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ABSTRACT OF THE DISSERTATION 

Monitoring and Interpreting Multistage and Multicategory Processes 

By RODRIGO IGNACIO DURAN LOPEZ 

Dissertation Director: 

Dr. Susan L. Albin 

 

Consider processes where a transaction moves through stages and falls within a 

category at each stage. For example, in a tax complaint process, the stages are the steps 

taxpayers follow to resolve a property tax dispute from initial complaint through final 

resolution. The primary motivation here is customer service, although the transactions 

could be related to manufacturing applications as well. 

The main contribution here is a method to monitor the fractions and numbers of 

transactions within and across stages of multistage and multicategory processes, a 

problem that has not been formulated before in the literature. The proposed method not 

only signals an out-of-control situation, it identifies accurately and easily which stages 

and categories are causing the disturbance, providing interpretations within and across 

stages of the process.  

The proposed methodology works as follows: If a multinomial distribution fits the 

number of transactions in each category at every stage, then the process is decomposed 

into single stages that are monitored separately, and finally into independent binary 

substages with two categories. Each binary substage is characterized by a conditional 

probability and monitored with an independent fraction, called a tree fraction. The 

number of tree fractions that are monitored depends on the number of final categories, 

i.e., those that do not split in any further categories, not on the number of stages. 
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Two other contributions, summarized next, address the single stage case. Each is 

useful by itself, and each contributes to the method for the multistage case as well.  

The first is a new two-sided CUSUM Arcsine method to monitor a process with two 

categories. The second is the p-tree method that monitors a multinomial process. The p-

tree method not only signals an out-of-control situation, it identifies accurately which 

categories are causing the problem, in contrast to the widely used method in Marcucci 

(1985).  

Future research would cover monitoring other types of multistage processes in 

service. An application of using probability trees to test and interpret associations in 

contingency tables is envisioned.  
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1 Introduction 

Consider a transaction process that occurs in one or more stages. For example, in a 

tax complaint process the stages are the steps taxpayers follow to resolve a property tax 

dispute from initial complaint through final resolution. The transactions can be related to 

customer service, as in the tax complaint process, or to manufactured products. However, 

the primary interest here is in the customer service area. The work is motivated by the 

previous experience of this student who served as director for the national administration 

of the property tax in Chile, including management responsibilities over the customer 

service systems.  

One goal of the management of a service organization is monitoring the fraction and 

number of transactions that fall into multiple categories at each of multiple stages. Often 

this data is presented to managers in its raw form with some fractions reported. A 

monitoring system would allow the management to identify and respond to unusual 

occurrences and also to introduce improved procedures to make the system operate more 

efficiently by improving training or modifying the IT system or changing staffing.   

The main contribution here is a methodology to monitor the fractions and numbers of 

transactions within and across stages of multistage and multicategory processes, a 

problem that has not been formulated before in the literature. The method not only 

signals when the fractions in the multiples stages and categories have changed 

significantly, it indicates which stages and categories are causing the disturbance 

allowing management to interpret the signal. Further, the method results in the desired 

false alarm rate.  
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Two other contributions in this dissertation address monitoring the fractions in single-

stage processes. These are each useful individually and also contribute to the multistage 

case described above, which is based on decomposing the multiple-stages and categories 

into single-stages that are monitored separately. 

The first single-stage method is proposed for monitoring the fraction in each category 

in a single-stage with two categories - called here a binary process. This new method is 

needed because the well-known p-chart often does not achieve the desired false alarm 

rate even when the sample size is very large and one would expect a good normal 

approximation for the number in each category. The literature does contain other methods 

to overcome the problems with achieving the desired false alarm rate as described in 

Section 2.1. However, these methods require complex steps to calculate the control limits 

including published tables, simulation, or Markov chain analysis. The method for 

monitoring the binary process is in Duran and Albin (2009b), in print at Quality and 

Reliability Engineering International.  

The method developed is the CUSUM Arcsine method in which the data is 

preprocessed using an arcsine normalizing transformation for a binomial distributed 

variable and then monitored with a two-sided CUSUM method. 

The second single-stage method is for monitoring fractions in processes with three or 

more categories - called here a multinomial process. The principal advantage of the 

method developed here, called the p-tree method, is its usefulness as a diagnostic tool. 

The p-tree method monitors both nominal and ordinal categorical data and allows any 

number of categories. This new method is needed because the existing methods are able 

to signal when the fractions among the categories have changed but they do not indicate 
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which ones are problematic, i.e., they cannot help to interpret. The method for monitoring 

a single-stage multicategory process is in Duran and Albin (2009a), in print at IIE 

Transactions.   

The p-tree method developed here transforms a multinomial process with K>2 

categories into a binary probability tree with K-1 independent binary substages, in which 

each substage has two categories. The independence is based on Johnson et al. (1996, p. 

68) and Kemp and Kemp (1987). Each binary substage is monitored with an independent 

control chart for binomial distributed data.  

The p-tree method indicates easily which substages are responsible in case of an out-

of-control signal. Each binary substage could be monitored with the familiar and simple 

to use p-chart based on the binomial distribution. However, the p-chart often does not 

result in the desired false alarm rate. To solve this problem, we propose to monitor each 

binary substage with the proposed CUSUM Arcsine method. 
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1.1 Overview of property tax complaint process 

This work was motivated by the tax complaint process mentioned earlier. The 

property tax assessment process starts when local offices process input data from 

municipalities and deeds offices such as construction permits, lot subdivisions permits, 

occupancy permits, real estate transfers, and taxpayer requests for assessment. An 

assessor evaluates the property. Then the assessment data is sent to computational 

processing to update databases. Legislated fiscal price tables are invoked to determine the 

assessed value. A batch program processes a log of new assessments in order to generate 

and mails notices to the taxpayers. 

A taxpayer with a problem passes through a tax complaint process, which is shown in 

Figure 1.1 as a multistage and multicategory process. There are four stages. Assessment 

notices are sent to the taxpayers and taxpayers split into two categories: the taxpayers 

consult an assessment advisor to discuss whether there is a realistic complaint or do not 

consult. In stage two, among taxpayers who consult, an assessor gives front desk advice 

for the case and the taxpayers split into three categories: the assessor may advise 

taxpayers file an official complaint or not, or that maybe a complaint might be useful. In 

stage three, some taxpayers will file a complaint and others will not file. In stage four, 

filed complaints are investigated and the assessors’ office makes a final resolution that 

falls within one of three categories: the resolution is that the assessment is correct, that it 

is too high or that it is too low. Rafool (2002) contains an overview about this tax in the 

United States, and The New Jersey Property Tax Assessment Study Commission (1986) 

describes the methods and makes recommendations, which are still valid, about the 

administration of this tax in New Jersey. 
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As a whole, the monitoring system can indicate changes in the quality of the 

assessment decisions, the performance of the complaint processes, and even help to 

predict changes in the tax revenues. The assessment process is subject to errors – 

incorrect assessments against the taxpayer or in favor of the taxpayer. Changes in the 

error rate affect each stage in the complaint process. Changes in the tax administration 

responses affect both the front desk and the final resolution stages. Keeping the process 

in control as well as reducing the errors would lead to a more efficient and equitable tax 

system. 
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Figure 1.1. Multistage property tax complaint process as a tree diagram 
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1.2 Additional details about methods proposed 

We now give more details about the three methods proposed. We start with the 

CUSUM Arcsine method for monitoring single-stage processes with two categories. The 

new method achieves the desired false alarm rate for any sample size N and baseline 

probability 0.005<p0<0.995 such that E[N]p0(1-p0)≥3. The N may be constant or Poisson 

distributed. This rule works with combinations of N and p0 in which the normal 

approximation does not hold, and also in combinations in which the normal 

approximation should work but fails as explained next. 

There exist several rules of thumb to predict when the p-chart will achieve the desired 

false alarm rate based on predicting when the normal approximation to the binomial 

works well.  Schader and Schmid (1989) study two well known rules regarding the 

normal approximation to the binomial: rule 1 requires that Np0(1-p0)>9 and rule 2 

requires that 0Np >5 and also N(1-p0)>5. Table 1.1 shows three examples where both 

rules of thumb hold (some by a very wide margin) but the resulting p-charts do not 

achieve the desired false alarm rate, or equivalently the desired in-control average run 

length, ARL0 (which equals the inverse of the false alarm rate for independent samples). 

The reason the p-charts fail is that the normal approximation performs poorly in the tails 

of the binomial distribution, as pointed out by Ryan and Schwertman (1997, p. 66). 

Notice that these sample sizes are very large and we would certainly expect the normal 

approximation to work.   

N p 0

Rule 1            

Np0 (1-p 0 )>9

Rule 2 

Np0 >5 ARL0

200 0.1 18>9 20>5 294
600 0.1 54>9 60>5 441

1000 0.01 10>9 10>5 300  

Table 1.1. Three-sigma p-chart has difficulties achieving desired ARL0 of 370   
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There are existing methods that successfully achieve the desired false alarm rate but 

they are difficult to design because require published tables, simulation, or Markov chain 

analysis. These include binomial-based EWMA chart in Gan (1990), binomial-based 

CUSUM chart in Gan (1993), CUSUM Q-chart and EWMA Q-chart in Quesenberry 

(1995), and binomial based (modified) CUSUM chart in Reynolds and Stoumbos (2000, 

1999). In addition, there exist methods that are easy to design, but these fail to 

consistently achieve the desired false alarm rate. A thorough review of this literature 

appears in Section 2.1. 

We now give more detail about the p-tree method for a single-stage multiple 

categories case. First we show it can be quite difficult to interpret a signal in a 

multinomial process that is out of control. Marcucci (1985) gives data where samples of 

finished bricks are classified into conforming, nonconforming type A, and nonconforming 

type B categories with baseline probabilities 0.95, 0.03, and 0.02 respectively. Table 1.2 

shows simulated data of two significantly out-of-control samples.  

 Fraction 
 conforming nonconforming 

A 
nonconforming 

B 
Baseline .950 .030 .020 
Sample 1 .960 .014 .026 
Sample 2 .932 .034 .034 

Table 1.2.  Two out-of-control samples of finished bricks 

Table 1.2 demonstrates that is difficult to interpret the results. For sample 1, is the 

out-of-control condition caused by an increase in the fraction of conforming bricks or is it 

caused by a decrease in the fraction of nonconforming type A bricks? For sample 2, does 

the decrease in the fraction of conforming bricks cause the out-of-control condition or is 

it a problem with the ratio of type A versus type B nonconforming bricks?  
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The reason because it is difficult to interpret which category is causing the out-of-

control is that as one count increases then the sum of the other two decreases, and vice-

versa; i.e., the numbers are negatively correlated. A multinomial process can be 

monitored with a control chart in Marcucci (1985), which has been widely used. 

Marcucci’s method plots a Pearson statistic, and signals when the current sample 

significantly differs from baseline. However, Marcucci’s method does not indicate which 

categories are causing the disturbance. 

For the bricks problem, Marcucci (1985) suggests interpretation as follows: discard 

one category and construct a modified p-chart based on the remaining two. However, it is 

not clear which category should be discarded and Marcucci (1985, p. 89) suggests that 

this method is restricted to at most three categories.  

In contrast, the p-tree method developed here transforms the multinomial process into 

several independent binary substages and this assists in interpreting where the problem is. 

For the Marcucci (1985) bricks example, a probability tree with two binary substages is 

constructed to represent the three categories. The first substage monitors the fraction of 

conforming bricks out of the total sample. The second substage monitors the fraction of 

nonconforming type A bricks over the nonconforming bricks. The fractions monitored in 

the two substages are independent.  We call these two independent fractions the “tree 

fractions”.   

 The p-tree method helps answer our questions about what caused the out-of-control 

signals for the samples in Table 1.2. For sample 1, the fraction conforming brick is 

consistent with baseline, but among nonconforming, type A is underrepresented. For 
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sample 2, the fraction conforming is low compared to baseline and the fraction of type A 

among nonconforming is consistent with baseline.  

Simulation studies in Section 3.3 compare the p-tree method to the Marcucci method. 

The p-tree method gives accurate interpretations to determine which categories are 

responsible for the signal, something that the Marcucci cannot do at all. Also, the 

sensitivity is comparable to that of the Marcucci method.  

The method allows the user to order the categories according to their monitoring 

importance. This is relevant because the way in which we order the categories to 

transform the single-stage multinomial process into a binary probability tree affects the 

monitoring capability. Those categories at earlier substages will have larger samples 

sizes, resulting in better sensitivities and diagnosis accuracies than later substages.  

We now discuss the principal contribution of this thesis, the method to monitor and 

interpret the fractions in multiple categories across multiple stages. Here are the basic 

steps of the methodology: (1) Construct a multinomial probability tree for the process 

(for an example, see Figure 1.1) such that there is only one path to reach each category 

and all splitting of categories are identified. (2) Apply the p-tree method to each splitting 

to convert the multinomial probability tree into a binary probability tree. (3) Identify the 

binary substages and the “tree fractions”, which are the independent fractions that we will 

actually monitor.  (4) Construct CUSUM Arcsine control charts for each tree fraction.  

To facilitate the software implementation of the multi-stage multi-category 

monitoring method, we express the procedure in matrix notation. This is especially 

critical for larger systems since it is difficult to track, maintain, and update all the data. In 

Chapter 5, we start with a business process diagram of a call center described in 
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Mandelbaum et al. (2001) and show the equivalent multinomial probability tree, the 

transformed binary probability tree, and the control charts. The case study also illustrates 

the matrix representation of the method. 

In Chapter 6 future research is described. This includes monitoring multistage 

multicategory processes with multinomial assumptions that do not hold. An example of 

an important application of this would be monitoring routing matrices in queuing 

systems. Another area of future work is in forecasting and in testing and interpreting 

associations in contingency tables using trees. 

The rest of this dissertation is organized as follows: Chapter 2 contains a literature 

review; Chapter 3 presents monitoring single-stage processes with multiple categories; 

Chapter 4 presents monitoring a fraction with easy and reliable settings of the false alarm 

rate; Chapter 5 addresses monitoring multistage and multicategory processes; Chapter 6 

describes future research, and Chapter 7 concludes. 
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2 Literature review 

This Chapter reviews the literature related to the following issues: 

− Monitoring a fraction in binomial distributed data 

− Monitoring processes with multiple categories 

− Monitoring processes in the service industry and healthcare  

− Monitoring multistage processes 

 

2.1 Literature review about monitoring a fraction in binomial distributed data 

The main goal of this review is identify which existing methods might be easily 

designed to achieve a desired false alarm rate (α) when monitoring fractions of binomial 

distributed data. Table 2.1 summarizes the methods that have been proposed to monitor a 

fraction, mostly in manufacturing. This review complements Woodall (1997), which was 

a comprehensive review about monitoring attribute data. The first column of Table 2.1 

identifies the type of method. The second and third columns show the method’s name and 

its reference. The fourth column shows the degree of difficulty of the designing 

procedure: “not easy” means that the parameters are calculated using any of the following 

techniques: consulting tables (Tables), combinatorial or enumerative methods (Comb), 

extensive simulation (Sim), or Markov chain analysis (MC). The label “easy” means that 

the parameters are calculated in simple steps, without using the latter techniques. The 

fifth column indicates whether the method is two-sided, i.e., able to monitor both 

increases and decreases. The last column indicates whether the authors in the reference 

show that the method achieves a desired α. We also test through simulation whether the 

methods that have an easy design actually achieve the desired α (Section 4.2). 
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Regarding the first column of Table 2.1, we distinguish six types of methods for 

monitoring a count or a fraction:  

− p-chart, np-chart, and modifications: methods that plot the fraction or 

count of interest. 

− Shewhart charts on transformed fraction: plot a normalizing 

transformation of the fraction with a Shewhart chart for individual 

observations. 

− CUSUM or EWMA on fraction: applied on a fraction or count without 

transformations. 

− CUSUM or EWMA on transformed fraction: preprocess the fraction 

with a transformation and then monitor it using a CUSUM or a EWMA 

method. 

− Run rules for detecting increases in a fraction in manufacturing.  

− Run rules for detecting decreases in a low fraction in manufacturing. 

In the rest of this Section, we give additional comments on each type of method. The 

first type of method includes the modified p-chart of Chen (1998) and the modified np-

chart of Shore (2000). The two latter methods modify the control limits of a p-chart or an 

np-chart in order to get similar values to the probability limits that would be obtained 

using the exact binomial distribution (more details in Appendix E). In this first type of 

methods we include control charts whose design is combinatorial such as Ryan and 

Schwertman (1997) and Schwertman and Ryan (1999), which for a given value of p0, 

search for values of N and control limits such that the actual ARL0 gets very close to 370. 

Acosta-Mejia (1999) and Wu et al. (2006) can also be seen as combinatorial procedures.  
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All the methods classified in the second type have an easy design. The Arcsine 

transformation (described and used in next Section) is specific for binomial data and is 

approximately standard normally distributed for any values of N and p0. The Box-Cox is 

a power transformation (described in Appendix D) that requires a power parameter in 

order to minimize the skewness of the transformed data, not requiring knowledge of the 

data’s distribution. The Q transformation (described in Appendix D) is approximately 

standard normally distributed, and uses the inverse of the cumulative binomial 

distribution.  

Here we comment on methods classified in the third type. The design of a binomial 

based CUSUM chart is treated initially by Gan (1993). Additionally, Hawkins and Olwell 

(1998) give complete foundations of the CUSUM method, and propose a CUSUM for 

binomial data. These CUSUM methods usually require solving a Markov chain in order 

to calculate their parameters. Reynolds and Stoumbos (1999) propose a modified 

CUSUM for Bernoulli data, i.e., with N=1 as a sample size. This method requires solving 

a system of three equations to design the parameters of each side of the CUSUM (upper 

side and lower side), i.e., a total of six equations for a two-sided method. This method has 

shown better sensitivity than the binomial based methods, and can work well in 

manufacturing applications.  

Regarding the fourth type of methods, Quesenberry (1995) is the first author that 

proposes monitoring a fraction using a CUSUM on a normalizing transformation (he uses 

the Q transformation). He also proposes a EWMA on a Q transformation. Our proposed 

methods, the CUSUM Arcsine and the CUSUM Box-Cox also fall in this type of 

methods. 
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Type of Method Method Reference Design Two-sided Achieves α

Shewhart p -chart Montgomery (2005) Easy Yes In some cases

np -chart exact prob 
limits

Montgomery (2005)
Not easy 
(Comb)

Yes In some cases

Modified p-chart Chen (1998) Easy Yes In some cases
Modified np-chart Shore (2000) Easy Yes In some cases

p-chart, np-chart, 
and  

modifications 
Randomized np-chart Wu et al. (2001)

Not easy 
(Sim)

Yes Yes

Modified p-chart or 
np -chart 

Ryan and Schwertman 
(1997), Schwertman and 

Ryan (1999), Acosta-
Mejia (1999)

Not easy 
(Comb)

Yes In some cases

Modified np -chart Wu et al. (2006)
Not easy 
(Comb)

Only 
increases In some cases

Q  chart Quesenberry (1991) Easy Yes In some cases
Shewhart charts 
on transformed 

Fraction
Arcsine chart Chen (1998) Easy Yes In some cases

Box Cox chart Only suggested Easy Yes In some cases

EWMA for Binomial Gan (1990)
Not easy 

(MC) Yes Yes (mfg)

CUSUM or 
EWMA on 
Fraction

CUSUM for Binomial

Gan (1993), Hawkins 
and Olwell (1998), 

Bourke (2001), 
Reynolds and Stoumbos 

(2000, 1999)

Not easy 
(MC/Tables)

Yes Yes (mfg)

CUSUM for Bernoulli
Bourke (2001), 

Reynolds and Stoumbos 
(2000, 1999)

Not easy 
(MC) Yes Yes (mfg)

CUSUM Q , EWMA 
Q Quesenberry (1995)

Not easy 
(MC) Yes Yes (mfg)

CUSUM or 
EWMA on 

Transformed 
Fraction

New CUSUM 
Arcsine

Proposed here Easy Yes Yes

New CUSUM Box-
Cox

Proposed here Easy Yes Yes

Run rules for 
increases

Unit and groups-run 
charts

Wu and Jiao (2007), 
Gadre and Rattihalli 

(2005)

Not easy 
(Tables /MC)

Only 
increases

In some cases

Run rules for 
decreases

Based on Negative 
Binomial or 
Geometric 

distributions

Schwertman (2005), 
Chan et al. (2003, 

2002), Liu et al. (2007, 
2006), Lucas et al. 

