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ABSTRACT OF THE DISSERTATION

Discretization of Continuous Features by Human Learners

by Cordelia D. Aitkin

Dissertation Director: Jacob Feldman

Natural features are often continuous, but many models of human learning and catego-

rization involve discrete-valued (e.g. Boolean) features. Discretization is well-known to

be beneficial in machine learning, leading to faster and sometimes more accurate learn-

ing. Yet there has been little research on how human learners discretize continuous

features. This dissertation investigates human discretization, focusing on two specific

areas of inquiry. First is the hypothesis that discretization of a continuous parameter

depends on the shape of the probability distribution underlying it, and principally on

the presence of “modes” or separable peaks in the distribution. The second hypothesis

is that humans create clear distinctions between discretized feature values, rather than

probabilistic boundaries.

Subjects were presented with items that had feature values drawn from a mixture

of Gaussian distributions, and a free sorting task was used to assess whether subjects

spontaneously discretized the feature in a way that related to the underlying mixture.

The relative locations of the two component Gaussians, their separation as measured by

Cohen’s d (the ratio of the distance between the components’ means to their standard

deviations), and the number of items drawn from the overall mixture were varied. Each

of these factors influenced the way subjects discretized the features, while further anal-

ysis showed that the estimated mixtures were more sharply separated (higher Cohen’s

ii



d) than the original probability. This study suggests that human featural discretization

involves a process akin to the estimation of mixture components in the environment,

but that the separation among the components is systematically overestimated to cre-

ate “cleaner” divisions than are truly present—a phenomenon that might be termed

hyperdiscretization.
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Chapter 1

Introduction

Natural physical parameters, such as distance, time, and mass, are often treated as in-

trinsically continuous, as are primitive psychophysical parameters like orientation and

size. But many models of human cognition assume discrete-valued (e.g. binary) fea-

tures, with qualitative separation between distinct levels or values (Shepard, Hovland,

& Jenkins, 1961; E. E. Smith, Shoben, & Rips, 1974; Tversky, 1977). Additionally, al-

though several models allow for continuous-valued features, the support for such models

generally uses discrete values (e.g. Medin & Schaffer, 1978; Nosofsky, 1986). In other

models, these distinct levels often become the primitive elements of more complex com-

positional systems, and thus form a key component of the symbolic processing that

underlies much of cognition (e.g. Anderson, 1991). Yet exactly how the values of a

continuous feature (e.g. size) are aggregated or binned to yield a discretized feature

(e.g. big/small)—the process of discretization—has received little attention in the psy-

chological literature. This thesis investigates some very basic questions about how this

process works.

Because it discards distinctions among points within a discrete class, discretization

inherently involves a loss of information. However, several classic results indicate that

people are not able to use all the information available. For example, Garner and Hake

(1951) found that no matter how discriminable their stimuli, subjects were unable to

learn names for more than a small number of discrete values of an acoustic signal. More

broadly, Miller (1956) famously proposed that human cognizers face severe limits on

the number of distinct states of any variable or process they can entertain (e.g., 7 ± 2).

As it ultimately aims to minimize information loss, discretization seems like a natural

heuristic for human cognition.
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1.1 Theoretical Motivation

There are many different ways to discretize a continuous feature. A feature can simply

be split into equal intervals (a common choice in the applied literature), or it can be

divided so that each bin has equal probability mass (as in a median split, which divides

an interval into two bins at the 50th percentile). The latter idea is very simple, but

contains the grain of a more general idea I wish to develop: that how a discretization is

chosen might depend on the way the continuous values are distributed in the examples,

or in the environment from which they are drawn.

If a given continuous variable is distributed uniformly in the environment, there is

little basis for selecting dividing points (called cutpoints), so any discretization would

be somewhat arbitrary. But if the variable’s underlying probability density function is

“spiky” or conspicuously multimodal, it seems desirable for the cutpoints to reflect the

natural divisions between the modes (Feldman, 2009), which would suggest discretiza-

tion may subserve efficient coding. Indeed, a robust area of machine learning research

has found discretizers that use the statistical information in the dataset produce the

best combination of speed and accuracy.

In other areas of research, evidence indicates natural parameters are distributed

non-uniformly, or unevenly; as such, human discretization would be most efficient if

it captured rather than obscured that unevenness. Finally, two broad areas of psy-

chological research indicate people may be able to use statistical information in the

environment. First, ample research has shown that low-level processes in vision and

audition are uniquely suited to take advantage of these uneven statistics. Second, re-

search in areas such as categorization indicate people may be sensitive to statistical

information in higher-order processes as well. Thus, human discretization may also be

able to use the statistical information about a feature in order to create a relatively

accurate symbolic model of the world. In order to make this point clearer, I will now

review these areas of research.
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1.1.1 Machine Learning

Discretization has been much studied in machine learning, where aggregation of “con-

tinuous” features (in practice meaning features with a large number of used values) into

discrete features (with a small number of distinct values) is well known to yield both

a reduction in computational complexity as well as, in many cases, an improvement in

performance (Dougherty, Kohavi, & Sahami, 1995; Grabczewski, 2004). Like comput-

ers, humans have limited computational resources, and so human discretization might

well follow principles similar to those advanced in the computational literature.

As alluded to above, the simplest discretizers take the feature and divide it into

equal sections based on either range (equal width) or the number of occurrences (equal

frequency). However, these methods may obscure useful information like category clus-

ters (Dougherty et al., 1995; Kurgan & Cios, 2004; Yang & Webb, 2002). Therefore,

researchers have developed discretizers which reduce the loss of important or helpful

data during the discretization process. Various statistical and information-theoretic

tests are used to determine if a cutpoint is useful or not; some of the methods include

minimum description length (Fayyad & Irani, 1993; Friedman & Goldszmidt, 1996),

entropy (Kohavi & Sahami, 1996), and mutual information (Kurgan & Cios, 2004).

Although early research focused on discretizing one feature at a time, more recent

work has explored the value of discretizing a number of features simultaneously, as

focusing on one feature at a time may mask interesting information in the data (Bay,

2001; Ludl & Widmer, 2000; Monti & Cooper, 1999; Wang & Liu, 1998). Bay (2001)

uses the example of XOR data, where items in both categories are spread approximately

evenly across any one feature. However, if one examines the data using both features

simultaneously, the four distinct clusters become obvious.

1.1.2 Natural Feature Distributions

Many theorists have speculated that cognitive representations are in some way based on

correlational or regular structure in the world (Anderson, 1991; Rosch, 1978). In a sim-

ilar vein, I speculate that discretization is sensible when it reflects the “natural modes”
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(Richards & Bobick, 1988) in the environment, specifically the distinct components (if

any) in the distribution of values of a continuous feature. In this sense, my motivation

is similar to research in natural image statistics. Here, the visual system has been

found to reflect the statistics of the natural world in a variety of senses and domains

(Alvarez & Oliva, 2009; Field, 1989; Simoncelli & Olshausen, 2001). Thus, humans

may be sensitive to the uneven, multimodal nature of the statistics of the continuous

world when discretizing as well.

1.1.3 Higher-Order Use of Uneven Distributions

Existing evidence of how humans use uneven distributions in categorization and other

higher-order processes is rather indirect and contentious. The first set of evidence comes

from developmental psychology. Kemler Nelson and collegues have used the free-sort

task to investigate how children categorize. (Free-sorting involves giving the subjects

items and asking them to group the items that “go together.” “Go together” is de-

liberately not defined by the experimenters, and subjects are not given feedback as to

whether the groups are “correct” or not.) They found that children tend to create “fam-

ily resemblance” (FR) categories; that is, they tend to group items that are globally

similar in that the items have co-occuring feature values, although not all co-occuring

values coincide in every item (Kemler & Smith, 1979; L. Smith, 1989). This contrasts

with adults, who tend to sort items by a single feature even if that feature divides

an FR category (Ahn & Medin, 1992). However, Berger and Hatwell (1996), using

free-sorting of haptic rather than visual cues, found that the developmental difference

may be in the level of processing; that is, adults are more likely to analyze stimuli

using high-level information, while children are more likely to use low-level informa-

tion. This is supported by additional work of Kemler Nelson and colleagues (Foard &

Kemler Nelson, 1984; J. Smith & Kemler Nelson, 1984), who found that under speeded

conditions, holistic processing of certain types of visual stimuli was more likely than

analytic processing in adults.

However, when more feature values co-occur and so long as there is no one universal

feature, adults are more likely to create FR categories that any other type of category
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(Ahn & Medin, 1992; Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; Ward,

Foley, & Cole, 1986). Additional research has shown that people can use co-occurring

feature values in other categorization and learning tasks (Billman & Knutson, 1996;

Crawford, Huttenlocher, & Hedges, 2006). As an example, Clapper and Bower (1994)

used line drawings of insects and asked subjects to list features that distinguished a

particular insect from others like it; subjects quickly stopped listing co-occuring fea-

tures. Thus, research in higher-order use of statistical information suggests subjects

may be able to notice clusters of values within a single feature, and therefore produce

a discretization of the feature which reflect those clusters.

