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ABSTRACT OF THE THESIS
Influence of Synrift Salt on Rift-basin Development: Application to the Orpheus
Basin, offshore Eastern Canada

By MICHAEL A. DURCANIN

Thesis Director:

Dr. Roy Schlische & Dr. Martha Withjack

I present a new interpretation of the tectonic evolution of Orpheus basin, a narrow
Mesozoic rift basin on the passive margin of offshore eastern Canada. This work
incorporates insights gained from a scaled experimental modeling study that simulates
multiphase deformation on a basin with a synrift ductile unit, to show that the structural
deformation observed within this basin cannot completely be attributed to salt-related
buoyancy-driven processes. Seismic data show that the Orpheus and overlying Scotian
basins experienced at least four stages of development: Triassic-Early Jurassic rifting,
shortening during the rift/drift transition in the mid-Early Jurassic, regional uplift and
erosion during the earliest Cretaceous, and a fourth event that had, at least locally on the
North Step, a compressional component during the Oligocene.

The presence of the synrift Argo salt profoundly affected the style of deformation
during both the formation of the basin, and the subsequent tectonic events. The synrift
salt decoupled the cover deformation from basement deformation. Forced folds and salt
ridges developed in the cover above the salt, whereas, faulting accommodated basement

extension below the salt. During subsequent tectonic events, deformation was mainly

il



accommodated above the basement faults by: 1) reactivating preexisting extensional
structures such as passive salt diapirs and salt ridges, and 2) further amplifying
preexisting forced folds that formed during the rifting phase. The presence of multiple
unconformities, disharmonic sets of synclines and salt-cored anticlines (which developed
from preexisting extensional forced folds), vertical salt welds, and detached thrusts
indicate that this basin underwent multiple episodes of shortening, uplift, and erosion

after rifting ended in the Early Jurassic.
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SECTION 1 - INTRODUCTION

Hydrocarbon exploration has revealed the presence of inverted basins and their
associated structures in a variety of tectonic settings. Basin inversion occurs when basin-
controlling extensional faults reverse their movement during subsequent compressional
tectonics (e.g., Williams et al., 1989). Although a number of factors control deformation
in such basins, the final structural style of inverted basins is strongly influenced by: 1) the
composition of the synextensional basin infill, 2) the basement fault-zone geometry at the
end of the extensional phase, and 3) the presence of preexisting structures within the
sedimentary cover above the basement fault zone (Brun and Nalpas, 1996; Withjack and
Callaway, 2000; Panien et al., 2005; Baum, 2006; Roca et al., 2006). The resulting styles
of deformation fall into two general categories related to the linkage between the
basement and cover.

In the first category, no ductile layer separates the basement from the sedimentary
cover. In this “hard-linked” scenario, basement faults propagate directly into the
sedimentary cover. In the second category, consider that a very ductile layer (e.g., salt)
separates the basement from the sedimentary cover. In this “soft-linked” scenario, the
ductile layer decouples basement deformation from cover deformation (e.g., Jackson et
al., 1994; Stewart et al., 1996a; Withjack and Callaway, 2000; Richardson et al., 2005;
Koyi and Sans, 2006). The second scenario is more complex because the thickness and
extent of the ductile layer can change through time. Also, in some cases, basement
involvement is commonly hidden by detached deformation (e.g., Stewart et al., 1996a;
Richardson et al., 2005). Many basins of latter category exist in the North Sea (e.g.,

Coward and Steward, 1995; Stewart et al., 1996b), offshore Brazil (e.g., Lowell, 1995),



offshore Portugal (Alves et al., 2003; Roca et al., 2006), and offshore eastern Canada
(section three of this study; Sinclair, 1995). Because the role of salt in the evolution of a
fault system changes through time, an understanding of the spatial and temporal
relationship between structures above and below the salt layer is necessary to interpret
these complex tectonic systems. Therefore, this thesis examines how: 1) basement-
involved structures influence detached structures associated with a highly ductile layer
during the initial rifting phase, and 2) how the presence of these detached structures
influence structural geometries during subsequent phases of deformation (i.e., inversion).

The thesis has two main areas of investigation. Section 2 presents the results of
an experimental modeling study. The study focuses on how deposition of a thick ductile
layer (i.e., putty) affects patterns of deformation in the cover above the ductile layer both
during rifting and subsequent basin inversion. In the models, putty structures that formed
during the extensional phase are preferentially reactivated during shortening because they
are mechanically weak (Hudec and Jackson, 2007). They accommodate much of the
initial shortening by producing folds and thrust faults in the overlying cover. Putty flow
during shortening, amplifies preexisting structures (e.g., putty columns and ridges) and
also forms new putty structures such as pillows (a precursor to a putty-cored anticline),
and detached normal and reverse faults.

Section 3 of this thesis provides additional information about the development of
the passive margin of eastern North America by documenting the tectonic evolution of
the Orpheus rift basin and the overlying northern Scotian basin of offshore eastern
Canada. Seismic analysis provides evidence of multiple phases of deformation from the

early Mesozoic to the early Cenozoic. Restorations indicate two general phases: a rifting



phase related to the formation of the Orpheus basin during the Middle Triassic to Early
Jurassic, and a “passive margin” phase related to the formation of the Scotian basin
beginning with the onset of seafloor spreading during the late Early Jurassic to early
Middle Jurassic. This research suggests that the postrift development of the Scotian basin
was not “passive” as thought by most previous workers (e.g., MacLean and Wade, 1992).
The fourth and final section of this thesis compares the insights gained from the
experimental modeling with seismic interpretation from the Scotian shelf. The modeling
results compare well with the structural geometries present within the Orpheus basin and
overlying Scotian basin. As in the models, deformation above the salt layer was
decoupled from deformation below the salt layer during both the extensional and the
shortening phases. During shortening, deformation was mainly accommodated above the
basement fault zone by reactivating preexisting extensional structures such as passive salt
diapirs and salt ridges. The presence of vertical welds, salt-cored anticlines and detached
thrusts indicate that this basin underwent at least one episode of shortening after rifting

ended.



SECTION 2 - Experimental Modeling of Salt Tectonics During Rifting and
Inversion
2.1. INTRODUCTION

The use of physical models to simulate basement-involved extension and
inversion (e.g., Cloos, 1968; McClay and White, 1995; Eisenstadt and Withjack, 1995;
Mart and Dauteuil, 2000; Panien et al., 2005), and salt tectonics (e.g., Vendeville and
Jackson, 1992a; Vendeville and Jackson, 1992b; Koyi et al., 1993; Jackson and
Vendeville, 1994; Vendeville and Nielsen, 1995; Schultz-Ela and Jackson, 1996) have
been the focus of many studies over the last 50 years. These studies provide insight into
how geologic structures develop through time.

Previous workers have examined the effects of multiple phases of deformation,
for example, extension followed by subsequent shortening, without a ductile layer (e.g.,
Buchanan and McClay, 1991; Mitra and Islam, 1994; Eisenstadt and Withjack, 1995;
Baum, 2006). Few studies (e.g., Gartrell et al., 2005; Del Ventisette et al., 20006),
however, investigate how the presence of a ductile layer (e.g., salt) within the synrift
sequence affects the style of deformation during extension and subsequent basin
inversion. Also, many workers in the field of salt tectonics have examined the role of
basement-involved extension on the initiation and growth of salt structures (e.g.,
Vendeville and Jackson, 1992a; Vendeville and Jackson, 1992b; Koyi et al., 1993;
Jackson and Vendeville, 1994) and the subsequent deformation patterns that develop
within the sedimentary cover (Withjack and Callaway, 2000). Again, few studies

(Vendeville and Nilsen, 1995; Del Ventisette et al., 2005; Roca et al., 2006; Dooley et al.,



2009), have addressed how preexisting salt structures created during basement-involved
extension influence deformation patterns during subsequent shortening.

Because the role of salt in the evolution of a fault system changes through time,
an understanding of the spatial and temporal relationship between structures above and
below a salt layer is necessary to interpret these complex structural styles. This work
provides additional insight into how the deposition of a salt within a basin affects
deformation during extension and subsequent basin inversion. Specifically, this section
explores the following questions using scaled experimental modeling:

(1) How does salt move during synrift deformation?

(2) How does the overlying sedimentary cover respond to this movement?

(3) How do the structures created during rifting influence deformation patterns

during inversion?

(4) How do the results of this study compare with those of previously published

studies?

2.2. EXPERIMENTAL PROCEDURES
Apparatus

The modeling apparatus has three fixed walls, a movable wall, and two
overlapping basal metal plates (one fixed, the other attached to the movable wall) (Fig.
2.1a). A basal discontinuity, created at the edge of the fixed plate, forms a preexisting
zone of weakness at the base of the model. For all models, a single layer of wet clay, 8-
cm thick, initially covers the two overlapping metal plates (Fig 2.1a, b). During the
experiments, an electric motor pulls the moving lower plate outward at a constant

velocity (3 cm hr™).



Modeling Medium

Although both dry sand and wet clay are suitable modeling materials to simulate
natural deformation, the choice of modeling material affects the style and distribution of
deformation in the models (Eisenstadt and Sims, 2005; Withjack et al., 2007). Most
modeling studies simulating salt tectonics use dry sand to represent the brittle cover
above salt (e.g., Vendeville and Jackson, 1992a; Jackson and Vendeville, 1994;
Vendeville et al., 1995; Withjack and Callaway, 2000; Del Ventisette et al., 2005, 2006;
Roca et al., 2006). I use wet clay rather than dry sand as the modeling material to better
study the development of faults and folds because: (1) it is difficult to study the
development and linkage of faults in sand models because faults propagate very quickly,
(2) major faults accommodate the majority of the deformation in sand models, whereas
wet clay distributes deformation on major and many minor faults, and (3) the low
cohesion of sand inhibits significant folding (e.g., relay ramps, fault-displacement
folding, and fault-propagation folding), as faulting accommodates the majority of strain
(Eisenstadt and Withjack, 1995; Eisenstadt and Sims, 2005; Withjack and Schlische,
2006; Withjack et al., 2007). To achieve dynamic similarity when simulating the ductile
behavior of salt (viscosity ~10'° — 10%° Pa s), a viscous silicone polymer whose effective
viscosity is about 10° Pa s is used (see Appendix 1 for a discussion on scaling and
Appendix 2 for properties of the silicone polymer).

Model Design

The experiments have three phases of deformation (Fig. 2.2a). During the initial

extensional phase, the mobile plate moves outward in a direction oriented 90° from the

edge of the overlapping plates at a rate of 3 cm hr”' for 5 cm, forming an asymmetric



basin in the clay layer above the displacement discontinuity. During the second phase of
deformation, the mobile plate again moves outward in a direction oriented 90° from the
edge of the overlapping plates at a rate of 3 cm hr”' for an additional 5 cm (Fig. 2.2b).
The third phase of deformation simulates rift-basin inversion. During this phase, the
mobile plate moves inward in a direction oriented 90° from the edge of the overlapping
plate at a rate of 10 cm hr’' for a total displacement of 10 cm (Fig. 2.2¢). The increased
rate of displacement during shortening is related more towards convenience rather than to
simulate a natural displacement rates. The rate of displacement during shortening is still
within the same order of magnitude as the displacement rate during extension, and will
not have any adverse effects on the development of structures. All phases of deformation
are identical in all models with respect to the displacement rate, magnitude, and direction.
Model I — Inversion Following Orthogonal Extension (standard; no salt analog)-

Fig. 2.2b (left)

In the Model 1, wet clay fills the basin created during the first phase (Figs. 2.2a,

2.3a), simulating synrift deposition of brittle sedimentary rocks. The clay is then covered
with an additional 1 cm of wet clay simulating sediment aggradation during a period of
tectonic quiescence before a renewed pulse of extension (Fig. 2.4a).

Models 24-B — Inversion Following Orthogonal Extension (with salt analog)- Fig.

2.2b,c (right)

In Models 2A and 2B, silicone polymer fills the basin created during the first
phase, simulating deposition of synrift salt (Figs. 2.2b-c, 2.3b-c). In both models an
additional 1 cm of wet clay covers the entire model surface, simulating aggradation

during a period of tectonic quiescence before a renewed pulse of extension (Fig. 2.4b- c).



