinary studies. The

research conducted on the subject made it possible to determine the texture rapidly

in widely available laboratories. Moreover, physical models are developing rapidly to

capture the evolution obtained in laboratory test. These results can be represented with

methods perfected during the research progress and these measured texture data can

be used to quantitatively predict the anisotropic material behavior by computational

models. Clearly, texture evolution and application plays its part in many important

scenarios for the interrelation between microstructure and properties for process control

and material performance.

1.2 Anisotropy and Symmetry

A material being anisotropic or isotropic depends on the composition of the building

blocks which we call structure. The structural elements responsible for anisotropy are

the shape and the orientation of the grains rather than their size. The aggregate of

crystallite orientations is called the texture. The anisotropy of a property is generally

affected by symmetry considerations. In the following sections, I will try to clarify these

terms.
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1.2.1 Structure

It is assumed that all the properties of a material sample can be defined by totality

of its structural elements such as crystal arrangement, defects structure. Property of a

material is the relation between a macroscopic action and a macroscopic reaction. The

relationship is provided by material property or constitutive relation.

If we look at the crystal structure in figure 1.3, it would be expected that

the properties in the layer may be different from properties in the y-direction. If a

unit temperature gradient is applied, the heat flow would be expected in a different

direction. The property which defines the direction and intensity of the heat flow is

’thermal conductivity’ in this case.

Figure 1.3: A basic sketch of a layered structure

When generalized the macroscopic response, r, to the given macroscopic stim-

ulus, s, is related by a material property, κ and shown as:

r = κ · s (1.2)

These variables are tensorial characters and the rank of the material property

tensor depends on the rank of the stimulus and the response. A tensor of a rank that is

equal to the sum of the ranks of the variables is required to satisfy the linear relation.

In a common case where the variables r and s are vectors (a tensor of a rank one) then

the material property is a second rank tensor. By definition, the diagonal coefficients

of κ need not to be equal to satisfy the condition necessary for anisotropy. The basic

structural element for most materials is the crystal structure and if the structure can be

idealized into having translation symmetry then the material is called crystalline. The

locally grouped atoms form a pattern and these patterns are repeated throughout the
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material, on a lattice. Even if any real material has some lattice defects, the symmetry

properties of crystals are determined by the symmetry of the lattice. Further, a lattice

can be characterized by a unit cell. The simplest unit cell is a cube. It has a high

symmetry due to equal lengths and right angles it is characterized by. If one of the

axis lengths is different from the other, it is called tetragonal. If all axis lengths are

different, one obtains the orthorhombic lattice.

1.2.2 Texture

The composure of the grains with crystal structures of different orientations may tend

to behave differently for different manufacturing operations. For instance, a sample

undergoing a rolling operation may have some crystal axes aligned along the rolling

direction and forms a particular texture. The same sample subjected to another man-

ufacturing technique can respond with crystal alignment completely different and may

form a completely different texture. Depending on the manufacturing process, materi-

als show typical orientation maps which are called preferred orientations. The ability

to simulate these textures can be very beneficial to predict the macroscopic response of

the sample. Another challenge is to visualize these preferred textures. Standard x-ray

diffraction techniques are used to visualize the texture of an experiment sample. In

this thesis, to identify and compare the textures generated during the simulations, pole

figures are often used. Anisotropy is observed by a parameter called R-value which is

defined as the ratio of the width-strain to the thickness-strain. Pole figures and R-values

are explained in the section 1.3.

1.2.3 Symmetry

There may be symmetry in the material or simply the property under observation may

have symmetrical properties. To explain symmetry in a way that it is appropriate for

the rest of the thesis, let us assume a rotation operator, R

R =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (1.3)
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which performs a counter-clockwise rotation around the z-axis by an angle of θ. By

this rotation the initial coordinate system, T, becomes T
′

T
′

= R ·T ·RT (1.4)

For some particular forms of R, T must be equal to T
′

which shows how the symmetry

would affect the tensor property T. The anisotropy of a property is defined by two

ingredients: the anisotropy of the particular property in single crystals of the material

and the absence of symmetry in the sample. The most important symmetry element

a property may have is centrosymmetry or in other words a ’center of inversion’. The

inversion operator is:

I =


−1 0 0

0 −1 0

0 0 −1

 (1.5)

which means that the quantity which relates the response to the stimulus remains the

same when the signs of all coordinates of the stimulus and the response are changed.

One other symmetry operator is ’a mirror plane’. For the third axis, it can be expressed

as:

M =


1 0 0

0 1 0

0 0 −1

 (1.6)

In mirror symmetry the axis in consideration changes sign, everything else stays un-

changed. There are 32 possible combinations of rotations, mirror planes and inversion

center, called the crystal classes in texture analysis.

1.3 R-value and Pole Figures

Pole figures are standardized projection graphs for the whole set of single crystals in

a polycrystal. First, depending on the single crystal structure, a pole is assigned to

the crystal structure. During deformation, the orientation of the crystal structure in

the grains would change and consequently the direction of the pole. If we think of

the grain and the texture within as a brick, the pole would correspond to one of the
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orthogonal axes of the brick or multiple poles are assigned, for instance 4 poles for

{111} pole figure. Figure 1.4 shows an imaginary sphere drawn around the brick. If the

”south” pole of the sphere and the intersection of the pole and the sphere is connected

by a line exceeding further to the projection plane, pole figure for the certain texture

can be obtained. Figure 1.4 depicts two possible orientations and their projections on

the pole figure graph. Certain manufacturing processes of different materials have their

unique texture evolution which can be observed by pole figures created and the material

responses can be estimated by analyzing these pole figures.

Figure 1.4: Forming Pole Figures

R-value is a measure of anisotropy in terms of the ratio of transverse plastic

strains. It is generally measured after the specimen has failed or after a certain strain.

In the experimental data provided for this thesis, the r-values are measured after 28%

plastic strain. Figure 1.5(a) explains how r-values are measured. R-Values are com-

monly measured after rolling operations. After rolling, samples are taken from the

sheet material for different angles and tensile test is conducted to obtain plastic strain

in every direction. In this thesis, the angles are chosen between 0◦ − 90◦ for every

15◦. Figure 1.5(b) shows how the samples are taken from the sheet material to ob-

tain r-values for different angles. An r-value being in the vicinity of 1 means that the

investigated property shows isotropy for the chosen direction.



10

(a) R-value measurement (b) Measuring Rφ

Figure 1.5: Methodology for measuring r-values

1.4 Review of Relevant Previous Work

1.4.1 AA-6022-T43

Alcoa developed aluminum alloy sheet 6022 for the automotive industry in the late

1980’s with original thermal treatment code of -T4E29. It has been registered with the

Aluminum Association as -T43 when commercialized and it is in the class of Al-Mg-Si

alloys. Aluminums in 6000 series utilize magnesium and silicon in various proportions to

form magnesium silicide, which makes them heat treatable. Magnesium silicide alloys

possess good formability and corrosion resistance with high yield strength in general.

AA-6022 material composition can be seen in table 1.1. Manganese and chromium

additives increase the strength, mainly by controlling the grain size. Copper ingredient

increases the strength in return of corrosion resistance.

Table 1.1: Material decomposition of AA-6022 as registered with the Aluminum Asso-
ciation

Si Fe Cu Mn Mg Cr Zn Ti Others (Total)
.8− 1.5 .05− .2 .01− .11 .02− .10 .45− .7 .1 .25 .15 .15

AA-6022 is a new alloy with little data in the literature. There has been some

research conducted on mechanical and microstructural properties. Wang and Kassner

[56] has performed tensile and fatigue tests to summarize the general behavior of AA-

6022 as resilient to fatigue, ductile with moderate tensile strength. Miao and Laughlin
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have conducted experiments to observe the precipitation and aging mechanisms [38] and

effects of Cu content and preaging on precipitation [39]. Observations on precipitate

evolution were documented by Brabie and Sridhar [7]. Recently, generalized necking

criterion ([11]) and weldability of AA-6022 among other commonly used aluminum

alloys ([41]) have also been researched.

1.4.2 Models

The theories on monocrystalline plasticity dates back to the early 20th century and

experiences involvement of many investigators, including: Taylor and Elam [51] on dis-

tortion of an aluminum crystal which initiated with the idea that there exists presumed

slip planes, on which slipping takes place. Schmid [50] presented experimentally that a

crystal slip would occur on a given system when the shear stress resolved on the glide

reaches a critical value. Taylor’s [52] work was the pioneering theory between single

and poly crystals which is still being used due to its simplicity. Sachs’ [48] theorem

was similar to Taylor’s model but by contrast, Sachs assumed only one slip system

with the highest resolved shear stress can be activated due to the externally imposed

stress. Bishop-Hill model [6] followed Taylor’s basic assumption to create the classical

Taylor-Hill-Bishop model in which intracrystalline deformation in terms of slip along

discreet slip systems is described and all the individual grains in the polycrystal are

assumed to experience the same deformation gradient history. As the crystal slips along

a slip system, the crystallographic lattice reorients into alignment with respect to the

flow field to develop a lattice preferred orientation microstructure. In Taylor’s model,

the slip systems to accommodate the strain is determined by minimizing the net inter-

nal work. Taylor-Hill-Bishop model uses the principle of maximum work to compute

single crystal and polycrystal yield surfaces. Asaro and Needleman [1] introduced rate

dependence into the Taylor model.

