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We utilize graphs of groups and the corresponding covering theory to study lattices in
type-oo Kac-Moody groups over a finite field [F;, including results for both cocompact
and nonuniform lattices. For every prime power ¢ we give a sufficient condition for the
rank 2 Kac-Moody group G to contain a cocompact lattice with quotient a simplex, and
we show that this condition is satisfied when ¢ = 2°. Under further restrictions, we show
that there is an infinite descending chain of cocompact lattices, and we demonstrate
such a chain for ¢ = 2. Moreover we characterize the quotient graphs of groups for each
lattice. Our method involves extending coverings of edge-indexed graphs to covering
morphisms of graphs of groups. We also show how this gives rise to other infinite
families of cocompact lattices in G.

When g = 2 we are also able to embed the infinite descending chain in the rank 3
Kac-Moody group as a chain of lattices in the subgroup generated by all non-maximal
standard parabolic subgroups. In addition we embed a non-discrete subgroup in the
rank 3 Kac-Moody group whose quotient is a simplex.

We next give graphs of groups descriptions for known nonuniform lattices of Nagao-
type. For the nonuniform lattices SLo(F,[t]) and PGLy(F,[t]) we use the theory of
ramified coverings to construct the graphs of groups for their congruence subgroups. We

also examine the same construction employed by Morgenstern, identifying and repairing
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an error in his work. All graphs of groups for non-uniform lattices constructed here

satisfy the structure theorem for graphs of groups.
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Chapter 1

Introduction

This thesis examines and in many cases constructs lattice subgroups of Kac-Moody
groups by constructing first their graphs of groups. The theory of graphs of groups
has its roots in the work of Serre [S]. He shows that when a group acts on a tree, it
is possible to recover a presentation for the group, along with additional properties,
from its quotient graph of groups. The group is constructed as a fundamental group of
graphs of groups. This notion is analogous to its counterpart in algebraic topology and
indeed, the two notions of fundamental group are equivalent when taken with respect
to a group which acts freely on a tree.

Bass ([B]) and later Bass-Kulkarni ([BK]) expand on the theory by developing the
notion of covering morphisms for graphs of groups. Their work gives a constructive
method for realizing subgroups (of a group acting on a tree) since such a covering
morphism induces an embedding of the corresponding fundamental groups.

In [BL], the theory of graphs of groups is applied extensively to the study of tree
lattices. Here we mean a lattice to be a discrete group which carries a finite invari-
ant measure. Bass and Lubotzky show that when a group acts on a tree, its lattice
subgroups may be characterized as those which act with finite stabilizers and have ei-
ther finite quotient graphs (cocompact lattices) or infinite quotient graphs but finite
covolume (nonuniform lattices).

The work in [BL] is partly motivated by presenting a theory for general tree lattices
in analogy with the theory for lattices in semisimple, non-archimedean Lie groups of
rank one, which act on their Bruhat-Tits tree. The Lie group case is also treated in
works such as [L1, L2]. Subsequent works by Carbone and Carbone-Garland use the

methods of Bass and Lubotzky to study lattices in Kac-Moody groups over finite fields.



Kac-Moody groups arise from infinite-dimensional Kac-Moody Lie algebras. They carry
a BN-pair structure and act on their Tits buildings, which are trees in the case of rank
2 Kac-Moody groups.

Infinite families of both cocompact and nonuniform lattices in Kac-Moody groups
have been constructed in [CG] and [RR]. What this work offers is an application of the
graphs of groups theory to provide a systematic construction and study of lattices. In
chapter 3 we supply sufficient conditions for the existence of cocompact lattices with
quotient a simplex and show that these conditions are satisfied when the base field
has characteristic 2. We also give a further condition, which holds over the field of
two elements, that gives rise to a lattice corresponding to a ‘tripod’ graph of groups.
Chapter 4 again applies coverings of graphs of groups in order to embed the ‘tripod’
lattice into a subgroup of a rank 3 Kac-Moody group. Also in this chapter we apply
the analogous theory for coverings of triangle of groups [GP] (or more generally the
complex of groups theory developed by Haefliger [H]) in order to embed a non-discrete
subgroup in the rank 3 Kac-Moody group which has quotient a simplex.

In [RR], Rémy and Ronan showed that Bourdon’s cocompact lattices 'y g41, r >
5, ¢ > 3 [Bol, Bo2], can be embedded into the closure of right-angled Kac-Moody
groups in the automorphism groups of their buildings, I, 441 for ¢ a prime power. The
Kac-Moody groups we consider here are examples of right-angled Kac-Moody groups,

’ in our results,

however there is no overlap with the setting of [RR]. The analog of ‘r
that is, the type of fundamental polygon for the Weyl group, is 2 or 3, while the results
of [RR] and [Bol], [Bo2] hold only for r > 5. It is intriguing however that the lattices
of [RR] (Section 5C) appear to be quotients of the lattices we construct in the rank 3
Kac-Moody group.

The ‘tripod’ lattice exhibited in ranks 2 and 3 over the field of ¢ = 2 elements
likely occurs over larger fields in rank 2. However for Kac-Moody groups of rank 3, the
tree inscribed in the Tits building is homogeneous only when ¢ = 2. Since our results
depend on this homogeneity, we do not expect our methods in rank 3 to extend easily

to other values of ¢, though a generalization may be possible.

The sufficient condition which establishes the ‘tripod’ lattice in Chapters 3 and 4



also yields infinite descending chains of cocompact lattices. These are the first examples
of infinite descending chains of lattices in Kac-Moody groups. We give the construction
of two classes of descending chains in Chapter 5. A key tool in these constructions is
the method of ‘open fannings’. This method was first used in [C2] to construct the first
non-uniform lattices in Aut(X) for any locally finite tree X which is the universal cover
of a finite connected graph.

In Chapter 6 we give a third class of infinite descending chains, this time using only
covering theory. We classify the graphs of groups which give rise to cocompact lattices
in certain cases by providing necessary and sufficient conditions for the existence of
covering morphisms in these cases. This classification provides yet further examples of
infinite families of cocompact lattices in rank 2 Kac-Moody groups. As a final example,
we show in Section 6.3 that any free group may be embedded as a cocompact lattice in
a rank 2 Kac-Moody group.

Since the lattices obtained over the field of two elements are free products of finite
groups, it follows that they are residually finite ([Ma]) and hence contain an abundance
of normal subgroups of finite index. The existence of descending chains of lattices is
therefore not surprising, though we do not use residual finiteness. Instead our strategy of
extending covering morphisms of edge-indexed graphs to covering morphisms of graphs
of groups provides a new tool for constructing descending chains of lattices in locally
compact groups.

As mentioned previously, cocompact lattices such as those constructed in Chapters
3, 5 and 6 are characterized by finite graphs of finite groups. Nonuniform lattices have
infinite graphs of finite groups and are more complex. One interesting open question
is whether or not nonuniform lattices satisfy the Structure Theorem, stating that any
lattice has a quotient graph consisting of a finite ‘core’ graph with finitely many infinite
rays (cusps) attached. The structure theorem holds in the Lie group case, as shown in
various cases by both Lubotzky and Raghunathan ([BL]).

What is known in the Kac-Moody group setting is that the Structure Theorem

holds for affine Kac-Moody groups. Affine Kac-Moody groups arise from Lie algebras



associated to Cartan matrices of affine type, while the larger class of hyperbolic Kac-
Moody groups arise from Cartan matrices of hyperbolic type. All known examples of
non-uniform lattices of hyperbolic Kac-Moody groups satisfy the Structure Theorem,
but the question remains open. This motivates the work of Chapters 7, 8 and 9, where
we construct graphs of groups for well-known nonuniform lattices of affine Kac-Moody
groups which are likely to have natural analogues in the hyperbolic setting. This lays
the ground work for potentially using graphs of groups to help answer the Structure
Theorem question for hyperbolic Kac-Moody groups.

For rank 2 affine Kac-Moody groups we have convenient descriptions in terms of
the matrix group SLo(F,((t™!))). The nonuniform lattices we study in Chapters 7, 8
and 9 are nonuniform lattices of this matrix group. Chapter 7 gives graphs of groups
for Nagao-type lattices, such as SLy(IF,[t]), with quotient an infinite ray. We then
combine these to give a graph of groups for one of the generating BN-pair groups,
also a nonuniform lattice but with quotient a bi-infinite ray. Chapter 8 adopts the
method of ramified coverings to give the graphs of groups for congruence subgroups
of the Nagao-type lattice SLy(Fy[t]). In particular we give the size of the core graph
together with the number of cusps.

The work done in Chapter 8 was originally inspired by a work of Morgenstern
[M]. His method was to construct the quotient graph for a congruence subgroup as a
ramified covering of the quotient graph for PG Ly (IF, [t]). This idea is consistent with the
theory of branched topological coverings, and in Morgenstern’s setting, coincides with a
method suggested by Drinfeld in his theory of modular curves over function fields ([D]).
Similar constructions of fundamental domains of lattices for congruence subgroups were
constructed by Gekeler and Nonnengardt ([GN2]) and Rust ([Ru]) using essentially the
same method.

We remark that the method of constructing a fundamental domain for a congruence
subgroup as a ramified covering is unclear in the settings of Morgenstern, Gekeler-
Nonnengardt and Rust. However, we have been able to verify that a correctly con-
structed ramified covering gives rise to a covering morphism of graphs of groups in the

sense of Bass’ covering theory for graphs of groups ([B]). Thus the ramified covering



should coincide with the quotient graph. In general the structural properties of the
quotient graphs obtained as ramified coverings are difficult to determine and detailed
drawings of these graphs are non-trivial to obtain.

One important property of quotient graphs is that they are always connected. The
works of [GN] and [Ru] do not verify this property for their constructions as ramified
coverings. Morgenstern’s work yields examples which we will show are disconnected
and hence cannnot be quotient graphs. This contradicts some of the results in [M], and
indicates an error in the ramified covering. Chapter 9 discusses the sources of this error
and gives a corrected ramified covering for the congruence subgroups of PGLs[t]. We
show that these quotient graphs are in fact isomorphic to their counterparts in SLs[t]

constructed in Chapter 8.



Chapter 2

Preliminaries

Let G be a completion of Tits’ Kac-Moody group functor over a finite field IF,. Then
G is locally compact and totally disconnected ([CG], [RR]). Completions of the Tits
functor have been described by Carbone and Garland ([CG]) and Rémy and Ronan
([RR]). If G is the Kac-Moody group of a generalized Cartan matrix A, then we call
G affine if A is positive semi-definite but not positive definite. If A is neither positive
definite nor positive semi-definite, but every proper indecomposable submatrix is either
positive definite or positive semi-definite, we say that G has hyperbolic type. If every
proper indecomposable submatrix of A is positive definite, we say that G has compact
hyperbolic type. Thus if A has a proper indecomposable affine submatrix, we say that

G has noncompact hyperbolic type.

This work considers only the following class of Kac-Moody groups G over a finite field
F,. We suppose that G is complete using the Rémy-Ronan completion, that G is either
of affine or hyperbolic type, and that G has ‘type oo’, that is, the Weyl group W is
a free product of Z/27Z’s. This coincides with the class of affine or hyperbolic Kac-
Moody groups corresponding to generalized Cartan matrices A = (A;;); jer where all
m;j equal oo for ¢ # j. In particular, this includes all rank 2 Kac-Moody groups, whose
generalized Cartan matrices form the infinite family

2 —a
A= ; ab € L4,

which is of affine type if ab = 4 and of (compact) hyperbolic type if ab > 4.

If A is of affine type then there are two possible generalized Cartan matrices, namely



1 2
A§ ) _ ’ Ag ) _
-2 2 —4 2
If rank(G) = 3, we may apply the classification of symmetrizable hyperbolic Dynkin
diagrams ([Sa]) to deduce that G is of noncompact hyperbolic type and that the gen-

eralized Cartan matrix of G is one of the following:

2 -2 -2 2 -1 -2
A=|-2 2 —2|,4A=|-4 2 -1
-2 -2 2 -2 —4 2

In both cases W =2 Z /27 %7 /2Z %7/ 27Z and the fundamental chamber for W is an ideal
triangle in the hyperbolic plane. Our interest in the Kac-Moody groups in this class
comes in part from the fact that the corrected automorphic forms of the corresponding
generalized Kac-Moody algebras play an important role in high-energy physics ([GN]
and [HM]). If G has type oo and rank(G) > 3 then G no longer has hyperbolic type.

We will not say more about this case here.

2.1 Locally compact Kac-Moody groups

Though there is no obvious infinite dimensional generalization of finite dimensional Lie
groups, Tits associated a group functor G 4 on the category of commutative rings, such
that for any symmetrizable generalized Cartan matrix A and any ring R there exists
a group G4(R) ([Ti2], [Ti4]). Tits defined not one group, but rather minimal and
mazimal groups. The value of the Tits functor G4 over a field £ is called a minimal
Kac-Moody group. The mazimal or complete Kac-Moody group is defined relative to a

completion of the Kac-Moody algebra and contains G 4(k) as a dense subgroup.

2.1.1 BN-pair and Tits building

Tits’ Kac-Moody group functor may be described by certain group theoretic data,

called a Tits system or (B, N)-pair. This data carries a great deal of information about



the group and its subgroups, and in particular determines a simplicial complex, a Tits
building X on which the group acts faithfully and cocompactly. A (B, N)-pair can be
associated to a Kac-Moody group on either the minimal or complete level. Here we
describe briefly the (B, N)-pair associated to a completion of Tits’ functor over a finite

field.

Let A be an [ x [ symmetrizable generalized Cartan matrix. Let G = G4(F;) be a
completion of Tits’ functor associated to A and the finite field F;,. The existence of
such a completion was noted by Tits ([Ti4]). Explicit completions have been constructed
using distinct methods by Carbone and Garland ([CG]) and by Remy and Ronan ([RR])
(subsection 2.1.3 below). A complete Kac-Moody group G over a finite field is locally
compact, totally disconnected and the Tits building X is locally finite. In this subsection

we give a brief description of the Tits system for G and its corresponding Tits building.

A completion G of Tits’ functor over the finite field F, has subgroups B* C G, N C G,
and Weyl group W = N/H, where H = N N B is a normal subgroup of N. We have
B* = HU?* where U is generated by all positive real root groups , U~ is generated
by all negative real root groups, BT is compact, in fact a profinite neighborhood of the

identity in G, and B~ is discrete. Then (B*,N) and (B~, N) are BN-pairs, and
G = B'NB- = B NB'.

It follows that

G = Upew BfwB™.

Let S be the standard generating set for the Weyl group W consisting of simple root

reflections. Let U C S. The standard parabolic subgroups are
Py = Uyew) BTwB*.

A parabolic subgroup is any subgroup containing a conjugate of B*. The Tits building
of G is a simplicial complex X of dimension dim(X) = |S| — 1. In fact we associate a

building X* to each BN-pair (B, N) and (B~,N). The buildings Xt and X~ are



isomorphic as chamber complexes and have constant thickness g+1 (see [DJ], Appendix

KMT).

The vertices of X are given by cosets of the maximal parabolic subgroups in G. The
incidence relation is described as follows. The r + 1 vertices Pi,..., P41 span an r-
simplex if and only if the intersection P; N --- N P,4; is parabolic, that is, contains a
conjugate of B*. If the root system is infinite, the Weyl group W is infinite, so by the
Solomon-Tits theorem, X is contractible. The group G acts by left multiplication on

cosets.

