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Consider processes where a transaction moves thretagges and falls within a
category at each stage. For example, in a tax @ntgdrocess, the stages are the steps
taxpayers follow to resolve a property tax displugen initial complaint through final
resolution. The primary motivation here is custoreervice, although the transactions
could be related to manufacturing applications al.w

The main contribution here is a method to monitee fractions and numbers of
transactions within and across stages of multistagéd multicategory processes, a
problem that has not been formulated before inliteeature. The proposed method not
only signals an out-of-control situation, it iddi@s accurately and easily which stages
and categories are causing the disturbance, prayititerpretations within and across
stages of the process.

The proposed methodology works as follows: If atmamial distribution fits the
number of transactions in each category at eveyestthen the process is decomposed
into single stages that are monitored separately, fanally into independent binary
substages with two categories. Each binary substagharacterized by a conditional
probability and monitored with an independent fi@act called a tree fraction. The
number of tree fractions that are monitored depemdshe number of final categories,

i.e., those that do not split in any further categg) not on the number of stages.



Two other contributions, summarized next, addréss dingle stage case. Each is
useful by itself, and each contributes to the megtloo the multistage case as well.

The first is a new two-sided CUSUM Arcsine methodrtonitor a process with two
categories. The second is frree method that monitors a multinomial process. phe
tree method not only signals an out-of-control situatignidentifies accurately which
categories are causing the problem, in contrasheéowidely used method in Marcucci
(1985).

Future research would cover monitoring other typésmultistage processes in
service. An application of using probability tretes test and interpret associations in

contingency tables is envisioned.



Acknowledgements

There are many people, lucky episodes, and remmagtblocks that are enabled me
to pursue doctoral studies. | want to thank PrafeSsisan Albin for guiding me in this
process from developing a research subject to #nefud task of writing articles for
publication. | am grateful that the Department oflustrial and Systems Engineering
hired me as a teaching assistant during severas,ypaviding me financial support, but
specially for allowing me to participate in the dbang process. | thank Dr. Jolie
Cizewski and Dr. Evelyn Erenrich both of the Graduachool for their key support and
encouragement at the beginning of my doctoral etudi

My external committee member, Professor Michaelrlfabm the Center for Urban
Policy Research has supported me in many ways,jiopeew research perspectives and
encouraging me in the tough times. The members gf digsertation committee,
Professor Elsayed Elsayed, and Professor Art Chiawgagse have generously given
their time and expertise to better my work. | thalném for their contribution and their
good-natured support.

| can share a few lessons learned: it is possibleedrn a PhD with just a
nonprogrammable calculator and even without a cdenpat home, which was my case
sometimes. However, it is not possible to earn B Rithout the guidance of a caring
and expert advisor and the example of the Depattsprofessors. Additionally, in my
personal case, a network of transformational cdarsevas a key support in this
journey.

| dedicate this dissertation to my family, spegially two loving daughters.

Rodrigo Duran



Table of Contents

ABSTRACT OF THE DISSERTATION ....ouuiiiiiiiiiitmmme et e e e e e e eat e e eas s enennnnneeeees il

F ol LoV [=To [oT=T 0 o =T o | TP v
TaDIE Of CONIENLS ... ettt e e et e et s e e e e e e e e e e eeees %
(IS 0o Y o] 1= o 110t 2SR Vii
LISE OF TADIES ... et et et ettt et et e s e e e e e e e aeeeeeeenennne Vil
LISE OF FIQUIES ...ttt e et ettt e e eeae et bbb b e e e e e e e e eaeeaeaeeeees IX
I [ 01 Yo [ To{ 1[0 o RSP UPPPPPPRTTRR 1
1.1 Overview of property tax COMPIAINT PrOCESS ca . vviiieiiei et 4
1.2 Additional details about MethodS ProPOSEA. . uuuieiiieeieieiiiiiiiiieii e 7
2 LITEIATUIE TBVIBW ...t emm ettt s e e e e e e e e e e e e e e eeeeeeeeeeeeeeeseebnnnn e e eaeas 12
2.1 Literature review about monitoring a fractionbinomial distributed data..................... 12
2.2 Literature review about monitoring processeas wiultiple categories ............cccceeeeieeaee. 17
2.3 Literature review about monitoring processethaservice industry and healthcare ........... 20
2.4 Literature review about monitoring mMultiStageqBSSeS .........ccoevvvviiiiiiiiiiiiiiiie e 23

3 Monitoring and accurately interpreting processegl multiple categories using a

(1] oF= T o111 (== PSRRI 25
3.1 Equivalence between multinomial process antaiyibity tree...........ccoeeeeiieiiiiiiiiiinnnenn. 28
3.2 Thep-tre@mMEtNOd. ..o e e e e e e e e e e e e e e e 33
3.3 Simulation experiments comparing MeEthOUS e ..uvveeiiiie s 37
3.3.1 Diagnosis accuracy and sensitivity for preesswith three categories... 38
3.3.2 Diagnosis accuracy and sensitivity for a pssowith six categories....... 43
3.3.3 Diagnosis accuracy and sensitivity for Bagiesnethod......................... 46



3.4 Concluding remarks abopHtreemMetNOd. ..........iii i ceeeee e 49

4 Monitoring a fraction with easy and reliable sej$ of the false alarm rate................... 51
4.1 New CUSUM Arcsine chart and new CUSUM BOX-CORICE..............eceeiiiiiieeiiiiiiiiiiiiiiiine 54
4.2 Comparison of easily designed methods for@ifm.................coooeeiiiiiiiiiiiicccc, 57
4.2.1 Comparison of actual ARL .........ooouviiiiiiiiii e 59

4.2.2 Comparison Of SENSILIVILY ........coiiiiceeeceiiiiiiiir e 63

4.2.3 Example Of & ProCeSS SEIVICE.........cccammmmrriiiiiiiaaaee e e e e eeeeeeeiaiiaaens 64

4.3 Concluding remarks about CUSUM for a fractoethod..............ccccooeeiiiiiiiiii i, 68

5 Monitoring multistage and multicategory ProCESSES........cccuvvivveeeiriririiiiaaeaeeeeeaaaaeeenns 69
5.1 Methodology to monitor multistage and MultiCAE/ ProCESSES ......cevveeeeeeeeiiiiiieieiiinnnae 71
5.1.1 Methodology to monitor MSMC processes UsSigriTes...................... 73

5.2 Case study: @ Call CENLEI PrOCESS......caaaaeaeiniiiiaeie e e ettt a e e e e 81
5.2.1 Algorithm applied to call center ...... oo 28

5.2.2 Matrix representation of call CeNter ... 89

5.2.3 Monitoring a simulated call CeNnter ..........cccceeviieiiiiiiin 91

5.3 Concluding remarks about monitoring multistagd multicategory processes................... 95
B FULUIE rESEAICN ... .ttt e e e e e e e e 97
A o] o Tod [1 ] o] o 1= SRR 111
S I S U= (=T =] o] L PSPPI 114
S T Y o] 011 Lo Lo RS URRPPPRUPPRRRRRR 121
10 CUITICUIUM VLA ...t emmmm ettt s e e e e ee e e e e e e e e e e e e eaeeeeeaeneeennnnns 144

vi



List of Appendices

Appendix A. Articles about monitoring single stggecesses with multiple categories.......... 121
Appendix B. The fractionsi are unbiased eStimatesfof.............cccvoveveeeeeeeieeeeeeeeseeennes 129
Appendix C. Contiguous tree fractions are UNCOteEla...............cceeeeiieeeeeeeeeeieeeee e 130
Appendix D. Normalizing transformations and relaBtewhart charts ...............ccceeee. 134
Appendix E. Modifiedo-chart in Chen (1998) and modifieg-chart in Shore (2000) ............ 136
Appendix F. In-control values for tree fraction tniaes IEj ................................................. 137
Appendix G. Tree fractions in a simple 2-Stage PESC...........ceevvvvuriiiiiiiiiieeeeeeeeeeeeeeeeeeeanns 140
List of Tables

Table 1.1. Three-sign@achart has difficulties achieving desired ARI 370........cccceeeeveeeeeeen. 7
Table 1.2. Two out-of-control samples of finiISHEEEKS............oovvvviiiiiiiii e, 8

Table 2.1. Methods for monitoring a fraction byeyaf method and design

(Comb=combination or enumeration, Sim=simulatioiG¥arkov chain)....................... 15
Table 2.2. Summary of monitoring single stage psees with multiple categories................... 18
Table 2.3. Summary of monitoring processes in @meice INAdUSHY ............ccceeeeeevviieevevieeeens 22
Table 3.1. Experimental design for examples witieé categories ........cccceeeevveeeeeeeeeeeccmnes 39

Table 3.2. Diagnosis Accuracy (correct signals ¢le total signals) and ARL

performances for BriCk CASIEm3 ......coooii it e e e e e e e e e e e e e eenaaannees 40
Table 3.3. Diagnosis Accuracy and ARL performarfoesCustomer cas&=3....................... 41
Table 3.4. Experimental design for example WikhcEtegories ..........cccceeeeeevveeveeeeeiviennnnnnns 44

Table 3.5. Diagnosis Accuracy and ARL performaioceCustomer casé=6 categories....... 45

vii



Table 3.6. Bayesian Method of Shetual.(2005) compared witp-tree, Customer case,
K=3, deSIred ARBZ200 .....ieuniiiiiiiiiiie et mmmmir s e et e s e e s aba s e s e esa e saassaaneeenes 47

Table 4.1. New CUSUM Arcsine method and new CUSUd4-Box method for a

117> 1011 0] o SRR 56
Table 4.2. Experimental design for evaluating gad#isigned methods for a fraction................ 58
Table 4.3. Acceptable actual ARy case and method ..., 61

Table 4.4. Average absolute % error of ARBE) by desired AR4.volume type, and

L0111 0T Lo TP PP P PP PPPPPPPPPP 62
Table 4.5. Average of ARLs by positive shift sizesl by ARlgand method............................ 64
Table 4.6. Average of ARLs by negative shift siaed by ARlgand method........................... 64
Table 4.7. Property tax complaint datal......cccceee oo 65
Table 5.1. Descriptions of categories for call @ent...............oooevviviiiiiiiiiinn e 85

Table 5.2. Tree fractions for call center (alsdalksl arrows in Figure 5.4)...........ccccvvceeeee. 88

Table 5.3. ARL results for simulated call centestal desired ARE=84............cooeiiiiiiiinnnnnnn. 93
Table 6.1. Generalized PoiSSON diStriDUtIONS oo 99
Table 6.2. Descriptive statistics of the volume &eé fractions (weekly basis)................. 100
Table 6.3. Sample correlation matrix and p-valwetill hypotheses...........ccccvvviiiinee. 101

Table 6.4. Cross classification of party identifioa by gender (frequencies under

independence iN PAreNtNeSIS) ... ... 108
Table 6.5. Tree fractions for party identificatioypgender...............oooeviiiiiiiii e, 110
Table D.1. Shewhart charts for a fraCtion ..ceeeeee..oooiiei i 135

Table G.1. Independence of tree fractions for stn@sbtage process......cccccceeeeeeeveeeeee e 141

viii



List of Figures
Figure 1.1. Multistage property tax complaint piggas a tree diagram ................oeeeees e 6

Figure 3.1. (a) A trinomial process and (b) Eqlemaprobability tree with two substages ...... 29

Figure 3.2.p-chart for f1 (conforming bricks OVer total) ..............ccceeeeieeeeeeeeeeeeeeseneeees 36

Figure 3.3.p-chart for f2 (nonconforming Typé bricks over all nonconforming bricks)...... 36

Figure 3.4. ARL comparison for shifts &nin Customer cas&=3, desired ARp=200........... 43
Figure 3.5. ARL comparison for shifts & K=6, desired ARE=200...........cvvvvrvrriiiiiiiieeeeeennn. 46
Figure 4.1. Run chart of number of complaints owamber of consults...................coooeelld 66
Figure 4.2. Two-sided CUSUM Arcsine charts for frags of complaints..............cccceeeeeees 61.
Figure 5.1. One path to reach a Category ........ccooiiviiiieiiiiiccee e 71
Figure 5.2. Call center business process diagram...........coooeeeiiiiiiiiiiiiiiiii e 82
Figure 5.3. Multinomial probability tree for cakioter ... e 84
Figure 5.4. Binary probability tree across stagesatl CeNter............ooovvvvvivviiiiiinsicceeeeeennnnns 87
Figure 5.5 Shifts in call CENEIr PrOCESS ... coeriiiiieee e 92
Figure 6.1. Multiple scatter plot amohband tree fractions ...........ccceeeviiieiiiiciieeeeeee e, 101

Figure 6.2. MEWMA control chart fad® and the four tree fractions. ARE100 weeks........ 102

Figure 6.3. Binomial based 3-sigmahart for f © ., shows overdispersion ...................... 104
Figure 6.4. Time series of actual fracticﬁr&vz) and itS EWMA ... 107
Figure 6.5. Binary probability trees for party itiéination for females and for males............ 011

Figure 6.6. Binary probability tree for party idéicttion for females and males subjects ...... 110

Figure G.1. Multistage process with two stagesfandfinal categories ..............cccceeeiiivan 140



1 Introduction

Consider a transaction process that occurs in omaooe stages. For example, in a
tax complaint process the stages are the stepayasgpfollow to resolve a property tax
dispute from initial complaint through final resbbn. The transactions can be related to
customer service, as in the tax complaint proaasty manufactured products. However,
the primary interest here is in the customer serdea. The work is motivated by the
previous experience of this student who servedrastdr forthe national administration
of the property tax in Chile, including managemesgponsibilities over the customer
service systems.

One goal of the management of a service organizagiononitoring the fraction and
number of transactions that fall into multiple gaiges at each of multiple stages. Often
this data is presented to managers in its raw faith some fractions reported. A
monitoring system would allow the management tantifie and respond to unusual
occurrences and also to introduce improved proesdiar make the system operate more
efficiently by improving training or modifying th@ system or changing staffing.

The main contribution here is a methodology to rtwrthe fractions and numbers of
transactions within and across stages of multistagd multicategory processes, a
problem that has not been formulated before in lifeeature. The method not only
signals when the fractions in the multiples stagesl categories have changed
significantly, it indicates which stages and categ® are causing the disturbance
allowing management to interpret the signal. Furttiee method results in the desired

false alarm rate.



Two other contributions in this dissertation addresnitoring the fractions in single-
stage processes. These are each useful individaradlyalso contribute to the multistage
case described above, which is based on decompth®ngultiple-stages and categories
into single-stages that are monitored separately.

The first single-stage method is proposed for nuoimy the fraction in each category
in a single-stage with two categories - called heft@nary process. This new method is
needed because the well-knowthart often does not achieve the desired falsemnala
rate even when the sample size is very large aredveould expect a good normal
approximation for the number in each category. liteeature does contain other methods
to overcome the problems with achieving the desfedse alarm rate as described in
Section 2.1. However, these methods require congilps to calculate the control limits
including published tables, simulation, or Markoliam analysis. The method for
monitoring the binary process is in Duran and AlI(2909b), in printat Quality and
Reliability Engineering International

The method developed is the CUSUM Arcsine methodwimch the data is
preprocessed using an arcsine normalizing transfeom for a binomial distributed
variable and then monitored with a two-sided CUSkigthod.

The second single-stage method is for monitoriagtions in processes with three or
more categories - called here a multinomial prac@$e principal advantage of the
method developed here, called fhvree method, is its usefulness as a diagnostic tool.
The p-tree method monitors both nominal and ordinal categdraata and allows any
number of categories. This new method is neededusecthe existing methods are able

to signal when the fractions among the categorée® lthanged but they do not indicate



which ones are problematic, i.e., they cannot beipterpret. The method for monitoring
a single-stage multicategory process is in Durad Afbin (2009a), in print atlE
Transactions

The p-tree method developed here transforms a multinomialcgss with K>2
categories into a binary probability tree wiKkl independent binary substages, in which
each substage has two categories. The independehased on Johnsa@tal. (1996, p.
68) and Kemp and Kemp (1987). Each binary substagenitored with an independent
control chart for binomial distributed data.

The p-tree methodindicates easily which substages are responsildase of an out-
of-control signal. Each binary substage could baitooed with the familiar and simple
to usep-chart based on the binomial distribution. Howevbg p-chart often does not
result in the desired false alarm rate. To solve pnoblem, we propose to monitor each

binary substage with the proposed CUSUM Arcsinehoubt



1.1 Overview of property tax complaint process

This work was motivated by the tax complaint precesentioned earlier. The
property tax assessment process starts when Idiaéso process input data from
municipalities and deeds offices such as constragbermits, lot subdivisions permits,
occupancy permits, real estate transfers, and yaxpeequests for assessment. An
assessor evaluates the property. Then the assdsslatanis sent to computational
processing to update databases. Legislated fisic&l fables are invoked to determine the
assessed value. A batch program processes a lmgwoéssessments in order to generate
and mails notices to the taxpayers.

A taxpayer with a problem passes through a tax taimtgprocess, which is shown in
Figure 1.1 as a multistage and multicategory pmc€kere are four stages. Assessment
notices are sent to the taxpayers and taxpayeisirgiol two categories: the taxpayers
consultan assessment advisor to discuss whether thereeiglistic complaint or do not

consult. In stage two, among taxpayers who conaualassessor gives front desk advice

for the case and the taxpayers split into threegmates: the assessor may advise
taxpayers file an official complaint or not, or thmaybe a complaint might be useful. In
stage three, some taxpayers will fdecomplaint and others will not file. In stage fou

filed complaints are investigated and the assessffise makes a final resolutiothat

falls within one of three categories: the resohti® that the assessment is correct, that it
is too high or that it is too low. Rafool (2002)ntains an overview about this tax in the
United States, and The New Jersey Property Taxsaasent Study Commission (1986)
describes the methods and makes recommendationsh e still valid, about the

administration of this tax in New Jersey.



As a whole, the monitoring system can indicate geanin the quality of the
assessment decisions, the performance of the corhgleocesses, and even help to
predict changes in the tax revenues. The assesspneo¢ss is subject to errors —
incorrect assessments against the taxpayer orvor faf the taxpayer. Changes in the
error rate affect each stage in the complaint m®c€hanges in the tax administration
responses affect both the front desk and the femblution stages. Keeping the process
in control as well as reducing the errors wouldllema more efficient and equitable tax

system.
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1.2 Additional details about methods proposed

We now give more details about the three methodpgsed. We start with the
CUSUM Arcsine method for monitoring single-stageqasses with two categories. The
new method achieves the desired false alarm ratarfg sample siz& and baseline
probability 0.00540<0.995 such that Bl po(1-po)>3. TheN may be constant or Poisson
distributed. This rule works with combinations bf and pp in which the normal
approximation does not hold, and also in combimation which the normal
approximation should work but fails as explainegtne

There exist several rules of thumb to predict winep-chartwill achieve the desired
false alarm rate based on predicting when the noapproximation to the binomial
works well. Schader and Schm(#i989) study two well known rules regarding the
normal approximation to the binomial: rule 1 re@sirthatNpy(1-po)>9 and rule 2

requires thatNpo>5 and alsd\(1-pp)>5. Table 1.1 shows three examples where both

rules of thumb hold (some by a very wide margin} the resultingp-charts do not
achieve the desired false alarm rate, or equivigiehe desired in-control average run
length, ARLy (which equals the inverse of the false alarm fatendependent samples).
The reason thp-chartsfail is that the normal approximation performs pgpan the tails
of the binomial distribution, as pointed out by Ryand Schwertman (1997, p. 66).
Notice that these sample sizes are very large aneveuld certainly expect the normal

approximation to work.

Rule 1 Rule 2
N Po Npo(l'po)>9 Np0>5 ARLO
200 0.1 18>9 20>5 294
600 0.1 54>9 60>5 441
1000 0.01 10>9 10>5 300

Table 1.1. Three-sigmachart has difficulties achieving desired ARif 370



There are existing methods that successfully aehibg desired false alarm rate but
they are difficult to design because require pliglistables, simulation, or Markov chain
analysis. These include binomial-based EWMA chartGan (1990), binomial-based
CUSUM chart in Gan (1993), CUSUNp-chart and EWMA Q-chart in Quesenberry
(1995), and binomial based (modified) CUSUM charRieynolds and Stoumbos (2000,
1999). In addition, there exist methods that areyet design, but these fail to
consistently achieve the desired false alarm ratéhorough review of this literature
appears in Section 2.1.

We now give more detail about thetree method for a single-stage multiple
categories case. First we show it can be quitecdlff to interpret a signal in a
multinomial process that is out of control. Marau®85) gives data where samples of
finished bricks are classified into conforming, nonforming typeA, and nonconforming
type B categories with baseline probabilities 0.95, 0&&j 0.02 respectively. Table 1.2

shows simulated data of two significantly out-ofattol samples.

