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ABSTRACT OF THE THESIS

Investigation of local breakdown of the Quantum Hall Effect

in graphene probed with invasive metal contacts

by Fabian Duerr

Thesis Director: Prof. Eva Andrei

We investigate the local breakdown of the Quantum Hall Effect (QHE) effect in a graphene

device caused by the constraints of the Hall bar geometry and finite size of the sample. First

to account for principal features of the data we use a multi-carrier model that simulates

the transverse and longitudinal resistance of doped samples in low magnetic fields. This

model however can not reproduce the reduction of Hall voltage measured in the vicinity

of the current leads. Therefore we introduce a second model which describes the effect of

distribution of electric field in the device, giving a reasonable scenario that can explain our

experimental data and deviations from the case of perfect geometry. We conclude that the

existence of Hot Spots in two corners of the sample leads to the local break down of the

QHE around this points.
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Chapter 1

Background

1.1 Introduction

Since graphene, a single layer of carbon atoms, was first discovered in 2004 [1] it is one of

the hot topics in condensed matter physics, in experiment as well as in theory. According

to the Mermin-Wagner theorem a two dimensional system should be unstable and does not

exist in nature [2]. Indeed, it was always there, but one was not able to detect. However an

accidental use of the silicon substrate having 300nm of oxide which results in constructive

interference of light finally lead to the surprising discovery. A smallest disturbance, such as

a single layer of carbon atoms, disrupts such interference and will make the graphene layer

visible.

Prior to its’ discovery the principal way to realize two dimensional systems was to confine

electrons at the interface of GaAs/GaAlAs heterostructures or within Si MOS inversion

layers. In contrast graphene is open to the environment and is therefore accessible to

various scanning probes. It’s unique linear band structure surely gains the most attention

and leads to many exciting predictions. The carriers are described by the pseudo relativistic

Dirac equation for massless fermions opening the door to probe quantum electro dynamical

effects such as Klein paradoxon or Zitterbewegung on a table top experiment. Yet it is

not only the the electrical properties that are making graphene so special, but also it’s

mechanical strength [3] and sensitivity to a small number of adsorbed molecules [4], making

it interesting for various applications. An up-to-date review about the status and prospects

of graphene can be found in Ref.[5] and about the electronic properties in Ref.[6].

The Quantum Hall effect in two dimensional electron gas (2DEG) systems [7] is a well

studied phenomena and can also be observed in graphene[8], but with a rather unusual

quantization of resistance. Similar to the 2DEGs one can achieve a high mobility of the
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Figure 1.1: Suspended graphen sample. Left: SEM image of the suspended Hall bar
sample. The sample is about 2µm wide and 1.5µm long. Right: Longitudinal and transverse
resistivity ρxx and RH . The longitudinal rather than the transverse resistance shows the
expected quantized resistance for filling factors of ν = 2, 6, 10..., indicating a shorting of the
voltage leads to the adjacent current leads.

charge carriers in graphene. The latter can be extremely improved by more than a factor of

10 by suspending graphene from the substrate [9, 10]. However, the quantum Hall effect in

suspended graphene shows an unexpected behavior if the measurement is performed using

standard Hall bar technique. The longitudinal resistance shows resistance plateaus that are

expected for the Hall resistance, whereas the latter is very small and seems to be shorted

to the current leads, as shown in Fig:1.1.

The motivation for this work was to investigate the effect of shorting of the voltage leads

to the current leads. We proceed by trying to reproduce this result for non-suspended

graphene and compare the Hall resistance measured at several locations along the sample’s

edge. We find that the Hall resistance is smaller close to the current leads, though the effect

is weaker than in suspended graphene. Our first approach was to explain this behavior

by a local doping effect of graphene by the metal electrodes [11], based on the inverse

proportionality of the Hall resistance. For this purposed we adopted a simple multi-band

model, that reproduces the longitudinal and transverse resistances for doped graphene in

small magnetic fields. However, it does not explain the reduced Hall resistance close to the

current leads.

Our second model, based on the pattern of electric field in a Hall bar, finally gives us the

clue to solve this problem. The existence of so called hot spots [12, 13] at two corners of the
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sample seems to be crucial to understand our data. All equipotential lines will accumulate

in this two points and the entire power dissipation will happen there. For conventional

2DEGs the large size of samples allows placing the voltage leads sufficiently far away from

those spots. But in graphene, particularly for its’ suspended implementation, there is a limit

of the sample length ≤ 2µm by the requirement of its’ mechanical stability. In addition the

removal of the substrate and the heat sinking associated with it might make the Hot Spots

a major issue.
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Figure 1.2: Carbon allotropes [6]. Top left: Carbon atoms are arranged in a honeycomb in-
plane structure and form a single graphene layer. Top right: Shifted stacking of many single
layers forms graphite. Bottom right: The Bucky ball (C60 fullerene) consists of 60 carbon
atoms arranged in penta- and hexagons. Bottom left: Carbon nanotubes are rolled-up
graphene sheets.

1.2 Atomic structure

Graphene is a two dimensional allotrope of carbon. Rolled-up it forms one dimensional

carbon nanotubes which were extensively studied over the last two decades. Arranged in

a spherical structure with 60 carbon atoms, sitting in a lattice formed by hexagons and

pentagons, it is known as zero-dimensonal C60 fullerene or Bucky ball. Stacked in different

layers weakly coupled by Van der Waals forces it generates three dimensional graphite (see

Fig.1.2). The carbon atoms in graphene are arranged in a highly symmetric honeycomb

lattice. Neighboring atoms form a strong in-plane σ-bond with their s-orbital and three of

their p-orbitals (sp2 hybridization). These orbitals are filled and represent a deeply laying

valence band. The last valence electron is sitting in the unaffected p-orbital perpendicular

orientated to the plane. Since there are two p-electrons per unit cell, containing two carbon

atoms, those p-orbitals form a filled band that is of interest for the electronic properties of

graphene.

The structure is described by two triangular lattices of atoms A and B shifted by
√

3a,

where a ≈ 0.142nm is the distance between neighboring carbon atoms (see Fig.1.3). The
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Figure 1.3: Real space and reciprocal space lattices of two dimensional carbon. Left: The
crystal lattice of graphene is described by two triangular lattices formed by atoms A and
B distanced by the lattice constant a ≈ 0.142nm. Even though those atoms are chemically
equal they have to be treated separately because of their bond orientation. The nearest
neighbor vectors are described by ~δi. The unit cell (gray shaded) is spanned by the lattice
vectors ~ai. Right: The corresponding Brillouin zone to the reciprocal lattice vectors ~bi
is also represented by a honeycomb shape. It is restricted by the high symmetry K-points.

lattice vectors ~a1 and ~a2 form the unit cell containing two carbon atoms, one of each lattice

site.

~a1 =
a

2
(3,
√

3) , ~a2 =
a

2
(3,−

√
3) (1.1)

The nearest neighbor vectors δi are give by:

δ1 =
a

2
(1,
√

3), δ2 =
a

2
(1,−

√
3). δ3 = a(−1, 0) (1.2)

The reciprocal lattice vectors are calculated to be:

~b1 = (1,
√

3) , ~b2 = (−1,
√

3) (1.3)

The corresponding Brillouin zone forms again a honeycomb lattice that is rotated by 90

degrees to the real space lattice. The high symmetry points in momentum space are denoted

as K and K ′. Their location is given by:

~K =
2π
a

(
1

3
√

3
,
1
3

)
, ~K ′ =

2π
a

(
1

3
√

3
,−1

3

)
(1.4)

As the atoms A and B in real space, the so-called K-points are not equal to each other

because of their orientation to the next neighbors and have to be treated independently in

the band structure calculation.
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1.3 Tight-binding model for graphene

The tight-binding model is a powerful tool for calculations of the band structure for atoms

with strongly localized electrons. The strongπ-bond of the carbon atoms in graphene sat-

isfies this condition. First calculations were already done by Wallace [14] in 1946 to study

coupling between single sheets in graphite. Introductions to the tight-binding model can be

found in any solid-state textbook and particularly for graphene in [15]. For our discussion

we only take into account nearest neighbors. For a more precise calculation see [16]. We

can use the chemical equivalence between A and B atoms in the lattice and write down the

secular equation [15] for graphene as:∣∣∣∣∣∣HAA − ESAA HAB − ESAB

HAB − ESAB HAA − ESAA

∣∣∣∣∣∣ = 0 (1.5)

The Hamiltonian Hij and overlap matrix elements Sij are given by:

HAA = HBB =
1
N

∑
R,R′

eik(R−R′) 〈φA(r −R′)|H|φA(r −R)
〉

= ε2p (1.6)

HAB =
1
N

∑
R,R′

eik(R−R′) 〈φA(r −R′)|H|φB(r −R)
〉

=
1
N

∑
R,R′

teik(R−R′) =
3∑
i=1

teikδi
(1.7)

where

Φj(~k, ~r) =
1√
N

N∑
~R

ei
~k ~R|φj(~r − ~R)〉, (j = 1, ..., n) (1.8)

denotes the Bloch wave function and φj gives the atomic wave function for an atom at

position ~R. The element HBA is given by the complex conjugation of HAB which is real, and

thusHBA = HAB. The largest contribution ofHAA = 〈φA(r −R)|H|φA(r −R)〉 comes from

the term R=R’ and is denoted as the orbital energy ε2p, whereas the maximum contribution

for the transfer integral t = 〈φA(r −R+ δi)|H|φB(r −R)〉 arises from neighbors. Higher

order terms only give a small contribution and are neglected for simplicity. Furthermore we

have used the fact that any position vector ~R′ for nearest neighbors can be expressed by
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~R′ = ~R+ ~δi (see Fig.1.3. The matrix elements SAA and SBB are equal to one for normalized

wave functions.The overlap integrals SAB and SBA = S∗AB are:

SAB =
1
N

∑
R,R′

eik(R−R′) 〈φA(r −R′)|φB(r −R)
〉

=
1
N

∑
R,R′

seik(R−R′) =
3∑
i=1

seikδi
(1.9)

Here we define the overlap integral s = 〈φA(r −R+ δi)|φB(r −R)〉 for two neighboring

atoms A and B. We use the nearest neighbor vectors δi given by equation (1.2) to calcutate

the sum:

f(~k) =
3∑
i=1

eikδi = 2eikx
a
2 cos (ky

√
3a
2

) + e−ikxa (1.10)

Thus the secular equation 1.5 in the nearest neighbor approximation for graphene transforms

to ∣∣∣∣∣∣ ε2p − E(~k)sf(k) tf(~k)− E(~k)sf(~k)

tf∗(~k)− E(~k)sf∗(~k) ε2p − E(~k)sf∗(~k)

∣∣∣∣∣∣ = 0 (1.11)

with the solutions

E1(~k) =
ε2p + t|f(~k)|
1 + s|f(~k)|

, E2(~k) =
ε2p − t|f(~k)|
1− s|f(~k)|

(1.12)

where |f(~k)| is given by

|f(~k)| =
√
f(~k)f∗(~k) =

√
3 + 4 cos (kx

3a
2

) cos (ky

√
3a
2

) + 2 cos (ky
√

3a) (1.13)

The band structure is shown in Fig.[1.4]. The upper anti bonding π∗- (conduction-) and

lower bonding π-(valence) band are touching at the six corners of the Brouillon zone. The

six K and K ′ point are double degenerated at those points.

We can evaluate the function f(~k) at the high symmetry points for a small momentum

~p = (px, py).

f(~k)→ f( ~K + ~p) =
3
2
a(px − ipy) (1.14)

f(~k)→ f( ~K ′ + ~p) =
3
2
a(−px + ipy) (1.15)
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Figure 1.4: Band structure of graphene. Left: The valence and conduction band are touch-
ing at the six K and K ′ points that are double degenerated and restrict the honeycomb
shaped first BZ. As long as their is no symmetry breaking component in the Hamiltonian,
corresponding to i.e. defect, the energy spectrum is gap-less. Right: The zoom-in to one
of the high symmetry points shows the linear spectrum for small momenta leading to the
description of carriers in graphene as massless Dirac fermion.

