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In this thesis we explore different aspects related to the central concepts of supersymmetry and

physics beyond the Standard Model. We start by investigating fine-tuning in the minimal su-

persymmetric extension of the Standard Model, where the regions with the minimal amount of

fine-tuning of electroweak symmetry breaking are found. Afterwards, we concentrate on a more

formal aspect of supersymmetry, studying spontaneous symmetry breaking in supersymmetry

using the superspace formalism. Thereafter we direct our attention to supersymmetry as physics

beyond the Standard Model, looking more specifically at supersymmetry breaking in metastable

states. First, we discuss possible undetected Higgs decays in the Pentagon model with renor-

malizable lepton number violating couplings which also explain neutrino masses. Second, we

generalize metastable supersymmetry breaking in supersymmetric quantum chromodynamics

to phenomenologically viable models of direct gauge mediation by adding single and multitrace

deformations. Third, we introduce a new model of physics beyond the Standard Model, the

Pyramid Scheme, and study its implications, focusing on dark matter and its astrophysical

signatures in particular. Four, we examine tunneling constraints in models of Cosmological Su-

persymmetry Breaking, arguing that these models can have no supersymmetric vacuum states

in the infinite Planck mass limit. Finally, we present a general study of the possible gamma ray

signatures coming from dark matter annihilation or decay.
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Chapter 1

Introduction

1.1 Supersymmetry and Physics Beyond the Standard Model

1.1.1 Supersymmetry

The Standard Model (SM) of particle physics is one of the greatest achievements of the 20th

century in physics. It describes physics up to energies of the order of the electroweak scale

ΛEW. Although very successful, the SM is likely not to be a good description of physics all the

way up to the Planck scale ΛP, where quantum gravitational effects are expected to generate

large corrections. However, from the modern effective field theory point of view, the SM high-

energy bound could in principle be pushed up to a larger scale Λ, like the grand unified theory

(GUT) scale ΛGUT or even the Planck scale, but quantum corrections would destabilize the

electroweak scale. Indeed the correct electroweak scale would be obtained by fine-tuning the

bare Higgs mass at the level of Λ
ΛEW

. This hierarchy problem [1], which comes from a sensitivity

of the SM scalar boson sector to new physics, leads to SM scenarios with high-energy bound

Λ ≫ ΛEW which are not natural.

Naturalness [2] states that all dimensionful parameters in an effective field theory Lagrangian

valid up to an energy scale Λ must be of the order of Λ to the appropriate exponent. Small

dimensionful parameters with respect to Λ are only allowed if some symmetry is restored when

one small parameter is taken to zero. From this criterion, one can immediately conclude that

the SM seen as an effective field theory valid up to Λ ≫ ΛEW is not natural. Either a precise

cancellation is needed between the bare Higgs mass and quantum corrections and the theory is

fine-tuned or new physics appears at the appropriate scale and stabilizes the theory preserving

naturalness.

One of the most popular solutions to the hierarchy problem is supersymmetry (SUSY)

[3, 4, 5]. SUSY introduces new physics at a given scale and enlarges the symmetry group

of the theory such that scalar field masses are protected against large quantum corrections.

In supersymmetric theories, each field comes with a superpartner which has a different spin
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statistics, and these two fields are combined into a supermultiplet. Thus scalar boson mass

terms are protected by the chiral properties of their fermionic superpartners. In other words,

there are new contributions to the quantum corrections of the scalar boson mass terms coming

from the fermionic superpartners which cancel the otherwise large scalar boson contributions.

The SM can be extended in several ways and the minimal supersymmetric Standard Model

(MSSM) is the minimal extension of the SM. It contains all SM particles together with SUSY

partners carrying the same quantum numbers but opposite spin statistics. Moreover, due to

SUSY and/or anomalies, the MSSM Higgs sector contains two Higgs doublets.

If SUSY were unbroken, the superpartners would share the same mass than their corre-

sponding SM particles. Therefore quantum corrections would cancel exactly and the holomor-

phic Higgs mass would remain the same. However there is no experimental evidence for the

superpartners and SUSY must be a broken symmetry. In order to explain the large hierarchy

between the Planck scale and the electroweak scale, one would like to break SUSY dynamically,

which would then naturally generate the appropriate small number by dimensional transmuta-

tion [6]. There are several ways to dynamically break SUSY and mediate this breaking to the

MSSM (e.g. gauge mediation, gravity mediation).

In the MSSM the SUSY breaking sector and the messenger sector are however not specified.

Instead one introduces a set of soft SUSY breaking terms and uses renormalization group (RG)

equations to determine the electroweak scale superpartner spectrum in function of these high-

scale soft SUSY breaking terms. The form of the messenger sector nevertheless dictates the

dominant contributions to the high-scale soft SUSY breaking terms.

Moreover, the scale of SUSY breaking dictates the size of the quantum corrections to the

Higgs mass and thus is related to the amount of fine-tuning re-introduced in the theory. Indeed,

the MSSM predicts a light Higgs boson at tree-level and significant quantum corrections are

needed to evade the LEP SM-like Higgs mass bound of 114.4 GeV [7]. This supersymmetric

little hierarchy problem, while nowhere as severe as the original hierarchy problem, has led to

many theoretical investigations, some of which will be discussed in this thesis (see [8, 9, 10]). For

example one can scan the MSSM parameter space to localize the regions with minimal amount

of fine-tuning [8]. Rather than doing a total scan of the MSSM parameter space to find the

minimally fine-tuned regions, one can also look directly for ways to evade the LEP bound by

allowing for a light Higgs bosons which decays in novel ways [9]. Finally one can explore models

of gauge mediation where large Higgs mass quantum corrections do not lead to extremely split

superpartner spectra [10].

Supersymmetric extensions of the SM come with many virtues. Indeed, one of the most
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interesting properties of supersymmetric extensions of the SM is gauge coupling unification. At

one-loop, the SU(3)C×SU(2)L×U(1)Y gauge couplings run with the energy scale and converge

for high energy scales. However the gauge coupling constants in the SM context do not merge

at any scale while the gauge coupling constants in the MSSM context merge successfully at

the GUT scale (see for example [11]). This fact is sometimes seen as the most appealing hint

for SUSY as physics beyond the SM. Although very appealing, for this property to hold the

messenger sector and/or the SUSY breaking sector must be engineered such that the theory

does not develop SM Landau poles before the GUT scale (as in [10]).

Moreover, due to the strong constraints from dynamical SUSY breaking in stable states [6],

attempts to build complete theories of dynamical SUSY breaking in stable states usually lead

to very baroque models (see e.g. [12]). Indeed, generic models do not exhibit SUSY breaking in

stable states unless there is a U(1)R R-symmetry (necessary condition) which is spontaneously

broken (sufficient condition) [13]. Dynamical SUSY breaking in metastable states [14] does

not suffer from the constraints on dynamical SUSY breaking in stable states, although the

relationship between SUSY breaking and R-symmetry breaking is preserved. In order to simplify

SUSY breaking models, dynamical SUSY breaking in metastable states is therefore a promising

direction which will be discussed in this thesis [15]. In [15], a simple phenomenologically viable

model of dynamical SUSY breaking in metastable states is investigated, where SUSY breaking

is mediated directly to the SM by gauge interactions. Direct gauge mediation simplifies the

model by eliminating the messenger sector and by offering a straightforward solution to the

SUSY flavor problem.

However, dynamical SUSY breaking in metastable states is not always desired. Indeed, the

idea of cosmological SUSY breaking (CSB) [16], which conjectures a relation between the cos-

mological constant and the scale of SUSY breaking, is not compatible with dynamical SUSY

breaking in metastable states [17]. The idea of CSB comes from M-theory in asymptotically flat

space, which is conjectured to be supersymmetric, hence the aforementioned relation between

the cosmological constant and the SUSY breaking scale. In CSB the cosmological constant is

seen as an input parameter determining the total number of quantum states of the asymptoti-

cally flat de Sitter space, which is represented by the Bekenstein-Hawking entropy [18, 19, 20].

The cosmological constant/SUSY breaking scale relation also leads to a relation between the

gravitino mass and the cosmological constant, which constrains SUSY breaking to be gauge-

mediated in the low-energy effective theory, resulting in sub-Planckian distances in field space

between vacua. Moreover, for the low-energy effective theory to be a theory of stable de Sitter

space, it must be above the Great Divide [21], i.e. that transitions from the de Sitter space to
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other vacua can be seen as highly improbable Poincaré recurrences. This is however impossible

for flat space field theory models with different vacua at sub-Planckian distances in field space

[17], forcing the low-energy effective theory of CSB to exhibit SUSY breaking in stable states

only.

Another flaw of the SM is related to neutrinos: it does not explain neutrino masses. SUSY

models with R-parity violating terms offer a simple solution to this problem without introducing

right-handed neutrinos. Indeed, neutrino masses can be generated radiatively from renormaliz-

able R-parity violating terms and this will be discussed here [9].

1.1.2 Physics beyond the Standard Model

The SM also suffers problems related to cosmology. One of the main cosmological problems of

the SM is dark matter (DM). Another virtue of (R-parity conserving) supersymmetric extensions

of the SM is the presence of weakly interactive massive particles (WIMP) with the appropriate

mass and relic density to be good DM candidates. This WIMP miracle has excited a lot of

theoretical interests, although gauge-mediated SUSY breaking models do not have standard

WIMP DM candidates, the gravitino being too light. However, non-thermal production of

baryon-like states of the hidden sector can account for the observed DM density and thus give

good DM candidates [22]. Moreover, in analogy with QCD, when DM annihilates to pseudo

Nambu-Goldstone bosons, there is a possibility to explain the positron excess seen in recent

experiments [23, 24, 25, 26, 27]. Indeed, if the pseudo Nambu-Goldstone bosons are light

enough, they would decay only to electron-positron pairs, neutrinos and photons, in agreement

with the recent observations [10].

Nevertheless, with or without SUSY as physics beyond the SM, a determination of the

particle nature of DM is very important for physics beyond the SM. A promising way is to look

for cosmic gamma rays. Indeed, if the measured positron excess is due to DM annihilation or

decay, the irreducible background of gamma ray photons produced by final state radiation would

be diffuse, in constrast with other primary sources of positrons like pulsars which would lead to

local gamma ray photon backgrounds. Different photon spectra are expected for different DM

annihilation or decay scenarios and a knowleddge of the achievable spectra could help determine

the particle nature of DM, as will be discussed here [28].
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1.2 Outline of the Thesis and Summary of the Results

1.2.1 Fine-tuning in the MSSM

In chapter 2 (see [8]), the regions in the Minimal Supersymmetric Standard Model (MSSM) with

the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general

messenger scale. No a priori relations among the soft supersymmetry breaking parameters are

assumed and fine-tuning is minimized with respect to all the important parameters which affect

electroweak symmetry breaking. The main results are: quite distinctive superpartner spectra

in the minimally tuned region of parameter space with large stop mixing at the low scale and

negative squark soft masses at the high scale and enormous increase in the minimal amount of

tuning for a Higgs mass beyond roughly 120 GeV.

1.2.2 Spontaneous Symmetry Breaking in Supersymmetry

In chapter 3 (see [29]), the analysis of spontaneous gauge symmetry breaking of N = 1 super-

symmetric SU(Nc) Yang-Mills theory with matter is performed. The supersymmetric Rξ-gauge

is used and its non-local effects investigated. Superpropagators and vertices are computed, and

it is shown that the non-local terms introduced by the Rξ-gauge-fixing are well-behaved in

general gauge at one-loop. It is also argued that this feature generalizes to multiple loops.

1.2.3 Undetected Higgs Decays in Supersymmetry

In chapter 4 (see [9]), we discuss SUSY models in which renormalizable lepton number violating

couplings hide the decay of the Higgs through h→ χ0
1χ

0
1 followed by χ0

1 → τjj or χ0
1 → ντ jj and

also explain neutrino masses. This mechanism can be made compatible with gauge mediated

SUSY breaking.

1.2.4 Metastable Supersymmetry Breaking

In chapter 5 (see [15]), metastable vacua in supersymmetric QCD in the presence of single and

multitrace deformations of the superpotential are explored, with the aim of obtaining an ac-

ceptable phenomenology. The metastable vacua appear at one loop, have a broken R-symmetry,

and a magnetic gauge group that is completely Higgsed. With only a single trace deformation,

the adjoint fermions from the meson superfield are approximately massless at one loop, even

though they are massive at tree level and R-symmetry is broken. Consequently, if charged under

the standard model, they are unacceptably light. A multitrace quadratic deformation generates
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fermion masses proportional to the deformation parameter. Phenomenologically viable models

of direct gauge mediation can then be obtained, and some of their features are discussed.

1.2.5 A Pyramid Scheme for Particle Physics

In chapter 6 (see [10]), we introduce a new model, the Pyramid Scheme, of direct mediation

of SUSY breaking, which is compatible with the idea of Cosmological SUSY Breaking (CSB).

It uses the trinification scheme of grand unification and avoids problems with Landau poles in

standard model gauge couplings. It also avoids problems, which have recently come to light,

associated with rapid stellar cooling due to emission of the pseudo Nambu-Goldstone Boson

(PNGB) of spontaneously broken hidden sector baryon-like number. With a certain pattern of

R-symmetry breaking masses, a pattern more or less required by CSB, the Pyramid Scheme

leads to a dark matter candidate that decays predominantly into leptons, with cross sections

compatible with a variety of recent observations. The dark matter particle is not a thermal

WIMP but a particle with new strong interactions, produced in the late decay of some other

scalar, perhaps the superpartner of the QCD axion, with a reheat temperature in the TeV range.

This is compatible with a variety of scenarios for baryogenesis, including some novel ones which

exploit specific features of the Pyramid Scheme.

1.2.6 Tunneling Constraints in Cosmological Supersymmetry Break-

ing

In chapter 7 (see [17]), we argue that effective field theories compatible with the idea of Cos-

mological SUSY Breaking (CSB), can have no supersymmetric vacuum states in the MP → ∞

limit. We introduce a revised version of the Pyramid Scheme, which satisfies this criterion.

Combining the criteria for CSB with results of Nelson and Seiberg, any such Lagrangian is

non-generic, but we argue that this is plausible in the context of CSB, where R-violating terms

in the Lagrangian come from interactions with the horizon, rather than integrating out short

distance degrees of freedom. We also point out a Landau pole in the hidden sector gauge group

of the Pyramid Scheme, and propose an unique mechanism for avoiding it.

1.2.7 Gamma Ray Spectra from Dark Matter Annihilation and Decay

In chapter 8 (see [28]), we study gamma ray spectra for various scenarios of dark matter annihi-

lation and decay. We focus on processes which generate only high-energy photons or leptons and
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photons, but no proton-antiproton pairs, to be compatible with PAMELA’s data. We investi-

gate photons produced directly from two-body decay chains and photons produced together with

charged particles. For the former case we also include the process DM(+DM) → Nφ → 2Nγ

which can arise from specific strongly-coupled dark matter scenarios. For the latter case, pho-

tons are either generated by final state radiation from high-energy leptons or are directly

generated from contact interactions represented by higher-order (non-renormalizable) opera-

tors obtained after integrating out heavy modes. We compare their overall annihilation cross-

sections/decay rates taking into account chiral suppression (in the s-wave approximation), di-

mension of operators and dark matter particle properties. A rough estimate shows that, for

a dark matter particle with a mass of O(1 TeV), the hard photon spectra in direct electron-

positron-photon final states arising from either scalar boson dark matter annihilation/decay or

Majorana fermion dark matter annihilation are dominated by higher-order operators if the scale

of the leading operator is lower than O(1000 TeV). Otherwise, all the photon spectra arising in

this way are dominated by final state radiation. Among the spectra studied, the higher-order

operators spectrum is the hardest while the final state radiation spectrum with an intermediate

decay is the softest.
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Chapter 2

Fine-tuning in the MSSM

2.1 Introduction

In this chapter we discuss in detail the findings of the work done in collaboration with R. Essig

[8].

The Minimal Supersymmetric Standard Model (MSSM) is a well-motivated candidate for

physics beyond the Standard Model (SM). The gauge couplings within the MSSM unify to within

a few percent at the grand unified theory (GUT) scale, MGUT ≃ 2× 1016 GeV, and the lightest

supersymmetric particle is a good dark matter candidate provided that R-parity is conserved.

Supersymmetry (SUSY) can also naturally stabilize the hierarchy between the electroweak (EW)

and the GUT or Planck scale. It does this by providing a radiative mechanism for electroweak

symmetry breaking (EWSB) where large quantum fluctuations of the scalar top squarks due to

the large Yukawa coupling destabilize the origin of the Higgs potential. In much of the MSSM

parameter space this quite naturally leads to the right EWSB scale, as long as the soft SUSY

breaking parameters lie near it.

The absence of any direct experimental evidence from collider searches for the MSSM scalar

particles and the Higgs boson has, however, ruled out significant regions in the MSSM parameter

space. Indirect evidence from EW precision measurements and searches for flavor changing

neutral currents, CP violating effects and rare decays has not been forthcoming either, providing

additional severe constraints. As a result, the soft SUSY breaking parameters must lie well above

the EW scale in order to satisfy the experimental constraints, especially the constraints on the

Higgs mass from the results of the CERN LEP collider (mh & 114.4 GeV [7]).

Soft SUSY breaking parameters well above the EW scale reintroduce a small hierarchy and

require some fine-tuning (FT) among the SUSY parameters in order to obtain EWSB [30]-[50].

This is usually referred to as the supersymmetric little hierarchy problem.

Different choices for the soft SUSY breaking parameters lead to different amounts of FT.

This paper presents the minimally tuned MSSM (or MTMSSM), i.e. the MSSM parameter

region that has the least model-independent FT of EWSB. Model-independent means that no
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relations are assumed between the soft SUSY breaking parameters at the scale at which they

are generated (which will be referred to as the messenger scale). Rather, each of them is taken

to be an independent parameter which is free at the messenger scale, and which therefore can

contribute to the total FT of the EWSB scale. The messenger scale itself is varied between 2

TeV and MGUT and the effect of this on the minimal FT is discussed.

In Section 2.2, EWSB in the MSSM will be reviewed. Section 2.3 discusses the tuning

measure used in this paper. The parameters taken to contribute to the tuning are |µ|2, m2
Hu

,

the gaugino masses M1, M2 and M3, the stop soft masses m2
t̃L

and m2
t̃R

, and the stop soft

trilinear coupling At.

Section 2.4 contains some of the main results. The low- and high-scale MSSM spectrum

which leads to the least model-independent FT is found. This is done for various messenger

scales by numerically minimizing the FT expression subject to constraints on the Higgs, stop,

and gaugino masses. The results are then motivated analytically. The least FT is found to be

about 5% if the messenger scale coincides with the GUT scale. An important feature of the least

FT region is negative stop soft masses at the messenger scale (first pointed out in [47]). Even

for messenger scales as low as 2 TeV, the stop soft masses are tachyonic at the messenger scale

(threshold effects in the RG-running were neglected throughout). This does not lead to any

problems with charge and/or color breaking minima. Another feature of the least FT region is

that the trilinear stop soft coupling, At, is negative and lies near “natural” maximal mixing, i.e.

At ≃ −2mt̃, where mt̃ is the average of the two stop soft masses. This value for At maximizes

the radiative corrections to mh. The large stop mixing leads to a sizeable splitting between

the two stop mass eigenstates. Moreover, the gluino mass, M3, is much smaller than the wino

mass, M2, at the high scale. The wino mass, in turn, is much smaller than the bino mass M1.

Phenomenological consequences of the low-scale spectrum are briefly summarized.

Section 2.5 contains the rest of the main results of the paper. The FT is minimized as

a function of the lower bound on the Higgs mass (with the messenger scale set to MGUT).

Although the numerical minimization procedure contains the dominant one-loop expression for

mh as a constraint, the resulting least FT spectra are used to calculate mh more accurately

with the program FeynHiggs [51, 52, 53, 54, 55]. The result is a plot of the minimal FT as a

function of mh, where mh now includes all the important higher order corrections. There are

several striking features of this plot. First of all, for mh larger than a certain value, the FT

increases very rapidly and at least as fast as an exponential. Secondly, around this mh, the

value of At in the least FT region makes a sudden transition from lying near −2mt̃ to lying near

+2mt̃. The third striking feature is that this value of mh is surprisingly low. The precise value
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is only slightly dependent on the parameters in the Higgs sector and can be taken to lie around

120 GeV. It has been mentioned before that the FT increases exponentially as a function of

mh, see for example [36, 42]. Previously, these results were obtained by assuming a specific

set of boundary conditions at the messenger scale and without taking into account important

higher-order corrections to the Higgs mass which are included in FeynHiggs. The results here

do not assume particular boundary values for any of the important parameters contributing

to EWSB - rather, the spectrum that leads to the least amount of tuning is found. Moreover,

the higher-order Higgs mass corrections are included. It is shown that the minimal amount of

tuning still increases at least as fast as an exponential.

Section 2.6 contains a summary of the results and the conclusions. Appendix 2.7 reviews

the semi-numerical solutions of the MSSM one-loop renormalization - group (RG) equations.

These are used to calculate the expression for the FT employed in this paper. Appendix 2.8

contains a list of expressions for the FT with respect to various parameters.

2.2 Electroweak Symmetry Breaking

In the Higgs decoupling limit of the MSSM, the lower bound on the mass of the lighter CP-even

Higgs mass eigenstate h coincides with the 114.4 GeV bound on the mass of the SM Higgs boson

[7]. The mass of h may be approximated by

m2
h ≃ m2

Z cos2 2β +
3

4π2

m4
t

v2

[
log

m2
t̃

m2
t

+
X2
t

m2
t̃

(
1 − X2

t

12m2
t̃

)]
(2.1)

which, in addition to the tree-level Higgs mass, includes the dominant one-loop quantum cor-

rections coming from top and stop loops [56, 57, 58, 59, 60, 61]. Here mt is the top mass, m2
t̃

is

the arithmetic mean of the two squared stop masses and v =
√

2mW /g ≃ 174.1 GeV where g

is the SU(2) gauge coupling and mW is the mass of the W -boson. Furthermore, equation (2.1)

assumes mt̃ ≫ mt. The stop mixing parameter is given by Xt = At − µ cotβ (≃ At for large

tanβ), where At denotes the stop soft trilinear coupling and µ is the supersymmetric Higgsino

mass parameter. The first term in equation (2.1) is the tree-level contribution to the Higgs

mass. The first term in square brackets comes from renormalization group running of the Higgs

quartic coupling below the stop mass scale and vanishes in the limit of exact supersymmetry. It

grows logarithmically with the stop mass. The second term in square brackets is only present

for non-zero stop mixing and comes from a finite threshold correction to the Higgs quartic cou-

pling at the stop mass scale. It is independent of the stop mass for fixed Xt/mt̃, and grows as

(Xt/mt̃)
2 for small Xt/mt̃.
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Equation (2.1) implies a combination of three things which are required to satisfy the bound

on mh, namely a large tree-level contribution, large stop masses and/or large stop mixing1. A

large tree-level contribution to mh requires tanβ to be at least of a moderate size (& 5 − 10).

Although the stop masses must be rather large, their lower bound is very sensitive to the size of

the stop mixing, with larger mixing allowing for much smaller stop masses (see [62] for a recent

study on this). The reason for this sensitive dependence is due to the Higgs mass depending

logarithmically on the stop masses in contrast to the polynomial dependence on the stop mixing.

The soft masses are not only directly constrained from the LEP Higgs bounds but also indi-

rectly by constraints on flavor changing neutral currents, electroweak precision measurements

and CP-violation. Besides these, however, the Higgs sector parameters are also constrained by

requiring that the electroweak symmetry is broken. This leads to the following two tree-level

relations at the low scale

sin 2β =
2m2

12

m2
Hu

+m2
Hd

+ 2|µ|2 =
2m2

12

m2
A

(2.2)

m2
Z

2
= −|µ|2 +

m2
Hd

−m2
Hu

tan2 β

tan2 β − 1
, (2.3)

where mA is the CP-odd Higgs mass, and β is determined from the ratio of the two vacuum

expectation values vu ≡ 〈Re(H0
u)〉 and vd ≡ 〈Re(H0

d )〉 as tanβ = vu/vd. The masses m2
Hu

,

m2
Hd

and m2
12 are the three soft mass parameters in the MSSM Higgs sector. For a given value

of tanβ, m2
12 may be eliminated in favor of m2

A with equation (2.2). Equation (2.3) gives an

expression for m2
Z in terms of the supersymmetric mass parameter µ and the soft masses m2

Hu

and m2
Hd

. Since tanβ should be sizeable, the contribution from m2
Hd

to the expression for m2
Z

may be neglected and (2.3) simplifies to

m2
Z = −2|µ|2 − 2m2

Hu
. (2.4)

Close to the Higgs decoupling limit, mA is relatively large. However, since |µ|2,m2
Hu

∼ O(m2
Z)

to avoid large cancellations, mA may not be too large, otherwise m2
Hd

would also be sizeable

and equation (2.4) would break down (unless the value of tanβ is increased accordingly). By

choosing tanβ = 10 and mA = 250 GeV in the numerical analysis throughout, equation (2.4)

holds to a very good approximation.

1Although it is not obvious, it is important to note that these statements remain the same even away from
the Higgs decoupling limit, see e.g. [62]. Moreover, as mentioned in [62], the fine-tuning in the Higgs decoupling
limit is comparable to the fine-tuning in the Higgs non-decoupling limit. Thus the least fine-tuned regions found
in this paper do not depend in an essential way on the fact that the analysis is done in the Higgs decoupling
limit.
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Equation (2.4) holds at tree-level, and although quantum corrections may add O(10 GeV)

to the right hand side of (2.4), this has negligible impact on the amount of fine-tuning to be

discussed below.

The parameters m2
Hu

and |µ|2 in equation (2.4) are evaluated at the scale mZ . Since the

fine-tuning of EWSB is a measure of the sensitivity of some low-scale EWSB parameter (usually

taken to be m2
Z) to a change in high-scale input parameters, |µ|2 and m2

Hu
need to be evolved

to a high scale using their RG equations (the one-loop RG equations will be sufficient for the

purposes of discussing fine-tuning). Under RG running many of the soft parameters mix, and as

a result of this mixing, the expression for m2
Z in terms of parameters that are evaluated at the

messenger scale MS differs significantly from the simple form given in (2.4). The RG-equations

may be integrated (see Appendix 2.7) and the expression for m2
Z may generically be written as

[63, 64]

m2
Z =

∑

i,j

cij(tanβ,MS)mi(MS)mj(MS). (2.5)

For moderate and not too large values of tanβ with an appropriatemA, the simplified expression

for m2
Z is applicable (equation (2.4)) and contributions from the bottom/sbottom and tau/stau

sectors may still be neglected2. The most important parameters appearing in (2.5) then are µ2,

m2
Hu

, the gaugino masses M1, M2 and M3, the stop soft masses m2
t̃L

and m2
t̃R

, and the stop soft

trilinear coupling At. The coefficients cij depend on tanβ and the messenger scale MS . The

most important coefficients are shown in Figure 2.1 for tanβ = 10 as a function of MS .

At the scale mZ , the coefficients of m2
Hu

and µ2 are −2 while the coefficients of the other soft

parameters are zero in agreement with equation (2.4). Since µ2 is a supersymmetric parameter,

it gets renormalized multiplicatively and its RG evolution does not give rise to soft parameters

(see equation (2.45)). Figure 2.1 shows that the coefficient of µ2 does not vary much and remains

close to −2 all the way up to the GUT scale. The RG evolution of m2
Hu

to higher messenger

scales, however, generates non-zero coefficients for the other soft parameters. The β-function

of m2
Hu

,

8π2βm2
Hu

= 3λ2
t (m

2
Hu

+m2
t̃L

+m2
t̃R

+ |At|2) − 3g2
2 |M2|2 − g2

Y |M1|2 −
1

2
g2
Y SY , (2.6)

depends on the stop sector parameters {m2
t̃L
,m2

t̃R
, At}, the wino and bino masses M2 and

M1, and SY ≡ 1
2Tr(Yim

2
i ), which thus get generated immediately under RG evolution. The

2For large tan β, bottom/sbottom and tau/stau sector contributions must be included. Large tan β allows
the tree-level Higgs mass to be increased by about 2 GeV compared to its value for tan β = 10. Higher-order
corrections to the Higgs mass from the bottom/sbottom sector, however, can in some regions lead to rather large
negative contributions. The effect on the least fine-tuned regions found in this paper will not be discussed in
detail, but it is unlikely that the main features of the least fine-tuned spectrum will change.
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Figure 2.1: The coefficients cij defined in equation (2.5) for tanβ = 10 as a function of the
messenger scale MS .

coefficients of M2 and especially M1 and SY in (2.6) are small and lead to small coefficients in

the expression for m2
Z (2.5). Although βm2

Hu
does not explicitly depend on the gluino mass, a

non-zero coefficient for M3 is generated indirectly since the stop sector β-functions depend on

M3. Moreover, M3 appears with a large coefficient in these β-functions, and thus the coefficient

of M3 in equation (2.5) dominates after a few decades of RG evolution. For example, at a

messenger scale of MS = MGUT ≡ 2 × 1016 GeV, the expression for m2
Z (for tanβ = 10) is

m2
Z = −2.19 µ̂2 − 1.32 m̂2

Hu
+ 0.68 m̂2

t̃L
+ 0.68 m̂2

t̃R
+ 5.24 M̂2

3 − 0.44 M̂2
2

− 0.01M̂2
1 + 0.22 Â2

t − 0.77 Ât M̂3 − 0.17 Ât M̂2 − 0.02 Ât M̂1

+ 0.46 M̂3 M̂2 + 0.07 M̂3 M̂1 + 0.01 M̂2 M̂1 + 0.05 ŜY , (2.7)

where the hatted parameters on the right-hand side are all evaluated at MS . This expression

may be used to calculate the FT as discussed next.

2.3 The Tuning Measure

A variety of tuning measures have been used in the literature (a list of references has been

provided in the Introduction). Since the concept of fine-tuning (FT) is inherently subjective,

there is no absolute definition of a FT measure. The most common definition of the sensitivity
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of an observable O({ai}) on a parameter ai, denoted by ∆(O, ai), is given by [30, 31]

∆(O, ai) =

∣∣∣∣
∂ logO
∂ log ai

∣∣∣∣ =
∣∣∣∣
ai
O
∂O
∂ai

∣∣∣∣ . (2.8)

∆(O, ai) thus measures the percentage variation of the observable under a percentage variation

of the parameter. A large value of ∆(O, ai) signifies that a small change in the parameter leads

to a large change in the observable, and suggests that the observable is fine-tuned with respect to

that parameter. In the literature, the FT of O is often defined to be maxi ∆(O(ai)), e.g. [30, 31].

This FT measure arguably underestimates the “total amount” of FT if there is more than one

parameter ai. This can be a drawback especially if there are many parameters that are tuned by

roughly the same amount. This motivates the use of a FT measure which considers the tuning

of all the parameters simultaneously. Assuming that the individual ∆(O, ai) are uncorrelated,

the following FT measure may be used (see also [44, 65])

F(O) =

√∑

i

(
∆(O, ai)

)2

. (2.9)

Of interest in this paper is to quantify the sensitivity of EWSB in the MSSM on (soft)

supersymmetric parameters at the messenger scale MS . To this end, the observable to consider

is m2
Z as a function of the supersymmetric Higgsino mass squared and the soft supersymmetry

breaking parameters, collectively denoted by m2
i (MS) (in the FT measure, all parameters are

taken to have mass dimension two). The sensitivity of m2
Z with respect to each parameter may

be calculated as in (2.8) with O = m2
Z , and the total FT of m2

Z on parameters evaluated at the

messenger scale MS may be quantified by

F(m2
Z ;MS) =

√∑

i

(
∆
(
m2
Z ,m

2
i (MS)

))2

. (2.10)

F(m2
Z ;MS) may be interpreted as the length of a “fine-tuning vector” with components

∆(m2
Z ,m

2
i (MS)). This fine-tuning vector is formally a vector field defined by the gradient of

the scalar field logm2
Z , a function of logm2

i , along surfaces of constant logm2
Z .

There are several possible drawbacks to this FT measure, see for example [50, 66]. One

of these is that the individual ∆(m2
Z ,m

2
i (MS)) are assumed to be uncorrelated. Within a

given model of supersymmetry breaking, there may be relations among the parameters at the

messenger scale. This would imply that the FT vector is projected onto a subspace, and the

resulting FT is necessarily less. In other words, the tuning of one parameter is correlated

with the tuning of another, so that the total FT is less3 than that given by (2.10). Moreover,

3Note, however, that if a given model assumes relations among the high scale parameters which do not allow
the parameters to fall within the least fine-tuned regions found in this paper, then the FT of such a model will
most likely be substantially larger than the model-independent minimal FT, despite there being relations among
the high scale parameters.
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within a given model the values of the parameters at the messenger scale may be restricted to

certain ranges, whereas (2.10) assumes that all values are equally likely. However, no model

for supersymmetry breaking will be assumed here. Instead, the minimal FT will be found as a

function of the messenger scale MS assuming no relations or restrictions among the high-scale

input parameters. For this “model-independent” tuning it is satisfactory to use the FT measure

(2.10).

Note that to find the tuning of a model, one should in principle consider the tuning of all

observables, since the absence of tuning in one observable does not necessarily imply it is small

in others, see e.g. [45]. In this paper, however, only the tuning of EWSB will be considered.

Finally, note that the FT with respect to a single parameter is by definition (2.8) zero if that

parameter happens to be zero at the messenger scale. An extreme version of this is found in

the no-scale model [67], where all scalar soft masses are much smaller than the gaugino masses

at the high scale. Setting them to zero, and using (2.8) and (2.10) the FT could be expected to

be small. However, it may be shown that this does not minimize the FT, since M3 and µ need

to be quite large at the high scale to satisfy all the low-energy experimental bounds (see [41]).

In the results presented in this paper, no parameter is found to be zero at the high scale.

2.4 Minimal Model Independent Tuning

In this section the minimal model independent tuning will be found as a function of the mes-

senger scale.

2.4.1 Discussion of Minimization Procedure and Constraints

The FT given by equation (2.10) is written in terms of parameters evaluated at the messenger

scale. In order to find the minimal FT (MFT) for a given messenger scale that is consistent

with low-energy experimental constraints, it is easiest to rewrite the FT expression in terms

of parameters that are evaluated at the low scale. This can be done by expressing each high-

scale parameter in terms of low-scale parameters, see Appendix 2.7. Once the FT is written in

terms of low-scale parameters, m2
Hu

(mZ) may be eliminated by using equation (2.4) (neglecting

contributions from m2
Hd

).

The low-energy constraints considered in this paper include bounds on the (physical) spar-

ticle masses, on the gaugino masses, and on the Higgs mass4. The physical top quark mass

4Constraints from measurements of B → Xsγ or the electroweak S- and T -parameter do not significantly
affect the results presented below, since an experimentally consistent value can be obtained by only small
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mpole

t is set to the central value of the latest Tevatron mass measurement of 170.9 ± 1.8 GeV

[68]. The physical stop masses are required to be at least 100 GeV which is illustrative of the

actual, slightly model dependent, lower bound obtained from the Tevatron [69]. It is found that

the region of MFT does not quite saturate this bound, although a slightly larger value for the

top mass would allow the lighter stop to be as low as 100 GeV. The gaugino masses M1 and

M2, as well as µ, are taken to have a lower bound of 100 GeV. The gluino mass is found to be

never smaller than 335 GeV in the numerical results presented in this section, and this does not

generically violate any experimental bounds.

The most important constraint is the Higgs mass bound of 114.4 GeV (valid in the decoupling

limit), since it turns out that this bound is always saturated when minimizing the FT. In the

numerical results presented in this paper, the Higgs mass is calculated using the formulas found

in [70] (see also [56, 57, 58, 59, 60, 71]). These formulas include the one-loop corrections

coming from the top/stop sector and are simple enough to be used as constraints in the FT

minimization (but note that the sign convention used here for At is that of [11]). In order to

capture some of the important leading two-loop contributions to the Higgs mass, a running

top mass mt(mt) ≃ 162.5 GeV (evaluated in the MS-scheme) is used instead of the physical

top mass mpole

t . There are, however, further higher-order corrections to the Higgs mass that

play a very important role, and more accurate Higgs masses may be obtained with the program

FeynHiggs which includes many of them. These additional corrections often tend to lower the

Higgs mass, and the one-loop formula used in the minimization procedure here does not capture

this effect. In order to compensate for some of these additional higher-order corrections and

thus obtain a more accurate estimate of the MFT, a lower bound for the Higgs mass of 121.5

GeV is used in the FT minimization, instead of the SM lower bound of 114.4 GeV. It turns

out that the typical low energy sparticle spectrum obtained in the analysis below then leads

to a Higgs mass that lies just above 114.4 GeV when these additional corrections are taken

into account (calculated with FeynHiggs, version 2.6.0, assuming real parameters). The issue

of higher-order corrections to the Higgs mass will be revisited in Section 2.5.

Sequential Quadratic Programming (SQP) in Maple is used as a minimization algorithm.

Given the FT function (2.10) written in terms of low scale parameters, as well as linear con-

straints on the gaugino masses and µ, non-linear constraints on the physical stop and Higgs

masses, and an initial guess, SQP generates a less FT point until the minimum is found. Unlike

other minimization algorithms, SQP can handle arbitrary constraints which is essential here

adjustments (if at all necessary) in the least fine-tuned parameters - see also [62].
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Figure 2.2: The minimal fine-tuning as a function of the messenger scaleMS for tanβ = 10. The
top black line is the total minimal fine-tuning as defined in equation (2.10) which includes all
the individual contributions. The individual contributions to the fine-tuning from µ2, m2

Hu
, the

gaugino massesM2
1 , M2

2 andM2
3 , and the stop soft trilinear coupling A2

t are included. Moreover,
the average fine-tuning of the stop soft masses m2

t̃L
and m2

t̃R
is included as in equation (2.11).

due to the highly non-linear physical stop mass and Higgs mass constraints.

2.4.2 Numerical Results

Figure 2.2 shows a plot of the MFT as a function of the messenger scale MS . Shown are the

individual contributions ∆
(
m2
Z ,m

2
i (MS)

)
to the FT, with m2

i given by M2
3 , M2

2 , M2
1 , A2

t , µ
2,

or m2
Hu

. The FT of m2
t̃L

and m2
t̃R

have been included as

∆(m2
Z ,m

2
t̃ ) =

(
1

2

[ (
∆(m2

Z ,m
2
t̃L

)
)2

+
(
∆(m2

Z ,m
2
t̃R

)
)2 ])1/2

. (2.11)

The (top) black line shows the total FT as defined by (2.10).

From the plot it is clear that the MFT increases as a function of the messenger scale MS.