This thesis strictly follows the model of Cuitiño and Ortiz [12]. This model

shows that, for monotonic loading, the kinetic equation governing the motion of a

dislocation line through a random array of point obstacles can be solved in closed

form and the solution includes the case in which the density of point obstacles is a
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function of time. Franciosi et al. [19], Franciosi [15], [16], [17], [18] and Franciosi and

Zaoui [20] introduced that the strength of the short-range obstacles introduced by forest

dislocations are a function of the mode of interaction. Latent hardening ratios (LHR)

are investigated and compared with experiments for aluminum and copper [19]. Closed

set of constitutive relations are obtained by building on the work of Gillis and Gilman

[21] and Essmann and Rapp [14] by formulating the equations of evolution in terms of

dislocation densities. Dislocation density is formulated as a function of slip activity as

in equation 5.3.

Recent work on dislocation-based model shows differences between model of

Bassani and Wu ([57], [4], [3]) and Pierce et al. [44] in terms of latent-hardening

effects by means of the hardening matrix. The former proposed a model where the

hardening matrix is diagonally dominant and the latter with the hardening matrix in

which the off-diagonal terms are dominant. The base model [12] used in this thesis

relies on the understanding that these two models are complementary by defining two

characteristic resolved shear stresses: yield stress and a characteristic stress obtained

by back-extrapolation of the stress-strain curve which is roughly coincident with the

flow stress, former related to slip increments by a diagonal hardening matrix and latter

are driven by an off-diagonally dominant hardening matrix. The latter procedure is

adopted for the interpretation of latent hardening experiments ([28], [46]). The recent

work of Cuitiño and Ortiz notes that this difference stems largely from the definition

of flow stress adopted. The dislocation-based model used for this thesis conforms to

the general structure suggested by Bassani and Wu and the hardening matrix, hαβ,

entering the hardening relations is predicted to be diagonal.

1.5 Overview of the Thesis

The work presented in this thesis is organized in the following order:

1. Chapter 1: Background and Major Relevant Studies

2. Chapter 2: Formulation of General Constitutive Framework

3. Chapter 3: Sensitivity Analysis of Aluminum Alloy 6022-T43 with experimental
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data

4. Chapter 4: Prediction of Anisotropy Parameters with Experimental Data and

Optimization of the Model

5. Chapter 5: Analysis of the Effect of Dislocation History

6. Chapter 6: Summary, Conclusions and Future Work

The thesis begins with chapter 1 with the general introduction to the field of

dislocation based modeling with an emphasis on models which has been the basis of

this research. Summary of the majority of pioneering scientific studies performed over

the last several decades is provided.

In chapter 2, the thesis presents the description and formulation of single crystal

dislocation model with statistical approach. Some background on the general form of

the constitutive relations for ductile crystals as well as hardening relations are discussed.

The theories considered are mainly the motion of a dislocation segment through forest

dislocations, the short-range interactions between pair of dislocations and the strength

of the resulting intersections as they are treated as obstacles for the dislocation seg-

ments, and the kinetics of dislocation multiplication. The kinetic equation governing

the motion of a dislocation line through a random distribution of point obstacles is

introduced to be solved in closed form where the density of the point obstacles is a

function of time.

In chapter 3, the experimental texture supplied by the Alcoa laboratories will

be used to analyze the responses to by tweaking certain parameters. The changes in

hardening and the anisotropy of the material due to the parameter (initial yield stress,

initial and saturation dislocation density, self hardening parameter and saturation shear

strain) variations will be investigated as well as the evolution of dislocation density and

active slip systems. The initial stages of hardening will be presented to observe possible

single slip traits in the last section of chapter 3.

In chapter 4, the prediction of r-values, texture evolution and the performance

of the model will be the main objectives. The r-values and the texture evolution in

form of pole figures will be obtained and compared to the experimental results. For
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performance studies the notion of speed of the numerical scheme depending linearly

on the number of orientations in the texture will be used to optimize the computation

time. An orientation selection method depending on the distribution of the orientations

will be introduced. The performance of these selected orientations will be compared

to the total number of orientations and randomly selected orientations to prove the

applicability of this method, focus being on r-values and texture evolution.

Chapter 5 is devoted to the analysis of work hardening effect on the material

after rolling. On the contrary to the previous chapters, the simulation of the rolling

process will also be conducted to obtain history in terms of dislocation density remained

in the polycrystal aggregate. After rolling simulation, the further simulations will be

conducted ‘with history’ and ‘without history’. Work hardening will be carried as strain

in slip systems due to dislocation density being a function of strain.

Finally, in chapter 6, the thesis presents a brief summary along with a set of

concluding remarks for the work presented. The work that could be undertaken in the

near future to extend the applicability of the formulated theories and the limitations

to the model will be noted.
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Chapter 2

Constitutive Framework

2.1 Introduction

The current model of Cuitiño and Ortiz [12] is based on the assumption that the to-

tal deformation of a crystal is the result of two main mechanisms: dislocation motion

contained within the active slip system and lattice distortion. The kinetic equations

governing dislocation motion are solved in closed form for monotonic loading, with

changes in the dislocation density accounted for. This solution is then completed with

suitable equations of dislocation evolution to provide a complete description of the

hardening of crystals. The theories considered in this chapter are: The motion of a

dislocation line through obstacles formed by forest dislocations, the interactions be-

tween pair of dislocations and strength of the resulting intersections, the kinetics of

dislocation multiplication. The motion of dislocations through point obstacles formed

by forest dislocations based on the statistical mechanical theory proposed by Ortiz

and Popov [42]. Firstly, for completeness of the thesis we present the theory behind

the computational model of Cuitiño and Ortiz. For more detailed information, reader

should refer to Computational Modelling of Single Crystals[12].

∫
B0

Pn+1 : ∇0ηdV0 −
∫
B0

fn+1 · ηdV0 −
∫
∂B0

tn+1 · ηdS0 = 0 (2.1)

2.2 General Constitutive Framework

Deformation gradient, F, accounts for both dislocation motion and lattice distortion.

Deformation gradient F can be decomposed into two parts:

F = FeFp (2.2)
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where Fp is the plastic deformation gradient contains the deformation due to disloca-

tion motion and Fe is the elastic deformation gradient which accounts for the lattice

distortion and rotation. As Teodosiu [53] and others [2, 35, 23, 24, 47] suggested, Fp

can be assumed volume-conserving and to leave the crystal lattice undistorted and un-

rotated. Lattice distortion and rotation are presumed to be contained in the elastic

deformation gradient. Thus the deformation power per unit undeformed volume takes

the form

P : Ḟ = P : Ḟe + Σ : L
p

(2.3)

where P defines the first Piola-Kirchhoff stress tensor relative to the intermediate con-

figuration Bt , given by

P = PFpT Σ = FeTPFpT L
p

= ḞpFp−1 (2.4)

and Σ is a stress measure conjugate to the plastic velocity gradients on the Bt which

is defined as

L
p

= ḞpḞp−1 (2.5)

The work conjugacy relations (2.3) suggest forms for plastic flow rules and elastic

stress-strain relations of the general form

L
p

= L
p
(Σ,Q) (2.6)

P = P(Fe,Q) (2.7)

where Q denotes some appropriate set of internal variables defined on Bt , for which

the evolution equations are to be supplied. The most general form of (2.7) consistent

with the principle of material indifference is

P = FeS(C
e
) (2.8)

where C
e

is the elastic right Cauchy-Green deformation tensor defined by

C
e

= FeTFe (2.9)

S = C
e−1

Σ is a symmetric second Piola-Kirchhoff stress tensor relative to the

intermediate configuration Bt . For metals, a linear relation between S and the elastic
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Lagrangian strain, E
e

= (C
e− I)/2, can be assumed without loss of generality. Higher

order moduli are available by Teodosiu[54].

From the kinematics of dislocation motion, Taylor [52] and Rice [47] has shown that

the formulation of L
p

used here has the form

L
p

=
∑
α

γ̇αsα ⊗mα (2.10)

where γ̇α is the shear rate on slip system α, for which sα and mα are the slip direction

and slip plane normal, respectively. The usual assumption which is an extension of

Schmid’s law states that these slip rates depend on stress through the corresponding

resolved shear stress τα only, i.e.

γ̇α = γ̇α(τα,Q) (2.11)

If 2.11 is assumed to hold, then it was shown by Rice [47] and by Mandel [35]

that the flow rule 2.10 derives from a viscoplastic potential. For completeness Q in the

above equation need to be provided. Peirce et al. [43] and several others have proposed

a representation for the slip rates,

γ̇α =


γ̇α0

(
τα

gα

) 1
m

τα ≥ 0

0 otherwise

(2.12)

where m is a strain-rate sensitivity exponent, γ̇α0 is a reference strain rate, and gα is

the current flow stress on the slip system α. Cuitiño and Ortiz [12] presented another

form of this law to overcome the unrealistic slip strain rates noted by several authors

[32, 34, 37], for values of τα/gα much different than unity in the above formulation,

γ̇α =


γ̇α0

[(
τα

gα

) 1
m

− 1

]
τα ≥ gα

0 τα < gα

(2.13)

This expression differentiates between the positive and negative slip direction

and slip plane normal pairs, ±sα ⊗mα, constraining the slip rate to be nonnegative.
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Hence, the slip only occurs for τα > gα. Note that this modification also avoids the

singularity at τα = gα, leading to zero slip velocity.

