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ABSTRACT OF THE THESIS

Virtual Network Traffic Shaping (VNTS) technique to

ensure fairness in Virtual WiMAX Networks

by Ronak Daya

Thesis Director: Dr. Dipankar Raychauduri

This thesis presents the results of an experimental study on wireless network virtu-

alization. The design and evaluation of virtualization methods for a WiMAX base

station, a wireless technology of growing importance for emerging ”4G” wide-area data

services is performed, using an experimental WiMAX base station which has recently

been deployed at WINLAB, Rutgers University; as part of the national GENI experi-

mental network for future Internet research. The goal of this project was to benchmark

the performance of this WiMAX base station with and without virtualization over a

range of realistic scenarios, and to evaluate methods for improving fairness and isolation

between virtual networks in the system under study.

A set of mobile client experiments (without virtualization) show that the base sta-

tion is capable of operating at peak rates of around 16 Mbps indoors, and that the

achievable bit-rate at a mobile client varies considerably as a function of received signal

strength (RSSI) at the mobile client. The next step was to perform virtualization of this

device, using Kernel Virtual Machine (KVM); with multiple slices having the ability to

share the same base station. Experimental results are performed for multiple virtual

networks operating in realistic scenarios with varying received signal strength at mobile

devices. The results show that virtual networks can have significant coupling between
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their throughput performance, and that unfairness is further amplified by autorate and

scheduling algorithms in the WiMAX base station, which have the effect of moving

resources to mobile clients with low signal-to-noise ratio.

As a solution to the above mentioned problem, a Virtual Network Traffic Shaping

(VNTS) technique is proposed and evaluated. An algorithm is developed using feedback

from the base station’s control interface to assess the current channel utilization for each

slice. A control parameter in the form of downlink data rate is defined and this value

is regulated dynamically for each slice, using an implementation of the Click Modular

Router in order to maintain fairness across slices. The VNTS auto-reconfigures itself

and imposes fairness at pre-set time intervals. We evaluate the performance of this

mechanism and compare it to the initial results that were observed for the uncontrolled

scenario. Preliminary results indicate that the VNTS scheme effectively implements

fairness, and helps to reduce the coupling between slices.
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Chapter 1

Introduction and Related Work

1.1 Introduction

One of the general trends in wireless networking research is the growing use of exper-

imental testbeds for realistic protocol evaluation. Open networking testbeds such as

ORBIT [3], Dieselnet [4] and Kansei [5] have been widely used in the past 5 years for

evaluation of new wireless/mobile architectures and protocols based on available radio

technologies such as WiFi, Bluetooth and Zigbee. With the emergence of so-called

”4G” networks, there is a need to support open experimentation with wide-area cel-

lular radios such as mobile WiMAX or LTE. An ongoing GENI (Global Environment

for Network Innovation) project [6] at WINLAB is aimed at making an open WiMAX

base station available to GENI and ORBIT outdoor testbed users. A key requirement

for this project is ”network virtualization” which makes it possible for multiple experi-

mental users to testbed resources such as the WiMAX base station. Accordingly, this

project is aimed at design and evaluation of virtualization methods for the WiMAX

base deployed in the ORBIT/GENI outdoor testbed.

Virtualization of the WiMAX Basestation provides a convenient approach to pro-

vide separate environments for independent experimental users. While the problem of

processor virtualization has been studied in great depth, network virtualization is at an

earlier stage of development [7]. There are several open technical problems associated

with virtualization of a network device such as a router or a base station. These include

maintaining balancing statistical multiplexing efficiency against isolation and fairness

between multiple virtual networks. This problem of ensuring fairness and policies across

virtual networks is especially hard for a cellular base station since the channel changes

continuously at a mobile device, thereby consuming varying amounts resource at the
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transmitters. Allocation of resources to virtual networks is further complicated by the

flow and packet scheduler algorithms which are embedded into any commercial grade

base station.

In this thesis, we consider a problem of providing slice isolation and performance

guarantees with client mobility for a 802.16e Basestation deployed on the outdoor

ORBIT testbed at Rutgers.. The WiMAX basestation is accessible to experimenters

through virtual machines running on the ORBIT network [3]. For initial purposes, we

consider a situation where each slice has an associated mobile WiMAX client and there

is a 1 ↔ 1 mapping. Specifically, we address the following research challenges-

1. Isolation: Each experimenter should have an isolated environment for setting

up experiment control parameters.

2. Support for multiple service classes: Each experimenter should be able

to include a wide range of service classes as a part of integrated ORBIT testbed

experiments. For an initial design, the experimenter could be provided with a pre-

provisioned set of service flows. Access to these could be based on source/destination

port control.

3. Fairness: The mechanism should be able to ensure fairness across slices irre-

spective of the available MCS (for that particular hardware), link adaptation al-

gorithms, packing algorithms, and the service class for a flow. Independence from

service classes ensures performance guarantees irrespective of QOS class type of

service flows used within the slice.

1.2 Related Work

WiMAX being a relatively new technology, most of the recent work in this area has

been focused on theoretical modeling. There have been significant efforts with the

development of models to tweak the scheduler for quality of service [8, 9, 10, 11, 12, 13]

guarantees and or for ensuring fairness [14, 15]. However, in our problem we assume

that QOS is provided as per pre-set classes by the built in scheduler. By treating the
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scheduler as a black-box device and using certain hooks, we provide an architecture that

provides air time fairness.

A token - passing based implementation [16] was demonstrated for enforcing air

time fairness with the distributed co-ordination function (DCF) in 802.11. Though, this

approach is suitable for implementation on 802.11 devices, we exploit other features in

the 802.16e base station to design and implement a more efficient control mechanism.

To the best of our knowledge we are not aware of any other study which implements

an air time fairness mechanism for 802.16e devices at this time.

The rest of the thesis is organized as follows. Chapter 2 starts with a general

overview of WiMAX, and provides an introduction to the experimental setup available

at hand. This is followed by a performance evaluation of the available WiMAX BS.

Chapter 3 presents the basic concepts of Virtualization followed by measurements, as

a result of adapting a particular technique to implement virtual slices for the BS. In

Chapter 4, with the help of experiments; we explain the motivation behind our work.

This is followed by a proposal of the Virtual Network Traffic Shaping (VNTS) technique

to ensure fairness amongst slices and the effectiveness of this mechanism is evaluated

using various experimental scenarios. Conclusion and future work are presented in

Chapter 5.
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Chapter 2

Mobile WiMAX Overview and Baseline Performance

Evaluation

This chapter gives a general overview of the WiMAX technology, based on the IEEE

802.16-2004 Air Interface Standard. [17]. A brief description of the basic concepts

of WiMAX is given. This is followed by a description of the experimental setup. The

parameters of this device are compared and put in perspective with those defined in

the standard. Finally, we study the performance of the BS, using real world outdoor

experiments; and the initial results are evaluated.

2.1 Mobile WiMAX Overview

2.1.1 Introduction

The past decade has seen a rise in user mobility and the need to stay connected at all

times. This has resulted in increased interest in the IEEE 802.16e mobile Worldwide

Interoperability for Microwave Access (WiMAX) systems. The IEEE 802.16 Standard

[17] was set up with a view to develop an air interface standard for wireless broadband.

This standard aims to provide Broadband Wireless Access (BWA) and is hence con-

sidered an attractive replacement for wired broadband services. It has the advantage

of being easily deployed and hence can act as a last-mile broadband wireless access

technique in high population cities and also in areas where there is no prevailing infras-

tructure for wired connections. The IEEE 802.16e-std forms the basis for the WiMAX

solution for nomadic and mobile applications and is often referred to as mobile WiMAX.

Mobile WiMAX provides a great deal of flexibility in deployment and service offer-

ing. Some of the salient features of Mobile WiMAX are [18]-
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1. High Data Rates:

The inclusion of MIMO antenna techniques along with flexible sub-channelization

schemes, advanced coding and modulation all enable the Mobile WiMAX tech-

nology to achieve peak PHY data rates of around 25Mbps and 6.7Mbps for the

downlink and the uplink, respectively. These peak theoretical PHY data rates are

achieved when using 64 QAM modulations with rate 5/6 error-correction coding,

with a specified DL/UL ratio and bandwidth.