This is expected since a higher messenger scale implies more RG running to the low scale so

that small differences in high-scale input parameters are magnified. For MS = MGUT, the total

MFT is about 22, i.e. 4.5%. (As an aside, for tanβ = 30 and mA = 1000, the MFT for a

Higgs mass of 114 GeV is about 11, i.e. 9%.) The largest contribution to the total minimal

FT comes from M2
3 and A2

t which are both comparable for all values of MS . The next most

important contribution is that from M2
2 . The contributions from µ2, as well as m2

t̃L
and m2

t̃R

are less important and increase only slightly as a function of MS. The FT from m2
Hu

is very
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Figure 2.3: The messenger scale values of M3, M2, M1, At and the average of the stop soft
masses squared, mt̃, that give the minimal fine-tuning (MFT) as a function of the messenger
scale MS and for tanβ = 10. The high-scale values of M2 and At, and to a lesser extent M1

and mt̃, in the minimal fine-tuned region are roughly constant. The high-scale value of M3,
however, decreases significantly as the messenger scale is increased. The reason for this is that
the coefficient of M2

3 in the expression for m2
Z increases as a function of MS , and thus the

minimal fine-tuned region requires the value of M3 to decrease as MS increases.

small for all messenger scales while the contribution from M2
1 is negligible for small and large

MS but larger for intermediate messenger scales.

The large contribution fromM2
3 is mainly because it has the largest (in magnitude) coefficient

in the expression for m2
Z , at least for MS & 1010 GeV, see Figure 2.1. The coefficients of

the cross-terms AtM3, M2M3 and M1M3 are smaller (see Appendix 2.8), but together still

contribute about 40% of the FT with respect to M2
3 for MS = MGUT. The reason that the

cross-term contributions are so large is that the MFT values of At, M2, and M1 are rather

sizeable at the messenger scale when compared with M3 (at least for MS & 104 GeV). This is

depicted in Figure 2.3.

The FT of m2
Z with respect to A2

t is also very large even though the coefficients of A2
t and the

cross-terms AtM3, AtM2 and AtM1 in the expression for m2
Z are rather small (for MS = MGUT,

about 50% of the FT comes from the cross-terms). This is again because At, M2 and M1 are

sizeable at MS . The contribution to the FT from M2
2 is large for similar reasons.

The FT with respect to µ2 increases only slightly as a function of MS since the coefficient of

µ2 in the expression for m2
Z does not vary much, and since the high-scale value of µ2 increases

only slightly as MS is increased. The contribution from µ2 is smaller than those from M2
3 , M2

2
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At
√

1
2 (m2

t̃L
+ m2

t̃R
) mt̃1 mt̃2

-610 GeV 305 GeV 110 GeV 475 GeV

Table 2.1: Low-scale values for the stop soft trilinear coupling, the average of the left- and
right-handed stop soft masses and the two physical stop masses. These low scale values give
the minimal fine-tuning for arbitrary messenger scales.

and A2
t because the value of µ is comparatively small and also because there are no cross-terms

in the FT expression that involve µ and other (large) soft parameters. Similar reasoning holds

for the contributions from m2
Hu

, m2
t̃L

and m2
t̃R

.

The low-energy spectrum that gives the MFT for a given messenger scale remains roughly

unchanged as the messenger scale changes. The value of the stop soft trilinear coupling at the

low scale is always about -610 GeV, with the two physical stop masses around 110 GeV and

475 GeV, respectively, see Table 2.1 and Figure 2.4. These values of the stop-sector parameters

are essentially determined by the constraint on the Higgs mass and from the minimization of

∆(m2
Z ,m

2
Hu

(MS)). The ratio Xt/mt̃ is approximately -2, where Xt ≡ At − µ cotβ, and mt̃ ≡√
1
2 (m2

t̃L
+ m2

t̃R
). The MFT is thus found for the natural maximal-mixing scenario which ap-

proximately maximizes the radiative corrections to the Higgs sector for a given set of parameters

and for negative At [62, 72, 73, 74]. Small deviations of At (and to a lesser extent mt̃L and

mt̃R) from its MFT value at the low scale lead to a very large increase in the FT, mainly from

∆(m2
Z ,m

2
Hu

(MS)). This can be seen from (2.23), which shows that the largest coefficients in the

expression for m2
Hu

(M) in terms of low-scale parameters all involve powers of At. Note that for

generic points in the still allowed parameter space, ∆(m2
Z ,m

2
Hu

) would give one of the largest

contribution to the FT. To minimize the FT it is thus best to minimize ∆(m2
Z ,m

2
Hu

(MS)) which

essentially determines the values of the stop-sector parameters (see the discussion in Section

2.4.3). The other contributions to the FT are then not at their minimum, but they are much

smaller and less sensitive to variations in the parameters.

The low-scale values of the gaugino masses that give the MFT for a given messenger scale

are shown in Figure 2.4. While the value of M2 that gives the MFT is roughly the same for

all MS , the values of M1 and M3 decrease for larger MS . Changing M1 away from its MFT

value does affect the FT but not excessively so, while a change in M3 has a larger effect. The

µ-parameter is always found to be less than 150 GeV for the MFT region at any messenger

scale. Choosing it to be closer to 100 GeV instead has a negligible impact on the FT, and

allows a neutralino to be the lightest SM superpartner (LSP), instead of the lighter stop, which

is found to be the LSP in the numerical minimization procedure.
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Figure 2.4: The low-scale values of the gaugino masses M1, M2 and M3, the stop soft trilinear
coupling At and the average of the stop soft masses squared mt̃ that give the minimal fine-
tuning (MFT) for the messenger scale MS (with tanβ = 10). While the low-scale values of M2,
At and mt̃ that give the minimal fine-tuning are roughly the same for all MS, the values of M1

and M3 decrease for larger MS.

Negative At may be expected to lead to less FT than positive At because At has a strongly

attractive infrared quasi-fixed point near [75, 76]

At ≃ −M3. (2.12)

(This relation is strictly valid only at the Pendleton-Ross quasi-fixed point for the top Yukawa

[77], and neglecting SU(2)L and U(1)Y gauge interactions.) Because of this it is most natural

for At and M3 to have opposite sign and be comparable in magnitude at low scales due to

renormalization group evolution, see Figure 2.5. For positive At and maximal-mixing in the

stop-sector, At would have to be an order of magnitude larger then M3 at the messenger scale

(see Figure 2.5) which would lead to a much more FT parameter region. The MFT region here

does not satisfy (2.12) exactly, but instead At/M3 ≃ −1.8 at the low scale, for MS = MGUT.

In order to satisfy (2.12) exactly, M3 would have to be larger (assuming At remains fixed).

This would increase the size of the stop masses under RG evolution as can be seen from their

β-functions, see (2.50) and (2.51), which would lead to increased FT.

The MTMSSM has negative soft squark squared masses at the messenger scale (see also [47]).

This remains the case even if the messenger scale is very low and only on the order of a few TeV

(for very low messenger scales, finite threshold corrections should really be included). Under

RG-evolution the masses get driven positive very quickly within about a decade of running.



21

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

−20

−15

−10

−5

0

5

10

15

20

25

30

35

M
S
 (GeV)

A
t / 

M
3

Figure 2.5: The RG-evolution of At/M3 for various low-scale boundary conditions
At(mZ)/M3(mZ) = {−2.0,−1.5, . . . , 1.5, 2.0} and tanβ = 10. The strongly attractive infrared
quasi-fixed point near At/M3 ≃ −1 is clearly visible. The gaugino masses have been set to their
minimal fine-tuned values for the case MS = MGUT, i.e. M3(mZ) ≃ 335 GeV, M2(mZ) ≃ 430
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It is the sizeable values of the gaugino masses that pull them up towards positive values. For

smaller messenger scales the MFT region has a larger gluino mass, which drives the squark

masses to positive values even faster while running towards the infrared. Equations (2.22) and

(2.24) or (2.25) in Appendix 2.7 show that negative squarks at the messenger scale lead to more

stop-mixing at the low scale, as was pointed out in [47]. Figure 2.6 shows the RG-trajectories

of the MFT region if the messenger scale is MS=MGUT.

The presence of tachyonic squarks at the messenger scale [78, 79] and/or very large At

[80, 81] may lead to dangerous color and/or charge breaking (CCB) minima.

Very large At may result in dangerous CCB minima around the EW scale. These CCB

minima occur in the (t̃L, t̃R, Hu) plane [82]. The condition that the EW minimum is the global

minimum may be estimated by going along the D-flat direction |t̃L| = |t̃R| = |Hu| and is given

by [83]

A2
t + 3µ2 <∼ 3(m2

t̃L
+m2

t̃R
). (2.13)

Assuming instead that the EW minimum is only metastable but has a large enough lifetime

gives the weaker constraint [83]

A2
t + 3µ2 <∼ 7.5(m2

t̃L
+m2

t̃R
). (2.14)
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Figure 2.6: The RG-trajectories of the minimal fine-tuned region if the messenger scale is
MS=MGUT (tanβ has been set to 10). At the scale mZ , the parameter values are mt̃ ≃ 305
GeV, mt̃1 ≃ 110 GeV, mt̃2 ≃ 475 GeV, M3(mZ) ≃ 335 GeV, and µ(mZ) = 140 GeV. The
minimal fine-tuned value is obtained for natural maximal-mixing, i.e. At ≃ −2mt̃.

The MTMSSM easily satisfies the second condition, as well as satisfying the first condition.

There are thus no dangerous CCB minima resulting from large At.

Tachyonic stops at the messenger scale may result in an unbounded from below potential

along D-flat directions involving the stop fields, as well as first and/or second generation squark

fields or slepton fields. Loop corrections give rise to an effective potential which is not unbounded

from below, but they generically introduce a CCB minimum with a vacuum expectation value

(VEV) on the order of the messenger scale. The MTMSSM may thus have CCB minima with

a VEV around the EW scale if the messenger scale is low, or CCB minima with a VEV large

compared to the EW scale if the messenger scale is high. Since the EW minimum is metastable

and long-lived for mt̃
>∼ 1

6M3 [84], it turns out that these CCB minima are not dangerous in

the MTMSSM. Moreover, the MTMSSM does not determine the masses of the sleptons or first

and second generation squarks since these do not play an important role in the FT. It is thus

always possible to choose them in such a way to avoid CCB minima without changing the above

FT results.

Finally, it is interesting to note that there are several near degenerate parameter subspaces

along which the FT does not change much. The first and second generation particles and their

superpartners do not contribute much to the FT because in equation (2.5) they appear only

with a small coefficient. The parameter SY is also not very important for the same reason.
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A more interesting near degenerate subspace is that the FT is rather insensitive to changes in

the difference of the two stop soft mass squared parameters at the low scale as long as their

sum is kept fixed. This may be understood from the expression for m2
Z , e.g. equation (2.7),

in which only their sum appears (using the one-loop RG equations). However, even with only

one-loop RG equations this degeneracy is not exact since small discrepancies appear in the FT

measure from equations (2.24) and (2.25). Moreover, the difference in the two stop soft mass

squared parameters appears in the calculation of the physical stop masses and this affects the

size of the Higgs mass, which is the most crucial low-energy constraint when calculating the

FT. The FT only starts to change by an order one number when
√
|m2

t̃L
−m2

t̃R
| ∼ 300 GeV for

MS = MGUT.

2.4.3 Analytic Motivation for Numerical Results

The numerical results presented in section 2.4.2 may be motivated analytically. The discussion

will for now assume MS = MGUT, but generalizes to arbitrary MS with a few caveats discussed

below.

In order to get a physical Higgs mass satisfying the experimental bound without generating

large FT for the EWSB, it is natural to maximize the radiative corrections to mh. Due to

the strongly attractive quasi-fixed point for At, this is achieved for negative At near (natural)

maximal mixing (at least for mh not too large, see Section 2.5).

The most important contribution to the FT comes from ∆(m2
Z ,m

2
Hu

(MS)) since it has the

largest coefficients, see Appendix 2.8. Eliminating m̂2
Hu

with the EWSB equation (2.7) and

using the average stop soft mass squared m̂2
t̃

= (m̂2
t̃L

+ m̂2
t̃R

)/2 gives

m2
Z∆(m2

Z , m̂
2
Hu

) = | −m2
Z − 2.19 µ̂2 + 1.36 m̂2

t̃ + 5.24 M̂2
3

− 0.44 M̂2
2 + 0.46 M̂3 M̂2 − 0.77 Ât M̂3 − 0.17 Ât M̂2

− 0.01M̂2
1 + 0.22 Â2

t |. (2.15)

It is possible to have cancelations among the various terms in this expression. ∆(m2
Z ,M

2
3 (MS))

also has large coefficients, but cancelations among its terms are impossible since Ât is negative

(see Appendix 2.8).

Ignoring µ̂2, cancelation of the largest terms in equation (2.15), i.e. the gluino term and the

average stop soft mass squared term, decreases the FT by setting m̂2
Hu

≃ m2
Hu

and leads to

tachyonic squarks at the messenger scale [47]

m̂2
t̃ ≃ −3.9M̂2

3 . (2.16)
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Next, the four terms on the second line of equation (2.15) can cancel by taking

M̂3 ≃ 0.96M̂2 + 0.37Ât

1 − 1.67 Ât

M̂2

. (2.17)

Assuming M̂2 ≃ −Ât, this simplifies to M̂2 ≃ 4.5M̂3. Furthermore, keeping only the most

important terms, the natural maximal-mixing scenario implies

−2 ≃ At
mt̃

≃ (0.32Ât − 2.13M̂3 − 0.27M̂2 − 0.03M̂1)
[
0.66m̂2

t̃ + 5.15M̂2
3

+0.11M̂2
2 + 0.02M̂2

1 + 0.19ÂtM̂3 + 0.04ÂtM̂2 − 0.05Â2
t

]−1/2

= (−4.80M̂3 − 0.03M̂1)
[
2.16M̂2

3 + 0.02M̂2
1

]−1/2

(2.18)

which leads to M̂1 ≃ 15M̂3, again assuming M̂2 ≃ −Ât. It is now possible to compute the ratio

of the soft trilinear coupling with the gluino mass at the EWSB scale,

At
M3

≃ 0.32Ât − 2.13M̂3 − 0.27M̂2 − 0.03M̂1

2.88M̂3

≃ −1.8. (2.19)

These results agree well with the numerical results presented in section 2.4.2.

Note that a GUT scale model which predicts degenerate and negative squark and slepton

soft masses at the GUT scale would need very large wino and bino masses in comparison to the

gluino mass in order to drive the slepton soft masses to positive values under RG running to

the EWSB scale [85]. This is due to the small coefficients of the bino and wino masses in the

β-functions of the slepton soft masses. It is interesting that the MFT region prefers the bino

mass larger than the wino mass and, in turn, the wino mass larger than the gluino mass.

Although this cancelation pattern holds to a good approximation for higher messenger scales,

m̂2
t̃

does not exactly cancel M̂2
3 as the messenger scale decreases. For lower messenger scales,

m̂2
t̃

becomes less tachyonic while M̂2
3 increases, allowing the stop masses to be driven positive

faster under RG running to the EWSB scale. Moreover, the coefficient of M̂2
3 in the expression

for m2
Z (2.5) decreases significantly, as can be seen in Figure 2.1. Therefore the cancelation

pattern in ∆(m2
Z , m̂

2
Hu

) discussed above does not hold since the m̂2
t̃

contribution decreases

while the M̂2
3 term gives a comparable contribution for all messenger scales (except for very

small messenger scales). On the other hand, being a supersymmetric parameter, µ̂ and its

coefficient in equation (2.5) does not change much for different messenger scales. Compared

to M̂2
3 and m̂2

t̃
, its contribution becomes important at lower messenger scales and a lower FT

can be obtained by canceling the three contributions together. The other relations in the above

cancelation pattern holds to a good approximation for lower messenger scales, although for

MS <∼ 105 the cancelation pattern becomes more involved.
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2.4.4 Summary of Phenomenological Implications

The above analysis shows that the MTMSSM has small values for µ, the stop masses and the

gluino mass. The gluino in the MTMSSM is around 335 GeV for MS = MGUT, but heavier

for lower MS . There is large mixing in the stop-sector which introduces a significant splitting

between the two physical stop masses. They have masses of around 115 GeV and 475 GeV

respectively, see Table 2.1. Thus the MTMSSM may have a stop as the LSP. However, as

mentioned before, µ can be chosen to be small enough so that a neutralino is the LSP without

affecting FT by much.

At the Large Hadron Collider, gluino pair-production in the MTMSSM is thus rather large

and comparable to top quark pair-production. The production of t̃1 t̃1 is also of the same order.

The gluinos are Majorana particles, and can decay into the lightest stop via g̃g̃ → ttt̃1t̃1

producing same-sign top quarks 50% of the time. The top quarks each decay into Wb, and

the events with two same-sign top quarks will contain two same-sign leptons if the W decays

leptonically. If a neutralino and a chargino are lighter than the stop, the decay t̃1 → χ+
1 b is

possible, with χ+
1 further decaying into a neutralino and soft jets or leptons. The events thus

also contain missing energy and a number of b-jets, some of which are soft if the t̃1 − χ+
1 mass

splitting is small.

If t̃1 is the LSP a number of further interesting signatures are possible, see [86]. The lighter

stop can either be pair-produced directly or from gluino decays. Even though it is the lightest

SM superpartner, it may decay into a lighter goldstino G̃ via the flavor-violating decay t̃1 → cG̃

or via the three-body decay t̃1 → bWG̃. The decay rate depends on the messenger scale, with

lower messenger scales leading to larger decay rates. For reasonable messenger scales, its decay

length easily exceeds the hadronization length scale, and the stop in general hadronizes before it

decays [86]. For messenger scales less than a few hundred TeV, the decay length is small enough

so that the decay products seem to originate from the interaction region. The three-body decay

leads to a similar signature as the top decay but can be distinguished from it, see [87]. For larger

messenger scales, t̃1 decays inside a hadronized mesino or sbaryon and a variety of interesting

signatures are possible [86], including mesino-anti-mesino oscillations [88].

Another interesting possibility is the direct pair-production of the heavier stop t̃2. Since

the two physical stop masses are split by a large amount, the decay mode t̃2 → t̃1 + Z is

kinematically allowed and has a sizeable branching ratio [89]. The resulting signature depends

on the t̃1 decay channel as discussed above. For χ+
1 and χ1

0 lighter than t̃1, the authors of [89]

propose to look for the inclusive signature Z(l+, l−)bbET/ X , where the two leptons l+ and l−
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have an invariant mass equal to the Z-mass. Detecting this signature would give evidence for

the maximal-mixing scenario but requires a large integrated luminosity (at least O(100 fb−1))

[89]. Since the mass difference between t̃1 and the LSP is small in the MTMSSM this signature

will be very hard to see since the jet from the decay t̃1 → χ+
1 b is soft which makes it more

difficult to separate the signal from the SM background [89].

An alternative way to measure the parameters in the stop-sector is to use the Higgs boson

as a probe [90]. A measurement of the Higgs mass and its production rate in the gluon fusion

channel allows the average of the two stop soft masses as well as the stop mixing to be determined

in many regions of the still allowed MSSM parameter space, and especially in regions where the

FT is small [90].

2.4.5 Fine-Tuning with Respect to Other Parameters

This subsection briefly discusses other parameters that may in principle contribute to the FT.

If the goal is to find the MFT region of a model and make a prediction of what parameter

region is preferred for the model from a FT point of view, there is no reason to include the FT

of experimentally known parameters such as gY , g2 ,g3, or λt. Taking into account the known

parameters in the minimization procedure would most likely lead to other MFT values for all

parameters, including MFT values for the known parameters which would in all likelihood not

match the experimental values.

If the goal, however, is to find the FT of a given model, one should in principle include

contributions from experimentally known parameters. For example, FT with respect to λt,

∆(m2
Z , λt(MS)), may give a large contribution to the total FT due to the large top mass.

Indeed, with the MFT values for MS = MGUT, ∆(m2
Z , λt(MMGUT

)) ≃ 8. This, however,

increases the total FT only by a small amount from 22.1 to 23.5.

What about FT with respect to m2
12 and tanβ? These parameters are unknown and in prin-

ciple they should be included in the minimization procedure. With the help of equation (2.3)

and symmetries, it is however easy to see that ∆(m2
Z ,m

2
12(MS)) = 0. Indeed m2

12 does not ap-

pear directly in the expression for m2
Z . Furthermore it breaks a U(1)PQ- and a U(1)R-symmetry

and consequently does not feed back into any other β-functions since no other parameter breaks

both symmetries. Thus m2
12 cannot appear in equation (2.3) and is therefore completely free,

which allows mA to be chosen accordingly as discussed in Section 2.2.

The FT of tanβ has not been taken into account in the minimization procedure since an

explicit expression for m2
Z can only be obtained assuming a specific value for tanβ, because λt
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Figure 2.7: The minimal fine-tuning as a function of the lower bound on the Higgs mass mh,
where the calculation of mh only includes the one-loop corrections from the top-stop sector
(tanβ = 10, mA = 250 GeV, mt = 170.9 GeV).

depends on tanβ through mt. Moreover, since tanβ is then a free parameter the approximation

leading to equation (2.4) may not be valid anymore and m2
Hd

should be reintroduced. Contri-

butions from bottom/sbottom and tau/stau sectors should also be included if tanβ becomes

large.

2.5 Minimal Fine-Tuning as a Function of the Higgs Mass

The Higgs mass mh is the most important low-energy constraint that determines the amount of

minimal fine-tuning (MFT). It is therefore interesting to look at how the MFT is affected when

the lower bound on mh is changed. Figure 2.7 shows a plot of the MFT as a function of the

lower bound on mh, where the calculation of mh is the same one used in the FT minimization

described in Section 2.4.1, and only includes the one-loop corrections from the top-stop sector

(with mA = 250 GeV, tanβ = 10, mt = 170.9 GeV, and MS = MGUT). The Higgs mass

calculated with the one-loop corrections will be denoted by m1ℓ
h . The region of MFT always

saturates the bound on m1ℓ
h and has negative At. The minimal FT is about 1% for m1ℓ

h ≃ 132

GeV.

There are, however, other important one-loop and two-loop corrections that can significantly

affect mh, and these need to be included in order to get a more accurate idea of how the MFT

changes as a function of the lower bound on mh. With these additional corrections, mh is not

anymore a symmetric function of the stop-mixing parameter Xt = At−µ cotβ ≃ At, where the
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latter approximation is good for sizeable tanβ. It can be up to 5 GeV larger for Xt = +2mt̃

than for Xt = −2mt̃, the difference arising from non-logarithmic two-loop contributions to

mh, see [91, 92, 93]. Moreover, large chargino masses, i.e. large values of M2 and µ, can give

important negative contributions to mh [94]. These corrections are also not included in m1ℓ
h .

Two-loop corrections that allow the gluino mass to affect mh can also be important but are

smaller in general - this will be ignored in the following discussion since the impact on the

results presented below is negligible.

The MFT spectrum that was found with the minimization procedure may be used to calcu-

late mh with FeynHiggs. The FeynHiggs estimate for mh will be denoted by mFH

h . The result

is the solid black line in Figure 2.8. This MFT spectrum characteristically has large chargino

masses and a negative value for At near the “natural” maximal mixing scenario.

Comparing the solid black line in Figure 2.8 with the curve in Figure 2.7 shows the well-

known fact that the higher-order corrections to mh are extremely important. There are two

additional very striking features. First of all, as mFH

h increases and approaches 120 GeV, the

FT increases enormously. Any further small increase in the Higgs mass results in an enormous

increase in the FT. The reason is that as mFH

h approaches 120 GeV here, it only grows logarith-

mically as a function of the stop masses. The stop masses therefore become exponentially large

and thus increase the FT at least exponentially (see also [62]).

The second striking feature of this curve is that the value of the Higgs mass at which the FT

starts to increase enormously is rather low (the MFT is already 1% for mFH

h ≃ 119 GeV). This

value of mh may be increased by just under 2 GeV by choosing larger tanβ and mA (recall that

throughout this discussion tanβ = 10 and mA = 250 GeV). Note that the latest Tevatron top

mass value (mt = 170.9 GeV) has been used in the calculation, and a slightly different value

can also change mh by a few GeV.

An obvious question is whether the MFT region is significantly different if mFH

h were used

in the minimization procedure instead of m1ℓ
h (the former is too complicated to be used). For

MSSM spectra that give small mh this is certainly not the case, since there is not a very large

discrepancy between the two Higgs mass estimates m1ℓ
h and mFH

h . The difference between the

two Higgs mass estimates becomes significant, however, for MSSM spectra that give a large

mh, and the approximation mFH

h can be substantially smaller than m1ℓ
h . Also, as mentioned

above, mFH

h can be substantially larger for positive At (near maximal mixing) than for negative

At (near “natural” maximal mixing), and increases as the chargino masses decrease. On the

other hand, m1ℓ
h remains unaffected by the sign of At and the size of the chargino masses. It

is thus possible that the MFT region does not coincide with the region obtained in the above
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Figure 2.8: The minimal fine-tuning as a function of the lower bound on the Higgs mass mh

calculated with FeynHiggs 2.6.0 (tanβ = 10, mA = 250 GeV, mt = 170.9 GeV). Throughout
this paper the fine-tuning is minimized subject to a constraint on mh, where mh is estimated
with a one-loop formula as described in Section 2.4.1. The different lines arise from different
assumptions made about At, or µ and M2, when minimizing the fine-tuning. These different
assumptions give rise to different low-energy spectra that present the least fine-tuned parameter
choices satisfying these assumptions. These low-energy spectra may then be used in FeynHiggs

to calculate mh. Although M2, µ and the sign of At do not affect the one-loop estimate of
mh which only contains the dominant corrections, they do affect the FeynHiggs estimate of
mh. For the solid black line no constraint was set on At, and µ and M2 were only required to
be above 100 GeV. It is the same line as in Figure 2.7, but with mh estimated by FeynHiggs

instead of the one-loop formula. The dashed blue line assumes At is positive and near maximal
mixing, also with M2 and µ only required to be above 100 GeV. The dash-dot green curve
makes no assumption about At but sets µ = 100 GeV and M2 = 100 GeV. The dotted red line
assumes At = 0, and again only requires µ and M2 to be larger than 100 GeV. Further details
and explanations are given in the text.

minimization procedure as the lower bound on mh increases. This is indeed the case, as will

now be discussed.

The FT may be minimized with the constraint that the chargino masses are small. Since the

effect of varying µ and M2 on the FT are noticeable but not substantial, the resulting spectrum

will be characterized by gluino and stop masses that are only slightly larger than those obtained

in the MFT region discussed in this paper. The value of At is still negative. This spectrum

may be used to calculate mFH

h . The result is shown by the dash-dot green curve in Figure 2.8.

For mFH

h not too large, the solid black curve lies below the dash-dot green curve because the

MFT region has large values of M2, see Section 2.4. As mFH

h increases further, however, the FT

becomes very large since the stop masses become exponentially large. Smaller chargino masses
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lead to larger values of mFH

h , and the two curves show that for mh just below 120 GeV, a smaller

FT may be obtained by decreasing the size of M2. This behavior cannot be captured by m1ℓ
h

which is unaffected by a change in the chargino masses. Note that the transition between the

two regions described by the two curves is smooth, and that it occurs when the MFT is already

more than 1%.

Next, the FT may be minimized with the constraint that At is positive and near maximal

mixing. The resulting low-energy spectrum is characterized by small chargino and gluino masses.

This spectrum may then be used to calculate mFH

h , and the MFT as a function of this value

of mFH

h is displayed by the dashed blue line in Figure 2.8. Comparing the solid black line or

dash-dot green line with the dashed blue line, it is clear that for small mFH

h the MFT region

has negative values of At. Even though negative At might be expected to always give less FT

than positive At due to the IR quasi-fixed point, the increase in mFH

h by several GeV by making

At positive is substantial, and as mFH

h approaches about 123 GeV, the two curves cross. Thus,

there is a transition from At ≃ −2mt̃ to At ≃ +2mt̃ of the minimal fine-tuned region as mFH

h

increases. This behavior is again not captured by m1ℓ
h which is independent of the sign of At.

The transition occurs when the minimal FT is already quite large (about 0.2%).

This transition from negative to positive At is not smooth, in the sense that the first deriva-

tive of the curve at the transition point is not continuous5. To show this, the FT may be

minimized with the constraint At = 0. The resulting low-energy spectrum may then again be

used to calculate mFH

h , and the result is shown by the dotted red line in Figure 2.8. The value

of mFH

h for vanishing stop-mixing, At = 0, is much lower than for the two maximal mixing sce-

narios, At ≃ ±2mt̃, and it is clear that the MFT region does not interpolate smoothly between

them as a function of At.

The main point of the analysis in this section is that although the MSSM is already fine-

tuned at least at about the 5% level (if the messenger scale equals the GUT scale), there is not

much room left for the Higgs mass to increase before the FT becomes much worse.

Note that for a lower messenger scale the Higgs mass can have a slightly larger value before

the MFT begins to increase enormously. For example, for MS = 200 TeV, the MFT is 1%

for mh ≃ 123 GeV. So even for a lower messenger scale the Higgs mass cannot be that much

beyond 120 GeV before the MFT increases dramatically.

5One may perhaps refer to this as the first order phase transition of fine-tuning.
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2.6 Conclusions

This paper presented the minimally tuned Minimal Supersymmetric Standard Model (MTMSSM).

The MSSM parameter region that has the minimal model-independent fine-tuning (FT) of

EWSB was found. Model - independent means that no relations were assumed between the

soft SUSY breaking parameters at the scale at which they are generated (the messenger scale).

Instead, all of the important parameters were allowed to be independent and free at the mes-

senger scale, and were taken to contribute to the total FT of the EWSB scale. The messenger

scale itself was varied between 2 TeV and MGUT and the effect of this on the minimal FT was

presented.

The most important parameters that contribute to the tuning are |µ|2, m2
Hu

, the gaugino

masses M1, M2 and M3, the stop soft masses m2
t̃L

and m2
t̃R

, and the stop soft trilinear coupling

At. The MSSM spectra which lead to the minimal model-independent FT were found by

numerically minimizing the FT expression subject to constraints on the Higgs, stop, and gaugino

masses (the Higgs mass was found to always be the most important low-energy constraint). The

high-energy spectra are characterized by tachyonic stop soft masses, even for messenger scales

as low as 2 TeV (but note that threshold effects in the RG-running were neglected throughout).

The potential existence of charge and/or color breaking minima turns out not to be a problem.

The gluino mass, M3, is much smaller than the wino mass, M2, and M2 in turn is much

smaller than the bino mass M1. The low-scale spectra are characterized by negative At near

the maximal mixing scenario that maximizes the Higgs mass. The large stop mixing leads to a

large splitting between the two stop mass eigenstates. Interesting phenomenological signatures

include the possibility of a stop LSP.

The minimal FT was also found as a function of the lower bound on the Higgs mass (with the

messenger scale set to MGUT). Although in the numerical minimization procedure the dominant

one-loop expression for mh was used as a constraint, the resulting least fine-tuned spectra were

used to calculate mh more accurately with FeynHiggs. A plot of the minimal FT as a function

of mh was presented. There are several striking features of this plot. For mh larger than about

120 GeV the FT increases very rapidly. This value of mh is rather low, perhaps surprisingly so.

It is only slightly dependent on the parameters in the Higgs sector. Near it, the value of At in

the least FT region also makes a sudden transition from lying near −2mt̃ to lying near +2mt̃,

where mt̃ is the average of the two stop soft masses. The upshot of this particular analysis is

that although the MSSM is already fine-tuned at least at about the 5% level (if the messenger

scale equals the GUT scale), there is not much room left for the Higgs mass to increase before
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the FT becomes much worse. The magnitude and rate of increase of the minimal FT as mh

increases beyond about 120 GeV is very striking.

2.7 Appendix: Semi-numerical Solutions of the MSSM

One-Loop RG-Equations

This appendix reviews the procedure for solving the MSSM one-loop RG equations semi-

numerically [63, 64]. The low scale M0 is set to be mZ , and the high (messenger) scale MS

is taken to lie anywhere between mZ and MGUT. Threshold corrections are neglected when

solving the RG-equations.

The main goal is to obtain an expression for m2
Z in terms of high-scale input parameters

as in equation (2.5). Assuming that tanβ is not too small, this requires solving |µ(mZ)|2

and m2
Hu

(mZ) in terms of high-scale parameters (for moderate values of tanβ, m2
Hd

may be

neglected, see equation (2.4)). The fine-tuning may then be calculated and naturally expressed

in terms of high-scale parameters as in equation (2.10). However, in order to minimize the

fine-tuning taking into account low-scale constraints on the Higgs, stop, and gaugino masses,

it is more appropriate to rewrite the fine-tuning expression in terms of low scale parameters.

This requires that µ as well as all the soft supersymmetry breaking parameters appearing in

equation (2.10) be written in terms of low scale parameters.

In solving the RG-equations, only the contributions from the third generation particles will

be included, since the third generation Yukawa couplings are much larger than those from

the first and second generations. Moreover, the contributions from the bottom/sbottom and

tau/stau sectors are neglected as tanβ is taken to be not too large.

The high-scale parameters may in general be written in terms of low scale-parameters as

m2
i (MS) =

∑

j,k

cijk(tanβ,M0,MS)mj(M0)mk(M0). (2.20)

For example, for MS = MGUT, the expressions for the most important high-scale parameters
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written in terms of low-scale parameters are

M̂i = diMi {d1, d2, d3} = {2.42, 1.22, 0.35} (2.21)

Ât = 3.15At + 2.33M3 + 1.03M2 + 0.26M1 (2.22)

m̂2
Hu

= 2.07m2
Hu

+ 1.07m2
t̃L

+ 1.07m2
t̃R

+ 0.19M2
3 − 0.98M2

2

− 0.31M2
1 + 3.38A2

t + 3.69AtM3 + 1.19AtM2 + 0.24AtM1

+ 0.76M3M2 + 0.15M3M1 + 0.05M2M1 + 0.06SY (2.23)

m̂2
t̃L

= 0.36m2
Hu

+ 1.36m2
t̃L

+ 0.36m2
t̃R

− 0.72M2
3 − 0.81M2

2

− 0.06M2
1 + 1.13A2

t + 1.23AtM3 + 0.40AtM2 + 0.08AtM1

+ 0.25M3M2 + 0.05M3M1 + 0.02M2M1 + 0.02SY (2.24)

m̂2
t̃R

= 0.72m2
Hu

+ 0.72m2
t̃L

+ 1.72m2
t̃R

− 0.65M2
3 − 0.18M2

2

− 0.46M2
1 + 2.26A2

t + 2.46AtM3 + 0.80AtM2 + 0.16AtM1

+ 0.50M3M2 + 0.10M3M1 + 0.04M2M1 − 0.09SY (2.25)

µ̂ = 0.95µ. (2.26)

Similar type of expressions hold for low-scale parameters as a function of high-scale parameters.

The gauge couplings gα, α ∈ {1, 2, 3}, and the top Yukawa coupling λt are fixed at the low scale

by their experimental values [69]. Section 2.7.1 gives the solution of their RG-equations.

The MSSM one-loop β-functions that need to be solved come in three different functional

forms [95]. The RG-equations of the gaugino masses Mα, the supersymmetric Higgsino mass

µ, and SY are of the form

dmi

dt
= fi(λt, gα)mi, mi ∈ {Mα, µ, SY }, (2.27)

where t = ln(MS/M0). Their solution is given by

mi(t) = mi(0) exp

∫ t

0

dt′ fi(λt, gα). (2.28)

The stop soft trilinear coupling has the functional form

dAt
dt

= a(λt)At + b(gα,Mα). (2.29)

The solution of this equation is more involved due to the presence of both homogeneous and

inhomogeneous terms, and requires the solution for the gaugino masses (2.28). It may be written

as (see Section 2.7.3)

At(t) = e
∫
dt′a(λt)At(0) + e

∫
dt′a(λt)

∫ t

0

dt′e−
∫
dt′′a(λt) b(gα,Mα). (2.30)
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Finally, the RG-equations of the up-type Higgs soft mass and the stop soft masses form a

system of coupled inhomogeneous differential equations,

dm2
i

dt
=
∑

j

uij(λt)m
2
j + vi(gα,Mα, SY , At), m2

i ∈ {m2
Hu
,m2

t̃L
,m2

t̃R
}. (2.31)

This may be solved (see Section 2.7.4) using the solutions for the gaugino masses and SY (2.28)

as well as the solution for the stop soft trilinear coupling (2.30),

m2
i (t) =

(
e
∫
dt′u(λt)m2(0) + e

∫
dt′u(λt)

∫ t

0

dt′e−
∫
dt′′u(λt) v(gα,Mα, SY , At)

)

i

. (2.32)

2.7.1 Appendix: Gauge and Yukawa Couplings

The one-loop β-functions for the gauge and top Yukawa couplings in the MSSM are

8π2βg2α = bα g
4
α, {bY , b2, b3} = {11, 1,−3} (2.33)

16π2βλt = λt

(
6λ2

t −
16

3
g2
3 − 3 g2

2 −
13

9
g2
Y

)
. (2.34)

Their solutions are

g2
α(t) = g2

α(0) ξ−1
α (t) (2.35)

λ2
t (t) = λ2

t (0)E(t;~n0)G(t;~n0)
−1, (2.36)

where ~n0 =
(

13
9b1
, 3
b2
, 16

3b3

)
=
(

13
99 , 3,− 16

9

)
, and for future convenience the functions

ξα(t) = 1 − bα
8π2

g2
α(0)t (2.37)

E(t;~n) =

3∏

α=1

ξ(~n)α
α (t) (2.38)

F (t;~n) =

∫ t

0

dt′E(t′;~n) (2.39)

G(t;~n) = 1 − 3

4π2
λ2
t (0)F (t;~n) (2.40)

have been introduced. The solution (2.36) is analytic if g2 and gY are set to zero [96, 97],

whereas non-zero values of g2 and gY require a numerical integration.

2.7.2 Appendix: Gaugino Masses, µ-term and SY

The RG-equations for the gaugino masses, µ and SY are

βMα =
Mα

g2
α

βg2α (2.41)

16π2βµ = µ
(
3λ2

t − 3 g2
2 − g2

Y

)
(2.42)

8π2βSY = g2
Y

∑

scalars i

(
Yi
2

)2

SY . (2.43)
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The general solution is of the form (2.28), and may be written as

Mα(t) = Mα(0) ξ−1
α (t) (2.44)

µ(t) = µ(0)G(t;~n0)
− 1

4 ξ
3
2
2 (t) ξ

1
22
1 (t) (2.45)

SY (t) = SY (0) ξ−1
1 (t) (2.46)

with the notation of Section 2.7.1. The solutions for the gaugino masses and SY are analytic

while µ must be solved numerically unless the contributions from g2 and gY are neglected.