1.2 The Form of the Discretization

There are two possibilities for the type of cutpoints people might use: the cutpoints

may be either “fuzzy” or “clean.” Research in other areas of psychology suggest the

former. The classic example is Weber’s Law, which states that the discriminability

of two values depends on the value. More recently, timing (Malapani & Fairhurst,

2002) and nonverbal number representation (Cordes, Gelman, Gallistel, & Whalen,

2001; Whalen, Gallistel, & Gelman, 1999) have been shown to have a scalar variability.

However, the results from machine learning show that an informative discretization

which can increase accuracy and reduce effort depends in part on the discretization

being exact (Grabczewski, 2004). Thus, in order to understand how much help human

discretization offers in processing and modeling the environment, it is necessary to

determine how exact human discretization is.

1.3 Summary of the Motivation

There is a good deal of information available in the natural world, some of which is nec-

essary in order to interact successfully with the world and some of which is not. In order

to efficiently interact with the world, humans must have ways to efficiently process that

information. For features in particular, one way to make them more efficient is to re-

duce the number of values without catastrophically reducing the amount of information
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contained in the features: discretization. Although well-studied in machine learning,

the process by which humans transform a continuous feature into a discrete feature

has not been examined. In a first step towards understanding how continuous features

become discrete, symbolic values in the stream of cognition, this thesis examines some

of the basic principles of human discretization.
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Chapter 2

Experimental Approach

Clearly, an unexplored problem will have many possible avenues of approach. This

chapter lays out the reasoning behind the particular experimental procedure which was

chosen.

2.1 Discretization and Environmental Statistics

Discretization might be seen as a type of (unsupervised) categorization or classification,

if one regards the many potentially distinguishable levels of the underlying continuous

variable as items to be categorized. In this case the discrete levels would simply be

learned classes as in any other categorization problem, and the process of discretiza-

tion would simply be a special case of the well-studied problem of category forma-

tion. I view discretization as a distinct and indeed more basic process, contributing

as it does to the formation of the features themselves, and thus establishing the ba-

sic perceptual/cognitive vocabulary over which later representations are built. This

is complementary to the process by which psychological features are chosen (or cre-

ated), as explained by the fundamental work Schyns & colleagues (Schyns, Goldstone,

& Thibaut, 1998; Schyns & Rodet, 1997). Schyns & collegues have found that the

process of categorization can influence which aspects of an object (e.g. segments of a

boundary) subjects use as features. The features Schyns colleagues tend to be binary

(there/not-there); additionally, the full process is still poorly understood. I view feature

discretization as a complementary process, in which the basic (continuous) perceptual

or psychophysical features are transformed to become the discrete, symbolic features

that are often assumed to be employed by later cognitive processes.

If human discretization does attempt to minimize information loss, discrete values of
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an uneven distribution should correspond to the modes in that distribution. To explore

this idea, objects with features whose values were distributed according to mixtures of

multiple unimodal density functions were presented to subjects for sorting. A mixture

distribution or mixture model is the normalized (i.e, weighted in such a way that the

integral remains 1) sum of several component distributions, sometimes called sources

(McLachlan & Basford, 1988). For example, the probability density function p(x) of

the continuous parameter x might be the mixture of K components g1(x) . . . gK(x),

p(x) =
K∑

i=1

wigi(x), (2.1)

in which wi are the mixing proportions, and the i-th component source has a distinct

mean μi and standard deviation σi.

One question to ask about human discretization is whether discretization is generally

easier when the components are more separable. A natural measure of separation among

components is the ratio of the distance between their means to their spread, sometimes

called Cohen’s d

d =
|μ1 − μ2|√
(σ2

1
+ σ2

2
)/2

, (2.2)

commonly used in the statistical literature as a measure of effect size (Cohen, 1988).

Cohen’s d is high when the distributions are well-separated relative to their spread, and

is low when they overlap substantially, in which case the mixture may not be visibly

multimodal; Fig. 2.1 shows two examples of different levels of Cohen’s d.

2.2 General Motivation

The overall goal of the experiments was to understand the basic mechanisms of dis-

cretization. More specifically, these experiments tested the hypothesis that discretiza-

tion of a single feature is sensitive to the underlying environmental distributional struc-

ture and involves an attempt to recover the mixture components. There are two major

aspects to this question:
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Figure 2.1: Mixtures of two Gaussian distributions. The top panel shows moderate
separation (Cohen’s d = 3), while the lower panel shows low separation (Cohen’s d =
1.875).

1. will subjects’ cutpoints be hard cutpoints (as in machine learning), or will they

be more like the probabilistic estimations of the generating distribution?

2. will subjects be influenced by the distribution such that the location of their

cutpoint matches the cutpoint of the distribution?

The first question concerns how clean the subjects’ cutpoints are. To make “clean”

clearer, consider an example. Assume we have a continuous variable x, the values of

which {x1, x2, x3, ...} occur according to some generating distribution. We would like to

map x onto a discrete variable x, such that this related discrete variable has two values

x1 and x2. The division between x1 and x2 occurs at value xi of the original feature x.

One source of fuzziness in the cutpoint comes from the selection of xi; if xi is chosen

by a stochastic process, the cutpoint between x1 and x2 will be fuzzy. However, even if

the process is not stochastic, the cutpoint may still be fuzzy. Consider the value xi − ε

of the original x such that xi− ε is very close to xi while still perceptually discriminable

from xi. When assigning xi − ε to a discretization value, there are two possibilities:

either this value will always be x1 (a clean discretization); or it will be x1 with some

probability p and x2 with probability 1 − p (a fuzzy discretization). While the latter



10

First Distribution
Second Distribution
Summed Distribution
Likelihood Ratio 

Cross-point

Minimum in Mixture
Mean Split

Figure 2.2: Example of deconfounded environmental cutpoints. Blue is the point of
equal likelihoods of the two Gaussians; Red is the mean split; Green is the minimum
in the mixture density

possibility is the form other human cognitive behaviors generally take (e.g. Weber’s

Law), the former is the discretization schema used in machine learning.

The second question can be rephrased as: do subjects recover the components of a

mixture? Estimation of the sources in a mixture in the general case is a complex process

(McLachlan & Basford, 1988), but in this situation several simple principles suggest

themselves. Subjects might place cutpoints exactly between the component means

(a mean split), place them so equal numbers of stimuli are on both sides (a median

split); place them at a minimum in the mixture density; or place them at the point

that is equiprobable under both source distributions (the likelihood ratio cross-point),

which is the Bayes optimal solution (assuming equal priors, as in these experiments)

(see Fig. 2.2). When standard deviations are equal (homoscedastic case, Exp. 1A and

Exp. 2), all these hypothetical cutpoints coincide; the goal of those experiments is

thus more fundamental, to establish that discretization is sensitive to the structure of

the generating distribution. When the standard deviations are unequal (heteroscedastic

case, Exp. 1B) these potential cutpoints are deconfounded, allowing a more fine-grained

analysis.
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2.3 General Experimental Procedure

Subjects were asked to freely sort objects whose feature values were generated from a

mixture distribution defined over one or two salient (quasi-)continuous parameters. Two

features were selected under the following restrictions: salient, unidimensional (unlike

e.g. color), and naturally bounded at both ends (unlike e.g. length). The features

selected were luminance (perceived reflectance, ie lightness) and aspect ratio, the ratio

of a shape’s shorter dimension to its longer, a simple shape parameter known to be

psychologically meaningful (Feldman & Richards, 1998). Given these two features, an

ellipse was chosen to be the sorted object. Aspect ratio ranges in principle from 0 (a

line segment) to 1 (in ellipses, a circle); however, to avoid the degenerate case of a line

segment, aspect ratios varied only from 0.1 to 1 in the experiments.

For all experiments, stimulus sets were drawn from mixtures of two Gaussians de-

fined over the chosen feature(s). The two source components had equal weights (wi)

and standard deviations that were either equal (Exp. 1A and Exp. 2, homoscedastic

case) or unequal (Exp. 1B, heteroscedastic case). One of the main questions of interest

was whether the separation of the two components would influence the way subjects

discretized, which would suggest a rational data-driven discretization process involving

some estimation of the source components. Hence the source components were chosen

in such a way as to vary Cohen’s d over a wide range, from low values entailing heavily

overlapping distributions to high values entailing well-separated ones.

A second question of interest concerns whether humans are optimally influenced

by the data. As shown in Fig. 2.2, there are at least three possible cutpoints in the

Gaussian mixture. However, these distributional cutpoints are fuzzy cutpoints; thus, if

humans are optimally recovering the distribution, the cutpoints will be as well.