For multiple slip, the rate of the shear flow stresses is governed by a diagonal

hardening law based on statistical mechanics:

ġα =
∑
β

hαβ γ̇β (2.14)

where hαα are the diagonal hardening moduli:

hαα = 2hc(t)

[
τα(t)

ταc (t)

]3{
cosh

[(
ταc (t)

τα(t)

)2]
− 1

}
no sum in α (2.15)

In the above expression,

ταc (t) = aµb
√
πnα(t) and hc(t) =

ταc (t)

γαc (t)
no sum in α (2.16)

are a characteristic shear stress and plastic modulus, respectively. These values deter-

mine the location of the bend in the resolved shear stress-slip strain curve. In equation

2.16, µ is the shear modulus, b is the Burgers vector, a is a coefficient of the order of 0.3

that regulates the strength of the obstacle, ρα is the dislocation density and nα is the

density of obstacles in slip system α. The hardening moduli, hαα, introduced by this

model is based on two complementary models, models of Pierce et al. [44] and Bassani

and Wu [4]. The model of Pierce et al. suggests a hardening moduli in the form below

hαβ = h(γ)(q + (1− q)δαβ) (2.17)

where γ is the sum of the slip strains on all slip systems. The parameter q characterizes

the hardening behavior, q = 1 corresponding to isotropic or Taylor hardening. For FCC

metals, Kocks [28] determined the range of this parameter to be 1 < q ≤ 1.4. A form

of h(γ) suitable for Al-Cu alloys is introduced by Chang and Asaro [10]

h(γ) = h0sech2(
h0γ

τs − τ0
) (2.18)

where h0 is the initial hardening rate, τ0 is the critical resolved shear stress and τs is

the saturation strength. The model of Bassani and Wu proposed a model of hardening
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in single crystals in which the hardening moduli are in the below form

hαα =

[
(h0 − hs)sech2

((h0 − hs)γα
τI − τ0

)
+ hs

][
1 +

β=N∑
β 6=α

fαβ tanh(
γβ
γ0

)

]
no sum on α

(2.19)

hαβ = εhαα α 6= β no sum on α (2.20)

where τI is the stage I stress, the threshold stress at which large plastic flow starts,

h0 and hs define the hardening slope immediately following initial yield and during

easy glide, respectively and ε is a parameter that defines the off-diagonal terms, i.e.,

ε = 0 is the diagonal form of the hardening moduli. The latent hardening is predicted

to occur by the dislocation model as follows. During the initial single slip regime,

the dislocation multiplication takes place on the primary slip system. The number of

point obstacles on the primary system remains relatively small and the deformation

proceeds by easy glide. At the same time, point obstacles on the secondary systems

grows rapidly due to dislocation multiplication on the primary system. The hardening

coefficient, aαβ, influences the rates of multiplication which raises the critical stresses

on the secondary systems even though yield stress remains small on the secondary slip

system. The discrepancies between these two theories (Pierce et al. and Bassani and

Wu) regarding the form of the hardening matrix come largely form the definition of flow

stress adopted. If the emphasis is on τβc , which corresponds to the back-extrapolation

definition of the flow stress, then the hardening matrix is non-diagonal. If, on the

contrary, the variation of the yield stress is sought as in the model of Bassani and Wu,

then a diagonal hardening matrix becomes appropriate. Cuitiño and Ortiz [12] explains

that these two models outlined are complementary, rather than contradictory.

2.3 Self-Hardening

In this section, the hardening relations of ductile crystals from dislocations mechanics

is explained. The motion of dislocations will be considered within a generic slip system.

This is the main mechanism of interactions between moving dislocations and secondary

dislocations piercing the slip system. This elaborate interplay is driven by the resolved

shear stress on the slip plane which is caused by the overall force applied to the model.
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Because of the random nature of the interactions, the best description comes from

statistical models.

The strength of the obstacle in the slip plane α, created by a pair of forest

dislocations separated by a distance l, can simply be estimated as

sα = a
µb

l
(2.21)

Above equation is obtained using line tension calculations, see for example Kovács and

Zsoldos [31]. The central assumption in forest theory of hardening is that, for high-

purity single crystals, the main resistance to dislocation motion is forest dislocations,

described as the secondary dislocations piercing the slip plane. Forest dislocations can

be visualized as point obstacles that are effective over only a few atomic distances.

Pairs of such point obstacles avoid dislocations from moving further unless a certain

threshold resolved shear stress is reached, as shown in figure 2.1.

Figure 2.1: Dislocation passing through a randomly distributed point obstacles under
monotonic loading

If locations of the point obstacles are assumed to be completely uncorrelated

and that the pairs of points defining a barrier are next neighbors, the probability density

function for next distances becomes [27]

f̃(l, t) = 2πn(t)le−πn(t)l
2

(2.22)



21

where n(t) is the area density of forest dislocation intersections with the glide plane at

time t. Using 2.21 to change variables, we can define the probability density function

of two-point barrier strength s at time t as

f̃(s, t) =
2πn(t)(αµb)2

s3
e−πn(t)(

αµb
s

)2 (2.23)

The time dependence of f̃(s, t) is a consequence of the variation in forest dislocation

density.

We can start explaining the interactions between a moving dislocation and the

distributed point obstacles, strictly restricted to the case of rate-independent and mono-

tonic loading, by defining a resolved shear stress acting on the slip system at time t,

τ(t). Evidently, for dislocations to be arrested at time t, they must face barriers of

strength s which is higher than τ(t). As τ(t) is increased to τ(t) + τ̇(t)dt, the dis-

location segments stuck at barriers of strength ranging from τ(t) to τ(t) + τ̇(t)dt are

released and move forward until a higher barrier strength is reached, figure 2.1. This

mechanism of dislocation movement results in an incremental increase in the plastic

deformation.

Ortiz and Popov [42] noted that the information needed to describe the dislo-

cation motion is contained in the probability density function, f(s, t), which stands for

the fraction of dislocation length facing barriers of strength s at time t. At t = 0, the

dislcoation s may be assumed to be randomly distributed over the slip plane, and

f(s, 0) = f̃(s, 0) (2.24)

The probability that an unstable dislocation segment moves to a barrier of a stronger

obstacle pair is given by

f̃(s′|s′ > τ(t)) =
f̃(s′, t)H(s′ − τ(t))

1− P̃ (τ(t), t)
(2.25)

where H is the Heaviside step function and P̃ (τ(t), t) is the distribution function. Thus,

the dislocation segments redistribute themselves proportionally to f̃(s′, t) over admis-

sible interval [τ(t,∞)]. Consequently, the transition probability rate that a dislocation

segment moves from a barrier of strength s to another of strength s is given by

ψ(s→ s′, t) =
f̃(s′, t)H(s′ − τ(t))

1− P̃ (τ(t), t)
δ(s− τ(t))τ̇(t) (2.26)
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Because of the Markovian nature of the dislocation flights, the evolution of f(s, t) is

governed by Pauli’s master equation

∂f(s, t)

∂t
=

∫ ∞
0

[ψ(s′ → s, t)f(s′, t)− ψ(s→ s′, t)f(s, t)]ds′ + g(s, t) (2.27)

where g(s, t) describes the rate of variation of f(s, t) due to external agencies and in the

absence of transitions. For the system considered, g(s, t) represents the rate of change

of f(s, t) due to the evolution of barrier strength probabilities, f̃(s, t). As noted earlier,

the main variable in the latter evolution is the density of the forest dislocations, n(t).

Evaluation of g(s, t) can be explained by freezing τ(t) at its current value and suppose

that f̃(s, t) changes to f̃(s, t + dt). This approach can be understood by regarding

all dislocation segments as stably pinned at their current locations while adding or

removing point obstacles from the considered slip plane. Some of these new obstacles

arrest the dislocation lines and thus, a change in f(s, t) occurs. The probability that a

segment comes to face a new barrier of strength s is proportional to f(s, t). Therefore,

the rate at which f(s, t) changes due to this mechanism is

g(s, t) =
∂

∂t

[
f̃(τ,t)

1−P̃ (τ,t)
H(s− τ)

]
τ=τ(t)

(2.28)

Inserting equations 2.26 and 2.28 into equation 2.27 the equation of evolution

arrives at

∂f(s, t)

∂t
=

[
f̃(s, t)H(s− τ(t))

1− P̃ (τ(t), t)
− δ(s− τ(t))

]
f(τ(t), t)τ̇(t)

+
∂

∂t

[
f̃(τ, t)

1− P̃ (τ, t)
H(s− τ)

]
τ=τ(t)

(2.29)

The above equation may be viewed as a statement of gains and losses. The Dirac-delta

term on the right hand side has the effect of removing probability density from the

interval τ(t) ≤ s ≤ τ(t) + τ̇(t)dt while the remaining terms in the bracket distributes

it over the interval [τ(t),∞] proportionally to f̃(s, t) as in figure 2.2. When the slip

system remains unloaded at all times, equation 2.29 becomes f(s, t) = f̃(s, t), t ≥ 0.

This should indeed be the case in the absence of applied stress. The dislocation lines

remain randomly distributed over the slip plane and, consequently, the probability that

a dislocation line segment face a barrier of strength s is necessarily equal to f̃(s, t).
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Figure 2.2: Redistribution of the probability density f(s, t) upon a resolved shear stress
increment

The kinetic equation 2.29 admits the simple closed form solution

f(s, t) =
f̃(s, t)H(s− τ(t))

1− P̃ (τ(t), t)
(2.30)

which is only valid for monotonically increasing τ(t) only. Solution 2.30 implies that the

probability density f(s, t) remains proportional to f̃(s, t) over the current admissible

range [τ(t),∞]. Equation 2.30 fully characterizes the self-hardening of a slip system.