Thus we can write the Hamiltonian for low excitation energies at the K and K ′ points as

H = vF



0 px − ipy 0 0

px + ipy 0 0 0

0 0 0 −px + ipy

0 0 −px − py 0


(1.16)

Here we introduced the Fermi velocity vF = 3
2at ≈ 106m

s . The upper left 2x2 block entry

describes the Hamiltonian at the K, the lower right 2x2 entry the Hamiltonian at the K ′

point. In the following discussion we only consider K points but also give the results for

the K ′ points. The eigenvalues for this Hamiltonian can easily be found by substituting

(1.14) into (1.12). The term sf(k) << 1 is very small around K points (small momentum)

and can be neglected in the denominator. We set the atomic energy ε2p = 0 and obtain:

EK,K′(k) = ±3
2
at|~p| = ±vF p (1.17)

where the positive (negative) energy solution belong to electrons in the conduction (valance)

band . The linear energy dispersion, which is similar to one for Dirac fermions in Quantum

Electro Dynamics, is the most striking feature of graphene. The analogy to relativistic
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quantum mechanics becomes even clearer when we express our Hamiltonian in terms of

Pauli matrices ~σ = (~σx, ~σy):

HK = vF~σ~p = −i~vF~σ∇ (1.18)

which indeed is the Hamiltonian for massless fermions [17]. However it is convenient to

express the momentum, for example p = px − ipy, in the complex plane as peiφp where

φp = arctan (px

py
) and p = p2

x + p2
y to solve the eigenvalue equation at the K point:

Hψ(~k) =Eψ(~k)

vF p

 0 e−iφp

eiφp 0

ψ(~k) =± vF pψ(~k)
(1.19)

The corresponding momentum space wave functions are given by

ψ±,K(~k) =
1√
2

e−iφp/2

±eiφp/2

 , ψ±,K′(~k) =
1√
2

 eiφp/2

±e−iφp/2

 (1.20)

The upper (lower) sign stands for the wavefunction in the π-band (π∗-band) respectively.

The fact that graphene’s wavefunctions are described by two component spinors amplifies

the analogy to massless Dirac fermions. Characteristic for this spinor wavefunction is the

sign change upon rotating by an angle φ = 2π indicating a phase shift of π. It was shown

that this so-called Berry’s phase in graphene leads to the unusual half-integer Quantum

Hall effect [18] (and references there in) and manifests itself in magneto-oscillations [18,

19]. Furthermore the suppression of backscattering processes can be traced to a Berry’s

phase of π which causes scattering matrix elements [20] to vanish, and explains the high

mobility achieved in graphene samples. The Hamiltonian (1.18) is proportional the helicity

operator ĥ = ~σ~n, where ~n is the normalized vector pointing in the direction of momentum

~p, ~n = ~p/|~p|, and ~σ is the so-called pseudo-spin operator. It is clear from (1.19) that the

eigenvalues of ĥ are ±1. The helicity operator gives the projection of the pseudo-spin on

the direction of momentum, known as chirality. The pseudo-spin for electrons is parallel

to it’s momentum at the K but anti parallel at the K ′ points but vice versa for holes

(see Fig.1.5). Both pseudo-spin and helicitiy operator commute with the Hamiltonian

which means that pseudo-spin and chirality are conserved close to the K and K ′ points as
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Figure 1.5: The pseudo spin σ is parallel to the momentum for electrons at the K point
but anti-parallel at the K ′ and vice versa for holes. The color of the bands indicate that
they originate from different sub-lattices.

long as the Hamiltonian is valid. Intervalley backscattering is forbidden due to chirality

conservation and backscattering within a cone due to the conservation of pseudospin.
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1.4 Density of states

Due to it’s linear dispersion at the K points graphene’s density of states (DOS) deviates

from that of usual two dimensional electron gas’ (2DEG) DOS. The DOS ρ(E) = dn/dE

is the derivative of the number of electronic states per unit area n(E) with energy smaller

than E. Due to the confinement in two dimension the bands of a 2DEG split into various

sub-bands, obeying the parabolic energy dispersion of EF (k) = ~2k2
F

2m , wherein the density

of states is independent of energy.

ρ2DEG(E) =
m

π~2

n∑
i=1

Θ(E − Ei) (1.21)

Here Θ(E−Ei) denotes the Heaviside Theta step function and n gives the number of filled

sub-bands. And the Fermi wave vector kF is related to the carrier density n by: kF =
√

2πn.

We thus have the relation between Fermi energy and carrier density:

EF =
π~2n

m
(1.22)

For the case of graphene we calculate the DOS per unit area as:

ρ(E) =
dn

dE
=

2gsgvπk
(2π)2

Ac
Ac

dk

dE
=

2
π~2

|E|
v2
F

⇒ kF =
√
πn (1.23)

where we have used the linear energy dispersion and the spin and valley degeneracy gs =

gv = 2. We obtain that the DOS is linear in energy and should vanish at the Dirac point

(E = 0). The Fermi wave vector is given by kF =
√
πn, where the factor of 2 drops

out compared to a 2DEG due to the additional valley degeneracy. And since the energy

dispersion is linear, the Fermi energy and carrier density are related by:

EF = ~vF
√
πn (1.24)

Furthermore it is possible in graphene, since it has no energy gap, to change from electrons

to holes as carrier types by adjusting the Fermi level. Naturally, since the valence band

it totally filled, the Fermi energy lays at the Dirac point, where the two bands intersect.

At this charge neutral point, the conductivity is determined by tunneling effects. However,

in experiments one observes a finite conductivity larger than predicted that can be traced

back to potential fluctuation caused by the underlying substrate.
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Figure 1.6: Left: DOS of a 2DEG system. Due to the lateral confinement the energy band
of the 2DEG splits into various sub-bands. The DOS is inside such a band is independent
of energy. Right: DOS of graphene. The linear energy dispersion results in a linear DOS
that is vanishing at the neutrality point. By shifting the Fermi level through this point the
effective charge carriers in the channel can be tuned from holes (EF < 0, blue) to electrons
(EF > 0, red)

1.5 Electron hole puddles and scatterers in graphene

The finite conductivity at the Dirac point in non-suspended graphene is mainly due to

electron-hole puddles caused by a non uniform potential landscape created by trapped

charges in the substrates and chemical doping of graphene. These puddles were observed

using a scanning single electron transistor (SET) [21]. They represent omnipresent charge

carriers in the graphene and prevent vanishing of the DOS. In the sample studied there,

the density fluctuation is of order of ∆n = ±(1010−1011)cm−2, corresponding to an energy

fluctuation ∆E = 10 − 40meV , and is increasing up to a factor of 6 in a magnetic field

of B = 11T [21]. As we will show later on can extract an estimation for the puddle

size from transport data in zero magnetic field. Our samples usually show fluctuation

of ∆n ≈ 8 ∗ 1010cm−2 (∆E ≈ 30meV ), which is comparable to the result of the SET

measurement. For graphene on a substrate the unavoidable potential fluctuations indeed

constitute the largest part of the disorder in a sample [22]. Further contributions to the

disorder are given by ripples, lattice defects and impurities. For an overview of this topic

see Ref.[23]. However, the minimum conductivity for graphene was also predicted in many

theories (see e.g. [24] and references therein) even without taking into account the effect

of electron hole puddles. Earlier theories calculate σmin = 4e2

hπ , equivalent to ρmax ≈ 20kΩ,

what so far was not experimentally found for graphene on a silicon substrate. Usual obtained

values are about three times smaller and are better described by σmin = e2

4~ [25]. The



13

Figure 1.7: Electron hole puddles in graphene. Upper: Trapped charges in the substrate and
molecules attached to the surface of graphene cause potential fluctuation along the channel
resulting in electron (red) hole (puddles) and a non-zero DOS. The last cone represents the
situation for pristine graphene where the DOS would vanish at the Dirac point (EF = 0).
Lower: By shifting the Fermi level to higher energies the puddles still remain illustrated
by the difference of filling of the cones compared to the last cone. The puddles are always
present and lead to an artificially high minimum conductivity close to the Dirac point but
also act as scatterers what gives rise to an increase of resistance away from the neutrality
point.

minimum conductivity in graphene is surely a topic of its’ own but not relevant for this work

and we want to refere the interested reader to a more recent work [26],that contains relevant

references. As discussed above the quality of the substrate has a main influence on graphene.

Not only trapped charges in the silicon oxide layer but mainly impurities on the surface

impose limitations on the samples quality. It has been shown in [27] that an increase of the

puddle size, for example by treating the substrate with an argon ion bombardment prior the

graphene deposition, the mobility of the charge carriers as well as the minimum conductivity

at the charge neutrality point are strongly reduced. Very high quality samples on silicon

substrate show mobilities up to 20.000cm2V −1s−1 and a maximum resistivity ρmax ≈ 5kΩ.

Our samples are in a mobility range of 4.000− 8000cm2V −1s−1 and show ρmax = 3− 4kΩ

and can be considered as medium quality samples. To reduce the substrate’s influence and

study the intrinsic properties of graphene one has to work with suspendend samples [9, 10]

which can be achieved by etching the silicon oxide layer. Suspended graphene samples show

a magnificent improvement in mobility and reduction of electron hole puddles. The quality
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of the samples can be further improved by current annealing so that mobilities higher than

100.000cm2V −1s−1 are achieved. The energy fluctuations at the Dirac point are less than

5meV at helium temperature and are mainly caused by impurities bound to graphene. At

the same time suspended graphene shows a large temperature dependence [9] in mobility

and minimum conductivity that can be attributed to phonon scattering and thermally

activated carriers, whereas these mechanisms play an almost negligible role (compared to

puddles) in non-suspended graphene. Potential fluctuations and charged dopants with a

Coulomb potential fall into the category of long range scatterers, whereas lattice defects

(vacancies), phonons and ripples represent possible short range scatterers in graphene. The

main scattering mechanisms usually vary from sample to sample. As mentioned above

in suspended graphene long range scatterers can be eliminated giving rise to ultra-high

mobilities and a well defined Dirac point with a minimum conductivity close to theoretical

prediction. For non-suspended graphene, however, long range scatterers will contribute as

well. The influence of various scattering mechanisms on the conductivity, depending of the

impurity level, has been pointed out by several theoretical papers (see e.g. [28, 29, 24]).

Also the predicted asymmetry for scattering of Dirac fermions off positively and negatively

charged impurities [30] was verified [31]. It has been shown that carriers interacting with

charged impurities attractively are scattered more than when the interaction is repulsive.

Increasing the number of scatterers will lead to a smaller mobility (conductivity) for both,

electrons and holes, but will enhance this asymmetry [31]. While a shift of the Dirac point to

higher (lower) gate voltages is a direct indication of (unintentional) p-type (n-type) doping

as we will discuss later.