Two other basic parameters of the stimulus set were manipulated in the experiments.

First, the location of the two source components (i.e., their means μi) in the parameter

space was also manipulated, as features are not always equally discriminable across the

space of values (e.g. loudness, weight); although there is no clear increasing or decreasing

direction in aspect ratio or luminance, there is certainly a potential for asymmetry, and
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thus for discretization cutpoints to “drift” in one direction or another, suggesting some

kind of prior bias. Second, as a way of manipulating the quantity of data available to

the subjects when making their discretization choices, the number n of stimuli presented

in a block was also varied.

2.3.1 General Analysis

This thesis concerns three substantially independent aspects of subjects’ discretization

procedures, which were quantified separately as dependent measures. First, it was

determined where the subjects placed the cutpoints by identifying the cutpoint that best

classified the subjects’ own responses. Second, the discretization error (DE) measures

how cleanly or “discretely” subjects actually discretized, that is, how strongly the

ensemble of observed values induced them to form a clear boundary and apply it. To

quantify this, the stimulus items that were still misclassified relative to this cutpoint

determined above (i.e. the number of ellipses on the “wrong side” of the subject’s own

apparent boundary) were counted; DE = 0% would mean a perfectly clean boundary.

Finally, ideal error (IE) measures the subject’s “objective” error in separating the

source distributions. This can be thought of as a measure of the subjects’ performance

relative to an ideal Bayesian observer who knew the form of the source components in

advance but not their locations. IE = 0% means an exact boundary that matches the

likelihood ratio cross-point of the underlying distribution. Thus the IE measures success

in determining the source components, while the DE simply measures the strength of

discretization without reference to the true sources.

2.4 Summary of the Experimental Approach

This thesis addresses two of the basic questions about human discretization: do people

cleanly discretize, and does the distribution of continuous feature values affect where

people separate discrete values. To answer these questions, the general form of the

experiments involved free-sorting. Two features were used: aspect ratio and luminance.

Three parameters of the generating mixture model were varied: separation (as measured
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by Cohen’s d), location, and number of items drawn from the mixture. Three dependent

measures assessing different aspects of the discretization were analyzed: the location

of the subject’s cutpoint, the number of errors relative to that cutpoint (DE), and the

number of errors relative to the likelihood ratio cross-point in the mixture (IE). The

next chapter presents the details of the first experiment.
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Chapter 3

Experiment 1 - One Feature

The first experiment involved discretizing a feature while all other features remained

at a constant value. Stimuli were ellipses of either various aspect ratios or various

percentages of grey (with 0%=black and 100%=white) as drawn from mixtures of two

Gaussians. Experiment 1A tested the idea that the separation in the underlying dis-

tribution, as measured by Cohen’s d, affected discretization accuracy as measured by

Discretization Error and Ideal Error (described in Section 2.3.1). Thus, the crucial

measure manipulated in Exp. 1A was the separation (Cohen’s d). Experiment 1B

looked more closely at what particular aspect of the distribution affected discretization

accuracy; thus, the additional measure manipulated was differentiation of various en-

vironmental cutpoints, by using heteroscedastic distributions. In Experiment 1, three

parameters were modified: separation (as determined by Cohen’s d); location in feature

space (as determined by the average of the two means); and number of items in a block.

The statistical parameters were the same for both aspect ratio and luminance, and so

will be described fully now.

3.1 Stimuli and Procedure

3.1.1 Stimulus Parameters

Separation

Three levels of separation were tested in Exp. 1A. The two means in each mixture were

held at a constant distance from each other, so change in Cohen’s d was determined

entirely by changing the standard deviation. In Exp. 1A, one distance between means

and three (shared) standard deviations were chosen.
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Six levels of separation were tested in Exp. 1B. In Exp. 1B, the distance between

the two means was not held constant. Thus, Cohen’s d depended on the two different

standard deviations and on the distance between the means. In Exp. 1B, three distances

and two sets of standard deviations were chosen.

A list of the means, standard deviations, and separation as measured by Cohen’s

d for both Exp. 1A (homoscedastic) and Exp. 1B (heteroscedastic) can be found in

Appendix A.

Location

Both Exp. 1A and Exp. 1B had six locations, as defined by the average of the two

means. As the means in Exp. 1A were always the same distance apart, the six locations

involved moving both means. In Exp. 1B, however, three locations involved moving

only the larger mean, and the other three locations involved moving only the smaller

mean.

Number of Items

With more items drawn from the mixture, subjects would have more data about the

mixture. Therefore, each mixture was presented three times, with a different number

of items each time. Exp. 1A presented either 10, 20, or 40 stimuli, while Exp. 1B

presented either 20, 35, or 45 stimuli.

3.1.2 Overall Design

These three factors (separation; location in feature space; number of items) were com-

pletely crossed within subjects. For Exp. 1A (homoscedastic), this yielded a total of

54 blocks. For Exp. 1B (heteroscedastic), as location and separation are partially con-

founded, a complete crossing yielded 36 blocks. All blocks were presented in random

order. The experimental session lasted approximately one hour.



16

.

Figure 3.1: Example of a “group” screen in a homoscedastic aspect ratio sort, Exp. 1

3.1.3 General Procedure

The procedure was the same for all the experiments. For each block, the subject studied

a group of ellipses on the computer screen, arranged in a grid in random order, and

mentally sorted them into two groups (“narrower”/“rounder” or “lighter”/“darker”;

see Fig 3.1) . When the subject felt comfortable about how s/he would assign the

ellipses to the two groups, the subject pressed any key on the keyboard. Each ellipse

was then presented individually in (a new) random order. The individual ellipses were

larger than the ellipses on the group screen (where they had been uniformly reduced in

size to fit on one screen). The subject was asked to press one key if s/he had decided

the ellipse was in one group, and another key if s/he had decided the ellipse was in the

other group. After each response, a blank screen appeared and the subject would press

the space bar to start the next trial. After the subject classified all the ellipses from

that group, a new block with a new set of ellipses drawn from a new mixture would

begin.

Before the start of the experiment, subjects were given written instructions explain-

ing the procedure, including that sorting should be based only on the ellipses that were

visible. After the subject had read the instructions but before starting the experiment

itself, the experimenter re-emphasized that the subject would be seeing a broad range

of ellipses over the course of the experiment, but that for any given group, they should
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Figure 3.2: Discretization error (DE) as a function of separation (Cohen’s d), Exp. 1A.1.
Error bars here and in other figures are ±1 s.e.

decide the sorting based only on the other ellipses in the current group.

3.2 1A: Homoscedastic Modes

3.2.1 1A.1: Aspect Ratio

Subjects and Design

Subjects were 23 undergraduate students receiving class credit in return for participa-

tion, and were naive to the purpose of the experiment. Stimuli were ellipses of various

aspect ratio with equal standard deviations as described above; luminance was held

constant (0%, black).

Results

Mean Ideal Error over all subjects and all blocks was 17.4%; mean Discretization Error

over all subjects and blocks was 7.1%.

There was a significant effect of Cohen’s d on both DE (F (1, 1240) = 11.3, p < 0.001;

Fig. 3.2) and IE (F (1, 1240) = 30.0, p < 0.0001; Fig. 3.3)1, such that higher values of

Cohen’s d were associated with lower error rates.

1As the independent variables are numeric rather than categorical, unless otherwise indicated, I used

linear regression to test their effects here and elsewhere.
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Figure 3.3: Ideal error (IE) as a function of Cohen’s d, Exp. 1A.1.
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Figure 3.4: DE as a function of number of stimuli, Exp. 1A.1.

Surprisingly, there was no significant effect of n on IE; however DE increased with

n (F (1, 1240) = 27.7, p < 0.0001; Fig. 3.4).

To compare the subjects’ cutpoints to ideal cutpoints, for each block the distance

and direction from the subject’s cutpoint to the ideal was calculated. As can be seen in

Figure 3.5, the distance subjects moved the cutpoint depended on both the location of

the underlying distribution and the direction the cutpoint was moved (2-way ANOVA.

Location: F (5, 266) = 2.7, p < 0.03; direction: F (1, 266) = 5.6, p < 0.02, interaction:

F (5, 266) = 15.7, p � 0.00001). That is, for distributions of feature values centered

closer to 1, subjects tended to move cutpoints downwards relative to the Bayes-rational

cutpoint, and for distributions centered closer to 0, subjects tended to move cutpoints

upwards relative to the Bayes-rational cutpoint. Additionally, the further the mixture
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Figure 3.5: Change in cutpoint as a function of location in feature space, Exp. 1A.1.

was from the overall mean of the feature space, the further the subjects moved the

cutpoint.

3.2.2 1A.2: Luminance

Exp. 1A.2 is a replication of Exp. 1A.1 using a different feature (luminance), to confirm

the results were not specific to aspect ratio.

