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Since its introduction to North America in 1987, the Asian tiger mosquito (Aedes 

albopictus) has spread rapidly. Due to its unique ecology and preference for container 

breeding sites, Ae. albopictus commonly inhabits urban/suburban areas and is often in 

close contact with humans. An aggressive pest, this mosquito species is a vector of 

multiple arboviruses. In order for mosquito control efforts to remain effective, control of 

this important vector must be guided by spatially explicit habitat models that aid in 

predicting mosquito outbreaks.  

Using linear regression, I determined the relationship between adult Ae. 

albopictus abundance and climate, census, and land use factors in nine urban/suburban 

study sites in central New Jersey. Systematically collected adult counts (females and 

males) from July to October 2008, served as estimates of abundance. Fine-scale land 

use/land cover data were obtained from object-oriented classifications of 2007 CIR 

orthophotos in Definiens eCognition. Mosquito abundance data were tested for spatial 

autocorrelation via Moran’s I, semivariograms, and hotspot analysis in order to reveal 
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consistent patterns in abundance. 

Spatial pattern analysis produced little evidence of consistent spatial 

autocorrelation, though several sites exhibited recurring hotspots, especially in areas near 

residential housing and vegetation. Stepwise multiple regression was able to explain 20-

25 percent of variation in Ae. albopictus abundance at the ‘backyard’ or cell level and 72-

78 percent of variation in abundance at the ‘neighborhood’ or study site level. 

Meteorological variables (temperature on the trap date and precipitation), census 

variables (vacant housing units and population density), and more detailed land use/land 

cover classes (deciduous woody vegetation, rights-of-way and vacant lots) were 

frequently selected in all eight models, though many other independent variables were 

included in the individual models. The results of the spatial statistics suggest that 

clustering may occur at a broader extent, while the superior predictive ability of the site 

level models over the finer grain cell level models supports this conclusion. Future work 

should focus on validating these models with 2009 field data and testing whether finer 

grain weather and census data enhance the models’ predictive ability. Given the major 

differences between individual county models, future studies should further explore 

variations in Ae. albopictus habitat preferences in different geographic locations. 
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INTRODUCTION 

In response to outbreaks of vector-borne diseases such as malaria and dengue, 

scientists and public health organizations have sought to develop accurate and precise 

models to predict mosquito abundance and disease risk. In the face of a changing global 

climate and new patterns of human land use, predicting vector and disease outbreaks has 

become increasingly complex as models must incorporate climate factors, habitat 

variables, and human behavior patterns. Place-based decisions are needed to optimize the 

geographic targeting and management of vector populations in order to control disease 

outbreaks. Furthermore, models must integrate species-specific, biologically relevant 

information as mosquito species exhibit diverse habitat preferences and, thus, their 

distributions may be affected by different climatic and topographic factors (Gillett 1972; 

Spielman and D’Antonio 2001; Kolivras 2006; Peterson 2006). Targeted control requires 

information that is tailored to an area’s unique landscape, while also taking into 

consideration more general biological information about a species. 

Myriad models have been developed for vectors such as Anopheles spp., the 

primary carriers of malaria, while fewer models exist for other important, yet perhaps 

lesser-known, vectors such as Aedes albopictus. An aggressive pest, the Asian tiger 

mosquito (Ae. albopictus; ATM) is a public health concern because of its ability to 

transmit at least 22 arboviruses (Francy et al. 1990; Rai 1991; Moore and Mitchell 1997). 

Due to its unique ecology and preference for container breeding sites, this species has 

spread rapidly from its native range in Asia and has become a concern for mosquito 

control and public health officials as the introduction and presence of potential disease 

vectors creates health risks for humans and animals. While Ae. albopictus has inhabited 
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the southern United States for over twenty years, only within the past decade has it begun 

to spread into the northeastern U.S., and little is known about the species’ ecology or 

potential range within this region (CDC 2001). 

For this reason, a study combining climate, land use, and census factors to model 

Ae. albopictus habitat preferences in the northeastern U.S. is timely and necessary for 

developing effective control plans. As a part of a pilot project for the Climate and Health 

Initiative at Rutgers University, I used remote sensing, spatial statistics, and linear 

regression to investigate the relationship between climate and land use/land cover and Ae. 

albopictus populations in urban and suburban areas of New Jersey. This project was 

undertaken in collaboration with scientists at the Rutgers University Center for Vector 

Biology. New Jersey has the highest population density in the country as well as one of 

the longest histories of mosquito control (Spielman and D’Antonio 2001). Given the 

large percentage of developed land in the state and the ATM’s preference for container 

breeding sites in residential areas, New Jersey offers prime habitat for the species. In 

order for mosquito abatement efforts to remain effective, mosquito control and public 

health agencies require realistic models that provide predictions of the geographic 

locations where mosquito outbreaks are most likely to occur at fine enough spatial scales 

(i.e., down to the level of a city block) to effectively manage vector populations.  
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BACKGROUND 

Since its introduction to North America in 1987, Ae. albopictus has spread 

through the southern and eastern United States, reaching New Jersey around 1995 (Crans 

et al. 1996; Moore and Mitchell 1997). The northern limit of this species’ range is 

speculated to be the -5°C January isotherm based on the ability of eggs to overwinter 

colder temperatures (Nawrocki and Hawley 1987). As with all mosquito species, 

favorable climate and environmental conditions are essential at all stages of its lifecycle. 

Ae. albopictus lays its desiccation-resistant eggs in water-filled natural and artificial 

containers. The adults are most active during the early morning and late afternoon 

(Hawley 1988). The microhabitat of this species is described as urban and suburban 

because these areas often have a wide variety of suitable containers (e.g., gutters, bird 

baths, flower pots). Indeed, Ae. albopictus can complete its lifecycle in a container 

holding less than a quarter inch of water (Ibid.). In New Jersey, individuals of this species 

usually emerge sometime in late spring, pass through four larval stages and a pupal stage, 

and finally become adults around late April or early May. This cycle is estimated to be 

10-14 days in the spring and 5-10 days in the summer in New Jersey (Teng and Apperson 

2000; D. Fonseca, personal communication, 13 July 2009). Three to four days after 

emergence, female mosquitoes seek out their first blood meal and the cycle begins again.  

Despite the long history of mosquito control in New Jersey, the compound effects 

of climate, land use, and socioeconomic factors on mosquito populations have not been 

quantitatively assessed. In a study of Culex abundance data in four New Jersey counties 

over the past 30 years, DeGaetano (2005) found that less than half of mosquito 

abundance could be explained by meteorological factors during summer months, and the 
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most predictive meteorological factor differed between months. However, this study did 

not include landscape factors such as vegetation, human population density, or land use, 

and the temporal and spatial scales were relatively coarse (monthly and county-wide, 

respectively). While temperature and precipitation influence mosquito survival, habitat 

characteristics such as vegetation type and amount determine whether the area is suitable 

for protecting desiccation-vulnerable adults and providing food (nectar) for adults 

(Richards et al. 2006). Many studies (e.g., Linthicum et al. 1987; Shaman et al. 2002; 

Kolivras 2006; López-Cárdenas et al. 2005; Porphyre et al. 2005; Grieco et al. 2006; 

Mushinzimana et al. 2006; Benedict et al. 2007; Vanwambeke et al. 2007; Brown et al. 

2008) have shown that land cover, elevation, and other habitat characteristics should be 

incorporated into models of mosquito distribution. Similarly, human-related variables 

such as land use, population density, and housing structure type greatly influence habitat 

characteristics and mosquito abundance and are undoubtedly related to disease risk 

(Rogers et al. 2002; Ostfeld et al. 2005; Kalluri et al. 2007). Therefore, including climate, 

land use/land cover, and census data into models of mosquito distribution and abundance 

is vital to generating accurate predictions of outbreaks and a species’ potential range.  

In addition to predictor variables, scale is also an important consideration when 

developing models of Ae. albopictus habitat (Rey et al. 2006; Brown et al. 2008). In 

relation to identifying habitat in the landscape, scale is characterized by grain and extent 

(Turner et al. 2001). Grain refers to the finest spatial resolution possible within a given 

dataset (i.e., minimum mapping unit), while extent refers to the size of the study area 

(Ibid.). This species’ preference for container breeding sites requires fine grain models 

because coarser models may indicate correlations with residential areas (e.g., Barker et al. 
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2003; Braks et al. 2003) without providing information about where to target control 

within residential areas. Some quantitative studies of ATM have coarse grains in order to 

predict its potential range due to its status as an aggressive invasive species (e.g., 

Benedict et al. 2006), while others may have been limited by data availability. So far, 

there have been few fine grain spatially explicit models for this species. Richards et al. 

(2006) tested the relationship between general land cover classes (e.g., roads, buildings, 

wooded, and open areas) with a 4 m2 minimum mapping unit and weekly ATM 

oviposition in suburban neighborhoods in North Carolina using linear regression, though 

this was not the primary focus of their study. Rey et al. (2006) used principal component 

analysis to correlate fine-scaled ATM larval abundance with 17 classes encompassing 

ground versus canopy vegetation, paved versus unpaved lots and roads, and different 

types of water bodies derived from aerial photos in Florida, though the temporal scale of 

the study was coarse (1 month intervals). Similarly, Kobayashi et al. (2002) analyzed fine 

grain oviposition data relative to climate factors in Japan. However, none of these studies 

accounted for climate, land use/land cover, and human abundance and housing factors at 

the same time, and most focused on oviposition or larval abundance rather than adult 

abundance.  

This project is in collaboration with a larger project at the Rutgers University 

Center for Vector Biology. The purpose of the principal project is to compare the 

effectiveness of different control strategies to suppress Ae. albopictus (95% decrease in 

abundance) in urban areas. The 2008 field data collection was a precursor and benchmark 

for 2009, when ATM populations in three sites in each county will be compared based on 

differences in control efforts at each site (education only, education and chemical control, 
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no intervention). Education will be implemented through local schools and public 

information sessions, announcements, and brochures in two of the three final sites in each 

county, while chemical control will include the application of larvicides and adulticides 

within one of the three final sites within each county. One site in each county will serve 

as the experimental control with no mosquito abatement or education efforts. While 

assessing the effectiveness of control methods, the project also aims to resolve 

unanswered questions about the life history and management of the ATM. Within the 

broader context of this project, my work will reveal variations in ATM abundance across 

the landscape in relation to habitat heterogeneity. This study will provide information 

about useful variables and methods for future work as well as help to create guidelines 

for how to refine sampling of ATM populations in the 2009 field season. As a 

multidisciplinary collaboration, this project incorporates the expertise of entomologists 

on the species’ biology and ecology with the spatial perspective of a geographer and 

landscape ecologist. Since developing the most effective plan for reducing mosquito 

populations is one of the primary objectives of the larger project, my work will also 

contribute by generating spatially explicit prediction maps and hot spot maps that show 

where to focus control and trapping efforts. The mosquito abundance data and the 

expertise of the entomologists and mosquito control officials involved in the larger 

project have been generously provided in aid of this project. 
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OBJECTIVE STATEMENT AND RESEARCH QUESTIONS 

The primary objective of this study is to characterize the relationship between 

adult ATM density and habitat characteristics in urban areas of New Jersey. I used adult 

abundance data (dependent variable), remote sensing methods, and multiple sources of 

secondary data to answer the following interrelated questions:  

• What are the spatial patterns of adult ATM density in the study sites? 

o Are there specific hot spots or spatial trends? How do patterns vary 

over time?  

• What are the relationships between adult ATM density and habitat 

characteristics? 

o What climate and landscape variables account for variations in 

ATM populations? 

o Do variables representing human presence, abundance, and 

dwelling type affect the distribution and abundance of ATM? 

o How applicable are models between counties? 

• Is object-oriented image classification a useful technique for describing 

urban ATM habitat?  

o Which of the hierarchical object scales is most relevant to the adult 

ATM? 

 



8 
 

METHODS 

Study Area and Species Abundance Data 

The study areas are located in Mercer (four sites) and Monmouth Counties (five 

sites) (Figure 1). Each urban/suburban site contains approximately 1000 housing units 

and is further divided into cells of approximately 6-8 lots (Mercer) or 8-10 lots 

(Monmouth) (Figure 2). Monmouth County sites range in area from 100 to 180 hectares, 

while Mercer County sites range from 30 to 60 hectares. Sites were selected by county 

mosquito control agencies and the Center for Vector Biology to have minimal variability 

in socioeconomic aspects in order to increase comparability of the areas during the 

evaluation of control methods in 2009. Each week from early July to late October 2008, 

mosquito control randomly placed nine (in Mercer) or eleven (in Monmouth) BG-

Sentinel traps (Biogents GmbH, Regensburg, Germany) per study area (81 traps per week 

total). Each trap was placed in a cell, which had been randomly determined with 

replacement allowed, and the exact location within the preselected cell was at the field 

operators’ discretion depending on permission from homeowners. The traps attract adult 

day-biting mosquitoes using a non-toxic lure and convection currents generated by a 

small electric fan. Traps were retrieved 24 hours after placement at pre-selected locations, 

which were documented via photographs and GPS points. Trapped mosquitoes were then 

taken back to the counties’ labs for identification by species and sex. Post-processing of 

the counts involved geocoding misplaced points (due to equipment or human error) using 

tax parcel data, though less than a third of the observations required this treatment. Due 

to concerns about the accuracy of the recorded GPS locations, cells served as the basic 

unit of analysis rather than individual points. This ensured that spatial error was not 
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introduced into the analysis and it resulted in the loss of only some resolution since the 

cells are quite small. In cases where multiple points fell within a cell, the median served 

as the value for the cell. Prior to analysis, counts of total, females only, and males only 

within each cell were log-transformed (ln(x+5) for total and females; ln(x+1.5) for males) 

to achieve normality. To calculate counts for each site, cell counts were summed by site 

for each trapping week and then square-root transformed to achieve normality for 

regression analysis. 