Now, we can proceed to calculate the slip rate, γ̇(t), instigated by the dislocation

motion. The dislocation density released during an increment of the resolved shear

stress causes an incremental plastic strain ([27]). Let ρ(t) denote the current dislocation

length per unit volume for the slip system, then slip rate can be found as

dγ(t) = bρ(t)f(τ(t), t)τ̇(t)dtN̄(t)l̄(t) (2.31)

where l̄(t) is the average distance between barriers, and N̄(t) is the average number of

jumps the dislocation segments make before reaching stability.

l̄(t) can be approximated as the average distance,〈l〉(t), between point obstacles

and l̄(t) = 〈l〉(t) = 1

2
√
n(t)

can be obtained. Next, we need to compute the average

number of jumps, N̄(t). The probability that an moving dislocation segment gets

pinned after the first jump is equal to the probability that the first barrier faced is of

strength s ≥ τ(t) which is 1 − P̃ (τ(t), t). Evidently, the probability that the segment

moves without being tackled by the first encounter is P̃ (τ(t), t). For the second barrier,

the corresponding probabilities are P̃ (τ(t), t)[1−P̃ (τ(t), t)] and P̃ 2(τ(t), t), respectively.
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Hence, the average number of jumps taken by unstable segment before being arrested

is

N̄(t) = [1− P̃ (τ(t), t)] + 2P̃ (τ(t), t)[1− P̃ (τ(t), t)] + 3P̃ 2(τ(t), t)[1− P̃ (τ(t), t)]

=
1

1− P̃ (τ(t), t

(2.32)

Equation 2.32 gives N̄ = 1 when τ = 0 and, gives N = ∞ when f̃(s, t) has bounded

support, i.e. [0, smax(t)], for which τ(t) > smax(t), as expected. Substituting equations

2.32 and 2.30 into 2.31 with s = τ+(t), we obtain

γ̇(t) = γc(t)
f̃(τ(t), t)

[1− P̃ (τ(t), t)]2
τ̇(t) (2.33)

where the characteristic plastic strain is defined as

γc(t) = bρ(t)l̄(t) (2.34)

It should be noted that 2.33 is explicit in f̃(s, t) and ρ(t). The former is given by

equation 2.23 and the corresponding distribution function

P̃ (s, t) = exp

[
− πn(t)

(αµb
s

)2]
(2.35)

once the point obstacle density n(t) is known. This, in turn, is a function of dislocation

densities in the remaining slip systems. The precise form of this dependence will be

obtained in the next section.

Equation 2.33 can be simplified as

γ̇(t) =
τ̇(t)

h(t)
(2.36)

where h(t) is the self-hardening modulus of the slip system and can easily be obtained

from equation 2.33

γ̇(t) =
τ̇(t)

h(t)
(2.37)

The effect of slip in one system on the hardening parameters of the rest of the slip

planes is presumed to be contained in dislocation density nα. The experimental work

of Franciosi and co-workers [19, 20, 16, 15, 18] suggests a dependence of the form

1

h(t)
= γc(t)

f̃(τ(t), t)

[1− P̃ (τ(t), t)]2
(2.38)
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This formula is valid for any assumed distribution of barrier strengths. f̃(s, t) provided

as in equation 2.23, then the self hardening modulus is found to be

h(t) = hc(t)
2τ3(t)

τc3(t)

[
cosh

(
τc

2(t)

τ2(t)

)
− 1
]

(2.39)

where

τc(t) = αµb
√
πn(t), hc(t) =

τc(t)

γc(t)
(2.40)

are a characteristic shear stress and plastic modulus, respectively. The values of τc and

γc determine the location of the ‘bend’ in the resolved shear stress-slip strain curve.

The hardening modulus decreases monotonically to zero as τ is increased.

In the present rate-independent framework, we no longer assume that the load-

ing is monotonic, but continue to require that τ(t) not change sign throughout loading.

Define the current flow stress g(t) of the slip system as

g(t) = max(τ(s)), sε[0, t] (2.41)

which is

ġ(t) =


τ̇(t), if τ(t) = g(t) and τ̇(t) ≥ 0

0 otherwise

(2.42)

in rate form. g(t) is defined to be the maximum attained resolved shear stress on

the slip system. Because f(s, t) vanishes in the interval [0, g(t)] acts as an induced

elastic domain. Any part of the loading history contained in [0, g(t)) leaves γ and g

unchanged. Consider the case when τ(t) = g(t) but τ̇(t) = 0 which leads to ġ(t) = 0.

The model requires that the dislocation segments be pinned at obstacles of strength

greater or equal to the previously attained maximum resolved shear stress. Therefore,

the stresses in the range [0, g(t)) are not capable of causing further dislocation motion.

Now, we can rewrite the equations 2.33 and 2.38 as

γ̇(t) =
ġ(t)

h(t)
,

1

h(t)
= γc(t)

f̃(g(t), t)

[1− P̃ (g(t), t)]2
(2.43)
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2.4 Cross-Hardening

In the present theory we have explained so far the short range relationships on the slip

systems determine the rate of self-hardening of a slip system. A key variable in the de-

scription of self-hardening is the density of point obstacles caused by forest dislocation,

nα, which is clearly a function of the dislocation densities in all the remaining systems.

Franciosi and co-workers [19, 15, 18, 16, 17, 20] suggested a relationship between density

of point obstacles in slip system, say α, and dislocation densities on all of the remaining

slip systems, say β

nα =
∑
β

aαβρβ (2.44)

Franciosi and Zaoui [20] also experimentally determined values of the interaction

matrix, aαβ, for the 12 slip systems belonging to the family of {111} planes and [110]

directions in FCC crystals. The interactions are classified according to whether the

dislocations

• belong to the same system (Self Hardening (SH), interaction coefficient a0)

• fail to form junctions (Coplanar systems (Copl), int. coeff. a1)

• form Hirth locks (Hirth lock systems (HL), int. coeff. a1)

• form Colinear junctions (Colinear systems (CL), int. coeff. a1)

• form Glissile junctions ((GJ), int. coeff. a2)

• form sessile Lomer-Cottrell locks (Lomer-Cottrell sessile locks (LC), int. coeff. a3)

with a0 ≤ a1 ≤ a2 ≤ a3. Franciosi [17] also found that the interaction coeffi-

cients are linearly dependent on the stacking fault energy of the crystal and the degree

of anisotropy increases with decreasing stacking fault energy. Franciosi and Zaoui [20]

tabulated their findings on the interaction coefficient as in table 2.1. 4 Slip planes (1̄11),

(111), (1̄1̄1), (11̄1) are named A, B, C, D respectively and the 6 slip directions [011],

[01̄1], [101], [1̄01], [1̄10], [110] are named 1− 6 respectively.

In order to obtain a closed set of constitutive relations, equations of evolution

for the dislocation densities are required. Theoretical [33] and experimental [25] studies
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Table 2.1: The |a| matrix

A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6
A2 SH Copl Copl CS GJ GJ HL GJ LC HL LC GJ
A3 Copl SH Copl GJ HL LC GJ CS GJ LC HL GJ
A6 Copl Copl SH GJ LC HL LC GJ HL GJ GJ CS
B2 SH Copl Copl HL LC GJ HL GJ LC
B4 SH Copl LC HL GJ GJ CS GJ
B5 SH GJ GJ CS LC GJ HL
C1 SH Copl Copl CS GJ GJ
C3 SH Copl GJ HL LC
C5 SH GJ LC HL
D1 SH Copl Copl
D4 SH Copl
D6 SH

shows that the dislocation production is proportional to the cross-glide multiplication.

This gives the relation

bρ̇α = λγ̇α (2.45)

The coefficient λ may be interpreted as the reciprocal mean free path between cross-

glide events. The rate of dislocation attrition due to pair annihilation can be expressed

as (Sackett et al. [49])

bρ̇α = −κραγ̇α (2.46)

where κ may be defined as the mean radius of interaction for dislocation segment

annihilation. Combining equations 2.45 and 2.46, the rate of change of dislocation

density may be written as

ρ̇α =
λ

b

(
1− ρα

ρsat

)
γ̇α (2.47)

where ρsat ≡ λ/κ is a saturation density where rate of annihilation balances the rate of

production. Finally, a relation that places the dislocation density, ρα, and slip strain

in one-to-one correspondence can be postulated. The resulting expression is given by

ρα = ρsat

[
1−

(
1− ρα0

ρsat

)
e−γ

α/γsat

]
(2.48)

where ρsat0 and γsat ≡ bρsat/λ are the initial dislocation density in system α and satura-

tion shear strain. It should be noted that the mobile and immobile dislocations are not

differentiated explicitly in the above expression. ρα denotes total dislocation density

(i.e., mobile and immobile). The fraction of the dislocation density contributing to the

plastic strain rate, γ̇α, is determined by the probability density function f(s, t).
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2.5 Summary of the Constitutive Relations

We have completed the relations defining the dislocation model. We have started by

modeling the motion of a dislocation line through forest dislocation by a statistical

approach, followed by formulation of the short range interactions between pairs of

dislocations and the resulting strength. We have formed relations for self hardening

and cross hardening. The resulting constitutive framework is summarized below.

p q

γ̇α = φ(τα, gα) =


γ̇0

[(
τα

gα

) 1
m − 1

]
τα ≥ gα

0 otherwise

ġα = hααγ̇α

hαα = hαc

(
gα

ταc

)3{
cosh

[(
ταc
gα

)2
]
− 1

}

hαc =
ταc
γαc
, ταc ≡ αµb

√
πnα, γαc ≡

bρα

2
√
nα

nα =
∑
β

aαβρβ

ρα = ρsat

[
1−

(
1− ρα0

ρsat

)
e−γ

α/γsat

]
x y

Table 2.2: Constitutive model parameters for pure aluminum

Parameter Value Parameter Value
C11 108 GPa C22 61 GPa
C44 28.5 GPa g0 38 MPa
a0 7.5× 10−4 a1/a0 2.25
a2/a0 4 a3/a0 5
S 135× 10−3 J m−2 m 0.1
γ̇0 10 s−1 γsat 0.1%
ρ0 1016m−2 ρsat 5.5× 1016m−2

b 2.56× 10−10
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Chapter 3

Sensitivity Analysis

3.1 Introduction

The purpose of computational models and simulations is to reflect the actual responses

of materials and capture the important parameters as accurate as possible. Before

attempting to obtain important manufacturing parameters, the computational model

introduced should be checked for its response to some typical and easily observable

parameters. We will call this procedure sensitivity analysis. Sensitivity analysis of the

predicted results should be undertaken with respect to all assumptions or approxima-

tions used in the model. In this chapter, we will try to explain how the changes in these

parameters, listed below, affect certain behaviors of the material, Al alloy 6022-T43.