2. Quality of Service (QoS):

One of the main premises of IEEE 802.16 MAC architecture is Quality of Service

(QOS). The MAC layer has a connection oriented architecture which can support

a variety of applications including multimedia services. The system offers specific

support for constant bit rate, variable bit rate, real-time, and non-real-time traffic

flows, in addition to best-effort data traffic. The MAC can support a large number

of multiple connections, each with its own QoS requirement.

3. Scalability bandwidth and data rate support:

WiMAX allows scaling of the data rates depending on current channel condi-

tions. OFDM supports this scalability, through changing the size of the Fast

Fourier Transform based on channel conditions. Different networks have different

bandwidth allocations and scaling is essential to support roaming.

4. Security:

WiMAX has a robust privacy and key management protocol and also supports

encryption using Advanced Encryption Standard (AES) . Provision for authenti-

cation architecture based on Extensible Authentication Protocol is also provided.

This allows for various user credentials like digital certificates, user/name pass-

word, smart cards, etc.

5. Mobility: Mobile WiMAX needs to ensure that real time applications like VoIP

can handle mobility, without significant degradation in service. This is supported
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using optimized handover schemes that have latencies that are less than 50 mil-

liseconds.

We now take a look at the WiMAX PHY and MAC layers

2.1.2 WiMAX Physical Layer

The WiMAX physical layer is based on orthogonal frequency division multiplexing.

OFDM is ideal for non line of sight (NLOS), high data rate transmissions, OFDM is

used in a number of commercial broadband systems like DSL, Wi-Fi, etc. In OFDM, a

high data rate bit stream is divided into multiple lower data rate bit streams, which are

modulated on separate carriers, which are referred to as tones or subcarriers. OFDM

provides a number of advantages in comparison to other solutions used for transmitting

at high speeds. One of the main factors is the graceful degradation of performance as

the delay spreads exceed the values that it was originally designed for. It is also robust

against narrow band interference and is suitable for coherent demodulation.

The subcarriers can be divided into groups of subcarriers that are referred to as sub

channels. Subchannels can be made from subcarriers that are either pseudo-randomly

generated or are contiguous. Different subchannels can be allocated to different users to

support a multi-access scheme. This scheme is used in Mobile WiMAX and is referred

to as OFDMA. Both uplink and downlink sub channelization is supported in Mobile

WiMAX. Allocating subchannels to users based on their frequency response is termed

as adaptive modulation and coding (AMC).This can be used to enhance the channel

capacity by varying the subchannel according to the signal to noise ratio (SNR) [18].

The Mobile WiMAX air interface supports both TDD and FDD modes [19]. In

the TDD mode, the downlink frame is followed by a small guard interval and then

the uplink frame is transmitted; whereas in the FDD mode, the uplink and downlink

frame are transmitted simultaneously. The TDD mode is usually preferred because

here it is possible to dynamically allocate DL/UL resources to support asymmetric

UL/DL ratio and also, only one channel as compared to the two in FDD. Multiple

users are allocated data regions within the frame and these allocations are specified
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using UL/DL MAP messages. The MAP messages include the burst profile which

determines the Modulation and Coding scheme that is used in that link. The uplink

subframe comprises of several uplink bursts from different users and also has a channel

quality indicator channel (CQICH) through which the client can send feedback to the

BS.

WiMAX supports a number of modulation and coding schemes like QPSK, 16 QAM

and 64 QAM. It also provides the ability to adaptively vary the modulation scheme

based on channel conditions. The BS can vary the modulation scheme based on channel

quality feedback and received signal strength for downlink and uplink respectively.

The data rate performance of the physical layer varies based on a number of operat-

ing parameters. The channel bandwidth and modulation along with the coding scheme

used play a major rule in influencing the data rate.

2.1.3 WiMAX MAC Layer

The WiMAX MAC layer acts as an interface between the higher transport layer and the

lower physical layer. The MAC layer is responsible for arranging outgoing packets from

the upper layer, called Service Data Units (SDUs) and organizes them into Protocol

Data Units (PDUs) [20]. WiMAX is designed to provide very high data rates and this

is done by providing the flexibility to combine multiple SDUs into a single PDU, to

save on MAC overhead when the SDU size is small; or by partitioning a large SDU into

multiple PDU. Multiple PDUs can also be transmitted simultaneously in a single burst

to avoid PHY overhead.

The MAC protocol is connection oriented, where each SS that enters the network

needs to register with the BS and set up connections which are used for data transfer

with the BS. The BS in turn assigns a unique 16 bit connection identifier (CID) for

each connection. WiMAX also defines the concept of a service flow. This is identified

using a service flow identifier (SFID) and is a unidirectional flow of packets with a

specified QoS. Every CID is mapped to a service flow and a QoS level. The MAC

layer is responsible for assigning air link resources and providing QoS. The BS allocates

resources to all the users for both uplink and downlink. The downlink bandwidth is
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allocated based on incoming traffic and the downlink bandwidth is allocated based on

the request that is made by the MS via polling by the BS.

The QoS parameters can be identified as scheduling type, traffic priority, maximum

and minimum rates, transmission PDU format, SDU type and size, etc. The service

flows can be provisioned through the management system or created dynamically via

signaling. WiMAX defines five scheduling services, which are -

1. Unsolicited grant service (UGS) - This is designed for fixed packet sizes at a

constant bit rate (CBR). An example of an application that can use this service

is VoIP without slice suppression.

2. Real time polling services (rtPS) - This service is designed to support real

time service flows that generate variable size data packets on a regular basis.

MPEG video is an example for this.

3. Non-real-time polling service (nrtPS) - This service is designed to support

delay tolerant data streams, such as FTP, that require variable-size data grants

at a minimum guaranteed rate.

4. Extended real-time variable rate (ERT-VR) service - This service is

designed to support real time applications like VoIp with silence suppression,

that need guaranteed data rate and delay, even though they have variable data

rates.

5. Best-effort (BE) service - This service is designed to support data streams

that do not require minimum service level guarantee, like Web browsing

2.2 WiMAX Experimental Setup

Having understood the basic concepts and terminology involved in Mobile WiMAX, we

now take a look at the WiMAX experimental setup that is available.

The experimental setup consists of an experimental WiMAX base station which has

recently been deployed at WINLAB, Rutgers University as part of the national GENI
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experimental network for future Internet research. This Profile A WiMAX Base Station

is described below-

The NEC Release 1 WiMAX base-station hardware is a 5U rack based system which

consists of multiple Channel Cards (CHC) and a Network Interface Card. The shelf

can be populated with up to three channel cards, each supporting one sector for a

maximum of three sectors. The BS operates in the 2.5 Ghz or the 3.5 Ghz bands and

can be tuned to use either 5, 7 or 10 Mhz channels. At the MAC frame level, 5 msec

frames are supported as per the 802.16e standard. The TDD standard for multiplexing

is supported where the sub-channels for the Downlink (DL) and Uplink (UL) can be

partitioned in multiple time-frequency configurations.

Figure 2.1: NEC WiMAX Base Station hardware configuration [1]

The base-station supports standard adaptive modulation schemes based on QPSK,

16QAM and 64QAM. The interface card provides one Ethernet Interface (10/100/1000)

which will be used to connect to the high performance PC. The base station has been

tested for radio coverage and performance in realistic urban environments and is being

used in early WiMAX deployments.

The 802.16e base station allocates time-frequency resources on the OFDMA link

with a number of service classes as specified in the standard - these include unsolicited
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grant service (UGS), expedited real time polling service (ertPS), real-time polling ser-

vice (rtPS), non-real time polling (nrtPS) and best effort (BE). The radio module as

currently implemented includes scheduler support for the above service classes in strict

priority order, with round-robin, or weighted round-robin being used to serve multiple

queues within each service class. It is noted that OFDMA in 802.16e with its dy-

namic allocation of time-frequency bursts provides resource management capabilities

qualitatively similar to that of a wired router with multiple traffic classes and priority

based queuing. Also, the 802.16e base station’s signal is compatible with commodity

802.16e mobile platforms (for example, the Samsung M8000, Nokia N800 and Motorola

WiMAX handsets). The deployment of this BS is shown in fig 2.2

Figure 2.2: WiMAX antenna on the WINLAB Tech Center roof and the base station
with the power amplifier in the control room

2.3 WiMAX Baseline Performance Evaluation

A significant number of performance measurements, have been carried out for the base

station deployed at the WINLAB Tech Center building. The purpose was to conduct

basic validations of the experimental deployment and to understand the achievable

performance and features of the WiMAX hardware used in the setup. As part of this

effort, we have measured throughput, latency, RSSI and PER by varying modulation
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and coding schemes, service classes, receiver locations and performance under mobil-

ity [21]. Some of these experiments and their results are explained below.