Land Use/Land Cover Classification 

In the context of vector-borne diseases, land use indicates human activity on the 

landscape and the presence of humans near vector habitats (Vanwambeke 2007), while 

land cover describes the vegetation and structures that cover the landscape. Though land 

use and land cover map different aspects of the landscape, these layers may be combined 

to describe human activity and potential mosquito habitat in the landscape. I developed a 

hierarchical land use/land cover classification of the study sites using object-oriented 

methods in eCognition v. 5 (Figure 3; Definiens Imaging 2006). Classes consisted of 

variables that may be important to Ae. albopictus habitat, such as cemeteries and tree 

canopy.  

The overall approach of the classification was to segment the image at several 

object levels, select multiple spectral classes for each information class, and then classify 

each object level using a rule-based system with rules based on image characteristics and 

the class hierarchy (Navulur 2007). First, the image was segmented into multiple levels 

using spectral and spatial homogeneity criteria. Each level of segmentation is comprised 

of objects, which are the entities that the user classifies (Geneletti and Gorte 2003). 
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eCognition employs a region-based segmentation that begins at the pixel-level and then 

iteratively groups pixels based on user-defined homogeneity criteria (Definiens Imaging 

2006; Haralick and Shapiro 1985). This method creates hierarchical network of objects 

by grouping lower-level objects into larger, higher-lever objects based on spectral 

similarity, contrast with neighbor objects, and shape characteristics (Yan et al. 2006). The 

size of the objects at each segmentation level is controlled by the scale parameter, with a 

larger scale resulting in larger objects as greater heterogeneity becomes more acceptable 

(Benz et al. 2004). For each level, color (spectral information from each image band) and 

shape (smoothness and compactness) are weighted against one another to determine how 

pixels are grouped into objects.  

Object-oriented classification allows hierarchical classes, which represent the 

landscape at multiple scales. I created a multi-level representation of land use/land cover 

in the study areas, from the ‘backyard’ (sub-object) level to broader classes at higher 

(object and super-object) levels (Figure 5). Specifically, super-objects (level 1) classified 

the landscape into basic cover types such as pavement, vegetation, and water. Object-

level classes (level 2) further divided super-object classes into different types of land use 

and cover such as residential buildings and grass. Sub-object classes (level 3) provided 

the smallest grain of information, such as lawns versus parks or swimming pools versus 

ponds. Not all classes described in the classification scheme were present in the study 

sites, though all classes should be present at the county level. All object levels were 

created using the same weights on shape/color and compactness/smoothness (0.1 and 0.5, 

respectively). Spectral information was weighted more heavily than shape to create more 

spatially homogeneous objects. Of the shape parameters, compactness was given equal 
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weight to smoothness in order to extract individual objects with smooth borders (Yan et 

al. 2006). Segmentation scales for each level varied by image subset since subsets’ 

extents varied. A classification rule set was developed for each county and then modified 

slightly for each image subset to achieve the best possible classification. Different rule 

sets were used for each county due to variations in spectral histograms and predominant 

cover and the availability of ancillary data such as building footprints and edge of 

pavement polygons. Ancillary data including edge of pavement and building footprint 

shapefiles from the counties supplemented the imagery. County shapefiles listing the 

locations of public buildings served to identify public buildings, while commercial and 

residential buildings were separated based on size and context (e.g., presence of 

driveways or parking lots, lawns). Some manual correction of level 2 and 3 classes was 

necessary since the CIR imagery had difficulty picking up the differences between certain 

classes, such as buildings and pavement or the different grass classes. Shape and texture 

based rules proved especially important at levels 2 and 3 for distinguishing spectrally 

similar objects that belonged in different classes. 

I classified 2007 leaf-off CIR orthophotos (1 foot resolution, captured March-

May), though 2008 leaf-on true color orthophotos (1 meter resolution, captured in 

August) were used to identify tree/shrub canopy. To merge the two image data sets, 

woody vegetation objects were extracted from the 2008 imagery and then combined with 

the 2007 objects in eCognition. Coniferous versus deciduous woody vegetation was 

distinguished based on the 2007 imagery since leaf off imagery provides the best means 

to pick out coniferous vegetation. Mosaics were created in ERDAS Imagine for each 

county to normalize histogram values between photo tiles via band-by-band histogram 
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matching performed by the Mosaic tool. After trial and error adjustment of color 

balancing and image dodging parameters in the ERDAS Mosaic tool, the best mosaic was 

selected for each county. The mosaics were then divided into tiles comprising the 

rectangular extent of a 200 meter buffer around each site to facilitate processing in 

eCognition, which has difficulty segmenting and classifying images larger than 

5000x5000 pixels (Definiens Imaging 2006). A 200 meter buffer was created around each 

site in order to take into account the effects of adjacent cover types on mosquito 

populations in the regression models. The minimum mapping unit (MMU) of the 

classification was 4 ft2, or four pixels, which is the smallest possible MMU given the 

resolution of the orthophotos. While other data in the models have a coarser grain, a small 

MMU was chosen to detect small features such as bushes and trees that may be vital to 

the mosquitoes' survival. The final land use/land cover information tested in the models 

included the percentage of each cover type in a cell and the percentage of each cover type 

within 200 meters of a cell to account for the effects of adjacency. I selected a 200 meter 

buffer since the species has a relatively short flight range (Kitron et al. 1998). Lastly, the 

percentages of land cover were log-transformed (ln(x+1)) to achieve normality and 

reduce multicollinearity for regression analysis. 

Post-classification evaluation involved 1,289 accuracy assessment points with 

manually defined reference classes. The reference data were created using stratified 

random sampling and classes were assigned to each point at all three classification levels 

by visually interpreting the 2007 orthophotos and cross-checking on the ground where 

necessary. Pictometry from 2006 also served to confirm reference class assignments 

(Pictometry International Corp, 2004). This sampling structure ensured that points were 
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randomly selected and that each class received at least 50 points, while more common 

classes received more reference points than rarer classes (Congalton 1991).  However, 

this process did not prevent points from falling at or near the ‘boundary’ between two 

land cover types, so some mismatches between the classification and reference classes 

may have been a result of this issue. 

Other Factors 

In addition to land use/land cover, environmental variables including climate, soil 

drainage, distance to the ocean, property value, and census data were included in the 

models (Table 1). Climate information consisted of precipitation, temperature (mean, 

minimum, maximum), and wind direction and speed (mean and maximum) obtained from 

hourly and daily measurements collected at weather stations at the Trenton Airport in 

Mercer County and four stations in Monmouth County (NJWXNET 2008; Figure 6). The 

spatial resolution of the climate data is coarser than the resolution of all other variables 

since only one or two reliable weather stations were available near the sites in each 

county. Thus, the spatial resolution of meteorological data was at the county level, where 

all sites in a county were given the same weather values. Each meteorological variable 

was averaged (temperature, wind speed) or summed (precipitation) for 30 days and 14 

days before a trap was set as well as the dates that the trap was in the field. The 30 and 14 

day time periods roughly correspond to the ATM’s lifecycle (egg to adult) length, and are 

thus true predictors of mosquito catch, while meteorological conditions on the catch date 

explain the influence of weather conditions on mosquito catch (DeGaetano 2005). 

Temperature and precipitation variables were also centered to reduce multicollinearity.  

Likewise, soil drainage may be important because it is related to the prevalence of 
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standing water, the water table, and humidity, which can influence mosquito survival 

(Day and Shaman 2008). Soil drainage data were derived from the Soil Survey 

Geographic (SSURGO) database. Monmouth County sites exhibited greater variation in 

soil type than Mercer County sites, which are relatively uniform (Figure 7). Elevation 

was initially considered as an additional variable, but elevation in the study sites is nearly 

invariant and would not provide new information, though it may be useful in state- or 

county-wide studies. Distance to the coast also was included in Monmouth County 

models because, as the ATM is a freshwater species, it may be less abundant near the 

coast (Hawley 1988). Distance to coast was calculated in ArcInfo 9.3 via the Near tool 

(ESRI, Redlands, CA, 1999-2009). 

Census and housing structure variables included population density (number of 

persons per hectare), single parent households, renter occupied housing units, vacant 

housing units, and total property value. Property value was derived from 2002 tax 

assessor records and all other variables were derived from 2000 U.S. census block 

records. Total property value (land value plus improvement value) was calculated by 

adding the total value of all tax parcels within a cell, minus duplicates. This data was 

available at a finer grain than the census data because study cells were delineated based 

on tax parcel boundaries. Census data were aggregated to the site level since census block 

boundaries do not coincide with study cell boundaries. The values of blocks partially 

overlapping the study areas were extrapolated by multiplying the census data by the 

proportion of the area of the block overlapped by the study area. Although this produced 

only approximations of census information, very few census blocks (28 out of 586) 

required this treatment. 
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Statistical Methods: Spatial Pattern Analysis 

Before developing the habitat models, I analyzed the spatial patterns of adult 

ATM abundance in the study sites. Understanding the presence or absence of clustering in 

mosquito populations in the study sites will inform the comparison of the different 

control regimes in 2009 because the interpretation of the results will depend on whether 

or not spatial autocorrelation must be taken into account. Investigating the spatial 

structure of mosquito abundance also serves as an indicator of whether or not mosquitoes 

prefer certain areas over others within the sites, while analyzing spatial autocorrelation 

over time can help mosquito control commissions decide if abatement efforts need to be 

targeted to different areas depending on the time of season or if the same areas always 

have more mosquitoes than others. 

Three different statistics were applied to test for different aspects of 

autocorrelation within the sites. Moran’s I was used to determine the degree of global 

autocorrelation in the data, which describes the degree of correlation of a variable and 

itself as a function of spatial distance based on the idea that nearer things are more similar 

than distant things (Tobler 1970; Fortin and Dale 2005). Moran’s I was chosen as a 

measure of global autocorrelation because it is easily interpreted and unambiguously 

summarizes clustering in each study site as a whole. Semivariograms were used to reveal 

the spatial extent of autocorrelation, confirm the results of Moran’s I, and test the data for 

stationarity. Although semivariograms are primarily used for kriging and interpolation, 

they also provide information about the distances at which the data are most highly 

autocorrelated and the degree to which local random effects or measurement errors cause 

variability in the data, which provides more detail than Moran’s I more binary indication 
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of whether or not clustering is present. However, neither Moran’s I nor semivariograms 

detect individual clusters, so hot spot analysis, a measure of local spatial autocorrelation, 

was employed to test for preferential clustering of ATM abundance in certain areas.  

All spatial statistics were calculated for log-transformed counts of total adults, 

females only, and males only in each month, the high season (July-August 30), and the 

entire season (July-October 30) in each site. The high season was tested separately 

because populations reach a peak and begin declining by late August (Sota et al. 1992; 

Barker et al. 2003). Testing autocorrelation and developing models for this period avoids 

the effects of seasonality and represents the time period in which control is most 

important. Transformed values were used in autocorrelation testing to achieve normality, 

which helps to avoid bias and improve stability in spatial statistics such as Moran’s I and 

semivariograms (Hohn 1998; Fortin and Dale 2005). Sites were inspected individually for 

autocorrelation since only two of the sites are spatially contiguous. Moran’s I and hot 

spot analyses were conducted in ArcGIS 9.3 via the Spatial Statistics toolbox, while 

semivariograms were generated in SAS 9.2.  

Moran’s I tests for global autocorrelation by calculating an index of covariation 

between different points, varying between -1 to +1 for negatively and positively 

autocorrelated data, respectively. The Z score (standard deviation) indicates the 

significance of the I statistics, or whether the difference between the predicted and actual 

value of I is greater than would be expected by chance.  Normalized Z-scores were 

interpreted to represent clusters (Z ≥ 1.65 or Z ≤ -1.65) for I values greater than zero or 

random distribution (-1.65 < Z < 1.65) at statistical significance P < 0.1. For example, an 

I value of 0.1 with a Z score of 1.65 would indicate clustering with a 90% likelihood that 
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the pattern was actually random, while an I value of -0.1 and a Z score of -1.97 would 

indicate dispersion with a 95% likelihood that the pattern was actually random. Moran’s I 

was calculated with a Euclidean distance method and an inverse distance 

conceptualization of spatial relationships. Row standardization helped to account for the 

effects of the sampling structure on measures of autocorrelation.  

Semivariance measures the degree of spatial dependence between data points, and 

it is represented as a graph, or semivariogram, that shows the variance plotted against the 

distance between all pairs of data points (Bailey and Gatrell 1995; Figure 8). 

Semivariograms are often used for interpolating points via kriging, but for this project the 

semivariograms served to provide information about the spatial structure of the data, 

including the distance at which the data is the most highly autocorrelated, also known as 

the range. The graphs are in the geographic units of the dataset, and only the first two-

thirds of the line should be interpreted (Fortin and Dale 2005). In addition to showing the 

distance up to which the spatial structure of the data varies, semivariograms express the 

degree of variability due to local random effects or measurement errors, also known as 

the nugget (see Figure 8 for an example). Interpretation of the graph can also reveal 

whether the sampling unit is appropriate for capturing spatial variability in the data 

(Ibid.). Most importantly, semivariograms can reveal the distances at which the data are 

clustered, which is important information for mosquito control commissions because they 

need to know how far from a point source of high abundance they need to focus treatment 

and control. That is, do they need to spray a large area to control a problem spot or can 

they simply focus on the point of concern. 