2.7.3 Appendix: Stop Soft Trilinear Coupling

The β-function of the stop soft trilinear coupling is

8π2βAt =

(
6λ2

t At −
16

3
g2
3 M3 − 3 g2

2 M2 −
13

9
g2
Y M1

)
. (2.47)

Using the solutions for the gaugino masses (2.44), this equation may be integrated and written

as

At(t) =
1

G(t;~n0)

[
At(0) +

3∑

α=1

(~n0)α
Mα(0)

ξα(t)

(
G(t;~n0) − ξα(t)G(t;~n0 − ~eα)

)]
(2.48)

where (~eα)β = δαβ are the usual unit vectors. If g2 and gY are zero, the solution does not require

a numerical integration.

2.7.4 Appendix: Up-type Higgs Soft Mass and Stop Soft Masses

The β-functions of m2
Hu

, m2
t̃L

and m2
t̃R

are

8π2βm2
Hu

= 3λ2
t

[
m2
Hu

+m2
t̃L

+m2
t̃R

+ |At|2
]

−3 g2
2 |M2|2 − g2

Y |M1|2 −
1

2
g2
Y SY (2.49)

8π2βm2
t̃L

= λ2
t

[
m2
Hu

+m2
t̃L

+m2
t̃R

+ |At|2
]

−16

3
g2
3 |M3|2 − 3 g2

2 |M2|2 −
1

9
g2
Y |M1|2 −

1

6
g2
Y SY (2.50)

8π2βm2
t̃R

= 2λ2
t

[
m2
Hu

+m2
t̃L

+m2
t̃R

+ |At|2
]

−16

3
g2
3 |M3|2 −

16

9
g2
Y |M1|2 −

2

3
g2
Y SY . (2.51)

They form a system of coupled inhomogeneous differential equations. Note that At appears

quadratically in these β-functions which gives cross-terms between Mα(0) and At(0) (see equa-

tion (2.48)). The equations can be solved as in (2.32) but it is possible to simplify the analysis
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by the change of variables

X = m2
Hu

−m2
t̃L

−m2
t̃R

(2.52)

Y = m2
Hu

− 3m2
t̃L

(2.53)

Z = m2
Hu

+m2
t̃L

+m2
t̃R
. (2.54)

In terms of the new variables, the β-functions are

8π2βX =
32

3
g2
3 |M3|2 +

8

9
g2
Y |M1|2 + g2

Y SY (2.55)

8π2βY = 16 g2
3 |M3|2 + 6 g2

2 |M2|2 −
2

3
g2
Y |M1|2 (2.56)

8π2βZ = 6λ2
tZ + 6λ2

t |At|2 −
32

3
g2
3 |M3|2 − 6 g2

2 |M2|2 −
26

9
g2
Y |M1|2. (2.57)

In this form, βX and βY are easily integrated since they have no homogeneous term (which is

due to the fact that the corresponding matrix uij in (2.31) has rank = 1)

X(t) = X(0) − 16

9
M2

3 (0)
(
ξ−2
3 (t) − 1

)
(2.58)

+
4

99
M2

1 (0)
(
ξ−2
1 (t) − 1

)
+

1

11
SY (0)

(
ξ−1
1 (t) − 1

)

Y (t) = Y (0) − 8

3
M2

3 (0)
(
ξ−2
3 (t) − 1

)
(2.59)

+3M2
2 (0)

(
ξ−2
2 (t) − 1

)
− 1

33
M2

1 (0)
(
ξ−2
1 (t) − 1

)
.

The equation for Z requires a numerical integration (even if g2 and gY are zero)

Z(t) =
1

G(t;~n0)

[
Z(0) −

3∑

α=1

(~n0)α
M2
α(0)

ξ2α(t)

(
G(t;~n0) − ξ2α(t)G(t;~n0 − 2~eα)

)

+
3

4π2
λ2
t (0)

∫ t

0

dt′E(t′;~n0) |At(t′)|2
]
. (2.60)

The solutions for m2
Hu

, m2
t̃L

and m2
t̃R

in terms of X , Y and Z are then

m2
Hu

(t) =
1

2

(
X(t) + Z(t)

)
(2.61)

m2
t̃L

(t) =
1

6

(
X(t) − 2Y (t) + Z(t)

)
(2.62)

m2
t̃R

(t) =
1

3

(
− 2X(t) + Y (t) + Z(t)

)
. (2.63)

2.8 Appendix: Fine-tuning Components

This appendix lists for completeness the expressions for the fine-tuning of m2
Z with respect

to M2
3 , M2

2 , M2
1 , µ2, A2

t , m
2
Hu

, m2
t̃L

and m2
t̃R

. The fine-tuning components as a function of

high-scale parameters are easily found from the fine-tuning measure, equation (2.8), with the
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observable m2
Z written as in equation (2.5). For MS = MGUT, the fine-tuning components are

m2
Z∆(m2

Z , M̂
2
3 ) ≃ 5.24M̂2

3 + 0.23M̂3M̂2 + 0.03M̂3M̂1 − 0.38ÂtM̂3 (2.64)

m2
Z∆(m2

Z , M̂
2
2 ) ≃ −0.44M̂2

2 + 0.23M̂3M̂2 + 0.01M̂2M̂1 − 0.08ÂtM̂2 (2.65)

m2
Z∆(m2

Z , M̂
2
1 ) ≃ −0.01M̂2

1 + 0.03M̂3M̂1 + 0.01M̂2M̂1 − 0.01ÂtM̂1 (2.66)

m2
Z∆(m2

Z , µ̂
2) ≃ −2.19µ̂2 (2.67)

m2
Z∆(m2

Z , Â
2
t ) ≃ 0.22Â2

t − 0.38ÂtM̂3 − 0.08ÂtM̂2 − 0.01ÂtM̂1 (2.68)

m2
Z∆(m2

Z , m̂
2
Hu

) ≃ −1.32m̂2
Hu

(2.69)

≃ −m2
Z − 2.19 µ̂2 + 1.36 m̂2

t̃ + 5.24 M̂2
3

− 0.44 M̂2
2 + 0.46 M̂3 M̂2 − 0.77 Ât M̂3 − 0.17 Ât M̂2

− 0.01M̂2
1 + 0.22 Â2

t

m2
Z∆(m2

Z , m̂
2
t̃L

) ≃ 0.68m̂2
t̃L

(2.70)

m2
Z∆(m2

Z , m̂
2
t̃R

) ≃ 0.68m̂2
t̃R
. (2.71)

Here it is understood that the absolute value of the right-hand sides of each of these equations

is meant to be taken. The EWSB relation, equation (2.7), was used to eliminate m̂2
Hu

. It is

natural to eliminate m̂2
Hu

instead of µ̂2 or any other soft supersymmetry breaking parameters

since µ̂2 is supersymmetric while the other soft supersymmetry breaking parameters are not

involved in the EWSB equation at the EW scale. With the help of equations (2.21)-(2.26), it

is now straightforward to rewrite the FT expression (2.10) in terms of low-scale parameters.
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Chapter 3

Spontaneous Symmetry Breaking in Supersymmetry

3.1 Introduction

In this chapter we discuss in detail the findings of the work done in [29].

Although the extension of the Rξ-gauge to supersymmetric gauge theories has been studied

previously [98, 99, 100, 101] confusion still remains about the results. Ovrut and Wess [98]

extended the Rξ-gauge to spontaneously broken SU(Nc) super Yang-Mills with matter and

computed the superpropagators. They did not however calculate the vertices nor did they

stress the non-local behavior of these gauges. Later Marcus, Sagnotti and Siegel [99] and Siegel

[100] used equivalent gauge-fixing terms in the context of ten-dimensional Yang-Mills theory

and four-dimensionalN = 1 superspace Gervais-Neveu gauge respectively. Recently Goldhaber,

Rebhan, van Nieuwenhuizen and Wimmer [101] discussed the supersymmetric extension of the

Rξ-gauge and pointed out that non-local terms appear in the action. They concluded that one

might not be able to construct a local Rξ-gauge theory in the superFeynman gauge due to the

presence of non-local terms.

This paper re-introduces the Rξ-gauge for supersymmetric Yang-Mills with matter and shows

that the theory is well-defined at one-loop in general gauge. The effectiveness of supersymmetric

Rξ-gauge relies on the projection operator for chiral fields [98] which however introduces non-

local terms in the gauge-fixing term as described in [101]. These non-local terms show up in two

different parts of the action, in the gauge-fixing action and the ghost action. Most of these terms

become gauge-dependent mass terms for quark and ghost superfields while non-zero vacuum

expectation values give vector superfield mass term. This is analogous to usual Rξ-gauge [102]

and Higgs mechanism [103, 104, 105] in non-supersymmetric theories. The non-local terms left

are all of the same form and correspond to vertices between one quark superfield and two ghost

superfields. To one-loop, non-local contributions to the effective action are well-defined, the

non-renormalization theorem of supersymmetric theories forcing several non-local diagrams to

give a zero contribution. Remaining contributions are mostly finite, the most divergent diagrams

are only logarithmically divergent and do not require additional counterterms.
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The massive vector superfields encountered in these theories are interesting on their own.

Indeed, supersymmetry (SUSY) could be the theory beyond the standard model of particles and

it is not excluded that electroweak symmetry breaking happens at energy scales higher than

SUSY breaking. In this scenario massive vector superfields would be generated, which signals

SUSY as the theory beyond the standard model.

The paper is constructed as follows. In section 3.2 the Rξ-gauge is introduced for SU(Nc)

super Yang-Mills theory with fundamental matter and the superpropagators and vertices in

general gauge are computed. In section 3.3 non-local contributions to the effective action at

one-loop are computed from superFeynman diagrams. The effects of these non-local terms are

discussed and it is argued that higher-order corrections should have the same form. Notation

conventions follow [98] and are gathered in appendix 3.5 with other useful identities. The

computation of the ghost action is left for appendix 3.6.

3.2 SU(Nc) supersymmetric QCD with matter

The starting point is SU(Nc) supersymmetric QCD with Nf flavors of quarks Qin in a given

representation R (in general complex, reducible) of the gauge group (i, j = 1, . . . , Nf are flavor

indices and n,m = 1, . . . ,dim R are gauge group index). The gauge group representation R

carried by the quarks is chosen such that anomalies cancel. The SUSY Yang-Mills action is

given by

Sinv =
1

16g2C2(A)
Tr

(∫
d6z WαWα + h.c.

)
+

∫
d8z Qie

VQi. (3.1)

The quarks Qin(z) are chiral superfields and the gauge bosons Vnm(z) = V a(z)T anm are vector

superfields. Here a, b = 1, . . . , N2
c − 1 are indices in the adjoint representation A of the gauge

group and T anm are the generators of the gauge group in the representation R. The generators

of the vector superfield action are in the adjoint representation where T (A) = C2(A) (see

appendix 3.5) and the normalization is chosen such that the rescaling V → 2gV leads to the

canonical normalization. For simplicity the superpotential is set to zero. This avoids further

complications due to additional propagators between (anti-)chiral quark superfields. From the

super field strength Wα = − 1
4D̄

2(e−VDαe
V ) the vector superfield action can be rewritten in a

more convenient way as an integral over full superspace

SV =
1

16g2C2(A)
Tr

(∫
d6z WαWα + h.c.

)

= − 1

64g2C2(A)
Tr

(∫
d6z

(
− D̄

2

4

)(
D̄2(e−VDαeV )(e−VDαe

V )
)

+ h.c.

)
(3.2)

= − 1

64g2C2(A)
Tr

(∫
d8z D̄2(e−VDαeV )(e−VDαe

V ) + h.c.

)
.
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An interesting phenomenon is the SUSY analog [98] of the Higgs mechanism [103, 104, 105]

where quarks have non-zero vacuum expectation values. These theories, which have massive

vector superfields, could be relevant if e.g. electroweak symmetry breaking happens at higher

energy scales than SUSY breaking. With that in mind, the quark vacuum expectation values

are chosen such that they do not break SUSY nor Poincaré invariance. The simplest choice is

Qin(z) = qin + Φin(z) (3.3)

where qin are constrained by the auxiliary field equations of motion. The phenomenon giving

rise to non-zero quark expectation values is not of interest here. Expanding the action leads to

Sinv = − 1

64g2C2(A)
Tr

(∫
d8z D̄2(e−VDαeV )(e−VDαe

V ) + h.c.

)
+

∫
d8z (qi+Φi)e

V (qi+Φi).

(3.4)

In order to cancel quark superfield/vector superfield cross-terms, one introduces the chiral

gauge-fixing term

F a = D̄2V a + 32g2ξ

(
D̄2

16∂2

)
ΦiT

aqi (3.5)

which is, as component notation shows, the SUSY analog of the non-SUSY Rξ-gauge. F a is

chosen chiral since gauge transformations have a chiral parameter Λa. This choice of gauge-fixing

term takes advantage of the chiral field projection operator P2 = D̄2D2

16∂2 with P2Φ(z) = Φ(z).

However, as shown by the second term of equation (3.5), it forces the introduction of non-local

terms in the action which can spoil the consistency of the theory in these gauges. This non-

locality will be studied more carefully in the following section. The generating functional is

gauge-fixed following the general procedure of the functional determinant

∆(V ) =

∫ DΛDΛ δ[F (V Λ,Λ) − f ]δ[F (V Λ,Λ) − f ]. (3.6)

Averaging over f and f with a Gaussian weight factor results in the SU(Nc) superQCD gener-

ating functional

Z =
1

N

∫ DfDfDVDΦDΦDΦ̃DΦ̃ exp

(
− i

32g2ξ

∫
d8z f

a
fa
)

∆−1(V )∆(V )eiSinv

=

∫ DVDΦDΦDΦ̃DΦ̃DcDcDc′Dc′ eiSinv+iSGF+iSFP (3.7)

where the gauge-fixing action (coming from the Gaussian weight factor and the functional

determinant) and the ghost action (coming from the inverse of the functional determinant) are
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(see appendix 3.6)

SGF =

∫
d8z

(
− 1

64g2ξC2(A)
TrV {D2, D̄2}V − qiV Φi − ΦiV qi − 2g2ξ(qiT

aΦi)
1

∂2
(ΦiT

aqi)

)
(3.8)

SFP =

∫
d8z

(
1

C2(A)
Tr
[
(c′ + c′)(LV/2[(c+ c) + coth(LV/2)(c− c)])

]
(3.9)

−2g2ξ

[
(qi + Φi)c

(
1

∂2
c′
)
qi + qi

(
1

∂2
c′
)
c(qi + Φi)

])
.

The gauge-fixing action generates the terms needed to cancel the quark superfield/vector super-

field cross-terms. However, in both the gauge-fixing and ghost actions, the gauge-fixing term

also leads to non-local terms as stated above. Most of the non-local terms consist of only two

fields (two quark or two ghost superfields) and will therefore modify the propagators, in this

case by generating mass terms. The non-local terms consisting of more than two fields are at

first sight problematic. Only two vertices are of this kind, corresponding to interactions between

one quark superfield and two ghost superfields. Their effects will be investigated in the next

section, after the propagators and vertices are obtained.

The free and interacting parts of the actions are easily found by expansion. For the vector

superfield, the free action can be simplified using projection operators (see appendix 3.5)

S0
V =

∫
d8z

(
V a
[

1

64g2

(
DαD̄2Dα + D̄α̇D

2D̄α̇ − 1

ξ
{D2, D̄2}

)
δab +

M2ab

4g2

]
V b + qiV qi

)

=
1

2

∫
d8z

(
V a

[
− 1

2g2

(
PT +

1

ξ
P0 −

M2

∂2

)ab
∂2

]
V b

)
+

∫
d8z qiV qi (3.10)

which gives the propagator

〈0|T {V a(z1)V b(z2)}|0〉 = −2ig2

[(
1

∂2
1 −M2

)ab
PT + ξ

(
1

∂2
1 − ξM2

)ab
P0

]
δ12. (3.11)

The quark superfield free action is simply

S0
Φ =

∫
d8z

(
ΦiΦi − 2g2ξ(qiT

aΦi)
1

∂2
(ΦiT

aqi)

)

=
1

2

∫
d8z

(
Φin

[
δijδnm − ξ

M2
in,jm

∂2

]
Φjm + Φin

[
δijδnm − ξ

M2
jm,in

∂2

]
Φjm

)
(3.12)

and the free propagator becomes (notice that since the superpotential is zero no free propogators

between Φ and Φ or between Φ and Φ appear)

〈0|T {Φin(z1)Φjm(z2)}|0〉 = i

(
∂2
1

∂2
1 − ξM2

)

in,jm

P2δ12 = i

[
δijδnm + ξM2ab

in,jm

(
1

∂2
1 − ξM2

)ab]
P2δ12.

(3.13)

Finally the ghost superfield free action is

S0
g =

∫
d8z

(
1

k
Tr [c′c− c′c] − 2g2ξ

[
qi

(
1

∂2
c

)
c′qi + qic

′
(

1

∂2
c

)
qi

])

=

∫
d8z

(
c′a
[
δab − ξ

M2ab

∂2

]
cb − c′a

[
δab − ξ

M2ba

∂2

]
cb
)

(3.14)
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leading to the propagators

〈0|T {ca(z1)c′b(z2)}|0〉 = i

(
∂2
1

∂2
1 − ξM2

)ab
P2δ12 (3.15)

〈0|T {ca(z1)c′b(z2)}|0〉 = −i
(

∂2
1

∂2
1 − ξM2

)ba
P1δ12. (3.16)

Here M2ab
in,jm = 2g2(qjT

b)m(T aqi)n and the vector and ghost superfield mass matrix is M2ab =
∑
M2ab
in,in while the quark superfield mass matrix is M2

in,jm =
∑
M2aa
in,jm. As pointed out before

all non-local terms involving exactly two superfields modify the free propagators by generating

mass terms. This occurs since the projection operators {PT , P1, P2} of the free propagators

absorb the extra 1
∂2 factor of these non-local terms to produce the corresponding mass terms.

Therefore the only non-local terms left are in the interacting actions and involve one quark and

two ghost superfields

S int

V =
1

64g2C2(A)
Tr

[∫
d8z

(
D̄2DαV [V,DαV ] − 1

4
[V,DαV ]D̄2[V,DαV ] (3.17)

−1

3
D̄2DαV [V, [V,DαV ]] + · · ·

)
+ h.c.

]
+

∫
d8z qi

[
V 3

3!
+
V 4

4!
+ · · ·

]
qi

S int

Φ =

∫
d8z

(
qi

[
V 2

2
+ · · ·

]
Φi + Φi

[
V 2

2
+ · · ·

]
qi + Φi

[
V +

V 2

2
+ · · ·

]
Φi

)
(3.18)

S int

g =
1

C2(A)
Tr

∫
d8z

(
1

2
(c′ + c′)[V, c− c] +

1

12
(c′ + c′)[V, [V, c− c]] · · ·

)
(3.19)

−2g2ξ

∫
d8z

[
Φic

(
1

∂2
c′
)
qi + qi

(
1

∂2
c′
)
cΦi

]
.

Notice that, apart from non-locality issues, the Higgs mechanism in SUSY theories is similar to

the Higgs mechanism in non-SUSY theories. It leads to gauge-dependent mass terms for quark

and ghost superfields and to quark superfield/ghost superfield/ghost superfield interactions as

in non-SUSY theories. In addition notice that all non-local terms disappear in superLorentz

gauge (ξ = 0). Consequently one can undertake all computations in this specific gauge without

worrying about non-locality. The next section is devoted to show that the non-local vertices

are well-behaved in the effective action at one-loop in any gauge.

3.3 Non-local terms in the effective action at one-loop

The goal here is to compute one-loop contributions to the effective action coming from non-local

terms in general gauge. The interest lies in terms that could spoil the locality of the theory

at one-loop. By inspection the only possible divergent diagrams involving non-local vertices

can be grouped according to their external superfields (here the zero superpotential decreases

greatly the number of diagrams).
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Figure 3.1: Diagrams renormalizing the superpotential.

The first group shown in figure 3.1 corresponds to diagrams renormalizing the superpo-

tential. They are all exactly zero by the chirality properties of the external superfields, as

anticipated from the non-renormalization theorem of SUSY theories. For example, in the case

of external chiral quark superfields Φ(z), after integrating by parts all covariant derivatives on

one δ-function and on quark chiral superfields, one ends up with integrals of chiral superfields

with projection operators over full superspace. These simplify (PTΦ(z) = 0, P1Φ(z) = 0 and

P2Φ(z) = Φ(z)) and give integrals of naked chiral superfields over full superspace, which are

identically zero. The same is true of anti-chiral quark superfields Φ(z) with P2 replaced by

P1. Consequently no superpotential is generated, as expected in perturbation theory of SUSY

theories and the non-local vertices do not affect the theory at this level.

Figure 3.2: Diagrams renormalizing the interactions between one quark superfield and any
number of vector superfields.

The second group of diagrams of figure 3.2 renormalizes the interactions between one quark

superfield and any number of vector superfields. The number of external vector superfields

is arbitrary since vector superfields have mass dimension zero in SUSY. By gauge invariance

all the diagrams in this group lead to the same infinite contributions. For example, the first

diagram of figure 3.2 with external chiral quark superfield Φ gives

2 × i2

2

∫
d8z1d

8z2

〈
1

2C2(A)
Trc′(z1)[V (z1), c(z1)](−2g2ξ)qi

(
1

∂2
2

c′(z2)

)
c(z2)Φi(z2)

〉

= −ig2ξfabc(qiT
dT e)n

∫
d4p

(2π)4
d4k

(2π)4
d4θ V a(−p, θ)

(
1

(p+ k)2 + ξM2

)cd(
1

k2 + ξM2

)eb
Φin(p, θ)

= −ig2ξfabc(qiT
cT b)n

∫
d4p

(2π)4
d4k

(2π)4
d4θ V a(−p, θ) 1

k2(p+ k)2
Φin(p, θ) + finite. (3.20)
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With respect to non-SUSY theories, this diagram is equivalent to its non-SUSY analog since

∫
d4θ V (θ)Φ(θ) ⊃

∫
d4θ (−θσµθ̄Aµ)(iθσν θ̄∂νφ). (3.21)

It also fulfills the same goal, i.e. it cancels gauge-dependent terms in figure 3.3. Moreover it

is only logarithmically divergent as expected in SUSY theories. This divergence has the same

form as the field strength renormalization divergence thus it should be taken care off by the

same counterterm. Therefore the theory seems unaffected by non-locality issues for this group

of diagrams.

Figure 3.3: Other relevant diagrams which renormalize the interactions between one quark
superfield and one vector superfield.

Figure 3.4: Diagrams renormalizing the interactions between two or more quark superfields and
any number of vector superfields.

The third group (see figure 3.4) consists of diagrams with two or three external quark

superfields (chiral or anti-chiral) and any number of vector superfields. A simple computation

shows that these diagrams are all finite and thus do not spoil the theory. Indeed, since quark

superfields and quark vacuum expectation values have mass dimension one, these diagrams have

to be finite by dimensional analysis.

The fourth and last group of diagrams of figure 3.5 is defined by unphysical processes where

ghost superfields appear on external legs. These diagrams are the most dangerous since the non-

locality may lie on the external legs. However, diagrams with non-local factors on external legs

become local since the non-local factors disappear in the integration process. Indeed, integration

by parts pushes the appropriate covariant derivatives on the external ghost superfields with a

1
∂2 factor which gives rise to the appropriate projection operators. By the chirality properties
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Figure 3.5: Diagrams involving external ghost superfields.

of the ghost superfields, the non-local factor then disappears. For example, the second diagram

of 3.5 with external chiral ghost superfields c and c′ contains

∫
d8z1d

8z2d
8z3

(
∂2
2

∂2
2 − ξM2

)

in,jm

P2δ
8
12

(
∂2
1

∂2
1 − ξM2

)ab
P1δ

8
13

×
(

∂2
2

∂2
2 − ξM2

)cd
P1δ

8
23

1

∂2
1

c′e(z1)c
f (z2)V

g(z3)

=

∫
d8z1d

8z2d
8z3

(
∂2
2

∂2
2 − ξM2

)

in,jm

P2δ
8
12

(
1

∂2
1 − ξM2

)ab
δ813

×
(

∂2
2

∂2
2 − ξM2

)cd
P1δ

8
23

D̄2
1D

2
1

16∂2
1

c′e(z1)c
f (z2)V

g(z3)

(3.22)

where P1 is naturally integrated by parts on the ghost superfield c′e(z1) leading to P2c
′e(z1) =

c′e(z1). Moreover, by dimensional analysis these diagrams are all finite.

From this analysis the theory thus seems well-defined at one-loop in any gauge. Moreover,

by similar considerations one expects the theory to be well-defined at any order in perturbation

theory. In fact, in physical processes ghosts never occur as external fields and thus have to be

contracted. This helps the analysis since ghost propagators carry an extra ∂2 factor in their

numerator which cancels the non-local 1
∂2 contributions of the vertices. These diagrams should

then have a clear meaning. For unphysical processes with external ghost superfields the 1
∂2

factor of non-local vertices is taken care of by covariant derivatives and the chiral properties of

the ghost superfields. In the end non-local effects only seem to generate less divergent quantum

corrections and as a result additional counterterms are not required. These reasons suggest

that spontaneously broken SU(Nc) superQCD with matter is well-defined in general gauge in

perturbation theory.
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3.4 Conclusion

Supersymmetric Rξ-gauge for super Yang-Mills theory with spontaneously broken gauge group

leads to subtleties which deserve investigation. The chiral choice of the gauge-fixing term

introduces non-local terms which could spoil the locality of the theory. It is shown here that

these terms do not threaten the consistency of the theory at one-loop. In fact, it parallels quite

closely the non-SUSY case. Indeed, non-zero quark vacuum expectation values lead to vector

mass terms by the Higgs mechanism and part of the newly introduced non-local terms give

rise to gauge-dependent mass terms for quark and ghost superfields. Moreover the remaining

non-local vertices result in analogous non-SUSY quantum corrections. The non-renormalization

theorem forces some of the corrections related to non-locality to be exactly zero while the non-

zero diagrams left over are at worst logarithmically divergent and cancel gauge-dependent terms

in well-behaved diagrams. No additional counterterms seems to be required. Adding a non-zero

superpotential brings more free propagators but the general idea stays the same. Simplified

computations can be performed in the superLorentz gauge where all problematic non-local

terms disappear and the theory gives expected results for the β-function of the gauge coupling.

Unfortunately the computation is long and tedious and won’t be reported here. Other choices

of gauge groups do not seem to complicate the problem further.

3.5 Appendix: Notation

The notation conventions used throughout the paper (see [98]) are reported here. The group

generators T a in the representation R are chosen hermitian and satisfy the following identities

[T a, T b] = ifabcT c (3.23)

Tr(T aT b) = T (R)δab (3.24)

(T aT a)nm = C2(R)δnm (3.25)

facdf bcd = C2(A)δab (3.26)

T (A) = C2(A). (3.27)

(3.28)

fabc are the structure constants and T (R), C2(R) are the Casimir coefficients of the representa-

tion R. In superspace the compact notation is δ12 = δ8(z1−z2) = δ4(x1−x2)δ
4(θ1−θ2) = δx12δ

θ
12.
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Several useful identities for integrals over superspace are (some make sense only in integrals)

Dα
1 δ12 = −Dα

2 δ12 (3.29)

D2
1δ12 = D2

2δ12 (3.30)

δθ12D̄
2
1D

2
1δ12 = δθ12D̄

2
2D

2
2δ12 = 16δ12 (3.31)

δθ12D
2
1D̄

2
1δ12 = δθ12D

2
2D̄

2
2δ12 = 16δ12 (3.32)

δθ12D
α
1 D̄

2
1D1αδ12 = δθ12D

α
2 D̄

2
2D2αδ12 = 16δ12 (3.33)

D2D̄2D2 = 16∂2D2 (3.34)

D̄2D2D̄2 = 16∂2D̄2 (3.35)

{Dα, D̄α̇} = −2iσµαα̇∂µ (3.36)

σµαα̇σ̄
α̇α
ν = −2gµν (3.37)

[Dα, D̄
2] = −4iσµαα̇∂µD̄

α̇ (3.38)

[D̄α̇, D
2] = 4iσµαα̇∂µD

α (3.39)

DαDβ =
1

2
ǫαβD

2 (3.40)

D̄α̇D̄β̇ = −1

2
ǫα̇β̇D̄

2. (3.41)

From the δθ12-function reduction formulae (A.5-7), one can focus only on integrals with naked δ-

functions and one δ-function with four covariant derivatives. One also introduces the projection

operators Pi = {P1, P2, PT },

P1 =
D2D̄2

16∂2
P2 =

D̄2D2

16∂2
P0 = P1 + P2 (3.42)

and

PT = −D
αD̄2Dα

8∂2
= − D̄α̇D

2D̄α̇

8∂2
. (3.43)

As their name implies they obey the following relations

∑

i={1,2,T}
Pi = 1 PiPj = δijPj . (3.44)

Moreover chiral superfields Φ(z) obey

PTΦ(z) = 0 P1Φ(z) = 0 P2Φ(z) = Φ(z). (3.45)

Two additional operators given by

P+ =
D2

4(∂2)
1
2

P− =
D̄2

4(∂2)
1
2

(3.46)
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are helpful in inverting matrix with covariant derivatives (see [98]). Those are useful when one

has a non-zero superpotential which mixes chiral quark superfields together. Finally Fourier

transforms are defined as

A(x, θ) =

∫
d4k

(2π)4
A(k, θ)e−ik·x (3.47)

and integrals over half superspace are converted into integrals over full superspace with the help

of ∫
d4xd2θ

(
−1

4
D̄2

)
F =

∫
d4xd2θd2θ̄ F. (3.48)

This is possible since derivatives in superspace are the same than integrals.

3.6 Appendix: Ghost action

The ghost action is found by usual techniques. Using integral representations of δ-functions the

functional determinant can be written as

∆(V ) =

∫ DΛDΛ δ[F (V Λ,Λ) − f ]δ[F (V Λ,Λ) − f ]

=

∫ DΛDΛDΛ′DΛ
′

exp

(∫
d8z

[
Λ′a
(
δF

δΛ
Λ +

δF

δΛ
Λ

)a
+ Λ

′a
(
δF

δΛ
Λ +

δF

δΛ
Λ

)a])
(3.49)

where Λ′ and Λ
′

are general superfields∗ and the derivatives are to first order in the gauge

parameters. From the field transformation properties

Qi → Q′
i = e−iΛQi

eV → eV
′

= e−iΛeV eiΛ (3.50)

the variations and appropriate derivatives are easily found (here LXY = [X,Y ])

∆(V ) =

∫ DΛDΛDΛ′DΛ
′

exp

(
i

∫
d8z

[
Λ′aD̄2(LV/2[(Λ + Λ) + coth(LV/2)(Λ − Λ)])a

+Λ
′a
D2(LV/2[(Λ + Λ) + coth(LV/2)(Λ − Λ)])a (3.51)

+Λ′aD̄2 2g2ξ

∂2
(qi + Φi)ΛT

aqi − Λ
′a
D2 2g2ξ

∂2
qiT

aΛ(qi + Φi)

])
.

To invert it, one uses anti-commuting superfields ba, b
a
, ca and ca instead of commuting super-

fields Λ′a, Λ
′a

, Λa and Λ
a

respectively, which gives

∆−1(V ) =

∫ DcDcDbDb exp

(
i

∫
d8z

[
baD̄2(LV/2[(c+ c) + coth(LV/2)(c− c)])a

+b
a
D2(LV/2[(c+ c) + coth(LV/2)(c− c)])a

+baD̄2 2g2ξ

∂2
(qi + Φi)cT

aqi − b
a
D2 2g2ξ

∂2
qiT

ac(qi + Φi)

])
(3.52)

=

∫ DcDcDc′Dc′ eiSFP .

∗Unlike the gauge parameters Λ and Λ which are chiral and anti-chiral superfields respectively.
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Here integration by parts was used to write the general anti-commuting superfields b and b as

chiral and anti-chiral anti-commuting superfields c′ = D̄2b and c′ = D2b. The ability to write

the ghost action only in terms of chiral and anti-chiral ghost superfields was expected since the

gauge-fixing term is chiral. The ghost action is

SFP =

∫
d8z

(
1

C2(A)
Tr
[
(c′ + c′)(LV/2[(c+ c) + coth(LV/2)(c− c)])

]

−2g2ξ

[(
1

∂2

[
(qi + Φi)c

])
c′qi + qic

′
(

1

∂2
[c(qi + Φi)]

)])
(3.53)

where the generators in the first term are chosen to be in the adjoint representation A of the

gauge group. Notice again the presence of non-local terms 1
∂2 in SFP, as for SGF.
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Chapter 4

Undetected Higgs Decays in Supersymmetry

4.1 The little hierarchy problem and its solutions

In this chapter we discuss in detail the findings of the work done in collaboration with T. Banks

and L. Carpenter [9].

The minimal supersymmetric extension of the standard model (MSSM) predicts a light Higgs

boson. While theory predicts a tree level Higgs mass which is at most the mass of the Z boson,

the current experimental lower bound from LEP [107] is 114.4 GeV. Evading the experimental

lower bound requires significant one loop corrections which can be achieved only by fine tuning

of parameters [108]. This little hierarchy problem, while nowhere near as severe as the original

gauge hierarchy problem, has excited a lot of theoretical interest. A variety of solutions has been

proposed [109]. Some of them introduce new degrees of freedom to enhance the contributions

to the Higgs mass, while others allow for non-standard decays of the Higgs, which would have

been missed at LEP. The latter can greatly alter the experimental search strategy for the Higgs

and supersymmetry (SUSY) at the LHC.

In this paper, we will pursue the suggestion of [111] and [112], that the Higgs can decay

into light gauginos, which in turn decay via renormalizable lepton number violating couplings,

into jets plus neutrinos. This decay would have been missed at LEP if the Higgs is between

85−100 GeV, and the gauginos are less than half the Higgs mass. We will discuss the FermiLab

constraints on this scenario in this paper, as well as constraints on like sign dilepton decays of

the Higgs, which inevitably accompany the decays with neutrinos. We find that there are

plausible models in which the branching ratios for like sign dileptons are small enough to evade

the strong, model independent, bounds from FNAL.

Our purpose is to go beyond the work of [112] in two ways. First of all, we incorporate the L

violating mechanism for hiding the Higgs into gauge mediated SUSY breaking models. Secondly,

we also exploit the lepton number violating operators to generate the neutrino masses. The

seesaw mechanism for generating neutrino masses, requires one to introduce a new mass scale,
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an order of magnitude or so below the unification scale MU ∼ 2 × 1016 GeV1. Renormalizable

lepton number violating operators in SUSY can provide a natural alternative [114]. Our aim is

to see whether this can be combined with gauge mediation and simultaneously hide the Higgs.

We will find that certain restrictions must be placed on the L violating operators in order

to achieve all of these goals. Most of our considerations are quite general, but we will specialize

to the Pentagon model [115] in order to investigate whether an appropriate discrete symmetry

can be found, which automatically implies these restrictions. We will also assume, as in the

Pentagon model, that we have a singlet chiral field S, with an SHuHd coupling. This changes

the tree level prediction for the lightest Higgs, and allows us to have a Higgs obeying the model

independent OPAL lower bound of 82 Gev for the Higgs mass, even when tanβ ∼ 1. This is

important, because we find that we need such a value of tanβ in order for our model to predict

a like sign dilepton signal compatible with the model independent bounds for the Tevatron.

For tanβ ∼ 1 it is natural for the lightest neutralino to decouple approximately from charged

leptons. We will discuss this in detail below.

Our attitude toward the magnitude of the possible L violating operators is influenced by

our knowledge of the Yukawa couplings in the standard model. Many of these are surprisingly

small. Given the strong constraints on flavor changing neutral currents, we think that the most

plausible explanation of Yukawa textures is the Froggatt-Nielsen mechanism [116] operating

near the unification scale. It then seems clear that the flavor structure of L violating operators

will be similarly constrained. Rather than trying to formulate a full high energy theory of these

textures, we merely take away the lesson that dimensionless L violating couplings might be

anomalously small, and that one of them might be much larger than all the others.

The MSSM also contains dimension two L violating operators, analogous to the µ term,

with Hd replaced with a linear combination of Li. Clearly, an explanation of the magnitude of

the dimension two parameter is necessary to a complete low energy theory. We will adopt the

philosophy of the NMSSM, in which this parameter is the vacuum expectation value (VEV) of a

low energy singlet, and the bare dimension two couplings are forbidden by a discrete symmetry.

Other recent analyses of hard to find Higgs decays can be found in [117].

4.2 Constraints on h0 → χ0χ0 : χ0 → (τ, ντ )jj

We want to investigate the LEP bound on the Higgs mass in the MSSM where the lightest

Higgs boson is produced by Higgs- strahlung of the Z boson (or maybe through Z or W-fusion

1It has been suggested that this scale arises naturally, as Mseesaw =
M2

U
mP

[113].
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processes). The cascade decay we are interested in consists of the decay of the lightest Higgs

to two next-to-lightest SUSY particle (NLSP) neutralinos followed by an R-parity violating

(RPV) decay of each neutralino to one third generation lepton plus two quarks. We do the

computation in the narrow-width limit where the cascade is divided into a two-body decay and

two three-body decays.

4.2.1 BR of the lightest Higgs to two neutralinos

The partial decay width Γ(h0 → χ0
iχ

0
j) is given by

Γ(h0 → χ0
iχ

0
j) =

λ1/2(m2
h0 ,m2

χ0
i
,m2

χ0
j
)

16πm3
h0 × 2δij

(
2|Y ij |2(m2

h0 −m2
χ0

i
−m2

χ0
j
)

−2[(Y ij)2 + (Y ij∗)2]mχ0
i
mχ0

j

)
(4.1)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz (4.2)

Y ij =
1

2
(−N∗

i3 sinα−N∗
i4 cosα)(gN∗

j2 − g′N∗
j1) + {i↔ j}. (4.3)

Here N diagonalizes the neutralino mass matrix Mχ0 which can be written at tree level as

Mχ0 =




M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ

g′vu/
√

2 −gvu/
√

2 −µ 0




(4.4)

where N∗Mχ0N−1 = diag(mχ0
1
,mχ0

2
,mχ0

3
,mχ0

4
) with |mχ0

1
| < |mχ0

2
| < |mχ0

3
| < |mχ0

4
|.

