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ABSTRACT OF THE DISSERTATION

DETERMINING THE EFFICACY OF MATHEMATICAL 
PROGRAMMING APPROACHES FOR MULTI-GROUP 

CLASSIFICATION

By Dinesh R. Pai

Thesis Director:  Dr. Kenneth D. Lawrence

Managers have been grappling with the problem of extracting patterns out of the vast 

database generated by their systems. The advent of powerful information systems in 

organizations and the consequent agglomeration of vast pool of data since the mid-1980s 

have created renewed interest in the usefulness of discriminant analysis (DA).  Expert 

systems have come to the aid of managers in their day-to-day decision making with many 

successful applications in financial planning, sales management, and other areas of 

business operations (Erenguc and Koehler 1990).

Currently, no comprehensive research study exists that tests the robustness of multi-group 

classification analysis.  Our research aims to bridge the gaps in the existing works and 

take a step further by extending our study to four-group classification problems.  The 

main purpose of this research is to determine the efficacy of mathematical programming

classification models, more specifically, LP methods vis-à-vis statistical approaches such 

as discriminant analysis (Mahalanobis) and logistic regression, an artificial intelligence 

(AI) technique such as a neural network, and a non-parametric technique such as k-

nearest neighborhood (k-NN) for four-group classification problems.  This research also 
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proposes an integrated (hybrid) model that combines a non-parametric classification 

technique and a LP approach to enhance the overall classification performance.  

Furthermore, the study extends an existing two-group LP model (Bal et al. 2006) based 

on the work of (Lam and Moy 1996b) and apply it to four-group classification problems.  

These models are tested through robust computational experiments under varying data 

conditions using a financial product example.  The characteristics of a real dataset are 

used to simulate (Monte Carlo method) multiple sample runs for four group classification 

problems with three continuous independent variables.

The experimental results show that LP approaches in general and the proposed integrated 

method in particular consistently have lower misclassification rates for most data 

characteristics. Furthermore, the integrated method utilizes the strengths of both the 

methods: k-NN and linear programming, thereby considerably improving the 

classification accuracy. 
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CHAPTER 1: INTRODUCTION

1.1 Research Motives

Managers have been grappling with the problem of extracting patterns out of the vast 

database generated by their systems. The advent of powerful information systems in 

organizations and the consequent agglomeration of vast pool of data since the mid-1980s 

have created renewed interest in the usefulness of discriminant analysis (DA).  Expert 

systems have come to the aid of managers in their day-to-day decision making with many 

successful applications in financial planning, sales management, and other areas of 

business operations (Erenguc and Koehler 1990).

Much research has been done on the application of discriminant and classification 

techniques to a priori predictive as well as descriptive segmentation.  In a priori

predictive approaches, the type and number of segments are determined in advance based 

on a set of criteria, and subsequently, predictive models are used to describe the 

relationship between the segment membership and a set of independent variables (Wedel

and Kamakura 1998).  The main approaches for a priori descriptive segmentation are 

based on statistical or operations research methods of classification.  More recently, a 

neural network technique has been used successfully in various classifications 

applications (Ripley 1994).  The statistical methods include discriminant analysis, logistic 

regression, regression and cross-tabulation, while the operations research techniques 

include mathematical programming (MP) methods such as linear programming and its 

variants: goal programming and fuzzy goal programming (Thomas et al. 2006).
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Most of the classical statistical techniques such as discriminant analysis (Mahanalobis), 

logistic regression, multiple regression, and others make strong parametric assumptions 

such as multivariate normal populations with same variance/covariance structure, absence 

of multicollinearity, and absence of specification errors (Meyers et al. 2006).  However, 

many real-life data sets do not satisfy such underlying assumptions.

Since the early 1980s, considerable research has been devoted to mathematical 

programming (MP) methods, more specifically for two-group classification problems.  

These researches have highlighted several interesting characteristics.  First, MP methods 

make no rigid assumptions about the functional form and hence are distribution free.  

This fits well with the real-life data sets which are invariably contaminated.  Second, they 

do not require larger datasets and are less sensitive to outliers.  Finally, MP methods 

require considerable computing time, but a continuous drop in computing cost and an 

increase in computing power has overcome this drawback and made these methods 

practical.  The MP methods can be further classified into (a) linear programming 

approaches, (b) nonlinear approaches, and (c) MIP approaches.  Meanwhile, a 

shortcoming of MP methods is that they not as amenable to statistical inferences as are 

statistical DA approaches (Sueyoshi and Hwang 2004).

However, most of the research has been focused on two-group classification problems

across all techniques.  In the past decade or so, there have been several researches aimed 

at three-group classification using MP approaches such as linear programming (LP) and
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mixed integer programming (MIP) methods.  Lam and Moy (1996b) propose a LP 

approach for three-group classification problem.  In this approach, the authors aggregate 

information regarding weights, instead of computing cut-off scores and claim to provide 

better estimates of group boundaries.  (Pavur and Loucopoulos 1995, Loucopoulos and 

Pavur 1997, Loucopoulos 2001) use MIP approach for three-group classification and 

develop several variants of their base MIP model.  In all of the above multi-group studies 

the authors have used small to moderate size datasets.  Moreover, performance of their 

models vis-à-vis other commonly used classification techniques such as logistic 

regression, or AI technique such as a neural network to test the robustness of their 

proposed models is yet to be determined.  Since the models use small datasets, further 

research is needed to assess, the classification performance of these models with 

moderate to large datasets with different group configurations, data characteristics, and 

computation efficiency.

1.2 Research Objectives

Our research aims to bridge these gaps and take a step further by extending our study to 

four-group classification problems.  The main purpose of this research study is to 

determine the efficacy of MP classification models, more specifically, LP methods vis-à-

vis statistical approaches such as discriminant analysis (Mahalanobis), and logistic 

regression, an artificial intelligence (AI) technique such as a neural network, and a non-

parametric technique such as k-nearest neighborhood (k-NN) for four-group 

classification problems.  This study also proposes an integrated (hybrid) method that 

combines a non-parametric classification technique and a LP approach to enhance the 
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overall classification performance.  Furthermore, the study extends an existing two-group 

LP model (Bal et al. 2006) based on the work of (Lam and Moy 1996b) and apply it to

four-group classification problems. These models are tested through robust experimental 

design using a financial product example.  Through the development and testing of 

multiple models this study aims to provide significant insight into many important 

questions concerning these classification approaches, such as the following:

1. Can a combination of a simple machine learning algorithm and a non-parametric 

approach yield better results compared with statistical and AI techniques?

2. Do LP approaches perform better in terms of lower misclassification rates than the 

statistical and AI techniques for multi-group classifications problems?

3. How do the models behave under different data and group characteristics?

4. Are there significant differences in the individual error rates for different 

classification approaches?

This study plans to contribute new knowledge through each of these important questions.  

In addition, to the best of our knowledge, this is the first comprehensive study which 

evaluates statistical, AI, and LP approaches for multi-group classifications using robust 

experimental design and a financial product example with moderate to large data sets.

Previous work pertaining LP approaches that contributes directly to the present study, 

such as Freed and Glover (1981a), Lam et al. (1996a), Kiang (2003), Bal et al. (2006), 

will be reviewed in detail, with respect to both its content and methodology, in Chapter 2.  
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The purpose of this introductory chapter is to discuss the questions examined in this 

study, foreshadowing what is to come.  As such, it is necessary to provide some 

conceptual and historical perspective about discriminant and classification techniques.  

The research questions, which are the focus of this proposal, will follow from the 

subsequent discussion.

1.3 Historical Background

As in statistical regression, the objective of classification technique is to identify a 

functional relationship between a response (dependent) variable Y and a vector of 

explanatory (independent) variables or attributes X from a given set of observations (

,Y X ).  However, in classification methods the response variable is discrete 

(dichotomous or polytochomous) where as in statistical regression it is real valued 

variable.  The response variable is denoted by 1 2, ,..., qC C C , where q is the number of pre-

specified groups or classes (Doumpos and Zopounidis 2002).  The objective of the 

classification methods is to first analyze the training data set and develop a model for 

each class or group using the attributes available in the data.  Once the model developed 

using training set performs satisfactorily, it can be used to classify future independent test 

data.

In general, classification models assign observations of unknown class membership to a 

number of specified classes or groups using a set of explanatory variables associated with 

the group.  These models have found myriad business applications such as in credit 
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evaluation systems (Myers and Forgy 1963), differentiating bank charge-card holders 

(Awh and Waters 1974), screening credit applicants (Capon 1982), assessing project 

implementation risk (Anderson and Narasimhan 1979), predicting consumer innovators 

for new product diffusion (Robertson and Kennedy 1968), predicting corporate 

bankruptcy (Altman 1968), investigating new product success or failure (Dillon et al. 

1979), predicting bank failures (Tam and Kiang 1992), and approving loan applications

(Gallant 1988).  These models have been particularly useful in market segmentation 

based on observable and product specific bases.  The advances in computers and 

information technology have further increased the efficacy of such approaches whereby 

vast amount of historical customer data can be processed to understand customer needs 

and wants.  This has resulted in more focused marketing strategy resulting in lower costs, 

higher response rates, and consequently higher profits (Zahavi and Levin 1997b).

Since Fisher’s seminal work (Fisher 1936) on linear discriminant analysis numerous 

methods have been developed for classification purposes.  Discriminant analysis has been 

successfully applied in many business applications including building credit scoring 

models for predicting credit risk, and investigating product failures (Dillon et al. 1979,

Myers and Forgy 1963).  Logistic regression is a related statistical method which is now 

widely used and (Westin 1973) was one of the first to apply it in a binary choice 

situation.  Mangasarian (1965) was the first to use LP method in classification problems 

for distinguishing between the elements of two disjoint sets of patterns.  Freed and 

Glover (1981a) extended this work for predicting the performance of job applicants based 
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on a set of explanatory variables.  Tam and Kiang (1992) were one of the first to use a 

neural network in business research for predicting bank failures.

The two-group classification problems have been extensively dealt with in the literature,

till date.  Srinivasan and Kim (1987), Lam and Moy (1996a), Kwak et al. (2002), Lam 

and Moy (2003) conclude that the LP approach for two-group classification problems 

performs as good as the statistical classification approaches and in many cases even 

better. However, previous research suggests that there is no single method that clearly 

out performs all methods in all problem situations (Kiang 2003).  For instance, 

(Asparoukhova and Krzanowskib 2001) show that for small sample sizes, the MP 

approaches provide best classifiers compared with statistical approaches such a LDF, 

which provide effective classifiers for large sample sizes.  In general, research on two-

group classification problems suggest that under varying data characteristics such as 

presence of outliers, varying sample sizes, non-linearity, non-normality, 

homoscedasticity, etc., different methods perform differently and emphasize a need for 

hybrid classifiers to overcome biases in data (Kiang 2003).

There has been very few research studies aimed at three-group classification in the past 

decade or so.  And those that exist are not very comprehensive to judge the efficacy of 

the MP approaches under robust experimental conditions.  Lam and Moy (1996b)

propose a LP model for three-group classification problem, which minimizes the sum of 

individual deviations of the classification scores from their group mean classification 

scores.  The model divides the classification process into two steps: the first constitutes 

the determination of attribute weights, and the second simultaneously determines the cut-
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off scores for the different classification functions, which the authors claim provide better 

estimates of the group boundaries.  The author’s compare their models (hit rate = 68%) 

with Fisher’s linear discriminant function (FLDF) (hit rate = 66.67%) and LP approach 

by Freed and Glover (1986a) (hit rate = 61.33%) by using three examples of small to 

moderate size datasets to show that the proposed method have an advantage over other 

methods.  However, the study does not address the impact of large datasets, outliers, and 

other data and group characteristics on the performance of their model.  In their research 

studies, Pavur and Loucopoulos (1995), Loucopoulos and Pavur (1997), Loucopoulos 

(2001), the authors propose three-group classification MIP models which ‘minimize the 

sum of deviations’.  Pavur and Loucopoulos (1995) compare few variants of MIP models 

and compare it with sequential pairwise approach.  The authors conclude that the 

proposed MIP models yield lower misclassifications than the sequential pairwise 

approach.  However, the authors conclude their results on the basis of the performance of 

the models on training set only with very small datasets.  Loucopoulos (2001) proposes

an MIP model for minimization of misclassification costs in three-group problem.  The 

author concludes that the proposed model (hit rate = 97.65%) with equal misclassification 

costs performs better than both FLDF (hit rate = 89.41%) and Smith’s quadratic 

discriminant function (QDF) (hit rate = 95.29%).  The author uses moderate size datasets 

and states that the computational times for large group sizes and high group overlap could 

be intensive and prohibitive, which is a drawback of MIP models. Despite these efforts,

the development of classification models using MIP formulations still remain a difficult 

task for large reference sets.  In this study, we use moderate to large datasets with varying 
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data characteristics.  Hence, we do not consider MIP model as a potential method for 

comparison with other techniques used in our study.