2.1.2 Kac-Moody groups and Tits’ presentation

In this subsection we define minimal Kac-Moody groups over arbitrary fields by gener-

ators and relations, following Tits ([Ti2]).

Let W be the Weyl group of a symmetrizable Kac-Moody algebra g. We introduce an

auxiliary group W* C Aut(g), generated by elements {w };c7, where

w; = exp(ade;)exp(—ad f;) exp(ade;) = exp(—ad f;) exp(ad e;) exp(— ad f;).

2

The group W* is a central extension of W, that is, there is a surjective homomorphism
e : W* — W which sends w] to w; for all i. We define certain elements of g, denoted
{ea}taca- Given a € @, write « in the form we; for some j € I and w € W, choose
w* € W* which maps onto w, and set e, = w*eq;. It is clear from [Ti2, (3.3.2)] that
eq belongs to the root space g%, e, is uniquely determined up to sign, and for all 7 € I,
W} eq = Tg,i€w,;q for some constants 7,; € {£1}. These constants {7,;} will appear in

the definition of Kac-Moody groups.

Let A be a symmetrizable generalized Cartan matrix. Let k& denote an arbitrary field.
The group G = G 4(k) defined below is called the incomplete simply-connected Kac-
Moody group corresponding to A. The presentation of G is ‘almost canonical’ except

for the choice of elements {e,} which determine the constants {1y}
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By definition, G 4(k) is generated by a set of symbols denoted {xq(u) | @ € ®,u € k}
satisfying relations (R1)-(R7) below. Let 4,5 € I, u,v € k and let o, 8 € .
(Rl) Xa(u + U) = Xa(u)Xa(U);

(R2) Let (o, B) be a prenilpotent pair, that is, there exist w, w' € W such that
wa, wh € ®' and w'a, WP € D.

Then

[Xa(u)aXB (v)] = H Xma+n,3(omnaﬁum'un)

myn=1
where the product on the right hand side is taken over all real roots of the form ma+ng,
m,n > 1, in some fixed order, and Cy,pqp are integers independent of k¥ (but depending
on the order).

For each 7 € I and u € k* set

X+i(U) = Xta,(u),

Wi(u) = xi(u)x—i(—u")xi(u),

w; = w;(1) and h;(u) = @; (u)@; "
The remaining relations are

wiXa(U)ﬁji_l = Xwa;a(na,iu)a

R4) h;i(u)xa(v)hi(u) 1 = xo(vu (@) for u € k*,

An immediate consequence of relations (R3) is that G 4(k) is generated by {x+;(u)}.

Remark. In [KP, Proposition 2.3], it is shown that a pair (e, ) is prenilpotent if and
only if @ # —f and |(Zsoa + Z~¢B) N ®| < co. Thus the product on the right-hand
side of (R2) is finite.

The above presentation can be viewed as an analog of the Steinberg presentation for

classical groups with xq(u) playing the role of exp(uey). In [CG], the authors give a
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representation-theoretic interpretation of Kac-Moody groups which makes the above

analogy precise.

Next we introduce several subgroups of G = G 4(k):

1. Root subgroups U,. For each a € ® let U, = {xa(u) | u € k}. By relations (R1),

each U, is isomorphic to the additive group of k.

2. The ‘extended Weyl group’ W. Let W be the subgroup of G generated by elements
{w;}icr- One can show that W is isomorphic to the group W* introduced before,
so there is a surjective homomorphism ¢ : W — W such that e(w;) = w; for
i €I Givenw € W and w € W, we will say that w is a representative of w if
e(w) = w. It will be convenient to identify (non-canonically) W with a subset
(not a subgroup) of W which contains exactly one representative of every element
of W. By abuse of notation, the set of those representatives will also be denoted
by W. It follows from relations (R3) that wU,w™! = Uy, for any a € ® and
weW.

3. ‘Unipotent’ subgroups. Let Ut = (U, | a € @), and U~ = (U, | @ € ®7).

4. ‘Torus’ (‘diagonal’ subgroup). Let H = ({h;(u) | i € I,u € k}). One can show
that relations (R6)-(R7) are defining relations for H, so H is isomorphic to the

direct sum of [ copies of k*.

5. ‘Borel’ subgroups. Let BT = (U',H) and B~ = (U™, H). By relations (R4), H
normalizes both U and U, so we have Bt = HUT =UVtH and B~ = HU =
U H.

6. ‘Normalizer.’ Let N be the subgroup generated by W and H. Since W normalizes
H, we have N = WH. Tt is also easy to see that N/H = W.

Tits proved that (B*, N) and (B, N) are BN-pairs of G [Ti2]. In fact, G admits the
stronger structure of a twin BN-pair, though we shall not use this additional structure.

From now on, we write B for BT and U for UT. From Tits [Til, Proposition 5] we
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have that the group U is generated by the elements {x(u) | @« € ®T,u € k} subject to
relations (R1) and (R2) above.

2.1.3 Complete Kac-Moody groups

Distinct completions of Tits’ minimal group have been given in the papers of Carbone
and Garland [CG] and Rémy and Ronan [RR]. We shall primarily use the Rémy-Ronan

completion, which we review in this subsection.

Let X be the building associated with the positive BN-pair (B, N), and consider the
action of G on X. We define a topology on G by taking a subbase of neighborhoods
of the identity to consist of stabilizers of vertices of X. We shall call this topology the
building topology. The completion of G in its building topology will be referred to as
the Rémy-Ronan completion and denoted by G. Let Z be the kernel of the natural
map G — G (or, equivalently, the kernel of the action of G on X). Using results of Kac
and Peterson [KP], Rémy and Ronan [RR, 1.B] showed that Z is a subgroup of H and

hence is finite. Furthermore, Z coincides with the center of G.

Now let B (resp. U) be the closure of B (respectively U) in G. The natural images
of N and H in G are discrete, and therefore we will denote them by the same symbols

(without hats).

The following theorem is a collection of results from [Re] and [RR]:

Theorem 2.1. Let @, B and N be as above. Then:

(a) The pair (E, N) is a BN-pair of G. Moreover, if X+ is the associated building,
there exists a @—equivariant isomorphism between X+ and Xt. In particular, the

Cozeter group associated to (B, N) is isomorphic to W = W (A).

(b) The group Bisan open profinite subgroup of G. Furthermore, U is an open pro-p

subgroup of B.
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2.1.4 Kac-Moody Groups of Type oo

Let G be a Kac-Moody group and suppose that G has type co. Then the associated
Weyl group W = N/H, as described using the BN-pair, is a free product of copies of
Z/2Z. In particular, let G be a Kac-Moody group of type oo over a finite field IF;. Then

the Weyl group has the form

W = (w; | i=1,..,n) =2 %=1 oZ/2Z,

where n = rank(G). If G is affine or hyperbolic and has type oo, then G has rank 2 or

rank 3.
Rank 2

Let G be rank 2 Kac-Moody group over a finite field ;. Then

W = Z/2Zx7/2Z.

The Tits building X is the (g + 1)-regular tree X,;1. The vertex set VX is given by

the set of cosets of the maximal standard parabolic subgroups

P, = BUBwB, and

P, := BUBwB.

The oriented edge set is given by

EX =G/BUG/B,

where G/B denotes the edges of opposite orientation.

We have X a homogeneous,bipartite tree of degree

[PllB]:[PQ:B]:q—{-l.
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® = cosets of P, O= cosets of P,

Figure 2.1: Bruhat-Tits tree for rank 2 Kac-Moody group over F,

Since G acts with two orbits on vertices and a single orbit on edges, we can recover, by
application of the fundamental theorem of Bass-Serre [S], a presentation for G as an
amalgamated free product

G = Pl*BPQ.

Rank 3

Let G be a rank 3 Kac-Moody group of type co over a finite field F,. Then
W = Z]2ZxZ/2Z+Z]27 .

The Tits building X is the hyperbolic plane tessellated by triangles, together with ¢ —1

triangles glued along each edge of a triangle in the plane.

The vertex set (vertices of the triangles) V' X is given by the set of cosets of the maximal

standard parabolic subgroups

Py, = B || BuwB,and

bl
we<wy,w2>

P = B |_| BwB , and

bl
we<wa, w3 >

ps = B || BuB.

we<wy,w3>
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Figure 2.2: Tits building for rank 3 Kac-Moody group with (3, g+ 1)-biregular inscribed
tree

The edges correspond to cosets of

Q1 = Bl BwlB y and
Q2 := BUBwyB, and
Qg = BU B’LU3B -

(We use Q; to differentiate from the maximal parabolic subgroups P; in rank 2.)

The triangular faces correspond to cosets of B.

We can embed a (g + 1, 3)-bi-regular tree in X by taking the a maximal tree X of the

barycentric subdivision, as shown. The action of G on X induces an action on X.

For a Kac-Moody group of type oo over a field of two elements, we will use the action
of G on its building (or embedded tree) to exhibit (lattice) subgroups by constructing

their quotient graphs of groups. This technique is explained in the next section.
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2.2 Lattices and covering theory

Let G be a locally compact group acting on a set X with compact open stabilizers, and
let 1 be a (left) Haar measure on G. Let I' < G be a discrete subgroup with quotient
p: G — I'\G. We call T' a G-lattice if u(I'\G) < oo, and a uniform or cocompact
G-lattice if I'\G is compact. When G is unimodular, y(G) is constant on G-orbits, so

we can define:

VAllG\X) = p(G\X) = 3
eV (G\X) z

Theorem 2.2. ([BL], (1.6)) Suppose that a group G acts on a set X with compact
open stabilizers. For a discrete subgroup I' < G, the following conditions are equivalent:
(a) Vol(T\\X) < oc.
(b) T is a G-lattice (hence G is unimodular), and p(G\\X) < oco.

In this case:

Vol(T\\X) = p(T\G) - n(G\\X).O0
Let I' < G be discrete. Then the diagram of natural projections

X
pr ydel

Ve N
nx 2 G\X

commutes. Assume that Vol(T'\\ X) < oo. Then I" is a G-lattice. To determine if T is

uniform or non-uniform in G, we use the following:

Lemma 2.3. ([BL], (1.5.8)) Let z € VX. The following conditions are equivalent:
(a) T is a uniform G-lattice.
(b) Some fiber p~t(pg(z)) 2 T\G/G; is finite.

(¢) Every fiber of p is finite.
Now let G be a Kac-Moody group of noncompact hyperbolic type. Let X be the Tits

building of G. Then G\ X is not compact. Suppose that G contains a cocompact G-

lattice I'. By the Lemma above, this implies that I'\G/G;, is finite for any z € VX,
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that is, T'\G//gP;g"! is finite for any g € G, where P; is a maximal parabolic subgroup

of G. Even though G\ X is not compact, the number of orbits of G on X is finite.

2.2.1 Edge-indexed graphs

Let A be a connected locally finite graph, with sets VA of vertices and FA of ori-
ented edges. The initial and terminal vertices of e € FA are denoted by dpe and 0;e

respectively. The map e — € is orientation reversal, with 0;_je = 0je for 7 =0, 1.

A graph of groups A = (A, Ay, Ae, a) over a connected graph A consists of an assign-
ment of vertex groups A, for each v € V A and edge groups A, = Ag for each e € FA,
together with monomorphisms o, : Ae = Ap,e for each e € EA. We refer the reader

to [B] for the definitions of the fundamental group m (A, a¢) and universal covering

tree X = (A, ag) of a graph of groups A = (A4, Ay, Ae, ae), with respect to a basepoint
ag € VA.

An edge-indezed graph (A, 1) consists of an underlying graph A together with an assign-
ment of a positive integer i(e) € Z~g to each edge e € EA. Let A = (A, A) be a graph
of groups. Then A naturally gives rise to an edge-indexed graph I(A) = (A, 1), with for
each e € FA, the map i : EA — Z~ given by i(e) = [Agye : @eAe], which we assume

to be finite.

Given an edge-indexed graph (A,7), a graph of groups A such that I(A) = (4,9) is
called a grouping of (A,3). We call A a finite grouping if the vertex groups A, are all
finite, and a faithful grouping if A is a faithful graph of groups, that is if the fundamental

—_

group 71 (A, ap) acts faithfully on the universal covering tree X = (A, ayp).

Example: Let G be a Kac-Moody group over a finite field ;. The action of G' on
X = Xg41 gives rise to a quotient graph of groups, whose vertices and edges are the

G-orbits of vertices in edges in X.

P e o P

Figure 2.3: graph of groups for a rank 2 Kac-Moody group
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The Kac-Moody group G is the fundamental group of this graph of groups, and the
Tits building X is the universal covering tree. The corresponding edge-indexed graph

is a pair of edges {e,e} with i(e) =i(e) = [P, : B] = ¢+ 1.

We now describe a method for constructing lattices in Aut(X) which follows naturally
from the fundamental theory of Bass—Serre (see [B, S]), and was first suggested in [BK].
We begin with an edge-indexed graph (A, 7). Then (A4, 1) determines a universal covering
tree X = (mo) up to isomorphism. Let A be a finite grouping of (A4,4). Then there

is a homomorphism

m1(A ap) = Aut(X).

This map is a monomorphism if and only if A is faithful, in which case we may identify
m1(A, ag) with its image in Aut(X). Since A is a finite grouping, this image is discrete.
By the discussion in Section 2.2.1 above, the image of 7 (A, ag) is a lattice in Aut(X)

if and only if A is a faithful graph of finite groups of finite volume.

2.2.2 Coverings

We have described in Section 2.2.1 above how to construct lattices in Aut(X) as fun-
damental groups I' of graphs of groups. In order to determine if such a I' embeds into
a subgroup G < Aut(X) (e.g. a Kac-Moody group) we will use covering morphisms of

graphs of groups.

Definition 2.3. Let A = (A, A,, A, ) and A = (A', Al AL, o) be graphs of groups.

A covering morphism ® = (¢, (6)) : A — A’ consists of:
1. a graph morphism o : A — A’;

2. monomorphisms

Qa:Ag = Ay (a€A), Pe =z Ae = ALy (e € EA);

3. For each e € EA with a = Oge an element 6, € Afp(a) such that the following two

conditions hold:
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(a) the following diagram commutes:

A = A

l‘pe l‘ﬁa
ad(de )ow ©

oe) Ay

where ad(z)(s) = zsz~!.

(b) For f € EA', o' = Oyf and a € p~'(a’), the map

Byf ]_[ AafacAe | — Al /i Ay
eew(_al)(f)

defined by

(I)a/f([s]e) = [pa(8)de]y

is bijective (where s € Aq, [s]e is the class of s in Ag/ceAe, and (p(_a%(f) =
{fe e EAlp(e) = f,00(e) = a}).

Covering morphisms of graphs of groups were originally defined by Bass (Definitions 2.1
and 2.6 of [B]). By Proposition 2.7 of [B], a covering morphism ® : A — A’ induces a
monomorphism of fundamental groups @4, : 71 (A, ag) — 71 (A, aj) and an isomorphism
of universal covers ® : (m) — (m) (where ap € VA and aj = ¢(ag) forp : A — A’

the underlying graph morphism of the covering ®).

We will embed lattices in a Kac-Moody group G by constructing coverings of the corre-
sponding graphs of groups. The following lemma, describes characteristics of the lattice
derived from the corresponding graph of groups. The lemma will be useful, in particular
for the embedding of free groups as cocompact lattices in rank 2 Kac-Moody groups

(see Section 6.3).