(2006)

Not easy 
(Tables 

/MC/Comb)

Ussually 
decreases

In some cases

 

Table 2.1. Methods for monitoring a fraction by type of method and design 

(Comb=combination or enumeration, Sim=simulation, MC=Markov chain) 
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The methods in the fifth type monitor increases in fractions using run rules. The 

sampling in these methods switches from unit-level inspection (N=1, higher sensitivity) 

to group-level inspection (N>1, lower sensitivity) and back to the unit-level inspection 

according to specified rules. The authors of these methods claim that their charts improve 

the sensitivity when monitoring increases in fractions.  

The methods in the sixth type for monitoring a low nonconforming fraction typically 

consider the geometric or the exponential or the negative binomial distributions. For 

example, Lucas et al.  (2006) propose a method based on run rules to detect process 

improvement when the lower limit of an np-chart is zero. When combined with the upper 

control limit of an np-chart can offer a two-sided feature. This method can work well to 

detect rare events although its design is still “not easy” because it requires enumeration. 

In Section 4.2, the identified easy to design methods are compared using simulation. 

Notice that existing methods that achieve the desired α are not easy to design. 
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2.2 Literature review about monitoring processes with multiple categories 

Table 2.2 summarizes the papers about monitoring single stage processes with 

multiple categories (ordered in columns by first author). Appendix A contains more 

details about the papers in Table 2.2. Additionally, the method in Marcucci (1985) is 

longer discussed in Chapter 3.  

The literature also contains Bayesian approaches for monitoring a multinomial 

process. Laviolette (1995) and Shiau et al. (2005) consider that the probability parameters 

of the multinomial model vary according to a prior distribution, typically the Dirichlet 

distribution.  The method in Laviolette (1995) does not provide interpretation of signals. 

The method in Shiau et al. (2005) provides univariate charts using randomized control 

limits for negatively correlated fractions, but they do not help accurately to interpret 

signals as shown in Section 3.3. Further, Laviolette (1995) monitors the cumulative 

posterior distribution of the probability parameters and detects only increases in 

nonconforming fractions.  
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Paper
Duran and 

Albin
Laviolette   
(Bayes)

Marcucci  
(Chi-square)

Shiau et al.       
(Bayes)

Spanos and 
Chen

Tucker et al.       
(Ordinal)

Year of paper 2008 1995 1985 2005 1997 2002

Type of 
Categories

General
conforming/non 

conforming
General

conforming/non 

conforming

Only non 

conforming
Ordinal

Applications

Transaction 

Processes & 

Marcucci's Bricks

Marcucci Bricks Bricks Quality

Pass and 

Multiple Fail 

modes

Semiconductors Bricks Quality

Process 
Distribution 

Multinomial and 

equivalent 

Classification 

tree

Dirichlet 
Compound 

Multinomial aka. 
Polya-

Eggenberger

Multinomial

Dirichlet 
Compound 

Multinomial aka. 
Polya-

Eggenberger

Multinomial, 

Logistic 

Regression 

Model

Multinomial

Variable 
Monitored

Eech K -1 tree 
fraction

Posterior Cum 

dist function of K-

1 probab

Chi-square 

statistic

Fractions of 

count over 

sample size

Runs for short 
term about 

chosen fraction, 
Pearson 

Goodness of Fit 
for long term

Abs value of 

location 

parameter of 

assumed quality 

underlying distr.

Distribution of 
Variable 
Monitored

Binomial

Based on 

Dirichlet 

Compound 

Multinomial

Chi-square

Marginals based 

on Dirichlet 

Compound 

Multinomial

Chi-square for 
long term, 

Geometric for 
short term run 

rules

N(0,1)

UCL Yes Yes Yes
Yes, including a 

randomized one

Yes for long term 

n/a for short term
Yes 

LCL Yes No No
Yes, including a 

randomized one

Not for long term, 

n/a for short term
Yes 

# of Categories 
in Example(s) 

3 and 6 3 3 5 4 3

Sensitivy

ARLs for different 

values of shifted 

tree baseline 

probabilities

No No

ARLs for different 

values of shifted 

prior probabilities

ARLs only for 
short term SPC, 
against shifted 

prob of one 
fraction

Yes. Better than 

Marcucci based 

chart for quality 

improvement

Interpretation

Yes, based on 

idependence of 

every tree 

fraction

No

No. Individual 
np-charts 

proposed for 
two critical 
fractions

No No No 

 

Table 2.2. Summary of monitoring single stage processes with multiple categories 

Tucker et al. (2002) propose a monitoring method for ordinal categorical data. The 

method assumes that the ordinal characteristic has an underlying continuous distribution. 

If the user knows the underlying distribution, then the sensitivity of the ordinal chart is 

better than Marcucci’s method. The method in Tucker et al. is not applicable to nominal 
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categorical data. No interpretation of signals is provided. Both the p-tree and Marcucci 

methods monitor either nominal or ordinal categorical data. 

Finally, Spanos and Chen (1997) introduce process settings that are treated as 

covariates of a multinomial logistic model for ordinal categorical data. The method 

monitors the coefficients using a Marcucci method.  
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2.3 Literature review about monitoring processes in the service industry and 

healthcare  

Monitoring service processes has received limited but increasing attention from 

practitioners and researchers. Montgomery (2005, p. 185-189) and Devor et al. (2007, p. 

512-521) include examples about univariate applications of nonmanufacturing processes. 

From a methodological point of view, Montgomery (2005, p 184) points out that a key 

element about applying statistical process control in nonmanufacturing applications is to 

focus initial efforts on developing a valid measurement system. Montgomery proposes to 

use flowcharts and process charts. Table 2.3 summarizes several references in this field, 

which are commented below. 

Regarding existing research papers, Sulek (2004) reviews the use of statistical quality 

control in the service industry, emphasizing the modeling of the process flow, and 

mentioning the potential for monitoring multistage service processes. MacCarthy and 

Wasusri (2002) review the literature between the years 1989 and 2000 about monitoring 

methods of nonmanufacturing processes.  

Here is a list of articles with applications of monitoring methods to the service 

industry: Andersson et al. (2005) monitor cyclical business processes, with applications 

to financial decisions as well as comparing firms. Pettersson (2004) monitors customers 

churn (rapid change of carriers) in the telecommunication industry. Sulek et al. (2006) 

approaches monitoring a service process in a retail operation. Jensen and Markland 

(1996) monitor quality perception among customers. Heimann (1996) proposes 

monitoring fractions in a telephone service maintenance process with charts based on 
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individual observations. Gardiner and Mitra (1994) propose to monitor waiting times in a 

bank. 

Woodall (2006) gives a review of the use of control charts in health-care and in 

public-health surveillance. He shows that the use of attribute data is often found in 

health-care applications.  Chesher and Burnet (1996) use a 3-sigma p-chart to monitor 

technical performance of clinical laboratories. Hutwagner et al. (2005) propose CUSUM 

methods for monitoring the risk of bioterrorism as well as emergency calls. Benneyan 

(2006, fig. 6) illustrates the use of a EWMA based p-chart to detect increases in the use 

of prescription drugs. In health-care applications, there is usually 100% inspection, so it 

is not possible to remove special causes to return the process quickly to in-control. Thus, 

a control chart might continue to signal after its first signal. The latter issue also applies 

to service processes, where special causes are searched and investigated but the process is 

not necessarily stopped. Multivariate monitoring methods remain largely unexplored in 

the area of health care.  
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Paper

Andersson 

et al.

Devor et 

al.

Jensen and 
Markland 
(quality 

perception)

Montgomery Pettersson  Sulek

Woodall 

(Health-Care)
Year 2005 2007 1996 2005 2004 2004, 2006 2006

Applications

Turn in 
business 
cycles in 
industries

Defects in 

account 

payable 

process

Survey on 
customers

Plans for 
aerospace job 

orders

Churn in 
telecom-   

munication 
industry

Multistage 
service 

processes

For example, 
infection rates 

or waiting 
times of 

various sorts 
Process 

Distribution 
Any cyclical 
time series

Binomial
Assumed 

MVN
Assumed 
Normal

Binomial Varied
Attributes 

related

Monitoring 
Method

Likelihood 
based

u -chart & 
p -chart 

Factor 

Analysis, T2 

Hotelling 
chart & PCA

Shewhart

one-side p -
chart with 
variable 

sample size

Shewhart chart 
for 1st stage. 

Cause 
selecting 

control chart 
(about 

residuals)  for 
2nd stage.

Varied: 
CUSUM, 

EWMA for 
attributes, Risk 
Adjusted, etc 

 

Table 2.3. Summary of monitoring processes in the service industry 
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2.4 Literature review about monitoring multistage processes 

First, methods for monitoring multistage and multicategory processes are not found in 

the literature. Monitoring methods exist for other type of multistage processes, mostly in 

manufacturing applications. These processes are characterized by a sequence of 

manufacturing stages in series, in which the output of a stage is an input for the next 

immediate stage. 

Sulek et al. (2006) is an early and perhaps unique work about monitoring a multistage 

process in service. That work approaches monitoring a two-stage service process in a 

retail operation, using a regression adjustment method relating the two stages. Zou and 

Tsung (2008) suggest the use of multistage methods to monitor service processes in 

industries such as telecommunications, banking, and health care.  

The following are references about monitoring multistage processes in 

manufacturing, with correlated stages in series: Niaki and Davoodi (2009), Zou and 

Tsung  (2008), Kaya and Engin (2007), Zantek et al. (2006), Jearkpaporn et al. (2005), 

Lee et al. (2004), Zhou et al. (2003), Heredia-Langner et al. (2002), Ding et al. (2002a 

and 2002b), Yao and Chen (1999), Lawless et al. (1999), and Agrawal et al. (1999). 

These papers approach multiple correlated stages, and most of them fit a linear model 

between contiguous stages. Propagation of variation across stages and diagnosis 

capabilities are key issues in this field. Other monitoring techniques include: neural 

networks in Niaki and Davoodi (2009), multivariate exponentially weighted moving 

average control chart (MEWMA) in Zou and Tsung (2008), generalized linear models 

(GLM) in Jearkpaporn et al. (2005), partial least squares (PLS) in Lee et al. (2004), and 

analysis of variance using autoregressive models in Lawless et al. (1999) and Agrawal et 
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al. (1999). Heredia-Langner et al. (2002) as well as Yao and Chen (1999) focus on 

finding optimal inspection policies in terms of costs. 

As mentioned above, many methods for multistage processes fit linear models 

between stages, and then set a control chart for residuals (also called-cause selecting 

methods), e.g.: Zantek et al. (2006). Regression adjustment methods were proposed for 

model-based problems before approaching multistage processes. These works include: 

Wade and Woodall (1993), Hawkins (1993), Hauck et al. (1999), Loredo et al. (2002), 

and Shu et al. (2004, 2005).  

Many of the above methods propose to monitor independent residuals between 

contiguous stages. However, there are no methods that propose a decomposition into 

independent quality characteristics as the methods proposed here in Chapters 3 and 5 for 

either a single stage process or for a multiple stage process with multiple categories. 
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3 Monitoring and accurately interpreting processes with multiple categories using 

a probability tree 

Here we present a new method that offers an easier way to interpret an out-of-control 

signal, the p-tree method. Consider a process with more than two, say K, categories and 

the numbers of transactions across categories are multinomial distributed. We construct a 

probability tree with K-1 binary substages that is equivalent to the process with K 

categories. We show that the substages are independent and can be monitored with 

independent p-charts. The independence is based on Johnson et al. (1996, p. 68) as well 

as Kemp and Kemp (1987). The p-tree method indicates easily which substages are 

responsible in case of an out-of-control signal and each p-chart represents an estimate of 

a conditional probability that characterizes a substage. 

The principal advantage of the p-tree method is its usefulness as a diagnostic tool. 

The p-tree method may monitor both nominal and ordinal categorical data. It has a 

simple implementation because it decomposes a multivariate problem into independent 

fractions and p-charts (assuming the normal approximation holds for every tree fraction), 

and it allows any number of categories. The Marcucci and p-tree methods seem to have 

comparable sensitivities. 

To illustrate the p-tree method, let us apply it to the Marcucci (1985) bricks example 

of Chapter 1. A probability tree with two binary substages is constructed to represent the 

three categories. The first substage monitors the fraction of conforming bricks out of the 

total sample. The second substage monitors the fraction of nonconforming type A bricks 

over the nonconforming bricks. Section 3.2 shows that the fractions monitored in the two 

substages are independent and each is monitored by a  p-chart. 



 

 
 

26 

 The p-tree method helps answer our questions about what caused the out-of-control 

signals for the samples in Table 1.2.  In Section 3.2 we show that for sample 1 the 

fraction conforming brick is consistent with baseline, but among nonconforming, type A 

is underrepresented. For sample 2, the fraction conforming is low compared to baseline 

and the fraction of type A among nonconforming is consistent with baseline.  

Consider also the following reduced tax complaint process: a taxpayer with a problem 

passes through two substages: the first is to consult with a front desk assessor and the 

second is to actually file a complaint. The management, at the end of the deadline, may 

classify the notices into three categories: not consulted, consulted but not filed, and filed 

complaints (assuming that consulting the front desk is required before filing a complaint). 

Applying the p-tree method to the taxpayers’ process, we first monitor the fraction of 

taxpayers that consult in a month with the stage-one p-chart. Then we monitor the 

fraction of filed complaints over the number of taxpayers that consult with the stage-two 

p-chart. An important assumption is that the taxpayers make decisions independently 

(non autocorrelated) of one another and that the volume of notices sent in a month does 

not affect their decisions. 

Monitoring customer service processes can be somewhat different from monitoring 

manufacturing processes. Customer transactions are usually continuously scanned 

through an IT system, in contrast to manufacturing processes where sampling is often 

used. In customer transactions the monitoring method might continue to provide signals 

after its first signal because it may not be possible to remove special causes to return the 

process quickly to in-control. For example, if the p-tree method shows that the fraction of 

complaints over consults in the tax assessment is abnormally large, then management 
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may introduce corrective actions like better regulations, improved instructions, and 

changes in the IT system – but such changes may take some time.  

We present simulation studies to demonstrate that the p-tree method is a helpful tool 

in two ways. First, it signals an out-of-control condition in a comparable amount of time 

to the Marcucci method. Second, it gives correct interpretation information on which 

category is responsible for the signal, something that the Marcucci and other existing 

methods method cannot do. 

Table 1.2 in Chapter 1 shows also that a single stage with three categories can be seen 

as a multivariate process. In fact, a monitoring system would need to record at least 

observations of two counts and the sample size. Indeed, the monitoring system would 

need to track and record n1 and either n2 or n3 (assuming a constant sample size N). For 

instance, if n2 is tracked, n3 can be deduced as N-n1-n2. So, Marcucci’s bricks data can be 

seen as a multivariate process with three correlated count variables.  

The rest of this Chapter is organized as follows: Section 3.1 gives the equivalence 

between a multinomial process and a probability tree, and explains how a tree is built and 

characterized. Section 3.2 describes the p-tree control chart that it is based on the 

independence of the tree fractions of equation (3-3). Section 3.3 shows simulation results 

to illustrate the diagnosis capabilities of the p-tree chart and compares its average run 

length (ARL) performance with Marcucci’s method and with the Bayesian method of 

Shiau et al. (2005). Section 3.4 ends with concluding remarks about the p-tree chart. 
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3.1 Equivalence between multinomial process and probability tree 

Consider a multinomial with three categories (trinomial) and a sample of size N 

transactions. Baseline probabilities in category i are equal to pi, i= 1,2,3, and the numbers 

in each category are ni, i = 1, 2, 3. Of course, 1321 =++ ppp  and Nnnn =++ 321 . 

This process is depicted in Figure 3.1a. Equivalently, Figure 3.1b depicts this trinomial 

process as an equivalent probability tree with two substages. In substage 1, f1 is the 

baseline probability that transactions are in category 1 resulting in realized number n1, 

and 1-f1 is the probability that transactions are not in category 1, with realized number N-

n1. In substage 2, f2 is the baseline conditional probability that transactions are in category 

2 given that they are not in category 1, with realized number n2. The conditional 

probability that transactions are not in category 2 (therefore in category 3) given that they 

are not in category 1 is 1-f2, with realized number n3. Only two conditional probability 

parameters completely characterize the process, f1  and f2. 
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Figure 3.1. (a) A  trinomial process and (b) Equivalent probability tree with two 

substages  

Based on the probability multiplicative rule, the pi may be expressed as a function of 

the fi: 11 fp =  ,  212 )1( ffp ⋅−=  ,  )1()1( 213 ffp −⋅−= .  It follows that )1/(
122

ppf −= . 

This probability tree representation allows the user to order the categories according 

to their monitoring importance. In the Marcucci bricks example it is logical to order the 

substages such that substage 1 discriminates between conforming and nonconforming 

bricks, with f1 equal to the probability of conforming bricks, and substage 2 discriminates 

between nonconforming Type A and B bricks with f2 the conditional probability of 

nonconforming Type A given nonconforming. In case categories are of equal or unknown 

importance, such as transactions type A, B, or C, one can choose an order by default, for 

example put categories in decreasing order of their in-control probabilities pi. 

The probability tree can also be built as a classification tree: according to Duda et al. 

(2004, Chapter 8), any classification problem can be modeled through a sequence of 

binary questions that can be answered “yes” or “no”. With K categories each transaction 
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in the sample goes through a sequence of up to K-1 questions. The first question is: 

Classified in category 1? If the response is “yes”, an associated count variable is updated. 

If the response is “no”, the next question is: Classified in category 2? This procedure 

stops when a question about category i is answered “yes” or when the last question K-1 is 

answered “no” (item is classified in category K).  

This probability tree (or classification tree) method allows the user to order the 

categories accordingly to their monitoring importance. In case of equal or unknown 

importance, choose an order by default, like categories in decreasing order of their in-

control probabilities pi. 

The proposed method shows that a multinomial process with K categories can be 

monitored by a p-tree method that consists of K-1 independent p-control charts as shown 

in the next Section. The notation for the multinomial process is the following, 

  pi = baseline probability that item is in category i , i=1,2,...,K 

  ni = number of items in category i in a sample  

N  =  sample size  

The following relations and properties hold:  

Nn
K

j
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The expectation, variance, and covariance functions are:    

E[ni]=Npi 

Var[ni]= Npi(1- pi) 

Cov[ni , nj]= -Npi pj < 0 for i≠j  

For the probability tree the following notation is used: fi= baseline conditional 

probability that item is in category i given that is not in category 1,…,i-1 for i= 2,…,K-1. 

The probability mass functions for each substage are given by the following binomial 

distributions: 

1
1

1
1
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The relationships between the multinomial and the probability tree parameters are 

based on the total probability rule for multiple events as shown in Montgomery and 

Runger (2002, p. 44-45): 
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1
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p

p
f   i=2,…,K     (3-1)  

Eqn. (3-1) shows that a shift in a probability pj produces shifts in every tree 

probability fi for j≤i≤K-1. Similarly, a shift in a tree probability fi may have been 

produced by a shift on any probability pj for j≤ i ≤K-1. The last probability fK always 
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equals one, meaning that if the item is not in categories 1,2,…,K-1, it must be in category 

K.    

 



 

 
 

33 

3.2 The p-tree method 

The p-tree method monitors any multinomial process with K categories using K-1 

control charts that monitor shifts in the fi. We show in this Section that these K-1 charts 

are independent. Assuming that the baseline probabilities pi are known, then according to 

eqn. (3-1) the baseline conditional probabilities fi,  i=1,…,K-1 are also known. Using p-

charts, the control limits are: 













−⋅−

−⋅

−

−

 
)1(

 = 

 = 

 
)1(

 =

11
)2/*1(11

11

11
)2/*1(11

N

ff
 Z fLCL

fCL
N

ff
 + ZfUCL

α

α

 

                                    (3-2) 

















−

−⋅−

−

−⋅

∑

∑

−

=

−

−

=

−

 
)1(

 = 

 = 

 
)1(

 =

1

1

)2/*1(

1

1

)2/*1(i

i

j
j

ii
ii

ii

i

j
j

ii
i

nN

ff
 Z fLCL

fCL

nN

ff
 + ZfUCL

α

α

        for i= 2,…, K-1. 