2.3.1 WiMAX Coverage Map

This experiment was performed to get a coverage trace and understand the channel

conditions at different points around the BS deployment site. A WiMAX client was

placed in a car, along with a GPS system. A basic drive was performed and the RSSI

values were logged and mapped to the GPS coordinates. A Google Earth image showing

this trace is shown in figure 2.3 .

Figure 2.3: WiMAX BS coverage trace

2.3.2 Location Based Experiment

The next experiment performed was done with the client stationary at 3 different lo-

cations.The locations are of increasing distance from the BS . A Google Earth image

marking these positions exactly, is shown in figure 2.4.
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Throughput rates were observed for varying MCSs and packet sizes. The results for

the 3 locations are plotted in Figures 2.5 2.6 2.7 .

Figure 2.4: Experimental scenarion for 2.3.2 marking the points at which the tests are
carried out

In all the cases we observe that link performance improves with increasing packet

sizes. We also observe that in all cases the observed throughput increases with a better

modulation and coding scheme. In Fig 2.5 we see that best performance is achieved

at 64QAM5/6 since channel conditions are the best. For Location-1 we observe that

best performance is achieved at 64QAM2/3. Finally, for Location-2 we observe best

performance at a lower rate of 64QAM1/2. In all cases we observe that the link

adaptation algorithm is able to select the best MCS most of the times leading to a

good performance for varying conditions.

These plots give us baseline throughput measurements at different locations, for

varying packets sizes and MCSs; and act as reference measure for all further experi-

ments.



13

64

128

256

512

1024

64 QAM 5/664 QAM 2/364 QAM 1/216 QAM 3/416 QAM 1/2QPSK 3/4QPSK 1/2Auto
0

5

10

15

20

 

Packet Size (Bytes)

Modulation Scheme

 

T
hr

ou
gh

pu
t (

M
bi

ts
/S

ec
)

2

4

6

8

10

12

14

16

Figure 2.5: Control Room (Distance from BS = 0.01 Miles)– CINR = 29 RSSI = -51

2.3.3 Link Adaptation Algorithms Evaluation

This experiment was performed to understand the performance of built in link adapta-

tion algorithms. The BS allows to set the Minimum CINR for each Modulation Coding

Scheme (MCS) to be used in Auto switching.This ensures that only when at least the

minimum CINR for that modulation scheme is reached, will that scheme be available.

The MCSs that are used by the Auto Rate Scheme can also be set explicitly. Here,

we see that as the CINR varies from 19 to 31; we select all the modulation schemes

from 1/2 QPSK to 64 QAM 5/6 and compare this with the Auto Rate algorithms.

The BS provides two Auto-Rate algorithms - CQICH and REP-REQ/RSP. The

channel quality information channel (CQICH) is allocated by the BS as soon as the

BS and the SS are informed of each others modulation and coding capabilities, and is

used for periodic CINR (carrier to interference plus noise ratio) reports from the SS to

the BS. Alternatively, the BS may send a REP-REQ message in order to request either

the RSSI (received signal strength indicator) and CINR channel measurements by the

SS, or the results of previously scheduled measurements. The SS responds with the

REP-RSPmessage that contains the corresponding values [22].
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Figure 2.6: Location 1 (Distance from BS = 0.06 Miles)– CINR = 27 RSSI = -67

A path, where the CINR varied from 31 to 19 was chosen, to perform the experi-

ment.The best Modulation Schemes for the two extreme CINRs were chosen, along with

an intermediate MCS and these were compared with the two link adaptation schemes

that were enabled for Downlink, and all the Modulation schemes between the two ex-

tremes were made available. The duration of the walk along the path and back took

a total of 120 seconds. A considerable fluctuation in CINR was observed between the

40 and the 80 second mark. An approximate trace for this path, within WinLab Tech

Ceneter along with a plot of the throughput vs time for various MCSs, is plotted in

Figure 2.8.

The results in Figure 2.9 indicate that auto rate fairs well even in varying channel

conditions and its rates are comparable to the best possible rate the given channel

condition.

2.3.4 Packing vs No-Packing

The BS allows to enable and disable packing of the data units. Fragmentation is the

process in which a MAC SDU is divided into one or more MAC SDU fragments.Packing
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Figure 2.7: Location 2 (Distance from BS = 0.14 Miles)– CINR = 24 RSSI = -72

is the process in which multiple MAC SDUs are packed into a single MAC PDU pay-

load [23].

To observe the impact packing has, we perform an experiment where 3 Modulation

schemes are chosen and the throughput is observed for different packet sizes, with

packing enabled and disabled. The plot for this is shown in Figure 2.10.

The results in Figure. 2.10 show that for our experiment setup, we see negligible

difference in performance with and without packing.

2.3.5 Varying DL-UL Ratio

This experiment was done to observe impact of varying the UL/DL ratio for different

packet sizes and modulation schemes. The WiMAX standard specifies 6 different option

for frame duration. The most popular frame duration is 5 ms. If we choose, say 5 ms

frame say in 10 MHz channel or 5 MHz channel, then we can have maximum 47 OFDMA

symbol. Therefore, if we want to have, for instance, 27 symbol in DL subframe then 47-

26=21 is the number of OFDMA symbol you have for uplink. The number of OFDMA

symbol directly effects how the bandwidth is shared between the UL and DL channels.

The throughput is recorded for all possible combinations of (DL,UL).The rest of the
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Figure 2.8: A trace of the path chosen for the experiment, and the corresponding RSSI
for the duration of the walk.

parameters are kept constant. The results are provided in Figure. 2.11.

We observe that throughput scales with different packet sizes as observed earlier.

As the DL-UL ratio is increased we see an increase in the downlink throughput. It is

also observed that this impact is greatest for large packet sizes and vice versa. The

results confirm with the theoretical values, and hence provide us with a mechanism to

control the division of channel between uplink and downlink.
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Chapter 3

Virtualization

This chapter begins by providing an overview of the various virtualization techniques

that are available. This is followed by a discussion about the Kernel Virtual Machine

(KVM), which we use for creating slices for the BS. This is followed by some basic

experiments to test the performance of KVM. The results of these experiments are

studied.

3.1 Virtualization Basics

Virtualization is a framework or methodology of dividing the resources of a computer

into multiple execution environments, by applying one or more concepts or technologies

such as hardware and software partitioning, time-sharing, partial or complete machine

simulation, emulation, quality of service, and many others [24]. Simply put, to virtual-

ize, means to take something of one form and make it appear to be another form.

The general process of virtualization can be best explained with the help of the

following diagram [25]-

Figure 3.1: Layered abstraction of virtualization [2]
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The hardware machine that needs to be virtualized forms the bottom of the vir-

tualization solution. Virtualization may or may not be supported on this machine

directly. The next layer above this is comprised of the hypervisor of the Virtual Ma-

chine Manager (VMM). This layer acts as an abstraction between the operating system

and the hardware. If the functions of the hypervisor are performed by the operating

system itself, then this operating system is called the host operating system. The ac-

tual virtual machines (VMs) form the final layer of the virtualization solution. These

VMs are isolated operating systems, and are provided with the illusion that the host

hardware platform belongs to them. These VMs are independent devices and can have

applications that might be associated with it.

Having understood what virtualization is, we take a look at the different types of

virtualization techniques that are possible [2] -

1. Hardware emulation

Figure 3.2: Hardware emulation [2]

In this technique, the virtualization is provided by creating virtual machines that

emulate the hardware of interest. This technique allows for the operating system

to run completely unmodified. The main drawback of this is that it is very slow.

Examples of hardware emulation is QEMU. Figure 3.2 shows the basic blocks of

Hardware Emulation.

2. Full virtualization
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Figure 3.3: Full virtualization [2]

This mode of virtualization uses a virtual machine manager to mediate between

the guest operating system and the host hardware. This requires some protected

instructions to be trapped and handled by the VMM, since the underlying hard-

ware is shared by all the virtual machines. This technique also allows the OS to

run unmodified, but it does need to be compatible with the underlying hardware.