Lemma 2.4. Let G be a rank 2 locally compact Kac-Moody group over F,. Let A =
(A, Ay, Ae, ae) be any graph of groups. Let G = G\\X be the graph of groups for
G with respect to its action on X = X,11. Suppose there is a covering morphism

®:A—->G. Then
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1. T = m(A) is a subgroup of G = m(G).
2. If A is a graph of finite groups, then T' = m1(A) is a discrete subgroup G.

3. If A is a finite graph of finite groups, then T' = m1(A) is a cocompact lattice in

G.
4. If A is an infinite graph of finite groups, with Vol(A) := vez\/:A ‘j” < 00, then
' = m(A) is a nonuniform lattice in G.

Proof. (of Lemma 2.4)

(1) is a restatement of Bass’s equivalence between a covering morphism of graphs of
groups and an embedding of fundamental groups of graphs of groups ([B], Proposition

2.7).

For (2), let Gy be the faithful quotient of G on X. By (1), I is a subgroup of
G, and hence acts on X. Since A is a graph of finite groups, the action has finite
vertex stabilizers, and thus I' is discrete in Aut(X). Moreover, Gy is a closed subgroup
of Aut(X) and the quotient topology on Gy coincides with the quotient topology on
Aut(X) ( [CG], Section 9). Therefore I is discrete in Aut(X) if and only if " is discrete
in G.

For (3), since A is a finite graph, the map A = m;(A)\X — G\X has finite
fibers. Since 71 (A) is discrete in G it follows from ( [BL], 1.5) that m1(A) is cocompact
in G.

For (4), by ([BL], 1.6) Vol(A) < oo if and only if 4(I'\G) < oo and

1 1
WO = my Ty <

where p is the Haar measure on G. Since I' is discrete in G and p(I'\G) < oo and A

is an infinite graph, it follows that I' is nonuniform in G.
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2.3.1 Extending Coverings of Edge-indexed Graphs to Covering Mor-
phisms of Graphs of Groups

In the last section we described a technique for embedding fundamental groups of
graphs of groups by constructing covering morphisms of graphs of groups. This tech-
nique requires us to find an infinite family of elements é, that produce corresponding

commutative diagrams and bijections on cosets.

In some cases it is possible to construct a covering morphism of graphs of groups by

first constructing a simpler covering of edge-indezed graphs (see [BL]),
p:(B,j) — (4,4).

Here p : B — A is a graph morphism such that for all e € EFA, 9y(e) = a, and

b € p~1(a), we have

i)=Y if),

fepgy(e)
where p(y) : EB(b) — E4!(a) is the local map on stars E(b) = {f € EB | 0y(e) = b}
and E{'(a){e € EA | dy(e) = a} of vertices b € VB and a € VA. If b € VB and

p(b) = a € VA, then we can identify

—_— e/~

(A,i,0) = X = (B, 4,b)

so that the diagram of natural projections

comiutes.

Let ¢ : (A4,71) = (A’,i") be a covering of edge-indexed graphs. In this section we consider

the following natural question:
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Question 2.4. Are there faithful finite groupings A and A of (A,i) and (A',i") respec-

tively such that ¢ extends to a covering morphism ® : A — A'?

A positive answer to Question 2.4 would give rise to a pair I' < I of discrete subgroups

—~—

of Aut(X), where X = (A,7) = (A’,4) is the universal covering tree, and I' = 71 (A, a)

and IV = m (A', a’) are the respective fundamental groups, with basepoints a € V A and

Theorem 2.5 gives a sufficient condition for Question 2.4 to have a positive answer in
the case that A and A’ are abelian groupings. In this case, the definition of a covering

morphism is simplified as follows.

Let ® : A — A’ be a covering morphism, as in Definition 2.3, with monomorphisms

Qo Aa = Ay (a € A), pe = et Ae = ALy (e € BA),

and conjugating elements ¢, € Afp(a) (where dpe = a).

Consider the case where each action ad(d.) is trivial. This must occur in particular
when the groups .Afp( q) are abelian. Since the maps ¢, and @, are monomorphisms, we
may identify the groups A, and A, with their images in Afp( 0) and .Afp( ¢ respectively.

Condition (3a) of Definition 2.3 then becomes
(3a)) Qe = afp(e)|Ae.

We have the following.

Theorem 2.5. ([CC]) Let ¢ : (A,i) — (A',4') be a covering of edge-indexed graphs. Let
A and A be finite abelian groupings of (A,i) and (A',4') respectively. Suppose further

that
1. Foralla€e VA and e € EA, we have A, < Afp(a) and A, < Afp(e).

2. For all e € EA, we have ae = 0,4, -
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3. For alla € VA and f € EA" such that 0yf = ¢(a), and for all e € (p(_a%(f), we
have A, N a'f.A’f = aeAe.

Then ¢ extends to a covering morphism ® = (p, () : A — A,

This theorem is due to Rosenberg and its statement and proof may be found in

[ccl.

2.5 Nagao Lattice

The Remy-Ronan complete Kac-Moody group G described in Section 2.1.3 has a nice
matrix description when the group has affine type. In particular the rank 2 affine Kac-
Moody group associated to the Cartan matrix Agl) is isomorphic to PSLy(F, ((t71))).
In this case, nonuniform lattices of G = SLo(F,((¢t™!))) yield nonuniform lattices in a
rank 2 affine Kac-Moody group. We give the B N-pair description for G in Chapter 7
and for now remark that its Tits building is also the g+ 1-regular infinite tree X = X, .

This work will focus on known nonuniform lattices of Nagao type. A nonuniform
lattice in G = SLo(F,((¢t71))) will be of Nagao type if it corresponds to a graph of

groups of the form

F_ﬁ Fn F1 Fl Fg FQ F?

Figure 2.4: graph of groups for a Nagao-type lattice in SLo(F,((¢t71)))

where the edge monomorphisms are inclusion maps with [T : T'y] = ¢ + 1 and for
i >0, [['j41 : Tj] = ¢. Thus the graph of groups is an infinite ray whose edge groups
form an ascending chain of groups. A more general description of a ‘Nagao ray’ and
corresponding groupings may be found in ([BL], Chapter 10).

One well known nonuniform lattice of Nagao type is I' = SLo(F,[t])) < G =
SLy(F,((¢71))). Restricting the action of G on X to T, the quotient graph X; = I'\X

is the infinite ray of vertices

Ag—> A > Ay— -,
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and the corresponding graph of groups is described in the following result of Serre.

Proposition 2.6 (Proposition 3, p. 87, [S]). Let I'y = SLy(IF,) and for n > 1,

T, = ’ a € Fy,b € T t],deg(b) <n
0 a!
(a) The vertices Ay, are pairwise inequivalent mod T'.
(b) Ty, is the stabilizer of A, inT.
(c) Ty acts transitively on the set of edges with origin Ag.
(d) For n > 1, T',, leaves the edges ApAn11 and Api1Ay, [we only give the first kind
of edge above] fized, and acts transitively on the set of edges with origin A, which are

distinct from ApApy1, and on the set of edges with terminus A, which are distinct from

ApiiAn.
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Chapter 3

Existence of cocompact lattices in rank 2 Kac-Moody

groups

In this chapter and in chapter 5 we will prove the following.

Theorem 3.1. Let A be a rank 2 affine or hyperbolic generalized Cartan matriz. Let
G be a locally compact Kac-Moody group associated to A over a finite field ;. Let X

be the Tits building of G, the homogeneous tree X = Xg 1.

or every prime power q, there is a finite group x) acting transitively on the
1) F ' there i it M, ting transitively on th

edges in the star of a vertex x € VX.

(2) Let My = My(z1) and J\’Zq = E(.’Eg) denote the groups of (1) corresponding to

adjacent vertices 1 and xo in the Tits building X for G. If
Stabyy, (w2) = MyN My = Stabl%(m)
then I' = M, * 0, (7, M, is a cocompact lattice in G with quotient a simplex.

(3) If further My and J\Z are abelian, there is an infinite descending chain of cocompact

lattices ..I'3 <T'9s <TI'1 <T.

(4) When q = 2°, the condition in (2) is satisfied, with My N J\’Zq = {1}. When q =2,
the condition in (3) is also satisfied, as My = Z /37 = J\,qu.

Our method is constructive. The lattices of Theorem 3.1 are tree lattices for the homo-
geneous tree X = X 1. Thus the theories of Bass-Serre theory for constructing lattices
via their actions on trees are accessible for the Kac-Moody groups of Theorem 3.1 ([B],
[BL], [L2], [S]). Part (1) of Theorem 3.1 is adapted from Lemma 3.5 of [L2] to the

setting of rank 2 affine or hyperbolic Kac-Moody groups using the Levi decomposition
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of the parabolic subgroups due to [RR].

Lemma 3.2. ([L2], 3.5) For every prime power q, SLy(F;) contains a subgroup M,

acting transitively on the projective line P (F,).

o For g =11, 19, 29, As embeds in PSLy(FF,;), so take M, to be the preimage of As in
SLy(F,). Then |M,| = 120.

o For q =7, S4 embeds in PSLy(F,), so take My to be the preimage of Sy in SLo(Fy).
Then |M,| = 48.

o For g # 2%, 5, 7, 11, 19, 29, M, 1is the normalizer of a non-split Cartan subgroup.
Then |My| =2(q + 1).

o For g =2° My is a non-split Cartan subgroup. Then |M,| =q+ 1.

o For g =5, Ay embeds in PSLy(Fy), so take M, to be the preimage of Ay in SLo(Fy).
Then |M,| = 24.

We extend this lemma to the setting of all Kac-Moody groups with a rank 2 generalized
Cartan matrix over F;, by an embedding of SLy(I;). Rémy and Ronan define the Levi

factor of a standard parabolic subgroup of type i, i = 1,2, as
Li = (SLa(Fy) x (Fy))i

where the subscript ¢ indicates that L; is generated by H = FS x Fy and the root
groups Ui,,;. Rémy and Ronan show that standard parabolic subgroup of type 4 is the
semidirect product

P, = Lix U,

where U’ is a pro-p group and is the normal closure of the group generated by all
positive root groups except U,,. We refer the reader to [RR] for a definition of the
action of the group L; on U?. We remark that the Levi factors of parabolic subgroups

are isomorphic for rank 2 affine and hyperbolic Kac-Moody groups over F,.

By a slight abuse of notation, we let M, denote the image of the group M, of ([L2],

Lemma 3.5) in the Levi factor L; and we let Mq denote the image of M, in Ly. We
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have the following.

Theorem 3.3. Let G be a topological Kac-Moody group, with any rank 2 general-
ized Cartan matriz over Iy, in the Rémy-Ronan completion. Let X = X 41 be the
Bruhat-Tits tree for G. Suppose that M, and J\qu of (i), (ii), and (iii) below satisfy
Stabp, (w2) = My N J\’/:fq = Stabf]%(wl) for adjacent vertices z1,x9 € VX. Then G

contains a cocompact lattice subgroup I' = My * Mq, where

M,NM,
(i) If ¢ = 2%, My is the image of the non-split Cartan subgroup of SLo(F,) of order
g+ 1 in Ly, and J\Fiq is its image in L.

(it) If ¢ # 2%,5,7,11,19,29, M, is the image of the normalizer of a non-split Cartan
subgroup of SLao(Fy) of order 2(q + 1)in L1, and J\qu is its image in Lo.

(iii) If ¢ = 11,19,29, M, is the preimage of As in Ly, and ]\,;fq is its preimage in Lo.
(iv) If g =T, My is the preimage of Sy in L1, and J\,Zq 18 its preimage in Lo.

(v) If g =5, My is the preimage of A4 in L1, and J\qu is its preimage in Lo.

Recall that a rank 2 Kac-Moody group G over a finite field F, acts on the tree

X = X441 with quotient a simplex. The quotient graph of groups is given below.

P e B o P

Figure 3.1: graph of groups for a rank 2 Kac-Moody group (also Figure 2.3)

As discussed in section 2.1.4, B is the minimal parabolic subgroup, and the Weyl group
is given by

W =< wy,wy >XZL[2Z* L |2Z.

The vertex groups are the standard parabolic subgroups

P1=B|_|BwlB, P2:B|_|B’IUQB.

G has the corresponding amalgamated product decomposition G = P xp P,. We

restate the following lemma of Lubotzky to give a sufficient condition on the action
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of an amalgamated product of the form I' = A; *4,n4, A2 yielding I' as a cocompact
subgroup of G. We then use this lemma to construct a cocompact lattice in a rank 2

Kac-Moody group over a field of characteristic 2.

Lemma 3.4 ([L2], Lemma 3.1). Let G be a rank 2 Kac-Moody group over the field
Fy and let X = X1 be the Bruhat-Tits tree of G. Let x1,72 be adjacent vertices of X
and let A; and Ag be finite subgroups of G such that

(1) A; fizes z; for i = 1,2, and Staba,(z3—;) = A1 N As.

(2) Fori=1,2 A; acts transitively on the q + 1 neighbors of x;.

Then the group T' = Ay * 4,14, A2 is a cocompact lattice in G .

We can give an alternate proof of this lemma, demonstrating the utility of covering

theory for graphs of groups.

Proof. We note that I' = w1 (A) where A is the graph of groups:

A1 — A1 N A2 — A2

Since A is a finite graph of finite groups, it follows that I" is a cocompact lattice in

Aut(X). Thus to prove I' is a lattice in G, it suffices to construct a covering morphism

D =(p,(0) : A= G,

where G is the graph of groups for G:

P — B — P

To do this, let (y1,y2) be the edge in X such that P, = Stabg(y;) for i = 1,2.
Note that G acts transitively on the edges of X. Thus there is an element g € G such
that g sends the edge (z1,22) to (y1,y2). Then for any v € A;, gvg~ ' (y;) = gy(z;) =

g(zi) = yi, whence ad(g) : 4, — P, by v — gyg '

is a monomorphism. Similarly
ad(g) : A1 N Ay — B is also a monomorphism. Thus the following diagram commutes,

where each horizontal arrow designates the inclusion map.
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A1 NAy A;
lad(g) lad(g)
B Py

To show that these maps do indeed yield a covering morphism, it remains to check
that
@i+ AifA1 N Ay — P;/B

v(A1 N Ag) — gyg B for i =1,2

are bijections.

We know that each A; acts transitively on the g + 1 neighbors of z;. That is,
the projection p : X — I'\\X sends all the neighbors of z; (including z3) to the
vertex corresponding to Ag = I'y,. Similarly, all the neighbors of zo map to the vertex
corresponding to A;. So the index of the edge (and its reverse) corresponding to A1 N A,
is

[A1:AlﬂAQ]:[AQZAlmAQ]:q—‘Fl.

But we also have [P; : B] = ¢+ 1 for ¢ = 1,2, and therefore we have the same
number of cosets. Thus is suffices to show that ¢;/, is injective.

Let v € Ay. If gyg ' B = B, then

979 € B = gvg  (y1,92) = (y1,92) = (21, %2) = 97 (Y1, 92) = (71, 72)

and hence v € A; N Ag. Thus y(A4; N Ay) is the trivial coset, and the map is injective.

O

Recall that the subgroups M, in Lemma 3.2 ([L2], Lemma 3.5) act transitively on the

projective line. Moreover the group P; has Levi factor L; = (SLo(Fy) x (F

2 ))i where

the subscript 4 indicates that L; is generated by H = Fy x F and the root groups
Utq;- By a slight abuse of notation, we let M, denote the image of the group M, of

Lemma 3.2 in the Levi factor L; and we let Mq denote the image of M, in Ly. It is
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then clear that M, fixes = and J\qu fixes xo. Since M, and J\Fiq each act transitively on
Py+1, it follows from the construction of X that M, (resp. J\’/:f;) acts transitively on the
g + 1 neighbors of z; (resp. neighbors of z2). Then Lemma 3.5 follows directly from

Lemma 3.4.