1.6 Influence of metal contacts

To study the electronic properties of graphene it is necessary to contact the graphene via

metal electrodes. Therefore it is essential to understand the physics of metal-graphene

interfaces. The difference of work functions for graphene WG and the metal WM will drive

a charge carrier transfer at the interface to equilibriate the Fermi levels. In a simple picture

the metal will accept (donate) electrons from (to) graphene when ∆W = WM −WG > 0

(∆W = WM − WG < 0) resulting in p-type (n-type) doping and a negative (positive)
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Figure 1.8: Left:Potential step at metal/graphene interface at the charge neutrality point.
Here, the metal accepts electrons from graphene, resulting in p-type doping, to compensate
the difference in the Fermi level. The spacing between the two materials in equilibrium is
calculated to d = 3.3A [32]. This region is characterized as a dipole layer. The potential
step ∆V is determined by the difference of work functions and the change of Fermi energy.
Right: Dependence of potential step on gate voltage for gold (blue) and titanium (red).

shift ∆EF in the Fermi level. Recent calculation [11] shows however that a mismatch of

∆W > 0.9eV for p-type doping is required, whereas any smaller ∆W results in n-type

doping. The energy difference of 0.9eV is contributed to the chemical interaction between

graphene and the metal and depends only weakly on the latter. The redistribution of charge

at the interface produces a dipole layer that creates a potential step ∆V (see. Fig.1.8). This

potential step can be expressed in terms of the misatch of work functions (∆W ) and the

Fermi energy shift (∆EF ) [32]:

∆V = ∆W −∆EF + sign(VG − VD)~vF
√
πα|VG − VD| (1.25)

Here the VG and VD stand for the back gate voltage and the position of the Dirac point.

The value α ≈ 7.3 ∗ 1010cm−2V −1 follows from a simple capacitor model that will be

explained later. We use titanium/gold contacts with an effective work function (the chemical

interaction with graphene is already taking into account) of WT i = 4.3eV /WAu = 4.7eV for

contacting the graphene sheet (WG = 4.5eV ). Since we only use a very thin 1.5nm layer of

titanium it is not guaranteed that it spreads uniformly and the contact to graphene might be

formed by gold as well. Since both dope differently, we hope to gain information about the

effective doping by a local resistance measurement. The potential barriers at the electrodes

could be visualized using photo-current microscopy [32] and from the experimental data the

shift in the Fermi level in graphene underneath the contacts was obtained to be ∆EF,Au ≈
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Figure 1.9: Contact induced states in graphene. The graphs represent the result obtained by
[33] for a two terminal geometry of different aspect ratio for a metallic and semi-conducting
armchair ribbon. For high aspect ratios (see (b) and (d)) the local density of stage (LDOS)
induced by the electrodes is not vanishing away from the contacts. For smaller aspect ratios
(see (c) and (e)) the LDOS will drop sharply to zero in the channel. The inset illustrates
the profile of the quasi Fermi level for diffusive (d) and ballistic (e) channel respectively.

−0.23eV and ∆EF,T i ≈ 0.20eV for gold and titanium. This gives rise to a potential step of

−50meV (+30meV ) at the gold/graphene (titanium/graphene) interface (see Fig.1.8) that

will change with back gate voltage. We can calculate the induced carriers ∆n by integrating

over the linear DOS of graphene (Eq.1.23):

∆n =
∆E2

F

πv2
F~2

(1.26)

that results in n-type (p-type) doping by gold (titanium) with 4.6∗1012 electrons cm−2 (3.9∗

1012 electrons cm−2) underneath the electrodes. It can be seen in the optical experiment [32]

this doping is not confined to the contact area but penetrates sub-micron distances inside

the graphene. Calculation show [33] that these contact induced states have an impact on

the minimum conductivity in graphene and strongly depend on the geometry of the channel

and the contacts (see Fig.1.9). Particularly for wide but narrow samples with a high

aspect ratio (W > L) this can lead to a punch through (non-vanishing) of the DOS of metal
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induced states along the graphene channel. On the other hand for channels with L > W the

metal induced states are non-zero close to the electrodes but dropping sharply. The induced

carriers create a local charge inhomogeneity and an artificially high conductivity [27]. The

creation of potential steps along the interface results in an excess or decrease, depending

on the dopant, in resistance, particularly in two terminal measurements. This is consistent

with the observed electron-hole asymmetry in graphene using invasive contacts [34]. To

minimize the influence of electrodes it is advisable to use either side external or external

probes, since they only very weakly couple to the graphene channel, rather than invasive

contacts [34]. But for both cases narrow electrodes with width Wel << W much smaller

than the channel width W will exert weakest effect on the graphene [33]. To examine the

properties of graphene very close to the current probes it is not possible to operate with

external electrodes. Thus we use only 100nm wide invasive voltage probes located about

200nm away from the current leads. Another advantage of using small voltage probe is the

possibility of measuring local effects that might be hidden when using wide leads that are

averaging over their width.
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1.7 Magnetotransport

1.7.1 Classical Hall Effect

In the simple Drude model that treats electrons in crystal lattice classically the equation of

motion is given by:

m∗~̇v = −e ~E −m∗~v
τ

(1.27)

where m∗ is the effective mass of the electron, e the charge of the electron, ~v its’ velocity and

~E the electric field. The time between two scattering processes of the electron with heavier

ion cores, impurities or defects is called scattering time τ and adds an additional damping

term in the equation of motion. Without this term the electrons would be accelerated

constantly by the electric field and Ohm’s law would not hold. In presence of an electric

field ~E and magnetic field ~B we can write (1.27) as:

m∗v̇ = −e( ~E + ~v × ~B)−m∗ v
τ
, (1.28)

where the additional term e(~v× ~B) describes the Lorentz force on the carrier. In stationary

conditions ~̇v = 0, for an electric field in the xy-plane and a magnetic field in the z-direction

(see Fig1.10) we can solve (1.28) and obtain:

vx = − eτ
m∗

1
1 + ω2

c τ
2
(Ex − ωcτEy) (1.29)

vy = − eτ
m∗

1
1 + ω2

c τ
2
(ωcτEx + Ey) (1.30)

Here we introduce the cyclotron frequency ωc = eB
m∗ . The magneto-conductivity tensor ~σ(B)

relates the current density ~J = ne~v with the electric field:

~J = ~σ ~E (1.31)

and therefore the magneto-conductivity tensor is given by:

~σ(B) =
ne2τ

m∗
1

1 + ω2
c τ

2

 1 −ωcτ

ωcτ 1

 =
µne

1 + µ2B2

 1 −µB

µB 1

 , (1.32)

where we have used that the ratio of scattering time τ to the effective mass m∗ can be

expressed in terms of the mobility µ of the carrier. However, in experiment it is not possible
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to determine the conductivity of a sample directly but rather its’ resistance by measuring

the voltage drop for a given current. The resistivity of the sample is then simply obtained by

dividing the resistances by the the corresponding aspect ratio L/W , where L is the distance

between the voltage leads and W the width of the sample. The magneto-resistivity tensor

~ρ(B) is the inverse of the conductivity tensor ~σ(B):

~ρ(B) = ~σ−1(B) =
1
neµ

 1 µB

−µB 1

 (1.33)

Thus, in this simple model we obtain that the longitudinal resistance ρxx = 1
neµ is indepen-

dent of the applied magnetic field. Furthermore the Hall resistance ρxy = − B
ne determines

the charge carrier density and the sign of the carrier (electrons or holes) and is indepen-

dent from the scattering time and effective mass. We use the relation (1.33) to transform

equation (1.31) to: Ex
Ey

 = ~E = ~ρ ~J =

ρxx −ρyx

ρyx ρyy

Jx
Jy

 (1.34)

where we have used that ρxy = −ρyx and ρyy = ρxx as discussed above. In stationary

condition when the current density is only along the x-axis (Jy = 0) the longitudinal and

transverse resistivity are given by:

ρxx =
Ex
Jx

=
W

L

Vx
I

=
W

L
Rxx (1.35)

ρyx =
Ey
Jx

=
Vy
I

= Rxy (1.36)

We see that the transverse resistivity will be independent from the sample geometry and

is equivalent to the resistance, whereas the longitudinal resistivity depends of the sample’s

aspect ratio. Since one can only measure the resistances of a sample and determine it’s

resistivity, the corresponding conductivities are obtained by inverting the resistivity tensor:

σxx =
ρxx

ρ2
xx + ρ2

xy

(1.37)

σxy =
ρxy

ρ2
xx + ρ2

xy

(1.38)

The occurrence of the transverse electric field Ey is called Hall effect. It exists due to

accumulated charges at the borders of the sample that are deflected by the magnetic field.
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Figure 1.10: Classical Hall effect. For an electric field in x-direction holes and electrons in a
conductor are moving in opposite directions but are deflected to the same edge by an applied
magnetic field due to the Lorentz force. The signs at the edges mark the predominance of
one carrier type. The cross-applied electric and magnetic fields lead to the occurrence of an
electric field transverse to the current so that a Hall voltage appears.

The Hall effect was first measured by Edwin Hall in 1879 [35]. It allows determining the

type of charge carriers and their density in any conductor and to measure magnetic fields

(Hall probe/sensor).

This discussion is rather simplified since we were only considering one carrier type (one

band). Many semi-conducting systems for example are better described by a two band

model, since electrons as well as holes can contribute to the conduction. Yet both carrier

types can have a different mobilities. As long as we assume an electron-hole symmetry

in graphene we can assign them the same mobility but either way we will only have one

type of carriers since the bands do not overlap. However, if the graphene gets doped, the

carriers in the impurity band will have a different mobility and this has to be treated in

more sophisticated multi-band model.
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1.7.2 Multi-band model

In a multi-band model the total conductivity is given by the sum over all contributing

bands. Thus we can write the magneto conductivity tensor as:

~σ(B) =

∑n
1

nieµi

1+µ2
iB

2

∑n
1
−nieµ

2
iB

1+µ2
iB

2∑n
1
nieµ

2
iB

1+µ2
iB

2

∑n
1

nieµi

1+µ2
iB

2

 (1.39)

For a first discussion we take three types of carriers (n=3) that contribute to the conduc-

tivity of our sample. The intrinsic carriers (i=1,2), depending on the back gate voltage,

are elcetrons or holes in graphene, and the extrinsic carriers (i=3) are electrons sitting in

the impurity band of a p-type dopant. We denote the electron and hole concentration of

graphene with n1 = n and n2 = p, where we have to take into account the charge of the

carrier, and the extrinsic concentration of the dopant with c. Furthermore we assume that

electrons and holes will have the same mobility µ1 = µ2 as discussed above. To simplify

presentation of the theory, we will use dimensionless magnetic field B ∗ µ1 and inverse mo-

bility of impurity band carriers f = mu1
µ3

. Due to the gapless energy spectrum of graphene

we can either induce electrons (VG > VD) or holes (VG < VD) in our graphene device by

sweeping the back gate voltage VG through the Dirac point VD. The number of carriers

induced by gating is α(VG−VD),where α is calculated from a simple plane capacitor model.

The graphene is separated from the silicon back gate by an insulating d ≈ 300nm thick

SiO2 layer and therefore the induced charge carrier density n∗ is roughly given by:

n∗ =
Q

eA
= V

ε0ε

ed
⇒ α =

ε0ε

ed
≈ 7.3− 8.3 ∗ 1010cm−2V −1 (1.40)

where Q is the total charge, ε ≈ 4 − 4.5 is the dielectric constant for silicon dioxide and

ε0 ≈ 8.85 ∗ 1012 F
m2 the vacuum permittivity. As we will see later α can deviate significantly

from the commonly used value α = 7.3 ∗ 1010cm−2. The density of electrons is then given

by n = αVG − c + 1
2αZ and for holes by p = αVG + c + 1

2αZ. The electron-hole puddle

size Z, introduced in an earlier section, is expressed in terms of Volts and assumed to

contain electrons and holes in equal measure. Using all that we can calculate ρxx and ρxy
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by summing the conductivity tensor 1.39 of the three bands and then inverting to get the

resistivity tensor ~σ(B):

ρxx =
B
(
cf2

F + Zα
1+B2 + |c−αVg |

1+B2

)
e

[(
cf2

F + Zα
1+B2 + |c−αVg |

1+B2

)2
+
(
cf2B(1+B2)+(B+f2B3)|c−V α|

(1+B2)F

)2
] (1.41)

ρxy =
B
(
cf2

F + c−αVg

1+B2

)
e

[(
cf2

F + Zα
1+B2 + |c−αVg |

1+B2

)2
+
(
cf2B(1+B2)+(B+f2B3)|c−V α|

(1+B2)F

)2
] , (1.42)

where F = 1 + f2B2 ≈ 1 for fields B ≤ 3T and low mobilities f ≤ 0.1 of the extrinsic

compared to the intrinsic carriers, which is the typical case for our data. Note, that unlike

the case of the single band, the longitudinal resistance now depends on the magnetic field

(increasing in field) due to the mixing of resistivity tensors corresponding to different bands.