In Model 2A, the aggradation layer is added in two increments. Because putty diapirs
formed after the first increment, deposition of the second increment was not uniform (i.e.,
a thinner cover over the rising diapirs). In Model 2B, the 1-cm aggradation layer was
added uniformly, suppressing the early formation of diapirs.
2.3. MAP-VIEW DEFORMATION RESULTS
Phase 1 — All Models

All models have the same first phase of extension. During this phase, a major
fault zone, parallel to the displacement discontinuity, bounds the basin on the fixed-plate
side, whereas a wider series of normal faults bounds the basin on the moving-plate side
(Fig. 2.3a-c). These secondary faults also strike parallel to the displacement
discontinuity, and dip both toward and away from the main fault zone. The displacement
on the main border-fault zone (BFZ) increases throughout the first phase of deformation,
and the fault remains anchored to the edge of the fixed plate. The secondary zone of
normal faults (SFZ) in the hanging-wall of the main BFZ, however, moves with the
mobile plate. As such, deformation within this zone becomes older farther from the edge
of the fixed plate. At the end of phase 1, the central basin between the main BFZ and the
secondary fault zone is relatively flat and unfaulted (Fig. 2.3a-c).
Model 1 (no salt analog) - Phase 2 & 3

Phase 2 — Deposition/Extension

During phase 2, the mobile plate continues to move outward, in a direction
orthogonal to the edge of the fixed plate. In the early stages, both the main BFZ and the
SFZ propagate upward, producing fault-propagation folds in the overburden (Fig. 2.5a).

With increasing displacement, both fault zones cut the clay surface (Figs. 2.5¢c-¢). A



wide asymmetric basin forms between the two zones. The strike of the BFZ parallels the
edge of the fixed plate, as does the secondary fault zone (Fig. 2.5a-¢). At the end of
phase 2, the overall width of the deformed zone increases on both the main BFZ and the
secondary fault zone (Fig. 2.6). Because the secondary zone of normal faults moves with
the mobile plate, deformation within this zone becomes older farther from the edge of the
fixed plate.
Phase 3 — Inversion

During phase 3, the mobile plate moves inward, in a direction orthogonal to the
edge of the fixed plate (Fig. 2.7a-b). Many of the pre-existing normal faults are
reactivated with reverse displacement. After 5 cm of displacement, many faults still have
normal separation (Fig. 2.7c). As shortening progresses, the central basin rises, and new
reverse faults and folds develop (Fig. 2.7d-e). At the end of phase 3, topographic highs
and lows accentuate the central basin. Some of the normal faults created during the
second phase of extension are completely inverted, whereas others maintain normal
separation (Fig. 2.8). The strike of both the reactivated normal faults and the newly
formed thrust faults trend parallel to the edge of the fixed plate. The overall pattern of
deformation in this experiment resembles that in experiments by Eisenstadt and Withjack
(1995) and Eisenstadt and Sims (2005).
Inversion with salt analog - Phases 2 & 3

For ease of description, faults that formed during the first phase are defined as
subputty faults. Both the main BFZ and the SFZ are subputty fault zones. Faults that
form within the cover above the putty, defined as supraputty faults, may or may not link

with the subputty faults.
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Model 2A — Non-uniform Sedimentation
Phase 2 — Deposition/Extension

During phase 2, the mobile plate continues to move outward, in a direction
orthogonal to the edge of the fixed plate (Fig. 2.9a-¢). In the very early stages of the
second phase, putty diapirs actively pierce the thin clay cover, and wide fault-propagation
folds form above both pre-existing fault zones (Fig. 2.9a). Putty begins to extrude onto
the clay surface from the putty diapirs, denoting the change from active to passive
diapirism (in the sense of Vendeville and Jackson, 1992a,b) (Fig. 2.9b).

With increasing displacement, the major subputty faults continue to develop.
Two zones accommodate extension in the cover above the putty: 1) a fault zone linked to
the main BFZ, and 2) a detached fault zone above the SFZ, but decoupled from the SFZ
(Figs. 2.10, 2.11c). New putty extrusions develop around zones of detached normal
faulting in the cover, marking the onset of reactive diapirism (Fig. 2.11¢,d; in the sense of
Vendeville and Jackson, 1992a,b). Large detached normal faults above the SFZ
accommodate the majority of extension in the cover. Some detached normal faults,
although covered by allochthonous putty sheets, continue to accumulate displacement
and propagate laterally. In some cases, these detached faults nucleate at the edges of the
putty conduits and propagate outward (Fig. 2.10). Broad, shallow depressions form in
areas subject to putty withdrawal.

Phase 3 - Inversion
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During phase 3, the mobile plate moves inward, in a direction orthogonal to the
edge of the fixed plate (Fig. 2.11a-e). In the early stages of phase 3, existing diapirs,
rejuvenated by shortening, continue to extrude putty onto the clay surface. With
increasing displacement, the shallow depressions formed during phase 2 evolve into
asymmetric synclines in areas of increased putty withdrawal (Figs. 2.11b-c, 2.12a).
Reactivation of the main BFZ with reverse movement, coupled with reactive putty
diapirism, accentuates topographic highs and lows in the cover. Some openings where
putty is exposed along faults in the cover begin to close (Fig. 2.12b), reducing the
available conduits that link the source layer to the surface (Fig. 2.11c-d). As shortening
continues, small-scale asymmetric synclines and anticlines that formed during phase 2
increase in size both laterally and vertically. Increased shortening amplifies preexisting
folds both near and far from the putty extrusions, and at the end of phase 3, cover
topography develops into deep depressions and localized highs (Fig. 2.12, 2.13). Also at
the end of phase 3, some faults in the cover show reverse separation, whereas other faults
show normal separation. The main BFZ, although reactivated with reverse movement,
still maintains normal separation at the end of the third phase (Fig. 2.13).

Model 2B — Uniform Sedimentation
Phase 2 — Deposition/Extension

During phase 2, the mobile plate continues to move outward, in a direction
orthogonal to the edge of the fixed plate (Fig. 2.14a-e). In the early stages of phase 2,
large fault-propagation folds form within the cover above both the BFZ and SFZ (Fig.
2.14a-b). In the early stages of the phase 2, two zones accommodate extension in the

cover: 1) a fault zone above and linked to the main BFZ and 2) a zone of detached normal
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faults near the SFZ (Fig. 2.14c-d). Putty extrusions develop around zones of detached
normal faulting above the central basin in the cover, marking the initiation of reactive
diapirism. With increasing displacement of the moving plate, extension is
accommodated in the cover on several large faults above the SFZ, and by the further
opening of existing putty conduits within the central basin. By the end of phase 2, cover
deformation is localized in three zones: 1) above the main BFZ, 2) within the central
basin in open putty conduits, and 3) above the SFZ below the putty layer (Fig. 2.15). As
in the previous model, the strike of the cover faults is generally parallel to the edge of the
fixed plate.

Phase 3 — Inversion

During phase 3, the mobile plate moves inward, in a direction orthogonal to the

edge of the fixed plate (Fig. 2.16a-e). Putty extrusions rejuvenate during the early stages
of shortening (Fig. 2.16b-e). As displacement of the moving plate increases, the shallow
depressions formed during phase 2, begin to evolve into asymmetric synclines where
putty is evacuating and anticlines where putty fills the cores of growing folds (Fig 2.16b-
c¢). Small-scale asymmetric folds above regions of putty flow increase in size both
laterally and vertically. Increased shortening amplifies preexisting folds and creates new
folds both near and far from the putty extrusions (Figs. 2.16c-e, 2.17a). Normal faults,
which form above amplified putty-cored folds, are likely associated with bending of the
supraputty cover (Fig. 2.17a-c). The width of some putty conduits decreases, whereas the
width of others remains unchanged. The continued closure of some putty conduits,
especially those along faults, isolates the allochthonous putty from the source layer. At

the end of phase 3, cover topography develops into deep depressions and localized highs
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that are well above regional level (Fig. 2.18). Some detached faults above the SFZ now
have reverse separation, whereas other faults, such as those above putty-cored anticlines,
still maintain normal separation. The main BFZ, although reactivated with reverse
movement, still maintains normal separation. Also, the once linked zone of putty diapirs
becomes a detached thrust zone that is decoupled from the basement (Fig. 2.18b).
2.4. DISCUSSION
Summary of Map-View Deformation
Extension - Figure 2.19 top

The presence of synrift putty (simulating salt) significantly influences rift-basin
development by decoupling deep and shallow deformation during extension. Without
synrift putty (i.e., model 1), most deep-seated normal faults propagate upward to the
surface. These normal faults strike parallel to the rift-basin axis and accommodate most
of the extension (Fig. 2.19a). With synrift putty (i.e., models 2A & 2B), deformation
patterns vary substantially with depth (Fig. 2.20a). Fault-propagation folds develop
above some deep-seated faults (i.e. the main BFZ in all models). Subputty faults
eventually propagate up to the surface where putty is thin or not present. The subputty
faults that form the SFZ, however, do not propagate upward to the surface. Instead, they
terminate within the overlying putty layer. Above the putty, detached normal faults (e.g.,
model 2A; Fig. 2.19b) and widening putty diapirs (e.g., model 2B; Fig. 2.19¢)
accommodate the majority of extension at shallow levels. Coeval, deep-seated and
detached normal faults, although decoupled by the layer of silicone polymer, have

identical strikes that reflect the extension direction.
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The processes leading to diapir formation affect deformation patterns throughout
the remainder of phase 2 and phase 3. Commonly, diapirs develop where the putty layer
is thickest (i.e., in the deepest part of the rift basin) and can form allochthonous sheets if
depositional rates are low (Fig. 2.20). If putty structures appear early (e.g., model 2A;
Fig. 2.9a), and form because of uneven sedimentation above the putty layer, detached
faults above the SFZ are more likely to accommodate most of the extension in the cover.
These early diapirs tend to keep their cylindrical shape throughout the remainder of the
experiment, unless they link with either a putty ridge or a laterally propagating normal
fault. If putty structures form late (e.g., model 2B and center of model 2A; Figs. 2.9d,
2.14a-c), they are likely reactive structures (in the sense of Vendeville and Jackson,
1992a,b), and their locations depend on: 1) the thickness of the putty layer, and 2) the
amount of extensional thinning of the cover above the putty layer. Initially, the reactive
diapirs emerge at the surface in the hanging walls of detached faults. As these diapirs
link, their width increases causing the putty extrusions (or salt walls) to grow larger.
When the salt wall becomes passive (i.e., breaks the surface and begins to flow outward)
the segments of the clay cover between the extrusions extend almost entirely by widening
the conduit itself. Because the putty conduits accommodate much of the extension,
fewer faults form in the supraputty cover.

Inversion — Figure 2.19 bottom

The deformation patterns of inverted basins are strongly influenced by: 1) the
composition of the basin infill (i.e. with or without a ductile layer), and 2) the presence
and geometry of preexisting putty structures that formed during the extensional phase.

Because these structures are weaker than other parts of a basin, the cover above and
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around these structures tends to deform much more than adjacent areas. Without synrift
putty (i.e., Model 1), deep-seated normal faults undergo reverse displacement (Fig.
2.19a). The basin center rises and new reverse faults and folds develop. With synrift putty
(i.e. models 2A & 2B), subputty faults, visible through open putty conduits, and detached
normal faults undergo reverse displacement. Detached folds and reverse faults form in
the central basins in both putty models (Fig. 2.20b).