Lemma 3.5. Let G be a rank 2 Kac-Moody group over Fy. Let x1 and xo be adjacent
vertices in the Tits building X = X1 such that P; = Stab(z;) for i = 1,2. Let M,
and J\qu be subgroups of Py and Py as described above. If Staby,(z2) = My N J\A[q =
Stabﬂﬂ/[;(:z:l), then

Mq *qum Mq

is a cocompact lattice in G.

Corollary 3.6. Let G be a rank 2 Kac-Moody group over ¥y, and suppose g = 2°. Let
M, and J\Z be as in Lemma 3.5. Then

1. Stabp,(z2) = Stabm(ml) = {1}
2. My * J\F/:fq 18 a cocompact lattice in G.

Proof. Note that the star in X of z1, denoted Starx (z1) consists of the g+ 1 edges with
initial vertex x;. Moreover M, has order ¢ + 1 and acts transtively on Starx(zi) =
P!(F,) by Lemma 3.2. By transitivity of M, on Starx(z1), the orbit of the edge (z1, z2)
has cardinality ¢ + 1. By the orbit-stabilizer theorem it follows that the stabilizer of
(w1, 22) in M, is trivial. The group M, fixes z1, and hence Stabys, (x2) = {1}. A similar
argument shows that Stabﬁ;(xl) = {1}. Thus Stabp,(z2) = Stabﬁz(wl) = M,N J\Z] =

{1}, and the result follows from Lemma 3.5. O

A similar line of argument was used in Section 6.1 of [LW] to embed Z/(q + 1)Z *

Z/(g+ 1)Z as a cocompact lattice in SLo(F, ((¢71))) for ¢ = 2°.

When g = 2, we have M, = ]\qu & 7./3Z. The following corollary gives the cocompact

lattice subgroup I' (in rank 2) with quotient a simplex introduced in Theorem 3.1.

Corollary 3.7. Let G be a rank 2 Kac-Moody group over ¥y. Then Z/3Z* Z/3Z is a

cocompact lattice in G.
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Remark:
Note that the two factors of the cocompact lattice in the corollary are distinct copies

of Z /3Z with trivial intersection. In fact it is possible to show that
M, = <xi(1)x-1(1) > and My = < x2(1)x—2(1) >,

where x+;(1) € P; — B. For simplicity we just write Z/3Z.

For the remainder of this section, let G be a rank 2 Kac-Moody group over a finite field
F,, and consider a cocompact lattice I' of the form M, J\ffq. The main idea is to
now use covering theory to construct further cocompact lattices of G which embed in
I". More precisely, we seek to exhibit edge-indexed graphs (B, j) for which a covering
p: (B,j) — (A,1) exists, where (A,17) is the edge-indexed graph corresponding to a
previously constructed cocompact lattice, such as Z/3Z x Z/3Z. We then extend the
coverings to covering morphisms ¢ : B — A of graphs of groups, yielding an embedding

of fundamental groups 71 (B) — 71 (A).

The following lemma carries out this strategy of extending coverings of edge-indexed
graphs more generally. In particular we construct subgroups of an arbitrary amalga-
mated free product I' = A; %4, Az, where A3 embeds in A; and Az as a finite-index
subgroup. The construction uses Theorem 2.5 in Section 2.3.1 to extend coverings of
edge-indexed graphs. This necessitates the condition that the groups A; and Ay are

abelian. From this lemma we then specialize to the Kac-Moody setting.

Lemma 3.8. Let I' = Ay 45 A2 be a group, and suppose that [A; : A3] = a < o0
and [Ag : A3] = b < co. Let X be the locally finite tree on which T' acts with quotient

a simplex. Suppose further that Ay and As are abelian. Then T'1 = i (A2)k is a
3
k=1,...,a

subgroup of I'. Moreover, if Ay is finite then T'y is a cocompact lattice in T.

Proof. Let X be the (a,b) bi-regular tree on which I' = A; * 4, As acts with quotient
a simplex. Let (A4,7) = (I'\X,%) be the resulting edge-indexed graph, and let (B, j) be

the edge-indexed “a-star” shown in the figure below.
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(A4,7) =.0 b,

Figure 3.2: edge-indexed covering of the simplex by the a-star

The graph morphism p : (B,j) — (A,i) depicted is a covering of edge-indexed
graphs. Assume without loss of generality that A3 < A;, and let a : A3 — As be a
monomorphism. Let A be the graph of groups associated with the action of I' on X.

Give (B, j) the abelian grouping B as shown in the next figure.

A= Ay © Az Ay

Figure 3.3: abelian grouping of the a-star, covering the simplex grouping

It is straightforward to check that the abelian groupings A and B, together with

the edge-indexed covering p, satisfy the sufficient conditions listed in Theorem 2.5.
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Therefore p extends to a covering morphism ¢ : B — A of graphs of groups. By
Proposition 2.7 of [B] it follows that 71 (B) = 1 (A2)r embeds in my(A) =T. If Ay

3
k=1,...,a

is finite then 3 (A2)g is a cocompact lattice in T
3
k=1,...,a

O

Given that the rank 2 Kac-Moody group G has a cocompact lattice whose quotient is
a simplex, we now have a sufficient condition yielding a “q + 1-star” which embeds in

G as a cocompact lattice.

Corollary 3.9. Let G be a rank 2 Kac-Moody group over Fy, and suppose that A;* 45 A2
is a cocompact lattice in G with quotient a simplex. Suppose further that A1 and As

are abelian. Then

18 a cocompact lattice in G.

In particular, we have an embedding of such a g + 1-star when F; is a field of charac-

teristic 2 if the subgroups M, and J\qu are abelian.

Corollary 3.10. Let G be a rank 2 Kac-Moody group over Fy, and suppose g = 2°.
Let My * ]\,/:f; be the cocompact lattice given in Corollary 3.6. If My and ]\,/:fq are abelian,

then

is a cocompact lattice in G.

In particular the sufficient condition holds for the field of 2 elements. This yields the
cocompact lattice which is the second subgroup in the infinite descending chain in

Theorem 3.1 (3).

Corollary 3.11. Let G be a rank 2 Kac-Moody group over Fo. Then

Ty = Z/3Z%7/3Z+7/3Z
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is a cocompact lattice in G.

Remark:
Note that each copy of Z/3Z in the graph of groups B is identical to the image subgroup

My = < x3(1)x—2(1) > in A (see remark following the proof of Corollary 3.7).

There are infinitely many cocompact lattices of G which may be constructed using the
technique described in this section. In particular in Section 5 we give the general con-
struction for an infinite descending chain of subgroups of an amalgamated free product
and provide two examples in the Kac-Moody setting when F, = I, is a field of two

elements.
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Chapter 4

Rank 3 Complex of Groups

In this chapter and the next, we prove the following.

Theorem 4.1. Let G be a locally compact rank 3 Kac-Moody group of type oo over a
finite field Fy. Let X be the Tits building of G. Suppose that g = 2.

1. Let T denote the free product Z/3Z x7/3Z+7Z/3Z. Then T is an X-lattice for the
tree X = X3.

2. The group I" can be embedded in the subgroup Q of G generated by all non-mazimal
standard parabolic subgroups. Moreover the image T} of T' in Q is a cocompact

lattice in Q.

3. There is non-discrete subgroup A' < G with Ty < A" and A'\X a simplez (ideal

triangle) in the Tits building.

4. There is an infinite descending chain ...T'y < TL < T of subgroups which are

cocompact lattices in Q and whose images in G are discrete.

Let G be a rank 3 Kac-Moody group of type oo over the field Fy, and X its Tits
building. As described in section 2.1.4, X is a simplicial complex consisting of a tiling
of the hyperbolic plane by ideal triangles together with glueings of a third triangle at
each edge of the plane. The vertices of the complex are given by cosets of the maximal

standard parabolic subgroups:

Piitimod3s = |_| BwB, i=1,..,3.

WE(Wi,W(i+1)mod 3)



36

The edges are given by cosets of

Qi = |_| BwB = B UBwB,i=1,..3.
we(w;)

The faces are given by cosets of B. (Here we are, by abuse of notation, writing w; for

the element w;.)

There are g + 1 = 3 faces adjoining each edge. Note that
P 1;NPit1=0; and NQ; = B.

In general each edge coset is the intersection of the corresponding vertex cosets, and

each face is the intersection of the adjoining edges cosets (or vertex cosets).

As @ has type oo, the Weyl group has the form
W = (w1, wo, wg | w? =1, (ww;)® =1, i,5=1,2,3, i # j) X Z/2Z+Z/27+7/2Z

The fundamental chamber for W is an ideal triangle in the hyperbolic plane.

The quotient by the action of G on X is the following triangle of groups:

Figure 4.1: quotient triangle of groups for a rank 3 Kac-Moody group

Triangles of groups have been studied in various contexts. Haefliger [H] developed the
theory for general complexes of groups, describing the underlying complexes as small
categories without loops (scwols). We refer the reader to III.C of [BH] for the definitions

of scwols, complexes of groups, and fundamental groups of complexes of groups. For
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our purposes, we note that the triangle of groups above is a (simple) complex of groups,
and the Kac-Moody group G over the field F» is the corresponding fundamental group.

Lin and Thomas [LT] give a very nice treatment of the coverings of complexes of
groups. They also show that a covering of complexes of groups induces an embedding
of the corresponding fundamental groups, as with the graph of groups theory. We may
thus construct a subgroup of a rank 3 Kac-Moody group by exhibiting a triangle of

groups ...

Figure 4.2: arbitrary triangle of groups

. and constructing a covering from this triangle of groups to the triangle of groups
for G. Such a covering of triangles of groups may be constructed by exhibiting the

following;:

monomorphisms ¢;; : A;j = Fj, ¢i:Ai—Qi, 1:A— B
such that these monomorphisms induce bijections
Aij/A— Fj/B, Ai/A—Qi/B, and Aj[A; — P;/Q; .
4.1 Existence of cocompact lattices in rank 3 type oo Kac-Moody
groups over [y

Let G be a rank 3 Kac-Moody group of type oo over the field Fy, and X its Tits building
as described in the previous section. We now use coverings of complexes of groups to

construct a non-discrete subgroup whose quotient is also an ideal triangle of groups,
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that is whose quotient is a simplex. This is the non-discrete subgroup A’ in rank 3

introduced in Theorem 3.1.

Lemma 4.2. Let G be a rank 8 Kac-Moody group of type oo over the field Fy. Let A’
be the fundamental group of the ideal triangle depicted below. Then A' is a non-discrete

subgroup of G.

737 « 7,/37.

237 % 7./3.

Figure 4.3: triangle of groups for A

Remark: Since A’ is a faithful complex of finite groups with universal cover X, we may
identify A’ with a discrete subgroup of Aut(X).

The construction in the proof below is due to Anne Thomas.

Proof. We construct a covering of complexes of groups from the triangle of groups for

A’ to the triangle of groups for G.

The face group of A’ is trivial so we let the local map ¢ here be the natural inclusion
of the identity element into B. For the edge groups, write Z/3Z = (e) for the cyclic
group of order 3. For each ¢ = 1,2,3 we claim that there is a group monomorphism

vi: (€) = Qi

By definition of the elements w; = w;, and using the fact that in the field F, we have

1=-1,

xi(D)x—i(1) = wixs(1)~".

Since xi(1) = xo; (1) € Us; €U C B, we have that

pi(e) =w;ixi(1) ' € Bu;,B=Q; — B
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as required. In particular, @;() # 1 and < @;(e) > N < p;(e) > = {1} for i # j.

Next we show that ;(¢) has order 3. For this, it is enough to show that (p;(g))% = 1.

We compute

(i)’ = xi(@)x—i(1)xi(D)x—i(1)xi(1)x—i(1)
= wix—i(1)xi(1)x-i(1)
= wix—i(Dw; "wixs(Dw;  wix—i(D)w; w;

= xi(Dx—i(Dx:(1)w;

~

We thus have a monomorphism

;- Z/3Z—) Qz

for each i = 1,2,3. Moreover, the elements {y;(1), ;(€), vi(¢2)} form a set of coset

representatives of ();/B since ¢;(g) has order 3 and does not lie in B.

For the vertex groups, since @;(¢) € Q; — B, we have that for 1 = 1,2, 3,

i((e)) Npir1({e)) = {1}

Hence we obtain an embedding

<E> * <€> — F’i,i—{—l-

Moreover the image ¢;((€)) in P; ;41 forms a set of coset representatives for P; ;11/Q;+1,
and similarly for the image of ¢;11((¢)) and P;;41/Q;. Finally the image of () * (¢) in
P; ;11 forms a set of coset representatives for P;;,1/B since this image only intersects

B trivially.

We have thus constructed a covering of complexes of groups from the complex of groups
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for A’ to the complex of groups for G. It follows that A’ embeds as a non-discrete

subgroup in G (or in its completion). O

Lemma 4.3. Let G be a rank 3 Kac-Moody group of type oo over the field Fo. Let
Q < G be the subgroup generated by the non-mazximal parabolic subgroups of G. The
group Z[3Z x Z |37 x Z/3Z embeds as a cocompact lattice T1 < Q.

4.2 Actions of cocompact lattices on ideal complexes and on their

inscribed trees

A locally compact Kac-Moody group G of rank 2, and hence any lattice subgroup,

comes equipped with an action on a simplicial tree, the Tits building of G.

In [C1] the author showed that all locally compact Kac-Moody groups G of rank 3
noncompact hyperbolic type over finite fields I, have the Haagerup property, and she
exhibited an action of G on a simplicial tree X where certain lattices act discretely, that
is, with finite vertex stabilizers. When G has type oo, the tree X is the bihomogeneous
bipartite tree A3 ;11 ([C1]). When ¢ = 2, X is the homogeneous bipartite tree denoted
As.

Thus we have actions of the rank 2 and rank 3 Kac-Moody groups over the field F, on
the trivalent tree. We show that the cocompact lattice I'; in the rank 2 Kac-Moody
group embeds in the rank 3 Kac-Moody group G over Fs. In fact the edge-indexed
graph quotient graph of I'y on X is inscribed in the fundamental chamber for the Weyl

group. Our methods show that I'; also acts discretely on X.

Theorem 4.4. Let G be a rank 3 locally compact Kac-Moody group of type oo over a
finite field Fy. Let X be the Tits building of G, and let X = X3 be the bihomogeneous
bipartite simplicial tree inscribed in X. Let I'y be the non-discrete subgroup of Corol-
lary 3.11. Then T’y is an X-lattice. Moreover I'y can be embedded in the subgroup Q
of G generated by all non-mazimal parabolic subgroups. The image I'} of Ty in Q is a

cocompact lattice. Thus I'1 acts discretely on X.
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Chapter 5

Infinite descending chains of cocompact lattices

In this section, we consider groups of the form I'y = i (A2)g, an amalgamated
3
k=1,...,a

free product of copies of a group Ay over a subgroup Ajs of finite index. The group
'y =T 2 Z/3Z % Z/37Z * Z/3Z, which embeds in a type-co Kac-Moody group over Fy
as described in Corollary 3.11 for rank 2 and Theorem 4.4 for rank 3, is an example of

such an amalgamated free product.

Remark: The notation reflects the fact that we will be building on the constructions in

Lemma 3.8.

