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This dissertation is composed of three essays evaluating Bayesian model selection

criteria in various models, and whenever necessary, the Bayesian criteria are com-

pared with sampling theory criteria. In chapter two, I compare the 2-regime thresh-

old ARMA model (TARMA) and 2-state Markov switching model (MSM). Bayesian

Markov Chain Monte Carlo (MCMC) algorithms are devised to obtain coefficient es-

timates, conditional and unconditional predictive densities. Posterior densities and

cumulative densities of the mean square error of forecast (MSEF) of two competing

models are generated. The main finding is that for one-day conditional prediction,

the 2-regime TARMA model predicts the interest rate better than the MSM. Under

the unconditional prediction, however, MSM has less prediction error than TARMA.

In chapter three, I compare the MSEF and Pseudo Bayes Factor (PSBF) obtained

by 10-fold CV method and those from an out of sample prediction for fixed points.

The MSEF suggests there is a slightly superior performance for the CV method in

model selection over traditional out-of-sample forecast in the i.i.d sample. However,

the same result is not obtained by PSBF. By excluding forecasted data in constructing
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coefficients within MCMC, the out-of-sample method is further improved by yielding

higher probability to select the true model.

In chapter four, I evaluate logit and probit binary choice models. Monte Carlo

experiments are conducted to compare the following five criteria in choosing the uni-

variate probit and logit models: the deviance information criterion (DIC), predictive

DIC, Akaike information criterion (AIC), weighted and unweighted sums of squared

errors. The results show that if data are balanced no model selection criterion can

distinguish the probit and logit models. If data are unbalanced and the sample size

is large the DIC and AIC choose the correct models better than the other criteria. If

unbalanced binary data are generated by a leptokurtic distribution the logit model

is preferred over the probit model. The probit model is preferred if unbalanced data

are generated by a platykurtic distribution.
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1 Introduction

1.1 Research Questions, Background and Significance

In empirical studies we need to select a model that performs best among competing

models. To select the best model we rely on model selection criteria. The model

selection criteria are complex depending on the class of models as well as the char-

acteristics of data sets. In my dissertation I evaluate Bayesian and sample theory

selection criteria in various models, specifically (i) a non-linear threshold autoregres-

sive ARMA model versus a Markov switching model, (ii) Non-nested linear models.

(iii) Binary choice logit versus probit models.

In recent years, non-linear models have been studied and applied to analyze many

macro economic and financial time series data capturing the discrete regimes of the

time series. Both TARMA and MSM describe the economics system shifting from

one state to another and can yield similar results. Although there are many papers

studying either a TARMA model or MSM, only a handful of studies have examined

the relative performance of these two models. In particular, the comparison under

Bayesian framework is not done yet.

The aim of my first essay is to test which model performs better or which model

more accurately captures the characteristics of the data under some common model

selection criteria. I use the distribution of the forecasted MSE as the comparison

criteria. My results show that both models capture the nonlinearity of the data,

however, the prediction ability is different. TARMA is better in conditional prediction

than MSM, while MSM outperforms TARMA in unconditional prediction in which

data are used twice.

Except for popular model selection criterion MSE, there is another criterion, pre-

dictive density combined with Cross Validation (CV). CV measures the predictive

density of a given model and chooses the best model which provides the lowest CV
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error for the given data distribution across several candidate models. The major ad-

vantage of CV approach is that it reduces the estimation risks due to the double use

of the same dataset for both estimation and validation. Bekara and Fleury (2003)

show that CV is a consistent and robust model selection criterion. However, CV has

its drawback as it is computationally demanding. That could be one reason that the

application of CV in economic models is quite limited yet.

In chapter three, I test the model selection ability for CV method by comparing

it with the traditional out-of-sample forecast method. My research questions in this

chapter are: (1) whether CV outperform the traditional out-of-sample method; (2)

test under which condition, these two methods have different ability in selecting

correct model among certain model space.

I develop an algorithm for 10-fold CV for non-nested regression model. Using MSE

of forecasted (MSEF) and Pseudo Bayes Factor (PSBF) as the comparison criteria,

I found that CV performs slightly better based on MSEF. However, the PSBF yield

opposite results. In addition, the out-of-sample method is improved if the predicted

value is not used in constructing coefficients in the MCMC loop. My results provide

implication for the use of CV in economic research.

In my forth chapter, I worked on the dichotomous model. Logit and probit models

are two popular qualitative choice models, where the endogenous random variables

take only discrete values. There are numerous applications of these two models in

economics, biometrics, marketing research, credit analysis, etc. In prior literature,

the univariate logit and probit are considered identical in application as they have

similar statistical distributions. They cannot be discriminated unless the sample size

is large. My results show that these two models can be discriminated if we have

a large sample size and unbalanced data. In addition, I demonstrate that we can

choose from a model, either logit or probit to better fit the data if the kurtosis of the

distribution is available.
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My essay contributes to this literature in the following way: First, I introduced a

more general form of distribution: the exponential power distribution, into my study.

It incorporates both normal and logistic distribution and makes the results applicable

to a broader range of data sets. The next contribution is that I use a new model

selection criterion Predictive Deviance Information Criteria (PDIC) based on the

predictive density in comparing the univariate probit and logit model. In addition, I

incorporate model selection criteria in both Bayesian inference and sampling theory to

identify the conditions under which these two models can/cannot be distinguished. A

large portion of the past studies are focused on the similarity of statistical distribution,

hypothesis testing, and the comparison of the coefficient estimates between these two

distributions. The Last contribution is that I devised a Metropolis-Hasting (M-H)

algorithm with random walk for logit and probit model, which has less computation

time compared with the available Bayesian estimation method, such as Gibb sampler

with data augmentation.

1.2 General Methodology

In all my three essays, a MCMC algorithm is applied in estimating coefficients, ob-

taining the predictive density, and calculating the model selection criteria. Different

models induce different priors and likelihood function, thus leads to different posterior

distribution. The general outline of the MCMC procedure is as follows;

1) Generate parameter matrix A from the proposal density.

2) Apply accept-reject algorithms to generate the sequence (chain) of parameters.

The probability of acceptance is given by:

α
(
A, Â

)
= min





P (A|data) q(Â)

P
(
Â|data

)
q(A)



 (1)

where P (·) is the posterior density and q (·) is proposal density. A is the updated
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(current) draw of parameter matrix and Â is previous draw of parameter matrix.

3) Repeat above two steps until each sequence converges.

There are different ways to choose the proposal density for the convergence pur-

pose, thus yield different accept-reject algorithm. I use are M-H with random walk,

hybrid M-H and M-H with efficient jump in my three essays.
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2 Comparison of Threshold ARMA Model and

Markov Switching Model Using MCMC

2.1 Introduction

In recent years, non-linear models have been studied and applied to analyze many

macro economic and financial time series data. These models capture the interesting

properties of the data, such as frequency dependence, cycling behavior and jump

phenomena. Among the various discrete time non-linear models, two popular classes

are Threshold Autoregressive or Threshold Autoregressive ARMA model (TAR or

TARMA) and Markov Switching Models (MSM).

The popularity of TAR class models is due to the fact that they are simple to

specify, estimate and interpret compared to other non-linear time-series models. The

MSM has its advantage in capturing the ups and downs of the state. The intuitive

appeal of both models lies in the fact that the behavior of economic time series

often exhibit distinct phases. For instance, the national economy shifts between a

recession and expansion, government regimes change over time, and financial markets

experience bubbles and crashes. Since both models describe the economics system

shifting from one state to another, they can be applied to the same time series,

and can yield similar results. For example, Garcia and Perron (1996) used MSM to

investigate the threshold behavior of interest rate, and they find that the interest

rate follow a unit root in low regime and mean-reversion process in upper regime.

The same result is obtained by Goldman and Agebeyegbe (2005), Gospodinov (2005)

using TARMA-GARCH model.

However, besides these similarities, both models also have their own distinct fea-
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tures. First, MSM captures the probabilistic state transitions over time, and the op-

timal probabilistic inference based on the observed behavior of the dataset; whereas

the TAR models treat the shifts in regimes as directly observable. Secondly, MSM is

used in a cyclical process, such as bull and bear market states in the stock market,

the recession and expansion characterized by GDP growth change, but TAR models

estimate the threshold and the dynamics of data in different regimes, not necessarily

cyclical process. Henneke, Rachev and Fabozzi (2001) also point out that in MSM,

the process can leave a state and returns with a positive probability; while TAR

models only use the data between changes in the regimes and disregard the rest of

the data set. Thus, MSM tends to yield better estimate for the “normal state” as it

bases on much larger data set, therefore it may provide better forecasting than TAR

models.

Observing the similarities and difference of the both models, one interesting ques-

tion would be to compare these two models and test which one perform better under

some common model selection criteria. Thus, the purpose of this essay is to compare

the two-regime TARMA model with the two-state MSM. In particular, we try to

answer following questions, when applying to the same dataset with distinct phase:

which model will perform better or which model will more accurately capture the

characteristics of the data. I use the short term interest rate data. One reason is that

the short-term interest rate is an essential component of monetary policy formula-

tion and asset valuation. It plays a key role in the yield curve, inflation expectation

and aggregate demand in macro economy. In addition, it has important implications

for the dynamics of long rate, the pricing of other underline derivatives. Therefore,

a good understanding the characteristics of short-term interest rate data is crucial.

Another important reason is that there are already many papers which use either

TAR or MSM to estimate the short term interest rate and the results obtained by

using these two models are similar. However, there has been quite limited studies
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in comparing these models. Thus, the short term interest rate would be the ideal

observation. Furthermore, we can evaluate our results in the traditional literature of

nonlinear modeling for short term interest rate.

Immediately, we encounter two problems. First, how to measure the performance

of two different models and make it comparable. We need to set common model

selection criteria. It is a complex matter as there are many criteria. A natural

way to assess the goodness of the model is to estimate its predictive ability. Thus,

my model selection is based on the predictive density. I do the comparison within

the Bayesian modeling framework. In addition, a single summary number also is a

choice for model selection, as one number is straightforward to compare and cause

no ambiguity. Following the standard literature on Bayesian model choices, we use

the MSEF as a model choice criteria, which make the comparison on the aggregated

level, instead of case level diagnostics used in Geisser (1988), Pettit and Young (1990)

and Gelfand et al. (1992). The second issue is the model specification. There are

many sub-categories in these two broad classes of models. To make the comparison

applicable and reliable, we will conduct our comparison between two-regime TARMA

model and two-state MSM with fixed parameter dimension. The error structure of

the model is the ARMA model.

This essay is organized as follows. In Sections 2.2 we review the literature of

TAR/TARMA models and MSM. Description of the two-regime TARMA model and

two-state MSM are provided in section 2.3. Also, a brief summary of the model

selection criteria are outlined in this section. In section 2.4, Bayesian estimation

procedures are specified, including the prior setting, maximum likelihood and the

posterior distribution for each model. Metropolis-Hasting (M-H) algorithm is also

presented briefly in this section. Section 2.5 discusses the data set and the descriptive

statistics. Analyses of empirical results are given in Section 2.6. Concluding remarks

and extension are made in Section 2.7.
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2.2 Literature Review

The TAR model is first introduced by Tong and Lim (1980). Tong (1990) gives

more detailed review of this model. The basic idea is to divide the data into a small

number of regimes according to the different values of threshold variables. Thus, the

threshold model describe a process of piecewise linear in the threshold space. After

Tong’s study, a large number of papers have been devoted to this model both in

discussion of statistical inference and testing procedure. Tsay (1989, 1998) constructs

a test using predictive residuals to detect threshold nonlinearity in a vector time series.

Petruccelli and Davis (1986) propose a CUSUM type test for TAR nonlinearity. Chan

(1986) develops a conditional likelihood ratio test statistic. The TAR models are

also applied to real macro and financial data. Hansen (1997) reports a significant

threshold effects in U.S. unemployment rate. Koop and Potter (1999) use a two-

regime threshold model to show the dynamic asymmetry between unemployment

rate rising and falling. Gospodinov (2005) estimates conditional mean and variance

for short—term rate with threshold nonlinearity, and also finds its better forecast

performance than single regime model. Other applications of TAR model and its

extension, see Forbes, Kalb, and Kofman (1999), Lanne and Saikkonen (2002).

The Bayesian analyses of TAR models have been made as well. These analyses

effectively estimates multiple threshold simultaneously without the “curse of dimen-

sion”. Geweke and Terui (1993) use Monte Carlo integrations for two-regime TAR

model. Phann, Schotman and Tscherig (1996) use Griddy Gibbs sampler within

MCMC. Chen and Lee (1995) apply Metropolis algorithm within a Gibbs sampler.

Goldman and Agebeyegbe (2005) used M-H algorithm with efficient jump for ARMA

and ARMA-GARCH model to estimate the U.S. short term interest rates. The same

approach is used for multivariate threshold model in Tsay (1998). The Vector Er-

ror Correction Threshold models for future index is studied by Huang (2004), and

the procedure provides the reliable estimates of parameters and a test criteria for
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detecting threshold nonlinearity in a vector model.

The MSM is introduced and developed by Hamilton (1989, 1990) for modeling U.S.

business cycle using U.S. post war GNP data. This model also considers the change

of a state of time series. Generally speaking, a process is governed by different states,

where switch between them are based on a probabilistic process. In addition, this

probability is unique. Essentially, the process modeled here subject to discrete shifts

in state; and the parameters of the process change over time driven by a Markov state

variable, which is assumed to be unobserved or latent. Similar to TAR model, MSM

has been applied for many markets, the successful ones including the application

in short term interest rates, foreign exchange rate, stock return, and stock return

volatilities.

The MSM is seen in modeling heteroskedasticity and duration dependence of stock

returns. ARCH or GARCH type models generate high persistence of stock volatility

to match the fat tails and volatility clustering, but they usually provide poor forecast.

Perron (1989) has pointed out that if data follows a process with structure break, then

it tends to reveal unit root although it is actually stationary. Since GARCH model

incorporating a unit root and structural break usually accounts for part of the high

persistence, if the process is stationary with structural breaks, GARCH model with

a single regime yields poor forecast. Based on this idea, Hamilton and Susmel (1994)

suggest an ARCH model allowing parameter changing. This SWARCH specification

offers better fit to the data and better forecast. Cai (1994), Derker (1997), Haas,

Mittnik, and Paolella (2004) also build their empirical work upon these combination

of ARCH/GARCH and regime switching. The other application of MSM is found

in exchange rate and inflation rate. Engel and Hamilton (1990) propose Markov

switching model in Foreign exchange rates and claim that exchange rate follow a

model of long swing instead of random walk. Rapach and Strauss (2005) construct

GARCH models for exchange rate volatility. Evans and Wachtel (1993); Ricketts and
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Rose (1995) use MSM to estimate inflation rate. One extension to Hamilton’s MSM

is to specify the transition probabilities to be a function of underling variable instead

of a constant. Applied to U.S. post war real GNP, Durland and MacCurdy (1994)

obtain the evidence of duration dependence for recession, but not for expansion. They

also find that economy is more likely to transit out of its current state the longer it

has been in it, which is not implied by Hamilton’s model. Lunde and Timmermann

(2000) find asymmetry in stock prices.

There are many studies of the MSM using Bayesian inference. This due to the

computational tractability and reliability of Bayesian approach. In estimating MSM

with many unknown parameters, such as ARMA-GARCH parameters, ML estimation

becomes computationally unfeasible if the data are few. The inference based on the

unobserved state variable is also problematic. To avoid the high dimension problem,

Hamilton and Susmel (1994) use low order of ARCH with Markov switching. More

favorable method adopted by many authors is Markov Chain Monte Carlo methods

(MCMC). Among them are Carlin, Polson and Stoffer (1992), Francq and Zakoian

(2001), Henneke, Rachev and Fabozzi(2006), and Hark Yoo (2006).

Interest rate is another most applied area for Markov switching model. As the

early example, Hamilton (1988) uses MSM for real interest rates. Gray (1996) develop

a generalized regime-switching (GRS) model for the short-term interest based on the

first-order Markov process with state-dependent transition probabilities. GRS has a

better forecasting performance than single regime model for out-of-sample forecasting.

Garcia and Perron (1996) detect the random behavior in both mean and variance

of ex-post real interest rates with three regimes. Ang and Bekaert (2002a) show

that the regime switching outperforms single regime in out-of-sample forecasting,

and corresponds well with the business cycles. Other short term interest rate model

based on MSM include Evans and Lewis (1994), Smith (2000), Bekaert, Hodrick

and Marshall (2001). Except MSM, there are other nonlinear models proposed to
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address the high persistence and conditional heteroskedasticity of interest rate data,

among them are Tsay (1989, 1998), Lanne and Saikkonen (2003), Gospodinov (2005)

Ait-Sahalia(1996) and Stanton (1997). In addition, Waston (1999) argue that the

existence of regime switching in the conditional mean implies the relationship between

the short-rate persistence and the long-rate variability.

2.3 Model and Model Selection Criteria

2.3.1 Two-Regime Threshold ARMA Model

In general, a time series yt follows k+1 regime stochastic threshold model with ARMA

error component and the threshold variable zt−d if it satisfies the following model,

yt = xtγ
(j) + ut (2)

ut =
Θ(j)(B)

Φ(j)(B)
εt (3)

Θ(j)(B) = 1 + θ
(j)
1 B + · · ·+ θ

(j)

q(j)
Bq(j)

Φ(j)(B) = 1− φ
(j)
1 B + · · ·+ φ

(j)

p(j)
Bp(j)

εt ∼ N
(
0, σ2t

)
(4)

where yt belongs to regime j if rr−1≤̇zt−d < rj, j = 1, . . . , k are non-negative integers,

and r is the threshold on real line. Thus, if we have k thresholds, then there are

k + 1 regimes, and {r1, . . . , rk} forms a partition of the real line. d is the delay

variable, and we assumed d ∈ {1, . . . , d0}. The p(j) and q(j) are the orders of AR
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and MA processes, and they can be different for different regimes. In our model,

we assume they are the same across regimes. B is the backward shift operator. The

parameters
{
γ(j), φ(j), θ(j)

}
have different values for different regimes, i.e., they take

k+1 values depending on the regime j which zt−d belongs to. Following Hansen (1997)

and Gospodinov (2005), I choose the stationary lag difference ∆zt−d = |yt−d − yt−d−1|

as the threshold variable. There are other candidates for the threshold variable, such

as moving average
∑d

i=1

|yt−i|
d + 1

or stationary lag value of dependent variable yt−d use

by Tsay (1998).

As discussed earlier, the ARMA order p and q for different regimes are the same.

I choose p and q to be (1, 1). This specification is accepted for modeling short term

interest rate, see Gospodinov (2005) and among others. Other diagnostic check, such

as autocorrelation function (ACF) and the partial autocorrelation functions (PACF)

also indicate that the right ARMA order is (1, 1) for our data. Table 1 summarizes

the result of ACF and PACF of the data with the first ten lags.

2.3.2 Two State Markov-Switching Model with ARMA Errors

In this essay, I consider the MSM in mean with ARMA (p, q) error, and it is defined

as,

yt = γ0 + γ1St + ut (5)

ut =

p∑

i=1

φiut−i +

q∑

i=1

θiεt−iεt (6)

εt ˜ N
(
0, σ2t

)
(7)

so, yt has two mean values depending on the state variable St. If St = 0, then mean is

γ0; if St = 1, then mean is γ0+γ1, γ1 > 0. The state variable St evolves according to a
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two-state first order Markov switching process with following transition probabilities:

Pr [St = 0|St−1 = 0] = p00, Pr [St = 0|St−1 = 1] = q00

The functions (6) and (7) specifying ARMA error are similar to those in TARMA

model, except the former one is not grouped by regimes. We choose two-state MSM

corresponding to the two-regime TARMA model, which make the comparison feasible.