In both models, putty flow amplifies preexisting structures, forms new structures
such as putty-cored anticlines and welds where putty conduits close completely (Fig.
2.20b). Anticlines can form above previously undeformed putty (i.e., center of model 2A
(Fig. 2.10); right side of Model 2B (Fig. 2.18)), but are more common above preexisting
putty structures. In cases where diapir feeder conduits are more cylindrical (i.e., model
2A (Figs. 2.8, 2.10); middle of model 2B (Figs. 2.14, 2.18)), amplification of putty-cored
anticlines is accompanied by additional slip on preexisting normal faults at the crests of
the diapirs. Structures with this geometry also tend to remain open, and continue to feed
allochthonous putty sheets until the source layer is exhausted and/or blocked by subputty
deformation. In cases where diapirs are located in the hanging walls of detached normal
faults, or are linked (i.e., model 2B; center of model 2A), fold amplification happens only
after the closure of conduits that feed the allochthonous sheets. During closure of the
putty walls, the intruding viscous material can be squeezed upward and extruded onto the
surface. If open diapirs close completely, but are still subjected to shortening, a detached
thrust zone can form between the previously open walls of the putty diapir. Again, most

of the basement shortening is accommodated in the cover by reactivating preexisting
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putty structures and forming detached thrusts in areas where putty is thin or absent (Fig.
2.20b).
Comparisons to Previous Work

Previously published studies (e.g., Vendeville and Nilsen, 1995; Del Ventisette et
al., 2005; Roca et al., 2006; Dooley et al., 2009) have involved a series of multi-layer
sand and silicone polymer models to understand the effects of shortening on preexisting
salt structures. The results of these models compare well with my results. The boundary
conditions (e.g., multi-phase extension and shortening) in models by Del Ventisette et al.
(2005) and Roca et al. (2006), however, are more similar with those of this study. Del
Ventisette et al. (2005, 2006) used similar initial boundary conditions as those in this
study, but varied the shortening direction from purely dip-slip movement (perpendicular
to the displacement discontinuity) to purely strike-slip movement (parallel to the
displacement discontinuity). They subjected their models to the same episodes of
deformation: an initial phase of extension that formed a basin, deposition of a salt analog
within the basin, and a second phase of extension preceding a final phase of shortening.
A major difference between their models and this study is the addition of deposition both
during the second extensional phase and the inversion phase, which likely affected
deformational styles and geometries. The multi-layer dry sand models of Roca et al.
(2006), however, compare very well with this study. Their models had only two layers, a
lower layer of silicone polymer and an upper layer of dry sand, and did not incorporate
syntectonic sedimentation.

During the modeling in both studies (i.e., Del Ventisette et al., 2005, 2006; Roca

et al., 2006), most of the deformation during inversion was accommodated along
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preexisting putty structures that had formed during the first phase of extension. During
different tectonic phases, the putty migrated from areas with higher loading to areas
where the overburden was thinned. Similar to the putty models in this study, areas
subject to putty withdrawal and accumulation during the extensional phase were further
accentuated during the shortening phase, forming deep withdrawal basins that became
primary welds, or localized highs created as putty migrated into the cores of growing
anticlines.

Again, direct comparison of the results of these published models with these
models are difficult because of the significant differences in modeling parameters,
procedures, and more importantly, the focus on cross-section analysis versus map-view
analysis. Nevertheless, the published deformation patterns are similar to deformation
patterns in my models when the boundary conditions are similar. To summarize, all of
these previous works highlight how the presence of salt within a basin greatly affects
deformation patterns in the cover above the salt layer during regional tectonic events.
2.5. CONCLUSIONS

* Scaled experimental models show that the presence of synrift salt strongly affects
deformation patterns during rifting and subsequent basin inversion. During
rifting, two fault zones develop: 1) the main border-fault zone, and 2) secondary
hanging-wall faults. In models without putty, all faults are basement-involved. In
models with putty, cover deformation is decoupled from basement deformation in
areas with putty, but is linked to basement deformation in areas without putty.

Putty diapirs form during extension, and putty withdrawal produces broad,

shallow depressions.
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The formation of diapirs is related to the uniformity of cover deposition and
amount of extension. When aggradation is slow and not uniform, diapir formation
is buoyancy driven. In these cases, diapirs appear early and remain at the surface.
These structures form as the thin overburden above the rising diapirs is lifted and
shouldered aside as the diapir forcibly breaks through by active diapirism. When
aggradation is rapid and uniform, diapir formation is driven by regional extension.
In these cases, diapirs form late, and are likely reactive diapirs. During this
process, the ductile layer rises by filling in the space created by the extending
cover and/or separation of fault blocks by reactive diapirism. In either case, the
active and reactive diapirs quickly become passive diapirs when they reach the
surface and extrude putty sheets. When diapirs form early, detached faults are
more likely to accommodate most of the basement extension. When diapirs form
late, cover extension is accommodated, first by linking the emerged diapirs, and
then by widening the conduit that separates the two cover segments.

The overall expression of shortening at the surface depends on the locations and
geometries of preexisting putty structures because these structures are weaker
than other parts of a basin. As such, the cover above and around these structures
tends to deform much more than adjacent areas of thicker overburden. During
inversion, shortening amplifies putty-cored anticlines and synclines into localized
highs and deep asymmetric depressions, respectively. Some detached normal
faults in the cover reactivate as reverse faults, whereas other faults (e.g., those

near putty conduits) continue to have normal slip during shortening. Some putty
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conduits rejuvenated by shortening continue to extrude putty, whereas other putty

conduits close forming vertical welds or thrusts.

SECTION 3 — The Orpheus Rift Basin and Overlying Post-rift Scotian Basin,
Offshore Maritime Canada
3.1. INTRODUCTION

Withjack et al. (1998) have shown that the tectonic evolution of the passive
margin of eastern North America (Fig. 3.1) consists of a series of events involving rifting,
igneous activity, and post-rift deformation. In this thesis, I provide additional
information about the development of the passive margin of eastern North America by
documenting the tectonic evolution of the Orpheus rift basin and the overlying northern
Scotian basin of offshore Maritime Canada. A consensus regarding the tectonic
evolution of these basins is lacking among previous workers. For example, some
workers (e.g., Wade and MacLean, 1990; MacLean and Wade, 1992; MacLean and
Wade, 1993) suggest that postrift salt tectonics controlled patterns of deformation.
Alternatively, other workers (e.g., Pe-Piper and Piper, 2004; Weir-Murphy et al., 2004)
suggest that postrift deformation in the Orpheus and Scotian basins resulted from periodic
strike-slip reactivation of the main basin-bounding fault system. This ongoing debate

continues because: (1) very few seismic reflection surveys existed over the study area
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until recently, and (2) the presence of thick salt and igneous intrusions (as documented by
this study) obscures the deeper deformation within the basin.

This work presents a tectonostratigraphic analysis of the Orpheus basin and
overlying Scotian basin, using newly acquired 2-D seismic surveys. Specifically, this
study focuses on the northern margin of the Orpheus and Scotian basin where the data
quality is best, and addresses the following questions:

(1) Do structural geometries on the northern margin of the Orpheus and Scotian
basins indicate that more than one episode of postrift deformation occurred? If
so, when did they occur?

(2) How does the presence of salt affect deformation patterns during and after
rifting?

(3) How do the results of this study compare with previously published studies?

(4) Does the Orpheus rift basin share a similar tectonic history with the
neighboring Fundy basin? If so, does the Mesozoic-Cenozoic evolution of the
Orpheus and Scotian basins help constrain the timing of deformation in the
neighboring Fundy basin?

3.2. BACKGROUND
Regional Geologic Setting

The Fundy rift basin of New Brunswick and Nova Scotia, Canada, and the
Orpheus rift basin of Nova Scotia and Newfoundland, Canada, formed during the
breakup of Pangea beginning in Middle to Late Triassic time and continuing into Early
Jurassic time (Figs. 3.1-3) (e.g., Tankard and Welsink, 1989; MacLean and Wade, 1992;

Withjack et al., 1995). A well-defined, E- to ENE- trending zone, known as the
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Cobequid-Chedabucto fault system, marks the northern faulted margins of both the
Fundy and Orpheus basins (Figs. 3.2, 3.3; Tankard and Welsink, 1989; Wade and
MacLean, 1990). The zone likely is a Paleozoic compressional structure that was
reactivated during rifting (Olsen and Schlische, 1990; Withjack et al., 1995; Wade et al.,
1996). During Mesozoic rifting, the Fundy basin filled with several kilometers of
nonmarine sedimentary rocks and basalt flows (e.g., Olsen et al., 1989; Olsen and
Schlische, 1990), whereas synrift deposits in the offshore Orpheus basin consist of thick
evaporites interfingered with both clastic marine and non-marine sedimentary rocks (e.g.,
Wade and MacLean, 1990; MacLean and Wade, 1992; Pe-Piper et al., 1992). After
rifting, thermal subsidence produced a widespread depression known as the Scotian
basin, which is comprised of thick wedges of Middle Jurassic to Cenozoic clastic and
carbonate sedimentary rocks.

Field and seismic data show that the Fundy basin underwent two separate
episodes of deformation during the Mesozoic (e.g., Withjack et al., 1995; Baum, 2003;
Baum et al., 2008; Withjack et al., 2009). During the Late Triassic to Early Jurassic the
basin underwent NW-SE extension. During a subsequent phase of deformation after
rifting, shortening affected all faulted margins of the Fundy basin (Fig. 3.2b-d). Because
only Quaternary strata overlie the synrift beds in the Fundy basin, the timing of this
shortening event is poorly constrained. Withjack et al. (1995) suggested that, because the
E-striking Cobequid-Chedabucto fault system (CCFS) is the northern boundary of both
the onshore Fundy basin and offshore Orpheus basin, it is likely that both basins have
similar tectonic histories. Thus, understanding the timing of deformation in the Orpheus

basin provides information about the timing of deformation in the Fundy rift basin.
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Orpheus basin and Scotian basin

The Orpheus basin is an E-trending, narrow synrift basin underlying a wide
postrift depression known as the Scotian basin (Figs. 3.3-5). As mentioned previously,
the Cobequid-Chedabucto fault system (CCFS) forms the northern boundary of the basin
(Tankard and Welsink, 1989; Wade and MacLean, 1990; MacLean and Wade, 1992).
Regionally, the top of basement consists of a series of tilted fault blocks bounded by
numerous E-striking faults that comprise the CCFS (Figs. 3.3, 3.4). The North Step,
defined by MacLean and Wade (1992), is the main focus of this study and is located in
the central segment of the Orpheus basin (Fig. 3.3, 3.4). The multiple E-striking, S-
stepping, basement-involved faults that comprise the North Step are also part of the
Cobequid-Chedabucto fault system (CCFS).
3.3. DATA AND INTERPRETATIONS

The database for this study includes over 12,500 km of public and proprietary 2D
seismic-reflection profiles from offshore Nova Scotia, southern Newfoundland, and the
French territory of St. Pierre and Miquelon (Fig. 3.4; see Appendix 3 and 4 for a table of
seismic lines and detailed processing parameters). TGS/Nopec Geophysical Company,
L.P. and ConocoPhillips acquired these datasets from 1998 to 2002 using airgun sources.
The record sampling interval was 2 ms, and the processing sampling interval was 4 ms.
Processing parameters included standard and predictive deconvolution, normal move-out
stacking, migration and residual velocity analysis, and Kirchhoff pre-stack time
migration. Also, the Geological Survey of Canada provided a recently reprocessed
dataset, known as the Laurentian Basin Survey. Western Geophysical, Inc. shot the

survey for the Geological Survey of Canada in 1984 and 1985. This dataset consists of
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29 lines, representing 3,100 km of 2D multi-channel seismic data. Of the 11 exploratory
wells drilled in both the Orpheus basin and overlying Scotian basin, five tie directly to the
seismic datasets within the study area (Fig. 3.4) and will be discussed in detail later in

this section.

Observations/Description of Data

Based on preliminary regional mapping of the entire dataset, four
tectonostratigraphic packages (A-D), bounded by major angular unconformities, are
identified within the study area (Figs. 3.4-7). The deepest visible package overlying
basement and prerift strata, Package A, is further subdivided into three units (A;-As).
The shallowest and youngest unit, As, consists of moderate- to high-amplitude, parallel,
continuous reflections that are tightly folded. Below unit As, unit A, overlies major
basement faults. Although unit A, lacks coherent internal reflections, the top of A, is
conformable with the folded strata above it (i.e., A3), whereas the base of A, is relatively
flat lying and offset by major basement faults in some instances (Fig. 3.6, 3.7). These
basement-involved faults cut the deeper reflections below unit A; (i.e., A;), but not the
folded reflections in unit A3. The decoupling of the shallow and deep deformation
suggests that A, is a ductile unit. On the northern portion of seismic line 1124A-105,
shallow reflections, unit A3, converge near major basement faults (Fig. 3.6). A major
angular unconformity bounds the top of Package A both on and south of the North Step.

Package B overlies the unconformity south of the North Step in the deeper parts

of the Orpheus basin (Fig. 3.6). It consists of moderate-amplitude, subparallel reflections
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that dip toward the south. Package B represents a very thick (>1.5 seconds TWTT)
succession of basin infill that thins significantly toward the North Step where it is
truncated by a moderate-amplitude angular unconformity.