 

where Zp comes from standard normal distribution such that the upper tail area is p. The 

sample statistic for each control chart is 

N

n
f 1
1̂ =   and  

∑
−

=
−

=
1

1

ˆ
i

j
j

i
i

nN

n
f       i=2,…,K-1   (3-3)  

At any observation time, the process is in-control if all K-1 p-charts have sample 

statistics within the control limits. The process is out-of-control if any of the p-charts 

signal, i.e., have sample statistics outside the control limits.  
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The control limits in eqn. (3-2) are based on the independent binomial distributions 

of the realized number ni in category i given the realized numbers in categories 1,…,i-1. 

This independence result is shown by Johnson et al. (1996, p. 68) as well as Kemp and 

Kemp (1987) as follows: 
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   for i=2,…,K-1     (3-4) 

For instance, n2 comes from an independent binomial with sample size N-n1 and 

probability
1

2

1 p

p

−
, which according to eqn. (3-1) is equivalent to f2. Thus, every p-chart 

monitors the independent ni in category i given the realized numbers in categories 1,…,i-

1, using the sample tree fraction if̂  of substage i, which equals the ratio of the realized ni 

to its sample size in its respective independent binomial in eqn. (3-4).  The square-root 

terms in eqn. (3-2) are the standard deviations of the if̂  conditioned on n1, n2,…, ni-1, 

obtained from eqn. (3-4). It can be shown also that those square-root terms represent an 

approximation for the unconditional standard deviation of if̂ when N is large and the 

probability that any count equals zero is negligible.  

The p-tree control charts have a total false alarm rate α, which is also called family 

wise error rate. Because of the independence property, 1-α (the probability that the 

monitoring method does not signal given in-control) is: 

                               (3-5)            

                                  

Therefore,   

1*)1(1 −−=− Kαα
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)1

1(
)1(1* −−−= Kαα    (3-6)            

where α* is the exact individual false alarm rate for every p-chart in the p-tree method.  

Eqn. (3-4) is based on the independent tree fractions if̂ and on Montgomery (2005, eqn. 

(10-2), p. 489).  

The p-tree method may be implemented using Minitab or any other software that 

offers the p-chart. For example, Figure 3.2 shows a p-chart for 1f̂  and Figure 3.3 shows a 

p-chart for 2f̂  for simulated finished bricks data as in Table 1.2 with a total false alarm 

rate α=0.05. The first two samples in Figures 2.2 and 2.3 are taken from Table 1.2 and are 

the only ones outside the control limits. The p-charts make it easy to interpret the out-of-

control signals: sample 1 reflects a decrease in type A bricks relative to the total 

nonconforming bricks (as shown in Fig. 2b) while sample 2 reflects a decrease in 

conforming bricks (as shown in Fig. 2a). Note that the control limits in Figure 3.3 vary 

since the number N-n1 is a variable sample size for2f̂ , as well as its denominator. 
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Figure 3.2.  p-chart for 1f̂  (conforming bricks over total) 
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Figure 3.3.  p-chart for 2f̂   (nonconforming Type A bricks over all nonconforming 

bricks) 
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3.3 Simulation experiments comparing methods  

We define the diagnosis accuracy of the p-tree method as the fraction of correct 

signals over the total number of signals given there has been a shift in a tree probability fi 

(i=1,2,…,K-1), a concept adapted from Skinner et al. (2006). If just the tree probability fi 

shifts, the signal is correct only when the p-chart for if̂  signals, and other p-charts for 

jf̂ do not signal, j≠i and j=1,2,…,K-1.   

In this Section we use simulation to assess the diagnosis accuracy of the p-tree 

method under a shift in a tree probability fi. Note that diagnosis accuracy cannot be 

computed for the Marcucci method, which does not give information about the specific 

multinomial probability that has shifted, but only signals whether there has been a shift in 

any of the probabilities.    

Also in this Section, we compare the sensitivity of the p-tree and Marcucci methods 

using ARL, the average number of samples from the time the process shifts until the 

control chart signals. The number of runs for each simulated condition is determined such 

that the standard error of every estimated ARL, for both the p-tree and Marcucci 

methods, is less than 0.015 of the estimated ARL. Thus the total number of runs per 

simulated condition varies between 10,000 and 11,500.   

Next, we briefly review the Marcucci control chart.  The method uses the Pearson 

statistic:  

∑
=

−
=

K

i i

i

Np

Npn
X i
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2
2 )(

      (3-7) 

where ni is the realized number in category i; N is the sample size; pi is the known 

baseline fraction in category i; and Npi is the expected count in category i  . According to 
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Marcucci (1985), the X2 statistic in eqn. (3-7) is approximately chi-square distributed 

with K-1 degrees of freedom, assuming the process is in-control, the sample size N is 

greater than 167, and the expected Npi are not too small. The upper control limit of the 

Marcucci chart is: 

2

),1(
 =UCL

α
χ

−K
  

where α is the false alarm rate and equals the upper tail area of the chi-square distribution 

with K-1 degrees of freedom. There is no lower control limit and the chart only indicates 

whether the process is in-control or not. It does not indicate whether the probabilities are 

too high or too low in any particular category. 

 

3.3.1 Diagnosis accuracy and sensitivity for processes with three categories 

We conduct a simulation experiment for processes with three categories. The 

experimental design is summarized in Table 3.1. Two cases of processes are simulated: 

the first scenario is called the Brick case, which has baseline multinomial probabilities 

that follow Marcucci’s example and the sample size is 1000. The second scenario is 

called the Customer case, which has probabilities more evenly distributed across the 

categories and the sample size is 300. Sample size is selected to guarantee a normal 

approximation to the binomial distribution, the chi-square approximation to the 

statistic 2X , as well as positive lower control limits, and upper control limits less than 

one for the individual p-charts in the p-tree method. 

The second factor is the ARL0, which is the average run length to a false alarm, either 

20 or 200, corresponding to choices more common in service and manufacturing, 

respectively.  Since successive observations are independent, the ARL0 is equal to 1/α.  
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These levels imply exact α* for the separate p-charts equal to 0.0253 and 0.0025 

respectively as in eqn. (3-6). Coleman et al. (2001) present control charts with ARL0 of 

approximately 22 and 370 when monitoring business processes. Marcucci (1985) only 

uses an ARL0 of 20 when monitoring samples sizes over 200 bricks.  

Scenarios Levels

Case
Brick     p 1 =0.95,  p 2 =0.03, and p 3 =0.02 or f 1 =0.95 and f 2 =0.6, with N=1000 
Customer p 1 =0.5,  p 2 =0.25, and p 3 =0.25 or f 1 =0.5  and f 2 =0.5, with N=300 

ARL0 20 and 200

 f 1 Brick case:      from 0.95 to 0.945, 0.94, 0.935, and 0.93
Customer case: from 0.5 to 0.52, 0.54, 0.56, 0.58, and 0.6

 f 2 Brick case:      from 0.6 to 0.56, 0.52, 0.48, 0.44, and 0.4
Customer case: from 0.5 to 0.52, 0.54, 0.56, 0.58, and 0.6  

Table 3.1.  Experimental design for examples with three categories 

For each case (Brick and Customer) and ARL0, we consider shifts on f1 and f2. There 

are between five and six levels each, representing no shift and going up to approximately 

three standard deviations of each tree fraction. First we simulate the baseline scenario 

with no shifts.  Then we hold f2 at the baseline value and simulate shifts in f1 to the levels 

shown in Table 3.1. Then we hold f1 at the baseline value and simulate shifts in f2 to the 

levels shown in Table 3.1. The baseline values for f1 and f2 and the shift sizes are 

different for the Brick and Customer cases. Also, the shifts are negative for the Brick case 

and positive for the Customer case. 

The independence property of the tree fractions1̂f  and 2f̂  is confirmed by the Kendall 

nonparametric tests of independence (Kendall & Gibbons, 1990, p. 66). The p-values are 

0.42 and 0.57 for the Brick and Customer cases respectively, so the null hypotheses of 

independence are clearly not rejected. 
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                     ARL0=20                   ARL0=200 

Tree 
Prob. 

Tree 
Prob. 
Value 

Diagnosis 
accuracy 
of p-tree 

p-tree     
ARL  

Marcucci 
ARL 

Diagnosis 
accuracy 
of p-tree 

p-tree     
ARL  

Marcucci 
ARL 

  0.95   20.8 20.9   188.3 189.4 
  0.945 0.76 10.3 9.0 0.88 46.6 42.4 

f1 0.94 0.90 4.1 3.8 0.97 12.1 12.2 
  0.935 0.95 2.1 2.0 0.99 4.3 4.5 
  0.93 0.97 1.4 1.4 1.00  2.1 2.3 
 0.60  20.7 20.6  188.3 189.3 
  0.56 0.69 12.8 12.6 0.74 77.0 76.8 

f2 0.52 0.85 6.0 6.0 0.92 24.2 25.4 
  0.48 0.92 3.0 3.1 0.98 8.7 9.6 
  0.44 0.95 1.8 1.9 0.99 3.8 4.3 
  0.40 0.97 1.3 1.4 0.99 2.1 2.4 

Table 3.2.  Diagnosis Accuracy (correct signals over the total signals) and ARL 

performances for Brick case, K=3 
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  ARL0=20 ARL0=200 

Tree 
Prob. 

Tree 
Prob. 
Value 

Diagnosis 
accuracy 
of p-tree 

p-tree     
ARL 

Marcucci 
ARL 

Diagnosis 
accuracy 
of p-tree 

p-tree     
ARL 

Marcucci 
ARL 

 0.50  21.1 20.6  214.6 208.1 
 0.52 0.71 11.7 11.9 0.80 87.0 94.1 

f1 0.54 0.89 4.7 4.8 0.95 21.1 22.8 
 0.56 0.94 2.2 2.3 0.98 6.0 6.6 
 0.58 0.97 1.4 1.4 0.99 2.6 2.8 
 0.60 0.97 1.1 1.1 1.00 1.5 1.6 
 0.50  21.1 20.6  214.6 208.1 
 0.52 0.63 14.9 14.6 0.71 123.1 121.6 

f2 0.54 0.81 8.0 7.9 0.90 45.7 45.1 
 0.56 0.90 4.1 4.1 0.97 16.1 16.7 
 0.58 0.94 2.4 2.5 0.99 6.9 7.3 
 0.60 0.96 1.7 1.7 0.99 3.5 3.8 

Table 3.3.  Diagnosis Accuracy and ARL performances for Customer case, K=3 

Tables 3.2 and 3.3 show the diagnosis accuracy results of the p-tree method and the 

ARLs for the p-tree and Marcucci methods on the Brick and Customer cases respectively.  

Diagnosis accuracy of the p-tree method and ARLs are measured as an average from all 

its signaling runs. For both cases, the larger the shift from baseline, the better the 

diagnosis accuracy. The larger the ARL0, the better the diagnosis accuracy for the same 

shift. For example, Table 3.3 shows that if f1 shifts from 0.5 to 0.52 and ARL0=20, the p-

tree method signals correctly for 0.71 of the signals. If f1 shifts from 0.5 to 0.6 and 

ARL0=20, the p-tree method give the correct signal for 0.97 of the signals.  

If the diagnosis accuracy measure is divided by the ARL, we get the fraction of 

correct signals over the total of samples. This fraction combines sensitivity with 

diagnosis accuracy and estimates the probability that the p-tree method signals correctly 

at any sample for a process that is out-of-control. For instances, for the Customer case in 
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Table 3.3 if f1 shifts to 0.6 and ARL0=20, the number of correct signals over the total 

number of samples in a run is 0.88. 

As expected, the p-tree method diagnosis accuracy is better if the tree probability that 

shifts has a lower index, or comes first as a substage, because the substage’s sample size 

is larger. For example, Table 3.3 shows that the diagnosis accuracy for shifts in f1 are 

better than for shifts in f2.  

In terms of ARL comparisons, Table 3.2 shows that the Marcucci method is slightly 

more sensitive than the p-tree method when monitoring shifts on f1 in the Brick case, 

particularly when ARL0=20, which is the case developed in Marcucci (1985). Table 3.3 

shows that the p-tree method is slightly more sensitive than the Marcucci method when 

monitoring shifts on f1 in the Customer case. In general, Tables 3.2 and 3.3 show that the 

differences between the ARLs of both control charts are quite small. The significant 

contribution of the p-tree method is its value as a diagnosis tool. 

Figure 3.4 shows a graph comparing the ARL performances when f1 shifts in the 

Customer case, for a desired ARL0=200. Although other graphs are not shown, this is a 

typical plot. In general, it is visually difficult to distinguish between the methods.  
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Figure 3.4. ARL comparison for shifts on f1 in Customer case, K=3, desired ARL0=200 

 

3.3.2 Diagnosis accuracy and sensitivity for a process with six categories 

In this Section all simulations have six categories, and the experimental design is 

summarized in Table 3.4. Only a Customer case is simulated, with all tree baseline 

probabilities fi equal to 0.5, i=1,2,…,5, and sample size is 1000. The ARL0 equals 20 or 

200.  
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Scenarios Levels 
Baseline 
Probabilities 

p1=0.5, p2=0.25, p3=0.125, p4=0.0625, p5=p6=0.03125  or  
equivalently fi=0.5, for i=1,…,5, with N=1000   

ARL0 20 and 200 

 f1 from 0.5 to 0.51, 0.52,…,0.55 

 f2 from 0.5 to 0.51, 0.52,…,0.56 

 f3 from 0.5 to 0.52, 0.54,…,0.60 

 f4 from 0.5 to 0.52, 0.54,…,0.60 

 f5 from 0.5 to 0.53, 0.56,…,0.68 

Table 3.4.  Experimental design for example with six categories   

We consider shifts on fi for i=1,2,…,5. There are between five and six levels each, 

representing no shift and going up to approximately three standard deviations of each tree 

fraction. First we simulate the baseline scenario with no shifts. Then we hold fj (j=2,…5) 

at the baseline values and simulate positive shifts in f1 to the levels shown in Table 3.4. 

Then we hold fj (j=1 or j=3,4,5) at the baseline values and simulate positive shifts in f2 to 

the levels shown in Table 3.4, so on and so forth.  

The exact α* for each p-chart of if̂ , i= 1, 2,.., 5,  obtained from eqn. (3-6), are 0.0102 

and 0.001 for ARL0 of 20 and 200 respectively. The independence property among the 

tree fractionsif̂ ’s is confirmed by Kendall nonparametric tests of independence among 

the if̂ ’s for an in-control data set with 20,000 samples p-values over 0.1 that lead to not 

rejecting the null hypotheses of independence 

Table 3.5 shows that the p-tree’s diagnosis accuracy is better if the shift size and/or 

ARL0 are larger, and if the tree probability that shifts has a lower index. These results are 

similar to those in Tables 3.3 and 3.4 for the three-category case. The number of 

categories does not limit these advantageous features of the p-tree method. 
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                 ARL0=20                  ARL0=200

Tree 
Prob.

Tree 
Prob. 
Value

Diagnosis 
accuracy of 

p-tree

p-tree     
ARL

Marcucci 
ARL

Diagnosis 
accuracy of 

p-tree

p-tree     
ARL

Marcucci 
ARL

0.50 20.0 19.9 204.7 192.3
0.51 0.40 15.5 16.0 0.49 133.5 144.0

f 1 0.52 0.71 7.6 8.4 0.83 43.4 54.4
0.53 0.86 3.5 4.1 0.96 12.7 17.4
0.54 0.92 2.0 2.3 0.98 4.6 6.4
0.55 0.95 1.4 1.5 0.99 2.3 3.0
0.50 20.0 19.9 204.7 192.3
0.51 0.31 17.9 18.8 0.38 156.4 178.7
0.52 0.53 12.0 12.8 0.72 89.9 103.9

f 2 0.53 0.73 7.0 7.7 0.87 34.0 43.9
0.54 0.84 4.1 4.6 0.94 14.5 20.9
0.55 0.90 2.5 3.0 0.97 6.8 10.1
0.56 0.93 1.8 2.0 0.98 3.7 5.3
0.50 20.0 19.9 204.7 192.3
0.52 0.39 15.5 16.7 0.50 127.9 145.8

f 3 0.54 0.70 7.7 8.5 0.85 41.4 52.6
0.56 0.86 3.6 4.2 0.95 12.1 17.3
0.58 0.92 2.0 2.3 0.98 4.5 6.5
0.60 0.95 1.4 1.5 0.99 2.2 3.0
0.50 20.0 19.9 204.7 192.3
0.52 0.30 18.0 18.1 0.36 169.9 162.5

f 4 0.54 0.54 12.0 12.4 0.67 90.3 89.8
0.56 0.73 7.0 7.6 0.86 36.3 42.2
0.58 0.84 4.0 4.5 0.94 15.1 19.8
0.60 0.90 2.5 2.9 0.97 7.0 9.6
0.50 20.0 19.9 204.7 192.3
0.53 0.31 17.7 17.5 0.37 158.6 140.5

f 5 0.56 0.55 11.5 11.0 0.68 79.1 69.2
0.59 0.75 6.5 6.4 0.88 31.0 31.0
0.62 0.85 3.6 3.8 0.95 12.2 14.1
0.65 0.91 2.2 2.5 0.98 5.6 7.2
0.68 0.93 1.6 1.8 0.99 3.0 4.0  

Table 3.5.  Diagnosis Accuracy and ARL performance for Customer case, K=6 categories   

Table 3.5 also shows for ARL comparisons, that the p-tree method is slightly better 

than the Marcucci method when monitoring shifts on f1,  f2 or f3. However, the Marcucci 

method is slightly more sensitive when monitoring small shifts on f4 and f5, particularly 
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when ARL0=200. Notice that the smaller the index of the fraction monitored, the larger 

the substage’s sample size in the p-tree method, and the better the ARL performance of 

the p-tree method over the Marcucci method.  

Figure 3.5 shows a graph comparing the ARL performances when f4 shifts, for a 

desired ARL0=200. This is a typical plot that shows the closeness between the ARLs of 

both methods.  
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Figure 3.5. ARL comparison for shifts on f4, K=6, desired ARL0=200 

 
3.3.3 Diagnosis accuracy and sensitivity for Bayesian method 

We show that the Shiau et al. (2005) method has little diagnosis accuracy compared 

to the   p-tree method. We expected this because the Shiau et al. (2005) method was 

designed to detect an out-of-control process and not to provide interpretations.  
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Consider the customer case with K=3 as shown on Table 3.1. The process has in-

control probabilities p1=0.5, p2=p3=0.25, or equivalently f1=f2=0.5, with N=300. We set 

the control limits using the Shiau et al. (2005) procedure (for constant probability 

parameters). Thus, for an ARL0=200, the UCL and LCL limits for n1 are 178 and 122 

respectively. If n1 falls exactly over the control limits, then the sample is out-of-control 

with probabilities 0.93 and 0.97 respectively. The UCL and LCL limits for n2 (and n3) are 

100 and 52 respectively.  If n2 (or n3) falls exactly over UCL or LCL, then the sample is 

out-of-control with probabilities 0.84 and 0.76 respectively. 

Assume that the process goes out-of-control such that p2 shifts positively, p3 shifts 

negatively, and p1 does not change. In terms of tree probabilities, f2 shifts positively and 

f1 does not change. Diagnosis accuracy is the number of correct signals over the total 

number of signals. To find the total number of signals in the Shiau et al. (2005) method, a 

signal is counted when any chart for any category signals. A sample has a correct signal 

when the chart for n1 does not signal, the chart for n2 signals, and the chart for n3 signals. 

Table 3.6 shows the diagnosis accuracy and ARLs for the simulated in-control situation 

and for two different shifts. The results of the p-tree match those results of Table 3.5. 

Process probabilities  

Diagnosis 
accuracy 
(SE) of    
p-tree 

p-tree     
ARL (SE) 

Diagnosis 
accuracy 
(SE) of 
Shiau et 

al.  

Shiau et 
al.  