We will construct infinite descending chains of subgroups of I';. Specializing to the
Kac-Moody setting, this construction will yield infinite descending chains of subgroups

which embed as cocompact lattices in subgroups of a type oo Kac-Moody group over

the field Fs.

Theorem 5.1. Let G be a locally compact Kac-Moody group of type oo over the
field ¥y with Weyl group W =< w; >. Let G be the subgroup generated by the
parabolic subgroups of the form B L1 Bw;B. Then G contains an infinite descending
chain ... T's < T9 < Ty of cocompact lattices with distinct fundamental domains, with
v « (Z/3Z);, where ng =1+ 3% — Zf;ol 3" and Vol(Ty) = 2(3)*~1. Hence the

j=1,...,ng

I’y are pairwise non-conjugate.

In general we can construct a infinite descending chain of subgroups in I'; = 3 (A2)g
3
k=1,...,a
by iterating the technique described in the proof of Lemma 3.8. We use the action of I'y
on an a-regular tree X. We first build an infinite sequence of coverings of edge-indexed

graphs over the quotient of I';y on X. We then extend this to an infinite sequence of

covering morphisms of finite graphs of finite groups. The following theorem gives the
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sufficient conditions for these infinite sequences, and Theorem 5.1 will follow as a special

case, with Ay = Z3 and A3 = {1}.

Theorem 5.2. Let Ay be a group with subgroup As of finite indez [Az : A3] = a < oo,

with a > 3. Let | = 3 (A2)r be an amalgamated free product. Let X be the a-
3

k=1,...,a
regular tree on which I'1 acts with quotient an a-star. Let (A,i) = (I'1\X, %) denote the

edge-indezed quotient graph for T'1 on X, and let A = T1\\X denote the corresponding
graph of groups. Suppose that As is abelian. Then there exists an infinite sequence of

coverings of finite edge-indexed graphs
coo = (Bs,j3) — (B2,J2) — (Bu1,j1) = (4,1)
and an infinite sequence of covering morphisms of graphs of groups
oo — By — B — B =A

with By, a grouping of (B, ji)such that T'yy1 = m(Brs1) < Tk = m(Bg) and Ty =

x (Ag);, where ny, = 1+ak—Z?;11 a’. Moreover, if | A2| = ¢ < oo, then Vol(Ty) =
3

j=1,...,ng

2ak . . . . . .
=~ In this case the T'y are pairwise non-conjugate and form a descending chain of

cocompact lattices in T'y.

To produce the infinite sequence of coverings of finite edge-indexed graphs in The-
orem 5.2, we use an iteration of a method known as ‘open fanning’ of ‘arithmetic
bridges’ in the edge-indexed graphs in the sequence. This method was first used to
prove existence of nonuniform coverings over finite edge-indexed graphs and hence to
prove existence of nonuniform lattices on uniform trees ([C2]). This method was also
used by Gabrial Rosenberg ([Ro]) to exhibit infinite ascending chains of cocompact

lattices with arbitrarily small covolumes in automorphism groups of locally finite trees.

In our edge-indexed graph (A,4), the ‘arithmetic bridge’ can be taken to be any single
separating edge e with an index (ramification factor) i(e) = [A2 : A3] = a. The open

fanning then has the schematic diagram:
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¢ d edges

@ dig(e) A

Figure 5.1: schematic of an open fanning along an edge

Proof. (of Theorem 5.2 — open fanning on a single edge)
We now use the method of open fannings on a single edge to recursively construct

a sequence of edge-indexed coverings as follows:

1. Let (B1,i1) = (A,1) = (I'1\X, i) be the edge-indexed ‘a-star’ and choose an edge

e of By with index i;(e) =i(e) = a.
2. Let (Ba, j2) be an open a-fanning on the edge e, as shown.

3. For each k > 2, choose an edge e of By with index ix(e) = a and let (Bgy1, jri1)

be an open a-fanning of By on e.

Note that the a-star (B1,41) has a edges of index a. An easy induction shows that for
k > 1, By has
k=1
ng=1+a* — Zcﬂ > a edges of index a.
=1

Thus the recursion is well-defined. Moreover we may associate an abelian grouping By
to (By,ix) consisting of copies of A9 at each initial vertex of these ny edges and copies
of Ay at each remaining vertex and along each edge. It is straightforward to check

that for £k > 1, the groupings By, and By, together with the edge-indexed covering
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ia — 1 edges

ta — 1 edges

y

a
%1 edges
a

Figure 5.2: edge-indexed covering p; : (Bs, j2) — (Bi1,j1) (open fanning of the a-star)

Pk * (Bgt1,%k+1) — (Bk, k), satisfy the sufficient conditions of Theorem 2.5. Therefore

for k > 1, pi extends to a covering morphism ¢ : By ; — By of graphs of groups. By

Proposition 2.7 of [B] it follows that Ty11 = m(Bgi1) = 3 (A2); embeds in
3
j:]-v“'vnk-i-l
Iy =m(B) = 3 (A2); (and ultimately in I'y = 71(B;)). Thus these I'y form an
3
7j=1,...,ng

infinite descending chain of subgroups. If |A3| = ¢ < oo, then another easy induction

shows for k > 1,
(I,k+1
Vol(Tgy1) = aVol(Ty) =2 P

In constructing the chain of subgroups in Theorem 5.2, we use an open fanning on a
single edge, that is an arithmetic bridge of size 1, at each step. Changing the size of
the bridge at any step will yield further (distinct) descending chains. In this manner
we can construct an infinite number of infinite descending chains of cocompact lattices.
We give one more example of this method, in the Kac-Moody setting over the field of

two elements, constructing a chain by fanning on a bridge of two edges at each step.

Theorem 5.3. Let G be a locally compact Kac-Moody group of type oo over the field

Fo with Weyl group W =< w; >. Let G be the subgroup generated by the parabolic



45

subgroups of the form BUBw;B. Then G contains an infinite descending chain ... T <

'y <T'1 of cocompact lattices with distinct fundamental domains, with

Ty =2 %32 /37 %y, Z where

)
0 ifk=1
2 if k=2
Mk = k-3
SZJ-:TO 3% ifk odd, kK >3
k—4 .
24 Zjio 3% 4+ 2 if k even, k > 4,

and Vol(Ty) =2-3F 1.

Proof. As before, we recursively construct a sequence of edge-indexed coverings as fol-

lows:

1. Let (B1,i1) = (4,17) be the edge-indexed tripod (3-star). Choose two edges e1, €2

of B; with index i1(e1) = i1(e2) = 3.
2. Let (Bs,i2) be an open fanning of (B1,41) on the bridge {e1, ez }.

3. For each k > 2, choose two edges e, es of By with index 3 and let (Bgi1,%k+1)

be an open fanning of By on {ej, ea}.

The general schematic for the open fanning on two edges is given above. Note that
no graph in the sequence (after the initial tripod) is a tree. In particular these cycles
introduce copies of Z in the free product decomposition of the fundamental groups. It
is easy to see from the schematic that for & > 1, if By has my, edges outside its spanning
tree then By has 3my + 2 edges outside its spanning tree. The first figure shows that

m1 = 0 and mo = 2, and an easy induction combined with the recursive relationship
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Figure 5.3: covering of edge-indexed graphs p : (Bs,i2) — (B1,11)

gives the general formula

(
0 ifk=1
2 ifk=2
Mk = 3 k=3
8,2, 3% if k odd, k> 3
k—4 )
24%7,2,3% +2  ifkeven, k>4,
\

Note also from the schematic that if By has three edges of index 3 (one in the center
subgraph plus the two edges of the bridge), then By, also has three edges of index 3
(one in each of copies of the central subgraph of By). Since the tripod has three edges
of index 3, it follows that every graph in the sequence has exactly three edges of index
3. Then the corresponding groupings By, consist of three copies of Z/3Z at each initial
vertex of these index 3 edges and trivial groups elsewhere. As before each By is an
abelian grouping with trivial edge groups, and thus for k£ > 2 the edge-indexed covering
Pk ¢ (Bg,ig) = (Bk—1,ik—1) extends to a covering morphism ¢y : By — By_;. This

gives the desired sequence of corresponding covering morphisms of graphs of groups



47

(Bp.ix) = 54 €2

3

(Bk+1a ik+1)
D

|
N

Figure 5.4: schematic of open fanning on two edges

and the embeddings of their fundamental groups
Iy = mi(By) =2 *3Z/3Zxy, Z

These 'y, form another infinite descending chain of cocompact lattices.

Finally, note from the schematic that the open fanning of (By, jx) produces three
copies of the middle subgraph with the same grouping on these vertices. The two initial
vertices of the bridge fan from degree 1 vertices to degree three vertices, changing the
groups at these vertices from Z /37 to trivial groups. This observation yields a recursive

definition of the covolume. Since Vol(I'1) = 2, another easy induction shows for k > 2,

Vol(Ty) = 3(V01(r,€,1)_2(§)) b2 = 3Vol(Ty ) = 235 L

Remark: Note that the two-edge open fanning yields a distinct infinite descending chain
of cocompact lattices with the same covolumes as the chain constructed by a one-edge

open fanning.
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Chapter 6

Further Examples

6.1 Another Infinite Descending Chain

In the previous two examples, we gave infinite towers of cocompact lattices constructed
using open fannings on edges. Now we give a third infinite tower, this time using the
technique of double covers. Unlike the previous two examples, this tower begins with a

simplex on a single edge and does not include the tripod.

Theorem 6.1. Let G be a locally compact rank 2 Kac-Moody group over the field .
Then G contains an infinite descending chain ...I'y < 'y < Ty of cocompact lattices

with distinct fundamental domains, with

To 2 Z/3Z+Z[3Z, andfork>1,Tx= « (Z[3Z); * Z,
j=1,...,2

2k+2

where Vol(Ty) = % and for k > 1, Vol(T'y) = =5—. Hence the I'y are pairwise non-

conjugate.

As in the previous chapter, we will prove the existence of this chain by providing the
construction more generally as a descending chain over an appropriate amalgamated

free product.

Theorem 6.2. Let Ty = A x4, A2 be a group, and suppose that [A; : A3] = a < o0
and [Ag : A3] = a < co. Let X be the locally finite (a-regular) tree on which T'y acts
with quotient a simplex. Let (A,i) = (Fo\X,%) denote the edge-indexed quotient graph
for Ty on X, and let A = Ty\\X denote the corresponding graph of groups. Suppose

further that A1 and Ay are abelian. Then there exists an infinite sequence of coverings
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of finite edge-indexed graphs
... — (B2, j2) — (B1,51) — (Bo,jo) = (4,1)
and an infinite sequence of covering morphisms of graphs of groups
o B — B — By =A

with By, a grouping of (Bg,ji) such that for each k > 1, Ty = m(By) < Ty 1 =
T (Bk—1). Moreover, if |Ai| = |As| = ¢ < oo, then Vol(Ty) = 2 and for k > 1,
Vol(Ty) = ﬁLca_l) In this case the I'y are pairwise non-conjugate and form a de-
scending chain of cocompact lattices in T'y. In particular, if As is trivial, then there is

a descending chain of cocompact lattices of the form

Tr = : ' . )+ Z.
* <J'=1’---,2’“‘1(a—2)(A1)J) " (j=1,...,2’“_1(a—2)(A2)j> "

Proof. As before, we recursively construct a sequence of edge-indexed coverings as fol-

lows:

1. Let (By,i0) and (Bi,i1) be the edge-indexed graphs shown. There is a natural

COVGI‘iIlg Po : (Bl,il) — (Bo,’io).

a a

(Br,u) = ><><“2€C‘ges
a a

(Bp,ig) = &4 a

Figure 6.1: ‘double’ cover of single edge pg : (B1,%1) — (Bo, o)
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2. For each k > 1, let (Bgy1,ix+1) be the ‘double cover’ of (Byg,ix). That is, let
By11 be a 28t1.cycle with (a — 2) dangling edges incident to each vertex of the
cycle, let ig11(e) = 1 for every edge e whose initial vertex is in the cycle, and let

the remaining edges have index a. (See figure below for 2nd covering.)

a — 2 edges
a — 2 edges :
(Ba,ig) =
a7 N\a
a — 2 edges

Figure 6.2: Second ‘double’ cover in chain; p; : (Ba,i2) — (B1,11)

Note that for k > 1, By, has 2¥(a — 2) edges of index a ((a — 2) edges terminating
at each vertex of the cycle). If we form a bipartition of the vertices of the graph
into “black” and “white” vertices, then exactly half of these index a edges have initial
vertices which are white (resp. black). Then we can choose corresponding groupings

By, as follows:
1. 2¥71(a — 2) copies of A; at each black initial vertex of an edge of index a,
2. 2¥~1(a — 2) copies of Ay at each white initial vertex of an edge of index a,
3. copies of A3 at all vertices of the cycle and along all edges of the graph.

By hypothesis, each By is then an abelian grouping. It is straightforward to check
that for £ > 0, the groupings By, and By, together with the edge-indexed covering
Pk ¢ (Bit1,%k+1) — (Bk, i), satisfy the sufficient conditions of Theorem 2.5. Therefore
for £ > 0, pr extends to a covering morphism ¢y : Bxy; — By of graphs of groups.

Also each graph By, consists of a single 2¥-cycle and so has only one edge outside its
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spanning tree. This gives the desired sequence of corresponding covering morphisms
of graphs of groups and the embeddings of their fundamental groups I'y,. When Aj is
trivial, so are all edge groups in the sequence of graphs of groups, and each I'y, for k > 1
has a presentation as a free product of the vertex groups together with a single copy of

Z corresponding to the cycle:

I, = * : * : Z.
‘ (jzl,...,zk—l(a—2)(“41)9> " (j=1,---,2k—1(a—2)(“42)3) ’

If | A1 = |A2] = ¢ < oo, then the groups Iy, form a descending chain of cocompact
lattices. From the construction, Vol(Ty) = % and Vol(T';) = 47“. Then each double
cover doubles the covolume, giving a simple recursive relation and thus for k£ > 1,

2k+2(a _ 2)

Vol(Tgy1) = 2(Vol(T)) = -

Remarks:
As in the previous chapter, there are infinitely many descending chains or infinite
families that may be constructed in a similar fashion to the chain just constructed. To

illustrate, we mention a few possibilites.

1. Replace the initial 2-cycle in the chain above with any even cycle of length n = 2k,
again placing (a —2) dangling edges at each vertex of the cycle. Create an abelian
grouping as in Theorem 6.2 and extend the edge-indexed covering to a covering
of graphs of groups over the simplex. For instance if we consider the cocompact
lattice My % ]% in the rank 2 Kac-Moody group over Fy, this method allows us

to construct, for any k > 1, subgroups of the form

(jzlf...,k(MZ)a') * (jzlf“_’k(l\?é)j) x Z.

2. Increasing the number of cycles in the underlying graph would yield fundamental

groups with sucessively more HNN-extenstions in the decomposition. When the
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original edge group As is trivial, this corresponds to factors of free groups of
successively higher order. Once again, we give an example in the rank 2 Kac-
Moody group over Fp. Modifying the graph Bs as shown below gives rise to a

natural grouping with fundamental group

(j:*lyz(MQ)j) * (j:*l,g(j/f?)ﬂ') « Fy.

(BQa 7’2) =

Figure 6.3: Modified 4-cycle graph with extra cycle

3. Any terminal vertex (vertex of degree 1) may be replaced with a vertex of degree
a, creating (a — 1) new terminal vertices and increasing the number of copies of
the corresponding vertex group by a — 2. Below we illustrate such a modification
made to the graph By, which may be equipped with a natural grouping with

fundamental group

(Ba, i9) =

Figure 6.4: Modified 4-cycle graph with extra branch vertex
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Once again, infinite descending chains may be built over any of these examples using

the method of double covers or the method of open fannings.