The total decay width is expected to be dominated by decays of the lightest Higgs to

neutralinos (when kinematically allowed), thus the branching ratio can be approximated as

BR(h0 → χ0
iχ

0
j) =

Γ(h0 → χ0
iχ

0
j)

Γ(h0 → all)
∼

Γ(h0 → χ0
iχ

0
j)

Γ(h0 → SM) + Γ(h0 → neutralinos)
. (4.5)

4.2.2 BR of the neutralino to one lepton plus two quarks

The decay of the neutralino to one lepton plus two quarks occurs through the R-parity violating

vertex λ′ijkǫabL
a
iQ

b
jD̄k ⊂ W . Since squarks are assumed much heavier than sleptons, decays

with off-shell squarks are sub-dominant contributions to the partial decay widths. Moreover,

assuming there is no mixing in the sfermion sector f̃L and f̃R are mass eigenstates. This reduces

the number of Feynman diagrams since only left-handed sleptons and sneutrinos are relevant

to the R-parity violating vertex λ′ijkǫabL
a
iQ

b
jD̄k. Thus only decays with off-shell ℓ̃Li or ν̃i are
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possible. Finally, since the kinematically allowed final state standard model fermions (for a

NSLP neutralino with mass mχ0
1
∼ 30 GeV only the top quark is excluded as a final state

fermion) are much lighter than any sparticles, one can compute the partial decay widths in the

limit of vanishing fermion masses. This introduces a maximal error of the order O
(
mb

m
χ0
1

)
∼ 0.13

for a NLSP neutralino with mass mχ0
1
∼ 30 GeV. With these assumptions, the partial decay

width computations simplify greatly and one can get analytical results.

Thus, with these assumptions, the partial decay widths Γ(χ0
l → ℓiuj d̄k) = Γ(χ0

l → ℓ̄iūjdk)

and Γ(χ0
l → νidj d̄k) = Γ(χ0

l → ν̄id̄jdk) are

Γ(χ0
l → ℓiuj d̄k) =

Ncmχ0
l
(|c1|2 + |c2|2)
1024π3

[
6ρ− 5 + 2(ρ− 1)(3ρ− 1) ln

(
ρ− 1

ρ

)]
(4.6)

Γ(χ0
l → νidj d̄k) =

Ncmχ0
l
|c1|2

1024π3

[
6ρ− 5 + 2(ρ− 1)(3ρ− 1) ln

(
ρ− 1

ρ

)]
(4.7)

where

c1 =
√

2λ′ijk(gT
fi

3 N∗
l2 + g′Y Hfi

N∗
l1) (4.8)

c2 = λ′ijk
mℓi

vd
Nl3 (4.9)

ρ =

(
mf̃i

mχ0
l

)2

. (4.10)

Here Nc = 3 is the number of colors and Martin’s notation is used for the hypercharge, i.e.

Q = T3 + Y H [118]. Moreover, the first term in c1 represents the fermion/sfermion coupling

to the wino, the second term in c1 represents the fermion/sfermion coupling to the bino and

c2 represents the fermion/sfermion coupling to the higgsino. The following table reviews the

needed hypercharges,

particle Y H T3 Q

ℓ − 1
2 − 1

2 −1

ν − 1
2

1
2 0

(4.11)

Since the dominant decay of the lightest Higgs is expected to be h0 → χ0
1χ

0
1, the NLSP

neutralino decay is the one of interest. The total decay width for the NLSP neutralino is

dominated by the kinematically allowed R-parity violating vertex processes discussed above,

Γ(χ0
1 → all) ∼

∑

i,j,k

[
Γ(χ0

1 → ℓiuj d̄k) + Γ(χ0
1 → νidj d̄k) + antiparticles

]
(4.12)

= 2
∑

i,j,k

[
Γ(χ0

1 → ℓiuj d̄k) + Γ(χ0
1 → νidj d̄k)

]
(4.13)

where the sums over uj is limited to j = {1, 2} since the top quark is not kinematically allowed.
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Thus the relevant branching ratios are

BR(χ0
1 → ℓiuj d̄k) =

Γ(χ0
l → ℓiuj d̄k)

Γ(χ0
1 → all)

(4.14)

BR(χ0
1 → νidj d̄k) =

Γ(χ0
l → νidj d̄k)

Γ(χ0
1 → all)

(4.15)

with the same results for final state antiparticles. Notice that the neutralino decay to the

gravitino (mass m3/2),

Γ(χ0
1 → XG̃) =

m5
χ0

1

48πm2
Pm

2
3/2

(
1 − m2

X

m2
χ0

1

)4

, (4.16)

is sub-dominant in our direct gauge mediation model. This will be quantified in the next section.

4.2.3 Total branching ratio in the regime tan β ∼ 1: Numerical exam-

ple

The total branching ratio for one particular final state in the cascade decay of interest is simply

the product of the appropriate branching ratios (in the narrow-width limit). For example, for

the cascade decay h0 → χ0
1χ

0
1 → ℓi1uj1 d̄k1ℓi2uj2 d̄k2 the total branching ratio is

BR(h0 → ℓi1uj1 d̄k1ℓi2uj2 d̄k2) = BR(h0 → χ0
1χ

0
1)BR(χ0

1 → ℓi1uj1 d̄k1)BR(χ0
1 → ℓi2uj2 d̄k2).

(4.17)

Our interest lies in decays with final state tau leptons and tau neutrinos since these processes

have not been studied extensively at LEP. We will evaluate these branching ratios in the limit

tanβ ∼ 1, as is predicted in the Pentagon model. We do this here because it turns out that

in this regime, the like sign dilepton contribution to Higgs decay is naturally suppressed. The

FNAL bounds on this process will be more difficult to satisfy for larger values of tanβ.

Following [111] we want the lightest neutralino χ0
1 to be mostly bino. This can be achieved

with M1 = 50 GeV, M2 = 250 GeV and µ = +150 GeV which lead to the following masses

particle χ0
1 χ0

2 χ0
3 χ0

4 χ±
1 χ±

2

mass (in GeV) 30 125 150 300 105 295
(4.18)

and mixing matrix

N =




−0.89 0.15 −0.30 0.30

−0.44 −0.48 0.54 −0.54

0 0 0.71 0.71

−0.09 0.86 0.35 −0.35



. (4.19)

Close to the Higgs decoupling limit this leads to BR(h0 → χ0
1χ

0
1) ∼ 0.9 for mh0 between 85−100

GeV. Figure 4.1 shows the branching ratios BR(h0 → χ0
1χ

0
1) and BR(h0 → bb̄) as a function of
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the Higgs mass for a mixing angle α = −π
8 . Here, since tanβ = 1, we go slightly away from

the Higgs decoupling limit in order to satisfy the experimental bound on ξ2BR(h0 → bb̄) with

ξ = sin(β − α) for mh as low as 85 GeV [107].
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Figure 4.1: Branching ratio of h0
→ χ0

1χ
0
1 (upper line) and h0

→ bb̄ (lower line) as a function of the
Higgs mass (in GeV) for M1 = 50 GeV, M2 = 250 GeV, µ = +150 GeV, tan β = 1 and α = −

π
8
.

Using PDG bounds [119] on the masses of the sleptons, appropriate values for the masses

of the sneutrinos2

particle ℓ̃1 = ẽ ℓ̃2 = µ̃ ℓ̃3 = τ̃ ν̃1 = ν̃e ν̃2 = ν̃µ ν̃3 = ν̃τ

m (in GeV) 73 94 81.9 75 75 75
(4.20)

and for the R-parity violating coupling [114]

λ′ijk = 0 ∀ i = {1, 2}, j, k = {1, 2, 3} (4.21)

(λ′3jk) =




0.001 0.001 0

0.001 0.001 0

0 0 0


 (4.22)

one obtains BR(χ0
1 → τuj d̄k) = 0.019 ∀ j, k = {1, 2}, BR(χ0

1 → ντdj d̄k) = 0.11 ∀ j, k = {1, 2}

and zero otherwise. The difference between the branching ratios comes from the mixing matrix

2For tan β = 1, theory forces the sneutrinos to be almost degenerate with the sleptons. However from the
non-SM invisible width of the Z-boson sneutrinos could be as light as 45 GeV.
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N and the quantum numbers T3 and Y H . Indeed, since the sneutrino is almost degenerate with

the stau one can forget about the ρ-dependent part of the decay width and focus on the c1-bino

and wino contributions to the decay width. The c1-bino contributions to the branching ratio

for τ and ντ are the same but the c1-wino contributions to the branching ratio for τ and ντ have

opposite sign due to the weak isospin charges. From the mixing matrix one can see that the

contributions partly cancel for τ and add up for ντ . Though smaller, the c1-wino contributions

are about a third of the c1-bino contributions which leads to a suppression

BR(χ0
1 → τuj d̄k)

BR(χ0
1 → ντdj d̄k)

∼ |c1,τ |2
|c1,ντ |2

∼ (−1 + 3)2

(1 + 3)2
∼ 1

4
. (4.23)

This kind of suppression is generic in the region of the parameter space where the lightest

neutralino is light and mostly bino and the lightest chargino satisfies the lower bound on its

mass since the mixing matrix does not change by much.

Notice also that the c2-higgsino contribution to the charged lepton decay width is small due

to the lepton mass suppression factor in the limit tanβ ∼ 1 and can thus be neglected. This

leads to an even bigger decoupling of the neutralinos to the charged leptons and more easily

evades the FNAL bounds.

As shown before the branching ratios for antiparticles in the final state are the same. Thus

the total branching ratios for the following cascade decays are

BR(h0 → ττ + 4 jets) ∼ 0.0055 (4.24)

BR(h0 → τντ + 4 jets) ∼ 0.03 (4.25)

BR(h0 → ντντ + 4 jets) ∼ 0.17 (4.26)

with mh0 ∼ 90 GeV and α = −π
8 . Here any group of particles associated to the neutralino

decay products can be changed to its antiparticle counterpart without changing the branching

ratios. Thus one obtains like sign ditau (or di-antitau) events with the same branching ratio

then tau-antitau events. The total decay width of the Higgs and the NLSP neutralino are

Γ(h0 → all) ∼ 0.02 GeV (4.27)

Γ(χ0
1 → all) ∼ 0.11 · 10−10 GeV (4.28)

and this may lead to displaced vertices since cτ
χ0

1→all ∼ 19 µm.

As mentioned previously, the neutralino to gravitino decay is sub-dominant, even for small

R-parity violating couplings. Indeed the decay widths ratio is parametrically

Γ(χ0
1 → γG̃)

Γ(χ0
1 → (τ, ντ )jj)

∼
64π2m4

χ0
1
|N11|2

3Ncm2
Pm

2
3/2(gλ

′)2

[
6ρ− 5 + 2(ρ− 1)(3ρ− 1) ln

(
ρ− 1

ρ

)]−1

. (4.29)



57

This is of order 10−2 and leads to a neutralino to gravitino branching ratio of order 10−3 and

thus can be safely neglected. Here the decay product is mostly photon and the gravitino mass is

assumed to be m3/2 ∼ 1 eV. Cosmological constraints on light gravitinos restrict their mass to

be < 10− 20 eV. Within the Pentagon model, the additional hypothesis of Cosmological SUSY

Breaking gives m3/2 ∼ Λ1/4 ∼ 10−3 eV. For such super-light gravitinos, the gravitino decay

channel of the gaugino, which is ruled out experimentally for light gauginos, would dominate,

and our scenario would not be viable.

4.2.4 tan β ∼ 1 and the little hierarchy problem

The reader familiar with the supersymmetric standard model may be a bit confused at this

point. We have invoked R-parity violating couplings to weaken the experimental bound on the

Higgs mass, in order to avoid the little hierarchy problem. However, our discussion of like sign

dilepton constraints used the Pentagon model relation tanβ ∼ 1 to motivate the decoupling

of light neutralinos from charged leptons. In the MSSM, the lightest Higgs mass vanishes at

tree level when tanβ = 1. Fortunately, our model is not even approximately the MSSM. If

we compute the Higgs sector potential neglecting Pentagon model corrections to the Kahler

potential of S (which is plausible if gS is small), we find the potential for the scalar components

of neutral chiral superfields

V =
g2
1 + g2

2

8
(|Hu|2 − |Hd|2)2 + |gµS|2(|Hu|2 + |Hd|2) + |kgSΛ2

5 + gµHuHd + gTS
2|2, (4.30)

where k is a strong Pentagon interaction correction, of order 1. This potential has a hypercharge

Goldstone boson if the Higgs fields have nonzero VEVs, but all the other scalars are massive,

with mass determined by a combination of the couplings and the large scale Λ5 ∼ 1 TeV. To

obtain Higgs VEVs of the right order of magnitude, we must take gS small, but the other Yukawa

couplings are bounded only by perturbative unification3. The latter constraint probably does

not allow one to make the Higgs mass large enough to evade the conventional bounds, but

there is no problem in evading the model independent bounds of ∼ 82 GeV on the Higgs mass.

R-parity violating Higgs decays then make the conventional bound irrelevant.

4.2.5 Gaugino mass relationships and the chargino mass bound

There is a strict lower mass bound of 102.7 GeV set on charginos that decay through RPV

operators. We note that if we assume the minimal gauge mediated prediction for the gaugino

3In fact, the Pentagon model, or any other model with 5 messengers, and a TeV scale threshold, has problems
with perturbative unification, irrespective of the size of these Yukawas.
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mass ratio, a chargino of 102.7 GeV would make it impossible to have neutralinos less than 50

GeV. In order to allow neutralinos of less than half the Higgs mass and satisfy the chargino mass

bound, we must alter the minimal gauge mediation predictions for gaugino masses. We present

here a simple method proposed by [120] of adding to the hidden sector multiple scalar fields

which get supersymmetric and non-supersymmetric masses, and coupling them with different

strengths to parts of a single 10 and 10 of messengers. The superpotential is thus

W = riXiuu+ γiXiqq + λiXill (4.31)

for

Xi = xi + θ2Fi (4.32)

The resulting gaugino eigenstates are determined by three mass parameters instead of a

single mass parameter in the minimal case. The parameters are,

Λl =
λiFi
λixi

, Λq =
γiFi
γixi

, Λu =
riFi
rixi

(4.33)

and the resulting gaugino mass parameters are

M1 =
1

2

α1

4π

(
4

3
Λq + 2Λl +

8

3
Λu

)
, M2 =

3

2

α2

4π
Λq, M3 =

1

2

α3

4π
(Λu + 2Λq) (4.34)

Here we have changed the ordinary gaugino mass ratio with minimal extra structure and it is

easy to get a M1 much lighter than M2.

We note also that within the Pentagon model, we do not expect minimal gauge mediation

predictions for gaugino masses to be valid.

4.3 Bounds on jets + 6 ET

We will now assess the effects of current Tevatron and LEP searches on the viability of our Higgs

decays. In particular there are five searches with relevant final states: Tevatron’s inclusive search

with like sign dilepton events, Tevatron’s measurement of the ditop cross-section, LEP’s search

for cascade decays of the Higgs, LEP’s Higgs to WW ∗ search and direct searches for neutralinos

with R-parity violation.

4.3.1 Like sign dileptons

The Tevatron inclusive search for new physics with like sign dilepton events [121] is a strong

model independent bound that must be evaded. The CDF collaboration looked at a data sample
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Decay channel Experiment Bound Search
– Tevatron < 10 events for 1 fb−1 pp collisions

bbqq+ 6 ET Tevatron σ < 3 pb tt production cross-section
bbbb+ 6 ET LEP mh0 < 84.5 GeV (worst case) ZH2H2 cascade decay
qq′qq′+ 6 ET LEP mh0 > 105 GeV WW ∗ with invisible Z decay

– LEP σ < 1 pb direct neutralino search

Table 4.1: Higgs mass and production cross-section bounds for various searches.

of 1 fb−1 and observed no significant excess in an inclusive selection or in a SUSY-optimized

selection. The SUSY-optimized selection requires large missing transverse energy and is thus

irrelevant in our model since we get like sign dilepton events without missing transverse energy.

The expected number of events in the inclusive selection is 33.2±4.7 while the observed number

of events is 44. Our model could explain this slight excess. Indeed, light Higgs production cross-

section at the Tevatron is around 1 pb which would lead to an extra number of like sign dilepton

events of about 10 (without taking into account any cuts). However, one must remember that

the Tevatron search focused on first and second generation leptons while our like sign dilepton

events are ditau events which are more subtle to study.

4.3.2 Tevatron tt search

The Tevatron tt [122] search in principle looks very similar to our signal; it places limits on

the tt production cross-section by looking for multi-jet events with two b quarks in the final

state and with missing energy, which is not found in the b quark direction. There are several

reasons to expect this search to be insensitive to our decay. First, since the Higgs is produced

close to threshold at the Tevatron, the decay products are all relatively soft. The most missing

energy we expect is from final states with two neutrinos of about 15 GeV. Since the decay

products are isotropically distributed, it is unlikely that the two neutrinos will be found in the

same hemisphere, and the total missing energy vector will not be large enough to pass missing

energy cuts in this search. However, the most important remark is that the Higgs production

cross-section in the regime of interest is a few picobarns [123]. The same can be said for the

direct neutralino production cross-section. The two sigma error bars for the tt production cross-

section at Tevatron are about 3 pb. Thus, the jet plus missing energy events found by Tevatron,

are all consistent with coming from top and cannot put strong bounds on LQD̄ couplings, even

if a significant number of events were to pass the missing energy cut. Finally, there is a question

about how many b quarks are in the final state. The Fermilab search insisted on two b tagged jets
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as one of their primary cuts. Since the flavor structure of the LQD̄ couplings is undetermined,

we could easily construct models, which further suppressed b jets. Thus gaugino decays through

lepton number violation could have easily escaped detection. However, since the missing energy

threshold is small, if there are too many tagged b’s in the event it will be discarded as QCD

background. Therefore events with four b’s in the final state are less likely to be picked up by

this search.

4.3.3 Higgs cascade decays

LEP conducted three searches which have bearing on these decays. One is the cascade decay

e+e− → H2Z → H1H1Z. In the case of invisible Z decay and H1 → bb there is a four jet plus

missing energy signal. This search only applies to final states with a maximum number of b

quarks. Details may be found in [111]. This channel, as detailed in figure 12, puts a bound

on the Higgs mass of less than 85 GeV. Reconstruction of the missing Z may further reduce

the sensitivity of this search down to OPAL’s inclusive limit, which is 82 GeV [126]. LEP also

conducted a search in the channel hZ → WW ∗Z where the Z decays invisibly and the W’s

decay to qq′ [127]. This search is not applicable to final states where all four quarks are the

same flavor, or to final states where the quarks are all up type or down type. For example, this

search is insensitive to our 4b plus missing energy final state. When the search is applicable to

our final states, it can only put a bound of 105 GeV on the Higgs mass. We detail the Higgs

mass limits and production cross-section limits in the table above.

Having convinced ourselves that current searches do not rule out our scenario, we note that

the kinematics of the gaugino decays are sufficiently different from the top decays, and that

one could imagine finding them in a dedicated search. One could attempt a search without b

tagging, but simple searches for jets plus significant missing energy are very difficult. In the

standard 4b search the Higgs, which decays to bb, is produced in association with one or two

b quarks [125]. This search required at least 3 b-tags, but overall it was not very sensitive

since it was sensitive to the 3b background. The best chance might be to assume that the

Higgs decays have the maximal number of b’s in the final state, and to modify the Tevatron 4b

Higgs search to be sensitive to missing energy [124]. One may imagine a similar search which

requires multiple b tags and a missing energy cut. This scenario faces the same problem that

we detailed in the ditop measurement above, the smallness of the missing energy vector. The

missing energy at the Tevatron must be more than what we would expect from semi-leptonic

b decay, and more than what would result from the mis-measurement of a 4 b event with no

missing energy. Passing these cuts with low energy neutrinos is a problem. Searches at LHC
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seem to be even more problematic, but we note that Kaplan and Rehermann have proposed

searching for Higgs decays through neutralino LSP’s into multi jet final states using the LHCb

experiment [128]. LHCb catches events highly boosted in the forward direction, has maximal

b acceptance, and has a pT trigger which can be as low as 2 GeV. As in the B violating 6 jet

decays of the Higgs [111], it may be possible to search for lepton number violating decays of

the gaugino at LHCb, with missing energy and multiple b tags.

4.3.4 Direct searches for neutralinos

Direct searches for neutralinos with R-parity violation [129] put bounds on the neutralino cross-

section for direct three body decays. Since our model leads to a new production mechanism for

neutralinos, it is natural to investigate these bounds. The Higgs boson production cross-section

and the neutralino pair production cross-section at an e+e− collider are around 300 fb each

[130]. Since the direct searches for neutralinos with R-parity violation give an upper bound of

about 2 pb for the neutralino pair production cross-section, our model escapes direct neutralino

search bounds easily.

4.4 Neutrino masses

The lepton number violating operators, which we have invoked to hide the decays of a light

Higgs boson, might also be the source of neutrino masses. There is a large literature (see

[131] and references therein) on the use of renormalizable L violating terms in the MSSM to

generate neutrino masses. Indeed, some of the strongest constraints on the L violating couplings

we have used come from the requirement that the neutrino masses they generate not be too

large. For instance, the numerical example of section 4.2.3 leads to a λ′λ′ loop neutrino mass

of about 1.5 · 10−3 eV for squark of about 250 GeV [131]. Obviously one needs a more involved

flavor structure to generate all neutrino masses since only the third generation neutrino mass

is generated in our model.

A survey of the literature indicates that bilinear L violating terms of the form LiHu are the

dominant source of neutrino masses in a generic model. However, to be consistent one should

require that all B and L violating terms which could lead to unobserved processes are forbidden

by a symmetry. We do not know how to make a general analysis of such symmetries without

committing ourselves to a specific model. Thus we will restrict our attention to the Pentagon

model [115], though we expect that a similar analysis could be done for any specific model of

gauge mediation. We will find, that within the context of the Pentagon model, the symmetries
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we utilize will forbid terms of the form LiHu but allow LiHuS (where S is the singlet of the

Pentagon). If S has a vacuum expectation value (VEV), this will generate a tree level mass for

one neutrino. The dominant contribution to the other two neutrino masses comes from loop

corrections involving the LQD̄ couplings that hide the Higgs decay. There is thus a potential

understanding of a 2 − 1 hierarchy among the three neutrino masses, as seems to be indicated

by experiment. However, we emphasize that both the magnitude of the LiHuS term, and the

LQD̄ couplings is determined by high energy physics beyond the range of the present analysis.

Therefore, a proper understanding of the structure of the neutrino mass matrix really requires

unification scale physics.

The original Pentagon model was designed to eliminate all baryon and lepton number vi-

olating operators of dimension ≤ 5, except for the neutrino seesaw term. This led to a Z4

R symmetry with two possible generation independent charge assignments. In order to admit

renormalizable lepton number violating terms we must change the symmetry and the charge

assignments. We will assume an R symmetry group ZN . Therefore in the following all equations

are understood modulo N and the R-charge of a given field is denoted by the name of the field

itself.

4.4.1 Independent R-charges

The aim of this subsection is to express the R-charges of all the fields of the Pentagon in terms

of the R-charges of a minimal set of fields. The appropriate restricted set is somewhat arbitrary

but a rather convenient one comes naturally from the model. First, the crucial SPP̃ and SHuHd

terms lead to

SPP̃ ⇒ P + P̃ = 2 − S (4.35)

SHuHd ⇒ Hu = 2 − S −Hd. (4.36)

The important Yukawa couplings give

LHdĒ ⇒ Ē = 2 − L−Hd (4.37)

QHuŪ ⇒ Ū = 2 −Q−Hu (4.38)

QHdD̄ ⇒ D̄ = 2 −Q−Hd. (4.39)
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Thus one can rewrite everything as a function of the restricted set {S,L,Q,Hd} as

P + P̃ = 2 − S (4.40)

Hu = 2 − S −Hd (4.41)

Ē = 2 − L−Hd (4.42)

Ū = S −Q+Hd (4.43)

D̄ = 2 −Q−Hd. (4.44)

This set is dubbed extended since anomaly conditions will generate relations between the four

different R-charges of the set.

Anomaly conditions

The anomaly conditions of the Pentagon model are

SU(5)P ⇒ 5(P + P̃ ) = 0 (4.45)

SU(3)C ⇒ 6Q+ 3(Ū + D̄) + 5(P + P̃ ) = 0 (4.46)

SU(2)L ⇒ Hu +Hd + 9Q+ 3L+ 5(P + P̃ ) = 0. (4.47)

Using the relations obtained from the restricted set {S,L,Q,Hd} of independent R-charges

these can be rewritten as

SU(5)P ⇒ 5(S − 2) = 0 (4.48)

SU(3)C ⇒ 3(S + 2) = 0 (4.49)

SU(2)L ⇒ 2 − S + 9Q+ 3L = 0. (4.50)

The last anomaly condition leads to an unextended restricted set of independent R-charges

by removing one R-charge in the extended restricted set. Due to the modulo N form of the

equations the easiest one to remove is S but it is more convenient to keep everything written in

function of the extended restricted set {S,L,Q,Hd}. Indeed one can easily solve the anomaly

conditions as a function of S. Thus it is more practical to eliminate Q instead as shown later.

The first two anomaly conditions can be combined as

0 = 5(S − 2) = 3(S + 2) + 2(S − 8) = 2(S − 8). (4.51)

For N = 2n + 1 one has S = 8 and the first two anomaly conditions force N |30 thus N =

{3, 5, 15}. For N = 2n one has S = 8 or S = 8 − n. For the case S = 8 the first two anomaly
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conditions force N |30 thus N = {2, 6, 10, 30}. For the case S = 8 − n the first two anomaly

conditions lead to

N | (30 − 5n) (4.52)

N | (30 − 3n) (4.53)

thus N = {4, 12, 20, 60}.

4.4.2 Superpotential terms and RPV terms

Using the extended restricted set the possible S3 superpotential term gives

S3 ⇒ 3S − 2 (4.54)

where the RHS has to be zero modulo N if and only if the term is allowed. For the RPV terms,

the trilinear lepton number violating (TLNV) terms (including the useful SLHu) give

LLĒ ⇒ 2L+ (2 − L−Hd) − 2 = L−Hd (4.55)

LQD̄ ⇒ L+Q+ (2 −Q−Hd) − 2 = L−Hd (4.56)

SLHu ⇒ S + L+ (2 − S −Hd) − 2 = L−Hd. (4.57)

and the bilinear lepton number violating (BLNV) term LHu leads to

LHu ⇒ L+ (2 − S −Hd) − 2 = L−Hd − S. (4.58)

Finally the trilinear baryon number violating (TBNV) term gives

ŪD̄D̄ ⇒ (S −Q+Hd) + 2(2 −Q−Hd) − 2 = S − 3Q−Hd + 2. (4.59)

The no-go theorem here states that one cannot allow only specific TLNV terms since all TLNV

terms are allowed when any one is allowed.
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4.4.3 Dimension five baryon number violating operators

Dimension five baryon number violating (D5BNV) operators and D-terms lead to

QQQL ⇒ 3Q+ L− 2 (4.60)

QQQHd ⇒ 3Q+Hd − 2 (4.61)

Ū ŪD̄Ē ⇒ 2(S −Q+Hd) + (2 −Q−Hd) + (2 − L−Hd) − 2

= 2S − 3Q− L+ 2 (4.62)

D-term ⇒ Q+ Ū − L = Q+ (S −Q+Hd) − L = S − L+Hd (4.63)

D-term ⇒ Ū + Ē − D̄ = (S −Q+Hd) + (2 − L−Hd) − (2 −Q−Hd)

= S − L+Hd (4.64)

where the last two equations come from D-terms.

4.4.4 Overall solutions

From the last two sections one can group together terms that lead to the same equation as a

function of the R-charges of the extended restricted set. One has seven different sets labeled

G1 to G7,

G1 = {S3} ⇒ 3S − 2 (4.65)

G2 = {LLĒ, LQD̄, SLHu} ⇒ L−Hd (4.66)

G3 = {LHu,D-terms} ⇒ L−Hd − S (4.67)

G4 = {ŪD̄D̄} ⇒ S − 3Q−Hd + 2 (4.68)

G5 = {QQQL} ⇒ 3Q+ L− 2 (4.69)

G6 = {QQQHd} ⇒ 3Q+Hd − 2 (4.70)

G7 = {ŪŪD̄Ē} ⇒ 2S − 3Q− L+ 2 (4.71)

where group G2 consists of all TLNV terms exclusively, group G4 of the TBNV term and

groups G5 to G7 of D5BNV terms. Using these sets and the extra SU(2)L anomaly relation

2 − S + 9Q + 3L to eliminate Q the solutions are given in table 4.2 where the TLNV set

G2 ⇒ L−Hd does not simplify. Notice that no extra relation comes from the SU(2)L anomaly

condition for N = 3. The removal of Q from the extended restricted set is more subtle for

the cases N = {15, 20, 30, 60}. For N = 15 one has 9Q + 3L = 15k + 6 ⇒ 3Q + L = 5k + 2

(k ∈ Z) thus 3Q = {2 − L, 7 − L, 12 − L}. For N = 20 one has 9Q + 3L = 20k′ + 16 ⇒

3Q + L = 1
3 (20k′ + 16) = 20k + 12 with k′ = 3k + 1 (k ∈ Z) thus 3Q = 12 − L. For N = 30
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N S SU(2)L G1 G3 G4 G5 G6 G7

2 0 Q = L 0 L−Hd L−Hd 0 L−Hd 0
3 2 none 1 L−Hd − 2 1 −Hd L− 2 Hd − 2 −L
4 2 Q = L 0 L−Hd − 2 L−Hd 2 −(L−Hd − 2) 2
5 3 Q = 3L− 1 2 L−Hd − 3 L−Hd − 2 0 −(L−Hd) 1
6 2 3Q = 3L 4 L−Hd − 2 3L−Hd − 2 −2(L+ 1) 3L+Hd − 2 2L
10 8 Q = 3L+ 4 2 L−Hd − 8 L−Hd − 2 0 −(L−Hd) 6
12 2 3Q = 3L 4 L−Hd − 2 4 − 3L−Hd 4L− 2 3L+Hd − 2 −4L+ 6
15 8 9Q = 6 − 3L 7 L−Hd − 8 10 − 3Q−Hd 3Q+ L− 2 3Q+Hd − 2 −3Q− L+ 3

8 3Q = 2 − L 7 L−Hd − 8 L−Hd + 8 0 −(L−Hd) 1
8 3Q = 7 − L 7 L−Hd − 8 L−Hd + 3 5 −(L−Hd − 5) -4
8 3Q = 12 − L 7 L−Hd − 8 L−Hd − 2 10 −(L−Hd − 10) -9

20 18 9Q = 16 − 3L 12 L−Hd − 18 −3Q−Hd 3Q+ L− 2 3Q+Hd − 2 −3Q− L+ 18
18 3Q = 12 − L 12 L−Hd − 18 L−Hd − 12 10 −(L−Hd − 10) 6

30 8 9Q = 6 − 3L 22 L−Hd − 8 10 − 3Q−Hd 3Q+ L− 2 3Q+Hd − 2 −3Q− L+ 18
8 3Q = 2 − L 22 L−Hd − 8 L−Hd + 8 0 −(L−Hd) 16
8 3Q = 12 − L 22 L−Hd − 8 L−Hd − 2 10 −(L−Hd − 10) 6
8 3Q = 22 − L 22 L−Hd − 8 L−Hd − 12 20 −(L−Hd − 20) -4

60 38 9Q = 36 − 3L 52 L−Hd − 38 40 − 3Q−Hd 3Q+ L− 2 3Q+Hd − 2 −3Q− L+ 18
38 3Q = 12 − L 52 L−Hd − 38 L−Hd + 28 10 −(L−Hd − 10) 6
38 3Q = 32 − L 52 L−Hd − 38 L−Hd + 8 30 −(L−Hd − 30) -14
38 3Q = 52 − L 52 L−Hd − 38 L−Hd − 12 50 −(L−Hd − 50) -34

Table 4.2: Allowed R-charges.

one has 9Q + 3L = 30k + 6 ⇒ 3Q + L = 10k + 2 (k ∈ Z) thus 3Q = {2 − L, 12 − L, 22 − L}.

Finally for N = 60 one has 9Q + 3L = 60k + 36 ⇒ 3Q + L = 20k + 12 (k ∈ Z) thus

3Q = {12 − L, 32 − L, 52 − L}.

Looking at the previous table one sees that only the cases N = {2, 4} allow for the S3

term set G1. In the case of interest to us, i.e. allowing TLNV terms set G2 (thus Hd = L)

while prohibiting sets G3 to G7, one can find a solution only for N = {12, 15, 20, 30, 60} (notice

that G3 is not a problem unless N = 2). For example the case N = 3 is not a solution since

prohibiting G5 and G7 forces L = 1 which allows the unwanted G4 while the case N = 12

is a solution since the sets G5, G6 and G7 do not constrain L but G4 forces L 6= {1, 4, 7, 10}

which is possible. The specific R-charges for the five possible cases are then computable. In

this framework it is therefore impossible to allow only TLNV terms set G2 along with the S3

term set G1. It is however possible to allow only TLNV terms set G2.

4.4.5 Constraints on 〈S〉

In light of the previous computations one can engineer the appropriate Pentagon superpotential

W = (mISS + gSSY )PP̃ + gµSHuHd + λLHdLĒ + λuHuQŪ + λdHdQD̄

+
1

2
λLLĒ + λ′LQD̄+ gǫSLHu. (4.72)
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If S gets a VEV then one neutrino mass is mostly due to the SLHu term while the Higgs is

hidden by the LQD̄ term. This comes from the specific form of the tree level neutrino mass

matrix (rank = 1) and thus only one neutrino is massive which is good to generate a hierarchy.

Loop diagrams from the LLĒ and LQD̄ terms give masses to the other neutrinos (see [131]).

There is also an effective µ term and thus no light higgsinos.

On the other hand, it may be a challenge to give a VEV to S if there is no S3 term. If

there is no S VEV then we could get both neutrino masses and Higgs decay to jets plus missing

energy from the LQD̄ term, but we are likely to have an unacceptable light higgsino. A model

without a VEV for S could generate all neutrino masses through loops involving the LQD̄

couplings, and could hide the Higgs via these same couplings. However, it would probably have

an unacceptable light higgsino.

4.5 Conclusions

We have seen that gauge mediated models with lepton number violation can in principle hide

the Higgs and generate an acceptable neutrino mass spectrum simultaneously. Our attempt to

find a model in which the appropriate couplings followed from a discrete symmetry of the low

energy theory was not completely successful.

The problem we encountered was specific to embedding the lepton violating scenario into

the framework of the Pentagon model, but we anticipate some general features. In particular, it

seems hard to find models where low energy symmetries allow LQD̄ operators, but forbid LLĒ

operators. One has to rely on a high energy Froggatt-Nielsen mechanism, combined with SUSY

non-renormalization theorems, to explain the suppression of the latter, which are significantly

more constrained.

There will also be an inevitable connection between the origin of neutrino masses in R-parity

violating models and the µ term of the MSSM. Our analysis indicates that it may be hard to

explain the value of µ in terms of a low energy singlet VEV in these lepton number violating

models.

Nonetheless, we think that gauge mediated models with renormalizable lepton number vio-

lation could offer considerable insight into two puzzles of the standard model. We have barely

scratched the surface of this general class of models, and they deserve further investigation.



68

Chapter 5

Metastable Supersymmetry Breaking

5.1 Introduction

In this chapter we discuss in detail the findings of the work done in collaboration with R. Essig,

K. Sinha, G. Torraba and M. Strassler [15].

Relaxing the requirement that supersymmetry breaking occurs in the true vacuum (see

e.g. [132]–[134]) can help overcome many of the constraints of dynamical supersymmetry break-

ing with no supersymmetric vacua [135]. Recently, Intriligator, Seiberg and Shih [14] have shown

that metastable dynamical supersymmetry breaking is rather generic and easy to achieve. They

found that metastable vacua occur in supersymmetric QCD (SQCD), in the free magnetic range,

when the quarks have small masses,

W = tr
(
mQ̃Q

)
. (5.1)

This has opened many new avenues for model building and gauge mediation; see [136]–[152] for

some examples of recent work, and [153] for a review and a more complete list of references.

It is not possible to build a phenomenologically viable model of gauge mediation using

directly the ISS superpotential (5.1). This is due to an unbroken R-symmetry that forbids

non-zero gaugino masses. A natural question is then how the phenomenology changes when the

superpotential is a more general polynomial in Q̃Q. While this has been considered before for

some particular superpotential deformations (see e.g. [141, 144, 146, 150, 151]), a more detailed

account of the space of metastable vacua and the low energy phenomenology is needed. For

instance, the light fermions of the model have not been fully explored. The aim of this work is

to analyze the IR properties of the theory and its phenomenology in the presence of a generic

U(Nf )-preserving polynomial superpotential

W = m tr(QQ̃) +
1

2Λ0
tr
[
(QQ̃)2

]
+

1

2Λ0
γ
[
tr (QQ̃)

]2
+ . . . , (5.2)

where Λ0 ≫ Λ is some large UV scale, γ is an order one coefficient, and ‘. . .’ are sextic and

higher dimensional operators.
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Deforming (5.1) by a generic polynomial in Q̃Q breaks R-symmetry explicitly at tree level,

and additional supersymmetric vacua are introduced [13]. The supersymmetric vacua for a single

trace superpotential were analyzed in detail in [146], where it was found that the magnetic

theory has classical supersymmetric vacua with various possible unbroken subgroups of the

magnetic gauge group. This should be contrasted with the case of ISS, Eq. (5.1), where the

magnetic gauge group is completely Higgsed and supersymmetry is broken classically by the

rank condition.

After taking into account one loop quantum corrections in the magnetic theory, one finds the

deformed theory also has metastable vacua at low energies [146]. The dynamical reason for this

is that the deformations to the magnetic superpotential come from irrelevant operators in the

electric theory, which are parametrically suppressed. Therefore, we end up with a controllable

deformation of the ISS construction in the IR. These vacua break R-symmetry spontaneously,

and in phenomenologically interesting regions of parameter space the spontaneous breaking is

much larger than the explicit breaking.

Since supersymmetric vacua allow for unbroken magnetic gauge groups, one might expect

the same to occur for metastable vacua. However, the metastable vacua in the theories we

explore below have a completely broken magnetic gauge group; vacua with unbroken subgroups

of the magnetic gauge group do not occur. This is in some disagreement with [146] and it

would be interesting to see how this effect appears in the brane constructions of metastable

vacua [154].

Next we will analyze the phenomenological properties of the spectrum, with particular at-

tention to the light fermions, including the Standard Model gauginos and a multiplet of fermions

from the “meson” superfield M = Q̃Q. If the superpotential contains only single traces of pow-

ers of M , the singlet and adjoint parts of the meson superfield M = Q̃Q have the same one loop

effective action. The singlet fermion is the Goldstino, and must be massless at one loop through

a cancellation of its nonzero tree level mass against a one loop correction. The adjoint fermions

(or more precisely, a certain subset thereof) have the same tree and one loop effective action,

and so their masses arise only at two loops (and/or through equally small mixing effects.) Con-

sequently their masses are small compared with those of the Standard Model gauginos, which

arise at one loop.