ARL (SE) 

In Control: p1=0.5, p2=p3=0.25; or 
f1=f2=0.5  214.6 (2.0)  230.7 (2.4) 

p1=0.5, p2=0.26, p3=0.24;or f1=0.5, 
f2=0.52 0.71 (0.0) 123.1 (0.9) 0.01 (0.0) 137.6 (1.0) 

p1=0.5, p2=0.3, p3=0.2; or f1=0.5, 
f2=0.6 0.99 (0.0) 3.5 (0.0) 0.15 (0.0) 4.7 (0.0) 

 

Table 3.6.  Bayesian  Method of Shiau et al. (2005) compared with p-tree, Customer case, 

K=3, desired ARL0=200 
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As expected, Table 3.6 shows that the Shiau et al. (2005) method has a diagnosis 

accuracy significantly lower than the p-tree method. For example, when p1=0.5, p2=0.3, 

p3=0.2, f1=0.5, f2=0.6, the Shiau et al. (2005) method has a diagnosis accuracy of 0.15, 

roughly one correct signal out of seven signals, in contrast with the p-tree method which 

has a diagnosis accuracy of 0.99, (proportion of signals in which only the p-chart for 2f̂  

signals). Thus, the Shiau et al. (2005) method should be used only to detect whether the 

process is in-control or not. It should not be used for interpretations, because its 

univariate charts are negatively correlated, so its diagnosis accuracy is low. The Shiau et 

al. (2005) method also has lower sensitivity than the p-tree method. 

The inadequacy of using univariate charts for correlated variables is also noted in 

Montgomery (2005, p. 487-488 and p. 499) and Lowry et al. (1992, p. 52). In contrast, 

the p-tree method uses a decomposition into independent tree fractions, which allows 

direct and accurate interpretations. 
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3.4 Concluding remarks about p-tree method 

Processes in service or manufacturing with multiple categories can be sampled and 

modeled as multinomial processes. We propose to monitor any multinomial process by 

decomposition into independent binary substages using a probability tree. If the stages 

really exist or if the process can be naturally represented in substages as the brick 

problem, the proposed method allows accurate interpretation of the signals across the 

substages, as proved theoretically and using simulation. 

 If a conditional probability related to a tree’s substage shifts, the p-tree method 

accurately detects it. As shown on the results, the larger the shift size, or the larger the 

ARL0, or the lower the index of the tree’s substage that shifts, the better the diagnosis 

accuracy of the p-tree’s signal. By contrast, a signal in the Marcucci method may not be 

interpreted or measured, because the counts (ni) across the categories are negatively 

correlated. 

Simulated comparisons of ARL results of the p-tree and Marcucci methods with 

three and six categories show that the p-tree method has similar sensitivity (or even 

slightly better) than the Marcucci method. The p-tree method has slightly better 

sensitivity than the Marcucci’s method when monitoring evenly distributed probability 

trees, i.e., fi ‘s close to 0.5, and large shift sizes. The Marcucci’s method tends to be more 

sensitive when monitoring non-evenly distributed tree structures, and small shift sizes. 

We show also that the method in Shiau et al. (2005) has low diagnosis accuracy because 

of the negative correlation among categories. The decomposition into independent binary 

stages proposed by the p-tree method can be applied to any multinomial process. 

However, the p-chart chart that is used for monitoring each tree fraction requires that 



 

 
 

50 

these fractions are normally distributed. In Chapter 4, we propose another univariate 

method to monitor nonnormal tree fractions, which can be inserted into the p-tree method 

instead of the p-chart. 

Monitoring fractions in cases in which the p-chart may not achieve the desired false 

alarm rate is addressed in Chapter 4. Other future research issues are: ordering of 

categories in the tree, and simultaneous shifts on several fractions. Large systems with 

multiple stages and many categories could be addressed by a decomposition method as 

developed in Chapter 5. This would be useful in monitoring complex processes involving 

customers and organizations either in the private or public sectors. 
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4 Monitoring a fraction with easy and reliable settings of the false alarm rate 

Nonconforming fractions have been extensively monitored in manufacturing 

applications. We also consider monitoring fractions in service applications, which has 

been covered by several studies. For example, Gans et al. (2003. p. 89) show that one 

measure of the quality of service in call centers is the ratio of the number of customer 

inquiries that are solved in one contact (“one and done” calls) to the number of the calls 

that require additional efforts to be solved (“rework” calls). This problem is relevant 

because processes with multiple categories can be monitored through independent 

fractions as shown in Chapters 3 and 5.  

There are differences between monitoring fractions in service processes and in 

manufacturing processes. For service, the in-control fraction of interest may vary 

between 0 and 1, while the in-control fraction in manufacturing tends to be between 0 and 

0.1. The process may be continuously monitored using an information system, which 

either supports the operation of the process in service or collects data from sensors in 

manufacturing. In service systems, management may monitor based on periodic reports 

(e.g., monthly), which can be disaggregated into weeks, hours of the day, etc. In 

manufacturing, reports usually consider small subgroups, which reflect short time 

operating conditions.  

The fraction of interest can be monitored with the familiar p-chart based on the 

binomial distribution, which is simple to run and interpret. However, the p-chart may not 

achieve the desired false alarm rate α as shown in Chapter 1. Notice that achieving α is 

equivalent to achieving ARL0, which is the in-control average run length until the next 

false alarm, and equals 1/α in case of independent trials. 



 

 
 

52 

Here we present a two-sided CUSUM method for monitoring a fraction either in 

manufacturing or in service processes. The principal advantage of the proposed method is 

that is easy to use and design from the point of view of the user. We test the proposed 

method via simulation and find that it achieves a desired α for any N and p0 such that, 

E[N]p0(1-p0)≥3    (4-1) 

where p0 is between 0.005 and 0.995, and N is constant or Poisson distributed. The 

proposed method is easy to design because it does not use any of the following 

techniques: consulting published tables (Tables), combinatorial or enumerative methods 

(Comb), extensive simulation (Sim), or Markov chain analysis (MC). 

Specifically, we propose a CUSUM Arcsine method in which the data is 

preprocessed using an arcsine normalizing transformation for a binomial distributed 

variable and then monitored with a two-sided CUSUM method. The parameters of the 

CUSUM method are set adapting a procedure of Rogerson (2006). The user only needs to 

determine the control limit as a function of the desired two-sided ARL0, a formula that 

can be easily set into a calculator or spreadsheet. 

The new two-sided CUSUM Arcsine achieves large desired α such as 1/20, which is 

typical in service applications, and small α such as 1/200, which may be applied in 

manufacturing applications. The proposed method is two-sided, i.e., detects either 

increases or decreases in the in-control p0.  

We show using simulation that other existing easily designed methods do not 

achieve the desired α. Notice that existing methods that do achieve the desired α are not 

easy to design, such as: a binomial based EWMA chart in Gan (1990), a binomial based 
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CUSUM chart in Gan (1993), EWMA Q-chart in Quesenberry (1995), and a binomial 

based (modified) CUSUM chart in Reynolds and Stoumbos (1999, 2000). 

The rest of this Chapter is organized as follows: Section 4.2 proposes a new CUSUM 

Arcsine and a new CUSUM Box-Cox; Section 4.3 shows through simulation experiments 

that the new CUSUM Arcsine chart consistently achieves a desired α, and has better 

sensitivity than other easily designed existing methods; Section 4.4 shows an example 

illustrating an application to a service process. 
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4.1 New CUSUM Arcsine chart and new CUSUM Box-Cox chart 

We propose a method that preprocesses the data with a normalizing transformation, 

and then monitors it with a CUSUM method that is easily designed. Specifically, we 

propose the new two-sided CUSUM Arcsine and the new two-sided CUSUM Box-Cox 

for a fraction. Before, we show how a two-sided CUSUM chart is set into any 

normalizing transformation (yt) of the count xt, where t is the index of the each 

independent sample, and Nt is the sample size or volume of units at sample t:   

1) Preprocess the raw data with a normalization transformation to determine yt. 

2) Determine y0 and σy, which are the in-control mean and the standard deviation of 

the transformation yt respectively. 

3) Monitor the transformation with a two-sided CUSUM as: 

})( max{0, = 10
++ ++− t-tt CKyyC            (4-2)  

})( max{0, = 10
−− +−− t-tt CyKyC  

where the CUSUM is initialized as 
+

0C = 
−

0C = 0, andK  is known as the slack 

value. 

If δ  is the shift size (as a multiple of σy) considered to be detected quickly, then 

following recommendations of Woodall and Adams (1993), K is given by:   

     yK σδ
2

=                    (4-3) 

4) The new two-sided CUSUM method signals when either +
tC or −

tC are over the 

control limit H. We propose to get H as if yt were normally distributed, which adapting a 

result from Rogerson (2006) is easily determined as: 
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      (4-4) 

We propose to set δ =1, and eqn. (4-4) reduces only to a function of the two-sided 

ARL0 and σy: 

yσARL
ARL

ARL
H 








−+

+
+≈ 166.1)1ln()

1

2
( 0

0

0        (4-5) 

We then use the above procedure to propose a new CUSUM Arcsine method and a 

new CUSUM Box-Cox method for a fraction. Table 4.1 summarizes the formulation of 

both methods. The second row shows the transformation, either the Arcsine or the Box-

Cox. The Arcsine transformation is specific for binomial distributed data as described by 

Johnson et al. (2005, p. 123) and Chen (1998), and is approximately standard normally 

distributed. Both transformations may be calculated using just a spreadsheet, but the 

Arcsine does not require determining a power parameter (L) as does the Box-Cox 

transformation (described in Appendix D). The third and fourth rows have the in-control 

mean and standard deviation of each transformation. The following rows give the 

expressions for each proposed CUSUM. 
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Table 4.1. New CUSUM Arcsine method and new CUSUM Box-Cox method for a 

fraction 
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4.2 Comparison of easily designed methods for a fraction 

We conduct a simulation experiment to study which easily designed methods for 

monitoring a fraction achieve a desired α. We also compare sensitivity of the selected 

methods.  

The experimental design is summarized in Table 4.2. The first factor corresponds to 

the evaluated methods, i.e., those methods that have an easy design as shown in Table 

2.1. The first method evaluated is the p-chart. The following three methods are Shewhart 

charts on transformations (their implementations are briefly described in Appendix D). 

The following two methods are the modified p-chart of Chen (1998), and the modified 

np-chart of Shore (2000), both described in Appendix E. The following method is the 

CUSUM Q of Quesenberry (1995), which was originally designed using Markov chain 

analysis. For purposes of experimentation, we try our easy design procedure of Section 3 

on that method. The (easy) CUSUM Q is obtained similarly to the CUSUM Arcsine. The 

only change is that the Arcsine transformation shown in the second column of Table 4.1 

is replaced by the expression of Qt as shown in Appendix D. We also evaluate the new 

CUSUM Box-Cox and the new CUSUM Arcsine. 

The second factor is the in-control p0 with levels: 0.005, 0.01, 0.1, 0.2, 0.3, 0.4, and 

0.5. If a process has an in-control probability over 0.5, p0 could be defined in this 

experimental design as one minus the in-control probability. 

The third factor is the volume N which is constant or a zero-truncated Poisson 

distributed (N≥1). A constant volume represents the typical sampling of a process and the 

zero-truncated Poisson distributed volume represents a process that is continuously 
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monitored. The levels of E[N] are obtained such that E[N] is the smallest integer such that 

E[N]p0(1-p0)≥3.  

 
Factors Levels 
Methods 
evaluated    

(9 easy) 

p-chart, Box-Cox chart, Q-chart, Arcsine chart, Chen p-chart, 
Shore np-chart, CUSUM Q, new CUSUM Box-Cox, and new 
CUSUM Arcsine 

p0 and E[N]  0.005 & 604, 0.01 & 304, 0.1 & 34 , 0.2 & 19, 0.3 & 15, 0.4 & 
13, and 0.5 & 12  

Volume type 
(N) 

Constant or Poisson distributed 

Desired ARL0 20 and 200 

Shifts in p0 Cover up to ± 3σ 
   For p0=0.005  -1.5σ, -1σ, -0.5σ,…, 3σ;  σ=0.0029 

   For p0=0.01 -1.5σ, -1σ, -0.5σ,…, 3σ;   σ=0.0057 

   For p0=0.1 -1.5σ, -1σ, -0.5σ,…, 3σ;   σ=0.0514 

   For p0=0.2  -2σ, -1.5σ, -1σ,…, 3σ;      σ=0.0918 

   For p0=0.3  -2.5σ, -2σ, -1.5σ,…, 3σ;   σ=0.1183 

   For p0=0.4 -2.5σ, -2σ, -1.5σ,…, 3σ;    σ=0.1359 

   For p0=0.5  -3σ, -2.5σ, -2σ,…, 3σ;      σ=0.1443 

 

Table 4.2. Experimental design for evaluating easily designed methods for a fraction 

The fourth factor is the desired ARL0, which equals 20 or 200. The fifth factor 

corresponds to the shifts on p0 in multiples of σ, which is the standard deviation of the in-

control fraction of interest 
t

t

N

x
. Thus, p0 shifts to p0 δ± σ , where δ  is the shift size in 

multiples of σ and multiples of 0.5.  For the cases in which N is 

constant,
N

pp )1( 00 −=σ (values shown on Table 4.2). For the cases in which N is zero-

truncated Poisson distributed, it can be shown that 
)1)(1(

)1( 00

θθ
σ

−−−

−≈
e

pp
, where θ is the 
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parameter of the Poisson distribution (1>θ ). However, both standard deviations are very 

close for the levels of E[N] and p0 used in the experiment. 

We consider two performances measures. First, we measure the actual ARL0. We 

propose that an acceptable method is such that its actual two-sided ARL0 is between 18 

and 25 or between 180 and 250 for desired ARL0 of 20 or 200 respectively. These ranges 

are due to the fact that the parameter estimation of p0 has a significant effect on the final 

actual ARL0, as shown for example in Chakraborti and Human (2006). A method that 

detects increases but not decreases in p0 is not considered acceptable.  

The second performance is sensitivity, measured as the actual two-sided ARL. We 

follow a convention found in Lucas et al (2006), Ryan and Schwertman (1997), and 

Quesenberry (1991, 1995) in which a signal represents a sample falling outside the 

control limits, not on or within these limits. The numbers of runs in the simulations are 

determined such that the standard error of every estimated ARL is less than 0.02 of its 

estimated ARL. 

 

4.2.1 Comparison of actual ARL0   

The results show that the new CUSUM Arcsine is the only method that achieves an 

acceptable actual ARL0 in all cases for both desired ARL0 of 20 and 200. In other words, 

the new CUSUM Arcsine is the only method that in all cases gets an actual two-sided 

ARL0 between 18 and 25 or between 180 and 250 for desired ARL0 of 20 or 200 

respectively. The new CUSUM Box-Cox is acceptable for a desired ARL0 of 20, but not 

for a desired ARL0 of 200. These conclusions are supported by the results shown in 

Tables 4.3 and 4.4. 
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Table 4.3 summarizes which methods achieve an acceptable ARL0 for both types of 

volume, i.e., constant and Poisson distributed. For example, the cell that corresponds to 

the new CUSUM Box-Cox and to the column E[N]=604 and p0=0.005 shows a 20 

because that method gets an acceptable actual ARL0 for both types of volume. As 

expected, the p-chart, and modified p-charts of Chen (1998) and of Shore (2000) do not 

get acceptable actual ARL0. The Shewhart charts such as the Arcsine of Chen (1998), the 

Box-Cox, and Q chart of Quesenberry (1991) also do not get acceptable actual ARL0. 

These results are consistent with the research found in Ryan and Schwertman (1997), 

Chen (1998), and Acosta-Mejia (1999).  

Table 4.3 shows that the new CUSUM Arcsine achieves an acceptable ARL0 in all 

cases for both desired ARL0 of 20 and 200. The new CUSUM Box-Cox achieves an 

acceptable ARL0 in 6 out of 7 cases for desired ARL0 of 20, but only in 2 out of 7 cases 

for desired ARL0 of 200.   
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               Achieved ARL0 by cases of E[N ] & p 0

Type Method
604 & 
0.005

304 & 
0.01

34 & 
0.1

19 & 
0.2

15 & 
0.3

13 & 
0.4

12 & 
0.5

p -chart - - - - - 20 -
Shewhart 
Methods

Box-Cox chart 20 - - - 20 20 20

Q -chart - - - - 20 - -
Arcsine chart - - - - 20 20 20

Approx to 
probability 
limits

Chen-p -chart - - - - 20 20 20

Shore-np-chart - - - - - - -
CUSUM-Q - - - - - - -

CUSUMs New CUSUM-Box-Cox 20 20 20 20 20 200
20    

200

New CUSUM-Arcsine
20    

200
20      

200  
20      

200  
20      

200  
20      

200  
20      

200  
20      

200  

Table 4.3.  Acceptable actual ARL0 by case and method  

Table 4.4 shows the average absolute % error of ARL0 and its standard error across 

cases of E[N] and p0  by desired ARL0,  volume type, and method. For each case, i.e., for 

each combination of E[N] and p0, the absolute % error of ARL0 is measured as 

100
  Desired

  Desired-   Actual

0

00 ⋅
ARL

ARLARL
.  
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Type of Method Method      For ARL0=20      For ARL0=200

Vol Constant Vol Poisson Vol Constant Vol Poisson

p -chart 28.9 (6.2) 26.0 (4.3) 56.0 (34.8) 64.8 (16.6)
Shewhart Box-Cox chart 20.2 (5.4) 21.8 (7.3) 63.4 (18.2) 62.2 (9.8)
Methods Q-chart 26.8 (9.9) 11.9 (3.6) 44.3 (2.7) 28.3 (8.9)

Arcsine chart 19.8 (5.1) 8.5 (2.8) 63.5 (22.9) 22.7 (9.1)
Approx to Chen-p -chart 23.8 (4.3) 8.9 (3.3) 72.9 (52.3) 66.7 (21.4)
probability limits Shore-np-chart 48.4 (6.0) 45.8 (3.7) 44.5 (11.8) 44.4 (5.7)
CUSUM on CUSUM-Q 22.7 (2.1) 24.3 (1.4) 65.4 (0.9) 66.1 (0.3)
Transformations New CUSUM-Box-Cox 9.9 (1.9) 8.6 (3.5) 9.4 (3.6) 17.0 (4.2)

New CUSUM-Arcsine 9.6 (2.6) 4.7 (1.3) 5.5 (1.1) 5.8 (1.1)
Average across methods 23.3 (4.8) 17.8 (3.5) 47.2 (16.5) 42.0 (8.6) 

Table 4.4. Average absolute % error of ARL0 (SE) by desired ARL0, volume type, and 

method 

The new CUSUM Arcsine has the lowest average absolute % error of ARL0 for both 

desired ARL0, and for each type of volume. Table 4.4 also shows that the average 

absolute % error of ARL0 for a Poisson distributed volume tends to be less than the 

average absolute % error of ARL0 for a constant volume (7 out of 9 methods and 5 out of 

9 methods, for desired ARL0 of 20 or 200 respectively). This phenomenon could be due 

to the fact that a Poisson random variable can take large values. Those large sample sizes 

tend to improve the methods’ approximation in the tails of the binomial distribution. This 

topic will not be further developed in this paper, but could lead to some future 

investigation. 

In summary, we propose the new CUSUM Arcsine as the best easily designed 

method that achieves a desired ARL0 of 20 or 200, for volumes that are constant or 

Poisson distributed, in which E[N]p0(1-p0)≥3, and p0 is between 0 and 1. 
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4.2.2 Comparison of sensitivity  

The results show that the new CUSUM Arcsine method has similar sensitivity 

compared to the new CUSUM Box-Cox method. Only those methods that obtain an 

acceptable actual ARL0 (as shown on Table 4.3) are compared. For a desired ARL0 of 20, 

both new CUSUM methods have better sensitivity than other easily designed methods 

when detecting shifts of size up to σ5.1 , and have similar but not better sensitivities than 

other methods when detecting shifts of size between σ2 and σ3 . For a desired ARL0 of 

200, only the sensitivity of the new CUSUM methods can be compared.  

