

2009

Shivangi Chaudhari

ALL RIGHTS RESERVED

Accelerating Hadoop Map-Reduce for Small/Intermediate Data Sizes using the

Comet Coordination Framework

By

Shivangi Chaudhari

A Thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Professor Manish Parashar

and approved by

New Brunswick, New Jersey

October, 2009

ii

ABSTRACT OF THE THESIS
Accelerating Hadoop Map-Reduce for Small/Intermediate Data Sizes using the

Comet Coordination Framework

By Shivangi Chaudhari

Thesis Director:

Professor Manish Parashar

MapReduce has been emerging as a popular programming paradigm for data intensive

computing in clustered environments. MapReduce as a framework for solving

embarrassingly parallel problems has been extensively used on large clusters. These

frameworks support ease of computation for petabytes of data mostly through the use of a

distributed file system example the Google File System – used by the proprietary „Google

Map-Reduce‟.

 In the "Map", the master node takes the input, divides it into smaller sub-problems, and

distributes those to worker nodes. The worker node processes that smaller problem, and

passes the answer back to its master node. In the "Reduce", the master node then takes

the answers of the sub-problems and combines them to get the final output after reduces.

The advantage of MapReduce is that, it allows for distributed processing of the map and

reduction operations, assuming each operation is independent of the other, all can be

executed in parallel.

We found that file writes and reads to the distributed file system, have an overhead

especially for smaller data sizes of the order of few tens of GB‟s. Our solution provides

the MapReduce framework built over Comet framework utilizing TCP sockets for

iii

communication and coordination and uses in-memory operations for data whenever

possible. The objective of this thesis is to

 (1) understand the behaviors and limitations of MapReduce in the case of small-

moderate datasets

 (2) develop coordination and interaction framework to complement MapReduce-Hadoop

to address these shortcomings

 (3) demonstrate and evaluate using a real world application

In this thesis we use Comet and its services to build a MapReduce infrastructure that

address the above requirements - specifically enable pull based scheduling of Map tasks

as well as stream based coordination and data exchange. The framework is based on the

master-worker concept. Comet is a decentralized (peer-to-peer) computational

infrastructure that supports applications having high computational requirement.

Our System‟s interfaces are similar to the Hadoop MapReduce framework, to make

applications built on Hadoop easily portable to Comet-based framework. The details of

the implementation and evaluation of an actual pharmaceutical problem, with its results

have been described. We found that out solution can be used to accelerate the

computations of medium sized data by delaying or avoiding the use of distributed file

reads and writes.

iv

Acknowledgement and Dedication

I would like to thank my advisor Professor Manish Parashar for giving me this

opportunity to work on something practical and interesting, for his enthusiasm, his

inspiration, his encouragement, his sound advice and great efforts during my research in

The Applied Software Systems Laboratory (TASSL). I am grateful to my colleagues at

TASSL and other friends at Rutgers University for their emotional support and help,

which made my study at Rutgers enjoyable and fruitful. I would like to thank the staff at

the Center for Autonomic Computing (CAC) and Department of Electrical and Computer

Engineering for their assistance and support. I wish to thank my parents and my brothers,

for their understanding, endless encouragement, and love. Especially Girish for helping

me see the silver lining all the times I was in low spirits and giving that encouragement

and support. Finally, I want to thank Tutku for anything and everything, without whose

support, company and help, I wouldn‟t have even got through the 2 years of my Master‟s.

v

Table of Contents

Contents
ABSTRACT OF THE THESIS .. ii

Acknowledgement and Dedication .. iv

Contents .. v

Introduction ... 1

1.1 Motivation & Problem Description .. 2

1.2 Overview of Comet Based MapReduce Framework .. 3

1.3 Contribution .. 5

Background & Related Work.. 7

2.1 MapReduce Programming Paradigm basics ... 7

2.1.1 Functional Programming Concepts... 7

2.1.2 List Processing .. 7

2.1.3 Mapping Lists ... 7

2.1.4 Reducing Lists .. 8

2.1.5 Putting Them Together in MapReduce: .. 9

2.2 Dataflow .. 11

2.2.1 Input reader ... 11

2.2.2 Map function ... 12

2.2.3 Partition function .. 12

2.2.4 Comparison function ... 12

2.2.5 Reduce function .. 12

2.2.6 Output writer ... 13

2.3 Existing Systems ... 13

2.3.1 Google MapReduce .. 13

2.3.2 Apache MapReduce (Hadoop) .. 14

2.3.3 CGL MapReduce .. 14

2.4 MapReduce Applications .. 15

2.5 Comet .. 15

2.5.1 Architecture... 16

2.5.2 Master Worker Paradigm .. 18

Hadoop MapReduce Evaluation and Observations .. 20

3.1 The Map .. 20

3.2 The Reduce ... 20

3.3 The MapReduce Engine .. 20

3.4 Experimental test runs on Hadoop MapReduce.. 22

MapReduce Abstraction over Comet .. 25

4.1 Architecture... 25

4.1.1 The MapReduce Data Flow .. 26

4.2 Implementation ... 28

4.2.1 Input Reader .. 30

4.2.2 MapReduce Master ... 31

4.2.3 MapReduce Worker .. 33

4.2.4 Mapper interface ... 34

vi

4.2.5 Reducer interface .. 34

4.2.6 Output Collector Interface .. 35

4.2.7 Disk Read/Write Manager .. 35

4.3 Architectural Comparison of Comet MapReduce with Hadoop MapReduce .. 40

4.4 Mining PDB Structures for Distance Information .. 42

Experiments & Results ... 45

5.1 Scalability and Performance of Comet-MapReduce vs. Hadoop MapReduce . 46

5.2 Memory Metrics on Comet MapReduce ... 49

5.2.1 Master Memory Metrics ... 49

5.2.2 Worker Memory Metrics .. 50

5.3 Load Balancing ... 52

Summary, Conclusion & Future Work ... 54

6.1 Summary ... 54

6.2 Conclusion .. 55

6.3 Future Work .. 56

References ... 58

vii

List of illustrations

Figure 1: Mapping creates a new output list by applying a function to individual elements of an

input list. .. 8

Figure 2: Reducing a list iterates over the input values to produce an aggregate value as output. .. 9

Figure 3: Different colors represent different keys. All values with the same key are presented to

a single reduce task. ... 11

Figure 4: A schematic overview of the CometG system architecture. ... 16

Figure 5: Performance of Hadoop over different application types. .. 23

Figure 6: A schematic overview of the Comet system with MapReduce abstraction layer. 26

Figure 7: Flowchart for the data and execution flow in Comet based MapReduce. 27

Figure 8: Different tuple spaces of Comet and their interaction. ... 29

Figure 9: Time graph for Comet Tuplespace Vs Local Disk reads and writes. 36

Figure 10 Time graph for Comet Tuplespace Vs NSF Disk reads and writes 37

Figure 11: Flowchart explaining Disk write decision depending on free memory value. 38

Figure 12: Flowchart explaining Disk read decision depending on free memory value. 39

Figure 13: Process in calculations of the Protein Molecule Distances. ... 42

Figure 14: Total Application runtime for MapReduce over Hadoop Vs. MapReduce over Comet.