In this paper we will be considering the case where the embedding of the Standard Model

gauge group into the U(Nf ) flavor group endows these fermions with Standard Model quantum

numbers. With such light masses, these fermions would already have been observed, and so

these models would be phenomenologically unacceptable.
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We are therefore led to consider a multitrace deformation of the superpotential; in particular,

we must take γ 6= 0 in Eq. (5.2). Then the cancellation between the tree level and one loop

masses for the Goldstino fails for the adjoint fermions, leaving them with masses proportional to

γ. The phenomenology of direct gauge-mediated models based on this theory is quite rich, since

the adjoint fermions may be lighter or heavier than the Standard Model gauginos, depending

on γ. Mixing between these fermions and the gauginos is negligibly tiny, due to a charge-

conjugation symmetry in (5.2). We will briefly discuss some of the interesting phenomenological

properties of such a scenario, leaving the details to a forthcoming publication [155].

The various sections are arranged as follows. In Section 5.2, we discuss the moduli space

of SQCD with the superpotential Eq. (5.2), keeping only terms up to quartic order in the

electric fields. In Section 5.3, we review SQCD without deformations (ISS), with emphasis on

the spectrum and associated phenomenological issues. In Section 5.4, we study single trace

deformations of the ISS superpotential, that is, the case γ = 0. We show that all metastable

vacua have a magnetic gauge group that is completely Higgsed, and we discuss the spectrum,

showing it is unacceptable for phenomenology. Next, in Section 5.5 we consider γ 6= 0, describing

the spectrum in detail. Finally, Section 5.6 contains a brief overview of the phenomenology of

and constraints on such models. Various computations are shown in detail in the Appendix.

5.2 SQCD with a multitrace superpotential

In this section, we analyze the symmetries and supersymmetric vacua of SQCD in the presence

of a generic U(Nf )-preserving polynomial superpotential.

Supersymmetric QCD with gauge group SU(Nc) and Nf flavors (Qi, Q̃j) with equal masses

m has a global symmetry group

SU(Nf )V × U(1)V (5.3)

under which (Qi, Q̃i) transform as (2+1, 2−1). There is also a discrete Z2 charge conjugation

symmetry Qi ↔ Q̃i. For phenomenological applications we will later weakly gauge a subgroup

of SU(Nf )V and identify it with the Standard Model gauge groups. We will also gauge U(1)V

to remove a Nambu-Goldstone boson.

The most general quartic superpotential preserving this symmetry is of the form

W = m tr(QQ̃) +
1

2Λ0
tr
[
(QQ̃)2

]
+

1

2Λ0
γ
[
tr (QQ̃)

]2
. (5.4)

We will typically consider Λ0 ≫ Λ ≫ m, and take γ to be of order one or smaller. We will not

consider sextic or higher operators, since they are suppressed by higher powers of Λ0 and would
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not affect our discussion. The nonrenormalizable superpotential (5.4) could be generated from

a renormalizable theory, for example by integrating out fields with masses ∼ Λ0 that couple to

QQ̃.

Let us consider the theory in various limits. First, for W = 0 there is a moduli space of

vacua parameterized by mesons and baryons modulo classical constraints. The global symmetry

is enhanced to SU(Nf)L × SU(Nf )R × U(1)V , and there is a non-anomalous U(1)R symmetry

as well as an anomalous U(1)A axial current.

For m/Λ 6= 0 but Λ0 → ∞, the superpotential is renormalizable, and the theory has an

exact classical U(1)R symmetry which is anomalous at the quantum level.1 The non-anomalous

symmetries of the model are

SU(Nf)V U(1)R U(1)V

Qi 2 +1 +1

Q̃i 2 +1 −1

Λ3Nc−Nf 0 2Nc 0

plus the Z2 charge conjugation. The F-term relations lift the moduli space and the only vacuum

is at the origin.

On the other hand, for m 6= 0 and Λ0 large but finite, all R-symmetries are explicitly broken

at the classical level. New discrete supersymmetric vacua appear in the regime

Q̃Q ∼ mΛ0 .

5.2.1 Magnetic dual

Below the scale Λ, the theory is described by an effective theory, called the “dual magnetic

theory”, with gauge group SU(Ñc), singlet mesons Φij , and Nf fundamental flavors (qi, q̃j); we

define Ñc ≡ Nf − Nc. The theory has a positive beta function and is weakly-coupled in the

infrared. After an appropriate change of variables, the classical tree level superpotential reads

W = h tr(qΦq̃) − hµ2 tr Φ + +
1

2
h2µφ

(
tr Φ2 + γ(trΦ)2

)
. (5.5)

where the first trace is over magnetic color and the remaining traces are over flavor indices.

The relation with the electric variables is (roughly)

ΛΦ ∼ Q̃Q, h µ2 ∼ Λm , h2 µφ ∼ Λ2

Λ0
.

1There is also an approximate non-anomalous R-symmetry “U(1)R′” which is restored as m→ 0, but we will
not need to consider this symmetry.
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More details may be found in [14].

As in ISS, we restrict to small quark masses m ≪ Λ. We will also restrict ourselves to the

range

Λ0 ≫
√

Λ

m
Λ , (5.6)

which guarantees that hµφ ≪ µ. This will be needed to have long-lived metastable vacua.

There are nonperturbative corrections to the superpotential (5.5), but they are all small enough

not to affect our calculations given (5.6).

Also, these conditions ensure that the symmetries of the model at the scale Λ are approxi-

mately SU(Nf )L×SU(Nf )R×U(1)V ×U(1)R′ , broken to SU(Nf )V ×U(1)V only by effects of

orderm/Λ and Λ/Λ0. Therefore, to an excellent approximation, both the superpotential and the

Kähler potential satisfy the larger symmetry group, under which the trace and traceless parts

of Φij transform as a single irreducible multiplet. We will work only to leading non-vanishing

order in the symmetry-breaking effects from non-zero m and non-infinite Λ0.

Furthermore, the discrete Z2 charge-conjugation symmetry of the electric theory appears as

the transformation

Φ → ΦT , qi ↔ q̃i . (5.7)

This transformation plays an important role in the phenomenology of gauge mediation models

based on (5.5), and indeed in other ISS-related models (see e.g. [161]).

As in the electric theory, the R-symmetry is explicitly broken, and we expect new super-

symmetric vacua parametrically at µ2/µφ. Indeed, the solutions to the F-term constraints

(
− hµ2 + h2µφγ tr Φ

)
INf×Nf

+ h2µφ Φ + h q̃q = 0

qΦ = Φq̃ = 0 , (5.8)

are

〈hΦ〉 =
1

1 + (Nf − k)γ

µ2

µφ



 0k×k 0k×(Nf−k)

0(Nf−k)×k I(Nf−k)×(Nf−k)



 (5.9)

and

〈q̃q〉 =
1

1 + (Nf − k)γ
µ2



 Ik×k 0k×(Nf−k)

0(Nf−k)×k 0(Nf−k)×(Nf−k)



 (5.10)

with k = 1, . . . , Nf −Nc. (Here I represents the identity matrix, and a subscript r× s indicates

a block matrix of the corresponding size.) The appearance of the extra parameter k classifying

different classical vacua has been observed for γ = 0 by [146]. In particular, for k < Nf − Nc

there is an unbroken magnetic gauge group SU(Nf −Nc − k).
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5.3 Metastable DSB in the R-symmetric limit

In the next three sections, we will analyze the IR dynamics of (5.5) in three steps. First, we

review the ISS model [14], the R-symmetric limit µφ = 0, which corresponds to an electric

SQCD with massive flavors and no irrelevant operators. We will highlight the spectrum and

associated phenomenological problems. In Section 5.4, we show how these problems are not

entirely solved by making µφ non-zero but leaving γ = 0. Finally, in Section 5.5, we show how

the theory with γ 6= 0 resolves the remaining problems.

5.3.1 The model and its spectrum

The ISS model considers massive SQCD near the origin in field space in the free magnetic range

Nc + 1 ≤ Nf <
3
2Nc, where the theory has a dual magnetic description with superpotential

W = −hµ2 trΦ + htr(qΦq̃) . (5.11)

At the classical level the theory breaks supersymmetry by the rank condition. We parametrize

the fields by

Φ =



YÑc×Ñc
ZT
Ñc×Nc

Z̃Nc×Ñc
XNc×Nc



 (5.12)

qT =


χÑc×Ñc

ρNc×Ñc


 , q̃ =


χ̃Ñc×Ñc

ρ̃Nc×Ñc


 , (5.13)

where Ñc = Nf−Nc is the rank of the magnetic gauge group. The classical moduli space of vacua

is parametrized by 〈χχ̃〉 = µ2 IÑc×Ñc
and 〈X〉. The other fields have vanishing expectation

values. In the rest of the paper we will restrict to metastable vacua with maximal unbroken

global symmetry, by choosing the ansatz

〈X〉 = X0 INc×Nc , 〈χ〉 = q0 IÑc×Ñc
, 〈χ̃〉 = q̃0 IÑc×Ñc

. (5.14)

It will be checked that this is a self-consistent choice.

The vev for χχ̃ breaks the gauge group SU(Ñc)G completely, with the breaking pattern

SU(Ñc)G × SU(Nf)V × U(1)V → SU(Ñc)V × SU(Nc) × U(1)′ . (5.15)

(Here all groups except SU(Ñc)G are global; we remind the reader that Ñc = Nf − Nc). The

reduction of the global symmetry group leads to 2NcÑc+1 Nambu-Goldstone modes. The fields

(ρ, ρ̃, Z, Z̃) are charged under U(1)′, which plays the role of a messenger number symmetry.

See [14] for a more detailed discussion.
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The flat directions X are not protected by holomorphy or symmetries and, as we shall

review shortly, become massive at one loop. (A field with these properties is called a “pseudo-

modulus” [14].) In particular, X is stablized at the origin. Near the origin of moduli space the

rank condition imposes

|FX | = |hµ2| , (5.16)

and the scale of supersymmetry breaking is

Vmin = Nc |h2µ4| . (5.17)

To analyze the spectrum of the theory, it is convenient to rewrite the superpotential in terms

of the component fields,

W = −hµ2 trX + h tr
(
ρ Z

)

X µ

µ 0




 ρ̃

Z̃




+ hµ tr
[
Y (χ+ χ̃)

]
+ h tr

(
χY χ̃+ ρZ̃χ̃+ χZρ̃

)
. (5.18)

The spectrum consists of three sectors, each consisting of fields satisfying StrM2 = 0.

(1) The (ρ, Z) sector : Treating X as a background superfield, the (ρ, Z) supersymmetric

mass matrix is

Mf =



hX hµ

hµ 0



 (5.19)

while the bosonic matrix is computed, as usual, including off-diagonal blocks with F-terms.

There are 2NcÑc Dirac fermions that come from (ψρ, ψZ) and (ψρ̃, ψZ̃). Near the origin

of field space, their masses are of order hµ, from (5.19). The scalars combine into 4NcÑc

complex fields, which are linear combinations of (ρ, Z, ρ̃∗, Z̃∗). There areNcÑc complex Nambu-

Goldstone bosons from the combinations Re (ρ + ρ̃) and Im (ρ − ρ̃). The 3NcÑc remaining

complex scalars have splittings of order, and centered around, hµ. The numerical coefficients

adjust to preserve StrM2 = 0.

This sector will play the role of the messenger sector in gauge mediation applications. Once

a subgroup of the flavor symmetry is identified with the Standard Model, and gauged with

couplings gSM , the Nambu-Goldstone modes will acquire a one loop mass of order gSMµ/(4π).

(In particular, we will study the case where SU(Nc) is gauged — see Eq.(5.15).) The lightest

state will be stable in the full theory, since the messenger sector is protected by the non-

anomalous U(1)′ messenger number.

(2) The (Y, χ) sector : Fermions from Y, (χ + χ̃) form Ñ2
c Dirac fermions with mass ∼ hµ.

The traceless part2 of the chiral superfield (χ− χ̃), which contains the NG bosons Im (χ′ − χ̃′),

2We denote traceless fields with primes; for instance X′ is the traceless part of X.
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is eaten by the superHiggs mechanism when the magnetic group is gauged.

The field Im tr(χ−χ̃) is a NG boson associated to the breaking of U(1)V . The field Re tr(χ−

χ̃) corresponds to a pseudo-modulus, which will be lifted at one loop. The fermion from tr (χ−χ̃)

is massless. This sector has a supersymmetric spectrum at tree level.

The massless fields from tr (χ − χ̃) would be phenomenologically forbidden. This forces us

to gauge U(1)V , so that the superfield tr (χ− χ̃) is eaten by the U(1)V gauge boson and at tree

level acquires a mass of order gV µ.

(3) The X sector : X is a flat direction, with massless fermionic partner at tree level. In

particular, ψtrX is the Goldstino.

One loop contributions from heavy particles lift the pseudo-moduli. The fields (Y, χ, χ̃) do

not couple at tree level to the supersymmetry breaking sector, so they do not contribute to

the one loop effective potential for the pseudo-moduli. Because we are in the regime where

|FX | = |hµ2| is of order the square of the messenger masses, the effect of integrating out

the messengers does not have a simple expression in superspace, and it is more convenient to

work directly with nonsupersymmetric expressions. The bosonic action is given by the usual

Coleman-Weinberg formula [156]

VCW =
1

64π2
STrM4 log

M2

Λ2
. (5.20)

Near the origin of moduli space X ≪ µ, the potential is approximated by [14]

VCW ≈ a

2
|h4µ2| tr

(
Re

1√
2
[χ− χ̃]

)2

+ b|h4µ2| tr (X†X) (5.21)

with

a =
log 4 − 1

8π2
Nc , b =

log 4 − 1

8π2
Ñc . (5.22)

Therefore, in the ISS model the pseudo-moduli are consistently stabilized at the origin and

R-symmetry is preserved. In this approximation, the one loop mass of the bosonic field X is

given by

m2
CW = b|h4µ2| =

log 4 − 1

8π2
Ñc |h4µ2| . (5.23)

5.3.2 Phenomenological problems

One could try to use the ISS construction as the supersymmetry breaking sector in models of

direct gauge mediation. However, since R-symmetry is preserved in the metastable vacuum,

Majorana masses for the Standard Model gauginos are forbidden. The same applies to the

fermions ψX and ψχ−χ̃, which may have SM quantum numbers after embedding the SM gauge
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group into the flavor symmetry group of the model. For these reasons, this model does not give

an acceptable phenomenology.

There are various ways of improving this situation (see, for instance, [157]–[160]). One very

interesting proposal [161] is that the gauginos could come from Dirac fermions, whose mass is

not constrained to vanish by an unbroken R-symmetry. This idea was applied to the ISS model

in [162], by adding new fields and interactions to the superpotential. Dirac masses appear from

one loop diagrams mixing the MSSM Weyl gauginos with the new Weyl fermions. One problem

with this approach is that doubling the number of fields (in order to have Dirac fermions) creates

a Landau pole close to the messenger scale. In this case, corrections from the microscopic theory

may become important.

Another possibility is to deform the superpotential by higher powers of the meson superfield,

explicitly breaking the R-symmetry at tree level [141, 144, 146]. We consider this possibility in

detail below.

5.4 Single trace deformation

We begin by considering the superpotential Eq. (5.5) with γ = 0, that is, with only a single

trace perturbation:

W = −hµ2 tr Φ + htr(qΦq̃) +
1

2
h2µφ tr (Φ2) . (5.24)

This model was discussed in [146], where it was suggested that new metastable vacua, with

unbroken magnetic group, appear around X ∼ µ. However, this region of parameter space is

subtle, because higher order corrections to (5.21) become important. We will have two new

things to say about this model.

(1) By considering the full logarithmic one loop potential (5.20), it is possible to show that

the metastable vacua with unbroken magnetic gauge group are actually unstable. Thus, one is

led to study only the ISS-like vacuum where the magnetic gauge group is completely Higgsed.

(2) Gauginos indeed become massive at one loop in this model, as expected from the R-

symmetry breaking. However (ignoring some subtleties which we will discuss later) the adjoint

fermions ψX′ become massive only at two loops, because diagrammatic cancellations that make

the Goldstino ψtrX massless at one loop also force the adjoint fermions ψX′ to be massless at

this order. This provides the main motivation for studying non-zero γ below.
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Fermions Bosons

Weyl mass U(Nc) SU(Ñc)D Real mass U(Nc) SU(Ñc)D
mult. mult.

trX 1 h2µφ 10 1 2 h2µφ 10 1

X ′ N2
c − 1 h2µφ Adj0 1 2(N2

c − 1) h2µφ Adj0 1

Y , χ, χ̃ Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c − 1 gmagµ 10 Adj 2(Ñ2

c − 1) gmagµ 10 Adj
1 0 10 1 1 0NGB 10 1

1 0 10 1

Z,Z̃, ρ, ρ̃ 2NcÑc O(hµ) �1+�−1 �+� 2NcÑc 0NGB �1 �

2NcÑc O(hµ) �−1 �

2NcÑc O(hµ) �1+�−1 �+� 2NcÑc O(hµ) (�1+ (�+

2NcÑc O(hµ) �−1) �)

Table 5.1: The classical mass spectrum, grouped in sectors with StrM2 = 0. Since supersym-
metry is spontaneously broken only after including one loop effects, there is no Goldstino at
tree level. gmag is the magnetic gauge coupling. A subscript “NGB” indicates the particle is
massless because it is a Nambu-Goldstone boson. Subscripts in the third column indicate the
charge under the U(1) subgroup. Note this table gives the spectrum before the Standard Model
gauge group is gauged.

5.4.1 Metastable supersymmetry breaking

The classical supersymmetric vacua are obtained by setting γ = 0 in (5.9) and (5.10). In order

to analyze the effect of the deformation on the ISS metastable vacuum, the cases k = Nf −Nc

and k < Nf −Nc have to be distinguished.

Case k = Nf −Nc

This is the analog of the ISS construction, with no unbroken gauge group. The fields are

parameterized as in Eqs. (5.12) and (5.13). We will now review why a metastable vacuum

appears at a distance of order µφ/b away from the origin [146].

As a starting point, set VCW → 0. Due to the classical deformation, X is no longer a flat

direction, unlike the ISS case. Rather, the origin X0 ∼ 0 is at the side of a paraboloid of

classical curvature |h2µφ|2. In other words, the origin is unstable against classical flow of X0

toward the supersymmetric vacua discussed before. The tree level spectrum near the origin is

shown in Table 5.1.

In order to create a local minimum, the quantum contribution VCW ∼ mCW |X0|2 should
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overwhelm the curvature of the classical potential, i.e., mCW ≫ |h2 µφ|. This rather interest-

ing effect, where a one loop contribution stabilizes a classical runaway direction, was analyzed

in [145]. Here, the stabilization of X0 can occur naturally, since µφ, arising from a nonrenor-

malizable operator in the microscopic theory, is parametrically small. The condition that the

one loop potential introduces a supersymmetry breaking minimum,

ǫ ≡ m2
cl

m2
CW

≈
∣∣∣
µ2
φ

bµ2

∣∣∣≪ 1 , (5.25)

is naturally satisfied.

The potentials at tree level and at one loop, as a function of X0, are shown in Figure 5.1. As

seen from the figure, the tree level potential (lower magenta curve), which is obtained from the

superpotential in (5.24), has no supersymmetry breaking minimum. A metastable minimum is

created near the origin once the one loop quantum corrections in the form of VCW are included

(upper blue curve).

As a result of the competition between the classical and quantum contributions, a metastable

vacuum is created at

hX0 ≈
µ2µ∗

φ

b|µ|2 + |µφ|2
, q0q̃0 = µ2 ; (5.26)

see Eq. (5.14) for the notation. As expected, X0 is proportional to the explicit R-symmetry

breaking parameter µφ. However, it is larger than this by the inverse loop factor 1/b. This

follows from the fact that the minimum appears from balancing a tree level linear term of order

µ2 µφ against a one loop quadratic term of order bµ2.

The pattern of symmetry breaking in this vacuum is

SU(Ñc)G × SU(Nf)V × U(1)V → SU(Ñc)V × SU(Nc) × U(1)′ , (5.27)

where only the messengers transform under U(1)′. Unlike the ISS construction, here X0 6= 0,

so that the R-symmetry is both explicitly and spontaneously broken, with the latter dominating

since |hX0| ≫ |µφ|.

Case k < Nf −Nc

The possibility of metastable vacua with k < Nf − Nc is very interesting; coupling this to

the MSSM, it would imply unbroken gauge groups in the hidden sector. Properties of such

configurations were discussed in [146]. Unfortunately, we will now show that there are generically

no metastable vacua in this regime.
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Figure 5.1: Metastable vacuum near X ∼ 0, for a single trace quadratic deformation of the
superpotential (i.e. γ = 0). All parameters have been chosen to be real. The bottom (magenta)
line is the tree level potential, while the top (blue) line shows the tree level potential plus one
loop Coleman-Weinberg corrections. The X-axis has been normalized such that the position
of the tree level supersymmetric vacuum lies at X/(µ2/µφ) = 1. Notice how the one loop
corrections create a (metastable) minimum near the origin.

Such vacua should be of the form

Φ =



0 0

0 X(Nf−k)×(Nf−k)



 , q̃q =



µ
2Ik×k 0

0 0



 . (5.28)

The parametrization of the fluctuations is slightly more involved,

Φ =



 Yk×k Zk×(Nf−k)

Z̃(Nf−k)×k X(Nf−k)×(Nf−k)



 , q =



 Vk×k Tk×(Ñc−k)

P(Nf−k)×k ϕ(Nf−k)×(Ñc−k)



 (5.29)

and similarly for q̃. As in the case k = Nf −Nc, the expectation values are chosen to be of the

form

〈X〉 = X0 I(Nf−k)×(Nf−k) , 〈V 〉 = q0 Ik×k , 〈Ṽ 〉 = q̃0 Ik×k .

The new fields (ϕ, ϕ̃) and (T, T̃ ) do not exist for k = Nf −Nc. They are fundamental flavors

of the unbroken magnetic group SU(Nf −Nc − k).

As was found in [146], positivity of the bosonic mass matrix of (ϕ, ϕ̃) implies

|X0|2 ≥ |µ2 − hµφX0| .
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This places us in the regime X0 & µ. In this regime, the quadratic approximation (5.21) to

the Coleman-Weinberg potential is no longer valid. For X0/µ ∼ 1, all the higher order terms

in VCW give contributions comparable to (5.21). In other words, it is necessary to use the full

expression appearing in Eq. (5.20).

Therefore, to establish the existence of such vacua, a detailed analysis of VCW is required. As

shown in the Appendix, all such vacua are unstable once the full form of VCW is included. The

intuitive reason for this is that at large X0 the logarithmic growth of VCW cannot overwhelm

the quadratic terms in the classical potential. A similar behavior was found in [145].

The plot of Vtree+VCW for this case is almost the same as that of Figure 5.1. For sufficiently

large |X0/µ| > 1, the classical falling potential dominates the logarithmic rise of the VCW , and

no critical points are found until the supersymmetric vacuum is reached.

Summarizing, metastable states occur only for k = Nf − Nc. The fields have expectation

values Eq. (5.26), breaking the magnetic gauge group completely at the scale µ.

5.4.2 Light fermions

We therefore return to the one remaining vacuum, the ISS-like case with k = Nf − Nc. From

the previous analysis, the bosons from X and the traceless part of χ− χ̃ acquire masses of order

mCW . The aim of this section is to compute the fermion masses at one loop, and show that

ψXij remains massless at this order, contrary to naive expectations from R-symmetry breaking.

First we explore one loop effects involving the Goldstino ψtrX . At tree level it has a nonva-

nishing mass h2µφ. We are not expanding around a critical point of the classical potential, but

rather one of the full one loop potential, and therefore the Goldstino should become massless

only once one loop effects are included. This implies that the one loop diagram has to give

m1−loop
ψtr X

≈ −h2µφ , (5.30)

such that mtree
ψtr X

+ m1−loop
ψtr X

≈ 0. Indeed, the explicit evaluation of the one loop diagram in

the Appendix corroborates (5.30). These results are approximate because we are neglecting

(subleading) mixings with other singlet fermions; see below and the Appendix.

At a first glance it is surprising that the one loop contribution can be equal to the tree level

one. This is so because the one loop diagram is of order

h2

16π2
hX0 .

However, since hX0 ∼ µφ/b, with b defined in Eq. (5.22), we obtain the result (5.30). This is

another manifestation of the pseudo-runaway behavior discussed in the previous section.
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Next, notice that within the classical superpotential (5.24), Xij only appears in single traces.

On the other hand, the one loop contribution is a single trace of a function of Xij , because it

comes from exponentiating bosonic and fermionic determinants (denoted by ∆) arising from

messengers in the fundamental representation of SU(Nc). Therefore, the full one loop effective

action

Seff (X,ψX) = Stree + Tr
(
log ∆

)

can be written as a single trace of products of Xij and its superpartner. This means that the

tree level plus one loop contribution to the masses of the X fields must be of the form Tr(X†X),

and therefore the singlet and adjoint parts of X get identical masses through one loop. The

same is true for the fermionic partners of X : at one loop the masses of the singlet ψtrX and

the adjoint ψX′ are the same. Diagrammatically, there is a cancellation between the tree level

Weyl mass and the one loop correction.

We note two small subtleties. First, we have assumed here that the kinetic terms for the

singlet and adjoint parts of X have the same normalization. This is true to a very good approx-

imation. We assumed m≪ Λ ≪ Λ0, which ensured that the high-energy theory’s approximate

SU(Nf) × SU(Nf) symmetry is only weakly broken to SU(Nf)V at the scale Λ. Under this

larger symmetry, the singlet and adjoint transform as a single irreducible representation, assur-

ing equally normalized kinetic terms, up to negligible order(µ/Λ) corrections.

Second, and irreducibly, the Goldstino is not quite ψtrX . As discussed in more detail in

the Appendix, it mixes slightly with the fields ψtrY and ψtr (χ+χ̃), with mixing angles of order

a one loop factor, ∼ 1/16π2 and ∼ X0/(16π2µ), respectively. Consequently the tree level and

one loop ψX masses fail to cancel precisely, though by an amount that is one further loop-order

suppressed. Thus our statement that the ψX masses vanish at one loop is effectively correct.

5.4.3 Phenomenology of the γ = 0 model

After gauging a subgroup of the flavor group SU(Nc) — see Eq. (5.15) — and identifying it

with the Standard Model gauge group, the adjoint fermions ψX′ will carry Standard Model

gauge charges. The fact that they are approximately massless at one loop is unacceptable

phenomenologically. They do become massive at two loop order, through the above-mentioned

mixings, and through explicit two loop diagrams. For example, Standard Model gauge bosons,

which do not impact the singlet ψtrX , generate for the other fields a two loop mass of order

mψX′ ∼ g2 X0

(16π2)2
∼ g2 µφ

16π2
. (5.31)
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But the Standard Model gauginos have a one loop mass of order X0/16π2 ∼ µφ. Importantly,

the charge conjugation symmetry discussed in Section 5.2 forbids significant mixing between λ

and ψX , so the masses for the ψX′ fields cannot be raised through mixing effects. Consequently,

requiring the gauginos are at a scale ∼ 1 TeV implies the ψX′ would be so light that they would

have already been observed.

5.5 The deformation with γ 6= 0

Clearly the root of this phenomenological problem lies in treating ψX′ and the Goldstino ψtrX

on the same footing in the tree level superpotential. A solution is to allow non-zero γ,

W = htr(qΦq̃) − hµ2 tr Φ +
1

2
h2µφ

(
tr (Φ2) + γ(trΦ)2

)
. (5.32)

such that the two have different tree level masses. Then the total one loop mass for ψX′ becomes

proportional to γµφ.

The motivation for considering non-zero γ

W = −hµ2 tr Φ + htr(qΦq̃) +
1

2
h2µφ

(
tr (Φ2) + γ(trΦ)2

)
, (5.33)

extends beyond phenomenological utility. No symmetry enforces γ = 0 once µφ or even µ are

non-zero, so it is quite natural for γ to be nonzero.3

Let us now analyze the metastable vacua of the theory. For hµφ ≪ µ (and for |γ| roughly

of order 1), the Coleman-Weinberg potential is approximately as in ISS. The only stable local

minimum occurs for k = Nf −Nc. The multitrace deformation adds a term proportional to the

identity matrix to WΦ, so we obtain

q0q̃0 = µ2 − hµφNc γ X0 . (5.34)

hX0 ≈
µ2µ∗

φ(1 +Ncγ
∗)

b|µ2| + |µφ|2 + f(γ, γ∗)
(5.35)

with

f(γ, γ∗) = |µφ|2
[
Nc (γ + γ∗) +N2

c |γ|2
]
.

In the limit hµφ ≪ µ, the effect of γ is qualitatively unimportant:

hX0 ≈
µ2µ∗

φ(1 +Ncγ
∗)

b|µ|2 , q0q̃0 ≈ µ2 , (5.36)

so that |hX0| ≫ |µφ|. While γ 6= 0 does not alter the qualitative features of the vacuum, it is

important, when computing the spectrum, that the precise values (5.34) and (5.35) be used.

3Considering the preserved symmetries, one might wonder why the coefficients of qΦq̃ should be taken precisely
equal. The point is that the physical couplings are constrained by the approximate SU(Nf )L ×SU(Nf )R in the
electric theory, which is still valid at and just below the scale Λ. In other words, the µ → 0 and µφ → 0 limit
implies equal couplings. Nothing comparable favors γ = 0.
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5.5.1 Spectrum

We now analyze the spectrum in the metastable vacuum. As in Section 5.4, the Goldstino is not

massless at tree level. Some of the one loop diagrams exactly cancel the tree level contributions

and for this reason we discuss directly the tree level plus one loop results.

We first consider the fermions of the pseudo-modulusX . The singlet fermion (the Goldstino)

is massless at one loop. For the adjoint fermions, the tree level mass h2µφ is partially canceled

against the one loop contribution, and the full mass is of order

mψX′ ≈ h2µφNcγ . (5.37)

Of course this vanishes in the limit γ → 0, as required from Section 5.4.

Interestingly, we will see in Section 5.6 that the Majorana gaugino masses are proportional

to (1 + Ncγ). By changing the dimensionless parameter γ, the adjoint fermions may thus

be made lighter or heavier than the gauginos. This allows a variety of spectra with different

phenomenological signatures, see Section 5.6.

As for the bosons of X , both the adjoint and one component of the singlet acquire one

loop masses of order mCW ; see Eq. (5.23). The other part of the singlet, Arg(X), is a massive

R-axion. This is because X has a large nonzero expectation value X0 ∼ 16π2µφ ≫ µφ, which

spontaneously breaks the approximate U(1)R symmetry at a scale much larger than any explicit

breaking. The mass of the R-axion is given by

m2
a =

2
√
Nc

Nc|X0|
Re
[
hµ2 (h2µφ)

∗] ∼ b|h4 µ2| . (5.38)

This is of the same order as the one loop mass mCW , Eq. (5.23).

Finally, the (Y, χ, χ̃) and (Z, Z̃, ρ, ρ̃) sectors are as in Section 5.3.1. We remind the reader

that we have gauged the U(1)V symmetry, and gV denotes its gauge coupling. The (otherwise

massless) fields from tr(χ− χ̃) acquire masses of order gV µ, as shown in the table. Furthermore,

the NG bosons from (ρ, ρ̃, Z, Z̃) acquire a one loop mass of order gSMµ/4π once the Standard

Model is gauged, as a subgroup of the flavor symmetry group. The lightest of these is stable

due to the unbroken messenger number U(1)′ from Eq. (5.27).

5.5.2 Lifetime of the metastable vacuum

Here we check that the metastable non-supersymmetric vacuum can be sufficiently long-lived.

This vacuum can decay to the ISS-like supersymmetric vacuum with k = Nf − Nc, or to the

supersymmetric vacua with k < Nf − Nc (see Section 5.2.1). The decay to the vacua with
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Fermions Bosons

Weyl mass U(Nc) SU(Ñc)D Real mass U(Nc) SU(Ñc)D
mult. mult.

trX 1 0 10 1 1 O(mCW ) 10 1

1 O(
√
bh2µ) 10 1

X ′ N2
c − 1 h2µφNcγ Adj0 1 2(N2

c − 1) O(mCW ) Adj0 1

Y , χ, χ̃ Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c O(hµ) 10 Adj 2Ñ2

c O(hµ) 10 Adj

Ñ2
c − 1 gmagµ 10 Adj 2(Ñ2

c − 1) gmagµ 10 Adj
1 gV µ 10 1 2 gV µ 10 1

Z,Z̃, ρ, ρ̃ 2NcÑc O(hµ) �1+�−1 �+� 2NcÑc 0NGB �1 �

2NcÑc O(hµ) �−1 �

2NcÑc O(hµ) �1+�−1 �+� 2NcÑc O(hµ) (�1+ (�+

2NcÑc O(hµ) �−1) �)

Table 5.2: The mass spectrum, including one loop corrections (but without Standard Model
gauge interactions), grouped in sectors with StrM2 = 0. Notice the appearance of the Goldstino
in the tr (X) sector. The details of the spectrum are described further in the text. Notation is
as in Figure 1.

k < Nf −Nc requires changing the expectation value of (some of the elements of) qq̃, from hµ2

to 0. This is strongly suppressed by the quartic potential term V = . . .+ |hqq̃|2. The dominant

decay channel will be to the supersymmetric vacuum with k = Nf −Nc, which we now analyze.

The lifetime of the vacuum may be estimated using semiclassical techniques and is propor-

tional to the exponential of the bounce action, eB [163]. We will see that the tunneling takes

place in the direction of trX , in a region where qq̃ ≈ µ2 is almost constant. The potential

as a function of trX , including the one loop quantum corrections from the Coleman-Weinberg

potential, is given in the Appendix and shown in Figure 5.1. It may be modeled as a triangular

barrier, and the bounce action may be estimated using the results in [164].

We will see in the next section that, in order to have large enough gaugino masses but a

low SUSY-breaking scale and low sfermion masses, the ratio µφ/µ cannot be made too small.

Nonetheless, it is useful to first analyze the bounce action in the limit µφ ≪ µ, where it is clear

the vacuum is parametrically stable.

The dimensionful parameters controlling the shape of the potential are µ and µφ. We assume

h, γ, Nf , and Nc are all of order 1. The SUSY vacua are parametrically far away from the
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metastable vacua in the limit

ǫ ≡
∣∣∣
µ2
φ

bµ2

∣∣∣≪ 1 . (5.39)

In this limit, the calculation of the bounce action is very similar to that done in [145], as long

as only trX varies. Let us assume qq̃ is essentially constant.

The metastable SUSY-breaking vacuum lies at X0 ∼ µφ/b, the peak of the potential is

near Xpeak ∼ bµ2/µφ, and the SUSY vacuum is at Xsusy ∼ µ2/µφ, where phases and O(1)

numbers have been ignored. Moreover, the potential difference between the peak and the

metastable SUSY-breaking minimum is roughly V (Xpeak) − V (X0) ∼ b µ4, much smaller than

V (X0)− V (Xsusy) ∼ µ4. The results of [164] then show that the field tunnels not to the SUSY

vacuum directly but rather to Xtunnel & Xpeak. For this value of Xtunnel, Eq. (5.8) implies

qq̃ ≈ µ2, and thus qq̃ indeed stays approximately constant in the tunneling region. This confirms

that the results in [164] apply.

In the limit ǫ≪ 1, the bounce action scales parametrically as

B ∼ (Xtunnel)
4

V (Xpeak) − V (X0)
∼ b

1

ǫ2
, (5.40)

where we have neglected some numerical factors, see [164]. Thus, B → ∞ as ǫ → 0, and the

metastable vacuum can be made parametrically long-lived.

In Section 5.6, we will see that in order to obtain sfermion masses that are roughly of the

same size as gaugino masses, we need to take µφ ∼ bµ (and thus ǫ ∼ b.) In this regime X0,

Xpeak and Xtunnel are all parametrically of order bXSUSY. A numerical study is required to

determine the existence and lifetime of the metastable vacuum. Taking the gaugino masses

to lie at their experimental lower bound, of order 100 GeV, we find that the existence of a

metastable vacuum sets a lower bound on the sfermion masses — typically a few TeV for the

squarks and at least a few hundred GeV for the right-handed sleptons. Once such a metastable

vacuum is obtained, it is easy to make the bounce action larger than the required 400 by a

small increase (of order 5%) in the sfermion masses. The details of the spectrum, together with

a more precise estimate of the lower bound on the sfermion masses, and the implications for

the tuning of electroweak symmetry breaking, will be given in [155].

5.6 Comments on the phenomenology

This section briefly discusses some of the phenomenology associated with the multitrace defor-

mation of the ISS model, equation (5.32). The details will be left to a forthcoming publication

[155].
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The ISS-like supersymmetry breaking models are interesting from a phenomenological point

of view due to the presence of the large global symmetry group

SU(Ñc)V × SU(Nc) × U(1)′ . (5.41)

A model of direct gauge mediation can be built by weakly gauging a subgroup of (5.41) and

identifying it with the Standard Model (SM) gauge group. The fields ρ, Z, ρ̃, and Z̃ in (5.12)

and (5.13) act as messengers that mediate the supersymmetry breaking effects to the visible

sector. Loops involving these messengers can give non-zero masses to the scalar superpartners

of the SM fermions and, provided there is no unbroken R-symmetry, non-zero Majorana fermion

masses to the gauginos.

In this section, we will consider gauging the SU(3)×SU(2)×U(1) subgroup of SU(Nc) for

Nc = 5 in the γ 6= 0 model, and identifying it with the SM gauge group. (The effect of gauging

a subgroup of SU(Ñc)V will be discussed in [155].)

Under the SM gauge group SU(3)C × SU(2)L × U(1)Y , the adjoint field X ′ decomposes as

X ′ = X24 = X(8,1)0 ⊕X(1,3)0 ⊕X(3,2)−5/6
⊕X(3̄,2)5/6

⊕X(1,1)0. (5.42)

The fermions from the superfields X(8,1)0 , X(1,3)0, and X(1,1)0 carry the same gauge charges

as the gluino, wino, and bino, respectively, and the first two could be directly produced at

colliders.4 Also, there are new light fermions from the superfields X(3,2)−5/6
and X(3̄,2)5/6

;

these are stable unless given new interactions, and require a special discussion below.

5.6.1 Phenomenology of ψX′ and λ

A very important property of the model is that the gauginos and the adjoint ψX′ do not mix.

This is due to the fact that λ and ψX′ have charge conjugation transformations that differ by

a sign,

C(ψX′
ij

) = ψX′
ji
, C(λij) = −λji . (5.43)

This discrete symmetry forbids any mixing at low orders between the two sets of fermions. More

precisely, C-violation in the SM allows λ and ψX′ to mix, but this occurs only at three loops

and is thus negligibly small.