1.4 Summary

As stated earlier, this research aims to fill the gaps that presently exist with regards to 

multi-group classification problems discussed thus far.  The current study will 

fundamentally evaluate the efficacy of LP approaches to multi-group classification 

problems and compare it with a hybrid technique, statistical methods such as discriminant 

analysis (DA) and multinomial logistic regression (LR), a neural network (NN), and k-

NN.  Additional tests will be conducted using various group and data characteristics to 

test the performance of the models.  The remainder of this dissertation will be structured 

as follows:

The second chapter presents the literature review for the classifications methods used in 

this study, namely, DA, LR, NN, k-NN and LP approaches (MP1 and MP2), and describe 

our proposed methodology, i.e. an integrated method.  This chapter also highlights the 

existing research findings and how our study builds upon their foundation.  The third 

chapter discusses model assumptions, hypotheses, and performance measures.  The 

fourth chapter describes the computational experiments.  In the fifth chapter, we present 

the results of our study, whereas in the sixth chapter we discuss conclusions followed by 

limitations of the study and future research in chapter seven.  The chapter eight discusses 

the research contributions of this study.  
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CHAPTER 2: CLASSIFICATION METHODS AND 
LITERATURE REVIEW

This chapter discusses the six methods used in the study, our proposed methodology, and 

their literature review.  The review provides us the basis for forming our hypotheses 

regarding the possible link between data characteristics and method performances.  The 

review also provides us a deeper insight into the proposed integrated method.  There are 

many variations for each of the methods, especially, the statistical methods (distance

metric, quadratic function (QDA), etc.), neural nets (learning rate, weight decay, etc.) and 

k-NN algorithm (distance metric, value of k, etc.).  For this study, however, we restrict 

our comparison to the basic versions of these methods to maintain genuine characteristics

of the original algorithm (Kiang 2003).

2.1 Discriminant Analysis (The Mahalanobis Distance)

The objective of a discriminant analysis (or DA) is to classify objects, by a set of 

independent variables, into one of two or more mutually exclusive and exhaustive 

categories.  For example, on the basis of an applicant's age, income, length of time at 

present home, etc., a credit manager wishes to classify this person as either a good or 

poor credit risk. For the sake of simplicity we will limit this discussion to two-group 

classifications, later we will comment on n-group discriminant analysis.  For notation, let

jiX = thi individual’s value of the thj independent variable

jb = discriminant coefficient for the thj variable
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iZ = thi individual’s discriminant score

criticalZ = critical value for the discriminant score

Let each individual's discriminant score iZ be a linear function of the independent 

variables. That is,

0 1 1 2 2 ...i i i n niZ b b X b X b X     (1)

The classification procedure follows:

if i criticalZ Z , classify Individual i as belonging to Group 1,

if i criticalZ Z , classify Individual i as belonging to Group 2.

The classification boundary will then be the locus of points, where

0 1 1 2 2 ...i i n ni ib b X b X b X Z    

When n (the number of independent variables) = 2, the classification boundary is a 

straight line. Every individual on one side of the line is classified as Group 1, on the other 

side, as Group 2. When n = 3, the classification boundary is a two-dimensional plane in 

3-dimensional space, the classification boundary is generally an n-1 dimensional 

hyperplane in n space (Morrison 1969).

In discriminant analysis, the objective of the Mahalanobis approach is to construct a locus 

of points that are equidistant from the two group centroids.  The distance, which is 
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adjusted for the covariance among the independent variable, is used to determine a 

posterior probability that can be used as the basis for assigning the observation to one of 

the two groups.  Thus, although the discriminant function is linear in nature, the 

procedure also provides a probability of group membership, i.e., a nonlinear function of 

the independent variables in the model.  When this probability of group membership 

corresponds to the probability of choice, effectively we have a choice model with a 

different functional form (Lawrence et al. 2007, Lawrence et al. 2008).

2.2 Logistic Regression

Logistic regression (or LR), a statistical modeling method for categorical data has 

expanded from its origins in biomedical research to fields such as business and finance, 

engineering, marketing, economics, and health policy (Meyers et al. 2006).  The 

availability of sophisticated statistical software and high speed computing has further 

increased the utility of logistic regression as an important statistical tool.

Logistic regression is particularly suitable for estimating categorical (dichotomous or 

polytochomous) dependent variables using maximum likelihood estimation (MLE) 

procedure.  Logistic regression models use MLE as their convergence criterion.  Logistic 

regression allows one to predict dichotomous outcome such as presence / absence, 

success / failure, buy / don’t buy, default / don’t default, and survive / die.  The 

independent variables may be categorical, continuous or a combination of the both.  We 

can think of categorical variable as dividing the observations into several classes.  For 

example, if Y denotes a recommendation on holding / selling / buying a stock, then we 
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have a categorical variable with 3 categories.  We can think of each stock in the dataset as 

belonging to one of the three classes: the “hold” class, the “sell” class and the “buy” 

class.  Logistic regression has found two broad applications in applied research: 

classification (predicting group membership) and profiling (differentiating between two 

groups based on certain factors) (Tansey et al. 1996, Shmueli et al. 2006).

In general, the logistic regression model has the form

0 1 1 2 2log ...
1 n n

p
x x x x

p
    

 
       

(1)

Where p is the probability of outcome of interest, 0 is an intercept term, i is the 

coefficient associated with the corresponding dependent (explanatory) variable ix , 

1 2(1, , ,..., )nx x x x and 0 1( , ,..., ) '.n   

The probability of outcome of interest, p is expressed as a non-linear function of the 

predictors in the form

0 1 1 2 2( ... )

1

1 n nx x x
p

e        


(2)

The equation (2) ensures that the right hand side will always lead to values within the 

interval (0, 1).  This is called the logistic response function.

In the equation (1), the expression

1

p
odds

p



, which can be rewritten as  

1

odds
p

odds



(3)
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Hence, in logistic regression, one estimates the log of probability odds also known as the 

logit by a linear combination of the predictor variables.  The logit takes on values from 

 to .

Taking exponentials of both sides of equation (1) leads to

.
1

x

x

e
p

e






(4)

In our study, we use multinomial logistic regression (or MLR) with cumulative logit 

method.  For example, in our financial services segmentation, we have four ordinal

classes: prime, highly valued, price shoppers, and no buyers.  We denote them by 0 = no 

buyers, 1 = prime customers, 2 = highly valued customers, and 3 = price shoppers.  We 

look at the cumulative probabilities of the class membership for segmentation.  The 

probabilities that are estimated by the model are ( 0),P X  i.e. the probability of a 

customer being price shopper and ( 1),P X  i.e. the probability of a price shopper or 

highly valued customer.  The three non-cumulative probabilities of class membership can 

be easily derived from the two cumulative probabilities:

( 0) ( 0)

( 1) ( 1) ( 0)

( 2) ( 2) ( 1) ( 0)

( 3) 1 ( 2)

P X P X

P X P X P X

P X P X P X P X

P X P X

  
    
      
   

Hence, for three classes and three independent variable case, we would have
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0 1 1 2 2 3 3( )

1
( 0) ( 0)

1 x x x
P X P X

e          


0 1 1 2 2 3 3 0 1 1 2 2 3 3( ) ( )

1 1
( 1) ( 1) ( 0)

1 1x x x x x x
P X P X P X

e e                    
 

0 1 1 2 2 3 3 0 1 1 2 2 3 3 0 1 1 2 2 3 3( ) ( ) ( )

( 2) ( 2) ( 1) ( 0)

1 1 1

1 1 1x x x x x x x x x

P X P X P X P X
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The above formulation assumes that the explanatory variables are multivariate normally 

distributed with equal covariance matrices, explanatory variables are independent and 

dichotomous zero-or-one variables, or some are multivariate normal and some 

dichotomous.  This makes logistic regression relatively robust compared to linear 

regression.  Also logistic regression models do not assume homoscedasticity between the 

dependent and independent variables.  Under non-normality of explanatory variables, 

which is very often the case with real-life data, the MLE compares slightly better than, 

say, linear discriminant estimators.  This has been discussed extensively in the literature 

and is summarized in the excellent text book by Hosmer and Lemeshow (2001).

Logistic regression has been extensively used in family studies and social sciences 

(Morgan and Teachman 1988).  However, we restrict our literature review for logistic 

regression analysis to business and related fields.  One of the earliest applications of 

logistic regression in business studied models of consumer credit behavior for credit-

granting decisions based on a scoring experiment (Wiginton 1980).  The paper compares 

MLE logit model with linear discriminant model and concludes that logit model yields 
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parameter estimates, which give higher proportion of correct classifications in the scoring 

experiment.  Ball and Tschoegl (1982) model the decision to establish a branch or a 

subsidiary as a binary choice using the data on the foreign direct investment (FDI) 

behavior of foreign banks in Japan and California.  The results are consistent for both 

linear discriminant analysis and logistic regression.  Walking (1985) develop a logistic 

regression model for the prediction of tender offer outcomes based on the compensation 

offered to shareholders.  The model correctly classifies 79.6 percent of the 108 offers of 

estimation sample; however the predictive accuracy of the model on the validation 

sample of 50 offers is somewhat lower at 60 percent.

Allenby and Lenk (1994) use logistic regression to understand the purchase behavior of 

households.  Kumar et al. (1995) compare a neural network and logistic regression using 

data collected on the decisions by supermarket buyers whether to add a new product to 

their shelves or not.  The results suggest that logistic regression compares favorably with 

a neural network in some cases and has superior solution technique and better 

interpretability.  Dasgupta et al. (1994) compare the performances of a neural network 

and logistic regression with respect to their ability to identify customer segments for an 

investment product.  The results indicate no significant difference between the two 

models performances contrary to the findings in financial industry applications about the 

superiority of a neural network.  Gan et al. (2005) compare a neural network with logistic 

model on consumer’s banking choices between electronic banking and non-electronic 

banking.  The results indicate that logistic model is accurate in consumer’s choice 
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prediction with overall above 90 percent correct.  However, the logistic model produces 

higher Type I error compared with a neural network model.

In almost all of above studies, logistic regression method is used for binary classification 

and mostly compared with a neural network technique.  In this study, we use the logistic 

regression model for four group classification problems.

2.3 Neural Networks

Neural networks, also called artificial neural network (ANNs), are models for 

classification and pattern recognition capabilities.  ANNs were designed to model the 

functioning of human brain, where neurons are inter-connected and learn from 

experience.  We use ANNs for our research for two reasons.  First, the ability of the 

neural networks to decipher and solve nonlinear relationships problems.  Second, 

research over last two decades indicate a neural network may achieve better classification 

and prediction compared to standard statistical methods (Sharda 1994).  This has been 

corroborated by a number of successful ANN applications such as bankruptcy prediction 

(Odom and Sharda 1990), bank failure prediction (Tam and Kiang 1990), and market 

segmentation (Fish et al. 1995, Zahavi and Levin 1997a, Hruschka and Natter 1999) to 

name a few.

Neural networks structure captures complex relationships between the predictor variables 

and the response variable through a layer of neurons.  Some have one layer – single-

layer neural networks (SLNN) and some have more – multilayer neural networks 
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(MLNN).  While various neural networks architectures have been reviewed in the 

literature, the most successful applications in classification and prediction have been 

multilayer feedforward networks.  The layer where input patterns are applied is the input 

layer.  The layer from which an output response is desired is the output layer.  In the case 

of a binary outcome, the network has only one output node.  Layers between the input 

and output layers are known as hidden or transfer layers, because their outputs are not 

readily observable.

Figure 1 shows a simple multilayer feedforward network comprising of nodes and

arrows.  The nodes in the network represent neurons while the arrows indicate 

communication path associated with a synaptic strength or weight value.  The arrows 

connect neurons from one layer to next layer and do not leapfrog layers.  The outputs of 

node in a layer are inputs to the nodes in next layer.

Figure 1: A Diagram of Neural Network
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The values on the connecting arrows are called weights, and the weights on the arrow 

from node i to node j are denoted by ,i jw .  The bias terms, denoted by j , serve as an 

intercept for the output from node j .  The predictor values are supplied as inputs to the 

input nodes.  Their output is the same as the input.  If there are p predictors, we have p

nodes in the input layers.  The outputs of the input nodes forms input to each of the nodes 

in the hidden layer.  There may be more than one hidden layer depending upon the user’s 

objectives.  In such case, the output of one hidden layer becomes input to the next hidden 

layer.  However, White (1989) has shown that almost any function can be approximated 

by a neural network with single hidden layer if the number of hidden nodes is sufficient.  

Thus, the number of hidden nodes is more critical than the number of hidden layers in a 

network.    To compute the output of the hidden layer, we calculate a weighted sum of the 

inputs, and then apply certain transfer function to it (Kartalopoulos 1996).

Consider Figure.1 again.  Suppose there are p inputs ( p +1 including the bias term)

1 2, ,..., px x x .  We compute the output of node j by taking the weighted sum
1

p

j ij i
i

w x


 , 

where 1, ,, ,...,j j p jw w weights that are set randomly and then adjusted as the network 

“learns”.  We take a function f , called a transfer function of this output.  The transfer 

function can be a monotone function such as a linear function ( ( )f x ax ), an 

exponential function ( ( ) axf x e ), a function producing output between -1 and 1 (

( ) tanh( )f x x ), and a logistical / sigmoidal function (
1

( )
1 x

f x
e


).
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The logistic function is commonly used as transfer function because it is a differentiable 

monotonic function which asymptotically approaches some limit in either direction and 

thus supplies a good approximation to the threshold function (Hertz et al. 1991).   As in 

logistic regression, the output value is between zero and one.

Using a logistic function we can now write the output of node j in the hidden layer as:

1

( )1

1
( ) .