The above summary is supported by the results shown in Tables 4.5 and 4.6, which 

show the average of ARLs across cases of E[N] and p0  by shift size in multiples of σ , 

desired ARL0, and method. Tables 4.5 and 4.6 show results for increases and decreases of 

p0  respectively. 

The new CUSUM Arcsine and the new CUSUM Box-Cox have similar sensitivities, 

particularly for shifts of size greater or equal than σ1 . For shifts of size σ5.0 , Table 4.5 

shows that the new CUSUM Arcsine has better sensitivity than the new CUSUM Box-

Cox for positive shifts of size σ5.0 , either for ARL0 of 20 or 200. In contrast, Table 4.6 

shows that the new CUSUM Box-Cox has better sensitivity than the new CUSUM 

Arcsine for negative shifts of size σ5.0 , either for ARL0 of 20 and 200. 
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                                            Shifts in Multiples of σ       

     For ARL0=20       For ARL0=200   
Method 0.5σ 1σ 1.5σ 2σ 2.5σ 3σ 0.5σ 1σ 1.5σ 2σ 2.5σ 3σ 

p-chart 12.5 5.9 3.1 1.9 1.4 1.1 - - - - - - 

Box-Cox chart 16.7 8.4 4.4 2.6 1.8 1.4 - - - - - - 

Arcsine chart 14.0 6.4 3.4 2.0 1.4 1.2 - - - - - - 

Chen-p-chart 13.9 6.4 3.3 2.0 1.4 1.2 - - - - - - 
New CUSUM-Box-
Cox 12.1 5.8 3.7 2.7 2.2 1.8 31.5 9.3 5.2 3.6 2.8 2.3 
New CUSUM-
Arcsine 9.6 4.7 3.0 2.2 1.8 1.5 27.5 9.2 5.4 3.9 3.0 2.6 

Average 13.1 6.3 3.5 2.2 1.7 1.4 29.5 9.3 5.3 3.8 2.9 2.5 

Table 4.5. Average of ARLs by positive shift sizes and by ARL0 and method  

 

                                      Shifts in Multiples of σ       

     For ARL0=20       For ARL0=200   

Method -
0.5σ 

-1σ -
1.5σ 

-
2σ 

-
2.5σ 

-
3σ 

-
0.5σ 

-1σ -
1.5σ 

-
2σ 

-
2.5σ 

-
3σ 

p-chart 20.5 11.9 4.0 2.0 1.2 - - - - - - - 
Box-Cox chart 13.9 6.3 2.8 1.7 1.2 1.2 - - - - - - 
Arcsine chart 14.7 6.5 3.1 1.7 1.2 1.2 - - - - - - 
Chen-p-chart 14.9 6.6 3.1 1.7 1.2 1.2 - - - - - - 
New CUSUM-Box-
Cox 10.9 4.6 2.1 1.7 1.3 1.3 30.1 8.8 4.8 3.3 2.5 2.1 
New CUSUM-
Arcsine 12.3 4.9 2.4 1.7 1.3 1.3 41.8 9.4 4.3 2.9 2.3 2.0 
Average 14.5 6.8 2.9 1.8 1.2 1.2 36.0 9.1 4.6 3.1 2.4 2.1 

Table 4.6. Average of ARLs by negative shift sizes and by ARL0 and method  

 

4.2.3 Example of a process service 

Consider a simplified property tax complaint process as described in Duran and 

Albin (2009a). Notices are sent monthly in batches to taxpayers to communicate changes 

in the assessment. The assessment process may generate errors that the taxpayer and the 

property tax system must resolve. A taxpayer with a problem consults first with a front 
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desk assessor and then decides to file a complaint or not. The taxpayers may have one 

month to file a complaint. The management, at the end of the deadline, wishes to monitor 

the fraction of filed complaints over the number of taxpayers that consult. 

Assume that the number of taxpayers that consult in a month (N) in one local office 

is Poisson distributed with E[N]=34. Assume that during the first 10 months the in-

control probability (p0) that a taxpayer that consults files a complaint is 0.1, and p0 shifts 

to 0.16 in month 11, which is equivalent to a shift size of 1.15σ (small in multiples of σ, 

but large as a magnitude). Simulated data is shown in Table 4.7.  

 
Month 

(t) 
Number 

of 
consults  

(Nt) 

Number of 
complaints 

(xt) 

Fraction 
(ft) 

1 43 5 0.116 
2 33 2 0.061 
3 41 3 0.073 
4 37 6 0.162 
5 35 3 0.086 
6 28 3 0.107 
7 33 4 0.121 
8 31 0 0.000 
9 50 9 0.180 

10 32 2 0.063 
11 27 6 0.222 
12 28 7 0.250 
13 34 4 0.118 
14 34 4 0.118 
15 39 9 0.231 
16 41 9 0.220 
17 33 5 0.152 
18 26 2 0.077 
19 33 6 0.182 
20 33 5 0.152 

Table 4.7. Property tax complaint data 

Figure 4.1 shows a run chart of the fraction (ft=xt/Nt). It is difficult to check by eye 

whether the process is out-of-control or not. Both CUSUM Arcsine charts are constructed 
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from the data of Table 4.7, with a desired ARL0 of 20 (the control limit H=2.02 is 

obtained using the last row of Table 4.1), are shown in Figure 4.2. The chart 

corresponding to the CUSUM+ (for detecting increases in p0) shows that the process is 

indeed out-of-control at months 12 and 16.  
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Figure 4.1. Run chart of number of complaints over number of consults 
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Figure 4.2. Two-sided CUSUM Arcsine charts for fractions of complaints 

These charts would be set for every local office of a jurisdiction. For a service 

process like this, it is not possible to remove special causes to return the process quickly 

to in-control. However, management may analyze these out-of-control situations and 

introduce corrective actions like better regulations, improved instructions, and changes in 

the IT system – but such changes may take some time.  
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4.3 Concluding remarks about CUSUM for a fraction method 

We propose a new CUSUM Arcsine method to monitor a fraction both in service and 

in manufacturing applications. The proposed method is easy to use and design. The 

CUSUM Arcsine method achieves small and large α such as 
200

1
and 

20

1
, for volumes 

that are constant and Poisson distributed, in which E[N]p0(1-p0)≥3, and p0 is between 0 

and 1. The proposed method gets better sensitivity than other easily designed methods in 

all shifts for a desired α of 
200

1
. The proposed method gets better sensitivity than other 

easily designed methods for shifts of size up toσ2 and similar sensitivities in simulations 

for shifts of size overσ2  for a desired α of 
20

1
. The new CUSUM Box-Cox achieves 

large desired α such as 
20

1
, but not always small desired α such as 

200

1
, and has similar 

sensitivity compared to new CUSUM Arcsine. 

Future research may explore developing easily designed methods for monitoring 

processes in which the rule E[N]p0(1-p0)≥3 may not be fulfilled. The proposed CUSUM 

Arcsine might also be subject to optimization studies of its sensitivity features. Processes 

in which the volumes are large and the data does not fit the binomial distribution might 

be investigated too because they can represent complex customer service processes.  
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5 Monitoring multistage and multicategory processes 

We propose to monitor and interpret multistage and multicategory processes (MSMC) 

using a decomposition methodology. The proposed methodology decomposes stages with 

multiple categories into binary substages, and also describes the relations among the 

stages of the process.  

The methodology for a single stage and multicategory process proposed in Chapter 3, 

and in Duran and Albin (2009a), is extended to the multistage and multicategory process. 

If the multinomial model fits every stage of the process, then a number of independent 

fractions ─ called tree fractions ─ are used to monitor and provide full interpretations 

within and across stages of the process. Additionally, the initial volume of customers can 

be monitored too.  

The methodology proposes to monitor every tree fraction corresponding to every 

binary substage of the MSMC. Each tree fraction is monitored using the CUSUM Arcsine 

method proposed in Chapter 4, and in Duran and Albin (2009b). The CUSUM Arcsine 

method has the advantage that is easily designed and achieves a desired false alarm rate 

when monitoring a fraction, especially those with small sample sizes. The CUSUM 

Arcsine method also has good sensitivity properties to detect shifts of different sizes. 

Similarly to the single stage case, the order of the stages and categories matters in 

terms of describing the process and in terms of monitoring properties such as sensitivity 

and achieving a desired false alarm rate. Thus, the user may order the categories 

according to their monitoring importance within each stage. The user could also reorder 

the stages and get a new multinomial probability tree as long as the new tree makes sense 

describing the process. 
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The rest of this Chapter is organized as follows: Section 5.2 proposes a methodology 

to monitor multistage and multicategory processes; Section 5.3 develops a case study 

about a call center; Section 5.4 concludes.  
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5.1 Methodology to monitor multistage and multicategory processes 

Consider a multistage and multicategory process (MSMC) with the following 

notation and assumptions: 

i. Process starts at stage 0 with an initial volume of N(t) customers at sample t. 

ii.  Process has additional M stages. 

iii.  Every stage j has a total of Kj categories, j= 0,1,2,…,M.  By definition, K0 =1 

and Kj≥2 for j≥1. 

iv. n(t)
(i,j) = realized number of customers that fall in category i of stage j at 

sample t, for i=1,2,…,Kj and  j=0,2,…, M. By definition, n(t)
(1,0)=N(t).  

v. Customers are classified in one exclusive category at each stage. 

vi. Realized numbers at every stage are multinomial distributed. 

vii.  Volume of customers does not affect their customers decisions.  

viii.  Customers move forward through stages. There are no loops in the process. 

ix. There is only one path to reach a category as shown on Figure 5.1. 

Category Category

Yes No

 

Figure 5.1. One path to reach a category 

The algorithm to monitor MSMC is first summarized in words, and then formally 

explained using matrix representation. The algorithm consists of two procedures: an input 

procedure and a monitoring procedure. Here is a summary of the input procedure: 

1. Visualize the MSMC process using a multinomial probability (e.g., Figure 1.1).  
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2. Identify splitting processes across MSMC process: 

2.1. There is only one splitting process at stage 1, with a total of K1 categories, 

and sample size equal to initial volume N(t). 

2.2. Identify all splitting processes and root categories at stage j, for j=2,…,M: a 

root category within a stage splits into several offspring categories at the next 

stage. The realized number in a root category is the sample size for its 

splitting process in the next stage. The first root category in a MSMC is 

category 1 (unique) at stage 0 with realized number N(t), which is the sample 

size at sample t for the splitting process in stage 1. 

Here the monitoring procedure is described: 

1. Build binary probability tree of MSMC process: each splitting process with more 

than two categories in step 2 of the input procedure is decomposed into binary 

substages using the probability tree decomposition method for a single stage 

process with multiple categories as explained in Chapter 3. 

2. Determine the tree fractions: the tree fractions monitor every binary substage 

obtained in the step 1. If each splitting process can be modeled with a multinomial 

distribution, then the tree binary substages and the tree fractions are independent.  

3. Check the multinomial distribution assumption. This is done testing whether the 

volume N(t) and the sample tree fractions determined in step 2 are independent and 

non-correlated random variables. Two different tests of hypothesis can be used: 

the Kendall nonparametric test of independence in Kendall & Gibbons (1990, p. 

66) and/or the test of null pairwise correlation between fractions as shown in 
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Montgomery and Runger (2002, p. 402). In both cases, not rejecting the null 

hypothesis is a sign of independence. 

4. Monitoring MSMC process: 

4.1. If N(t)and the sample tree fractions are independent: monitor and interpret 

each tree fraction with a univariate control chart. We recommend the 

CUSUM Arcsine method of Chapter 4. Additionally, monitor the volume N(t) 

if needed. 

4.2. If N(t) and the sample tree fractions are not independent: the method proposed 

here cannot be applied. A further multivariate method needs to be 

investigated.  

It will be show below (eqn. (5-8)) that there is total of KF-1 tree fractions, where KF is 

the number of final categories, i.e., those that are not split in any further categories. 

Notice that this number of sufficient fractions KF-1 is independent of the number of 

stages, and of the number of categories in intermediate stages, and only dependent of the 

number of final categories.  

 

5.1.1 Methodology to monitor MSMC processes using matrices 

The algorithm to monitor MSMC processes summarized above is explained here 

using matrix representation. This representation is useful for a potential development of 

software for the algorithm. In the literature, Beygelzimer et al. (2005) and Kaplan (1982) 

approach the representation of trees using matrices, either for diagnosis or for risk 

analysis. An example about applying matrix representation is presented in Section 5.2. 

For the input procedure: 
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The first step is representing the multinomial probability tree using the following 

matrices: Lj= linking indicator matrix from stage j-1 into stage j, for j=1,2,…,M. There 

are M matrices Lj, each one having Kj-1 rows and Kj columns, i.e., a dimension (Kj-1 x Kj). 

The elements of the Lj are given by: 

Lj ][ l, m








=
otherwise    0

1- stageat   category in root  a has  stagein   category  if   1 jljm

      (5-1) 

, for l=1,2,…,Kj-1  and m=1,2,…,Kj.   

The rows of Lj to be denoted Lj[l,·] are an array of linking indicators to relate root 

category l in stage j-1 with its splitting categories in stage j. Those elements that take the 

value 1 are called active cells, with a category in stage j having a root category equal to l 

in stage j-1. If the elements of a row vector Lj[l,·] are summed up, the result equals the 

number of categories in which the root category l of stage j-1 splits into stage j. This sum 

of elements across a vector can be expressed as Manhattan distance (MD) as shown by 

Duda et al. (2001, p. 188) because of the streets and elevators distance analogy in three 

dimensions. Thus the number of categories into which category l of stage j-1 splits into 

stage j is:  

MD(Lj[l,·]) = ∑
=

Kj

i

l,i
1

 ][jL     (5-2) 

We adopt the convention that any final category l in an intermediate stage j-1 has a 

(virtual) splitting into one category in stage j, i.e., MD(Lj[l,·])=1, and (virtually) into one 

category in each successive stage.  

The second step is recording the realized numbers in every category at sample t using 

the following matrices: Sj
(t) = realized numbers transition matrix from stage j-1 into stage 
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j at sample t, for j=1,2,…,M. Matrix Sj
(t) has dimension (Kj-1 x Kj). There are M matrices 

Sj
(t) to represent the MSMC at sample t. 

The elements of Sj
(t) are Sj

(t)[l,m] = realized number of customers that split from 

category l in stage j-1 into category m in stage j at sample t, for l=1,2,…,Kj-1  and 

m=1,2,…,Kj.  These elements link the root category l in stage j-1 with the splitting 

category m in stage j. The matrices are populated using: 

Sj
(t)[l,m]









=

=
=

 1][ if  

     0][ if        0

)( l,mn

l,m

(m, j)
t

j

j

L

L

   (5-3) 

Because of the properties of MSMC processes enunciated at the beginning of Section 

5.1, the matrices Lj and Sj
(t) have a special structure. For example, the columns of Lj and 

Sj
(t) always are full of zeroes but in one row that identifies the root category l in stage j-1 

(“unique path” property).      

The rows of Sj
(t)

 to be denoted Sj
(t)[l,·] are an array of transition realized numbers at 

sample t from category l of stage j-1 into realized numbers across categories of stage j. If 

the elements of a row vector Sj
(t)[l,·] are summed, the result equals the realized number at 

sample t in the root category l within the previous stage j-1. Using the Manhattan 

distance, this is expressed as: 

MD(Sj
(t) [l,·])=∑

=

Kj

i

ji
tn

1

),(
)(  = )(tn  (l, j-1)   (5-4) 

Some elements of the matrices Sj
(t) change and others do not change. The elements 

Sj
(t)[l,m] that change or are active have a corresponding element Lj[l,m]=1. Also if 

MD(Lj[l,·])=1, i.e., if category l in stage j-1 is a final category, then its virtual splitting 
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into one category in the next stage j implies that the row vector Sj
(t)[l,·]  has all elements 

equals zero except in column m, such that n(t)
 (l, j-1)= n(t)

 (m, j). 

For the monitoring procedure: 

The first step is determining the tree fractions in their matrix form: 

Define: 

jF̂ (t) = tree fraction matrix from stage j-1 into stage j at sample t, for j=1,2,…,M. The 

dimension of each matrix is (Kj-1 x Kj-1). There are M matrices jF̂ (t) to be monitored at 

sample t. The elements of these matrices are obtained using the probability tree method 

of Chapter 3 for every splitting within a stage across the MSMC process. Thus, these 

elements are given by: 

jF̂ (t) ][ l, m =
















=

≤≤−+
−⋅

−+=
⋅

∑
−

=
 0][ if                                              0

 UC 1UC2  if     

],[]),[MD(

][

 1 UC1 if                         
]),[MD(

][
 

1

1

)()(

)(

)(

l,m

(l)m)(l

ill

l,m

)(lm
l

l,m

jj
m

i

tt

j
t

t

j

jj

j

j

j

L

SS

S
S

S

     (5-5) 

where UCj(i) = last category of stage j in which category i of stage j-1 splits into. The 

following relation holds: 

UCj(i)=  )][MD(
1

1
∑

−

=
⋅

i

k

k,jL      

The second step is determining which elements of these matrices can change or are 

active elements. Notice that any inactive element in Sj
)(t  has a corresponding inactive 

element in jF̂ )(t  and take the value zero at every sample t. Additionally, some elements in 

jF̂ )(t  always take the value one because they monitor the last category of a splitting 
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process – as explained in Section 3.1. Thus, define Aj=Active tree fractions matrix in 

stage j. The elements of Aj identify active and inactive tree fractions. Row vector Aj[l,·] 

points out to MD(Lj[l,·])-1 active tree fractions in jF̂ )(t  (value of eqn. (5-2) minus one).  

The elements of Aj are given by: 

Aj[l,m]
















⋅≠=

=

∑
=

   otherwise if   inactiveor  0

 

  )][MD(  and 1][  if      activeor  1
1

l

i

i,ml,m jj LL

 (5-6) 

Here we show that there are KF-1 active tree fractions. According to eqn. (5-2), 

category l in stage j-1 splits into MD(Lj[l,·]) categories in stage j. Thus, using the 

probability tree method, this splitting process can be monitored with MD(Lj[l,·]) -1 tree 

fractions. The Kj-1 splitting processes in stage j can be monitored with 

)1 
1

)MD(Lj[l,·](
1

−
=
∑

−jK

i
 tree fractions, which gives: 

Number of active tree fractions in Aj = Kj- Kj-1   (5-7) 

Thus,  

Total number of tree fractions =∑
=

−

M

j
jj KK

1
1) -( =  KM -1 = KF -1  (5-8) 

Notice that KM = KF because stage M includes those (virtual) categories that at 

intermediate stage split (virtually) into one category. Every tree fraction monitors an 

independent binary stage within a splitting process. In other words, according to the 

results in Johnson et al. (1996, p. 68) as well as Kemp and Kemp (1987) all binary 



 

 
 

78 

substages of a binary probability tree represents a sequence of independent binomial 

distributions. 

It can be shown that the number of active tree fractions KF-1 is usually significantly 

lower than the total number of elements in the matrices jF̂ )(t , which is given by 

∑
=

⋅
M

j

jj- KK
1

1 1)-(  . This fact opens the opportunity to investigate other structures of data in 

order to minimize the number or proportion of inactive elements in the monitoring 

procedure. 

The third step is checking the multinomial assumption. If each splitting process can 

be modeled with a multinomial distribution, then the tree binary substages and the tree 

fractions are independent. Thus, the multinomial assumption is checked via testing 

whether the volume N )(t  and the active tree fractions at sample t determined in the 

previous step for an in-control process are independent among themselves. We 

recommend to use the Kendall nonparametric test of independence in Kendall & Gibbons 

(1990, p. 66) and/or the test of null pairwise correlation between fractions as shown in 

Montgomery and Runger (2002, p. 402). In both cases, not rejecting the null hypothesis is 

a sign of independence. 

If N )(t  and the active tree fractions are not independent among themselves, then the 

MSMC process can not be modeled with the multinomial distribution, and the process 

can not be monitored using independent control charts as proposed here. A further 

multivariate method is needed.  

The fourth step is monitoring the process. If the independence property is confirmed 

in the previous step, then univariate control charts can be used to monitor and interpret 
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the active tree fraction cells as well as the initial volume N )(t  if needed. Similarly to the 

p-tree method, if the control chart for an active jF̂ ][ )( l, mt  signals, then category m at the 

stage j is causing a disturbance at sample t.  