Let us estimate the gaugino and ψX′ masses. As discussed in Section 5.5.1, the metastable

vacuum has an approximate R-symmetry that is spontaneously broken through the non-zero

4The X bosons in (5.42) get a mass of order
√
bh2µ ∼ O(10 TeV) from the Coleman-Weinberg potential and

are thus rather heavy. If produced in the early Universe, they would have decayed promptly into ψX and a
gaugino, excepting gauge singlets which would decay a bit more slowly through higher dimension operators.
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vev X0 ∼ (1+Ncγ)µφ/b, where b ∼ 1/(16π2) is a loop factor (5.22). Therefore, gauginos obtain

a one loop mass of order

mλ ∼ g2

16π2
X0 ∼ g2 (1 +Ncγ)µφ . (5.44)

Neglecting O(1) numbers and factors of the gauge coupling g, an interesting phenomenology is

obtained for

mλ ∼ O (1 TeV) , (5.45)

i.e. for

µφ ∼ O(1 TeV). (5.46)

The ψX′ also obtain a mass at one loop, which, using equation (5.37), is of order

mψX′ ∼ h2 µφNc γ ∼ γ × O (1 TeV) , (5.47)

neglecting factors of h and g and other O(1) numbers. By adjusting γ, ψX′ can be made heavier

or lighter than λ, leading to very different collider signatures as we will discuss next.

The ψX′ do not mix with the Standard Model gauginos at a level that determines their

decays. Instead, if they are heavy enough, they can decay (promptly) into a gaugino and a

gauge boson through the dimension five operator ψX′σµνλFµν :

ψX′ → λ+ gauge boson . (5.48)

The gauginos can decay through all the usual supersymmetric decay modes, and/or through

the standard coupling of each gaugino to a gauge boson and Goldstino:

λ→ ψtrX + gauge boson (5.49)

If instead the ψX′ are lighter than the gauginos, then the gauginos will decay into the ψX′

plus a gauge boson via the above-mentioned operator. The ψX′ decays to a gauge boson and

an off-shell gaugino. The precise decay modes and the lifetime of the ψX′ depend on the details

of the spectrum, and will be discussed further in [155].

From (5.42), we see that there are new (3,2) fermions, with charges (3,2)−5/6 and (3̄,2)5/6.

By binding to quarks, these form hadrons, some of which are charged. The lightest of these novel

hadrons, whether charged or neutral, would be stable in the model as described so far. But this

would be ruled out, since these hadrons would have been created in the early Universe, violating

the bounds on the existence of heavy stable particles [165, 166]. These fermions must thus be

made to decay through additional baryon-number violating operators in the superpotential

and/or the Kähler potential. In [155], we will show that additional dimension five Kähler
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potential terms, coupling the adjoint X ′ to SM quarks and leptons, can allow the (3,2) fermions

to decay without affecting Big-Bang Nucleosynthesis or violating current bounds on proton

decay.

5.6.2 Sfermion masses, the SUSY-breaking scale and a light gravitino

Since the supersymmetry breaking scale is |
√
F | = |

√
hµ| and the mass scale of the messengers

is of the same order, the soft scalar masses are roughly given by

mS ∼ g2

16π2
µ . (5.50)

Comparing this to (5.44), the sfermions and gauginos have similar masses if

µφ ∼ µ/(16π2). (5.51)

We recall that the existence and longevity of the metastable vacuum requires µφ ≪ µ, see

Section 5.5.2.

More concretely, there is an interesting parameter region characterized by (5.51) and a low

supersymmetry breaking scale

√
F ≈ µ ∼ O (100 − 200 TeV) . (5.52)

In this case, the heaviest sfermions (squarks) have masses of a few TeV, the lightest sfermions

(right-handed sleptons) haves masses of a few hundred GeV, the gaugino masses are of order

several hundred GeV, and there is a large enough lifetime for the metastable vacuum. The

gravitino mass is

m3/2 ∼ F√
3MPl

∼ O(1–10 eV) , (5.53)

where MPl ≃ 2.4×1018 GeV is the reduced Planck mass. Such a light gravitino does not violate

any cosmological or astrophysical constraints [172].

5.6.3 Further comments on the spectrum

As discussed in Section 5.5, the messenger sector (ρ, ρ̃, Z, Z̃) contains 2NcÑc real NG bosons,

all of which become massive at one loop after weakly gauging the flavor symmetry. In the

parameter range (5.52), this mass is of order of several TeV. The U(1)′ messenger number in

(5.27) forbids the decay of the lightest of these messenger particles, which is thus stable. If

the lightest messenger is neutral and weakly interacting and has an appreciable relic density, it

would have a tree-level coupling to nuclei via Z-boson exchange and would have been seen at a
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dark matter direct detection experiment [167]-[171]. If the stable state is charged and/or colored,

the experimental constraints are even stronger [165, 166]. Thus experimental constraints rule

out the possibility that the lightest messenger is dark matter; this will be investigated further

in [155].

We also note that the SM gauge couplings have a Landau pole well below the GUT scale,

due to the presence of extra matter charged under the SM gauge group. As one runs up to the

high scale, the SU(3)C gauge coupling blows up first at about 109 (107) GeV for Ñc = 1 (3), so

that new physics has to enter at or below this scale. Larger values of Ñc lower this scale to the

point that it affects our discussion materially. See [173] for a recent discussion of the Landau

pole problem in ISS-like SUSY-breaking models.

5.6.4 Illustrative choices of parameters

We postpone a careful study of the various constraints to [155], but preliminarily it appears

possible to satisfy simultaneously all of the conditions considered above. For example, for

Ñc = 1,5 the parameters of the electric theory Eq. (5.4) that are consistent with (5.51) and

(5.52) are m of order 0.01–10 TeV, Λ ∼ 103−5 TeV, and Λ0 ∼ 106−9 TeV. With these choices,

the models appear to have no insuperable problem below the scale of the Landau pole.

On the other hand, for Ñc ≥ 3, Λ has to be below 103 TeV, and the ratio m/Λ is not para-

metrically small. In this case, the corrections from the microscopic theory are not guaranteed

to be small, and the violations of the approximate symmetries may be large. In particular, the

cancellations described in section 5.4.2 may be imperfect, requiring a more elaborate analysis.

However, the argument for nonzero γ still holds, and its effects can still dominate, in which case

the phenomenology outlined here will be largely unchanged.

5.6.5 Summary

While these models are not yet entirely plausible, they represent an advance over the models

with SU(Nc) gauged and γ = 0, which as we showed are excluded by the presence of overly-light

charged and colored fermions. We have demonstrated that with γ 6= 0, it is possible to obtain

models with a long-lived metastable vacuum, a spectrum with all standard model superpartners

in the TeV range, and with no obvious unresolvable conflict with any experiment.

5In this case, the magnetic gauge group is trivial and, after a field redefinition, the superpotential is given by
(5.5) plus det Φ/ΛNc−2. For Nc > 2 this term is negligible near the origin, so our analysis is self-consistent.
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The minimal versions of these models have new TeV-scale fermions in the adjoint represen-

tations of the Standard Model gauge group that do not mix with standard model gauginos.

They also have squarks and sleptons significantly heavier than the gauginos, and exotic stable

hadrons which must be made to decay through additional interactions. They also suffer from

the ubiquitous intermediate-scale Landau pole for standard model gauge couplings. We will

pursue various associated model-building issues, and study in more detail the phenomenology

of these models in [155].

5.7 Appendix: One loop calculations

In this appendix we collect the one loop calculations for the ISS model with multitrace quadratic

deformations. The superpotential is

W = h tr qΦq̃ − hµ2 tr Φ +
1

2
h2µφ trΦ2 +

1

2
h2µφγ (tr Φ)

2
(5.54)

where Φ = ΦNf×Nf
, q = qÑc×Nf

and q̃ = q̃Nf×Ñc
.

5.7.1 Appendix: Messenger sector

Let us consider separately the cases k = Nf −Nc and k < Nf −Nc (see Section 5.4.1).

Case k = Nf −Nc

The parametrization of the metastable minima is given by Eqs. (5.12) and (5.13). Around these

minima the superpotential is

W = hq0q̃0 trY − hµ2 trY − hµ2 trX + h tr q0Y χ̃+ hq̃0 trχY

+hq0 trZρ̃+ hq̃0 tr ρZ̃ +
1

2
h2µφ

(
trY 2 + γ(trY )2

)
+ h2µφ trZZ̃

+
1

2
h2µφ

(
trX2 + γ(trX)2

)
+ h2µφγ trX trY

+h trχY χ̃+ h tr ρXρ̃+ h tr ρZ̃χ̃+ h trχZρ̃ (5.55)

and the non-zero F-term is

∂XijW =
(
−hµ2 + h2µφ(1 +Ncγ)X0

)
δij . (5.56)

We recall the ansatz (5.14),

〈X〉 = X0 INc×Nc , 〈χ〉 = q0 IÑc×Ñc
, 〈χ̃〉 = q̃0 IÑc×Ñc

. (5.57)
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The q0q̃0 vev completely Higgses the dual gauge group SU(Ñc)G and the U(1)V . To deter-

mine X0, one must compute the Coleman-Weinberg potential from the tree level masses of

the messenger sector. The ansatz (5.57), which will be checked self-consistently, simplifies the

computations since the mass eigenstates are then independent of their flavor index. One can

thus suppress color and flavor indices in the following.

The messenger sector contains the fields ρ, ρ̃, Z and Z̃, that couple to the non-zero F-term.

Let us define

ψ̂ = ( ψρ ψZ )
T ˆ̃ψ = ( ψρ̃ ψZ̃ )

T
φ̂ =

(
ρ Z ρ̃∗ Z̃∗

)T
(5.58)

for the messenger gauge eigenstates. The Weyl fermions combine into Dirac fermions and the

messenger masses can be written as

Lmess,mass = − ˆ̃ψMmess,f ψ̂ − h.c.− φ̂†M2
mess,bφ̂ (5.59)

where the messenger mass matrices are

Mmess,f = h


 X0 q0

q̃0 hµφ


 , M2

mess,b =


 M †

mess,fMmess,f −h∗F ∗
X

−hFX Mmess,fM
†
mess,f


 (5.60)

and

−F ∗
X = h


 −µ2 + hµφ(1 +Ncγ)X0 0

0 0


 . (5.61)

For q̃0 = q0 the fermionic and bosonic messenger masses are (σ = ±1 and η = ±1)

m2(X0) = |h|2
(
|q0|2 +

1

2
|X0|2 +

1

2
|hµφ|2 (5.62)

+
1

2
σ

√
(|X0|2 − |hµφ|2)2 + 4|q0X∗

0 + q∗0hµφ|2
)

m̃2(X0) = |h|2
(
|q0|2 +

1

2
|X0|2 +

1

2
|hµφ|2 +

1

2
η|µ2 − hµφ(1 +Ncγ)X0| (5.63)

+
1

2
σ

√
(|X0|2 − |hµφ|2 + η|µ2 − hµφ(1 +Ncγ)X0|)2 + 4|q0X∗

0 + q∗0hµφ|2
)
.

The fermion masses have multiplicity 4NcÑc while the complex boson masses have multiplicity

2NcÑc.

The messenger mass matrices can be diagonalized by unitary matrices Uf , Ũf and Ub such

that

ψ = Uf ψ̂ ψ̃ = Ũf
ˆ̃
ψ φ = Ubφ̂ (5.64)

where ψ, ψ̃ and φ are messenger mass eigenstates. The quadratic lagrangian for the messengers
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is therefore of the canonical form

Lmess = −
4∑

a=1

φ†a
(
D2 + m̃2

a

)
φa

+
2∑

a=1

(
ψ̄aiσ̄

µDµψa + ¯̃ψaiσ̄
µDµψ̃a −ma(ψ̃aψa + ¯̃ψaψ̄a)

)
. (5.65)

Due to the charge conjugation symmetry, it is possible to write the mixing matrices such that

(Ub)a{1,2} = (Ub)
∗
a{3,4} and Ũf = Uf . This can be easily seen from the mass matrices for q̃0 = q0.

This property will be useful when computing one loop corrections to light masses.

Case k < Nf −Nc

The fluctuations are parametrized as in Eq. (5.29), so there are extra messenger superfields

(ϕ, ϕ̃). The analysis of (ρ, ρ̃, Z, Z̃) proceeds along the same lines as in the case k = Nf −Nc,

except that the fermion messenger masses have now multiplicity 4(Nf − k)k while the complex

boson messenger masses have multiplicity 2(Nf − k)k.

The masses of ϕ and ϕ̃ are (η = ±1)

m2
ϕ(X0) = |hX0|2

m̃2
ϕ(X0) = |h|2

(
|X0|2 + η|µ2 − hµφX0|

)
. (5.66)

The fermion masses have multiplicity 4(Nf − k)(Ñc − k) while the complex boson masses have

multiplicity 2(Nf − k)(Ñc − k). Importantly, in the limit of small deformation, (5.66) forces

|X0| & |µ| to avoid tachyons.

5.7.2 Appendix: One loop bosonic action

The tree level pseudo-moduli are given by X0 and Re tr(χ− χ̃), and they are stabilized by one

loop contributions. For µφ ≪ µ, the one loop effective potential for Re tr(χ− χ̃) is the same as

in [14] (see Eq. (5.21).) As a result, this field is stabilized at the origin and acquires a mass of

order |h4µ2|/(8π2).

Let us now analyze the pseudo-modulus X0; for k ≤ Nf −Nc, this is a (Nf − k)× (Nf − k)

matrix. The ISS-type vacua correspond to k = Nf − Nc. We will argue here that the new

metastable vacua corresponding to the case k < Nf − Nc do not exist, as they are located in

a region where some of the fields become tachyonic. The only remaining metastable vacua will

be the ISS-type vacua.
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The one loop correction from integrating out the messenger fields is

VCW =
(Nf − k)k

32π2

∑

σ,η=±1

[
m̃(X0)

4 log
m̃(X0)

2

Λ2
−m(X0)

4 log
m(X0)

2

Λ2

]
(5.67)

+
(Nf − k)(Ñc − k)

32π2

∑

η=±1

[
m̃ϕ(X0)

4 log
m̃ϕ(X0)

2

Λ2
−mϕ(X0)

4 log
mϕ(X0)

2

Λ2

]
.

with masses given in Section 5.7.1. We find that the full potential

V = Vtree + VCW (5.68)

has a metastable vacuum if k = Nf −Nc, but there are no metastable vacua for k < Nf −Nc.

Let us discuss in more detail how this occurs.

For k = Nf −Nc, the messengers are non-tachyonic for any X0; see Eq. (5.62). As explained

in Section 5.4.1, the metastable vacuum appears because quantum corrections at small X0 are

large enough to overwhelm the slope of the classical potential, which would otherwise push X0

toward the supersymmetric vacua. The supersymmetry breaking vacuum is located in the range

|X0/µ| . 1, far from the supersymmetric vacuum.

The situation for k < Nf −Nc is very different, because the messengers (ϕ, ϕ̃) are tachyonic

at small X0; see Eq. (5.66). For |X0/µ| & 1 these tachyons are absent, but in this regime the

one loop corrections VCW (X0) grow only logarithmically with |X0|, and cannot compete with

the classical potential to create a metastable vacuum. One may directly check that the Hessian

of the potential always has a negative eigenvalue for |X0| & |µ| (and all values of k). Notice

that if one used the quadratic expansion of VCW around the origin X0/µ = 0, instead of the

full logarithmic form, it would suggest the existence of metastable vacua with k < Nf − Nc

and |X0/µ| ∼ 1 [146]. But this approximation is inconsistent, and when the full logarithmic

dependence of VCW is included, these vacua become unstable and disappear.

Summarizing, only the ISS-type minima with k = Nf − Nc survive, and the adjoint (X ′)

and singlet (trX) components of the pseudo-modulus X acquire one loop masses

m2
X′ ≈ b |h2µ|2 + |h2µφ|2 (5.69)

m2
trX ≈ b |h2µ|2 + |h2µφ(1 +Ncγ)|2. (5.70)

The R-axion, discussed in section 5.5.1, has a mass of this same order, Eq. (5.38). All bosons

which were light at tree level thus become heavy at one loop, with masses of order mCW =
√
b |h2µ|.
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5.7.3 Appendix: One loop fermionic action

In this section we discuss the low energy fermionic spectrum of the theory, taking into account

one loop effects.

Goldstino

At one loop, the Goldstino appears as a combination of ψtrX , ψtr Y and ψtr (χ+χ̃), which we now

determine. The charge conjugation symmetry forbids mixings with ψtr (χ−χ̃), which is eaten by

the U(1)V gauge fermion and has mass gV µ.

First, at tree level, in the limit µφ = 0, ψtrY and ψtr (χ+χ̃) form a Dirac fermion of mass

hµ, while ψtrX is massless; see Eq. (5.55). When µφ and γ are nonzero, ψtrX acquires a mass

term proportional to µφ, and there is a ψtrX -ψtrY mixing of order γµφ. There is no linear

combination of the fields ψtrY , ψtr (χ+χ̃) and ψtrX that is massless at tree level.

Once one loop effects are taken into account, supersymmetry is spontaneously broken, so we

should get a massless Goldstino. Since the dominant F-term comes from FtrX , the Goldstino

will be approximately aligned with ψtrX . Indeed, the tree level plus one loop ψtrX ψtrX mass

element is (using the messenger mass eigenbasis),

mψtr X = h2µφ(1 +Ncγ) −
2h2Ñc
16π2

4∑

j=1

2∑

k=1

(U∗
f )k1 (Ũ∗

f )k1 (U∗
b )j1 (Ub)j3 I[m̃j ,mk] (5.71)

where the sums are over messenger fields and

I(m̃j ,mk) = mk

[
ln

(
Λ2

m2
k

)
−

m̃2
j

m̃2
j −m2

k

ln

(
m̃2
j

m2
k

)]
. (5.72)

It can be checked that the tree and one loop terms in (5.71) largely cancel, leaving only a term

of order µφ/(16π2), of the same size as two loop corrections.

There are also one loop mixings between ψtrX and ψtr Y , ψtr (χ+χ̃). For simplicity, let us

consider first the ISS model, corresponding to the limit µφ = 0. The mass-mixing comes from

the two-point function ψtrX ψtr (χ+χ̃), which is allowed by R-symmetry. A calculation along

the same lines as in (5.71) shows that this mass-mixing is of order µ/(16π2). The Goldstino is

hence predominantly in the ψtrX direction, with a small (of order 1/(16π2)) component along

ψtrY . This implies that in ISS, one loop corrections generate a nonzero F-term

|Ftr Y | ∼
|FtrX |
16π2

.

For µφ/µ nonzero but small, the Goldstino also has a small component along ψtr (χ+χ̃), with

mixing angle of order |X0/(16π2µ)|. This is smaller than the mixing of ψtrX and ψtrY , and is
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consistent with a one loop F-term

|Ftr (χ+χ̃)| ∼
∣∣∣
X0

16π2µ

∣∣∣ |FtrX | .

Gauginos and the fermions ψX′

There are no mixings between the gauginos and the ψX′ fermions at one and two loops, because

they are forbidden by charge conjugation. The expression for the one loop gaugino mass is

mλ =
2g2Ñc
16π2

2∑

c=1

2∑

d=1

4∑

j=1

2∑

k=1

(U∗
f )kc (Ũ∗

f )k,d (Ub)jc (U∗
b )j,d+2 I[m̃j ,mk] . (5.73)

which is of order g2µφ. The one loop computation for the masses of ψX′ is nearly identical to

that of ψtrX , given in (5.71), since they have the same interactions with the messenger fields.

The result is

mψX′ = h2µφ − 2h2Ñc
16π2

4∑

j=1

2∑

k=1

(U∗
f )k1 (Ũ∗

f )k1 (U∗
b )j1 (Ub)j3 I[m̃j ,mk] (5.74)

The cancellation that occurs in (5.71) occurs here as well, but leaves over a large remainder, of

order |γµφ|.
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Chapter 6

A Pyramid Scheme for Particle Physics

6.1 Introduction

In this chapter we discuss in detail the findings of the work done in collaboration with T. Banks

[10].

Direct gauge mediation models are attractive from a variety of points of view. They are the

most straightforward solution to the SUSY flavor problem of the MSSM. The general structure

of a direct gauge mediation model is that of a supersymmetric quivering moose with gauge

group G×SU(1, 2, 3). There are chiral fields FAi which transform in irreducible representations

of both groups, possibly including singlets which can couple to the non-singlets in the cubic

superpotential. The fields that are singlets under G, but not SU(1, 2, 3), are assumed to be

precisely the 3 generations plus two Higgs fields of the MSSM. At the scale ΛG the G gauge

interactions become strong and are assumed to produce a meta-stable SUSY violating state1.

One of the phenomenological virtues of the MSSM is its successful prediction of coupling

constant unification. If we wish to preserve this prediction, to one loop order, then theG-charged

chiral fields must lie in complete multiplets of the unified group. Furthermore, there are strong

constraints on the gauge group G, and the additional matter content, from the requirement

that the standard model gauge couplings remain in the perturbative regime all the way up

to the GUT scale. As far as we know, the only phenomenologically viable choice of G which

might satisfy these constraints is SU(5), and one is led to the Pentagon model [187]. Even in

the Pentagon model the dynamics which leads to a phenomenologically viable SUSY violating

state is somewhat conjectural. In all other examples that we have studied, there are dramatic

clashes with existing experiments - spontaneous breakdown of charge or color, or unobserved

light states.

Recently, a careful two loop study of the standard model running couplings has shown [188]

1To ensure this, it may be necessary to introduce quadratic terms in the superpotential by hand [179]. Depend-
ing on one’s theoretical orientation, one may view these as arising from retro-fitting [180] or from Cosmological
SUSY Breaking [181].
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that the Pentagon is viable only if the scale Λ5, and the ISS mass terms are both > 1000 TeV.

This is incompatible with the original motivation for the Pentagon model, in which it was the

low energy implementation of Cosmological SUSY Breaking. For most readers it will be more

significant that the lower bound on the SUSY breaking scale pushes up against the forbidden

window of gravitino masses. A conservative reading of the literature on cosmological gravitino

bounds leads one to conclude that m3/2 < 30 eV, corresponding to a bound on the highest

SUSY breaking scale of order
√

6×102 TeV. If we raise the scale high enough to get to the high

side of the forbidden window for gravitino masses, then we lose the solution to the SUSY flavor

problem.

Yet another problem with the Pentagon model surfaced in a recent paper [178]. The pseudo

Nambu-Goldstone boson of spontaneously broken penta-baryon number, gets its mass from an

operator of dimension 7. If the scale associated with this irrelevant operator is larger than

∼ 1010 GeV then the PNGB is copiously produced in stars and leads to unobserved stellar

cooling2.

Finally, like most gauge mediated models, the Pentagon model does not have a SUSY WIMP

dark matter candidate. One is forced to invoke either a QCD axion, or the scenario mentioned

in the previous footnote.

In this paper we will show that all of these problems can be solved simultaneously if we

replace unification in SU(5) or some larger group, with trinification [174]. We will present

an explicit direct mediation model called The Pyramid Scheme, which realizes these ideas.

However, we note that the idea of resolving the Landau pole problem of direct mediation with

trinification, may be of more general utility.

Trinification and the Pyramid Scheme

In E6, one generation of standard model fermions is embedded in the [27] representation. E6

has an SU1(3) × SU2(3) × SU3(3) ⋊ Z3 subgroup, under which

[27] = (3, 1, 3̄) ⊕ (3̄, 3, 1) ⊕ (1, 3̄, 3),

with the three groups and representations permuted by the Z3. SU3(3) is identified with color,

while the electro-weak SU(2) is the upper Cartesian subgroup of SU2(3). Weak hypercharge is

a linear combination of the hypercharge generators of the first and second SU(3) factors. The

2It should be noted that if one postulates a scale ∼ 108 − 1010 GeV for the coefficient of the dimension 7
operator, and also a primordial asymmetry in penta-baryon number, then one can get a unified explanation of
the baryon asymmetry of the universe, and the origin of dark matter [177].
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usual 15 components of the [27] make up a standard model generation, while the Higgs fields

Hu,d of the MSSM can be obtained in a variety of ways from [27] and [2̄7] representations of

E6.

The essential idea of trinification, is that, in order to predict gauge coupling unification, it is

sufficient, at one loop, to insist that all extra matter between the weak scale and the unification

scale, fall into complete multiplets of SU(3)3 ⋊ Z3, and that there be no strong breaking of

this symmetry by Yukawa couplings. The latter requirement is subsumed under the further

demand that all couplings remain perturbative up to the unification scale, so that one loop

renormalization group formulae are a good approximation3.

Although we have described trinification in terms of embedding in an underlying E6, it

might also be derived in a simple manner from D-brane constructions in Type II string theory,

or related geometric engineering models [175]. This notion makes the Pyramid Scheme, which

we now introduce, particularly natural.

In the Pyramid Scheme we extend the quivering moose of trinification by a fourth SU(3)

group, SUP (3). All standard model fields are singlets of the new group, and we add the new

representations

T1 + T̄1 = (3, 1, 1, 3̄) + (3̄, 1, 1, 3),

T2 + T̄2 = (1, 3, 1, 3̄) + (1, 3̄, 1, 3),

T3 + T̄3 = (1, 1, 3, 3̄) + (1, 1, 3̄, 3).

We call these new matter fields, trianons. Note that only the third trianon carries color. Thus,

the one loop running of the gauge couplings will be like that in a vanilla gauge mediated model

with 3 messengers. One loop perturbative coupling unification will be preserved. The quivering

moose of this model has the pyramidal shape of figure 6.1, which accounts for the name.

In a D-brane or geometric engineering construction, trinification corresponds to 3 singular

loci (stacks of wrapped D-branes) residing on a set of internal cycles which are permuted by

a Z3 isometry of the compact geometry. We call these the chiral cycles since the chiral fields

result from topological intersections of these cycles. The Pyramid Scheme introduces an extra

stack of branes, wrapped on a cycle with the appropriate (non-topological) intersection with

each of the chiral cycles. The trianon mass terms that we introduce below correspond to small

deformations of this extra cycle, so that it no longer intersects the chiral cycles.

3Two loop unification in the MSSM works less well than one loop unification, and is subject to unknown
unification scale threshold corrections, so we do not consider two loop unification to be a necessary desideratum
of a good model.
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T1, T̄1 T2, T̄2

T3, T̄3

Figure 6.1: Quiver Diagram of the Pyramid Scheme. Standard Model Particles are in broken
multiplets running around the base of the pyramid.

As in the Pentagon model, we introduce a chiral field S, singlet under all gauge groups, with

superpotential couplings

WS = gµSHuHd +
gT
3
S3 +

3∑

i=1

yiSTiT̄i,

where the bilinears in the trianon fields are the unique SU(3)4 invariants. The Z3 symmetry

imposes yi = y, independent of i. Strictly speaking, we do not have to impose this much

symmetry on the Yukawa couplings, if they are sufficiently small, because they affect gauge

coupling running only at two loops. The only inviolable symmetry of this low energy Lagrangian

is the low energy gauge symmetry SU(1, 2, 3) × SUP (3) × ZR
4. For simplicity however we

will assume that the full Pyramid gauge group is broken only by the part of the Lagrangian

containing standard model fields, and by the Intriligator-Seiberg-Shih (ISS) [179] trianon mass

terms. It is certainly worth exploring more complicated models, in which the gauge symmetry

is broken down to the standard model (×SUP (3)), also in the couplings to S.

The singlet S serves several purposes in the model. Most importantly, the term |∂W∂S |2 ties

SUL(2)×UY (1) breaking to the properties of the meta-stable SUSY violating state of the strong

SUP (3) gauge theory. This predicts tanβ ∼ 1 for the Higgs mixing angle. Secondly, the VEV

of S can give rise to the µ term of the MSSM, while FS generates the Bµ term. We will discuss

4ZR is the discrete R-symmetry required by CSB. We also use it to forbid unwanted dimension 4 and 5
operators in the MSSM. We will discuss it in section 2, below.
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mechanisms for generating such VEVs below. We note that the coupling gµ can ameliorate the

little hierarchy problem, but that this might interfere with our desire for a VEV of S.

The rest of this paper is organized as follows. In the next section we find a discrete R-

symmetry of the Pyramid model, which outlaws all dimension four and five B and L violating

couplings, apart from the neutrino seesaw operator. In section 3 we introduce the ISS mass

terms and explore the resulting dynamics of the SUP (3) gauge theory. We work in the regime

where the mass terms for T1,3 are above the SUP (3) confinement scale Λ3, while that for T2

is close to it. This produces a non-trivial Kähler potential for S, and reduces the dynamics to

the moduli space non-linear σ model for the NF = NC = 3 gauge theory with a small mass

for the chiral fields. As in the Pentagon model, we assume a meta-stable SUSY violating state

of this system, with VEVs for both the pyrma-baryon and pyrmeson fields constructed from

T2. We argue that the extra terms in the potential for S, which come from integrating out T1,3

could lead to a non-zero VEV for this field, if FS is non-zero. We also find that the gaugino

and squark spectra are “squeezed” relative to vanilla gauge mediation models [190], because

the colored messengers have a SUSY preserving mass higher than the SUSY breaking scale. We

give rough estimates of superpartner masses in this model.

In section 4 we argue that the pyrma-baryons made from T1,3 could be dark matter, if

they are produced in the late decay of some other particle with a reheat temperature in the

TeV range5 [22]. The dark matter particles annihilate predominantly to the pseudo Nambu-

Goldstone boson (PNGB) of the spontaneously broken pyrma-baryon number, which we call

the pyrmion. The constituents of the pyrmion do not carry color, and we estimate its mass

to be a few MeV, so it can decay only to electrons, positrons, photons and neutrinos. It is

possible that this could account for the various dark matter “signals” that have accumulated

over the past few years, along the lines of [184]. The mass of the pyrmion is also large enough

to avoid constraints from stellar cooling [178]. Section 5 is devoted to conclusions and to

many suggestions for further elaboration of this work. In Appendix A we sketch the basis for

the revised estimate of the relation between the gravitino mass and the cosmological constant,

which we used in the computations of superpartner masses in section 3. In Appendix B we recall,

for completeness, the calculation done in [22] of the non-thermal relic density of pyrma-baryons

and Appendix C shows some computations.

Throughout this paper we will use the abbreviations, c.c. for cosmological constant, SUSY

and SUSic for supersymmetry and supersymmetric, CSB for Cosmological SUSY Breaking,

5They could also have the requisite density as a consequence of a primordial asymmetry in one or more of
the pyrma-baryon numbers. However, in this case there would be no annihilation signals.
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PNGB for pseudo Nambu-Goldstone boson, and LEFT for low energy effective field theory. We

will use the phrases heavy trianons and heavy pyrma-baryons to refer to states constructed from

the fields T1,3.

6.2 Discrete R-symmetry: the model

At low energies, the model is SUP (3) × SU(1, 2, 3) where the SM gauge group can be seen as

coming from the subgroup SU(3)3 ⋊ Z3 ⊂ E6. In the latter notation, the extra matter fields

are

SU1(3) SU2(3) SU3(3) SUP (3)

T1 3 1 1 3̄

T̄1 3̄ 1 1 3

T2 1 3 1 3̄

T̄2 1 3̄ 1 3

T3 1 1 3 3̄

T̄3 1 1 3̄ 3

S 1 1 1 1

and the model can be represented by the quiver diagram shown in figure 6.1. We want to find

an approximate discrete R-symmetry which is exact in the limit of zero ISS masses. We will

in fact look for a UR(1), of which we imagine only a discrete ZN subgroup is fundamental. A

variety of equations below only have to be satisfied modulo N .

The superpotential terms we would like to have in our model are

W ⊃ STiT̄i, SHuHd, HuQŪ, HdQD̄, HdLĒ, (LHu)
2

which implies that the R-charges satisfy (we denote each R-charge by the name of the corre-

sponding field)

Ti + T̄i = 2 − S

Hu = 2 −Hd − S

Ū = Hd + S −Q

D̄ = 2 −Hd −Q

Ē = 2 −Hd − L

plus the extra relation from the neutrino seesaw operator. The (approximate) UR(1) anomaly
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conditions are

SUP (3)2UR(1) ⇒ 2 · 3 + 3(T1 + T̄1 + T2 + T̄2 + T3 + T̄3 − 6) = 3(2 − 3S)

SUC(3)2UR(1) ⇒ 2 · 3 + 6(Q− 1) + 3(Ū + D̄ − 2) + 3(T3 + T̄3 − 2) = 0

SUL(2)2UR(1) ⇒ 2 · 2 + (Hu +Hd − 2) + 9(Q− 1) + 3(L− 1)

+3(T2 + T̄2 − 2) = 3(3Q+ L) − 4(S + 2)

which might allow for an S3 superpotential term if 3S = 2 mod N .

The dangerous higher-dimensional superpotential and Kähler potential terms can be com-

bined into seven groups (the neutrino seesaw operator is allowed). Operators in each group

have the same R-charge (once one takes the d2θ for superpotential terms into account).

G1 = {LLĒ, LQD̄, SLHu} ⇒ L−Hd

G2 = {LHu, QŪĒHd, Ū D̄
∗Ē} ⇒ L−Hd − S

G3 = {ŪŪD̄} ⇒ 3Q+Hd − S − 2

G4 = {QQQL} ⇒ 3Q+ L− 2

G5 = {QQQHd, QQD̄
∗} ⇒ 3Q+Hd − 2

G6 = {ŪŪD̄Ē} ⇒ 3Q+ L− 2S − 2

G7 = {LHuHdHu} ⇒ L−Hd − 2S + 2.

It is possible to forbid all dangerous terms. For example, with N = 5, and S = 4, 3Q+L = 3,

L = 3+Hd, and any choice of Hd one finds that all anomaly conditions are satisfied and none of

the dangerous terms are allowed. Notice moreover that the S3 superpotential term and neutrino

seesaw operator are allowed by this choice of R-charges. Thus one can engineer a superpotential

of the form

W =

3∑

i=1

(mi + yiS)TiT̄i + gµSHuHd +
gT
3
S3

+ λuHuQŪ + λdHdQD̄ + λLHdLĒ +
λν
M

(LHu)
2 +W0

where only the ISS masses mi and W0 break the R-symmetry. Note that in this equation λu,d,ν

are all matrices in generation space.

6.3 Breaking R-symmetry and SUSY

We now take into account the dynamical effect of the R-symmetry breaking superpotential

δW = W0 +m1T1T̄1 +m2T2T̄2 +m3T3T̄3
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to the low energy effective Lagrangian. Using conventional effective field theory philosophy, we

could ascribe this by the strategy of retro-fitting [180]. That is, we imagine that the R-symmetry

breaking occurs spontaneously, as a consequence of strong dynamics at a scale ΛR ≫ Λ3 and

that the mass terms arise from irrelevant couplings between this sector and the Pyramid model,

and have a size mi ∼ Λ
dR
R

MdR−1 , where dR is the dimension of the operator appearing in lowest

dimension R-conserving coupling of the two sectors. M could be either the unification scale

or the Planck scale, depending on one’s microscopic model for these couplings. W0 is simply

added as a phenomenological fudge to obtain the right value of the cosmological constant. Apart

from the exigencies of phenomenology, there is no requirement in this way of thinking, that the

operators to be added create a SUSY violating meta-stable state in the low energy theory.

Indeed, if one adds operators which do create such a state, one must be careful to engineer the

model so that these are the dominant effects of the coupling between the two sectors.

The explanation for δW on the basis of the hypothesis of CSB has a very different flavor.

Here, the size of the c.c. and the relation m3/2 = 10KΛ1/4 6, are fundamental inputs of a

microscopic theory of quantum de Sitter space. In order to be consistent with this theory the low

energy effective Lagrangian must have a meta-stable SUSY violating state7. Furthermore, Λ is

prescribed by the microscopic theory, and the tuning of W0 simply implements this prescription

in the LEFT.

The SUP (3) gauge theory is IR free with a small β function. Starting from some unification

scale boundary condition, the coupling decreases slowly in the IR. If there were no mass terms

mi it would flow to a free theory and SUSY would be preserved. This could not be the low

energy implementation of CSB. We must thus introduce mass terms, in order to produce a

dynamical meta-stable SUSY violating state with m3/2 = 10KΛ1/4. In order to do this using

the known and conjectured dynamics of NF ≥ NC SUSY QCD, we take two masses m1,3

somewhat larger than the third, m2. The gauge coupling then becomes strong at a confinement

scale Λ3, and we assume that m2 is small enough to be treated by chiral perturbation theory

in the NF = NC = 3 moduli space Lagrangian8. We must further assume that the unification

scale coupling is large enough that m3/Λ3 is not too large.

6See Appendix A for an explanation of the new factor of 10 in this equation. K is for the moment, a
“parameter of order 1”, which cannot be determined from first principles.

7And the Lagrangian must be above the Great Divide [21] so that transitions out of this state can be viewed
as highly improbable Poincaré recurrences of a low entropy state in a finite system, rather than as an instability.

8Another possibility is to take m3 > m1,2. The theory then flows close to an interacting superconformal
fixed point and for some range of parameters we may find a calculable meta-stable state. We thank N. Seiberg
for explaining this possibility to us. We leave the exploration of this scenario to future work, but note that the
meta-stable state has the approximate R-symmetry of ISS vacua, and may be phenomenologically problematic.
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The latter assumption, and the choice of m3 as one of the large masses, is motivated by

phenomenology. We will see that taking m3 somewhat larger than Λ3 solves one of the fine

tuning problems of vanilla gauge mediation. It suppresses the gluino/chargino mass ratio. If

m3 is too large, this suppression produces an unacceptably light gluino.

We can think of the two heavy trianons as analogs of the charmed quark in QCD, while

the light one is analogous to the strange quark. For purposes of assessing the nature of the

(meta-stable) ground state, we integrate out the heavy trianons, and treat the LEFT by chiral

(moduli space) Lagrangian techniques.

For phenomenological reasons, we will take the two heavy trianons to be T1,3. As a con-

sequence the light moduli are color singlets and will give rise to gaugino masses only for the

electro-weak gauginos. The gluino mass will be induced by a SUSY breaking mass for T3, and

will be suppressed relative to the chargino masses because this field has a relatively large su-

persymmetric mass term. This relieves the tension between the experimental lower bound on

the chargino mass (which might soon reach 160 GeV as a consequence of the Tevatron trilepton

studies [191]), and the large radiative corrections to the Higgs potential coming from heavy

gluinos. There will be a similar suppression of the squark to slepton mass ratio, relative to the

predictions of vanilla gauge mediation.