1

p

j ij i
i

p

j j ij i
w xi

output f w x

e





 

  






The learning occurs through the adjustment of path weights and the intercept or bias 

terms, the values of which are typically initialized to small numbers in the range 0.00 

0.05.  A neural network model is first trained on a set of input-output using training set 

data.  Training the model means estimating the weights that leads to the best predictive 

results.  The most common method used for the adjustment is an algorithm called the 

back propagation.  In this method, the weights are adjusted to minimize the squared 

difference between the model output and the desired output.   The adjustments are based 

on gradient descent algorithm.  Among the many excellent books on neural networks are 

(Shmueli et al. 2006, Hertz et al. 1991, Fausett 1994).

Despite several advantages such as good predictive performance, high tolerance to noisy 

data, and its ability to capture and solve complex relationships problems, neural networks 

have some disadvantages.  First, a neural network does not provide insight into the 

structure of relationship between the predictor and response variables.  Second, a neural 

network does not have built-in variable selection mechanism and hence there is a need to 
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evaluate the importance of adding predictor variables to the model using other statistical 

methods.  Third, a neural network relies heavily in having sufficient data for training 

purposes, otherwise the model performs poorly.  Fourth, a choice of improper hidden 

layers or nodes may cause overfitting, that is, the model could get caught in a local rather 

than a global minimum.  Finally, a neural network takes relative higher computational 

time, which increases with the number of predictors (Uysal and Roubi 1999, Shmueli et 

al. 2006).

Literature concerning artificial neural networks is replete with its application to business 

and finance.  Furthermore, most classification applications of a neural network pertains 

(Pendharkar 2002, Kaefer et al. 2005) to two group classification, whereas our examples 

focus on multiple group classification.  One of the first applications of a neural network

to classification was by Dutta and Shekhar (1988).  They successfully applied neural 

network to classify industrial bonds based on their risk ratings.  Thereafter, Odom and 

Sharda (1990) developed a neural network model for predicting corporate bankruptcy.  

They also used a multivariate discriminant analysis technique to compare the 

performance of neural networks.  Their results indicate that neural network outperformed 

discriminant analysis for both training and validation data sets.  Tam and Kiang (1990), 

Tam and Kiang (1992) apply a neural network to predict bank failures and empirically 

demonstrate the efficacy of neural networks models to other classification methods.  

Sharda (1994) surveyed application of neural networks in OR, optimization and statistical 

methods.  The survey results for statistical methods focus on applications of a neural 

network to firm failure prediction, bank failure prediction, bond rating, and fraud 
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prevention including others.  Lacher et al. (1995) use a neural network to classify 

financial health of a firm.  Fish et al. (1995) apply a neural network to industrial market 

segmentation (both two-group and three-group classification) using seven input variables 

or predictor and two hidden layers.  The methodology achieved higher hit rates for both 

training and validation samples.  West et al. (1997) use a neural network to predict the 

outcome of noncompensatory choice rule and to predict consumer perceptions and 

patronage behavior toward three nationwide mass-merchandise retailers.  There are 

myriad classification applications of a neural network in the literature.  Brockett et al. 

(1997) use a neural network to develop early warning system to predict insolvency for 

property and casualty insurers.  Neural networks application to target marketing is 

studied by Zahavi and Levin (1997a), Zahavi and Levin (1997b).  Zhang et al. (1999)

apply a neural network for bankruptcy prediction by using cross-validation method.  

Some of the other applications of a neural network found in the literature are tourism 

demand analysis (Uysal and Roubi 1999), market segmentation (Natter 1999, Kim et al. 

2003, Bloom 2004, Bloom 2005), bankruptcy prediction using modular neural networks 

(Nasir et al. 2000), and classify credit risks (Hand 2001).

This study intends to add to the neural network literature in that this would be among the 

few studies conducted so far on multi-group classifications.  One of the unstated 

objectives of this study is to examine whether or not a neural network can provide some

practical benefits with respect to multi-group classification problems. A series of 

simulations are used to attack this objective, using data generated with various 

distributions and correlations.
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2.4 kth-Nearest neighbor (k-NN)

The k-nearest neighbor decision rule (k-NN) is a commonly used classification algorithm

in statistical pattern recognition (Devijver and Kittler 1982, pp 69-127).  The idea in k-

Nearest Neighbor methods is to identify k observations in the training dataset that are 

similar to a new record that we wish to classify.  We then use these similar (neighboring) 

records to classify the new record into a class, assigning the new record to the 

predominant class among these neighbors. Denote by ( 1 2, ,..., px x x ) the values of the 

predictors for this new record.  We look for records in our training data that are similar or 

“near" to the record to be classified in the predictor space, i.e., records that have values 

close to 1 2, ,..., px x x .  Then, based on the classes to which those proximate records 

belong, we assign a class to the record that we want to classify (Shmueli et al. 2006).

Unlike, the classical statistical methods, which make assumptions about the relationship 

between the response (Y) and predictor variables ( 1 2, ,..., px x x ), k-NN is a non-parametric 

classification method that make no such assumptions.  It relaxes the normality 

assumption and does not require a functional form as required in DA and logistic 

regression.  Instead, this method draws information from similarities between the 

predictor values of the records in the data set.

The central issue in k-NN is how to measure “distances” or “closeness” between records 

on their predictor values.  Generally, the Euclidean distance and the city-block distance

metrics depicted below are employed to calculate distances between two p-dimensional 

records: '
1 2[ , ,..., ]pX x x x and '

1 2[ , ,..., ]pU u u u :
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(1) Euclidean distance

2 2 2
1 1 2 2( , ) ( ) ( ) ... ( ) ( ) '( )p pd x u x u x u x u x u x u         

(2) City-block distance

1

( , )
p

i i
i

d x u x u


 

A number of investigators have considered the question of how best to measure distance: 

approaches have included global metrics (Fukunaga and Flick, 1984), local metrics ( 

Short and Fukunaga 1980),  metrics that are specific to the problem (Simard et al. 1993) 

and so on.  By far the most common metric, though, has been Euclidean distance.

After computing the distances between the record to be classified and existing records, an 

appropriate k needs to be chosen for the specific problem, which is a tough task because 

too large (or too small) k may result in non generalizing classifiers.  Generally speaking, 

if k is too low, we may be fitting to the noise in the data.  However, if k is too high, we 

will miss out on the method's ability to capture the local structure in the data, one of its 

main advantages.  In other words, we want to balance between overfitting to the predictor

information and ignoring this information completely. A balanced choice depends greatly 

on the nature of the data.  The more complex and irregular the structure of the data, the 

lower the optimum value of k.  Typically, values of k fall in the range between 1 and 20. 

Often an odd number is chosen, to avoid ties.  We choose that k which has the best 

classification performance, which is determined by using the training data to classify the 
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records in the validation data, and then compute error rates for various choices of k

(Shmueli et al. 2006).

In addition to being a non-parametric method, k-NN has other advantages, such as its 

ability to perform well in presence of a large enough training set and the minimal time 

required to find the parameters from the training data.  However, k-NN has two main 

disadvantages: first, the time required to find the nearest neighbors in a large data set can 

be prohibitive, and second, the number of records required in the training set to qualify as 

large increases exponentially with the number of predictors p. This is because the 

expected distance to the nearest neighbor goes up dramatically with p unless the size of 

the training set increases exponentially with p.

K nearest neighbor classifier (K-NN) is widely discussed and applied in pattern 

recognition and machine learning due to several interesting features, such as good 

generalization and easy implementation.  Although simple, it is usually able to match, 

and even beat, more sophisticated and complex methods.   Duda and Hart (1973) showed 

that k-NN can be used to obtain good estimates of the Bayes error and its probability of 

error asymptotically approaches the Bayes error.  Wettschereck and Dieterich (1995) 

compared nested generalized exemplar (NGE) with K-NN algorithms, and found that k-

NN is a fairly robust and effective classifier compared with the nearest hyperrectangle 

algorithm, an inductive method based on the (NGE) theory (Salzberg 1991).
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2.5 Linear Programming (Mean minimization)

The application of LP methods to discriminant problem gained momentum after Freed 

and Glover (1981a) proposed simple linear programming method.  The method identified 

a weighting scheme to establish a critical value or cutoff point that served as a breakpoint 

between two groups – successful and unsuccessful.  Thereafter, Freed and Glover 

(1981b) proposed a set of interrelated goal programming formulations.  They proved the 

potential of these formulations with the help of a simple example of assigning credit 

applicants to risk classifications.  Freed and Glover (1987) study two-group problem 

involving both normal and non-normal populations.  The authors propose three 

contrasting LP formulations: MMD (minimize maximum deviation), MSID (minimize 

the sum of interior distances), and MSD (minimize sum of deviations) and compare those 

with classical (Fisher) discriminant procedure.  The results indicate that MSD is most 

effective in correctly classifying population group members for both normal and 

nonnormal cases.  For a classification problem with q criteria, with X, a ( n q ) matrix 

representing the criterion scores of a known sample of n objects from two groups, 1G

and 2G , the Minimize the Sums of Deviations model (MSD) formulation is as below:

Min: 
1

n

i
i

d

 (1)

. .s t

1

,
q

j ij i
j

w x d c


  for 1i G (2)

1

,
q

j ij i
j

w x d c


  for 2i G (3)

where,
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ijx = value of the thj criterion for the thi object in the sample,

jw = attribute weights, for 1,...,j q

c = cut-off score

jw and c are unrestricted in sign, and

0id  for all i , is the deviation of individual objects from cut-off scores

Freed and Glover (1982), Glorfeld and Gaither (1982), Glover et al. (1988), Lee and Ord 

(1990), Glover (1990), Joachimsthaler and Stam (1990), Ragsdale and Stam (1991)

discuss modifications such as additional variables and/or normalization constraints to 

linear programming approaches and conclude the superiority of such approach over 

classical statistical techniques.  Bajgier and Hill (1982) demonstrate the efficacy of LP 

approaches using mixed integer, linear goal programming formulations.  Markowski and 

Markowski (1987) extend the above to include qualitative variables.  The results indicate 

improvement in both the LP approach and Fisher’s discriminant method with the latter 

being more preferable.  Mahmood and Lawrence (1987) compare nonparametric and 

parametric discriminant analysis techniques through an empirical study of financial data 

of companies.  The paper classified companies into two groups – bankrupt and non-

bankrupt companies.  The results indicate that nonparametric approaches such as rank 

discriminant, log-linear with the exception of linear programming perform better than the 

parametric approaches in classifying the data into correct groups.

In a departure from the previous research, Joachimsthaler and Stam (1988) compared 

four discriminant models: Fisher linear discriminant function (FLDF), Smith’s quadratic 
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discriminant function (QDF), the logistic discriminant model and a linear programming 

(LP) model based on the expected error rates.  None of the methods produced 

significantly lowers rates of misclassification under nonnormality barring QDF, under 

certain conditions.  Rubin (1990) achieve somewhat similar results while comparing 

fifteen linear programming models under normally distributed datasets.  Lam et al. 

(1996a) propose a two stage LP approach that obtains a set of attribute weights in first 

stage and determines cutoff score for classification purposes in the second stage.  The 

authors claim this approach obtains more stable classification functions across different 

samples compared to existing methods.  Lam et al. (2003) extend the above to solve the 

multi-group classification problem.  The authors introduce weighted linear programming 

model (WTLP) and compares it with other discriminant approaches such as MSD, cluster 

based linear programming (CBLP), and Fisher linear discriminant function (FLDF).  

Through a simulation experiment the authors claim that the classification performance of 

WTLP is superior to other methods.  Most of the above research delves on two-group 

classification problems.

Gehrlein (1986) proposes a formulation for the multi-group case.  It unfortunately 

requires a multitude of binary variables in order to identify the optimal division of 

segments of the decision space among the various groups, rendering its implementation 

infeasible in practice for many real-size data sets.

Freed and Glover (1981b) state that minimizing the sum of deviations (MSD) 

formulation, which is one of the most widely used linear programming (LP) formulations 



29

for solving the classification problem, can easily be generalized to the multi-group 

classification problem by sequentially solving for the optimal separating hyperplanes 

between the pairs of groups. One problem with this approach, however, is that the 

resulting classification rules may not cover each segment of the decision space. 

Moreover, the pairwise estimation of hyperplanes leaves much to be desired, because it 

may lead to suboptimal overall classification results.  Another approach they suggested is 

to convert the classification problem to ( 1) / 2m m  distinct two-group problems (where 

m = number of designated groups), where each problem is solved separately.

Pavur and Loucopoulos (1995), Lam and Moy (1996b), Gochet et al. (1997) also study 

the three-group classification problems using small to moderate data sets.  Pavur and 

Loucopoulos (1995) study the three-group classification problem using MIP approach.  

They use small data sets for their experiments and conclude that their models perform 

better than some of the statistical approaches in achieving lower misclassification rates.

Lam and Moy (1996b) extend two-group classification model developed by (Lam et al. 

1996a) to solve multi-group classification problem.

Let the mean of the thj variable for 1, 2,...,k m be
k

Gi
ij

j
n

x

kx k


)(

where kn = number of observations in kG , and m  number of designated groups.

Let n be the total number of observations, 1 2 ... mn n n n   
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We consider a classification problem with q variables and n, the total number of 

observations in the sample.  For each pair of ( , )u v , where 1,..., 1, 1,...,u m v u m    , the 

Minimize the Sum of Deviations model (MSD) formulation is:

Minimize 
,u v

n

i
i G i G

d
 
 (1)

s.t.