2.3.3 Model Selection Criteria

Predictive density has been proposed to make model selection in application. I use

MCMC algorithm to draw predict value ỹit+j based on the posterior means of the

estimated parameters. Then, I compare the shape of the predictive density curve of

the two models. The kernel density of the predicted ỹit+j is drawn accordingly. Ideally,

the model better capturing the characteristics of the data has the distribution close

to normal and relative smaller probability at tails. The better model also has less

variance, which indicates that the curve is tight around its mean.

The MSEF is used as another criteria for model selection. It is given by:

MSEF (i) =
1

n

n∑

j=1

(
ŷ
(i)
t+j − yt+j

)2
(8)

where ŷit+j is the i-th draw of the predictive value of yt+j, j = 1, . . . , n. ŷit+j is

the estimated value based on the posterior mean of the parameter, and yt+j is the

realized value. The model with the smaller MSEF is chosen to be the best model.

This approach has been applied in Anderson, Bollerslev, Diebold and Labys (2003),

Goldman, Nam and Wang (2005), and among others. The posterior density of MSEF

and the cumulative density of MSEF are also drawn for further comparison. The

posterior density with tighter shape and smaller tail is the better one. For cumulative

density, the one more quickly attaining the highest level and having higher level at
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each point is considered to be the one leading model.

2.4 MCMC

2.4.1 Two-regimes TARMA Model

Prior, Likelihood Function and Posterior Let π (γ, φ, θ, r) to be the proper

prior given by,

π (γ, φ, θ, r) =
k∏

i=1

N


γ0i,

∑

γi


×N


φ0i,

∑

φi


×N

(
θ0i,

∑

θi

)
× I

(
r ∈

[
r
(i)
low, r(i)up

])

(9)

where the threshold parameter r has uniform prior. In order to guarantee sufficient

sample size for each regime, we impose a restriction of δ = 20% of total sample size as

a minimum observation number in each regime. Thus, the threshold ri is restrained in

the interval
[
r_low(i), r_up(i)

]
. The hyperparameters

{
γ0i,

∑
γi
;φ0i,

∑
φi
; θ0i,

∑
θi

}

are assumed to be known. The likelihood function of the TARMA model is given by,

'
(
y|x, γ, φ, θ, σ2, r

)
=

k+1∏

j−1

∏

t∈TJ

1

σt
√
2π

φ

(
y
(j)
t − g(Zt)√

2σt

)
(10)

where for each t ∈ Tj = {t : rj−1 ≤ zt−d ≤ rj} ,

et = y
(j)
t − x

(j)
t γ(j)

εt = y
(j)
t − g(Zt)

g(Zt) = x
(j)
t γ(J) −

k∑

i=1

φ
(j)
i et−j −

q∑

i=1

θ
(j)
i εt−i (11)

Thus, the posterior distribution is given by,
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P
(
γ, φ, θ, σ2, r|data

)
∝ π (γ, φ, θ, r)

k+1∏

j−1

∏

t∈TJ

1

σt
√
2π

φ

(
y
(j)
t − g(Zt)

σt

)
(12)

MCMC Procedure Given the number of regimes and the order of p and q, the

parameters to be estimated are (γ, φ, θ, σ2, r). The M-H algorithm for ARMA compo-

nent has been explained by Nakatsuma (2000). Instead of using constrained nonlinear

maximization algorithm (CML) in MA block for independent chain, I used random-

walk Markov chain. The random walk is more efficient than the CML in reducing the

computational time, whereas “not losing much of the acceptance rate of Metropolis-

Hasting algorithm”, as done in Goldman and Tsurumi (2005).

The conditional distribution of the threshold is non-standard. The choice of the

spread or scale, and the candidate-generating density is critical and has implications

for the efficiency of the algorithm. Here, I applied efficient jump method developed

by Goldman and Agbeyegbe (2005). The efficient jump algorithm goes as follows:

Threshold r is generated by normal distribution, N
(
r
(i−1)
j , stdr

(i−1)
j

)
. The standard

deviation is initially selected as a constant C0, which is equal to the half-distance

between the upper and lower bound for each regime. After some number of draws,

the standard deviation of the sample of the accepted draws is multiplied by a scaling

constant C.

stdr
(i−1)
j = C × stdr ({rm}) , m = n0, . . . , i− 1 (13)

{
r
(m)
j , m = 1, . . . , i− 1

}
is the sample of accepted draws in the regime j. We can

control the accept rate by changing the scaling constant C.

I estimate the parameters in block: 1) regression parameters γ, 2) AR coefficients

φ, 3) MA coefficients θ, 4) σ2. 5) threshold parameter r. The proposal distributions

for these parameters are based on the original ARMA model:
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yt = xtγ
(j) +

p∑

i=1

φ(j)i
(
yt−i − xt−iγ

(j)
)
+ εt +

q∑

i=1

θ(j)i εt−i, εt ˜ N
(
0, σ2t

)
(14)

Using above equation, I generate (γ, φ, θ, σ2, r) from their proposal density, the details

are provided in Appendix II.A. The initial value for γ is obtained from the OLS

estimate. The initial value of (φ, θ) is set arbitrarily. For threshold r, I use the mean

value of (r_up + r_low) for the two-regime model.

Then, I sort data according to the increasing order of the threshold variable ∆zt−d.

Thus, all the observations in each regime follow the same ARMA model. The OLS

estimates of gamma is used for each regime as the starting value of γ
(0)
1 , γ

(0)
2 . When

the data are sorted into regimes based on threshold r, I transform the original model

into the arranged ARMA model. The outline of the MCMC procedure is as follows;

1. Generate (γ, φ, θ, σ2, r) from the proposal density based on the equation (14)

block by block.

2. Apply M-H algorithm after each parameter is generated, i.e., generate a value

of
(
γ̂, φ̂, θ̂, σ̂2, r̂

)
from proposal and accept the proposal value with probability:

λ(A, Â) = min

{
P (Â|data)/h(Â)

P (A|data)/h(A)
, 1

}
(15)

where A = (γ, φ, θ, σ2, r) , h(A) is proposal density defined in equation (14), see

Appendix II.B of Metropolis-Hasting for each block in details.

3. Repeat above two steps until each sequence converges.

Here, several remarks need to be made. First, parameters in each block are drawn

for all regimes separately, but accepted or rejected jointly in one block. The accep-

tance rates are controlled by multiplying the variance of the proposal density with

a scaling constant. Second, regression coefficient and ARMA coefficients are drawn

from independent multivariate normal distribution. The threshold r follows efficient
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jump algorithm as I discussed above. Third, I make N draws of the parameters in

each of the five blocks, and burn the first M draws. Out of the remaining N −M

draws, I keep every h-th draw. N , M and h are chosen optimally according to the

convergence test.

2.4.2 Two-state Markov Switching Model with ARMA Error

Prior, Likelihood Function and Posterior Following the Bayesian rule and

conditional distribution, we derive the posterior distribution of the parameter,

P (Θ, S|Y ) ∝ P (Θ, S)L(Y |Θ, S) ∝ π(Θ)P (S|Θ)P (Y |Θ, S) (16)

where Θ = (γ, φ, θ, p00, p11), S = (S1, . . . , ST ), and Y = (yt, . . . , yT ).

The prior distribution of parameters are defined as,

π (γ, φ, θ, p00, p11) = N

(
µγ,

∑

γ

)
×N

(
µφ,

∑

φ

)
×N

(
µθ,

∑

θ

)

×Beta(u00,u01)× Beta(u11,u10) (17)

Where Beta(.) is the beta function.

The conditional distribution of the state variable is P (S|Θ) , which only depends

on (p00,p11), is defined as,

P (S|Θ) = P (S|(p00,p11)) =
T∏

i=1

P (St+1|St, p00,p11) = p
η00
00 (1− p00)

η01p
η10
11 (1− p11)

η10

(18)

where ηij is the number of the transitions from state i to state j. The last term

P (Y |Θ, S) is likelihood function assuming that the states and the parameters are

known. Therefore, it is a full information likelihood function.
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P (Y |Θ, S) =
T−1∏

i=1

L(yi|Yi−1, St, . . . , S1,Θ) =
T∏

i=1

1√
2πσ2t

exp

[
− ε2t
2σ2t

]
(19)

MCMC Procedure Following Hark Yoo (2006), I conduct the MCMC procedure

as follows,

Step 1: Generate each St from P (St|S�=t, Y,Θ) for t = 1, . . . , T by single move

approach.

Step 2: Generate the transition probabilities, p and q from Beta distribution.

Step 3: Generate regression coefficients and ARMA parameters from P (γ, φ, θ|S, p, q, Y ).

Use single move developed by Albert and Chib(1993), I draw state one by one

from each of the following conditional Distributions,

P (St|S�=t, Y,Θ) ∝ P (St+1|St,Θ1)P (St|St−1,Θ1)P (yt|Yt−1, St,Θ) (20)

The detailed derivation of above equation is provided in Appendix II.C. The first and

second term in the RHS of above equation can be obtained by transition probabilities

and the last term is given by likelihood function. After calculating P (S1|S�=1, Y,Θ),

we can generate St using a uniform distribution. For example, we generate a random

number from uniform distribution between 0 and 1, if the generated number is less

than or equal to the calculated value of P (S1| S�=1, Y,Θ), we set St = 1, otherwise 0.

Conditioning on ST , the transition probabilities p and q are independent of data

Y and other parameters in the model. I use beta distribution as conjugate priors,

and the likelihood function for p and q is given by,

L(p, q|ST ) = pη00(1− p)η01qη11(1− q)η10 (21)

Thus, the conditional distribution of (p, q) is given by ,
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P (p, q|ST ) = π(p, q)L(p, q|ST )

∝ pu00−100 (1− p00)
u01−1qu11−111 (1− q00)

u10−1p
η00
00 (1− p00)

η01q
η11
11 (1− q11)

η10

∝ p
u00+η00−1
00 (1− P00)

u01+η01−1q
u11+η11−1
11 (1− q11)

u10+η10−1 (22)

Then, p00 and q11 are generated by Gibbs sampler from the following independent

beta distribution:

p00|ST ∼ Beta(u00 + η00, u01 + η01) (23)

q11|ST ∼ Beta(u11 + η11, u10 + η10) (24)

The regression and ARMA type parameters are generated by M-H algorithm in a

way similar to those describe in TARMA model. To save space, I do not list all the

details here. The only difference is that in generating MA coefficient θt, we use the

approach proposed by Chib and Greenberg, i.e. linearizing εt by first-order Taylor

expansion:

εt(θ) ≈ εt(θ
∗) + ψt(θ − θ∗) (25)

where εt(θ
∗) = y∗t (θ

∗) − x∗t (θ
∗)µ, ψt =

[
ψ1t, . . . ψqt

]
is the first-order derivative of

εt(θ) evaluated at θ∗ given by the following equation,

ψ1t = εt−i(θ
∗)−

q∑

j=1

θ∗jψit−j , ψit for t ≤ 0 (26)

and the non-linear least square estimate of θt is given by
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θ∗ = argmin
θ

n∑

t=1

{εt(θ)}2 /σ2t (27)

The initial value of γ is given by the OLS estimates, and the starting values of other

parameters are arbitrary.

2.4.3 Drawing Predictive Value ỹ
(i)
T+j

There are two ways to obtain the i-th draw of the predictive value ỹ
(i)
T+j . The first

and the easier way is to draw ỹ
(i)
T+j from the conditional density of f(ỹT+1|Θ̂, data),

where Θ̃ is the posterior mean of the parameters. And we keep randomly drawing for

n times. For convergence purpose, I get rid of the first m values, and choose every

j−th value as the final MCMC series. Then, the density is the final sample produced

by the iteration.

The second way is to obtain the unconditional density of the predictive ỹT+1 given

by, f(ỹT+1|data) =
∫

f(yT+1|Θ)P (Θ|data)dΘ. So, one complete cycle of MCMC

procedure actually consists of 3 steps. First I use method one described in previous

paragraph to get the predictive value of y
(i−1)
t=1 conditional on Θ̂(i−1). Then draw Θ̂(i)

based on the generated y
(i−1)
t+1 and the original data, and finally I draw the predictive

y
(i)
t+1based on the Θ̂(i). I iterate this process by n times, and the final sample is

produced by the iteration after burning the initial values and choose every h-th value.

In this essay, I use the both ways to obtain the predictive value of the one-period ahead

ỹT+1.

2.5 Data

The data for my empirical analysis is the monthly UK 3-month Treasury Bill from

the Global Financial website. It covers the horizons from January 1950 to December

2005, total 672 observations. Figure 1 and Figure 2 plot the dynamics of the level
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and absolute change of the 3-month interest rate over time. There are presence

of frequent jumps that can be characterized by high level of volatility and mean

revision. For example, the interest rate for the period of 1973-1991 has high level and

high volatility. In particular, during the late 1970s and early 1980s, macroeconomic

conditions were dominated by the oil price shocks and other rises in agricultural

and mineral products. These were considered to play a big role in the stagflation

of that decade. The recession is characterized by significantly higher interest rate

and somewhat more variable interest rate. The return also changes significantly in

economic recession.

Table 2 summarizes the descriptive statistics. We find that the interest rate is

slightly right skewed; however, it does not show excess kurtosis. Jarque-Bera statistics

indicates that it is not normally distributed. The series are highly auto correlated

even at lag 30. Table 3 present the ADF and KPSS unit root test, and we find that

we cannot reject the unit root for the level at 5% significance level, but can reject the

unit root for first difference at 1% level.

2.6 Results

The threshold-like behavior of interest rate can arise from following aspects. The

first one is the transaction cost [see Anderson (1997)]. Because the transaction is not

continuous, the adjustment of the deviation from the arbitrage condition is infrequent,

and happens after passing through a threshold. Another reason comes from the policy

aspect. Short-term interest rates are generally determined by the Federal Reserve in

U.S. or central bank in other countries. The small deviation from the target zone

is admissible for policy maker, only the deviation exceed its market expectation, i.e.

beyond certain critical value, then central bank will re-evaluate the rate, thus the

nonlinearity of the interest rate will be induced.

The estimation of TARMA model is summarized in Table 4. The threshold vari-
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able is the absolute change of the short rate ∆zt−1 = |yt−1 − yt−2|. The returns are

used as a proxy for latent monthly volatility process, thus the threshold variable

divide the data into low- and high- volatility regimes. The threshold parameter is

selected to be 0.178. There are 390 observations falling in the high-volatility regime

and 279 observations classified into the lower volatility regime. Except the persis-

tence coefficient, the estimated parameters for two regimes are quite different. All

parameters lie within their 95% HPDI. Most parameters are statistically significant

except the MA coefficient and AR coefficient in regime 1. This indicates that the

data do exhibit some regime changing.

The estimated γ2 is 0.9848 and 0.9855 for regime 1 and regime 2 respectively.

Thus the persistence of the low- and high-regimes is both strong, which means the

probability of interest rate remaining in the previous regime for next period is more

persistent. We cannot reject the unit root for both regimes as the persistence para-

meter lies in the 95% HPDI. This results are different from the observations made

by some former regime switching literature [Gray (1996), Ang and Bekaet (2002a),

Bansal and Zhou (2002), Goldman and Agebeyegbe (2005)]. They use US data and

find that interest rate follows a unit root in lower regimes and the mean-reversion

process become stronger after pass certain threshold.

The possible reason for the difference is the model specification. According to

Brenner (1996), the interest rate volatility has both level and GARCH effects. If

GARCH component is omitted in the model, the estimated level effect is biased.

Since conditional variance could also be random and they are modeled as GARCH

process in the literatures I mentioned above, the high conditional volatility in up-

per regime is attributed to the GARCH estimation, and the lagged level effect plays

the mean reverting role. In our model, variance σ2t is assumed to be conditional

heteroskedasticity, but this is not modeled explicitly. Thus it is included in the per-

sistence coefficient, which makes the upper regime also exhibit unit root process. The
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variance in both regimes exhibit large difference, which indicates that the conditional

variance also follows regime switching process. The GARCH component can be added

in modeling conditional variance to improve the estimation accuracy or forecast per-

formance. The stationery of non-linear time series implies that the stationary two

regime TAR model is characterized by a unit root in lower regimes and stationary in

upper regimes, which is not the case we find here. Therefore, the interest rate is not

stationary here.

I apply the same data to the 2-state Markov switching model, which is defined

in section 3. I perform MCMC iteration 9000 times, and the first 6000 draws are

discarded. The estimate results are summarized in Table 5. Except for the intercept

coefficient, all the other coefficients are statistically significant. We also find that the

all estimated parameters are in the 95% HPDI.

Figure 3 illustrate the effectiveness of the model. The black line stands for the

true value of interest rate, and the fitted value is illustrated by the red line. We find

that the model captures the trend of peaks and troughs of the real data. Further

more, we can distinguish the difference between the peaks after the estimation; the

second peak is due to the change of state while the first one is just an error process.

We obtained the mean value and the 95% HPDI of one-day ahead forecast for

both models use the two methods described in section 4.3, and compare them with

the realized value. The results in table 6 indicate that the mean values of the predictor

for both models are close to the realized value no matter which method we choose.

Except for the conditional predictive value by the MSM, all the realized values fall

within the 95% HPDI in both models. However, the unconditional predictive mean

is slightly closer to the true value than the conditional predictive mean for TARMA

model. The same patter is found for MSM. Under unconditional case, the mean

value of the predictor is better for MSM than for TARMA model as the former one is

close to the true value. In addition, the prediction by MSM has much less standard
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deviation and tighter 95% HDPI compared with TARMA model.

The above numbers are not so clear for deciding which model is better. I use the

predictive density of Yn+1 to illustrate the case. Figure 4 displays the posterior density

of one-day forecast by both models using conditional predictive density. There is no

distinctive superiority of TARMA or MSM. The shape of the density by TARMA

model looks more close to normal distribution, and centered at 5.2.; however, it has

more probability at the right tail. The density of MSM has two modes and relative

large probability at the left tail. It’s hard to choose one model to be the leading one

based on these results. If we draw the unconditional predictive density, the results

change in the way that MSM is relatively more accurate. Figure 5 shows the posterior

density for unconditional predictive by both models. Clearly, the MSM still has two

modes, but it has much less probability at the tails, and tightens around its peak.

I then calculate the mean, standard deviation; mode and HPDI for the MSEF of

the one-day forecast for both models, and the results are presented in Table 7. The

one-day forecast by the MSM model has less mean, standard deviation and mode for

unconditional predictive value. If we use these as the criteria for model selection,

the MSM is preferred to TARMA model. The conditional case is decisive now. The

mean, standard deviation and mode of MSEF for MSM is large than for TARMA

model, therefore, TARMA model is superior than MSM under conditional case.

To make further comparison, I graph the posterior density of MSEF for both

models, and Figure 6 and Figure 8 illustrate the results. For conditional case, the

posterior density of TARMA is tighter than that of MSM, However, it peaks at the

bigger value, which cannot demonstrate that TARMA beats MSM. The unconditional

case is also ambiguous. On the one hand, MSEF by MSM has less probability at ex-

treme values, on the other hand, it has bigger peak value than TARMA model does.

Thus, I turn to another more accurate comparison criteria: the cumulative density of

MSEF. I graph the cumulative density for both conditional and unconditional predic-
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tive values in Figure 7 and Figure 9. Clearly, the TARMA model is superior to the

MSM in conditional case as it rises quickly and smoothly to the highest level. For the

unconditional predictive MSEF, it shows that MSM is the better one. Therefore, the

TARMA model is better in predicting future short-term interest rate in conditional

case while the MSM is superior for unconditional case.

2.7 Conclusions

In this essay, I use both conditional and unconditional predictive density to compare

the TARMA model and MSM. The results are mixed. For conditional predictor, the

MSEF and the posterior density graph both indicate that the TARMA model is su-

perior to MSM, with less MSEF and less probability at tails for posterior density of

MSEF. But this conclusion is just opposite if we use unconditional prediction. The

posterior density of predictor is much tight, and MSEF is smaller for MSM than for

TARMA model. Under both methods, the posterior density of prediction for MSM

has turned out to be two modes, which makes the comparison not so straightforward.

Since unconditional density uses data twice, we may consider conditonal density is

more precise in predict future value of interest rate than unconditional method. How-

ever, it leaves to the researcher’s judgemental call which model is better.