The moduli space of the SUP (3) gauge theory coupled to T2 consists of a 3 × 3 complex

matrix pyrmeson field, M , transforming in the [3, 3̄] of the SUL(3)×SUR(3) chiral flavor group

(whose diagonal subgroup contains the action of electro-weak SUL(2) × UY (1) on the moduli

space), and a pair P, P̃ of flavor singlet pyrma-baryon fields which carry opposite values of a

new accidental vector-like U(1) quantum number. These are related by a constraint

detM − Λ3PP̃ = Λ3
3,

where Λ3 is the complex confinement scale of the theory. The Kähler potential is of the form

K = |Λ3|2h(ek, x, x̃),

where h is a real permutation invariant function of the variables ek, the eigenvalues of Y ≡
M†M
|Λ3|2

9, and of

x =
|P |2
|Λ3|2

, x̃ =
|P̃ |2
|Λ3|2

.

The superpotential in the chiral LEFT is W = W0 + m2Λ3 trM . The matrix M can be

expanded as M = Z
√

2
3I + Zaλ

a, where the λa are the Gell-Mann matrices. We will look for

9Equivalently, a function of wk trY k, for k = 1, 2, 3.
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SU(3) invariant states, where Za = 0. The constraints on the moduli space then imply that
(

2
3

)3/2
Z3 = Λ3PP̃ + Λ3

3. The superpotential is proportional to Z and the locus PP̃ = 0 is

supersymmetric. Any SUSY violating meta-stable state will have a non-zero VEV for the pyrma-

baryon fields, which we will assume charge conjugation symmetric P̃ = P . The constraint then

allows us to write both the Kähler potential and superpotential in terms of the unconstrained

complex field Z. Our previous remarks about the structure of the Kähler potential imply that

it is a function of Z†Z, and that the effective potential is

K−1
Z†Z

|m2Λ3|2.

The existence of a SUSY violating minimum is guaranteed if the positive function KZ†Z has

a maximum at some finite Z. Geometrically, we have a non-compact, circularly symmetric

2-manifold, and we are asking that the length of a tangent vector attains a maximum at some

particular radius. We have not been able to find arguments for or against the existence of such

a maximum, so we will simply explore the phenomenology of the model, under the assumption

that the maximum exists.

It should be noted that we have made several assumptions about the symmetry of the ISS

mass terms and of the pyrmeson VEV, which are not required by either fundamental principles

or phenomenology. All we are required to preserve in the LEFT is the standard model gauge

group, and enough of the trinification structure to guarantee gauge coupling unification. Thus,

there is actually a rich class of pyramid schemes to explore in search of a meta-stable state. We

only treat the most symmetric of them in this paper.

Given our assumptions, the Pyramid model has two kinds of messengers of gauge mediation,

the moduli of the NF = NC = 3 theory, and the heavy trianons. The scalar fields Za will

get SUSY violating masses of order m2, which, apart from SU(3) symmetry, are completely

unconstrained and unconnected with the masses of their fermionic partners. Therefore we will

obtain one loop masses for the SUL(2) × UY (1) gauginos, of order

mi
1/2 = 3Xi

αi
4π
m2.

The Xi are “order one” numbers, which cannot be calculated without complete knowledge of

the Kähler potential, and the factor of 3 is the dimension of the fundamental representation of

SUP (3). The LEFT of the Z fields has quartic scalar couplings of order (m2/Λ3)
2, so we have

a consistent low energy expansion only for

m2 <
√

4πΛ3.
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Combining the estimate above with the gravitino mass formula

m3/2 = Xgm2Λ3/mP = 10KΛ1/4,

gives several competing equalities and inequalities. Here Xg is a constant which must be cal-

culated from the strongly interacting SUP (3) gauge theory, while K is a constant of order 1,

which must be calculated from the as yet incomplete quantum theory of de Sitter space.

Plausible model independent extensions of the Tevatron trilepton analysis might eventually

bound the charged gaugino mass term from below by 160 GeV, which requires

19.7 < X2
m2

TeV
.

To get an idea of how these bounds work, assume that m2 = 1.7Λ3 so that the moduli space

Lagrangian is fairly strongly coupled, with a “fine structure constant” of order 1/4. Then

m2 = 14.9
√
K/Xg TeV and we must have X2 > 1.32

√
Xg/K in order to satisfy the chargino

mass bound. Setting the square root to
√

3 we obtain m2 = 8.6 TeV and Λ3 = 5.1 TeV.

The heavy trianons, T1,3 will also have SUSY violating masses, because of their SUP (3)

couplings to the low energy theory. In particular, since T3 carries color, we will get squark and

gluino masses. In the limit where the SUSic masses of the heavy trianons are ≫ Λ3, we could

calculate the resulting gluino masses by integrating the heavy trianons out to create effective

couplings of the form e.g.

∫
d2θ (W (3)

α )2f(P/m3, P̃ /m3,M/m3).

The F-terms of the light fields would then generate small gluino masses. Symmetries imply

that the leading operators are fairly high-dimensional. However, there is no reason to suppose

that m1,3 ≫ Λ3. For example, in ordinary QCD, an hypothetical quark with mass of order

the rho meson mass, would not be treated by chiral perturbation theory, but neither would

it make sense to estimate its effects via the operator product expansion. Thus, we predict a

gluino/chargino mass ratio which is definitely smaller than the vanilla gauge mediation result

α3/α2, and depends sensitively on m3/
√
m2Λ3 as that variable becomes large. There will be a

similar suppression of the squark to slepton mass ratios. A factor of 2 in m3/m2 could easily

bring the gluino and squark mass predictions down to the range where they are consistent with

experimental lower bounds but do not give large contributions to the Higgs potential. The mass

m1 is not constrained by this analysis.

Our model satisfies the general constraints of Meade et. al. [192] and so the SUSY spectrum

will satisfy the sum rules and positivity constraints in that paper, with one possible exception.
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If, as we hope, the VEV of S turns out to be non-zero, then the Higgs field F terms are non-zero,

and these produce extra contributions to squark and slepton masses, whose origin is not gauge

mediation. We believe that these are probably negligible, except for the top squarks, because

of small Yukawa couplings.

We should also note that if we try to estimate the spectrum by working with the moduli

space Lagrangian, we find logarithmic divergences10. This violates the rules of [192] because

the moduli space Lagrangian is not renormalizable. At very high energies, the moduli space

Lagrangian fails to be a good description and the rules of [192] are satisfied. Although none of the

order one predictions of the moduli space approach are reliable, because there are corrections of

the same order coming from energies around Λ3 and above11[192], we believe that this calculation

indicates an enhancement factor in the sfermion/gaugino mass ratios of the form ln(CΛ3/m2).

Our phenomenological estimates do not indicate a large ratio between Λ3 and m2, but we don’t

know the value of C. If there is such a logarithmic enhancement, it would help to clarify one

of the key phenomenological issues of this model. General gauge mediation estimates suggest

that the NLSP in the Pyramid Scheme is either the bino or the right handed slepton. These

two particles have very different discovery signals, so it is important to decide which of the

two is lighter. If the log enhancement is there, the bino will be the NLSP, which would imply

that LHC will see events with hard X + l+l−γγ, plus missing transverse energy. The origin of

these events is the decay of a slepton to the bino and a hard lepton, followed by bino decay

to a photon and a longitudinally polarized gravitino. Depending on the structure of the SUSY

cascade, we will have other particles, denoted by X in the final state. At LHC strong production

cross sections for sparticles dominate, so we might expect X to include at least a dijet. If the

cascade passes through the relatively light chargino then there will be W bosons in X , coming

from the decay of the chargino into W plus neutralino. The leptons might not even be hard.

So the general characterization of final states for a bino NLSP is X plus two hard photons plus

missing transverse energy, where X depends on the nature of the SUSY cascade.

The ratio m1
1/2/m

2
1/2 is given by

m1
1/2

m2
1/2

=
X1α1

X2α2
= 0.5

X1

X2
.

It’s clear that we can only predict these masses up to a factor of a few. Unfortunately, the

unknown strong interaction factors might well affect the phenomenological signals of our model.

The ratio of the right handed slepton mass to that of the bino is f = Y ln1/2(
√

4πm2/Λ3).

10We thank J.L. Jones for pointing out these logarithms to us.

11We thank N. Seiberg for explaining this to us.
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Y is another unknown strong interaction factor, and we have used the usual naive dimensional

analysis estimate of the cutoff for the moduli space LEFT. If we take Y =
√

3 and m2 = 1.7Λ3,

then f = 2.3, while for Y = 1 and m2 = Λ3 we have f = 1.12. It seems likely that the bino will

be the NLSP in the Pyramid model. For a 50 GeV bino we need f & 2 in order to satisfy the

experimental bound on the right handed slepton mass.

6.4 The Higgs sector and SUL(2) × UY (1) breaking

The Higgs sector of our model consists of the two doublets Hu,d and the singlet S. The doublets

are remnants of some sort of multiplet of the unified group, while the singlet might also be such

a remnant, or a singlet under SU(3)3. These low energy Higgs fields are the field content of the

NMSSM.

In the approximation that the two heavy trianon masses are ≫ Λ3, integrating out the

trianons and SUP (3) gauge bosons leads to two distinct contributions to the effective action for

the Higgs sector of the NMSSM. The heavy trianon couplings to S give us a non-trivial effective

potential for S. In the Coleman-Weinberg (CW) approximation it has the form

∑

i=1,3

|mi
F |4f(ui).

Here mi
F = mi + yiS and

ui ≡
|FS |2
|mi

F |4
.

This expression is valid if the yi are perturbative and ui < 1. We have

f(u) = au−
∞∑

n=0

un+2

(n+ 1)(n+ 2)(2n+ 3)
.

The linear term comes from the logarithmically divergent one loop wave function renormal-

ization for S. The rest of the potential is a negative, monotonically decreasing convex function

of ui, which becomes complex at ui = 1. This change of behavior represents the breakdown of

effective field theory when the masses of scalar components of the heavy trianon fields become

smaller than other scales in the theory, like Λ3 and m2. Calculation of the potential in this

regime is more complicated. Note that when FS 6= 0, the CW potential monotonically decreases

as mi
F are lowered. Thus, these contributions tend to make the S VEV non-zero when FS 6= 0.

This tendency competes against the contributions to the potential from Higgs F-terms, which

are proportional to |gµ|2.

It is important to remark that the one loop contribution from integrating out heavy trianons,

could compete with tree level contribution to the potential for S. The theory contains multiple
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Yukawa couplings and the tree level contributions to the S potential depend on its self coupling,

and its couplings to Hu,d and T2. The CW potential depends on the couplings to the heavy

trianons. However, as we will note below, the experimental constraints on the gluino mass,

probably force us to choose a value for m3 at which this one loop calculation of the potential

for S is inadequate, and the non-perturbative effects of the SUP (3) gauge theory must be taken

into account.

The second important contribution to the Higgs potential is the non-zero pyrmeson VEV

(T2T̄2)
i
j ∼ Λ3Zδ

i
j. The resulting Higgs potential, including standard model D-terms has an

SUL(2) × UY (1) breaking minimum12

gµHuHd =
√

6y2Λ3Z,

tanβ = 1,

and

S = FS = 0.

This minimum breaks SUSY and R-symmetry because of the VEVs of Z and FZ . Given our

estimate Λ3 ∼ 5 TeV, we need y2
gµ

∼ 0.01, a perfectly reasonable value for a Yukawa coupling

ratio. We assume that all Yukawa hierarchies in the model are explained in terms of unification

scale physics, a point of view motivated by the strict bounds on flavor changing processes.

Note that BOTH couplings could be much smaller than y1,3, though we probably want a fairly

substantial value for gµ, to ameliorate the little hierarchy problem.

The fact that tanβ = 1 was explained in previous papers on the Pentagon model. When

〈Z〉 6= 0 and S = 0 the potential favors a non-zero value for HuHd, leaving electromagnetism

unbroken. The electroweak D-terms then favor |Hu| = |Hd|. The problem with this vacuum

state is that it implies µ = Bµ = 0, which is not viable phenomenologically.

When we include quantum corrections to the potential from loops of high scale SUP (3)

gauge bosons, we obtain couplings between S and Z. We have not calculated these, but if they

have the effect of forcing FS 6= 0, due to a coupling to FZ , then the VEV of S is likely to shift

as well, since the CW potential favors non-zero VEV if FS 6= 0. Thus it is at least plausible

that we obtain MSSM µ and Bµ terms of the right order of magnitude.

12There is also an SU(2) × U(1) preserving minimum with S 6= 0 and FS = 0. SUSY is still broken because
FZ 6= 0. In a theory with gravity there is no way for the flat space field theory model to “choose” which of
these is the “right” vacuum. We can tune the c.c. to be near zero near any minimum of the potential. The
resulting dS space never decays into a state resembling the flat space vacua near other points. It makes Poincaré
recurrence transitions to states resembling the dS spaces at higher minima of the potential, and transitions to
Big Crunch space-times with negative c.c.. The interpretation of the latter depends on details of the potential.
See the subsection on tunneling in this chapter, and the references cited there. Our attitude is that we choose
the SUSY breaking SU(2) × U(1) breaking state, because it resembles our world, and because it may obey the
rules following from the hypothetical theory of stable dS space.
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The lower bound on the gluino mass implies that the approximation m3 ≫ Λ3 is unlikely to

be valid. Rather, it is likely that m3 should be thought of as the moral equivalent of a quark

mass of order 800 MeV in QCD: too large to be treated by chiral perturbation theory, but too

small to integrate out above the confinement scale. In other words, the CW approximation we

discussed above is probably inadequate, if the model is to produce an acceptably large gluino

mass. The generation of effective µ and Bµ terms is thus mixed up with the strong SUP (3)

gauge dynamics. We consider this to be the single most serious phenomenological deficiency of

our model.

To summarize: we have given plausibility arguments that, in an appropriate range of the

parameters mi, the Pyramid Scheme has a SUSY violating, R-symmetry violating meta-stable

minimum with a non-zero value for S. It can give rise to a reasonable supersymmetric phe-

nomenology, but detailed calculation of the superpartner spectrum is not possible at this junc-

ture, though it seems likely that a neutralino is the NLSP.

We end this section with a discussion of the tuning of parameters in our model, and its

interpretation. Although we do not have a precise calculation of superpartner masses, it seems

possible that the Pyramid Scheme does not suffer from a little hierarchy problem. It incorporates

the NMSSM and the Yukawa coupling gµSHuHd can evade the usual bounds on the lightest

Higgs mass, even for tanβ ∼ 1. We have presented a mechanism that might generate a VEV

for S, and thus an effective µ term. The F-terms of both S and the light pyrmeson can provide

a Bµ term of the requisite order of magnitude.

Our required pattern of two trianon masses slightly above Λ3, with the third in the range of

validity of chiral perturbation theory may seem artificial, but in the CSB interpretation of the

Pyramid Scheme it is in fact required in order to reproduce the meta-stable state implied by

the underlying (but still partly hypothetical) quantum theory of dS space. Perhaps retro-fitters

of the Pyramid Scheme would be more hard pressed to justify precisely this pattern of masses,

but it is surely no more bizarre than the actual pattern of quark and lepton masses in the

standard model. The closeness of m1,3 to Λ3 suggests that the value of the SUP (3) coupling

at the unification scale is fairly large. The NF = 9, NC = 3 beta function is relatively small

and positive. This leads to a slow decrease of the coupling as the scale is lowered to that of the

heavy trianon masses, m1,3. At that point, asymptotic freedom kicks in, with a relatively large

beta function and effective coupling, and we quickly reach the non-perturbative regime of the

NF = NC = 3 theory. We have not carried out detailed calculations to see if this explanation

of the phenomenologically required coincidence of scales is quantitatively reasonable.
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6.4.1 Tunneling to the “SUSY minimum”

Finally we note that, as a flat space field theory, the Pyramid Scheme certainly has supersym-

metric vacuum states. In a theory with gravity, given our instructions to tune W0 so that the

cosmological constant in the meta-stable state is almost zero, these states could at best cor-

respond to AdS theories of quantum gravity (superconformal 2 + 1 dimensional field theories)

with cosmological constant of order −|m2Λ3|2. They have nothing to do with the evolution

of our meta-stable state, and belong to a different quantum theory of gravity, with a different

Hamiltonian, if they exist at all. In a theory including gravity, it never makes sense to think

about tunneling to the supersymmetric vacuum state of a flat space quantum field theory, from

a “meta-stable” de Sitter space.

As shown long ago by Coleman and de Luccia, the actual “decay” of the “meta-stable” de

Sitter state proceeds to a Big Crunch space-time in which the low energy effective description

breaks down. Two features of this breakdown are worthy of note. First of all, high energy degrees

of freedom of the field theory are excited. In particular, even in the moduli space approximation

(which is not valid in the Crunching region), the fields do not remain in the vicinity of the

negative c.c. minimum, but instead explore the entire potential, as the Big Crunch singularity

is approached. This means that no low energy effective field theory description of the endpoint

of this tunneling process is valid. Our only clue to the nature of the transition, comes from the

covariant entropy bound, a conjectured property of any consistent quantum theory of gravity.

This bound restricts the entropy observable by any observer in the crunching region to be less

than ∼ M2
P

m2Λ3
. It is hard to understand how such a low entropy system could represent the fate

of the entire universe.

In [21] it was shown that the space of potentials exhibiting “de Sitter decay” is divided into

two classes. In the first class, called above the Great Divide, the decay probability behaves like

e−π(RMP )2 for large de Sitter radius. These transitions look more like Poincaré recurrences,

temporary sojourns in low entropy states of a finite system, than like true decays. This is

consistent with the hypothesis of Fischler and one of the present authors (TB) that a stable

dS space has a finite number of states. It is also consistent with the low entropy implied for

the crunching region by the covariant entropy bound. Thus, within a class of potentials for a

meta-stable dS minimum in field theory, the semi-classical dynamics is consistent with the idea

of a stable quantum dS space with a finite number of states. The instability of the semi-classical

theory is viewed as a Poincaré recurrence.

In the second class of potentials, below the Great Divide, no such interpretation is possible,
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and a low energy theory in this class could not be interpreted as the LEFT of a finite theory

of stable dS space. From the CSB point of view, the parameters of the Pyramid Scheme must

be chosen to lie in the regime above the Great Divide, where this analysis is applicable. If this

is possible, there would be no phenomenological consequences of the SUSY vacuum in the flat

space effective field theory. The question of whether there are values of parameters for which

the Pyramid Scheme is above the Great Divide will be studied in future work.

For those who are interested in viewing the Pyramid Scheme as a model divorced from the

ideas of CSB, we can present an estimate of the flat space tunneling amplitude between the meta-

stable SUSY violating state and the SUSY vacuum. If the model is below the Great Divide, this

is probably a reasonable estimate of the actual tunneling amplitude including gravity, although

the classical evolution after tunneling is dominated, at long enough times in the future, by high

energy gravitational effects. We recall that we chose the “quartic fine structure constant”, α4,

of the moduli space Lagrangian to be approximately 1
4 . Both the SUSic vacuum with vanishing

pyrma-baryon fields, and the meta-stable state, are singlets under the SU(3)×SU(3) symmetry

of the pyrmeson Lagrangian, so we can assume that the instanton is a singlet everywhere along

its trajectory. The action is therefore

S = 3
π

α4
k,

where the factor of 3 comes from the trace. There are no other small parameters, so we expect

k ∼ 1. The tunneling probability per unit volume per unit time is thus

P ∼ e−12πkΛ4
3 ∼ e−12πkΛ4

3.

If Λ3 ∼ 5 TeV and k & 12, there is low probability of a tunneling event in our horizon volume,

since the beginning of the universe. It is not implausible that such a numerical factor could

emerge from a precise calculation of the instanton action, but the result is not comforting.

We are more concerned about the fact that this tunneling time is much more rapid than the

recurrence time. Unless we can show that gravitational effects significantly modify the tunneling

calculation, the Pyramid Scheme will not fit into the framework of CSB. We hope to return to

this problem in a future paper.

6.5 A Pyramid Scheme for cosmology

Models of gauge mediated SUSY breaking do not have a standard WIMP dark matter candidate.

Even in the absence of R-parity violation, the LSP is the gravitino, which is very light. When

one imposes the further restriction of consistency with CSB, the gravitino mass is about 10−2
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eV. In [22], Banks and collaborators proposed that baryon-like states of the hidden sector could

play the role of cold dark matter. For reheat temperatures above the confinement scale of the

hidden sector, this was only possible if there was a primordial asymmetry in the hidden sector

baryon density.

The discovery of the ISS [179] meta-stable vacua did not fit in with this idea, because in these

states SUSY breaking is correlated with spontaneous breakdown of the hidden sector baryon

number13. In [177], with another set of collaborators, Banks proposed that the PNGB of the

spontaneously broken hidden sector baryon number could be the dark matter. This was only

possible if there was a primordial asymmetry in this quantum number. Such an asymmetry

would automatically generate an ordinary baryon asymmetry, through the mechanism of spon-

taneous baryogenesis [182], because of the effective coupling of the hidden sector and ordinary

baryon number currents, due to gluon exchange. If one bounds the hidden sector asymmetry

by insisting that the ordinary baryon asymmetry is no bigger than what is observed, then the

dark matter density is also bounded, though the bound is model dependent, and depends on

the scale at which hidden sector baryon number is broken. In the Pentagon model, one had

to assume the scale associated with the leading penta-baryon number violating operator was

between 108 − 1010 GeV, in order to explain the observed dark matter density.

A related astrophysical issue with the PNGB was pointed out in [178]. Rather general

arguments show that the effective Yukawa coupling of the PNGB to electrons, violates bounds

coming from stellar cooling rates. To avoid this, one must raise the mass of the PNGB to

about an MeV, so that it cannot be produced in ordinary stars. In the Pentagon model this

again required the scale associated with the leading symmetry violating operator to be in the

108 − 1010 GeV range.

The Pyramid Scheme throws a new light on all of these questions. It has three accidental

baryon number like symmetries, corresponding to the three types of trianon. Call the corre-

sponding conserved charges Bi. The dynamics of SUP (3) spontaneously breaks B2, but the

other two are preserved. The lightest particles carrying B1,3 are standard model singlets, and

thus potential dark matter candidates. According to [22] there is a small window of low reheat

temperatures, below the confinement scale of SUP (3) in which non-thermal production of these

particles could account for the observed dark matter density14. Alternatively, a primordial

asymmetry in any of these quantum numbers could be invoked to explain dark matter in a

13This correlation persists for the NF = NC models, which might have vacua breaking the discrete R-symmetry
of the ISS states.

14We recapitulate this analysis in Appendix B.
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cosmological model with high reheat temperature. One would have to correlate this with the

ordinary baryon asymmetry, as in [177], a constraint which was missed in [22]. Whether or

not there is a PNGB, a primordial asymmetry in some quantum number implies a cosmological

expectation value for the associated charge density. The Bi currents are all coupled to the

ordinary baryon number current via exchange of standard model gauge bosons, and, in combi-

nation with electro-weak baryon number violation, the asymmetries in pyrma-baryon numbers

can drive spontaneous baryogenesis.

The Pyramid Scheme thus provides us with a wealth of possibilities for explaining both the

dark matter in the universe and the asymmetry in ordinary baryon number. In this paper we

will only explore one of these directions. We assume that only negligible primordial asymmetries

in any of these quantum numbers were generated in the very early universe, and assume a low

reheat temperature, so that particles carrying B1 and/or B3, can be the dark matter.

These particles have QCD like strong interactions, with confinement scale Λ3. Their an-

nihilation cross section is energy independent and of order Λ−2
3 . Probably the best model for

their cosmological behavior is the soliton picture of [183]. By analogy with baryon anti-baryon

annihilation in QCD, and more generally with soliton anti-soliton annihilation, we expect the

typical final state of the annihilation process to be a state of pyrmions (the PNGB of sponta-

neously broken B2) with high multiplicity. This is quite interesting, because the pyrmions are

very light (we will estimate their mass below, in the MeV range), and their constituents do not

carry color. As a consequence, the pyrmion decay into standard model particles will primarily

produce electron positron pairs, photons and neutrinos.

One is tempted to try to associate the behavior of our hypothetical dark matter candidate,

with some of the ambiguous signals for dark matter that have accumulated in recent years [176].

In [184] it was emphasized that this data can only be interpreted in terms of a dark matter

candidate which decays primarily to leptons, and the authors constructed an ingenious set of

models to implement this constraint. Our suggestion is, quite frankly, modeled on theirs, but

fits more organically into the framework of gauge mediated SUSY breaking. We will only sketch

the outlines of it here, since much more work is needed to see whether it is viable. The Pyramid

model in fact predicts a zero temperature cross section for dark matter annihilation which is

just what is needed to explain the ATIC, PAMELA and PPB-BETS data. The dimensional

analysis/soliton estimate is an energy independent cross section

σ0 =
A

Λ2
3

.
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Recall that Λ3 was constrained strongly by the twin requirements of an experimentally accept-

able chargino mass and a gravitino mass obeying the CSB formula. A typical value obeying the

bounds was Λ3 ∼ 5 TeV.

The interpretation of the ATIC, PAMELA, PPB-BETS and WMAP haze data in terms of

dark matter annihilation requires a low energy cross section

σexp0 ∼ 0.1 (TeV)−2.

Thus A ∼ 2.5 would seem to fit the data. We will see below that the multiplicity of e+e− pairs

per dark matter annihilation is likely to be large, so that an even smaller cross section for dark

matter annihilation is actually called for. This would require A ∼ 0.2 for the multiplicity we

estimate below. Our point here is not to make precise fits, but rather to show that the Pyramid

Scheme is in the right ballpark to explain the observational evidence for a lepton anti-lepton

excess in the galaxy.

Fans of thermal WIMP dark matter will be curious to understand how such a large cross

section could be compatible with the correct relic dark matter density. For completeness, we

recapitulate the non-thermal dark matter production calculation of [22] in the Appendix. The

answer depends on the last reheat temperature of the universe, which must satisfy

Λ3 > TRH > 0.1mB.

It is easy to imagine getting such a low reheat temperature from the decay of a relic scalar, like

the supersymmetric partner of the QCD axion [185].

With a low reheat temperature, we must look for a method of creating the baryon asymme-

try of the universe which is efficient at low energy. Affleck-Dine baryogenesis is always an option

[194], but the Pyramid model has the possibility of creating the asymmetry via spontaneous

baryogenesis [182] at the electroweak phase transition [177]. That is, a primordial asymme-

try in any of the pyrma-baryon numbers acts, because of couplings α2
3J

PB
µ Bµ/Λ2

3 induced by

gluon exchange, as a chemical potential for ordinary baryon number. This biases electro-weak

baryon number violation, which is in equilibrium above the electro-weak phase transition. The

asymmetry is frozen in at T ∼ 100 GeV ≪ TRH .

In addition to this, the most suggestive feature in the data is the cut-off on the electron-

positron spectrum seen by the ATIC and PPB-BETS detectors [195]. In [184] this was in-

terpreted as showing us the mass of the dark matter particle, and gave rise to an estimate

∼ 600 − 800 GeV. Our dark matter candidate is 40 − 60 times as heavy.

Our proposed explanation for this discrepancy, centers around the strong SUP (3) interac-

tions of our dark matter candidate, and the existence of the pyrmion PNGB. Proton anti-proton
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annihilation at rest, which should be a reasonable analog of heavy pyrma-baryon annihilation in

the contemporary universe, produces final states consisting predominantly of pions. The mean

number of pions is 5, with variance 1. Correspondingly, the single pion inclusive momentum

distribution is peaked at 0.2 GeV, roughly 1/5 of the proton mass. The experimental peak is

pronounced, but reasonably broad. The distribution has dropped by a factor of 10 at 0.8 GeV.

Lu and Amado [186] have reproduced many of the features of the annihilation data in terms of

a soliton model, in which the pp̄ initial state is modeled as a zero baryon number lump of pion

field in a Skyrme-like model. Their model gives a peak that is somewhat more narrow than the

data.

In a soliton model, the initial state of light mesons after heavy pyrma-baryon annihilation

will be a coherent state of the field. The probability of having N particles in such a state is

proportional to the square of the average field strength and the variance is of order
√
N . In a

soliton model of a QCD like theory, the average momentum per particle is strongly suppressed

for |p| > Λ3, but would otherwise be randomly distributed. Our dark matter candidate would

be a pyrma-baryon consisting of three heavy trianons and would have a mass of order 3m1,3.

Given our estimates this is roughly 30 − 40 TeV. In the Pyramid Scheme, the final state will

consist primarily of pyrmions, which are effectively massless and will have a typical momentum

< Λ3 ∼ 5 TeV. Some of these will be primaries and the rest secondary products of the decays

of heavier pyrmesons. Thus, we may expect the pyrmion multiplicity to be very large and the

energy to be thermalized by strong final state interactions.

The single particle momentum distribution of N body massless phase space for annihilation

of a particle anti-particle pair with total mass 2M is peaked at |p| = 2M/N and is a Gaussian

of the form

P ∝ e−ax
2

,

in the rescaled momentum x, around the maximum, with a = N2 for large N15. If we take

the estimate Λ3 ∼ 5 TeV from our discussion of superpartner masses, and m1,3 ∼ 12 TeV to

assure the massive trianons are outside the range of chiral perturbation theory, then 2M ∼ 72

TeV. This would give a distribution centered at 800 GeV, with an extremely narrow width, for

N ∼ 90, which is ∼ 18 times the pion multiplicity from proton anti-proton annihilation. We

would interpret the actual distributions seen in the balloon experiments as a broadening of this

peak toward the low momentum side by the effects of propagation of electrons and positrons

through the galactic medium. The high side of the experimental peak should be identified with

15We thank H. Haber for these results.
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the position of the narrow peak in the primordial distribution.

The underlying SUP (3) gauge theory is supersymmetric, and has more degrees of freedom

than QCD, all of which can decay or annihilate to the pyrmion. Furthermore, in a soliton

model of the annihilation process the probability of a single particle with momentum > Λ3

is exponentially suppressed since the particles come from a smooth coherent state. Thus one

would guess that the dynamics of the annihilation process forces a minimum of 10 pyrmions to be

produced. Furthermore, since many of the final state pyrmions will be produced in secondary

decays of heavier pyrmesons, the multiplicity is almost certainly higher than 10, since the

dynamical momentum cutoff applies to the primaries. In other words, the high multiplicity

required to fit the data on balloon experiments does not seem out of the question. Obviously,

much more work on the dynamics of this strongly coupled annihilation process, as well as a

complete model of galactic propagation, will be necessary in order to render a complete verdict

on our model of the experiments.

Thus, very roughly we can produce a spectrum of electrons and positrons consistent with

the ATIC, PAMELA and PPB-BETS observations from a heavy pyrma-baryon dark matter

candidate decaying into ∼ 90 pyrmions, which themselves decay to e+e− pairs. To be a good

candidate for dark matter the pyrma-baryon abundance of the universe must be non-thermal

[22], and could come from a late decaying scalar with a reheat temperature in the TeV range.

The details of this, including the relation between the reheat temperature, the low energy

annihilation cross section, and the relic abundance, can be found in Appendix B. The low

reheat temperature requires us to invent a sub-TeV mechanism for baryogenesis, and the most

attractive candidate is spontaneous baryogenesis at the electro-weak phase transition, driven

by a primordial asymmetry in one of the pyrma-baryon numbers [177]. Obviously a lot more

work is needed to make these remarks into a robust theory, explaining the data on dark matter.

We also note that, should the current observational indications of dark matter annihilation

signals prove to be explained by astrophysics [196], the Pyramid Scheme has dark matter sce-

narios in which there are no annihilation signals. This would be the case if the dark matter

were interpreted as a pyrma-baryon excess, as in [22]. The required primordial asymmetry is

roughly ǫPB =
Teq

mPB
∼ 10−12 TeV

mPB
. This is too small to give rise to an adequate asymmetry

in baryon number via spontaneous baryogenesis [182, 177]. We could invoke an asymmetry of

the spontaneously broken B2 quantum number to give spontaneous baryogenesis, but would

then have to explain why the inflaton preferred to decay mostly into T2 rather than the other

trianons. The Pyramid Scheme can accommodate a wide variety of cosmological scenarios. We

hope to explore some of them in future work.
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6.5.1 The mass of the pyrmion

To calculate the mass of the pyrmion, we must understand the way in which the pyrma-baryon

number B2 is explicitly broken. The operators

B2 = det T2, B̄2 = det T̄2,

are invariant under SUP (3) and the standard model gauge group, and have discrete R-charges

satisfying

B2 + B̄2 = 3(2 − S) mod N.

Recall that N ≥ 5. We use the freedom to choose the individual pyrma-baryon and anti-pyrma-

baryon R-charges to impose

B2 = 2 − S, B̄2 = 4 − 2S mod N.

In that case, the dimension 5 operator
∫
d2θ SB2/MU , is the leading B2 violating operator,

which is invariant under all the symmetries of the model. The pyrmion mass will then be of

order

mb ∼
Λ

3/2
3

MU
1/2

∼ 2.5 MeV.

We have used the estimate Λ3 ∼ 5 TeV from our discussion of superpartner masses. Thus, the

pyrmion can decay only into electrons, positrons, photons, neutrinos and gravitinos.

Note that this estimate also resolves the problem of pyrmion production in stars [178], which

could lead to cooling faster than what is observed. An MeV scale pyrmion could at best be

produced in supernova explosions.

6.6 Conclusions

We have sketched a new Pyramid Scheme for direct mediation of SUSY breaking. It is based on

the same fundamental dynamical assumption as the Pentagon model: the existence of a SUSY

and R-breaking meta-stable state of NF = NC SUSY QCD, but it has the following advantages:

• It is based on trinification rather than unification in a simple group, and as a consequence

predicts completely perturbative coupling unification, with no Landau poles. The full

model can be associated with a simple quiver/moose diagram, which should make its

implementation in string theory straightforward.

• There exist two unbroken baryon-number like symmetries in the hidden sector, which

enable us to construct a number of models of dark matter, along the lines of [22]. In this
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paper we concentrated on a model in which the dark matter is produced non-thermally, but

without a pyrma-baryon asymmetry, in order to be able to model dark matter annihilation

signals. Given estimates of the confinement scale of the SUP (3) gauge group from super-

partner masses, the model produces annihilation cross sections of (roughly) the right

order of magnitude to explain ATIC, PAMELA and PPB-BETS, and the dark matter

annihilates predominantly into pyrmions, the PNGB of the spontaneously broken pyrma-

baryon number. The latter particle has a mass in the MeV range and decays only into

light leptons and photons. We argued that a model of the annihilation process with a

high pyrmion multiplicity ∼ 100 in the final state could reproduce the bumps in the ATIC

and PPB-BETS data.

• The dark matter scenario requires us to invoke a late decaying particle which reheats the

universe to ∼ 1 TeV, which implies that we must supplement it with a low scale model

for baryogenesis. The most economical scheme would be to postulate a primordial asym-

metry in one of the pyrma-baryon numbers (not the one associated with the dark matter

candidate). Standard model gauge boson exchange produces current-current couplings be-

tween the pyrma-baryon currents and ordinary baryon number, so that a pyrma-baryon

asymmetry drives spontaneous baryogenesis [182] at the electro-weak phase transition.

Affleck-Dine baryogenesis is another reasonable candidate mechanism.

• The pyrmion mass estimate makes it too heavy to be produced in ordinary stars, avoiding

the strong constraints of [178] on models of meta-stable SUSY breaking that rely on the

dynamics of NF ≥ NC SUSY QCD.

• The Pyramid Scheme has three pairs of chiral fields, the trianons T1,2,3 and T̄1,2,3, which

are charged under the standard model gauge group. Only one carries color. In order

to generate meta-stable SUSY breaking, the masses of two of the trianons must be too

large to be treated by chiral perturbation theory. If one of these heavy trianons is the

colorful one, then the gluino mass is naturally suppressed relative to that of the charginos,

and squark masses suppressed relative to those of leptons. This removes the fine tuning

problem of the vanilla gauge mediated spectrum. We note that the gluino mass goes down

rapidly with the mass of the heavy colored trianon, so the latter probably cannot be so

large as to be safely integrated out above the confinement scale Λ3.

We want to emphasize that our estimates of the properties of the Pyramid Scheme are rather

rough and preliminary. In particular, the discussion of dark matter needs a lot of work before
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one can make a reliable claim that it accounts for any existing dark matter data. Furthermore,

many of the important dynamical questions in the model, such as the existence of the SUSY

and R-violating vacuum state, and the generation of appropriate µ and Bµ terms, depend on

(currently) incalculable strong SUP (3) dynamics. The Pyramid Scheme has plausibility, but is

not yet a fully going concern. Investors are warned that past performance is no guarantee of

future returns.

6.7 Appendix: Cosmological SUSY breaking

In this appendix we explain the extra factor of 10, which appeared in our estimate of m3/2

according to the hypothesis of CSB. The variables in the holographic theory of dS space [197,

198] are N × N + 1 matrices which are also spinors in 7 compactified dimensions. We denote

them by

(ψP )Ai , ([ψ†]Q)jB.

Their quantum algebra is
[
(ψP )Ai , ([ψ

†]Q)jB
]
+

= δji δ
A
BM

PQ.

P,Q are compact dimension spinor indices, and MPQ are “sums of wrapped brane charges”.

Their closed super-algebra with the ψ variables defines the compactification. We call it the

quantum algebra on a single pixel of the holographic screen of dS space, or the pixel algebra

for short. The holographic principle requires that the pixel superalgebra, for fixed values of

i, j, A,B has a finite dimensional unitary representation. If DP is the dimension of the pixel

algebra representation then lnDP is the entropy per pixel. The total entropy of dS space,

π(RMP )2 is then given by

π(RMP )2 = N(N + 1)lnDP .

In previous work, DP was set equal to 2 because the compactified dimensions were ignored.

We note in passing that this formalism implies that, in a finite radius dS space, compactified

dimensions have no moduli. The finite dimensional algebras and representations are subject to

the constraint that, as N → ∞ we must obtain (super)-gravitons in the spectrum, following

the outline in [197]16. The classification of such algebras has not yet been attempted, but they

must be discrete.

A hint at what is required comes from noting that Calabi-Yau manifolds are symplectic and

compact, so that geometric quantization gives a(n ambiguous) map from their function algebras

16In fact, in this paper, it was impossible to obtain gravitons (only massless chiral multiplets), because there
were no compactified dimensions.
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to finite dimensional matrix algebras. This can be easily extended to seven manifolds which are

Calabi-Yau bundles over an interval (Horava-Witten compactifications) or circle bundles over a

CY3. The variables of the holographic theory will live in modules over these finite dimensional

algebras. From these correspondences one can see that DP will be related exponentially to the

volume of the internal space (in Planck units)17.

What is lnDP in the real world ? In Kaluza-Klein compactification, the volume of the

internal space in higher dimensional Planck units (denoted by MPl), is related to the four

dimensional reduced Planck scale m4 by

(V/VPl) = (m4/MPl)
2.