Fraction
conforming| nonconforming nonconforming
A B
Baseline .950 .030 .020
Sample 1 .960 .014 .026
Sample 2 .932 .034 .034

Table 1.2. Two out-of-control samples of finisheatks

Table 1.2 demonstrates that is difficult to intetpthe results. For sample 1, is the
out-of-control condition caused by an increaséneftaction of conforming bricks or is it
caused by a decrease in the fraction of nonconfagrtyipeA bricks? For sample 2, does
the decrease in the fraction of conforming brickase the out-of-control condition or is

it a problem with the ratio of typ& versus typd nonconforming bricks?



The reason because it is difficult to interpret evhcategory is causing the out-of-
control is that as one count increases then thecfuime other two decreases, and vice-
versa; i.e., the numbers are negatively correlat®dmultinomial process can be
monitored with a control chart in Marcucci (198%yhich has been widely used.
Marcucci’'s method plots a Pearson statistic, arghads when the current sample
significantly differs from baseline. However, Mactiis method does not indicate which
categories are causing the disturbance.

For the bricks problem, Marcucci (1985) suggestsrpretation as follows: discard
one category and construct a modifiedhart based on the remaining two. However, it is
not clear which category should be discarded andcitai (1985, p. 89) suggests that
this method is restricted to at most three categori

In contrast, the-treemethod developed here transforms the multinomatgss into
several independent binary substages and thigsassisterpreting where the problem is.
For the Marcucci (1985) bricks example, a probabtliee with two binary substages is
constructed to represent the three categories fildtesubstage monitors the fraction of
conforming bricks out of the total sample. The seteubstage monitors the fraction of
nonconforming type\ bricks over the nonconforming bricks. The fracdanonitored in
the two substages are independent. We call thvesendependent fractions the “tree
fractions”.

The p-treemethod helps answer our questions about what catsedut-of-control
signals for the samples in Table 1.2. For sampl¢éhé&,fraction conforming brick is

consistent with baseline, but among nonconformilgge A is underrepresented. For
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sample 2, the fraction conforming is low compare@dbaseline and the fraction of type
among nonconforming is consistent with baseline.

Simulation studies in Section 3.3 comparefeee method to the Marcucci method.
The p-tree method gives accurate interpretations to determwvhéch categories are
responsible for the signal, something that the Mect cannot do at all. Also, the
sensitivity is comparable to that of the Marcuceithod.

The method allows the user to order the categ@ce®rding to their monitoring
importance. This is relevant because the way inclwhwe order the categories to
transform the single-stage multinomial process mtioinary probability tree affects the
monitoring capability. Those categories at earBabstages will have larger samples
sizes, resulting in better sensitivities and diagmaccuracies than later substages.

We now discuss the principal contribution of thiegdis the method to monitor and

interpret the fractions in multiple categories asronultiple stages. Here are the basic
steps of the methodology: (1) Construct a multirednprobability tree for the process
(for an example, see Figure 1.1) such that themnlg one path to reach each category
and all splitting of categories are identified. &)ply thep-treemethod to each splitting
to convert the multinomial probability tree intdoanary probability tree. (3) Identify the
binary substages and the “tree fractions”, whi@the independent fractions that we will
actually monitor. (4) Construct CUSUM Arcsine amhicharts for each tree fraction.

To facilitate the software implementation of the ltmstage multi-category
monitoring method, we express the procedure in imatotation. This is especially
critical for larger systems since it is difficutt track, maintain, and update all the data. In

Chapter 5, we start with a business process diagrhra call center described in
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Mandelbaumet al. (2001) and show the equivalent multinomial probi@btree, the
transformed binary probability tree, and the cdnttarts. The case study also illustrates
the matrix representation of the method.

In Chapter 6 future research is described. Thigudes monitoring multistage
multicategory processes with multinomial assumitmat do not hold. An example of
an important application of this would be monitgrimouting matrices in queuing
systems. Another area of future work is in foreiogstand in testing and interpreting
associations in contingency tables using trees.

The rest of this dissertation is organized as foloChapter 2 contains a literature
review; Chapter 3 presents monitoring single-stageesses with multiple categories;
Chapter 4 presents monitoring a fraction with easy reliable settings of the false alarm
rate; Chapter 5 addresses monitoring multistagenamticategory processes; Chapter 6

describes future research, and Chapter 7 concludes.
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2 Literaturereview

This Chapter reviews the literature related tofttlewing issues:

Monitoring a fraction in binomial distributed data

—  Monitoring processes with multiple categories

Monitoring processes in the service industry araltheare

—  Monitoring multistage processes

2.1 Literaturereview about monitoring a fraction in binomial distributed data

The main goal of this review is identify which exig methods might be easily
designed to achieve a desired false alarm rgtevklen monitoring fractions of binomial
distributed data. Table 2.1 summarizes the methimatshave been proposed to monitor a
fraction, mostly in manufacturing. This review cdempents Woodall (1997), which was
a comprehensive review about monitoring attribuatadThe first column of Table 2.1
identifies the type of method. The second and tbaidmns show the method’s name and
its reference. The fourth column shows the degrédlifficulty of the designing
procedure: “not easy” means that the parametersadealated using any of the following
techniques: consulting tables (Tables), combinakat enumerative methods (Comb),
extensive simulation (Sim), or Markov chain anay®C). The label “easy” means that
the parameters are calculated in simple steps,oufithsing the latter techniques. The
fifth column indicates whether the method is twdesi, i.e., able to monitor both
increases and decreases. The last column indiedtether the authors in the reference
show that the method achieves a desiteWe also test through simulation whether the

methods that have an easy design actually achievedsired: (Section 4.2).
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Regarding the first column of Table 2.1, we distiisy six types of methods for

monitoring a count or a fraction:

p-chart, np-chart, and modifications: methods that plot thection or

count of interest.

— Shewhart charts on transformed fraction: plot a madizing
transformation of the fraction with a Shewhart ¢hgor individual
observations.

- CUSUM or EWMA on fraction: applied on a fraction count without
transformations.

- CUSUM or EWMA on transformed fraction: preprocebg fraction

with a transformation and then monitor it using @SUUM or a EWMA

method.

Run rules for detecting increases in a fractiomanufacturing.
— Run rules for detecting decreases in a low fradtiomanufacturing.

In the rest of this Section, we give additional coemts on each type of method. The
first type of method includes the modifigechart of Chen (1998) and the modifieg
chart of Shore (2000). The two latter methods myottié control limits of g-chart or an
np-chart in order to get similar values to the praligblimits that would be obtained
using the exact binomial distribution (more detailsAppendix E). In this first type of
methods we include control charts whose designomsbinatorial such as Ryan and
Schwertman (1997) and Schwertman and Ryan (19989hwior a given value ofy,
search for values i and control limits such that the actual ARJets very close to 370.

Acosta-Mejia (1999) and Wet al. (2006) can also be seen as combinatorial procedure
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All the methods classified in the second type hameeasy design. The Arcsine
transformation (described and used in next Seci®gpecific for binomial data and is
approximately standard normally distributed for aiajues ofN andp,. The Box-Cox is
a power transformation (described in Appendix Dgttrequires a power parameter in
order to minimize the skewness of the transformata,dnot requiring knowledge of the
data’s distribution. The& transformation (described in Appendix D) is appnoately
standard normally distributed, and uses the inves$ethe cumulative binomial
distribution.

Here we comment on methods classified in the ttyipg. The design of a binomial
based CUSUM chart is treated initially by Gan (1998lditionally, Hawkins and Olwell
(1998) give complete foundations of the CUSUM mdthand propose a CUSUM for
binomial data. These CUSUM methods usually regsileing a Markov chain in order
to calculate their parameters. Reynolds and Stosnib®99) propose a modified
CUSUM for Bernoulli data, i.e., witN=1 as a sample size. This method requires solving
a system of three equations to design the paraseterach side of the CUSUM (upper
side and lower side), i.e., a total of six equatitor a two-sided method. This method has
shown better sensitivity than the binomial basedthows, and can work well in
manufacturing applications.

Regarding the fourth type of methods, Quesenb@®@5) is the first author that
proposes monitoring a fraction using a CUSUM omamnalizing transformation (he uses
the Q transformation). He also proposes a EWMA o &ransformation. Our proposed
methods, the CUSUM Arcsine and the CUSUM Box-Cosgoafall in this type of

methods.
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Type of Method M ethod Reference Design T wo-sided Achieves o,
Shewharip -chart Montgomery (2005) Easy Yes In some capes
np-chart exact prob Not easy
limits Montgomery (2005) (Comb) Yes In some case$
Modified p-chart Chen (1998) Easy Yes In some casgs
Modified np-chart Shore (2000) Easy Yes In some cafes
p-chart,np-chart, Not ea
and Randomizedp-chart Wauet al. (2001) casy Yes Yes
bl (Sim)
modifications
Ryan and Schwertman
Modified p-chart or (1997), Schwertman ar Not easy Yes In some case
np-chart Ryan (1999), Acosta- (Comb) i
Mejia (1999)
- Not easy Only d
Modified np-chart Wauet al. (2006) (Comb) increases In some caseq
Q chart Quesenberry (1991) Easy Yes Insome cast
Shewhart chartg
on transformed Arcsine chart Chen (1998) Easy Yes In some calses
Fraction
Box Cox chart Only suggested Easy Yes In some cqses
EWMA for Binomial Gan (1990) NE)'\tA(e:z;sy Yes Yes (mfg)
Gan (1993), Hawkins
CUSUM or and Olwell (1998), Not eas
EWMA on |[CUSUM for Binomial Bourke (2001), MC/TabIgs) Yes Yes (mfg)
Fraction Reynolds and Stoumboé
(2000, 1999)
Bourke (2001),
. Not easy
CUSUM for Bernoulli Reynolds and Stoumbos MC) Yes Yes (mfg)
(2000, 1999)
CUSUMQ, EWMA Quesenberry (1995) Not easy Yes Yes (mfg)
Q (MC)
CUSUM or
EWMA on New CUSUM
Transformed Arcsine Proposed here Easy Yes Yes
Fraction
New CUCSOL)J(M Box- Proposed here Easy Yes Yes
. Wu and Jiao (2007),
R_un rules for | Unit and groups-run Gadre and Rattihalli Not easy _ Only In some cased
increases charts (Tables IMC) increases
(2005)
. Schwertman (2005),
Run rules for BaslggoomniaNlec?ratlve Chanetal. (2003, Not easy Ussuall
. 2002), Liuet al. (2007, (Tables Y In some cases
decreases Geometric 2006). Lucast al IMC/Comb decreases
distributions ), : )

(2006)

Table 2.1. Methods for monitoring a fraction byeéypf method and design

(Comb=combination or enumeration, Sim=simulatiorGMarkov chain)
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The methods in the fifth type monitor increasedractions using run rules. The
sampling in these methods switches from unit-lengpection N=1, higher sensitivity)
to group-level inspectionN>1, lower sensitivity) and back to the unit-levespection
according to specified rules. The authors of thmsthods claim that their charts improve
the sensitivity when monitoring increases in frait.

The methods in the sixth type for monitoring a loenconforming fraction typically
consider the geometric or the exponential or thgatiee binomial distributions. For
example, Luca®t al. (2006) propose a method based on run rules to tdptecess
improvement when the lower limit of aip-chart is zero. When combined with the upper
control limit of annp-chart can offer a two-sided feature. This methad work well to
detect rare events although its design is stilt ‘@asy” because it requires enumeration.

In Section 4.2, the identified easy to design mashare compared using simulation.

Notice that existing methods that achieve the ddsirare not easy to design.
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2.2 Literaturereview about monitoring processes with multiple categories

Table 2.2 summarizes the papers about monitoringlesistage processes with
multiple categories (ordered in columns by firsthau). Appendix A contains more
details about the papers in Table 2.2. Additionalhe method in Marcucci (1985) is
longer discussed in Chapter 3.

The literature also contains Bayesian approachesnfonitoring a multinomial
process. Laviolette (1995) and Shetwal. (2005) consider that the probability parameters
of the multinomial model vary according to a prdistribution, typically the Dirichlet
distribution. The method in Laviolette (1995) doex provide interpretation of signals.
The method in Shiaet al. (2005) provides univariate charts using randomizewitrol
limits for negatively correlated fractions, but yhdo not help accurately to interpret
signals as shown in Section 3.3. Further, Laviel¢it995) monitors the cumulative
posterior distribution of the probability parameteand detects only increases in

nonconforming fractions.
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Paper Duran and Laviolette Marcucci Shiau et al. Spanos and Tucker et al.
P Albin (Bayes) (Chi-square) (Bayes) Chen (Ordinal)
Year of paper 2008 1995 1985 2005 1997 2002
conforming/non conforming/non Only non
Type Of General ng General g y . Ordinal
Categories conforming conforming conforming
Transaction Pass and
Applications Processes &  Marcucci Bricks  Bricks Quality Multiple Fail ~ Semiconductors  Bricks Quality
Marcucd's Bricks modes
Multinomial and Dirichlet Dirichlet Multinomial,
; Compound Compound iofi
equivalent Logistic
DiPrQbCf§S L Multinomial aka. ~ Multinomial ~ Multinomial aka. . Multinomial
stribution Classification Polya- Polya- Regression
tree Eggenberger Eggenberger Model
Posterior Cum Chi-square Fractions of Runs for short Absvalue of
term about location
Var!able Eech<_—1tree dist function of K- count over chosen fraction, parameter of
Monitored fraction Pearson )
Goodness of Fit assumed quality
1 probab statistic sample size for long term  underlying distr.
Based on Marginals based  Chi-square for
Disrribution of |~~~ Dirichlet _ on Dirichlet ~_long tem,
Variable Binomial Chi-square Geometric for N(0,1)
Monitored Compound Compound short term run
Multinomial Multinomial rules
Yes, including a Yes for long tem
UCL Yes Yes Yes Yes
randomized one n/a for short term
Yes, including a Not for long term,
LCL Yes No No Yes
randomized one n/afor short tem
fof Categories 51 3 3 5 4 3
in Exanple(s)
ARLs for different ARLs for different  ARLsonlyfor  Yes. Betterthan
o values of shifted _ short term SPC,  varcucd based
Sensitivy . No No values of shited  against shifted ]
tree baseline prob of one chart for quality
probabilities prior probabilities fraction improvement
Yes, based on No. Individual
| idependence of np-charts
Interpretation No proposed for No No No
every tree two critical
fraction fractions

Table 2.2. Summary of monitoring single stage psees with multiple categories

Tuckeret al. (2002) propose a monitoring method for ordinakgatical data. The
method assumes that the ordinal characteristi@hasderlying continuous distribution.
If the user knows the underlying distribution, thi&e sensitivity of the ordinal chart is

better than Marcucci’'s method. The method in Tuekeal. is not applicable to nominal
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categorical data. No interpretation of signalsnevjled. Both thep-tree and Marcucci
methods monitor either nominal or ordinal categaraata.

Finally, Spanos and Chen (1997) introduce proced8ngs that are treated as
covariates of a multinomial logistic model for ardi categorical data. The method

monitors the coefficients using a Marcucci method.
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2.3 Literaturereview about monitoring processesin the serviceindustry and
healthcare

Monitoring service processes has received limitedl ibcreasing attention from
practitioners and researchers. Montgomery (20028p-189) and Devoet al. (2007, p.
512-521) include examples about univariate apptoatof nonmanufacturing processes.
From a methodological point of view, Montgomery @20 p 184) points out that a key
element about applying statistical process contrelonmanufacturing applications is to
focus initial efforts on developing a valid measuent system. Montgomery proposes to
use flowcharts and process charts. Tables@rBmarizes several references in this field,
which are commented below.

Regarding existing research papers, Sulek (2004¢ws the use of statistical quality
control in the service industry, emphasizing thedelmg of the process flow, and
mentioning the potential for monitoring multistagervice processes. MacCarthy and
Wasusri (2002) review the literature between tharyd 989 and 2000 about monitoring
methods of nonmanufacturing processes.

Here is a list of articles with applications of ntoning methods to the service
industry: Anderssort al. (2005) monitor cyclical business processes, wtpliaations
to financial decisions as well as comparing firfAsttersson (2004) monitors customers
churn (rapid change of carriers) in the telecommation industry. Sulelet al. (2006)
approaches monitoring a service process in a refaration. Jensen and Markland
(1996) monitor quality perception among customeeimann (1996) proposes

monitoring fractions in a telephone service maiatee process with charts based on
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individual observations. Gardiner and Mitra (1994)pose to monitor waiting times in a
bank.

Woodall (2006) gives a review of the use of contbhrts in health-care and in
public-health surveillance. He shows that the ubeattsibute data is often found in
health-care applications. Chesher and Bufb@96) use a 3-sigmpechart to monitor
technical performance of clinical laboratories. Wagneret al.(2005) propose CUSUM
methods for monitoring the risk of bioterrorism\asll as emergency calls. Benneyan
(2006, fig. 6) illustrates the use of a EWMA bagechart to detect increases in the use
of prescription drugs. In health-care applicatichgre is usually 100% inspection, so it
IS not possible to remove special causes to rehamprocess quickly to in-control. Thus,
a control chart might continue to signal afterfitst signal. The latter issue also applies
to service processes, where special causes ashedand investigated but the process is
not necessarily stopped. Multivariate monitoringtimoels remain largely unexplored in

the area of health care.
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Andersson | Devor et = Jensen and W oodall
Markland
Paper . Montgomery | Pettersson Sulek
(quality 9 y !
etal. al. per ception) (Health-Care)
Year 2005 2007 1996 2005 2004 2004, 2006 2006
Tum in Defects in y f chumn in et .Ffor fxamp:e,
. business = account  sSurvey on anstor - telecom- utistage - Infection rates
Applications ) aerospace jo L service or waiting
cycles in payable ~ customers munication )
. . orders . processes times of
industries industry .
process various sorts
Process |Any cyclical . . Assumed = Assumed . . . Attributes
. . ) Binomial Binomial Varied
Distribution| time series MWN Normal related
Shewhart chal
. for 1st stage. Varied:
Factor one-sidep- Cause
_ - ) ; . CUSUM,
Monitoring | Likelihood 'u-chart & Analysis,T? chart with |  selecting
Method based chart Hotelli Shewhart ariable = control chart EWMA for
© p- A ote mg v II o bout attributes, Ris
chart & PCA sample size (a ou Adjusted, etd
residuals) for
2nd stage.

Table 2.3. Summary of monitoring processes in #éreice industry
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2.4 Literaturereview about monitoring multistage processes

First, methods for monitoring multistage and mualtégory processes are not found in
the literature. Monitoring methods exist for otlygse of multistage processes, mostly in
manufacturing applications. These processes areadiesized by a sequence of
manufacturing stages in series, in which the outgua stage is an input for the next
immediate stage.

Suleket al. (2006) is an early and perhaps unique work abautitoring a multistage
process in service. That work approaches monitoartgvo-stage service process in a
retail operation, using a regression adjustmenhatetelating the two stages. Zou and
Tsung (2008) suggest the use of multistage methodmonitor service processes in
industries such as telecommunications, banking headth care.

The following are references about monitoring nstdtge processes in
manufacturing, with correlated stages in serieakNand Davoodi (2009), Zou and
Tsung (2008), Kaya and Engin (2007), Zangtlal. (2006), Jearkpaporet al. (2005),
Leeet al. (2004), Zhouet al. (2003), Heredia-Langnesat al. (2002), Dinget al. (2002a
and 2002b), Yao and Chen (1999), Lawlessal. (1999), and Agrawaét al. (1999).
These papers approach multiple correlated stagelsmmst of them fit a linear model
between contiguous stages. Propagation of variadoross stages and diagnosis
capabilities are key issues in this field. Othernitaring techniques include: neural
networks in Niaki and Davoodi (2009), multivariaggponentially weighted moving
average control chart (MEWMA) in Zou and Tsung (@Q0eneralized linear models
(GLM) in Jearkpaporret al. (2005), partial least squares (PLS) in lezeal. (2004), and

analysis of variance using autoregressive modelswlesset al. (1999) and Agrawagt
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al. (1999). Heredia-Langnest al. (2002) as well as Yao and Chen (1999) focus on
finding optimal inspection policies in terms of t®s

As mentioned above, many methods for multistagecgs®es fit linear models
between stages, and then set a control chart &duals (also called-cause selecting
methods), e.g.: Zantedt al. (2006). Regression adjustment methods were prdpfuse
model-based problems before approaching multispageesses. These works include:
Wade and Woodall (1993), Hawkins (1993), Haetlal. (1999), Loredcet al. (2002),
and Shuet al. (2004, 2005).