Hot spot analysis consisted of calculating the Getis-Ord Gi* statistic, which 

 



18 
 

detects concentrations of high values and low values (i.e., extreme spatial 

autocorrelation), where a Z score > 1.96 is ‘very hot’ and a Z score < -1.96 is ‘very cold’ 

at a significance level of P < 0.05. A random distribution is defined as -1.96 ≤ Z ≤ 1.96. 

First-order clusters represent groups of points that are closer together than the threshold 

distance and in which there is at least the minimum number of points specified by the 

user (Levine 2004). In this project, the threshold distance, or search radius, was chosen to 

maximize spatial autocorrelation and to ensure that at least eight points were considered 

when calculating the statistic. Visually assessing the similarities of areas with consistently 

more mosquitoes hints at whether the mosquitoes prefer certain habitats or whether they 

blanket the study areas evenly. Comparing different time periods (e.g., high season versus 

entire season) and study sites can reveal spatial or temporal trends in the data and 

possible population hot spots that are constant over time, which identify important areas 

to target abatement. 

Statistical Methods: Multiple Regression 

Using stepwise multiple regression (PROC REG, SAS Institute, Cary, NC, 2007), 

I tested the relationship between ATM abundance (dependent variable) and independent 

habitat variables. Multiple regression was selected for the analysis because the results are 

easily interpreted and past studies have demonstrated that regression analysis is a robust 

approach for explaining the strength and type of associations between environmental 

variables and mosquito abundance (Hay and Lennon 1999; Richards et al. 2002; Rogers 

et al. 2002; DeGaetano 2005; Ostfeld et al. 2005; Mushinzimana et al. 2006; Rey et al. 

2006; Vanwambeke et al. 2007; Brown et al. 2008; Tran et al. 2008). Additionally, habitat 

data can be plugged into the regression models to generate prediction maps of ATM 
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abundance, which could be a very valuable tool for mosquito control. In this study, 

habitat variables included census variables, soil drainage, property tax value, 

meteorological variables, and the percent of each land cover type within a cell and within 

200m of a cell (Table 1). Stepwise regression first selected the most important 

independent variables (where P ≤ 0.15 was the threshold for variable inclusion), and then 

additional manual backward elimination removed redundant or ‘noise’ variables to 

produce the final models. Manual backward elimination consisted of iteratively removing 

non-significant (P > 0.05) independent variables and observing the effect on the error rate 

of the model. Variables contributing significantly to the regression models were 

determined by significant t-tests for β coefficients where P ≤ 0.05. Variables were 

excluded from the final model if the t-test was non-significant and if the standard error of 

the estimate did not significantly increase when the variable was removed from the 

model. Stepwise methods will not necessarily produce the best model if there are 

redundant predictors. However, after examining correlation matrices for the independent 

variables and removing extraneous variables (correlated at 0.70 or greater), I further 

ensured no redundancy by only accepting models with condition indices less than 30 and 

variables with variance inflation factors less than four, which are common 

multicollinearity tests (Belsley et al. 1980; Allison 1999).  

Three sets of models were developed (see also Table 2 for a summary):  

• Model 1 included ATM counts in each cell from both counties during each 

week of the high season (July 15-August 30). The ATM count in each cell 

during each week of the season was treated as an independent observation 

(497 observations total). Independent variables included land cover, 
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weather, census, and soil data, as well as a dummy variable for county. 

These models will be referred to as ‘cell level’ models throughout the text. 

• Model 2 was comprised of unique models for each county using ATM 

counts in each cell during each week of the high season (July 15-August 

30) as the dependent variable. The ATM count in each cell during each 

week of the season was treated as an independent observation (218 

observations in Mercer, 279 observations in Monmouth). Independent 

variables included land cover, weather, and census data, plus soil data and 

distance to coast in the Monmouth model. These models will be referred 

to as ‘county cell level’ models throughout the text. 

• Model 3 consisted of aggregated ATM counts in each site from both 

counties during each week of the entire season (July 15-October 30). The 

ATM count in each site during each week of the season was treated as an 

independent observation (149 observations total). Independent variables 

included census and weather data only, as well as a dummy variable for 

county. These models will be referred to as ‘site level’ models throughout 

the text.  

For cell level analyses (models 1 and 2), counts of mosquitoes in each cell during 

the high season, July 15 to August 30, were regressed against land cover, tax, census, soil, 

and meteorological data. A limited time frame was selected because the primary focus of 

this research was to determine the ATM’s habitat preference when abundance is highest 

and control is the most important, which is usually between June and late August (Sota et 

al. 1992; Barker et al. 2003). Initial analysis of the mosquito field data showed a 
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significant decrease in the number of mosquitoes caught in September and October 

versus July and August (Figures 3a and 3b). Using a limited time frame also prevented 

temporal autocorrelation from affecting the analysis. As discussed at the beginning of the 

methods section, all cell level ATM counts were log-transformed to achieve normality 

prior to analysis. Individual models were developed for total count (Model 1T), females 

only (Model 1F), and males only (Model 1M) using the combined data from both 

counties for a total of 497 observations, which produced more powerful models with a 

lower risk of overfitting than only creating models for each county. For exploratory 

purposes, individual models for each county using cell level total counts were also 

created (Model 2Mer for Mercer County and Model 2Mon for Monmouth County), 

though these models were not considered sources of definitive information about habitat 

preferences in each county due to a lower ratio of dependent observations to predictor 

variables. The county cell level models included slightly different sets of independent 

variables, which were adjusted based on presence of the variables in the sites. For 

example, the Monmouth County cell level model included soil drainage and distance to 

coast, while the Mercer County model did not since these features are relatively invariant 

in Mercer. Excluding some independent variables from the county cell level models 

ensured at least five dependent observations per independent variable, which is 

considered the minimum for exploratory research (Allison 1999). 

Additionally, site level models were developed for total count (Model 3T), 

females only (Model 3F), and males only (Model 3M) in each site from both counties 

during each week of the entire field season (July 15-October 30) to determine the effect 

of scale on model performance. Square-root transformed counts per week per site served 
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as the dependent variable, for a total of 149 observations (4 sites x 16 weeks plus 5 sites x 

17 weeks). Independent variables included meteorological data (temperature, 

precipitation, and wind), census data (population density, single parent households, 

vacant households, and rented households), and a coded dummy variable to indicate the 

county in which the data were collected. Land use/land cover data were not included in 

these models because the sites within each county had relatively similar proportions of 

each class. 

In this analysis, 10-fold cross validation tested the models’ performance against 

an independent data set via resampling. In K-fold cross validation (where K=10 in this 

case), the data are partitioned into K randomly selected subsamples of approximately 

equal size and the model is tested K times, each time leaving out one of the subsets as 

validation data. The results of the K folds are then combined to estimate the error of the 

model. Similarity between the original and cross-validated residuals confirms whether or 

not that the regression results are distorted by too many (or irrelevant) predictors and 

whether the models can be applied successfully to an independent dataset. 
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RESULTS 

Land Use/Land Cover Classification 

Post-classification evaluation of the sub-object level map revealed that several 

classes were often confused with one another (Table 3). In comparison to the reference 

data, the classified data often confused deciduous and coniferous woody vegetation, 

which is not surprising given the spectral and shape similarities of these two classes and 

the prevalence of shadows in the imagery. Also, grass (especially lawn and other 

grassland) was often classified as bare earth, probably because the ground was very dry 

throughout both counties when the 2007 imagery were taken. The accuracy totals also 

reveal that deciduous woody vegetation was underestimated (low producer’s accuracy) in 

both counties (Table 3).  Producer’s accuracy measures errors of omission, or the 

likelihood that a reference point has been correctly classified, while the user’s accuracy 

measure the error of commission, or the probability that a sample from the classified data 

actually represents that category on the ground. Bare land in Monmouth and other 

grassland in Mercer have high producer’s accuracies and low user’s accuracies, which 

indicate that most of the bare land and other grassland were classified, but many objects 

assigned to these classes actually belonged to another class. Also, several classes 

(cemeteries, all water classes except swimming pools, and commercial and public 

buildings) have ‘perfect’ user’s or producer’s accuracy, but these high accuracies may 

exist because fewer ground control points were selected from these classes. 

Despite these errors, the sub-object (level 3) classification was 83.3percent 

accurate in Mercer County and 82.01 percent accurate in Monmouth County (Table 3). 

The Kappa statistics, which take into account the off-diagonal elements and errors of 
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commission and omission, confirm the accuracy totals. The overall Kappa values also 

indicate that the classifications are at least 81.89 and 80.7 percent better than would be 

expected by random chance in Mercer County and Monmouth County, respectively. This 

level of accuracy is sufficient for modeling Asian tiger mosquito abundance in this case. 

The accuracy results also indicate that object-oriented classification is a useful method 

for describing urban ATM habitat.  

Compared to previous studies of ATM abundance, the spatial grain of this land 

characterization was very fine (4 ft2) and the classification scheme was very detailed. 

Such a fine scale classification was created to portray microhabitat and to potentially 

serve as a proxy for microhabitat weather data, which was not available for this time 

period. The super object level (level 1) represented basic land cover information, while 

the object and sub-object levels characterized a mixture of detailed land cover and land 

use (Figure 5; see Figure 4 for classification scheme). The percentages of each class by 

site are shown in Table 4. When creating the models, I focused on levels 2 and 3 of the 

classification since I suspected that these classes would be the most relevant to the 

mosquitoes as these levels better correspond to the landscape that an individual 

experiences. 

Spatial Pattern Analysis 

Spatial pattern analysis results are shown in Tables 4a and 4b. For the most part, 

spatial autocorrelation was inconsistent. Only two sites (Site 2 and Union Beach) 

exhibited consistent positive autocorrelation as measured by Moran’s I statistic for total, 

females, and males during both the high season and the entire season, though Cliffwood 

Beach exhibited consistent positive autocorrelation for total and females during both time 
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periods (Table 5a). Keyport exhibited clustering for total and females during the entire 

season and females during the high season, while North Middletown only exhibited 

clustering for females during the high season. All other sites had random distributions for 

the high season and the entire season. 

Moreover, consistent autocorrelation (across total, males, females) was more 

common for the seasonal counts than the monthly counts. None of the monthly counts 

showed consistent patterns across time (i.e., a site’s counts are autocorrelated in every 

month) or across different types of counts (i.e., total, females, and males are 

autocorrelated in the same month) (Table 5b). July in Monmouth County appeared to 

have more clustering than any other month. July and October in Mercer County could not 

be tested because there were less than thirty observations per site in each month.  

Similar to Moran’s I, semivariograms did not reveal consistent patterns across the 

sites or counties (Table 6; see Appendix 1 for complete catalog of semivariograms). All 

of the graphs can be classified as either random, non-random with a perceptible sill, or 

hole effect (see Figure 9 for examples). Two sites, 5 and 7 in Mercer, had random 

semivariograms for all periods, though Keansburg and North Middletown each had only 

one non-random semivariogram. Although Moran’s I and semivariograms are both 

measures of autocorrelation, some sites’ semivariograms did not match the Moran’s I 

results (Table 6). Major conflicts between Moran’s I and the semivariograms occurred for 

Sites 2 and 3 in Mercer County, and Keyport, North Middletown, and Union Beach in 

Monmouth County.  

Specifically, Site 2 exhibited clustering during the entire season and the high 

season according to Moran’s I statistics. However, semivariograms for these periods 
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showed random effects (Table 6). Conversely, Moran’s I indicated that all counts in Site 3 

were randomly distributed during the entire season and the high season, while 

semivariograms for the high season showed clustering between distances of 

approximately 75 and 190 meters (Table 6). This mismatch is almost exactly opposite the 

results for Site 2, but the data were verified and these results are not due to error.  

Likewise, the Moran’s I statistics and semivariograms for North Middletown and 

Union Beach conflicted. North Middletown exhibited clustering in females only during 

the high season according to Moran’s I, while the semivariogram for this period was 

random (Table 6). Conversely, all monthly Moran’s I statistics were random, but the 

semivariogram for August revealed clustering up to 80 meters. Additionally, though both 

Moran’s I and semivariograms indicated clustering in Union Beach for all counts during 

the high season and entire season, monthly results conflicted. According to Moran’s I, all 

monthly counts except July were random, while the semivariogram for July showed a 

random pattern and semivariograms for August and September showed clustering up to 

450 and 110 meters, respectively.  These differences may have occurred because Moran’s 

I and semivariograms test autocorrelation slightly differently and serve different purposes 

in spatial analysis. Moran’s I is an index of covariation between points and determines 

dissimilarity based on deviations from the mean (Cressie 1993; Fortin and Dale 2005). 

Semivariograms determine the degree of autocorrelation as a function of distances 

between points (i.e., variance). Also, semivariograms describe how spatial patterns vary 

as a function of scale, while Moran’s I, as a measure of global autocorrelation, evaluates 

the overall pattern at a single scale (Ibid.). 