We now can simulate (see Fig.1.11-1.13) the Hall resistance with Eq.(1.44)and examine the

influence of the different parameters. Increasing hole-doping is shifting the Dirac point to

positive gate voltages, whereas electron-doping shifts the Dirac point to negative voltages.

The Hall resistance is decreasing for higher carrier concentrations, as it is already expected

in the simple one band model. From Eq.1.44 follows, that for reasonable values of the

parameters c, f, Z, ρxy will still scale linear with magnetic field for high gate voltages and

only close to the Dirac point small deviations will appear.Finally the effect of potential

fluctuations is to smear out the Dirac point and contribute permanent additional carriers

causing a drop in the Hall resistance and a broadening in electron-hole transition area.

It is worth mentioning that the Dirac point, defined as charge neutrality point, and the

point where the Hall resistance vanishes ρxy = 0 will not longer coincide. If the carrier

mobilities for the two bands are different, the total charge accumulated at the edge will not

be zero, even though the system is neutral in charge (c − αVG = 0), and therefore a finite

resistance ρxy) will be measured. However, as mentioned above, the mobilities are typically

so small (f ≤ 0.1) that this shift (∆V < 0.1V ) is almost negligible and we will refer to the

voltage where ρxy = 0 as Dirac point in our discussion.

So far we have assumed that the doping concentration over the entire energy range will be

constant. Yet this will only be the case as long as the acceptor level of the dopant is laying

so deep that we cannot deplete the band. We want to introduce a second p-type dopant
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Figure 1.11: Influence of p-type doping on Hall resistance (B=1T). Hole doping shifts the
Dirac point to positive gate voltages. The shifts depends on the doping concentration c
and increases with cumulative doping. The curves, from red to blue, represent a doping
concentration of c = 1015 − 1016cm−2. As already expected in the one band model the
resistance decreases with increasing amount of charge carriers.

Figure 1.12: Influence of electron hole puddles on Hall Resistance (B=1T). The simulation
shows that for increasing potential fluctuations Z the Hall resistance dramatically drops
and the transition region from holes to electrons broadens. The red, orange, yellow, green
curves correspond to Z = 0, 0.3, 0.6, 1V .
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Figure 1.13: Influence of the mobility of the charge carriers in the impurity state on Hall
resistance (B=1T). With increasing mobility f the Hall resistance strongly drops. In ad-
dition the slope of the transition area around the Dirac point, where electrons and holes
exist at the same time, decreases. A slight shift of the Dirac point due to the mobilities can
also be observed. The mobilities are set to f = 0.01, 0.03, 0.07, 0.1, 0.15 for the red, orange,
yellow, green and blue curve.

whose energy band sits close to the Dirac point (at small negative energies) and hence can

be filled and depleted by shifting the Fermi energy EF (sweeping the back gate voltage Vg)

through it. We can add this dopant to 1.39 which will further extend 1.41 and 1.42 to:

ρxy =
B
(
cf2

F + dg2

G + Zα+|d+c−αVg |
1+B2

)
e

[(
cf2

F + dg2

G + Zα+|d+c−αVg |
1+B2

)2
+
(

(B+B3)(dg2F+cf2G)+(B+g2B3)(B+f2B3)|c−V α|
(1+B2)FG

)2
](1.43)

ρxy =
B
(
cf2

F + dg2

G + d+c−αVg

1+B2

)
e

[(
cf2

F + dg2

G + Zα+|d+c−αVg |
1+B2

)2
+
(

(B+B3)(dg2F+cf2G)+(B+g2B3)(B+f2B3)|c−V α|
(1+B2)FG

)2
](1.44)

Here d stands for the charge carrier density of the dopant and g for its’ mobility. G =

1 + g2B2 is defined similar to F and can be set to G ≈ 1. Again, for electron doping we

simply have to change the sign of d. The total doping concentration is thus given by c+ d.

We follow Ref.[36] and assume that the density of states of the two dopants are peaked

around two distinct energies Ec,Ed and replace c and d with:

c→ c

∫ EF

E0

δc(E − Ec)dE , d→ d

∫ EF

E0

δd(E − Ed)dE, (1.45)

where the δ peaks are taken as a Gaussian distribution over a small energy range, cor-

responding to a voltage range of about 2V. The energy E0 is the lower bound for the
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Figure 1.14: Density of states for hole doped graphene. The DOS of the dopants are peaked
around two distinct energies and is added to the linear DOS of pristine graphene. The red
colored area shows the electron-filled states when EF ≥ 0. The number of holes is equal to
the uncolored area when EF ≤ 0. Depending on the Fermi level the impurity bands can
either be filled or depleted.

integration and can be chosen arbitrarily with the constriction that it has to be smaller

than Ec and Ed. Fig.1.14 shows the density of states for hole doped graphene taking also

into account electron hole puddles. The second dopant will cause a further shift of the

Dirac point and when it is sitting close to it, it will lead to a wide broadening of the curve

around the charge neutrality point, as it is shown in Fig.1.15, since it can be filled and

depleted.

Unfortunately our samples get unintentionally doped during the preparation process and it

can not be ruled out, that more than just two kind of impurities lead to the disorder, but

we find that merely two dopants are needed to get satisfactory results.
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Figure 1.15: Influence of a second p-type dopant on the Hall resistance (B=1T). The dopant
sits at low negative energies causing a further shift of VD to more positive gate voltages.
More important ,it has an strong effect (broadening) on the region close to VG. The black
curve represents the graphene doped with only one p-type dopant with a deep laying band.
The colored curves show the effect of a second dopant with a smaller concentration c ≈ d/2
situated only 1− 2V away from VD
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1.8 Quantum Hall effect in graphene

More than 100 years after the observation of the classical Hall effect, von Klitzing (1980)

and co-workers [7] found a quantized behavior of the transverse resistance in a high mobility

silicon MOSFET in a magnetic field of 20T , known as Qunatum Hall Effect (QHE). The

quantization appears in steps of h
ie2

, where i is an integer, h the Planck constant and e the

electron charge. Probably the most important aspect is, that this quantized resistance of

RK = 25.812...kΩ (RK , von Klitzing constant) is independent of the material, geometry

and macroscopic aspects of the sample and therefore can be used as resistance standard.

The reason for this quantization is the applied magnetic field on a 2DEG. It only becomes

obvious when we treat the particles quantum mechanically and not with the semi-classical

equations of motion as discussed above. For a perfect 2DEG (non-interacting, spinless)

placed in a perpendicular magnetic field the Hamiltonian is written as [37]:[
~p+ e

c
~A
]2

2m
ψ(~r) = Eψ(~r) (1.46)

where m is the effective mass, ~p the particle’s momentum, and ~A the vector potential

associated with the magnetic field ~B ( ~B = ∆ × ~A). This Hamiltonian can be reduced to

one similar to the harmonic oscillator and gives quantized energy solution:

EN,S = ~ωc(N +
1
2

), N = 0, 1, 2, 3.... (1.47)

where ωc = eB
m is the cyclotron frequency. The quantized energies are known as Landau

levels. The spacing between two levels in a 2DEG is ~ωc and typically just is in the order

of 1meV ≈ 10K in a field of 10T. Thus to resolve these levels one needs very high magnetic

fields and low temperatures. For graphene, however, this situation changes dramatically.

The Dirac Hamiltonian 1.18 in a perpendicular magnetic field is:

vF

[
~σ
(
~p+

e

c
~A
)]
ψ(~r) = Eψ(~r) (1.48)

This problem can be solved similar to the 2DEG system. The energy spectrum is [38]:

EN = sign(N)~ωc
√
|N |, N = 0,±1,±2,±3.... (1.49)
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Figure 1.16: DOS of graphene in magnetic field. The linear DOS of graphene is splitting
into various Landau levels. The Landau levels are broadened due to disorder into sub-
bands. The extended states close to the Landau levels (blue for holes, red for electrons)
are current carrying. The localized states (gray shaded) in between two Landau levels can
not contribute to the current. The longitudinal conductivity and resistance will vanish at
the same time when the Fermi level lies in the region of localized states and Hall resistance
plateaus will appear.

The cyclotron frequency ωc =
√

2vF
lB

for graphene is given by the ratio of the Fermi velocity

vF to the magnetic length lB =
√

~
eB that is square root dependent on the magnetic field

B. Substituting this in (1.49):

EN = sig(N)
√

2e~v2
F |N |B ≈ 26meV sig(N)

√
|N |B, N = 0,±1,±2,±3.... (1.50)

Graphene’s linear DOS splits up into various Landau levels, shown in Fig.1.16, whose spac-

ings are not any more equidistant in field as for the 2DEG. The spacing for the first to

Landau levels is larger than 100meV which gives a corresponding temperature of about

1000K and lead to the appearance of QHE in graphene even at room temperature[39]. In

an ideal system the Landau levels are represented as infinitesimal delta peaks whereas dis-

order, e.g. impurities, temperature, will broaden those peaks. It was experimentally found,

that the width of those Landau sub-bands in a 2DEG is approximately given by [40]:

Γ = p

√
B

µ
, p ≈ 2.3meV/T (1.51)

It will broaden with increasing temperature and magnetic field B and sharpen in high

mobility µ samples. The degeneracy of a Landau level in a ideal system is the number of
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cyclotron orbits that fit in the area of the sample, multiplied by a degeneracy due to spin

and valley. The number of states per unit area nB is thus given by:

nB =
1

2πl2B
=
eB

h
(1.52)

The ratio between the carrier density n and nB is called filling factor ν = n
nB

and will be

an integer i for filled Landau levels (n = inB). Substituting this into the Hall resistance

RH = B
ne leads to the transverse resistance of:

RH =
h

ie2
=
RK
i

, i = 1, 2, 3... (1.53)

when the i-th Landau level is filled. For an ideal system where the levels are represented

as δ peaks, separated by an energy gap in the order of ~ωc, this can not explain the

existence of the resistance plateaus. As long as the Fermi level is located at a totally filled

Landau level, where all states are occupied, the longitudinal conductance, and therefore the

longitudinal resistance, will vanish, since filled bands can not carry current. But as soon as

the Fermi energy rises, electrons will fill the next available free states in the next Landau

level. Those states can carry current, the longitudinal conductance and resistance will not

be zero any more, and the Hall resistance would simply increase linear with the carrier

density. But one has to take into account disorder in the system leading to a broadening

of the levels as mentioned above. The density of states is then determined by extended

states, close to the Landau level, and localized states in between those levels (see Fig.1.16).

Since localized states can not contribute to the current, the longitudinal conductivity and

resistivity will still be zero when the Fermi level is shifted through those states. At the same

time the number of current carrying extended states is not changing either and the Hall

resistance thus shows plateaus. When EF is approaching the next Landau level, or better

said extended state, electrons can scatter and fill those states. Dissipation will occur, the

longitudinal resistance is no longer zero, and RH is no longer quantized. As soon as this

extended state is filled ρxx will drop to zero again and the next plateau in the Hall resistance

will show up. This ongoing process can be seen as a transition between localization and

de-localization.