Subjects and Design

Subjects were 22 (new) undergraduate students receiving class credit in return for

participation, and were naive to the purpose of the experiment. One subject was

dropped due to a recording error, and one subject was dropped because both IE and

DE were more than three standard deviations from the mean error rates: a total of 20

subjects were analyzed. Stimuli were ellipses of constant aspect ratio (0.5) and varying

luminance drawn from homoscedastic distributions as described in Section 3.1.

Results

Mean overall IE was 16.8% and mean overall DE was 7.1%. Cohen’s d had a significant

effect on DE (F (1, 1078) = 9.8, p < 0.005; Fig. 3.6) and on IE (F (1, 1078) = 27.2, p <

0.0001; Fig. 3.7), such that higher values of Cohen’s d led to lower error rates. The

number n stimuli did not have a significant effect on IE, but did significantly increase
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Figure 3.6: Discretization Error as a function of Cohen’s d, Exp. 1A.2.
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Figure 3.7: Ideal Error as a function of Cohen’s d, Exp. 1A.2.

DE (F (1, 1078) = 39.8, p < 0.0001; Fig. 3.8)

For cutpoint movement, the distance an average cutpoint moved depended on lo-

cation of the underlying distribution, and whether the cutpoint was being moved up

(toward white) or down (toward black), such that cutpoints of distributions further

from the mean of the overall feature space were moved further than cutpoints of distri-

butions closer to the mean of the overall feature space, and cutpoints at all locations

were moved toward the mean of the entire feature space (2-way ANOVA: interaction

between distance and direction: F (5, 217) = 5.64, p < 0.005; Fig 3.9).
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Figure 3.8: DE as a function of number of stimuli, Exp. 1A.2.

9.5 20 30 40 50 60 70 80
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Location: Percent White

A
bs

ol
ut

e
D

is
ta

nc
e

M
ov

ed
:P

er
ce

nt
W

hi
te

Average Distance Moved Up
Average Distance Moved Down

Figure 3.9: Change in cutpoint as a function of location in feature space, Exp. 1A.2.

3.2.3 Analysis: Homoscedastic Modes

These findings, in particular the significant influence of the separation between modes

(Cohen’s d), suggests that subjects are influenced by the underlying distribution. Al-

though the number n of stimuli provided more data about the underlying distribution,

this additional data did not allow subjects to recover the underlying cutpoints more

accurately (IE); however, subjects did create fuzzier distributions (DE) with more data,

possibly reflecting the shape (if not the location) of the underlying mixture more accu-

rately. The cutpoint movement suggested that subjects have a bias towards the mean

of the overall feature space, despite explicit instructions to focus only on the current

feature values. As the overall results suggested that subjects are influenced by the

distribution of current values, the next set of experiments looked at what aspect of the
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underlying distribution may have the most influence.

3.3 1B: Heteroscedastic Modes

Exp. 1A showed that subjects’ discretizations were somewhat influenced by environ-

mental distributions of feature values: more separation in the distributions produced

better results, both in the subjects’ discretization and compared to the original distri-

bution. However, it did not indicate which environmental cutpoint subjects may be

aiming to replicate; as mentioned in Section 2.2, there are several possible environmen-

tal cutpoints that are available, including the mean split and the minimum in the mixed

density. Exp. 1B tested how subjects would discretize when the standard deviations

of the two source components were unequal, which deconfounds several candidate cut-

points: the midpoint between the two means of the components, the likelihood ratio

crosspoint, and the minimum in the mixed density.

3.3.1 1B.1: Aspect Ratio

Experiment 1B.1 involved heteroscedastic modes and asked the subjects to sort by

aspect ratio.

Subjects and Design

Subjects were 22 (new) naive undergraduate students receiving credit in return for

participation. The stimuli were ellipses of constant luminance (0%, black) and varying

aspect ratio, drawn from heteroscedastic mixtures described in Section 3.1.

Results

Mean overall Ideal Error was 15.3%; mean overall Discretization Error was 4.9%. Co-

hen’s d had a significant effect on both DE (F (1, 790) = 11.2, p < 0.001; Fig. 3.10) and

IE (F (1, 790) = 77.4; p � 0.0001; Fig. 3.11), such that higher levels of Cohen’s d led to

lower error rates. The number of stimuli did not have a significant effect on IE, but DE

was significantly higher with more items (DE: F (1, 790) = 12.4; p < 0.001, Fig. 3.12).
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Figure 3.10: Discretization Error as a function of Cohen’s d, Exp. 1B.1.
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Figure 3.11: Ideal Error as a function of Cohen’s d, Exp. 1B.1.

Comparing subjects’ cutpoints to the underlying equal-likelihood cutpoints showed

that subjects tended to move their cutpoints toward the mean of the entire feature

range, and that the further the original distribution was from the mean of the fea-

ture range, the further the average cutpoint was moved (2-way ANOVA: interaction of

location in feature space and direction of movement: F (11, 504) = 14.9, p � 0.0001;

Fig 3.13).

The primary goal of this set of experiments was to try to understand how subjects

chose their cutpoints. As such, subjects’ cutpoints for each block were compared to

three statistical cutpoints: the midpoint between the two means, the likelihood ratio

crosspoint, and the minimum in the mixed density. The absolute distance (i.e. move-

ment regardless of direction) from the subject’s cutpoint to the environmental cutpoint
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Figure 3.12: DE as a function of number of stimuli, Exp. 1B.1.
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Figure 3.13: Change in cutpoint as a function of location in feature space, Exp. 1B.1.

was calculated for each block. Subjects’ cutpoints were closest to the average of the two

means (ANOVA, F (2, 2373) = 34.7, p � 0.00001), suggesting a simple discretization

heuristic; Figure 3.14 shows the average absolute distance between subjects’ cutpoints

and each of the three possible environmental cutpoints.

3.3.2 1B.2: Luminance

Experiment 1B.2 involved heteroscedastic modes and asked subjects to sort by lumi-

nance.
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Figure 3.14: Average distance between subject’s cutpoint and environmental cutpoint,
by type of environmental cutpoint, Exp. 1B.1.

Subjects and Design

Subjects were 23 (new) undergraduate students receiving credit in return for partici-

pation, and were naive to the purpose of the experiment. One subject had error rates

that exceeded three standard deviations from the mean error rates: a total of 22 sub-

jects were analyzed. Stimuli were ellipses of constant aspect ratio (0.5) and varying

luminance drawn from heteroscedastic distributions as described in Section 3.1.

Results

Mean overall IE was 12.0%, while mean overall DE was 4.2%. Cohen’s d had a sig-

nificant effect on DE (F (1, 790) = 11.7, p < 0.001; Fig. 3.15) and on IE (F (1, 790) =

17.5, p < 0.0001; Fig. 3.16), such that higher levels of Cohen’s d led to lower error rates.

The number of stimuli did not have a significant effect on IE, but DE was significantly

higher with more items (F (1, 790) = 12.0, p < 0.001; Fig. 3.17).

Comparing subjects’ cutpoints to the underlying equal-likelihood cutpoints showed

that subjects tended to move their cutpoints toward the mean of the entire feature

range, and that the further the original distribution was from the mean of the fea-

ture range, the further the average cutpoint was moved (2-way ANOVA: interaction

of location in feature space and direction of movement: F (9, 363) = 29.45, p � 0.001;

Fig 3.18).
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Figure 3.15: Discretization Error as a function of Cohen’s d, Exp. 1B.2.
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Figure 3.16: Ideal Error as a function of Cohen’s d, Exp. 1B.2.

Comparing subjects cutpoints to the three possible environmental cutpoints repli-

cated the results from Exp. 1B.1: subjects’ cutpoints were closest to the average of the

two means (ANOVA, F (2, 2373) = 13.7, p � 0.001; Fig 3.19).

3.4 General Discussion, Exp. 1

As discussed in Chapter 1, these experiments were motivated by the need to answer

some basic questions about how humans create discrete features from continuous ones.

The first experiment explored the idea that humans may discretize a feature according to

the various frequencies of the feature’s values in the environment. As noted previously,

if an environment is sufficiently non-uniform, a discretization that captures that non-

uniformity can increase the accuracy of interactions with that environment (Alvarez &
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Figure 3.17: DE as a function of number of stimuli, Exp. 1B.2.
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Figure 3.18: Change in cutpoint as a function of location in feature space, Exp. 1B.2.