The seismic character of Package C varies depending on proximity to the North
Step. South of the North Step, Package C overlies Package B and consists of moderate-
amplitude, continuous, parallel reflections that dip to the south (Fig. 3.6). On the North
Step, above the Cobequid-Chedabucto fault system, Package C overlies Package A, and
consists of high-amplitude, widely spaced reflectors that dip in several directions (Figs.
3.6, 3.7). The top of Package C is truncated by a high-amplitude angular unconformity.

Package D unconformably overlies Package C throughout the study area.
Package D is further subdivided into a lower unit (D;) and an upper unit (D).
Reflections in unit D, are generally moderate amplitude, closely spaced, continuous,
subparallel, and gently folded. Unit D, is similar in character and geometry to D, but is
truncated at the top by a prominent, flat-lying angular unconformity.

Interestingly, the geometries of the folded beds in Packages A, C, and D are
disharmonic, most noticeable in the center part of the North Step (Fig. 3.6). Seismic
reflections in unit As of Package A are convex-upward, whereas the bounding
unconformity at the top of unit Az, and Packages C and D are convex-downward. This
suggests that the deformation observed on seismic lines over the North Step is not related
to a single episode, further indicating that additional tectonic events occurred after the
deposition of Package A.

Igneous Intrusions
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The seismic expression of igneous intrusions is characterized by very high-
amplitude reflections that are typically subparallel to bedding (Hansen et al., 2004).
Locally, intrusions can cut across bedding, and climb to a higher stratigraphic level.
Generally, sills are saucer-shaped, but in many cases bifurcate or splay (Hansen et al.,
2004). On the North Step, Package A contains very high amplitude reflections that are
generally parallel to subparallel with the reflections above and below it (Figs. 3.6-8a).
An angular unconformity at the base of Package C (top of Package A) truncates these
reflections both on and south of the North Step. Although this high amplitude reflection
is parallel with other reflections in Package A on seismic line 1124A-105 (Fig. 3.6), it is
clear on the tie line, 98G10-52 (Fig. 3.7), that these reflections change stratigraphic
levels. This suggests that these high amplitude reflections are likely igneous intrusions
emplaced after deposition of strata in Package A, but before deposition of Package C.

South of the North Step, Package C also contains very high-amplitude reflections
that both parallel and cut across reflections above and below it (Fig. 3.8b). Interestingly,
the angular unconformity above Package C is folded above this high amplitude event, and
reflections in Package D, unit D, thin over this topographic high. Although this
reflection is present in Package C, the converging reflections in unit D over this high
suggest that a second igneous event occurred during the early deposition of Package D.
3.4. SEISMIC STRATIGRAPHY

Five industry wells that surround the study area are used to: 1) tie the interpreted
seismic packages with regional lithostratigraphic units, and 2) provide information about
the absolute ages of seismic horizons (Figs. 3.5, 3.8, 3.9). The absolute ages for seismic

horizons are based on biostratigraphic data from well cuttings (see Appendix 5 for
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detailed lists of picks for each well). Well information, recorded in depth, is displayed
onto the time-migrated seismic section (Fig. 3.5), using time-to-depth tables calculated
from velocity surveys provided by the Nova Scotia Offshore Petroleum Board
(http://ww1.cnsopbdme.ca/) for each well (Appendix 6).

Although two exploratory wells used in this study (i.e., Hesper P-52/Sachem D-
76) penetrate below Bathonian/Callovian aged strata, the structural complexity
surrounding the immediate study area prevents correlation of seismic horizons to well
markers older than late Bathonian (Fig. 3.5). In these instances, relative ages and
lithologies are based on 1) regional stratigraphic information from other wells, and 2) the
known expression of these units on seismic datasets surrounding the study area (e.g.,
Wade and MacLean, 1990; MacLean and Wade, 1993).

Package A — Middle Triassic (Anisian) to Early Jurassic (Sinemurian)

Without well control the absolute ages of Package A are unknown. However, the
seismic characteristics of Package A indicate that it is equivalent to synrift material in the
western Orpheus basin. Based on well data from the westernmost Orpheus basin, the
synrift section consists of the clastic sedimentary rocks of the Eurydice Formation (unit
A; & As3), and underlies and interfingers with the Argo Formation (unit A,) on the basin
margins (Jansa and Wade, 1975). The Argo Formation consists primarily of thick
evaporites, predominantly of coarsely crystalline halite interbedded with dolomitic shale
and some anhydrite (Wade and MacLean, 1990; MacLean and Wade, 1992; Tanner and
Brown, 2003). Within the Orpheus basin, the Argo Formation ranges from Carnian-
Sinemurian, and represents multiple coeval terrestrial-to-marine transitions on the basin

margins (Wade and MacLean, 1990), and is likely the unit that decouples unit Az from
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the faulted unit A; below (Fig. 3.10, 3.11). The Early Jurassic Breakup Unconformity,
which formed due to thermal uplift at the onset of seafloor spreading, and/or shortening
during basin inversion, bounds the top of Package A (Fig. 3.10, 3.11).

Widespread igneous activity, know as the Central Atlantic Magmatic Province,
occurred during the latest Triassic/earliest Jurassic and is part of the synrift succession in
many Mesozoic rift basins in eastern North America. Although not present in wells in
the immediate study area, the presence of flows and intrusive sills and dikes exist both in
industry wells west of the study area (e.g., Jansa and Pe-Piper, 1988) and onshore in the
Fundy rift basin (e.g., Olsen et al., 1996; Olsen, 1999; Schlische et al, 2003). Because
intrusions within Package A are truncated by the Breakup Unconformity, they were
present before breakup occurred, which suggests they are older than late Early Jurassic
(Fig 3.9-12).

Again, Package A appears to be part of the synrift sequences because it shares
characteristics with the synrift sequences in wells west of the study area such as a ductile
unit and igneous intrusions (e.g., sills and dikes). It is important to note that Package A
does not resemble the typical geometry of a synrift sequence where reflections diverge
and thicken towards major faults. Instead it resembles the synrift putty models in Section
2 where thickness variations are controlled by the locations of major salt structures as
opposed to major basement faults.

Packages B and C — late-Early (Sinemurian/Pliensbachian) to latest Jurassic

Above both the synrift sedimentary sequences in the Orpheus basin and the

Breakup Unconformity (BU), Packages B through D represent the succession of

sedimentary rocks that were deposited both during and after the onset of sea-floor
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spreading in the postrift Scotian basin (Figs. 3.5, 3.9, 3.10). Regional stratigraphic
information suggests that Package B comprises late Early (Sinemurian/Pliensbachian) to
early Middle Jurassic strata that overly the BU (Wade and MacLean, 1990). It is
restricted to the deeper parts of the Scotian basin, and is bounded at the top by a Middle
Jurassic unconformity (JmU). The Mic Mac Formation, a very thick (>2.5 seconds
TWTT), predominantly clastic post-rift sequence, comprises Package C, the remaining
Jurassic strata in the Orpheus basin (Wade and MacLean, 1990; MacLean and Wade,
1992). The Mic Mac Formation exists predominantly in the three western wells (i.e.,
Hesper P-52/ Sachem D-76/ Dauntless D-35) within the study area. It lies between the
JmU and the prominent angular base Cretaceous Avalon Unconformity (AU).
Package D — Cretaceous to Cenozoic

As previously mentioned, Package D is subdivided into two units, a lower unit D,
and an upper unit D,. The lower boundary of Package D is the base Cretaceous Avalon
Unconformity. The top of the lower unit D; is a prominent high-amplitude seismic
horizon. Well correlation indicates that this high-amplitude event is the boundary
between Cretaceous strata below and Cenozoic strata above (Figs. 3.5, 3.9-11). The
Cretaceous strata in unit D are characterized by the seaward-thickening sequences of the
Missisauga, Logan Canyon, Dawson Canyon and Wyandot formations (Wade and
MacLean, 1990). In some areas, the AU is slightly folded above intrusive sills in Package
C (Figs. 3.8b, 3.13). The presence of growth beds over this localized high suggests that
igneous activity occurred shortly after the formation of the AU. Cenozoic strata, unit D,

consist of the Banquereau Formation and are bounded at the base by the
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Cretaceous/Tertiary unconformity and several prominent middle Cenozoic
unconformities (Figs. 3.5, 3.10, 3.11; MacLean and Wade, 1992).
3.5. TECTONIC DEVELOPMENT OF THE ORPHEUS BASIN

Seismic data from the central part of the Orpheus basin and the overlying Scotian
basin provide evidence of multiple phases of deformation from the early Mesozoic to the
early Cenozoic. The development of this area has two general phases: a rifting phase
related to the formation of the Orpheus basin during the Middle Triassic to Early Jurassic,
and a “passive margin” phase related to the formation of the Scotian basin beginning with
the onset of seafloor spreading during the late Early Jurassic to early Middle Jurassic
(Fig. 3.5; Withjack et al., 1998). Figure 3.14 is a schematic restoration of the northern
margin of the study area from early Middle Triassic to present.

3.5.1. Rifting Phase
Middle Triassic to earliest Early Jurassic Evolution (Fig. 3.14a-d)

The first episode of deformation from the Middle Triassic to Early Jurassic was
extensional. Based on field data from the onshore Fundy basin, NW-SE extension (i.e.
Schlische and Ackermann, 1995; Withjack et al., 2009) associated with rifting,
reactivated E-striking Paleozoic compressional structures forming an oblique-slip fault
zone with normal and left-lateral components of displacement (Fig. 3.14a; Tankard and
Welsink, 1989; Olsen and Schlische, 1990; MacLean and Wade, 1992; Withjack et al.,
1995; Withjack et al., 2009). In the Orpheus basin, synrift sedimentation included the
deposition of both clastic sedimentary rocks and evaporites (Fig. 3.14b; Wade and
MacLean, 1990). The presence of thick evaporites decoupled shallow deformation from

deep deformation during rifting. Continued regional extension allowed salt to rise to the
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surface causing suprasalt strata to thin over the growing salt structures (Fig. 3.14c).
Restoration to Late Triassic time indicates that much of the basement-involved extension
occurred during the latter parts of the rifting phase (Fig. 3.14c).

During the later stages of rifting, widespread igneous activity affected the eastern
margin of North America (Fig. 3.14d). The Central Atlantic Magmatic Province
(CAMP) includes flood basalts, diabase dikes, and intrusive sheets that are dated to about
200 Ma (e.g., Olsen et al., 1996; Olsen, 1999; Schlische et al., 2003). In the Orpheus
basin, early Jurassic (~200 Ma) magmatic activity is expressed as the intrusion of sills
into Package A. As previously mentioned, the Early Jurassic Breakup Unconformity
(BU) truncates these intrusions, which is further evidence that these intrusions are related
to CAMP (Figs. 3.8a, 3.9-12). Also during this time, extensional forced folds (e.g.,
Withjack et al., 1990; Withjack and Callaway, 2000) developed over major basement
fault blocks in the synrift strata above the salt (Fig 3.14d), whereas below the salt,
faulting accommodated basement extension.

3.5.2. “Passive-Margin” Phase
Early Jurassic — Middle Jurassic Evolution (Fig 3.14e)

Additional episodes of deformation occurred after deposition of the youngest
synrift strata (Package A) in the Orpheus basin during the transition from rifting to sea-
floor spreading. During this time, synrift strata above the salt layer deformed into a
series of tight, asymmetric synclines and salt-cored anticlines that further amplified
preexisting extensional forced folds created during the rifting stage (Fig. 3.14d, e). Salt
evacuation, coupled with further warping of unit As, formed vertical welds and detached

thrust faults in areas above basement fault blocks where salt structures were present
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during rifting. At the same time, below the salt layer, the faults within the CCFS
reactivated with at least a component of reverse slip. As during rifting, the Argo
Formation (unit A,) effectively decoupled deeper subsalt deformation from shallower
suprasalt deformation. Below the salt, basement deformation was localized within the
fault zones, whereas above the salt layer, deformation (i.e., folding) was more widely
distributed in areas where thicker salt was present, and more localized in areas where salt
was thin or no longer present (i.e., detached faulting) (Fig. 3.14e).

The presence of buckle folds, subvertical welds, and thrust faults suggests that
this second episode of deformation was compressional (Vendeville and Nilsen, 1995;
Bonini, 2003; Roca et al., 2006). Furthermore, because the Breakup Unconformity is
relatively undeformed (Fig. 3.14e), whereas the synrift strata below it are intensely
deformed, this compressional event likely occurred during the final stages of the rift-drift
transition (3.14d; also see Withjack et al., 1998).