 ... 46

Figure 15: Application running time for a fixed load and varying number of nodes. 47

Figure 16: IO Performance of the File systems. .. 48

Figure 17: Memory usage trends of the Master node for varying data size. 49

Figure 18: Memory usage trends of the Worker nodes for a given data size 50

Figure 19: The average data size of each task (map/reduce) for the Protein Data Bank dataset. .. 51

Figure 20: The distribution of tasks per worker - showing the load balancing provided by Comet.

 ... 52

Figure 21: Task distribution per node in Hadoop each running 2 map tasks is equivalent to 2

workers per node. ... 53

1

Chapter 1

Introduction

Computation and data intensive scientific data analyses are increasingly prevalent. The

use of parallelization techniques and algorithms is the key to achieving better scalability

and performance for the software engineering data analyses. Most of these analyses can

be thought of as a Single Program Multiple Data (SPMD) algorithm or a collection

thereof. These SPMDs can be implemented using different techniques such as threads,

MPI, and MapReduce

There are several considerations in selecting an appropriate implementation strategy

for a given data analysis. These include data volumes, computational requirements,

algorithmic synchronization constraints, quality of services, easy of programming and

the underlying hardware profile. We are interested in the class of scientific applications

where the processing exhibits the composable property. Here, the processing can be split

into smaller computations, and the partial-results from these computations merged after

some post-processing, to constitute the final result. This is distinct from the tightly

coupled parallel applications where the synchronization constraints are typically in the

order of microseconds instead of the 50-200 millisecond coupling constraints in

composable systems [4]. When the volume of the data is large, even tightly coupled

parallel applications can sustain less stringent synchronization constraints. This

observation also favors the MapReduce technique since its relaxed synchronization

constraints do not impose much of an overhead for large data analysis tasks.

2

1.1 Motivation & Problem Description

MapReduce is a software framework made popular by Google [3] to support distributed

computing on large data sets (terabytes to petabytes of data) on clusters of computers.

The framework is inspired by map and reduce functions commonly used in functional

programming, although their purpose in the MapReduce framework is not the same as

their original forms. MapReduce libraries have now been written in C++, C#, Java,

Python, F# and other programming languages. These frameworks use the distributed file

system as its underlying means of communication and storage.

We noticed that while the existing frameworks work for smaller datasets (a few

gigabytes), they do not provide the same kind of efficiency as they would for lager sized

petabytes datasets. A major factor being the extensive use of distributed File System and

scarce use of memory for storage. These systems mostly store the intermediate results

of the computations on local disks, where the computation tasks are executed, and then

informs the appropriate workers to retrieve (pull) them for further processing. Although

this strategy of writing intermediate result to the file system makes MapReduce

frameworks robust such as Hadoop [9], it introduces an additional step and a

considerable communication overhead, which could be a limiting factor for some

MapReduce computations. Different strategies, such as writing the data to files after a

certain number of iterations or using redundant reduce tasks, may eliminate this

overhead and provide better performance to the applications. We noticed that the

performance gains for smaller sized data, as in the case of applications in the

pharmaceutical domain are improved significantly.

3

In this thesis we build on an existing framework „Comet‟ [19], [1] which provides a

decentralized shared space coordination framework for running distributed applications

over large clusters. We decided to build a MapReduce framework support on Comet,

application which relies on TCP sockets for communication and provides a stable

coordination system. Comet supports the Master-Worker programming abstraction. In

this thesis, we explore the possibility of using the Master Worker abstraction as the basis

for building the MapReduce framework. This framework targets applications with lower

datasizes of few gigabytes, and bypasses the read write overhead of the file system by

using in-memory resources and TCP communication. We also evaluate the performance

and stability of our Comet based MapReduce framework. Our results show that our

framework accelerates the application from 60% – 300% depending on the resources

available and the size of data workload on HPCS infrastructure [18].

1.2 Overview of Comet Based MapReduce Framework

The overall goal of this research is to design, implement and evaluate the MapReduce

programming abstraction, based on a coordination infrastructure that enables the

communications and interactions of heterogeneous entities in large decentralized

distributed Grid environments. The specific objectives include:

(i) design a conceptual model for MapReduce applications, which uses the scalable,

resilient, and simple coordination abstractions of Comet;

(ii) develop a MapReduce framework to demonstrate the conceptual model;

4

(iii) develop/port application systems to illustrate the effectiveness and feasibility of

using the infrastructure for supporting MapReduce based Grid applications.

This thesis presents the design and implementation of the MapReduce programming

framework over Comet. Comet is a fully decentralized coordination infrastructure for

Grid environments. It provides a scalable, decentralized tuple space abstraction to address

communication and synchronization of distributed processes and software elements. It

provides a global virtual shared-space constructed from the semantic information space

used by entities for coordination and communication.

The MapReduce infrastructure implements the conceptual architecture model. The model

is built similar to the Hadoop MapReduce framework. It manages the distribution of task

and computations using the pull based Master Worker implementation over Comet. Its

main interfaces are the Input reader, the Mapper, which does the map computations and

the Reducer, which does the reduce computations. It is developed as an application

infrastructure layer on Comet, which provides programming frameworks and

mechanisms. The MapReduce infrastructure has been deployed and evaluated on a

campus network and Microsoft HPCS cluster at Rutgers University.

The developed infrastructure is evaluated using a classical WordCount application and an

implementation of a real world pharmaceutical application from Bristol Meyers Squibb.

Experimental evaluations using these applications demonstrate the flexibility, scalability

5

and effectiveness of the infrastructure, as well as its ability to support complex

coordination requirements of the applications.

1.3 Contribution

This research investigates the Comet based MapReduce framework as an alternative to

the existing MapReduce systems and the possibility of the developed infrastructure being

used as an accelerator in coordination with the existing systems for small data sizes. The

key contribution of this work is that it lays out a conceptual architecture model and

provides a practical implementation of MapReduce programming paradigm based

applications, using the Comet coordination infrastructure that facilitates scalable, robust,

and efficient interaction and communication for Grid applications. We have used the

Comet and its services to build this MapReduce infrastructure that address the above

requirements - specifically enable pull based scheduling of Map tasks as well as stream

based coordination and data exchange The main components of this research include:

(a) Understand the behaviors and limitations of existing MapReduce frameworks in the

case of small to moderate data sets (understand the cross over points).

(b) Design of the MapReduce architecture model over Comet, which provides API‟s for

building applications and running them reliably. It exploits the global virtual shared-

space abstraction provided by Comet that can be associatively accessed by all system

peers.

6

(c) Develop application programming systems using Comet based MapReduce

infrastructure for solving practical problems.

(d) Deploy and evaluate the framework and a real world application on Rutgers

University campus networks. The experiments evaluate the performance of Comet based

MapReduce system. The experimental results demonstrate the scalability and efficiency

of these systems as well as the feasibility of using Comet to support MapReduce type of

applications.

7

Chapter 2

Background & Related Work

2.1 MapReduce Programming Paradigm basics

2.1.1 Functional Programming Concepts

MapReduce programs are designed to compute large volumes of data in a parallel

fashion. This requires dividing the workload across a large number of machines. This

model would not scale to large clusters (hundreds or thousands of nodes) if the

components were allowed to share data arbitrarily. The communication overhead

required to keep the data on the nodes synchronized at all times would prevent the system

from performing reliably or efficiently at large scale.