1

( ( )) 0,
q

jj ij i
j

w x x u d


   ui G  (2)

1

( ( )) 0,
q

jj ij i
j

w x x v d


   vi G  (3)

1

( ( ) ( )) 1,
q

j jj
j

w x u x k


                                 (4)

where,

jw = weights, for 1,...,j q are unrestricted in sign

ijx = value of thj variable for the thi observation in the sample

0id  for ui G and vi G , is the deviation of an individual observation from the cut-off 

score.

The objective function (1) minimizes the sum of all the deviations (MSD).  The 

constraints (2) and (3) force the classification scores of the objects in kG to be as close to 

the mean classification score of group k (k =1, 2,..., m) as possible by minimizing id
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where ki G .  The constraint (4) is a normalization constraint to avoid trivial values for 

discriminant weights.

For each pair ( , )u v , we use the jw values obtained from the LP solution of pair ( , )u v to 

compute the values of the classification scores, iS of the observations in uG and vG .  

Then all the cut-off values, uvC , where 1,..., 1, 1,...,u m v u m    , are determined by 

solving the following LP problem,

Minimize 
1 1

1 1 1 1u v

m m m m

iuv iuv
i G u v u i G v v u

d d
 

       

    (5)

s.t.

,iuv iuv uvS d c  for 1,..., 1, 1,..., , uu m v u m i G     (6)

,iuv iuv uvS d c  for 1,..., 1, 1,..., , vu m v u m i G     (7)

where all uvc are unrestricted in sign and all 0iuvd  , and
1

q

i j ijj
S w x


  , for ki G

The author’s compare their models with FLDF and MP approach of Freed and Glover 

(1986a) by using three examples of small to moderate size datasets to show that the 

proposed method have an advantage over other methods.

Gochet et al. (1997) propose a nonparametric linear programming formulation for the 

general multi-group classification problem. The authors, with the help of several small 
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examples, show that their proposed multi-group LP approach offers a robust alternative 

to both Fisher’s parametric method and non-parametric k-nearest neighbor method.

Clearly, in all of the research on multi-group classifications to date, the robustness of the 

proposed classification methods, with respect to various data conditions, must be 

ascertained.  This related to the mixed success for the two-group case.

2.6 Linear Programming (Median Minimization)

In this study, we extend (Bal et al. 2006) for two-group classification to multi-group 

classification problems.  This extension is based on (Lam and Moy 1996b), which, 

proposes a model regarding minimization of deviations from the group means.  However, 

for non-normal distribution, this model loses efficiency in respect of hit ratio.  For the 

samples draw from the non-normal or skewed distributions, the median is a much more 

suitable descriptive statistic than the mean.  For two-group classification problems (Bal et 

al. 2006) show that the performance of their model is better than both some important 

classification in literature and the model suggested by (Lam and Moy 1996b).

Let n be the total number of observations, 1 2 ... mn n n n   

We consider a classification problem with q variables and n, the total number of 

observations in the sample.  For each pair of ( , )u v , where 1,..., 1, 1,...,u m v u m    , the 

Minimize the Sum of Deviations model (MSD) formulation is:
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Minimize 
,u v

n

i
i G i G

d
 
 (1)

s.t.

1
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q

j ij j i
j

w x med u d

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1
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1
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q

j j j
j

w med u med v


                         (4)

where,

jw = weights, for 1,...,j q are unrestricted in sign

ijx = value of thj variable for the thi observation in the sample

( )jmed u = the median of the thj variable in group u.

( )jmed v = the median of the thj variable in group v.

Pair (u, v) = any group u =1, 2... m-1 and v = u+1, ..., m (what this means is that we solve 

an LP for each pair of group to generate weights)

0id  for ui G and vi G , is the deviation of an individual observation from the cut-off 

score.

The objective function (1) minimizes the sum of all the deviations (MSD).  The 

constraints (2) and (3) force the classification scores of the objects in kG to be as close to 

the mean classification score of group k (k =1, 2,..., m) as possible by minimizing id
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where ki G .  The constraint (4) is a normalization constraint to avoid trivial values for 

discriminant weights.

For each pair ( , )u v , we use the jw values obtained from the LP solution of pair ( , )u v to 

compute the values of the classification scores, iS of the observations in uG and vG .  Then 

all the cut-off values, uvC , where 1,..., 1, 1,...,u m v u m    , are determined by solving 

the following LP problem,

Minimize
1 1

1 1 1 1u v

m m m m

iuv iuv
i G u v u i G v v u

h h
 

       

    (5)

s.t.

,iuv iuv uvS h c  for 1,..., 1, 1,..., , uu m v u m i G     (6)

,iuv iuv uvS h c  for 1,..., 1, 1,..., , vu m v u m i G     (7)

where all uvc are unrestricted in sign and all 0iuvh  , and
1

q

i j ijj
S w x


  , for ki G

2.7 Integrated (Hybrid) Method

Previous research on classification indicates that no single method clearly outperforms all 

methods in all problems (Ostermark 1998).  That is, different kinds of methods have their 

own advantages and defects.  So, a method can perform best for one specific problem, but 

given another problem, another method can work better.  This situation is called selective 

superiority (Michie et al. 1994).  Therefore, one recommendation is to build classification 

systems that employ a number of different classification algorithms to improve the 

classification and prediction accuracy.  The systems could be designed to select the right 
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method or to properly combine different methods to form an integrated or hybrid 

classifier in response to the different biases in data (Kiang 2003).  Hybrid models 

combine different methods to improve classification and prediction accuracy.  The term

combined or integrated model is usually used to refer to a concept similar to a hybrid 

model.  Combined models also have been called Ensembles.  Ensemble improves 

classification and prediction performance by the combined use of two effects: reduction 

of errors due to bias and variance (Haykin 1999).

Hybrid models and combined models, terms often used interchangeably, have been 

developed to improve the classification and prediction accuracy by using several 

supervised learning methods together.  Some studies on hybrid models utilize different 

supervised learning methods sequentially (Hur and Kim 2008).  Utgoff (1989) presented 

a hybrid representation, called a ‘perceptron tree’, and an associated learning algorithm 

called the ‘perceptron tree error correction procedure’ by using the favorable 

characteristics of a decision tree and linear threshold units (LTUs).  The rationale is that 

the two algorithms complement each other in certain ways, and by properly integrating 

them into one method, one can draw on the particular strengths of each individual 

algorithm.  Coenen et al. (2000) propose a hybrid model to improve the response rate of 

direct mailing.  They use the C5.0 method for initial classification of buyers and non-

buyers and then use case-based reasoning for ranking the classified cases.  Carvalho and 

Alex (2004) suggest a hybrid model that generates decision rules using C5.0 and selects 

final decision rules with a genetic algorithm.  Li and Wang (2004) present a method that
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can improve the effectiveness of final classification rules using artificial neural networks 

and the rough set theory presented by Pawlak (1991).

The above hybrid models use different models with a phased approach. That is, one 

method is used first in some data mining phase, and the other method is used in a next

phase. Another hybrid approach is embedded. That is, a method or technique is 

embedded into part of a main method and carries out a subtask to improve the 

performance of the main method (Hur and Kim, 2008).  For example, Chen (2003) 

suggests a hybrid framework for textual classification in text mining using fuzzy theory 

embedded in a SOM (self-organized map). 

In addition to hybrid methods that have tried to combine two completely different 

methods, hybrid models that use one method in multiple ways have also been studied.

Hansen and Salaman (1990) show that the generalization ability of a neural network 

system can be significantly improved through ensembling a number of neural networks.

Indurkhya and Weiss (1998) show the improvement of predicted gain values of the final 

nodes in decision trees by multiple re-sampling of decision tree induction methods

and combination of them using the voting method.

There are also studies on the predictability or classification performance of hybrid or 

combined models compared with a single method.  Kuncheva et al. (1998) presented 

cases in which prediction accuracy was improved using hybrid models. With 

combinations of RFM, neural networks, and logistic regression models, Suh et al. (1999)
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showed that performance of hybrid techniques improves when the correlation between 

hybrid models is low.  Zhang and Zhang (2004, Chapter 8) explain that a single data 

mining technique has not been proved appropriate for every domain and data set. Instead, 

several techniques may need to be integrated into hybrid systems that can be used 

cooperatively during a particular data mining operation.

An alternative approach is to combine the outputs of different classification methods. 

Wolpert (1992) introduced stacked generalization, a way to combine the outputs from 

multiple generalizers trained with multiple partitionings of the original learning set. 

However, there are no systematic rules that can be used to generate an accurate 

combination.  Breiman (1996a) followed Wolpert’s idea of combining predicators instead

of selecting the single best method, and proposed stacked regressions method. Stacked 

regression is a method for forming a linear combination of different predicators to give 

improved prediction accuracy. In general, improvement occurs when stacking together

more dissimilar predictors.  Bagging predictors, proposed by Breiman (1996b), is a 

method for generating multiple versions of a predictor, then obtaining an aggregated 

predictor by either taking the average over the versions (for numerical output) or using a 

plurality vote (for classification tasks). Brieman (1996b) reported that prediction 

accuracy can be improved from 57% to 94% by applying Bagging to the C&RT 

algorithm and demonstrated that the stability of a procedure has great impact on the 

improvement achieved through bagging.  The author studied the instability of different 

predictors and concluded that neural networks, classification trees, and subset selection in 
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linear regression were unstable, while the kth-nearest-neighbor method was stable (Kiang 

2003).

This study constructs an integrated (hybrid) classifier by combining two methods in 

common use – k-nearest-neighbor (k-NN) and a linear programming (LP) approach.  In 

this scheme we divide the initial feature space up by k-NN, and then classify the training 

set using LP approach.  The k-NN method acts as a data preprocessing stage, where, it is 

used to discard the unwanted data i.e., the group Y = 0 (no buyers customer segment, in 

this study) for final classification using LP approach.  This preprocessing step helps us in 

two ways: first, a major problem of using the k-NN is the computational complexity 

caused by large number of distance computations (Devijver and Kittler 1982).  The 

preprocessing stage helps in reducing this complexity of the initial problem for k-NN by 

having to classify only two groups i.e., Y= 0 and Y = 1; second, to reduce considerably, 

the number of constraints required in LP approach.  This way, we try to alleviate the 

disadvantages of both these methods, and at the same time utilize their strengths for 

improving classification accuracy.  For the LP approach part of this hybrid approach, this 

study utilizes multi-group classification LP method developed by (Lam and Moy 1996b).

Previous researches have studied the problem of partitioning the feature space into 

different subsets for discrimination of different pattern classes using composite 

classifiers.  The composite classifiers have been found to lead to improved performance 

in multiclass environments (Kanal and Chandrasekaran 1972, Dasarathy 1973).  

Dasarathy and Sheela (1979) study the linear/NN classifier composite which ensures that 
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the computational effort is less than that under NN classifier, and, at the same time, the

recognition rate is equal to or better than under each of the components, thereby meeting 

the objective of improved recognition system performance.  Buttrey and Karo (2002) 

have constructed a hybrid (composite) classifier by combining two classifiers in common 

use: classification trees and k-NN.  The authors divide the feature space up by a 

classification tree, and then classify the test set items suing the k-NN rule just among 

those training items in the same leaf as the test item.  The authors claim that this reduces 

the computational load associated with k-NN, and it produces a classification rule that 

performs better than either trees or the usual k-NN in a number of well known data sets.



40

CHAPTER 3: MODEL ASSUMPTIONS AND 
PERFORMANCE MEASURES

One of the focuses of this research is to examine the group and data characteristics that 

may affect the performance of different classification methods.  Since real-world data are 

usually contaminated (Glorfeld and Kattan 1989, Hample et al. 1986, Stam and Ragsdale 

1992), this simulation experiment generated data with various characteristics.  The 

characteristics were selected based on previous research in this area and on the identified 

strengths and weaknesses of each method.  The following provides a detailed description 

for each data characteristic.

3.1 Data characteristics

3.1.1 Multivariate normal (Symmetric)

One of the drawbacks of parametric methods is the normality assumption of the 

independent variables.  However, real-life datasets seldom follow normal distribution 

(Eisenbeis 1977).  Violations of normality assumptions in parametric methods may lead 

to a biased and overly optimistic classification rates in the population, and thus limit the 

usefulness of the model (Kiang 2003).  The Kolmogorov-Smirnov test statistics are 

applied to each of the independent variables in the data set to test for normality (Lilliefors

1967, Dyer 1974).
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3.1.2 Non-normal data (Asymmetric)

Since, in practice, data are rarely multivariate normally distributed, we also wish to test 

the performance of the selected classification procedures when allowing departures from 

normality.  For the non-normal data used in our study, we generate lognormal variables

(Ostermark 1998).  The choice of lognormal distribution is based on the knowledge that 

this type of distribution is different from the normal curve in overall shape as well as 

skewness and kurtosis.  Other scenarios for departure from non-normality are possible 

(Hosseini and Armacost 1994).

3.1.3 Dynamic versus static nature of the problem

Most of the methods examined assume that the population distribution will not change 

with time.  Thus, the models based on historical data are not time-dependent and may be 

violated at times.  Time series analysis is one approach to this type of problem.  A time 

series model tries to account for as much as possible of the regular movement (wavelike 

functions, trend, etc) in the time series, leaving out only the random error.  The method 

can be applied when there is a time series variable in the problem to be modeled.  