The method can be used either in Phase I or Phase II. Phase I provides an exploratory 

and retrospective analysis to answer whether the process is stable and in-control, and to 

find parameters in order to build control charts for monitoring in Phase II. Once the 

process is stable, we recommend monitoring each fraction using the CUSUM Arcsine 

proposed in Chapter 4. The CUSUM Arcsine method has the advantage that is easily 

designed and achieves a desired false alarm rate when monitoring a fraction, especially 

those with small sample sizes. The CUSUM Arcsine also has a better sensitivity than the 

p-chart and other easily designed existing methods when monitoring small shift sizes in 

binomial distributed data. Additionally, it can be shown that the CUSUM Arcsine has an 

acceptable sensitivity compared with the p-chart when monitoring large shift sizes, i.e., 

shifts with size over 2-sigma.  

Suppose a total desired false alarm rate α and the user sorts the active tree fraction 

from 1,2,…,KF-1. Because of the independence property, 1-α (the probability that the 

monitoring method does not signal given in-control) is: 

      )1(1
1

1
∏

−

=
−=−

FK

i
iαα     (5-9) 

where αi is the individual false alarm for the control chart that monitors the active tree 

fraction i. If all individual control charts has the same false alarm rate αi=α*, this is given 

by: 

       .)1(1*
)1

1( −−−= FKαα                      (5-10)            
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      Eqn. (5-10) is based on the independent tree fractions and on Montgomery (2005, 

eqn. (10-2), p. 489). The CUSUM Arcsine method for each active tree fraction is 

implemented as follows: 

i. Use the numerator of eqn. (5-5) for the realized number in the binary substage 

of interest at sample t. 

ii.  Use the denominator of eqn. (5-5) for the sample size at sample t in the binary 

substage of interest at sample t. 

iii.  Use the in-control value of the tree fraction of interest, obtained though eqn. 

(F-1) of Appendix F. 

iv. Use the individual false alarm rate α* obtained through eqn. (5-10). 

v. Construct the two-sided CUSUM control charts as shown in Table 4.1, and 

monitor each active tree fraction. 

vi. If a CUSUM chart for tree fraction jF̂ ][ )( l, mt  signals, then category m at 

stage j is causing a disturbance at sample t.  

 



 

 
 

81 

5.2 Case study: a call center process 

Consider a call center of a commercial bank described in Mandelbaum et al. (2001). 

This example is used here to show the application of the algorithm to monitor a MSMC 

process in Phase II. In the next sections, the algorithm to monitor the call center is 

presented, including a matrix representation; and then a simulated call center is 

monitored. 

Figure 5.2 shows a business process diagram for the call center (decimals represent 

transition fractions in 1999). Three stages are proposed for this process: In stage one, the 

process starts with callers that seek to speak to a bank representative. Among the callers, 

5% abandon (hang up) immediately, 35% speak to a representative without waiting at all 

- meaning that a representative is available - and the other 60% of customers are put in a 

waiting queue until a representative is available. In stage two, among those customers 

waiting in queue, 25% abandon and 75% finally do speak to a representative. In stage 

three, among those customers that abandon while waiting in queue, 20% are called back 

as ordered by a bank’s supervisor, who makes that decision according to the customer’s 

business priority. 
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Figure 5.2. Call center business process diagram  

A monitoring system would monitor any changes in the transition probabilities that 

characterize the process. For example, Gans et al. (2003, p. 89) mentions the need to 

measure the number of calls that abandon while waiting for attention as well as obtaining 

other quality measures. Mandelbaum et al. (2001, p. 70) actually envisions a systematic 

analysis of inter-relations between blocks or components of the system, and their effects 

on performances measures.  

 

5.2.1 Algorithm applied to call center 

The first step for the input procedure is obtaining a multinomial probability tree that 

is helpful for visualization. Figure 5.3 and Table 5.1 show the multinomial probability 

tree for the call center with M=3 stages and its notation respectively. In Figure 5.3, the 

decimal numbers indicate average yearly fractions, and the integers on the bottom 

indicate stage number. 
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Notice that any final category at an intermediate stage is represented with (virtual) 

successive splitting into one category. For example, category 1 at stage 1 (virtually) splits 

into one category at stage 2 and one category at stage 3. This is a requirement of the 

matrix representation. Stage 1 has K1 =3 categories; stage 2 has K2 =4 categories, and 

stage 3 has K3 =5 categories. Thus, KF=K3=5 final categories. 
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Figure 5.3. Multinomial probability tree for call center  
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Stage Symbol Number of customers at sample t that, 

0 N(t)  seek to speak to a bank representative 

1 n(t)
(1,1)    abandon the call center when entering the system 

1 n(t
 (2,1)    have to wait to speak with a bank representative 

1 n(t)
 (3,1)    do not wait at all to speak to a bank representative 

2 n (t)
 (1,2)      (virtual) abandon the call center when entering the system 

2 n(t)
 (2,2)      abandon the queue while waiting 

2 n(t)
 (3,2)      speak to a bank representative after waiting in queue 

2 n(t)
 (4,2)      (virtual) do not wait at all to speak to a bank representative 

3 n(t)
 (1,3)      (virtual) abandon the call center when entering the system 

3 n(t)
 (2,3)        are called back after abandoning the waiting queue  

3 n(t)
 (3,3)        are not called back after abandoning the waiting queue 

3 n(t)
 (4,3)        (virtual) speak to a bank representative after waiting in queue 

3 n(t)
 (5,3)         (virtual) do not wait at all to speak to a bank representative 

Table 5.1. Descriptions of categories for call center  

Notice that two categories are considered for a bank representative. one is through 

category 3 at stage 1, in which customers do not wait at all to speak to a bank 

representative; the other is through category 3 at stage 2, in which customers speak to a 

bank representative after waiting in queue. There is actually another potential path, which 

is when a customer that abandons in queue in category 2 at stage 2 is called back as 

ordered by a bank supervisor based on the customer’s importance.   

The second step in the input procedure is identifying all splitting processes. The 

unique category at stage 0 splits into three categories at stage 1. The number of customers 

that have to wait to speak with a bank representative n(2,1)  at stage 1 splits into two 

categories at stage 2, i.e., categories 2 and 3 at that stage. Finally, the number of 
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customers that abandon the queue while waiting n(2,2)  at stage 2 splits into two categories 

at stage 3, i.e. categories 2 and 3 at that stage.  

The following relations among the realized numbers through stages hold: 

In stage 1:   N(t) = n(t)
 (1,1) + n(t)

 (2,1) + n(t)
 (3,1)   

Between stage 1 and stage 2:  n(t)
 (1,1)=n(t)

 (1,2)   ,   n
(t)

 (2,1)= n(t)
 (2,2) + n(t)

 (3,2)   ,    n
(t)

 (3,1)=n(t)
 

(4,2)    

Between stage 2 and stage 3:  n(t)
 (1,2)=n(t)

 (1,3)   ,   n
(t)

 (2,2)= n(t)
 (2,3) + n(t)

 (3,3)   ,    n
(t)

 (4,2)=n(t)
 

(4,3)    

For the monitoring procedure, the first step is transforming the multinomial 

probability tree into a binary probability tree in order to identify the tree fractions to be 

monitored. Thus, stage 1 in Figure 5.3 with three categories is transformed into two 

binary substages (1a and 1b). The binary probability tree to be monitored is shown in 

Figure 5.4 (arrows in bold font suggest tree fractions).  

The p-tree method of Chapter 3 is applied to every binary stage in the process. The 

unique category at stage 0 splits into two categories at substage 1a, with realized numbers 

n(t)
(1,1)  and N(t)-n(t)

(1,1) at sample t. The realized number N(t)-n(t)
(1,1) represents those 

customers that do not abandon the call center when entering the system at sample t. 

Those customers that do not to abandon at substage 1a have a splitting into two 

categories at substage 1b, with realized numbers n(t)
(2,2)  and n

(t)
(3,2). Stages 2 and 3 are not 

transformed because they already have two categories as shown on Figure 5.3. 

Notice that the splitting of final stages (e.g.: category 1 at stage 1) do not appear in 

Figure 5.4. As mentioned before, the further splitting of final stages is really required for 

the matrix representation. 
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Figure 5.4. Binary probability tree across stages of call center  

The second step in the monitoring procedure is determining the tree fractions through 

every binary substage in the binary probability tree of Figure 5.4. Table 5.2 shows the 

equations and descriptions of the tree fractions to be monitored. Every fraction has a 

numerator that equals the realized number at the first category of the binary substage and 

a denominator that equals the realized number in the root category at the previous 

substage. 
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Stage or 

substage 

Sample tree fraction 

and equation 

Description of fraction 

1a 
)(

)1,1(
)(

)(
)1,1(

ˆ
t

t
t

N

n
f =  

number of customers that 

abandon the call center 

when entering the system 

over the total number of 

customers that seek to speak 

to a bank representative 

1b 
)1,1(

)()(

)1,2(
)(

)(
)1,2(

ˆ
tt

t
t

nN

n
f

−
=  

number of customers that 

wait to speak to a bank 

representative over the 

number of customers that do 

not abandon the call center 

when entering the system 

2 
)1,2(

)(

)2,2(
)(

)(
)2,2(

ˆ
t

t
t

n

n
f =  

number of customers that 

abandon the queue while 

waiting over number of 

customers that decided 

initially to wait to speak 

with a bank representative 

3 
)2,1(

)(

)3,2(
)(

)(
)3,2(

ˆ
t

t
t

n

n
f =  

number of customers that 

are called back over number 

of customers that abandon 

the queue while waiting 

Table 5.2. Tree fractions for call center (also as bold arrows in Figure 5.4) 

The third step in the monitoring procedure is checking the multinomial distribution 

assumption through tests of independence among actual tree fractions for the in-control 

process. The fourth step in the monitoring procedure is monitoring the process. In Section 
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5.2.3 a simulated call center that follows the multinomial assumption is monitored using 

univariate control charts for the four independent tree fractions of Table 5.2. 

  

5.2.2 Matrix representation of call center 

The algorithm to monitor the call center is described here using matrix representation, 

which would be useful for software development of the algorithm. Recall that Figure 5.3 

and Table 5.1 show the multinomial probability tree and its notation respectively.  

For the input procedure, the first step is representing the tree structure using the 

following linking indicator matrices Lj, for j=1,2, 3. These matrices are obtained using 

eqn. (5-1) and are:  

L1 = [ ]111 ,   L2 =
















1000

0110

0001

, and L3 =



















10000

01000

00110

00001

 

The second step in the input procedure is recording the realized numbers transition 

matrices Sj
(t)

 at sample t, for j=1,2,3. These matrices are obtained using eqn. (5-3) and 

are: 

S1
(t)= [ ])1,3(

)(
)1,2(

)(
)1,1(

)( ttt nnn ,    

S2
(t)

 = 
















)2,4(
)(

)2,3(
)(

)2,2(
)(

)2,1(
)(

000

00

000

t

tt

t

n

nn

n

,  

and S3
(t)

 =





















)3,5(
)(

)3,4(
)(

)3,3(
)(

)3,2(
)(

)3,1(
)(

0000

0000

000

0000

t

t

tt

t

n

n

nn

n
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The matrices Sj
(t) are time series in which some elements are active and can change 

over the samples and others are inactive. As shown on eqn. (5-3), the active elements are 

such that have a corresponding element Lj[l,m]=1.  

For the monitoring procedure, the first step is determining the tree fraction matrices 

jF̂ (t), for j=1,23. The matrices jF̂ (t) are time series and their elements are obtained using 

eqn. (5-5) and are: 

1F̂ (t)= 








− )1,1(
)()(

)1,2(
)(

)(

)1,1(
)(

tt

t

t

t

nN

n

N

n
,  2F̂ (t)=



















000

10

001

)1,2(
)(

)2,2(
)(

t

t

n

n
,  and 

3F̂ (t)=





















0000

1000

010

0001

)2,2(
)(

)3,2(
)(

t

t

n

n

 

The second step is determining which elements of these matrices jF̂ (t) can change or 

are active elements. The active tree fractions matrices Aj show which elements of  jF̂ (t) 

do change, and are determined using eqn. (5-6) as follows: 

A1= [ ]11 ,  A2=

















000

010

000

,  and A3=



















0000

0000

0010

0000

 

Thus, the active tree fractions are the elements 1F̂ (t)[1,1], 1F̂ (t)[1,2], 2F̂ (t)[2,2], and 

3F̂ (t)[2,2]. Notice that these active elements have the same equations of the tree fractions 
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in Table 5.2. These tree fractions have in-control values that are calculated using eqn. (F-

2) of Appendix F, and are 0.050, 0.632, 0250, and 0.200 respectively. 

There is a total of KF=5 final categories in the call center, so there is a total of KF-1=4 

active tree fractions out of 27 total elements in the matrices jF̂ (t). As suggested before, 

other computational structures of data might be further investigated in order to minimize 

the proportion of inactive elements in the monitoring procedure.  

 

5.2.3 Monitoring a simulated call center 

Here a simulated call center is monitored to illustrate the application of the 

methodology proposed in Section 5.2.1. Two scenarios of call centers are simulated as 

shown in Figure 5.5: an in-control scenario with the same probability parameters shown 

in Figure 5.3; and an out-of-control scenario with probability parameters as shown in 

Figure 5.5b. Both scenarios have constant volume N(t)=1,000 customers per period of 

time (about a daily actual number of customers). Stage 1 is simulated as a multinomial 

process with three categories, and stages 2 and 3 are simulated as binomial processes 

each one with samples size n(t)
(2,1) and n(t)

(2,2) respectively. The desired ARL0 is 84 

samples (equivalent to 84 days or 7 weeks). The number of runs in the simulation is such 

that each standard error is less or equal than 0.02ARL. 
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Figure 5.5 Shifts in call center process  

Section 5.2.1 above described with enough detail the input procedure and the first two 

steps of the monitoring procedure. The first step of the monitoring procedure was 

building the binary probability tree as shown in Figure 5.4. The second step of the 

monitoring procedure was getting the tree fractions across stages as shown in Table 5.2.  

The third step of the monitoring procedure is checking the multinomial distribution 

assumption. Kendall nonparametric tests independence (Kendall & Gibbons, 1990, p. 66) 

among tree fractions were performed for the in-control scenario with 200 samples. The p-

values are between 0.12 and 0.88, so the null hypotheses of independence are not 

rejected. 

The fourth step of the monitoring procedure is monitoring the tree fractions. Because 

of the theoretical and empirical independence among tree fractions, univariate control 

charts are constructed for each of the fractions. Each tree fraction is monitored either by a 
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p-chart or by a CUSUM Arcsine method with the same individual false alarm rate (using 

eqn. (5-10)). The process is monitored in Phase II, and the performance measures are the 

process ARL and the individual tree fraction ARLs.  

Table 5.3 shows the ARL results. The first column shows what is being monitored – 

the total process or each tree fraction. The second, third, and fourth columns show the 

stage (or substage), the expected sample size for each fraction, and the shift size in 

multiples of the standard deviation of each fraction. The last four columns show the ARL 

results by scenario and by method used.  

                   ARLs results   

                  In-control         Out-of-control 

Monitor 
Stage or 
Substage 

Expected 
sample 

size 

Shift 
size 

p-
chart(s) 

 CUSUM 
Arcsine 
chart(s) 

p-chart(s) 

 
CUSUM 
Arcsine 
chart(s) 

Process All     81 83 1.0 1.1 
  

)1,1(
)(ˆ tf  1a 1000 5.8 329 325 1.0 1.6 

  

)1,2(
)(ˆ tf  1b 950 4.6 305 329 1.1 1.7 

  

)2,2(
)(ˆ tf  2 600 2.3 322 341 3.7 3.2 

  

)3,2(
)(ˆ tf  3 150 1.2 340 325 14.6 6.4 

Table 5.3. ARL results for simulated call center. Total desired ARL0=84 

Table 5.3 shows that: 

- Both methods achieve the desired total ARL0 of 84.  

- The higher the fraction on Table 5.3, the higher the sample size, the higher the 

shift size, the better the sensitivity (lower the ARL). 
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- As expected, the p-chart has better sensitivity than the CUSUM Arcsine for shifts 

size over 3σ ( )1,1(
)(ˆ tf  and )1,2(

)(ˆ tf ), and the CUSUM Arcsine has better 

sensitivity than the p-chart for shifts under 3σ ( )2,2(
)(ˆ tf  and )3,2(

)(ˆ tf ). 

For example, if the user wishes to increase the sensitivity of the fractions )2,2(
)(ˆ tf  and 

)3,2(
)(ˆ tf , then their false alarm rates should be increased and the false alarm rate of the 

fractions )1,1(
)(ˆ tf  and )1,2(

)(ˆ tf should be decreased in order to keep a desired total false 

alarm rate for the system. Another possibility would be to redefine stage 3 as stage 1, 

although altering the natural order of the stages would complicate the interpretations.  
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5.3 Concluding remarks about monitoring multistage and multicategory processes 

We propose a methodology to monitor and interpret multistage and multicategory 

processes. The proposed methodology decomposes the process into binary stages and 

substages, which can be monitored with a set of so called tree fractions. Thus, these tree 

fractions describe the relation within and among stages and provide full interpretations 

across the process. The sufficient number of tree fractions equals the number of final 

categories minus one, where final categories are those that do not have any further splits 

in the process.  

We show that if a multinomial distribution fits every stage of the process, then these 

tree fractions are independent and can be monitored with individual control charts. The 

proposed methodology can be expressed as an algorithm using matrix representation, 

which can be useful for a further computational programming of the algorithm. 

The proposed methodology is not limited by the number of stages and categories. We 

show that the CUSUM Arcsine proposed in Chapter 4 can help both achieving a false 

alarm rate at process level and at individual fraction level, as well as improving 

sensitivity. However, a large number of categories could imply that some tree fractions 

with very low sample sizes would not get appropriate sensitivities.  

The order of the stages and categories has an impact on the sample sizes of tree 

fractions, and therefore has an impact on the sensitivity of every tree fraction being 

monitored. The user may order the categories according to their monitoring importance 

within each stage. The user could also reorder the stages and get a new multinomial 

probability tree as long this new tree might make sense. For example, the user may 

redefine stage 1 of the call center as a splitting of customers among two categories: 
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customers that wait in queue for a bank representative and other customers. Monitoring 

this new tree would emphasize detecting changes on customers that have to wait in 

queue. 
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6 Future research  

I propose several research topics to extend the work of this dissertation:   

− Monitoring non-multinomial MSMC processes. 

− Monitoring routing matrices in queuing systems. 

− Monitoring waiting and service times in multistage processes. 

− Monitoring multifacility MSMC processes. 

− Forecasting and monitoring in service. 

− Testing and interpreting associations in contingency tables using trees. 

 

Monitoring non-multinomial multistage and multicategory processes 

Here we propose to investigate how to monitor MSMC processes in which the 

process’ data is not multinomial distributed and therefore the method proposed in Chapter 

5 may not be applied. The multinomial assumption implies that the binary substages are 

independent and binomial distributed. However, this assumption is not always fulfilled. 

At least two situations may occur: 

- Tree fractions that are correlated with the volume and also correlated among 

themselves 

- Tree fractions that present overdispersion with respect to the binomial 

distribution.  

In case of processes whose tree fractions are correlated with the volume and also 

correlated among themselves, multivariate methods need to be developed. Existing 

methods to be explored are commented next. 
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Sulek et al. (2006) monitor a two-stage service process in a retail operation, using a 

linear regression method of Wade and Woodall (1993) that relates the two stages. 

Woodall et al. (2004) as well as Kang and Albin (2000) propose the profile method to 

monitor processes in which there is a relation between a response variable and one or 

more covariates. If this relation is linear, then not only the residuals are monitored, but 

also the estimated slope and intercept. 

Another approach is proposed by Jearkpaporn et al. (2005) and Skinner et al. (2003, 

2004). They propose monitoring methods based on generalized linear models (GLM), 

which allow modeling various distributions for dependent variables and include 

covariates that can represent customers’ characteristics. 

With respect to the tree fractions that present overdispersion with respect to the 

binomial distribution, two approaches may be attempted: 

- Identifying groups of customers that share specific behaviors and hence split the 

data set into subsets that fulfill the binomial assumption of binary substages.  