Aside from these major differences, semivariogram results mostly agreed with 
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Moran’s I results (Table 6). Cliffwood Beach exhibited clustering of total abundance up 

to approximately 475 meters during the entire season, while clustering of total and 

females only counts during the high season ranged from approximately 400 to 500 

meters. Total counts during the entire season in Keyport were clustered, with a range of 

approximately 390 meters. Semivariograms for total abundance in July and September 

clearly indicated clustering up to 75 meters and 290 meters, respectively, though Moran’s 

I statistics for these periods indicated a random distribution. Otherwise, Moran’s I results 

and semivariogram results matched (Table 6).  

Monthly semivariograms showed little autocorrelation, and if any was present it 

was inconsistent. Several monthly graphs showed oscillation, also known as the hole 

effect, which reflects either extreme values, periodicity in the spatial variability of the 

errors, or preferential clustering in the data (Bailey and Gatrell 1995). A typical example 

of the hole effect are shown in Figure Y2b. These graphs were interpreted as random 

because ranges could not be determined from the graphs.  

The spatial characterization of ATM adult abundance in selected sites during the 

high season is shown in Figure 10 (see Appendix 2 for complete catalog of hotspot 

maps). Hot spot analysis was performed on total, females only, and males only abundance 

during the high season, entire season, and each month, but the high season’s results had 

the most hot spots. Hot spots were not consistent between months for any site. In several 

cases, there were no hot spots for the monthly counts, which also tended to have more 

cool spots than hot spots.  

In regard to season wide analysis, hot spots occurred more frequently during the 

high season than the entire season, though the results of the two periods never 
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contradicted each other (Appendix 2). Mercer County sites had fewer hot spots than 

Monmouth County sites. Based on visual inspection, hot spots usually occurred in more 

residential areas or near the borders of residential areas and patches of vegetation, and 

tended not to occur in commercial areas, especially in Monmouth. Most of the sites in 

both counties consistently had hot spots in one portion of the site. Sometimes this area 

was a small corner or a very specific area (e.g., the park in Union Beach, the Henry 

Hudson Trail in Keyport, or the northern corner of Site 2), while in other cases it was 

more general (e.g., the north side of Cliffwood Beach, the western portion of Site 3, the 

northern and southern sides of Keansburg) (Figure 10). At the same time, in some sites 

the lack of hot spots in certain areas was more conspicuous than the presence of hot 

spots. For example, North Middletown seemed to have hot spots consistently throughout 

the site except in the northern corner. Even during the high season, some sites 

consistently had very few hot spots, such as Sites 5 and 7. 

Most hot spots in total abundance data were due to concurrent high counts of 

males and females. However, some hot spots in total abundance occurred due to an 

exceptionally high catch of either females or males, which was evident depending on 

whether the same hot spot existed for females or males. For the most part, total, females 

only, and males only hot spot maps shared most hot spots, though occasionally, females 

or males had more hot spots than the total data (see Appendix 2 for examples).  

Regression 

At both the site level and the cell level, linear regression analyses were carried out 

to determine whether selected habitat variables and Ae. albopictus abundance were 

related. Cell level models were created using combined counts from both counties during 
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the high season (July 15-August 30) for total count (Model 1T), females only (Model 1F), 

and males only (Model 1M), while models for each county (Model 2Mer and Model 

2Mon) were created using only total counts from the high season. Table 7 shows the 

results of the cell level regression. Site level models for total count (Model 3T), females 

only (Model 3F), and males only (Model 3M) were created using data from both counties 

during each week of the entire field season, July 15-October 30. Table 8 shows the results 

of the site level regression. 

Approximately 20-25% of the variation in mosquito abundance at the cell level 

can be explained by a combination of meteorological, land use/land cover, and housing 

structure variables (Table 7). The regression equations (with standard errors shown in 

parenthesis): 

tcell = 2.543 + 1.694lndecid – 1.197lngrass2 – 2.174lnwet2 + 19.666lnstrm2 + 

29.67lnothh2o2 – 8.993lnothgr2 + 0.049TC + 0.0004vacant 
(0.154) (0.234) (0.718) (0.552) (6.516) 

(3.321) (0.014) (0.0006) (12.688) 

fcell = 1.979 + 1.819lndecid –1.489lnwet2 + 18.195lnstrm2 + 33.01lnothh2o2 – 

7.071lnothgr2 – 0.067pre14 + 0.028tminc + 1.204pre + 0.001wdir + 

0.003vacant 

(0.113) (0.202) (0.465) (5.528) (9.644) 

(2.89) (0.028) (0.011) (0.319) (0.0004) 

(0.0006) 

mcell = 0.758 + 0.105draincl1 – 1.65lnpave – 2.515lnbare + 3.338lnothgr + 

 1.376 proprent + 0.135pre14 + 0.033tminc – 1.418pre + 0.004vacant 
(0.196) (0.043) (0.456) (1.045) (1.82) 

(0.043)(0.449) (0.017) (0.509) (0.001) 

Only two variables, number of vacant housing units and temperature (average or 

minimum) on the catch date, were selected in all three cell level models. Although 

temperature on the day of the catch was a significant predictor in all three models, its 

contribution was relatively small in every model (β1T = .144, p=.0003; β1F = .112, p = 
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.0115; β1M = .082, p = .0507). In contrast, vacant housing units were relatively more 

important than most of the other variables in the three models (β1T = .288, p<.0001; β1F = 

.275, p <.0001; β1M = .198, p = .0001). Seven other important variables (lnDecid, lnWet2, 

lnStrm2, lnOthH2O2, LnOthGr2, Pre14, and Pre) were selected in two of the three cell 

level models (Table 7).  

Indeed, models for females only and total were quite similar, sharing significant 

predictors including the percentage of deciduous woody vegetation in a cell (lnDecid), 

streams and rivers within 200m of a cell (lnStrm2), and other water within 200m of a cell 

(lnOthH2O2) with positive coefficients, and wetland and other grassland within 200m of 

a cell (lnWet2 and lnOthGr2) with negative coefficients (Table 7). However, Model 1T 

required fewer predictors than Models 1F or 1M to achieve similar explained variance. 

Additionally, the model for males only was quite different from the other two cell level 

models. Half of the predictor variables in Model 1M were unique to males only, including 

soil drainage and percentages of pavement, bare land, and other grassland in a cell. 

Model 1M also had a higher error rate (RMSE1M = 0.897) than the other cell level models 

(RMSE1T = 0.6405, RMSE1F = 0.5518). The similarity between Models 1T and 1F makes 

sense because females comprised most of the catch in each cell, with a few exceptions. 

Error rates may have been higher for Model 1M due to less predictable patterns in male 

abundance and the pronounced difference between males abundance in the two counties. 

Individual Mercer and Monmouth County models had similar R-squared values 

(R2
Mer = 0.2122, R2

Mon = 0.2028) to the combined county cell level models (Table 7). The 

county models also shared several predictor variables with the other cell level models, 

including temperature on the day of the catch and the percentage of woody or deciduous 
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vegetation in a cell, as shown in the regression equations: 

tMer = 2.558 + 1.644lndecid – 15.441lnothgr2 – 0.042TminC + 0.004vacant 
(0.125) (0.354) (7.01) (0.001) (0.02) 

tMon = 0.716 + 1.876woody + 0.1draincl1 + 1.65wet + 55.127lnswim2 – 

2.515tmaxc + 0.0009popden 
(0.351) (0.328) (0.036) (0.648) (15.819) 

(0.018) (0.0002) 

 As in the combined county models, the temperature on the trapping date was a 

significant predictor in both models, though its contribution was relatively small  (βMe r = 

-.132, p= .0309; βMon= -.158, p = .0036). TminC, or the minimum temperature on the 

trapping date, was a negative predictor in Model 2Mer, but a positive predictor in the 

combined county cell level models. Similarly, the percentage of woody/deciduous 

vegetation within the cell was a positive predictor of total ATM in Models 2Mer and 

2Mon, causing a 1.64% and 1.88% increase in ATM abundance in a cell for every one 

percent increase in woody/deciduous vegetation in Mercer and Monmouth, respectively 

(βMer = .293, p= < .0001; βMon =  .322, p < .0001). 

Although the county models shared several predictor variables with other cell 

level models, the two county models were quite different from each other. In the 

Monmouth County model, the percentage of wetland within a cell (lnWet) was a 

significant predictor (β = .142, p = .033), though this variable was not tested in the 

Mercer model since lnWet and lnWet2 were equal to zero for all Mercer dependent 

observations in Mercer County (Table 7). However, in this case the percentage of wetland 

within the cell was positively associated with total ATM abundance in Monmouth County 

cells, which contradicts the results for the combined cell level models where the 

percentage of wetland within 200 meters of a cell negatively affected the number of ATM 

in the cell. Soil drainage was also a significant predictor in Model 2Mon, but not Model 
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2Mer, which was expected since soil drainage is nearly uniform in the Mercer sites (Table 

7). In the Monmouth County model, better drained areas were associated with higher 

numbers of total ATM (β = .191, p = .0056), though this somewhat contradicts the 

inclusion of wetlands in the model since wetlands are poorly drained. Despite this 

discrepancy, the percentage of swimming pools within 200m of a cell (lnSwim2) was also 

selected as a significant predictor in the Monmouth County model (β = .198, p = .0006), 

which agrees with the inclusion of lnOthH2O2 (the percentage of other water within 200 

meters of a cell) in Models 1T and 1F because lnSwim2 is one of the level 3 classes 

belonging to lnOth2O2 (Figure 4). Swimming pools are more common in the Monmouth 

sites than in the Mercer sites as the backyards tend to be larger and the houses farther 

apart, which may explain why this variable was selected for the Monmouth model but not 

the Mercer model. For the Mercer County model, the percentage of other grassland 

within 200m of a cell (lnOthGr2) was selected as a negative predictor of ATM abundance 

(β = -.144, p = .0287), which agrees with the combined cell level models. Similarly, the 

number of vacant housing units in a site was also selected as a significant positive 

predictor of ATM in Mercer County (β = .322, p < .0001), which may be because the 

Mercer sites historically and currently have a greater number of vacant houses than the 

Monmouth sites. This variable was not selected in Model 2Mon, though population 

density (PopDen) was a positive predictor variable (β = .222, p = .0001). Although the 

county models were for exploratory purposes only, the differences between them suggest 

that ATM habitat preferences may vary somewhat depending on location, with a few 

more universally important variables such as temperature, vegetation, and vacant houses.  

While cell level models were able to explain some of the variance in ATM 
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abundance, the site level models performed much better than the cell level models, 

explaining 72-78% of the variation in mosquito abundance (Adjusted R2
3T = 0.7781, 

R2
3F= 0.7608, R2

3M = 0.7331; Table 8). Land use/land cover was not included in the site 

level models by design, so census and meteorological variables were the only predictor 

variables used in the models, as is evident in the regression equations: 

tsite = 9.971 + 0.03vacant + 1.074tc30 + 0.337tc – 0.625pre14 
(0.61) (0.005) (0.164) (0. 102) (0.173) 

fsite = 7.65 + 0.001popden + 0.023vacant + 0.844tc30 + 0.285tc – 0.634pre14  
(0.765) (0.0004) (0.005) (0. 139) (0.086) (0.147) 

msite = 7.022 – 0.001popden – 0.418tmaxc30 + 0.303tminc – 0.093wmax 
(0.835) (0.0003) (0.126) (0. 07) (0.027) 

 All site level models included vacant housing units (Vacant) and the average temperature 

during the 30 days preceding the trap set date (TC30) as significant positive predictors. 

Out of all the predictor variables, TC30 had the greatest effect on the number of ATM 

adults per site in all models (β = 0.53-0.56, p < .0001). 

As with the cell level models for total and females only, models 3T and 3F shared 

all but one predictor variable (population density in Model 3F; Table 8). The average 

temperature on the trapping date (TC) and the total precipitation in the 14 days preceding 

the trapping date (Pre14) were significant predictors in both models, though Pre14 was a 

negative predictor and TC was a positive predictor. However, as at the cell level, Model 

3M had additional predictive variables that were not present in the other site level 

models. The minimum temperature on the trap date (TminC) positively affected male 

abundance (β = .393, p < .0001), which is similar to the effect of TC in models 3T and 3F, 

while the maximum wind speed on the trap date (Wmax) and the maximum temperature 

in the 30 days preceding the trap date (TmaxC30) negatively affected male abundance 
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(βWMax = -.172, p = .0012; βTmaxC30 = -.261, p = .0006). 

Besides these similarities between site and cell level models, several variables 

were consistently selected as significant predictors (P < 0.05) in most of the models, 

including the number of vacant housing units in a site and the temperature (average, 

minimum, or maximum) on the days that the trap was set and collected (Tables 4 and 5). 

At the site level, the average temperature during the 30 days prior trapping (TC30) was 

also very important. In the cell level models, the percentage of woody or deciduous 

woody vegetation in a cell and the percentage of other grassland and other water within 

200m of a cell were also selected by several models, though these variables were not 

selected as consistently as temperature or vacant housing units.  

Assumptions of normality, independence, homoscedasticity, and linearity were 

met by all models according to the Shapiro-Wilk test, the Durbin-Watson test, White’s 

test, and graphs of the variables, respectively. The assumption testing results are not 

reported here for conciseness, but will be made available upon request. 