However, a more complex dynamic system could affect the distributional characteristics 

of the model over time (Kiang 2003).

3.1.4 Outliers (With / without)

To emulate real life datasets, we introduce outliers in our experiments.  The outlier 

datasets contain 5 per cent observations as outliers generated using the Cauchy 
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distribution (Ostermark 1998).  The use of the Cauchy distribution to generate outliers 

has been supported in the literature (Hoaglin 1985).  Other simpler approaches, such as 

the generation of observations that are several standard deviations from the mean values 

of the variables are also possible (Bajgier and Hill 1982).

2

1
( ) .

(1 )
f x

x




3.1.5 Multicollinearity

Past research suggests that a high degree of correlation among independent variables 

(multicollinearity) will have adverse effects on the parameter estimates of parametric 

methods (Meyers et al. 2006).  Two methods commonly used to test collinearity are 

correlation matrix and variance inflation factor (VIF) (Neter et al. 1990).  This study tests 

the models for two levels of correlation – strong, and weak.

Correlation matrices are:

1.00 0.75 0.75

0.75 1.00 0.75

0.75 0.75 1.00
Strong

 
    
  

1.00 0.25 0.25

0.25 1.00 0.25

0.25 0.25 1.00
Weak

 
    
  

3.1.6 Homoscedasticity

The linear discriminant analysis (LDA) requires the covariance equality of multi-groups.  

We test for the equality of variances by conducting Cochran’s test (Neter et al. 1990).  
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This study tests the models by introducing unequal covariance matrices between four 

groups to test the impact on performance of various methods.  We alter the covariance 

matrices to reflect different degrees of correlation between discriminating variables 

(Ostermark 1998).

3.1.7 Sample proportion

Previous research indicates that the sample proportion does affect the prediction accuracy 

of a discriminant model.  For instance, DA models show that when sample proportion 

differs from the true population, the prediction accuracy becomes very poor (Kiang 

2003).  However, the predictive accuracy of a logit model is not affected by biased 

sample proportion due to its non-parametric nature.  This study uses the same sample 

proportion for each group as per the reference data sets.  The proportion of the sample in 

per cent terms is: 1 2 3 440%, 10%, 20%, 30%n n n n    , where, 1 2 3 4n n n n n    , the 

sample size for each replication of training and validation set.

3.1.8 Sample size

Previous research in classification studies suggests that size of training samples not only 

affects speed of training, but also has an impact on the performance of different 

classifiers.  Sordo and Zeng (2005) show through their empirical study that as sample 

size increases, both support vector machines and decision trees show a substantial 

improvement in performance, suggesting a more consistent learning process.  For some 

methods, large sample size is required in order to achieve its maximum prediction 
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accuracy whereas others may need a relatively small data set.  In this study, sample sizes 

of 100, 200, 400, and 500 are randomly selected from the data set each time for both 

training and validation purposes.

3.2 Hypothesis testing

In this study, we conduct testing of hypothesis at two levels: the effect of data 

characteristics on various methods based on the strengths of the methods and the 

performance of the proposed integrated method vis-à-vis the other methods.  The review 

in Chapter 2 provides us the basis for forming hypotheses regarding the possible link 

between data characteristics and method performances.

Table 1: Summary of the seven methods with respect to all the data characteristics

3.2.1 Effect of data characteristics

Here, we draw heavily from a previous study by Kiang (2003), which tests the 

hypotheses regarding the possible link between data characteristics and method 

Method Hypotheses

DA
Static scenario. Affected by normality and linearity violations, low 
correlations, outliers and identical covariances.

Logistic
Static scenario.  Affected by sample size, especially when dependent variable 
has many groups, and low correlations.

Neural nets Both static and dynamic scenarios.  Affected by sample size and outliers.

KNN Static scenario.  Affected by sample size and outliers.

MP1 Static scenario.  Affected by linearity violations.

MP2 Static scenario.  Affected by linearity violations.

Integrated Static scenario.  Affected by linearity violations and sample size.
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performances.  Table 1 summarizes our hypotheses regarding the classification methods

based on a review of the classification literature.  These results are tested and validated 

using simulated data sets.  The performance difference for each method before and after 

the change is used to test the hypotheses.  Paired t tests are used to compare the means of 

the misclassification rates between the base case and the biases in data (Lam et al. 1996a, 

Kiang 2003, Bal et al. 2006).  

3.2.2 Performance of integrated method versus other methods

Here, we use the paired t-tests to test the difference between the misclassification rates of 

the integrated methods and the other six approaches: discriminant analysis (DA), logistic 

regression (LR), neural network (NN), k-NN algorithm, and linear programming 

approaches (MP1 and MP2), for each of the data characteristic.  In all we test 54 

hypotheses (9 data characteristics and 6 different methods).

Null hypothesis:

0H : There is no difference between the mean misclassification rates of the integrated

method and the misclassification rates of the method i, for each of the nine data

characteristic.

jijIntegrated ,,  
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aH : The mean misclassification rates of the integrated method are greater than 

the misclassification rates of the method i, for each of the nine data

characteristic.

, ,Integrated j i j 

Where,

i Methods DA, LR, NN, k-NN, MP1 and MP2, and

j Data characteristics: base case, dynamic, nonlinearity, nonnormal, outliers, strong

      correlation, unequal covariance, unequal sample proportion, weak correlation.

The details of the simulation experiments are discussed in chapter four and the results in 

chapter five.

3.3 Performance measures

One of the factors used for performance estimation is the way in which multivariate 

observations are used to design the classifier and to test its performance.  There are four 

main approaches to use given observations as the design set (i.e. the training set) and as 

the test set (i.e. the validation set) (Raudys and Jain 1991).

1. The Resubstitution Method R: all observations are used to design the classifier 

and used again to estimate its performance.
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2. The Hold-Out Method H: Suppose the total number of available observations is 

n*. One portion of the set of observations (the training set containing N 

observations) is used to design the classifier, and the remaining (n* - N) portion 

(the validation set) is used to estimate the error rate.

3. The Cross-Validation Method L: In this method,
*n

k

 
 
 

classifiers are designed. 

Each classifier is designed by choosing k of the n* observations as a training set, 

and its error rate is estimated using the remaining (n* - k) observations. This 

process is repeated for all distinct choices of k patterns and the average of the 

error rates is computed.  A popular choice for the value of k is k = 1, yielding the

well-known leave-one-out method.

4. The Bootstrap Method B: A bootstrap design sample of size N is formed from the 

N observations by sampling with replacement. 

In this study, we use the ‘Hold-Out Method (H) for estimating both our performance 

measures: Misclassification rates and Individual error rates.  For all the methods of 

classification and for each of the data characteristics, we use 60 percent of the sample as 

training data and the remaining 40 percent as the validation data.

3.3.1 Misclassification rates (Apparent error rates)
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One important way of judging the performance for any classification procedure is to

calculate its error rates or misclassification probabilities.  The performance of a sample 

classification function can be evaluated by calculating the Actual Error Rate (AER).  The 

AER indicates how the sample classification function will perform in future samples.  

Just as the optimal error rate, it cannot be calculated because it depends on an unknown 

density function.  However, an estimate of a quantity related to the AER can be 

calculated.

There is a measure of performance that does not depend on the form of the parent 

population, which can be calculated for any classification procedure.  This measure is 

called the Apparent Error Rate (APER).  It is defined as the fraction of observations in 

the training sample that are misclassified by the sample classification function.  

The APER can be easily calculated from the confusion matrix, which shows actual versus 

predicted group membership.  Previous research in classification and its applications in 

accounting and finance, and marketing show that confusion matrix is the most frequently 

used performance evaluation measure (Odom and Sharda 1990, Salchenberger et al. 

1992, Tam and Kiang 1992, Altman et al. 1994, Wilson and Sharda 1994, Spear and Leis 

1997, Lee et al. 2005, Paliwal and Kumar 2009)

For 1n observations from 1 , 2n observations from 2 , 3n observations from 3 , and 4n

observations from 4 , the confusion matrix is given in Table 2 ((Morrison 1969):
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Table 2: Calculating Misclassification Rates

Actual 

Membership

Predicted Membership

Π1 Π2 Π3 Π4

Π1 11n 12n 13n 14n n1

Π2 21n 22n 23n 24n n2

Π3 31n 32n 33n 34n n3

Π4 41n 42n 43n 44n n4

Where,

11n = number of Π1 items correctly classified as Π1 items

12n = number of Π1 items misclassified as Π2 items

13n = number of Π1 items misclassified as Π3 items

14n = number of Π1 items misclassified as Π4 items

21n = number of Π2 items misclassified as Π1 items

22n = number of Π2 items correctly classified as Π2 items

23n = number of Π2 items misclassified as Π3 items

24n = number of Π2 items misclassified as Π4 items

31n = number of Π3 items misclassified as Π1 items

32n = number of Π3 items misclassified as Π2 items

33n = number of Π3 items correctly classified as Π3 items

34n = number of Π3 items misclassified as Π4 items
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41n = number of Π4 items misclassified as Π1 items

42n = number of Π4 items misclassified as Π2 items

43n = number of Π4 items correctly classified as Π3 items

44n = number of Π4 items correctly classified as Π4 items

The apparent error rate is thus

11 22 33 44APER = 1-
n n n n

n

  
  or, in other words, the proportion of items in the training

set that are misclassified, where, 1 2 3 4n n n n n   

The APER is intuitively appealing and easy to calculate.  Unfortunately it tends to 

underestimate the AER, and the problem does not appear unless the sample sizes of 1n , 2n

, 3n ,and 4n are very large.  This very optimistic estimate occurs because the data used to 

build the classification are used to evaluate it.

The error rate estimates can be constructed so that they are better than the apparent error 

rate. They are easy to calculate, and they do not require distributional assumptions.  

Another evaluation procedure is to split the total sample into a training sample and a 

validation sample.  The training sample is used to construct the classification function 

and the validation sample is used to evaluate it.  The error rate is determined by the 

proportion misclassified in the validation sample.  This method overcomes the bias 

problem by not using the same data to both build and judge the classification function.
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3.3.2 Individual error rates

Previous literature on the classification and prediction analysis suggests there are few 

studies that delve on the individual error rates.  Balancing of error rates is the individual 

error rates for each group or class of the categorical variable, i.e. we count the number of 

group 0, 1, 2, and 3 values that are misclassified.  Markowski (1990) reported the 

balancing of error rates for an experimental comparison between a linear programming 

(LP) approach and Fisher’s linear discriminant function (FLDF).  The study concludes 

that FDLF is much more effective, when balance between two types of misclassifications 

is important.

In this study we wish to examine the error rates for the four groups individually under 

varying data circumstances. We are particularly interested in a lower misclassification 

rates for top customer segments, hence, we judge the effectiveness of a method by its 

ability to classify groups Y = 1, and Y = 2 accurately.  For instance, in our example, 

groups 1 (prime) and 2 (high value) are our top customer segments.  We would be 

interested indentifying the methods that have lower misclassification rates for these two 

groups.  This analysis will make the practitioner aware of the inherent strengths and

weaknesses of classification techniques.



52

CHAPTER 4: COMPUTATIONAL EXPERIMENTS

Our study is restricted to four-group classification with three discrimination variables.  

We test the robustness of various methods using a financial services segmentation 

problem with three independent variables and a categorical dependent variable with four 

customer class.  All the independent variables in our example are continuous.  The study 

uses the characteristics of real data sets to simulate (via Monte Carlo simulation) sample 

runs for experiments.

4.1 Example - Financial services segmentation

This example focuses on segmenting the financial services market for effectively 

targeting customers who offer higher expected growth in the value of future business.  

More specifically, this study attempts to develop a discriminant model to classify the 

customers based on their demographics i.e. age ( 1X ), income ( 2X ), and loan activity (

3X ) as independent variables.  We segment the customers into four ordinal classes: Y = 

0, Y = 1, Y = 2, Y = 3, i.e. non-buyers ( 1n ), prime customers ( 2n ), highly valued 

customers ( 3n ), and price shoppers ( 4n ), respectively.  The prime customers are the ones 

who have higher income levels and a loan activity commensurate with their income.  

They form the most desirable targets for the companies offering financial services.  The 

highly valued customer class has income levels and loan activity relatively lower than the 

prime customers but profitable enough in the long run though with associated risks.  The 

price shoppers are short term customers with lower long term attractiveness but provide 



53

enough volume base.  They are also the ones which cost higher to service due to their 

tendency to base their decisions on short term benefits and price sensitivity.  Lastly, the 

non-buyers are the ones who are not likely to buy the financial services in a short to 

medium term.

For the financial services example we use an individual’s income, loan activity, and age 

as explanatory variables.  The response variable in our model is a multi-group variable 

which, indicates whether customers are: prime customers, highly valued customers, price 

shoppers, or non-buyers.  To evaluate the performances of all the methods, a Monte Carlo 

simulation experiment is conducted to generate sample runs, based on the characteristics 

of a real consumer dataset.

We compare the performances of the discriminant analysis-Mahalanobis (DA), 

multinomial logistic regression (LR), LP methods based on: minimize the sum of 

deviations model (MP1) (MSD) (Lam et al. 1996b), and median minimization (MP2) 

(Bal et al. 2006), k-NN, and the proposed integrated method for the problem of four-

group classification.