Also, the fact that Package B is absent above the CCFS, but present south of this
zone (Figs. 3.6, 3.10, 3.14e), suggests that the North Step remained uplifted and
subaerially exposed from the time of breakup in the mid/late Early Jurassic to the early
Middle Jurassic when the entire margin began to subside. In the deeper parts of the
Orpheus basin south of the North Step, however, salt-related subsidence continued
forming the early Scotian basin above the Breakup Unconformity (Fig. 3.5, 3.6, 3.10).

Middle Jurassic to Cretaceous Evolution (Fig. 3.14f-h)

By the late Middle Jurassic, seafloor spreading was well underway (Withjack and

Schlische, 2005). The preservation of the Middle Jurassic strata on the North Step is

likely related to salt withdrawal during periods of tectonic quiescence after Early Jurassic
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inversion. South of the North Step, deposition of thick sediment wedges above the
synrift infill prevented the further growth of salt structures; however, withdrawal-related
subsidence likely continued in both areas until all the salt was displaced beneath the
sediment pods, or subsequent phases of deformation again rejuvenated salt movement by
removing the thick overburden above the salt layer (Figs. 3.5, 3.6, 3.10; MacLean and
Wade, 1992; Vendeville and Nilsen, 1995).

A third episode of deformation occurred during the early Early Cretaceous when,
according to previous workers (e.g., Wade and MacLean, 1990; Sinclair, 1995), the
eastern margin of Canada in the Grand Banks region underwent a breakup episode.
Currently, it is unclear if this event caused the widespread uplift and erosion that formed
the base Cretaceous Avalon Unconformity (Fig. 3.14g). Also at this time, intrusive sills
and possibly flows represent Early Cretaceous igneous activity. These rocks are both
sampled in several wells (e.g., Jansa and Pe-Piper, 1985, 1988; Pe-Piper and Jansa, 1987)
and are present on seismic lines in the study area. Locally above the intrusions, both
Package C and the Avalon Unconformity are uplifted. Growth strata in Package D that thin
over this high are also further evidence that this igneous event occurred during Early
Cretaceous time (Figs. 3.8b, 3.13).

The Cretaceous in the Orpheus basin represents a second period of tectonic
quiescence dominated by localized salt tectonics and regional subsidence (Fig. 3.14h).
Pe-Piper et al. (2004) noted that another igneous event occurred during the late Early
Cretaceous. Although these rocks have been sampled in several wells, both within the
most western extent of the Orpheus basin and on the Grand Banks (Pe-Piper et al., 1994),
these rocks do not produce distinctive reflections like those associated with previous

magmatic activity.
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Early Cenozoic to Recent Evolution (Fig. 3.14i)

Like the Cretaceous, the early part of the Cenozoic was dominated by regional
subsidence (Package D,). Today, however, the Cretaceous and Cenozoic sequences are
deformed into synclines and salt-cored anticlines, and some basement faults show
increased normal separation on the North Step, representing a fourth regional tectonic
event affecting both the Orpheus basin and overlying Scotian basin (Figs. 3.5-7, 3.10-12,
Fig. 3.141). South of the North Step, rejuvenation of diapirism mainly in the western
parts of the basin caused salt to pierce both the later Cretaceous and younger strata. The
lack of growth beds within both the Cretaceous and early Cenozoic packages suggest that
deformation occurred after their deposition. Uplift during or shortly after the formation
of these structures is expressed by a very prominent horizontal seaward-dipping
unconformity dated by MacLean and Wade (1992) as Oligocene. The simplest
interpretation for these post-depositional structures is that they are at least partly related
to compression before or during the Oligocene. Studies by Pe-Piper and Piper (2004)
suggested that regional uplift during the Oligocene is related to yet another reactivation
of the CCFS; however, this event is poorly understood and needs further investigation.
3.6. DISCUSSION

The presence of salt in the Orpheus basin greatly affected the style of deformation
from the Late Triassic onward (see Fig. 3.14c-d). In the Orpheus basin, extensional
deformation was localized on normal faults within the basement and prerift strata below
the salt during Triassic rifting (Fig. 3.14b-d). Above the salt, extension was more
distributed and accommodated simultaneously by different processes. The depositional

loci, which formed by the uneven extension of the underlying Argo salt, were isolated
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into “pods” by intervening salt structures (Fig. 3.14c-d). During synrift deposition, the
salt was progressively displaced from under the sediment pods forming asymmetric salt
ridges or walls that likely reached the surface. During this process, known as passive
diapirism or downbuilding (Vendeville and Jackson, 1992a, b), the salt body
simultaneously rose as the surrounding strata subsided around it. As regional extension
formed new basement faults below the salt (Fig. 3.14d), the southern end of the North
Step began to subside more rapidly. In response, the width of sediment pods increased as
the salt walls began to migrate basinward. In areas where salt structures do not reach the
surface, broad extensional forced folds develop above the basement fault blocks. The
locations of forced folds and salt structures, such as diapirs, salt walls or ridges that
deform the sedimentary cover during rifting are important because subsequent episodes
of deformation after rifting preferentially reactivated and amplified these structures (Figs.
3.14d-1, 3.15).

During subsequent tectonic events, cover deformation was at least partially
decoupled from basement deformation, and as during rifting, accommodated
simultaneously by different processes. Below the salt, shortening reactivated the CCFS
with at least a component of reverse slip. In the cover above the salt layer, shortening,
related to inversion of the CCFS, squeezed the preexisting salt ridges forming subvertical
welds (Figs. 3.14e, 3.15). In cases where salt structures were absent after rifting, the
Argo Salt functioned mainly as a detachment horizon. Above thin salt or squeezed salt
structures (Figs. 3.14e, 3.15), detached thrusts and smaller folds deform the sedimentary
cover. In areas where thick salt and/or preexisting extensional forced folds are present,

more open, larger-amplitude detachment folds are possible where salt filled the cores of
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growing anticlines. It is also quite plausible that during this shortening event, the salt
was displaced upward and outward onto the surface and later dissolved during the late
Early Jurassic when the North Step was subject to erosion rather than deposition (see Fig
22b in Hudec and Jackson, 2007). This process would also create similar structural
geometries, indicating that there are a number of geologically valid scenarios that could
explain the development of these structures.

3.6.1. Comparisons to Previous Work

A lack of consensus exists among previous workers regarding the development of
the Orpheus and overlying Scotian basins (Fig. 3.16). Pe-Piper and Piper (2004) and
Weir-Murphy et al. (2004) discussed the development of the northern Scotian Shelf using
both field and seismic data, whereas MacLean and Wade (1992) used seismic data to
decipher the tectonic history of the northern Scotian Shelf. The investigation by
MacLean and Wade (1992) is the only study that uses some of the same seismic data, and
it is the only one that is directly compared with this work. They concluded that postrift
deformation, aside from the formation of the Avalon Unconformity, was the result of the
eastward evacuation of the Argo Salt in deeper parts of the basin south of the North Step.
On the North Step, they attribute localized diapirism after the onset of sea floor spreading
in the Early Jurassic as the main cause of structural deformation.

The conclusions of MacLean and Wade (1992) are based on only the 27 2D
seismic line survey (the Laurentian Basin Survey) available at that time. The current
database contains more than 150 2D seismic lines that provide better coverage over the
study area. Subsequent to the work by MacLean and Wade (1992), workers in the field of

salt tectonics, especially those that investigate salt tectonics during regional shortening
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(e.g., Vendeville and Nilsen, 1995; Letouzey et al., 1995; Bonini, 2003; Roca et al., 2006;
Del Ventisette et al., 2005) has provided new insights on: 1) how the presence of salt can
affect, and sometimes mask, known styles of deformation by decoupling deformation
above and below the salt layer, 2) the processes that lead to and prevent the formation of
salt structures, and 3) how preexisting salt structures react during multiple phases of
regional deformation.

As previously mentioned, MacLean and Wade (1992) noted the presence of Late
Jurassic to early Cenozoic deformation, but attributed salt evacuation and diapirism as the
cause of this deformation. Salt movement likely occurred from the Early Jurassic
onward, but the extent to which these strata are deformed cannot be attributed to salt
tectonics alone. Because salt structures can arch, lift, and even pierce thick roofs in some
cases, the idea that localized buoyancy-driven salt tectonics is the main driver of
deformation in passive margin basins with salt is common (Vendeville and Nilsen, 1995).
New insights on the behavior of salt, however, indicate that active diapirism driven by
buoyancy alone is prevented by cover sequences as thin as one-third of the diapir height
(Weijermars et al., 1993; Schultz-Ela et al., 1993; Jackson and Vendeville, 1994;
Vendeville and Nilsen, 1995). The fact that some diapirs in the northern Scotian basin
deform very thick roofs suggests that the rise of these diapirs was not driven by
buoyancy, but rather by regional compression that squeezed the salt structures, forcing
them upward causing the cover to deform.

Furthermore, shortening preferentially reactivates preexisting salt structures,
rather than creating new ones, because they are weaker than the surrounding overburden.

Therefore, the cover above either buried or exposed salt structures tends to shorten much
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more than adjacent areas of thicker overburden (i.e., south of the North Step; Hudec and
Jackson, 2007). On the North Step, in both the Orpheus basin and overlying Scotian
basin, deformation is localized around salt structures rather than in deeper parts of the
basin. Also, without proper imaging of the disharmonic relationship between the folded
synrift beds below the BU and folded postrift beds above it, it would be very easy to
misinterpret the regional processes responsible for the cause deformation observed here.
3.6.2. Comparison to the Minas subbasin, onshore Nova Scotia

The Minas subbasin is an E-trending component of the Fundy rift basin bounded
on the north by the Cobequid-Chedabucto fault zone (CCFS; also known as the Minas
fault zone). It is similar to its offshore counterpart, the Orpheus basin (Tankard and
Welsink. 1989; Olsen and Schlische, 1990; MacLean and Wade, 1992; Withjack et al.,
1995, 2009). Many workers (e.g., Tankard and Welsink, 1989; MacLean and Wade,
1992; Withjack et al., 1995; Wade et al., 1996; Tanner and Brown, 2003) infered that
because the onshore Minas subbasin and the offshore Orpheus basin share a common
border-fault system, the tectonic events that affected the E-striking structures in the
onshore Fundy basin likely affected the E-striking structures offshore as well. Today, the
presence of faults with reverse separation, tight folds, and steeply dipping beds (Withjack
et al., 1995; Baum, 2003; Baum et al., 2008) suggest that compressional deformation
affected the margins of the Minas subbasin (Fig. 3.2¢c-d, 3.17).

Comparison of seismic profiles from the Minas basin with seismic profiles from
the Orpheus basin indicate that the gross structural geometries of both basins are quite
similar, although the border-fault zone in the Orpheus basin is significantly wider than

that in the Minas subbasin. The preservation of Middle to Late Jurassic strata in the
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Orpheus basin, and not the Minas subbasin, is related to: 1) the presence and withdrawal

of Argo salt and/or 2) an increased amount of subsidence seaward. Although Baum et al.

(2008) defined the 3D geometry and kinematics of inversion structures in the Fundy rift

basin, using seismic, field, aeromagnetic, and DEM data, it is not known which postrift

shortening event produced the structures observed in the Fundy basin (see Fig. 3.17). The

work presented in this thesis suggests that the tectonic history of the Fundy basin is likely

more complicated than previously thought, and that the NNE-shortening determined by

Baum et al. (2008) may represent only the last episode of deformation to affect the

margin of Nova Scotia and southern Newfoundland.

3.7. SUMMARY & CONCLUSIONS

The offshore Orpheus basin is a buried E-trending fault-bounded Mesozoic rift
basin on the northern margin of the Scotian Shelf affected by multiple episodes of
Mesozoic to Cenozoic deformation. Like the onshore E-trending Minas subbasin
of the Fundy basin, the Orpheus basin is bounded on the north by the E-striking
Cobequid-Chedabucto fault system, a fault-zone that originally formed during the
Paleozoic assemblage of Pangea.