VMware and z/VM are examples of this. This technique is explained in 3.3

3. Paravirtualization

Figure 3.4: Paravirtualization [2]

This method is similar to full virtualization; wherein it uses a hypervisor to me-

diate access to the hardware; but it requires that the guest operating system
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has some virtualization-aware code present in it. Figure 3.4 explains this tech-

nique.This mechanism does away with the need to trap any privileged instructions,

since the guest OS is aware of the virtualization process. Paravirtualization comes

closest to offering performance that is close to that of an unvirtualized system.

Xen and UML make use of the paravirtualization technique.

4. Operating system-level virtualization

Figure 3.5: Operating system-level virtualization block diagram [2]

The final technique that we look at, in figure 3.6 virtualizes server on the top of

the operating system itself. This method isolates the independent servers from

each other, while supporting the same operating system to be used by them. This

can provide native performance at the cost of changes to the operating system

kernel.

3.2 Base Station Virtualization

The concepts studied in the previous section lay the groundwork to understand the

requirements of virtualization and the technique used in this process.

3.2.1 Why is virtualization needed?

Virtualization allows a single machine/node to implement multiple instances of a re-

quired logical resource within the same or different slices. One of the main challenges

with the current basestation is to provide a setup where multiple experimenters could
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run experiments which involve a WiMAX basestation and clients as a part of their

experimentation setup.

The most basic step involved in achieving this configuration is to setup virtual

containers using one of the techniques described in the previous section

3.2.2 Kernel Virtual Machine (KVM)

KVM is a virtualization technique that uses a kernel module to turn the Linux kernel

into a hypervisor [26].This is the first virtualization technique that is a part of the main

Linux kernel. The guest operating systems can run in user-space of the host Linux

kernel with the help of this module. Each guest operating system is a single process of

the host operating system (or hypervisor).

A new execution mode, guest mode; is introduced into the kernel by the KVM

module. Plain kernel supports just kernel and user modes.

The guest mode of the kernel is supported by the kernel module exporting a device

called /dev/kvm. This device provides a VM with its own address space, that is separate

from the kernel or any other VM. The devices in the device tree are common to all user

space applications but isolation is provided by providing a different map for /dev/kvm,

for each process that opens it. The physical memory that is mapped for the guest

operating system is actually virtual memory mapped into the process. Translation

from guest physical address to host physical address is provided by maintaining a set

of shadow pages.

KVM is a part of the virtualization solution. The ability to virtualize the processor

for multiple OSes is provided by the processor itself. As discussed earlier, the memory

is virtualized by KVM. Modifying and executing a QEMU process on each operating

system process enables I/O virtualization. QEMU is a platform virtualization solution

that allows virtualization of an entire PC environment.

Figure 3.6 provides a view of virtualization with KVM.

The bottom-most layer is the hardware that is capable of virtualization. The next

layer is provided by the Linux kernel with the KVM module, which acts as a hypervisor.

The Linux kernel supports guest operating system, which is loaded through the kvm
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Figure 3.6: The virtualization components with Kernel Virtual Machine (KVM)

utility; while also providing support to run applications just like any other Linux kernel.

The guest operating system that is running on the top can run any applications just

like the host operating system.

The main advantage of KVM is that it uses the Linux Kernel as the hypervisor

and hence any changes to the standard Kernel benefit both the host(hypervisor) and

the guest operating system. The drawback of this system involve the need for a user-

space QEMU process, that can provide I/O virtualization, and also the need for a

virtualization capable processor.

3.3 KVM Virtualization Measurements and Observations

KVM is used to create virtual machines on an external machine. This technique allows

us to create containers that can be used to access the WiMAX BS. Resources can be

allocated to these slices, to allow independent experiments to run simultaneously on

the BS. A basic performance evaluation of KVM, with multiple virtual machines is

provided here, and is compared with the performance of the host system; in order to

gauge the performance overhead of operating from a KVM guest system.

3.3.1 KVM Delay Measurements

The most basic measure of performance is the Average Round Trip Delay Time. An

experiment is performed, where the round trip delay times for a single and multiple
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Figure 3.7: KVM Delay measurements with varying packet sizes

virtual machines are measured; for increasing packets sizes. These values are compared

with the host system. Next, this experiment is repeated with the packets size fixed,

with increasing the number of packets transmitted per second. The results of these

experiments are presented in Figures 3.7 and 3.8.
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Figure 3.8: KVM Delay measurements with varying number of packets per second

These numbers indicate that the overhead of using the KVM virtual machine, as

compared to the host, is minimal.
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Figure 3.9: KVM Throughput measurements with 2 VM instances - VM1 running
increasing traffic from 3-5 Mbps and VM2 constant at 10 Mbps.

3.3.2 KVM Throughput Measurements

This experiment is performed to observe the sharing of resources between the slices

created by KVM. For this, an experiment is performed where the the first virtual

machine is running traffic that increases in steps from 2 Mbps to 8 Mbps. The second

VM is running at constant rate of 8 Mbps. The packets size is 1024 and the MCS is

64QAM5/6.

The results in Figure 3.9 show that the 2 clients share the link, until saturation

is reached at around 15.5 Mbps. Here, the VM running at a higher rate; drops to

accommodate the needs of the other VM; until the rate required by the each client

goes above half the saturation rate. This is when the 2 VMs get an equal rate of half

the saturation limit. This shows that the use of KVM does not cause any unfairness

amongst multiple clients, while operating in similar channel conditions.
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Chapter 4

Ensuring Fairness in Virtual Networks

The Primary goal of virtualizing the WiMAX BS, has been to enable support for mul-

tiple experiments. Having observed the basic performance of the virtualization in sta-

tionary conditions; in the previous chapter, we now observe the performance of vir-

tualization, with varying channel conditions at the mobile device. These experiments

provide a more realistic scenario,; and help us gauge the sharing of resources amongst

multiple slices. Our observations indicate a need for a control mechanism, to ensure

fairness in resource utilization. This control mechanism is proposed in the form of a

Virtual Network Traffic Shaping technique. The implementation details and the impact

this has on fairness between slices; is presented in this chapter.

4.1 Motivation

To justify the need for an air time fairness mechanism, we report some preliminary

measurements with the WiMAX basestation (BS). We begin with a brief description

of the experiment apparatus followed by a pilot experiment to motivate the study.

Parameter V alue

Channel Rate Adaptive
Operation Mode 802.11e

Frequency 2.59GHz
DL/UL Ratio 35 : 12

Bandwidth 10Mhz
Client Chipset Beceem

Table 4.1: Basestation (BS) settings for all experiments. Explicit change in parameters
are as mentioned in the experiments.
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4.1.1 Hardware Setup

All experiments are performed on a Profile A WiMAX BS from NEC Corp. deployed

at the Rutgers University, WINLAB campus. The BS is capable of up to 8 modulation

and coding schemes and implements two mechanisms for downlink rate adaptation.

Link adaptation is done at an interval of 200frames, which can be changed. BS settings

used for all experiments unless mentioned otherwise are as shown in Figure 4.1.

To study the impact of varying channel conditions, on the performance of mobile

clients; an experimental setup comprising 2 clients; 1 stationary and 1 mobile is chosen.

The channel conditions for the mobile client is varied over a given time frame, by walking

on a path within the Winlab Campus is chosen. This path, which takes around 100-120

seconds to complete, with average walking speeds, shows a variation in Received Signal

Strength (RSSI) from -50 to -75 dBm and a variation in CINR from 19 to 31 dB. This

path is the same as the one showing in Figure 2.8, presented in Chapter 2.

The stationary Client is operating in optimal channel conditions with an RSSI of

-50 and CINR at 31. These channel conditions allow the stationary client to operate at

64 QAM5/6 MCS throughout the experiment.

Two KVM Virtual Machines(VM 1 and VM 2) are set up. These machines send

a specified type of traffic, to the WiMAX client at a given rate and frame size. The

throughput values are measured at the Client.

4.1.2 Varying Channel Conditions

In our first measurement, we measure baseline performance of the virtualized wimax

system with two slices. The virtual machines VM1 and VM2 are sending traffic to

clients 1 and 2 respectively. Hence the link from each VM to the corresponding client

constitutes of a slice. Client 1 is kept stationary where it has a CINR greater than

28 which allows the basestation to send traffic comfortably at 64QAM5/6. An exper-

imenter walks with the other client (client 2) as per the coverage map shown in the

figure 2.8 . The observed downlink throughput for both the clients is as shown in Fig-

ure 4.1. We observe that as the mobile client reaches areas where the RSSI drops below
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certain threshold, the rate adaptation scheme at the basestation selects a more robust

modulation and coding scheme(MCS). However, in the process the link with the mobile

client ends up consuming a lot more radio resource at the basestation, which in turn

affects the performance of the stationary client.