4.2 Data generation

To test the effect of each data characteristics, a population of 100,000 cases is generated 

each time.  An equal number of cases (25,000) are generated for each category or class, 

i.e. Y = 0, Y = 1, Y = 2, and Y = 3 groups.  The data sets are generated for nine different 
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data characteristics using Monte Carlo simulation method.  To form the training and 

validation data sets, 125 cases are randomly drawn from each group for a total of 500 

cases in each data set.  The process is repeated 150 times to form 150 training and 

validation data sets, respectively, in order to average out the possible bias in any single 

sample run.  The results presented below are the average performances of the 150 runs, 

both for training and validation.

The following data characteristics describe the biases inserted at each step during the test.

1. Dynamic environment:  Again, the same functional form as the base cases is 

used.  Instead of using a constant 1A as the coefficient of 1X , it is assumed that 

the coefficient of 1X changes over time.  A sine function is used as part of the 

coefficient value from 0 to 1 to 0 to -1, then back to 0.  Each time, a complete 

cycle is used to generate 300 examples and then chronologically divided into two 

sets.  The first 150 examples are used for training and the rest are used as 

validation sample (Kiang 2003).

2. Nonlinearity: A quadratic function is used in this test:

2 2 2
1 1 2 2 3 3 ,Y A X A X A X    

where 1 1 1~ ( , )X N V , 2 2 2~ ( , )X N V , 3 3 3~ ( , )X N V , and ~ (0,1)N . Again, 

1 2 3 1 2 3 1 2, , , , , , ,A A A V V V   , and 3 are constants and were chosen to make four 

distinct groups.
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3. Nonnormal distribution:  A data set with lognormal distribution is generated to 

compare with normally distributed sample (Ostermark 1998).  Only positive 

values are possible for the variable, and the distribution is skewed to the left.  

Two parameters are needed to specify a log-normal distribution. Traditionally, 

the mean  and the standard deviation  (or the variance 2 ) of log(X) are used.  

A random variable X is said to have the lognormal distribution with parameters 

 � and σ>0 if ln(X) has the normal distribution.  Equivalently, YX e where 

Y is normally distributed with mean μ and standard deviation σ. The lognormal 

distribution is used to model continuous random quantities when the distribution 

is believed to be skewed, such as certain income and lifetime variables.  

4. Outliers: The Cauchy distribution is used to generate outliers in the base cases.  

We insert 5% of the observations as outliers.

5. Strong correlation: To generate data sets with strong correlation between 

variables 1 2,X X , and 3X , we use strong and weak correlation matrices available 

in the previous research literature (Lam and Moy 2003).

6. Unequal covariance:  Data sets with different covariance matrix for the four 

groups, i.e. Y = 0, Y = 1, Y = 2, and Y = 3 were generated.

7. Unequal sample proportion: The sample cases are randomly drawn from the same 

population used in the base case. A sample proportion of 40-30-20-10 
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percentages are used for groups Y = 0, Y = 1, Y = 2, and Y = 3, respectively, for 

both training and validation data sets.

8. Sample size:  Sample sizes of 100, 200, 400, and 500 are randomly selected from 

the base case data set each time for both training and validation.

For each data set generated, necessary tests were performed (i.e., plotting scatter plots, 

normality tests, etc.) to verify the existence of bias in the data.  Performance is assessed 

with respect to the ability of the methods to accurately predict the appropriate class for 

the validation sample.

Each experiment includes 300 sample runs (150 training runs and 150 validation runs), 

and the results presented are the average of the 150 runs for training and validation data 

sets, each.  Therefore, there are a total of 300 (sample runs/cell) x 7 (models) x 9 (data 

characteristics) = 18,900 runs.  To test the effect of sample size on model performance, 

150 trainings and 150 validation runs were performed for each sample size.  Therefore, 

there are a total of 300 (sample runs/cell) x 7 (models) x 4 (sample sizes) = 8,400 runs, 

for the sample size effects.

We used Minitab 15.0 to generate all the data sets required for this study.  For DA 

(Mahalanobis), and logistics regression methods, again we use Minitab 15.0.  For neural 

network analysis, and k-NN, we used XLMiner software.  For solving both MP1 and 
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MP2 problems we used Premium Solver software by Frontline Systems.  All these 

software packages are commercially available.
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CHAPTER 5: ANALYSIS OF RESULTS AND DISCUSSION

The results of the training and validation data are shown in Table 3 and Table 4,

respectively.  

Figure 2 plots the misclassification rates of the validation results for the nine data 

characteristics and groups them by method.  Figure 3 shows the classification

performance versus the sample size.  Due to the complexity of the problem in this study, 

the possible interaction among factors and the varying degree of biases in each data 

characteristic was not tested.  In order to test all the possible interactions among biases, 

the experimental design necessary to test these hypotheses will be very complex due to 

large number of factors involved (Ostermark 1998, Kiang 2003).

For each method, t-test is used to test the significance of the performance difference 

between the base case and each biased sample (see Table 4).  Since lower

misclassification rates on the validation data are deemed as a good check on the external 

validity of the classification function, t-tests are conducted only on the validation data.  

The results show that, in general, logistic regression, as indicated by its high APER, 

performs poorly whereas the integrated method performs relatively better than most other 

methods, on all the data characteristics for both training and validation data.  The results 

also show that except for degree of correlation and unequal covariance, all other bias 

factors have either a nonsignificant or an adverse effect on the performance of a method.  

LR is the most severely affected whereas the LP methods are relatively less affected by 

the bias factors.  The standard deviations of the average number of misclassifications for 
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the DA, LR, NN show that they are relatively less robust methods compared with k-NN, 

LP1, LP2, and integrated methods.

Table 3: Misclassification Rates for the Training Data1

1The values in the brackets are standard deviations of the average number of misclassifications.

For each data characteristic, the mean differences among the different methods were also 

compared.  Table 5 shows the best performing methods based on multiple t statistics.  

The performances of almost all the methods are inferior to their base case, except for data 

characteristic such as: degree of correlation, unequal covariance, and outliers.  This is 

Method Base Static/   
Dynamic

Linearity 
assumption

Normality 
assumption

Outliers Strong 
correlation

Unequal 
covariance

Sample 
proportion

Weak 
correlation

DA 19.92 31.61 33.58 33.06 15.67 5.27 4.25 31.75 3.75
(3.06) (2.52) (3.03) (3.18) (2.57) (1.43) (1.08) (3.60) (1.34)

Logistic 69.47 31.39 56.25 61.08 72.19 65.92 63.73 61.00 68.11
(7.74) (1.78) (2.98) (3.39) (2.49) (3.78) (4.14) (1.92) (4.25)

Neural nets 34.72 45.81 32.42 33.39 57.44 8.47 2.47 60.67 42.75
(9.58) (4.01) (1.77) (8.59) (2.49) (9.51) (1.12) (2.89) (3.67)

KNN 11.92 15.31 20.17 13.97 9.22 5.61 3.53 14.69 4.72
(1.08) (1.43) (2.67) (1.90) (1.34) (1.13) (1.12) (0.96) (0.49)

MP1 10.21 11.67 12.93 12.88 9.32 2.07 1.54 12.09 1.13
(1.73) (1.25) (1.86) (1.86) (1.41) (0.60) (0.42) (2.73) (0.36)

MP2 10.00 11.65 12.46 12.44 9.72 2.22 1.54 11.93 1.32
(1.64) (1.61) (1.50) (1.09) (1.54) (0.50) (0.47) (2.68) (0.49)

Integrated 6.53 10.23 12.92 6.13 4.76 2.56 2.05 8.01 1.97
(1.01) (3.45) (1.56) (0.57) (0.70) (0.65) (0.96) (1.52) (0.58)

Method Sample 100 Sample 200 Sample 400 Sample 500

DA 13.00 24.50 18.77 18.81
(9.55) (5.78) (3.75) (3.15)

Logistic 63.17 66.83 65.26 65.79
(8.76) (6.58) (4.21) (7.80)

Neural nets 22.00 36.42 30.43 32.88
(11.99) (9.47) (8.54) (9.16)

KNN 12.00 13.17 12.18 11.36
(7.11) (4.61) (2.77) (1.02)

MP1 9.56 7.58 8.24 7.58
(8.28) (3.32) (4.00) (3.32)

MP2 6.89 7.31 7.95 9.66
(5.27) (3.27) (2.32) (1.62)

Integrated 6.70 6.80 6.57 6.22
(2.84) (1.59) (1.35) (0.95)
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mainly due to the increased complexity in the problem situation.  Therefore, more 

attention should be paid to relative performance change among the methods.  The 

following discussion summarizes the observations from the results derived in this study.

Table 4: Misclassification Rates for the Validation Data (Hypotheses testing)2

2The values in the brackets are standard deviations of the average number of misclassifications.

* Tests of significance, p<0.05, significantly higher than base case

** Tests of significance, p<0.05, significantly lower than base case

Method Base Static/   
Dynamic

Linearity 
assumption

Normality 
assumption

Outliers Strong 
correlation

Unequal 
covariance

Sample 
proportion

Weak 
correlation

DA 21.42 31.75* 35.21* 37.75* 16.63** 7.41** 4.83** 37.21* 4.13**
(2.75) (3.36) (2.93) (5.63) (1.92) (1.57) (1.45) (4.51) (1.74)

Logistic 67.88 31.5* 56.42* 62.96 72.92 66.08 63.99 61.6* 67.04
(6.97) (3.67) (3.17) (5.42) (2.41) (4.29) (3.88) (2.58) (5.16)

Neural nets 32.13 40.38* 30.04 30.13 58.25* 9.16** 2.88** 60.83* 41.13*
(8.90) (2.51) (1.28) (6.61) (1.91) (8.85) (1.07) (1.32) (2.18)

KNN 21.71 27.25* 30.25* 24.33* 13.83** 9.99** 8.38** 21.88 9.46**
(9.06) (3.05) (2.57) (2.58) (2.05) (2.03) (3.06) (1.93) (3.13)

MP1 13.33 19.71* 20.1* 14.84 13.21 10.1** 8.94** 21.64* 9.23**
(5.07) (2.86) (2.26) (1.28) (1.87) (0.65) (1.61) (2.34) (2.56)

MP2 13.08 21.28* 20.32* 15.35* 13.69 10.22** 9.07** 21.24* 9.42**
(5.27) (2.38) (2.37) (1.74) (2.10) (1.03) (1.89) (3.20) (1.93)

Integrated 10.87 21.71* 17.05* 13.22 8.05** 8.98 3.26** 14.35* 2.55**
(4.59) (3.44) (2.03) (3.03) (1.09) (3.26) (1.00) (3.64) (1.25)

Method Sample 100 Sample 200 Sample 400 Sample 500

DA 24.75 31.25 25.48 20.45
(19.88) (2.28) (6.63) (2.95)

Logistic 66.25 67.00 66.17 65.27
(6.80) (6.88) (3.98) (6.67)

Neural nets 29.75 39.25 33.13 30.38
(12.39) (12.59) (8.56) (8.52)

KNN 24.75 26.00 23.86 20.83
(14.16) (4.67) (5.65) (1.64)

MP1 12.92 16.13 13.87 12.57
(7.40) (2.94) (2.03) (2.07)

MP2 12.33 15.83 13.46 12.22
(6.16) (3.76) (2.22) (2.31)

Integrated 14.50 13.11 12.69 10.46
(7.97) (3.40) (3.71) (1.49)
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Figure 2: Effect of Data Characteristics on Validation Performance (Grouped by Method)

Figure 3: The Classification Performance versus the Sample Size
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Table 5: Best Performing Methods under different Data Characteristics

5.1 Analysis by method

In general, the performance of the mathematical programming techniques (LP1, LP2), 

and the integrated method are superior to DA, LR, NN, and k-NN for all data 

characteristics.  Between the two mathematical programming techniques (LP1, LP2) and 

the integrated method, the integrated method significantly outperformed LP1 and LP2 

under all the data characteristics.  In some cases the performance of k-NN is comparable 

with LP1, and LP2.  Furthermore, the variation in sample size has similar effect on 

almost all the methods and generally tends to agree with the previous research, i.e. as the 

sample size increases the classification accuracy increases. However, in this study, before 

an incremental decrease in misclassification rates for larger sample size, the 

misclassification rates hits a crest for a sample size of 200.  

Data characteristics Best performing methods

Base case Integrated, MP1, MP2

Dynamic scenario Integrated, MP1, MP2

Nonlinearity Integrated, MP1, MP2

Nonnormality Integrated, MP1, MP2

Outliers Integrated, MP1, MP2, KNN

Strong correlation DA, Integrated, MP1, MP2, NN, KNN

Unequal covariance NN, Integrated, DA

Unequal sample proportion Integrated

Weak correlation Integrated, DA

Smaller sample: Integrated, MP1, MP2

Larger samples: Integrated, MP1, MP2
Sample size



63

The performance of LR for all the data characteristics is inferior to all the other methods 

for both the training and validation data.  The variation in sample sizes has little impact 

on its high misclassification rates, however, the misclassification rates decrease 

incrementally as the sample size increases.

The performance of DA under data characteristics such as strong and weak correlation, 

and unequal covariance structure is equal to or even superior to the LP1, LP2, and 

integrated methods.  This is surprising considering the fact that DA is very sensitive to 

heterogeneity of variance-covariance matrices as well as multi-collinearity. In fact, one of 

the primary assumptions of DA is low multi-collinearity among predictor variables.  