Many of the above methods propose to monitor indeéeet residuals between
contiguous stages. However, there are no methaatsptiopose a decomposition into
independent quality characteristics as the metipooisosed here in Chapters 3 and 5 for

either a single stage process or for a multiplgesfmrocess with multiple categories.
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3 Monitoring and accur ately inter preting processes with multiple categories using

a probability tree

Here we present a new method that offers an easigrto interpret an out-of-control
signal, thep-tree method. Consider a process with more than twoKsayategories and
the numbers of transactions across categories aitenamial distributed. We construct a
probability tree withK-1 binary substages that is equivalent to the p®osith K
categories. We show that the substages are indepermohd can be monitored with
independenp-charts. The independence is based on Joheisaln (1996, p. 68) as well
as Kemp and Kemp (1987). Thetree methodindicates easily which substages are
responsible in case of an out-of-control signal eadnhp-chart represents an estimate of
a conditional probability that characterizes a sadps.

The principal advantage of tigetree method is its usefulness as a diagnostic tool.
The p-tree method may monitor both nominal and ordinal catiegb data. It has a
simple implementation because it decomposes a\vatilite problem into independent
fractions andgp-charts(assuming the normal approximation holds for evesg fraction),
and it allows any number of categories. The Marcaaod p-tree methods seem to have
comparable sensitivities.

To illustrate thep-treemethod, let us apply it to the Marcucci (1985) ksiexample
of Chapter 1. A probability tree with two binarybstiages is constructed to represent the
three categories. The first substage monitorsréetibn of conforming bricks out of the
total sample. The second substage monitors thédracf nonconforming typé bricks
over the nonconforming bricks. Section 3.2 shoved the fractions monitored in the two

substages are independent and each is monitoradpbghart.
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The p-treemethod helps answer our questions about what catsedut-of-control
signals for the samples in Table 1.2. In Sectidh \Be show that for sample 1 the
fraction conforming brick is consistent with baseli but among nonconforming, type
is underrepresented. For sample 2, the fractioiocaing is low compared to baseline
and the fraction of typA among nonconforming is consistent with baseline.

Consider also the following reduced tax complangicpss: a taxpayer with a problem
passes through two substages: the first is to d¢omsth a front desk assessor and the
second is to actually file a complaint. The managatnat the end of the deadline, may
classify the notices into three categories: notsatird, consulted but not filed, and filed
complaints (assuming that consulting the front deskquired before filing a complaint).

Applying thep-treemethod to the taxpayers’ process, we first morthlterfraction of
taxpayers that consult in a month with the stage-{owhart. Then we monitor the
fraction of filed complaints over the number of gayers that consult with the stage-two
p-chart. An important assumption is that the taxpsymake decisions independently
(non autocorrelated) of one another and that thenve of notices sent in a month does
not affect their decisions.

Monitoring customer service processes can be somtedifferent from monitoring
manufacturing processes. Customer transactions uatelly continuously scanned
through an IT system, in contrast to manufactupngcesses where sampling is often
used. In customer transactions the monitoring nteth@ht continue to provide signals
after its first signal because it may not be pdesib remove special causes to return the
process quickly to in-control. For example, if fireemethod shows that the fraction of

complaints over consults in the tax assessmenbneranally large, then management
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may introduce corrective actions like better regiafes, improved instructions, and
changes in the IT system — but such changes maystake time.

We present simulation studies to demonstrate tiegp-tree method is a helpful tool
in two ways. First, it signals an out-of-controlnciition in a comparable amount of time
to the Marcucci method. Second, it gives correterpretation information on which
category is responsible for the signal, somethhmg the Marcucci and other existing
methods method cannot do.

Table 1.2 in Chapter 1 shows also that a singlgestath three categories can be seen
as a multivariate process. In fact, a monitoringtesyn would need to record at least
observations of two counts and the sample sizeedddthe monitoring system would
need to track and record and eithem; or n3 (assuming a constant sample e For
instance, ifn, is trackednz can be deduced &-m-n,. So, Marcucci’s bricks data can be
seen as a multivariate process with three coritletent variables.

The rest of this Chapter is organized as followsct®n 3.1 gives the equivalence
between a multinomial process and a probability,teexd explains how a tree is built and
characterized. Section 3.2 describes ph@ee control chart that it is based on the
independence of the tree fractions of equation)(&8ction 3.3 shows simulation results
to illustrate the diagnosis capabilities of ghdree chart and compares its average run
length (ARL) performance with Marcucci's method awdh the Bayesian method of

Shiauet al. (2005). Section 3.4 ends with concluding remabauathep-treechart.
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3.1 Equivalence between multinomial process and probability tree
Consider a multinomial with three categories (tnmal) and a sample of sizd
transactions. Baseline probabilities in categaaye equal t;, i= 1,2,3, and the numbers

in each category ang, i = 1, 2, 3. Of coursep, + p,+p;, =1 andn, +n,+n, =N.

This process is depicted in Figure 3.1a. Equivifeitigure 3.1b depicts this trinomial
process as an equivalent probability tree with substages. In substage f1,is the
baseline probability that transactions are in aatgd. resulting in realized numbe,
and 1f; is the probability that transactions are not itegary 1, with realized numbé\-
n;.In substage &; is the baseline conditional probability that tractsons are in category
2 given that they are not in category 1, with madi numbern, The conditional
probability that transactions are not in categofth2refore in category 3) given that they
are not in category 1 is-f3, with realized numbens. Only two conditional probability

parameters completely characterize the prodessidf,.
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n
1 n,
P,
p
N P 2 > n, n2
p3 f2
n
s 1-f,
n,
1 2

Figure 3.1. (a) A trinomial process and (b) Eqlémaprobability tree with two

substages

Based on the probability multiplicative rule, themay be expressed as a function of
thefi: p,=f,, p,=@-f)0f, , ps=@-f;)Q1-f,). It follows thatf2 =p,/A-p,).

This probability tree representation allows theruseorder the categories according
to their monitoring importance. In the Marcuccidis example it is logical to order the
substages such that substage 1 discriminates hetee@dorming and nonconforming
bricks, withf; equal to the probability of conforming bricks, asubstage 2 discriminates
between nonconforming TypA and B bricks with f, the conditional probability of
nonconforming Typeé\ given nonconforming. In case categories are odkeguunknown
importance, such as transactions typeB, or C, one can choose an order by default, for
example put categories in decreasing order of thesontrol probabilitieg;.

The probability tree can also be built as a classibn tree: according to Duds al.
(2004, Chapter 8), any classification problem canniodeled through a sequence of

binary questions that can be answered “yes” or .“Mdéith K categories each transaction
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in the sample goes through a sequence of ulk-loquestions. The first question is:
Classified in category 1? If the response is “yasi’ associated count variable is updated.
If the response is “no”, the next question is: Gisd in category 2? This procedure
stops when a question about categasyanswered “yes” or when the last questoeh is
answered “no” (item is classified in categdty

This probability tree (or classification tree) mathallows the user to order the
categories accordingly to their monitoring impodanin case of equal or unknown
importance, choose an order by default, like categan decreasing order of their in-
control probabilities;.

The proposed method shows that a multinomial psoedth K categories can be
monitored by @-treemethod that consists &-1 independenp-control charts as shown
in the next Section. The notation for the multinahgrocess is the following,

pi = baseline probability that item is in category=1,2,...,.K
n; = number of items in categoryn a sample
N = sample size

The following relations and properties hold:

2N =N and ZK:pizl
i i=1

K
N!rl P K
=1 =
Pr(n, =X,,n, =X,,..Nnxk =X¢) =7 K | for;x, N
X! B
0 otherwise
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The expectation, variance, and covariance functeas
E[n]=Np
Var[n]= Np(1-p)
Cov[n;, n]= -Np p;< O fori#]
For the probability tree the following notation ised: fi= baseline conditional
probability that item is in categorygiven that is not in category 1,i-1 fori=2,... K-1.
The probability mass functions for each substagegiwen by the following binomial

distributions:

N -
Pr(nl = xl) = (X jflxl - fl)N X
1

N - X -
Pr(n, =X2/n1:xl):( ljfzxz a- fz)N X1 ~Xp

2
The relationships between the multinomial and thebability tree parameters are
based on the total probability rule for multipleeats as shown in Montgomery and

Runger (2002, p. 44-45):
i-1 )
p,=f, and  p :[l—l @- fp1of  fori=2,... K.
j=

It follows that, ¥, :ip+ =2, K (3-1)
1-2p;
j=1
Eqn. (3-1) shows that a shift in a probabilipy produces shifts in every tree
probability f; for j<i<K-1. Similarly, a shift in a tree probabilitf may have been

produced by a shift on any probabilipy for j< i <K-1. The last probabilityfx always
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equals one, meaning that if the item is not ingaties 1,2,..K-1, it must be in category

K.
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3.2 The p-tree method

The p-tree method monitors any multinomial process wihcategories using(-1
control charts that monitor shifts in theWe show in this Section that thelsel charts
are independent. Assuming that the baseline protiedp; are known, then according to

eqgn. (3-1) the baseline conditional probabilitiesi=1,... K-1 are also known. Using

f,@-f
UCLy = f1 + Zgge2) Q/%

cL =",

q/ f@—f
LCL = f1 = Zagr2) %

charts, the control limits are:

(3-2)
UCL| = fi + Z(l—a*/Z)
CLi = fi fori:2,..., K-1.
LCL| = fi - Z(l—a*/Z)

whereZ, comes from standard normal distribution such thatupper tail area is. The

sample statistic for each control chart is

f= and ﬂ:—l%—- i=2,... K-1 (3-3)
N_ nj
j=1

At any observation time, the process is in-contfall K-1 p-charts have sample
statistics within the control limits. The processaut-of-control if any of the-charts

signal, i.e., have sample statistics outside tmroblimits.
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The control limits in eqn. (3-2) are based on tdependent binomial distributions
of the realized numbaen; in categoryi given the realized numbers in categories 1;1..,
This independence result is shown by Johnstaad. (1996, p. 68) as well as Kemp and

Kemp (1987) as follows:

n, ~Binomial(N, p,),

p

n; givenng,ny,...,ni; ~ Binomial(N =% nj, ———) fori=2,...K-1 (3-4)

12

j=1

For instancen, comes from an independent binomial with sample blzg and

probability1 P2 which according to egn. (3-1) is equivalenti£oThus, evenyp-chart
~— P

monitors the independentin categoryi given the realized numbers in categories 1;...,
1, using the sample tree fractidn of substageé, which equals the ratio of the realized

to its sample size in its respective independembrbial in egn. (3-4). The square-root
terms in egn. (3-2) are the standard deviationtheffi conditioned omy, ns,..., ns,
obtained from eqgn. (3-4). It can be shown also thase square-root terms represent an
approximation for the unconditional standard dewratof fiwhenN is large and the

probability that any count equals zero is negligibl

The p-tree control charts have a total false alarm mgtevhich is also called family
wise error rate. Because of the independence pyope«. (the probability that the
monitoring method does not signal given in-contrsl)

1-g = (1-g¥) K (3-5)

Therefore,
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ot =1- (- g) k2 (3-6)
wherea* is the exact individual false alarm rate for guerchart in thep-tree method.
Eqgn. (3-4) is based on the independent tree frasfi@and on Montgomery (2005, eqn.
(10-2), p. 489).

The p-tree method may be implemented using Minitab or anyeotsoftware that

offers thep-chart. For example, Figure 3.2 shows-ehart forf: and Figure 3.3 shows a

p-chart forf2 for simulated finished bricks data as in Table With a total false alarm

ratea=0.05. The first two samples in Figures 2.2 anda2e3taken from Table 1.2 and are
the only ones outside the control limits. Teharts make it easy to interpret the out-of-
control signals: sample 1 reflects a decrease pe # bricks relative to the total

nonconforming bricks (as shown in Fig. 2b) whilempée 2 reflects a decrease in

conforming bricks (as shown in Fig. 2a). Note ttheg control limits in Figure 3.3 vary

since the numbeX-ny is a variable sample size fbr, as well as its denominator.
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Figure 3.3.p-chart for f2 (nonconforming Typé bricks over all nonconforming

bricks)
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3.3 Simulation experiments comparing methods
We define the diagnosis accuracy of three method as the fraction of correct
signals over the total number of signals givendheas been a shift in a tree probabifity

(i=1,2,...K-1), a concept adapted from Skinmeral. (2006). If just the tree probabilify

shifts, the signal is correct only when thehart for fi signals, and othgo-chars for
fido not signalj# andj=1,2,...K-1.

In this Section we use simulation to assess thgndsis accuracy of thp-tree
method under a shift in a tree probability Note that diagnosis accuracy cannot be
computed for the Marcucci method, which does nee gnformation about the specific
multinomial probability that has shifted, but osignals whether there has been a shift in
any of the probabilities.

Also in this Section, we compare the sensitivitytité p-tree and Marcucci methods
using ARL, the average number of samples from iime tthe process shifts until the
control chart signals. The number of runs for esiofulated condition is determined such
that the standard error of every estimated ARL, lboth thep-tree and Marcucci
methods, is less than 0.015 of the estimated ARlusTthe total number of runs per
simulated condition varies between 10,000 and 11,50

Next, we briefly review the Marcucci control charf’lhe method uses the Pearson

statistic:

K (ni - Np| )2

X%2=3"

3-7
i=1 Np; (-7)

wheren; is the realized number in categaryN is the sample sizep; is the known

baseline fraction in categoryandNp is the expected count in categaryAccording to
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Marcucci (1985), thex? statistic in eqgn. (3-7) is approximately chi-squalistributed
with K-1 degrees of freedom, assuming the process isntra, the sample sizH is
greater than 167, and the expechigal are not too small. The upper control limit of the

Marcucci chart is:

UCL = x?
(K-La)

wherea is the false alarm rate and equals the uppeated of the chi-square distribution
with K-1 degrees of freedom. There is no lower controltland the chart only indicates
whether the process is in-control or not. It doesindicate whether the probabilities are

too high or too low in any particular category.

3.3.1 Diagnosisaccuracy and sensitivity for processeswith three categories

We conduct a simulation experiment for processeth whree categories. The
experimental design is summarized in Table 3.1. Tases of processes are simulated:
the first scenario is called the Brick case, whias baseline multinomial probabilities
that follow Marcucci’'s example and the sample sg€l000. The second scenario is
called the Customer case, which has probabilitiesenevenly distributed across the
categories and the sample size is 300. Sampleisizelected to guarantee a normal

approximation to the binomial distribution, the -Glgjuare approximation to the

statisticX ?, as well as positive lower control limits, and apgontrol limits less than
one for the individuap-charts in thg-treemethod.

The second factor is the ARLwhich is the average run length to a false alaither
20 or 200, corresponding to choices more commorsdarvice and manufacturing,

respectively. Since successive observations atependent, the ARLis equal to K.
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These levels imply exaat* for the separategp-charts equal to 0.0253 and 0.0025
respectively as in egn. (3-6). Colemarakt(2001) present control charts with ARbf
approximately 22 and 370 when monitoring businasggsses. Marcucci (1985) only

uses an ARg.of 20 when monitoring samples sizes over 200 brick

Scenarios Levels
Case Brick p,=0.95, p,=0.03, and»;=0.02 orf ; =0.95 and ,=0.6, withN=1000
Customemp,=0.5, p,=0.25, and3=0.25 orf; =0.5 and,=0.5, withN=300
ARL, 20 and 200
fi Brick case:  from 0.95 to 0.945, 0.94, 0.93% 6.93
Customer case: from 0.5 to 0.52, 0.54, 0.56, (ab8,0.6
f, Brick case:  from 0.6 to 0.56, 0.52, 0.48, 0.ddd 0.4
Customer case: from 0.5 to 0.52, 0.54, 0.56, (ab8,0.6

Table 3.1. Experimental design for examples whtle¢ categories

For each case (Brick and Customer) and ARte consider shifts ofy andf,. There
are between five and six levels each, represemiinghift and going up to approximately
three standard deviations of each tree fractiorst fve simulate the baseline scenario
with no shifts. Then we holfj at the baseline value and simulate shiftg to the levels
shown in Table 3.1. Then we hdigat the baseline value and simulate shift§ to the
levels shown in Table 3.1. The baseline valuesffoand f, and the shift sizes are
different for the Brick and Customer cases. Alde, $hifts are negative for the Brick case

and positive for the Customer case.
The independence property of the tree fractigrendf, is confirmed by the Kendall

nonparametric tests of independence (Kendall & Giish 1990, p. 66). The p-values are
0.42 and 0.57 for the Brick and Customer caseseotisely, so the null hypotheses of

independence are clearly not rejected.
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ARB=20 AR}§=200
Tree | Diagnosis . | Diagnosis .
Tree Prob accgurac p-tree | Marcucci accgurac p-tree | Marcucci
Prob. ' YI'ARL | ARL Y1 'ARL | ARL
Value| of p-tree of p-tree
0.95 20.8 20.9 188.3 189.4
0.945 0.76 10.3 9.0 0.88 46.6 42.4
f; 0.94 0.90 4.1 3.8 0.97 12.1 12.2
0.935 0.95 2.1 2.0 0.99 4.3 4.5
0.93 0.97 1.4 1.4 1.00 2.1 2.3
0.60 20.7 20.6 188.3 189.3
0.56 0.69 12.8 12.6 0.74 77.0 76.8
fa 0.52 0.85 6.0 6.0 0.92 24.2 25.4
0.48 0.92 3.0 3.1 0.98 8.7 9.6
0.44 0.95 1.8 1.9 0.99 3.8 4.3
0.40 0.97 1.3 1.4 0.99 2.1 2.4

Table 3.2. Diagnosis Accuracy (correct signals ¢he total signals) and ARL

performances for Brick cask=3
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ARL (=20 ARLy=200
Tr Diagnosi . | Diagnosi .
Tree Prsg asgurzzs p-tree | Marcucci aci;gurgzs p-tree | Marcucci
Prob. ' Y| 'ARL | ARL Y| 'ARL | ARL
Value | of p-tree of p-tree
0.50 21.1 20.6 214.6 208.1
0.52 0.71 11.7 11.9 0.80 87.0 94.1
f 0.54 0.89 4.7 4.8 0.95 21.1 22.8
0.56 0.94 2.2 2.3 0.98 6.0 6.6
0.58 0.97 1.4 1.4 0.99 2.6 2.8
0.60 0.97 1.1 1.1 1.00 1.5 1.6
0.50 21.1 20.6 214.6 208.1
0.52 0.63 14.9 14.6 0.71 123.1 121.6
f, 0.54 0.81 8.0 7.9 0.90 45.7 45.1
0.56 0.90 4.1 4.1 0.97 16.1 16.7
0.58 0.94 2.4 25 0.99 6.9 7.3
0.60 0.96 1.7 1.7 0.99 35 3.8

Table 3.3. Diagnosis Accuracy and ARL performarfoe€ustomer cas&=3

Tables 3.2 and 3.3 show the diagnosis accuracytsesiuthe p-tree method and the
ARLs for thep-treeand Marcucci methods on the Brick and Customezsesspectively.
Diagnosis accuracy of thetree method and ARLs are measured as an average ftom al
its signaling runs. For both cases, the larger ghié from baseline,the better the
diagnosis accuracy. The larger the ARthe better the diagnosis accuracy for the same
shift. For example, Table 3.3 shows thdt Bhifts from 0.5 to 0.52 and AR£20, thep-
tree method signals correctly for 0.71 of the signafsf; Ishifts from 0.5 to 0.6 and
ARL0=20, thep-treemethod give the correct signal for 0.97 of the algn

If the diagnosis accuracy measure is divided by ARL, we get the fraction of
correct signals over the total of samples. Thisctiolm combines sensitivity with
diagnosis accuracy and estimates the probabildy ttrep-tree method signals correctly

at any sample for a process that is out-of-conkot.instances, for the Customer case in
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Table 3.3 iff; shifts to 0.6 and AR4=20, the number of correct signals over the total
number of samples in a run is 0.88.

As expected, thp-treemethod diagnosis accuracy is better if the tredaibility that
shifts has a lower index, or comes first as a sugestbecause the substage’s sample size
is larger. For example, Table 3.3 shows that tlagmibsis accuracy for shifts fp are
better than for shifts ify.

In terms of ARL comparisons, Table 3.2 shows thatMarcucci method is slightly
more sensitive than the-tree method when monitoring shifts dnin the Brick case,
particularly when ARL=20, which is the case developed in Marcucci (198aple 3.3
shows that th@-tree method is slightly more sensitive than the Marcucethod when
monitoring shifts orf; in the Customer case. In general, Tables 3.2 ahdl®w that the
differences between the ARLs of both control chams quite small. The significant
contribution of thep-treemethod is its value as a diagnosis tool.