We can see from (1.49) that a zero energy Landau level exists at the Dirac point that is

shared by electrons and holes. This leads to an additional degeneracy in graphene. The
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Figure 1.17: QHE in graphene. Our samples show resistance plateaus at values of ±1/2,
±1/6, ±1/10 RK what clearly indentifies them as mono-layer. The deviation from the exact
values can be explained by the non-vanishing longitudinal resistivity (especially at higher
filling factors/electron densities). All measurements were performed at T = 4K and in
fields of B = 7T for samples S2, S3, and in B = 9T for S1.

total degeneracy is thus given by 2(2N+1), where we have taken into account the spin and

valley degeneracy gs = gv = 2. The quantized Hall resistance (1.53) is then given by:

RH =
RK

2(2N + 1)
⇒ σxy = 2(2N + 1)

e2

h
(1.54)

Hall plateaus appear at filling factors of ν = 2, 6, 10.... This unusual behavior was first

reported by [8] in 2005 and was the first proof that carriers in graphene are described by

the relativistic Dirac equation rather than the Schroedinger equation. This quantization

is unique for graphene single layers. Graphite devices with two (or more) layers show the

plateaus at ν = 4, 8, 12... [41]. The unique quantization of single layer graphene can be used

to for the clear identification and is shown in Fig.1.17 for our samples.
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Figure 1.18: Edge states in graphene. The left side represents the energy quantization into
Landau levels that bend up due to the confinement of the sample of width W . All states
up to the Fermi level are occupied (red). States of the filled valence band (E < 0) are
not shown here because it is not contributing to the current. The valley degeneracy of the
N = 0 Landau level is lifted at the edge and it splits into two levels, both double spin
degenerated, bending to positive and negative energies. The N = 0 level is still fourfold
degenerated (spin and valley). This picture corresponds to a filling factor of ν = 2 with
6 ballistic edge channels at each side with chemical potential of µ1 or µ2. The transverse
resistance is then given by RH = RK

6

1.9 Edge states

A common way to describe the transport in the QHE effect is the edge state picture. Every

real sample is confined by it’s edges. The confining potential there results in an upward

(downward) bending for positive (negative) Landau levels. Hence, no matter where the

Fermi level EF is located it will cross extended states at the boundary of the sample, so-

called edge states, that can carry the current. In a classical picture those states are described

by skipping orbits with the radius of lB and the magnetic field will suppress backscattering

[42].

Edge states form one dimensional channels each carrying a current of I = e
h∆µ, where

∆µ = µ2−µ1 gives the difference of the electro chemical potential of the two current leads.

This transport is well described by the Landauer-Buettiker formalism [42, 43] that treats

every channel with an corresponding transmission coefficient T and each contact with a

reflection coefficient R. For ballistic channels and perfect contacts R = T = 1. M of those

edge channels are thus carrying a current of I = M e
h∆µ. The carriers in opposite edges

are moving in opposite direction due to the band bending and have the chemical potential

µ1 or µ2 of the current lead where they originate from; shown in Fig.1.18. Hence the Hall
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resistance is then the ratio of the potential at opposite edges to the current:

RH =
∆µ
e

M∆µ eh
=

h

Me2
=
RK
M

(1.55)

For graphene M = 2(2N + 1) = 2, 6, 10... is given by the number of occupied Landau levels,

where N = 0, 1, 2... is the level index and we obtain the right quantization. Every time the

Fermi level is shifted through a higher Landau level an additional channel is added to the

system. Since the resistance will be lowest, when the Fermi level lies in between two levels,

but highest, when it reaches a new Landau level, one can observe the Schubnikow-de-Haas-

effect [44].
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Chapter 2

Experiment

2.1 Sample Preparation

We deposit highly oriented pyrolytic graphite (HOPG) on a silicon/silicon dioxide (Si/SiO2)

substrate. The high purity level of HOPG, compared to that of kish or natural graphite,

makes it a perfect candidate for transport measurements. The substrate consists of a 740µm

layer of Si (p-doped) covered by 300nm SiO2. The thickness of the SiO2 layer is crucial to

identify single graphene layers under an optical microscope. The quality of the substrate

and the condition and cleanliness of its surface might be decisive for the sample quality. As

far as our experience goes graphene deposited on a freshly cleaned substrate shows higher

mobilities. Therefore we clean the substrate in a UV ozone cleaner (UVOCS Inc. Model

TO 0306) for 15 minutes to remove organic contaminations and bake it afterwards for 30

minutes on a hot plate at 230◦C to remove water and organic residues.

We use a pair of tweezers to grab a very thin foil of graphite from the HOPG block and

put it on the substrate. We use compressed high purity nitrogen gas applied through an air

gun to gently press the graphite foil on the substrate for a few seconds and finally remove

it by blowing it away. Now the substrate has to be checked thoroughly under an optical

microscope (Nikon Eclipse LV 100) for single layers. We repeat this process until promising

flakes are found (see Fig.[2.1]).

To prepare the sample for electron beam lithography we coat it with poly methyl methacry-

late resist (MICRO CHEM 950PMMA A 3). Spinn-coating the substrate for one minute at

3000rpm forms a uniform ≈100nm thick film of PMMA that polymerizes by baking for 90

seconds at 180◦C. It is a positive side effect that graphene is now protected from further

contaminations under the coating.
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Figure 2.1: The left picture shows a typical graphite field after deposition taken by an
optical microscope with 20x magnification. One of the large alignment marks (33 mark)
can be seen. The small marks confine region of the size of 70x70µm2. Most flakes consist
of several multi layers (dark blue) and only a few flakes are suitable single layers. The right
picture shows a zoom in (100x magnification) on a 2.5x11µm2 graphene flake in the green
marked region.

For designing we use the NPGS (Nano Pattern Generation System) and DesignCAD soft-

ware. The current leads cross the entire sample to create an uniform current flow throughout

the graphene and have a width W≥500nm. The voltage leads are only about 100-150nm

wide to reduce the influence on the sample [33]. For a good contact they should extend into

the graphene for at least 500nm but the Hall voltage leads themselves should be separated

by more than 500nm to ensure no mutual doping. A typical design is shown in Fig.[2.4].

The substrate is already covered with a field of big and small alignment marks (see Fig.[2.1]).

The big marks form 420x420µm2 grids which are subdivided by the small alignment marks

to thirtysix 70x70µm2 fields. The shape of the small alignment marks is varied in order to

enable the experimentalist to uniquely identify location on the substrate by the shape of

the adjacent marks.

2.2 Electron Beam Lithography

Electron beam lithography uses the fact that polymer chains can either be cut (positive)

or strengthened (negative resist) by electrons. We use positive PMMA resist, thus the
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Figure 2.2: The high energy electron beam
is controlled and focused by a complex sys-
tem of lenses and deflectors and irradiates
the substrate which is mounted on a me-
chanical stage (taken from [[46]]). After-
wards the exposed resist can be removed
in a developer solution.

Figure 2.3: Monte Carlo simulation or tra-
jectories for 100 primary electrons with an
energy of 50keV. The electrons undergo
elastic and inelastic scattering processes
in the resist (depth ≤ 1.0µm)as well as in
the substrate. This leads to a broadening
in the exposed area (so-called proximity
effect)(taken from [[46]]).

polymer-electron interaction breaks chemical bonds of the polymer and forms shorter and

lighter molecular chains. The exposed area can be dissolved in a developer solution that

removes the low weight polymer fragments but the unexposed resist will not be attacked.[45]

The electron beam is generated by an electron gun in a high vacuum (2.5∗10−9mBar)and

accelerated to 30keV. It is focused by several condenser lenses and controlled by deflectors

before it hits the substrate in the main chamber (see Fig.[2.2]) which has a lower vacuum of

about 3∗10−6mBar. The substrate is mounted on a high precision mechanical stage. Both

beam and stage are computer controlled .

Although the beam can be focused to a spot size smaller than 10nm the writing resolution is

limited to ≈20nm. Unlike optical lithography, where resolution is limited by the wavelength

of light, resolution of electron beam lithography is limited due to scattering processes of
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Table 2.1: Our design is divided into three sections. All patterns inside the small alignment
marks (region 1) are written with a high magnification and low beam current to achieve
a high resolution. The large bonding pads in region 3 don’t include any fine features and
hence a lower magnification can be used. The electrodes connecting these two sections are
located in region 2 (see Fig.[2.4]). The order of different doses used in region 1 stands for
current lead/close Hall leads/center Hall leads/current lead respectively.

region magnification spot size beam current dose[unit? C/cm2?]
1 800 1 ≈ 15pA 380/450/550/450
2 400 3 ≈70nA 420
3 120 6 ≈400nA 420

the incoming electrons. High-energy (primary) electrons undergo random inelastic scatter-

ing with atoms and elastic scattering with (secondary) electrons which get knocked of the

atoms in the resist layer and substrate. Inelastic scattering processes cause chain reactions

in random direction involving energy transfer and result in a broadening of the exposed

area of the resist(see Fig.[2.3]). Electron scattering is mainly influenced by electron energy,

the density of substrate material and the thickness of the resist. In general one can say

that for high resolution (�100nm) high beam energies (50-100keV), low substrate densities

and thin resist layers are preferred [46]. Our electron beam lithography system (PHILIPS

XLFEG/SFEG Scanning Electron Microscope) can operate at a maximum beam energy of

30keV and is limited to a resolution of ≈ 50nm. As it can be seen in Fig.[2.3] scattered

primary electrons can propagate more than one micrometers away from the beam center

leading to a weak exposure of neighboring areas. This so-called proximity effect has to be

taken into account by reducing the dose (total charge of incident electrons per area) when

we write patterns spaced less than 200nm (see Tab.[2.1]).

Our design is written in three different magnifications for three region, regions 1-3 (see

Fig.[2.4]), to come to a compromise between writing time and desired resolution. All elec-

trodes inside the small alignment mark field, including the Hall Bar geometry, are written

with higher magnification and lower beam current (spot size) for a high resolution. The

exact numbers can be found in Tab.[2.1].

After the writing process we develop the sample in a mixture of isopropanol (IPA) and

water at a ratio of 3:1 for 120 seconds which is cooled down to 5◦C. This developer shows

superior lithographic performance in comparison with standard developer (MIBK:IPA)[47]
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Figure 2.4: The left figure shows a simplified sample geometry. The bonding pads in
the purple shaded area (region 3) are 100x100µm2 large. The bonding pads and the fine
structures (0.1-2µm) of the Hall bar (red shaded/region 1) are connected by 10µm wide
electrodes (green shaded/region 2). The right side shows a detailed view at the Hall bar
design. The 1µm wide current leads are orientated perpendicular to the graphene sheet
and run over the entire sample to create an uniform current flow. One pair of Hall voltage
leads (width=0.15µm) is placed close to one of the current leads (width=1µm) in varying
distances ∆ ≥ 0.15µm. The second Hall voltage pair is located in the middle of the sample.
The separation dHL between opposing Hall leads should be greater than 0.5µm. The two
pairs of Hall voltage leads are separated by more than 1µm (LHL ≥ 1µm). To meet all the
requirements the graphene should at least have a size of 2x4µm2.
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Figure 2.5: A high energetic (4keV) electron beam is bent by a magnetic field towards the
the metal target which sits in a watercooled cruscible. The metal heats up over its’ melting
temperature and starts to vaporize. Due to the high vacuum the molecule clusters can
propagate ballistic throughout the chamber. They condense on the colder surface of the
substrate, chamber wall, and QCM which allows us to control the thickness of the layer.
The shutter is needed for a well controlled layer thickness.

and the low temperature further decreases the edge roughness of developed structures [46].

Immediately after development we rinse the sample in IPA for 15 seconds and blow dry

it with nitrogen gas. To guarantee good contact between the electrodes and graphene we

clean the sample for 70 seconds in the UV ozone cleaner to remove last PMMA residues.