6.2 Necessary and Sufficient Conditions for Constructing Covers

Let G be a rank 2 Kac-Moody group over [, and suppose that G has a cocompact
lattice of the form I' = Ay x4, A2. We have shown in Chapter 3 and Section 6.1 that
it is possible to realize an infinite number of cocompact lattices in I (and thus in G),
provided that A; and Ay are abelian. In this section we take a more detailed look at
what kind of cocompact lattice subgroups we may expect to see in characteristic 2.
Recall from Corollary 3.6 that a Kac-Moody group over a field of characteristic 2
has a cocompact lattice of the form I' = M, J\Z. Since any cocompact lattice of G
which embeds in I" gives rise to a covering morphism of graphs of groups, we can deduce
several characteristics for an appropriate graph of groups. We will do this in a moment,
but first we remark that one trait of any graph of groups corresponding to a cocompact
lattice subgroup of I is that each of its vertex groups is a subgroup of M, or J\qu, and
each of its edge groups is trivial. From Bass-Serre theory we can deduce a presentation
for all cocompact lattices of G which embed in I'. That is, every such cocompact lattice

subgroup H < I has the form

H = (x;(Mq);) * (*lc(Mq)k) * Iy

for some j and k, where n is the number of edges outside a maximal tree T of H\ X 1.
This result is also a special case of Kurosh’s Theorem.

Now let A’ be the graph of groups for I' acting on the Bruhat-Tits tree X = X, 1.
As demonstrated in Chapters 3 and 5, when M, and J\qu are abelian we may construct
cocompact lattices in I' (and thus in G) by constructing coverings of edge-indexed
graphs. These coverings then give rise to covering morphisms of graphs of groups
¢ : A — A’, where A is the graph of groups for a cocompact lattice. We give the

following necessary and sufficient conditions for the structure of such a graph of groups.
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Proposition 6.3. Let G be a rank 2 Kac-Moody group over Fy and suppose ¢ = 2°
for some integer s > 1. Let I' = M, * J\’Zq be the cocompact lattice of G indicated by
Corollary 3.6. Suppose that M, and ]\Z are abelian. Let A be a graph of groups of T'

with edge-indexed graph (A,1). Suppose that ® : A — A’ is a covering morphism. Then:

1. The graph A has a bipartition of vertices VA = Vi N Vo such that

(a) For all v € V1, each vertex group A, < My (up to isomorphism)

(b) For all v € Vs, each vertex group A, < J\,;fq (up to isomorphism)

2. Every edge group A, is trivial.

3. The vertex degree deg(v) divides g+ 1 for all v € VA and i(e) = dZ;—(i) for all

edges e € EA with initial vertex 0y(e) = v.

Moreover, for any graph of groups A satisfying (i), (ii), and (iii), there is a covering

morphism ® : A — A'.

Proof. Denote the vertices of A’ corresponding to M, and ]\’;fq as a1 and ag, respectively.
Suppose there is covering morphism ® : A — A’. Then there is a graph morphism
mapping the graph A to the single edge. Hence Vi = {v € VA | p(v) = a1} and
Vo={v € VA| ¢(v) = az} form the desired bipartition of vertices whose vertex groups
embed in M, and J\’Zq, respectively. Moreover each edge group of A embeds in the single
trivial edge group of A’. Therefore (1) and (2) hold. For any vertex v € V A, each edge
such that dy(e) = v has index i(e) = [A, : A¢] = [Ay : {1}] = |A,|. Since the covering
morphism ¢ induces an underlying edge-indexed covering and since the single edge in

A" and its reverse have index |M,| = |J\qu\ =g+ 1, it follows that

g+1l= ) ile) = deg(v)|Ay|-
do(e)=v
Conversely, if A is a graph of groups for which (), (4¢), and (4i%) hold, then by (i) we
have a graph morphism ¢ mapping the underlying graph A to a single edge. By (i),

this yields a covering morphism of edge indexed graphs p : (4,7) — (¢ + 1,¢+1). By
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(¢) we can identify the vertex groups A with abelian subgroups of M, and ]T/fq. Since
the edge groups are all trivial we can then apply Theorem 2.5, and thus we have the

desired covering morphism. O

Since the hypothesis that M, and Mq are abelian certainly holds when ¢ = 2, let’s

look at some properties which arise in this case.

Remarks: It follows from the proposition that every finite graph of groups which

covers My * JT/I; satisfies the following.

1. In the edge-indexed graph, every vertex will have degree 1, giving the correspond-
ing edge an index of 3, or degree 3, giving the corresponding 3 edges an index of

1.
2. Every vertex group will be Z/37Z (up to isomorphism) or trivial.
3. All cycles must be even, and no more than three cycles will meet at any vertex.
4. The corresponding cocompact lattice has the form *;7Z/37Z * F;, when the graph

has j vertices of degree 1 and n minimal cycles.

6.3 Free Groups as Cocompact Lattices

Our final example of an infinite family of cocompact lattices shows that any free group

may be embedded as a cocompact lattice in a rank 2 Kac-Moody group.

Proposition 6.4. Let G be a rank 2 locally compact Kac-Moody group over a finite
field Fy. Let X = X441 be the Tits building of G, a (¢ + 1)—regular tree. Let A be any

(¢ + 1)—regular bipartite graph. Then

1. The free group Fy = m1(A) is a discrete subgroup of G, where s is the number of

edges outside any mazimal tree in A.

2. If A is finite, then the free group Fs = w1(A) is a cocompact lattice in G, where s

is the number of edges outside any mazimal tree in A.
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To prove this, we construct a covering morphism of graphs of groups, where

P e B o P

Figure 6.5: graph of groups for rank 2 Kac-Moody group (also Figure 2.3)

is the graph of groups for G.

Proof. (of Proposition)

Let A be any (g + 1)-regular bipartite graph and let A = (A,{1},{1}) be the
corresponding graph of groups with trivial vertex and edge groups. Then Fy; = m1(A),
where s is the number of edges outside any maximal tree of A. By Lemma 2.4, it is
enough to show that there is a covering morphism A — G. Since A is bipartite there
is a graph morphism from A to the simplex (the underlying graph of G). For each
a € VA e € EA, the vertex map ¢, and the edge map ¢, are inclusions of the trivial
group. Choose {d.} to be a complete set of coset representatives of P;/B for i = 1,2.

Since each edge and vertex group is trivial the diagram

Bt ——{

£ ad(de) i

[

commutes for any e € EFA. Moreover, if the quotient graph for G is the single edge f

with vertices a7 and as, then for i = 1,2 the map

II {13.— P/Bby {1}, B
ee‘ﬂ@li)(f)

is map from g + 1 copies of the trivial group (because A is (¢ + 1)-regular) to dis-
tinct cosets of P;/B. Thus the map is bijective, and the desired covering morphism is

obtained.
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Chapter 7

Parabolic Subgroups as Nonuniform Lattices

In this chapter we transition to constructing graphs of groups for known nonuiform
lattices of G = SLo(F,((t7!))). These give nonuniform lattices in PSLo(F,((t71))),
which is isomorphic to the rank 2 affine Kac-Moody group associated to the Cartan
matrix Agl). Moreover the constructions of these graphs of groups strongly rely on the
BN-pair structure of G. We hope to build on this technique to obtain analogues in the
hyperbolic Kac-Moody groups.

The graphs of groups constructed in this chapter are for parabolic subgroups of G.
We give one maximal parabolic subgroup which is a Nagao-type lattice whose funda-
mental domain is an infinite ray corresponding to half of the ‘standard apartment’. We

also give a minimal parabolic subgroup whose fundamental domain is the full standard

apartment.

7.1 SL, Subgroups and Graphs of Groups

We first wish to recall the graph of groups presentation for SLy(F,((t71))), give a
detailed description of its BNN-pair, and fix the notation for several subgroups used in

the lattice constructions.
7.1.1 BN-pair subgroups for SL,

Let G = SLy(F,((t71))), and fix the following subgroups:

a b
B = € SLa(F [t ¢
c/t d
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Then (G,B,N) and (G, B~,N) are BN-pairs, in fact they form a twin BN-pair, with

isomorphic Weyl groups W 2 D, generated by

0 1 0 t
wr = 3 wo =
1 0 1/t 0

We have
G = BNB™ = B NB

and G = Uyew BwB. It follows that the map

w+— B wB

is a bijection

W — B™\G/B.

In particular, this gives us a correspondance between the Weyl group elements, which
index the standard apartment (see Section 7.1.2), and the quotient by the action of B~
on the postive edges of the Bruhat-Tits tree X = X1 (corresponding to G/B). Thus
we can conclude that the quotient graph B~\X is a bi-infinite ray. We will compute
the corresponding graph of groups at the end of this chapter.

For the BN-pair (G,B~,N) we also have a second (twin) Bruhat decomposition
G = Uyew B wB™. If we consider the Bruhat decompositions over the subgroups of

W with a single generator we obtain the standard parabolic subgroups

P. = BUBwB = SLy(F,[[t7!]))
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a tb a b L
P, = BUBw;B = | € SLa(Fg[[t 1))
c/t d c d

Pf = B UB wB = SLQ(]Fq[t])
P{ = BT UB wyB™ £ SLQ(Fq[t])

We have bijections

W+ — P \G/B,

where W is ‘half’ of W, so that the quotient graph P, \X <« P;\G/B is a semi-
infinite ray. We will compute the graph of groups P; \\ X in Section 7.2.

Set

7.1.2 Standard Apartment

As a group with a BN pair, G = SLy(F,((¢t71))) acts on its Bruhat-Tits building, the
(g+1)-regular tree X = X,;1. The associated edge of groups has vertex groups P, and

P, and edge group B, giving us the graph of groups presentation G = P; xp P».

We denote the standard apartment of X by the bi-infinite ray A of vertices
= T3 —>T_92 —>T_1] —>T1 2T >

For n > 1 we write e, for the oriented edge with initial vertex z, and terminal
vertex xn4+1, and for n < —1 we write e, for the oriented edge with initial vertex z,
and terminal vertex z,,_1. We denote the edge with initial vertex z; and terminal
vertex x_1 by eg. We identify the vertex stabilized by the group P; with the vertex
T_1, and the vertex stabilized by P, with z.

One important property of the standard apartment is that it is the fundamental
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domain for the action of the BN-pair subgroup B on the Bruhat-Tits tree. We will

give a full graph of groups description for B~ at the end of this chapter.

7.1.3 Finite Subgroups of 5L,

We now define finite subgroups which will arise in the construction of the graph of
groups presentation for our lattices in this chapter. Each of these subgroups has a

natural analogue in the hyperbolic case.

D(F,) = | a € ]F;< ,
0 a
10 1 0
UT(F,) = [beFy o, U (F) = lcel, o,
01 b 1
1 tb 1 0
U+(tIFq) = lbeF, p, U (tF,) = | ceF,
0 1 ct 1
We use Tits’ convention and set
1 s
Xai(s) = | sely o,
01
1 0
X-a;(8) = | s € Iy
—s 1

Thus we may identify U,, with UT (F,) and U_,, with U~ (—F,) (this is consistent with

[RR] and consistent with the standard Kac-Moody group relations).

7.1.4 Parabolic Subgroup Intersections

In the next two sections we give constructions of graphs of groups by considering the
action of the maximal standard parabolic subgroup P, on the halves of the standard
apartment 4 of the Bruhat-Tits tree X. We showed in Section 7.1.1 that the quotient

graph P \X is an infinite ray, one half of the standard apartment. We will use this
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structure to computer the vertex groups, an infinite ascending chain unique up to
isomorphism (see ). A conjugate copy of this chain will give the vertex stabilizers in
P} for the second half of the standard apartment. This will allow us to compute the
vertex (and edge) stabilizers in B~ < P;, whose quotient graph is the entire standard
apartment.

We will need the following lemma regarding intersections of parabolic subgroups:

Lemma 7.1.
(1) P n P = SL?(IFq) = <D(Fq),U_(]Fq)aU+(Fq)>

a by+bit
2) PL NP = ° 11 la,a L €FY, by, by € F,
0 a”

= <D(Fq)aU+(Fq)aU+(th)>-

Proof. (1) follows immediately from the fact that F,[[t=!]] N F,[t] = F,. For (2), recall
a(t™h) Bt + BT

any matrix in P, has the form )

() a(t™)
where a(t™1), 8(t™1),7(t™1),6(t™") € Fy[[t~"]],
q o a(t) b(?)
and any matrix in P; has the form , where a(t),b(t), c(t),d(t) € Fqylt].
c(t) d(t)

Two such matrices are equal (and have determinant 1) when
ot™!) = at) = aoy(t) = ¢(t) =0, 8(t7") = d(t) = ag' and b(t) = 1t + () =

bo + bit. Since any matrix of this form is in both P, and P, , the proof is complete. [

7.2 Alternate Construction of the Nagao lattice

Let A™ denote half of the standard apartment, with vertices

T1, T2y T3y - .-
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corresponding to cosets

PQ, ’LU2P1, 1U2’lU1P2, .
Note that the stabilizers in G of these vertices are the corresponding conjugates
Py, woPywy! Pyw w2™!
2, Wal1Wy , WaW1L2W; W g e s

That is, gwP = wP if and only if ¢ € wPw~!. Now we consider the vertex stabilizers
in P.

Forn>1,1let '), = Stabpl_ (zn). Recall from Lemma 7.1 that

a by+ bt 1
=P NPk = | a,a™ EIF;(,b(),lnEIFq
0 a !
The sequence I';,, n > 1 satisfies
(].) 'y CTlpga-
(2) Tpy1 : Tyl =gq.
(3) UnZl I, C StabG(oo).
a by +bit "
(4)P1 = |a,a_ EF;,I)(), b1€Fq
0 a !

Remark: Nagao’s Theorem (Theorem 7.2) is well known. We give a new proof which

seems likely to generalize the statement to hyperbolic Kac-Moody groups.

Theorem 7.2. The groups

r, = la,a™" € Fy, b€ Fylt], deg(b) <n
0 a!

are the unique sequence, up to isomorphism, satisfying conditions (1), (2), (3) and (4})

above.

Proof: An ascending union of finite subgroups stabilizes a half apartment and hence is

contained in the stabilizer of the corresponding end. In this case, the stabilizer of the
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positive half A= of the standard apartment is the Borel subgroup of G [S]. The groups

I, are thus the unique sequence, up to isomorphism, satisfying (1), (2), (3) and (4). O

It follows that

Pf N ’LUQPlUJ;l =TIy
PN wgwlPle_lwgl =TI}3

PN wgwlwgplwglwflwgl =TIy

In general

P N wPw ! =T,

where w is the unique element of the set {we, wow;, wowiws, ...} with

l(w) =n — 1, and moreover i = 1 < [(w) € Q.

We have I';, = D(F;) Ay, where A, are the groups

1 b
An = | beFylt], deg(b) <n
01
For n > 1, define
a tb |
B, =B nl, = |a,a™ € Fy, beF,t], deg(b) <n—1
0 a!
1 tb
Ug, = B~ N A, = | b€ Fylt], deg(b) <n—1
0 1

The notation is suggestive. Indeed, since B~ < P;” and U~ < P;, we have

Theorem 7.3. Forn > 1,
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Stabp- (z,) =B~ N I'y = By

Staby- (zn) =B~ N A, =U,, . O

Remark: The groups B, also form an ascending chain which satisfies (1), (2), and (3)

above.