Instead, all data elements in MapReduce are immutable, meaning that they cannot be

updated. If in a mapping task you change an input (key, value) pair, it does not get

reflected back in the input files; communication occurs only by generating new output

(key, value) pairs, which are then forwarded by the system the next phase of execution.

2.1.2 List Processing

Conceptually, MapReduce programs transform lists of input data elements into lists of

output data elements. A MapReduce program will do this twice, using two different list

processing idioms: map, and reduce. These terms are taken from several list processing

languages such as LISP, Scheme, or ML.

2.1.3 Mapping Lists

8

The first phase of a MapReduce program is called mapping. A list of data elements are

provided, one at a time, to a function called the Mapper, which transforms each element

individually to an output data element.

Figure 1: Mapping creates a new output list by applying a function to individual elements of an input

list.

As an example of the utility of map: Consider a function toUpper(str) which returns an

uppercase version of its input string. You could use this function with map to turn a list of

strings into a list of uppercase strings. Note that we are not modifying the input string

here. Instead we are returning a new string that will form part of a new output list.

2.1.4 Reducing Lists

Reducing lets you aggregate values together. A reducer function receives an iterator of

input values from an input list. It then combines these values together, returning a single

output value.

9

Figure 2: Reducing a list iterates over the input values to produce an aggregate value as output.

Reducing is often used to produce "summary" data, turning a large volume of data into a

smaller summary of itself. For example, "+" can be used as a reducing function, to return

the sum of a list of input values.

2.1.5 Putting Them Together in MapReduce:

The MapReduce framework takes these concepts and uses them to process large volumes

of information. A MapReduce program has two components: one that implements the

mapper, and another that implements the reducer. The Mapper and Reducer idioms

described above are extended slightly to work in this environment, but the basic

principles are the same.

Keys and values: In MapReduce, no value stands on its own. Every value has a key

associated with it. Keys identify related values. For example, a log of time-coded

speedometer readings from multiple cars could be keyed by license-plate number; as

follows:

10

AAA-123 65mph, 12:00pm

ZZZ-789 50mph, 12:02pm

AAA-123 40mph, 12:05pm

CCC-456 25mph, 12:15pm

...

The mapping and reducing functions receive not just values, but (key, value) pairs. The

output of each of these functions is the same: both a key and a value must be emitted to

the next list in the data flow.

MapReduce is also less strict than other languages about how the Mapper and Reducer

work. In more formal functional mapping and reducing settings, a mapper must produce

exactly one output element for each input element, and a reducer must produce exactly

one output element for each input list. In MapReduce, an arbitrary number of values can

be output from each phase; a mapper may map one input into zero, one, or many outputs.

A reducer may compute over an input list and emit one or several different outputs.

Keys divide the reduce space: A reducing function turns a large list of values into one

(or a few) output values. In MapReduce, all of the output values are not usually reduced

together. All of the values with the same key are to be presented to a single reducer

together. This is performed independently of any reduce operations occurring on other

lists of values, with different keys attached.

11

Figure 3: Different colors represent different keys. All values with the same key are presented to a

single reduce task.

2.2 Dataflow

The frozen part of the MapReduce framework is a large distributed sort. The Key

components, that a MapReduce application defines, are:

 an input reader

 a Map function

 a partition function

 a compare function

 a Reduce function

 an output writer

2.2.1 Input reader

12

The input reader divides the input into 16MB to 128MB splits and the framework assigns

one split to each Map function. The input reader reads data from stable storage (typically

a distributed file system like Google File System) and generates key/value pairs.

A common example will read a directory full of text files and return each line as a record.

2.2.2 Map function

Each Map function takes a series of key/value pairs, processes each, and generates zero

or more output key/value pairs. The input and output types of the map can be (and often

are) different from each other.

If the application is doing a word count, the map function would break the line into words

and output the word as the key and "1" as the value.

2.2.3 Partition function

The output of all of the maps is allocated to particular reducer by the application's

partition function. The partition function is given the key and the number of reduces and

returns the index of the desired reduce.

A typical default is to hash the key and modulo the number of reduces.

2.2.4 Comparison function

The input for each reduce is pulled from the machine where the map ran and sorted using

the application's comparison function.

2.2.5 Reduce function

13

The framework calls the application's reduce function once for each unique key in the

sorted order. The reduce can iterate through the values that are associated with that key

and output 0 or more values.

In the word count example, the reduce function takes the input values, sums them and

generates a single output of the word and the final sum.

2.2.6 Output writer

The Output Writer writes the output of the reduce to stable storage, usually a distributed

file system, such as Google File System.

2.3 Existing Systems

2.3.1 Google MapReduce

MapReduce is a parallel programming technique derived from the functional

programming concepts and is proposed by Google for large-scale data processing in a

distributed computing environment [3], [10]. The Google MapReduce framework is not

open source. However this section describes an implementation targeted to the computing

environment in wide use at Google: large clusters of commodity PCs connected together

with switched Ethernet. In their environment:

(1) Machines are typically dual-processor x86 processors running Linux, with 2-4 GB of

memory per machine.

(2) Commodity networking hardware is used. Typically either 100 megabits/second or 1

gigabit/second at the machine level, but averaging considerably less in overall bisection

bandwidth.

http://en.wikipedia.org/wiki/Google_File_System

14

(3) Storage is provided by inexpensive IDE disks attached directly to individual

machines. A distributed file system developed in-house is used to manage the data stored

on these disks. The file system uses replication to provide availability and reliability on

top of unreliable hardware.

(5) Users submit jobs to a scheduling system. Each job consists of a set of tasks, and is

mapped by the scheduler to a set of available machines within a cluster.

2.3.2 Apache MapReduce (Hadoop)

Hadoop [9], [11] is an open source framework for running applications on large clusters

built of commodity hardware from Apache. The Hadoop framework transparently

provides applications both reliability and data motion. Hadoop implements Map/Reduce,

where the application is divided into many small fragments of work, each of which may

be executed or re-executed on any node in the cluster. In addition, it provides the Hadoop

distributed file system (HDFS) that stores data on the compute nodes, providing very

high aggregate bandwidth across the cluster. Both Map/Reduce and the distributed file

system are designed so that node failures are automatically handled by the framework.

2.3.3 CGL MapReduce

CGL-MapReduce [7], [4] is another MapReduce runtime from Indiana University that

uses streaming for all the communications, which eliminates the overheads associated

with communicating via a file system. The use of streaming enables the CGL-

MapReduce to send the intermediate results directly from its producers to its consumers.

Currently, they have not integrated a distributed file system such as HDFS with CGL-

15

MapReduce, and hence the data should be available in all computing nodes or in a typical

distributed file system such as NFS.

2.4 MapReduce Applications

MapReduce is useful in a wide range of applications, including: "distributed grep,

distributed sort, web link-graph reversal, term-vector per host, web access log stats,

inverted index construction, document clustering, machine learning, statistical machine

translation, etc" Most significantly, when MapReduce was finished, it was used to

completely regenerate Google's index of the World Wide Web, and replaced the old ad -

hoc programs that updated the index and ran the various analyses.