For simplicity, we will consider the initial problem of equal allocation of basestation

resources to each slice. A conservative approach to this problem is through static

shaping. Assuming that we have some way of knowing about the movement of the

mobile client, we could calculate throughput based on 50% channel time at the slowest

MCS. In this case, the basestation uses 1/2QPSK when link quality deteriorates the

most. Hence we use this information to statically shape the throughput of the slice

with the mobile client. The goal of this shaping mechanism is to limit the offered load

for the slice in such a way, that the slice can use only the allocated share of basestation

resources. The results of an experiment that demonstrates performance with such a

static shaping policy is as shown in Figure 4.2. The measurements show that this

time the throughput of the slice with the stationary node becomes independent as a

virtue of the shaping for the mobile client. Pro-active traffic shaping results in lower

throughput for the mobile client, which helps prevent the saturation of the basestation

and eliminates coupling between slice performances.

No shaping gives better aggregate throughput, and static shaping gives us better

fairness with significantly lesser utilization. Based on our measurements in this section,

we conclude the need for a scheme to adaptively control slice throughput to ensure

repeatability across experiments.

The above plots shows an improved performance for the stationary client. This

is because, limiting the mobile client’s throughput, ensures that it does not hog the

resources, even under adverse conditions. The main drawback of this scheme is that it

assumes that the mobile client is operating in bad channel conditions at all times and

hence results in extremely low channel utlisation.
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Figure 4.1: Mobility experiment - no shaping

4.1.3 Need for control mechanism

The above two subsections presented the results of two experiments, one in which there

is no shaping and the other in which the mobile client is shaped dynamically. The

first experiment shows a very close coupling between the operation of the clients, even

though they are operating in different channel conditions. The second experiment limits

the coupling effect, but results in low channel utlisation.

From the above results, we conclude the need for a scheme to adaptively control

slice throughput to ensure repeatability across experiments. It is also important to

ensure that the amount of BS resources that are being used by each slice, remains as

even as possible. This mechanism is proposed in the next section.

4.2 Virtual Network Traffic Shaping (VNTS) technique

In the previous section, we evaluated the results of mobility in experiments in the

virtualized scenario. These results indicated a need for an adaptive control mechanism,

that can dynamically make decisions, based on the channel conditions that the client

is operating in, at that point of time. In this section, we propose a traffic shaping
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Figure 4.2: Mobility experiment - Static shaping performance.

technique called VNTS, that tries to achieve the goal of ensuring fairness and reducing

coupling; between the clients.

4.2.1 VNTS Architecture

In order to implement the VNTS technique, we propose to run the control mechanism

from the Application Service Network gateway (ASN −GW ). The ASN-GW will have

a VNTS Controller running, that will query the BS and make shaping decisions, based

on the current channel conditions. These decisions will be implemented by the VNTS

Engine, running on an external machine. This machine will have an implantation of

KVM, that provides multiple VMs,which act as multiple containers providing access to

the Base Station. Each container will map to one WiMAX client and traffic destined for

the client, will pass through the host machine. This machine will capture the outgoing

packets and shape them according to the decisions sent by the VNTS Controller.

A diagram showing the details of the architecture is presented in Figure. 4.3.

The different modules of the VNTS technique; the VNTS Controller and the VNTS

engine are explained in the following two sections.
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Modulation Coding Rate (kbps)

64QAM 5/6 16100
64QAM 3/4 14500
64QAM 2/3 13800
64QAM 1/2 10700
16QAM 3/4 10700
16QAM 1/2 7180
QPSK 3/4 5390
QPSK 1/2 3580

Table 4.2: Baseline shaping rates used for deriving shaping rates for individual clients.
Observed rates for different modulation and coding schemes are based on results from
experiments.

4.2.2 VNTS Engine

The control parameter for VNTS is downlink throughput. The shaping of the downlink

throughput is implemented in the VNTS Engine. This shaping is implemented, based

on decisions from the VNTS Controller.

This VNTS Engine is responsible for-

1. Separating VM traffic based on a slice identifiers. We are currently using MAC

identifiers of virtual machine interfaces as the slice identifiers.

2. Routing and shaping all policies to and from the virtual machines.

3. Providing element handlers that allow dynamic control of virtual machine traffic

through an external control mechanism.

The VNTS Engine is implemented using Click Modular Router [27]. A simple block

diagram of the VNTS functions is provided in 4.4. The details of this implementation,

along with an overview of Click ; are provided in Appendix A.

4.2.3 VNTS Controller

The VNTS controller has to determine and set slice throughput on the fly, by considering

current operating conditions. Isolation between slices is compromised when the WiMAX

basestation runs out of resource blocks and the slice with a poor link, eats into a slice
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Figure 4.3: VNTS architectural diagram

with a better link. Our algorithm alleviates this condition by limiting the number of

resource blocks used by each slice. The controller is based on our observation that the

number of resource blocks used per slice at the WiMAX BS are directly proportional

to the offered load per slice in terms of channel time required per second. Hence the

end goal of our VNTS controller is to detect saturation, and limit the offered load (in

Mbps) per slice in such a way that channel time required per second for every slice

scales in proportion to the weight assigned to that slice.

The complete algorithm is as shown in Algorithm 1. As shown, we determine the

rate at which a client is receiving downlink data by sending SNMP -GET queries to the

basestation. The current rate adaptation algorithms on the WiMAX BS change MCS

every 200 frames. Hence, there is a good chance that the MCS received from the SNMP

query varies from the SNMP used for the batch of frames for which shaping is done.

Averaging the MCS bit rate obtained for every 200 frames would provide a solution

to this problem, but this would demand a large amount of control overhead and make

it infeasible with current latencies for SNMP call completion. Instead, we observe that
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Figure 4.4: VNTS engine block diagram

as long as the channel does not change a lot over our control loop of 1sec, we will be

able to get an MCS bit rate estimation that is close to the actual MCS used by the

BS. Based on this idea, the control algorithm scales the saturation throughput for slices

in proportion to their weights. The Set() function is used to remotely set throughput

limit for each virtual machine. This loop is executed every second, to achieve repeated

control. The sleep duration for the loop can eventually be made adaptive based on

observed link conditions.

4.3 Evaluation

In this section we evaluate the baseline performance of the VNTS architecture. Various

experiments are conducted and the fairness and aggregate throughput is observed.

4.3.1 Metrics

In our evaluations, we modify and use the Jain fairness index [28] for evaluating weighted

fairness across flows. Let the throughput observed for a slice at the client i be given

by Ti, bit rate achieved with the current modulation and coding scheme for the slice i
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Input: MCS Bit Rate ∀iAi, Weight per slice ∀iWi, Number of clients N
Output: Shaping rate per slice ∀iγi

while True do1

if AvailableBSResource < Threshold then2

foreach Slice i do3

SNMPGet(Ai)4

γi = Ai × Wi5

Set(γi)6

end7

end8

sleep(1)9

end10

Algorithm 1: Algorithm for adaptive virtual network traffic shaping.

be given by Ai, and the number of concurrent slices by N . In this case if we consider

an equal resource usage policy, a saturated channel, and the fairness index I can be

determined across all flows at any instant of time as-

φi =
Ti

Ai

(4.1)

I =
(
∑N

i=1
φi)

2

N ×
∑N

i=1 φ2

i

(4.2)

Fraction of channel time occupied by each slice i is calculated in φi. The Jain fairness

index (I) determines the variation in channel utilization across slices. To measure worst

- case performance, our experiments will show the minimum value of this index for

different scenarios.

Another metric used in our measurement is defined as the coupling coefficient. The

coupling coefficient is used to measure the performance impact of the mobile slice on

throughput obtained by the stationary client. The coefficient C is measured as-

C = (T − T fix)/T (4.3)

T fix is the average value of throughput measured across both clients, when both of

them are stationary. T denote the average throughput of the stationary client over one

second, with the other client being mobile. The smaller the coupling coefficient, lesser

the coupling between slices and vice versa.
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In our measurements we focus on improving the worst case performance. Hence

we will plot the maximum value of the coupling index seen over the duration of the

experiments in all measurements.