In extension, we can use the alternative model selection criteria, such as cross

validation combining predictive density. The cross-validation method dates back to

Geisser and Eddy (1979). Gelfand (1996) provide further discussion on it. The

underlying idea is to divide dataset into two parts. One proportion of the observations

is used for estimation and the other proportion is used for validation. However, there

are different approaches to partition the observations. In this way, it reduces the

estimation risks due to the double use of the same dataset for both estimation and

validation, which pointed out by Hastie, Tibshirani and Friedman (2001).
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Appendices
II.A: Proposal Density for TARMA Model

The ARMA algorithm was suggested by Chib and Greenberg (1994). For the

TARMA model with efficient jump, we follow Goldman (2005). The multivariate

Normal distribution is used as the proposal density for each block of the parameters.

The TARMA model is given by

yt = εt + g(Zt) = xtγ
(j) −

p∑

i=1

φ
(j)
i et−j + εt +

q∑

i=1

θ
(j)
i εt−j (28)

where, εt � N(0, σ2) for every t ∈ Tj = {rj−1 ≤ zt−d ≤ rj}, j = 1, . . . , k + 1. The

likelihood function is given by,

' (y|x, γ, φ, θ, r) =
k+1∏

j−1

∏

t∈TJ

1

σt
√
2π

φ

(
y
(j)
t − g(Zt)√

2σt

)
(29)

where σtis fixed and known. Given the i-th draws of r(i), we classify the sample

of y, and xt into regimes. Then estimating the parameters for each regime.

1) Proposal density for γ(i). For the observations in regime j(t ∈ Tj = {rj−1 ≤ zt−d ≤ rj}),equation

(28) is re-written as

y∗t = x∗tγ
(j) + εt (30)

where y∗t and x∗t are calculated by the following transformation,

y∗t = yt −
pj∑

i=1

φyt−j −
qj∑

i=1

θ(j)i y∗t−j (31)

x∗t = xt −
pj∑

i=1

φxt−j −
qj∑

i=1

θ
(j)
i x∗t−j (32)

yt = y∗t = 0, xt = x∗t = 0 for t ≤ 0. Let X
γ
(i−1)
j

= (x∗
′

j1
, . . . , x∗

′

jnj
)′ be the matrix of
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x∗t belonging to regime j, and
(∑(i−1)

γ(j)

)−1
be a diagonal nj × nj variance-covariance

matrix of εt(t ∈ Tj = {rj−1 ≤ zt−d ≤ rj}). We have following proposal density of γ(j),

γ
(i)
j ˜N


γ

(i−1)
j ,

∑

γ
(i−1)
j


 ,

∑

γ
(i−1)
j

= s21


X ′

γ
(i−1)
j

(

(i−1)∑

j

) +
−1∑

rj



−1

(33)

We draw each γ
(i)
j separately because the posterior density of γj is indepen-

dent of γl for l 
= j, and accept or reject them jointly for the whole vector γ(i) =
(
γ
(i)
1 , . . . , γ

(i)
k+1

)
with probability λ1 given in the text. We set st = 1.0 if the accept

rate greater than 40%.

2) Proposal density for AR coefficient φ(i). For the observations in regime j(t ∈

Tj = {rj−1 ≤ zt−d ≤ rj}), equation (28) is re-written as,

ỹt = x̃tφ
(j) + εt (34)

where y∗∗t and x∗t are calculated by the following transformation,

ỹt = y∗∗t − x∗∗t γ(j) −
qj∑

i=1

θ
(j)
i y∗∗t−j (35)

x̃t =
[
ỹt−1, . . . , ỹt−pj

]
and ỹt = y∗∗t = 0 for t ≤ 0. Let Xφj =

(
x̃
′

j1, . . . , x̃
′

jnj

)′
be

the matrix of x̃t belonging to regime j, we have following proposal density of φ(i),

φ(i)j ˜N


φ(i−1)j ,

∑

φ
(i−1)
j


 ,

∑

φ
(i−1)
j

= s22


X ′

φ
(i−1)
j

(

(i−1)∑

j

) +
−1∑

φj



−1

(36)

We draw each φ
(i)
j separately and accept or reject them jointly for whole vector φ(i) =

(
φ
(i)
1 , . . . , φ

(i)
k+1

)
with probability λ2 given in the text.

3) Proposal density for MA coefficient θ(i), For the observations in regime j(t ∈

Tj = {rj−1 ≤ zt−d ≤ rj}), equation (28) is re-written as,
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ŷt = x̂tφ
(j) + εt (37)

where y∗∗t and x∗t are calculated by the following transformation,

ŷt = y∗∗t − x∗∗t γ −
p∑

i=1

φ
(j)
i

(
y∗∗t−j − x∗∗t γ(j)

) qj∑

i=1

θ
(j)
i y∗∗t−j (38)

and ŷt = y∗∗t = 0 for t ≤ 0. Let Xθj =
(
x̂
′

j1
, . . . , x̂

′

jnj

)′
be the matrix of x̂t belonging

to regime j, x̂t =
[
ŷt−1, . . . , ŷt−pj

]
. We have following proposal density of θ(i),

θ
(i)
j ˜N


θ

(i−1)
j ,

∑

θ
(i−1)
j


 ,

∑

θ
(i−1)
j

= s23


X ′

θ
(i−1)
j

(

(i−1)∑

j

) +
−1∑

θj



−1

(39)

We draw each φ
(i)
j separately and accept or reject them jointly for whole vector φ(i) =

(
φ
(i)
1 , . . . , φ

(i)
k+1

)
with probability λ3 given in text.
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II.B: Metropolis-Hasting Accept or Reject Rule for Each Block

1) Regression coefficient block γj. For each regime, j = 1, 2,, generate γ(i)j from

the proposal density N
(
γ
(i−1)
j ,

∑
γ
(i−1)
j

)
, which is defined previously. Let γ(i) =

(
γ
(i)
1 , γ

(i)
2 , γ

(i)
3

)
. Accept or reject γ(i) with probability:

λ1 = min

{
P (γ(i), φ(i−1), θ(i−1), σ2(i), r(i−1)|data

P (γ(i−1), φ(i−1), θ(i−1), σ2(i), r(i−1)|data
, 1

}
, (40)

otherwise γ(i) = γ(i−1).The proposal density in numerator and denominator has been

canceled out as we take random walk draw.

2) AR coefficient block φj. For each regime, j = 1, 2,, generate φ
(i)
j from the pro-

posal density N
(
φ
(i−1)
j ,

∑
φ
(i−1)
j

)
, which is defined previously. Let φ(i) =

(
φ
(i)
1 , φ

(i)
2 , φ

(i)
3

)
.

Accept or reject φ(i) with probability:

λ2 = min

{
P (γ(i), φ(i), θ(i−1), σ2(i−1), r(i−1)|data

P (γ(i), φ(i−1), θ(i−1), σ2(i−1), r(i−1)|data
, 1

}
, (41)

otherwise φ(i) = φ(i−1).

3) AR coefficient block θj. For each regime, j = 1 and 2, generate θ
(i)
j from

the proposal density N
(
θ
(i−1)
j ,

∑
θ
(i−1)
j

)
, which is defined previously. Let θ(i) =

(
θ
(i)
1 , θ

(i)
2 , θ

(i)
3

)
. Accept or reject θ(i) with probability:

λ3 = min

{
P (γ(i), φ(i), θ(i), σ2(i−1), r(i−1)|data

P (γ(i), φ(i), θ(i−1), σ2(i−1), r(i−1)|data
, 1

}
, (42)

otherwiseθ(i) = θ(i−1).

4) σ2 block. For each regime j with nj observations, we generate σ
2(i)
j from Inverted

Gamma distribution,

g = IG(v, d) (43)

where v =
nj + v0

2
, d = ε′ε + δ0, v0 = δ = 0, and εt = y∗t − x∗tγ, y∗t , x

∗
t are given in
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proposal density part in appendix. Let σ2(i) =
(
σ
2(i)
1 , σ2

(i)
2 , σ

2(i)
3

)
. Accept or reject

σ2(i) with probability:

λ4 = min

{
P (γ(i), φ(i), θ(i), σ2(i), r(i−1)|data

P (γ(i), φ(i), θ(i), σ2(i−1), r(i−1)|data
, 1

}
, (44)

otherwise σ2(i) = σ2(i−1).



31

II.C: Derivation of Conditional Density of St

The conditional distribution of St is given as follows,

P (St|S�=t, Y,Θ) =
P (Y |S)P (St|S�=t)

P (Y |S�=t)
∝ P (Y |S)P (St|S�=t) (45)

The first term in above equation is generated by

P (Y |S) = P (y1|S)P (y2|y1, S), . . . P (yT |yT−1, S) = P (y1|S)P (y2|y1, S1, S2), . . . , P (yt|YT−1,S)

∝ P (yt|YT−1,S1, . . . , St), . . . , P (yt|yT−1, S) (46)

In above equation, step 2 to step 3 is given by the fact that the likelihood function

of yt = (t = 1, . . . , T ) is independent of all past history of state and Yt−1.

The second term is derived by,

P (St|S�=t) = P (St|S1, . . . , St−1,St+1,ST ) =
P (St+1, . . . , ST |S1, . . . , St)P (St|S1, . . . , St−1)

P (St+1, . . . , ST |S1, . . . , St−1)
(47)

∝ P (St+1, . . . , ST |S1, . . . , St)P (St|S1, . . . , St−1)

= P (St+1|S1, . . . , St)P (St+2|S1, . . . , St+1), . . . , P (ST |S1, . . . , ST − 1)P (St|S1, . . . , St−1)

= P (St+1|St)P (St+2|St+1), . . . , P (ST |ST−1)P (St+1|St)P

∝ P (St+1|St)P (St|St−1)

Combine above two equations, we have,

P (St|S�=t, Y,Θ) ∝ P (St+1|St,Θ1)P (St|St−1,Θ1)P (yt|Yt−1, St,Θ) (48)
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Table 1: AC and PAC for Interest Rate

interest ∆interest
lag AC PAC AC PAC
1 .99 .99 .13 .13
2 .98 -.03 .05 .03
3 .97 .02 -.04 -.55
4 .96 -.02 .03 .04
5 .95 -.01 .05 .04
6 .94 -.02 -.00 -.21
7 .93 -.01 .03 .03
8 .92 -.04 -.96 -.10
9 .91 -.01 -.41 -.23
10 .90 -.00 -.10 -.85

Table 2: Descriptive Statistics

Mean Std. Dev. Skewness Kurtosis J-B L-BQ(30)
y 6.98 3.58 .53 2.61 34.86 119.30
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Table 3: Unit Root Tests

Variables Test Deterministic Terms Lags Test Value
interest ADF Drift 25 −2.60

ADF Drift&Trend 25 −2.40
KPSS drift 25 1.02∗∗∗

KPSS drift & trend 25 0.60∗∗∗

∆interest ADF none 24 −22.76∗∗∗
ADF drift 24 −21.72∗∗∗
KPSS drift 24 0.12

Note: *** indicate rejection the null hypothesis at 1% level.

Table 4: Estimates of TARMA Model for Short-Term Interest Rate

Two-Regime TARMA
Parameters Mean St dev. Corr. HPDI at 95%
γ regime 1 .1100 .0275 .0530 (.0536, .1818)

.9848 .0040 .0456 (.9740, 09917)
γ regime 2 .1085 .0393 −0.019 (.0277, .2137)

.9855 .0044 .0228 (.9745, .9953)
φ regime 1 .1523 .1457 .0245 (−0.1256, .4807)
φ regime 2 .0911 .0215 −0.0144 (0.0394, 0.1303)
θ regime 1 .1414 .1169 −0.0493 (−0.0778, 0.4265)
θ regime 2 .0918 .0205 .0216 (.0438, .1290)
s2 regime 1 .1780 .0138 0.289 (.1526, .2043)
s2 regime 2 .1618 .0422 .0211 (.3849, .5475)
Threshold r .1780 .0144 .0390 (.1470, .2072)
Max AR root .1669 .1286 .0175 (.0002, .4273)

.0911 .0214 −0.0118 (.0384, .1303)

% obs in regime 1 58.30
% obs in regime 2 41.70

MBIC −139.52
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Table 5: Estimates of MSM

Two-State MSM
Parameters Mean St. dev. Corr 95% HPDI

γ0 0.4326 0.3298 0.0078 (−0.2263, 1.0657)
γ1 1.7062 0.3392 0.0240 (1.0234, 2.3656)
φ 0.9958 0.0026 −0.0144 (0.9909, 1.0000)
θ 0.4663 0.0362 0.0666 (0.3940, 0.5339)
s2 0.1557 0.0088 0.0803 (0.1388, 0.1733)
p00 0.9380 0.0128 0.0793 (0.9130, 0.9626)
p11 0.0912 0.0181 0.0283 (0.0556, 0.1268)

Table 6: Forecast of TARMA and MSM

Cond. Uncond.
Realized yT+1 4.5300 4.5300
TARMA ỹT+1 4.5218

(.6038)
4.5357
(.3987)

95% HPDI 3.3158, 5.7081 3.7914, 5.2870
MSM ỹT+1 4.5528

(.9832)
4.5218
(.4063)

95% HPDI .6395, 6.4956 3.7331, 5.3272

Note: The numbers in brakect are standard deviations

Table 7: MSE of Forecast for TARMA and MSM

TARMA MSM
Cond. Uncond. Cond. Uncond.

Mean 0.3644 0.9667 0.8455 0.8199
Std. Dev 0.5549 1.3868 0.9879 0.9620
Mode 0.0833 0.2012 0.1221 0.1241



40

3 Model Selection: Comparison of 10-Fold Cross

Validation and Out-of-Sample Forecast

3.1 Introduction

Model selection is an important data analysis task and it has its application in many

scientific research fields. The model selection criteria are complex depending on the

class of models as well as the characteristics of data sets. There are various model

selection criteria. One popular approach is using mean squared errors (MSE). More

accurate criteria, the predictive density has been proposed to make model selection in

application. Cross Validation (CV) is an accepted method to measure the predictive

density of a given model. CV will choose the best model which provides the lowest

CV error for the given data distribution across several candidate models. The studies

for CV method have been focused on using CV in model selection within some model

spaces or compare the properties of different CV tests.

Theoretically, CV has its advantages as it reduces the estimation risks due to the

double use of the same dataset for both estimation and validation, which pointed out

by Hastie, Tibshirani and Friedman (2001). In field of machine learning, it avoids the

danger of over-fitting . However, it also has disadvantages as it requires cumbersome

computation, accurate choice of partition data point, and unavailable routine for

dynamic models. The aim of this essay is to test the model selection ability for CV

method by comparing it with the traditional out-of-sample forecast method. If CV

method does not outperform the relative standard and less-computational burden out-

of-sample method, there is no need to use it. In this essay, we develop the algorithm

for 10-fold CV for simple linear non-nested regression model using the generated data.

We perform two comparison experiments with true model included in our model space.

Using MSEF and Pseudo Bayes Factor (PSBF) as the comparison criteria, we first

compare the prediction results from CV and those from the traditional out of sample
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forecast for fixed points. Normally, we would expect that CV exhibits a better model

selection ability for i.i.d sample as it uses the most information of the data. Our

results suggest that based on MSEF, randomized CV method and the fixed out-of-

sample method can choose the true model with high probability, however none of

them has 100% probability to choose the true model. However, the PSBF shows

the fixed point method seems to beat the CV method in choosing the true model.

We also conduct the second experiment using revised Markov Chain Monte Carlo

(MCMC). As pointed out by Robert & Titterington (2002), there is double use of

data in applying MCMC to draw the parameters, which has over-fit risk. We then

exclude the forecasted data in drawing coefficients, the results for CV improve by

having higher PSBF and higher probability of choosing the true model.

This essay is organized as follows. In Sections 3.2 we review the literature of

Cross Validation method. Model design and model selection criteria are in section

3.3. In section 3.4, CV algorithm and Bayesian estimation procedures are specified for

both experiments, including the prior setting, maximum likelihood and the posterior

distribution for each model. Section 3.5 discusses the results. Concluding remarks

and extension are discussed in Section 3.6.

3.2 Related Literature

3.2.1 Leave-one-out CV

Based on the size of the validation dataset, there are several methods of CV test.

The first is the Leave-one-out CV. It uses all the data points except rth data point to

do estimation. The benefit for leave-one-out CV is that it uses the most information

of the dataset, so it is accurate to some extend. However, it has the drawback of

huge computation load. Stone (1977a), Efron (1983), and Shao (1993) point out that

leave-one-out CV is asymptotically equivalent to Akaike information criterion (AIC),

Cp and bootstrap. Therefore, it suffers the same inconsistency in model selection as
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for those criteria. This inconsistency is that the probability of choosing the model

with the best predictive ability is not converge to 1 as sample size n tends to infinity.

Shao (1993) prove this result based on the classic linear model.

In applying leave-one-out CV, importance sample approach is used in drawing

parameters. The quality of the importance sampling depends on the variability of

the importance sampling weights. For example, if we leave one dominant data point

out, it will change the posterior substantially and the variance of the weights could

become infinite. So, leave-one-out CV is not accurate in this case. Another drawback

of leave-one-out CV is for high dimensional models. It could fail because of the large

variance of importance sampling weight. The examples can be found in Vehtari and

Lampinen (2002). If the liability of importance sampling is questionable, the better

choice is to use k-fold CV.

3.2.2 K-fold CV

In k-fold CV, the dataset is randomly partitioned into k groups. For each k, leaving

the k-th group for validation and the rest (k − 1) groups to form the set data T for

estimation. Then, report the mean errors over all k validation sets. Using simulated

data, Bekara and Fleury (2003) show that the consistency of CV can be achieved by

changing the estimation sample size. The ratio of
k

n− k
= 1

3
is suggested by Hastie,

Tibshirani and Friedman (2001). Vehtari and Lampinen (2002) perform simulations

and found the cases with k-fold CV works well while leave-one-out CV fails.

Chakrabarti and Ghosh (2006) give the comprehensive discussion on sample par-

tition of CV in model selection. They study how much of the sample should be used

as estimation and how much should be used as validation for fixed parameter dimen-

sion p under both M-closed (True model is in the model space) and M-open (True

model is not in the model space) case; and the infinite parameter p dimension for

M-closed case, where p ∈ Rp. Their simulation results suggest that if the parame-
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ter dimension is small (fixed), under regularity condition, the better discriminating

power of Bayes factor is found for larger size of validation group k. To be exact, as

k −→ ∞, n− k −→ ∞ in a way such that
k

n− k
−→ ∞ , then the Bayes factor will

be better to discriminate between models. If the parameter dimension go to infinite,

for the nested linear model with normal error, and the more complex model as the

true model, then the true model is chosen as k −→ ∞, n − k −→ ∞ such that
k

n
is

bounded away from zero in the limit. Chakrabarti and Ghosh (2006) also disagree

with Stone (1977a) and Shao (1993) in that AIC and CV are not equivalent. They

argue that Stone and Shao’s conclusions only hold when the considered model is the

correct model.

3.2.3 CV in Bayesian Context

In Bayesian framework, the combination of CV and Bayes Factor is popular in model

selection. It uses predictive density, normally the posterior density of the validation

data conditioned on the estimation data set and the true candidate model. The cross

validation Bayes factor, also called Pseudo-Bayes factor (PSBF) (Geisser and Eddy,

1979), which is originally aroused from Stone (1974), and Geisser (1975). Gelfand

(1996) provides further discussion on it. Compared with formal Bayes factor, CV

Bayes factor avoids the Lindley’s paradox1 inherent in former one. The underlying

idea of Bayes factor is to adopt a broader notion of predictive distribution and den-

sities. The predictive density is obtained by averaging a density arising from the

likelihood with respect to a distribution arising from the data-based updating of the

prior. Using Laplace approximations, Gelfand and Dey (1994) obtained the asymp-

totic behavior of the predictive density for the Bayes factors under fixed dimensional

1Lindley’s paradox shows the conflict between Bayesian and frequentist evidences in hypothesis
testing. Even if sample sizes increases to infinity, Bayesian methods accept the point null hypothesis
for values where the frequentist method leads to rejection. It is a result of the prior having a sharp
feature at H0 and no sharp features anywhere else. See Lindley, Dennis V. (1957). "A Statistical
Paradox".