The ascending chain I'y C I'y C I'3 C ... gives the vertex groups in the graph of
groups presentation of the Nagao lattice P, = SLo(IF,[t]). This ascending chain also

gives the edge groups for the graph of groups presentation. Let
€1, €2, €3, ...
denote the edges of half of the standard apartment of X, where
e; = (zj,zi41) for 7> 1.
Then, the edge groups are given by

Sta’bPl_ (61) =Nl =15 .

Restricting these edge stabilizers to B~, we have
Be_i = StabB,(ei) =B NI;= B; .

7.3 Lattice corresponding to the standard apartment

In this section we construct the graph of groups for the nonuniform lattice B~, which
has the standard apartment as its quotient graph. We already found the vertex and
edge groups associated with the positive half of the standard apartment in the previous
section. Next we consider the groups associated with the vertices and edges of the other

half of the standard apartment. Again we begin by looking at the action of P, on this
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Let A~ denote half of the standard apartment, with vertices
T—1y, 9, T3y, T—4 --.-
corresponding to cosets

Py wi Py, wiwa Py, wiwowi Py, ... .

As before, the stabilizers in G of these vertices are the corresponding conjugates
Py, wngwfl, 'wlwgle;lwfl, el .

We now consider the stabilizers in P~ for these vertices.

Forn>1,letT'_, = Stabpl— (z_p)- Recall from 7.1 that
T_ = P NP = SLyF,).

A simple computation shows that

a 0
' =P N w1P2w1_1 = | a € ]F;(, bo, b1 € Iy
bo + b1t a"!

The sequence of vertex stabilizers I'_,, must satisfy
(].) P_n C P*(n+1)7 n 2 2
(2) C—usr) : Tonl =g, 1> 2
(3) UnZZ r, cC Stabc;(—oo).
a 0
(4) ', = |aE]F;<,b0,b1€]Fq
bo + b1t a=!

Remark We have excluded I'_; since SL2(F;) is not a subgroup of I'_,.

We then claim, by the same reasoning as before,

65
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Theorem 7.4. For n > 2, the groups

a 0
r., = |a € F, c € Fylt],deg(c) <n—1

C CI,_l

are the unique sequence, up to isomorphism, satisfying conditions (1), (2), (3), and (4)

above. O

As before, for n > 2 we define

B, =B nl, =I.,, and
_ _ a 0
B, =B Nl = la € Fy, ceTy,
c a!

Again, since B~ < P;, we have

Theorem 7.5. Forn > 1,

Stabg-(z_n) =B~ N TI',=B, .0

Remark: For n > 1 the groups B, also form an ascending chain which satisfies (1),
(2), and (3) above. In fact, it is the same ascending chain as in Theorem 7.4 with an

additional group B, , at the beginning.

Using the vertex stabilizers we now find the edge stabilizers. Let

€_1, €_92, €_3, ...

denote the edges of the ‘negative’ half A~ of the standard apartment of X, where

€_; = (.’E_(H_l),.’ﬂ_i) for 14 > 1.



67

Then, the edge stabilizers with respect to the action of P are given by

a 0
Stabpf (6_1) =T NI = . | a € F;, by € ]Fq ,

bo a

and for ¢ > 2, StabP; (e_5) = F—('H—l) Nnr,=r_.
Restricting these edge stabilizers to B~, we have

B,_, = Stabg-(e-;) = B~ N Stabp-(e—;) = B,

r—i °

Finally, denote the central “core” edge of the standard apartment by ey = (z1,z_1)
and define
B,, = Stabg-(eo) = By,

-1

N B,, = D(F,) .

Thus we have divided the fundamental domain for B~ into two infinite rays and
computed the corresponding vertex and edge stabilizers by interesecting B~ with the
stabilizers in P, . Together the two rays combine to create the standard apartment
A = B7\X with vertex groups {B; | n € Z*} and edge groups {B, | n € Z}

satisfying:

1. B;, = B, _, NB,, = D(F,),

2. B, =B, NB; ., =B, ,n>1,

3. B,,=B, NB, . =B, ,¢n>1,

4. [B;, : Bgl = [B;, : Byl = g,

5 [Bg,yy * Byl = [Bo (o + Boll = a,n2>1

That is, we have single (g, ¢)-indexed core edge with two infinite rays (cusps): one

ray of (1,¢)-indexed edges and another ray of (g, 1)-indexed edges.
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Chapter 8

Fundamental domains for congruence subgroups of

SLy(IF,[t]) as ramified coverings

Suppose a group G acts on a graph X. Taking a quotient by the action of G yields a
graph G\ X whose vertices and edges correspond to the G-orbits. Initial and terminal
vertices of an edge G - e are given by 0;(G - e) = G - 9;(e) for 7 = 0, 1, respectively. We
call G\X the quotient graph with respect to its action on X. We will often identify
G\X with its image in X; this subgraph is called the fundamental domain.

Let Y be the fundamental domain of X with respect to the action of G. Suppose N
is a normal subgroup of G. It is possible to reconstruct N\ X as a covering of Y in the
following way. Identify ¥ with the fundamental domain of N\X with respect to the
action of I'/N. Take the vertices of N\ X to be orbits of the vertices in Y with respect
to this action. Identify the orbits with cosets of the group I'/N by the stabilizers of
the vertices in Y. Treat the edges in a similar fashion. Two vertices are adjacent if the
corresponding cosets of non-trivial intersection. This construction of N\X is called a

ramified covering of G\ X.

In this chapter we will use ramified coverings to characterize the quotient graphs
for congruence subgroups of I' = SLy(F,[t]) in G = SLo(F,((¢7!))). The Tits building
of G is the ¢ + 1-regular infinite tree X = X ;.

The quotient graph X; = I'\ X is the infinite ray
A0—>A1—>A2—>---,

and the corresponding graph of groups is described in Section 2.5.

We will use this fundamental domain for I" to construct the fundamental domains
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for congruence subgroups of I'. Since these subgroups are normal, we have an action

by the quotient groups.

Lemma 8.1 (DD). Let G be a group and T a tree. Suppose G acts on T. If N is a
normal subgroup of G, then G/N acts on the connected graph N\T. Each Nt € N\T
has stabilizer

(G/N)nt = NGi/N.

Therefore given a normal subgroup N of I we may describe the vertices (resp. edges)
of N\X not only as N-orbits with respect to the action of N on X, but as elements of
G/N-orbits of {Nv : v € V(G\X)} (resp. of {Ne : e € E(G\X)}). That is we may
construct N\X as a ramified covering of G\ X.

8.1 The action of I'/T'(g)

Let I' = SLy(F,[t]), which is a nonuniform lattice in G = SLy(F, ((¢71))).

For g € F,[t], define the corresponding congruence subgroup

I(g9) = {A € SLy(F,[t]) [ A= I mod g}.

Since I'(g) is normal in I', the quotient graph X, = I'(g)\ X is a ramified covering of
the quotient graph X; = I'\X. We have projections 7, : X — X, and m1 : Xy — X.
Let N =T'(g9) <T'. Asdescribed using Bass-Serre theory, the vertices of X, = N\X

are given by the distinct N-orbits of vertices in X:

V(Xy) = {N-v : veV(X)}.

Similarly the edges of X, are given by

E(X,) = {N-e : ec E(X)}.

Then I'/N acts on X, by
YN(N-z) = N -vyz.
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(Here z is either a vertex or an edge of X.)
We may partition V(X) into the I'-orbits of the vertices A; of the infinite ray X; =
I\ X. Or equivalently we may partition the vertices of X into coset spaces I'/T';, where

I'; is the stabilizer of A; in T', as given in Proposition 2.6. That is

V(X) = Llizo]_—‘/ri.

Similarly
E(X) = l_IizoI‘/(I‘,- n PH—I)-

We use this description of I'\ X to construct our ramified cover. First, the vertices

and edges of X, = N\X as follows.

V(Xy) = Uil (g) - T'/T < Ui>l - T'/T(g)

E(Xy) = Ui»el'(g) - T'/(Ti NTit1) ¢ Uizo(l's N Tiyq) - T'/I(g)

We now define the coset spaces L; = I'; - T'/T'(g) for i« > 0, and we call L; the set of

vertices in level 1.

8.2 Structure of fundamental domains for congruence subgroups

Let I' = SLo(F[t]), ¢ € F[t] with n = deg(g), and I'(g) the congruence subgroup mod g.

It will be useful to have a matrix group description for I'/T'(g). We show here that
I'/T'(g) = SLa(Ry)

where Ry, = F[t]/(g). The argument is the same as in ([Sh]) for the classical setting

SLo(Z).

Proposition 8.2. The map SLy(F[t]) — SLo(Rg) given by A — A mod (g) is surjective.

Proof. Let A € SLy(R,) and let A € M, (F[t]) be a matrix such that 4 mod (g) =

A. We seek a matrix in SLo(F[t]) which is congruent to A mod g. By the Smith
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normal form there exist matrices U,V € SLy(F[t]) such that UAV is diagonal. Then

UAV = (29), with ad = 1 mod (g). Let B = (1_‘1ad 2;‘:}12) Then det(B) = 1, so

B € SLy(F[t]). Moreover B = UAV mod (g). Therefore U 'BV ! € SLy(F[t]) and
U !BV ! = Amod (g), as desired. O

As stated previously, when F = T, is a finite field, I" acts on the tree X = X 4.
We now seek a precise description of the graph structure for I'(g)\ X.

For each i > 0, denote by L; the set of vertices in X, which project to the vertex
A; in the ray. That is L; =T; - I'/T'(g) (see previous section). We may also identify L;
with the I'/T'(g)-orbit of I'(g)A;. Since any edge of I'\ X has endpoints A; and A;y; for
some 4 > 0, it follows that any edge of X, has endpoints in L; and L;, for some i > 0.

We have the following formula for the number of vertices in each level:

__ |SLa(Ry)|
Lemma 8.3. |L;| = IFiI/\lzmlg(g)\

Proof. The classic Orbit-Stabilizer Theorem gives

|Li| = [T/T(g)|/IStabr/r(g) (Ai)-

By Proposition 2.6, we have Stabp(A;) = I';. Then from the previous section, we have

Stabp/r(g) (Az) = (P(g)ri)/r(g)'

Using this equality and the second isomorphism theorem, the stabilizer of A; in I'/T'(g)
is

Stabrr(g) (As) = T(9)Ti/T(g) = Ti/[; NT(g)] -

Thus the number of vertices in L; is given by the number of vertices in

[L/T(9)]/[T(9)T:/T(g)] = [T/T(g)]/[Ls/ITiNT(g)]] = SLa(Fe[t]/(g))/[Ti/[Ti NT(g)]] -

O

The adjacency relation between two vertices of levels L; = I'; - I'/T'(g) and L;y; =
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Tiy1-T/T(g) is as follows.
1. The neighbors of a level i vertex ;o in L;,; are I';110', where o’ € T';o.
2. For i > 1, the neighbors of I';o in L;_; are I';_i0’, where ¢’ € T';0.
It is useful to phrase this in terms of coset intersections.
Let

H =T/T(g) = SLy(R,), where R, = F,[t]/(9) > {ao+ait+...+an_1t" '|a; € F,}, and

H; =T;/(T';NT(g))-

The vertices
hH; and kH;,1 are connected by an edge if and only if hH; N kH; 1 # 0.

Since X, becomes a collection of disjoint infinite rays beginning at each vertex of
level L, _1, it suffices to describe the graph induced by the first n levels. It is useful to
note that I'; NT'(g) = {1} for i <n — 1, where n = deg(g). Thus H; =T; fori <n—1
and we may describe the first n levels as cosets of matrix groups Hy, H1,...,Hy_1 in
SLy(Ry).

A fundamental consequence is that these adjacency relations yield a connected

graph.

Proposition 8.4. Let X, =T'(g)\X. The subgraph induced by the vertices in Lo, L1, ..., L1
is connected if, and only if, H = (Hy, Hp_1).

The following proof is due to Scott Murray.

Proof. Suppose that H = (Hy, H,_1). Clearly there is a path connecting H;a and Hja

for every 4,5 = 0,...,n — 1. Let H;a and H;b be two vertices. Write

a"'b = hikihoks - - bk,
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for h; € Hy and k; € H,,_1. Then we have a path from H;a to H,_1a = H,_1kna, to
Hyk,a = Hyhykna, to Hy, 1hypa = Hy 1k 1hmkna, and soon, to Hyh1ky - - - hykpa =
Hya, and so to H;b.

Conversely, we can write a € H as a word in elements of the groups H; using the

path from Hy to Hpa. Since Hy < Hy < ---, we are done. O

Proposition 8.4 may be used to show connectedness. We state the result here. The

proof is due to Scott Murray and may be found in [CCM].

Theorem 8.5. Hence the graph X, is connected.

Figure 8.1 gives a schematic drawing of the graph X, whose properties are summa-

rized below.

Core Graph Cusps
=
< i>>\
I

Lo I Ly Ly ... L.,

Figure 8.1: schematic drawing of quotient graph X, =I'(g)\X

1. X, is bipartite since it is a quotient of the bipartite graph X.

2. The vertex set is given by V(X,) = UL;, and the sets {v € L; | iis even },

{v € L; | iis odd } form a bipartition of the vertex set.

3. The edges run between sequential levels, and the edges between vertices in L; and
L;+1 project to the edge A;A;+1 in X. The subgraph induced by Ly and L; is
a (|Ho|/|Ho N Hil|,|H1|/|Ho N H1|) = (g + 1, g)-regular, bipartite graph. Then,
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for i =1,...,m — 1, each vertex in L; has degree ¢ + 1 with |H;|/|H; N H;—1| = ¢

edges incident to vertices in L; 1 and only |H;|/|H; N H;+1| = 1 edge incident to a

vertex in L;y1. For ¢ > n, each vertex in L; has degree 2 with |Hyp_1|/|Hp—1| =1

edge each incident to a vertex in L;_; and a vertex in L;y;. Thus the graph

“collapses” in a g-fold manner until it reaches the level L,,_;. At this point the

graph

becomes a collection of disjoint rays, one ray for each vertex in L,_.

4. The graph has |L,,_1| cusps.

Moreover we can give the graph of groups, denoted I'(g)\\X. We label each ver-

tex and edge with its stabilizer under the action of I'(g). First we consider the I'(g)

stabilizers of the vertices in I'\ X.

\

Sta,br(g) (A)) =T;nNT(g) =

{1} ifi<n

1 g()f(t
Ui = 91 | f(t) € Fyt], deg(f) <i—n ifi>n

0 1

Since the I'-stabilizer of any vertex in L; is conjugate in I' to [';, it follows that

the T'(g)-stabilizer of any vertex in L; is conjugate in I’ to I'; N T'(g). Thus the “core”

vertices are labeled with the trivial group, and the “cusp” vertex groups along each ray

are of the form

where {s; |

-1
SjUiSj ,

j=1,...,k =|Ly_1|} is a set of coset representatives of (I'/I'(g))/(T; N

I'(g)). The edge groups, that is the edge stabilizers, are intersections of the corre-

sponding initial and terminal vertex groups. Thus the edge monomorphisms are simply

inclusion maps.
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{1t G Uy Up Us Us

CoreGraph
of trivial group

1} {1} slhs;! spUrst splosp  spUssy! sgUss

Figure 8.2: graphs of groups I'(¢)\\X (all vertex and edge groups in core are trivial)
8.3 Congruence mod t"

We will now give a more detailed description regarding the size of the graph X, when
g = t™. This setting will be apt to giving detailed drawings using Magma and later to
contrasting our construction with that of Morgenstern. The large size will also reveal

a difficulty in obtaining detailed examples.