4.3.2 Baseline Adaptive Shaping

In this section we evaluate the baseline performance of the VNTS architecture. Exper-

imental setup is the same as that mentioned in the motivation. The VNTS shaping

engine and controller are running at all times. Results from the experiment are as

shown in the Figure 4.5. The results show that even as the channel for the mobile

client deteriorates, the adaptive scheme is able to appropriately limit the basestation

utilization by the mobile node’s slice thereby preventing any performance coupling with

the static node’s slice.
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Figure 4.5: Baseline performance of an adaptive shaping scheme under mobility.
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4.3.3 Varying Policies

Performance obtained with the adaptive shaping mechanism is also dependent on the

conservativeness of the shaping algorithm. Shaping resource utilization to more con-

servative values will enable better performance isolation between slices. However, this

will also lead to a lesser net utilization of the available resources.
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Figure 4.6: Various shaping policies - Minimum Fairness Index.

In our experiment we will vary the conservativeness of our adaptive mapping algo-

rithm. We measure performances by shaping at 80%, 90% and 100% of the prescribed

channel rates for each of the modulation and coding schemes. We repeat the same

experiment as in the previous section, by having a mobile client and stationary client

and measuring throughput and resource usage across the experiment.

Figure 4.6 and figure 4.7 plot the minimum and average value of the Fairness index

for each slice based on the basestation resources promised to each slice as a function

of aggregate load on the system. When we are not doing any shaping the fairness

index hits a low of 0.67. However, with adaptive shaping at 80%, 90% and 100% we

see the index ranging from 0.84 − −0.97 while being independent of the system load.
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Figure 4.7: Various shaping policies - Average Fairness Index.

We also see an improvement of up to 30% for certain system loads and shaping policy

combinations. Since we do not see a significant difference in fairness performance across

policies we use aggregate throughput as a metric for deciding the best shaping rates.

Figures 4.9 and 4.10 plot the worst case and average coupling factors. It is seen

that the coupling factor is reduced from 0.68 to around 0.1 – 0.2 using the VNTS

shaping.

Figure 4.8 shows the total aggregate throughput of the slices as a function of aggre-

gate offered load. It is seen that the aggregate throughput across all system loads is the

best when we use the prescribed channel rates without making the policy conservative.

This makes the default rates a favored pick for all the remaining experiments.

4.3.4 Vehicular Measurements

To further validate the working of our VNTS system, we perform experiments with the

mobile client placed in a vehicle. Experiment setup is same as that in the previous

sections, with the exception that performance is determined only under saturation con-

ditions, where each slice has an offered load of 10Mbps. Outdoor results are measured
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Figure 4.8: Various shaping policies - Observed aggregate link throughput.

for two topologies (Topo-2,3 ) as shown in Figure 4.11.

Average velocity of the vehicle is maintained greater than 10Mph for both Topo-

2,3. These results are compared with those obtained from the indoor experiment Topo-1

topology shown in Figure 2.8.

Figure 4.12 shows the results with our modified fairness index for the three exper-

iment setups. We observe that in all the cases, we obtain better fairness using our

VNTS mechanism. We observe that while the average values of the fairness index show

small improvements across the three topologies, the worst case performance (minimum

fairness points) is significantly improved with the use of our shaping mechanism. Fig-

ure 4.13 plots the performance of the coupling factor for the three topologies. Coupling

factor values are shown for both average and worst case conditions. In the average

case, we observe that the coupling reduces for all topologies with the use of our VNTS

mechanism. The VNTS mechanism also improves the worst case performance for all

topologies with reduction in coupling of up to 40% in some cases. Thus, using our

VNTS mechanism, we are able to significantly improve fairness across slices even when
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Figure 4.9: Various shaping policies - Maximum Coupling Coefficient.

one of the nodes is moved in a vehicle.

4.3.5 Varying Frame Sizes

From the evaluation in the previous experiments we see that fairness index improves

significantly after using our adaptive shaping mechanism. We will now evaluate the

performance of our system in the presence of varying frame sizes for slices. Frame sizes

are varied simultaneously for both slices. Initially, Frame sizes are varied as 128, 256, 512

and 1024Bytes. Results from the experiment are plotted in Figure 4.14, Figure 4.15

and Figure 4.16 as a function of increasing aggregate offered load.

The minimum value of the Jain fairness index varies from 0.77 − 0.87. However,

we do not see a pattern which hints towards a correlation with frame size. Also, the

relatively high variance in the index value during the course of an experiment rules

out any correlation between frame size and observed fairness. Figure 4.16 shows that

the coupling factor is limited to below 0.3, for all packet sizes. Observation from

Figure 4.15 shows that the aggregate throughput does not vary much with frame sizes
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Figure 4.10: Various shaping policies - Average Coupling Coefficient.

until the system load reaches saturation. An aggregate offered load of 14Mbps is used to

measure performance on the boundary of the saturation region, while a load of 20Mbps

measures performance in a fully saturated system. These measurements show that our

VNTS mechanism is able to provide robust performance even in the presence of varying

frame sizes.

We also consider the impact of varying frame sizes across slices. In this experiment

we have one slice running traffic with a constant frame size of 128bytes, while the traffic

on the other slice is varied as 128, 256, 512, and 1024. Results of these experiments

are as shown in the Figure 4.17, Figure 4.18 and Figure 4.19 . The results show that

the performance achieved is similar to that in the previous experiments and the VNTS

mechanism works irrespective of frame sizes used across flows.

4.3.6 Varying Flow Weights

We will now evaluate the performance of the VNTS architecture with varying flow

weights. We vary the weights of downlink resources given to the two slices in the
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Figure 4.11: Map indicating topologies used for measurement

following proportion- 1:1, 2:1, 5:1, and 10:1. The results are plotted for different values

of aggregate load on the system and are as shown in the Figure 4.23, Figure 4.24 and

Figure 4.25. Each client loads the system equally during these tests. The Figure 4.23

shows that the fairness index is maintained above 0.88 across different weights. We

also see an improvement in the aggregate throughput as the offered load increases. The

coupling coefficient is also maintained below 0.26 for all weights.
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Figure 4.12: Fairness Index for topologies used in Vehicular Measurements
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Figure 4.13: Coupling Coefficient for topologies used in Vehicular Measurements
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Figure 4.14: Minimum value of Fairness Index for different frame sizes.
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Figure 4.15: Observed aggregate link throughput for different frame sizes.
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Figure 4.16: Maximum value of Coupling Coefficient for different frame sizes.
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Figure 4.17: Minimum value of Fairness Index for different relative frame sizes.
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Figure 4.18: Observed aggregate link throughput for different relative frame sizes.
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Figure 4.19: Maximum value of Coupling Coefficient for different relative frame sizes.
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Figure 4.20: Minimum value of Fairness Index for different slice weight ratios.
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Figure 4.21: Observed aggregate link throughput for different slice weight ratios.
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Figure 4.22: Maximum value of Coupling Coefficient for different relative frame sizes.

4 10 14 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Aggregate Load (Mbps)

M
in

im
um

 −
 F

ai
rn

es
s 

In
de

x

 

 

Resource Ratio − 1:1
Resource Ratio − 1:2
Resource Ratio − 1:5
Resource Ratio − 1:10

Figure 4.23: Minimum value of Fairness Index for different slice weight ratios.
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Figure 4.24: Observed aggregate link throughput for different slice weight ratios.
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Figure 4.25: Maximum value of Coupling Coefficient for different relative frame sizes.
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Chapter 5

Conclusions and Future Work

This work proposes a technique to ensure fairness in Virtualized WiMAX scenarios.

A experimental deployment of a WiMAX BS is used to perform baseline performance

evaluation of this Base Station with multiple mobile end user WiMAX devices. This

provides a benchmark for the performance of the BS under different traffic loads and

channel conditions. We use this understanding of the practical limits of the base station

in terms of total network capacity, variations due to signal quality, etc.; to create virtual

slices of the WiMAX BS. This is done by creating virtual guests, using the Kernel Based

Virtual Machine (KVM) and mapping the slice flows to actual WiMAX service flows.