Four tectonostratigraphic packages, bounded by major angular unconformities, are
present on recently acquired 2D seismic lines within the study area. Seismic
horizons within these packages correlate with major biostratigraphic markers in
five industry wells surrounding the study area. Package A comprises the synrift
succession of clastic sedimentary rocks and thick evaporites (> 1 km in places),
whereas Packages B through D comprise the postrift succession of clastic and

carbonate sedimentary rocks. Seismic data from the Orpheus and Scotian basins
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provide evidence of multiple episodes of deformation from the early Mesozoic to
the early Cenozoic that are grouped into two phases: a rifting phase related to the
formation of the Orpheus basin during the Middle Triassic to Early Jurassic, and a
“passive margin” phase related to the formation of the Scotian basin beginning
with the onset of seafloor spreading during the late Early Jurassic to early Middle
Jurassic.

Where salt was present above basement faults during rifting, cover deformation is
decoupled from basement deformation. Forced folds and salt ridges developed in
the cover above the salt, whereas below the salt layer, faulting accommodated
basement extension. The second episode of deformation was compressional and
occurred during the mid-Early Jurassic. As during rifting, deformation below the
salt layer was decoupled from deformation above the salt layer. Subsalt
shortening reactivated basement faults with at least a component of reverse slip,
whereas above the salt layer, shortening further amplified extensional folds above
basement fault blocks. Detached thrust faults and vertical salt welds also formed
in response to this event, and uplift, associated with inversion of the Cobequid-
Chedabucto fault system removed much of the later Early Jurassic strata on the
North Step. A third episode of deformation occurred during the earliest
Cretaceous forming a prominent angular unconformity. Regional uplift, possibly
related to the breakup of the Grand Banks from Iberia, formed the widespread
Avalon Unconformity on the northern margin of the Scotian Shelf. A fourth
episode of deformation occurred during the early Cenozoic. During this event,

Cretaceous and younger strata on the North Step were folded into anticlines and
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synclines, and many preexisting salt structures were further amplified. This work
suggests that the tectonic history of the “passive” margin of offshore Nova Scotia
is much more complex than previous thought.

The edge of the passive margin of southeastern Canada experienced at least four
stages of development: rifting, shortening during the rift/drift transition, regional
uplift and erosion during the earliest Cretaceous, and a fourth event that had, at
least locally on the North Step, a compressional component during the Oligocene.
Because the main bounding faults of the Orpheus basin are the same as those in
the Fundy basin, the kinematics of inversion in the Fundy basin (Baum, 2003;
Baum et al., 2008; Withjack et al., 2009) may represent only the last episode of

shortening during the Oligocene.
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SECTION 4 — Comparison of Models with Geologic Examples from the Scotian

Shelf and Future Work

4.1. Comparison of Models with Natural Examples

Generally, the geometries and evolutionary patterns observed in the synrift putty
models in Section 2 aid in the interpretation and understanding of the structural evolution
of areas where numerous salt structures are present (e.g., offshore eastern Canada;
MacLean and Wade, 1992; Pe-Piper and Piper, 2004; eastern Prebetics, Spain; Roca et
al., 2006). In this section, I compare the modeling results from both this thesis and
previous work with geologic examples from eastern North America (Orpheus and
overlying Scotian basins).

The structure of the northern Scotian Shelf (Fig. 3.3-4) is consistent with
inversion of a rift basin affected by salt structures. Restoration of line 1124A-105
suggests that the inferred structure and evolution of the salt structures also fit well with
the results of the analog models, where extension triggered diapirism (Model 2B (Fig.
2.14) and formed major salt structures. Surrounding the basement fault zone on the
North Step, in both the Orpheus and Scotian basins, deformation is localized around salt
structures, rather than in deeper parts of the basin (Fig. 3.5). In the models, much of the
compressional deformation is preferentially accommodated by closing open putty ridges
(Fig 2.16), by rejuvenating preexisting diapirs (Figs. 2.10, 2.12), and by further
amplifying preexisting folds that formed during the extensional phase (Figs. 2.10, 2.12,
2.16,2.17).

Similar to the models, the overburden above the salt layer on the North Step in the

Orpheus basin is characterized by wide and slightly deformed synclines and by narrow
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and complex anticlines after the shortening phase (Figs. 2.12, 2.17, 3.6, 3.7). These
complex anticlines are bounded by detached thrust faults and subvertical planar to
squeezed diapiric bodies. The interpretation of the squeezed extension diapirs is
supported by the presence of faults with normal separation below them, and
precontractional sedimentary sequences above and around them. Some diapirs in the
northern Scotian basin deform very thick roofs; this suggests that the rise of these diapirs
were not driven by buoyancy, but rather by regional shortening that squeezed the salt
structures, forcing them upward causing the cover to deform. Alternatively, in cases
where diapirs developed after shortening, other modeling studies that examine the
evolution of diapirs suggest their development can stem from the erosion of the crestal
areas of salt-cored anticlines (Sans and Koyi, 2001), contractional generated differential
loadings (Jackson and Vendeville, 1994), to vertical amplification and strain localization
along detachment folds (Bonini, 2003).

The models presented here cannot reproduce and explain all the deformational
geometries observed in areas affected by shortening. This is likely related to differences
in the initial lithological configurations, the relative amounts of bulk shortening and
extension, and/or the obliquity between the extension and shortening directions (Del
Ventisette et al., 2006; Roca et al., 2006). In addition, syntectonic sedimentation and/or
erosion, which could greatly affect the deformational style and history, have not been
incorporated into the models. In this regard, they do not fully reproduce developed
sediment pods, which form by differential loading (Hodgson et al., 1992; Rowan et al.,
2003), or the erosional effects that both the Breakup Unconformity and base Cretaceous

Avalon Unconformity (Figs. 3.10-11) had on the development or rejuvenation of salt
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structures (Vendeville and Nilsen, 1995; Roca et al., 2006; Hudec and Jackson, 2007). If
preservation conditions are adequate and syntectonic sedimentation rates are not
significantly greater than diapiric rise rates, they could also include isolated remains of
the overhangs formed during the squeezing of preshortening salt structures over the
horsts bounding the grabens (i.e., in Models 2A & 2B). In the Orpheus basin and
overlying Scotian basin, multiple phases of uplift and erosion removed these features if
they were present on the North Step.

4.2. Future Work

Much of Section 3 of this thesis presents a new hypothesis for the evolution of the
northern Scotian Shelf. Although deformation patterns in the models are similar to those
present on seismic data from the Orpheus basin and overlying Scotian basin, many
questions still remain unanswered. Therefore possible future work should include:

* Perform additional experimental models with a salt analog that simulates oblique
slip on major basement faults. Withjack et al. (1995) suggested that, because the
E-striking Cobequid-Chedabucto fault system (CCFS) is the northern boundary of
both the onshore Minas subbasin and the offshore Orpheus basin, it is likely that
both basins have similar tectonic histories (Fig 3.18). It is well known that the
Fundy and Minas fault systems experienced oblique movement both during rifting
and during shortening (Withjack et al., 1995; Baum et al., 2008; Withjack et al.,
2009). Therefore, an additional series of map-view experiments may give further
insight into how the presence of a synrift salt layer reacts during multiple phases

of oblique deformation.
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Perform preliminary experimental models with salt analog that simulates
syntectonic deposition during extension. Because differential loading above a salt
layer can greatly affect deformation patterns, these models will aid in
understanding of how sedimentation will either encourage or hinder the growth of
salt structures.

Perform multi-layer extensional and contractional models for cross-sectional
analysis. Because the models analyzed in this study only examine map-view
deformation patterns, cross-sectional analysis of multi-layer models can be
compared with seismic sections from the northern Scotian Shelf to better
understand the influence of the preexisting extensional fabric on the geometries of
compressional structures in profile. It will also help better identify which
structures are reactivated and which are newly formed during the shortening
phase.

Perform additional mapping of the seismic dataset in both the Orpheus basin and
overlying Scotian basin. Additional subsurface mapping will aid in a better
understanding of the 3D geometry of structures, both basement involved and
detached. If the shortening-related folds are completely detached from the
basement, their trends may reflect the shortening direction during inversion.
Because the folds within the synrift sequences are disharmonic with the folds in

the Cretaceous and younger strata, their trends may be different as well.
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APPENDIX 1
Scaling

Most scaled experimental models use either dry sand or wet clay as the primary
modeling material. In this study, similar to other modeling studies (e.g., Withjack and
Callaway 2000; Eistenstadt and Sims, 2005, Withjack and Schlische, 2006; Withjack et
al., 2007), wet clay represents upper crustal rocks. It is composed mainly of kaolinite
particles (<0.005 mm in diameter) and water (~40% by weight) and has a density of 1.55-
1.60 g cm™. Tts coefficient of internal friction is ~0.6, and its cohesive strength is ~ 50
Pa. For comparison with a natural prototype, experimental models must be
geometrically, kinematically, and dynamically similar (Hubbert, 1937). Because the
strength of most rocks in the upper crust increases with depth (e.g., Byerlee, 1978), the
modeling materials must behave in a similar fashion. Accordingly,

T=Co+ UO, (1
where T and O, are the shear and normal stresses on a potential fault surface, Cy is the
cohesion, and u is the coefficient of internal friction. This relationship, however, only
describes the initiation of new faults, not the reactivation of existing faults. For most
sedimentary rocks, the coefficient of internal friction ranges from roughly 0.55 to 0.85
(e.g., Handin, 1966; Byerlee, 1978).

Properly scaled experimental models require two conditions to achieve dynamic
similarity (Weijermars et al., 1993; Vendeville et al., 1995; Withjack and Callaway,
2000). First, the modeling materials and rocks in the upper crust must have similar

coefficients of internal friction (resulting in geometric similarity). Second,

Co=p eg el )
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the cohesive strength ratio ((Cp) between the model and prototype must equal the product
of the model-to-prototype ratios for density (p*), gravity (g"), and length (I*), ensuring
dynamic similarity between the models and nature (e.g., Hubbert, 1937; Weijermars et
al., 1993; Vendeville et al., 1995). In these models, the values of p" and g" are roughly
0.62 and 1.0, respectively. Thus, (C}), and the length ratio (I*) must have similar
magnitudes to ensure dynamic similarity. In nature, C ranges from less than 1 MPa (for
loosely compacted sedimentary rocks) to more than 10 MPa (for intact crystalline rocks)
(Handin, 1966). As mentioned previously, the wet clay in our models has a cohesive
strength of ~50 Pa, resulting in a value of C* between 10™ and 10°. Therefore, L* ranges
between 10 and 10 in our models, depending on the cohesion of the natural prototype.
If the clay simulates a layer of loosely compacted sedimentary rock, then 1 cm in the
model represents ~100 m in nature. Alternatively, if the clay simulates intact crystalline
rock, then 1 cm in the model represents about ~10 km in nature. In my models, 8 cm
represents roughly 15 km in nature (i.e., the thickness of the brittle crust).

To simulate the ductile behavior of salt (viscosity ~10'® — 10* Pa s), dynamic
similarity is achieved by using a viscous silicone polymer, whose effective viscosity (u, )
is about 1.0 x 10° Pa s (Vendeville et al., 1995; Withjack and Callaway, 2000; Koyi and
Sans, 2006).