MapReduce's stable inputs and outputs are usually stored in a distributed file system. The

transient data is usually stored on local disk and fetched remotely by the reduces.

2.5 Comet

Comet is a decentralized (peer-to-peer) computational infrastructure that extends Desktop

Grid environments to support applications that have high computational requirements

along with non linear communication requirements. It provides a decentralized and

scalable tuple space, efficient communication and coordination support, and application-

level abstractions that can be used to implement Grid applications based on the master-

worker/BOT paradigm.

The tuple space is essentially a global virtual shared-space constructed from the semantic

information space used by entities for coordination and communication. This information

space is deterministically mapped, using a locality-preserving mapping, onto the dynamic

16

set of peer nodes in the Grid system. The resulting structure is a locality preserving

semantic distributed hash table (DHT) [1] built on top of a self-organizing structured

overlay.

2.5.1 Architecture

Figure 4: A schematic overview of the CometG system architecture.

The communication layer provides an associative communication service and guarantees

that content-based messages, specified using flexible content descriptors, are served with

bounded cost. This layer also provides a direct communication channel to efficiently

support large volume data transfers between peer nodes. The communication channel is

implemented using a thread pool mechanism and TCP/IP sockets.

The coordination layer provides the Linda-like shared-space coordination interfaces: (i)

Out(ts, t): a non-blocking operation that inserts tuple t into space ts. (ii) In(ts,t, timeout):a

17

blocking operation that removes a tuple t matching template t from the space ts and

returns it. If no matching tuple is found, the calling process blocks until a matching tuple

is inserted or the specified timeout expires. In the latter case, null is returned. (iii) Rd(ts,

t, timeout): a blocking operation that returns a tuple t matching template t from the space

ts. If no matching tuple is found, the calling process blocks until a matching tuple is

inserted or the specified timeout expires. In the latter case, null is returned. This method

performs exactly like the „In‟ operation except that the tuple is not removed from the

space.

Replication:

Comet provides programming layer, service layer, and infrastructure layer. In

infrastructure layer, we use Chord overlay for self-organizing layer and Squid

information discovery scheme for content-based routing. This layer now provides

replication and load balancing to support dynamic join and leave as well as node

failure. Every node keeps the replica of its successor node‟s state, and it does not only

reflect changes to the replica whenever its successor notifies state changes, but also

notifies its every change to its predecessor. If a node fails, the predecessor node merges

the replica into its state and then makes a new replica of the new successor. If a new node

joins, its newly defined predecessor changes the replica to reflect the new node‟s state

and its newly defined successor gives its state information to it. For load balancing, load

should be redistributed to nodes whenever a node joins and leaves. Here, load means the

number of tasks stored on a node. If there are more nodes on the overlay, then a node

keeps the less number of tasks on its storage.

18

Scheduling and Monitoring:

Scheduling and monitoring of tasks are provided under the application framework. Task

consistency check is done for lost tasks. Even though replication is provided in

infrastructure layer, some tasks could be lost because of network congestion. In this case

because failure has occurred, replication cannot treat the lost tasks. Hence, the master

waits for the result of each task for some pre-defined time duration and if it does not

receive the result back, then it regenerates the lost task. If the master receives duplicate

results of a task, it ignores the later results.

This feature is also helpful in case of failure of nodes during a run. The tasks on the

node that would be lost will be regenerated by the master after a predefined timeout.

Programming Abstraction

There are Api‟s made available to build applications to utilize the Comet framework with

its features. Sample applications show code snippets that can be used to exploit the

distributed infrastructure.

2.5.2 Master Worker Paradigm

The Comet provides coordination space abstractions and programming modules to

support master-worker/Bag-Of-Task (BOT) parallel formulations of asynchronous

computations, where the individual tasks are independent and do not require inter-task

communications.

19

The Master Worker paradigm in Comet differs from the existing models, in the way that

in Comet we use the pull model – than the push models that exist. Here the Master need

not push the tasks to the workers, as workers query for the tasks and pull it out of the

shared space. The master can just pour in the tasks in tuple space and resume doing other

computations and monitoring tasks.

Chapter 3

20

 Hadoop MapReduce Evaluation and Observations

MapReduce is the key algorithm that the Hadoop MapReduce engine uses to distribute

work around a cluster

3.1 The Map

A map transform is provided to transform an input data row of key and value to an output

key/value:

 map(key1,value) -> list<key2,value2>

That is, for an input it returns a list containing zero or more (key, value) pairs:

 The output can be a different key from the input

 The output can have multiple entries with the same key

3.2 The Reduce

A reduce transform is provided to take all values for a specific key, and generate a new

list of the reduced output.

 reduce(key2, list<value2>) -> list<value3>

3.3 The MapReduce Engine

The key aspect of the MapReduce algorithm is that if every Map and Reduce is

independent of all other ongoing Maps and Reduces. As a result the operation can be run

21

in parallel on different keys and lists of data. On a large cluster of machines, you can go

one step further, and run the Map operations on servers where the data lives. Rather than

copy the data over the network to the program, you push out the program to the

machines. The output list can then be saved to the distributed filesystem, and the reducers

run to merge the results. Again, it may be possible to run these in parallel, each reducing

different keys.

A distributed filesystem spreads multiple copies of the data across different machines.

This not only offers reliability without the need for RAID-controlled disks, it offers

multiple locations to run the mapping. If a machine with one copy of the data is busy or

offline, another machine can be used.

A job scheduler (in Hadoop, the JobTracker), keeps track of which MR jobs are

executing, schedules individual Maps, Reduces or intermediate merging operations to

specific machines, monitors the success and failures of these individual Tasks, and works

to complete the entire batch job.

The filesystem and Job scheduler can somehow be accessed by the people and programs

that wish to read and write data, and to submit and monitor MR jobs.

Apache Hadoop is such a MapReduce engine. It provides its own distributed filesystem

and runs [HadoopMapReduce] jobs on servers near the data stored on the filesystem -or

any other supported filesystem, of which there is more than one.

22

3.4 Experimental test runs on Hadoop MapReduce

We did simple small test runs over Hadoop, using the classical example for MapReduce

programs, the word count example. We also had some application data from Bristol

Meyers Squibb, which is used to identify bio-active poses in the Protein molecule

structures. This computation is a tremendous challenge in drug discovery in

pharmaceutical industries.

We observed that the extensive use of the distributed filesystem in Hadoop induces an

overhead for smaller sizes of data. For large data sizes the filesystem overhead is offset

by the massive size of data.

The graph below led us to look into alternate methods to handle applications with small

data sizes that need to use a MapReduce framework.

secs secs

23

Figure 5: Performance of Hadoop over different application types.

From the Figure 5 we can see that the incase of the word count example the computation

time is larger than the I/O and reporting overhead, which is a good case however the

Protein Data Bank example is a bad case where the computation time is way lower than

the overhead. So this indicates that for cases like the latter use of more in-memory

computation and storage can potentially accelerate application execution.

We observed that the read write speeds in the Hadoop distributed file system are higher

as compared to the Linux NFS filesystem and a shared folder on the Microsoft HPCS

platform.