These behaviors are already observed or experimented by researchers and the sole pur-

pose of this chapter is to verify these responses and confirm that the material model

functions as expected.

Five parameters, namely initial yield stress (g0), initial dislocation density (ρ0),

saturation dislocation density (ρsat), self hardening parameter (a0) and saturation shear

strain (γsat) is set to several different values to obtain stress-strain behaviors, r-values,

dislocation densities, and active slip systems of the aluminium sample. During the

trials, the response for the changes in the above mentioned parameters are collected

and analyzed to understand the effect of the parameters. The parameters were changed

up and down in the order of magnitude and depending on the observation further trials

were conducted. 100 orientations are used to conduct the simulations. The method of

selection of the particular 100 orientations are described in the following chapter.

Alcoa’s experimental research, [8], supplied the orientations after rolling ob-

tained from x-ray diffraction. These orientations possess the texture evolution during
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rolling (hydraulic bulge test system). In the hydraulic bulge test, a sheet metal test

specimen is bulged by a hydraulic medium. The geometry of the bulged test specimen is

defined by the geometry of the bulge die. The test provides rapid biaxial stress-strain

curve of sheet material and biaxial tensile strain limits of the materials. Figure 3.1

shows the geometric parameters of the test.

Figure 3.1: Geometric parameters of the hydraulic bulge test

For the purpose of sensitivity analysis, we have used these orientations deter-

mined by x-ray diffraction resulted by the hydraulic bulge test conducted. The reader

should note that the analysis conducted in this chapter and chapter 4 are different

than chapter 5. While the current chapter and chapter 4 involves the simulation of

only uniaxial tensile test with experimental orientations, chapter 5 accommodates both

rolling and uniaxial simulations starting from randomly generated 1000 orientations or

selected 100 orientations from a random set of 1000 orientations. The reader should

also note that the boundary conditions of the hydraulic bulge test is somewhat different

than a regular rolling operation where the edges of the sheet material are free along

the rolling direction rather than clamped at all directions as in hydraulic bulge test.

The following equations are once again emphasized for the ease of following the work

explained in this chapter. The details of these equations are supplied in chapter 2.

ρα = ρsat

[
1−

(
1− ρα0

ρsat

)
e−γ

α/γsat

]
(3.1)

nα =
∑
β

aαβρβ (3.2)
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γ̇α =


γ̇α0

[(
τα

gα

) 1
m

− 1

]
τα ≥ gα

0 τα < gα

(3.3)

3.2 Initial Yield Stress

Initial yield stress (g0) defines the amount of current shear flow stress (gα) to be reached

to start the plastic deformation. Once the current shear flow stress in individual slip

systems reach initial yield stress, the polycrystal will start plastic deformation subse-

quently. A behavior similar to a response to changing yield stress values in the classical

understanding of mechanics of materials can be observed with changes in initial yield

stress. Any increase in initial yield stress directly reflects as a shift upwards in the

bending point in the stress-strain curve which clearly shows that the mobilization of

dislocations are harder for increased values of the parameter.As can be seen in figure

3.3 the simulations with lower initial yield stress respond faster to the uniaxial strain

applied due to easier propagation of dislocations. Lower initial yield stress also causes

the r-values stabilize faster with increasing strain. Low initial yield stress activates the

available dislocations with leaving no available secondary dislocations to activate with

higher resolved shear stress. For FCC materials every configuration has 12 slip systems.

Figure 3.4 shows the percentage of active slip systems versus strain. Approximately

50% of the slip systems are active within 1% strain, with lower initial yield stress,

as opposed to 25% and less than 1% with higher initial yield stress, 1.9e8 and 3.8e8,

respectively. 72% of the slip systems are active when the sample reaches 28% total

strain, more than two-thirds of the slip starting before 1% strain reached. Figure 3.4

also shows very similar slip activation for initial yield stresses of 3.8e8 and 1.9e8 which

reflects to the r-values as can be seen in figure 3.3. Average slip rates for higher initial

yield stress at the slip planes are also remarkably lower than that of lower initial yield

stress parameters. Figure 3.5 shows the average of dislocation density for all of the 100

orientations used for simulations. The saturation dislocation density is 5.5e16 and the

initial dislocation density is 1.0e16 for all of the samples in figure 3.5.
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Figure 3.2: True Stress vs. True Strain with varying initial yield stress

3.3 Initial and Saturation Dislocation Density

Initial dislocation density (ρ0) determines the density of the dislocations at the virgin

state of the material, before any manufacturing or curing is applied whereas saturation

dislocation density (ρsat) is the upper bound of dislocation density in the material while

deformed. Any manufacturing process on raw material will increase the dislocation

density starting from the initial dislocation density and eventually reaching saturation

dislocation density if not disturbed. An increase in the initial dislocation density causes

an increase in the dislocation density as defined by equation 3.1. It should be noted that

equation 3.1 does not differentiate explicitly between mobile and immobile dislocation

densities. The expression denotes the total dislocation density. The central assumption

in the forest theory of hardening suggests that, for high-purity single-phase crystals,

the main resistance to dislocation motion is posed by secondary dislocations piercing

the slip plane, namely forest dislocations. These secondary dislocations create point

obstacles in the primary plane and act as immovable joints creating barriers which

significantly impede the dislocation motion. The increasing overlap between the strain

fields of adjacent dislocations gradually increases the resistance to further dislocation

motion. Pairs of point obstacles arrest dislocations in the particular slip plane, which
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Figure 3.3: R-values vs. Strain with varying initial yield stress

require a certain threshold resolved shear stress to overcome the barrier. The value

of resolved shear stress can be estimated from line tension calculations. Saturation

dislocation density is a saturation density at which the rate of annihilation balances

the rate of production. The effect of saturation dislocation density is also defined by

equation 3.1 and an increase in the saturation dislocation density also causes an increase

in the dislocation density. Increase in either ρ0 and ρsat results with an increase in yield

strength and a subsequent decrease in ductility. The effects of initial and saturation

dislocation densities can be seen in figure 3.6. Equation 3.2 shows increasing dislocation

density increases the number of point obstacles, shortening the distance between point

obstacles which causes higher threshold resolved shear stress. The higher initial and

saturation dislocation densities cause hardening due to forest dislocations and become

more resistant to plastic deformation. The consequent result of increased stress at the

slip planes is defined by equation 3.3 and can be observed by the simulations. Figures

3.9(a), 3.9(b), 3.10(a), and 3.10(b) depict averaged dislocation evolution, for different

initial dislocation density and saturation dislocation density, latter two focusing in

the initial 2.5% of strain. Average dislocation density does not reach to saturation

value in any of the runs because of the nature of equation 3.1. Dislocation evolution

becomes more apparent with lower initial density with forest dislocations again playing
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Figure 3.4: Active Slip Systems vs. Strain for varying initial dislocation density

an important role. The dislocation evolution continues until 5% of stretching as can

be seen in figure 3.9(b) for two simulations with higher saturation dislocation density.

The effect of longer dislocation evolution can be observed in r-values in figure 3.7(b).

3.4 Self Hardening Parameter

Self hardening parameter (a0) simply defines the relations between slip systems and how

slip systems would affect each other. FCC crystals mainly deform by crystallographic

glide on {111} 〈110〉 slip systems, so that their hardening characteristics are mainly

determined by the nature of the interactions between these slip systems. Equation

3.2 defines a suggestive form for dependence of point obstacles to dislocation densities

in all remaining slip systems. Self hardening parameter, (a0) defines the interactions

by grading if the dislocations belong to the same system and possibility of forming

point obstacles at intersecting slip planes. By changing the self hardening parameter,

a0, and consequently a1, a2, a3 as defined in [20], the slip systems interactions are

characterized for their ability to self harden, form junctions in remaining systems. a0,

a1, a2, a3 are associated with interactions between dislocations that belong to the same

system or stress opposing the dislocation motion, dislocations interactions on systems

pairs which do not form any junction, systems pairs that form glissile junctions, systems
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Figure 3.5: Average Dislocation Density vs. Strain with varying initial yield stress

pairs that form sessile junctions, respectively. Higher self hardening parameter defined

means more dislocations belong to the same slip system and consequent resistance to

dislocation motion. Figure 3.11(a) shows the resulting hardening of the sample. The

a matrix anisotropy represents the strength of the contact interactions between the

dislocations belonging to different slip systems. The lower is the material stacking fault

energy, the more anisotropic is a. Figure 3.11(b) clearly demonstrates this course. More

slip systems are activated with lower anisotropy of the interaction matrix due to less

resistance caused by immobile dislocation junctions as produced by simulations (Figure

3.12(a)).

3.5 Saturation Shear Strain

Equation 3.1 defines the response of dislocation density to saturation shear strain, γsat.