Following Withjack and Callaway (2000), dynamic similarity between the models

and natural prototypes when strata deform by viscous flow is achieved by,
% * * * 2 *
d,=[p °g (l)]/u 3)

where J; and u* are model-to-prototype ratios for displacement rate and viscosity,

respectively (e.g., Hubbert, 1937; Weijermars et al., 1993; Vendeville et al., 1995).
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Appropriate values for displacement rates in the models are determined by reformatting

equation 3, allowing,

d-=(p"*8 ) (1) + P @)
where (,, is the displacement rate of the moving wall the models, u,, is the viscosity of
the putty layer, and P =d, *u,, the product of the displacement rate on a master normal
fault in nature and the viscosity of a natural salt layer. In the models, ¢,,, is 3.0 cm hr™!
(or 8.3 x 10 cm s™') for the extensional phase. Accordingly, natural displacement rates
(i.e., rates of extension), which range from about 1 to 10 mm yr™ (or 107 to 10® cm s™),
and salt viscosities, which range from less than 10'® to more than 10" Pa s, indicate that
P=d e u, ranges from about 10° to 10'* Pa cm (Withjack and Callaway, 2000). In the
models, the value for (,,, represents a suite of natural conditions where P has the same
value. For instance, the models can represent a scenario with lower natural fault
displacement rates (~ 10" cm/s) and higher salt viscosity (~ 10°° Pa s) or natural

conditions where fault displacement rates are high (~ 10™® cm/s) and the salt viscosity is

lower (~ 10" Pa s).
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Line Name | Min X Max X Min Y Max Y Company
1 1034-105 426389 431913 4984059 4935724 TGS/Nopec
2 1042-105 440723 440765 4993328.142 4970159 TGS/Nopec
3 1046-105 443548 447424 5078461 4926656 TGS/Nopec
4 1050-105 453483 453807 5078436 4969223 TGS/Nopec
5 1058-105 460017 460461 5078453 4970156 TGS/Nopec
6 1062-105 465544 466320 5078268 4969247 TGS/Nopec
7 1066-105 472210 472347 5078605 4961013 TGS/Nopec
8 1070-105 478076 478474 5078103 4960386 TGS/Nopec
9 1078-105 482383 483453 5078800 4923052 TGS/Nopec
10 1082-105 488064 489560 5078097 4922981 TGS/Nopec
11 1090-105 494596 495649 5078605 4923607 TGS/Nopec
12 1100A-105 | 500974 501862 5078442 4925173 TGS/Nopec
13 1108A-105 | 506837 508186 5078265 4926440 TGS/Nopec
14 1116A-105 | 511973 513784 5078794 4930438 TGS/Nopec
15 1124A-105 | 519032 519675 5078462 4930771 TGS/Nopec
16 1132A-105 | 524921 525988 5078101 4931408 TGS/Nopec
17 1140A-105 | 530757 531469 5078634 4936005 TGS/Nopec
18 1148A-105 | 536467 537214 5078102 4936356 TGS/Nopec
19 1205A-105 | 563094 607276.645 | 4945309.111 4945177 TGS/Nopec
20 1205B-105 | 477412 549026.006 | 4945194 4945151 TGS/Nopec
21 1206A-105 | 576506 576886 5044609 4939217 TGS/Nopec
22 1212A-105 | 582520 582891 5044977 4939896 TGS/Nopec
23 1224A-105 | 588836 588902 5044731 4939634 TGS/Nopec
24 1229-105 568930 725679.133 | 4958367 4958195 TGS/Nopec
25 1230A-105 | 594255 594844 5045072 4940330 TGS/Nopec
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26 1238A-105 | 600823 600956 5044978 4942542 TGS/Nopec
27 1243A-105 | 568645 655534.027 | 4969048 4968298 TGS/Nopec
28 1243B-105 | 467146 539495.54 4967559 4967394 TGS/Nopec
29 1246A-105 | 606631 606720 5045462 4944613 TGS/Nopec
30 1254A-105 | 612774 613109 5045846 4945031 TGS/Nopec
31 1262A-105 | 618644 618859 5045344 4944848 TGS/Nopec
32 1267A-105 | 563006 742204.818 | 4980832 4980720 TGS/Nopec
33 1267B-105 | 419072 547220 4980619 4980099 TGS/Nopec
34 1270A-105 | 624786 624932 5045473 4944869 TGS/Nopec
35 1278A-105 | 630486 630636 5045831 4945612 TGS/Nopec
36 1281B-105 | 418728 542490 4994089 4993494 TGS/Nopec
37 1286A-105 | 636034 636783 5045718 4949199 TGS/Nopec
38 1294A-105 | 642166 642856 5045836 4946441 TGS/Nopec
39 1295B-105 | 411042 538513 5004235 5003642 TGS/Nopec
40 1309B-105 | 411480 542823 5014064 5013850 TGS/Nopec
41 1323B-105 | 411226 533164 5026016 5024843 TGS/Nopec
42 1337A-105 | 571761 610124.463 | 5038188 5038131 TGS/Nopec
43 1337B-105 | 410752 541890 5037569 5034541 TGS/Nopec
44 1351B-105 | 410325 550610 5048374 5047840 TGS/Nopec
45 1365B-105 | 410518 542579 5064995 5064230 TGS/Nopec
46 2001-LC 541079 541877 5099493 4941593 TGS/Nopec
47 2002-LC 543450 543785 5082805 4918637 TGS/Nopec
48 2003-LC 544201 544838 5082771 4941735 TGS/Nopec
49 2004-LC 545540 546612 5082871 4941989 TGS/Nopec
50 2005-LC 546149.935 547684 5082683.288 4941811 TGS/Nopec
51 2006-LC 547645.879 549212 5081704.637 4941806 TGS/Nopec
52 2007-LC 548461 550122 5103513 4941730 TGS/Nopec
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53 2008-LC 550707 552242 5083022 4918676 TGS/Nopec
54 2009-LC 553050 554252 5103134 4941820 TGS/Nopec
55 2010-LC 555401 557222 5083203 4918670 TGS/Nopec
56 2011-LC 557612 559685 5103475 4941769 TGS/Nopec
57 2012-LC 560562.93 562435 5082987.181 4918652 TGS/Nopec
58 2013-LC 563141 564145 5103362 4941706 TGS/Nopec
59 2014-LC 565412.807 566106 5083016.326 4942246 TGS/Nopec
60 2015-LC 566287 567323 5082531 4918702 TGS/Nopec
61 2016-LC 568034 569531.073 | 5082727 4941686.722 | TGS/Nopec
62 2018-LC 534373 577492.126 | 4928073 4928034 TGS/Nopec
63 2019-LC 534410 577532 4938101 4938052 TGS/Nopec
64 2020-LC 534293 577418 4958338 4958203 TGS/Nopec
65 2021-LC 534106 577375 4963001 4962459 TGS/Nopec
66 2022-LC 534162 576676 4968415 4967323 TGS/Nopec
67 2023-LC 534232 582812.44 4971137 4970077 TGS/Nopec
68 2024-LC 534242 582716 4973659 4972760 TGS/Nopec
69 2025-LC 534446 583070.503 | 4975760.281 4974950 TGS/Nopec
70 2026-LC 534399 583030 4977488 4976664 TGS/Nopec
71 2027-LC 534213 577517.148 | 4979213.073 4978540 TGS/Nopec
72 2028-LC 534320 577368 4980991 4980499 TGS/Nopec
73 2029-LC 534346 577461.129 | 4982107 4981492 TGS/Nopec
74 2030-LC 534321 577368 4982979 4982563 TGS/Nopec
75 2031-LC 534346 582706.3 4985646.418 4984723 TGS/Nopec
76 2032-LC 534547 583010.514 | 4988809.105 4987545 TGS/Nopec
77 2033-LC 534508 577280.096 | 4994935 4994014 TGS/Nopec
78 2034-LC 534418 577189.089 | 5001951.27 5000940 TGS/Nopec
79 2035-LC 529283 577114.295 | 5005148.186 5004148 TGS/Nopec
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80 2036-LC 529222 577059 5007475 5006617 TGS/Nopec
81 2037-LC 529174 577084.295 | 5009833.029 5009031 TGS/Nopec
82 2038-LC 534125 577128 5012272 5011515 TGS/Nopec
83 2040-LC 534081 582442.357 | 5014943.09 5014037 TGS/Nopec
84 2042-LC 534203 582491 5017913 5017017 TGS/Nopec
85 2043-LC 534184 577146.084 | 5020640 5019837 TGS/Nopec
86 2044-LC 534125 576977 5023174 5022336 TGS/Nopec
87 2045-LC 534274 576822.987 | 5025609.262 5024760 TGS/Nopec
88 2046-LC 528891 576804 5026848 5025935 TGS/Nopec
89 2047-LC 529045 576844 5029414 5028478 TGS/Nopec
90 2049-LC 528734 576532.157 | 5030702.147 5029848 TGS/Nopec
91 2050-LC 534002 576216 5034221 5033378 TGS/Nopec
92 2051-LC 533953 576205.837 | 5038053.05 5037470 TGS/Nopec
93 2052-LC 533946 576132 5041789 5041563 TGS/Nopec
94 2053-LC 534042 576336.889 | 5046085.026 5045863 TGS/Nopec
95 2054-LC 534141 576507.957 | 5064964 5064874 TGS/Nopec
96 2055-LC 533646 576020 5070976 5070910 TGS/Nopec
97 2056-LC 533433 575804.75 5084016 5083966.983 | TGS/Nopec
98 2057-LC 533321 575690.745 | 5093850 5093827 TGS/Nopec
99 2058-LC 459788 592134.828 | 4953550 4953506 TGS/Nopec
100 | 2059-LC 534036 577157.017 | 4948333 4948292 TGS/Nopec
101 | 2060-LC 460359.662 576414 5010312 4946697.99 TGS/Nopec
102 | 2061-LC 541487 569868 5017166 4964226 TGS/Nopec
103 | 2062-LC 550798 565075.918 | 5004980 4966246.196 | TGS/Nopec
104 | 98G10-01 486669.007 545310.554 | 5055323.075 5055179.075 | ConocoPhillips
105 | 98G10-02 487515.007 545130.475 | 5048090.209 5047807.075 | ConocoPhillips
106 | 98G10-03 487656.007 545205.008 | 5043722.075 5043316.075 | ConocoPhillips
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107 | 98G10-45 544830.008 545858.008 | 5102690.076 4898654.073 | ConocoPhillips
108 | 98G10-46 542481.008 542751.008 | 5077690.076 4948451.074 | ConocoPhillips
109 | 98G10-47A | 540021.008 540637.008 | 5077634.076 4948297.074 | ConocoPhillips
110 | 98G10-48 537387.008 537731.008 | 5077684.076 4975982.074 | ConocoPhillips
111 | 98G10-49 534745.508 535417.008 | 5077611.076 4975915.074 | ConocoPhillips
112 | 98G10-50 486530.007 545032.008 | 5059380.075 5059131.075 | ConocoPhillips
113 | 98G10-51 486559.007 545110.008 | 5052167.075 5051777.075 | ConocoPhillips
114 | 98G10-52 486503.007 544992.508 | 5039465.075 5039132.075 | ConocoPhillips
115 | 98G10-57 529912.008 530276.008 | 5074997.451 5017006.075 | ConocoPhillips
116 | 98G10-58 526116.008 526564.008 | 5077896.076 5016883.075 | ConocoPhillips
117 | 98G10-59 522987.008 523227.008 | 5076261.576 5016948.075 | ConocoPhillips
118 | 98G10-61 514167.008 514213.008 | 5077817.576 5016878.075 | ConocoPhillips
119 | 98G10-62 509175.008 509235.008 | 5077698.076 5016882.075 | ConocoPhillips
120 | 98G10-63 504592.008 504693.008 | 5077699.076 5017136.075 | ConocoPhillips
121 | STP-01 538146 599794 5100958 4932093 NRCAN
122 | STP-02 471265.133 581354 4990159 4952997 NRCAN
123 | STP-07a 547643 565269 4971074 4924665 NRCAN
124 | STP-10 575453 601049 5058953 4962769 NRCAN
125 | STP-11 591115 623896 5082958 4903804 NRCAN
126 | STP-12 612197 619899 5050682 4979717 NRCAN
127 | STP-13 626733 630955.45 5075586 4957339.664 | NRCAN
128 | STP-14 644031 644070 5058613 4986938 NRCAN
129 | STP-15 657845.538 661984 5056869 4935482.686 | NRCAN
130 | STP-16 669206 688311 5057232 4993436 NRCAN
131 | STP-17 673593 699950 5044495 4949042 NRCAN
132 | STP-18 693133 708196 5033771 5008412 NRCAN
133 | STP-19 556305 700622 5039483 5028711 NRCAN
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134 | STP-20 421836 568533 5026987 5026168 NRCAN
135 | STP-21 448390 590856 5016542 4998373 NRCAN
136 | STP-22 572623 708016 5014570 4987937 NRCAN
137 | STP-23 550484.513 595337 4995096 4925809.524 | NRCAN
138 | STP-24 519906 529245 5067762 5031031 NRCAN
139 | STP-25 529235 558304 5071520 5029104 NRCAN
140 | STP-26 537450 559059 5060444 5017795 NRCAN
141 | STP-27 561941 582025 5039630 4996751 NRCAN
142 | STP-28 531360 548366 5039097 4998843 NRCAN
143 | STP-29 539820 574338 5033629 5010962 NRCAN
144 | STP-3 451867 517087 5080400 4906787 NRCAN
145 | STP-4 468970 521644 5070580 4933686 NRCAN
146 | STP-5 477622 563353 5081685 4870506.625 | NRCAN
147 | STP-6 493474.143 552990 5077305.429 4924040 NRCAN
148 | STP-7B 504236.167 548007 5082639.417 4969457 NRCAN
149 | STP-8 544333 568912.128 | 5008781 4950117.743 | NRCAN
150 | STP-9 545225 570486 5061304 5000438 NRCAN