Cross-validation demonstrates that overfitting was only problematic for the 

county cell level models (Table 9). For the cell level models (Models 1T, 1F, and 1M) and 

the site level models (Models 3T, 3F, and 3M), the validated R-squared was slightly 

higher than the original models’ R-square and RMSE values were lower, suggesting that 

the original models’ statistics underestimated the predictive power of the models. The 

cross-validation results indicate that these models will perform as well on future data as 

on the current data, though there is some uncertainty in this statement for the cell level 

models (1T, 1F, and 1M) since they only predicted about 20% of the variation in  ATM 

abundance. In contrast, Models 2Mer and 2Mon had lower cross-validated R-squares 
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than the original R-squares and higher RMSE (Table 9), suggesting that the original 

models for each county were slightly over fitted to the data and, thus, these models may 

not perform as well on future data. For this reason, cell level models for each county 

should be considered exploratory only and not good representations of ATM habitat 

preferences within each county. 
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DISCUSSION  

This study revealed two important points about ATM ecology: 

1. Scale (extent and grain) affects the detection of spatial patterns in ATM 

abundance. The extent of the study areas in this project did not capture 

consistent patterns in ATM abundance, though patterns may be present at 

a broader extent or multiple scales.  

2. Fine-grain land use/land cover information in combination with more 

coarse-grain housing structure and meteorological information can predict 

20% to 80% of the variability in ATM abundance, depending on the grain 

of the abundance. 

Before these points can be explored in depth, however, certain limitations of this 

study should be noted. The original field work was designed to normalize differences 

between study areas and limit autocorrelation in the data so as to determine the effects of 

different control regimes. As a result, the field data, though very detailed, were not 

optimal for comparing different habitats because there was not a large range of habitat 

quality within the study sites.  A wider range of habitat and environmental conditions 

would have been preferable for this analysis to better illuminate how habitat quality 

impacts ATM abundance. Moreover, only one season of field data was available since the 

larger project is in the early stages, so the results of the models may be specific to 2008. 

Though cross-validation indicated that all models except county cell level models would 

perform well on independent data, the true test will be validating the models with the 

2009 data. Also, the focus of these models is adult density and where females go to feed 

and mate, rather than sources of adults. Since there is not always a link between larval 
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and adult ATM abundance and distribution, habitat characteristics important for breeding 

(i.e., the prevalence of water-filled containers) may or may not be relevant to where male 

and female adults were trapped (Richards et al. 2006). Due to time constraints and a lag 

between the field data collection and analysis, the number of containers in the cells was 

not tested in the models. Other variables such as shade and nectar or blood meal 

availability may be more important to characterizing adult distribution than number of 

containers. Though vegetation classes served as proxies for shade and nectar, the models 

were missing other potentially important variables such as blood meal availability and 

relative humidity. 

In addition to potentially excluding important predictor variables, the models 

were comprised of independent variables with different spatial and temporal grains. Some 

of the data, such as land use/land cover, tax parcel data, and soil drainage, provided 

detailed information about each cell, while other data (weather and census, especially) 

could only provide information at the site or county grain. Having all of the independent 

variables at a more consistent grain might change the results, though previous studies 

such as Rey et al. (2006) also included both fine- and coarse-scaled variables in their final 

models. Meteorological data from weather stations may be more appropriate for site level 

analysis, which could explain why cell level models did not perform well. Weather is 

indisputably important to forecasting ATM abundance, but coarsely scaled weather data 

may not be useful for forecasting abundance at the backyard level. Optimally, the 

imagery for the land use/land cover classification also would have been more recent 

because land cover changes may have occurred in the year lag between the image capture 

date and field data collection. Fortunately, orthophotos were available to classify woody 
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vegetation for the 2008 field dates, though the 2008 imagery had a coarser resolution that 

could not detect trees that were smaller than 4 m2. Similarly, tax parcel and census data 

were significantly older than the field data, which introduced additional error into the 

models. 

Lastly, the methods themselves have limitations that should be noted. Stepwise 

regression carries with it the temptation to let the automatic algorithm determine the 

questions we ask about the data (Allison 1999). In this case, though, the large number of 

predictor variables required a streamlined approach for finding the most significant 

predictors of ATM abundance. The ‘best’ models selected by the stepwise algorithm were 

not accepted at face value, but were further tested to remove noise variables, which can 

be problematic in stepwise regression (Allison 1999; Tabachnick and Fidell 2001). In 

terms of spatial pattern analysis and determining the suitability of the data for regression, 

I only tested for spatial and temporal autocorrelation. Perhaps checking for spatio-

temporal autocorrelation would show patterns that could not be captured by separate tests 

(Fortin and Dale 2005). 

1. Considerations of Scale 

While these limitations were considered and accounted for as much as possible, 

the results of spatial pattern analysis indicate that the spatial extent of the study itself 

limited the detection of patterns in ATM abundance, though certain sites (e.g., Site 2 in 

Mercer or Union Beach in Monmouth) displayed consistent positive global 

autocorrelation during the high season (July 15-August 30) and the entire season (July 

15-October 30; Table 10a). According to Moran’s I and semivariograms, very little 

consistent clustering occurred within the sites, suggesting that the sites effectively 
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contained random or homogenous distributions of mosquitoes (Table 10a). The 

prevalence of random distributions is not surprising given that the study was designed to 

minimize autocorrelation and differences between sites. On a positive note, this result 

indicates that the 2009 field study can consider the sites equivalent for comparing 

different control regimes. As for the broader implications, the overall lack of consistent 

clustering suggests that the extents of the sites were too small to include enough 

variability in habitat characteristics to cause clustering in mosquito abundance, which 

may be present at a broader scale.  

In addition to a lack of global autocorrelation, the semivariograms did not reveal a 

consistent distance radius for controlling problem areas. The semivariograms’ ranges, 

which can be thought of as the maximum distance at which autocorrelation occurs within 

a site, varied from 75 meters to 500 meters (Table 10a). Although a range of 450 meters, 

for example, implies that ATM abundance within 450 meters of any given point is 

correlated, this number does not provide general enough information to determine the 

best distance to focus control around a problem area unless the sites’ ranges of clustering 

are relatively similar to one another. Similarly, the prevalence of completely random 

semivariograms means that mosquitoes are randomly distributed throughout many of the 

sites and so the number of adults at one location cannot be used to predict the number of 

adults at another location. In short, according to this data, control efforts may need to 

blanket a study site of this size in order to manage problem areas. Moreover, the ranges 

of the non-random semivariograms were approximately one fifth to one half of the sites’ 

area, which implies that the sites should contain only a few clusters since the range is 

nearly as large as the site. This, too, points toward variation at a broader scale or extent. 
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Additionally, spatial statistics for monthly ATM counts revealed mostly random 

patterns, which implies that clustering in mosquito abundance does not change over time 

and it does not occur only during a specific time period. Many monthly semivariograms 

exhibited oscillation (i.e., hole effect), which can be caused by extreme values, 

periodicity in the spatial variability of the errors, or preferential clustering in the data 

(Bailey and Gatrell 1995).  In regard to causes of this pattern, periodicity does not make 

sense with so few points and preferential clustering should not occur in randomly 

collected data, so this effect may be due to the presence of extreme values. Similarly, 

monthly hot spot analysis revealed few hot spots and no consistency in hot spot locations 

over time. The lack of consistency in these maps may have occurred because different 

cells were sampled each month, while the lack of hot spots may have occurred because 

often the minimum of 30 points for analysis was barely met. With either points at the 

same location over time or more points per monthly sample, the spatial analysis of 

monthly abundance might be more conclusive. Nonetheless, the lack of variation in local 

clusters over time means that mosquito control does not necessarily need to be targeted to 

different areas depending on the time of season. 

Comparison of site characteristics (land cover, census, soil) did not reveal any 

particularly conspicuous differences in habitat variability between sites that exhibited 

clustering and sites that had random ATM distributions (Table 10a). However, within 

each county, sites with clustering showed some differences, especially in vegetation 

composition. In Mercer County, Site 2 had more deciduous woody vegetation, other 

grassland, parks, vacant housing units, and single parent families than the other three sites 

in the county. In contrast, Monmouth County sites with the most clustering (Union 
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Beach, Cliffwood Beach, and Keyport) had fewer vacant houses than the other two sites. 

Other than this difference, the three Monmouth sites with clustering did not display 

consistent dissimilarity from the other two sites. However, more Monmouth sites than 

Mercer sites exhibited global autocorrelation and local clustering. Interestingly, 

Monmouth County sites are also larger than Mercer County sites by 708,000 m2 on 

average and they contain more heterogeneous land cover (i.e., a patchwork of wetlands, 

development, and forested areas in contrast to the more uniformly developed landscape 

of the Mercer County sites), which suggests that either a larger site extent or greater 

variability in habitat produces greater spatial heterogeneity in ATM abundance. 

Yet even though autocorrelation was not consistent over time or within counties, 

subtle patterns of consistently ‘hotter’ areas were observed within several sites, such as 

the Henry Hudson trail in Keyport and the park in Union Beach (Figure 10). The areas 

that supported higher abundances were generally more residential and vegetated, which 

corresponds to the results of the regression models where woody vegetation was a 

significant positive predictor of abundance and previous studies that found ATM in 

predominantly residential areas (Sota et al. 1992; Barker et al. 2003; Richards et al. 

2006). Therefore, even though global autocorrelation may not be present in the sites, 

more subtle local patterns can inform the priority areas for control. 

Overall, the idea that scale is important to understanding populations and systems 

is not new. Indeed, a common tenet of landscape ecology states that “[t]he scale at which 

studies are conducted may profoundly influence the conclusions” (Turner 1989, 174). 

Applying this idea to an otherwise purely entomological or ecological study gives insight 

into the interactions between patterns and processes that may be affecting ATM 
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populations. Within the broader context of geography and landscape ecology, the results 

of this study that indicate patterns in ATM abundance at broader extents compel a 

multiscale perspective to reveal the dynamics of the relationship between ATM 

populations and the landscape through varied grains and extents of spatial and temporal 

scales. Mosquito control decisions are often made at the county level about the types of 

control, the areas of greatest concern, and control policies. However, mosquito 

populations may vary at different scales.  By applying a geographic perspective to 

mosquito control, we can better understand where the mosquitoes are, why they are 

where they are, and how they can be managed. Ultimately, this approach will reveal 

interactions between patterns and processes at a local site-specific scale and eventually at 

a larger regional scale. 

2. Predicting ATM Abundance with Regression Models 

Despite the study’s limitations and the lack of strong spatial patterns in ATM 

abundance, regression analysis revealed significant relationships between adult ATM 

density and habitat characteristics. Components of the models can be divided into three 

categories:  

• meteorological factors, especially temperature and precipitation; 

•  human abundance and housing characteristics, specifically vacant housing 

units and population density; and 

• landscape composition, especially more detailed classes (levels 2 and 3).  

Meteorological data was the most coarsely scaled independent variable, and 

temperature on the day the traps were set was consistently included as a positive predictor 

variable in the models, where higher temperatures resulted in greater abundance (Table 
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10b). Furthermore, average temperature during the 30 days preceding the trap date was 

also a significant positive predictor in all of the site level models. Alto and Juliano (2001) 

found that in a laboratory setting, higher temperatures and the absence of evaporation 

resulted in greater production of adults, though the temperature on the trapping dates 

probably affects the catch rate more than the population (DeGaetano 2005). Besides 

temperature, previous studies suggest that rainfall may be an important predictor of ATM 

populations (Hawley 1988; DeGaetano 2005; Tsuda et al. 2006). The total amount of rain 

in the 14 days preceding the catch (Pre14) was included in four of the six primary models 

(excluding exploratory county models) (Table 10b). However, the relationship was not 

uniform in the models as three of the models (Models 1F, 3T, and 3F) showed a negative 

relationship between Pre14 and ATM abundance, while one model (1M) showed a 

positive relationship between the two variables. Perhaps the inconsistency in relationship 

type occurred due to a behavioral difference between males and females, or it could be a 

fluke in the models caused by other missing independent variables. The predominantly 

negative relationship between precipitation and abundance contradicts previous findings 

of rainfall increasing adult populations (DeGaetano 2005), though it may be that many 

lighter rain events flush immature mosquitoes from containers or that rainy days reduce 

trapping efficiency (Reinert 1989; DeGaetano 2005). In order to predict ATM abundance 

for planning control, temperature data can be obtained from weather forecast information 

and precipitation can be determined from real time climate information. In this way, 

climate information could be a potential short-term predictive tool (DeGaetano 2005).  

Several census variables were consistently selected in the models. The number of 

vacant houses in a site was selected as a significant predictor variable in all but one 
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model (Table 10b). Standardized beta coefficients show that in two models, the variable 

Vacant had the greatest relative effect on ATM abundance, while it was still one of the 

more important variables in the other five models (Table 10b). Originally, vacant housing 

was tested in the models because empty houses often have more garbage, tire piles, and 

neglected vegetation than inhabited homes, providing more habitat and oviposition 

opportunities for ATM. However, the census data were eight years older than the field 

data, so it is possible that this result is noise. Also, according to the US Census Bureau 

(2009), a ‘vacant unit’ is any housing unit that is unoccupied at the time of the census, 

regardless of the reason for vacancy (e.g., for rent/sale, for seasonal use, or abandoned). A 

survey of current vacant or abandoned houses in the sites would definitively determine 

the validity of this result. Aside from vacant housing units, population density (PopDen) 

was also selected as a significant variable in Models 2Mon, 3F, and 3M, which may have 

occurred due to the greater availability of blood meals or a larger amount of garbage in 

areas where there are more people per unit area. Rather than truly socioeconomic 

measures, the census variables selected in the models describe the presence of humans on 

the landscape and the types of structures that they inhabit, much like land use indicates 

the type of human activity on the landscape. 