Oliva, 2009; Monti & Cooper, 1999). The main hypothesis of this dissertation is that

the formation of discrete levels of a continuous feature is related to the estimation of

mixture components, in that each resulting symbol (i.e., discrete level) is intended to

correspond to one distinct source of observations. The results of Exp. 1 demonstrated

that subjects’ discretizations are sensitive to the statistics of the environment; subjects

do not divide the continuous feature evenly, nor arbitrarily, but in a manner that reflects

the way it is distributed in their environment. In all of Experiment 1, subjects gave

responses that reflected the underlying distribution rather than an arbitrary method of

sorting. Additionally, their discretizations were both cleaner and more accurate when

the underlying sources were more distinctly separated (as parameterized by Cohen’s d).
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Figure 3.19: Average distance between subject’s cutpoint and environmental cutpoint,
by type of environmental cutpoint, Exp. 1B.2

As more data would generally be expected to produce higher accuracy, it was un-

usual to find that an increase in the number of items did not produce a more accurate

discretization. However, subjects did produce a fuzzier cutpoint with more items. It is

not quite clear from the current results why these results occurred. There are several

possible explanations. For example it may be that (in the spirit of the motivation for

this work), subjects were not able to use all the available information. That is, remem-

bering and responding to 40 items (such as aspect ratios or luminance levels) is more

difficult and takes more processing power than remembering and responding to 10. Al-

ternatively, it may be that people were using all the available information; more data

provided more information about the fuzziness of the underlying distribution. However,

determining the cause of this effect cannot be clarified by these experiments and must

await further research.

The next question was: do subjects discretize in an ideal manner? An ideal manner

would accurately reflect all the information available in the environment. For example,

if the subjects were able to retrieve the underlying component distributions, a natural

cutpoint would be at the point of equal likelihoods. Alternatively, if the subjects were

able to retrieve the overall distribution (but not the individual components), an ideal

cutpoint would be at the dip between the two means. However, several results indicated

that subjects, although influenced by the environmental information, were not ideal.

First, the Discretization Error was generally lower than the Ideal Error, suggesting that
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subjects were able to make fairly clean distinctions between groups even when those

groups did not exactly match the underlying distribution. Second, the movement of the

cutpoints indicated a mean-drift; the average subjective cutpoint tended to be between

the mean of the full range of values and the environmental cutpoint, suggesting subjects

were influenced by an awareness of the full range of values even when there was only

a sub-range of values visable. Finally, the results from Exp. 1B indicate that subjects

appear to be discretizing at the average of the two means, rather than either of the

cutpoints described above.

As explained in Section 2.2, there are two primary questions motivating this work:

are people influenced by statistical information in their environment when determining

discrete values of continuous features, and do people create hard boundaries between

the discrete values? As shown by these four experiments, the level of separation, as

represented by Cohen’s d, influences the determination of discrete values; the higher the

separation in an underlying distribution, the more likely people are to put a cutpoint

between the modes of that distribution. It also appears that people do discretize cleanly,

rather than create a probabilistic threshold; DE was uniformly lower than IE, indicating

that, even when subjects did not completely recover the underlying distribution, they

were attempting to split the feature cleanly. The next chapter looks at the question of

the form of the cutpoint more closely.
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Chapter 4

Further Analysis: Modeling

As explained in Section 2.2, there are two possibilities for the type of cutpoints people

might use: the cutpoints may be either probabilistic or exact. Section 1.2 noted that

a great deal of research shows human cognition to be probabilistic, which leads to a

strong a priori intuition that discretization will be probabilistic also. However, research

in categorical perception (e.g. Harnad, 1987) has shown that human perception divides

certain aspects of the environment more sharply than is warranted (e.g., phonemes).

This section looks at how the data from the first experiment compared to both a

probabilistic and an exact model.

4.1 Statistical Models

The results from Experiment 1 were modeled in order to look more closely at the ques-

tion of how cleanly subjects discretize. Two possible models were considered: a model

which produces an exact discretization, and a model which produces a fuzzy discretiza-

tion. For the exact model, a cutpoint model was used; for the fuzzy model, a mixture

of two Gaussians was used. If the cutpoint model fits the experimental responses more

closely, it indicates subjects may be attempting to use an exact discretization, like the

discretization used in machine learning. If the mixture model fits the experimental

responses more closely, it indicates discretization is similar to other human cognitive

processes such as identifying loudnesses (Garner & Hake, 1951). Additionally, the mix-

ture model also indicates subjects are closer to recovering the underlying statistical

distribution, and thus there is another level of analysis to carry out: does the model

reproduce the underlying distribution, thereby suggesting the subjects are recovering

the statistical information in the environment, or is it markedly different?
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Figure 4.2: Average log-likelihood of cutpoint model as a function of Cohen’s d

In order to accurately capture the individual behavior, each block was modeled in-

dividually, rather than modeling results averaged over a factor such as subject, Cohen’s

d, or scedasticity. Experiment 1 yielded a total of 3906 blocks.

4.1.1 Cutpoint Model

A cutpoint model was used to model a clean discretization: any continuous values below

a cutpoint C would be labeled as one discretized value (e.g. “narrow” “black”), and

any continuous values above the cutpoint would be labeled as the other discretized

value. Under the assumption that subjects either respond to a rule or guess randomly,

a guessing parameter g was added. Thus, the probability that an item would be put in
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the “high” discretization value based on a cutpoint of C, is:

p(x ⇒ “high”) =

⎧⎪⎨
⎪⎩

g x < C

1 − g x > C

As noted in Chapter 3, subjects’ cutpoints did not always match the optimal cut-

point in the underlying data; in order to accurately model the results, therefore, the

subject’s cutpoint for that block was used. Figure 4.1 shows a single representative

block, including the subject’s data, the location of the cutpoint at the point of equal

likelihoods in the generating distribution, and the cutpoint model that best matches

the subject’s responses.

In order to calculate the likelihood that the subject’s results came from a cutpoint

model based at the the given cutpoint, the probabilities of all the items in the block

(which are independent) were multiplied together; correctly assigned items had a prob-

ability of p = 1 − g, and incorrectly assigned items had a probability of p = g (for

this model, g = 0.025). Thus, the maximum likelihood (that is, if the subject exactly

matched the cutpoint model) would be 0.975n, where n is the number of items in the

block. Over all 3906 blocks, 1266 had maximum likelihood; that is, 32.4% of the blocks

were discretized completely cleanly. Figure 4.2 shows the average log-likelihood of the

cutpoint model, collapsed over Cohen’s d, illustrating that, as Cohen’s d got higher,

the log-likelihood of the cutpoint model tended to go up.

4.1.2 Gaussian Mixture Model

A natural candidate for a “fuzzy” discretizer is a Gaussian mixture model, i.e. a model

that assumes the data were generated by a mixture of two Gaussians, and has only

to estimate the parameters of the mixture. This model estimates the mixture and

determines the Bayes optimal probabilities as to how a particular feature value would

be discretized based on the estimated mixture. As the training data were in fact

generated from a mixture of two Gaussians , this also serves as “ideal observer,” i.e. a

model whose assumptions about the environment are correct.

The best-fit mixture model was determined by a brute-force search through a suit-

ably restricted part of the 4-dimensional feature space for two means and two standard



33

2 2.5 3 3.5 4 4.5 5 5.5
-6.5

-6

-5.5

-5

-4.5

-4

Cohen s d

Fi
t-

Lo
g

Li
ke

lih
oo

d

Figure 4.3: Average log-likelihood of the best-fit Gaussian mixture model as a function
of Cohen’s d

deviations. The two means were fit over separate ranges; each possible mean was

restricted to a range from approximately 10% below the associated given mean to ap-

proximately 10% above. Because the original homoscedastic standard deviations were

different that the original heteroscedastic standard deviations, the range for the two

best-fit standard deviations depended on the scedasticity of the original distribution.

The heteroscedastic standard deviations ranged separately from just under 1% to just

over 16%; the homoscedastic standard deviations ranged separately from just under

1% to approximately 10%. Note that the two estimated standard deviations were not

constrained to be either equal or unequal in a particular mixture, meaning that the

scedasticity of the estimated mixture did not have to match the scedasticity of given

distribution.

To determine likelihood for each combination of means and standard deviations in

this range, the search algorithm created two distributions, A and B. The A distribution

had a mean closer to 0, while the B distribution had a mean closer to 1. The general

likelihood that an item drawn from this summed distribution would be assigned to the

“high” discrete value is:

p(x ⇒ “high”) =
B

A + B
(4.1)

As in the cutpoint model, a guessing parameter (g = 0.025) was added.

p = (1 − g)
B

A + B
+

g

2
(4.2)
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Figure 4.4: Average AIC for the two models over all blocks. Lower AIC indicates a
better fit to the data.

Thus, the algorithm calculated the likelihood the subject would respond “high” for

each item by taking the the probability at that value, and multiplying the likelihoods

(which are independent) to give an overall likelihood for the particular combination

of means and standard deviations. The combination of two means and two standard

deviations that yielded the highest likelihood for that block were returned. Figure 4.3

shows the average log-likelihood of the best-fit mixture models, collapsed over Cohen’s

d, illustrating that, as Cohen’s d got higher, the log-likelihood of the mixture model

tended to go up.