Appendix 4

Detailed Processing Parameters for TGS/Nopec Seismic Data
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T G S ) L.C-1 05C£§é?0§

NON-EXCLUSIVE 2-D SURVEY

" ACQUISITION PARAMETERS

5
AN
Acquisition Date: May 2002-October 2002 \
Data Acquired By: GSI, M/V Admiral

Recording Instroment: T/0 MSX
Filter settings: Low: 2Hz — 6 dB/octave
High: 206Hz — 264 dB/octave
i Airgun Source Volume 5240 cubic inch
f Gun Depth: 6 meters /
Shotpoint Interval: 37.5 meters /
Group Interval:  12.5 meters /
Streamer type: 1/O MSX
Streamer Depth: 9 meters /
Recording channels: 640 /
Streamer Length: 8000 meters e
Record Length: 14336 ms
Sample Interval: 2 milliseconds
Nominal Fold: 106

" -PROCESSING SEQUENCE

L.C-105 Processing performed by Spectrum - Processing completed April 2003
NS-103 Processing performed by TGS-NOPEC - Processing completed March 2003
Resample 2ms to 4ms-

Edit bad traces and shots

Merge seismic trace headers with navigation

FK anti-alias filter and trace drop - 640 channels to 320 - output NAV-MERGE - N§-103 only
2:1 adjacent trace sum - 640 channels to 320 - output NAV-MERGE — LC-105 only
Spherical divergence correction

Deconvolution - single design gate, 280ms operator, 16ms gap

Water velocity Radon

Velocity analysis every 2km

Primary velocity Radon- output RADON

Migration velocity analysis every 1km

Kirchhoff pre stack time migration- output PSTM-GATHERS

Residual velocity analysis every 1km — output PSTM-GATHERS+NMO

Stack - Output RAW MIG

Filter and scaling - output PROC-MIG

AVAILABLE DELIVERABLES

Raw field data/shot ordered

Field data with navigation in trace headers/shot ordered
Radon de-multiple CDP gathers

Pre stack time migrated CDP gathers without NMO correction
Pre stack time migrated CDP gathers with NMO correction
Raw migration

Processed migration

Stacking velocities (ASCIL)

Migration velocities (ASCII)

Processed source-receiver navigation — UKOOA

Post stack navigation - UKOOA

Workstation-ready tapes available in SMT, Landmark, and Geoquest

August 17,2005
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Laurentian Channel
NON-EXCLUSIVE 2-D CANADA SURVEY

ACQUISITION PARAMETERS

Acquisition Date:  August 1999
Data Acquired By: Geco-Prakia
Kilometers: 4,495.800 kilometers
Shooting Orientation: North-South/East-West
Recording Instrument: Nessie 3
Streamer Type: Geco-Prakla Nessie 4
Streamer Positioning: Compass /RGPS
Airgun Source: 7918 cubic inches
Gun Depth: 7.5 meters +/-1 meter
Shotpoint Inferval:  37.5 meters
Group Interval: 25 meters
Recording Channels: 320
Streamer Depth: 9 meters +/-1.5 meters
Streamer Length: 3000 meters
Record Length:  14.336 seconds
Sample Interval: 2 milliseconds
Nominal Fold: 106
PROCESSING SEQUENCE
» Data processing performed by: CGG Canada Services Ltd.
»  Processing completed January 2000
»  Swell noise removal
s  Spherical divergence correction
s  Shot domain F-K filter
+  Convert source signature to minimum phase equivalent
»  Deconvolution — single gate, shot average, 250 ms operator, 4 ms gap
s  Predictive deconvolution — 240 ms operator, 24 ms gap
¢ Traceto trace editing
+  Resample to 4ms - record length 11000 ms
*  Velocity analysis- 2000 m
» Radoen demultiple — 0-3000 ms
+ FK demultiple - 2000-11600 ms
*  Wave equation modeling demultiple — on selected lines
* 2D Kirchhoff DMO
*  Velocity analysis - 500 m
¢  Spectral whitening
s Stack
¢ Peg leg multiple removal — on selected lines
» KX migration (steep dip)
s  FX deconvolution and AGC
AVAILABLE DELIVERABLES
¢ Raw field data/shot ordered
+ Rawstack
+» Raw migration
¢ Processed stack
¢  Processed migration
e Stacking velocities (ASCII)
»  Migration velocities (ASCII)
¢  Post stack navigation -UKOQA
*  Workstation-ready tapes available in SMT, Landmark, and Geoquest

September 16, 2005
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Appendix 6 - Time to Depth Tables for Wells

Dauntless D-35

TWT (s) | Depth (m) TWT (s) | Depth (m)
0.508 457.2000 2.084 2530.4496
0.51 457.2000 2.08 2530.4496
0.902 853.4400 2.198 2743.2000
0.904 853.4400 2.206 2743.2000
0.95 914.4000 2.188 2743.2000
0.952 914.4000 2.364 3048.0000
1.014 991.2096 2.368 3048.0000
1.206 1219.2000 2.474 3276.6000
1.208 1219.2000 2.476 3276.6000
1.204 1219.2000 2.626 3657.6000
1.386 1429.5120 2.628 3657.6000
1.384 1429.5120 2.718 3855.7200
1.38 1429.5120 2.718 3855.7200
1.396 1429.5120 2.822 4114.8000
1.452 1524.0000 2.814 4114.8000
1.452 1524.0000 2.884 4267.2000
1.44 1524.0000 2.878 4267.2000
1.636 1828.8000 3.03 4663.4400
1.64 1828.8000 3.032 4663.4400
1.63 1828.8000
1.73 1975.1040
1.73 1975.1040
1.838 2133.6000
1.84 2133.6000
1.966 2339.3400
1.966 2339.3400
2.024 2438.4000
2.026 2438.4000
2.018 2438.4000
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Hesper P-52
TWT (s) | Depth (m)
0 40.5
0.296 316.649
0.475 475.45
0.6384 628.764
0.7852 771.106
0.9286 928.078
1.0562 1077.43
1.1904 1229.83
1.26 1261.5
1.2966 1383.754
1.3928 1534.63
1.495 1687.03
1.601 1839.43
1.7052 1991.83
1.8032 2144.229
1.8914 2296.63
1.9814 2449.03
2.0634 2601.43
2.1434 2753.83
2.1812 2807.17
2.365 3063.5
2.58 3599.5

81



Sachem D-76
TWT (s) Depth (m)
0 29.9
0.0766 88.422
0.2614 235.335
0.4232 399.927
0.55 534.954
0.72 701.07
0.944 914.43
1.13 1127.79
1.3516 1380.774
1.4798 1584.99
1.6096 1767.87
1.7598 1981.23
1.8898 2194.59
2.0034 2377.469
2.1284 2590.83
2.2508 2807.238
2.3414 2974.877
2.5148 3322.35
2.64 3581.429
2.744 3817.649
2.82 3971.573
2.9408 4267.229
3.0586 4572.029
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Hermine E-94

TWT (s) Depth (m)
0 26

0.555 482

0.89 847

1.195 1242

1.43 1635

1.78 2406

1.9 2726

2.16 3293

Emerillion C-56

TWT (s) Depth (m)
0 30

0.74 690

1.16 1156

1.48 1580

1.8 2088

2.324 3307
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SFZ
(end phase 1)

main BFZ
(end phase 1)

Reactivated
SFZ S _
w—/..%-—r
(end phase 2) — i ] =
—//\_/_/——/\_/
W——-/ -
\__ //_/ — —
— Central basin
— - — ——
Reactivated — e e
- == z  —
(end phase 2) T m—— -

Figure 2.6. Model 1 (standard), end phase 2. a. Photograph of model surface after 10 cm
of extension. Blue arrow shows displacement direction of moving plate. b. Line drawing of
model surface. Note that the width of both the main border-fault zone (BFZ) and the sec-
ondary fault zone (SFZ) have increased at the end of phase 2. Red dashed line shows edge
of fixed plate. Grey faults dip toward moving wall; black faults dip away from moving wall.
HW=hanging wall of BFZ; FW= footwall of BFZ
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zone of uplift

and intense
folding
/ —
— —\w‘ﬂ‘&\
Mﬂw
~— ——\.4—'—"’
New reverse g ——

— _WN
faults \‘-\5'\—\ i — ~
Mal basin .

M —

- s
FwW

v—v—reverse faults

Figure 2.8. Model 1 (standard), end phase 3. a. Photograph of model surface
after 10 cm of shortening. Red arrow shows displacement direction of moving
plate. b. Line drawing of model surface. Pre-existing normal faults (grey/black)
are reactivated with reverse slip. Red faults are newly formed reverse faults.
Red dashed line shows edge of fixed plate. Grey faults dip foward moving wall,
black faults dip away from moving wall.
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Figure 2.10. Model 2A, end of phase 2. a. Photograph of model surface after 10
cm of extension. Blue arrow shows displacement direction of moving plate. Red
dashed line shows edge of fixed plate. b. Line-drawing of model surface. Blue
faults are subputty faults with normal separation visible through putty layer.
Grey faults dip toward moving wall; black faults dip away from moving wall.
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Figure 2.13. Model 2A, end of phase 3. a. Photograph of model surface after 10
cm of extension. Red arrow shows displacement direction of moving plate. Red
dashed line shows edge of fixed plate. b. Line drawing of model surface. Red
faults are reactivated faults visible through putty layer and new reverse faults;
blue faults continue to grow as normal faults. Grey/blue faults dip away from
moving wall; black faults dip fowards moving wall.
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Figure 2.15. Model 2B, end of phase 2. a. Photograph of model surface after 10
cm of extension. Blue arrow shows displacement direction of moving plate. Red
dashed line shows edge of fixed plate. b. Line drawing of model surface. Grey
faults dip toward moving wall; black faults dip away from moving wall.
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Figure 2.18. Model 2B, end of phase 3. a. Photograph of model surface after 10
cm of extension. Red arrow shows displacement direction of moving plate. Red
dashed line shows edge of fixed plate. b. Line-drawing of model surface. Red fault

is closed diapir acting as thrust fault. Blue faults continue to grow as normal faults.
Grey/blue faults dip towards moving wall; black faults dip away from moving wall.
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Figure 2.20. Summary figure showing line drawings of model surface and hypothetical cross-
section after extension (top), and inversion (bottom). Red dashed line is edge of fixed plate.
Red faults are subputty faults. Grey and black faults are supraputty faults, black faults dip
toward the moving wall; grey faults dip away from moving wall.
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Figure 3.1. Major Paleozoic contractional structures and early Mesozoic rift basins of
eastern North America, and tectonic features of the eastern North Atlantic Ocean
(Kiltgord et al., 1988; Olsen et al., 1989; Welsink et al., 1989). Black boxes indicate
study areas. CCFS = Cobequid- Chedabucto fault system. Inset shows Pangea
supercontinent during Late Triassic time (Olsen, 1997) and green area highlights rift
zone between eastern North America, horthwest Africa, and Iberia. Modified from
Withjack and Schlische (2005).
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Figure 3.8. Summary figure highlighting evidence of igneous activity during and after
rifting. Aptian-aged igheous activity is beyond the scope of this work. (a) Synrift igneous
activity in central segment of Orpheus basin (line 1124A-105), (b) Postrift igneous activity
in western segment of Orpheus basin (line 1062-105). See Figure 3.4 for line locations.
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Figure 3.12. Close up of seismic line 1124A-105 (top) and correspond-
ing detailed interpretation highlighting Early Jurassic igneous intrusions
(bottom; see Fig. 3.9 for location). Note truncation of intrusions by the
BU. Line drawings of seismic profiles are displayed at approximately 1:1,
assuming an average velocity of 3.5 km/s.
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Figure 3.14. Schematic restoration of northern portion of seismic
line 1124A-105 from early Middle Triassic to present. (A-D) denotes

rifting phase, (E-I) denotes "passive-margin” phase. See text for
detailed explanation of figure.
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Figure 3.16. Graphical table highlighting differences regarding the development
of the Orpheus and northern Scotian basins. On igneous activity symbol, i/e =
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