Figure 3.4 shows a graph comparing the ARL perfoicea wherf; shifts in the
Customer case, for a desired ARROO. Although other graphs are not shown, thig is

typical plot. In general, it is visually difficutd distinguish between the methods.
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Figure 3.4. ARL comparison for shifts &inin Customer cas&=3, desired ARE=200

3.3.2 Diagnosisaccuracy and sensitivity for a processwith six categories

In this Section all simulations have six categqrigsd the experimental design is
summarized in Table 3.4. Only a Customer casenmsllsied, with all tree baseline
probabilitiesf; equal to 0.5j=1,2,...,5, and sample size is 1000. The gRfbuals 20 or

200.
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Scenarios Levels

Baseline p:=0.5,p,=0.25,p:=0.125 p,=0.0625 ps=ps=0.03125 or
Probabilities | equivalentlyfi=0.5, fori=1,...,5, withN=1000

ARL 20 and 200

f from 0.5 t0 0.51, 0.52,...,0.55

f> from 0.5 to 0.51, 0.52,...,0.56

f from 0.5 to 0.52, 0.54,...,0.60

f4 from 0.5 to 0.52, 0.54,...,0.60

fs from 0.5 to 0.53, 0.56,...,0.68

Table 3.4. Experimental design for example wikhcsitegories

We consider shifts of for i=1,2,...,5. There are between five and six leveldigac
representing no shift and going up to approximatelge standard deviations of each tree
fraction. First we simulate the baseline scenaiiith wo shifts. Then we holff (j=2,...5)
at the baseline values and simulate positive shiftgto the levels shown in Table 3.4.
Then we hold;j (j=1 orj=3,4,5) at the baseline values and simulate pesghifts inf, to

the levels shown in Table 3.4, so on and so forth.
The exacti* for eachp-chart of fi, i=1, 2,.., 5, obtained from eqn. (3-6), are 0.0102
and 0.001 for ARp.of 20 and 200 respectively. The independence ptp@anong the

tree fractiondi’s is confirmed by Kendall nonparametric tests mdépendence among

thefi’s for an in-control data set with 20,000 samplesajues over 0.1 that lead to not

rejecting the null hypotheses of independence

Table 3.5 shows that thetrees diagnosis accuracy is better if the shift siné/ar
ARLyare larger, and if the tree probability that shifés a lower index. These results are
similar to those in Tables 3.3 and 3.4 for the e@hrategory case. The number of

categories does not limit these advantageous fEabfrthep-treemethod.
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ARE=20 ARKE=200
Tree| Diagnosis .| Diagnosis .
Tree p-tree | Marcucci p-tree Marcucci
Prob.|accuracy @ accuracy o
Prob. value| p-tree ARL ARL p-tree ARL ARL
0.50 20.0 19.9 204.7 192.3
0.51 0.40 15.5 16.0 0.49 133.5 144.0
f, | 0.52 0.71 7.6 8.4 0.83 43.4 54.4
0.53 0.86 3.5 4.1 0.96 12.7 17.4
0.54 0.92 2.0 2.3 0.98 4.6 6.4
0.55 0.95 1.4 1.5 0.99 2.3 3.0
0.50 20.0 19.9 204.7 192.3
0.51 0.31 17.9 18.8 0.38 156.4 178.7
0.52 0.53 12.0 12.8 0.72 89.9 103.9
f, | 0.53 0.73 7.0 7.7 0.87 34.0 43.9
0.54 0.84 4.1 4.6 0.94 14.5 20.9
0.55 0.90 2.5 3.0 0.97 6.8 10.1
0.56 0.93 1.8 2.0 0.98 3.7 5.3
0.50 20.0 19.9 204.7 192.3
0.52 0.39 15.5 16.7 0.50 127.9 145.8
fy | 0.54 0.70 7.7 8.5 0.85 41.4 52.6
0.56 0.86 3.6 4.2 0.95 12.1 17.3
0.58 0.92 2.0 2.3 0.98 45 6.5
0.60 0.95 1.4 1.5 0.99 2.2 3.0
0.50 20.0 19.9 204.7 192.3
0.52 0.30 18.0 18.1 0.36 169.9 162.5
f, | 0.54 0.54 12.0 12.4 0.67 90.3 89.8
0.56 0.73 7.0 7.6 0.86 36.3 42.2
0.58 0.84 4.0 4.5 0.94 15.1 19.8
0.60 0.90 2.5 2.9 0.97 7.0 9.6
0.50 20.0 19.9 204.7 192.3
0.53 0.31 17.7 17.5 0.37 158.6 140.5
fs | 0.56 0.55 11.5 11.0 0.68 79.1 69.2
0.59 0.75 6.5 6.4 0.88 31.0 31.0
0.62 0.85 3.6 3.8 0.95 12.2 14.1
0.65 0.91 2.2 25 0.98 5.6 7.2
0.68 0.93 1.6 1.8 0.99 3.0 4.0

Table 3.5. Diagnosis Accuracy and ARL performaiaceCustomer cas&=6 categories

Table 3.5 also shows for ARL comparisons, thatgtieee method is slightly better
than the Marcucci method when monitoring shiftsforf, or f3. However, the Marcucci

method is slightly more sensitive when monitorimga#l shifts onf, andfs, particularly



46

when ARLy;=200. Notice that the smaller the index of the ticat monitored, the larger
the substage’s sample size in fliree method, and the better the ARL performance of
thep-treemethod over the Marcucci method.

Figure 3.5 shows a graph comparing the ARL perfoicea whenf, shifts, for a
desired ARE=200. This is a typical plot that shows the clossnigetween the ARLs of

both methods.

200
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|
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.5 .52 .54 .56 .58 .6
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—— ARL_ptree —a&— ARL_Marcucci

Figure 3.5. ARL comparison for shifts & K=6, desired ARp=200

3.3.3 Diagnosisaccuracy and sensitivity for Bayesian method
We show that the Shiaet al. (2005) method has little diagnosis accuracy coegar
to the p-tree method. We expected this because the Shial. (2005) method was

designed to detect an out-of-control process amdonarovide interpretations.
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Consider the customer case wKix3 as shown on Table 3.1. The process has in-
control probabilitieg;=0.5, p,=p3=0.25, or equivalently,;=f,=0.5, with N=300.We set
the control limits using the Shiaet al. (2005) procedure (for constant probability
parameters). Thus, for an ARt200, the UCL and LCL limits fon; are 178 and 122
respectively. Ifn; falls exactly over the control limits, then thergde is out-of-control
with probabilities 0.93 and 0.97 respectively. THeL and LCL limits forn, (andns) are
100 and 52 respectively. b (or n3) falls exactly over UCL or LCL, then the sample is
out-of-control with probabilities 0.84 and 0.76pestively.

Assume that the process goes out-of-control suahpthshifts positively,ps shifts
negatively, ang; does not change. In terms of tree probabiliigshifts positively and
f, does not change. Diagnosis accuracy is the numibeorrect signals over the total
number of signals. To find the total number of sigrin the Shiaet al.(2005) method, a
signal is counted when any chart for any categ@mwyads. A sample has a correct signal
when the chart fon; does not signal, the chart fog signals, and the chart fog signals.
Table 3.6 shows the diagnosis accuracy and ARLshisimulated in-control situation

and for two different shifts. The results of fiireematch those results of Table 3.5.

Diagnosis Diagnosis :
- accuracy p-tree accuracy  Shiau et
Process probabilities (SE) of ARL (SE) (SE) of al.
Shiau et ARL (SE)
p-tree al.
In Control:p;=0.5, p=p5=0.25; or
f,;=f,=0.5 214.6 (2.0) 230.7 (2.4)
p:=0.5 p,=0.26,ps=0.24;0rf;=0.5,
f,=0.52 0.71(0.0) 123.1(0.9) 0.01(0.0) 137.6(10)
p=0.5 p,=0.3,ps=0.2; orf;=0.5,
f,=0.6 0.99 (0.0) 3.5(0.0) 0.15(0.0) 4.7(0.0)

Table 3.6. Bayesian Method of Shigtual. (2005) compared witp-tree, Customer case,

K=3, desired ARE=200
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As expected, Table 3.6 shows that the Skaaal. (2005) method has a diagnosis
accuracy significantly lower than tipetree method. For example, whpix0.5, p,=0.3,
ps=0.2 f,=0.5, ,=0.6, the Shiawet al. (2005) method has a diagnosis accuracy of 0.15,

roughly one correct signal out of seven signalgsantrast with the-tree method which
has a diagnosis accuracy of 0.99, (proportion grials in which only the-chart forf 2

signals).Thus, the Shiaet al. (2005) method should be used only to detect whetiee
process is in-control or not. It should not be uded interpretations, because its
univariate charts are negatively correlated, salisgnosis accuracy is low. The Shietu
al. (2005) method also has lower sensitivity thangttieee method.

The inadequacy of using univariate charts for dateel variables is also noted in
Montgomery (2005, p. 487-488 and p. 499) and Loeirgl. (1992, p. 52). In contrast,
the p-tree method uses a decomposition into independentftemtions, which allows

direct and accurate interpretations.
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3.4 Concluding remarks about p-tree method

Processes in service or manufacturing with multgaleegories can be sampled and
modeled as multinomial processes. We propose tatarcemy multinomial process by
decomposition into independent binary substagesgusiprobability tree. If the stages
really exist or if the process can be naturallyrespnted in substages as the brick
problem, the proposed method allows accurate irg&fon of the signals across the
substages, as proved theoretically and using stianla

If a conditional probability related to a tree’sbstage shifts, the-tree method
accurately detects it. As shown on the results|alhger the shift size, or the larger the
ARL,, or the lower the index of the tree’s substagée #hdfts, the better the diagnosis
accuracy of the-treés signal. By contrast, a signal in the Marcucci meétiaay not be
interpreted or measured, because the coumisaross the categories are negatively
correlated.

Simulated comparisons of ARL results of thdree and Marcucci methods with
three and sixcategories show that thetree method has similar sensitivity (or even
slightly better) than the Marcucci method. Thpetree method has slightly better
sensitivity than the Marcucci’'s method when monitgrevenly distributed probability
trees, i.e.f; ‘s close to 0.5, and large shift sizes. The Maccsienethod tends to be more
sensitive when monitoring non-evenly distributegetistructures, and small shift sizes.
We show also that the method in Sheital. (2005) has low diagnosis accuracy because
of the negative correlation among categories. Td@ohposition into independent binary
stages proposed by thetree method can be applied to any multinomial process.

However, thep-chart chart that is used for monitoring each fir@etion requires that
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these fractions are normally distributed. In Chaptewe propose another univariate
method to monitor nonnormal tree fractions, whiah be inserted into thetreemethod
instead of thgp-chart.

Monitoring fractions in cases in which tpechart may not achieve the desired false
alarm rate is addressed in Chapter 4. Other futasearch issues are: ordering of
categories in the tree, and simultaneous shiftseveral fractions. Large systems with
multiple stages and many categories could be askellelsy a decomposition method as
developed in Chapter 5. This would be useful in fooimg complex processes involving

customers and organizations either in the privaggublic sectors.



51

4 Monitoring afraction with easy and reliable settings of thefalsealarm rate

Nonconforming fractions have been extensively nayed in manufacturing
applications. We also consider monitoring fractiamsservice applications, which has
been covered by several studies. For example, €aak (2003. p. 89) show that one
measure of the quality of service in call centarshie ratio of the number of customer
inquiries that are solved in one contact (“one dade” calls) to the number of the calls
that require additional efforts to be solved (“relw/ocalls). This problem is relevant
because processes with multiple categories can oeitoned through independent
fractions as shown in Chapters 3 and 5.

There are differences between monitoring fractiomsservice processes and in
manufacturing processes. For service, the in-cbrfraction of interest may vary
between 0 and 1, while the in-control fraction iamafacturing tends to be between 0 and
0.1. The process may be continuously monitoredguaim information system, which
either supports the operation of the process imiceror collects data from sensors in
manufacturing. In service systems, management n@ytar based on periodic reports
(e.g., monthly), which can be disaggregated intekse hours of the day, etc. In
manufacturing, reports usually consider small sobgs, which reflect short time
operating conditions.

The fraction of interest can be monitored with taeiliar p-chart based on the
binomial distribution, which is simple to run anderpret. However, thp-chart may not
achieve the desired false alarm ratas shown in Chapter 1. Notice that achieuinig
equivalent to achieving ARLwhich is the in-control average run length unte thext

false alarm, and equalsodih case of independent trials.
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Here we present a two-sided CUSUM method for moinigoa fraction either in
manufacturing or in service processes. The prih@gaantage of the proposed method is
that is easy to use and design from the point efvvof the user. We test the proposed
method via simulation and find that it achieveseaikda for anyN andpg such that,

E[N]po(1-po)=3 (4-1)
wherepg is between 0.005 and 0.995, adds constant or Poisson distributed. The
proposed method is easy to design because it doesuse any of the following
techniques: consulting published tables (Tablesplnatorial or enumerative methods
(Comb), extensive simulation (Sim), or Markov chamalysis (MC).

Specifically, we propose a CUSUM Arcsine method which the data is
preprocessed using an arcsine normalizing transfioom for a binomial distributed
variable and then monitored with a two-sided CUSldMthod. The parameters of the
CUSUM method are set adapting a procedure of Rogg006). The user only needs to
determine the control limit as a function of thesided two-sided AR§, a formula that
can be easily set into a calculator or spreadsheet.

The new two-sided CUSUM Arcsine achieves largerddsi such as 1/20, which is
typical in service applications, and smallsuch as 1/200, which may be applied in
manufacturing applications. The proposed methodwis-sided, i.e., detects either
increases or decreases in the in-corggol

We show using simulation that other existing easigsigned methods do not
achieve the desired Notice that existing methods that do achievedé&redoa are not

easy to design, such as: a binomial based EWMAt eh&kan (1990), a binomial based
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CUSUM chart in Gan (1993), EWM&-chart in Quesenberry (1995), and a binomial
based (modified) CUSUM chart in Reynolds and Stoosn(1999, 2000).

The rest of this Chapter is organized as follovext®n 4.2 proposes a new CUSUM
Arcsine and a new CUSUM Box-Cox; Section 4.3 shttwsugh simulation experiments
that the new CUSUM Arcsine chart consistently aoksea desired, and has better
sensitivity than other easily designed existing hnds; Section 4.4 shows an example

illustrating an application to a service process.
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4.1 New CUSUM Arcsine chart and new CUSUM Box-Cox chart

We propose a method that preprocesses the datawitinmalizing transformation,
and then monitors it with a CUSUM method that isilgadesigned. Specifically, we
propose the new two-sided CUSUM Arcsine and the tveavsided CUSUM Box-Cox
for a fraction. Before, we show how a two-sided QW& chart is set into any
normalizing transformationyf) of the countx, wheret is the index of the each
independent sample, aildis the sample size or volume of units at saniple

1) Preprocess the raw data with a normalizatiomstaamation to determing.

2) Determinegyp anday, which are the in-control mean and the standawaten of

the transformatiomy; respectively.

3) Monitor the transformation with a two-sided CUSlas:
C." =max{0,y; = (Yo +K) +Cy;"} (4-2)
Ci =max{0, (Yo —-K)-y;+C1 }
where the CUSUM is initialized a€, = C, = 0, andK is known as the slack
value.

If O is the shift size (as a multiple ef) considered to be detected quickly, then

following recommendations of Woodall and Adams @PK is given by:
o
K=— 4-3
> % (4-3)

4) The new two-sided CUSUM method signals wheneeith " or C,” are over the

control limit H. We propose to géd as ify; were normally distributed, which adapting a

result from Rogerson (2006) is easily determined as
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O%ARL, + 2) In(02ARLy +1)

H=
((52ARLO +1 o

~1.166)ay (4-4)

We propose to sed =1, and eqn. (4-4) reduces only to a function ef tto-sided

ARL, andoy:

H :{(%)In(ARLO +1) —1.166};y (4-5)
We then use the above procedure to propose a neSlIJBIUArcsine method and a
new CUSUM Box-Cox method for a fraction. Table 4§ummarizes the formulation of
both methods. The second row shows the transfoomagither the Arcsine or the Box-
Cox. The Arcsine transformation is specific fordnmal distributed data as described by
Johnsoret al. (2005, p. 123) and Chda998), and is approximately standard normally
distributed. Both transformations may be calculatsthg just a spreadsheet, but the
Arcsine does not require determining a power patamg) as does the Box-Cox
transformation (described in Appendix D). The thamd fourth rows have the in-control

mean and standard deviation of each transformafidve following rows give the

expressions for each proposed CUSUM.
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Symbol CUSUM CUSUM
Arcsine Box-Cox
Transformed L
.4 [x+3/8] . _ X
=2/ N sin? —sint RAT I
Y 4 */—{ ( N+3/4j (‘/E)} _ ( th :
Vi —L
Mean
0 b
Yo @
Standard
deviation 1 Obe
()
y
S'}i‘Ck 05 050,
Upper side
CUSUM max{0,y, = 05+C.;"} max{0y; — (b + 050yc) + Gy}
C
Lower side
CUSUM max{0~y; =0.5+Cy; } max{O(bG +05p,0) ~¥; +Cq }
C
Control limit 1+ 2a 1 1+2a 1
In(—=+1)-1.166 In(—=+1)-1.166
H (1+a) (a ) [(“a) (a ) }O'bc

Table 4.1. New CUSUM Arcsine method and new CUSUd4®8 ox method for a

fraction
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4.2 Comparison of easily designed methodsfor a fraction

We conduct a simulation experiment to study whielilg designed methods for
monitoring a fraction achieve a desiredWe also compare sensitivity of the selected
methods.

The experimental design is summarized in Table Bh2. first factor corresponds to
the evaluated methods, i.e., those methods tha aaweasy design as shown in Table
2.1. The first method evaluated is fhxehart. The following three methods are Shewhart
charts on transformations (their implementatiores laniefly described in Appendix D).
The following two methods are the modifipechart of Cher(1998), and the modified
np-chart of Shore (2000), both described in AppertgixThe following method is the
CUSUM Q of Quesenberry (1995), which was originally destjmsing Markov chain
analysis. For purposes of experimentation, we tnyeasy design procedure of Section 3
on that method. The (easy) CUSUWMis obtained similarly to the CUSUM Arcsine. The
only change is that the Arcsine transformation stnawthe second column of Table 4.1
is replaced by the expression@f as shown in Appendix D. We also evaluate the new
CUSUM Box-Cox and the new CUSUM Arcsine.

The second factor is the in-contml with levels: 0.005, 0.01, 0.1, 0.2, 0.3, 0.4, and
0.5. If a process has an in-control probability ro®e5, po could be defined in this
experimental design as one minus the in-contrdbaidity.

The third factor is the volum&l which is constant or a zero-truncated Poisson
distributed N>1). A constant volume represents the typical samgpdf a process and the

zero-truncated Poisson distributed volume representprocess that is continuously
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monitored. The levels of B are obtained such that§][is the smallest integer such that

E[N]po(1-po)=3.

Factors Levels
Methods p-chart, Box-Cox charQ-chart, Arcsine chart, Chgnchart,
evaluated Shorenp-chart, CUSUMQ, new CUSUM Box-Cox, and new

(9 easy) CUSUM Arcsine
po and EN] 0.005 & 604, 0.01 & 304,0.1 &34,0.2&19,0.318,04 &
13,and 0.5 & 12
Volume type  Constant or Poisson distributed

(N)
Desired ARlg 20 and 200
Shifts inpo Cover up to+ 30

Forp,=0.005 -1.%0, -10, -0.50,..., 30; 0=0.0029
Forp,=0.01 -1.50, -10, -0.50,..., 30; 0=0.0057
Forpe=0.1 -1.50, -10, -0.50,..., 30; 0=0.0514
Forpy=0.2 -20, -1.5%0, -10,..., 30; 0=0.0918
Forpe=0.3 -2.90, -20, -1.90,..., 30; 0=0.1183
Forpy=0.4 -2.50, -20, -1.50,..., 30; 0=0.1359
Forpo=0.5 -30, -2.50, -20,..., 30; 0=0.1443

Table 4.2. Experimental design for evaluating gad#isigned methods for a fraction

The fourth factor is the desirediRL;, which equals 20 or 200. The fifth factor

corresponds to the shifts ppin multiples ofo, which is the standard deviation of the in-

control fraction of interes{;—‘. Thus,po shifts topy £ d 0 , whered is the shift size in
t

multiples of o and multiples of 0.5 For the cases in whichN is

Po (L

constantg = T_po) (values shown on Table 4.2). For the cases in wNishzero-

truncated Poisson distributed, it can be shown that Po (L~ pO)g , whered is the
@-n-e )
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parameter of the Poisson distributichX 1). However, both standard deviations are very
close for the levels of B[] andpo used in the experiment.