Time in secs (Log Scale)

24

Platform -> Hadoop DFS Linux NFS
Microsoft Shared

Folder

Read Speed
1.249 MBPS 1288.65979 MBPS

9560.84MBPS

Write Speed
125.256KBPS 56.999 MBPS

6486.07MBPS

This prompted us to look for alternatives for accelerating cases in which the data size

varies from small to medium. We observed that for smaller data sizes any master –worker

framework along with NFS could be used for a similar MapReduce engine. So we

decided to use Comet Coordination framework which already supported Master – Worker

paradigm based applications. We built a MapReduce programming abstraction utilizing

Comet API‟s exposed through the Master Worker framework. The abstraction delays the

use of file system by performing most computations in memory and only resorting to disk

reads and writes when the application free memory goes below the specified threshold.

We also observed the reads and writes to local disks is faster than over the network and

hence can be exploited for handling local data for each task.

25

Chapter 4

MapReduce Abstraction over Comet

4.1 Architecture

This chapter presents the conceptual architecture model and implementation of

MapReduce over the Comet distributed and decentralized coordination infrastructure.

The Comet conceptual architecture model is based on a global virtual shared-space

constructed from a semantic information space that is used by entities for coordination

and communication. Comet adapts the Squid information discovery scheme to

deterministically map the information space onto the dynamic set of peer nodes in the

Grid system. The resulting structure is a locality preserving semantic distributed hash

table (DHT) on top of a self-organizing structured overlay. The decentralized tuple space

maintains content locality and guarantees that content-based tuple queries, using flexible

content descriptors in the form of keywords, partial keywords and wildcards, are

delivered with bounded costs. All system peers can associatively access the Comet space

without requiring the location information of tuples and host identifiers. The Master

Worker / (BOT) paradigm has been implemented over Comet which utilizes the Comet

API‟s mainly – „out‟, „in‟ and „read‟. Due to the space-based nature of Comet

infrastructure, the master worker type of applications display a pull based mechanism

rather than the more prevalent push based models. The Master thus, can insert tasks in the

space and the workers can pull the task by querying for tasks with keywords, wildcards or

a combination of both. This very Master Worker abstraction is used to build the

MapReduce programming abstraction. As seen in the figure below the MapReduce

26

abstraction sits between the Master Worker abstraction layer and the application layer.

Figure 6: A schematic overview of the Comet system with MapReduce abstraction layer.

4.1.1 The MapReduce Data Flow

The flowchart below gives the data and functional flow of the MapReduce application

run on Comet.

27

Figure 7: Flowchart for the data and execution flow in Comet based MapReduce.

28

1. Comet Master:

a. Reads the input using the implementation given by the user to read data. Then

creates Map tasks and puts them in the shared space using the „out‟ primitive of

Comet.

2. Comet Worker – Mapper

a. Picks up map jobs from the space initially and executes the user supplied mapper

implementation to get Key, Value pair from a given input.

b. The map result, which is a Key and a vector of Values, is sent to the master.

3. Output Collector in Master

a. The master periodically merges the different map results (partial aggregation and

sorting is done)

b. Once all Map tasks are done the reduce tasks are put into space (which are

basically the values for a given key to do the final computation for the reduce)

4. Comet Worker - Reducer

a. Picks up reduce jobs from the space and run the user supplied reducer

implementation to get final aggregation of Key, Value.

4.2 Implementation

The MapReduce framework has been implemented in the application layer of the Comet.

The code is platform independent and has been tested on both Linux based, Microsoft

based clusters. Few primitive runs have also been done on Amazon Ec2 cloud. All the

settings for a particular platform can be changed in the mapreduce.properties file.

Depending on the configuration settings the master decides to launch workers on a

29

private network or an unsecure network like the Amazon Cloud. Also the disk storage

cache is accordingly implemented, whose value can be set in the mapreduce properties

file depending on the platform the application is to be run on.

Figure 8: Different tuple spaces of Comet and their interaction.

As mentioned above the MapReduce abstraction is in the application layer of Comet, and

is derived from the broad class of Master-Worker type of programming framework. The

MapReduce master is responsible for scheduling, managing the input data, the reading,

splitting and the distribution of it. The workers get the data and do the processing

returning the results to the master. The master does the result tracking, aggregation and

monitoring.

30

The MapReduce abstraction thus developed over Comet mainly consists of the following

Java classes/interfaces.

4.2.1 Input Reader

This is an interface provided in the Comet MapReduce Abstraction for reading the input

data. The user can implement this interface to design how the input should be divided and

read in for the application.

It contains methods mentioned below:

public Object readFile() : This method can be used to implement the way the input file needs

to be read for a given application.

public boolean isSplittable(): This method can be used to decide that a given input file can be

split in smaller chunks if required.

public boolean isNextChunkAvailable(): This method can be used to check if there are any

chunks of a given splittable file available to read.

public Object readNextChunk(): This method would implement the code to read the chunks

of a file that is split during input read

public void setInputFile(String fileName): This method is used to set the name of the file to be

read currently to be processed.

31

4.2.2 MapReduce Master

The MapReduce Master in turn implements the Comet Master Framework and hence is

based on the Master – Worker programming abstraction of Comet. The master is the one

node which puts in tasks in the space, schedules and keeps a record of the tasks done,

remaining tasks, and monitors tasks and coordination between the workers.

Some of the important methods, functions and classes included in the MapReduce Master

are described below

When the Application starts and the Master is launched, it runs some initial routines to

finish the pre-processing of setting up the Comet environment, reading the various

properties file. It also reads the application level classes to be instantiated for the input

reader, mapper and the reducer implementations.

public class TaskGenerateThread implements Runnable {}: This class as the name suggests

generates the tasks by reading the input and converts each data input Comet MapReduce

task tuples of map type data, which are put into the space using the „out‟ primitive. It also

consists of functions which handle the given list of files in the input directory

public void setResult(int id, Object data, String Sender): This method in the master is what is

called by the TCPHandler class through the MapReduce Worker, when the worker

finishes the computations and sends the result to master using a direct send TCP

connection. This method does the tracking of the number of tasks which are finished and

updates the task status data structure. Once all the map tasks are computed and all results

32

are obtained in the master, the reduce tasks are inserted in the tuplespace. Once the

results for these reduce tasks are got back then the final result is written into files.

protected void mergeMapOutputs(): This method is called to merge all the map results and

every time the free memory of the application goes below a certain fixed limit. This can

be considered to be similar to the combiner function which does partial aggregation of the

key value pairs. If the available free memory goes lower than a fixed limit (128M) then

the master resorts to disk writes. Thus the data structure handling the merger of the map

results can be in memory alone or both in memory and on disk depending on the size of

the data processed. To handle the disk reads and writes a small utility function is written

which syncs the data structure which has some key value pairs in memory and the rest on

disk.

public void saveMapOnDisk(String cache): This is used to write the map results onto the disk.

Each file in the map cache folder corresponds to each key and the data in the file is the

value corresponding to that key.

class MapResultCache extends LinkedHashMap{}: This class has all the implementations for

using disk as cache during the processing and computation. The details about this are

described in the later part section that explains Disk reads and writes.