Higher γsat enables more deformation and causes less internal stress for the sample which

explains weak hardening tendency for high γsat simulations. True stress-engineering

strain curve can be viewed in figure 3.13(a) with varying material hardening. Dis-

location density decreases while number of point obstacles dropping with increasing

saturation shear strain. The direct effect of γsat to ρsat is given in equation 3.1 which

is visible in figure 3.14(b). The impact to the anisotropy of the material is very similar
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Figure 3.6: True Stress vs. True Strain with varying initial and saturation dislocation
densities (Legend shows the values of initial/saturation densities)
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Figure 3.7: R-values vs. Strain with varying initial and saturation dislocation densities
(Legend shows the values of initial/saturation dislocation densities

to the effect of initial dislocation density, ρ0, and can be observed by comparing figure

3.7(a) and 3.13(b). In figure 3.14(a), it is clear that lower γsat reflect as slip systems

activating quicker due to high shear stress causing arrested dislocations to break free

from the barriers.

3.6 Single Slip

Lastly, the following graphs are generated to investigate the single slip behavior. Single

slip refers to a single family of parallel planes that govern the changes in geometry due to

disarrangements. Single slip occurs at the initial stages of deformation (approximately
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Figure 3.8: Active Slip Systems vs. Strain (Legend shows the values of initial/saturation
dislocation densities)
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Figure 3.9: Average Dislocation Density vs. Strain (Legend shows the values of ini-
tial/saturation dislocation densities)

up to 10%) and can not be observed at the latter stages due to activities in multiple

slip planes. The main parameter restricting slip is initial yield stress shown in figure

3.15(a). Slip starts at 0.5% of strain for the value of 1.9e8, and at 1% of strain for the

value of 3.8e8. The rest of the parameters initiate the single slip around at 1% of strain.

Note that, extensive single slip stage is hardly observed for the aluminum sample. The

response is considered to be of a polycrystal sample in which initial stages with single

slip is hardly observed for the 12 slip planes which is in agreement with the findings

of [20]. This is due to relatively strong material stacking fault energy (135e−3J/m2) of

aluminum which increases the ability of a dislocation to glide onto an intersecting slip
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Figure 3.10: Average Dislocation Density vs. Strain for the initial stages of hardening
(Legend shows the values of initial/saturation dislocation densities)

plane and causing simultaneous activation.
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Figure 3.11: True stress strain graph and R - values with varying self hardening pa-
rameter
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(a) Active Slip Systems vs. Strain (Legend shows
the values of self hardening parameter)
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Figure 3.12: Active Slip Systems and Average Dislocation Density vs. Strain with
varying self hardening parameter
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Figure 3.13: True Stress and R-Values vs. Strain with varying self hardening parameter
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Figure 3.14: Active Slip Systems and Dislocation Densities vs. Strain with varying self
hardening parameter
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Figure 3.15: Active Slip Systems vs. Strain with varying parameters for the initial
hardening stages
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Figure 3.16: Active Slip Systems vs. Strain with varying parameters for the initial
hardening stages
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Chapter 4

Predicting R-Values

4.1 Introduction

The increasing computer power over the last few decades has changed the approach

to the numerical analysis and also to the researches where computational power is

indispensable. Simulations once considered impossible and impractical are now hardly

time-consuming and to keep them commonplace, studies to reduce the simulation time

are also considered vital and has been conducted parallel to the ongoing theoretical

work. Increasing computational speed on the behavior of polycrystalline metals, of

both face-centered cubic and body-centered cubic crystal structure, has also attracted

additional focus.

Deformation processes in polycrystalline metals are always accompanied by a

change of crystallographic orientation of each grain, which is often referred as texture

evolution. The control of the texture evolution in metal-forming processes is of sig-

nificant interest in modern industry for the purpose of specific anisotropic mechanical

properties in the final products. With the advance of computational materials science in

recent years, modeling and simulation has provided powerful tools both for theoretical

investigations and industrial applications of texture evolution in polycrystalline metals

[29].

In this paper, we present a method for the selection of orientations based on

their distribution in the Euler space. The model used for the simulation is Cuitiño and

Ortiz’s [12] single crystal model accompanied by Taylor averaging. The single crystal

model of Cuitiño and Ortiz’s is a statistical mechanical model of dislocation motion

through forest dislocations. Kuchnicki et al. [32] also introduced an explicit model

which provides significant performance improvements. Response of the polycrystals
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are based on Taylor model [52] which has been one of the most widely used approach

in theoretical and industrial applications due to its simplicity. This method has been

successfully used in the simulation of texture evolution in face-centered cubic [36] and

body-centered cubic [30] materials. Cuitiño and Zheng [13] also introduced a formu-

lation to apply Taylor averaging to heterogenous foams. Taylor averaging is, however,

inadequate if the crystal strength is heterogenously distributed, like in materials with

a low symmetry lattice and for poly-phase materials. It has also been observed that at

large strains and in cases where the experiments show evidence of inhomogeneous defor-

mation inside grains [40], this method tends to overpredict peak texture intensities and

shift the position of texture components [22], [9]. Efficiency improvements have been

proposed for industrial applications of this method [59], [60]. Recently, a numerical

comparison of Taylor averaging method with low-resolution simulation (LRS) method

and direct numerical simulation (DNS) method has been also investigated [58]. The

results of the simulation will be compared by the experimental data supplied by Alcoa

labs [8] for samples of aluminum alloys 6022-T43 (t = 1.000-mm).

4.2 Orientation Selection

Taylor averaging method assumes that all the grains in the sample are subjected to the

same macroscopic strain. The constitutive model uses the local value of the macroscopic

deformation gradient at each loading step followed by an averaging of the stress tensor.

The orientations are assigned to each integration point of the mesh. Accompanied with

finite element method each integration point represents the collective Taylor-averaged

behavior of a large number of grain orientations. The details of the continuum finite

model conducted in this work can be found in [45]. In Taylor averaging, the properties

of each integration point are calculated by averaging either the stress tensor [26] or

stiffness matrix [5].

We have conducted a computational simulation of a tensile test on aluminum

alloy 6022-T43 which has undergone hydraulic bulge test in Alcoa Laboratories. The

equal biaxial mechanical behaviors has been assessed during the test. During the hy-

draulic bulge test, the initial specimen has been stretched up to 51.6% of strain. The
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tensile test specimens, then, taken at 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ to the rolling

direction of each sheet material. Uniaxial tension tests have also been conducted on

these 7 specimens. The results and the texture after the rolling process is supplied by

Alcoa [8].

The orientation matrix is generated by 3 Euler angles. These Euler angles define

a rotation matrix which orients the texture with respect to the sample coordinates. Our

method uses the dispersion of Euler angles in the domain to improve the speed of the

computations. The procedure used here can be summarized as:

1. Grouping of the orientations according to Euler angles

2. Picking a single orientation randomly (or choosing the median) orientations ac-

cording to the dispersion of the total orientations in the generated pockets

3. Assigning weighing factors to the orientations depending on the total number of

orientations in the pocket

4. During Taylor averaging use the weighing factors to calculate the overall stress

FCC crystal structure has cubic symmetry. This property restricts the range of

2 Euler angles (Φ and φ2) to 0− π/2. Before allocating the appropriate space, experi-

mentally collected Euler angles which were out of the range are recalculated to satisfy

the cubic symmetry condition. Symmetry properties of the lattice is enforced during

the orientation selection process to be able to group textures with close orientations.

Figure 4.1 shows the {111} pole figure of the texture after hydraulic bulge test.

In Taylor averaging, it is assumed that the local deformation gradient tensor in each

grain is uniform and equal to the macroscopic deformation gradient tensor applied to the

polycrystal. It should also be noted that the boundary effects are ignored. Furthermore,

the Cauchy stress in the polycrystal can be taken as a simple average of the Cauchy

stresses in the various grains with different orientations. Therefore, the macroscopic

Cauchy stress (T ) can be expressed as:

T =
1

N

N∑
k=1

T(k) (4.1)
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TD

RD

(a) 1020 orientations

Figure 4.1: {111} Pole figure

where N is the number of crystals in the aggregate, and T k is the Cauchy stress

in the crystal corresponding to the kth grain. In case of weighing factors included, the

above formula becomes:

T =
1∑N

k=1wk

N∑
k=1

wkT
(k) (4.2)

where wk is the weighing factor of the kth grain.

Figure 4.2 shows the selected orientations with symmetry conditions applied.

Figure 4.2 (a,b,c) shows the chosen orientations with their relative weighing factors

depicted with circles. Full range of all three Euler angles are divided in 8,6 and 3

intervals for 200, 100 and 10 orientations, respectively, to be able to attain the desired

number of selected orientations. The number of pockets are subject to change depending

on the distribution of the orientations which is a simple trial process. It is clear that

the selected orientations map the sample as well as randomly chosen orientations would

also likely to do so.

4.3 Numerical Simulation Results

We will evaluate our results in two phases. First, we will compare the results from

selected orientations with the whole range of texture available, with the goal of proving
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(a) 200 orientations (8× 8× 8) (b) 100 orientations (6× 6× 6)

(c) 50 orientations (4× 4× 4) (d) 10 orientations (3× 3× 3)

Figure 4.2: {111} Pole figures of selected orientations after hydraulic bulge test. The
number of pockets created for 3 Euler angles are shown in parentheses. (↓ RD → TD)
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that the computational speed gained does not come at a high price in accuracy. Then,

we will compare the same results with the same number of random orientations to be

able to see if the preprocessing (orientation selection process) provides effective texture

and in fact a superior method.

Using the constitutional framework described above, we conduct simulations for

the uniaxial tensile test up to 28% elongation for 1020 orientations supplied by Alcoa

Labs. The parameters are obtained by simulations conducted with 100 orientations

and mentioned in Chapter 3. These results are compared with the r-values from the

experimental measurements.