2.3 Electron Beam Evaporation

To deposit a thin film of metal in the opening of the polymer resist we use the electron

beam evaporation technique (THERMIONICS e-GUNTMModel 100-0030). Our sample is

placed in a vacuum chamber (≤ 5∗10−7mBar) where hot metal vapor condenses on its’ cold

surface. An electron beam produced by a heated tungsten filament is accelerated to 4keV

and is bent by a permanent magnet towards the metal target (see Fig.[2.5]). The targets

are sitting in crucibles that are water cooled to prevent it from overheating. When the

electron beam hits the target most of its’ kinetic energy is transformed to thermal energy.

The temperature can be controlled by the beam current that is in the order of 100mA. The

metal is heated up to boiling temperature and begins to vaporize. The high vacuum allows

the molecules to travel ballistically through out the chamber till they finally condense on
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Table 2.2: The deposition rate R strongly depends on the melting temperature Tm of the
material and therefore on the beam current Ib. Even though the beam current for aluminum
is half of the beam current for titanium the deposition rate is about 5 times higher. Electron
beam evaporation allows deposition rates between 1 and 10nm/s [46]. For a given Z-ratio
between film material and quartz and density ρf of the film material the thickness of the
layer is evaluated according Eq.[2.2] and Eq.[2.3]

material Tm [◦C] ρf [g/cm3] Z-ratio Ib [mA] R [nm/s] Tf [nm]
titanium 1670 4.5 0.628 100 0.1 2-3

gold 1063 19.3 0.381 80 0.5 28
aluminum 660 2.7 1.08 55 0.5 26

a colder surface (substrate, chamber walls). The deposition rate R mainly depends on the

distance r, and the difference between the vapor pressure Ps(T ) of the source material,

which is a function of temperature T, and the pressure in the vacuum chamber Pc [46].

R ∝ Ps(T )− Pc
r2

(2.1)

The film thickness is controlled by a quartz crystal monitor (QCM). The frequency of the

quartz crystal is very sensitive to the mass change ∆m per surface area A. The dependence

of frequency change ∆f = fu − fl between the unloaded (fu) and loaded (fl) quartz crystal

and ∆m is given by the Lu and Lewis equation [48].

∆m
A

=
Nqρq
πZfl

1

tan [Z tan [π∆f
fu

]]
, Z =

√
ρqµq
ρfµf

(2.2)

Here Nq is a frequency constant for the quartz crystal, ρq (ρf ) is the density, µq (µf ) the

shear modulus of the quartz (film material) and Z is the Z-ratio for the film material. The

film thickness Tf is given by:

Tf =
∆m
Aρf

(2.3)

We use the parameters given in Tab.[2.2] to evaporate a 2-3nm thick film of titanium

followed by 28nm (26nm) film of gold (aluminum). The thin titanium layer guarantees a

good wetting of gold (aluminum) and improves the contact quality. After the deposition

process is completed we insert the metal coated substrate into acetone which is dissolves

resist. The overlying layer is lifted off and removed and only the desired pattern remains.

To avoid acetone residues we immediately rinse the substrate thoroughly in IPA and blow

dry it with nitrogen gas. Fig.[2.6] recapitulates the most important steps of the preparation
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Figure 2.6: Profile of the design marked by the red dashed line in Fig.[2.4]. After the
graphene flake is deposited on the Si/SiO2 substrate and coated with PMMA the resist is
exposed to a 30keV electron beam and developed in a water/IPA mixture. A thin film of
Ti/Au (Ti/Al) is deposited and the lift-off in acetone removes the overlaying layer.

process. An optical image of one structure is shown in Fig.[3.6] in a later section. As

prepared, the graphene is exposed to various organic compounds (PMMA, acetone, IPA)

which can settle on its’ surface. Furthermore the samples get p-doped, likely by water.

Hence to clean the sample from dopants and organic residues we anneal the sample at

200◦C in forming gas (10%H, 90%Ar) for 2 hours.

2.4 Experimental setup

After baking we mount the sample with rubber cement and silver paint on our sample

holder (Fig.2.7,b). The silver paint serves as connection to the Si-layer of the substrate

that acts as back gate. Before wire bonding the sample with 25µm thin aluminum or gold

wires to the connection pads of the sample holder it is advisable to protect the sample by

a shunt resistance, also known as crowbar circuit. In our case this is achieved by shorting

all pads, except the one used for back gate, by wrapping a high conductive wire around

the connection pins (Fig.2.7,a). Any over-voltage will drop at this parallel short because of

its’ low resistance of a few Ohms rather than at the sample (R ≈ 1kΩ). Usual graphene

samples are only a few microns wide and easily destroyed by currents higher than 1mA.

Any static shock, e.g. by touching one of the pins, is a potential threat and should be

avoided. A further preventive measure to minimize risks of damaging the sample by static

shocks is to ground oneself anytime one is working with the sample. We use coax cables

with pin connectors (Fig.2.7,c) in our insert which are connected to a further shunt box

that can be operated when the insert is loaded in the dewar. This shunt box, consisting

of high resistive (R = 500kΩ) potentiometer and switches, is essential for a faultless and
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Figure 2.7: a) Bottom view on sample holder. The pins are shorted to protect. Any over-
voltage will drop at this very low resistive short-circuit parallel to the sample. b) Sample
mounted on holder with rubber cement and silver paint (at the right corner of the substrate).
Aluminum wire is used for the wire bonding. c) Sample plugged in the insert. The coax
cables with pin-connecters lead to a shunt box on top of the insert. The shunt on the pins
has been removed after the connection. d) The insert is loaded into the helium cryostat
equipped with a superconducting magnet. The black box on top is our shunt box.
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Figure 2.8: Left: Electrical circuit of the measurement. A small current of 100nA with a
frequency of 13Hz is passed through the graphene sample G. The voltage drop across the
sample is measured with a Lock-In amplifier. A voltage source is connected to back side of
the substrate serving as back gate B. We use a shunt-box to protect the sample in between
measurements (Right). The figure displays the shunt in open position (R=0, switch open)
used for measurements. By flipping the switch and shorting all contacts the sample will
be protected. The potentiometer should be in a high resistance position before flipping the
switches because discharging of the switches can lead to unintentional high voltages that
will drop at the resistors before reaching the sample.

successful measurement (for further explanation see Fig.2.8). During the entire loading

process this shunt should be closed to protect the sample after connecting the wires to the

samples and removing the shunt from the pins. The insert is closed with a can, sealed

with vacuum grease and pumped to a low vacuum. All experiments were done in a helium

dewar equipped with a superconducting magnet that can operate in persistent mode (see

(Fig.2.7,d). At helium temperature (T=4K) a magnetic field up to B = 8T can be achieved.

The experimental setup consists of the following instruments (see Fig.2.9):

• Keithley 6221 DC and AC current source

• Keithley 2400 Sourcemeter

• Keithley 2001 Multimeter

• Stanford Research SR 830 digital Lock-In amplifier

• Princeton Research PR 124A analog Lock-In amplifier
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Figure 2.9: Experimental setup. The cryostat is isolated by vacuum, superinsulation that
reduces heat dissipation through radiation and some liquid nitrogen N2. The superconduct-
ing magnet is sitting on the bottom of the cryostat in liquid helium H4. The sample holder
mounted at the end of the insert is placed in the center of the magnet where the field is
homogeneous. The current source is handled manually, the back gate source by a LABView
program. The data of the two amplifiers is read by another LABView programm and saved
on the computer.
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To minimize the heating of the sample we use a 100nA AC current produced by the Keithley

6221. The frequency of 13Hz is supplied as reference signal to the Lock-In amplifiers. The

use of AC measurements is good for canceling DC offsets. The Lock-In technique further

reduces background noises and provides a clear signal. The digital signal of the SR 830 is

directly given to the computer whereas the analog signal from the PR 124A first has to be

converted to a digital one by the Keithley 2001. The Keithley 2400 is controlling the back

gate voltage. All instruments are computer-controlled by LabVIEW programs that are also

collecting the data.
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Chapter 3

Data analysis

3.1 Sample characterization

We will discuss three samples, S1, S2 and S3 with different doping levels and qualities. The

samples are designed after Fig.2.4 and the important dimension are summarized in Tab.3.1.

The highest quality sample S1 will be of main interest since it has three pairs of voltage leads

that let’s us compare the results of various spacings ∆ on one sample. All of the samples

are strongly p-type doped resulting in a shift of the Dirac points to positive gate voltages

of VD,S1 ≈ 9V , VD,S2 ≈ 31V and VD,S1 ≈ 17V (see Fig.3.1). The unintentional doping

probably occurs during the preparation process. Even though the annealing in forming gas

is supposed to remove most of impurities [27], at least at graphene’s surface, the exposure

to air during the wire bonding might result in heavy doping, depending on exposure time

and humidity. The Hall bar geometry allows us to compare the longitudinal resistance

along the two edges of the sample. The discrepancy between them can be explained by

non-uniform doping, leading to a macroscopic inhomogeneity on the sample. Sample S1

has a well pronounced Dirac peak and shows the lowest doping level, whereas S3 shows a

high level of disorder. However, this can not only be traced back to the higher doping level

of S3, since S2 with an even higher level of doping shows a better quality. The quality of

the sample is usually defined by the carrier mobility, the broadening of the peak, and the

Table 3.1: Dimensions (see Fig.2.4) of samples S1, S2 and S3. Since S1 has three voltage
pairs, it has two corresponding LHL’s and ∆’s

Sample Lc[µm] LHL[µm] W [µm] ∆[µm]
1 6 2, 2 2 0.2, 0.4
2 10 3 3 0.15
3 4 1.5 2.2 0.2
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Figure 3.1: Resistivity ρxx versus back gate voltage VG. All three samples show p-type
doping with a shift of the the Dirac point to positive gate voltages of 9, 17, and 31V. The
numbers in the brackets denote the two edges of the sample.

maximum resistivity. One can shift the Dirac point to zero and plot the resistivity versus

the logarithm of the shifted gate voltage, to obtain a rough estimation for the electron-

hole puddle size Z. Since the conduction at the Dirac point can be mainly attributed

to the potential fluctuation, the width of the resistance plateaus gives a hint at which

gate voltage the electron hole puddles are no longer the dominant carriers. This gives an

upper bound for the estimation of Z = 0.8 − 2V for the samples. The conductivity, equal

to the inverse resistivity, shows a linear behavior in S3 suggesting dominant long range

scatterers. In contrast S1 and S2 are sub-linear at high carrier concentrations, indicating

the existence of short range scatterers [49, 50, 29]. Since σ ∝ (Rshortrange + Rlongrange)−1

and Rlongrange ∝ n−1 one should expect this sub-linearity at high gate voltages, as long as

the number of long range scatterers is not too high. This sub-linearity becomes pronounced

for high mobility samples (fewer long range scatterers) and thus is another quantity to

characterize the sample’s quality. The carrier mobility µ is derived from the simple Drude

model and is shown in Fig.3.4:

ρ−1 = σ = neµ ⇒ µ = (neρxx)−1 = (α(VG − VD)e
W

L
Rxx)−1 (3.1)
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Figure 3.2: Estimation of puddle size Z. By plotting the resistivity rhoxx over a logarithmic
scale of the shifted back gate voltage VG − VD, we obtain an upper bound for the puddle
size Z of 0.8, 1.2, and 2V for S1, S2, and S3 respectively.
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Figure 3.3: Conductivity σxx versus back voltage VG. The sub-linearity of σxx for S1 and
S2 results from the interplay of short and long range scatterers. Sample S3 is dominated
by long range scatterers leading to its’ linear behavior
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Figure 3.4: Mobility µ versus back gate voltage. Because of its’ linear dependence of
conductivity on the back gate voltage sample S3 leads to a constant mobility µ over the
entire gate range. The mobility is only valid outside the puddle regime and is unphysically
high since we assume a vanishing carrier concentration n at the Dirac point. The high
mobility of S1 indicates a good quality of the sample, whereas S2, and S3 can be classified
as medium quality samples.