4.1.3 Comparison of Probabilistic Models

The likelihood of the cutpoint model and the likelihood of the best-fit Gaussian mix-

ture model were found for each block. However, because the mixture model has more

parameters than the cutpoint model, it is likely to fit the subjects’ results more closely.

Therefore, rather than comparing the log-likelihoods of the models directly, the two

models were compared using the Akaike information criterion (AIC) (Akaike, 1974), as

the AIC compensates for different numbers of parameters. The AIC is

AIC = −2lnζ + 2ρ (4.3)
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Figure 4.5: Average AIC score as a function of Cohen’s d. Lower AIC indicates a better
fit to the data. Blue is mixture models, Red is cutpoint models.

where ζ indicates the likelihood of the model and ρ indicates the number of free pa-

rameters. When comparing two models, a lower AIC indicates a better-fitting model.

The Gaussian mixture model has 4 free parameters (μ1, μ2, σ1, σ2), while the cutpoint

model has none.

Over 3906 total blocks, the cutpoint model was a better fit according to the AIC on

3062 blocks (78.4%). A t-test indicates the average AIC of the two models are different

(mean cutpoint model AIC: 15.91; mean mixture model AIC: 18.67; lower AIC indicates

better fit. Two-tailed t-test: df: 7810, p � 0.001) Figure 4.4 shows the average AIC for

the two models, collapsed over all blocks. Further analysis comparing the average best-

fit mixture AIC over the 844 blocks more closely modeled by a mixture model to the

average cutpoint AIC over the 3062 blocks more closely modeled by the cutpoint model

shows a larger difference: mean mixture AIC for mixture blocks was 29.64, while mean

cutpoint AIC for cutpoint blocks was 10.36 (lower AIC indicates better fit; two-tailed

t-test: df: 3904, p � 0.00001).

The next step in the analysis was to see how Cohen’s d affected the models. As

demonstrated in Briscoe and Feldman (2006), models’ performance may vary depending

on the complexity of the training data. Perhaps there is parallel behavior in discretiza-

tion, such that the Gaussian model is a better representation of human behavior at

certain levels of Cohen’s d.
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However, this is not the case. As can be seen in Fig 4.5, at all levels of Cohen’s

d, the average AIC for cutpoint models is significantly lower than the average AIC for

mixture models. Individual t-tests at each level of Cohen’s d confirm this, with p values

ranging from 0.01 to below 0.000005. There is also a significant trend down for the

AIC for both models (cutpoint model: F (1, 3904) = 22.3, p � 0.001; Gaussian model:

F (1, 3904) = 30.4, p � 0.001), which reflects the results from the original log-likelihoods

indicating that subjects’ results are modeled more closely at higher levels of Cohen’s d.

Overall, a clean cutpoint distribution modeled the data better than the fuzzy mix-

ture model that more closely resembles the underlying distribution. This suggests that

while subjects are influenced by the environmental distribution, they do not recover

it ideally: they “hyperdiscretize” the environment by inducing a cut-point more exact

than is optimal. This idea will be developed more below. However, there were 844

blocks which, according to AIC were modeled better by a mixture model. The next

section takes a closer look at those particular blocks.

Gaussian Blocks

Out of 3906 blocks, 844 were modeled better by a mixture model than by a cutpoint

model. Closer analysis shows that the subjects performed more poorly on these blocks.

As would be expected, subjects make significantly more Discretization Errors in blocks

best modeled by mixture models; mixture models are expressly constructed to be fuzzier

than cutpoint models. However, subjects also made more Ideal Errors in blocks best

modeled by the best-fit mixture model (two-tailed t-test, df = 3904, p � 0.0001; see

Fig 4.6), indicating that subjects were better at recovering the underlying parameters

when they were able to create an exact cutpoint.

4.1.4 Hyperdiscretization

The data have provided several hints that subjects may draw sharper discretization

boundaries than are actually supported by the data, a phenomenon that might be called

hyperdiscretization. In particular, the idea that subjects hyperdiscretize is strongly

suggested by the large proportion of blocks that are modeled better by a clean cutpoint
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Figure 4.6: Ideal Error by model type
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Figure 4.7: Average Cohen’s d calculated from the estimated parameters of the best-fit
Gaussian mixtures, as a function of the Cohen’s d of the underlying distribution. The
Red line is the regression line of the data.

model than a more realistic Gaussian mixture model.

Another way of understanding this phenomenon is to return to the Gaussian mix-

ture model, and compare the best-fit models’ separations (calculated Cohen’s d) with

the separation in the source distribution (given Cohen’s d). A t-test comparing the

two across all 3906 blocks show they are different (two-tailed t-test, df = 7810, p �

0.000001). Figure 4.7 shows how they compare; as can be seen from the two axes, the

Cohen’s d values calculated from the best-fit Gaussian models are much higher than

the Cohen’s d of the source distributions. This indicates the subjects’ mental repre-

sentation of the environmental distribution was substantially “spiker” than it actually

was.
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Figure 4.8: Average of Bayes Error - Discretization Error by Cohen’s d of the underlying
distribution. The Red line is the linear regression that fits the data

Bayes Error

Recall from Section 2.3.1 that Discretization Error indicates how inexact the cutpoint

is; thus, a DE lower than would be expected from the generating Gaussian mixture

implies hyperdiscretization. The error expected from a Gaussian mixture would be the

percentage of the two distributions that fall on the “wrong” side of the cutpoint in

the distribution, i.e. the tails. The distributional cutpoint that produces the lowest

error rate is the Bayes optimal cutpoint: the likelihood ratio crosspoint. Therefore,

this expected error is called Bayes Error. Bayes Error is thus the error rate of an ideal

observer who knows the parameters of the two underlying Gaussians generating the

feature values.

The Difference Score (DS = BE - DE) is thus a measure of the degree of hyper-

discretization. A one-way t-test on this difference score shows that the difference is

significantly higher than 0 (one-tailed t-test, df = 3905, p � 0.000001). That is, sub-

jects’ responses have less noise in them than the minimum connected with an ideal

observer. This demonstrates subjects are enforcing a cutpoint that is more exact than

the ground truth, i.e. that they hyperdiscretize.

Further analysis shows the Difference Score is not constant across Cohen’s d. Over

all 3906 blocks of Exp. 1, 2753 of the blocks (70.5%) had a DE lower than the BE.

Closer analysis shows that there is a significant downward trend in the DS, indicating
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DE gets closer to BE as Cohen’s d goes up (F (1, 3904) = 6875, p � 0.0001; see Fig. 4.8).

However, only at the highest levels of given Cohen’s d does the average difference drop

significantly below 0.

4.2 Summary of Modeling

Comparing exact and fuzzy models of the individual blocks from Experiment 1 indicated

that subjects attempt to produce an exact cutpoint between discrete feature values,

unlike what might be expected considering other cognitive behaviors. The cutpoint

model outperforms the mixture model in 78% of the blocks, and the error rates for

blocks best modeled by mixture models are significantly higher than those modeled

by cutpoint models. Additionally, the Cohen’s d calculated from the best-fit mixture

models is markedly higher than the given Cohen’s d. Finally, comparison of the subjects’

Discretization Error to the error inherent to the underlying distribution (Bayes Error)

shows that at low and moderate levels of Cohen’s d, subjects hyperdiscretize.

Having demonstrated that humans discretize cleanly, the next question of interest

is: what else might affect discretization? In particular: will the various values of a

second feature influence the discretization of a first? And if so, how?
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Chapter 5

Experiment 2 - Interaction of Two Features

The experiments so far have considered discretization when one feature’s values vary.

With multiple features, several new questions arise, concerning how the features re-

late. One natural question is whether modal separation along one feature can influence

discretization along another. As explained in Section 1.1.1, machine learning theorists

have noted that discretizing one feature without respect for another may miss impor-

tant information in the data (Bay, 2001). However, category research has indicated

that human subjects find it much easier to work with one feature. For example, an ac-

tive research thread explores why subjects prefer to use one feature to create categories

instead of a cluster of features that produce family resemblance categories (e.g. Ahn &

Medin, 1992; Diaz & Ross, 2006), and other research has demonstrated that subjects

are more accurate in learning a boundary between categories when that boundary line

is perpendicular to one feature (e.g. Alfonso-Reese, Ashby, & Brainard, 2002). There-

fore, the second experiment tested whether the discretization of one feature would be

affected by the distribution of a second.

5.1 General Design - Experiment 2

As in Experiment 1, Experiment 2 tested how subjects discretized single features with

two modes. Recall that there were three parameters of interest in the first experiment:

location in feature space; separation; and number of items.

Because this experiment is primarily interested in the effect of one feature on an-

other, the number of locations was reduced to two, one on either side of the midline,

to counteract the effect of mean drift.