However, its performance on other data characteristics such as dynamic environment, 

nonlinear data, nonnormal data, outliers, and unequal sample proportion is relatively 

lower, which are in line with the assumptions of DA.  DA responds favorably to the 

increase in sample sizes which is indicated by a drastic dip in the misclassification rates 

for larger sample sizes.

NN performs well in strong correlation, and unequal covariance case, especially when the 

sample size is large.  Infact, the performance of NN in unequal covariance case is 

superior to all the other methods.  However, its performance on all the other data 

characteristics is inferior to all other methods except for LR.  A comparison between the

error rates shows that DA tends to do better than the NN when the level of non-linearity 

is low, but that neural networks do better when there is a greater degree of non-linearity.  
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Table 6: Performance of the integrated method versus the other methods (Hypotheses
testing)3

3The values in the brackets are standard deviations of the average number of misclassifications.

* Tests of significance, p<0.05, significantly higher than base (Reject Ho at α=0.05).

This is in line with the research findings by Curram and Mingers (1994), which presents 

an empirical comparison of three classification methods: neural networks, decision tree 

Method Integrated DA Logistic Neural nets KNN MP1 MP2
Base 10.87 21.42* 67.88* 32.13* 21.71* 13.33* 13.08*

(4.59) (2.75) (6.97) (8.90) (9.06) (5.07) (5.27)

Static/Dynamic 21.71 31.75* 31.5* 40.38* 27.25* 19.71 21.28
(3.44) (3.36) (3.67) (2.51) (3.05) (2.86) (2.38)

Linearity assumption 17.05 35.21 56.42* 30.04 30.25* 20.1* 20.32*
(2.03) (2.93) (3.17) (1.28) (2.57) (2.26) (2.37)

Normality assumption 13.22 37.75 62.96 30.13 24.33 14.84* 15.35*
(3.03) (5.63) (5.42) (6.61) (2.58) (1.28) (1.74)

Outliers 8.05 16.63* 72.92* 58.25* 13.83* 13.21* 13.69*
(1.09) (1.92) (2.41) (1.91) (2.05) (1.87) (2.10)

Strong correlation 8.98 7.41 66.08* 9.16 9.99 10.10 10.22
(3.26) (1.57) (4.29) (8.85) (2.03) (0.65) (1.03)

Unequal covariance 3.26 4.83* 63.99* 2.88 8.38* 8.94* 9.07*
(1.00) (1.45) (3.88) (1.07) (3.06) (1.61) (1.89)

Sample proportion 14.35 37.21* 61.6* 60.83* 21.88* 21.64* 21.24*
(3.64) (4.51) (2.58) (1.32) (1.93) (2.34) (3.20)

Weak correlation 2.55 4.13 67.04* 41.13* 9.46* 9.23* 9.42*
(1.25) (1.74) (5.16) (2.18) (3.13) (2.56) (1.93)

Method Sample 100 Sample 200 Sample 400 Sample 500

Integrated 14.50 13.11 12.69 10.46
(7.97) (3.40) (3.71) (1.49)

DA 24.75 31.25* 25.48 20.45*
(19.88) (2.28) (6.63) (2.95)

Logistic 66.25* 67.01* 66.17* 65.27*
(6.80) (6.88) (3.98) (6.67)

Neural nets 29.75* 39.25* 33.12* 30.38*
(12.39) (12.59) (8.56) (8.52)

KNN 24.75* 26.01* 23.86* 20.83*
(14.16) (4.67) (5.65) (1.64)

MP1 12.92 16.12 13.87 12.57*
(7.40) (2.94) (2.03) (2.07)

MP2 12.33 15.83 13.46 12.22
(6.16) (3.76) (2.22) (2.31)
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induction and linear discriminant analysis, based on seven datasets with different 

characteristics, four being real, and three artificially created.

The performance of k-NN for most of the data characteristics is comparable with both the 

mathematical programming methods, i.e. LP1 and LP2.  However, in case of dynamic 

environment, nonlinearity and nonnormality assumptions, LP1 and LP2 perform 

relatively better than the k-NN.  Furthermore, k-NN significantly outperformed DA when 

normality and linearity assumptions are not in place.  k-NN is also superior to DA in 

presence of outliers and unequal sample proportion cases.  However, DA did better in the 

unequal covariance case. This result is somewhat contrary to the work by Kiang (2003), 

where DA performs better than k-NN in the unequal covariance case.  k-NN shows a 

gradual decline in misclassification rates as the sample size increases.  Another feature of 

k-NN which needs to be mentioned here is that its classification performance in case of a 

binary categorical variable is superior to its performance in the present case of a 

categorical variable with four ordinal classes (Dreiseitl et al. 2001, Kiang 2003).  This 

indicates that an increase in the problem complexity deteriorates the classification 

performance of k-NN (Shmueli et al. 2006).

The performances of both the mathematical programming approaches, i.e. LP1 and LP2 

are superior compared with all other methods except for the integrated method, on most

data characteristics.  There is empirical evidence that these nonparametric methods may 

produce more accurate classification rules than the traditional statistical methods (Gochet 

et al. 1997).  As opposed to parametric approaches, mathematical programming 
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approaches allow individual observations to be weighted, or relative penalties for 

misclassification to be set, providing more flexibility to decision-makers (Freed and 

Glover 1981b, Koehler 1990, Erenguc and Koehler 1990).  Between the two methods, 

LP1 and LP2, there is not much difference in their performances on all the data 

characteristics.  The LP2 method with its emphasis on median minimization was 

expected to perform better than LP1 on the outlier data, surprisingly; however, their 

misclassification rates are not significantly different from each other.  Both the methods 

show a decrease in misclassification rates as the sample size increases.

The performance of the proposed integrated (hybrid) method is superior to almost all the 

other methods for all data characteristics and sample sizes on both training and validation 

data (see Table 6).  In most cases, we reject the null hypothesis at 5 % significance level.  

This concurs with our hypothesis.  However, when the data characteristic is dynamic, its 

performance does not differ considerably from the MP1 and MP2, and when the data is 

strongly correlated, DA performs slightly better than the integrated method.  

Furthermore, its relatively lower standard deviations show that the method is fairly 

robust.  The results indicate that the integrated method utilizes the strengths of both, k-

NN and LP approach and performs better than the usual k-NN or LP for almost all the 

data characteristics.

5.2 Analysis by data characteristics

The dynamic environment affects the relative classification accuracy of almost all the 

methods.  However, MP1, MP2, and the integrated method are moderately affected by it.  
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Surprisingly, the performance of the neural network model is relatively inferior, given 

that they have been found to handle both dynamic and static problems well due to its 

ability of respond swiftly to changes in the real world.

The linearity assumption significantly affects the performance of all the methods except 

the neural network, compared to their respective base case.  The neural network is not 

significantly affected by the linearity assumption, a reason being, neural networks allow 

nonlinear relations and complex interactions among predictor variables and thus score 

over parametric methods (Kotsiantis et al. 2006, Paliwal and Kumar 2009).  Like 

linearity, the normality assumption significantly affects the performance of DA, which 

understandably is due to the violation of one of the fundamental assumptions of the 

statistical technique.

The performances of DA, k-NN, and the integrated method are superior to their 

respective base cases, in the presence of the outliers.  The performance of the neural 

network is significantly affected by the presence of outliers, which concurs with our 

hypothesis in Table 1.  Khamis et al. (2005) carried out a study to investigate the 

influence of outliers on neural network performance in two ways; by examining the 

percentage outliers and secondly the magnitude outliers. The authors conclude that both: 

the percentage outliers and magnitude outliers affect the neural network performance. 

Surprisingly, the performance of MP2, a median minimization LP, specifically designed 

to handle the outliers, is slightly lower than MP1.
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Almost all the methods except for LR show a significant improvement in classification 

accuracy in the presence of multicollinearity among the predictor variables.  In fact, the 

performance of DA is superior in the presence of multicollinearity, which is contrary to 

one of its assumptions.  Past research reveals that the NN performs well when 

multicollinearity is present and a nonlinear relationship exists between the input and the 

output features (Kotsiantis et al. 2006).  This is further reinforced by its relatively poor 

performance in the absence of multicollinearity.  Again, all methods except LR and 

neural network show a significant improvement in performance in the absence of 

multicollinearity.

Sample size has a significant effect on DA and NN methods.  For all the other methods, 

the decrease in misclassification is rather incremental as the sample size increases (see 

Figure 3).  A peculiar observation of the effect of sample size is that the performance of

all methods deteriorate when the sample size is 200, however, the performance shows an 

increasing trend as the sample size increases.  In Table 6, we test the effect of sample size 

on various methods compared with our integrated method.  Only, MP1 and MP2 methods 

compare favorably with the performance of integrated method, whereas, LR, NN and k-

NN methods have significantly higher misclassification rates.  Our results concur with 

the extant research on the topic of effect of sample sizes on classification methods

(Raudys and Jain 1991, Ho 1998, Kiang 2003, Maas and Hox 2005).

The unequal covariance bias has a significant impact on all the methods except LR, and 

helps in reducing the misclassification rates.  On the contrary, the unequal sample 
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proportion bias significantly reduces the classification accuracy of all the methods except 

k-NN.

Based on our finding and the analysis of results, we can adjust and update Table 1.  The 

revised version of Table 1 is shown in Table 7.

5.3 Analysis by individual error rates

The results of training and validation data for individual error rates are shown in Table 8

and Table 9, respectively.  We judge the effectiveness of a method on individual error

rates by its ability to accurately classify top customer groups, i.e. Y = 1, and Y = 2.  The 

results show that individual error rates in case of almost all methods are affected by the 

data characteristics.  However, LR is the most affected, whereas the mathematical 

programming approaches (LP1, and LP2) including integrated method are the least 

affected for both training and validation data.

In general, the LP1, LP2, and integrated methods have relatively higher and stable 

classification accuracy under all the data characteristics for the top customer groups.  On 

the other hand, DA and k-NN have higher classification accuracy for group Y = 1, i.e. 

prime customers but their performance is erratic for group Y = 2, i.e. high value 

customers.  Another concern, which is exhibited by the results, is that all the methods 

perform relatively poorly in classifying Group 0 (i.e. ‘No Buyer’ customer class).
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Table 7: Revised version of Table 1 (Hypotheses)

Method Hypotheses Experimental results

DA Static scenario. Affected by normality and linearity violations, low 
correlations, outliers and identical covariances.

Static scenario.  Affected by linearity and normality violations, as well as unequal 
sample proportion.  Strong and weak correlation, Presence of outliers and unequal 
covariance structure improves performance.

Logistic Static scenario.  Affected by sample size, especially when dependent variable 
has many groups, and low correlations.

Static scenario.  Affected by nonlinearity and unequal sample proportion.  Worst 
performing method.

Neural nets Both static and dynamic scenarios.  Affected by sample size and outliers. Affected by dynamic scenario, outliers, unequal sample proportion, and weak 
correlation.  Strong correlation and unequal covariance structure improves 
performance.

KNN Static scenario.  Affected by sample size and outliers. Static scenario.  Affected by nonlinearity, nonnormality and sample size, but 
unaffected by unequal sample proportion.  Presence of outliers, strong and weak 
correlation and unequal covariance structure improve performance.

MP1 Static scenario.  Affected by linearity violations. Static scenario.  Affected by nonlinearity and unequal sample proportion, but 
unaffected by nonnormality and outliers.  Degree of correlation and unequal 
covariance improves performance.

MP2 Static scenario.  Affected by linearity violations. Static scenario.  Affected by nonlinearity, nonnormality and unequal sample 
proportion, but unaffected by presence of outliers.  Degree of correlation and 
unequal covariance improves performance.

Integrated Static scenario.  Affected by linearity violations and sample size. Static scenario.  Affected by nonlinearity and unequal sample proportion, but 
unaffected by nonnormality and multicollinearity.  Presence of outliers and 
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The performances of all method except LR are superior under the data characteristics 

such as the degree of correlation (strong and weak), and unequal covariance compared 

with the base case.  The data characteristics such as the dynamic environment, 

nonlinearity, nonnormality, and unequal sample proportion adversely affects individual 

error rate for almost all methods.  However, NN is relatively less affected by the 

nonlinearity of data.  Furthermore, though NN allows adaptive model adjustments and 

responds swiftly to changes in the real world, its performance on the dynamic 

environment is mixed, in that, its classification accuracy for group, Y = 2 is high, 

however, its accuracy for Y = 1 is low.

Table 10 shows the effect of sample sizes on the individual error rates.  The results show 

that the integrated method gives superior performance for both the groups of interest, i.e. 

Group 1 (i.e. prime customers) and Group 2 (i.e. high value customers).  There is an 

incremental improvement in its performance with the increase in sample size.  The DA,

k-NN algorithm, and the linear programming approaches (LP1 and LP2) have relatively 

lower individual error rates for Group 1; however, their performance deteriorates while 

classifying Group 2. 

Overall, the results indicate that the data characteristic does affect the individual group 

error rates for all the methods.  Companies with large amounts of customer data pay 

considerable attention to the analysis of data to target appropriate customer segments for 

their products and services. Database marketing uses the power of data and information
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Table 8: Individual Error Rates for Training Data

* Reading the table: Under base case, for DA, 31% of Group 0 observations have been misclassified into Groups 1, 2, and 3.