Of the variables describing landscape composition, several land use/land cover 

classes were included in the final models (Table 10b). Soil drainage was only selected in 

two models (1M and 2Mon), and it may only be important when creating customized 

local models. The most relevant land use/land cover scales were levels 2 and 3, which 

represent the more detailed classes (Table 10b). Classes in level 1, the most general 

classification, were only selected in  Model 1M as significant predictor variables, and 
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when I tested models with only level 1 classes (plus weather and census data), the models 

performed much more poorly than when levels 2 and 3 were included. Furthermore, land 

use/land cover variables were removed from the stepwise cell level models, a much lower 

R-squared (approximately 0.1) was observed, indicating that land use/land cover 

information significantly improves the models. More detailed classes may capture the 

habitat that is most similar to what the ATM experiences and needs for survival, while 

coarser classes cannot capture microhabitat conditions.  

Indeed, level 2 and 3 vegetation classes were included in all of the cell level 

models. Specifically, woody or deciduous vegetation appeared as a significant positive 

predictor variable in four of the five models, where a one percent increase in 

woody/deciduous vegetation resulted in a 1.6-1.88% increase in ATM abundance (Table 

10b). In this case, woody and deciduous vegetation can be considered almost identical 

classes because coniferous woody vegetation comprised less than 10% of woody 

vegetation in both counties. Spatial analysis confirmed this result as borders between 

woody land and residential areas seemed to contain more hot spots (Figure 10), possibly 

because woody vegetation provides resting cover for adult mosquitoes and artificial 

containers used for oviposition are scattered throughout residential areas (Richards et al. 

2006). Previous studies have found similar correlations between woody vegetation and 

mosquito abundance. Rey et al. (2006) found that Ae. albopictus abundance was 

positively associated with canopy and mixed vegetation coverage and negatively 

associated with urbanization-related variables such as building coverage, though their 

study focused on oviposition habitat rather than adult habitat. Similarly, Akram and Lee 

(2004) found that habitats that were exposed to the sun throughout the day were less 
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preferred than habitats in the shade. Other studies (Sota et al. 1992; Barker et al. 2003) 

have found that densely wooded areas supported lower ATM populations than more open 

suburban areas, which corresponds with the results of this study because most of the 

woody vegetation was located in parks or lawns in suburban areas. Clearly, this variable 

is important to ATM microhabitat selection in urban and suburban areas. 

Additionally, the percentage of other grassland (OthGr2) within 200 meters of a 

cell was a significant predictor in three of the five cell level models and other grassland 

within a cell (OthGr) was a significant predictor in Model 1M, though both variables 

were usually relatively less important predictor variables according to beta weights 

(Table 10b). However, OthGr2 had a negative relationship to ATM abundance, while 

OthGr elicited the opposite response. Although ATM inhabits highly urbanized areas, it is 

often found in suburban and rural areas where open spaces with vegetation are common 

(Tsuda et al. 2006). Since rights of way and vacant lots or brown fields often contain little 

woody vegetation and abut paved or commercial areas, there may be less shade available 

for adults to rest during the heat of the day, though litter in these areas may provide ample 

containers for oviposition. 

Likewise, the percentage of wetland (Wet2) within 200 meters of a cell was a 

significant negative predictor in two of the five cell level models and wetland within a 

cell (Wet) was a significant positive predictor in Model 2Mon (Table 10b). While it could 

be argued that the ATM is not a wetland mosquito and thus should prefer suburban yards 

to wetland, it is also plausible that this result occurred because wetlands were not directly 

sampled, though field samples were taken nearby. The negative relationship between 

Wet2 and ATM abundance in Models 1T and 1F may have occurred due to differences in 
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the two counties’ land cover composition. For all Mercer County observations, lnWet and 

lnWet2 were equal to zero, so all ATM counts greater than zero would contribute to a 

negative correlation with wetland, thus causing the negative relationship in the model 

since Mercer observations comprised half of the dependent dataset. The positive 

relationship between ATM abundance and wetland in the Monmouth County model 

(2Mon) also points toward this explanation. Thus, this issue may have masked the true 

relationship between lnWet2 and ATM abundance, if any.  

Similarly, the inclusion of wetland as a positive predictor within the Monmouth 

County cell level model (2Mon) contradicts the inclusion of soil drainage in the model (β 

= .191, p = .0056) since wetlands are poorly drained. This incongruity may have occurred 

because the presence of containers in wetlands is more relevant to ATM abundance than 

the poor drainage in wetlands. Garbage from storm drains often appears in wetlands when 

heavy rains flush debris from the sewers onto the floodplain, providing a wealth of 

oviposition sites. 

Interestingly, the land cover classes most commonly included in models were 

those that described about the percentage of cover within 200 meters of a cell, which 

suggests that relevant habitat occurs over a wider area than the discrete trap location. For 

example, besides vegetation classes, several water classes (OthH2O2, Swim2, and Strm2) 

describing the amount of water within the 200 meter buffer were selected as significant 

positive predictor variables in three of the cell level models (Table 10b).  Streams may be 

predictors because they provide cooler, moister microhabitats for adult ATM, though they 

probably are not sources of adults since larger, moving bodies of water contain predators 

(Hawley 1988). In contrast, other water, including swimming pools, bird baths, and 
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temporary standing water, may be a significant predictor because it is a source of ATM 

adults. Besides these water classes, most of the other significant land cover variables 

(except woody/deciduous vegetation) described cover within 200 meters of a cell. This 

buffer may be significant because the ATM has a flight range of approximately 200 

meters (Kitron et al. 1998), which could complicate precisely targeted control, especially 

if an individual’s foraging and breeding habitats encompass a large range.  

Model Improvement and Application 

The extent of an individual’s habitat is the most relevant scale for predicting 

abundance and planning control. Hence, exploring various grains of independent habitat 

variables may be important, especially as information about “the influence of 

intermediate scale (hundreds of meters) habitat characteristics on mosquito presence and 

abundance and data on microhabitat (less than a meter) discrimination…is scant” (Rey et 

al., 2006, 1135). The results of the linear regression suggest that fine grain data such as 

land use/land cover and soil drainage are relevant to the ATM, but that the extent of the 

area under consideration plays an equally important role in detecting patterns in 

abundance. Indeed, the extent may need to be larger than the size of the sites in this study 

in order to capture enough habitat heterogeneity to cause patterns in ATM abundance. 

While vegetation may have served as a proxy for microclimate variables in this analysis, 

finer scale weather information should be tested in future models as it may be more 

important than or rule out vegetation variables. Although the coarse grain meteorological 

data from weather stations are useful for predicting when outbreaks will occur, 

microclimate data may be more useful for fine grain predictions of abundance because it 

better simulates what an individual organism experiences in its environment. Indeed, the 
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higher R-square values of the site level models may have been related to the 

correspondence in grain size between the sites and the weather and census data, and, thus, 

cell or ‘backyard’ level models might perform better given microhabitat weather and 

census data with finer grain size.  

In terms of the value of these models for mosquito control, prediction maps can 

be generated from the models to display predicted abundance at a specific time. Based on 

the independent variables, including land use, weather, soil, and census data, the 

abundance of the ATM within individual cells or within entire sites can be estimated 

using the models developed in this study. For example, I created a map of estimated 

abundance in Union Beach during the first week of August 2008, by inputting the 

independent variables into Model 1T1 to calculate abundance. Estimates of abundance 

were then joined to the spatial data layer showing the cells (Figure 11). A specific week 

was chosen because Model 1T includes the temperature on the day the traps were set, 

though this is the only time variant variable in the model. A period from 2008 was chosen 

so that the results could be verified with the field data, but this procedure could easily be 

applied to future time periods. Compared to the actual field counts for August 5-6, 2008, 

in Union Beach, the predicted values were -0.86 to 486.5 percent different, though most 

of the predicted values were within ±50 percent of the actual counts (Table 11). The 

RMSE is approximately ±15 mosquitoes, which is not surprising given that Model 1T 

could predict only 21 percent of the variation in ATM abundance. Despite these errors, 

the higher estimates of abundance in the southeastern corner of the study site somewhat 

coincide with the location of hot spots in this site during the high season (see Appendix 

                                                 
1 Model 1T: tcell = 2.543 + 1.694lndecid – 1.197lngrass2 – 2.174lnwet2 + 19.666lnstrm2 + 29.67lnothh2o2 
– 8.993lnothgr2 + 0.049TC + 0.0004vacant  
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2). This application of the models can produce fine grain maps of mosquito abundance 

for larger areas and, thus, provide another tool for achieving more precise targeted 

control. 
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CONCLUSION 

As human populations continue to grow, conflict between mosquitoes and humans 

will increase, resulting in the need for carefully planned control efforts. Climate and land 

use change further complicate the relationship between humans and mosquitoes and 

increase the need for dynamic models that can use real-time data to predict mosquito 

outbreaks. In this project, I have attempted to determine the relationship between land 

use, climate, and mosquito distribution and abundance.  

In this study, I found that grain size and extent play a vital role in determining the 

relationship between mosquito abundance and habitat factors. At the extent of this study, 

there was a lack of consistent autocorrelation in ATM abundance both within sites and 

over time, meaning that mosquitoes were randomly or homogenously distributed 

throughout the sites. Additionally, analysis of the ranges of autocorrelation in non-

random semivariograms revealed that there was not a distance at which mosquito 

abundance was consistently autocorrelated, which implies that control efforts in these 

sites may need to occur throughout the sites rather than just in specific problem areas. 

Despite the lack of global autocorrelation, some consistent hot spot patterns were 

apparent in specific sites, especially in more residential and vegetated areas. These results 

corroborate the findings of previous studies (Rey et al. 2006; Rochlin et al. 2009). Based 

on the results of this study, I suspect that the spatial extent of the study sites (60-61 ha in 

Mercer, 99-140 ha in Monmouth) was too small to capture enough heterogeneity in ATM 

abundance in order to create accurate predictive models, though the grain (2017 m2 cells 

in Mercer, 6831 m2 cells in Monmouth) was a good size.  

Overall, the results of the regression analysis provide some clues about ATM 
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habitat preferences and the effect of scale on model results. Comparing 2009 field data to 

the models will provide a real test of the models’ robustness, especially at the site level. 

Undoubtedly, meteorological conditions are very important to forecasting ATM 

abundance at all scales, and fine grain land use data may supplement coarsely scaled 

weather station data at the ‘backyard’ level. Regression analysis revealed that many 

variables are important to adult ATM, especially present temperature, vegetation (i.e., 

woody vegetation, other grassland, other water, and wetland), and the number of vacant 

housing units (Tables 4 and 5). These models provide a flexible means to elucidate the 

relationship between the ATM and landscape variables, while offering mosquito control 

experts the ability to develop more precise models depending on local conditions.  

Future work should follow up on the site and cell level models with the 2009 field 

data. Given that exploratory analysis revealed some differences between counties, further 

development of county level models may provide more insight into ATM habitat 

preferences in subtly different landscapes. Testing fine scale weather data collected in 

2009 will determine whether more detailed weather information enhances the predictive 

ability of the models. On a more extensive scale, continuing to fine-tune the models in 

these small areas will provide the foundation for county level and, eventually, state level 

predictive models. A potential extension of this project, which ties into other studies of 

the species’ invasive capability (e.g., Levine et al. 2004; Benedict et al. 2007; Moffett et 

al. 2007), would be to gather presence data in New Jersey and create an ecological niche 

model to predict its range in the state, especially in areas where the ATM is currently not 

present but could spread. 

While these results are just the beginning of a deeper understanding of ATM 
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ecology, they will serve as a strong basis for future work. Limited spatial autocorrelation 

in the six sites selected for 2009 trapping (Cliffwood Beach, Union Beach, North 

Middletown, and Sites 3, 5, and 7) indicates that the study of different control treatments 

can be assured that variations between sites will not confound the comparison. In terms 

of ATM ecology, all results emphasize the importance of scale to studying an organism’s 

habitat preferences, especially in reference to understanding spatial variability at multiple 

extents and grains. An additional challenge may be to determine the fundamental cues 

used by this species for selecting habitat and the most relevant extent and grain for 

predicting population fluctuations (Juliano et al. 2004; Rey et al. 2006). Spatial pattern 

analysis and geostatistical methods serve as useful alternatives or supplements to 

conventional statistics, though this approach has only recently been to be applied to 

studies of mosquito abatement (Rochlin et al. 2009). The inquiry into spatial patterns of 

ATM abundance in this study contributes to future control of this species in New Jersey 

by providing clues about where to focus control and trapping efforts and by suggesting 

the presence of patterns in ATM abundance at multiple scales.  

Furthermore, this comparison of mosquito abundance to climate, land use/land 

cover, and human population and housing builds upon previous work that used similar 

modeling methods, while focusing on adult populations and incorporating a wider range 

of fine-scale information about habitat at a scale that is relevant to informing 

management decisions. Moreover, the regression models developed in this study may 

guide future efforts to create predictive models for larger areas. Since there are few 

published studies that attempt to explain the relationship between mosquito populations 

and landscape or climate characteristics in the northeastern United States (DeGaetano 
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2005, Brown et al. 2008), this study fills an important gap in research and will hopefully 

spur future efforts to understand the ecology of mosquitoes in this region. As the ATM is 

an important vector of many arboviruses and is regarded as one of the world’s worst 

invasive species (Moore and Mitchell 1997; ISSG 2009), the empirical mosquito 

abundance models that are presented here have the potential to be a component of more 

extensive risk and invasion monitoring programs. 
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TABLES & FIGURES 

Table 1. Independent variables assessed in the regression model. 