We consider two performances measures. First, wasuane the actual ARL We
propose that an acceptable method is such thatitsl two-sided AR4.is between 18
and 25 or between 180 and 250 for desired #8%120 or 200 respectively. These ranges
are due to the fact that the parameter estimatign loas a significant effect on the final
actual ARLy, as shown for example in Chakraborti and Humar®§20A method that
detects increases but not decreasgs imnot considered acceptable.

The second performance is sensitivity, measureth@sctual two-sided ARL. We
follow a convention found in Lucast al (2006), Ryan and Schwertman (1997), and
Quesenberry (1991, 1995) in which a signal reptssansample falling outside the
control limits, not on or within these limits. Timambers of runs in the simulations are
determined such that the standard error of evelignated ARL is less than 0.02 of its

estimated ARL.

4.2.1 Comparison of actual ARL

The results show that the new CUSUM Arcsine isdhly method that achieves an
acceptable actual ARIn all cases for both desired ARaf 20 and 200. In other words,
the new CUSUM Arcsine is the only method that ihcalses gets an actual two-sided
ARL between 18 and 25 or between 180 and 250 for de#ifel, of 20 or 200
respectively. The new CUSUM Box-Cox is acceptableaf desired ARg.of 20, but not
for a desired ARp of 200. These conclusions are supported by theltseshown in

Tables 4.3 and 4.4.
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Table 4.3 summarizes which methods achieve an tadnepARL for both types of
volume, i.e., constant and Poisson distributed. éxample, the cell that corresponds to
the new CUSUM Box-Cox and to the columnNEf604 andp,=0.005 shows a 20
because that method gets an acceptable actualk AétLboth types of volume. As
expected, th@-chart, and modifiegh-charts of Cheif1998) and of Shore (2000) do not
get acceptable actual ARLThe Shewhart charts such as the Arcsine of C1@98), the
Box-Cox, andQ chartof Quesenberry (1991) also do not get acceptabieabéRLy.
These results are consistent with the researchdfanrRyan and Schwertmgt997),
Chen(1998), and Acosta-Mejia (1999).

Table 4.3 shows that the new CUSUM Arcsine achiaresicceptable ARLN all
cases for both desired ARbf 20 and 200. The new CUSUM Box-Cox achieves an
acceptable AR4in 6 out of 7 cases for desired ARbf 20, but only in 2 out of 7 cases

for desired ARl of 200.
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Achieved ARL ; by casesof E[N] & p,
604& 304& 34& 19& 15& 13& 12&

Type Method 0006 00l 01 02 03 04 05
p-chart - - - - - 20
Shewhart g - Cox chart 20 - - - 20 20 2
Method:
Q-chart - - - - 20 - -
Arcsine chart - - - - 20 20 20
Approx to
probability  {Chenp-chart - - - - 20 20 20
limits

Shorenp-chart - - - - - .
CUSUMQ - - - - - .

CUSUMs New CUSUM-Box-Cox 20 20 20 20 20 200

20
20C
20 20 20 20 20 20 20
200 200 200 200 200 200 200

Table 4.3. Acceptable actual ARy case and method

New CUSUM-Arcsine

Table 4.4 shows the average absolute % error of AR its standard error across
cases of B{l] andp, by desired ARbL, volume type, and method. For each case, i.e., for

each combination of B and py the absolute % error of ARLis measured as

| Actual ARLo - DesiredARL| .,
| Desired ARLo | '
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Type of Method |M ethod For ARL,=20 For ARL ;=200
Vol Constant Vol Poisson [Vol Constant Vol Poisson
p-chart 28.9(6.2) 26.0(4.3) 56.0(34.8) 64.8(16.6)
Shewhart Box-Cox chart 20.2(5.4) 218({.3) 63.4(18.262.2(9.8
Methods Q-chart 26.8(9.9) 119(3.6) 443(2.7) 28.3(8.9)
Arcsine chart 19.8(5.1) 85(2)8) 63.5(22.9) 22.1)9.
Approx to Chenp-chart 23.8(4.3) 89(33) 729(52.3) 66.7(21.4)
probability limits |Shorenp-chart 48.4(6.0) 45.8(3.7) 445(11.8) 44.4(8.7)
CUSUM on CUSUMQ 22.7(2.1) 243(14) 654(0.9) 66.1(0.3)
Transformations | New CUSUM-Box-Cox 99(19 86(35 .4@.6) 17.0(4.2)
New CUSUM-Arcsine 96(26) 4.7(13) 55(1.1) 5.8(1.1)
Average across methods 23.3(4.8) 17.8(3.5) 47.5)16.42.0(8.6

Table 4.4. Average absolute % error of AREE) by desired AR4.volume type, and

method

The new CUSUM Arcsine has the lowest average atesétuerror of ARk for both
desired ARL, and for each type of volume. Table 4.4 also shtlwed the average
absolute % error of ARJfor a Poisson distributed volume tends to be l&ss tthe
average absolute % error of ARfor a constant volume (7 out of 9 methods and Sobut
9 methods, for desired ARIof 20 or 200 respectively). This phenomenon cowdibe
to the fact that a Poisson random variable can lake values. Those large sample sizes
tend to improve the methods’ approximation in éstof the binomial distribution. This
topic will not be further developed in this papdémt could lead to some future
investigation.

In summary, we propose the new CUSUM Arcsine as ltbst easily designed
method that achieves a desired ARIf 20 or 200, for volumes that are constant or

Poisson distributed, in which E]po(1-po)>3, andpgis between 0 and 1.
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4.2.2 Comparison of sensitivity

The results show that the new CUSUM Arcsine methad similar sensitivity
compared to the new CUSUM Box-Cox method. Only ¢hasethods that obtain an
acceptable actual ARL(as shown on Table 4.3) are compared. For a desird, of 20,
both new CUSUM methods have better sensitivity thdrer easily designed methods
when detecting shifts of size up 1&o , and have similar but not better sensitivithemn
other methods when detecting shifts of size betw2siand 3o . For a desired ARJof
200, only the sensitivity of the new CUSUM methods be compared.

The above summary is supported by the results shiowiables 4.5 and 4.6, which
show the average of ARLs across cases 0l Bhdpy by shift size in multiples ot
desired ARlg, and method. Tables 4.5 and 4.6 show results foeases and decreases of
Po respectively.

The new CUSUM Arcsine and the new CUSUM Box-Coxenhawmilar sensitivities,
particularly for shifts of size greater or equadrto . For shifts of siz€50 , Table 4.5
shows that the new CUSUM Arcsine has better seitgitihan the new CUSUM Box-
Cox for positive shifts of siz@5¢ , either for ARk of 20 or 200. In contrast, Table 4.6
shows that the new CUSUM Box-Cox has better sedtsitthan the new CUSUM

Arcsine for negative shifts of siz@5c , either for ARk of 20 and 200.
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Shiftsin Multiples of 6
For ARL =20 For ARL ;=200

Method 056 16 156 26 256 36| 056 16 15 26 256 3o
p-chart 125 59 31 19 14 1.1 - - - - - -
Box-Cox chart 16.7 84 44 26 18 14 - - - - - -
Arcsine chart 140 64 34 20 14 1.2 - - - - - -
Chenp-chart 139 64 33 20 14 1.2 - - - - - -
New CUSUM-Box-

Cox 121 58 3.7 27 22 18| 315 93 52 36 28 23
New CUSUM -

Arcsine 96 47 30 22 18 15|275 92 54 39 30 26
Average 131 6.3 35 22 17 14| 295 93 53 38 29 25

Table 4.5. Average of ARLs by positive shift sizesl by ARlgand method

Shiftsin Multiplesof ¢

For ARL =20 For ARL =200

M ethod 0.5¢ o 156 26 256 30| 0.5¢ "lo 156 26 256 3¢
p-chart 205 119 40 20 1.2 - - - - - - -
Box-Cox chart 139 6.3 28 1.7 1.2 1.2 - - - - - -
Arcsine chart 147 65 3.1 1.7 1.2 1.2 - - - - - -
Chengp-chart 149 66 31 1.7 1.2 1.2 - - - - - -
New CUSUM-Box-

Cox 109 46 21 17 13 13/30.1 88 48 33 25 21
New CUSUM -

Arcsine 123 49 24 17 13 1.3/418 94 43 29 23 2.0
Average 145 68 29 18 12 122|360 91 46 31 24 21

Table 4.6. Average of ARLs by negative shift siaad by ARlgand method

4.2.3 Exampleof aprocess service

Consider a simplified property tax complaint praces described in Duran and

Albin (2009a). Notices are sent monthly in batcteetaxpayers to communicate changes

in the assessment. The assessment process magtgesreors that the taxpayer and the

property tax system must resolve. A taxpayer withr@lem consults first with a front
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desk assessor and then decides to file a complainbt. The taxpayers may have one
month to file a complaint. The management, at tick@ the deadline, wishes to monitor
the fraction of filed complaints over the numbetafpayers that consult.

Assume that the number of taxpayers that conswdtnmonth N) in one local office
is Poisson distributed with E[=34. Assume that during the first 10 months the in
control probability fo) that a taxpayer that consults files a complar.il, andy shifts
to 0.16 in month 11, which is equivalent to a shifte of 1.16 (small in multiples ot,

but large as a magnitude). Simulated data is showiable 4.7.

Month  Number Number of Fraction

(1) of complaints  (f)
consults (%)
(N9
1 43 5 0.116
2 33 2 0.061
3 41 3 0.073
4 37 6 0.162
5 35 3 0.086
6 28 3 0.107
7 33 4 0.121
8 31 0 0.000
9 50 9 0.180
10 32 2 0.063
11 27 6 0.222
12 28 7 0.250
13 34 4 0.118
14 34 4 0.118
15 39 9 0.231
16 41 9 0.220
17 33 5 0.152
18 26 2 0.077
19 33 6 0.182
20 33 5 0.152

Table 4.7. Property tax complaint data

Figure 4.1 shows a run chart of the fractifax/Ny). It is difficult to check by eye

whether the process is out-of-control or not. BtHSUM Arcsine charts are constructed
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from the data of Table 4.7, with a desired ARM 20 (the control limit H=2.02 is
obtained using the last row of Table 4.1), are show Figure 4.2. The chart
corresponding to the CUSUMfor detecting increases im) shows that the process is

indeed out-of-control at months 12 and 16.

évA AMP
: Vv

Month

Fraction

=
N

14 16 18 20

_._f

pO

Figure 4.1. Run chart of number of complaints awember of consults
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Figure 4.2. Two-sided CUSUM Arcsine charts for frags of complaints

These charts would be set for every local officeaofurisdiction. For a service
process like this, it is not possible to removecsgdecauses to return the process quickly
to in-control. However, management may analyze ethest-of-control situations and
introduce corrective actions like better regulasioimproved instructions, and changes in

the IT system — but such changes may take some time
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4.3 Concluding remarks about CUSUM for a fraction method
We propose a new CUSUM Arcsine method to monitwaetion both in service and

in manufacturing applications. The proposed metlsoo@asy to use and design. The
CUSUM Arcsine method achieves small and laxgguch aszioc and 2% for volumes

that are constant and Poisson distributed, in whitipo(1-po)>3, andpg is between 0

and 1. The proposed method gets better sensithaty other easily designed methods in
all shifts for a desired of % The proposed method gets better sensitivity tither
easily designed methods for shifts of size upa@nd similar sensitivities in simulations

for shifts of size ove?og for a desiredr of 2% The new CUSUM Box-Cox achieves

large desired such asz—lo, but not always small desiredsuch asﬁ, and has similar

sensitivity compared to new CUSUM Arcsine.

Future research may explore developing easily designethods for monitoring
processes in which the ruleNgpo(1-po)>3 may not be fulfilled. The proposed CUSUM
Arcsine might also be subject to optimization sdgdof its sensitivity features. Processes
in which the volumes are large and the data doésitnthe binomial distribution might

be investigated too because they can representlerroystomer service processes.
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5 Monitoring multistage and multicategory processes

We propose to monitor and interpret multistage rmndticategory processes (MSMC)
using a decomposition methodology. The proposedadeiogy decomposes stages with
multiple categories into binary substages, and disscribes the relations among the
stages of the process.

The methodology for a single stage and multicatgegoocesgproposed in Chapter 3,
and in Duran and Albin (2009a), is extended torthdtistage and multicategory process.
If the multinomial model fits every stage of theopess, then a number of independent
fractions— called tree fractions- are used to monitor and provide full interpretasio
within and across stages of the process. Additipngde initial volume of customers can
be monitored too.

The methodology proposes to monitor every treetifyaccorresponding to every
binary substage of the MSMC. Each tree fractiamasitored using the CUSUM Arcsine
method proposed in Chapter 4, and in Duran andnA(B009b). The CUSUM Arcsine
method has the advantage that is easily design@@emeves a desired false alarm rate
when monitoring a fraction, especially those withadl sample sizes. The CUSUM
Arcsine method also has good sensitivity propettedetect shifts of different sizes.

Similarly to the single stage case, the order ef $kages and categories matters in
terms of describing the process and in terms ofitaong properties such as sensitivity
and achieving a desired false alarm rate. Thus,u$er may order the categories
according to their monitoring importance within leatage. The user could also reorder
the stages and get a new multinomial probabilgg s long as the new tree makes sense

describing the process.



70

The rest of this Chapter is organized as followect®n 5.2 proposes a methodology
to monitor multistage and multicategory processss;tion 5.3 develops a case study

about a call center; Section 5.4 concludes.
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5.1 Methodology to monitor multistage and multicategory processes

Consider a multistage and multicategory process M2y with the following

notation and assumptions:

Vi.

Vil.

viii.

Process starts at stage 0 with an initial volumi®tustomers at sample
Process has additionisl stages.

Every stagg has a total oK categoriesj=0,1,2,... M. By definition,Kq =1
andK;>2 forj>1.

nY; = realized number of customers that fall in catggoof stagej at
samplet, fori=1,2,...K; and j=0,2,...,M. By definition,n® ¢=N®.
Customers are classified in one exclusive categbeach stage.

Realized numbers at every stage are multinomidiiloliged.

Volume of customers does not affect their custorderssions.

Customers move forward through stages. There aleaps in the process.

There is only one path to reach a category as sloowiigure 5.1.

Category Category

Yes No

Figure 5.1. One path to reach a category

The algorithm to monitor MSMC is first summarized words, and then formally

explained using matrix representation. The algoritonsists of two procedures: an input

procedure and a monitoring procedure. Here is arsany of the input procedure:

1. Visualize the MSMC process using a multinomial @bty (e.g., Figure 1.1).
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2. ldentify splitting processes across MSMC process:

2.1.There is only one splitting process at stage 1hwitotal ofK; categories,
and sample size equal to initial volumg.

2.2.Identify all splitting processes and root categow stage, for j=2,...M: a
root category within a stage splits into severédmming categories at the next
stage. The realized number in a root category & shmple size for its
splitting process in the next stage. The first roategory in a MSMC is
category 1 (unique) at stage 0 with realized nunNS&rwhich is the sample
size at samplefor the splitting process in stage 1.

Here the monitoring procedure is described:

1. Build binary probability tree of MSMC process: ealitting process with more
than two categories in step 2 of the input procedardecomposed into binary
substages using the probability tree decompositimthod for a single stage
process with multiple categories as explained iagiér 3.

2. Determine the tree fractions: the tree fractionsnitoo every binary substage
obtained in the step 1. If each splitting process lbe modeled with a multinomial
distribution, then the tree binary substages aadréte fractions are independent.

3. Check the multinomial distribution assumption. ThEsdone testing whether the
volumeN®Y and the sample tree fractions determined in sta@ 2ndependent and
non-correlated random variables. Two differentsesdt hypothesis can be used:
the Kendall nonparametric test of independenceeéndgall & Gibbons (1990, p.

66) and/or the test of null pairwise correlationvween fractions as shown in
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Montgomery and Runger (2002, p. 402). In both cases$ rejecting the null
hypothesis is a sign of independence.
4. Monitoring MSMC process:

4.1.1f NYand the sample tree fractions are independewanitor and interpret

each tree fraction with a univariate control chaNe recommend the
CUSUM Arcsine method of Chapter 4. Additionally, mitor the volumeN®

if needed.

4.2.1f NY and the sample tree fractions are not indepenteatmethod proposed

here cannot be applied. A further multivariate mdthneeds to be
investigated.
It will be show below (eqn. (5-8}hat there is total dkge-1 tree fractions, when€g is
the number of final categories, i.e., those tha&t mot split in any further categories.
Notice that this number of sufficient fractiol&-1 is independent of the number of
stages, and of the number of categories in intelabedtages, and only dependent of the

number of final categories.

5.1.1 Methodology to monitor M SMC processes using matrices

The algorithm to monitor MSMC processes summariabdve is explained here
using matrix representation. This representationsesful for a potential development of
software for the algorithm. In the literature, Belmmeret al. (2005) and Kaplan (1982)
approach the representation of trees using magriegiser for diagnosis or for risk
analysis. An example about applying matrix represén is presented in Section 5.2.

For the input procedure:
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The first stepis representing the multinomial probability tresing the following
matrices:L;= linking indicator matrix from stagel into stagg, for j=1,2,...M. There
areM matricedj, each one havinl§j.; rows andK; columns, i.e., a dimensiok(; x K;).

The elements of thk; are given by:

1 if categorym in stagej hasarootin category atstagej -1
Li[l,ml= (5-1)
0 otherwise

, for1=1,2,...,Ki1 andn¥1,2,...K;.

The rows ofL; to be denoted,;[l,-] are an array of linking indicators to relate root
categoryl in stagg-1 with its splitting categories in stagerhose elements that take the
value 1 are called active cells, with a categorgtageg having a root category equallto
in stagej-1. If the elements of a row vectbg[l,-] are summed up, the result equals the
number of categories in which the root catedao§ stagg-1 splits into stage This sum
of elements across a vector can be expressed asaltam distance (MD) as shown by
Dudaet al. (2001, p. 188) because of the streets and elevdistance analogy in three
dimensions. Thus the number of categories into whketegoryl of stage-1 splits into

stagg is:
Kj
MD(Ly[l,]) = >° Li[li] (5-2)
i=1

We adopt the convention that any final categony an intermediate stagel has a
(virtual) splitting into one category in stage.e., MD(;[l,-])=1, and (virtually) into one
category in each successive stage.

The second steis recording the realized numbers in every categbsamplé using

the following matricesg(t) = realized numbers transition matrix from st@gdeinto stage
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| at sampld, for j=1,2,... M. Matrix g(t) has dimensionK.; X K;j). There areM matrices
S® to represent the MSMC at sample

The elements o5 are SY[I,m] = realized number of customers that split from
categoryl in stagej-1 into categorym in stagej at samplet, for 1=1,2,...,K;; and
m=1,2,...K;. These elements link the root categorin stagej-1 with the splitting

categorymin stagg. The matrices are populated using:

0 if Liflm=0
sOrm = (5-3)
nOm,j if Lifl,m] =1

Because of the properties of MSMC processes enigalce the beginning of Section
5.1, the matrices; andS“ have a special structure. For example, the colushhs and
S always are full of zeroes but in one row that tifas the root categoryin staggj-1
(“unigue path” property).

The rows of§" to be denote&“[l,-] are an array of transition realized numbers at
samplet from category of stagg-1 into realized numbers across categories of gtdfe
the elements of a row vects{”[l,-] are summed, the result equals the realized nuatber
samplet in the root category within the previous stagel. Using the Manhattan

distance, this is expressed as:
Kj
MD(S” [ D)= n6.1 =n® ¢ (5-4)
i=1

Some elements of the matric§1§) change and others do not change. The elements
§L(t)[l,m] that change or are active have a correspondiegnanhtL;[l,m|=1. Also if

MD(L;[,'])=1, i.e., if category in stagej-1 is a final category, then its virtual splitting
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into one category in the next stggenplies that the row vect@L(‘)[l,-] has all elements
equals zero except in colurmm such than® ¢ ;1= N i, ;.