Let R = F,[t] and for n > 1,
Ry, = Rin = F[t]/t"F,[t] = {aop + a1t + ... + ap_1t" " |a; € F,},

|Rn| = qn-

The invertible elements in the ring R,, are those with non-zero constant term:
R = {ag+ait+...4+ap, 1t" | ag € Fy,a; € Ty},
Ryl =4¢""tg—1).
We can give the formula in 8.3 in terms of n and ¢. First, it is easy to show that

Tol = (g —1glg+1), [Ts]=(g—1)g""" fori>1, and,

1 ifi<n
ITi NT(g)| =
gt ifi >n
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A counting argument using row reduction of matrices (due to Scott Murray) yields:
|SLy(Rn)| = |Ryy| |Ral (2|Ra| — |By]) = ¢ (¢ —1)(g +1).

We can then say that the number of vertices in each level is given by:

(

=1 ifi=0

1Lil = (¢ + )@=t ifo<i<n

(g +1)g*=D ifi>n

\
In particular the graph X has (g + 1)) cusps.

From here it is also possible to construct the covolume for the graph of groups.

Lemma 8.6. Vol(X;n) = 22"

Proof. For i =0,...,n — 1, L; contains |L;| trivial vertex groups. For every i > n, each

of the (g + 1)¢*™~1) cusps has a vertex group of size IT; NT(g)| = ¢ ™! in level i.
Thus the covolume is given by
1 n-1 > 1 2q3n72
Vol(Xyn) = =) |L; )P DYy = = :
o ( t ) Z size of vertex group Z | 1' + (q + )q Z q* g—1
veEV Xin =0 =1
O

8.4 Detailed examples of fundamental domains for congruence sub-

groups
Let’s look at some specific examples of the graph X, for the congruence subgroups of

T = SLy(F,[1]).

(1) First, when g(t) = t, we have |Lg| = 1, and |L;| = ¢+ 1 for i > 1. Thus the

graph X is just a “star graph” with a central vertex and ¢ + 1 rays.
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(2) Now, let g(t) = t2. Here, |Lo| = ¢ and |L;| = (¢ + 1)¢? for i > 1. The bipartite
graph between the first two levels is (¢ + 1, ¢g)-regular, and the cusps are attached to

this bipartite graph (no collapsing takes place). Below is the graph when ¢ = 2.

Figure 8.3: n=2,q9¢=2

(3) Let g(t) = t*. Here, |Lo| = ¢°, |L1| = (¢ +1)¢° and |Li| = (¢ + 1)g* for i > 2.
The bipartite graph between the first two levels is (¢ + 1, ¢)-regular, and then the graph

collapses once by a factor of g before extending onward as infinite rays. Below is the

graph when q = 2.

L

7,

"/

N\ ,
SO AL
AR
N

N
SN

7(«&'

7/

L

Wi

Figure 8.4: n=3,q¢=2

Here we use the computer algebra system Magma as a computational tool to con-
struct these graphs. Due to the large size of the core graph it is impractical to draw the
examples generated by Magma, for larger values of ¢ and n. However these examples do
allow us to make some critical observations about the graph structure. To help draw

these graphs for small values of n and ¢ we use Magma as described below.

Let ¢ = t" and Ry, = F,[t]/t". Let H = SL(2,R,). Define the subgroups Hy =
SL(2,F;)and for 1 <i <n—1, H; = T+ (F, +F,t+...+ F,t')E} » where T is the group

of all diagonal matrices in H, and F 2 is an elementary matrix. We wish to construct
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the core part of the coset graph X, up to the infinite rays. The vertices correspond to
all cosets of H; in H, and there is an edge between two vertices hH; and hH;; exactly

when these cosets intersect nontrivially.

Since Magma has little functionality for matrix groups over the ring R,, we con-
structed the groups as permutations on submodules of Rg with a single generator (resp.
elements of Rg). We determine if two cosets intersect by a brute-force method. This

approach is only suitable for small groups.
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Chapter 9

Fundamental domains for congruence subgroups of
PGL(E, f]

Our methods in the previous chapter used to construct fundamental domains as ramified
coverings are not new. The constructions mimic work done for congruence subgroups
of PGLy(Fy[t]) by Morgenstern [M], and similar methods have been applied in [GN]
and [R]. However, at least some of Morgenstern’s constructions fail to give fundamental
domains, as we explain in this chapter.

Morgenstern ([M]) claimed to construct fundamental domains of lattices for congru-
ence subgroups of the group I' = PGLy(F,[t]) which is a nonuniform lattice subgroup

of G = PGLy (]Fq ((t_l))). These congruence subgroups have the form
I'(g) = {A € PGLy(F,[t]) | A = I, mod g}

for some g € F,[t]. He employed the method of ramified coverings described in the
previous chapter. This method for producing the fundamental domain for a subgroup
of a given group is consistent with the theory of branched topological coverings, and in
Morgenstern’s setting, coincides with a method suggested by Drinfeld in his theory of
modular curves over function fields ([D]). Similar constructions of fundamental domains
of lattices for congruence subgroups were constructed by Gekeler and Nonnengardt
([GN2]) and Rust ([Ru]) using essentially the same method.

Morgenstern’s motivation was to provide the first known examples of linear families
of bounded concentrators. These are obtained as subgraphs denoted Dy(0 — 1) of the

fundamental domains of lattices for congruence subgroups I'(g) for I' = PGLy(IF,[t])

([M]).
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We prove that these constructions do not yield the desired ramified coverings, and in
particular yield graphs that are not connected in characteristic 2. Since the fundamental
domain is the quotient graph of the action of a group on a tree, the quotient must be
connected. It follows that Morgenstern’s graphs cannot be quotient graphs by the
action of congruence subgroups on the Bruhat-Tits tree. Moreover certain subgraphs
Dy(0 — 1) of Morgenstern’s graphs which he claims to be expanders are not connected
in characteristic 2.

We repair Morgenstern’s method of constructing ramified coverings to give funda-
mental domains of congruence subgroups of PGLy(IF, [t]) as we gave in the SLj setting

in the previous chapter.

9.1 Morgenstern’s PGL, graph

Let I' = PGL(IF,[t]). For a polynomial g € F,[t],let I'(g) ={A €T : A=1 mod g}.
Both T" and T'(g) act on the ¢ + 1 — regular tree X = X ;. In Morgenstern’s paper,
he gives the structure for a graph X ; as follows.

Let degree(g) = n and R, = IF[t]/g. Define the groups Hy = SL(2,F,) and for
1<i<n—-1,H;=T+ (F; + Fet + ... +Ithi)E1,2 where T is the group of all diagonal
matrices in SLy(F,), and F o is an elementary matrix, as in the previous chapter. For
all i > n, let H; = H,_;. Finally, let H = PGLy(Ry) = GLy(Ry)/Z, where Z = IF; I
is the center of GLy(R,). The vertices of Morgenstern’s graph X, are all cosets of
H; = H;Z/Z in PGL2(Ry). There is an edge between two vertices hH; and hH; |
exactly when these cosets intersect nontrivially.

If we let L; = PGLy(R,) /H; for each i > 0, then Morgenstern’s description of
the graph X 5’, is nearly identical to our description of the ramified covering X, in the
previous chapter. In particular, the number of vertices in each graph is the same as
|Li| = |Li| = |SL2(Ry)|/|Hi|- So X has a core graph with the same number of vertices
as for X, and |L,| = |L,| infinite rays are attached to this core.

Moreover the structure of the core graphs of X, and X ; are similar. That is

X, is a bipartite graph where the subgraph induced by Lo and Ly is a (|Hp|/|Ho N
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Hy|,|Hy|/|HoN Hy|) = (g+1, g)-regular, bipartite graph. Then, for i = 1,...,n—1, each
vertex in L; has degree q + 1 with |H;|/|H; N H; 1| = q edges incident to vertices in
L;—1 and only |H;|/|H; N Hi1+1| = 1 edge incident to a vertex in L;11. Thus the graph
“collapses” in a ¢-fold manner until it reaches the level L,,_;. At this point the graph
becomes a collection of disjoint rays, one ray for each vertex in L,,_.

Despite the similarity in structure, the graphs X, and X !'] are not always isomorphic,
as we will see in the next section. This is ultimately a consequence of the fact that
Morgenstern fails to produce a valid ramified covering, at least in some cases. Though

he claims that X, = T'(g)\X, this is not necessarily the case.

Theorem 9.1. LetI' = PGL(F,[t]) and I'(g) be the congruence subgroup with respect
to a polynomial g € Fy[t]. Let X, and Xslr be the coset graphs described above. Then
there exist a prime power q and a polynomial g € Fy[t] such that X; % T'(g)\X and
X! # X,.

The original proof shown here is simply a counter-example obtained by brute force

computations of coset intersections.

Proof. Let g = t* and note that the graph X, is connected if and only if the subgraph
induced by the vertices in Ly and L; is connected. It is straightforward to check that
for ¢ = 2, the resulting (3, 2)-biregular graph on (8, 12) vertices has two connected com-
ponents. Since the quotient graph I'(g)\ X must be connected, as is X, (see Theorem

8.5), the proof is complete. O

The hand-computed counter-example in the proof above is not an isolated incident.
Further brute-force computations performed with Magma show that the graph X !'] is

disconnected in a number of cases, including the following:
1. g=2and g =1", 2 < n < 26;
2.g=4and g=1t"2<n<13;
3.g=8andg=t",2<n<T,

4. g=16and g=1",2<n < 4.
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We can also point to independent results which give these counterexamples. Coun-
terexamples for ¢ =2 and n = 3, 4, 5, 6 were found independently by Ortwin Scheja
and Max Gebhardt. They used the computer algebra system SIMATH.

One easy observation is that all the disconnected examples occur over a field of
characteristic 2. This led to the following results, whose proofs are given in our joint

work [CCM] and may be attributed to Scott Murray.

Proposition 9.2. Morgenstern’s graph X_('] is connected if, and only if, every element

of R* is an F-linear combination of elements of R*2.
Corollary 9.3. X/. is connected if, and only if, q is odd or n = 1.

The results above contradict Morgenstern’s claim that X !’] is the quotient graph for
the congruence subgroup I'(g), as well as some of his connectedness results, which we
will discuss in the next section. These contradictions, and in particular the failure of
X ; to behave as a ramified covering, ultimately stem from the incorrect identification

I'/T'(g) = PGLy(Rg). The following gives the correct isomorphism.

Proposition 9.4. Let R = T,[t]/(g9). For each of the groups T' below, let I'(g) =

{A€T : A=1I,mod (g) } be the congruence subgroup mod g.
1. IfT = SLy(F,[t]), then T/T(g) = SLa(R).
2. IfT = GLy(F,[t]), then T/T(g) = SLy(R) x (F @ (1)).
3. IfT = PGLy(F,[t]), then T/T(g) = (SLo(R) x (FX @ (1)))/Fx Iy,

Proof. (written with Scott Murray)
The first isomorphism (1) follows from Proposition 8.2.

For the second isomorphism, first decompose the group of invertible matrices

GLao(F,[t]) = SLa(F,[t]) > (Ff @ (1)).

Since I'(g) = { A :det(G) € Fy A=I,mod (g) } < SLa(F,[t]), it follows that

I'/T(g) = (SLa(Fq[t])/T'(9)) x (Ff @ (1)) = SLa(R) x (Fy & (1)).
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The third isomorphism follows from the second by first taking the pre-images of the

projective matrices in G Lo (I, [t]).

T/T(g) = GLy(F,[t])/{A € GLy(F,[t]) : A=Al mod (g) for some A € F<}.

— GLy(F,[t]) /F; {A € GLo(Fy[t]) : A= I, mod (g)}.

= (SLa(R) » (F} © (1))/F} I

9.2 Subgraphs of levels 0, 1

Let I' = PGL(IF,[t]), g € Fy[t] a polynomial of degree n, I'(g) a congruence subgroup,
and X, _,'J the graph of Morgenstern described in the previous section. Morgenstern con-
structed X 5’, as a means of providing examples of linear families of bounded concentra-
tors. These examples were obtained as subgraphs of X !’], namely given g, let Dy(0 — 1)
be the subgraph induced by the vertices in the first two levels Ly and L. However, a
necessary property for a bounded concentrator is connectedness. Since we showed that
X is disconnected in characteristic 2, it follows that the subgraphs Dy(0—1) must also

be disconnected.
Corollary 9.5. (to Proposition 9.2) If q is even, then Dy(0 — 1) is disconnected.

Proof. In any level L; with i > 1, every vertex has a neighbor in L;_;. Thus any vertex
in level ¢ is connected via a path to a vertex in level Li. If Dy(0 — 1) is connected,
then any two vertices in L; are also connected by a path. Thus any two vertices in the

graph may be connected via vertices in L. O
This contradicts the following claim of Morgenstern.

Proposition 9.6 (Proposition 4.2, M). Ifq > 4, or ¢ = 3 and g(z) is irreducible of

degree greater than 2, then Dy(0 — 1) is connected.
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We stated that the full graphs X ; are connected in odd characteristic in the previous
section. What remains to be seen is whether or not the subgraphs D,(0 — 1) are
connected in odd characteristic and if they have the claimed expansion properties.
This is beyond the scope of the current work, but we do wish to give a few remarks
regarding a result of Morgenstern’s which underlies his results on connectedness and

the expansion properties of Dg(0 — 1).

The chief idea in the proof of Proposition 4.2 [M] is a lower bound for Ny(S), the
set of vertices in Ly which are adjacent to a subset S C L; of vertices in L. We give

Morgenstern’s lemma here.

No(S) 5 Ll
ST 2 @Sl

Lemma 9.7 (M, Lemma 4.1). For every S C Ly,

We tested this lower bound on one set of vertices S C L; corresponding to a con-
nected component of our example when ¢ = 4, n = 2. The bound failed (our size of
L; matches the formula given by Morgenstern). We speculate that this bound will fail
in general for characteristic 2. It is interesting to note that we first tried a random
search of the subsets of L; but did not find a counterexample. It is possible that the
bound holds for most subsets of L. We do not know what happens to this bound in

odd characteristic.

When Morgenstern’s fundamental domains for congruence subgroups are discon-
nected, all connected components of the fundamental domain are isomorphic. More-
over, there is a group acting freely by permuting the components. This follows from a
general property of coset graphs: Since H acts transitively of the cosets of Hy, there
must be an element of H taking any component to any other component, and so the

components must be isomorphic.

9.3 Fundamental domains in PG L, as ramified coverings

Let ' = PGL(IF[t]), g € F,[t] a polynomial of degree n, and I'(g) a congruence
subgroup. We explained in Section 9.1 that the discrepancy in Morgenstern’s con-

struction as a ramified covering (and therefore a quotient graph) is due to an incorrect
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computation of I'/T'(g). We offered the following correction in Proposition 9.4:

T/T(g) = (SLa(R) » (B} & (1)))/F; L.

This correction, when combined with Morgenstern’s construction, gives a valid quo-
tient graph X, = I'(g)\X. Moreover, this quotient graph is isomorphic to that for the

corresponding S Ly congruence subgroup.

Theorem 9.8. The ramified coverings X, and X_g are isomorphic. In particular, X_g

18 connected.

We thus provide new families of subgraphs which potentially have the expansion

properties claimed by Morgenstern, though we have not verified this.
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