  Independent Variable 
Categorical/
Continuous Resolution Abbreviation 

SS
U

R
G

O
 

Soil Drainage continuous Cell DrainCl 

 Distance from Cell Centroid to Coast continuous Cell DistOcn_Ft 

LU
LC

 

(log) Percent LU class within 200m of cell   Cell ln"LUCode"2* 
(log) Percent LU class in cell   Cell ln"LUCode"* 

Ta
x 

Total property value of tax parcels in 2002 continuous Cell Propval 

20
00

 C
en

su
s Population Density (persons/hectare) continuous Site PopDen 

Proportion of Renter Occupied Housing Units continuous Site PropRent 
No. Vacant Housing Units continuous Site Vacant 
No. Single Parent Households continuous Site SingleHH 

W
ea

th
er

 

Average Temperature (centered) continuous County by Date TC, TC30 
Max Temperature (centered) continuous County by Date TmaxC, TmaxC30
Min Temperature (centered) continuous County by Date TminC, TminC30 
Precipitation continuous County by Date Pre, Pre14, Pre30 
Wind Speed continuous County by Date W 
Wind Direction continuous County by Date Wdir 
Max Wind Speed continuous County by Date Wmax 

* Land use (LU) codes for each class are given in Figure 4.  

Table 2. Summary of regression models and their input parameters. 

 Model Names Grain Indep. Variables Other Notes 

Model 1 
 ‘cell level’  

1T – total ATM  
1F – females only 
1M – males only  Cell  

land use/land cover, 
census, tax, soil 
drainage, weather  497 observations  

Model 2 
 ‘county cell 
level’  

2Mer – Mercer Cty  
2Mon – Monmouth 
Cty  Cell  

land use/land cover, 
census, tax, weather; 
distance to coast and 
soil drainage 
(Monmouth only) 

•  218 obs. (Mer) 
•  279 obs. (Mon)  
•  Total ATM count. 
•  Exploratory only.  

Model 3 
‘site level’  

3T - total ATM  
3F – females  only 
3M – males only  Site  weather, census  149 observations  



56 
 

Table 3. Level 3 (sub-object level) land use/land cover classification accuracy totals and Kappa (K^) statistics.  

 MERCER COUNTY MONMOUTH COUNTY 

Class 
Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy

Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Pavement 49 42 34 69.39% 80.95% 70 71 59 84.29% 83.10% 
Bare Land 30 44 25 83.33% 56.82% 63 64 46 73.02% 71.88% 
Residential Bldg 48 44 42 87.50% 95.45% 72 60 58 80.56% 96.67% 
Commercial Bldg 37 43 37 100.00% 86.05% 48 61 46 95.83% 75.41% 
Public Buildings 19 14 14 73.68% 100.00% 40 30 29 72.50% 96.67% 
Wetland 8 8 7 87.50% 87.50% 51 43 40 78.43% 93.02% 
Stream/river 12 12 12 100.00% 100.00% 35 37 34 97.14% 91.89% 
Pond or reservoir 11 13 11 100.00% 84.62% 24 31 24 100.00% 77.42% 
Lawn 37 41 28 75.68% 68.29% 73 66 49 67.12% 74.24% 
Cemetery 20 22 18 90.00% 81.82% 22 23 22 100.00% 95.65% 
Park 23 18 17 73.91% 94.44% 33 33 30 90.91% 90.91% 
Other Grass 40 40 33 82.50% 82.50% 42 61 39 92.86% 63.93% 
Coniferous 33 42 32 96.97% 76.19% 63 63 50 79.37% 79.37% 
Deciduous 55 41 37 67.27% 90.24% 79 71 53 67.09% 74.65% 
Swimming Pool 38 38 37 97.37% 97.37% 70 64 60 85.71% 93.75% 
Temporary Water 12 10 9 75.00% 90.00% 15 17 14 93.33% 82.35% 
Bird Baths 0 0 0 0.00% 0.00% 17 22 17 100.00% 77.27% 
 Totals 472 472 393   817 817 670   
Overall Classification Accuracy  (Level 3) 83.26%   Overall Accuracy (L3)  82.01%   
Overall Kappa (Level 3) 0.8189   Overall Kappa (L3) 0.8283   
Overall Classification Accuracy  (Level 2) 85.59%   Overall Accuracy (L2)    84.94%   
Overall Kappa (Level 2) 0.8318   Overall Kappa (L2) 0.807   
Overall Classification Accuracy  (Level 1) 90.47%   Overall Accuracy  (L1) 90.70%   
Overall Kappa (Level 1) 0.8654   Overall Kappa (L1) 0.8696   
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 Site S2 S3 S5 S7 Cliffwood Keansburg Keyport Middletown Union Beach 

Le
ve

l 3
 

Bare Land 3.64 1.22 2.21 2.21 4.35 2.90 4.21 3.66 5.04 
Bird Bath 0.00 0.00 0.00 0.00 1.83 0.00 0.00 1.40 0.00 
Commercial Bldg 4.53 5.82 6.48 3.31 2.79 3.17 1.90 2.55 1.51 
Coniferous 0.98 1.88 1.18 2.51 32.95 2.26 6.23 26.95 1.09 
Deciduous 22.80 18.58 10.94 19.44 19.21 25.19 3.37 22.77 18.04 
Lawn 12.81 15.51 10.52 18.89 1.60 23.45 23.22 0.81 25.13 
Other Grassland 0.44 0.15 0.01 0.27 1.63 0.35 12.22 1.08 1.06 
Park 3.14 0.09 0.00 1.90 22.99 0.45 0.30 22.59 0.79 
Pavement 34.32 38.06 45.03 37.42 0.00 27.02 1.25 0.07 26.19 
Public Bldg 0.05 0.00 0.83 2.81 0.06 0.89 34.82 0.06 0.11 
Residential Bldg 17.30 18.65 22.72 11.10 9.91 13.71 1.02 14.06 13.52 
Rivers/Streams 0.00 0.00 0.00 0.05 0.05 0.61 10.91 0.00 0.46 
Swimming Pool 0.00 0.05 0.09 0.10 0.46 0.00 0.42 0.78 0.79 
Wetland 0.00 0.00 0.00 0.00 2.16 0.00 0.12 3.22 6.27 

Le
ve

ls
 1

&
 2

 

Building 21.87 24.47 30.03 17.22 12.76 17.76 37.74 16.67 15.13 
Other Water 0.00 0.05 0.09 0.10 2.29 0.00 0.42 2.17 0.79 
Water 0.00 0.05 0.09 0.15 2.33 0.62 11.33 2.17 1.25 
Vegetation 40.17 36.20 22.64 43.01 80.55 51.70 45.47 77.43 52.38 
Woody Veg. 23.77 20.45 12.11 21.95 52.16 27.45 9.61 49.72 19.14 
Grass 16.39 15.75 10.53 21.06 26.22 24.25 35.74 24.48 26.98 

 Total area (m2) 368,821 484,807 298,957 612,189 1,307,155 993,207 1,037,827 1,002,943 1,390,619 

Table 4. Land use/ land cover composition of all sites.  
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Table 5a. Moran’s I results for seasonal counts. For I > 0, Cluster1 (p≤.05); Cluster2 
(p<.01). For I ≈ 0, cell value is Random (p>.05). Bold text in grey cells represent a strong 
spatial pattern (Z>1.96) with less than 5% chance if being random. Gray cells represent 
spatial patterns (Z>1.65) with less than 10% chance of being random.  
 

 Site 
All Months, 
Total (T) 

All Months, 
Females (F) 

All Months, 
Males (M) 

Active 
Season, T 

Active 
Season, F 

Active 
Season, M 

M
er

ce
r C

ou
nt

y 2 
0.2 

(3.59) 
0.19 

(3.37) 
0.23 

(4.06) 
0.16 
(1.9) 

0.09 
(1.15) 

0.14 
(1.66) 

3 
0 

(0.14) 
-0.01 
(-.06) 

0.03 
(0.46) 

-0.02 
(-.04) 

-0.02 
(-.06) 

-0.06 
(-.32) 

5 
-0.01 
(-.02) 

-0.02 
(-.021) 

-0.01 
(-.14) 0 (0.14) 

0.09 
(1.04) 

-0.19 
(-1.7) 

7 
-0.03 

(-.033) 
-0.06 

(-.079) 
0.05 

(0.84) 
0.04 

(0.56) 
-0.01 
(0.05) 

0.18 
(2.08) 

M
on

m
ou

th
 C

ou
nt

y 

Cliffwood 
0.09 

(1.74) 
0.08 

(1.61) 
0.05 

(0.84) 
0.16 

(1.92) 
0.14 

(1.68) 
-0.02 
(-.12) 

Keyport 
0.16 

(2.91) 
0.18 

(3.24) 
0.09 

(1.65) 
0.13 

(1.93) 
0.14 
(2) 

0.03 
(0.54) 

Keansburg 
-0.05 

(-.056) 
-0.02 
(-.12) 

-0.05 
(-.059) 

0.13 
(1.4) 

0.14 
(1.5) 

0.15 
(1.57) 

Middletown 
0.04 

(0.96) 
0.05 

(1.27) 
0.02 

(0.44) 
0.09 

(1.36) 
0.14 

(2.03) 
0.03 
(0.5) 

Union 
Beach 

0.09 
(1.88) 

0.09 
(1.73) 

0.1 
(1.91) 

0.28 
(2.87) 

0.28 
(2.88) 

0.21 
(2.19) 
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Table 5b. Moran’s I results for monthly counts. Bold text in grey cells represent a strong spatial pattern (Z>1.96) with less than 
5% chance if being random. Gray cells represent spatial patterns (Z>1.65) with less than 10% chance of being random. Z 
scores are shown in parenthesis under each I value.  
 

  Site July, T July, F July, M Aug, T Aug, F Aug, M Sept, T Sept, F Sept, M Oct, T Oct, F,  Oct, M 

M
er

ce
r C

ou
nt

y 

2 
<30 
obs. 

<30 
obs. 

<30 
obs. 

0.09 
(0.87) 

-0.03 
(-0.03) 

0.07 
(0.73) 

0.14 
(1.33) 

0.17 
(1.58) 

0.1 
(1.02) 

<30 
obs. 

<30 
obs. 

<30 
obs. 

3 
<30 
obs. 

<30 
obs. 

<30 
obs. 

-0.06 
(-0.36) 

-0.03 
(-0.08) 

-0.1 
(-0.87.) 

0.02 
(0.31) 

-0.05 
(-0.23) 

0.06 
(0.64) 

<30 
obs. 

<30 
obs. 

<30 
obs. 

5 
<30 
obs. 

<30 
obs. 

<30 
obs. 

-0.13 
(-0.61) 

0.09 
(0.72) 

-0.31 
(-1.68) 

-0.21 
(-1.64) 

-0.25 
(-1.96) 

-0.06 
(-0.29) 

<30 
obs. 

<30 
obs. 

<30 
obs. 

7 
<30 
obs. 

<30 
obs. 

<30 
obs. 

-0.07 
(-0.34) 

-0.05 
(-0.16) 

0.1 
(0.96) 

-0.15 
(-1.16) 

-0.08 
(-0.53) 

-0.19 
(-1.51) 

<30 
obs. 

<30 
obs. 

<30 
obs. 

M
on

m
ou

th
 C

ou
nt

y 

Cliffwood 
-0.08 
(-0.5) 

-0.06 
(-0.33) 

-0.14 
(-0.95) 

0.17 
(1.3) 

0.21 
(1.55) 

-0.13 
(-0.7) 

0.12 
(1.07) 

0.02 
(0.3) 

0.32 
(2.56) 

0.02 
(0.3) 

-0.02 
(-0.07) 

-0.1 
(-0.54) 

Keyport 
0.06 

(0.86) 
0.11 

(1.38) 
-0.06 

(-0.37) 
0.13 

(0.98) 
0.22 

(1.57) 
-0.15 (-
0.76) 

0.09 
(0.97) 

0.07 
(0.74) 

0.07 
(0.75) 

0.07 
(0.77) 

0.07 
(0.8) 

-0.12 
(-0.88) 

Keansburg 
0.22 

(1.69) 
0.18 

(1.44) 
0.19 

(1.45) 
0.06 

(0.59) 
-0.01 
(0.09) 

0.25 
(1.85) 

-0.19 
(-1.19) 

-0.2 (-
1.26) 

-0.17 
(-1.04) 

<30 
obs. 

<30 
obs. 

<30 
obs. 

Middletown 
-0.06 

(-0.32) 
-0.03 

(-0.05) 
-0.11 
(-0.8) 

0.1 
(0.94) 

0.12 
(1.11) 

0.03 
(0.41) 

-0.08 
(-0.54) 

-0.07 
(-0.49) 

-0.05 
(-0.29) 

-0.14 
(-0.88) 

-0.2 
(-1.36) 

-0.15 
(-1.36) 

Union 
Beach 

0.21 
(2.47) 

0.16 
(1.97) 

0.11 
(1.38) 

0.06 
(0.63) 

0.09 
(0.82) 

0.04 
(0.48) 

0.1 
(1.23) 

0.1 
(1.3) 

0.06 
(0.87) 

0.03 
(0.51) 

-0.02 
(0.03) 

-0.02 
(0.1) 
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Table 6. Semivariogram results with Moran’s I results. Bold text represents non-random semivariograms with ranges. Red cells 
show mismatches between the two statistics, while green cells show non-random matches. All October semivariograms and I 
values were random. 
 