For the monitoring procedure:

The first steps determining the tree fractions in their matoxm:

Define:

IA:J- ® = tree fraction matrix from stagel into stagg at samplé, for j=1,2,...M. The

dimension of each matrix i¥{; x K;-1). There areV matriceslA:j ® to be monitored at

samplet. The elements of these matrices are obtained ubmgrobability tree method
of Chapter 3 for every splitting within a stage aas the MSMC process. Thus, these

elements are given by:

(1)
STm if m=1+UG(l -1)
MD(SV[1,0)
E O, m= §[l’mr]n_1 if 2+UGj(l -1)< m< UC() (5-5)
— MDD - Y s, ]
0 . if Lifl,m] =0

where UG(i) = last category of stagen which category of stagg-1 splits into. The

following relation holds:
i-1
UCi(i)= Y MD(Li[k[])
k=1

The second stefs determining which elements of these matrices a@daange or are
active elements. Notice that any inactive eIemar@LF‘) has a corresponding inactive

element irfzj ® and take the value zero at every samphelditionally, some elements in

IEj ® always take the value one because they monitotatecategory of a splitting
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process — as explained in Section 3.1. Thus, d&ipéctive tree fractions matrix in

stagej. The elements dd; identify active and inactive tree fractions. RoactorAj[l,]

points out to MDL;[l,-])-1 active tree fractions irIAFj ® (value of egn. (5-2) minus one).

The elements dA; are given by:
|

loractive if Lj[l,m]=1andm# > MD(LJi,])
i=1

All,m] = (5-6)
Oorinactive if otherwise

Here we show that there akg-1 active tree fractions. According to eqn. (5-2),
categoryl in stagej-1 splits into MD(;[l,-]) categories in stagge Thus, using the
probability treemethod, this splitting process can be monitoredh WD(L;[I,-]) -1 tree

fractions. The Kj; splitting processes in stagg¢ can be monitored with

Kj-1
Z(MD(Lj[I,-] ) —1) tree fractions, which gives:
i=1
Number of active tree fractions & = Kj- K., (5-7)
Thus,
M
Total number of tree fractionsE(Kj -Kj1) = Km-1=Kg-1 (5-8)

j=1

Notice thatKy = Kg because stag®l includes those (virtual) categories that at
intermediate stage split (virtually) into one catgg Every tree fraction monitors an
independent binary stage within a splitting procdassother words, according to the

results in Johnsoet al. (1996, p. 68) as well as Kemp and Kemp (1987)baikary
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substages of a binary probability tree represensgquence of independent binomial
distributions.

It can be shown that the number of active treetifvas Ke-1 is usually significantly

lower than the total number of elements in the medr IEj ®  which is given by

M
z Ki-1[{Kj -1) . This fact opens the opportunity to investigateeotstructures of data in
=1

order to minimize the number or proportion of imaetelements in the monitoring
procedure.

The third steps checking the multinomial assumption. If eachttspg process can
be modeled with a multinomial distribution, there ttiree binary substages and the tree

fractions are independent. Thus, the multinomiaduagption is checked via testing

whether the volumeéN® and the active tree fractions at sampldetermined in the

previous step for an in-control process are inddpeh among themselves. We
recommend to use the Kendall nonparametric testdafppendence in Kendall & Gibbons
(1990, p. 66) and/or the test of null pairwise etation between fractions as shown in
Montgomery and Runger (2002, p. 402). In both casatsrejecting the null hypothesis is

a sign of independence.

If N® and the active tree fractions are not independering themselves, then the
MSMC process can not be modeled with the multinbmlistribution, and the process
can not be monitored using independent control tshas proposed here. A further
multivariate method is needed.

The fourth steps monitoring the process. If the independencenty is confirmed

in the previous step, then univariate control chaen be used to monitor and interpret
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the active tree fraction cells as well as the ahitiolumeN® if needed. Similarly to the

p-tree method, if the control chart for an acti%'je(t) [I, m] signals, then categorg at the

stagg is causing a disturbance at santple

The method can be used either in Phase | or PhaBkdse | provides an exploratory
and retrospective analysis to answer whether tbheegs is stable and in-control, and to
find parameters in order to build control charts feonitoring in Phase Il. Once the
process is stable, we recommend monitoring eadhidrausing the CUSUM Arcsine
proposed in Chapter 4. The CUSUM Arcsine method thasadvantage that is easily
designed and achieves a desired false alarm rag@ wionitoring a fraction, especially
those with small sample sizes. The CUSUM Arcsise alas a better sensitivity than the
p-chart and other easily designed existing metholdsmnmonitoring small shift sizes in
binomial distributed data. Additionally, it can beown that the CUSUM Arcsine has an
acceptable sensitivity compared with grehart when monitoring large shift sizes, i.e.,
shifts with size over 2-sigma.

Suppose a total desired false alarm ratnd the user sorts the active tree fraction
from 1,2,...Kg-1. Because of the independence property, (ke probability that the

monitoring method does not signal given in-contrsil)

Kg-1
l-a= 1—0’i 5-9
||:1|( ) (5-9)

whereq; is the individual false alarm for the control dhtrat monitors the active tree

fractioni. If all individual control charts has the same fadé&rm ratex=a*, this is given

by:

o =1- (- a) ke, (5-10)
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Egn. (5-10) is based on the independent fiastions and on Montgomery (2005,

egn. (10-2), p. 489). The CUSUM Arcsine method éach active tree fraction is

implemented as follows:

Vi.

Use the numerator of egn. (5-5) for the realizechiper in the binary substage
of interest at sample

Use the denominator of eqn. (5-5) for the samde at sampléin the binary
substage of interest at sample

Use the in-control value of the tree fraction aenest, obtained though eqn.
(F-1) of Appendix F.

Use the individual false alarm rat® obtained through eqgn. (5-10).

Construct the two-sided CUSUM control charts aswshan Table 4.1, and

monitor each active tree fraction.

If a CUSUM chart for tree fractiorfFj 11, m] signals, then categomy at

stagg is causing a disturbance at saniple
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5.2 Case study: acall center process

Consider a call center of a commercial bank desdrin Mandelbaunet al. (2001).
This example is used here to show the applicatfahe algorithm to monitor a MSMC
process in Phase Il. In the next sections, therighgo to monitor the call center is
presented, including a matrix representation; ahenta simulated call center is
monitored.

Figure 5.2 shows a business process diagram focaheenter (decimals represent
transition fractions in 1999). Three stages ar@@sed for this process: In stage one, the

process starts with callers that seek to speakb@né representativddmong the callers,

5% abandon (hang up) immediately, 35% speak t@@@sentative without waiting at all
- meaning that a representative is available -thadther 60% of customers are put in a
waiting queue until a representative is availalihestage two, among those customers

waiting in queuge 25% abandon and 75% finally do speak to a reptasee. In stage

three, among those customers that abandon whilgngyan queue 20% are called back

as ordered by a bank’s supervisor, who makes #asion according to the customer’s

business priority.
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Figure 5.2. Call center business process diagram

A monitoring system would monitor any changes ia tfansition probabilities that
characterize the process. For example, Ganal. (2003, p. 89) mentions the need to
measure the number of calls that abandon whileivgaibr attention as well as obtaining
other quality measures. Mandelbaetal. (2001, p. 70) actually envisions a systematic
analysis of inter-relations between blocks or congmis of the system, and their effects

on performances measures.

5.2.1 Algorithm applied to call center

The first stepfor the input procedures obtaining a multinomial probability tree that

is helpful for visualization. Figure 5.8nd Table 5.1 show the multinomial probability
tree for the call center witM=3 stages and its notation respectively. In Figu®: the
decimal numbers indicate average yearly fractiaars] the integers on the bottom

indicate stage number.
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Notice that any final category at an intermedidtges is represented with (virtual)
successive splitting into one category. For exangaeegory 1 at stage 1 (virtually) splits
into one category at stage 2 and one categoryages3. This is a requirement of the
matrix representation. Stage 1 H&s=3 categories; stage 2 hKs =4 categories, and

stage 3 hak3 =5 categories. Thu&r=Ks=5 final categories.
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Figure 5.3. Multinomial probability tree for cakwoter
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Stage | Symbol | Number of customersat samplet that,
0 N® | seek to speak to a bank representative
1 n(t)(l,l) abandon the call center when entering the system
1 n® @.1) have to wait to speak with a bank representative
1 | nYsy | donotwait at all to speak to a bank represimeta
2 n® 1.2) (virtual) abandon the call center when entgthre system
2 | nYay abandon the queue while waiting
2 n® (3.2) speak to a bank representative after waitinguieue
2 n()(4 2) (virtual) do not wait at all to speak to a baapresentative
3 n® (1.3) (virtual) abandon the call center when entgthre system
3 n® 2.3) are called back after abandoning the waigjngue
3 n® (3.3) are not called back after abandoning theéimgagueue
3 n® 4.3) (virtual) speak to a bank representativeraftaiting in queue
3 n® (5.3) (virtual) do not wait at all to speak tbank representative

Table 5.1. Descriptions of categories for call eent

Notice that two categories are considered for & lrapresentative. one is through
category 3 at stage 1, in which customers do nat aaall to speak to a bank
representative; the other is through category Sade 2, in which customers speak to a
bank representative after waiting in queue. Themctually another potential path, which
is when a customer that abandons in queue in aat&yat stage 2 is called back as
ordered by a bank supervisor based on the custenmgportance.

The second stem the _input procedurés identifying all splitting processes. The

unique category at stage 0 splits into three categat stage 1. The number of customers
that have to wait to speak with a bank represematp ) at stage 1 splits into two

categories at stage 2, i.e., categories 2 and thatt stage. Finally, the number of
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customers that abandon the queue while waiting at stage 2 splits into two categories
at stage 3, i.e. categories 2 and 3 at that stage.

The following relations among the realized numiibereugh stages hold:

In stage 1: NO = n® 1 y+ n® 51+ n® 54

Between stage 1 and stager® 1170 12 N 1= nY oo+ n® gy Y5200
4,2)

Between stage 2 and stager8? 1 270" 13, n® oo NV g+ n® ga Y 4 o=n0
4.3)

For the _monitoring procedurethe first stepis transforming the multinomial

probability tree into a binary probability tree ander to identify the tree fractions to be
monitored. Thus, stage 1 in Figure 3&h three categories is transformed into two
binary substages (1a and 1b). The binary probgliége to be monitored is shown in
Figure 5.4 (arrows in bold font suggest tree fratd)

The p-tree method of Chapter 3 is applied to every binargeta the process. The
unique category at stage 0 splits into two categoat substage 1a, with realized numbers
nYq.1 and NO-n®, ;) at samplet. The realized numbeN®-n" 1y represents those
customers that do not abandon the call center vamtering the system at sample
Those customers that do not to abandon at substagbave a splitting into two
categories at substage 1b, with realized numtiés,) andn® 3 . Stages 2 and 3 are not
transformed because they already have two categasishown on Figure 5.3

Notice that the splitting of final stages (e.g.teggory 1 at stage 1) do not appear in
Figure 5.4. As mentioned before, the further gplitof final stages is really required for

the matrix representation.
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Figure 5.4. Binary probability tree across stagesatl center

The second stejm the_monitoring procedurie determining the tree fractions through

every binary substage in the binary probabilityeted Figure 5.4. Table 5.2€hows the

equations and descriptions of the tree fractionbdamonitored. Every fraction has a
numerator that equals the realized number at thedategory of the binary substage and
a denominator that equals the realized number énrtot category at the previous

substage.



Stage or

substage

Sampletreefraction

and equation

Description of fraction

la

number of customers that
abandon the call center
when entering the system
over the total number of
customers that seek to spe

to a bank representative

1b

~ B n® 21

@y

TN®D O

number of customers that
wait to speak to a bank
representative over the

88

ak

number of customers that do

not abandon the call cente

when entering the system

number of customers that
abandon the queue while
waiting over number of
customers that decided
initially to wait to speak

with a bank representative

_nW gy

=ney
n® 12

£ (t
1:()(2’3

number of customers that
are called back over numbg
of customers that abandon

the queue while waiting

Table 5.2. Tree fractions for call center (alsdaksl arrows in Figure 5.4)

The third stepn the _monitoring proceduris checking the multinomial distribution

assumption through tests of independence amongldcee fractions for the in-control

process. The fourth step the_monitoring procedurie monitoring the process. In Section
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5.2.3 a simulated call center that follows the moltnial assumption is monitored using

univariate control charts for the four independes¢ fractions of Table 5.2

5.2.2 Matrix representation of call center

The algorithm to monitor the call center is desedithere using matrix representation,
which would be useful for software developmenthsd algorithm. Recall that Figure 5.3
and Table 5.5how the multinomial probability tree and its naiatrespectively.

For the _input procedurehe first stepis representing the tree structure using the

following linking indicator matriced ;, for j=1,2, 3. These matrices are obtained using

eqgn. (5-1) and are:

10000
1000
01100
L;=[1 1 1], L,=|0 1 1 0, andLs=
00010
0001
00001

The second stem the input procedure is recording the realizedhbers transition
matricesg(t)_at samplgt, for j=1,2,3. These matrices are obtained using eqgn) ér8

are:

SO0 Yy nOg],

n® 1z 0 0 0
i(t)_: 0 n® 22) n® 32) 0 ’
0 0 0 n®uy
n® 3 0 0 0 0
0o n® n® 0 0
and %(t)_: (23) (33) o
0 0 0 n“’ (3 0

0 0 0 0 nWgy
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The matrices§" are time series in which some elements are aefidecan change
over the samples and others are inactive. As stowaegn. (5-3), the active elements are
such that have a corresponding elenigfitm]=1.

For the_monitoring proceduré¢he first stepgs determining the tree fraction matrices

IA:J- ® forj=1,23. The matriceﬁj © are time series and their elements are obtainieg us

eqgn. (5-5) and are:

1 0 0
2 (t) n(t) @y n(t) 1) - n(t) 22)
i S| TN ® _[® ’ E =0 —w 1| and
0 0 0
i 0 0 0]
n® g Lo
F. 0= n®
3 = 22)
— |0 0 01
0 0 0 0]

The second stejs determining which elements of these matriég@ can change or

are active elements. Tlaetive tree fractions matricés show which elements oﬂA:j ®

do change, and are determined using eqn. (5-@)llasvt:

0000
000
A=[1 1], A 0 1 0|, andag=|> = 0 7
1— y A2— ’ 3=
= = — 10 00 0
000
0000

Thus, the active tree fractions are the eleméqty1,1], F,“[1,2], F,®[2,2], and

|33(t)[2,2]. Notice that these active elements have #mesequations of the tree fractions
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in Table 5.2. These tree fractions have in-contablies that are calculated using eqn. (F-
2) of Appendix F, and are 0.050, 0.632, 0250, ag0@respectively.

There is a total oKg=5 final categories in the call center, so thera tistal ofKg-1=4

active tree fractions out of 27 total elementshia matricesF; . As suggested before,

other computational structures of data might béhtrrinvestigated in order to minimize

the proportion of inactive elements in the monitgrprocedure.

5.2.3 Monitoring asimulated call center

Here a simulated call center is monitored to iliat the application of the
methodology proposed in Section 5.2.1. Two sceravifocall centers are simulated as
shown in Figure 5.5: an in-control scenario wite game probability parameters shown
in Figure 5.3 and an out-of-control scenario with probability graeters as shown in
Figure 5.5b. Both scenarios have constant volifle 1,000 customers per period of
time (about a daily actual number of customersag&tl is simulated as a multinomial
process with three categories, and stages 2 ameé Simulated as binomial processes
each one with samples sird 1) and ", respectively. The desired ARlis 84
samples (equivalent to 84 days or 7 weeks). Thebeamf runs in the simulation is such

that each standard error is less or equal tharARQD2
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051t0.09

N > .6 to .64

Figure 5.5 Shifts in call center process

Section 5.2.1 above described with enough detailrtput procedure and the first two
steps of the monitoring procedure. The first stépthe monitoring procedure was
building the binary probability tree as shown imgliie 5.4 The second step of the
monitoring procedure was getting the tree fractiacr®ss stages as shown in Table 5.2.

The third step of the monitoring procedure is cliegkhe multinomial distribution
assumption. Kendall nonparametric tests indepered@fendall & Gibbons, 1990, p. 66)
among tree fractions were performed for the in-adrgcenario with 200 samples. The p-
values are between 0.12 and 0.88, so the null hgges of independence are not
rejected.

The fourth step of the monitoring procedure is nammg the tree fractions. Because
of the theoretical and empirical independence amoeg fractions, univariate control

charts are constructed for each of the fractioashHree fraction is monitored either by a
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p-chart or by a CUSUM Arcsine method with the sandiidual false alarm rate (using
egn. (5-10)). The process is monitored in Phasend, the performance measures are the
process ARL and the individual tree fraction ARLS.

Table 5.3 shows the ARL results. The first colurhovgs what is being monitored —
the total process or each tree fraction. The secthmdl, and fourth columns show the
stage (or substage), the expected sample sizeafdr faction, and the shift size in
multiples of the standard deviation of each fractibhe last four columns show the ARL

results by scenario and by method used.

ARLS results

In-control Out-of-contra|

| stage or| EXPeCted g |, | CUSUM CUSUM

Monitor sample . Arcsine p-chart(s) )
Substage . size | chart(s) Arcsine
size chart(s)

chart(s)

Process All 81 83 1.0 1.1
fO 1a 1000 58| 329 325 1.0 16
t Oy | 1b 950 4.6| 305 329 11 17
O e 2 600 23| 322 341 3.7 3.2
£ e 3 150 1.2| 340 325| 146 6.4

Table 5.3. ARL results for simulated call centeostal desired ARE=84

Table 5.3 shows that:
Both methods achieve the desired total ARL84.
The higher the fraction on Table 5.3, the higher shmple size, the higher the

shift size, the better the sensitivity (lower thRI1A.
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- As expected, thp-chart has better sensitivity than the CUSUM Aredior shifts
size over 3 (f®,, and f®,,), and the CUSUM Arcsine has better
sensitivity than th@-chart for shifts under&(f© ,, and f© ;).
For example, if the user wishes to increase thsiteéty of the fractionsf ® (22 and
fO 23 » then their false alarm rates should be increasetithe false alarm rate of the

fractions f© ., and f® ,, should be decreased in order to keep a desiretifadse

alarm rate for the system. Another possibility vebble to redefine stage 3 as stage 1,

although altering the natural order of the stagesld/.complicate the interpretations.
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5.3 Concluding remarks about monitoring multistage and multicategory processes

We propose a methodology to monitor and interprattistage and multicategory
processes. The proposed methodology decomposgsrdbess into binary stages and
substages, which can be monitored with a set @iaied tree fractions. Thus, these tree
fractions describe the relation within and amorapgss and provide full interpretations
across the process. The sufficient number of traetibns equals the number of final
categories minus one, where final categories arsetithat do not have any further splits
in the process.

We show that if a multinomial distribution fits eyestage of the process, then these
tree fractions are independent and can be moniterdgdindividual control charts. The
proposed methodology can be expressed as an hlgotising matrix representation,
which can be useful for a further computationalgpaomming of the algorithm.

The proposed methodology is not limited by the nendd stages and categories. We
show that the CUSUM Arcsine proposed in Chaptead leelp both achieving a false
alarm rate at process level and at individual foactlevel, as well as improving
sensitivity. However, a large number of categodesld imply that some tree fractions
with very low sample sizes would not get approgrsgnsitivities.

The order of the stages and categories has an ingpathe sample sizes of tree
fractions, and therefore has an impact on the wehgiof every tree fraction being
monitored. The user may order the categories asuptd their monitoring importance
within each stage. The user could also reordersthges and get a new multinomial
probability tree as long this new tree might makase. For example, the user may

redefine stage 1 of the call center as a splitbhgustomers among two categories:
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customers that wait in queue for a bank represgatand other customers. Monitoring
this new tree would emphasize detecting changesustomers that have to wait in

queue.
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6 Futureresearch
| propose several research topics to extend th& wfathis dissertation:
—  Monitoring non-multinomial MSMC processes.
—  Monitoring routing matrices in queuing systems.
—  Monitoring waiting and service times in multistgg®cesses.
—  Monitoring multifacility MSMC processes.
—  Forecasting and monitoring in service.

— Testing and interpreting associations in contingeables using trees.

Monitoring non-multinomial multistage and multicatey processes

Here we propose to investigate how to monitor MSHI©cesses in which the
process’ data is not multinomial distributed aneréfiore the method proposed in Chapter
5 may not be applied. The multinomial assumptioplies that the binary substages are
independent and binomial distributed. However, #ssumption is not always fulfilled.
At least two situations may occur:

- Tree fractions that are correlated with the voluamel also correlated among

themselves

- Tree fractions that present overdispersion withpees to the binomial

distribution.