Further evaluation of the Virtualized Base Station indicates the potential for un-

fairness in channel access time of the slices in varying channel conditions. Maintaining

fairness between slices is an important requirement and to achieve this; we propose a

VNTS that uses a combination of scheduling and traffic shaping to provide the appro-

priate slice guarantees. We develop an algorithm, through which we query the BS, and

obtain a feedback of the current channel conditions for each MS. This information is then

used to determine the downlink data transfer rate that would ensure fairness amongst

slices. The downlink date rate for each slice is shaped dynamically, by VNTS Engine,

implanted using Click Modular Router. The VNTS Controller auto-reconfigures itself

and imposes fairness at preconfigured time intervals.

We perform experiments to observe a fairness index and channel utilization using

various schemes and use this data to select an optimal rate to shape at. Using these

rates, we perform experiments to observe the effectiveness of the VNTS technique under

different traffic types and varying loads. The results of these experiments indicate that

the proposed technique works well with various usage scenarios considered. There
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was a significant coupling observed between the performance of clients under different

channel conditions, and the proposed scheme helps mitigate this effect; while ensuring

reasonable channel utilization.

Though the VNTS mechanism is efficient in enforcing policies under a wide range

of network conditions. Absence of control metrics makes it difficult to ensure fairness

in an efficient manner under certain situations. Assume a situation where VNTS is

managing two slices A and B with current slice utilization of 25% and 75% while their

desired allocation is 75% and 25% respectively. In such a case as long as the channel

is not saturated (total resource utilization is below 100%), we would not like to impose

any throughput restriction. In case we reach saturation, we would like to ideally like

to reduce the utilization of the offending slice B (since it is not supposed to use 75%)

a little so that the system stays below saturation instead of pruning slice B to 25% at

once. Such a mechanism will ensure fairness while allowing better channel utilization.

The VNTS mechanism does not allow such anadaptive enforcement for the lack of

efficient tools to determine current flow performance per slice (either in resource blocks

at the BS or end to end throughput).

Further work needs to be done to implement a scenario, where the VNTS technique

can be extended for each slice using multiple mobile clients at the same time. The

VNTS Engine should provide for dynamically adding processing blocks, as there are

new clients mapped to a particular slice. Click provides a technique called hotswapping

for this. A mechanism needs to be developed, through which the Click configuration

script can be generated and swapped on the fly.

The current VNTS technique needs to be further tested with a mobile user,in a real

deployment scenario; with varying channel conditions. The results that are obtained

with this deployment can provide a valuable feedback needed for fine tuning the system

to cope in all scenarios.
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Appendix A

Implementation of VNTS Engine in Click

The VNTS Engine is implemented using Click Modular Router [27] In order to un-

derstand the working of the VNTS Engine, a basic understanding of Click terminology

and functions is essential.

A.1 Click Overview

The Click Modular Router was proposed by Eddie Kohler in his Ph.D. thesis [29]. Click

provides a software framework for building completely flexible and configurable software

routers. The basic building block of a Click router is an ”element”. An element can

be thought of as a node in a graph, where the packets flow from one element to the

other along the edges of the graph. This representation of router as a series of packet

manipulations provides an easy visualization of different router functions and makes

the router easily reconfigurable.

Each element is implemented as a C++ object and a connection is a pointer to this

object. Passing a packet along a connection in Click has the overhead of a single virtual

method invocation [27]. Click can run as a kernel module or as a user level tool.

Now we explain some of the terms and techniques used in the implementation of

Click Modular Router-

1. Element

An element is a module to process and manipulate packets in a router. It is possi-

ble for an element to have multiple input and output ports. Passing a packet from

the input port to the right port, after performing some function on it, comprised

the processing of a packet in an element. Each element has a configuration string;
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and this serves as a parameter to change the behavior of that particular element.

There is an exhaustive list of elements that is already present and can be readily

used within a configuration file. The authors also provide the ability to create

and use one’s own element to perform specific user defined functions.

Figure A.1 illustrates a simple IP classifier element. This element has one input

port, which is the point of entry for packets entering this element. The element

class for this is ”IP Classifier” and the configuration string specifies IP address

on the basis of which the classification of packets needs to be done, and if the

IP address in question is the source IP address or the destination IP address.

This element has 2 output ports. The packets that are destined for the given IP

address are sent on output 1 and the rest of the packets are sent out on output 2.

IPClassifier(192.166.1.10, -)

Figure A.1: A Simple IPClassifier Element

2. Packet

A packet is a stream of bytes that are sent through the router. Click provides the

ability to generate these packets through elements like ”InfiniteSource” etc. One

also has the option to inspect, strip and mark particular bytes within the packet.

This facility allows us to annotate certain type of packets, and process them at a

later point of time, within the configuration.

3. Connections

In order to create a complete router, multiple click elements need to be connected

to each other. Click provides for connections through ports. The ports in an

element can be any one of the following three types-

(a) Push Port- Packets are pushed out on these ports. The connected element

does not need to request for the packet to be delivered to it. This is good

for arrivals and events in general.
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(b) Pull Port- Packets need to be pulled out from these ports. The connected

downstream elements needs to ask for the packets, and only then the packets

are sent out. This type of port is good for polling and scheduling.

(c) Agnostic Port- This port can either be a push port or a pull port.

The connections of the elements need to be done in such a way that a push output

port is connected to a push input port and the same hold for pull. There can

be occasions where it might be necessary to convert a push to pull or a pull to

push. Click provides elements like Queue and Unqueue which can be used for

these operations.

4. Element Handlers

Click also provides the facility to actively read or write configuration strings for

the various elements, using element handlers. The Click element documentation

specifies if a handle is present for that particular element and also the type of han-

dle that is available. It is possible to open a control socket for a Click configuration

in user level, to address the element handler for an element. The control socket

can listen on a TCP port or a UNIX domain socket. Through this, Click listens

for commands that are sent it. This makes it convenient to change configurations

of routers, while it is being executed.

Sometimes it might be necessary to add new elements to click configurations,

while it is being executed. This can be done using Hot swapping. This refers

to changing the Click router configuration completely. When specified with the

right option, Click provides a writable hotconfig handler, which can be used to

accomplish the above mentioned task.

5. Example Configuration

We can now look at a simple example and see the various terms explained above,

in an actual click configuration.

Figure A.2 specifies a simple Click configuration, in which the packets are read

from the given interface (eth1 in our case), and are forwarded to a Classifier. The
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FromDevice(eth1)

Classifier(12,0800 , 12/0806, -)

Print(ARP Packets) Print(IP Packets) Print(Rest)

ToDevice(eth1)

Figure A.2: Click example configuration

FromDevice element that reads the packets and sends them out is an example of

push processing. The Classifier element has a single input and 3 outputs. Packets

are classified into ARP Packets, IP Packets and Rest. The 12 in the Classifier

specifies the offset at which the Classifier searches for a matching entry. 0800 at

offset 12 signifies IP packets and 0806 at offset 12 specifies ARP packets. The -

specifies that any packets that do not match the above criteria are forwarded to

this port. Packets from this element are forwarded to a 3 different Print elements.

These element prints the packet to display, along with the specified label. From

here, the packets are forwarded to a common queue, which stores all the packets,

before returning them to the original interface using a ToDevice.

A.2 VNTS Engine Configuration

The control parameter for the Virtual Network Traffic Shaper (VNTS) is downlink

throughput and to manipulate downlink throughput rates, for each flow; in order to
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ensure fairness of channel access time; we choose to use Click Modular Router. As

explained earlier, Click provides a modular form of implementing a software router.

Our Primary requirement here is to listen for any packets that come from the KVM

guest; and are headed for one of the WiMAX Clients, process those packets and send

them back to the original interface.

Any packet that is destined for any Client, and is originating from a KVM guest,

needs to pass through the external host machine, which forwards it to the ASN-GW,

which intern forwards it to the BS; through which it reaches the Client eventually.

Considering the given scenario, all the packets pass through eth1 interface on the Host

Machine and this is where I decide to capture the packets to process.

1. Design Overview

One of the primary differences of running Click in User Mode, as opposed to

Kernel Mode; is that, by using the FromDevice element, only a copy of the packets

is forwarded for processing and the original packets go through anyways. Hence,

any processing that might be done on these packets will not be reflected on the

network. A work around for this is to use the FromHost element.