33

4.2.3 MapReduce Worker

The MapReduce Worker in turn implements the Comet Worker Framework and hence is

based on the Master – Worker programming abstraction of Comet. The Worker is the one

node which queries for tasks in the space, does the required computation and sends the

results back to the master. The workers also have a capacity to interact with other

workers; however this feature is not exploited in the current implementation.

Some of the important methods, functions and classes included in the MapReduce

Worker are described below

The worker implements Runnable, and the worker thread continuously queries for tasks

in the tuplespace. Whenever it gets tasks, its data is handled but computeTask method.

public Object computeTask(Object obj): This method is the most important method in the

worker. It checks for the task type whether map or reduce or a Kill task and then

accordingly calls the mapper, reducer or overlay leave methods. This method also takes

into consideration, the EC2 nodes / third party involved which then obtain data through

TCP connections from the master or the File Server.

public void sendResultToMaster(int taskid, Object data, String masterName): This method is used to

send result to the master using direct sends via TCP connection.

34

4.2.4 Mapper interface

The Mapper interface is where the user can implement the mapper function for the

application. In general, the worker depending on the whether it gets a map task, calls this

interface. The method in this interface is

public void Map(String key, Object value, MapReduceOutputCollector collector): This is the main

map method which would have the implementation of the mapping function to be carried

out as a computation by the worker. It takes in the key and the corresponding value, and

after the result is collected by the Output collector interface (explained further below in

section 4.2.6).

4.2.5 Reducer interface

The Reducer interface is where the user can implement the reducer function for the

application. In general, the worker depending on the whether it gets a reduce task, calls

this interface. The method in this interface is

public void Reduce(String key, Iterator values , MapReduceOutputCollector collector): This is the

main reduce method which would have the implementation of the reducer function to be

executed out as a computation by the worker. It takes in the key and the corresponding

value, and after the result is collected by the Output collector interface (explained further

below)

35

4.2.6 Output Collector Interface

The Output collector interface as the name suggests is used for the purpose of collecting

the outputs of the map and the reduce tasks. The map outputs are actually the

intermediate results in majority of the applications; however they could be the final

results in some application. The reduce tasks are generally the final outputs, however in

some applications there could be a need of multiple iterative reduces.

The output collector consists of an abstract collect method as shown below. In the default

implementation in the MapReduce worker it is mainly a hashmap of key – value pairs

public abstract void collect(Object key,Object value)

4.2.7 Disk Read/Write Manager

The MapReduce Paradigm is best exploited for very large data. As the size of data

increases, the free memory of the application decreases. In order to avoid failures due to

insufficient memory and still be able to handle large amount of data for processing, we

resort to disk writes to store intermediate results and read through the written data for

further processing if any. So at a given time unless there is an exclusive saving of results

on the disk and in process data resides in-memory and on disk depending on the memory

usage of the application at a given point.

Comet currently supports mainly a coordination system rather than a system for data

exchange. Before deciding upon disk based caching of data we did a few experiments to

36

measure the Comet „out‟ and „in‟ times for a data size of 50MB and the time required to

read the same data written to and read from disk in serialized form. We used local disks

and shared NFS disks to read/write intermediate results.

From the graph below which compares Comet data transfer to Local disk data transfer we

see that the disk read and write times are negligible in the order of 10 ms as compared to

the Comet „out‟ and „in‟ primitives used to exploit the tuplespace as data cache. We also

noticed that as the number of nodes in the overlay increases the log-n based routing of

messages across the DHT causes a significant overhead.

Figure 9: Time graph for Comet Tuplespace Vs Local Disk reads and writes.

From the graph below which compares Comet data transfer to a shared NFS disk data

transfer we see that the combined disk read and write times are lower in the order of

37

1second as compared to the Comet „out‟ and „in‟ primitives that requires around 7

seconds for the data size of 50 megabytes.

Figure 10 Time graph for Comet Tuplespace Vs NSF Disk reads and writes

The disk is used as cache and this cache is extended from LinkedHashMap. Using this, if

a data structure grows very big in size it is distributed between the application memory

and the disk. There is a special DiskIterator which extends Iterator class, which helps in

reading through the data in the Linked Hash Map or the cache. For all the in-memory

data, the Disk iterator inherits the base class „Iterator‟ functions and for all the data on

disk the Disk iterator does read/write/delete of files on the disk depending on the

functions called.

The diagrams below show the flowchart explaining the logic for the disk reads and writes

done by the master during an application run. This implementation of using the disk for

38

storing intermediate results enables the application to have a controlled and consistent use

of memory without running into out of memory irrespective of the size of the data.

Figure 11: Flowchart explaining Disk write decision depending on free memory value.

39

Figure 12: Flowchart explaining Disk read decision depending on free memory value.

40

4.3 Architectural Comparison of Comet MapReduce with Hadoop

MapReduce

The Comet implementation of MapReduce Paradigm although in the nascent stage, it has

been built trying to keep the different implementations as far as possible similar to the

Hadoop MapReduce interfaces. There cannot be a direct comparison between the Comet

and Hadoop Api‟s, as Hadoop API‟s are definitely more extensive and exhaustive in their

support for different types of applications, different types of file systems, and for the

more holistic reporting system. As compared to this Comet-MapReduce is still in the

early stages of evolution.

In Comet we have abstracted the most basic and bare minimum implementations to

support MapReduce type of applications.

Some of the API‟s currently supported by Comet and their counterparts in Hadoop are

described below:

4.1.1 API’s in Comet

1. Mapper Interface

a. public void Map(String key, Object value, MapReduceOutputCollector

collector)

2. Reducer Interface

a. public void Reduce(String key, Iterator values , MapReduceOutputCollector

collector)

3. Input reader Interface

41

a. public Object readFile()

b. public boolean isSplittable()

c. public boolean isNextChunkAvailable()

d. public Object readNextChunk()

e. public void setInputFile(String fileName)

4. MapReduce properties file

a. Sets the different configuration including the mapper/reduce/combiner class etc.

4.1.2 API’s in Hadoop

1. Mapper Interface

a. void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)

2. Reducer Interface

a. void reduce(K2 key, Iterator<V2> values, OutputCollector<K3, V3> output,

Reporter reporter)

3. Input split

a. Has the InputSplit and Record Reader interface which do the job of splitting the

input and reading.

4. Job Conf

a. Sets the different configuration including the mapper/reduce/combiner class etc.

42

4.4 Mining PDB Structures for Distance Information

Figure 13: Process in calculations of the Protein Molecule Distances.

Consider the problem of protein-ligand binding. This is the notion that a small molecule

(a drug, aka. the ligand) binds to a receptor or protein in the body. This binding event

evokes a biological response, possibly the reduction of inflammation, pain relief, etc.

Typically, there are a limited number of poses or configurations that this protein-ligand

complex can assume (or possibly only one). Identifying this bio-active pose is a

43

tremendous challenge in drug discovery. Frequently, it is thought to be the lowest energy

pose for either the protein or the ligand, but that is typically not the case. The complex

can stabilize or make up for a higher energy conformation of the ligand, etc. Both the

protein and ligand are three dimensional and flexible and therefore are constantly

changing shape. This is really a multi-step problem. Starting with the ligand, one has to

identify the bioactive 3D conformation of the ligand. Moving on then to the protein, the

bioactive conformation is an even bigger challenge partially because the molecule is so

much bigger and there are more possibilities. Lastly, if one could identify both the

bioactive conformation of the ligand and the protein, then one is challenged to place the

ligand in the correct location and orientation within the protein to produce the desired

activity.