In case of processes whose tree fractions arelamdewith the volume and also
correlated among themselves, multivariate methogisdnto be developed. Existing

methods to be explored are commented next.
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Suleket al. (2006) monitor a two-stage service process intalreperation, using a
linear regression method of Wade and Woodall (1993} relates the two stages.
Woodall et al. (2004) as well as Kang and Albin (2000) propose fhofile method to
monitor processes in which there is a relation betwa response variable and one or
more covariates. If this relation is linear, thest only the residuals are monitored, but
also the estimated slope and intercept.

Another approach is proposed by Jearkpagporal. (2005) and Skinneet al. (2003,
2004). They propose monitoring methods based omrgéped linear models (GLM),
which allow modeling various distributions for depent variables and include
covariates that can represent customers’ charsitsti

With respect to the tree fractions that presentrdispersion with respect to the
binomial distribution, two approaches may be atteap

- ldentifying groups of customers that share speti&baviors and hence split the
data set into subsets that fulfill the binomialussption of binary substages.

- Fitting other distributions. This may consider amailg whether groups of
customers arrive in clusters as responding to fpecauses (commercial
campaigns, deadlines, etc). However, Jackson (1p721) points out that a
process must be in-control or stable in ordertta flistribution well. Fitting other
discrete distributions may be tried as in Friedraad Albin (1991) and Jackson
(1972). Mixes of binomial may represent distincogrs of customers and
generalized Poisson distributions (see Table 6.4y ddress overdispersion

and/or clusters. If none distribution can fit thetal the distribution free CUSUM
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Box-Cox method proposed in Chapter 4 could be aggl monitor fractions (if

they are independent yet).

Distribution Distribution of No. of | Distribution of Counts per
Clusters Cluster

Neyman type A Poisson Poisson

Thomas Zero-truncated Poisson Poisson

Poisson binomial | Poisson Zero or some constant

Negative Gamma Poisson

binomial, also

knows as Polyar

Eggenberger
Neyman type B Poisson Uniform
Neyman type C Poisson Triangular

Table 6.1. Generalized Poisson distributions

Here we consider monitoring the call center usiciga data for a year of operation.
We show that the volume and tree fractions areetated, so they can not be monitored
with individual control charts as proposed by thetmodology developed in Chapter 5
for MSMC processes. We show that the tree fractedae present overdispersion with
respect to the binomial distribution.

The data set with a year of operation was obtaitieghks to Professor Avishai
Mandelbaum of the Israel Institute of Technologyec8l that the first step of the
monitoring methodology is building the binary prbbay tree as shown in Figure 5.4,
and thesecond step of the monitoring procedure is gettiegtree fractions as shown in
Table 5.2.

We choose to monitor the process on a weekly bagigh provides 52 samples for

the complete year, although the user may use ardift level of aggregation (daily,
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biweekly, monthly, etc). Table 6.2 shows the dgdrre statistics of the volume and the

tree fractions on a weekly basis.

Measure Mean SD Minimum Maximum
N® 8547 1349 5757 11676
f9y 005 002 0.03 0.12
f9% 062 014 0.28 0.85
{90 024 005 0.16 0.36
{90 019 0.06 0.07 0.32

Table 6.2. Descriptive statistics of the volume &eé fractions (weekly basis)

In the third step of the monitoring procedure welfthat the multinomial assumption
is violated because there are dependencies amertgeth fractions. Consider Figure 6.1

that shows scatter plots among the volumeand the four tree fractiongigure 6.1
clearly shows empirical correlation betwedd ,,, and f® ,,, which violates the
independence assumption. The interpretation isthigafraction of customers that wait in

gqueue (f ® ) Is linearly and positively correlated with thedtion of those waiting

customers that abandon the quedié’(,, ).
Through tests of hypotheses, we observe that #rereorrelations among the volume

N and stages 1 and 2, i.e., amdiigy and the tree fractions® ,,, f® ,,and f© .

Additionally, depending on the te may be correlated with® ,, . This is shown in

Table 6.3, which contains a sample correlation mammong the volum&l® and the four
tree fractionsThe first number in each cell is the Pearson catign coefficient, and the
numbers in parenthesis are p-values for two nydotiyeses of independence tested. The

first null hypothesis is whether the Pearson cati@h coefficient equals zero, and the
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second null hypothesis relates to the Kendall ncapatric test of independence. All p-

values under a type | error of 0.05 are markedid.b
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Figure 6.1. Multiple scatter plot amohband tree fractions

~

N© fOu Y% Y,
-0.07

) (0.6,

£ @y 0.9)
0.44 0.33

A (0.001, | (0.02,

t©.y | 0001) | 001)
0.36 | 0.37 0.87
- (0.01, | (0.006, | (0.000,
f% s | 001) | 0003) | 0.000)
028 | -0.09 | 005 | -012
(0.04, | (0.5, ©.7, | (0.4,
¢y | 0.06) | 0.5) 0.8) 0.7)

Table 6.3. Sample correlation matrix and p-valwestill hypotheses

40




102

The fourth step of the monitoring procedure is nmmg the tree fractions. The
volume N® and the tree fractions cannot be subject to iddiai monitoring and
interpretations because they are correlated asrsbgwable 6.3.

As an illustration that the call center seems tarba non-stationary mode, here we
set a MEWMA control chart (multivariate EWMA as pased by Lowryet al. (1992)
and Prabhu and Runger (1997)) for the voludfeand the four tree fractions with an
ARL=100 weeks (using an yearly estimate of a covaeanatrix and without removing
any sample for calculations). The MEWMA chart igiiie 6.2 suggests that the process
IS non-stationary during most of the weeks. A beliowledge of the process would
allow identifying appropriate special causes. Bameple, changes in staffing allocations

or changes in procedures can be related to speuiaks.

700
600
500
< i
% 400
= 3004
200 A
100
0- UCL=13.8
T T T T T T T T T T T
1 6 11 16 21 26 31 36 41 46 51
W eek

Figure 6.2. MEWMA control chart faX® and the four tree fractions. AR100 weeks

Here we explore the method of Sulek al. (2006), which monitors a two-stage

service process in a retail operation, using aalinegression method of Wade and
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Woodall (1993) that relates the two stages. We stimaw linear regressions among call

center’s tree fractions may help but do not expfaost of the process variation.

Consider the positive correlation betweé ,, andN®, and betweenf ® ,, and

A

f® ., as shown in Table 6.3. This means that the chdratdlie chance that a customer
has to wait in queue increases with the volume usitamers or with the fraction of

customers that abandon the system. However, arlnegaession off ® (220N N® and

A

fO . gets a R statistic of 0.32, i.e., only 0.32 of the variatiof f® ,, is explained
by the regression.

Table 6.3also shows that the fractionf @ ,, is correlated wittN®, f© ., and
f® @y - In other words, stage 2 is correlated with theum® and with stage 1. A linear
regression off © ,, onN®, f® . and f© ,, gets a satisfactory’f 0.77, and only
the coefficient associated t6 ¥ ,, is significant. The fitted regression equation is
fO ,,=0.043+0.3% © ,, , with residuals normally distributed. The intettion here
is that the higher the fraction of customers thattwn queue d?(t) @y ), the higher the

fraction of those waiting customers that abandendireue € © ., ).

As an illustration that the call center also préseverdispersion with respect to the

binomial distribution, see Figure 6.3 that showsreomial based 3-sigm@achart on the
actual fraction f ay - Figure 6.3 shows that the control limits are tight to take into

account this violation of assumptions. This probless been observed in processes with

large sample sizes as in Heimann (1996). It casHmvn also thalN andnq 1) have
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overdispersion with regards to the Poisson distigioy which is consistent with the

research of Borsdt al. (2004, p. 32).
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Chart based on variable sample size N

Figure 6.3. Binomial based 3-sigmahart for f © ., shows overdispersion

Monitoring routing matrices in gueuing systems

The multistage and multicategory processes coraidier Chapter 5 impose several
restrictions that can be relaxed for future redeaMultistage processes in queuing
systems may accept loops, i.e., customers thatnrétua category of a previous stage
including a return to the same category. In thistext, categories may be redefined as
states, and the process can represent the routiogstomers, transactions, or messages
across a network. These processes can be reprsenteuting matrices in which each
row is an array of probabilities from going froncertain state to another one.

Monitoring the variations on the estimates of thpsebabilities can be a relevant
problem. Loops can introduce a source of signiticaorrelation among stages, so

multivariate methods should be investigated.
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Monitoring waiting and servicemes in multistage processes

Multistage processes can involve queues acrosgsstag shown in the call center
example. It can be relevant for example to monitaiting times instead of just a fraction
of customers that need to wait for attention. Thebjem is that these fractions put
together customers that wait a few seconds withoousrs that wait a lot more.

The call center used as an example has at leasirfstances of times: the time in
VRU when entering the system in stage 1, the timguieue until abandoning in stage 2,
the time in queue until speaking to a bank reprasier, and lastly the service time.
Monitoring times in queue also could involve cemrsbdata, as shown by Mandelbaatm
al. (2001). The time until abandoning is a censoredeolation with respect to the
needed time to wait, and the time until speaking bank representative is censored with
respect to the time that a customer is willing &atw

In terms of existing methods that could be explorBtdore (2006) proposes to
monitor the number of customers in a queuing syst8teiner and Mackay (2000)

propose methods for monitoring censored data inufaaturing.

Monitoring multifacility MSMC processes

Consider that a multifacility, i.e., a multiple ttists in which a MSMC process fits
the operation of every district. The managementldvaush to monitor the multifacility,
and then different monitoring interfaced shouldblodt according with the user profile.

Examples of users are: top level decision makegpnal managers, district managers,
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SPC experts, and operating personnel. Benneyah (2000) approaches a multifacility

web-based monitoring system for health care.

Forecasting and monitoring in service applications

In many service applications the data are autolaie® and it can be more relevant to
forecast the current mean than to detect a changed baseline or target. Methods that
model actual service data as time series and teemmsnitoring methods could be
developed.

In terms of existing methods, Montgomery (2005446) suggests a EWMA chart as
a one-step-ahead forecast for correlated data.rdogpto Montgomery and Mastrangelo
(1991), if the process can be modeled with a @irder integrated moving average model
(ARIMA), a EWMA can be designed to be the best ¢dast of the process mean.
Yashchin (1993) also suggests using a EWMA to fasethe process level. Montgomery
and Mastrangelo (1991) propose a moving centerEWAMA method for autocorrelated
data (MCEWMA). Boyles (2000) approaches the ansalg$iautocorrelated processes in

Phase | for either stationary or non-stationaryetsaries.

For the call center example, Figure 6.4 shows & tseries of fractionfﬁ(zyz) and its

related EWMA (with smoothing parameter=0.2). Frtmt'rf(zvz) measures the number of

customers that abandon the queue while waiting theenumber of customers in queue

waiting to speak with a bank representative. Foactf 22) has a mean of 0.24 and a

range between 0.16 and 0.36. It can be shown ﬁg%thas a significant autocorrelation

of at least first order. In cases like this, it sla®mt make sense to detect whether the
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process is in-control or not with respect to a blaseMany questions arise: What is the

period of time to be considered in a Phase | studl{/¥ear? Some weeks and which

weeks?
Variable
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Figure 6.4. Time series of actual fractioir&z) and its EWMA

Interpreting associations in contingency tablesasiees

This future research proposes to use the probalibe methodology developed in
Chapter 3 to test and interpret associations itimgency tables. The idea is based in that
under the null hypothesis of independence; evemy(emd every column) is multinomial
distributed. The proposed idea is explained udiegetxample in Table 6.4, which shows

a contingency table about gender and party ideatibn (Ref.: Agresti (1996, p. 31)).



Gender | Democrats | Non-affiliated | Republicans | Total

Females 279 73 225 577
(261.4) (70.7) (244.9)

Males 165 47 191 403
(182.6) (49.3) (171.1)

Total 444 120 416 980
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Table 6.4. Cross classification of party identifioa by gender (frequencies under

independence in parenthesis)

The null hypothesis of independence between pddstification and gender may be
tested with a chi-square test. The chi-square ssiatihere is X?=7.01. Under
independenceg’is distributed chi-square with two degrees of faradThis test has a p-
value of 0.03, so the null hypothesis of indeperdeis rejected for any type | error
greater than this level.

According to Agresti (1996, p. 33), the chi-squaest of independence simply
indicates the degree of evidence for an associafigresti recommends interpreting the
nature of the association through techniques sgsctieaomposition or partition of chi-
square into components, analysis of residuals pddg-ratios.

The method proposed here uses the probabilityté&®ique to formulate a new test
of independence, which also provides interpretatidfor the example, the probability
tree technique decomposes this multinomial wittat@gories shown in Table 6.4 into 2
binary substages as shown in Figures 6.5 and 6uwekhas in Table 6.5 (integers under
labels represent volumes and decimal numbers ow@wvsa represent fractions). The tree
categories are ordered as Non-affiliated, Demoaaty Republican, although other

orders could also be proposed.



109

For the example, the proposed method would perfarmindependent tests in Figure
6.5: a first test that the probability of a nondafted female (sample tree fraction is
0.127) equals the probability a non-affiliated mgdample tree fraction is 0.117); and a
second test that among those affiliated subjebts,probability of a female Democrat
(sample tree fraction is 0.554) equals the probghof a male Democrat (sample tree
fraction is 0.463). Additionally and for comparisorFigure 6.6 shows that the sample
fraction of non-affiliated subjects (both femalesdamales) is 0.122 and the sample
fraction of Democrats among affiliated subjectstifidemales and males) is 0.516.

This dissertation proposes to measure the power sagwificance of this tree
association method and compare its interpretaticth wther technigues such as the
partition of chi-square into components, analysisesiduals, and odds-ratios, as shown
by Agresti (1996, p. 31-33). The method shouldswder that the order of categories in
the tree affects the results, and also approachingemcy tables with more rows and

columns than the example just shown.
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Non-affiliated
73

Non-affiliated
47

Females

Democrats Males Democrats
577 219
403 165
Affiliated Affiliated
504 356
Republicans Republicans
225

191
Figure 6.5. Binary probability trees for party itiination for females and for males

Non-affiliated
120

Subjects Democrats
980 444
Affiliated
860
Republicans
416

Figure 6.6. Binary probability tree for party idéicttion for females and males subjects

Gender Non-affiliated/Total | Democr ats/(Republicans or Democr ats)
Females 0.127 0.554

Males 0.117 0.463

Total Subjects 0.122 0.516

Table 6.5. Tree fractions for party identificatioy gender
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7 Conclusions

Many processes function through routing transastiona succession of stages and
multiplicity of categories. This dissertation hasvdloped a monitoring method to detect
changes in the baseline fractions that charactaripeiltistage and multicategory process.
Detecting these changes may allow users to underdtze variation of the process,
analyze its special and common causes, keep tloeggon statistical control as well as
introduce improvements in the process.

Monitoring multistage and multicategory processsgiires a thorough knowledge of
the process. Initially, the process has to be napiseng flowcharts and business process
diagrams. Users with different profiles should cimite to this process’ description. The
monitoring method proposed requires that the pmobesrepresented as a tree in which
the stages and the splitting of categories arealimed. These so called multinomial
probability trees are decomposed into binary sgestaising a binary probability tree. If
every stage and splitting of the process is muttiimb distributed, then the binary
substages are independent and binomial distribated,the process can be monitored
through independent tree fractions.

This dissertation first proposes methods for maimmtpa single stage process with
multiple categories (Chapter 3), and monitoringation in single stage process with
two categories (Chapter 4). These two proposed adsthave their own merits and also
contribute to the development of the proposed ntetle®o monitoring multistage and

multicategory process (Chapter 5). The proposedodeiogy can be expressed as an
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algorithm using matrix representation, which canubeful for a further development of
software for the algorithm.

Both thep-treemethod for a single stage with multiple categoaed the method for

monitoring multistage and multicategory processealanumber of features:

- The tree fractions provide full interpretations gy the process. If a chart for a
tree fraction signals, it is straightforward to ntiey the stage and category
causing the disturbance.

- The order of the stages and categories matteesmmstof describing the process
and in terms of monitoring properties such as $eitgiand achieving a desired
false alarm rate. Thus, the user may order thegoaes according to their
monitoring importance within each stage.

- The methods are not limited by the number of caiegoper stage. Although
eventual very low samples sizes of some tree @mastican compromise the
sensitivity and false alarm rates of monitoring heels as shown in Chapter 4.

The CUSUM Arcsine proposed in Chapter 4 can beragfgdhe method to monitor

multistage and multicategory process. The CUSUMske method can monitor every
tree fraction, contributing to achieving a falsarai rate at process level and at individual
fraction level, as well as improving sensitivitytbe method.

| propose several research topics to extend th& wfathis dissertation:

—  Monitoring non-multinomial MSMC: data of actual pess may not fit
the multinomial assumption, and the binary substagey not be

binomial distributed.
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Monitoring routing matrices: the methodology can é&etended to
processes where the transactions do not always rfmward, e.g.,
loops. It may have applications in telecommunicajoand financial
markets.

Monitoring waiting and service times in multistageocesses: for
example monitoring waiting and service times in cahters.
Forecasting and monitoring in service: for processbat are
autocorrelated and where forecasting is more retettaan deviations
from a baseline.

Testing and interpreting associations in contingdables using trees: a
novel method based on applying probability trees rapresent

contingency tables.
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9 Appendices

Appendix A. Articles about monitoring single stage processes with multiple
categories

(Summary in Table 2.1)

L aviolette (1995)

In this paper, a Bayesian monitoring system is gseg to monitor all the fractions
but one of items falling in different quality categes. The categories are sorted from
poorest to best quality. Only the fraction relatedhe best quality is not monitored.

The count variables are modeled by a multinomistirifiution for known probability
parameters. The Bayesian approach allows the pitilgsbparameters to vary according
to a prior probability distribution, which is tyg@itly the Dirichlet distribution.

A probability control limit is obtained for the pgesior cumulative distribution of the
multinomial probability parameters, for all but tharameter related to the best quality. If
this posterior probability is less than a type roew, the process is considered out-of-
control. The author refers to this chart as thecbiet p-chart

An example is given for monitoring the multinompabcess with 3 categories found
in Marcucci (1985). This Dirichlgb-chartmonitors the posterior cumulative distribution
of the two nonconforming probability parameterst &n arbitrary prior distribution,
showing better sensitivity than Marcucci’'s method985). Laviolette suggests
monitoring individual probability parameters witharginal distributions of the posterior

cumulative distribution in order to solve for tgarpretation of out-of-control points.
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Mar cucci (1985)

Marcucci gives data with variable sample size, whbricks are classified into
conforming, nonconforming typ& and nonconforming typB categories with in-control
probabilities 0.95, 0.03, and 0.02 respectively prgposes a monitoring system based on
a multinomial model, using a Pearson statistico(&sown as chi-square statistic) that
follows an approximate chi-square distribution. Wharcucci’'s method is simple to
use, it is difficult to interpret an out-of-contrsignal. Marcucci’s work is still the most
accepted procedure to monitor nominal categoriedh dor uniattribute processes as
recalled in Tuckeet al. (2002).

In general, if the in-control probabilities thavariable is classified in a category out
of a total ofK categories are known, then the chi-square statlsticis monitored at time
tis,

K . \2
» o (Ni = nepi)
X* =D S <y pdf (A-1)
i=1 ntpl
Where,
ng = number of occurrences of attributé a sample of independent trials at tinte

n; = sample size at time

pi = probability of occurrences of attributen a trial; i=1,2,...,K

K
The following relations hold: ij = Z p; =1

j=1 i=1
When the multinomial process is in-control, the rBea statistic approximately
distributes chi-square witK-1 degrees of freedom. Let us call the above methed

Marcucci mathod. The Pearson approximation migrdadoeptable if:
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I.  No more than 20% of the expected frequencies (samsigk multiplied by
probability of a category) are less than five (Qachl1954). A less restrictive
rule by Yarnold (1970): leK be the number of categories, andrldde the
number of expected frequencies less than five. K88, the minimum
expected frequency should be at led&tr 5

ii. A sample sizen of at least 167 observations, based on Yarnold(L9

Changes of both positive and negative signs in dhality proportions lead to
increases in the Pearson. When the process is f@attrol, this statistic is
asymptotically non-central chi-square distribut€de non-centrality parameter measures
deviations from baseline known proportions.

The Marcucci method signals when any fraction dspaom its in-control value. If
only one or two fractions are of special interddgrcucci proposes a bivariate control
chart for monitoring the chosen two nonconformingcfions. The author suggests
monitoring for the proportions associated with t@or and the minor nonconformity. In
fact, these bivariate p-charts serve partially dtves for the interpretation problem. He
calls this procedure as “One-Sided Generalized @4S8h which is intended to address
trinomial processes.