 All Months, T Active Season, T Active Season, F Active Season, M July, T Aug, T Sept, T 
Site Semivar Moran I Semivar Moran I Semivar Moran I Semivar Moran I Semivar Moran I Semivar Moran I Semivar Moran I 

2 Random Cluster2 Random Cluster1 Random Random Random Cluster1 Random n/a 90m Random Random Random 

3 Random Random 190m Random 120m Random 75 m Random Random n/a Random Random 
Hole 
Effect Random 

5 
Hole 
Effect Random Random Random Random Random Random Random 

Hole 
effect n/a Random Random 

Hole 
Effect Random 

7 random Random Random Random Random Random Random Random Random n/a 
Hole 
Effect Random Random Random 

Cl 475m Cluster1 400m Cluster1 500m Cluster1 Random Random Random Random Random Random Random Random 

Ky 390m Cluster2 Random Random Random Cluster2 Random Random 75m Random Random Random 290m Random 

Kn Random Random Random Random Random Random Random Random 150m Cluster1 Random Random Random Random 

Md Random Random Random Random Random Cluster2 Random Random 
Hole 
effect Random 80m Random Random Random 

Ub 460m Cluster1 330m Cluster2 450m Cluster2 330m Cluster2 Random Cluster2 450m Random 110m Random 
* Moran’s I Coding: Cluster1 (1.65 < Z < 1.96); Cluster2 (Z > 1.96). See tables 4a and 4b for Moran’s I statistics. 
Site Abbreviations: Cl = Cliffwood Beach, Ky = Keyport, Kn = Keansburg, Md = North Middletown, Ub = Union Beach 
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Table 7. Multiple regression coefficients and results for cell level models, July 15-August 
30, 2008.  
 

Variable / Model Model 1T Model 1F Model 1M Model 2Mer Model 2Mon 
lnDecid (% deciduous woody 
vegetation in cell) 0.297** 0.297**   0.293**   
lnGrass2 (% Grass within 
200m) -0.0878         
lnWet2 (% Wetland within 
200m) -0.262** -0.203**       
lnStrm2 (% Streams within 
200m) 0.184** 0.192**       
lnOthH2O2 (% Other Water 
within 200m) 0.131** 0.164**       
lnOthGr2 (% Other Grassland 
within 200m) -0.110** -0.097**   -0.144**   
TC  (Temp on trap date) 0.144**         
Vacant housing units in site 0.288** 0.275** 0.198** 0.323**   
Pre14 (Total precipitation 14 
days before trap date)   -0.113** 0.144**     
TminC (Min Temp on trap 
date)   0.112** 0.082* -0.132**   
Pre  (Precipitation on trap date)   0.159** -0.119**     
Wdir (Wind Direction)   0.125**       
DrainCl (Soil Drainage)     0.130**   0.191** 
lnPave (% Pavement in cell)     -0.157**     
lnBare (% Bare land in cell)     -0.102**     
LnOthGr (% Other Grassland 
in cell)     0.078*     
PropRent (Proportion rented 
housing units)     0.157**     
lnWoody (% Woody vegetation 
in cell)         0.322** 
lnWet (% Wetland in cell)         0.142** 
lnSwim2 (% Swimming Pools 
within 200m)         0.198** 
TmaxC (Max Temp on Trap 
Date)         -0.158** 
PopDen (Population Density)         0.223** 
R-squared 0.2212 0.2657 0.2199 0.2267 0.2200 
Adjusted R-squared 0.2085 0.2519 0.2053 0.2122 0.2028 
No. Observations 497 497 497 218 279 
Reported values are standardized beta weights. All 
* and ** indicate significance at the 90% and ≥ 95% level, respectively. 
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Table 8. Multiple regression coefficients and results for site level models, July 15-
October 30, 2008.  
 
Variable / Model Model 3T Model 3F Model 3M 
Vacant (Vacant housing units in 
site) 0.237 0.225 0.295 
TC30 (Avg Temp 30 days before 
trap date) 0.559 0.539 0.565 
TC (Temp on trap date) 0.288 0.299   
Pre14 (Total precipitation 14 days 
before trap date) -0.143 -0.178   
PopDen (Population Density)   0.126 -0.116 
TmaxC30 (Max temp 30 days 
before trap date)     -0.261 
TminC (Min Temp on Trap Date)     0.393 
Wmax (Max wind speed on trap 
date)     -0.172 
R-squared 0.7839 0.7686 0.7331 
Adjusted R-squared 0.7781 0.7608 0.7222 
No. Observations 154 154 154 

Reported values are standardized beta weights. 
All variables were significant at the 95% level. 

Table 9. Cross-validation results for all models. 
 

 
Model 
1T 

Model 
1F 

Model 
1M 

Model 
2Mer 

Model 
2Mon 

Model 
3T 

Model 
3F 

Model 
3M 

R-squared 
(developmental) 0.2212 0.2657 0.2199 0.2267 0.22 0.7839 0.7686 0.7331 
Adjusted R-squared  
(developmental) 0.2085 0.2519 0.2053 0.2122 0.2028 0.7781 0.7608 0.7222 

RMSE  
(developmental) 0.6405 0.5518 0.8970 0.6886 0.5944 3.1293 2.6496 2.2534 
R-squared 
(validation) 0.2393 0.2721 0.2347 0.1552 0.1517 0.7823 0.8575 0.7547 
Adjusted R-squared 
(validation) 0.2254 0.2554 0.2172 0.1376 0.1309 0.7758 0.8522 0.7436 
RMSE (validation) 0.6184 0.5344 0.8751 0.7186 0.6264 3.1648 2.5633 2.4168 
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Table 10a. Summary of spatial pattern analysis for total counts in each site and physical 
differences between sites. In the grey cells, non-random Moran’s I statistics are shown 
with Z scores in parenthesis and ranges for non-random semivariograms are given. See 
Tables 4 and 5 for complete record of spatial pattern analysis results, and Table 4 for 
more information about site land cover composition.  
 
  Site 2 3 5 7 Cl Ky Kn Md Ub 
Entire 

Season, 
Total 
(T) 

Semivar. CSR* CSR
Hole 
Effect CSR 475m 390m CSR CSR 460m 

Moran's I 
0.2 
(3.59) CSR CSR CSR 

0.09 
(1.74) 

0.16 
(2.91) CSR CSR 

0.09 
(1.88) 

Active 
Season, 

T 

Semivar. CSR 190m CSR CSR 400m CSR CSR CSR 330m 

Moran's I 
0.16 
(1.9) CSR CSR CSR 

0.16 
(1.92) CSR CSR CSR 

0.28 
(2.87) 

July, T Semivar. CSR CSR
Hole 
effect CSR CSR 75m 150m 

Hole 
effect CSR 

Moran's I n/a n/a n/a n/a CSR CSR
0.22 
(1.69) CSR 

0.21 
(2.47) 

Aug, T Semivar. 90m CSR CSR
Hole 
Effect CSR CSR CSR 80m 450m 

Moran's I CSR CSR CSR CSR CSR CSR CSR CSR CSR

Sept, T Semivar. CSR 
Hole 
Effect 

Hole 
Effect CSR CSR 290m CSR CSR 110m 

Moran's I CSR CSR CSR CSR CSR CSR CSR CSR CSR

Oct, T Semivar. CSR CSR CSR CSR CSR CSR n/a CSR CSR

Moran's I n/a n/a n/a n/a CSR CSR CSR CSR CSR

Si
te

 C
ha

ra
ct

er
is

tic
s 

Deciduous 
Trees (%) 22.80 18.58 10.94 19.44 19.21 25.19 3.37 22.77 18.04 
Other 
Grass (%) 0.44 0.15 0.01 0.27 1.63 0.35 12.22 1.08 1.06 

Parks (%) 3.14 0.09 0.00 1.90 22.99 0.45 0.30 22.59 0.79 
Vacant 
HU 216 164 60.00 92 28 78 89 93 69 
Single 
Parent HH 165 219 111.00 147 97 150 139 149 143 

* CSR = Complete Spatial Randomness 
Site Abbreviations: Cl = Cliffwood Beach, Ky = Keyport, Kn = Keansburg, Md = North Middletown, Ub = 
Union Beach 
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Table 10b. Summary of the most notable results from the regression models. See Tables 
6 and 7 for complete record of the results. 
  Cell-level Models Site-level Models 
 Variable / Model 1T 1F 1M 2Mer 2Mon 3T 3F 3M 

W
ea

th
er

 

TC (Temp on trap 
date) 0.144        0.288 0.299   
TminC (Min Temp 
on Trap Date)   0.112 0.082 -0.132      0.393 
TC30 (Avg temp 30 
days before trap 
date)          0.559 0.539 0.565 
Pre14 (Total 
precipitation 14 
days before trap 
date)   -0.113 0.144    -0.143 -0.178   

C
en

su
s 

Vacant (Vacant 
housing units in site) 0.288 0.275 0.198 0.323  0.237 0.225 0.295 

La
nd

 U
se

/L
an

d 
C

ov
er

 

lnDecid (% 
deciduous woody 
vegetation in cell) 0.297 0.297   0.293        
lnWet2 (% Wetland 
within 200m) -0.262 -0.203            
lnStrm2 (% Streams 
within 200m) 0.184 0.192            
lnOthH2O2 (% 
Other Water within 
200m) 0.131 0.164            
LnOthGr2 (% Other 
Grassland within 
200m) -0.110 -0.097   -0.144      
lnPave (% Pavement 
in cell)     -0.157          
lnBare (% Bare land 
in cell)     -0.102          
LnOthGr (% Other 
Grassland in cell)     0.078          
lnWet (% Wetland 
in cell)         0.142       
lnSwim2 (% 
Swimming Pools 
within 200m)         0.198       

 Adjusted R-squared 0.2085 0.2519 0.2053 0.2122 0.2028 0.7781 0.7608 0.7222 
 RMSE 0.6405 0.5518 0.8970 0.6886 0.5944 3.1293 2.6496 2.2534 
 No. Observations 497 497 497 218 279 154 154 154 

Reported values are standardized beta weights. 
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Table 11. Validation results for map of predicted ATM abundance in Union Beach during 
the first week of August, 2008, based on model 1T. See also Figure 11. 
 
Cell ID Field Count Predicted Count Percent Difference 
Ub - 6 13 17.78 36.77 
Ub - 25 11 15.98 45.26 
Ub - 36 5 18.31 266.18 
Ub - 47 21 20.82 -0.86 
Ub - 65 56 25.44 -54.57 
Ub - 76 10 25.45 154.49 
Ub - 98 4 23.46 486.53 
Ub - 108 22 11.17 -49.23 
Ub - 119 14 22.24 58.89 
Ub - 160 37 17.49 -52.73 
Ub - 164 7 5.87 -16.16 

RMSE 15.303 Lower CI (95%) 23.946 
MAE 11.676 Upper CI (95%) 25.836 
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Figure 1. ATM trapping sites in Mercer and Monmouth Counties, New Jersey. Each site 
was further subdivided into 102-167 cells containing 6-8 property parcels (Mercer) or 8-
10 property parcels (Monmouth).  
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Figure 2a. Mercer County ATM trapping sites. Sites to be used in 2009 are Site 3, Site 5, 
and Site 7. 

 
Figure 2b. Monmouth County ATM trapping sites. Sites to be used in 2009 are 
Cliffwood, Union Beach, and North Middletown.  
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Figure 3a. Monmouth County, mean Ae. albopictus per trap per site per month.  

     
Figure 3b. Mercer County, mean Ae. albopictus per trap per site per month. 
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Figure 4. Hierarchical, fine-scale land use/land cover classification based on object-
oriented image segmentation. Classes shown in grey were not present in any of the study 
areas. 
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Figure 5. Hierarchical land use/land cover classification for part of Cliffwood Beach. 
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Figure 6. Weather stations used to determine meteorological conditions in each site. The 
Trenton Airport station was selected as the primary station in Mercer. Keansburg and 
Holmdel served as the primary stations for Monmouth, though other stations including 
Eatontown and Belmar/Farmdale filled in data when Keansburg and Holmdel data were 
unavailable. 

 

 
Figure 7. SSURGO soil drainage in Monmouth County sites. Soils were rated based on 
composition and drainage quality described in the SSURGO database. 
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Figure 8. Idealized semivariogram showing the range and nugget. The range, which 
occurs where the graph levels off (i.e., sill), reveals the greatest distance at which the data 
are autocorrelated. The nugget, or the distance from the origin of the graph to the 
beginning of the data line, expresses the degree of variability due to local random effects 
or measurement errors. 
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Figure 9. Examples of the three main patterns observed in the semivariograms (see 
Appendix 1 for complete catalog of semivariograms). Random graphs (a) showed no 
perceptible pattern or sill. The ‘hole effect’ (b), indicated by oscillation in the graphs, is 
present in several monthly semivariograms. This pattern reflects either extreme values, 
periodicity in the spatial variability of the errors, or preferential clustering in the data 
(Bailey and Gatrell 1995). Non-random semivariograms leveled off into a sill in the first 
two-thirds of the graph, which indicates the range of autocorrelation. 
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Figure 10. Hot spot analysis results for total ATM counts during the high season (July 
15-August 30). Sites 3, 5 and 7 in Mercer County are not shown since few hot spots were 
present in each site (see Appendix 2 for complete catalog of hot spot maps).  
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Figure 11. Sample predictive map of ATM abundance in Union Beach, Monmouth 
County, for the first week of August 2008. The map was created based on Model 1T, 
which is shown in the map. 
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APPENDIX 2: HOT SPOT MAPS  
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