Note that the available orientations are simply rotated to conduct the simu-

lations for the sample orientation angles other than 0◦ without changing the axis of

stretch. Figure 4.3 shows r-values found using 1020 orientations with the experimental

results. Results are also tabulated in table 4.1. The simulations are conducted for 0◦,

15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ followed by spline curve fitting. The mean square error

(MSE) for the simulated results of 1020 orientations is found to be 0.00725, only to be

used for comparative purposes with table 4.2. Our model does not account for surface

grains, grain boundaries, non-homogenous deformation. For listed reasons and more,

an agreement of 10% between theory and experiment on any specific property must be

regarded as very good. ([28])

Table 4.1: R-Values

Rotation angle Experimental 1020orientations
0 1.029 0.938
15 1.010 0.833
30 0.703 0.618
45 0.532 0.486
60 0.553 0.540
75 0.689 0.664
90 0.728 0.709

Orientations picked by the method described in section 4.2 is compared to ori-

entations chosen randomly in terms of r-values. From 1020 available orientations, 20

subsets for each 50, 100 and 200 orientations are picked randomly. R-values for every
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Figure 4.3: Comparison of R-values

15 degrees are obtained for these random sets and average mean square errors are tab-

ulated in table 4.2. Even though there exists few random texture sets that brings out

slightly better results than the same number of orientations, the range of the devia-

tions are quite high for random orientations. Using random orientations also introduces

computationally expensive procedure given the fact that without experimental results

available, the secure approach would have to be selecting more than a single set (in the

order of 100 sets depending on the number of orientations aimed for the simulation,

given the texture combinations out of 1020 orientations are almost limitless) of texture

domain and applying a suitable averaging scheme.

Table 4.2: Mean squared errors of selected and randomly chosen orientations

Selected Orientations Random Orientations
Number of Number of Mean
Orientations MSE Orientations MSE
200 0.000696 200 0.008309
100 0.003535 100 0.007259
50 0.007522 50 0.011387

Figure 5.2 presents the texture evolution of the rolled sample in {111} pole
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TD

RD

(a) 1020 orientations, 35% elongation, every 5% (b) 1020 orientations, 80% elongation, every
10%

Figure 4.4: {111} Pole figures showing the texture evolution of 1020 orientations.

figure during uniaxial tensile simulation by Taylor method for up to 35% and 80%,

respectively. The preferred texture include Copper (90,35,45) and Goss (0,45,0). Figure

4.5 shows the same procedure applied on depicted orientations and even the simulation

of 10 orientations easily mimics the preferred tendency of the texture.

Table 4.3 compares the computational time needed for selected number of orien-

tations with standard deviation. The computational time is calculated by averaging the

serial runs of same number of orientations on the same processor. It is expected that the

computation time is approximately linearly dependent on the number of orientations.

Table 4.3: Average Computational time

Number of orientations Average Computational time
1020 orientations 240.72± 31.47 mins
200 orientations 75.64± 16.17 mins
100 orientations 39.3± 7.88 mins
50 orientations 20.38± 3.58 mins
10 orientations 4.71± 1.22 mins
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(a) 200 orientations (8× 8× 8) (b) 100 orientations (6× 6× 6)

(c) 50 orientations (4× 4× 4) (d) 10 orientations (3× 3× 3)

Figure 4.5: Pole figures of selected orientations after uniaxial elongation.
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4.4 Conclusions

One of the important issues of crystalline plasticity models is to determine the variables

by comparing with experiments to be able to use the obtained parameters for simula-

tions of varying conditions. In summary, we have developed a simple yet effective way

of decreasing the number of texture orientations without loosing too much accuracy.

During any manufacturing process, grains of the material evolves to form a group of

preferred texture. Research on the texture evolution has been done for typical types

of unit cell structures and the preferred rotations (such as copper, goss, brass etc.) are

observed. These grouped orientations respond to deformation in a very similar manner

and can be idealized as a single grain containing a texture of this typical group of direc-

tions. The rate of influence of these similar grains are directly related to their presence

in the aggregate, hence assigning a weight to a representative texture determines the

influence strength. The method introduced can be used for initial stages of simulations

to estimate the necessary parameters for the model in a short amount of time. In terms

of accuracy, this method carries the drawbacks of Taylor averaging method.
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Chapter 5

Effect of Strain Hardening History on R-values

This chapter introduces the simulation to capture work hardening and annealing of the

large grained aluminum alloys 6022-T43. 6022-T43 is a typical precipitation hardened

alloy, having precipitate particles which impede the dislocation motion. Since disloca-

tion motion is the main carrier of plasticity, immobilized dislocations causes the alloy

to harden. This is accomplished by tempering the alloy and during tempering, the

alloying elements will diffuse through the alloy and react to form compounds. These

compounds are not soluble in the alloy, and will precipitate, forming small particles

and restricting the dislocation movement. In this chapter we will start the simulations

with the alloy properties from already tempered and strengthened alloys. The effects

of precipitation hardening is not the focus of this chapter. Work hardening is a conse-

quence of the strengthening of a material by plastic deformation. Increased dislocation

density causes plastic deformation to take place making it harder to further deform

the material. Work hardening is generally accomplished by cold-working at ambient

temperatures, at which the multiplication of dislocations occurs at a faster rate. The

history effect of a work hardened aluminum sample is approximated by a rolling simu-

lation followed by uniaxial tensile test where the dislocations formed during the rolling

simulation are carried to the uniaxial tensile runs. A work hardened but fully annealed

aluminum sample is approximated by the same set of rolling and tensile simulations

in which the number of dislocations and flow stress are reset to the initial state before

rolling simulation. We will model the level of annealing by decreasing the number of

dislocations and flow stress partially.
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5.1 Methodology and Results

We have conducted rolling operations with the same framework applied for the uniaxial

tensile test simulations. The internal variables obtained from rolling, namely activating

shear flow stress (g−g0), shear strain (γ), shear strain rate (γ̇), are then used to simulate

history effect on the uniaxial tensile test. First, we will show how stress history affects

the preferred orientations and then an analysis of how other parameters such as r-values

are altered by relaxation scenarios will be presented. The strain rate, γ̇, collected from

rolling simulations are set to zero at 24 slip systems. The work hardening will be carried

by shear flow stress and shear strain. An important consideration in rolling simulations

is that the captured texture evolution is far from being accurate but consistent with the

texture obtained by Taylor model for FCC unit cell structure in literature, ([9]). Taylor-

type model is considered to be in reasonable first-order agreement with the experiments

for the evolution of texture and the overall stress-strain response. Here we introduce

a new parameter, ξ, to capture the levels of annealing. This parameter will define

the amount of dislocations and shear flow stress to be carried between simulations of

manufacturing processes. The shear strain obtained from all of the slip systems are first

defined in terms of number of dislocations using the relation 3.1. Dislocation density is

then altered by the following relationship for all of the slip systems (24 × ‘number of

orientations’)

ραann = ρ0 + ξ(ρα − ρ0) (5.1)

where 0 ≤ ξ ≤ 1, values 0 and 1 stand for an alloy sample which is fully annealed

and the sample which is not annealed, respectively and ραann stands for the new annealed

state of dislocation density. After the new dislocation densities are obtained, they are

converted back to the shear strain values corresponding to the calculated dislocation

density. A similar procedure is applied to the shear flow stress by a relationship of

similar purpose

(g − g0)ann = ξ(g − g0) (5.2)
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During the rolling simulations, the sample is compressed up to 52% strain.

The orientations captured after rolling process is then used to conduct the uniaxial

elongation simulations up to 40%. Strain rates applied, minimum and maximum time

steps for the rolling simulation and the uniaxial tensile simulation are 0.1s−1, 10−3s,

and 10−2s, respectively. The {111} pole figure after the rolling simulation is shown in

figure 5.1. Figure 5.2 is the {111} pole figures after consecutive rolling and uniaxial

simulations with and without the history effect. Relationship between slip strain and

dislocation density is given by 3.1. The total rate of change of dislocation density is

given by Gillis and Gilman [21], and Essmann and Rapp [14] in the form below.

ρ̇α =
λ

b
(1− ρα

ρsat
)γ̇α (5.3)

where b is the burgers vector and λ may be interpreted as the reciprocal mean

free path between cross-glide events.

After the rolling simulations, the new texture orientation may be obtained by

following the continuum model explained below. Deformation gradient is composed

of elastic and plastic deformations, plastic deformation gradient, Fp accounting for

the deformation due to dislocation activities and, elastic deformation gradient, Fe,

accounting for the deformation due to lattice distortion and rotation

F = FeFp =⇒ Fe = FFp−1 (5.4)

The elastic deformation tensor, Ce, takes the form

Ce = FeTFe (5.5)

Remembering, C = U2, the stretch tensor, U, can be obtained by

Ue = Ce1/2 (5.6)

The elastic portion of the rotation tensor can be found noting that F = RU

Re = FeUe−1 (5.7)
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By rotating the initial orientations with Re, the new orientations undergone

texture evolution can be obtained further to be used in uniaxial simulation.

Figure 5.1: {111} pole figure after 52% rolling (1020 orientations)

The parameter used for the subsequent simulations of rolling and uniaxial ten-

sion is given in Table 5.1. Initial dislocation density is the only parameter needed to

be changed with the assumption that the material sample at raw stage would inhibit

fewer dislocations compared to the material undergone hydraulic bulge test. The level

of annealing is not known although during hydraulic bulge test the material is subjected

to an unknown level of heat which is another words simultaneous annealing.