- Fitting other distributions. This may consider analyzing whether groups of 

customers arrive in clusters as responding to specific causes (commercial 

campaigns, deadlines, etc). However, Jackson (1972, p 91) points out that a 

process must be in-control or stable in order to fit a distribution well. Fitting other 

discrete distributions may be tried as in Friedman and Albin (1991) and Jackson 

(1972). Mixes of binomial may represent distinct groups of customers and 

generalized Poisson distributions (see Table 6.1) may address overdispersion 

and/or clusters. If none distribution can fit the data, the distribution free CUSUM 
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Box-Cox method proposed in Chapter 4 could be applied to monitor fractions (if 

they are independent yet).  

Distribution Distribution of No. of 

Clusters 

Distribution of Counts per 

Cluster 

Neyman type A Poisson Poisson 

Thomas Zero-truncated Poisson Poisson 

Poisson binomial Poisson Zero or some constant 

Negative 

binomial, also 

knows as Polya-

Eggenberger 

Gamma Poisson 

Neyman type B Poisson Uniform 

Neyman type C Poisson Triangular 

Table 6.1. Generalized Poisson distributions  

Here we consider monitoring the call center using actual data for a year of operation. 

We show that the volume and tree fractions are correlated, so they can not be monitored 

with individual control charts as proposed by the methodology developed in Chapter 5 

for MSMC processes. We show that the tree fractions also present overdispersion with 

respect to the binomial distribution.  

The data set with a year of operation was obtained thanks to Professor Avishai 

Mandelbaum of the Israel Institute of Technology. Recall that the first step of the 

monitoring methodology is building the binary probability tree as shown in Figure 5.4, 

and the second step of the monitoring procedure is getting the tree fractions as shown in 

Table 5.2. 

We choose to monitor the process on a weekly basis, which provides 52 samples for 

the complete year, although the user may use a different level of aggregation (daily, 
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biweekly, monthly, etc). Table 6.2 shows the descriptive statistics of the volume and the 

tree fractions on a weekly basis. 

Measure Mean SD Minimum Maximum 
N(t) 8547 1349 5757 11676 

  )1,1(
)(ˆ tf  0.05 0.02 0.03 0.12 

  )1,2(
)(ˆ tf  0.62 0.14 0.28 0.85 

  )2,2(
)(ˆ tf  0.24 0.05 0.16 0.36 

  )3,2(
)(ˆ tf  0.19 0.06 0.07 0.32 

Table 6.2. Descriptive statistics of the volume and tree fractions (weekly basis) 

In the third step of the monitoring procedure we find that the multinomial assumption 

is violated because there are dependencies among the tree fractions. Consider Figure 6.1 

that shows scatter plots among the volume N and the four tree fractions. Figure 6.1 

clearly shows empirical correlation between )1,2(
)(ˆ tf  and )2,2(

)(ˆ tf , which violates the 

independence assumption. The interpretation is that the fraction of customers that wait in 

queue ( )1,2(
)(ˆ tf ) is linearly and positively correlated with the fraction of those waiting 

customers that abandon the queue ( )2,2(
)(ˆ tf ).   

Through tests of hypotheses, we observe that there are correlations among the volume 

N and stages 1 and 2, i.e., among N(t) and the tree fractions )1,1(
)(ˆ tf , )1,2(

)(ˆ tf and )2,2(
)(ˆ tf . 

Additionally, depending on the test, N(t) may be correlated with )3,2(
)(ˆ tf . This is shown in 

Table 6.3, which contains a sample correlation matrix among the volume N(t) and the four 

tree fractions. The first number in each cell is the Pearson correlation coefficient, and the 

numbers in parenthesis are p-values for two null hypotheses of independence tested. The 

first null hypothesis is whether the Pearson correlation coefficient equals zero, and the 
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second null hypothesis relates to the Kendall nonparametric test of independence. All p-

values under a type I error of 0.05 are marked in bold. 

N

10000

7500

5000

f(2,1)

f(2,2)

f(2,3)

0.30.20.1

f(1,1)

0.120.080.04 0.320.240.16

0.12

0.08

0.04

0.8

0.6

0.4

0.32

0.24

0.16

1000075005000

0.3

0.2

0.1

0.80.60.4

 

Figure 6.1. Multiple scatter plot among N and tree fractions 

 N(t) )1,1(
)(ˆ tf  )1,2(

)(ˆ tf  )2,2(
)(ˆ tf  

)1,1(
)(ˆ tf  

-0.07 
(0.6, 
0.9)       

)1,2(
)(ˆ tf  

0.44 
(0.001, 
0.001) 

0.33 
(0.02, 
0.01)    

)2,2(
)(ˆ tf  

0.36 
(0.01, 
0.01) 

0.37 
(0.006, 
0.003) 

0.87 
(0.000, 
0.000)   

)3,2(
)(ˆ tf  

-0.28 
(0.04, 
0.06) 

-0.09 
(0.5, 
0.5) 

0.05  
 (0.7, 
0.8) 

-0.12 
(0.4, 
0.7) 

Table 6.3. Sample correlation matrix and p-values for null hypotheses  
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The fourth step of the monitoring procedure is monitoring the tree fractions. The 

volume N(t) and the tree fractions cannot be subject to individual monitoring and 

interpretations because they are correlated as shown by Table 6.3.  

As an illustration that the call center seems to be in a non-stationary mode, here we 

set a MEWMA control chart (multivariate EWMA as proposed by Lowry et al. (1992) 

and Prabhu and Runger (1997)) for the volume N(t) and the four tree fractions with an 

ARL0=100 weeks (using an yearly estimate of a covariance matrix and without removing 

any sample for calculations). The MEWMA chart in Figure 6.2 suggests that the process 

is non-stationary during most of the weeks. A better knowledge of the process would 

allow identifying appropriate special causes. For example, changes in staffing allocations 

or changes in procedures can be related to special causes. 
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Figure 6.2. MEWMA control chart for N(t) and the four tree fractions. ARL0=100 weeks  

Here we explore the method of Sulek et al. (2006), which monitors a two-stage 

service process in a retail operation, using a linear regression method of Wade and 
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Woodall (1993) that relates the two stages. We show that linear regressions among call 

center’s tree fractions may help but do not explain most of the process variation.  

Consider the positive correlation between )1,2(
)(ˆ tf and N(t), and between )1,2(

)(ˆ tf and 

)1,1(
)(ˆ tf as shown in Table 6.3. This means that the chance that the chance that a customer 

has to wait in queue increases with the volume of customers or with the fraction of 

customers that abandon the system. However, a linear regression of )1,2(
)(ˆ tf on N(t) and 

)1,1(
)(ˆ tf gets a R2 statistic of 0.32, i.e., only 0.32 of the variation of )1,2(

)(ˆ tf  is explained 

by the regression.  

Table 6.3 also shows that the fraction )2,2(
)(ˆ tf is correlated with N(t), )1,1(

)(ˆ tf , and 

)1,2(
)(ˆ tf . In other words, stage 2 is correlated with the volume and with stage 1. A linear 

regression of )2,2(
)(ˆ tf on N(t), )1,1(

)(ˆ tf , and )1,2(
)(ˆ tf  gets a satisfactory R2 of 0.77, and only 

the coefficient associated to )1,2(
)(ˆ tf  is significant. The fitted regression equation is 

)2,2(
)(ˆ tf =0.043+0.32 )1,2(

)(ˆ tf , with residuals normally distributed. The interpretation here 

is that the higher the fraction of customers that wait in queue ( )1,2(
)(ˆ tf .), the higher the 

fraction of those waiting customers that abandon the queue ( )2,2(
)(ˆ tf ).   

As an illustration that the call center also presents overdispersion with respect to the 

binomial distribution, see Figure 6.3 that shows a binomial based 3-sigma p-chart on the 

actual fraction )1,1(
)(ˆ tf . Figure 6.3 shows that the control limits are too tight to take into 

account this violation of assumptions. This problem has been observed in processes with 

large sample sizes as in Heimann (1996). It can be shown also that N and n(1,1) have 
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overdispersion with regards to the Poisson distribution, which is consistent with the 

research of Borst et al. (2004, p. 32).  
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Figure 6.3. Binomial based 3-sigma p-chart for )1,1(
)(ˆ tf  shows overdispersion 

Monitoring routing matrices in queuing systems 

The multistage and multicategory processes considered in Chapter 5 impose several 

restrictions that can be relaxed for future research. Multistage processes in queuing 

systems may accept loops, i.e., customers that return to a category of a previous stage 

including a return to the same category. In this context, categories may be redefined as 

states, and the process can represent the routing of customers, transactions, or messages 

across a network. These processes can be represented as routing matrices in which each 

row is an array of probabilities from going from a certain state to another one.  

Monitoring the variations on the estimates of these probabilities can be a relevant 

problem. Loops can introduce a source of significant correlation among stages, so 

multivariate methods should be investigated.  
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Monitoring waiting and service times in multistage processes 

Multistage processes can involve queues across stages as shown in the call center 

example. It can be relevant for example to monitor waiting times instead of just a fraction 

of customers that need to wait for attention. The problem is that these fractions put 

together customers that wait a few seconds with customers that wait a lot more.  

The call center used as an example has at least four instances of times: the time in 

VRU when entering the system in stage 1, the time in queue until abandoning in stage 2, 

the time in queue until speaking to a bank representative, and lastly the service time. 

Monitoring times in queue also could involve censored data, as shown by Mandelbaum et 

al. (2001). The time until abandoning is a censored observation with respect to the 

needed time to wait, and the time until speaking to a bank representative is censored with 

respect to the time that a customer is willing to wait. 

In terms of existing methods that could be explored: Shore (2006) proposes to 

monitor the number of customers in a queuing system; Steiner and Mackay (2000) 

propose methods for monitoring censored data in manufacturing. 

 

Monitoring multifacility MSMC processes 

Consider that a multifacility, i.e., a multiple districts in which a MSMC process fits 

the operation of every district. The management would wish to monitor the multifacility, 

and then different monitoring interfaced should be built according with the user profile. 

Examples of users are: top level decision makers, regional managers, district managers, 
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SPC experts, and operating personnel. Benneyan et al. (2000) approaches a multifacility 

web-based monitoring system for health care. 

 

Forecasting and monitoring in service applications 

In many service applications the data are autocorrelated and it can be more relevant to 

forecast the current mean than to detect a change from a baseline or target. Methods that 

model actual service data as time series and then set monitoring methods could be 

developed. 

In terms of existing methods, Montgomery (2005, p. 446) suggests a EWMA chart as 

a one-step-ahead forecast for correlated data. According to Montgomery and Mastrangelo 

(1991), if the process can be modeled with a first order integrated moving average model 

(ARIMA), a EWMA can be designed to be the best forecast of the process mean. 

Yashchin (1993) also suggests using a EWMA to forecast the process level. Montgomery 

and Mastrangelo (1991) propose a moving center-line EWMA method for autocorrelated 

data (MCEWMA). Boyles (2000) approaches the analysis of autocorrelated processes in 

Phase I for either stationary or non-stationary time series.  

For the call center example, Figure 6.4 shows a time series of fraction 
)2,2(

f̂ and its 

related EWMA (with smoothing parameter=0.2). Fraction 
)2,2(

f̂  measures the number of 

customers that abandon the queue while waiting over the number of customers in queue 

waiting to speak with a bank representative. Fraction 
)2,2(

f̂  has a mean of 0.24 and a 

range between 0.16 and 0.36. It can be shown that 
)2,2(

f̂ has a significant autocorrelation 

of at least first order. In cases like this, it does not make sense to detect whether the 
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process is in-control or not with respect to a baseline. Many questions arise: What is the 

period of time to be considered in a Phase I study? All year? Some weeks and which 

weeks?   
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Figure 6.4. Time series of actual fraction 
)2,2(

f̂ and its EWMA 

 

Interpreting associations in contingency tables using trees 

This future research proposes to use the probability tree methodology developed in 

Chapter 3 to test and interpret associations in contingency tables. The idea is based in that 

under the null hypothesis of independence; every row (and every column) is multinomial 

distributed. The proposed idea is explained using the example in Table 6.4, which shows 

a contingency table about gender and party identification (Ref.: Agresti (1996, p. 31)).  
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Gender Democrats Non-affiliated Republicans Total 

Females 279 

(261.4) 

73 

(70.7) 

225 

(244.9) 

577 

Males 165 

(182.6) 

47 

(49.3) 

191 

(171.1) 

403 

Total 444 120 416 980 

Table 6.4. Cross classification of party identification by gender (frequencies under 

independence in parenthesis) 

The null hypothesis of independence between party identification and gender may be 

tested with a chi-square test. The chi-square statistic here is X2=7.01. Under 

independence, X2 is distributed chi-square with two degrees of freedom. This test has a p-

value of 0.03, so the null hypothesis of independence is rejected for any type I error 

greater than this level. 

According to Agresti (1996, p. 33), the chi-square test of independence simply 

indicates the degree of evidence for an association. Agresti recommends interpreting the 

nature of the association through techniques such as decomposition or partition of chi-

square into components, analysis of residuals, and odds-ratios.  

The method proposed here uses the probability tree technique to formulate a new test 

of independence, which also provides interpretations. For the example, the probability 

tree technique decomposes this multinomial with 3 categories shown in Table 6.4 into 2 

binary substages as shown in Figures 6.5 and 6.6 as well as in Table 6.5 (integers under 

labels represent volumes and decimal numbers over arrows represent fractions). The tree 

categories are ordered as Non-affiliated, Democrat, and Republican, although other 

orders could also be proposed.  
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For the example, the proposed method would perform two independent tests in Figure 

6.5: a first test that the probability of a non-affiliated female (sample tree fraction is 

0.127) equals the probability a non-affiliated male (sample tree fraction is 0.117); and a 

second test that among those affiliated subjects, the probability of a female Democrat 

(sample tree fraction is 0.554) equals the probability of a male Democrat (sample tree 

fraction is 0.463). Additionally and for comparisons, Figure 6.6 shows that the sample 

fraction of non-affiliated subjects (both females and males) is 0.122 and the sample 

fraction of Democrats among affiliated subjects (both females and males) is 0.516.  

This dissertation proposes to measure the power and significance of this tree 

association method and compare its interpretation with other techniques such as the 

partition of chi-square into components, analysis of residuals, and odds-ratios, as shown 

by Agresti (1996, p. 31-33).  The method should consider that the order of categories in 

the tree affects the results, and also approach contingency tables with more rows and 

columns than the example just shown. 
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Figure 6.5. Binary probability trees for party identification for females and for males 

 

Figure 6.6. Binary probability tree for party identification for females and males subjects  

Gender Non-affiliated/Total Democrats/(Republicans or Democrats) 

Females 0.127 0.554 

Males 0.117 0.463 

Total Subjects 0.122 0.516 

Table 6.5. Tree fractions for party identification by gender 
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7 Conclusions 

Many processes function through routing transactions in a succession of stages and 

multiplicity of categories. This dissertation has developed a monitoring method to detect 

changes in the baseline fractions that characterize a multistage and multicategory process. 

Detecting these changes may allow users to understand the variation of the process, 

analyze its special and common causes, keep the process in statistical control as well as 

introduce improvements in the process. 

Monitoring multistage and multicategory processes requires a thorough knowledge of 

the process. Initially, the process has to be mapped using flowcharts and business process 

diagrams. Users with different profiles should contribute to this process’ description. The 

monitoring method proposed requires that the process be represented as a tree in which 

the stages and the splitting of categories are visualized. These so called multinomial 

probability trees are decomposed into binary substages using a binary probability tree. If 

every stage and splitting of the process is multinomial distributed, then the binary 

substages are independent and binomial distributed, and the process can be monitored 

through independent tree fractions.  

This dissertation first proposes methods for monitoring a single stage process with 

multiple categories (Chapter 3), and monitoring a fraction in single stage process with 

two categories (Chapter 4). These two proposed methods have their own merits and also 

contribute to the development of the proposed method for monitoring multistage and 

multicategory process (Chapter 5). The proposed methodology can be expressed as an 
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algorithm using matrix representation, which can be useful for a further development of 

software for the algorithm. 

Both the p-tree method for a single stage with multiple categories and the method for 

monitoring multistage and multicategory process share a number of features: 

- The tree fractions provide full interpretations across the process. If a chart for a 

tree fraction signals, it is straightforward to identify the stage and category 

causing the disturbance. 

- The order of the stages and categories matters in terms of describing the process 

and in terms of monitoring properties such as sensitivity and achieving a desired 

false alarm rate. Thus, the user may order the categories according to their 

monitoring importance within each stage. 

- The methods are not limited by the number of categories per stage. Although 

eventual very low samples sizes of some tree fractions can compromise the 

sensitivity and false alarm rates of monitoring methods as shown in Chapter 4.  

The CUSUM Arcsine proposed in Chapter 4 can be a part of the method to monitor 

multistage and multicategory process. The CUSUM Arcsine method can monitor every 

tree fraction, contributing to achieving a false alarm rate at process level and at individual 

fraction level, as well as improving sensitivity of the method.  

I propose several research topics to extend the work of this dissertation:   

− Monitoring non-multinomial MSMC: data of actual process may not fit 

the multinomial assumption, and the binary substages may not be 

binomial distributed.  
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− Monitoring routing matrices: the methodology can be extended to 

processes where the transactions do not always move forward, e.g., 

loops. It may have applications in telecommunications, and financial 

markets. 

− Monitoring waiting and service times in multistage processes: for 

example monitoring waiting and service times in call centers. 

− Forecasting and monitoring in service: for processes that are 

autocorrelated and where forecasting is more relevant than deviations 

from a baseline. 

− Testing and interpreting associations in contingency tables using trees: a 

novel method based on applying probability trees to represent 

contingency tables.  
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9 Appendices 

Appendix A. Articles about monitoring single stage processes with multiple 
categories  

(Summary in Table 2.1) 

 

Laviolette (1995) 

In this paper, a Bayesian monitoring system is proposed to monitor all the fractions 

but one of items falling in different quality categories. The categories are sorted from 

poorest to best quality. Only the fraction related to the best quality is not monitored. 

The count variables are modeled by a multinomial distribution for known probability 

parameters. The Bayesian approach allows the probabilities parameters to vary according 

to a prior probability distribution, which is typically the Dirichlet distribution.  

A probability control limit is obtained for the posterior cumulative distribution of the 

multinomial probability parameters, for all but the parameter related to the best quality. If 

this posterior probability is less than a type I error α, the process is considered out-of-

control. The author refers to this chart as the Dirichlet p-chart. 

An example is given for monitoring the multinomial process with 3 categories found 

in Marcucci (1985). This Dirichlet p-chart monitors the posterior cumulative distribution 

of the two nonconforming probability parameters, for an arbitrary prior distribution, 

showing better sensitivity than Marcucci’s method (1985). Laviolette suggests 

monitoring individual probability parameters with marginal distributions of the posterior 

cumulative distribution in order to solve for the interpretation of out-of-control points. 
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Marcucci (1985) 

Marcucci gives data with variable sample size, where bricks are classified into 

conforming, nonconforming type A and nonconforming type B categories with in-control 

probabilities 0.95, 0.03, and 0.02 respectively. He proposes a monitoring system based on 

a multinomial model, using a Pearson statistic (also known as chi-square statistic) that 

follows an approximate chi-square distribution. While Marcucci’s method is simple to 

use, it is difficult to interpret an out-of-control signal. Marcucci’s work is still the most 

accepted procedure to monitor nominal categorical data for uniattribute processes as 

recalled in Tucker et al. (2002).   

In general, if the in-control probabilities that a variable is classified in a category out 

of a total of K categories are known, then the chi-square statistic that is monitored at time 

t is, 

∑
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Where,  

nti = number of occurrences of attribute i in a sample of n independent trials at time t 

nt  = sample size at time t 

pi  = probability of occurrences of attribute i in a trial;   i=1,2,…, K 

The following relations hold:   
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When the multinomial process is in-control, the Pearson statistic approximately 

distributes chi-square with K-1 degrees of freedom. Let us call the above method the 

Marcucci mathod. The Pearson approximation might be acceptable if: 
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i. No more than 20% of the expected frequencies (sample size multiplied by 

probability of a category) are less than five (Cochran 1954). A less restrictive 

rule by Yarnold (1970): let K be the number of categories, and let r be the 

number of expected frequencies less than five. For K≥3, the minimum 

expected frequency should be at least 5K/r. 

ii.  A sample size n of at least 167 observations, based on Yarnold (1970). 