44

parameters case. In particular, they proved that Lindley’s paradox disappears in

PSBF. Vehtari and Lampinen (2002) suggests the combination of posterior predictive

density with CV method as the posterior predictive density alone is not good in model

selection. It generally prefers the overfitted model. Only when the lower dimensional

models, the posterior predictive densities are good approximation of CV predictive

density. Therefore, CV method is a good supplement to posterior predictive density

in model assessment and model comparison. This has been applied by Gelfand et al.

(1992) , Gelfand (1996).

The merit of CV comparing with other model selection criteria is shown in Bekara

and Fleury (2003). They found that CV combined with predictive density (CVBPD)

outperformed the popular AIC and Minimum Description Length (MDL) as the prob-

ability of selecting the correct model is consistently higher using their CVBPD mea-

sure. As N → ∞ , the probability of choosing the correct model for CVBPD ap-

proaches 1. In addition, it also achieves faster convergence than Minimum Description

Length (MDL) for small samples. Therefore, CV could be a consistent and robust

model selection criterion. Chakrabarti and Ghosh (2006) also show that CV per-

form equivalent or better job in model selection compared with AIC under certain

condition.

The recent applications of CV method are found in Alqallaf and Gustafson (2000),

Bekara and Fleury (2003). Kárny, Nedoma, and Šmí¿dl (2005), Chakrabarti and

Ghosh (2006). Vehtari and lampinen (2002) list some difficulties in using CV in a

Bayesian context. In sum, there is no standard way of applying CV in a Bayesian

context.
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3.3 Model Specification and Model Selection Criteria

3.3.1 Choice of K

There are challenges in applying CV method in Bayesian context. First, we face the

computational challenges. When applying leave-one-out CV, for each re-fit process,

Markov Chain Monte Carlo (MCMC) requires many iterations. If we have large

dataset, the computation is cumbersome. In this essay, we focus on k-fold CV. One

problem associated with the k-fold CV is that it is biased since the estimation data

set may not be a good proxy for the full data. However, this bias can be ignored in

model comparison because biases are canceled out for both models. But if we assess

the model performance, this biased cannot be neglected. There is no agreed principle

or theoretical justification to determine the optimal value for k. To some extend, CV

is highly depend on how “luckily” or “unluckily” the validation dataset chosen. The

appropriate k depends on the models and the dataset. Simulation studies show that

value of k between 8 and 16 seems to balance well between the increased accuracy

and increased computational load. Therefore, we set k to be 10 here.

3.3.2 Model Specification

Normally, there are two cases for model selection in applications: true model is among

the considered group of models or none of the models is the true model. For the first

case, researchers need to compare those models to find out the true or optimal model.

For the second case, they need to find out which model is closer to true model. Based

on the relation among candidate models, there are also two design strategies. One is

nested models and the other is non-nested models. For each strategy, we can set the

parameters in models fixed, meaning the dimension of parameters in both models is

much less than the size of data, i.e, p << n. Or, we can set one model with infi-

nite parameter dimension and the others have fixed parameter dimension. However,
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this scenario may not have much appeal in empirical study. For non-nested mod-

els, typically, both models have fixed parameter dimension. If considering the model

type, there is linear model and dynamic model. Most paper, including Chakrabarti

and Ghosh (2006), Shao (1993), and Bekara and Fleury (2003) choose M-closed case

with fixed parameters and nested linear models, we follow their rule of including the

true model in our model space, but consider the non-nested models. The reason of

choosing non-nested model is its wide application in economic studies.

In our simulation case, we specify two simple linear regression models, one is the

correct model and the other is the wrong model. The correct model is specified as

follows,

Model One: y = xβ + ε1,with x2 ∼ U (0, 5) , β =



1

1


 ε1 ∼ N(0, 3) (49)

Here x is a 100 × 2 matrix, with x1 constant and x2 uniform distributed with range

from zero to five. The error term is normally distributed with zero mean and variance

equal to three. Therefore, the data is y1 generated by the correct model with sample

size of 100 and it is an i.i.d sample. The second model is defined as follows:

Model Two: y = zθ + ε2,with z ∼ N(2.5,
1

12
) (50)

where z is a 100 × 2 matrix, with z1 constant and z2 is normally distributed with

mean of 2.5 and variance equal to 1/12. Based on our data generating process, the

cross-validation hopefully lead us to choose model one.
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3.3.3 Model Selection Criteria

Predictive density has been proposed to make model selection. Here, we combine the

predictive density and CV method to evaluate the two models. Two measures have

been applied in model selection. The first one is the MSEF. We draw the predict

value ỹij based on the MCMC draws of the estimated parameters. The MSEF for one

validation dataset is given by

MSEFv =
1

mm

mm∑

i=1

1

r

r∑

j=1

(
ỹij − yj

)2
(51)

Where ỹij is the i-th draw of the predictive value of yj, j = 1, 2, · · · , r. yj is the

realized value. r is the number of observations in the validation data set. mm is the

number of MCMC draws. The overall MSEF cross all validation dataset is given by,

MSEF =
r

n

n/r∑

v=1

MSEFv (52)

The model with the smaller mean squared errors is chosen as the best model. The

posterior density of MSEF and the cumulative density of MSEF are also drawn for

further comparison. The posterior density with mass close to the origin and smaller

tail is the better one. For cumulative density, the one which more quickly attain the

highest level and has higher level at each point is considered the one for the best

model. In addition, we compare the shape of the predictive density curve of the two

models. So, we draw the kernel density of the predicted ỹj. Ideally, the model, which

better captures the characteristics of the data, has the distribution close to normal and

has relative smaller probability at tails. The better model also has smaller variance.

The second criteria are the CV ratio and its log value. According to Gelfand

and Dey (1994), assume yi, i = 1, 2, ..., n be a sequence of independent observa-

tions which has density f(yj|θk,Mk), k = 1, 2 under model k. Let Jn denote the

set {1, 2, ..., n}, {ys = (yj, j ∈ S)} with size of r, {ysc = (yj,j /∈ S)}. The conditional
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density of ys is given by,

f(ys|ysc, Mk) =

∫
L(θk; ys, Mk)π(θk|ysc)dθk

=

∫
L(θk; ys, Mk)L(θk; ysc, Mk)π(θk)dθk∫

L(θk; ys, Mk)(θk)dθk
, k = 1, 2 (53)

where L (·) is the likelihood function over the sample space of ys, and π (·) is the prior

updated by the sample space of ysc. Therefore, equation (53) defined a predictive

density by averaging the joint density of ys with respect to the prior for θk. If S =

(r), Sc = Jn − {r}, i.e, Sc is the set of (n− 1) observations with the rth observation

deleted, the CV predictive odds ratio or Pseudo-Bayes Factor (PSBF) is given by

Π
r
f(ỹr|y(r),M1)/f(ỹr|y(r), M2) (54)

where f(ỹ|y(r), Mk) is the posterior density of the predicted ỹ evaluated at realized y

based on the estimation set y(r) and model k. It is defined as follows,

f(ỹr|y(r), Mk) =

∫
L(yr|θ|y(r))π(θ|y(r))dθ (55)

To obtain this posterior density, we first draw the kernel density of the predicted

ỹr based on the MCMC sequence, then obtain the corresponding density f(ỹmr ) where

ỹmr = yr. Finally, take the average of f(ỹmr ) and f(ỹm−1r ) to get the posterior density

at the realized yr. If Model one is the true model or the better model, this ratio is

greater than one. We can also average the ratio by taking its log value as follows,

1

n

n∑

r=1

log
f(ỹr|y(r), M1)

f(ỹr, |y(r), M2)
(56)

The result is expected to be positive.
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3.4 Simulation

3.4.1 Procedure

There are three major steps in our algorithm. The first step is partitioning the data.

CV approach partitions data into two parts, with one part to do the estimation and

the other part used as validation set. Since we use 10-fold, which means we leave 10

data points out as the validation set and the remaining 90 data points for estimation.

We use two ways to do the partition for comparison purpose. One way, the non-

random approach or fixed draw approach, is to fix those 10 point. Let sample size

n = 100. Choosing the last 10 data points in the sample for validation and use the

first 90 data points for estimation. The other way is the actual CV method or random

partition, in which we randomly leave 10 points out each time and use the other 90

points to do the estimation. If we have 100 data points, we do the partition 10 times.

It ends up with 20 different partition dataset, 10 of them are with 10 data points and

the other 10 dataset with 90 data points. For non-random method, there is only two

partition datasets.

The second step is applying MCMC algorithm to draw the parameters and pre-

dicted ỹ. The estimated coefficient β or θ is obtained using estimation sample y(10),

where y(10) is the sample space leaving 10 observations out. Then we use the co-

efficient to obtain the predicted 10 data points. Both coefficients and ỹ are drawn

by Metropolis-Hasting (M-H) algorithms. For non-random method, we only need to

refit model once. For random draw, we need to refit model 10 times as the sample

size is equal to 100. For each refit, we need to do the Markov Chain Monte Carlo

(MCMC) iteration m times, with the first n iterations burned out. In our case, we

do the iteration 2100 times (repeating step 2 for 2100 times) with first 100 iterations

burned; then get an matrix with its row of 2000 and its column of 20 for each model.

The last step is to do the validation. We obtain the MSEF of forecasted ỹ and its
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distribution. In addition, the CV Bayes factor is also calculated using equation (54)

- equation (56), where r = 10.

3.4.2 MCMC

Prior, Likelihood Function and Posterior Let π(θ, σ) to be the proper prior

given by,

π(θ, σ) = π(θ|σ)π(σ) ∝ π(σ) ∝ σ−1 (57)

The likelihood function for simple linear regression model is given by,

'(θ, σ2|y, x) = (2π)
−
n

2 σ−n exp

{
− 1

2σ2
(y −Xθ)

′

(y −Xθ)

}
∝ σ−n exp

{
− 1

2σ2
(y −Xθ)

′

(y −Xθ)

}

(58)

The joint posterior pdf of θ and σ is given by,

f(θ, σ|y, X) = π(θ, σ)'(θ, σ2|y, x) ∝ σ−(n−k)−1 exp

{
− 1

2σ2
νs2

}
σ−k exp

{
− 1

2σ2
(θ − θ̂)

′

X ′X(θ − θ̂)

}

(59)

where νs2 = y′My, ν = n− k.

By integrating σ out, we obtain the marginal posterior pdf of θ as follows,

f(θ|σ, y) = (2π)
−
k

2 σ−k exp

{
− 1

2σ2
(θ − θ̂)′X ′X(θ − θ̂)

}
(60)

The joint posterior density of ỹ given θ, σ and X̃ is,

'(ỹ|θ, σ, X̃) ∝ σ−m exp

{
− 1

2σ2
(ỹ − X̃θ)′(ỹ − X̃θ)

}
(61)

Then the joint posterior density for ỹ, θ and σ is given by,
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f(ỹ, θ, σ|y, X, X̃) = '(ỹ|θ, σ, X̃)f(θ, σ|y, X) (62)

MCMC Procedure We use the M-H algorithm to draw the coefficients and pre-

dicted ỹ. The parameters are estimated in block: 1) regression parameters θ, 2)

variance σ2, 3) predicted ỹ. We can generate θ and ỹ from the proposal density. The

initial value of θ is the OLS estimates using the estimation data set with size equal

to 90.

The outline of the MCMC procedure is as follows;

1) θ block: set initial value of ỹ and σ2. Draw θ(1) using the proposal density

given by the following distribution,



θ
(1)
1

θ
(1)
2


 ∼ N










θ
(0)
1

θ
(0)
2


 , σ2(0)(x′x)−1








(63)

Set θ(1) =





θ(1) with probability α
(
θ(0), θ(1)

)

θ(0)with probability 1− α
(
θ(0), θ(1)

) (64)

where α = min

{
f(θ(1))q(θ(1))

f(θ(0))q(θ(0))
, 1

}
, f(.) is the posterior density defined by function

(62), and q(.) is the proposal density defined in function (63).

2) σ block: draw σ(1) by inverted gamma using obtained θ(1) in regression

block, then apply M-H algorithm and accept the proposal value σ(1) with probability:

α = min

{
f(σ(1) , θ(1))q(σ(1), θ(1))

f(σ(0) , θ(1))q(σ(0), θ(1))
, 1

}
(65)

3) Prediction block: draw ỹ based on the coefficients, then apply M-H algo-

rithm to choose. Use function (62) as the posterior density and accept or reject with

probability:



52

α = min

{
f(σ(1) , θ(1),, y(1))q(σ(1) , θ(1),, y(1))

f(σ(1) , θ(1),, y(0))q(σ(1) , θ(1),, y(0))
, 1

}
(66)

4) Repeat above three steps until each sequence converges.

For the second experiment without forecasted ỹ involved, we use the above steps

with slight difference. After drawing θ and σ blocks, we use posterior density defined

as equation (61) to draw ỹ. Then the information of forecasted ỹ is not used to draw

the coefficient. Thus, the joint posterior density of parameters (θ, σ) is based on

equation (59). In this way, it avoids double using the data.

3.5 Results

3.5.1 Experiment One: include ỹ to draw θ

The expected results based on our data generating is that model one is the best model

under both fixed partition method and random partition method, i.e., CV approach.

The mean, standard deviation and median of MSEF for each forecasted ỹ are expected

to be lower for model one. However, the results for fixed partition presented in table

8 are not consistent. If we leave the last ten data points out, we got a mixed results:

with the 92th and 97th observations have bigger mean ,standard deviation and median

for MSEF under model one.

To do the further check, we graph the posterior density and cumulative density

of MSEF for each predicted ỹ for both models. Figure 10 to Figure 19 present the

corresponding densities for the last ten data points. We find that the graphs are

consistent with the results from Table 8 . For data points ỹ92 and ỹ97, Model two

totally beat model one as the former one yield a higher and tighter posterior density

for MSEF, and its MSEF reach the highest level faster than model two does. So, the

traditional out-of-sample prediction does not always lead to the true model.

Now, we turn to the results of randomized CV method. Table 9 gives the mean,
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standard deviation and median for forecasted ỹs for each partition under both models.

The results show that in all cases, randomized CV method chooses the correct model

with only one exception. Model one is not chosen as the better model in first partition

dataset since it has slightly bigger mean, standard deviation and median of MSEF

than that of model two.

The posterior density and cumulative density of MSEF for the first partition

dataset shown by figure 20 conform to the MSEF result. Model two appears to be

superior than model one with tighter tail in posterior density and quicker convergence

for cumulative density. All the figures (Figure 21-Figure 29) for other partition sets

indicate that model one is chosen over model two. Therefore, the graphs show that

randomized CV method could lead to the correct model selection based on predictive

density.

The second measure is PSBF and its log value and the results are shown in table

10. For fixed partition, we got PSBF greater than one and its log value positive,

which is consistent with our previous results in MSEF. If we count the times that the

posterior density of predicted ỹ evaluated at the realized y for model one is greater

than that of model two, we got 60%, greater than 50%. For the random partition, we

got PSBF less than one and log of PSBF negative for seven out of ten partition sets,

which shows that predictive density combined with randomized CV is less accurate

in model selection for this case. It only has probability of 48% that model one yield

higher posterior density than model two. The MSEF result is not consistent with the

PSBF. If we only check MSEF, randomized CV method is slightly better in choosing

the true model than out-of-sample method. However, it is not superior in model

selection based on Bayes factors.

In addition, we compare the MSEF from two approaches under more aggregated

level by calculating the mean and standard deviation cross all predicted ỹs. The

results in table 11 show that overall, both methods capture the data property with
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lower MSEF for model one. However, for random partition method, it needs to points

out that for some particular data points, apply only predictive density cannot always

choose the true model. Therefore, it is not a robust in model selection.

3.5.2 Experiment Two: exclude ỹs

In this experiment, forecasted ỹs is not used in constructing coefficients. The MSEF

results presented in table 12 show that there is an improvement for fixed partition

method because the standard deviation of MSEF for the 97th data is smaller for

model one, and the mean of MSEF is almost the same for both models. So, the only

exception is the 92nd data.

The posterior density and cumulative density of MSEF for the predicted ỹ92 and

ỹ97 are shown in figures 30-31. The graph shows that model two beats model one for

ỹ92 only at certain range as their cumulative density curve cross each other. For ỹ97,

model one outperforms model two with quicker converge in cumulative density.

The PSBF is 13.20 and its log value is 0.11, which are higher than PSBF if we use

the predicted ỹ to obtain the coefficients. 80% of the posterior density evaluated at

realized y for model one is higher than posterior density of model two. The probability

is also higher than the probability we obtained without using the information of

predicted ỹ.

3.6 Conclusions

The simulation results are mixed. Randomized CV combined with Bayes Factor does

not reveal superior performance in model selection than traditional out-of-sample

forecast. MSEF obtained under randomized CV method is slightly better in choosing

the true model, but the dominance over out-of-sample method is not noticeable.

For i.i.d sample, excluding the forecasted data in constructing coefficients in MCMC

improves the model selection ability by fixed partition method.
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Figure 10 : Posterior D ensity of MSE for Predictive y
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Figure 11 : Posterior D ensity of MSE for Predictive y
9̃2
.