The separation parameter is a little more complicated, as this experiment involves
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Figure 5.1: Sample bivariate distribution in feature space.

two features; however, in the interest of simplifying comparison with Exp. 1, the un-

derlying distributions for each feature were treated separately. For a given block, when

collapsed over the discretized (or primary) feature, the stimuli had two modes which had

the same distance between means and the same three standard deviations as Exp. 1A;

that is, there were three levels of the primary Cohen’s d. When the stimuli were col-

lapsed over the non-discretized or secondary feature, the stimuli again had two modes;

the distance between means again matched the distance in Exp. 1A; but there were

only two levels of standard deviation. Thus, there were two levels of secondary Cohen’s

d. Figure 5.1 shows a sample set of distributions in feature space.

Finally, the number of items was kept constant at 25 per block.

The three varying factors (separation of the primary feature, separation of the sec-

ondary feature, and location in feature space) were completely crossed within subjects,

for a total of 24 blocks; a list of the parameters can be found in Appendix A.

5.2 Procedure

The procedure for the second experiment was the same as the first experiment except

for two specific details that will be discussed shortly. Each block, the subject studied a

group of ellipses on the computer screen, arranged in a grid in random order (Fig 5.2).

The subject mentally sorted them into two groups. When the subject felt comfortable

about how s/he would assign the ellipses to the two groups, the subject pressed any
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Figure 5.2: Example of “group” screen in Exp. 2
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Figure 5.3: Ideal Error as a function of Primary Cohen’s d, Exp. 2.

key on the keyboard. Each ellipse was then presented individually in (a new) random

order. The individual ellipses were larger than the ellipses on the group screen (where

they had been uniformly reduced in size to fit on one screen). The subject was asked

to press one key if s/he had decided the ellipse was in one group, and another key if

s/he had decided the ellipse was in the other group. After each response, a blank screen

appeared and the subject would press the space bar to start the next trial. After the

subject classified all the ellipses from that group, a new block with a new set of ellipses

drawn from a new mixture would begin. As in the first experiment, after the subject

read the instructions but before the start of the experiment, the experimenter reiterated

that the subject would be seeing a broad range of ellipses, but that for any given group,
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Figure 5.4: Discretization Error as a function of Primary Cohen’s d, Exp. 2.
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Figure 5.5: DE as a function of Secondary Cohen’s d, Exp. 2.

they should decide the sorting based only on the other ellipses in the current group.

As mentioned, there were two main differences between the procedures for Exp. 1

and Exp. 2. The first difference was that, unlike the first experiment, the ellipses in

the second experiment varied in both luminance and aspect ratio. The instructions

specified which feature the subject would be using to sort the ellipses; this feature was

also restated by the experimenter. The second difference between the two experiments is

that each subject participated twice. When a subject had finished sorting the blocks on

one feature, s/he was given a short break and a new set of instructions; these instructions

told the subject s/he would be doing the same task, but s/he was to sort by the other

feature. The order in which the subjects sorted by aspect ratio and by luminance was

counter-balanced across subjects. Together, the two tasks took approximately an hour.
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Figure 5.6: DE by task order, Exp. 2.
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Figure 5.7: IE as a function of Primary Cohen’s d – Aspect Ratio blocks only. Exp. 2.

5.3 Subjects

Subjects were 59 members of the Rutgers community who either received class credit

or $10 for their participation. One subject was dropped because s/he had not finished

the first task by the end of an hour; two subjects were dropped for not doing the tasks

correctly, such that half or more blocks in a task were not discretized; four subjects

were dropped for having error rates more than three standard deviations from the mean

error rates; and one subject was dropped because of a data-recording error: a total of

51 subjects were analyzed.
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Figure 5.8: IE as a function of Secondary Cohen’s d – Aspect Ratio blocks only, Exp. 2.
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Figure 5.9: DE as a function of Secondary Cohen’s d – Aspect Ratio blocks only, Exp. 2.

5.4 Results

Ideal Error and Discretization Error for the primary feature were analyzed to determine

how these error rates were affected by both the primary Cohen’s d (that is, of the feature

the subjects used to sort) and the secondary Cohen’s d.

5.4.1 Combined Results

The primary analysis collapses the results over all blocks.

Mean IE was 16.42%, and mean DE was 7.23%. Primary Cohen’s d had a significant

effect on IE (F (2, 2446) = 102, p � 0.001; Fig 5.3), and on DE (F (2, 2446) = 4.9, p <

0.03; Fig 5.4), such that error rates were lower at higher levels of primary Cohen’s d.

Cohen’s d of the secondary feature did not have a significant effect on IE, but did have
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Figure 5.10: IE as a function of Primary Cohen’s d – Luminance blocks only. Exp. 2.
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Figure 5.11: DE as a function of Primary Cohen’s d – Luminance blocks only, Exp. 2.

a significant effect on DE (F (2, 2446) = 6.81, p < 0.01; Fig 5.5), such that DE was

lower at the higher level of secondary Cohen’s d. There was no significant interaction

between the Cohen’s d of the two features. Order of task did not have an effect on IE,

but did have a significant effect on DE, such that in the second task, discretizations

were generally fuzzier (F (1, 2446) = 7.86, p < 0.01; Fig 5.6).

Closer analysis showed that there was a significant difference between the error

rates for the two features. Mean IE is 14.4% when luminance is the primary feature

and 18.45% when aspect ratio is primary (t-test, two-tailed: df: 2446, p � 0.001);

mean DE is 5.56% when luminance is primary, and 8.9% when aspect ratio is primary

(t-test, two-tailed: df: 2446, p � 0.001). Because of this difference, the results were

separated by which feature was primary and re-analyzed to determine if averaging was



47

First Second
0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

Id
ea

lE
rr

or

Figure 5.12: IE as a function of whether sorting by luminance was the first or second
task – Luminance blocks only. Exp. 2.
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Figure 5.13: DE as a function of whether sorting by luminance was the first or second
task – Luminance blocks only, Exp. 2.

smoothing out results in the data.

5.4.2 Aspect Ratio Results

Overall mean IE and DE are reported above. The primary Cohen’s d had a significant

effect on IE such that error rates were lower at higher levels of primary Cohen’s d

(F (2, 1222) = 33.99, p � 0.001; see Fig 5.7), but did not have a significant effect on

DE. The secondary Cohen’s d had a significant effect on IE (F (2, 1222) = 3.89, p < 0.05;

see Fig 5.8) and on DE (F (2, 1222) = 10.03, p < 0.005; see Fig 5.9), such that error

rates were lower at the higher level of secondary Cohen’s d. The order of tasks did not

have a significant effect on the error rates for Aspect Ratio.
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5.4.3 Luminance Results

Overall mean IE and DE are reported above. The primary Cohen’s d had a significant

effect on IE (F (2, 1222) = 76.89, p � 0.001; Fig 5.10) and on DE (F (2, 1222) = 6.74, p <

0.05; see Fig 5.11), such that error rates were lower at higher levels of primary Cohen’s d.

Secondary Cohen’s d did not have a significant effect on either IE or DE. Sorting order

had an effect on IE (F (1, 1222) = 6.96, p < 0.01; see Fig 5.12) and DE (F (1, 1222) =

13.18, p < 0.001; see Fig 5.13), such that when sorting by luminance was the second

task, subjects were less accurate according to both measures.

5.5 Discussion, Experiment 2

The second experiment attempted to determine if other aspects of the environment

would affect discretization of a feature. More specifically, it tested whether subjects’

ability to discretize one feature would be affected by the distribution of a second. Over-

all, the distribution of the secondary feature neither improved nor hampered subjects’

ability to recover the underlying distribution of the primary feature, but it did affect

how cleanly the subjects divided the items. However, this was primarily due to results

from aspect ratio as the primary feature; when luminance was the primary feature,

the distribution of the aspect ratio feature values did not have a significant effect on

subjects’ ability to discretize, possibly because the luminance error rate was already

comparatively low.

Bay (2001) has argued that a key issue in discretization for knowledge discovery in

machine learning is assuring that the discretization does not cover up any interesting

patterns in the data. As it is discussed here, the principle behind human discretization

is similar: the discretization should capture the useful information in the environment.

Some of this useful information will be in the interdependencies of various features. As

described in Section 1.1.3, categorization research has shown people can notice and use

co-occurances of features in categorization; this experiment examined if people can use

co-occurances of feature values to improve discretization. The results, although not

conclusive, suggest people may be able to notice categorical distinctions among sources
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in the world when they are meaningful. However, further work is needed to determine if

the difference between the aspect ratio results and the luminance results is an artifact,

or if the effect of the secondary feature does depend on the relative salience of the

features.
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Chapter 6

Discussion

The original questions of this thesis concerned human discretization. Do humans use

information in the environment to discretize? Is their discretization rational or ideal,

or not? How cleanly do they discretize?