In case that the probabilities of the attributes anknown, Marcucci presents the
Pearson-Duncan statistic to be monitorégl. ( This statistic is used to test homogeneity
of proportions between the base period (time 0) each monitoring period (timg.
When in-control, the statistic distributes asymigtdty chi-squared withK-1) degrees of

freedom.
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Ni Noi,»

R
Zt“=nNiono y ———2% A-2
; Ni + Noi (A-2)

Johnsonet al. (1996) provides better approximations for the pimlty function,
expectation, and variance of the Pearson sta(sti¢5-47). These approximations might
be useful to improve the sensitivity of a (furthmodified) Marcucci control chart,

particularly when the chi-square approximation agsiions are not well fulfilled.

Shiau et al. (2005)

In this paper, a Bayesian method is proposed tatoraihe fractions of items falling
in multiple categories fail modes plus one categairypass. Unlike Laviolette (1995),
Shiauet al. method focuses on fractions of every categoryhi process (Laviolette
focuses only on nonconforming categories).

The Bayesian approach allows the probabilities mpatars of the multinomial
process to vary according to a prior probabilitgtdbution, which is typically the
Dirichlet distribution. The expectation of a priprobability parameterp() is denoted as
0.

In Bayesian terminology, the Dirichlet distributiathe conjugate prior distribution
for the multinomial model. Being a conjugate piiimplies that the posterior distribution
for the probability parameters given a data setthassame distribution than the prior
distribution. Thus, the posterior distribution iss@ a Dirichlet one. The posterior
expected values of the probability parameters bagdity vector - are a linear weighted

average of the;'s and of the observed fractions.
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The paper shows that the distribution of the coustsa Dirichlet-compound
multinomial, also known as the Polya-Eggenbergstribution as seeing in Johnsenh
al. (1996). Instead of proposing control regions fos imultivariate discrete distribution
like Laviolette (1995), the paper considers momigrevery individual fraction of items
falling in different categories. The previous warkLaviolette (1995) is not mentioned
by the authors. Marginal distributions are desdribm every fraction plotted and upper
and lower randomized control limits are determin€lde setting of the individual false
alarm rates is not further discussed as explictgntioned in page 20. In an example, a
process with 5 categories goes out of control éyghor probability of thggoodcategory,
and in the prior probability of the fourthad category, keeping constant the other three
prior probabilities.

The control chart about the fourth fraction shohat tthe process is indeed out-of-
control. The control chart about the third fractidoes not show out of control points.
This paper does not approach the issue of comelamong individual fractions, so for
example it can not always be concluded that thegqa® is in-control if all charts do not
signal. As shown in Chapter 3, tipetree method has better diagnosis accuracyl
sensitivity than the Shiauet al. (2005) methodThus, theShiauet al. (2005) method
should be used only to detect whether the procgsa-control or not, which is the
intention of the authors. It should not be usedifberpretations, because its univariate
charts are negatively correlated, so its diagnasisiracy is low. The inadequacy of using
univariate charts for correlated variables is alsted in Montgomery (2005, p. 487-488

and p. 499) and Lowrgt al. (1992, p. 52).
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Spanos and Chen (1997)

The authors present a plasma etching problem incsetuctor manufacturing. The
objective of the etching process is to create @iliines that match a target pattern as
close as possible. The process settings are congncovariates like temperature, etch
time, power, pressure, and oxygen flow rate infiigereactor. The output is multivariate
in nature. Some output variables are categoricdinal data such as the sidewall
roughness, and the presence of indentations irpliofe, which are called mouse bites.
Roughness can take the values: smooth, fair, roaggh,roughest. Mouse bites can take
the values: good, fair, poor, and worst.

Spanos and Chen set a model just for the mouse lbésed on logistic regression,
also called logit model. The model fit comes veigngicant, and only the covariates
power and pressure are selected to stay in therfindel. Thus, the logs of cumulative
probabilities are fit as a linear function of thentrollable process inputs. Estimating the
probability of every category is straightforwardteaf predicting the cumulative
probabilities. The paper proposes two methods taitmofor deviations in the mouse
bites fractions corresponding to each categgood, fair, poorandwors): one method
for short term monitoring, and another one for légign monitoring.

Short term monitoring: The objective of the shatnt monitoring method is to
monitor for abrupt process changes during prodoctiSpanos and Chen propose
sequential run rules. A weakness of this methatias monitors only for the fraction of
wafers being in one category. For example, momitpfor the fraction of the category
good doesnot depend on the other individual three fractions (fategoriedair, poor,

and wors). The paper proposes that in case of an optimmedess regarding mouse
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bites, the fraction associated to the categwoyst should be monitored, because that
category will be less likely to appear.

Long term monitoring: The objective of the longntemonitoring method is to
control for permanent process shifts that mightpleapdue to natural process aging. For
this case, the authors propose to monitor with adem statistic similar with Marcucci
(1985).

After adjusting, there is also the problem of whaiction is selected to monitor
using the short term monitoring method. An autorhateheme that integrates the short
term and long term monitoring systems, the modiénesion and update, and a feedback

control (process settings) is proposed.

Tucker et al. (2002)

Tucker et al. propose a maximum likelihood based chart to monito ordinal
categorical data when the underlying quality fokosome unobservable and unknown
distribution. A finished bricks example is providedhere nonconforming bricks tyg2
are worst that nonconforming bricks type and the probability of nonconforming is
0.95, the probability of nonconforming bricks typeis 0.03, and the probability of
nonconforming bricks typB is 0.02.

Assume that the probability distribution contains@ation parametdf. A maximum

likelihood estimate (MLE) procedure is used to fial estimaté . The statistic that is

monitored in a Shewhart control chart corresponds t

a _
ATD(e) (A-3)
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Where, STD is the standard deviation. The estifladistributes standard normal if
the process is in-control.

The maximum likelihood based chart of Tuckeml. is relevant when the user may
guess well about the underlying quality distribatiblowever the authors point out that
no amount of historical ordinal data will reveaétshape of the underlying distribution,
even if chopping the scale in more intervals. ldinal data is simulated assuming an
underlying distribution (like the normal or expotiahdistribution), then the sensitivity
of the proposed ordinal method is better that thiesquare control chart for detecting
quality improvement but not necessarily for detegtiquality deterioration. No

interpretation of signals is provided.



Appendix B. Thefractions fi areunbiased estimates of f;

(Complimentary material)

Proof

By definition: E[f] = E[rl\‘ll] = f1

Consider,
E[ﬁ]:E[(+)]:iE[% iin:nj[E’r{iim:r}] Li=2,.. K-1
N—an m=0 N_Zn =1 j=1
_N ni i-1 3 i-1 _ _ N 1 i-1 : i-1 3
DT DN =P, 0= =X B Y0 = M a-

i-1 i—1
Using Johnsoet al. (1996, p. 35)n/z n ~ Binomial (N =Y, f;)

=1 =1

Therefore,
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th

E[ﬁ]:i 1 mN—m)DfD]Dr{in:n}a:fiaipr{iim:n}:fm:f (B-1)

m=0 (N - m)

m=0

Proved.
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Appendix C. Contiguoustreefractions are uncorrelated
(Complimentary material)

Let start with the proof that: and f2 are uncorrelated

COV[ fl, fZ] = COV[E’ nz ] - COV[l_ N - N2 ] - _ COV[ N - N2 ]
N N-m N N-m n N -

— _f(N—-m) nz (N-mn),. Nz
55 D(N—nl)]+E[ N Hon]

=-E[™] + EL-"] E[-™ ]=-p+ (1-p) E[f]
N N N-mn

=-p2+ (I-p) 2 =0. Proved.
1-p

Let prove now that in general the tree fractignand f; +1are uncorrelated random
variables, for anyK>3.
Proof
Consider,

Cov[fj, fi+1] = Cov[%, fie1] = Cov[%—ﬂl, fie1] j=2,...K-1

N->ni N->ni
i=1 i=1

j-1 j-1
' N—Zni i nj—N+Zni A
= Cov]| n;_l - ',:-11 +1 fi+1] = Cov[ j_li=1 +1 fi+1]
N—Zni N—Zni N—Zni
= i=1 i=1
i i
n—-N N - Ni
= Cov[-= = +1, fi+1] = Cov[- '] L fj+q]
N —Znu N _an
i=1 i=1

Using the definition ofj +1 (see Section 3.1):



= Cov[- i=1 Ny +J_l ] =- Cov] 1= n +].l ]
N—Zn. N—Zni N—Zn. N—Zn.
i=1 i=1 i=1 i=1

Z' Nj+1 Z
= Bl 3 ) (P B E L)

E[W—fl]:zn:E[nji;_ll Zn. m]DPr{Zn. m =
N—Zni m=0 N_Zni i=1

:Zn: n’”/Zn. m]EPr{Zn. i

n i1 -1
= ZLE[WH JZI’]i=m] [Pr{Jznizm}
moN—m i=L i=1

Using the conditional distribution of., (see Section 3.2):

-yt [dN- m)qp”l)ElPr{Zn—m}

mo (N —m) 1- Zp' i=1

J pi +1 DZPV{Z n=m = p;jll 1= p;_+11
1- Z p ™0 = 1—2 pi 1—2 pi
1=1 1=1 =1
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With this result, Covfi, fi+1] becomes,

N->n N->n
fif  +1 +1 : j +1
Cov[fi, fj+1]= - p}_l +E[—|111] E[fii]=- P gl IJ:_ll 1+( ij )
1—Zp| N->n 1‘2 p N->'n 1->p
= =1 =1 = =1
j
b1 N —Z_l:ni | 01
=- —+ E[*] (—,—)

1
-Yp  N-Sh 1-Yp
1=1 i =1

i=1

Let work on the remaining expectation that appahms/e,

N-2 n . N _Z]:ni -1 -1
El— = ] =YE 2 /[Yn=0P{in=)

N _an RN _ n/
. N _Zj:ni j-1 j-1
:ZE[iN '_:1| Zna=I]DPr{Zni=I}

Zn:Nl E[n- Zn./Zn.—I]DDr{Zn. 1}

=}

1

ZN—E[n Zn. n Zn.—I]EPr{Zn. 1}

- Zn:NL_E[N—l —n,»/ini =I]EPr{§ni =1}
- im(N ~I-E[n fni =1)) Dar{fni =1}

=1 n--(N l)Ep'])[Pr{Zn. 1}
1- Zp| =



' n j-1 :
=1-—2 D P> =1 = a-——P o =1-

1_2 p @ 3 1_2 o
E =1
With this result, Covfj, fi+1] becomes,
Cov[f, fiaa]=- P v a-— Py (P
1—2 p 1—2 pi 1—2 p
1=1 =1 1=1
=
o 1-p-).p
+1 — . +1
=Pl () ()
1—2 pi 1—2 p l—Zpl
=1 1=1 1=1
>
1-> p
— Pi+1 +( =1 )( Pi+1 )
- j-1 j-1 i
1—2 p 1—2 pi 1—2 p
1=1 1=1 1=1

— pi+1 + pJ:+1 -0

-1 -1
1—2 pi 1—2 pi
=1 =1

Cov[fi, fi+1]=0  forj=2,..K-2 Proved.
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Appendix D. Normalizing transfor mations and related Shewhart charts

The Box-Cox, andQ transformations for a fraction are described hdret
Ni=sample size or volume of units at samplgn=in-control probability of falling in
category of interesX=random variable of the number of units in categdrinterest, and
x, = realized number of units in category of intesstamplé.

a) Box-Cox transfor mation

Let,

bc, = Box-Cox transformation of fractiof,

L = power parameter

bc, = average of Box-Cox transformation in in-contratal

Opc = standard deviation of Box-Cox transformatiomnistontrol data

X L
)
The Box-Cox transformation is obtainedlas = AN VA

L
wherelL is found through minimizing the skewnesshaf in the in-control data set
(if L=0, the transformation corresponds to the natagaidithm). As an example, Chung

et al (2007) develop a monitoring method based on a Box-Cansformation for a

manufacturing application.
b) Q transfor mation (Quesenberry, 1991, 1995)

Let, Q,=Q statistic conditioned oN;

where, Q,= Zyuy, U, =Pr{X<x} that comes from the cumulative Binomisi(p,)

distribution.
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The Q, statistic is approximately normally distributedONK). Quesenberry (1991, p.
63) suggests that this approximation is accurateNfg>6.3. In manufacturing
applications, this transformation seems to be nagrirate regarding the upper tail area

than the lower tail area.

¢) Shewhart chartsfor afraction

Table D.1 summarizes the-chart and other Shewhart charts based on

transformations, Wherezycomes from the standard normal distribution sudcit the

upper tail area ig.

Chart Statistic LCL CL UCL
Monitored
p-chart Xq po(1-p)  Po Po(1- )
N Po-Za-ar) N, P +Zg-ary N
Arcsine ol \/m _ _1(\/_) - Zarz) 0 Z-ar2)
sin -sin
N +3/4 o
Box- th bCO - Z(l—a/z) Wbc bCo bCO + Z(1—17/2) IlTbc
Cox
Q Q - Za-aiz 0 Zuar2)

Table D.1. Shewhart charts for a fraction
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Appendix E. Modified p-chart in Chen (1998) and modified np-chart in Shore (2000)
These two methods are an approximation to the ebimcmial method based on

probability limits.
a) Modified p-chart Chen

This method monitors a fraction with-chart that has control limits based on
expansion of quantiles for a fraction. These linaidapted from Chen (1998, eqgn. (1)) are

the following:

= Po @~ Po) (Z(l—a/2)2 -1)@A-2po)
UCL=py +Zuy + E-1
Po ™ Za ’2)\/T 6N (E-1)
- Po@-po) | ( (1—a/2)2 -D(1-2py)
LCL=py - Zyy L
Po ™ e /2)\/T 6N

b) Modified np-chart Shore

This method monitors, i.e., the number of units in the category of iest with anp-

chart with control limits corrected by the skewne$ghe binomial distribution. These

limits adapted from Shore (2000, p. 1153) are tiewing:

1, 1
UCL = Npy +Z g2y NPo A= Po) + 1441~ 2p,)(0.4177(Z 1g /2 _5) 5 (E-2)
1. 1
LCL=NPy =Zg-a/2)4/ NPo (L = Po) = 144(1—2p,)(—0.4177(Z 14 7 +§) +E

Note: hereZ, is based on the upper tail of the standard nowisttibution N(0,1)

instead of Shore (2000) that usisas based on the lower tail of N(0,1).



137

Appendix F. In-control valuesfor treefraction matrices IEj

The in-control values for tree the fraction matside are needed to set the CUSUM

Arcsine that monitors every independent tree foactiThe method for monitoring
MSMC processes is described in Section 5.1.

Let,

P; = in-control probability matrix from stagel into stage, forj=1,2,... M. Matrix B;
has dimensionKj., x K;). There aréVl matricesP; to represent the transition probabilities
in a MSMC process.

Ei = in-control binary probability tree matrix fromtage j-1 into stagej, for
j=1,2,...M. Matrix E; has dimensionK.1 X K;-1).

The elements oP; are PBj[I,m] = in-control probability that a customer goesnfro
categoryl in stagg-1 to categorynin stagg, for 1=1,2,..,K;; andm=1,2,..,K;. The row
vector Bj[1,-] represents the probability parameters of a muotial distribution about
going from category at stagg-1 to any category at stageThe element®;[l,m] are

expected values of the realized numbers in ea@gost over its sample size:

E{ﬂ} if Li[l,m] =1
MD(S[i,) -
0 if Lj[l,m] =0

Bilm] = (F-1)

Of course, MDPj[1,-])=1. Also, the probability matrix for going frontegyej to stagd
|

equals to|_| Pj, forj<I andhas dimensionk x K).

=]
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The elements of; are Fj[I,m] = in-control probability that a customer goesnfro
categoryl at stagej-1 to categorym at stagej, given that customer does not go to
category 1,...m-1 at stagg, for m=2,...,K.

Similarly to the single stage case developed irti@e&.1, and assuming that the in-
control values of; are known, the in-control tree probability matség can be obtained
using the total probability rule for multiple everds shown in Montgomery and Runger

(2002, p. 44-45) for every row vectBjl,-]. Thus,

Pll.m .
e I 1+UC(-) = m=<UC()
Eilbml=q 3 Pil,i] (F-2)
N 0 otherwise

where UQ(i) = last category at stagén which category of stagg-1 splits into.
i-1
UC(i)= > MD(Li[k)
k=1

The standard deviation of the in-control tree fiats IEj are given by the matrigD;,

with elements that approximately are:
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if m=UC(-1)

F[Lmi(3- F[Lm] )
EMMD(S; [1.D)]
F L mi(3- F[Lm] )

m-1 if 2+UC(-))<m<UC(-1) -1
E[MD(S;[1.0) - > MD(S;[I,i])]
i=1

n/a otherwiseor if Aj[l,m] =0

(F-3)

Note: Equation (F-3) is valid wheN is large and the probability that any realized

number equals zero is negligible.
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Appendix G. Treefractionsin a simple 2-stage process
(Complimentary material)

Y4
(2 L)
Py
L%
P
LIEE)
Pap
R @
LI7e)
Stage 1 Stage 2

Figure G.1. Multistage process with two stagesfandfinal categories

Consider the 2-stage process shown in Figure Gvhich numbers under arrows

are counts and numbers over arrows are conditfmodlabilities (elements of matric€s

- n
as defined in Appendix F). The fractiorh(m :% monitors stage 1. Stage 2 is

N2 , ,
=—== The following relations

N2y

~ n ~
monitored through the fractiorfs, , =—2 and f a2

,2)
Ny

hold: pu,1y*Pe.1=1, Pa.2Pe2~l, PE2P@ 271, N itne1==N, N 2*Ne2= N1, and
NG.2itN@,2=Ne,1). Here we show that these tree fractions are inutdgpd random

variables as summarized in Table G.1.
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Tree f(m fA(LZ) fA(s,z)
fractions

‘:(1,1) n/a Independentindependent

f(l,Z) Independent n/a Independent

f(&z) Independent Independent n/a

Table G.1. Independence of tree fractions for ssktage process

First we show thath(lll) and fA(LZ) are independent. Consider a multinomial process

with three categories formed by, 1), N2, andne2 with unconditional probabilities
P21y Pa,1Pa2), andpa,1Pe,2) respectively. According to the Johnseial. (1996, p. 68)
decomposition, this multinomial can be expressedaasequence of independent
binomials as follows:

Ne,1) ~ Binomial(N, pe,1y,

Py [ pa2 ).
1-pey

Ne,2) givenne ) ~ Binomial(N- n,1) |
Thus, the counts divided by their samples sizes(21)/N and
na2 /(N - ney) are independent. The numerator of the first fracegualsN-n 1,

and the denominator of the second fraction equalsii).  So,

: N
(N -nay)/N =1-nay/N and nqz2)/nay are independent. Necessarlky%

and naz2)/nay are independent. The latter two expressions bipitieh are f wp and

A

f which are then independent.

2’
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Second we show thaf w1 and f(&z)

are independent. Consider a multinomial
process with three categories formed byi), N@E2), and ng2) with unconditional
probabilities pi.1) Pe,1PE2) andpe.1) Pa,2) respectively. According to the Johnsetral.
(1996, p. 68) decomposition, this multinomial cae éxpressed as a sequence of

independent binomials as follows:

Na,1) ~ Binomial(N, p,1,

N@a.2) givenng, 1) ~ Binomial(l\l-n(l,l),w).
1-pay

Similarly, n@y/N and n@a2)/(N -n@1) = nE2)/n 2y are independent, which

using the definitions equaﬁ and f and then they are independent.

1) 32

Finally, we show thatf(lyz) and f(gyz) are independent. Consider a multinomial

process with four categories formed ky o), Ne2), NE2, andnaz) with unconditional
probabilities pi,1Pa,2) Pa,1Pe.2)y Pe.1PE2y andpe,1) Pa,2) respectively. According to the
Johnsonet al. (1996, p. 68) decomposition, this multinomial da@ expressed as a
sequence of independent binomials as follows:

N,2) ~ Binomial(N, pi1,1Pa.2),

Ne,2) givenng, ) ~ Binomial(N- n(l,z),w ),

1- paypwe2

Py L PG

N@G.2) givenng,2), Ne,2) ~ Binomial(N-ng 2yne2,2),, )
1-p@eypa2- pey pe2

Similarly, nw2)/N and nE2)/(N -n@e2) -NE2) = n@E2)/neyare

independent. The first fraction is equivalent to

(ne2)/nay) Qnay/N) = f w2) Of @y and the second fraction equﬁ|§2)_ Thus,
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the productf (2)OOf @1y and the fractionf . are independent. Recall from the above

(32

A A

that f @1 and f are independent. Thus, necessarilf/(lz) and f are

(32 @2

independent.
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