MSE

0 10 20 30 40 50 60 70 80

C
u
m

u
la

ti
v
e 

D
en

si
ti

es

0.00

0.20

0.40

0.60

0.80

1.00

Legend

Model One

Model Two

Cumulative Density o f MSE for Pred ictive ỹ92
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Figure 12: Posterior Density o f M SE for Pred ictive y
9̃3
.
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Cumulative D ensity of MSE for Pred ictive ỹ93
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Figure 13: Posterior Density o f MSE for Pred ictive ỹ94.
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Figure 14 : Posterior D ensity of MSE for Predictive ỹ95.
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Cumulative D ensity o f MSE for Pred ictive ỹ95
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Figure 15: Posterior Density o f M SE for Pred ictive ỹ96.
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Figure 16 : Posterior D ensity of MSE for Predictive ỹ97.
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Cumulative Density o f M SE for Pred ictive ỹ97.
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Figure 17 : Posterior D ensity o f MSE for Predictive ỹ98.
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Figure 18 : Posterior D ensity of MSE for Predictive ỹ99.
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Figure 19: Posterior Density o f MSE for Pred ictive ỹ100.
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Figure 20: Posterior Density o f MSE for Partition 1.
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Figure 21 : Posterior D ensity of MSE for Partition 2 .
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Figure 22 : Posterior D ensity of MSE for Partition 3 .
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Figure 23: Posterior Density of M SE for Partition 4.
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Figure 24 : Posterior D ensity of MSE for Partition 5 .
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Figure 25: Posterior Density o f MSE for Partition 6.
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Figure 26 : Posterior D ensity of MSE for Partition 7 .
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Figure 27: Posterior D ensity o f MSE for Partition 8.
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Figure 28: Posterior Density of M SE for Partition 9.
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Figure 29 : Posterior D ensity o f MSE for Partition 10 .
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Figure 30 : Posterior D ensity o f MSE for Predictive ỹ92 by Exluding ỹs.
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Figure 31 : Posterior D ensity o f MSE for Predictive ỹ97 by Exluding ỹs.
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Table 8: MSE of Forecasted ỹs (every 10 ỹs) for Both Models under Fixed Partition

MSEF of Model One MSEF of Model Two
Mean Std. Dev Median Mean Std.Dev Median

y91 6.73 7.10 4.63 7.15 8.84 3.79
y92 12.33 10.26 10.26 5.53 7.26 2.59
y93 11.43 10.24 8.93 26.11 20.69 21.82
y94 2.59 3.79 1.18 11.17 12.64 6.91
y95 6.88 7.78 4.38 7.67 10.22 3.97
y96 2.60 3.75 1.07 4.58 6.66 1.85
y97 7.12 7.52 4.76 4.29 6.26 1.96
y98 2.65 3.75 1.22 12.07 13.26 7.82
y99 2.72 4.08 1.18 9.70 11.47 5.93
y100 2.49 3.61 1.17 4.85 6.92 2.12

Table 9: MSE of Forecasted ỹs (every 10 ỹs) for Both Models under Randomized CV
method

MSEF of Model One MSEF of Model Two
Mean Std.Dev Median Mean Std.Dev Median

Partition 1 5.75 2.26 5.49 5.22 2.09 4.85
Partition 2 3.82 1.75 3.57 5.00 2.20 4.72
Partition 3 4.66 1.99 4.35 7.68 3.23 7.32
Partition 4 6.34 2.31 6.11 10.67 3.91 10.18
Partition 5 4.95 2.02 4.71 7.92 3.31 7.48
Partition 6 5.66 2.23 5.25 9.98 3.91 9.54
Partition 7 4.32 1.86 4.95 8.38 3.65 7.83
Partition 8 5.69 2.14 5.43 8.47 3.72 7.85
Partition 9 6.59 2.34 6.31 12.88 4.73 12.35
Partition 10 5.83 2.22 5.58 61.57 51.25 45.24
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Table 10: PSBF and log Value of PSBF for Both Methods

Fiexed Randomized CV
PSBF log(PSBF) PSBF log(PSBF)

Partition 1 6.61 0.08 0.83 −0.01
Partition 2 N/A N/A 1.20 0.01
Partition 3 N/A N/A 1.74 0.02
Partition 4 N/A N/A 0.60 −0.02
Partition 5 N/A N/A 0.43 −0.04
Partition 6 N/A N/A 0.36 −0.04
Partition 7 N/A N/A 0.72 −0.01
Partition 8 N/A N/A 0.02 −0.16
Partition 9 N/A N/A 0.58 −0.02
Partition 10 N/A N/A 42.09 0.16

Table 11: MSE of Cross All Forecasted Y s for Both Methods

MSEF of Fixed MSEF of Randomized CV
Model One Model Two Model One Model Two

Mean 5.75 9.29 5.36 13.78
Std. Dev 2.73 4.42 2.40 19.35
Median 2.80 3.88 1.92 3.08

Table 12: MSE of Forecasted ỹs Without Using ỹs to Draw Coefficients

MSEF of Model One MSEF of Model Two
Mean Std.Dev Median Mean Std.Dev Median

y91 9.55 12.48 4.67 12.60 17.58 5.46
y92 15.80 17.27 10.48 10.74 15.42 5.31
y93 15.02 16.17 9.79 31.02 31.09 22.91
y94 5.88 8.14 2.53 16.52 21.27 8.40
y95 10.41 13.22 5.07 13.96 17.99 6.86
y96 5.87 8.34 2.48 9.77 13.98 4.34
y97 10.11 13.00 5.11 10.07 14.23 4.59
y98 5.58 7.60 2.62 17.61 21.99 9.45
y99 6.35 8.96 2.98 16.47 22.88 7.93
y100 5.77 7.98 2.84 9.90 13.01 4.84
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4 Logit and Probit Model Selection

4.1 Introduction

Probit and logit models have been used to model binary or polychotomous choice.

Observed data of the dependent variable Y takes the values of 0 or 1. In the regression

framework, we are interested in estimating the coefficients β of the regressors X. One

way to achieve this goal is to use the linear probability model (LPM) . However, there

exists some unattractive features for this LPM. First, it produces heteroscedascitiy

for ordinary-least squares estimation when Y approaches to 0 or 1. The more serious

problem is that the linear specification cannot confine the estimated of Y to the unit

interval [0,1]. It also yields constant marginal effects. To overcome all those problems

associated with the LPM, one way is to introduce a positive monotone function to

transform the linear indicator function Y ∗ = Xβ, where Y ∗ is unobservable or latent

variable and the relationship between Y and Y ∗ is given by,

Y =





0 if Y ∗ < 0

1 if Y ∗ ≥ 0
(67)

thus,

P (Y = 1) = P (Y ∗ ≥ 0) = P (ε ≥ −Xβ) = F (Xβ) (68)

where F (·) is the cumulative distribution function (cdf) of ε. For probit model, this

cdf is normal distribution, that is ε ∼ N(0, 1). Therefore,

Y = Φ(Xβ) =
1√
2π

Xβ∫

−∞

e−
1
2
z2dz (69)

The logit model is similar to probit model with the cdf as logistic distribution, thus,
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P (Y = 1) = P (Y ∗ ≥ 0) = P (ε ≥ −Xβ) = F (Xβ) =
eXβ

1 + eXβ
(70)

In the mathematical sense, the probit and logit model is almost indistinguishable.

By taking the inverse of the logistic function defined in equation (70) we have,

logit (F ) = log
F

1− F
= Xβ (71)

In model selection, the conventional perception is that there is no difference to choose

either of them. However, some studies demonstrate that there are similarities as well

as differences between the probit and logit model. No universal agreement is reached

on which model is superior, probit or logit. The aim of this essay is to compare the

probit and logit model in terms of Bayesian model selection criteria and sampling

model selection criteria. Compared to other researches, the contribution of our study

lie in three aspects. First, we propose the Bayesian model selection criteria based

on the predictive probability. A large portion of the past studies concentrate on

the comparison of the coefficient estimates. Our study differs from these traditional

comparisons by studying the various model selection criteria based on the predictive

probability. Then, we use Exponential Power Distribution (EPD) to further check

the performances of the probit and logit models. EPD permits a range of kurtosis

values, and provides a relatively complete investigation of the distribution of the error

term. The third feature is that we devise Metropolis-Hasting (M-H) algorithm with

random walk, which convergences to steady state faster than other popular Bayesian

estimation method, such as data augmentation. Using generated data, we find the

probit and logit model perform almost identically when the data is balanced, i.e, the

percentage of y = 1 is 40% − 60%. However, they can be discriminated when the

data is unbalanced, that is the % of y = 1 is around 10% − 20%. Thus, if there is

difference between these two models, they must reside in the extreme values at the
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tails. In addition, the forth moment ,i.e., the Kurtosis of the error distribution also

contributes to the differentiation of these two models., which is revealed by the EPD

model.

This essay is organized as follows. In Sections 4.2 we review the literature of

probit and logit models. Model selection criteria are discussed in section 4.3. In

section 4.4, sampling experiment specification, M-H algorithm with random walk and

Bayesian estimation procedures are constructed, including the prior setting, maximum

likelihood and the posterior distribution for each model. Section 4.5 discusses the

results. EPD experiments are analyzed in section 4.6. Applications to real data are

discussed in section 4.7. Concluding remarks are made in section 4.8.

4.2 Literature Review

The logit model is introduced and first named by Verhulst (1845) in his study of

human population growth in 19th century. The rediscovery and wide acceptance

of this model seems to have been motivated by Pearl and Reed (1920, 1922, 1923).

It is also used in autocatalystic or chain reaction analysis by Reed and Berkson

(1925), Yule (1925) and Wilson (1925). Since then, the logit model has been widely

applied in the market demand study of new products and technologies. The probit

model was first introduced by Gaddum (1933) and Bliss (1934a, 1934b) in the field

of bio-assay. It is then used for modeling discrete binary outcome in economics and

market research. At the early days and for quite a long time, the comparison of

logit and probit models is concentrated in bio-assay area. Although many researchers

demonstrate the resemblance of logistic to normal distribution function (see Wilson

(1925), Winsor (1932), etc.), the logit model is regarded inferior to probit model as it

lacks the specific underlying process required in bio-assay. However, the logit model

has advantage in its computational ease compared to the probit especially in the days

of less developed computer technology. This is also the reason that logit model is used



66

frequently in empirical study. In recent 30 years, the logit model has gained much

more popularity than before. This is attributed to the direct interpretation of odds,

odds ratios and log-odds in the logit model whereas the coefficients from the probit

model are difficult to interpret. In addition, the theoretical foundation for logistic

regression was built in 1970’s by McFadden (see McFadden (2000)). The complete

discussion of the origin and the development of probit and logit models can be found

in Cramer, J.S. (2003).

The resemblance of these two models is summarized in many studies. Mainly,

the researchers prove the similarity of the statistical distribution of the normal and

logistic distribution. Amemiya (1981) is one of the first to show the cdf’s of the logistic

distribution and normal distribution can be made as close as possible. Both normal

distribution and logistic distribution are symmetric around zero. Their distribution

functions are bounded between 0 and 1. The transformed logistic distribution2 is

given by

Lλ(w) =
eλw

1 + eλw
(72)

The above function can be made approximate to the normal distribution by choosing

an appropriate value of λ. Since the variance of logistic distribution is π2

3
of the

variance of the standard normal distribution, scaling the logit estimates by π√
3
results

in probit estimates. By trial and error, Amemiya find the approximation can be

even closer when setting the scaling parameter to be 1.6. By choosing different w

from 0.0 to 3.0, he lists the cdf of normal, Φ(w) and 1.6 times of the cdf of logistic

distribution, L1.6(w). The values of Φ(w) and L1.6(w) are very close in the mid-

range. For example, Φ(w) = L1.6(w) = .5 when w = 0.0. Φ(w) = L1.6(w) = .5793

when w = .2. However, if w = 3.0, Φ(w) = .9987 while L1.6(w) = .9918. Thus,

2Amemiya uses "transformed logistic distribution" to describe the realtionship between logistic
distribution and normal distribution. The logistic distribution can be transformed to approximate
normal distribution by setting the proper scaling parameter λ.
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1 − L1.6(w) = .0082, which is greater than .0013 obtained by 1 − Φ(w).This is due

to the relative heavier tails of logistic distribution. However in general, it is hard to

differentiate the univariate probit and univariate logit model. Relying on Amemiya’s

results, Davidson & MacKinnon (1993) state that the probit and logit models are

similar. Their scaling parameter is different from Amemiya’s. They find if the average

of Xβ is around zero, the coefficients of logit model must be roughly 1.6 times of

those of probit model in order to get the same prediction for the marginal effect of X.

However, if the average value of the Pi is extremely away from .5, this approximation

is less effective.

Similar results are also found in Long (1997). He also propose a scaling parameter

which makes the cdf’s of logistic and normal distribution as close as possible. Long

illustrates three distributions: standard normal, standard logistic and standardized

logistic distribution3. The standard logistic distribution has mean zero and variance

of π2

3
. If scaling the variance of standard logistic distribution to be one, the standard

logistic distribution turns to be standardized logistic distribution. The pdf and cdf

of the standardized logistic distribution is given by,

f(x) =
exp(γx)

γ [1 + exp(γx)]
, P (x) =

exp(γx)

1 + exp(γx)
(73)

The scaling parameter γ is still equal to π√
3
in theory. Long shows that the standard-

ized logistic distribution has identical cdf as that of normal distribution. The pdf of

standardized logistic distribution also approximates the normal pdf. If there are two

regressions:

y∗L = xβL + εL, y∗P = xβP + εP (74)

3Long uses "standardized logistic distribution" in describing the relationship between logistic
distribution and normal distribution. The scaling parameter is chosen to make the standardized
logistic distribution with variance equal to one. The crux of the matter is that the regression
coefficients of the univariatelogit and probit models are related by this scaling parameter.
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where the first model is the logit regression and the latter one is the probit model.

y∗L and y∗P are latent, thus their variances are undefined. βL and βP are unidentified

consequently. It can be shown that V ar(εL|x) = π2

3
V ar(εP |x). Since εL and εP are

not equal, but approximately equal, βL ≈
√

V ar(εL|x)βP ≈ 1.81βP . Long points out

the the parameter of 1.81 is based only on equalizing variance. However, Amemiya’s

scaling parameter of 1.6 is to approximate the cdf’s of probit and logit, not just

the variance of logistic and normal distribution. Long gives his own estimation of

βL ≈ 1.7βP . He uses the labor force participation model as an example and obtains

the identical likelihood and the statistics for both logit and probit model. Albert

and Chib (1993) demonstrate that by setting the scaling parameter to be 2
π
, the

logistic distribution has approximately identical distribution as the t distribution

with degree of freedom of 8. By exploring exponential family, Gill (2001) shows that

probit and logit function are theoretically similar and conclude that "In general, with

social science data any of these link functions can be used and will provide identical

substantive conclusions." Hardin and Hilbe (2001) point out that probit model and

logit model yield similar results for binary or grouped binomial data. However, if

the underlying process is normal, or the researchers are interested in the prediction

or classification instead of odds ratio, then the probit model is preferred to logit

model when the Bayesian Information Criteria (BIC) is smaller. Greene (2003) also

concludes that there is no much difference in applications for both models by saying

that "the logit and probit models results are nearly identical". He uses the study

of Spector and Mazzeo (1980) as an example and shows that both model provide

comparable estimate coefficients and standard errors. Similar statements are also

found in Powers and Xie (2000), Fahrmeir and Tutz (2001). All these studies show

that the logistic distribution can be excellent fit of normal distribution; therefore, the

logit and probit models are essentially the same. In addition, the logit estimates can

be scaled to yield probit estimates.
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One of the pioneers in studying the difference of these two models are Chambers

and Cox (1967). They analyze the dose-response data by univariate probit and logit

model and test the conditions under which these two models can be distinguished.

They formulate the experiment by assuming either logit or probit to be the true

model and specify this true model as the null hypothesis and the other one as the

alternative hypothesis. Let ni be the observations made at does levels xi(i = 1, 2, 3),

x1 < x2 < x3. Ri is the number of deaths at level xi, Pi = Ri/ni.is the proportion of

death and θi is the corresponding probability. Asymptotically for fixed θi’s, all test

statistics can be treated as the linear functions of the empirical logistic transforms as

n′is →∞.,

Zi = log

(
Pi

1− Pi

)
= log

(
Ri

1−Ri

)
(75)

and they are asymptotically normally distributed with mean

log

(
θi

1− θi

)
=

xi − µ

λ
(76)

Then, they obtained the test statistics when logit model is the null hypothesis, which

is

Tl =
U
√

n

A
(77)

A =

{
(x2 − x3)

2

ρ1P1(1− P1)
+

(x3 − x1)
2

ρ2P2(1− P2)
+

(x1 − x2)
2

ρ3P3(1− P3)

}

Under the null hypothesis, equation (77) has standard normal distribution as n →∞

and holding the levels x1, x2 , x3 and ρ1, ρ2, ρ3 fixed. Under alternative hypothesis, Tl

is asymptotically normally distributed with unit variance and expectation equal to
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E(U)
√

n/E(A) (78)

where U is the linear combination of the Z ′s in equation (75) with asymptotic expec-

tation independent of the nuisance parameters,

U = (x2 − x3)Z1 + (x3 − x1)Z2 + (x1 − x3)Z3 (79)

Asymptotically

nvar(U) =
(x2 − x3)

2

ρ1θ1(1− θ1)
+

(x3 − x1)
2

ρ2θ2(1− θ2)
+

(x1 − x2)
2

ρ3θ3(1− θ3)
(80)

where,

E(U)/σ ∼ (t2−t3) log

{
Φ(t1)

1− Φ(−t1)

}
+(t3−t1) log

{
Φ(t2)

1− Φ(−t2)

}
+(t1−t2) log

{
Φ(t3)

1− Φ(−t3)

}

(81)

E(A)/σ ∼

{
(t2 − t3)

2

ρ1Φ(t1)Φ(−t1)
+

(t3 − t1)
2

ρ2Φ(t2)Φ(−t2)
+

(t1 − t2)
2

ρ3Φ(t3)Φ(−t3)

}
(82)

If the null hypothesis is probit and the logit is the alternative, the analog for equation

(79) and (80) are obtained as follows,

V = (x2 − x3)Φ
−1(P1) + (x3 − x1)Φ

−1(P2) + (x1 − x3)Φ
−1(P3) (83)

nvar(V ) = 2π (x2 − x3)
2 θ1(1− θ1) exp[

{
Φ−1(θ1)

}2
]/ρ1 + · · · (84)

and the test statistics is defined as

Tp =
V
√

n

B
(85)
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where B is the estimate of the right-hand side of equation (84) by replacing the θi

with Pi. Chambers and Cox find that large sample size and extreme independent

variable levels are two condition making the probit and logit different. They choose

three independent variable values, 1, 2, 3.2, and the extreme independent variable

level occurs at x = 1 or x = 3.2. The second thing is that there is large proportion of

the total sample size at that extreme level; and finally the probability of success at

that level is extreme, say greater than 99%.

Most papers after Chambers and Cox follow their approach, but refine their model

specifications. For example, Hahn and Soyer (2005) follow the approach of Chambers

and Cox and test the in-sample model fit and out-of-sample predictive performance

of bivariate probit and bivariate logit model. They adopt the bivariate model from

Ashford and Sowden (1970):

P (Yij = 1|Xij) = Φ(Y ∗
ij), j = 1, 2

P (Yi1 = 1, Yi2 = 1|Xij) = Φ2(Y
∗
1,Y

∗
2,ρ) (86)

The model selection criteria are Bayes factors proposed by Kass and Raftery (1995)

and Deviation Information Criterion (DIC) introduced in Spiegelhalter et al. (2002).

They use Monte Carlo study for both small sample size (n = 90) and large sample

size (n = 450). Their results show that under small sample size, for non-extreme

independent variable case, the probit model performs slightly better than logit model

for both moderate and high dependent correlation in bivariate case. For extreme

independent variable cases, the logit model beats probit model. As the dependent

variable correlation moves from moderate to high, the model fitting and out-of-sample

prediction difference become even more pronounced. When sample size become larger,

the difference between the two link functions are increasingly distinctive. The logit
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model becomes more preferable. Dow and Endersby (2004) compare Multinomial

Probit (MNP) and Multinomial logit (MNL) models in voting research. The MNP

and MNL differ in the error structure. The MNP assumes the errors are distributed

multivariate normal, with mean zero and covariance matrix
∑

. The probability is

calculated by,

P
(
Yi = j|β,Xij ,

∑)
=

∫ β∗X∗

1

−∞
· · ·

∫ β∗X∗

j−1

−∞
f(ε∗i1, · · · , ε∗ij−1,)∂ε∗i1, · · · , ∂εij−1 (87)

where f(·) is the density function of the multivariate normal distribution. The MNL

model is specified as.

P (Yi = j) =
e
Xijβj

∑p
j=0 e(Xijβj )

(88)

Dow and Endersby’s work is based on the studies by Alvarez and Nagler (2001),

Quinne et al. (1999). Alvarez and Nagler use Monte Carlo analysis to compare MNP

and the independent MNP (IMNP). The independent MNL is the MNL with the

off-diagonal error covariances constrained to zeros. They use IMNP as a substitute

for MNL. Dow and Endersby question this proxy and conclude that its inference is

limited under the presence of correlated error term. They estimate the parameter

values and variances, assess the sensitivity of the probability change to the change

of independent variables, and evaluate the accuracy of optimization for both MNL

and MNP. They find that MNP and MNL estimator are remarkably similar in their

consistency, normality and efficiency for large sample size. However, for small sample

size, neither model seems to produce the observed data. MNP is superior to MNL

as it incorporates the correlated errors. In voting problem, the correlated error can

be interpreted as the dependence of irrelevant alternatives property of voter choice.

Although the MNL is criticized by its independent error specification, Dow and En-
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dersby pointed out the independence of irrelevant alternative property on voter choice

is irrelevant and unrestricted.

In sum, the probit and logit model are similar. In particular, it’s hard to dis-

tinguish them for univariate case. Only under some special conditions shown by

Chambers and Cox’s test, these two models can be distinguished; however, it usually

require large observations for each level of independent variable. For multivariate or

multinomial cases, these two models differ substantially even for small sample size.

The Bayesian analyses of probit and logit models concentrate on the estimation

algorithm and Bayesian inference. It can be found in Ritter and Tanner (1992), Mc-

Culloch and Rossi (1994), Chib and Greenberg (1998), Liu and Wu (1999), McCulloch

et al. (2000), Webb and Forester (2006), Liu and Daniels (2006), and others.