There are many ways to generate these poses, as well as many ways to try to determine

which ones are (or may be) correct. Some of these calculations are computationally

inexpensive, while others may be extraordinarily expensive. In theory, the more

computationally expensive methods should yield results that are either more accurate

(correct), or provide a higher confidence that they are at least reasonable. Unfortunately,

this is not always true. One approach to this problem is to generate a large number of

potential poses using a fairly inexpensive method and follow that up with a more

expensive calculation to rank them in order of likelihood of being the bio-active pose.

However, it is still easy to generate many more potential poses than one can afford to

apply an expensive method to.

The idea behind the mapDistances code is to simply filter out some of these potential

poses before trying a more expensive method. The Protein Data Bank (PDB) is a

44

database of known crystal structures and Nuclear Magnetic Resonance (NMR) structures,

many of which are protein-ligand complexes. By mining the information contained in

these structures, we are generating a scoring function based on known protein-ligand

interactions. That is why we are processing through the entire PDB to extract out the

interactions between small molecules and proteins. The output of the reduce code is the

set of observed interactions after applying a distance bin technique. The distance bins

simplify the comparison of a potential interaction to the actual observed interactions.

This is just taking a set of observed distances and clumping them together. In order to

include some of the atomic environment information, atom types are used rather than

simply using the atomic element. This differentiates between aromatic and aliphatic

carbons, nitrogens that are in an amide bond versus a primary amine, etc.

Once the counts of the observations are tallied, one can transform them into percentages

of the time that a given interaction is observed. Some interactions are never observed and

are therefore somewhat unlikely.

The application of the extracted scoring function is to take a set of potential poses and

either filter or rank them in order to decide which ones to apply the more expensive

method to. Basically, by running the same mapDistances code, one can build up the list

of observed interactions and then compare these to the previously extracted interactions

from the complete pdb. If the interaction was never observed in the pdb, a penalty is

applied. If it was observed, then the percentage of the time it is observed in that distance

bin then it gets positive credit. In its more simplistic form, one could imagine summing

over the percentage of time an interaction in the theoretical pose was observed in the pdb.

45

Chapter 5

Experiments & Results

During the course of development of our system we observed several interesting points

which lead us to believe that the MapReduce programming abstraction over Comet can

be potentially used for medium sized data. We did extensive experiments on Microsoft

platform. We did an evaluation of the results based on the time required, memory

consumption and also tried a few comparisons, between Comet based MapReduce system

developed by us and the Hadoop MapReduce distributed system with the same data set.

We observed that our system was could be effectively used to run MapReduce based

applications. Some experimental results are explained below.

46

5.1 Scalability and Performance of Comet-MapReduce vs. Hadoop

MapReduce

Figure 14: Total Application runtime for MapReduce over Hadoop Vs. MapReduce over Comet.

The above Figure 14 shows the total running time of the application for different set of

files of the Protein distance extractor application. We can see that MapReduce on Comet

out performs Hadoop MapReduce by taking just one third the time required by Hadoop to

run over the entire data set. Thus a 3X improvement in the time is observed. We can also

see that comet scales well for larger data. The size of the dataset was 6.5 GB. The tests

were run with 2 workers per physical node. Hadoop was run with the same configurations

as already been used by BMS. Comet was run with default system properties. Since the

Comet MapReduce is built around in-memory operations the maximum allowed memory

47

for both the systems were configured to be the same. This was done through the

mapred.child.java.opts property of Hadoop and using the command line option for the Java

VM while running Comet.

Figure 15: Application running time for a fixed load and varying number of nodes.

The above Figure 15 shows the application run time for fixed size of data. Here we ran

24k files by varying the number of workers which in turn is obtained by varying the

number of nodes. This is the classical graph expected in case of parallelization of an

application where as the number of machines increase for the given constant size data the

computation is distributed across the nodes and hence the running time decreases. From

the graph we see that for a data size of 24k files, with 2 workers the time taken for the

48

application run is over 3 hours (211 minutes) and the run with 10 workers finishes the

same processing in about an hour.

Reason for Performance Differences:

Figure 16: IO Performance of the File systems.

From the Figure 16 we can see that a combination of local and NFS file systems

outperforms HDFS IO. This is one of the primary reasons for Comet to perform better

than Hadoop MR.

We ran some simple tests to write and read 10 – 50 MB of data from files (about 1000

times) on the different platforms and took the time stamps. The graphs above have the

average values of the 1000 reads and writes.

49

5.2 Memory Metrics on Comet MapReduce

5.2.1 Master Memory Metrics

Figure 17: Memory usage trends of the Master node for varying data size.

The Figure 17 above shows the memory consumption in a master node which is also

running 2 worker peers simultaneously. We can see that the as the data size increases the

memory consumption curve flattens around 2.5GB. The curve flattening is due to the

implementation of the disk based hash map described in section 3.2.7 which tries to

maintain a specified threshold amount of free memory. The tests for the above graph

were run with 3 GB of virtual memory and the low watermark for the memory was

50

256MB. Thus we can see that Comet based MapReduce is reliably scalable over larger

data sizes.

5.2.2 Worker Memory Metrics

Figure 18: Memory usage trends of the Worker nodes for a given data size

The Figure 18 above shows the memory consumption of workers on different machine

for and experiment run on the entire data set. We ran 2 workers per node, hence from the

graph you can see that there are sets of 2 with similar reading which indicates that those

two workers were on the same node. From the above graph we can see that for the

51

workers consume very little memory compared to the master. It starts from around 5MB

and goes to a maximum memory of about 20MB.

Figure 19: The average data size of each task (map/reduce) for the Protein Data Bank dataset.

Tthe above graph in Figure 19 shows that we can see that the data size handled by each

individual map and reduce task is in the order of a few tens of Kilobytes. Hence the

memory usage for each worker will be lower than the master and hence the worker nodes

can be run on commodity PCs with low RAM. This also shows that as the map ouputs are

small in size they need not be written to disk upfront, but can be held in memory for

further computations.

52

5.3 Load Balancing

Figure 20: The distribution of tasks per worker - showing the load balancing provided by Comet.

The above graph gives the distribution of tasks across all workers for a full data set run.

This shows data for 10 workers running on 5 machines. The load distribution can be

evened out by giving a correct number for property chord.ID_BITS which is used for

routing of the queries and the tasks distribution. We can see the load balancing if fairly

equal with an average of 4350 tasks per worker for a total of approximately 44000 tasks.

The tasks taken in by each worker are not the same as this depends on the size of data

related to each task. So if some files have larger processing time, then the workers

processing such files will consume lesser number of tasks. So if there is another worker

53

which has already finished its computation then it can pick up the next available task in

space.

Figure 21: Task distribution per node in Hadoop each running 2 map tasks is equivalent to 2

workers per node.

From the graph in Figure 21 we see that in case of the Hadoop run the load distribution

per node is not completely balanced and there is one node that is underutilized. We

observed that the data stored by the „hdfs‟ on that node was significantly low than the

other nodes and as Hadoop tries to localize computation closer to data storage, we see the

imbalance.