6.1 Environmental Influences

One of the two general questions this thesis attempted to answer was whether people,

when asked to discretize a continuous feature, will use environmental information to

determine a discretization that preserves the maximum amount of information.

Both experiments showed that subjects are influenced by various aspects of the en-

vironment, as demonstrated particularly by the repeated negative correlation between

Cohen’s d and error rates. Experiment 1 indicated that subjects will use the distribu-

tional information inherent in a collection of feature values to determine a cutpoint.

If there is clearly more than one mode in the distribution of feature values, subjects

will put cutpoints between the modes. However, if the distribution is comparatively

unimodal, subjects’ discretizations will be neither as clear nor as accurate relative to

the underlying sources of the mixture distribution.

Experiment 1 also suggested that subjects are influenced by the overall range of pos-

sible feature values; specifically, when placing cutpoints, subjects showed a preference

for the mean of the feature space rather than the ends of the feature space. Indeed,

when shown collections of items selected far from the overall mean of the feature space,

subjects moved their cutpoints further from the environmental cutpoint than when the

items were closer to the overall mean of the feature space. This mean drift indicates

that humans remain aware of possible feature values, even if those values are not of
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interest at the moment.

Experiment 2 replicated the initial results from Experiment 1, additionally showing

that subjects will use the distributional information about a feature to place cutpoints

even when other features are also varying. Exp. 2 also provided possible initial evidence

that when discretizing one feature, subjects may use the other features of the objects.

Subjects’ discretizations of aspect ratio were cleaner when the luminance distribution

had a clearer separation between modes than when the luminance distribution was more

unimodal. Although this result was not replicated when luminance was the primary

feature, the possibility of the effect being universal is not ruled out. Luminance error

rates were lower than aspect ratio error rates to start; thus, there may be a floor effect

preventing the interaction of the secondary feature. Additionally, anecdotal comments

from subjects indicated luminance was more salient than aspect ratio; perhaps the effect

depends on the relative saliences of the two features.

6.2 Clean Discretizations

The other question this thesis attempted to answer was what kind of cutpoints do

subjects use when discretizing: are they clean cutpoints that always assign a particular

continuous value to one discrete value, or are they fuzzy cutpoints, such that continuous

values are assigned to discrete values at some probability?

Detailed analyses of Experiment 1 indicate that subjects prefer a clean cutpoint;

even in cases when they cannot cleanly discretize the space, they hyperdiscretize, such

that continuous values near the cutpoint are assigned to the associated discrete value

with higher probability than occurs in the underlying distribution. Nearly 80% of the

individual blocks from Experiment 1 were modeled more closely by a cutpoint model

than by Gaussian mixture model, with more than 30% of the blocks showing perfect dis-

cretization. The average Cohen’s d derived from best-fit Gaussian mixture models was

uniformly higher than the Cohen’s d of the underlying distribution. Finally, Discretiza-

tion Error rates for blocks with low and moderate levels of Cohen’s d were significantly

lower than the Bayes Error rate calculated from the underlying distribution, indicating
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subjects’ discretizations were cleaner than the underlying distributions.

6.3 Further Work

Several questions remain open. Experiment 2 presented only minimal evidence that

other features can influence discretization; a more complex task, with a larger range

of separations and more complex correlations between features will help tease out how

one feature influences another. Further research might look at how the complexity of

the task and the salience of the secondary feature interacts.

Another open question concerns the number of discrete values. This work focused

on discretization into two; how does the number of “bins” in the discretization interact

with the separation? Alternatively, when subjects are presented with a group of items

and told to sort however they like, will the number of bins they create match the number

of modes in the generating distribution? Finally, will the number of modes influence the

mean drift? Perhaps subjects showed a preference for the mean of the overall feature

space in these experiments because they were dividing the space in two.

Yet a third avenue of inquiry, inspired by the results from Experiment 1 concerning

the number of items, involves memory and discretization. A specific task might be to

determine if subjects’ discretizations are more exact if they are allowed to see all the

items during the entire sort.
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Chapter 7

Conclusion

There are many continuous features in the natural world that humans must find some

way to use. Discretization is one way to reduce the information load without reducing

the utility. This thesis has taken the first steps toward learning about human discretiza-

tion. There are many questions that can be asked about human discretization; this

thesis focused on whether humans discretize cleanly, as opposed to using a probabilistic

boundary, and on whether humans are influenced by the frequency data available in the

environment. Overall, the answer to both questions is “yes.” All the experiments, taken

together, indicate that humans do use environmental data. As demonstrated by the

mean-drift of the cutpoints, and by the influence of the second feature on the first, even

information that is not important to the task can have an influence. Additionally, the

differences between the Discretization Error and the Bayes Error, combined with the

Cohen’s d calculated from best-fit models and other results from statistical modeling,

indicate that humans prefer a sharp division between discretized feature values.

Taken together, this research opens the door to understanding a fundamental and

understudied aspect of symbolic cognition: the process by which discrete symbolic

variables are created, and the way they map on to the environment.
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Appendix A

Tables

Table A.1: Experiment 1A, Mean Pairs (Homoscedastic).

μ1 σ1 μ2 σ2 Cohen’s d

0.15 0.03 0.3 0.03 5
0.15 0.05 0.3 0.05 3
0.15 0.08 0.3 0.08 1.875
0.2 0.03 0.35 0.03 5
0.2 0.05 0.35 0.05 3
0.2 0.08 0.35 0.08 1.875
0.3 0.03 0.45 0.03 5
0.3 0.05 0.45 0.05 3
0.3 0.08 0.45 0.08 1.875
0.55 0.03 0.7 0.03 5
0.55 0.05 0.7 0.05 3
0.55 0.08 0.7 0.08 1.875
0.65 0.03 0.8 0.03 5
0.65 0.05 0.8 0.05 3
0.65 0.08 0.8 0.08 1.875
0.7 0.03 0.85 0.03 5
0.7 0.05 0.85 0.05 3
0.7 0.08 0.85 0.08 1.875
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Table A.2: Experiment 1B, Mean/Standard Deviation Pairs (Heteroscedastic).

μ1 σ1 μ2 σ2 Cohen’s d

0.25 0.04 0.45 0.11 2.42
0.25 0.04 0.45 0.14 1.94
0.25 0.04 0.55 0.11 3.62
0.25 0.04 0.55 0.14 2.91
0.25 0.04 0.65 0.11 4.83
0.25 0.04 0.65 0.14 3.89
0.4 0.11 0.8 0.04 4.83
0.4 0.14 0.8 0.04 3.89
0.5 0.11 0.8 0.04 3.62
0.5 0.14 0.8 0.04 2.91
0.6 0.11 0.8 0.04 2.42
0.6 0.14 0.8 0.04 1.94

Table A.3: Experiment 2, Mean/Standard Deviation Pairs (Two Features).

Primary Feature Secondary Feature
μ1 σ1 μ2 σ2 μ1 σ1 μ2 σ2

0.2 0.03 0.35 0.03 0.2 0.04 0.35 0.04
0.2 0.03 0.35 0.03 0.2 0.07 0.35 0.07
0.2 0.05 0.35 0.05 0.2 0.04 0.35 0.04
0.2 0.05 0.35 0.05 0.2 0.07 0.35 0.07
0.2 0.08 0.35 0.08 0.2 0.04 0.35 0.04
0.2 0.08 0.35 0.08 0.2 0.07 0.35 0.07
0.2 0.03 0.35 0.03 0.65 0.04 0.8 0.04
0.2 0.03 0.35 0.03 0.65 0.07 0.8 0.07
0.2 0.05 0.35 0.05 0.65 0.04 0.8 0.04
0.2 0.05 0.35 0.05 0.65 0.07 0.8 0.07
0.2 0.08 0.35 0.08 0.65 0.04 0.8 0.04
0.2 0.08 0.35 0.08 0.65 0.07 0.8 0.07
0.65 0.03 0.8 0.03 0.2 0.04 0.35 0.04
0.65 0.03 0.8 0.03 0.2 0.07 0.35 0.07
0.65 0.05 0.8 0.05 0.2 0.04 0.35 0.04
0.65 0.05 0.8 0.05 0.2 0.07 0.35 0.07
0.65 0.08 0.8 0.08 0.2 0.04 0.35 0.04
0.65 0.08 0.8 0.08 0.2 0.07 0.35 0.07
0.65 0.03 0.8 0.03 0.65 0.04 0.8 0.04
0.65 0.03 0.8 0.03 0.65 0.07 0.8 0.07
0.65 0.05 0.8 0.05 0.65 0.04 0.8 0.04
0.65 0.05 0.8 0.05 0.65 0.07 0.8 0.07
0.65 0.08 0.8 0.08 0.65 0.04 0.8 0.04
0.65 0.08 0.8 0.08 0.65 0.07 0.8 0.07
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