Where we use Eq.(1.43) and the capacitor model 1.40 to calculate the carrier density n. The

constant mobility of S3 follows from its’ linear dependence of conductivity on gate voltage.

Sample S1 has the highest mobility up to 14, 000cm2/V s and therefore represents our best

sample. The corresponding mean free path for carrier concentrations larger than puddle

concentration (n > αZ)l can be calculated by using the Einstein relation:

σ = ρ(E)e2D , D = vF l (3.2)

Here D is the diffusion constant for a two dimensional system and the DOS ρ(E) is given

by Eq.1.23.

l =
~σxx
e2

√
π

α(VG − VD)
(3.3)

The results are shown in Fig.3.5. Since the conductivity is roughly linear in VG − VD, the

mean free path will approximately increase with the square root of it. In contrast, for pure

short range scatterers, where the conductivity is constant, a decrease would be expected.

Our samples lay in a range of 50-100nm (S3) up to 80-180nm (S1). All characterizing

parameters are summarized in Tab.3.2
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Figure 3.5: Mean free path l versus back gate voltage. We calculate l using the Einstein rela-
tion for a two-dimensional system. The increasing mean free path indicates the domination
of long range scatterers over the gate range.

Table 3.2: Parameters extracted from transport measurement.
sample VD [V ] µ [cm2/V s] l [nm] Z [V ]

S1 9 8000 - 14000 80 - 200 0.8
S2 31 5000 - 8000 50 - 120 1
S3 17 4500 - 6000 40 - 100 2
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3.2 Hall measurement

We use Lock-In amplifiers to measure the voltage drop across the sample. The corresponding

resistance is therefore simply obtained by dividing the voltages by the AC current, typically

100nA. However, every measurement of longitudinal resistance Rxx in a Hall bar with

invasive, not perfectly aligned contacts will also pick up a transverse component ∆Rxy.

The same is true for measuring the transverse resistance Rxy. It is inevitable to pick

up a small longitudinal resistance ∆Rxx. Since, due to the Onsager relation, the Hall

resistance (transverse) is asymmetric in magnetic field Rxy(−B) = −Rxy(B), whereas the

the longitudinal resistance is symmetric Rxx(−B) = Rxx(B), we can extract the pure Rxx

(Rxy), by adding (subtracting) the measured resistances in opposite magnetic fields and

dividing the result by two:

Reven =
1
2

[(Rxx(B) + ∆Rxy(B)) + (Rxx(−B) + ∆Rxy(−B))] = Rxx (3.4)

Rodd =
1
2

[(∆Rxx(B) +Rxy(B))− (∆Rxx(−B) +Rxy(−B))] = RH (3.5)

The longitudinal resistivity is then obtained by multiplying the resistance with the corre-

sponding aspect ratio, whereas the transverse resistivity and resistance are equivalent for

a two dimensional system. We now want to compare the Hall resistances very close to

and far away from the current leads. All measurement for S2 and S3 where performed at

helium temperature, but for S1 at 100K. This was necessary since one of the three voltage

pairs had a bad contact at low temperatures and a direct comparison between the three

pairs would not have been possible. The notation for the leads situated very close to the

current lead is RH,∆, where ∆ gives the separation between current and voltage leads in

nano meter, whereas for the center leads it is simply RH . An optical image of a typical

sample is shown in Fig.3.6. Fig.3.8 and Fig.3.7 present the Hall resistances for sample S2

and S3 in low magnetic fields of 0.5, 1, 3T . Both samples give a smaller Hall resistance at

RH,∆ than at RH that in a classical picture simply corresponds to a higher carrier density,

since RH ∝ n−1. Thus our first approach was to explain this by a local doping of the metal

leads. However, as discussed in an earlier chapter, depending on the material, graphene

would either be electron or hole doped. We see from our multi-band model that any kind

of doping results in an decrease of Hall resistance, but also gives raise to a shift in the
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Figure 3.6: Image taken with an optical microscope. The sample has three pairs of voltage
leads, where two of them are situated 200nm and 400nm away from the current leads. The
sample is about 6µm long and 2.5µm wide.
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Figure 3.7: Hall resistance RH for sample S3. The Hall resistance is increasing in field. The
voltage drop at RH,200 is always smaller than in the center of the sample at RH
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Figure 3.8: Hall resistance RH for sample S2. The difference between RH,150 and RH is
even more pronounced, which indicates the local nature of this effect.

Dirac point. Indeed, there is a small shift (∆V ≤ 0.5V ) in the curves of RH,∆ to RH in

both samples, but this can be more likely attributed to small inhomogeneities. Assuming

that the carriers mobilities f, g, the doping concentrations c, d, and the puddle size Z is

constant throughout the sample, our model fails to explain the smaller resistance at RH,∆.

To show that it is at least in general valid (for ∆RH) we simulate the longitudinal and

transverse resistance for S1 in Fig.3.9. This restricts the value of the fitting parameters.

Similar fits can be performed for S2 and S3. It is worth mentioning that all of our fits

require a higher value of α ≈ 8 − 10 ∗ 1014V −1cm−2 than it is calculated from the simple

Figure 3.9: Fits for Hall resistance of S1. The dashed curves represent the simulation of
the longitudinal and transverse resistances in B = 0.5T (left) and B = 1T (right). The fits
in one field share all parameters, whereas the mobility and puddle size has to be adjusted
for increasing field.
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Figure 3.10: Sample S1 in low magnetic field. The voltage drop is decreasing the closer we
approach the current lead, but this effect becomes smaller with increasing field. The slight
shift of the Dirac point between the curves point might be due to local inhomogeneities and
uniform doping through out the sample.

plain capacitor model 1.40. That might be due to edge effects or the general condition

of the substrate. We have to increase the puddle size for reasonable fits in higher field,

consistent with experiments in Ref.[51]. The mobilities are found to be lower f, g ≤ 0.05

than reported in Ref.[36], where the potential fluctuations were not taking into account. In

our lowest field of 0.5T we can extract the puddles from the fits to be approximately 0.6

,0.8 ,1.2V for S1, S2, S3 respectively, qualitatively consistent with the Z extracted from the

transport measurement in zero field (see Tab.3.2). We see from Fig.3.8 and 3.7 that the

discrepancy between the Hall voltages becomes more pronounced when we approach the

current lead, but seems to decrease, at least for S2, with raising field. To further investigate

this behavior, we designed S1 with an additional, third voltage pair to check the position

dependence. We can confirm that the voltage drop at RH,200 is always smaller than at

RH,400, whereas RH gives the highest resistance. In addition the change of this effect in
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Figure 3.11: Samples in high magnetic fields. All devices show the typical QHE plateaus
at 1/2, 1/6, 1/10RK for the centered leads RH . RH,400 shows also the right quantization,
whereas all leads closer than 400nm deviate from the expected value. The strongest devia-
tion is found in S2 where the voltage leads are closest to the current leads.

magnetic field can also be reproduced in S1. This becomes even clearer when we go to high

magnetic fields, shown in Fig.3.11. For S1 and S2 the difference between RH,∆ and RH is

decreasing more and more in magnetic field and RH,400 actually shows the right resistance

plateaus in the QH-regime, while RH,200 and especially RH,200 are still underestimating the

Hall resistance. The local distribution of this effect thus has to change in magnetic field.

3.3 Potential distribution in a Hall bar

Since our model, based on a local doping effect by the metal electrodes, is not appropriate

to explain the reduced Hall resistance close to the current leads, we want to introduce a

second model. We became aware of some earlier work from the 70’s [12] about the potential

distribution in Hall bars. Measurements at a GaAs − AlxGa1−xAs heterostructure were
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Figure 3.12: Hall angle of S1. Left: In a low field of 1T the Hall angle δ is approximately
constant in back gate voltage VG. Right: In the QH-regime δ is oscillating with the filling
factor (back gate), due to the SdH-oscillations. At plateaus the Hall angle is ideally 90◦s,
since the longitudinal resistivity vanishes.

performed 1985 [52] and were in good agreement with the theoretical predictions. The

equipotential lines in zero field will ideally be parallel to the current electrodes, since they

represent an equipotential, and hence perpendicular to the sample edges. Another boundary

condition is given by the current that has to flow parallel at the edge. When a magnetic

field is present, the current and field distribution are no longer related by a simple scalar

conductivity but by the conductivity tensor 1.42 as discussed above. The current electrodes

still impose the boundary condition to be an equipotential, and hence, the distribution of

field lines in the channel will not be uniform. One finds that the equipotential distribution

depends on the geometry of the sample, width W and channel length LC , and the Hall angle

δ = arctan [ρxy

ρxx
] that is defined by the ratio of the longitudinal to the transverse electric

field, and thus by the ratio of transverse to longitudinal resistance (see Eq.1.34). Hence the

Hall angle δ can be changed by either sweeping the magnetic field or the back gate voltage.

For small fields, in the classical Hall effect, δ is constant over the gate voltage (see Fig.3.12),

but will change sign by sweeping through the Dirac point, while in the QH-regime, were

the longitudinal resistance will show Shubnikov de Haas Oscillations [44], it will vary. At

the plateaus it is ideally 90◦ since the the longitudinal resistance vanishes, but will change

to smaller angels δ ≈ 60◦ − 70◦ when the Fermi level reaches the next Landau level. The

equipotential lines for an arbitrary sample shape can be calculated by using the method of

conformal mapping [53, 54] with the corresponding boundary condition mentioned above.
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Figure 3.13: Equipotential lines in a Hall Bar. Left: Equipotential lines for ρxy

ρxx
= 1

(δ = 45◦), corresponding to the classical Hall effect in a field of B ≈ 1T . Right: All
equipotential lines accumulate in two corners of the samples for Hall angels close to 90◦,
representing the situation at a QH-plateau.

Fig.3.13 shows equipotential lines for Hall angles of δ = 45 and δ = 89.9◦s for a rectangular

sample, with an aspect ratio of LC = 2W typical for the studied graphene flakes. As the

Hall angles increases the equipotential lines get tilted from their parallel alignment to the

current leads. They increasingly accumulate at two opposite corners of the Hall bar for

higher magnetic fields. Since we can associate the electric field along the channel with the

density of the equipotential lines, we see that particularly for large Hall angels the potential

will mainly drop in those two corners. The dissipated power per unit area is given by ~j ~E,

where the electric field ~E and the current density ~j are related by the resistivity tensor

~ρ( ~B) 1.33. It will be close to zero in the interior of the sample for Hall angles of δ ≈ 90◦,

since the current and the electric field will be perpendicular to each other. Only at the two

corners, where the potential lines accumulate δ will always deviate form 90◦, even at a Hall

plateau, since the current can only flow parallel to the edges. The dissipated power is shown

in Fig.3.14, where the absolute value of the electric field is plotted for ∆ = 89.5◦. Due to

the dissipation those points are denoted as Hot Spots [55, 12]. They were first observed by

measuring the thickness of a helium film on a Hall bar [56] and later by various spectroscopy

techniques [51, 57]. At a QH-plateau the entire dissipation will happen in this points and

since the voltage drop there will be IRH the dissipated power will be I2RH . When the

voltage drop IRH = ∆µ > ~ωc
2 is greater than half of the cyclotron energy, non-equilibrium

electrons can be injected from the current leads into excited Landau levels, and then relax

by cyclotron emission. This can lead to a local breakdown of the QHE effect [58], due

to the non-equilibrium population of Landau levels. The spacing between Landau levels

in graphene 1.49, however, is larger than for usual 2DEGs, and a current of I = 100nA
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Figure 3.14: Absolute value of electric field in a Hall Bar. This figure shows the absolute
value of electric field at a QH-plateau corresponding to the equipotential lines in Fig.3.13
(right). Since the dissipated power is proportional to | ~E|2 it also shows that most of the
power dissipation appears in two corners of the sample.

is about two orders of magnitude smaller than the critical current and the tunneling into

higher Landau levels can be ruled out. We will now investigate the effect of the voltage

leads on the potential distribution, having in mind the geometry of the leads similar to that

of the sample S1. We will distinguish between two scenarios that depend on the contact

resistance, and thus on the invasiveness, of the voltage leads.