4.3 Model Selection Criteria

4.3.1 Bayesian Model Selection Criteria

The Bayesian model selection criteria we use are DIC, Predictive DIC (PDIC) and

Akaike Information Criteria (AIC). The first measure is the DIC which has been

applied in Hahn and Soyer. It is originally given in Spiegelhalter et. al. (2003) as

follows,

DIC = D(θ̄) + 2pD = D̄ + pD (89)

where D(θ̄) is the deviance evaluated at the posterior mean, D̄ is the posterior mean

of the deviance, and pD = D̄ −D(θ̄). The DIC combines measurement for model fit

and model complexity. pD4 measures the model complexity, such as the number of

parameters. The Bayesian deviance, D(θ), in general is defined as,

4In defining DIC, pD appears in the equation (89) as it stands for the model complexity. In
calculating DIC, the equation (89) is algebraically simplified as,

DIC= D(θ̄) + 2pD = D(θ̄) + 2
[
D̄ −D(θ̄)

]
= 2D̄ −D(θ̄)
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D(θ) = −2 ln{(L(y|θ)}+ 2 ln{(f(y)} (90)

Following Spiegelhalter et. al., we define D̄ and D(θ̄) as follows,

D̄ = Eθ|y[−2 ln{L(y|θ}] = −2
∫

lnL (y|θ) p (θ|y) dθ (91)

D(θ̄) = −2 lnL
(
y|θ̄

)
(92)

where L(y|θ) is the likelihood function and p(θ|y) is the posterior pdf. The constant

term ln{(f(y)} is cancelled out when calculating pD. In MCMC, equation (91) can

be computed as

−2
[
1

m

m∑

i=1

lnL
(
y|θ(i)

)]
(93)

where θ(i) is the i-th MCMC draw of θ. We obtain the DIC for both probit and logit

models, namely DICprobit and DIClog it.

Normally, the model with the smaller DIC is the preferred model. However, like

other model selection criteria, the cutoff values or critical values need to be specified.

In Hahn and Soyer (2005), they calculate the difference of DIC between the probit

and logit model and use 3-7 as the ’significant’ difference. For example, if (DIClog it-

DICprobit) is greater than 3, they select probit model as the superior model. Hahn

and Soyer take these cutoff values from Burnham and Anderson (1998). Burnham

and Anderson discuss the "AIC differences" rather than the "DIC difference". The

AIC difference is defined as,

∆i = AICi −minAIC = Eθ̂[Î(f, gi)]−minEθ̂[Î(f, gi)] (94)

over all candidate models in the set. Here, f is the true model and gi refer to the
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candidate models. AIC is defined as,

AIC = −2log(L(θ̂|y)) + 2K (95)

The best model is the model with minimum AIC. Thus, minAIC is the AIC from the

true model. or the best model f . ∆i measure the relative expected Kullback-Liebler

(K-L) difference between f and gi(x|θ). The larger the ∆i is, the less plausible is the

candidate model gi to fit the data. Burnham and Anderson compare four models:

Weibull distribution, lognormal distribution, inverse Gaussian and F distribution.

They call these models "approximating models", The true model f is the gamma

distribution, which is called "generating model" by Burnham and Anderson. It means

that the data is generated by this model. They put the rough cutoff value of ∆i as

follows:

1. If ∆i ≤ 2, the candidate model can be considered as a feasible model in making

inference.

2. If 4 ≤ ∆i ≤ 7, then the candidate model is considered less support.

3. If 10 ≤ ∆i, the candidate model has virtually not plausible for the data and

can be omitted from further consideration. However, they also point out the above

guideline really depend on some conditions: the assumption of independent observa-

tions, large sample size and model selection situations (nesting or non-nesting). Their

cutoff values are for the "simple situation", i.e., independent observation, large sam-

ple, nesting models and several candidate models (at least five). If these conditions

change, the cutoff points should be revised. For example, if the sample size is smaller,

and the parameters for models are large relative to the data size, then ∆i need to be

larger. They emphasize if selecting from only two models with no nesting of one in

the other, a simple ∆i value may not exist from a frequentist sampling viewpoint. To

obtain those cutoff point, Burham and Anderson use Monte-Carlo method. Following

them, we define the DIC difference and AIC difference as our selection criteria. The
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DIC difference is calculated as,

∆DIC = DICprobit −DIClog it,where DIC = D̄ + pD (96)

The AIC difference is defined as follows,

∆AIC = AICprobit −AIClog it =
[
−2log(L(θ̂probit|y)) + 2K

]
−
[
−2log(L(θ̂log it|y)) + 2K

]

= 2log(L(θ̂log it|y))− 2log(L(θ̂probit|y)) (97)

where L((θ̂|y)) is the likelihood evaluated at Maximum Likelihood estimator (MLE)

of θ. K is the number of parameters.

The last model selection criteria is PDIC which is proposed by Ando (2007).

Pointed by Robert & Titterington (2002), the same data were used twice in con-

structing of pD for calculating DIC. Thus, DIC overfits the observed data. Ando’s

PDIC is based on the DIC but it corrects the asymptotic bias of the posterior mean

of the log likelihood. We follow Ando’s approach and define the PDIC by,

PDIC = D̃ + 2p̃D (98)

where D̃ = −2
∫
lnL (ỹ|θ) p (θ|y) dθ, p̃D = D̃ − D̃(θ̄), D̃(θ̄) = −2 lnL

(
ỹ|θ̄

)
and ỹ is

the realized post-sample y’s. The selection criteria is similar to that of DIC, except

the critical values are different. Similarly, we are interested in the PDIC difference,

which is

∆PDIC = PDICprobit − PDIClog it (99)

We compute all the ∆’s. ∆ > 0 indicates the above criteria chooses the logit

model, and ∆ < 0 indicates that the probit model is preferred to logit model based
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on these criteria. We also use the Mean Square Error (MSE) of θj as the criterion. It

is defined as,

MSEθj = E((θ̂
i

j − θ)2) (100)

where θ̂
i

j is the i-th draw of θj, θ is the true parameter.

4.3.2 Model Selection Criteria in Sampling Theory

The sampling theory model selection criteria we choose are weighted sum of squared

error (SSE), unweighted SSE and Eforn’s R2. The unweighted SSE or the normal

SSE is given by,

n∑

i=1

[
yi − F̂ (xiθ̂)

]2
(101)

where θ̂ is the MLE of θ. Theoretically, θ̂ can be any estimator. Amemiya (1981)

points out this unweighted SSE corresponds to the SSE in standard regression model.

However, it does not have the same strong performance as it is in standard regression

model because the probit or logit model is heteroscedastic regression model. Thus,

the weighted SSE is recommended as a more reasonable criterion. The weighted SSE

is given as,

n∑

i=1

[
yi − F̂ (xiθ̂)

]2

F̂ (xiθ̂)[1− F̂ (xiθ̂)]
(102)

It is weighted by the estimated probability. Amemiya presents two reasons to choose

this criterion over the unweighted one. First, it attaches higher weight to the squared

error with larger variance. Second, if use the true probability instead of the estimated

probability in the denominator, we can obtain a more efficient estimator of θ by

minimizing the above weighted SSE than minimizing the unweighted SSE with respect
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to θ. I calculate both unweighted SSE and weighted SSE, and the results indeed show

they do not always produce the same results. In fact, most of the cases, they yield

opposite results. I also use Efron’s R2 in the experiments and it is defined as follows,

R2 = 1−

n∑

i=1

[
yi − F̂ (xiθ̂)

]2

n∑

i=1

[yi − ȳ]2
(103)

This R2 is an analogue of R2 in standard regression model.

The R2 and unweighted SSE are related algebraically as follows. Given the un-

weighted SSE

USSE =
n∑

i=1

[
yi − F̂ (xiθ̂)

]2
(104)

and the R2 is,

R2 = 1−
∑[

yi − F̂ (xiθ̂)
]2

∑
(yi − ȳ)2

= 1− USSE∑
(yi − ȳ)2

(105)

we obtain

∆R2 = R2log it −R2probit =
USSE1 −USSE2∑

(yi − ȳ)2
= − ∆USSE∑

(yi − ȳ)2
. (106)

Hence, ∆USSE and ∆R2 are the same except for the signs. We also test the other

type of criteria focus on the prediction, both Bayesian and sampling theory, like

the prediction-realization table and Cross Validation ratio based on the predictive

probability5. They both turn out to be poor at discriminating probit and logit models.

5The prediction-realization table suggested by Franses and Paap (2001) . It calculate the predic-
tion probability and yield a (2× 2) table, with
p11 = the probability that the predicted ỹ = 1 and realized y = 1;
p10 = the probability that the predicted ỹ = 1 and realized y = 0;
p00 = the probability that the predicted ỹ = 0 and realized y = 0;
p01 = the probability that the predicted ỹ = 0 and realized y = 1;
where predicted ỹ is calculated by transforming X̃β̂ using either normal or logistic functions. For

example, if Φ(X̃β̂) � 0, then ỹ = 1; otherwise, ỹ = 0. The correct prediction is represented by the
sum of p11 and p00. We would expect the true model yield higher (p11 + p00). The CV is based on
the predictive density. For logit and probit model, it is impossible to get the predictive density as
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4.4 Sampling Experiments

4.4.1 Model Specification

In our sampling experiment, We replicate the Bayesian and sample theory model

selection criteria that are discussed in the previous section r times. The data are

generated first by the logit model and then by the probit model. We call them logit

and probit data, respectively. Using the data so generated we obtain the estimates

of the logit and probit model and compute the model selection criteria. In this set

up one of the models is the true model.

The binary data of y = 1 or y = 0 is generated by

y =





1.0 if u ≤ F (xβ)

0 otherwise,
(107)

where F (xβ) is either the logit or probit cumulative density function; u is drawn from

the uniform distribution on (0, 1), and x is the covariates. This follows the Bernoulli

the predictive ỹ is either equal to 1 or 0. To construct the counterpart of the integration used in
continous case, we use average of probability evaluated at the posterior parameters, that is,

Φ(ỹj) =
1

i

∑

i

{
F (x̃jβ

(i)
j )P (β

(i)
j |data)× yj +

[
1− F (x̃jβ(i)j )

]
P (β

(i)
j |data)× (1− yj)

}
, j = 1, . . . , n.

Here, F (.) is either normal or logistic function; P (β(i)j |data) is the posterior probability of parameters
βj at ith MCMC draw and yj is the realized jth y. Normally, the CV ratio is obtained from the
Kernel density. The procedure is as follows: first draw the kernel density of the predicted ỹr based
on the MCMC sequence, where r is the rth data point. Then, evaluate the posterior density at
the realized yr. That is to locate the corresponding Kernel density f(ỹmr ) where ỹmr = yr,m is
the mth MCMC replication. Next, obtain the posterior probability P (yr) at the realized yr by
P (yr) =

1
2

[
f(ỹmr ) + f(ỹ

m−1
r )

]
. Finally, multiply those posterior probabilities and compare the ratio

of the product from model one to that of the model two. If Model one is the true model or better
model, then this ratio is expected to be greater than one. We use the predictive probability defined
in the above equation as the proxy for kernel density of predictive ỹ. Thus the ratio is formed as,

∏
j
Pprobit(yj)

∏
j
Plogit(yj)

, j = 1, . . . , n

where Pprobit(·) stands for the posterior density under probit model, and Plogit(·) refer to the posterior
density under logit model.
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random number generation in Ross (2007).

First we set x = 1.0 (and thus xβ = β). We call this the constant term model.

Then we set x = (1.0, x2) and xβ = β1 + β2x2 where x2 is drawn from the uniform

distribution on (0, a). We call this two variable model. The constant term model

is rarely used in applications of the logit and probit model. However, this model,

as compared to the two variable model, demonstrates that the values of the model

selection criteria depend on the values of the covariates. The first setting below yield

a unbalanced data, with the mean of the percentage of y = 1 to be 12.5%− 24.0%.

Y ∗ = Xβ, X = 1.0, β = −1.2 (108)

The second specification obtains the balanced data by change the parameter β to be

1. The mean of the percentage of y = 1 is 44%− 52%. It is defined as,

Y ∗ = Xβ, X = 1.0, β = 1 (109)

The two variable model is sometimes used in biometrics. For example, we want to

compare the effect of certain drug on the patients. We can easily extend to multiple

independent variables based on the specific research goal. The multiple covariate

experiment is discussed in later section. Again, there are two settings for this model.

The first setting below yields a unbalanced data, with percentage of y = 1 to be

9.9%− 14.9%.

Y ∗ = Xβ, X = 1 ∼ a ∗ U(0, 1), β =




1.6

−.2


 , a = 70 (110)

Changing the parameter a which multiplies U(0, 1), the second specification is defined

as,
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Y ∗ = Xβ, X = 1 ∼ ad ∗ U(0, 1), β =




1.6

−.2


 , a = 15 (111)

Then, the data become balanced with percentage of y = 1 to be 48.6%−56.1%. Here

X is a (1002 × 2) matrix, with X1 is constant and X2 is uniformly distributed. We

use the first 1000 data points to do the estimation and predict the last 2 data points.

4.4.2 MCMC Procedure

To draw the parameters β, we choose flat prior and set them equal to one. The log

likelihood function for both models is given by,

l(β, σ|y, x) =
∑

i

[yi × ln(Pi) + (1− yi)× ln(1− Pi)] (112)

Then, the posterior density of β is defined as

f(β|y, x, σ) = ln(prior) +
∑

i

[yi × ln(Pi) + (1− yi)× ln(1− Pi)] (113)

To draw the coefficient β, we use Metropolis-Hastings algorithm with random walk.

The proposal density is given by,




β
(i)
1

β
(i)
2


 ∼ N








β
(i−1)
1

β
(i−1)
2


 , c× σ2(i−1)(X ′X)−1





, (114)

where σ2(i−1) =
(y∗ −Xβ(i−1))

′ × (y∗ −Xβ(i−1))

n

We set
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β(i) =





β(i) with probability α(β(i−1), β(i))

β(i−1) with probability 1− α(β(i−1), β(i))

where α = min
{

f(βi)

f(βi−1)
, 1

}
, and f(·) is the posterior density defined by equation

(113). Thus, β are drawn from normal distribution with previous draw β(i−1) as its

mean. The initial value of β is the OLS estimate obtained by β = Y/X. Constant

c is the scale parameter. We set c = 2 for probit model under both cases. For logit

model, c is set to be 1.2 when data is generated by logit model; while c = .3 if data

generated by probit model. We use the posterior mean of MCMC draws to evaluate

the DIC and PDIC. However, the AIC, weighted SSE, unweighted SSE and R2 are

evaluated at MLE of β. The other Bayesian procedure, such as Gibbs sampler with

data augmentation is also applied and yields similar coefficient estimates. However,

it converges to the steady state slower than random walk does.

4.5 Results

We calculate the mean, median, maximum, minimum and standard deviation of

∆DIC, ∆PDIC, ∆AIC, ∆SSE, ∆USSE, ∆R2. We also present percentage of choosing

the correct model for all ∆.The mean of MSE of β2, mean of MSE of the marginal

effect of β2 is reported for two variable case. We set iteration r is set to be 50 to

reduce the computing time. However, our experiments with iteration from 50, to 100,

even to 1000 yield similar results.

4.5.1 Constant Term Model

Table 13 presents the results of the sampling experiments for the constant term model

for the balanced data (i.e. the percentage of y = 1 being 44.6−51.9%). The summary

statistics show that the distributions of all the model selection criteria center tightly

around zero. Especially the sampling theory criteria of ∆SSE, ∆USSE and ∆AIC
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range around 10−10 to 10−6. Amemiya (1981) and Long (1997) point out, there is no

difference between the logit and probit model because the regression coefficients, β,

can be adjusted to make the estimated logit and probit cumulative densities almost

identical. This argument works well for the constant term model since there is no

variability in the regressor. The percentages of choosing the right model, on the other

hand, range from 22% to 74%.

We find very similar results for unbalanced data case in table 14. ∆DIC and

∆PDIC are close or equal to zero. ∆AIC, ∆SSE and ∆USSE range from 10−10 to

10−6. The percentages of choosing the right model, on the other hand, range from

30% to 70%. Therefore, no model selection critieria works for constant model no

matter the data is balanced or unbalanced.

I also compare the AIC calculated based on MLE as in equation (95) and AIC

based on MCMC draws of the parameters β. The latter one is calculated as follows,

AIC =
1

m
AIC

(
θ(i)

)
(115)

Where m is the number of the iterations of MCMC, θ(i) is the i-th draw of θ. I call

this AIC "MCMC treated AIC". The comparison results are shown in tables 15 and

16. The mean of the ∆AICMCMC in all tables are less than zero. In additional, the

percentage of ∆AICMCMC < 0 is greater than 80% in table 16. These results indicate

that MCMC treated AIC works slightly better for probit data than for logit data. If

we compare the ∆AICMCMC and ∆AICMLE within each table, we may conclude that

MCMC treated AIC works better than AIC based on MLE because all the ∆AICMLE

are virtually zero. This may due to the fact that MLE is a point estimator.

To further verify the DIC, I compare the DIC from MCMC draw and DIC from

exact posterior pdf. The difference is around 2 as shown in table 17, which is less

than .2% even for the smallest DIC. Thus, the DIC is reliable. The DIC from MCMC

is greater than DIC from the exact posterior for both logit and probit data. When
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probit model is true, the DIC difference for probit model is smaller than for logit

model. However, such pattern is not found when logit model is true.

4.5.2 Regression Model with Two Variable

Logit Data In table 18, the true model is logit model. The percentage of y = 1

is 11.1% − 14.9% for unbalanced case and is 48.6% − 55.2% for balanced case. We

find that the distribution of ∆DIC and ∆AIC shift to the right, indicating that as

percentage of y = 1 becomes small, the ∆DIC and ∆AIC become large. This shows

that ∆DIC and ∆AIC work well as the model selection criteria for unbalanced data.

The percentage of ∆DIC> 0 and the percentage of ∆DIC> 0 are 64%, both greater

than 50%. When y = 1 is 48.6% − 55.2%, the sizes of ∆DIC and ∆AIC are close

to zero. Thus, they cannot discriminate probit and logit model under balanced data

case. We also find that ∆PDIC are close to zero for both unbalanced and balanced

data, which is inconsistent with our expectation. It first appears to us that ∆PDIC

does not work as a model selection criteria under either cases. However, we further

study the property of PDIC and the discussion is provided in following section. For

unbalanced data, the mean of MSE of β2 for logit model is .0005, which is much

smaller than for probit model of .0080. When data change to be balanced, the mean

of MSE of β2 for logit model is still much smaller than for probit model, indicating

that mean of MSE of β2 is a good model selection criterion.

We turn to the sampling theory criteria. For unbalanced data, both the un-

weighted SSE and the R2 have certain discriminating ability. The ∆USSE is greater

than zero and the R2 is less than zero, indicating the true model is the logit model.

However, the difference between weighted SSE, ∆SSE, chooses probit model as it

is less than zero, which contradict to the data generating process. We address this

issue in the following section. In addition, the size of ∆R2 and ∆USSE are very small

compared to that of ∆DIC and ∆AIC. For balanced data in table 18, all these criteria
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are centered at zero, showing that none of them works well for discriminating probit

and logit model for balanced data.

Probit Data If data generated by probit model, we have results in table 19 much

similar to those found for logit data. For unbalanced data where percentage of y = 1

is 9.9%− 13.1%, ∆DIC and ∆AIC are both less than zero and shift to the left. The

percentage of ∆DIC< 0 is 82%, and the percentage of ∆AIC< 0 is 76%. It indicates

that ∆DIC and ∆AIC choose the probit model as the true model. ∆SSE and ∆USSE

are both less than zero, with % of ∆SSE< 0 is 100%, showing that ∆SSE choose the

true model, probit model. Mean of MSE of β2 works well as the model selection

criteria for both unbalanced and balanced data, while ∆PDIC still close to zero for

both data. The only difference between probit data and logit data is ∆SSE. In table

18, ∆SSE are less that zero, indicating it always choose the wrong model; while in

table 19, ∆SSE always choose the true model as they are less than zero. For balanced

case, this mean of MSE of probit is .2012, which is still bigger than the logit model

of .0011.