The FromHost element captures any packets originating from the Linux Kernel

and pushes them on output 0. This element creates a tunnel device, which we

call fake0. This interface routes packets that are meant for the real Ethernet

device via FromHost, providing us with the required packets, that we can process

according to our requirements and forward it to the real Ethernet device using

the ToDevice element; from which they get forwarded to their destination.

A similar mechanism is provided for incoming packets via the element ToHost.

Here packets are read from the real Ethernet device using the FromDevice element.

These packets are then processed and the headers are changes accordingly, after

which they are forwarded to the ordinary Linux protocol stack.

The ”‘fake”’ device emulates all the properties of a real Ethernet device, while

providing us access to the original packets that are originating from and headed

back to the Linux kernel. The fake device can have the same or a different IP
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address as the real Ethernet device. If it uses a different IP address then the

packet header needs to be changed such that outgoing packets appear as if they

are originating from the real device and also the incoming packets destination

needs to be changed to the fake device, before we return the packets to the Linux

kernel. The MAC header for the fake device can either be specified by the user

or a default value is chosen automatically.

The Click configuration can be divided into three parts, the Input Area, the

Processing Area and the Output Area. In the following three subsections, we

examine each part in greater detail.

2. The Input Area

FromDevce(eth1) FromHost(fake)

CheckIPHeader(14)

Classifier(12,0806 20/001, 12/0806 20/002, 12/0800)Classifier(12,0800 , 12/0806, -)

Tee ARPResponder(0/0 1:1:1:1:1:1) Strip(14)

Output Area

ARPQuerier(eth1)

Processing Area

Figure A.3: VNTS Engine input area

The input area,as shown in figure A.3 can be further divided into two parts -

packets that enter from the Internet, through the FromDevice; and packets that

are pulled from the Kernel, via FromHost. Packets entering from the FromHost

device are put through a classifier; which separates the IP packets, ARP Queries

and ARP replies. The ARP replies that are seen here are usually in response

to the queries that are sent by external devices and are directly forwarded to

the ToDevice. The ARP requests that are coming in on this device are sent by
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the kernel and we respond to these queries using a fake responder that forces

the kernel to give us frames with 1:1:1:1:1:1 destination and 0:1:2:3:4:5 source

(default for fake0 device). The rest of the packets are IP packets and these have

the MAC header which contains all the fake data. This needs to be stripped.

After stripping this; the packets are forwarded for further processing.

The packets that are coming in through the FromDevice are also classified using a

Classifier to separate out the ARP packets from the IP packets. The ARP packets

(requests and replies) are duplicated using a Tee element and one copy is sent to

the ARP Querier that is waiting for the replies to come if from the internet for the

device it needs to forward to and the other copy to the host. The IP Packets that

come in are out through a basic CheckIPHeader element to validate the packets,

and then forwarded for further processing.

3. The Processing Area

MarkIPHeader(14)

IPClassifier(src net fake, -)

StoreIPHeader(14)

FixChecksums

Input Area 1

Strip(14)

StoreIPAddress(fake)

FixChecksums

SetIPAddress(next hop)

ArpQuerier(eth1)

IPClassifier(dst 1P, dst 2 IP , -)

BandwidthRatedSplitter(dst 1 rate) BandwidthRatedSplitter(dst 1 rate)

Discard Discard

Input Area 2

Output Area

Figure A.4: VNTS Engine processing area
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The packets that enter the router are Classified at the Input area are then for-

warded to the Processing Area(figure A.4, if they need further processing. This is

where we do the meat of the work in the router. As before, there are two streams

of packets that are to be processed; one originating from the Kernel and the other

destined for the Kernel.

The packets that are coming from the Kernel are downlink packets in our scenario

and this is where we need to do the required shaping. The packets, after being

stripped of the fake MAC header need to store the real Ethernet header as the

source address and this is done using the StoreIPAddress element. These packets

now need to be checked if the checksum of these packets is as intended. For this,

I write an element that classifies the packets according to the type of data that

they contain and fixes the checksum accordingly. Now, we need to find out how

to get to the destination address and for this ARP Query needs to be sent to the

destination. This is done using the element ”ARPQuerier”. Packets arriving on

input 0 of the ARPQuerier need to be IP packets with their annotation set. If an

Ethernet address is already known for the destination, the IP packet is wrapped

in an Ethernet header and sent to output 0. Otherwise the IP packet is saved

and an ARP query is sent instead. If an ARP response arrives on input 1 for an

IP address that we need, the mapping is recorded and any saved IP packets are

sent.

The Packets from here are forwarded to an IPClassifier. Here, we classify pack-

ets based on the destination IP address. Since we have a one to one mapping

from a virtual container to a WiMAX Client, shaping traffic destined for the

client is equivalent to shaping traffic from the Virtual Machine. Packets meant

for each client are sent to an individual processing area.This area comprises of a

BandwidthRatedSplitter and sink to discard the unwanted packets. The Band-

withRatedSplitter is the main control factor for the packets that we capture.

This element splits the packets into two streams. The configuration string spec-

ifies the maximum rate that the packets can be given out on output 0. This

output 0 provides the packets at the rate which we desire. The remaining packets
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are discarded using a Discard element at output 1. The BandwithRatedSplitter

a read/wire element handler for the configuration string, through which we can

query or set the rate at which it is unqueing elements at a given time. Each

slice has a corresponding BandwidthRatedSplitter and calls are made to the spe-

cific element handler, based on the calculations made to asses channel time. The

packets from each of these ”shapers” are sent towards the output area.

The other part of the processing area deals with packets that are coming in from

the network and destined for the kernel. After verifying the IP Header, of the

packets, we mark the packets and set their annotation to that of an IP packet.

From here, the packets are forwarded to an IPClassifier, that classifies packets

based on if they have originated from the fake device or not. This is needed to

identify the packets that were intended to be delivered to the fake device; and

if the fake device is on a different IP, than the host; then the destination IP of

the packets need to be changed to that of the fake device and then they can be

forwarded to the output area. The rest of the packets are forwarded to the output

area directly. The processes of readying the packets for the fake device involves

storing the IP address of the fake device as the destination, fixing the required

checksums and eventually sending the packets towards the output area.

4. Output Area

ToDevice(eth1)

ToHost(fake)

Processing Area Input Area

Figure A.5: VNTS Engine output area

The output area of this configuration(figure A.5, like the rest of the parts; contains
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two parts. The ToDevice output that is used to send packets out on the network

and the ToHost output that is used to send packets to the Kernel. The IP packets

that are originating from the kernel, after being shaped, need to be sent out. Since

there are multiple processing parts that try to send packets out to the real device,

the real device needs to be preceded by a queue. This queue ensures that the

packets are lined up and that the real Ethernet device can take the packets at a

rate that is best suited to it. The ToHost part of the output area forwards packets

to the Kernel and therefore, even if there are multiple processes that are sending

packets to the host, a queue element need not be present; since the Kernel can

take packets at any rate.

FromDevice(eth1) FromHost(fake)

CheckIPHeader(14)

MarkIPHeader(14)

IPClassifier(src net fake, -)

StoreIPHeader(14)

Classifier(12,0800, 12/0806 20/002, 12/0806 20/001)Classifier(12,0800 , 12/0806, -)

Tee ARPResponder(0/0 1:1:1:1:1:1) Strip(14)

StoreIPAddress(fake)

FixChecksums

SetIPAddress(next hop)

ToDevice(eth1)

ArpQuerier(eth1)

IPClassifier(dst 1P, dst 2 IP , -)

BandwidthRatedSplitter(dst 1 rate) BandwidthRatedSplitter(dst 1 rate)

FixChecksums

ToHost(fake)

Discard Discard

Figure A.6: VNTS Engine configuration diagram

5. Challenges Faced
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The main challenge with using click in User mode is that by using a simple

FromDevice element, we do not get access to the Kernel packets. This is done

using FromHost. The FromHost element requires one to specify all the aspects of

routing, including handling ARP requests and responses. This needs to be config-

ured carefully, to ensure that the right device gets the ARP query/response. The

shaping aspect of this configuration was initially implemented using the Band-

widthRatedUnqueue element. It was observed that this element had a tendency

to hog CPU utlisation, as soon as it was required to pull packets from a queue at

a specified rate. A work around this problem was found by the use of the Band-

widthRatedSplitter element. The unwanted packets were discarded explicitly;

and this resulted in the CPU utlisation being restored to normal.
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