3.3.1 Infinite contact resistance

First we want to consider an infinite contact resistance of the voltage leads. The leads will

then be ideally non-invasive, meaning that the potential distribution in the channel will not

be affected by them, and they measure the averaged potential of the underlying area. In

Fig.3.15 we compare the measured voltage drops at the three Hall voltage pairs. We find,

that for small Hall angles (classical Hall effect), the resistance in the center of the sample

will be the highest, whereas the closer we approach the current lead the lower it drops.

This can explain the deviation of Hall resistances in all samples and the local dependence

found in S1, shown in Fig.3.10. With increasing Hall angle the discrepancy between RH

and RH,400 becomes smaller and will finally vanish at large Hall angles, whereas RH,200 still

deviates, since it is situated very close to the Hot Spot. This result is in accordance with

the finding, that the deviation between RH and RH,∆ is decreasing in large magnetic fields.

The oscillating Hall angle results in an oscillating deviation between RH and RH,400, that

might explain the well pronounced wiggles in RH,400 of S1 in Fig.3.11. This oscillating
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Figure 3.15: Hall measurement with infinite contact resistance of the voltage leads. Current
leads are located on the left and right side of the sample, but not shown here. The voltages
are given in terms of the corresponding number of equipotentials. The voltage leads average
over the underlying lines. Left: Hall angle of 45◦. The voltage drop across the sample is
partitioned into 20 equal steps. The left side thus corresponds to a chemical potential of
0 whereas the right boundary represents 21. The averaged potential would be smallest for
RH,200 and largest for RH . Right: For very large angles the center and the right leads would
approximately measure the same potential, whereas RH,200 measures a smaller one.

behavior could also be observed in RH in a few samples, for example in S2 (and few other

samples not presented in this work). That is not surprising since the potential landscape

will change there too, and the averaged potential will decrease off QH-plateaus. One way

to investigate this issue in future work would be to vary the overlap of the voltage lead with

graphene resulting in various amplitudes of those wiggles.

Even though our simple model gives a qualitative understanding of all observed effects, it

would clearly underestimate the Hall resistance. In Fig.3.15, where the potential is divided

into 20 equal steps, we would measure a deviation of more than 20% at QH-plateaus. Instead

we find in all our samples deviations up to 300 Ohms at the ν = 2 plateau (RH = 1/2RK),

so they are much smaller than expected from the model. The reason for that has to be

found in the influence of the voltage probes on the channel. Therefore we want to consider

the other extreme case, where the contact resistance of the voltage probes vanishes.

3.3.2 Vanishing contact resistance

Here we assume that a voltage lead with zero contact resistance will probe only one of

the equipotential lines in graphene. At a QH-plateau this would be simply the potential

of the edge channel, that is equal to the electrochemical potential of the current lead it
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Figure 3.16: Voltage measurement with vanishing contact resistance. For clarity we added
the current leads at the left and right side of the channel, having a corresponding chemical
potential of 0 and 21. Left: Since the voltage leads have zero contact resistance they
will measure the local edge potential (stars) and repel all other lines (not shown here, see
Fig.3.17). The sequence of voltage drops is still the same as for the infinite contact resistance
case, but it will be larger in all three pairs. Right: At a QH-plateau all pairs would short
out to the edge channel potential and give the right resistance plateau values.

originates from. All other equipotential lines will then be repelled from the lead and we

would measure the local potential at this point. As it is shown in Fig. 3.16 there is a

potential difference along the sample in the classical regime (for small Hall angles) and

RH,200 will still measure the smallest Hall resistance followed by RH,400. This model would

still give us the decreasing deviation between RH and RH,∆ in high magnetic fields. But

as soon as we reach a QH-plateau, where the entire edge channel is at same potential, the

model breaks down, since it would predict that all three voltage pairs would probe the same

potential, resulting in resistance plateaus. But as we have shown, only RH,400 will reach

the value corresponding to QHE, while RH,200 always deviates from the expected value.

In particularly RH,150 of sample S2 shows the largest discrepancy underlining the strong

local nature of this effect. The very fact that we can measure the QHE in our RH,400 lead,

indicating a vanishing contact resistance, but not in RH,200, supporting more the scenario

of averaging, suggests, that we have a finite resistance in the leads.

3.3.3 Finite contact resistance

From the discussion above we know, that in the classical Hall effect the picture of vanishing

contact resistance might be appropriate, since all results can be explained by it. For small

Hall angles, the electric fields around each voltage lead, corresponding to a low density of
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potential lines, is quite small and we can assume that all voltage probes will repel adjacent

equipotential line and give exactly the local edge potential.

For larger Hall angles, however, the equipotential lines are becoming parallel to the edge in

most of the sample, and especially at the close voltage leads the local electric field becomes

very large, since they are situated close to a Hot Spot. Each voltage lead again imposes

the constriction to be an equipotential, but since we have a finite contact resistance in the

leads it is not longer necessary that all underlaying equipotential lines are totally repelled.

It will then measure a partially averaged potential that can be smaller than the actual edge

potential, but larger than the potential measured with a voltage probe with infinite contact

resistance. By adopting this model to our potential distribution we are able to reproduce

every result.

For the reason of comparison we want to argue that in all samples the RH leads give the

exact quantized resistances, so we expect that they repel all but one equipotential line. The

small deviation that they show becomes immediately clear from the discussion below.And

hence the same has to be the case for RH,400. But why is that not true for RH,200 and

RH,150? There are two obvious differences between RH,400 and RH,200. First is the spacing

from the current lead, and second, resulting from this and from the existence of the Hot

Spot, is the higher density of equipotential lines. Since the current lead inevitable acts as

an fixed euqipotential, all lines would have to be squeezed to the very small area between

the current and voltage leads. This results in an enormous electric field that repels the

equipotential lines away from the current leads and forces them under the voltage lead,

which then has and measures the averaged potential of the underlying lines. Having said

this, it is clear that this effect mainly depends of the location of the voltage lead, but also

on its’ extent into the graphene, since the number of underlaying potential lines depends on

these. Also the contact resistance of the leads might play a crucial role and one would expect

even larger deviations for samples contacted with a material of higher contact resistance.

Both possibilities should be experimentally provable. The aspect ratio of the sample will

be particularly of high importance, since it can be seen in our simulations, that the size

of the Hot Spot is increasing with rising width, when the sample length is kept constant.

As the dissipation in the Hot Spots depends strongly on the current, it suggests itself to
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Figure 3.17: Potential distribution for various contact resistances of the voltage leads. This
picture shows a very simplified situation of the potential distribution in a rectangular sample
in zero field. The potential lines are perpendicular to the sample edge. Left: If the lead
has an infinite large contact resistance it will not influence the potential distribution in the
sample underneath and measure the averaged potential. Center: The voltage lead will short
out to one potential if the contact resistance vanishes, and repel all adjacent lines, since
equipotential lines can not cross. It is highly invasive to the potential distribution. Right:
If the electric field is too high, not all potential lines can be successfully repelled and the
voltage lead will partially average over the potential lines.
In magnetic field, the equipotential lines will get tilted till they eventually are parallel to
the edge of the sample at a QH-plateaus. In particularly for large Hall angles, and leads
that extent far inside the graphene, this picture becomes very complex and calculations are
needed.

investigate the Hall resistance for various currents. Hence higher current densities should

lead also to the break down of QHE at RH,400 and lower currents might give the possibility

to observe it at RH,200. A summary of the three scenarios is given in Fig.3.17

The equipotential distributions presented so far represent only one out of four possible

configurations, since we can have a positive or negative field, and either electrons or holes

as charge carriers. But we can easily apply this model to all other cases, simply because

only the Lorentz force on the carriers will change, when we switch the carrier type or the

direction of the field. The Hot Spots would then jump from the lower left and upper right

corner to the upper left and lower right corner. As only the lower left RH,200 voltage probe in

Fig.3.16 is affected by the Hot Spots we can expect an asymmetry between the longitudinal

resistances ρxx of the upper and lower edge in the QH-regime. This is shown in Fig.3.18 for

sample S1. The resistivity ρ1,2 at the Hall plateaus at the upper edge is vanishing only on

the electron side (VG > VD) in negative field (B = −9T ) and at the hole side (VG < VD)
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in positive field (B = 9T ). The situation for the resistivity ρ3,4 is just the opposite. And

as expected from the discussion above, ρ1,2 in a negative (positive) field is indeed equal

to ρ3,4 in a positive (negative field), indicating a jump of the Hot Spots to the other two

corners upon reversal of the magnetic field. The symmetry between electrons in a positive

field and holes in negative field, and vice verse, can also be seen. However it is not as well

pronounced as the symmetry in opposite edges for reversed fields, that might be explained

by different scattering mechanisms for different carrier types.

3.3.4 Summary and Outlook

Starting from the idea of a local doping effect by the current electrodes, we developed a

multi-band model to simulate the Hall resistance for doped graphene. We could successfully

reproduce the Hall resistances in the center of the sample by limiting the disorder to two

type of dopants occupying acceptor levels far away from and very close to the Dirac point.

However we did not observe a local doping effect when using titanium/gold electrodes.

Since we have used a very thin layer of titanium that may not wet graphene uniformly, it

is possible, that the doping by titanium and gold almost cancel each other and the local

doping effect eventually vanishes. A further investigation of this issue is still needed and a

suitable material would be aluminum, since the work function difference between aluminum

and graphene is huge, and the doping should then be more pronounced.

As our model could not give satisfactory agreement with finding that the Hall resistance

close to the current leads is too low, we developed a model based on the potential distri-

bution in the Hall bar. Assuming a finite contact resistance in our voltage probes we find,

that for probing the QHE it is essential that the voltage leads are situated reasonably far

from the Hot Spots, which necessarily occur for large Hall angles. But in addition to the

spacing between voltage and current lead, the extent of the Hall probes into graphene, the

aspect ratio of the sample, and particularly the applied current might be crucial. We also

expect that the invasiveness of the electrodes is determined by the contact resistance and

thus changes for different material.

However all our assumptions are based on equipotential calculation for a perfectly rectan-

gular sample, not taking into account any voltage leads. Every metal probe will represent
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Figure 3.18: Longitudinal resistance of S1 in 9 Tesla. We find that ρxx shows an asymmetry
in field, carrier type and edge. Reversing magnetic field has the same effect as measuring
longitudinal resistivity at the other edge. This can be explained by the existence of hot
spots at two diagonal corners of the sample (see Fig.3.14) that will jump to the vertically
opposite corners when the field or carrier type is reversed (see text).
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an equipotential and thus imposes additional boundary conditions to the problem. Better

calculations considering the invasiveness of the leads, depending on their contact resistance,

are thus needed. By all means it is advisable to use external voltage probes to avoid those

problems. The patterning of graphene into Hall bars by plasma etching followed by con-

tacting it by external probes is a common technique, but so far no patterned suspended

sample has been reported. The size of those samples is usually in the order of more than

5µm and it will be an engineering challenge to suspend such a large sample. The problems

of power dissipation caused by the Hot Spots might be even more important in suspended

graphene, since it provides higher mobilities, leading to a spreading of the dissipation to a

larger area. In addition it has no underlaying substrate were the heat could dissipate, that

might further intensify this issue. The very fact that in our suspended Hall bar the Hall

resistance was much smaller than expected for QHE justifies this assumption.

The back door to observe the QHE even in suspended graphene is to use a simple two lead

measurement, where the voltage drop is directly measured at the current leads. In this

configuration we were not only able to measure the QHE in suspended graphene for the

first time, but also the fractional QHE1.

1both papers in print
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