More Experiments for Two Variables Regression To further verify our results,

I change the parameters β and the parameter multiplying the uniform distribution

U(0, 1) to produce another set of data. The results are presented in tables 20 - 21.

The data in Table 20 is generated by logit model, with β1 = .9, β2 = −.1, ad = 100,

and case, the percentage of y = 1 is 9.8% − 13.6%. For balanced data, β1 = 1.6,

β2 = −.1, ad = 20 and % of y = 1 is 48%− 52%. For table 21 the parameters are the

same as those in table 20 except the data is generated by probit model. The results

keep the same as those found in table 18-19. ∆DIC and ∆AIC work well and can be

a model selection criteria for unbalanced data. For balanced data, the sizes of these

two criteria are close to zero, and do not work as the model selection criteria. In

addition, these two criteria are highly correlated. The mean of MSE of β2 is a good
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criterion for both unbalanced and balanced case. ∆PDIC does not work compared

to ∆DIC and ∆AIC. ∆DIC, ∆PDIC and ∆AIC work better when the true model

is probit than when the true model is logit. If it is logit data, SSE never selects

the correct model, i.e., logit model. If it is probit data, SSE always select the probit

model, which is the correct model. The mean of the ∆R2 always choose the correct

model for unbalanced data, the percentage of ∆R2 also indicate the choice of correct

model except for logit data in table 20, where percentage of ∆R2 > 0 is 48%, equal to

the percentage of ∆USSE> 0. We also observe the % of ∆SSE> 0 is 0 for logit data

and % of ∆SSE< 0 is 100 for probit data. If we increase the out-of-sample period

from 2 to 10, % of ∆PDIC> 0 rise from 26% to 56% for logit data under unbalanced

case.

The inconsistent PDIC is related to the small number of out-of-sample points.

Since PDIC is calculated based on MCMC draws, we calculate the F̂ (xiθ̂mcmc) and

F̂ (xiθ̂mcmc)×
[
1− F̂ (xiθ̂mcmc)

]
, it has large variance when using them to calculate cdf.

If we change p = 10 to make the out-of-sample data increased, the % of ∆PDIC> 0

increased to 50%. for unbalanced data case. We further increase p to be 100, then

the probability of choosing the correct model for ∆PDIC is over 50%. Thus, % of

∆PDIC> 0 tends to work by choosing the correct model if we increase the out-of-

sample period. This can be verified in another way: we calculate DIC the same way as

PDIC except using in-sample data in DIC vs.out-of-sample data in PDIC. In-sample-

data is 1000, which is much bigger than the out-of-sample data of 2, so DIC works,

but PDIC appears does not work.

The all-or-nothing results for ∆SSE may be explained by the formula for SSE:

SSE =

n∑

i=1

[
yi − F̂ (xiβ̂)

]2

F̂ (xiβ̂)[1− F̂ (xiβ̂)]
.

where β̂ is the MLE of β. When % of y=1 is 9—15%, more than 85% of the numerator,
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[yi− F̂ (xiβ̂)]
2, becomes [F̂ (xiβ̂)]

2 and the fraction under the summation sign is given

by 1/(1/F̂ − 1). Since the logit has a fatter tail than the probit, we have F̂ (·)logit >

F̂ (·)probit, and this leads to




1
1

F̂probit

− 1


 <




1
1

F̂logit

− 1




making SSElogit >SSEprobit. The results in Tables 18 and 19 show that even for the

balanced data cases when roughly 50% of the time y equals 1, the over-estimation of

F̂logit tends to influence the SSE.

4.5.3 Regression Model with Six Variable

We extend the two variable model to 6 variable (including constant) model and the

results are displayed in table 22 and 23. Instead of assuming the distribution of the

covariates x′s, we use the data from the labor participation model in Greene’s (2003,

P682). The sample size in Greene’s example is 753, we increase the sample size to

1000 by randomly resampling from the original data with replacement. The number

of out-of-sample observations p is set to be 10 as previously. The latent variable Y ∗

is formed by Y ∗ = xβ + error, where the coefficients β are also taken from Greene’s

estimated parameters. The logit data is obtained by generating the logistic error term,

whereas probit data is produced by setting the error to be normally distributed. Then

we change the latent variable Y ∗ to binary by

Y =





0 if Y ∗ ≤ a

1 otherwise
(116)

By controlling a, we obtain the unbalanced and balanced data.

Table 22 is the results for logit data and table 23 is the results for probit data.
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The results are similar to those in tables 18 -21. For unbalanced data, DIC, AIC and

USSE perform well in choosing the correct model while SSE is always choose probit

model. For balanced data, generally no model selection criteria works.

4.6 EPD Model

4.6.1 EPD and its Random Sampling Algorithm

In the previous section the experiments are conducted with logit and probit data.

Hence, in all the experiments one of the logit and probit models is the true model.

Suppose that if data do not come from the logit or probit distributions. Which model,

the logit or probit model, will explain the data better? The variances of the logit and

probit distributions can be made close to each other, but the kurtosis cannot be made

close to each other. The kurtosis of the standard logit distribution is 4.2 while that

of the probit is 3. We may expect if data come from a leptokurtic distribution the

logit model may explain the data better than the probit model, whereas the probit

model may better explain the data if they come from a platykurtic distribution.

To examine our conjecture, we generate data from an exponential power distrib-

ution (EPD):

f(x) = exp [− |x|α]
/

2Γ

(
1 +

1

α

)
, where −∞ < x < +∞, α ≥ 1 (117)

This family of distribution is symmetric at zero; the variance σ2 and kurtosis k are

given by,

σ2 = Γ(
3

α
)Γ(

1

α
) (118)
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k = Γ(
5

α
)Γ(

1

α
)

/[
Γ(

3

α
)

]2
(119)

Changing the shape parameter α yields the different distributions. For example, when

α = 2, k = 1, we have normal distribution; while α = 1, k = 6 results in double expo-

nential distribution; and α = ∞, k = 1.8 produces uniform distribution. Therefore,

the EPD can attain a broad range of kurtosis values and yield the special distribu-

tions. The random sampling of EPD adopted here is based on the proposed algorithm

ED by Tadikamalla (1980). The algorithm is developed from Von Neumann’s (1952)

rejection method. The proposal density is double-exponential distribution with scale

parameter β. It is defined as,

q(x, β) =
exp(− |x| /β)

2β
, β > 0 (120)

We draw the random number from the proposal density and use the acceptance-

rejection rule to obtain the target random number. The algorithm details as follows,

step 1: set A = α, B = AA.

step 2: Generate the variate x by following rule: First, generate a uniform random

number u. If u > .5, set x = B(− ln(2(1− u)); Otherwise, set x = B ln(2u).

step 3: Obtain another uniform random number s.

step 4: If ln s ≤ (−|x|α+|x|/B−1+A),return x as the desired variate. Otherwise,

go back to step 2.

In our experiments, we test α = 1 and α = 4,which represent two different dis-

tributions. First, we generate the error term ε by above algorithm. The density in

figure 32 demonstrate that when α = 1,we have leptokurtic distribution. If α = 2, the

distribution is roughly normal. The distribution become very flatter if we set α = 4.

The EPD binary data are generated by drawing the regression error terms from

the EPD distribution given x and β:
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y∗i = β1 + β2xi + εi, i = 1, · · · , n (121)

where x ∼ U(0, a) and the regression coefficients and a will be determined to obtain

the unbalanced and balanced binary y’s:

yi =





1 if y∗i ≤ 0

0 otherwise.
(122)

We generate data using equations (121) and (122) and call them EPD data. If we set

α = 1, and the kurtosis, γ4, of the EPD distribution is

γ4 =
Γ
(
5
α

)
Γ
(
1
α

)

Γ
(
3
α

)2 . (123)

Hence, γ4 = 6.0, which is leptokurtic.

4.6.2 Results for EPD Model

The sampling experiment is performed by generating 50 of DIC, PDIC, AIC, MSE of

β2, weighted SSE, unweighted SSE and R2. When α = 1 (leptokurtic distribution)

and % of y = 1 is 15.0% − 19.4% in table 24, ∆DIC and ∆AIC indicate that logit

model is preferred to probit model. The sampling theory criteria, ∆USSE and ∆R2

also choose logit model. In addition to compare the MSE of the coefficient, we also

calculate the mean of MSE of marginal effect of β2. In empirical study, marginal

effect is a more useful measure than coefficients because the coefficients are difficult

to interpret for probit, whereas marginal effect offer an intuitive interpretation. In the

simulation, we can calculate the true marginal effect of β2 because the true value of β2

is given. The difference between the estimated marginal effect and the true marginal

effect is calculated for both models. The MSE of the marginal effect is given by
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1

m

m∑

i=1

[
f(x̄β(i))β

(i)
2 − f(x̄β)β2

]2

where m is the MCMC iteration. f(x̄β)β2 is the true marginal effect, and f(x̄β(i))β
(i)
2

is the estimated marginal effect of β2.We expect the estimated marginal effect for

the true model is closer to the true marginal effect than for the wrong model. In

this case, we expect a larger MSE of marginal effect for probit model than for logit

model. Mean of MSE of the marginal effect of β2 is .524 for probit model, which is

larger than the logit model of .015. However, mean of the weighted SSE and mean

of MSE of β2 indicate probit model is preferred to logit model. For balanced data

case in table 24, the percentage of y = 1 is 56% − 62%. The distribution of ∆DIC,

∆PDIC and ∆AIC are around zero. The percentage of ∆DIC indicate logit model

is preferred to probit model. Mean of MSE of β2 also choose logit model over probit

model. However, mean of MSE of β2 for probit model is smaller than for logit model.

∆SSE, ∆USSE and ∆R2do not work here as they are essentially zero. When α = 4

( platykurtic distribution) and % of y = 1 is 7.4% − 11.1% in table 25, all model

selection criteria here prefer probit model to logit model. All ∆ < 0. Mean of MSE

of β2 is much smaller for probit model than for logit model. Mean of MSE of β2 for

probit model is .003, only one seventh of .021 for logit model. ∆SSE and ∆USSE are

less than zero, and ∆R2 is greater than zero. The percentage of ∆ < 0 in table 25 are

96%-100%, indicating the probit model is mostly picked by the above criteria. When

data become balanced as shown in table 25, mean of MSE of β2 for probit model is

still smaller than for logit model. All the other criteria does not work as the model

selection criteria.
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4.7 Applications

4.7.1 Stock-Oil Model

In the previous section we found that if we know the kurtosis of a distribution from

which binary data come, we may distinguish the logit and probit model if the binary

data is unbalanced. In general we do not know the distribution the binary data

originates, but sometimes such an information is available. For example, it is known

that financial return data are leptokurtic. Often we are interested in learning whether

the stock prices go up or down. Also, recently the relationship between the stock price

and oil price has attracted attention.

When the price of crude oil decreases, the stock price generally rises (see Sadorsky

(1999) and Cinder (2001), Nandha and Fall (2008)). Some connect the oil price shock

to the recession of the U.S. economy (Hamilton (1996, 2003) and Gronwald (2008),

among others.) Others argue that there is a stable negative relationship between

stock and oil prices, but this relationship collapsed after 1998 (Miller and Ratti)

(2008)). Is a high crude oil price a sign of future inflation and detriment to the stock

return, or is it a proxy for general economic strength? These questions need further

study perhaps using more complex models. Here we wish to capture the ups and

downs of the stock and oil prices by a simple binary choice model. We apply the

model selection criteria we discussed in the previous section. In the past few years

both negative and positive relationships have been observed between the stock and

oil prices. For example, NYMEX crude oil price story 6 show that between March

2007 and October 2007 both NYMEX crude oil and S&P500 price were up. From

November 2007 to March 2008 the stock price tended to go down when the oil price

went up. According to some news reports (Simons (2008)) the relationship between

the return on crude oil and the return on S&P500 is unstable. Between May 2003

and August 2007 there was a positive relationship due to strong global growth and

6The article is accessible on internet: http://www.post1.org/wiki/NYMEX_crude_oil_price_records.
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stimulative policies. In the most recent period of August 2007 and August 2008, there

is a negative relationship.

Let us focus on the period between January 2007 and March 2008. We use daily

Europe Brent Spot Price FOB (Dollars per Barrel) and daily S&P500 index. The

Europe Brent Spot Price is slightly different from NYMEX. Both can be obtained

from Energy Information Administration and they are produced by two major sources.

WIT-Cushing Oklahoma and Brent in Europe. Cushing is a price settlement point

for West Texas Intermediate on the New York Mercantile Exchange (NYMEX) and

has been quoted as the most significant trading hub for crude oil in North America.

However, it has lost the leading price indicator status since April 13, 2007 because a

huge stockpile at the facility has caused prices to be artificially low. Accordingly, we

use Brent in Europe data.

The logarithms of S&P500 and crude oil price are shown in Figure 33. There are

presences of negative relationship in some subperiods. From January 2007 to October

2007, the crude oil price rose from below $60 per barrel to nearly $80. S&P500 also

soared to an all-time high of 1565.15. From November 2007 to March 2008 the crude

oil price continue surging while S&P500 plunged a 19-months low on March 17. Since

then, both oil and stock prices have been rising.

We are also interested in the kurtosis of the returns on S&P500. In our simulation

we found that the logit model better explains the data than the probit model when

the distribution from which the binary data originate is leptokurtic. Using MCMC

algorithms the kurtosis, γ4, of the S&P500 return data is estimated in the regression

model

YSP&500,t = β1 + β2∆Xoil,t−1 + εt (124)

where εt follows the EPD distribution, Y ∗
SP500,t = ∆ yt = ln yt− ln yt−1; yt is the daily

S&P index; ∆Xoil,t−1 is the change in log of the daily crude oil price. The detailed
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MCMC algorithm to draw the coefficients (α, β, σ) is listed in Appendix V.A.

The posterior mean and standard deviation of γ4 are 5.284 and 0.771, respectively.

The posterior probability density of shape parameter α and Kurtosis γ4 are presented

in Figures 34 and 35. It is slightly skewed to the right, and it clearly lies in the range

greater than 3. The stylized fact that financial return data are leptokurtic holds true

for the S&P500 returns.

We change Y ∗
SP500,t to the binary data by

Yt =





0 if Y ∗
SP500,t ≤ a

1 otherwise
(125)

To obtain balanced data we set a = 0 and we set a = 0.01 to obtain unbalanced

data. The percentages of Y = 1 are 53% for the balanced data and 13.6% for the

unbalanced data.

The posterior means and standard deviations of β1 and β2 for the logit and probit

models are given in Tables 26 and 27 for the unbalanced data and for the balanced

data, respectively. The model selection criteria are also presented.

The negative β2 shown in Tables 26 and 27 indicates that the stock price and crude

oil price have a negative relationship in the period of 2007 to 2008. The estimates of

β2 indicate that the relationship between the stock return and oil return is not strong.

Among the model selection criteria ∆DIC seems to be the reliable measure since all

other criteria are virtually zero. When the data is balanced ∆DIC is 0.248 but when

the data is unbalanced ∆DIC is 0.517 indicating that the logit model is preferred

over the probit model. Since the stock return data is leptokurtic we expect that the

logit model performs better than the probit model when data are unbalanced.
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4.7.2 Labor Participation Model

We also apply the labor force participation model presented in Greene’s (2003). The

model is specified as,

Y = F (cons tan t, age, age2, income, eduction, kids) (126)

where Y is a dummy of women work in 1975. We scale the family income by 10000.

Greene fits a probit model to above regression. Here, we apply both probit and logit

model as we want to compare them. The results from our MCMC estimates and the

probit results from Greene’s are presented in table 28. Our coefficient estimates for

probit model and the significance level are similar to those found in Greene’s probit

model estimates. For these data, Prob(Y = 1) is 0.57, indicating a balanced data.

From our sampling experiments in section 3, we expect none of the model selection

criteria works. The results in table 28 show that ∆DIC, ∆PDIC, ∆AIC,∆SSE and

∆USSE are all close to zero, and the sign are mixed. ∆DIC is positive, ∆PDIC,

∆AIC, and ∆SSE are slightly negative, ∆USSE is equal to zero. Thus, there is

virtually no different for logit and probit model. The estimates from logit model

looks radically different, however, if we scale the coefficients by 1.6-1.8, it produces

the coefficients of probit (except age2), within the range of the scaling parameters

given by Amemiya (1981) and Long (1997). In addition, .we calculate the marginal

effect of both probit and logit models given by

1

m

m∑

i=1

f(x̄β(i))β(i) (127)

where m is the MCMC iteration, β(i) is the i-th MCMC draw of β.Comparison of the

marginal effects and the marginal effects from Greene’s estimates in table 29 shows

that the results from these two models are nearly identical, and they are the same as

those from Greene’s estimates.
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4.8 Conclusion Remarks

There are several conclusions we can draw. If there is only the constant term in

the regression model, all the model selection criteria considered in this essay are

distributed tightly around zero. This is especially true for the sampling theory criteria

of ∆AIC, ∆SSE, and ∆USSE. With two variables in the regression we find that

∆DIC and ∆AIC tend to choose the correct model. ∆SSE always chooses the

probit model when the data are unbalanced. If data are balanced no criterion works.

We have shown that if we have knowledge on the kurtosis of the distribution from

which binary data are generated, we can discriminate the logit and probit model if

the data are unbalanced.

The critical values for ∆ > 0 vary with the regression model and with covariates

in the regression model. There are some attempt to find critical values of the model

selection criteria that yield 90% or 95% acceptance or rejection of a model. For

example Burnham and Anderson (1998) come up with such critical values for the

AIC. Hahn and Soyer (2005) follow Burnham and Anderson to choose critical values.

We changed the sample size from 1,000 to 200. The results show that the model

selection criteria do not work well even for unbalanced data. This may be due to the

fact that we need a large sample to have enough observations in the tails. Arguing

that we have knowledge on the kurtosis of financial return data, we showed that the

ups and downs of S&P500 returns are better explained by the logit model if the data

are unbalanced.
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Appendix IV.A: MCMC procedure to draw (α, β, σ)

We choose flat prior and set them equal to one. The log likelihood function for

EPD models is given by,

l(α, β, σ|y, x) = −(n + 1)× ln(σ)− n× ln gamma(
1

α
) (128)

−n× (α + 1)

α
× ln(2)− .5

σα
×
∑

i

|yi − xiβ|α (129)

We draw the coefficients in blocks. To draw the coefficient α,we use Modified

Efficient Jump. The proposal density inverted Gaussian given by,

f(x) =

(
λ

2πx3

) 1
2

exp

[
−λ(x− µ)2

2µ2x

]
, x > 0, µ > 0, λ > 0

We use Devroye (1986)’s random number generation algorithm as follows,

1. Generate a N(0, 1).

2. Set Y = N2.

3. Set X1 = µ +
µ2Y

2λ
− µ

2λ

√
4µλY + µ2Y 2

4. Generate a uniform random variate, U(0, 1).If U ≤ µ
µ+X1

,set X = X1,else

set X = µ2

X1
.

We obtain λ and µ from Simpson’s rule.

We set

A(i) =





α(i) with probability A(α(i−1), α(i))

α(i−1) with probability 1− A(α(i−1), α(i))

where A = min
{

p(αi,βi−1,σi−1)q(αi,βi−1,σi−1)

p(αi−1,βi−1,σi−1)q(αi−1,βi−1,σi−1)
, 1

}
, and p(·) is the posterior density

defined by equation (128). q(·) is the proposal density for α.

To draw the coefficient β, we use Metropolis-Hastings algorithm. The proposal

density is given by,
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


β
(i)
1

β
(i)
2


 ∼ N

{[
(X ′X)

−1
X ′Y

]
, σ2(i−1)(X ′X)−1

}

We set

β(i) =





β(i) with probability A(β(i−1), β(i))

β(i−1) with probability 1−A(β(i−1), β(i))

where A = min
{

p(αi,βi,σi−1)q(αi,βi,σi−1)

p(αi,βi−1,σi−1)q(αi,βi−1,σi−1)
, 1

}
, and p(·) is the posterior density de-

fined by equation (128). q(·) is the proposal density for β.Thus, β are drawn from

normal distribution with OLS estimator as its mean.