Thus we see that the pull based MapReduce model on Comet is efficient by avoiding data

storage or different sizes of data to be bottlenecks in computation. At any given point

there is an optimum utilization of resources.

54

Chapter 6

Summary, Conclusion & Future Work

6.1 Summary

The primary objective of the research presented in this thesis was to investigate and study

behaviors and limitations of MapReduce infrastructure in the case of small to moderate

data sets and develop a coordination and interaction framework over Comet to

complement MapReduce/Hadoop. Another objective was to prove the feasibility of the

application by developing a model application from a real world scenario.

The key contribution of this thesis is the MapReduce conceptual architecture model and

implementation infrastructure programming abstractions for supporting applications that

a can be executed on the basis of the MapReduce programming paradigm. The

framework is built on Comet which employs fully decentralized architecture and provides

a global virtual shared-space abstraction that can be associatively accessed by all peer

nodes in the system. Thus the research enabled to exploit a pull based scheduling of tasks

as well as stream based coordination and data exchange.

A prototype system was developed using a real world application. Bristol Meyer Squibb

(BMS) presented a problem statement with the application that they used in their protein

distance analysis and we proposed an efficient implementation over Comet and the

55

Master Worker programming paradigm already existed in Comet . After studying their

existing application run over Hadoop, we built a similar interface over Comet. We

developed it on the Master Worker abstraction utilizing the tuplespace for coordination.

We have got impressive results for the dataset given by BMS, which also proved that

there could be more applications based on the same concept ported over to Comet

MapReduce. The overall time efficiency showed atleast a 50 % improvement with the

Comet MapReduce run as compared to the same implementation over Hadoop. The

Memory consumptions have been significantly under control due to the use of the disk

cache in Comet. At the workers the memory usage flattens at around 20 MB. Results also

showed efficient load balancing of tasks which further enhances the performance of the

pull based implementation of Comet infrastructure

6.2 Conclusion

MapReduce programs are designed to compute large volumes of data in a parallel

fashion. All data elements in MapReduce are split into key-value pairs which are

independent of each other and hence can be processed independently. The efficiency and

performance can be improved by running these tasks in an embarrassingly parallel

environment. There have been quite a few such frameworks existent but they mainly rely

on the distributed file system for their processing and storage of intermediate and final

results. This read and write into the distributed file system adds an overhead which

becomes significant in case of smaller data sizes of few gigabytes. This research

presented that a similar programming paradigm which was developed over the Comet

56

infrastructure. The pull based model of querying for work by the worker nodes and use of

the distributed hash table and space filling curves for routing and load balancing improve

the efficiency of the framework. The solution can be used to accelerate the computations

of medium sized data by delaying or avoiding the use of distributed file reads and writes.

Our System‟s interfaces are similar to the Hadoop MapReduce framework, to make

applications built on Hadoop easily portable to Comet-based framework. The details of

the implementation and evaluation of an actual pharmaceutical problem, with its results

have been described.

From the experiments and results seen in the Chapter 5, it can be seen that the

MapReduce programming paradigm implemented on Comet has been successfully

evaluated with an implementation of the real world application (application with

pharmaceutical computations from Bristol-Meyers Squibb).

6.3 Future Work

The current MapReduce abstraction over Comet is very naïve. It has just the basic

interfaces that are most essential for such programming abstraction; mainly the Mapper,

the Reducer, the Input Reader and the Output collector. All these interfaces can be made

more flexible and exhaustive.

57

More functionality for scheduling and reporting and job monitoring can be extended into

the framework. Currently the Disk Manager is a simple implementation to write and read

data from the disks; interfacing of the distributed file system provided by Hadoop into

Comet MapReduce would give a more stable distributed read and writes to the

application and also to be able to support really large data sets of terabytes.

Currently all the tasks are poured into the tuple space by the master. With the added

functionality in Comet where the workers can also „put‟ in tasks, the efficiency and

performance of Comet based MapReduce can be improved. The intermediate map

outputs which are currently sent back to the master and stored in the master can then be

kept in the worker. Once all workers get a notification for map tasks completed, the

workers can then put in the intermediate map results as reduce tasks and key based

queries should be given to the space so as all the values for a given key are obtained by a

single worker to further complete the reduce computations. The final result can then be

sent back to the master.

58

References

[1] Cristina Schmidt and Manish Parashar. Enabling flexible queries with guarantees in

p2p systems. IEEE Network Computing, Special issue on Information Dissemination on

the Web, (3):19–26, June 2004.

[2] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis of the

clustering properties of the hilbert space-filling curve. IEEE Transactions on Knowledge

and Data Engineering, 13(1):124–141, 2001.

[3] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on

Large Clusters OSDI 2004

[4] Jaliya Ekanayake and Shrideep Pallickara, MapReduce for Data Intensive Scientific

Analysis, Fourth IEEE International Conference on eScience, 2008, pp.277-284.

[5] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, D. Stott Parker. Map-Reduce-

Merge: Simplified Relational Data Processing on Large Clusters. Proc. ACM SIGMOD

International Conference on Management of data (SIGMOD 2007), ACM Press, 2007,

pp. 1029-1040.

[6] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for

machine learning on multicore. In B. Sch¨olkopf, J. Platt, and T. Hoffman, editors,

Advances in Neural Information Processing Systems 19, pages 281–288. MIT Press,

Cambridge, MA, 2007.

[7] CGL MapReduce - http://www.cs.indiana.edu/~jekanaya/cglmr.html

[8] Lammal, Ralf. Google's MapReduce Programming Model Revisited.

http://www.cs.vu.nl/~ralf/MapReduce/paper.pdf

[9] Open Source MapReduce: http://lucene.apache.org/hadoop/

[10] Google MapReduce Introduction : http://code.google.com/edu/parallel/mapreduce-

tutorial.html

[11]Hadoop documentation:

http://hadoop.apache.org/common/docs/current/api/overview-summary.html

[12] Hadoop Wiki : http://wiki.apache.org/hadoop/

[13] Hadoop Tutorial: Downloaded from the official Hadoop Distribution cd

[14] G. L. Steel, Jr. “Parallelism in Lisp,” SIGPLAN Lisp Pointers, vol. VIII(2),1995,

pp.1-14.

59

[15] Amazon EC2 : http://aws.amazon.com

[16] Microsoft HPC : http://www.microsoft.com/hpc/en/us/default.aspx

[17] Running Hadoop by Michael Noll: http://www.michael-

noll.com/wiki/Running_Hadoop_On_Ubuntu_Linux_(Multi-Node_Cluster)

[18] Hadoop over Windows : http://v-lad.org/Tutorials/Hadoop/20%20-

%20upload%20data.html

http://hayesdavis.net/2008/06/14/running-hadoop-on-windows/

[19] Z. Li and M. Parashar, “A Computational Infrastructure for Grid-based

Asynchronous Parallel Applications,” Proceedings of the 16th International Symposium

on High-Performance Distributed Computing (HPDC), Monterey, CA, USA, pp. 229,

June 2007.

http://hayesdavis.net/2008/06/14/running-hadoop-on-windows/