Table 5.1: Constitutive model parameters for pure aluminum in raw stage

Parameter Value Parameter Value
C11 108 GPa C22 61 GPa
C44 28.5 GPa g0 38 MPa
a0 7.5× 10−4 a1/a0 2.25
a2/a0 4 a3/a0 5
S 135× 10−3 J m−2 m 0.1
γ̇0 10 s−1 γsat 0.1%
ρ0 1013m−2 ρsat 5.5× 1016m−2

b 2.56× 10−10

Figure 5.3 shows the true stress-true stress behavior of the uniaxial tensile test

for both cases, with varying history levels. When hardening is carried through history,
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(a) 1020 orientations with history, 40% elonga-
tion

(b) 1020 orientations without history, 40%
elongation

Figure 5.2: {111} Pole figures showing the effect of history

the hardened material shows more resistance to the applied load making it harder to

deform. The cases with lower (rolling to a higher final thickness) and higher (rolling to

a lower final thickness) hardening is applied and the results obtained from these cases

also reflect to the stress-strain curves as predicted.
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(b) True stress vs true strain, up to 25% elon-
gation with 100 orientations

Figure 5.3: History effect on true stress with varying history

Figure 5.4 shows how dislocation density, averaged at 24 slip systems, changes

with elongation. Dislocation density accumulates faster in the cross slip planes when

history effects are excluded, eventually reaching to a saturation dislocation density

lower than the case with the history, which explains the sharp distinctions in the pole
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graph due to weaker resilience against gliding dislocations. Preferred texture is reached

faster and easier given the less strain hardening carried from rolling simulation. This

effect can be observed in figure 5.2. After the sharp increase in dislocation density up

to 1−2% (Figure ), the rate of change in dislocation density is same for both cases with

and without work hardening history. The initial 10% strain of the dislocation evolution

is also shown in Figure 5.4 with 100 orientations used for simulation.
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(c) Dislocation density, up to 10% elongation with 100 orientations

Figure 5.4: History effect on average dislocation density with varying history level

Figure 5.5 compares the active slip systems for both cases. To find which slip

systems are active, we basically found the slip systems that have a positive shear flow

stress. For a material with FCC unit cell structure, there exists 12 slip systems. In the

methodology we use for these simulations, the shear flow directions for these 12 systems

are taken separately and the analysis is made on 12 slip system pairs (total of 24 slip
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systems). If any one of these 12 slip system pairs is active then the corresponding slip

system is assumed to be active. The direction of the stress flow has no importance for

this particular analysis. The rate of change in active slip systems for the annealed case

is always higher than the work hardened case. Again, as in average dislocation density,

the increase in the number of active slip systems are very rapid for the initial 10% of

the strain, especially for the case without history. This sharp increase is expected due

to comparatively weak resistance created by lower dislocation density. The systems are

activated faster even though the overall stress is lower almost for the entire tensile test

simulation.
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Figure 5.5: History effect on active slip systems (100 or vs. 1000 or.)

5.2 Remarks

We have also compared the results obtained by using 1000 orientations with the results

captured by the simulations with 100 orientations. The selected texture of 100 orien-

tations gave similar results as shown in Chapter 4. An important thing to note here

is again the accuracy of Taylor averaging. A consistent model needs to consider grain

effects and surface effects as well as the location of the grains. During rolling, surface

grains are subjected to shear force in the rolling direction. In Taylor averaging, these

affects can not be included due to the global stress applied all grains. However, there

are models developed and available to capture these consequences. A better approxi-

mation for rolling and texture evolution can be obtained using these methods. We have
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conducted channel die compression simulations with one-grain-per-element method. In

this three-dimensional method, channel die compression can be simulated for which the

grains on the surface is prone to shear stress. The shear components in the deforma-

tion gradient is non-zero for this case as opposed to free lateral directions in the rolling

simulation with Taylor averaging. In future, these results should be verified with exper-

imental data. Texture obtained from channel die compression experiments can be used

for uniaxial tensile test simulations to compare the actual r-values with the Taylor aver-

aging simulations. Figure 5.6 shows the r-values for channel die compression simulation

of one-grain-per-element method. Other capable methods should be investigated to im-

prove the estimation of texture evolution and anisotropy for rolling operation. Figure

5.7 shows the {111} pole figure after one-grain-per-element runs. Even though the pole

figure shows mostly cube texture, experimental channel die compression conducted on

AA− 6022 suggests dominantly cube texture [55].

Angle

R
-V

al
ue

s

0 15 30 45 60 75 90
0

0.2

0.4

0.6

0.8

1

1.2

1536 orientations
100 orientations

Figure 5.6: R-values vs Angle



60

RD

TD

Figure 5.7: {111} Pole Figure after approximately 50% of uniaxial compression with
free lateral expansion
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Chapter 6

Conclusions and Future Work

6.1 Summary

AA− 6022− T43 is a recent addition to aluminum alloys used in automotive industry.

Many of the plasticity models known has not been tested or experimented on this

particular material. There has been research done on subjects such as artificial aging,

shear deformation, springback effect, weldability, precipitation hardening and basic

mechanical responses. There has not been any work done on anisotropy of the material

except the manufacturer’s experimental findings from which some conclusions can be

extracted. The modeling work presented here contributes to the understanding the

connection between dislocation plasticity and anisotropic response as well as the effect

of work hardening and annealing on the particular aluminum alloy AA − 6022 or any

aluminum alloy of the same family. The developed model could be used by engineers

and scientists to estimate mechanical behavior of aluminum sheets used in automotive

industry and other relevant industries.

The model presented in this thesis evolved from the earlier work of Ortiz and

Cuitiño which is an alteration of the gradual models created during the span of almost a

century. The work of Ortiz and Cuitiño notes that the dislocation motion through for-

est dislocations can be modeled by a statistical mechanical model. The aforementioned

model also has the capability of solving the kinetic equations governing the disloca-

tion motion in closed form for monotonic loading with dislocation accumulation being

the main drive behind the plastic deformation. This solution coupled with suitable

equations of evolution for the dislocation densities, provides a complete description of

the hardening of crystals under monotonic loading. This thesis also presents a texture
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selection method depending on the density of the orientation groups resting in the poly-

crystal aggregate. By this addition to the present model, the speed of the simulations

may be increased substantially without loosing too much of an accuracy.

6.2 Conclusions

In the sensitivity analysis chapter, we have tried to develop an understanding of how

the dislocation mechanism works by looking at the dislocation evolution, active slip

systems and stresses throughout the range of strain by changing certain parameters.

These deductions are not easily observable at a laboratory environment or one needs too

much time and effort to map the growth of dislocations or the activity in slip system

level. Raw materials need to be obtained or prepared to obtain certain dislocation

density levels or definite inter-slip system intensities. It is also extremely hard to

investigate the different effects separately with experiments or tests, however through

the current model, it is easily affordable to look at the responses depending on different

types of manipulations to the model or to the parameters. For instance, almost all

experimental studies show that the intensity of interactions of slip planes define the

plastic hardening of the material. By using the current model, with a few simulations

these effects can be shown in the macro level easily as predicted by laboratory work.

In addition, even though it has been shown that single slip hardly exists in aluminum

alloys due to high stacking fault energy, it can be made observable by changing the

driving parameters in the model, stacking fault energy for instance.

The strength of the material is limited by the dislocation densities accommo-

dated by the slip systems. It has been shown by the model that if a slip system

has dislocation segments that are still mobile through forest dislocations, the material

can still be deformed further. The model shows this response by basically altering

the saturation dislocation density or in fact, very similar response can be obtained by

manipulating the self hardening parameter, which characterizes the interplay of slip

systems.

It has been known that the texture orientation plays a role in the deformation
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of the material but this effect is mostly due to the preferred orientations of the sam-

ple. Depending on the manufacturing or thermal process undergone by the material,

these preferred texture form throughout the aggregate and characterizes the process

undergone and the other processes to be performed on the sample. It is shown in this

work that if this preferred texture can be reproduced without loosing the pattern of

the texture generated by the whole orientation space, it is possible to predict the same

responses. In this thesis, we simply showed it by choosing random orientations which

spread throughout the Euler space and enforcing the texture by assigning weighing

factors depending on the intensity of the dispersion. The weighing factors are taken

into account during the Taylor averaging and contributed in the overall response. This

method has only been tried on the AA− 6022 and it should be analyzed with different

types of samples and unit cell structures.

The effect of history on materials undergoing manufacturing and thermal pro-

cesses are of great importance. It is hard to identify the state of the polycrystal ag-

gregate in between processes unless the process has been analyzed and experimented

thoroughly. We have tried to simulate the effect of history by carrying the parame-

ters, which define the state of the slip systems in the material, in between processes.

We have also introduced a parameter, ξ, to assign a level of history by manipulating

the dislocation density and the shear strain in the slip system. It is important to test

these predictions with better identified materials. Experiments and simulations must

be conducted simultaneously to better characterize the parameter, ξ. A non-linear

formulation may be necessary to relate level of history to the parameter.

6.3 Recommendations and Future Work

Sensitivity Analysis conducted on the model and the material should be deepened to

understand its consequences in the texture. This thesis only captures their resulting

effect on stress-strain behavior, dislocation density, r-values and active slip systems

during deformation. Single slip drives the initial stages of deformation and only for

that reason it should be studied further and thoroughly.

The results of Chapter 5 clearly shows that the texture plays an important role
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in the macroscopic deformation. Due to the nature of the rolling, it is hard to simulate

surface shear and different types of stress undergone by surface grains and inner grains.

The models without considering the afore mentioned effects results in orientations which

is inadequate to characterize the texture. There are models available to better these

results. More accurate models should be investigated to close in to the experimental

texture and further tensile deformation simulations should be initiated to understand

the effects of work hardening and to improve the anisotropy estimations.

The optimization method introduced in the thesis has been tested only on AA−

6022 successfully but further research should be conducted on different materials and

different deformation trends with considering the better results that may be stemmed

from random orientation sets. This method only considers the intensity of preferred

textures and chooses random orientations for representation. The opportunity of further

improving the optimization by discarding the randomness should be considered.
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