Changes of both positive and negative signs in the quality proportions lead to 

increases in the Pearson. When the process is out-of-control, this statistic is 

asymptotically non-central chi-square distributed. The non-centrality parameter measures 

deviations from baseline known proportions. 

The Marcucci method signals when any fraction departs from its in-control value. If 

only one or two fractions are of special interest, Marcucci proposes a bivariate control 

chart for monitoring the chosen two nonconforming fractions. The author suggests 

monitoring for the proportions associated with the major and the minor nonconformity. In 

fact, these bivariate p-charts serve partially to solve for the interpretation problem. He 

calls this procedure as “One-Sided Generalized p-Charts”, which is intended to address 

trinomial processes. 

In case that the probabilities of the attributes are unknown, Marcucci presents the 

Pearson-Duncan statistic to be monitored (Zt).  This statistic is used to test homogeneity 

of proportions between the base period (time 0) and each monitoring period (time t).  

When in-control, the statistic distributes asymptotically chi-squared with (K-1) degrees of 

freedom.  
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Johnson et al. (1996) provides better approximations for the probability function, 

expectation, and variance of the Pearson statistic (p. 45-47). These approximations might 

be useful to improve the sensitivity of a (further modified) Marcucci control chart, 

particularly when the chi-square approximation assumptions are not well fulfilled. 

 

Shiau et al. (2005) 

In this paper, a Bayesian method is proposed to monitor the fractions of items falling 

in multiple categories fail modes plus one category of pass. Unlike Laviolette (1995), 

Shiau et al. method focuses on fractions of every category in the process (Laviolette 

focuses only on nonconforming categories).  

The Bayesian approach allows the probabilities parameters of the multinomial 

process to vary according to a prior probability distribution, which is typically the 

Dirichlet distribution. The expectation of a prior probability parameter (pi) is denoted as 

αi. 

In Bayesian terminology, the Dirichlet distribution is the conjugate prior distribution 

for the multinomial model. Being a conjugate prior implies that the posterior distribution 

for the probability parameters given a data set has the same distribution than the prior 

distribution. Thus, the posterior distribution is also a Dirichlet one. The posterior 

expected values of the probability parameters - probability vector - are a linear weighted 

average of the αi‘s and of the observed fractions.  
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The paper shows that the distribution of the counts is a Dirichlet-compound 

multinomial, also known as the Polya-Eggenberger distribution as seeing in Johnson et 

al. (1996). Instead of proposing control regions for this multivariate discrete distribution 

like Laviolette (1995), the paper considers monitoring every individual fraction of items 

falling in different categories. The previous work of Laviolette (1995) is not mentioned 

by the authors. Marginal distributions are described for every fraction plotted and upper 

and lower randomized control limits are determined. The setting of the individual false 

alarm rates is not further discussed as explicitly mentioned in page 20. In an example, a 

process with 5 categories goes out of control in the prior probability of the good category, 

and in the prior probability of the fourth bad category, keeping constant the other three 

prior probabilities.  

The control chart about the fourth fraction shows that the process is indeed out-of-

control. The control chart about the third fraction does not show out of control points. 

This paper does not approach the issue of correlation among individual fractions, so for 

example it can not always be concluded that the process is in-control if all charts do not 

signal. As shown in Chapter 3, the p-tree method has better diagnosis accuracy and 

sensitivity than the Shiau et al. (2005) method. Thus, the Shiau et al. (2005) method 

should be used only to detect whether the process is in-control or not, which is the 

intention of the authors. It should not be used for interpretations, because its univariate 

charts are negatively correlated, so its diagnosis accuracy is low. The inadequacy of using 

univariate charts for correlated variables is also noted in Montgomery (2005, p. 487-488 

and p. 499) and Lowry et al. (1992, p. 52). 
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Spanos and Chen (1997) 

The authors present a plasma etching problem in semiconductor manufacturing. The 

objective of the etching process is to create silicon lines that match a target pattern as 

close as possible. The process settings are continuous covariates like temperature, etch 

time, power, pressure, and oxygen flow rate inside the reactor. The output is multivariate 

in nature. Some output variables are categorical ordinal data such as the sidewall 

roughness, and the presence of indentations in line profile, which are called mouse bites. 

Roughness can take the values: smooth, fair, rough, and roughest. Mouse bites can take 

the values: good, fair, poor, and worst. 

Spanos and Chen set a model just for the mouse bites based on logistic regression, 

also called logit model. The model fit comes very significant, and only the covariates 

power and pressure are selected to stay in the final model. Thus, the logs of cumulative 

probabilities are fit as a linear function of the controllable process inputs. Estimating the 

probability of every category is straightforward after predicting the cumulative 

probabilities. The paper proposes two methods to monitor for deviations in the mouse 

bites fractions corresponding to each category (good, fair, poor, and worst): one method 

for short term monitoring, and another one for long term monitoring.  

Short term monitoring: The objective of the short term monitoring method is to 

monitor for abrupt process changes during production. Spanos and Chen propose 

sequential run rules. A weakness of this method is that monitors only for the fraction of 

wafers being in one category. For example, monitoring for the fraction of the category 

good does not depend on the other individual three fractions (for categories fair, poor, 

and worst). The paper proposes that in case of an optimized process regarding mouse 
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bites, the fraction associated to the category worst should be monitored, because that 

category will be less likely to appear. 

Long term monitoring: The objective of the long term monitoring method is to 

control for permanent process shifts that might happen due to natural process aging. For 

this case, the authors propose to monitor with a Pearson statistic similar with Marcucci 

(1985).  

After adjusting, there is also the problem of what fraction is selected to monitor 

using the short term monitoring method. An automated scheme that integrates the short 

term and long term monitoring systems, the model estimation and update, and a feedback 

control (process settings) is proposed.  

 

Tucker et al. (2002) 

Tucker et al. propose a maximum likelihood based chart to monitor for ordinal 

categorical data when the underlying quality follows some unobservable and unknown 

distribution. A finished bricks example is provided where nonconforming bricks type B 

are worst that nonconforming bricks type A, and the probability of nonconforming is 

0.95, the probability of nonconforming bricks type A is 0.03, and the probability of 

nonconforming bricks type B is 0.02.  

Assume that the probability distribution contains a location parameter θ. A maximum 

likelihood estimate (MLE) procedure is used to find an estimateθ̂ . The statistic that is 

monitored in a Shewhart control chart corresponds to: 
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Where, STD is the  standard deviation. The estimateθ̂  distributes standard normal if 

the process is in-control. 

The maximum likelihood based chart of Tucker et al. is relevant when the user may 

guess well about the underlying quality distribution. However the authors point out that 

no amount of historical ordinal data will reveal the shape of the underlying distribution, 

even if chopping the scale in more intervals. If ordinal data is simulated assuming an 

underlying distribution (like the normal or exponential distribution), then the sensitivity 

of the proposed ordinal method is better that the chi-square control chart for detecting 

quality improvement but not necessarily for detecting quality deterioration. No 

interpretation of signals is provided. 
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Appendix B. The fractions if̂ are unbiased estimates of fi   

(Complimentary material) 

Proof  

By definition: E[ 1f̂ ] = E[
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Proved. 
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Appendix C. Contiguous tree fractions are uncorrelated 

 (Complimentary material) 

Let start with the proof that 1f̂  and 2f̂  are uncorrelated  

Cov[ 1f̂ , 2f̂ ] = Cov[
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Let prove now that in general the tree fractionsjf̂  and 1ˆ +jf are uncorrelated random 

variables, for any K≥3. 

Proof 

Consider, 
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Using the definition of 1ˆ +jf  (see Section 3.1): 
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Simplifying the first term, 
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Let work now on the first expectation that appears above, 
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Using the conditional distribution of nj+1 (see Section 3.2): 

 

= }Pr{

1

)()(

)(

1 1

1
1

1

1

0

mn

p

pmN

mN

j

i

i
j

l

l

j
n

m

=⋅
−

⋅−⋅
− ∑

∑
∑

−

=
−

=

+

=

  

= ∑ ∑
∑ =

−

=
−

=

+ =⋅
−

n

m

j

i

i
j

l

l

j
mn

p

p

0

1

1
1

1

1
}Pr{

1
 = 1

1
1

1

1
⋅

−∑
−

=

+

j

l

l

j

p

p
 = 

∑
−

=

+

−
1

1

1

1
j

l

l

j

p

p
  



 

 
 

132 

With this result, Cov[ jf̂ , 1ˆ +jf ] becomes, 
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Let work on the remaining expectation that appears above, 
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With this result, Cov[ jf̂ , 1ˆ +jf ] becomes, 
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Cov[ jf̂ , 1ˆ +jf ] = 0  for  j=2,…K-2  Proved. 
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Appendix D. Normalizing transformations and related Shewhart charts 

The Box-Cox, and Q transformations for a fraction are described here. Let 

Nt=sample size or volume of units at sample t, p0=in-control probability of falling in 

category of interest, X=random variable of the number of units in category of interest, and 

tx = realized number of units in category of interest at sample t. 

a) Box-Cox transformation 

Let, 

tbc = Box-Cox transformation of fraction tf   

L = power parameter 

0bc = average of Box-Cox transformation in in-control data 

bcσ  = standard deviation of Box-Cox transformation in in-control data 

The Box-Cox transformation is obtained as 
L

N

x

bc
t

t
L

t

1−








=   

where L is found through minimizing the skewness of tbc  in the in-control data set 

(if L=0, the transformation corresponds to the natural logarithm). As an example, Chung 

et al. (2007) develop a monitoring method based on a Box-Cox transformation for a 

manufacturing application. 

b) Q transformation (Quesenberry, 1991, 1995) 

Let,   tQ = Q statistic conditioned on Nt 

where, tQ = )1( tuZ − , tu =Pr{X≤ tx } that comes from the cumulative Binomial(Nt, 0p ) 

distribution.  
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The tQ  statistic is approximately normally distributed N(0,1). Quesenberry (1991, p. 

63) suggests that this approximation is accurate for 0Np >6.3. In manufacturing 

applications, this transformation seems to be more accurate regarding the upper tail area 

than the lower tail area. 

 

c) Shewhart charts for a fraction 

Table D.1 summarizes the p-chart and other Shewhart charts based on 

transformations, where γz comes from the standard normal distribution such that the 

upper tail area is γ. 

 
Chart Statistic 
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LCL CL UCL 

p-chart 
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)2/1(0

)-(1
-

N

pp
Zp α−  

p0 
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)-(1
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Zp α−+  

Arcsine ( )











−









+
+ −−

0
11 sin

3/4

3/8
sin2 p

N

x
N

t

t
t  

)2/1(  - α−Z  0 )2/1( α−Z  

Box-
Cox 

tbc  bcZbc σα ⋅− )2/1(0   -  0bc  bcZbc σα ⋅+ − )2/1(0    

Q tQ  )2/1(  - α−Z  0 )2/1( α−Z  

Table  D.1. Shewhart charts for a fraction 
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Appendix E. Modified p-chart in Chen (1998) and modified np-chart in Shore (2000) 

These two methods are an approximation to the exact binomial method based on 

probability limits. 

a) Modified p-chart Chen 
 

This method monitors a fraction with p-chart that has control limits based on 

expansion of quantiles for a fraction. These limits adapted from Chen (1998, eqn. (1)) are 

the following: 

   
N

pZ

N

pp
ZpUCL

6

)21)(1 ()1(
 0

2
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+−+= −
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N
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ZpLCL

6

)21)(1 ()1(
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2
)2/1(00

)2/1(0

−−
+−−= −

−
α

α  

b) Modified np-chart Shore 

This method monitorstx , i.e., the number of units in the category of interest with a np-

chart with control limits corrected by the skewness of the binomial distribution. These 

limits adapted from Shore (2000, p. 1153) are the following: 

2

1
)

3

1
4177.0)(21(44.1)1( )2/1(000)2/1(0 −−⋅−+−+= −− αα ZppNpZNpUCL     (E-2) 

      
2

1
)

3

1
4177.0)(21(44.1)1( )2/1(000)2/1(0 ++⋅−−−−−= −− αα ZppNpZNpLCL  

Note: here Zp is based on the upper tail of the standard normal distribution N(0,1) 

instead of Shore (2000) that uses Zp as based on the lower tail of N(0,1). 
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Appendix F.  In-control values for tree fraction matrices jF̂  

The in-control values for tree the fraction matrices jF̂  are needed to set the CUSUM 

Arcsine that monitors every independent tree fraction. The method for monitoring 

MSMC processes is described in Section 5.1. 

Let, 

Pj = in-control probability matrix from stage j-1 into stage j, for j=1,2,…,M. Matrix Pj 

has dimension (Kj-1 x Kj). There are M matrices Pj to represent the transition probabilities 

in a MSMC process. 

Fj = in-control binary probability tree matrix from stage j-1 into stage j, for 

j=1,2,…,M. Matrix Fj has dimension (Kj-1 x Kj-1).  

The elements of Pj are Pj[l,m] = in-control probability that a customer goes from 

category l in stage j-1 to category m in stage j, for l=1,2,…,Kj-1  and m=1,2,…,Kj. The row 

vector Pj[l,·] represents the probability parameters of a multinomial distribution about 

going from category l at stage j-1 to any category at stage j. The elements Pj[l,m] are 

expected values of the realized numbers in each category over its sample size: 

Pj[l,m] 








=

=








⋅=
0][ if                             0

 1][ if         
])[MD(

][
E

l,m

l,m
i,

l,m

j

j
j

j

L

L
S

S
  (F-1) 

Of course, MD(Pj[l,·])=1. Also, the probability matrix for going from stage j to stage l 

equals to ∏
=

l

ji

jP , for j<l  and has dimension (Kj x Kl). 
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The elements of Fj are Fj[l,m] = in-control probability that a customer goes from 

category l at stage j-1 to category m at stage j, given that customer does not go to 

category 1,…, m-1 at stage j, for m=2,…,Kj.  

Similarly to the single stage case developed in Section 3.1, and assuming that the in-

control values of Pj are known, the in-control tree probability matrices Fj can be obtained 

using the total probability rule for multiple events as shown in Montgomery and Runger 

(2002, p. 44-45) for every row vector Pj[l,·]. Thus, 

Fj [l,m]









≤≤+

= ∑
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              (F-2) 

where UCj(i) = last category at stage j in which category i of stage j-1 splits into. 

UCj(i)=  )][MD(
1

1
∑

−

=
⋅

i

k

k,jL      

The standard deviation of the in-control tree fractions jF̂  are given by the matrix SDj, 

with elements that approximately are: 
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Note: Equation (F-3) is valid when N is large and the probability that any realized 

number equals zero is negligible. 
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Appendix G. Tree fractions in a simple 2-stage process 

(Complimentary material) 

N

Stage 1 Stage 2

n
(1,1)

n
(2,1)

n
(1,2)

p
(1,1)

p
(1,2)

p
(2,1)

p
(2,2)

n
(2,2)

p
(3,2)

n
(3,2)

n
(4,2)

p
(4,2)

 

Figure G.1. Multistage process with two stages and four final categories 

Consider the 2-stage process shown in Figure G.1 in which numbers under arrows 

are counts and numbers over arrows are conditional probabilities (elements of matrices Pj 

as defined in Appendix F). The fraction 
N

n
f

)1,1(
)1,1(

ˆ =  monitors stage 1. Stage 2 is 

monitored through the fractions
)1,1(

)2,1(
)2,1(

ˆ
n

n
f =  and 

)1,2(

)2,3(
)2,3(

ˆ
n

n
f = . The following relations 

hold: p(1,1)+p(2,1)=1, p(1,2)+p(2,2)=1, p(3,2)+p(4,2)=1, n(1,1)+n(2,1)==N, n(1,2)+n(2,2)= n(1,1), and 

n(3,2)+n(4,2)=n(2,1). Here we show that these tree fractions are independent random 

variables as summarized in Table G.1. 



 

 
 

141 

Tree  

fractions 

)1,1(
f̂  

)2,1(
f̂  

)2,3(
f̂  

)1,1(
f̂  n/a Independent Independent 

)2,1(
f̂  Independent n/a Independent 

)2,3(
f̂  Independent Independent n/a 

Table G.1. Independence of tree fractions for simple 2-stage process 

First we show that 
)1,1(

f̂  and 
)2,1(

f̂  are independent. Consider a multinomial process 

with three categories formed by n(2,1), n(1,2), and n(2,2) with unconditional probabilities  

p(2,1), p(1,1)p(1,2), and p(1,1)p(2,2) respectively. According to the Johnson et al. (1996, p. 68) 

decomposition, this multinomial can be expressed as a sequence of independent 

binomials as follows: 

n(2,1)  ~ Binomial(N, p(2,1)), 

n(1,2)  given n(2,1)  ~ Binomial(N- n(2,1)   , 
(2,1)

(1,2)(1,1)

1

 

p

pp

−
⋅ ).  

Thus, the counts divided by their samples sizes, Nn )1,2( and   

)( (2,1)(1,2) nNn − are independent. The numerator of the first fraction equals N-n(1,1), 

and the denominator of the second fraction equals n(1,1). So, 

NnNnN (1,1)(1,1) 1)-( −=  and  )1,1()2,1( nn are independent. Necessarily, 
N

n )1,1(  

and  )1,1()2,1( nn  are independent. The latter two expressions by definition are 
)1,1(

f̂ and  

)2,1(
f̂ , which are then independent. 
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Second we show that 
)1,1(

f̂  and 
)2,3(

f̂  are independent. Consider a multinomial 

process with three categories formed by n(1,1), n(3,2), and n(4,2) with unconditional 

probabilities  p(1,1), p(2,1)p(3,2), and p(2,1) p(4,2) respectively. According to the Johnson et al. 

(1996, p. 68) decomposition, this multinomial can be expressed as a sequence of 

independent binomials as follows: 

n(1,1)  ~ Binomial(N, p(1,1)), 

n(3,2)  given n(1,1)  ~ Binomial(N-n(1,1) ,
(1,1)

(3,2)(2,1)

1

 

p

pp

−
⋅ ). 

Similarly, Nn )1,1(  and  )1,2()2,3((1,1))2,3( )-( nnnNn = are independent, which 

using the definitions equal 
)1,1(

f̂  and 
)2,3(

f̂ , and then they are independent. 

Finally, we show that 
)2,1(

f̂  and 
)2,3(

f̂  are independent. Consider a multinomial 

process with four categories formed by n(1,2), n(2,2), n(3,2), and n(4,2) with unconditional 

probabilities  p(1,1)p(1,2), p(1,1)p(2,2), p(2,1)p(3,2), and p(2,1) p(4,2) respectively. According to the 

Johnson et al. (1996, p. 68) decomposition, this multinomial can be expressed as a 

sequence of independent binomials as follows: 

n(1,2)  ~ Binomial(N, p(1,1)p(1,2)), 

n(2,2)  given n(1,2)  ~ Binomial(N- n(1,2) ,
(1,2)(1,1)

(2,2)(1,1)

1

 

pp

pp

−
⋅ ), 

n(3,2)  given n(1,2), n(2,2) ~ Binomial(N-n(1,2)-n(2,2) ,,
(2,2)(1,1)(1,2)(1,1)

(3,2)(2,1)

 -1

 

pppp

pp

⋅−
⋅ ). 

Similarly, Nn )2,1(  and )1,2()2,3((2,2)(1,2))2,3( )--( nnnnNn = are 

independent. The first fraction is equivalent to  

)1,1()2,1()1,1()1,1()2,1( ˆˆ)()( ffNnnn ⋅=⋅  and the second fraction equals
)2,3(

f̂ .  Thus, 
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the product )1,1()2,1( ˆˆ ff ⋅  and the fraction 
)2,3(

f̂  are independent. Recall from the above 

that )1,1(f̂  and 
)2,3(

f̂  are independent. Thus, necessarily, 
)2,1(

f̂  and 
)2,3(

f̂  are 

independent. 
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