The σ is draw from inverted gamma and is accepted or rejected by,

σ(i) =





σ(i) with probability A(σ(i−1), σ(i))

σ(i−1) with probability 1−A(σ(i−1), σ(i))

where A = min
{

p(αi,βi,σi)q(αi,βi,σi)

p(αi,βi,σi−1)q(αi,βi,σi−1)
, 1

}
, and p(·) is the posterior density defined

by equation (128). q(·) is the proposal density for σ.
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Figure 32. Kernel Densities of Error Term from EPD
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Table 13: Constant Term Regression Model: Balanced Data

Logistic Model is True
β1 = −0.1,% of y = 1 is 44.6− 51.9%

mean max min std
% of y = 1 48.60 51.90 44.60 1.397

∆DIC .016 .320 −.332 .158
∆PDIC .001 .021 −.021 .009

∆AIC −1.85× 10−8 3.14× 10−7 −3.563× 10−7 7.18× 10−8
∆SSE 1.193× 10−7 2.391× 10−6 −2.429× 10−6 6.454× 10−7
∆USSE −4.6× 10−9 7.8× 10−9 −8.88× 10−8 1.79× 10−8

% of choosing the correct (Logit) model
∆DIC 54%
∆PDIC 66%

∆AIC 74%
∆SSE 72%
∆USSE 74%

Probit Model is True
β1 = −0.1,% of y = 1 is 44.2− 51.5%

mean max min std
% of y = 1 47.77 51.50 44.20 1.529

∆DIC .100 .898 −.984 .408
∆PDIC .001 .055 −.052 .017

AIC −3.63× 10−8 4× 10−10 0× 10−10 1× 10−10
∆SSE 1.336× 10−7 2.387× 10−6 −2.996× 10−6 9.468× 10−7
∆USSE −9× 10−9 6.4× 10−9 8.77× 10−8 2.38× 10−8

% of choosing the correct (Probit) model
∆DIC 40%
∆PDIC 42%

∆AIC 26%
∆SSE 22%
∆USSE 26%

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit (ten period ahead prediction)
∆AIC = AIC of probit − AIC of logit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit

∆ > 0 indicates the choice of the logit model; otherwise choose Probit.
r = 50 (r is the number of replications.)
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Table 14: Constant Term Regression Model: Unbalanced Data

Logistic Model is True
β1 = −1.2,% of y = 1 is 20.5− 27.9%

mean max min std
% of y = 1 24.026 27.900 20.500 1.531

∆DIC .020 .269 −.250 .126
∆PDIC −.001 .013 −.009 .005

∆AIC 5.70× 10−8 1.833× 10−7 −7.17× 10−8 6.66× 10−8
∆SSE −5.189× 10−6 1.232× 10−5 −1.513× 10−6 7.574× 10−6
∆USSE 1.060× 10−8 3.30× 10−8 −1.17× 10−8 1.12× 10−8

% of choosing the correct (Logit) model
∆DIC 56%
∆PDIC 44%

∆AIC 66%
∆SSE 34%
∆USSE 66%

Probit Model is True
β1 = −1.2,% of y = 1 is 10.4− 15.3%

mean max min std
% of y = 1 12.55 15.30 10.40 .983

∆DIC .038 .498 −.748 .295
∆PDIC .000 .028 −.010 .007

AIC −7.5× 10−9 1.551× 10−7 −7.45× 10−8 3.06× 10−8
∆SSE 1.01× 10−6 8.952× 10−6 −3.223× 10−5 5.436× 10−6
∆USSE −8× 10−10 1.45× 10−8 −7.3× 10−9 2.9× 10−9

% of choosing the correct (Probit) model
∆DIC 42%
∆PDIC 60%

∆AIC 70%
∆SSE 30%
∆USSE 70%

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit (ten period ahead prediction)
∆AIC = AIC of probit − AIC of logit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit

∆ > 0 indicates the choice of the logit model; otherwise choose Probit.
r = 50 (r is the number of replications.)
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Table 15: Comparison of AICMLE and AICMLCMC for Logit Data

% of y = 1 is 20.6− 27.9% % of y = 1 is 44.6− 51.9.%
β1 = −1.2 β1 = −.1

mean median std mean median std
y = 1 24.03% 24.05% 1.53 48.60% 48.75% 1.40

∆AICMLE 5.7× 10−8 5.0× 10−8 .000 −1.9× 10−8 6× 10−10 7.2× 10−8
∆AICMCMC −.003 −.001 .004 −.012 −.008 .011

% of {∆AICMLE > 0} = 64%
% of {∆AICMCMC > 0} = 32%

% of {∆AICMLE > 0} = 74%
% of {∆AICMCMC > 0} = 8%

Notes: ∆AIC = AIC of probit − AIC of Logit
∆ > 0 indicates the choice of the logit model.

Table 16: Comparison of AICMLE and AICMLCMC for Probit Data

% of y = 1 is 10.4− 15.3% % of y = 1 is 44.2− 51.5.%
β1 = −1.2 β1 = −.1

mean median std mean median std
y = 1 12.55% 12.60% .98 47.77% 47.75% 1.53

∆AICMLE 7.5× 10−9 1.9× 10−9 3.1× 10−8 −3.6× 10−8 8.0× 10−10 1× 10−10
∆AICMCMC −.011 −.003 .016 −.041 −.020 .054

% of {∆AICMLE < 0} = 70%
% of {∆AICMCMC < 0} = 84%

% of {∆AICMLE < 0} = 26%
% of {∆AICMCMC < 0} = 88%

Notes: ∆AIC = AIC of probit − AIC of Logit
∆ < 0 indicates the choice of the probit model.

Table 17: Difference of DIC by MCMC and DIC by Exact Posterior Pdf

Logit data Probit data
β = −2.0 β = −.1 β = −2.0 β = −.1

∆DIC1 2.0028 2.0588 1.9802 2.0639
∆DIC2 1.9883 2.2822 2.4717 2.1841
ȳ .006 .485 .027 .47

Notes: ∆DIC1 = DICMCMC −DICEXACT for probit model
∆DIC2 = DICMCMC −DICEXACT for logit mode
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Table 18: Two variables Regression Model: Logit Data

% of y = 1 is 11.1—14.9% % of y = 1 is 48.6—55.2%
β1 = 1.6, β2 = −.2 ad = 70 β1 = 1.6, β2 = −.2 ad = 15

mean max min std mean max min std
% of y = 1 12.36 14.90 11.10 .72 52.47 55.20 48.60 1.478
∆DIC 1.756 21.225 −3.337 4.018 −.033 .531 −1.052 .335
∆PDIC −.008 .024 −.018 .006 .000 .031 −.031 .013
∆AIC 1.790 16.608 −3.460 3.579 .000 .633 −.796 .279
∆SSE −.0367 −.0212 −.0616 .0103 −.0006 .0014 −.0020 .0007
∆USSE .1408 1.4270 −.2964 .3269 .0053 .1376 −.1281 .0517
∆R2 −.0013 .0030 −.0125 .0030 .0000 .0005 −.0006 .0002
% of choosing the correct (logit) model % of choosing the correct (logit) model

∆DIC 64%
∆PDIC 2%
∆AIC 64%

∆DIC 46%
∆PDIC 50%
∆AIC 56%

∆SSE 0%
∆USSE 60%

∆SSE 18%
∆USSE 54%

Mean of MSE of β2
Probit: .0080 Logit: .0005 Probit: .0061 Logit: .0003

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit
∆AIC = AIC of probit − AIC of logit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit
∆ > 0 indicates the choice of the logit model.
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Table 19: Two Variables Regression Model: Probit Data

% of y = 1 is 9.9—13.1% % of y = 1 is 49.8—56.1.%
β1 = 1.6, β2 = −.2 ad = 70 β1 = 1.6, β2 = −.2 ad = 15

mean max min std mean max min std
% of y = 1 11.40 13.10 9.90 .703 53.43 56.10 49.80 1.378
∆DIC −.990 3.147 −3.588 1.269 −.208 1.584 −1.922 .822
∆PDIC −.002 −.001 −.004 .001 −.002 .039 −.086 .035
∆AIC −.826 3.158 −3.195 1.229 −.184 1.656 −1.690 .825
∆SSE −.0269 −.0122 −.0467 .0071 −.0053 .0000 −.0107 .0021
∆USSE −.0146 .2201 −.2960 .1204 −.0210 .2701 −.2406 .1225
∆R2 .0001 .0029 −..0022 .0012 .0001 .0010 −.0011 .0005
% of choosing correct (probit) model % of choosing correct (probit) model

∆DIC 82%
∆PDIC 100%
∆AIC 76%

∆DIC 60%
∆PDIC 42%
∆AIC 58%

∆SSE 100%
∆USSE 50%

∆SSE 100%
∆USSE 64%

Mean of MSE of β2
Probit: .0007 Logit: .0311 Probit: .0061 Logit: .0003

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit
∆AIC = AIC of probit − AIC of logit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit
∆ < 0 indicates the choice of the probit model.
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Table 20: Two variables Regression Model: Logit Data (II)

% of y = 1 is 9.8—13.6% % of y = 1 is 43.7-51.5%
β1 = .9, β2 = −.1 ad = 100 β1 = .9, β2 = −.1 ad = 20

mean max min std mean max min std
% of y = 1 12.12 13.60 9.80 .782 48.19 51.50 43.70 1.64
∆DIC 1.187 6.918 −3.956 2.732 −.053 .370 −.518 .214
∆PDIC .006 .404 −.101 .065 .001 .027 −.027 .008
∆AIC 1.244 7.207 −3.979 2.809 −.019 .222 −.291 .112
∆SSE −.0302 −.0210 −.0393 .0046 .0000 .0006 −.0005 .0002
∆USSE .1581 .9557 −.3038 .2866 −.0028 .0532 −.0544 .0240
∆R2 −.0015 .0034 −.0099 .0028 .0000 .0002 −.0002 .0001
% of choosing correct (logit) model % of choosing correct (logit) model

∆DIC 62%
∆PDIC 26%
∆AIC 62%

∆DIC 34%
∆PDIC 64%
∆AIC 44%

∆SSE 0%
∆USSE 70%

∆SSE 40%
∆USSE 48%

Mean of MSE of β2
Probit: .0021 Logit: .0001 Probit: .0015 Logit: .0001

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit
∆AIC = AIC of probit − AIC of logit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit
∆ > 0 indicates the choice of the logit model.
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Table 21: Two Variables Regression Model: Probit Data (II)

% of y = 1 is 9.8—11.5% % of y = 1 is 42.7—50.3.%
β1 = .9, β2 = −.1, ad = 100 β1 = .9, β2 = −.1, ad = 20

mean max min std mean max min std
% of y = 1 11.40 11.50 9.85 8.60 47.45 50.30 42.70 1.734
∆DIC −.990 −1.488 1.077 −3.688 −.148 .681 −1.356 .427
∆PDIC −.002 −.005 −.002 −.011 −.002 .020 −.049 .013
∆AIC −.826 −1.530 1.095 −3.769 −.082 .698 −1.094 .387
∆SSE −.0269 −.0284 −.0193 −.0423 −.0007 .0016 −.0033 .0010
∆USSE −.0146 −.0579 .3244 −.2800 −.0097 .1447 −.1671 .0701
∆R2 .0001 .0006 .0032 −..0034 .0000 .0007 −.0006 .0003
% of choosing correct (probit) model % of choosing correct (probit) model

∆DIC 86%
∆PDIC 100%
∆AIC 82%

∆DIC 64%
∆PDIC 54%
∆AIC 54%

∆SSE 100%
∆USSE 64%

∆SSE 80%
∆USSE 56%

Mean of MSE of β2
Probit: .0001 Logit: .0066 Probit: .0001 Logit: .0042

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit
∆AIC = AIC of probit − AIC of probit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit
∆ < 0 indicates the choice of the probit model.
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Table 22: Six Variables Regression Model: Logit Data

% of y = 1 is 14.8-15.2% % of y = 1 is 50.0-50.3%
mean max min std mean max min std

% of y = 1 15.00 15.16 14.81 0.043 50.00 50.30 49.90 .055

∆DIC 2.294 11.129 −3.109 2.934 .577 3.842 −2.457 1.266
∆PDIC 0.018 0.350 −0.147 0.090 0.002 0.075 −0.072 0.034

∆AIC 1.915 10.645 −3.236 2.840 0.055 3.586 −2.940 1.305
∆SSE −0.007 −0.003 −0.009 0.001 −0.001 0.001 −0.003 0.001
∆USSE 0.318 1.353 −0.265 0.358 0.032 0.660 −0.366 0.180

% of choosing the correct (logit) model % of choosing the correct (logit) model
∆DIC 80%
∆PDIC 52%

∆DIC 72%
∆PDIC 48%

∆AIC 80%
∆SSE 0%
∆USSE 82%

∆AIC 54%
∆SSE 2%
∆USSE 54%

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit (ten period ahead prediction)
∆AIC = AIC of probit − AIC of probit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit

∆ > 0 indicates the choice of the logit model.
r = 50 (r is the number of replications.)
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Table 23: Six Variables Regression Model: Probit Data

% of y = 1 is 14.9-15.1% % of y = 1 is 49.8-50.1%
mean max min std mean max min std

% of y = 1 15.00 15.06 14.85 0.036 50.00 50.07 49.80 0.045

∆DIC −0.687 3.750 −7.692 1.974 0.373 1.187 −1.043 0.556
∆PDIC −0.003 0.666 −0.109 0.108 −0.001 0.038 −0.058 0.020

∆AIC −.1.027 3.251 −8.070 1.934 −0.068 0.717 −1.306 0.444
∆SSE −0.003 −0.002 −0.006 0.001 0.000 0.000 −0.001 0.000
∆USSE −0.108 0.401 −0.902 0.256 .− 0.005 0.130 −0.181 0.076

% of choosing the correct (probit) model % of choosing the correct (probit) model
∆DIC 56%
∆PDIC 58%

∆DIC 32%
∆PDIC 64%

∆AIC 66%
∆SSE 100%
∆USSE 62%

∆AIC 46%
∆SSE 94%
∆USSE 50%

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit (ten period ahead prediction)
∆AIC = AIC of probit − AIC of probit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit

∆ < 0 indicates the choice of the probit model.
r = 50 (r is the number of replications.)
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Table 24: EPD Model with α = 1

% of y = 1 is 15.0—19.4% % of y = 1 is 56.0—62.8%
β1 = .1, β2 = −6, ad = .5 β1 = .1, β2 = .4, ad = .5

mean median max min std mean median max min std
% of y = 1 16.90 16.80 19.40 15.00 .924 58.98 58.75 62.80 56.00 1.594
∆DIC 1.923 1.790 5.406 −1.035 1.428 .194 .199 .511 −.036 .119
∆PDIC .008 .033 .051 −.135 .058 .000 .000 .027 −.016 .008
∆AIC 1.867 1.800 5.357 −1.126 1.446 −.002 .000 .217 −.031 .008
∆SSE −.0075 −.0076 −.0013 −.0128 .0026 .0000 .0000 .0001 .0000 .0000
∆USSE .3134 .3195 .8886 −.2683 .2287 −.0004 .0000 .0041 −.0067 .0018
∆R2 −.0022 −.0022 .0020 −.0064 .0016 .0000 .0000 .0000 .0000 .0000

% of {∆DIC > 0} = 80%
% of {∆PDIC > 0} = 80%
% of {∆AIC > 0} = 88%

% of {∆DIC > 0} = 54%
% of {∆PDIC > 0} = 52%
% of {∆AIC > 0} = 44%

% of {∆SSE > 0} = 0%
% of {∆USSE > 0} = 90%

% of {∆SSE > 0} = 56%
% of {∆USSE > 0} = 44%

Mean of MSE of β2
Probit: 3.2681 Logit: 4.2840 Probit: .0652 Logit: .1918

Mean of MSE of Marginal Effect of β2
Probit: .524 Logit: .015 Probit: .054 Logit: .010

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit
∆AIC = AIC of probit − AIC of probit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit
∆ > 0 indicates the choice of the logit model.
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Table 25: EPD Model with α = 4

% of y = 1 is 7.4—11.0% % of y = 1 is 57.8—64.2%
β1 = .1, β2 = −6, ad = .5 β1 = .1, β2 = .4, ad = .5

mean median max min std mean median max min std
% of y = 1 9.38 9.40 11.00 7.40 .768 61.11 61.00 64.20 57.80 1.312
∆DIC −3.419 −3.517 .327 −5.083 1.196 .142 .136 .440 −.187 .156
∆PDIC −.013 −.012 −.008 −.017 .002 −.001 .000 .032 −.020 .010
∆AIC −3.517 −3.652 −.350 −5.241 1.166 .003 .000 .082 −.026 .015
∆SSE −.0227 −.0221 −.0162 −.0350 .0039 .0000 .0000 .0000 −.0002 .0000
∆USSE −.2682 −.2853 .0931 −.5898 .1413 .0007 .0000 .0190 −.0060 .0035
∆R2 .0031 .0033 .0071 −..0011 .0016 .0000 .0000 .0000 −.0001 .0000

% of {∆DIC < 0} = 98%
% of {∆PDIC < 0} = 100%
% of {∆AIC < 0} = 100%

% of {∆DIC < 0} = 24%
% of {∆PDIC < 0} = 48%
% of {∆AIC < 0} = 48%

% of {∆SSE < 0} = 100%
% of {∆USSE < 0} = 96%

% of {∆SSE < 0} = 60%
% of {∆USSE < 0} = 46%

Mean of MSE of β2
Probit: 29.4254 Logit: 221.9853 Probit: .0780 Logit: .3219

Mean of MSE of Marginal Effect of β2
Probit: .003 Logit: .021 Probit: .030 Logit: .010

Notes: ∆DIC = DIC of probit − DIC of logit
∆PDIC = PDIC of probit − PDIC of logit
∆AIC = AIC of probit − AIC of probit
∆SSE = SSE of probit − SSE of logit
∆USSE = USSE of probit − USSE of logit
∆ < 0 indicates the choice of the probit model.

Table 26: Posterior Summary Statsistics and Model Selection Criteria: Stock-Oil
Data Unbalanced Data

mean std
logit β1 −1.880 0.163

β2 −0.004 0.017

probit β1 −1.106 0.094
β2 −0.002 0.010

∆DIC 0.517
∆PDIC −0.015
∆AIC 0.010
∆SSE 0.000
∆USSE 0.001
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Table 27: Posterior Summary Statsistics and Model Selection Criteria: Stock-Oil
model Balanced Data

mean std
logit β1 0.190 0.171

β2 −0.106 0.232

probit β1 0.114 0.111
β2 −0.064 0.150

∆DIC 0.248
∆PDIC −0.002
∆AIC 0.000
∆SSE 0.000
∆USSE 0.000

Table 28: Posterior Summary Statsistics and Model Selection Criteria: Labor Partic-
ipation Model

const age age2 Income Edu. kids
logit mean −6.401 0.292 −0.004 0.066 0.154 −0.772

std 2.387 0.111 0.001 0.069 0.037 0.204

probit mean −4.105 0.187 −0.002 0.037 0.094 −0.448
std 1.431 0.067 0.001 0.042 0.023 0.138

Greene’s mean −4.157 0.185 −0.002 0.046 0.098 −0.450
std 1.402 0.066 0.001 0.042 0.023 0.130

∆DIC 0.449
∆PDIC −0.047
∆AIC −0.296
∆SSE 0.001
∆USSE −0.027

Table 29: Marginal Effects: Labor Participation Model

const age Income Edu. kids
logit −1.555 0.071 0.016 0.037 −0.175
probit −1.603 0.073 0.015 0.037 −0.175
Greene’s −1.620 0.072 0.018 0.038 −0.175
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