Methods

G
ro

up
s

Base case* Dynamic Nonlinearity Nonnormality Outliers Strong correlation Unequal covar Sample proportion Weak correlation

0 *31.13% 46% 58% 38% 29% 8% 5% 26% 5%
1 1% 42% 0% 2% 3% 3% 8% 8% 6%
2 11% 34% 74% 23% 8% 6% 4% 12% 4%
3 37% 2% 4% 73% 24% 4% 0% 64% 0%
0 54% 55% 92% 99% 57% 30% 22% 6% 5%
1 43% 60% 94% 99% 94% 71% 76% 100% 88%
2 96% 10% 29% 29% 87% 97% 93% 100% 100%
3 86% 1% 10% 18% 50% 66% 75% 95% 92%
0 77% 86% 100% 100% 99% 7% 3% 100% 6%
1 48% 85% 0% 8% 100% 7% 3% 9% 100%
2 8% 4% 24% 19% 31% 9% 4% 99% 62%
3 0% 0% 4% 0% 0% 11% 0% 0% 0%
0 16% 14% 25% 15% 8% 4% 2% 11% 2%
1 0% 13% 1% 1% 1% 1% 3% 2% 2%
2 20% 32% 42% 23% 15% 6% 4% 28% 9%
3 12% 3% 15% 20% 12% 12% 6% 15% 5%
0 18% 19% 20% 24% 16% 2% 1% 14% 0%
1 2% 18% 2% 1% 2% 1% 1% 3% 0%
2 7% 8% 18% 12% 8% 3% 1% 9% 1%
3 13% 2% 12% 15% 12% 3% 3% 17% 3%
0 18% 19% 19% 23% 17% 2% 1% 13% 0%
1 1% 18% 2% 1% 2% 1% 1% 3% 1%
2 7% 8% 18% 11% 8% 3% 2% 9% 1%
3 13% 2% 11% 14% 12% 4% 3% 16% 3%
0 26% 22% 38% 22% 13% 7% 4% 16% 4%
1 3% 10% 6% 3% 3% 1% 2% 6% 2%
2 3% 10% 10% 3% 3% 2% 2% 6% 2%
3 3% 3% 9% 3% 3% 2% 2% 5% 1%

MP1

MP2

Integrated

DA*

Logistic

Neural nets

KNN
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Table 9: Individual Error Rates for Validation Data

Methods

G
ro

u
p

s

Base case Dynamic Nonlinearity Nonnormality Outliers Strong correlation Unequal covar Sample proportion Weak correlation

0 37% 48% 60% 42% 29% 11% 7% 28% 5%
1 3% 43% 0% 3% 3% 4% 5% 11% 7%
2 9% 36% 76% 24% 10% 9% 6% 14% 5%
3 37% 3% 3% 75% 23% 6% 1% 67% 0%
0 49% 54% 94% 99% 61% 28% 22% 6% 4%
1 43% 60% 93% 99% 93% 70% 75% 100% 85%
2 95% 11% 27% 31% 85% 99% 95% 100% 100%
3 85% 2% 12% 23% 53% 68% 75% 97% 92%
0 79% 88% 100% 100% 99% 8% 4% 100% 6%
1 50% 82% 0% 9% 100% 8% 2% 12% 100%
2 8% 4% 20% 20% 34% 10% 3% 98% 63%
3 0% 1% 3% 0% 0% 10% 2% 0% 0%
0 33% 26% 42% 30% 16% 9% 5% 19% 6%
1 1% 26% 3% 1% 5% 3% 5% 7% 6%
2 31% 49% 55% 33% 21% 10% 11% 39% 18%
3 21% 7% 19% 30% 15% 18% 12% 19% 10%
0 38% 47% 49% 30% 41% 34% 31% 30% 28%
1 2% 19% 2% 0% 2% 0% 1% 3% 1%
2 8% 6% 24% 14% 7% 3% 2% 11% 3%
3 6% 7% 5% 15% 3% 3% 2% 27% 5%
0 34% 54% 49% 24% 39% 32% 30% 28% 27%
1 1% 19% 2% 1% 2% 1% 2% 4% 1%
2 7% 7% 24% 14% 7% 4% 2% 11% 3%
3 9% 5% 5% 22% 7% 4% 3% 28% 6%
0 36% 32% 60% 45% 23% 11% 8% 27% 7%
1 6% 33% 11% 5% 5% 3% 3% 14% 2%
2 6% 18% 7% 11% 5% 10% 2% 10% 2%
3 6% 8% 9% 5% 5% 13% 2% 9% 1%

MP1

MP2

Integrated

DA

Logistic

Neural nets

KNN
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technology in the pursuit of personal marketing of products and services to consumers, 

based on their preferences and needs (Zahavi and Levin 1997b).  The importance of 

individual group error rates analysis can be judged from this fact.  This analysis should 

help the practioners to understand the relative importance of various methods vis-à-vis 

different data characteristics and choose a method that best helps in identifying their 

target segments. 
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Table 10: Individual Error Rates for Sample Size for Training and Validation Data

Methods

G
ro

u
p

s

Sample 100 Sample  200 Sample  400 Sample  500 Methods

G
ro

u
p

s

Sample  100 Sample  200 Sample  400 Sample  500

0 38% 52% 41% 32% 0 48% 63% 50% 39%
1 2% 2% 2% 1% 1 5% 3% 3% 3%
2 6% 13% 9% 10% 2 9% 13% 11% 9%
3 11% 33% 26% 34% 3 26% 42% 35% 35%
0 67% 75% 66% 56% 0 76% 77% 67% 49%
1 85% 90% 71% 37% 1 86% 92% 74% 45%
2 63% 65% 76% 99% 2 65% 63% 73% 90%
3 37% 37% 54% 86% 3 38% 37% 53% 83%
0 65% 83% 74% 73% 0 72% 87% 75% 68%
1 21% 19% 28% 45% 1 29% 19% 32% 47%
2 6% 37% 17% 8% 2 11% 36% 19% 9%
3 1% 9% 3% 0% 3 1% 13% 5% 0%
0 19% 18% 18% 17% 0 37% 41% 38% 36%
1 2% 0% 1% 0% 1 6% 1% 3% 2%
2 15% 29% 22% 22% 2 25% 37% 30% 29%
3 14% 9% 11% 12% 3 25% 19% 22% 22%
0 18% 14% 16% 16% 0 23% 32% 30% 37%
1 1% 1% 1% 2% 1 1% 2% 2% 2%
2 12% 5% 8% 8% 2 21% 17% 15% 7%
3 8% 10% 10% 14% 3 7% 14% 9% 6%
0 13% 12% 14% 18% 0 22% 31% 30% 37%
1 4% 1% 2% 1% 1 6% 3% 3% 1%
2 5% 6% 6% 8% 2 16% 17% 13% 7%
3 5% 10% 9% 12% 3 6% 12% 9% 8%
0 23% 27% 25% 24% 0 50% 45% 44% 37%
1 2% 2% 2% 3% 1 4% 8% 6% 6%
2 5% 4% 4% 3% 2 13% 7% 8% 5%
3 7% 5% 5% 3% 3 6% 10% 7% 6%

MP1

MP2

Integrated

DA

Logistic

Neural nets

KNN

MP1

MP2

Integrated

DA

Logistic

Neural nets

KNN
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CHAPTER 6: CONCLUSIONS

In this computational experimental study we have compared seven different methods of 

classification: discriminant analysis – Mahanalobis (DA), multinomial logistic 

regression(LR), neural network (NN), k-nearest neighbor algorithm (kNN), two variants 

of linear programming (MP1, and MP2) and, an integrated (hybrid) method, in different 

settings with respect to the distributions of the discriminating variables, the correlation 

structures between the variables and the absence or presence of outliers in the data set, 

unequal covariance among various groups, and a dynamic environment.   We have used 

four different groups and the classification errors of each of the methods, and their 

individual error rates, on each of the data characteristics are recorded.  

Using the characteristics of a real data set, Monte Carlo simulation experiments were 

used to generate multiple data sets for each of the data characteristics mentioned above.  

Based on previous research, we use the apparent error rate as a performance evaluation 

measure.  The controlled experiments conducted show that the classification algorithms 

are sensitive to changes in data characteristics.  The misclassification rates dues to biases 

can be substantially high in the presence of even a single bias, as seen in the case of 

dynamic environment.

The study shows that the proposed integrated method, which is a combination of k-NN 

algorithm and a linear programming approach, dominates almost all the other methods on 

the classification performance.  Moreover, its performance is better than the k-NN and 
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LP approach, individually, an indicator of the utilization of the strengths of both the 

methods for improved classification accuracy.  Logistic regression and neural network 

methods provide worst relative performance under most scenarios.  This result 

contradicts some of the previous research studies and reviews (Dreiseitl and Ohno-

Machado 2002, Kiang 2003, Paliwal and Kumar 2009).  Multinomial logistic regression 

is a parametric method for prediction and classification but its performance depends on 

the distribution of variables, size and quality of data (Sadat-Hashemi et al. 2004).  This 

study clearly establishes that the data complexities such as: multicollinearity, 

heterogeneity and nonlinear relations among response and predictors have adverse impact 

on the multinomial logistic regression model.  The fluctuation in the Neural network

model’s performance can be attributed to the large number of possible parameter settings 

and the absence of a methodical approach to choosing the best settings. For example, 

experiments must be conducted to determine the best data representation, model 

specification, number of hidden layers, number of neurons on each hidden layer, learning 

rate, and number of training cycles. All of these interrelate to give the best ANN model. 

Failure to conduct such experiments may result in a poorly specified ANN model

(Nguyen and Cripps 2001).

The performance of the linear programming methods such as MP1 and MP2 does not lag 

far behind the superior performance of the integrated methods.  In fact, their 

performances are better than statistical methods, neural network, and k-NN under data 

characteristics such as dynamic environment, nonlinearity, nonnormality, unequal sample 

proportion and in the presence of outliers.  The only problem with this nonparametric 
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method is the computational time required for the execution.  However, with the advent 

of faster and powerful computing machines this glitch should not pose much problem in

its utility as a robust and relative accurate classifier.

An important concern brought forth by our results is the impact of dynamic variations in 

data and unequal sample proportion on classification performance.  The results indicate 

that all classification methods including the integrated method are adversely affected by 

the nonstatic nature of the data.  Since most business phenomenon exhibit dynamic 

behavior, care should be exercised in calibrating classification systems to such scenarios.

Overall, an important result of this study is the demonstration of the effectiveness of the 

integrated method in improving the classification accuracy on both training and 

validation data for most of the data circumstances.  Furthermore, the importance of linear 

programming approaches to achieve the goal of improved classification also needs to be 

highlighted.
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CHAPTER 7: LIMITATIONS AND FUTURE RESEARCH

This study has shown the effectiveness of an integrated (hybrid) method for all methods 

and under various data circumstances.  The study also conclusively proves the efficacy of 

linear programming approaches.  However, there is further scope for exploring various 

hybrid techniques that combines the strengths of different methods to improve 

classification accuracy.  Though, with the advances in computing technology, the time 

and efforts taken by linear programming approaches can be overlooked, but this is still a 

factor which could limit the use of these techniques by practioners.

In this study, we study a financial problem with three predictor variables.  Further 

research involving more attributes could help gain more insights into the relative 

strengths of the methods. Another area for further investigation could be including more 

observations in the problem as well as varying the training and validation data sets, to test 

the robustness of the methods.  

For each data characteristic, several versions of biases should be used to test the models.  

For example, our study uses a lognormal distribution to introduce nonnormality biases 

into the data.  Future research may use other types of distributions such as exponential, 

uniform, etc., to gain full understanding of the impact of these factors.  

More sophisticated experiments are required to examine the possible interactions among 

the predictors on various methods.  However, this may pose a serious challenge to linear 
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programming approaches, k-NN and neural network, in terms of the problem 

complexities.

The study compared only seven different methods.  Future work could include more 

methods such as decision tree (C4.5), different variations of neural network, support 

vector machines (SVMs), and others including few hybrid methods.
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CHAPTER 8: RESEARCH CONTRIBUTIONS

Building on the previously cited work, the present study contributes new knowledge to 

several areas of multi-group classification.  Some of these contributions are:

1. Previous researches show, few studies have touched upon more than three group 

classification.  Our study delves comprehensively on a four-group classification 

problem using several classification techniques such as discriminant analysis 

(Mahanalobis distance), multinomial logistic regression, neural network, k-NN 

algorithm, two variants of LP, and a proposed integrated method.

2. The performance of our integrated method in terms of its classification accuracy and 

lower individual group error rates under robust experimental conditions shows the 

utility of an integrated (hybrid) technique, especially its ability to combine the 

strengths of k-NN and linear programming approach.

3. Very few previous researches have studied the individual group error rates of each of 

the methods under such varied data circumstances.  Our study calculates the 

individual group error rates for each of the methods, which provides tremendous 

insight to the practioners in their choice of methods.

4. Our study provides new insights on the efficacy of linear programming methods vis-

à-vis statistical techniques such as discriminant analysis, multinomial logistic 
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regression, neural network, and k-NN.  Very few studies have demonstrated the 

behavior of all of above methods under so many data characteristics as this study has 

done.  Furthermore, most previous such studies have been confined to two-group 

classification problems.
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