Witten suggested [193] that MPl = 2 × 1016 GeV = MU , and used the large volume to explain

the discrepancy between the Planck and unification scales. Thus we expect

lnDP ∼ 104.

To proceed, we recall how [197] extracted particle states from the pixel algebra. The point

is simply that N ×N + 1 matrices are precisely the spinor bundle over the fuzzy 2-sphere. For

finite N , we keep only a finite number, of order N2 spinor spherical harmonics in the expansion

of a section of this bundle. Ignoring the compact dimensions, the pixel variables converge, as

N → ∞, to ψ(Ω), an operator valued measure on the spinor bundle. These are the operators

describing a single massless chiral super-particle in four dimensions, with fixed magnitude of

the momentum and direction Ω. It is hoped that the incorporation of compact dimensions will

allow us to generalize the particle content to include gravitons and gauge bosons.

In order to describe multi-particle states, as well as to obtain variable values of the longitu-

dinal momentum, we introduce block diagonal ψ matrices. The size of an M ×M + 1 block is

interpreted as its momentum in units of 1/R. The usual permutation gauge symmetry of the

space of block diagonal matrices, is interpreted as particle statistics, and the anti-commutation

relations and spinor nature of the ψ operators enforces the right spin statistics connection.

One must make a compromise between the number of particles allowed, and the number of

spherical harmonics allowed in the momentum space wave function of a given particle (there

must be many if it is to be localizable on the holographic screen18). The compromise which

leads to the maximal particle entropy is to take blocks of size M ∼ N1/2. This picture of the

17This is just the statement that entropy is volume extensive in the internal dimensions. The holographic
reduction is just a feature of the non-compact dimensions.

18In experimental particle physics language this is localization in the detector.
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typical particle momentum and multiplicity which maximizes the entropy in dS space, can be

derived in field theory by maximizing the entropy subject to the constraint that no black holes

with radius of order the cosmological horizon are formed.

The super-Poincaré algebra arises in this formalism only as N → ∞ and only for localizable

particle states. Corrections to the algebra should then scale like N−1/2. In particular, the

commutator of the Poincaré Hamiltonian, P0 and the supercharges Qa should be of order

N−1/2MPSa where Sa is an operator with matrix elements of order one. It follows that the

gravitino mass is given by a formula

m3/2 = N−1/2KMP ,

with K of order one. Our entropy formula gives

3

8

M4
P

Λ
= π(RMP )2 = N2lnDP ≈ 104N2.

Comparing these two formulae, we get the one used in the text by lumping a factor (8
3 )1/4 into

K.

It should be noted that the Lorentz group arises in this formalism as the conformal group of

the sphere. The formalism is exactly rotation invariant for anyN and conformal transformations

corresponding to boosts of moderate rapidity should not be affected much by restricting the

space of functions on the sphere to the first 1030 spherical harmonics.

6.8 Appendix: Non-thermal dark matter

This appendix recalls the non-thermal dark matter production scenario described in [22]. We

assume that a particle X with mX ≫ mB decays, with a reheat temperature TRH < Λ3. This

produces an initial abundance of heavy pyrma-baryons

Y0 = 10−2TRH
mB

.

Y0 is, as usual the number density to entropy density ratio. The first factor in this equation is

simply the branching ratio that would appear for a massless pyrma-baryon, while the second

suppression factor takes into account the fact that the mass is above the typical energy of decay

products after thermalization. The decay is relatively quick, so we can neglect annihilation of

pyrma-baryons during the decay process.

Below TRH the pyrma-baryon abundance satisfies a Boltzmann equation driven only by

annihilation. Processes which create more pyrma-baryons have already fallen out of equilibrium.
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We have
dY

dx
= −k Y

2

x5/2
,

where x = mB/T , and

k =
2πmBmPσ0g∗s

75g
1/2
∗

≈ (1.4 × 1015 TeV)mBσ0.

g∗ is the number of massless degrees of freedom into which the pyrma-baryons annihilate and g∗s

the number that contribute to the entropy. We have, in the last expression for k, approximated

both of these by an average value of 50 and written all remaining dimensionful quantities in

TeV units.

The solution for the present day abundance is

Y −1
f = Y −1

i +
2k

3
(x

−3/2
i − x

−3/2
f ).

The last term is negligible, and so is the first if TRH is high enough for nucleosynthesis to occur

in a normal fashion. Thus

Yf =
10−15m

1/2
B T

−3/2
RH σ−1

0

TeV
.

The observed dark matter density is obtained if

Yf
mB
TeV

= 4.4 × 10−13,

so we must have

Λ3 > TRH = 0.017
mB

[σ0 (TeV)2]2/3
≈ 0.15 mB/A

2/3.

In the last approximate equality we have taken Λ3 ∼ 5 TeV and used A as the value of σ0Λ
2
3.

This can be satisfied for heavy pyrma-baryon masses less than

mB < 6.7A2/3Λ3.

Recalling that mB3 cannot be much bigger than 3Λ3 (in order to satisfy the bounds on the gluino

mass) and that A ∼ 1, we are able to fit the observed dark matter abundance, the gross features

of the dark matter signals in ATIC, PAMELA and PPB-BETS, as well as supersymmetric

phenomenology. The parameters of our model are tightly constrained by all of this data.

6.9 Appendix: Some computations

In this appendix we present some computations related to the meta-stable state. Below the

scale Λ3, the relevant superpotential is given by

W =
∑

i=1,3

(mi + yiS)TiT̄i + (m2 + y2S)Λ3 trM + gµSHuHd +
gT
3
S3 + . . .
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where the pyrmeson T2T̄2 = Λ3M satisfies the usual quantum moduli space constraint detM −

Λ3PP̃ = Λ3
3 and the heavy trianons Ti=1,3 and T̄i=1,3 have to be integrated out. Parametrizing

the pyrmeson and the pyrma-baryons as

M = Zaλ
a, P = iΛ3e

(q+p)/Λ3 , P̃ = iΛ3e
(q−p)/Λ3

where Z0 ≡ Z, λ0 =
√

2
3 I and λa=1,...,8 are Gell-Mann matrices, the quantum moduli space

constraint can be satisfied for any Za and p by fixing q. If q 6= −∞ then p is the NGB of the

broken U(1)B2 . The superpotential in terms of the unconstrained fields is simply

W =
X

Λ3

[(
2

3

) 3
2

Z3 + Λ3
3e

2q/Λ3 − Λ3
3

]
+
√

6Λ3(m2 + y2S)Z + gµSHuHd +
gT
3
S3 + . . .

where the heavy trianons have been integrated out and Za6=0 = 0 was assumed. The F-terms

are

−F †
S =

√
6y2Λ3Z + gµHuHd + gTS

2

−F †
Hu

= gµSHd

−F †
Hd

= gµSHu

−F †
Z = 2

√
2

3

XZ2

Λ3
+
√

6Λ3(m2 + y2S)

−F †
q = 2Λ3Xe

2q/Λ3

−F †
X =

(
2

3

) 3
2 Z3

Λ3
+ Λ2

3e
2q/Λ3 − Λ2

3

and there is an extra SUSY vacuum at SSUSY = −m2

y2
and ZSUSY = − gTm

2
2√

6y3
2Λ3

with q satisfying

the quantum moduli space constraint and all other VEVs to zero. The Higgs sector scalar

potential has three contributions,

V = VF−terms + V1−loop + VD−terms

where

VF−terms = |
√

6y2Λ3Z + gµHuHd + gTS
2|2 + |gµS|2(|Hu|2 + |Hd|2)

+((∂2K)−1
Z†Z

)6|Λ3|2|m2 + y2S|2

V1−loop =
9

32π2

∑

i=1,3

∑

σ=±1

[
m4
B log

m2
B

Λ2
−m4

F log
m2
F

Λ2

]

VD−terms =
1

8
(g2

1 + g2
2)(|Hu|2 − |Hd|2)2 +

1

2
g2
2 |H+

u H
0†
d +H0

uH
−†
d |2

and the fermionic and bosonic masses for the heavy trianons are given by

m2
F = |mi + yiS|2

m2
B = |mi + yiS|2 + σ|yi(

√
6y2Λ3Z + gµHuHd + gTS

2)|.
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There are critical points of the potential with H+
u = H−

d = 0. Assuming this, the potential

becomes invariant under H0
u ↔ H0

d and thus there are critical points with H0
u = H0

d . At critical

points like these, the D-term contribution vanishes and the potential simplifies greatly. The

existence of a SUSY violating minimum is encoded in the strong dynamics of the SUP (3) gauge

group and is therefore difficult to determine.
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Chapter 7

Tunneling Constraints in Cosmological Supersymmetry

Breaking

7.1 Introduction

In this chapter we discuss in detail the findings of the work done in collaboration with T. Banks

[17].

The central idea of Cosmological SUSY Breaking (CSB) is that the correct quantum theory

of stable de Sitter space has the effective cosmological constant (c.c.) as a free parameter.

Supersymmetry is an emergent property of the limit Λ → 0, with a scaling relation m3/2 =

KΛ1/4. Here K is constant of order 10 [199].

The basic framework puts strong constraints on the Low Energy Effective Field Theory

(LEFT) in the Λ = 0 limit. It must be a theory with minimal four dimensional SUSY, as well

as an R-symmetry group larger than Z2. The low energy physics of the model is determined by

adding certain R-violating terms to the Λ = 0 Lagrangian, which must give rise to a stable or

meta-stable, SUSY violating state, with gravitino mass satisfying the relation above. Among

these terms is a constant superpotential W0, whose function is to tune the effective c.c. to

the value indicated by the formula for m3/2. Generally there will also be a SUSY preserving

solution of the effective action, with negative cosmological constant.

In gravitational effective field theory, this supersymmetric AdS solution, has nothing to do

with the dS solution. It is not part of the same quantum system, which has the de Sitter

solution. This is seen in two complementary ways. If we consider excitations of the AdS

solution, which are normalized and correspond to states, then there are no dS states that are

acceptable. Depending on the scales in the potential, one may create localized excitations with

fields concentrated near the positive energy minimum, but as one pushes the size of the region

to the dS horizon scale, the excitation becomes a black hole [200].

Correspondingly, if following Coleman and De Luccia (CDL) [201], we look at tunneling from

dS space “to the negative c.c. region”, we do not relax to the AdS background, but instead

encounter a big crunch, on a microscopic time scale. Moreover, due to the crunch, the field
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does not in fact stay localized near the negative c.c. minimum, but instead explores the entire

potential until the energy density approaches the Planck scale and effective field theory breaks

down. It seems clear that the non-gravitational effective theory, in which the two solutions

correspond to two states of the same Hamiltonian system, with one decaying into the other, is

not a correct qualitative description of the physics, even when all the scales are far below the

Planck scale. However, we shall see that the Euclidean solutions of the non-gravitational field

theory are good approximations to the gravitational CDL instantons, when the range of field

variation is small compared to the Planck scale.

As a consequence, we will show that the idea, introduced in [202], of using a meta-stable

flat space field theory vacuum state as the LEFT of the theory of stable dS space, is wrong.

We argue that the only consistent models must use a LEFT which has no SUSic vacuum in

the MP → ∞ limit. Combining the classic results of Nelson and Seiberg [203] with the basic

constraints of CSB, we conclude that the low energy Lagrangian must be non-generic – that

is, it does not include all terms consistent with symmetries, with coefficients determined by

dimensional analysis. We argue that in the context of CSB, the terms in the Lagrangian that

violate the fundamental discrete R-symmetry of the Λ = 0 limit, might well be non-generic.

Indeed we already know that this is the explanation, in this context, of the fine tuning of the

c.c.. The fundamental requirement for the LEFT is that it reproduces the properties of the

underlying quantum theory of stable dS space, which has a finite number of states. Any CDL

instantons must be interpretable as a description of recurrences of low entropy states, rather

than true instabilities.

We introduce a modified version of the Pyramid Scheme, with non-generic R-violating

terms1, which has no SUSic vacua. This model seems to satisfy all the theoretical constraints

of CSB and coupling unification, as well as all phenomenological constraints.

We have also taken the opportunity of this paper to repair another flaw that we discovered

in the Pyramid Scheme, namely that the hidden sector gauge coupling has a Landau pole below

the GUT scale. The unique way we have discovered to circumvent this is to replace the group

at the apex of the Pyramid by SUP (4), Higgsed to SUP (3) at about <∼ 50 TeV. We have not

yet investigated the dynamical source of this Higgs mechanism, but it is perhaps encouraging

that it occurs at a scale close to the other scales in the model. This revision forces us to change

the underlying R-symmetry group and the R-charges of various fields. The simplest model we

have found, has a Z13 R-symmetry.

1We note that all versions of the Pentagon model and the Pyramid Scheme secretly invoked the fact that
R-violating terms were non-generic, in order to explain the absence of proton decay.
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7.1.1 CSB and CDL

The authors of [21] showed that the space of potential energy functions for scalar fields, with

|V | > 0 at every minimum, as well as at infinity, could be divided into two classes. Consider the

lowest dS minimum and add a negative constant to the potential to bring this minimum to zero.

The resulting Minkowski solution may or may not have a positive energy theorem, and this is

the criterion dividing the two classes. The co-dimension one dividing line is called The Great

Divide. It is the subspace of potentials that have a static domain wall solution connecting

the Minkowski minimum to an AdS solution. For potentials above the Great Divide, whose

Minkowski limit has a positive energy theorem, the probability for the dS “decay” is of order

e−SdS , where SdS is the entropy of the de Sitter space.

This is consistent with a model of dS space as a quantum system with a finite number of

states [204], with the “decay” interpreted as a Poincaré recurrence. The dS vacuum (a high

entropy density matrix, not a unique quantum state) is the maximal entropy state of the system,

in which the system spends most of its time. It is properly viewed as stable, despite the existence

of the instanton.

This interpretation is consistent with another feature of the instanton solution : the maximal

causal diamond in the crunching region of the Lorentzian continuation of the instanton, has an

area much smaller than that of the dS horizon. That is, if we take the holographic interpretation

of physics seriously, the instanton is describing a transition from high to low entropy.

By contrast, when the limiting Minkowski vacuum has no positive energy theorem, no such

interpretation is possible. The instanton action is much smaller than the dS entropy and

approaches a finite limit as the dS radius goes to infinity. Thus, the low energy effective theory

of a model representing a stable, finite dS universe, must have a potential that is above the

Great Divide.

In recent work [187, 10], one of us (T.B.) has been pursuing models of low energy SUSY

breaking, which employ the meta-stable states of SUSY-QCD discovered by Intriligator, Seiberg,

and Shih [179], and hypothetical generalizations of these states to the theory with an equal

number of flavors and colors. These models have an R-breaking parameter that controls the

scale of SUSY breaking. In the CSB context, one wants to choose this parameter (and the

constant in the superpotential) in order to enforce the CSB relation

m3/2 = KΛ1/4, (7.1)

between the gravitino mass and the c.c.. One of us argued that these models were above the

Great Divide, because when one dials the R-breaking terms to zero, SUSY is restored and the
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meta-stable vacuum becomes exactly stable. This argument is wrong. In this paper, following

closely the logic of [21], we show that all models in which the potential connecting a meta-stable

state to a negative c.c. point, varies rapidly on the Planck scale, are below the Great Divide,

and cannot be the low energy effective theory of a stable dS space.

This means that, at the level of non-gravitational effective field theory, the only models

compatible with the constraints of CSB, are those which have no supersymmetric vacuum states.

Nelson and Seiberg [203] showed that generic Landau-Ginzburg models of chiral superfields had

SUSY preserving minima unless they had an exact U(1) R-symmetry. Since the rules of CSB

require us to break R-symmetry in the LEFT, a generic model can not obey the requirements

of CSB. This may not be as bad as it sounds. The LEFT of stable dS space has two kinds of

terms in its Lagrangian. The first are terms that exist even in the Λ → 0 limit. These arise

through conventional mechanisms and can plausibly be expected to satisfy the requirements of

genericity. On the other hand, there are terms whose sole purpose is to make sure that the

physics of the LEFT is compatible with that of the underlying, non-field theoretic, quantum

theory of dS space. At the most fundamental level, it must be compatible with the idea that

this system has a finite number of states, the overwhelming majority of which, resemble the

dS vacuum. Transitions out of the dS vacuum should be viewed as recurrences of low entropy

states.

In the language of [21] this means that LEFTs compatible with CSB must be above the Great

Divide. Nelson and Seiberg tell us that they must therefore be non-generic. In the last section

of this paper, we will present a modified version of the Pyramid Scheme, with non-generic

perturbations, which is compatible with CSB.

7.2 Tunneling for meta-stable field theory states

Consider a model of supersymmetric quantum field theory, with a meta-stable SUSY violating

state. In terms of a (perhaps composite) set of chiral superfields {Xi}, the superpotential takes

the form

W = µ3w(Xi/M) +W0, (7.2)

and the Kähler potential is

K = M2k(Xi/M,X∗
i /M). (7.3)
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We assume M ≪ mP and µ ≪ mP . The potential for scalar fields, in SUGRA is then given

approximately by

V =

[
µ6

M2
|wi(xi)|2 − 3

|W0|2
m2
P

]
with xi =

Xi

M
and wi ≡

∂w

∂xi
. (7.4)

Naively, this could be a LEFT for CSB if m3/2 = µ3

MmP
= KΛ1/4, and W0 = m3/2m

2
P −O(Λ3/4).

However, the world is a tough place, and näıveté often meets with disappointment. In fact, such

a field theory cannot describe the behavior of local excitations of a stable dS space. To see this,

note that the potential has the form m4v(X/M), where m = µ(µ/M)1/2. The tuning of the c.c.

implies that the whole potential has this order of magnitude, except right near the meta-stable

minimum.

Define x ≡ X/M and re-scale the space time coordinates by the natural time scale M/m2,

then the Coleman-DeLucia equations for gravitational tunneling read (u = −v) [21]

ẍ+ 3Hẋ+ u′(x) = 0

H = ṙ
r

ṙ2 = 1 + ǫ2r2E

E = 1
2 ẋ

2 + u

(7.5)

where ǫ2 = M2/3m2
P . The Euclidean space-time metric is

ds2 = dz2 + ρ2(z)dΩ2
3, (7.6)

and r and the dimensionless Euclidean time t are related to ρ and z by scaling out M
m2 . For the

decay of dS space the instanton geometry is an ovoid. In [21] it was argued that the situation

of a potential w.r.t. the great divide was determined by the stability of the Minkowski solution

which is produced when we shift the dS minimum to zero. In terms of the parameters above,

this corresponds to dropping the term of order Λ3/4 in W0.

If, for the Minkowski limit, we set ǫ = 0, then the geometry becomes a semi-infinite cigar.

Coleman [205] showed that these equations always have a solution, as long as there is a difference

in vacuum energies between the true and false minima. The asymptotic solution of the scalar

field equations approaches the Minkowski stationary point of the potential exponentially fast,

which indicates that for very small ǫ the Minkowski decay occurs in curved dynamical space-time

if the corresponding field theoretic decay occurs in Minkowski space.

In [21], we showed that for small ǫ and small positive vacuum energy, one could match this

flat space solution to the solution of the field equations in dS space2. The instanton manifold

2See also [206].
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is almost the full dS sphere. As a consequence, the difference between the instanton action and

the dS action approaches the flat space instanton action as the dS radius goes to infinity, up

to corrections of order ǫ2. This shows that if ǫ ≪ 1 the potential corresponding to a meta-

stable vacuum of a non-gravitational field theory is below the Great Divide. Such a potential

cannot represent an approximate description of a stable quantum model of dS space. Indeed,

such model has a finite number of states [207], the overwhelming majority of which always

resemble the dS vacuum. A small number of states, of order ec(RMP )3/2

represent meta-stable

local excitations of the dS vacuum. CDL decays of such a system, correspond to recurrences

of states whose entropy is constant in the limit RMP → ∞. The potential representing such

decays must be above the Great Divide.

7.3 Low energy models compatible with CSB

We are in the fortunate situation of being presented with a paradox. On the one hand CSB

requires the c.c. to be a tunable parameter, which arises at a deeper level as a cosmological

initial condition. For small values of the c.c. the local physics of quantum dS space must

be describable in terms of an effective SUGRA Lagrangian with spontaneous SUSY breaking.

The scale of SUSY breaking is KΛ1/4mP . Once we put in the phenomenological lower bounds

on superparticle masses, this implies that the mechanism for spontaneous breaking must be

understandable in flat space effective field theory. High scale SUSY breaking by F-terms of

moduli fields is not allowed.

The tunneling constraint we have just described implies that the flat space EFT cannot have

a SUSic vacuum state, since if it did, it would be below the Great Divide3. Nelson and Seiberg

[203] have shown that generic chiral Landau-Ginzburg models have SUSic ground states unless

the LEFT has a continuous UR(1). However, in CSB it is precisely the explicit breaking of

R-symmetries that is supposed to trigger SUSY breaking.

In models implementing CSB, the R-axion might also be light enough to cause phenomeno-

logical problems, though this depends on the details of the model and assumptions about the

scale and dimension of the lowest dimension operator breaking UR(1). The universal gravita-

tional contribution, coming from the cancelation of the cosmological constant [208], is too small,

given the scale of W0 required in CSB.

One is thus pushed in the direction of assuming a non-generic LEFT. CSB in fact provides

3One possible loophole in this argument is that a model below the Great Divide, could represent CSB, if the
flat space action ∼ (M

µ
)4 were close to π(RMP )2. However, since M ≪ MP , this can only occur if µ ≪ Λ1/4,

which is inconsistent with experimental lower bounds on super-particle masses.
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a motivation for non-generic corrections. Our usual intuition about parameters in effective field

theory comes from integrating out high frequency degrees of freedom with the renormalization

group. In CSB, the LEFT has two kinds of terms. Those that exist in the Λ = 0 limit arise from

a model akin to string theory in asymptotically flat space. They satisfy the usual constraints

of effective field theory : generic parameters of order one in appropriate units, consistent with

all symmetries. All mass scales far below the unification scale should be explained dynamically.

By contrast, terms which exist only because of the dS horizon do not obey these rules. We

do not understand the quantum theory of dS space well enough to give a full list of the rules

they do obey. We know that the c.c. should be viewed as an input parameter, which means

tuning W0 in a way that would be anathema to an effective field theorist. We know that the

new terms should violate R-symmetry, and that their coefficients should enforce the relation

m3/2 = KΛ1/4, with K of order 10. We have just learned that they must spontaneously break

SUSY in a stable vacuum.

Previous work has explored the additional constraints of unification and other aspects of

phenomenology. The constraint that there must be complete multiplets of a GUT group, at the

low scale consistent with CSB, and that these new multiplets do not lead to Landau poles in

standard model coupling below the unification scale, is very strong and rules out essentially all

extant models of gauge mediated or direct mediated SUSY breaking, including the Pentagon

model. These constraints would allow hidden sector gauge groups smaller than SUP (5), but

with a flavor group containing the GUT SU(5) or any larger GUT group, we have not been

able to find a model with acceptable dynamics.

The Pyramid Scheme solves this problem by using trinification [174]. GUT multiplets con-

sistent with trinification can add justDR new vector-like quark multiplets to the colored particle

spectrum, where DR is the representation of the hidden sector gauge group. In the Pyramid

Scheme we chose that group to be SU(3) and R to be the fundamental plus anti-fundamental.

We will see below that this might need to be modified at higher energy. In the next section we

will present a simple generalization of the Pyramid Scheme which satisfies all these constraints.

7.4 Pyramid Schemes with a triplet of singlets

The new chiral matter content of the Pyramid Scheme consists of a singlet S and three chiral

pairs Ti, T̃i. The gauge group is SU(3)4 ⋊ Z3. The first SU(3), called SUP (3), is the hidden

sector gauge group, while the rest forms Glashow’s trinification group, in which the Z3 permutes

the three SU(3) factors, ensuring coupling unification at the GUT scale. We will be working at
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energies far below the GUT scale, where this group is broken to the SU(1, 2, 3) of the standard

model. We label the three SU(3) groups of trinification SUi(3), with i = 1, 2, 3. For i = 2, 3, the

SU(i) of the standard model is the obvious Cartesian subgroup of SUi(3). Weak hypercharge

is a linear combination of a generator of SU1(3) with the hypercharge generator in SU2(3). We

will occasionally write terms in the Lagrangian that preserve more of the GUT symmetry than

is required by general principles. We do this for convenience only. We believe that, as long as

we do not introduce huge differences between parameters that are set equal by this choice, the

qualitative physics of our model will remain unchanged. Another way to say this is that we

have found a variety of Pyramid Schemes, with multiple parameters, which satisfy all of our

fundamental and phenomenological constraints. For economy’s sake we only write down the

simplest one explicitly.

The new models we introduce in this paper replace the singlet S by a triplet of singlets

Si with i = 1, . . . , 3. We imagine that, neglecting GUT symmetry breaking, these triplets

transform into each other under the Z3. However, in this paper we will not attempt to write

down a GUT field theory or string compactification which reduces to our model below the scale

of GUT symmetry breaking. When the c.c. Λ = 0, the Si appear in the superpotential as

W{Si} = yiSiTiT̃i + βiSiHuHd, (7.7)

with repeated indices summed.

When Λ is turned on, we add the terms

miTiT̃i +M2
i Si. (7.8)

The coefficients in these terms will scale to zero with Λ and are chosen to enforce the relation

m3/2 = KΛ1/4.

At high energies, the hidden sector is SUSY QCD with 9 flavors and 3 colors4. This model

has a vanishing one loop beta function, which is positive at two loops. Thus the coupling slowly

decreases as we go down in energy scale. We will assume that m1,3 are both > m2. After

integrating out the heavy trianons, we have the NF = NC = 3 model, and we assume that this

becomes strongly coupled at a scale Λ3 just below m2.

Now let us discuss candidates for the discrete R-symmetry which is part of the rules of the

game of CSB. The (3, 9) gauge theory has an anomaly free UR(1) symmetry under which all

the trianon and anti-trianon fields have charge 2/3. We can choose a discrete subgroup of this,

4In order to avoid Landau poles in the hidden sector gauge coupling, we will later contemplate an enhanced
hidden sector gauge symmetry, reduced to this one by the Higgs mechanism at a fairly high scale.
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and add any cyclic subgroup of the SUL(9)×SUR(9)×UB(1) flavor group. We must check that

the symmetry is not broken by standard model instantons. Finally, we want to reproduce the

success of previous models and use this symmetry to forbid all dimension four and five operators

in the MSSM, which violate B or L, apart from the neutrino seesaw operators (LHu)
2. We

know that this can be accomplished if we choose T2, T̃2 to have R-charge 0 and S2 to have

R-charge 2.

The low energy superpotential is written in terms of the fields Si, Hu, Hd and the mesons

and baryons of the gauge theory. We parametrize the dimension one meson matrix by

M = Ze
λaZa
Λ3 , (7.9)

where λa are the eight traceless Gell-Mann matrices. We will search for SU(3) symmetric

stationary points, where Za = 0. The superpotential is

W = 3Λ3(m2 + y2S2)Z + L(Z3/Λ3 −BB̃ − Λ2
3) + βiSiHuHd +M2

i Si. (7.10)

The equations from the variation of B and B̃ either force these fields to be zero or L to vanish.

We explore the second alternative first. The variation of Z, for L = 0 implies

y2S2 +m2 = 0. (7.11)

The variational equations for the Si imply

3δi2y2Λ3Z + βiHuHd +M2
i = 0. (7.12)

These are three equations for two unknowns, and have no solution.

Turning to the solution B = B̃ = 0, we note that the moduli space constraint now freezes

Z3 = Λ3
3, which has 3 solutions. The Z equation fixes L in terms of S2, but the Si equa-

tions are now three equations for the single unknown HuHd. Therefore, we do not find any

supersymmetric solution on either branch of the moduli space.

This conclusion is unchanged if we explore non-zero values of the adjoint fields Za. These

appear only through a multiplicative factor Tr eλaZa in the term in the superpotential linear in

Z. The variational equations for these fields are of course satisfied when Za = 0, and there are

other solutions. If we are on the branch where L = 0 then all values of the Za are stationary.

None of this changes the fact that there are no solutions of the variational equations for the Si.

We note that it is the parameters M2
i which prevent us from having a supersymmetric

solution. If they vanished, then on the branch with L = 0 we can solve the S2 equation by

fixing y2Λ3Z + β2HuHd = 0, and the other equations are both solved by Hu = Hd = 0 (which

also solves the variational equations for the Higgs fields – equations we have not yet discussed).

Therefore, the crucial SUSY violating equations are those which come from varying S1,3.
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7.5 SUP (3) Landau pole and SUP (4) completion

It is interesting to look at the strongly-coupled gauge theory beta function since this sector

consists of SUP (NC) SQCD with NC = 3 and NF = 9 and is thus not asymptotically free.

One can therefore ask what are the lightest ISS masses compatible with a strongly-coupled

SUP (3), such that there is no Landau pole below the GUT scale. As we mentioned earlier, the

resulting large ISS mass hierarchy will suggest that we look instead at SUP (4) which is Higgsed

to SUP (3) at some high scale. To perform the analysis, it is convenient to look at the general

case of SUP (NC) SQCD with NF flavors. The β-function for SU(NC) with NF fundamental

flavors is

βg = − g3

16π2

3NC −NF +NFγ

1 −NC
g2

8π2

(7.13)

γ = − g2

8π2

N2
C − 1

NC
+ O(g4) (7.14)

or in terms of the fine structure constant α = g2/4π

β 2π
α

=
3NC −NF +NFγ

1 −NC
α
2π

(7.15)

γ = − α

2π

N2
C − 1

NC
+ O(α2) (7.16)

At first order, the solution is

2π

α(µ)
=

2π

α(µ0)
+ (3NC −NF ) ln(µ/µ0) for NF 6= 3NC (7.17)

(
2π

α(µ)

)2

=

(
2π

α(µ0)

)2

− 6(N2
C − 1) ln(µ/µ0) for NF = 3NC (7.18)

In our case, we expect the hierarchy Λ3 < m2 < m3 < m1 < MGUT where m3 cannot be too

much larger than Λ3 due to the experimental lower bound on the gluino mass. When m3 is

large, there are no light messengers, which carry color. Thus the strongly-coupled theory has 0

flavors between Λ3 and m2, 3 flavors between m2 and m3, 6 flavors between m3 and m1 and 9

flavors between m1 and MGUT. At leading order, this leads to
(

2π

α(µ)

)2

= [9 ln(m2/Λ3) + 6 ln(m3/m2) + 3 ln(m1/m3)]
2 − 48 ln(µ/m1) (7.19)

= 9 ln2(m1m2m3/Λ
3
3) − 48 ln(µ/m1)

where m1 < µ < MGUT. With the generic numbers Λ3 = 5 TeV, m2 = 9 TeV and m3 = 12 TeV,

asking for the Landau pole to be above the GUT scale leads to m1 & 4× 104 TeV. This is quite

a large hierarchy of scales for the ISS masses. Indeed it is so large that it ruins standard model

gauge coupling unification. With this spectrum of trianons, in the one loop approximation,

α1(MGUT) is ∼ 20 % away from the value it should be for unification.
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The best way to circumvent this hierarchy is to assume that the theory is an SUP (4) with

NF = 9 flavors which is Higgsed to the previous SUP (3) with NF = 9 flavors at a scale

determined by the VEV V4 of a chiral field in the NF = 9, NC = 4 model. Now the (mild)

hierarchy of scales becomes Λ3 < m2 < m3 < m1 < V4 < MGUT. Following the same analysis

as shown above, the constraint on the VEV follows from

2π

α(µ)
=

√
9 ln2(m1m2m3/Λ3

3) − 48 ln(V4/m1) + 3 ln(µ/V4) (7.20)

where V4 < µ < MGUT.

With Λ3 = 5 TeV, m2 = 9 TeV, m3 = 12 TeV and m1 = 15 TeV the theory is well-behaved

for V4 <∼ 50 TeV. The VEV cannot be pushed to very high scales due to the behavior of the

beta function when NF = 3NC .

There are certainly loci on the moduli space of the NF = 9, NC = 4 theory with this pattern

of Higgs VEVs. We have not investigated the origin of the potential which might fix the theory

at such a point. We have thus exhibited two possible mechanisms for avoiding a Landau pole in

the SUP (3) coupling below the GUT scale, but only one consistent with standard model gauge

coupling unification. The enhancement of the hidden sector gauge group introduces scales in

the same ballpark as the rest of the energy scales in the model. Adopting it, we incur a debt

to explain a new 10− 100 TeV scale Higgs mechanism, which we hope to repay at a later date.

7.6 Discrete R-symmetry

The R-charges in the Pyramid Scheme with a triplet of singlets follow the usual rules. Here

we look for a R-charge assignment which leads to the vanishing of the ’t Hooft operators for

SUP (4). Another constraint comes from the trilinear singlet-Higgs couplings, SiHuHd which

cannot be in the Lagrangian for all i = 1, . . . , 3. If they were, all singlets Si would have the same

R-charge and this is prohibited by the vanishing of the SUC(3) ’t Hooft operator. Therefore

one has to choose β3 = 0 with βi=1,2 arbitrary and then the Si=1,2 singlets share the same

R-charge. Denoting the R-charge of a field by the field itself, this implies S1 = S2 ≡ S. In the
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GUT notation, the extra matter fields are

SU1(3) SU2(3) SU3(3) SUP (3)

T1 3 1 1 3̄

T̄1 3̄ 1 1 3

T2 1 3 1 3̄

T̄2 1 3̄ 1 3

T3 1 1 3 3̄

T̄3 1 1 3̄ 3

Si=1,2,3 1 1 1 1.

(7.21)

As explained above, our goal is to find an approximate discrete R-symmetry which is exact in

the limit of zero c.c. and which allows only the terms needed in this limit. To simplify the

search, we will look at a continuous UR(1), of which we imagine only a discrete ZN subgroup

is fundamental. Therefore, all the following equations only have to be satisfied modulo N .

The only superpotential terms which are required at the renormalizable level are

WΛ=0 ⊃ SiTiT̄i, Si=1,2HuHd, HuQŪ, HdQD̄, HdLĒ, (LHu)
2 (7.22)

which implies that the R-charges satisfy

Ti=1,2 + T̄i=1,2 = 2 − S

T3 + T̄3 = 2 − S3

Hu = 2 −Hd − S

Ū = Hd + S −Q

D̄ = 2 −Hd −Q

Ē = 2 −Hd − L

since Si=1,2 ≡ S and the extra relation from the neutrino seesaw operator has still to be

taken into account. All remaining renormalizable superpotential terms must be forbidden by

the discrete R-symmetry otherwise we would expect them to be in the superpotential with

order 1 coefficients in the appropriate units. Moreover, dangerous higher-dimensional B and L

violating terms must be forbidden as well by the discrete R-symmetry to insure proton stability

on appropriate timescales.



138

The (approximate) UR(1) anomaly conditions are

SUP (4)2UR(1) ⇒ 2 · 4 + 3(T1 + T̄1 + T2 + T̄2 + T3 + T̄3 − 6)

= 8 − 6S − 3S3

SUC(3)2UR(1) ⇒ 2 · 3 + 6(Q− 1) + 3(Ū + D̄ − 2) + 4(T3 + T̄3 − 2)

= 3S − 4S3

SUL(2)2UR(1) ⇒ 2 · 2 + (Hu +Hd − 2) + 9(Q− 1) + 3(L− 1)

+4(T2 + T̄2 − 2) = 3(3Q+ L) − 8 − 5S.

These lead to the equation S3 = 9S − 8 and the ’t Hooft constraints

32 − 33S = 0

3(3Q+ L) − 8 − 5S = 0.

The dangerous renormalizable and higher-dimensional B and L violating superpotential and

Kähler potential terms (note that the neutrino seesaw operator is required) can be combined

into 13 groups,

G1 = {LLĒ, LQD̄, SLHu} ⇒ L−Hd

G2 = {ŪD̄D̄} ⇒ 3Q+Hd − S − 2

G3 = {LHu, QŪĒHd, ŪD̄
∗Ē, H∗

uHdĒ, QŪL
∗} ⇒ L−Hd − S

G4 = {S3LHu} ⇒ L−Hd + 8S − 8

G5 = {QQQL} ⇒ 3Q+ L− 2

G6 = {QQQHd, QQD̄
∗} ⇒ 3Q+Hd − 2

G7 = {Ū ŪD̄Ē} ⇒ 3Q+ L− 2S − 2

G8 = {LHuHdHu} ⇒ L−Hd − 2S + 2

G9 = {SLLĒ, SLQD̄, S2LHu} ⇒ L−Hd + S

G10 = {SŪD̄D̄} ⇒ 3Q+Hd − 2S − 2

G11 = {SS3LHu, S3LLĒ, S3LQD̄} ⇒ L−Hd + 9S − 8

G12 = {S3ŪD̄D̄} ⇒ 3Q+Hd − 10S + 6

G13 = {S2
3LHu} ⇒ L−Hd + 17S − 16.
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Moreover, the forbidden renormalizable superpotential terms can be combined into 12 groups,

G14 = {T1T̄1, T2T̄2, HuHd} ⇒ S

G15 = {T3T̄3} ⇒ 9S − 8

G16 = {S3HuHd} ⇒ 8S − 8

G17 = {S} ⇒ S − 2

G18 = {S2} ⇒ 2S − 2

G19 = {S3} ⇒ 3S − 2

G20 = {S3} ⇒ 9S − 10

G21 = {S2
3} ⇒ 18S − 18

G22 = {S3
3} ⇒ 27S − 26

G23 = {SS3} ⇒ 10S − 10

G24 = {S2S3} ⇒ 11S − 10

G25 = {SS2
3} ⇒ 19S − 18.

Operators in each group have the same R-charge (once one takes the d2θ for superpotential

terms into account). It is possible to forbid all dangerous terms with N = 13, and S = 12,

Q = 0, L = 1, and Hd = 3. With this choice all anomaly conditions are satisfied, only the

required terms do not break the discrete R-symmetry and thus none of the dangerous terms

are allowed. Notice moreover that the neutrino seesaw operator is allowed as required by this

choice of R-charges. Therefore one can engineer a generic superpotential of the form

WΛ=0 =

3∑

i=1

yiSiTiT̄i +

2∑

i=1

βiSiHuHd

+ λuHuQŪ + λdHdQD̄ + λLHdLĒ +
λν
mP

(LHu)
2 (7.23)

which is supplemented by the non-generic superpotential

δWΛ6=0 =

3∑

i=1

(
miTiT̄i +M2

i Si
)

+W0 (7.24)

when the c.c. is turned on. Note that in these equations λu,d,L,ν are all matrices in generation

space.

7.7 Conclusions

When combined with fairly broad brush phenomenological requirements, the idea of CSB is

constrained in quite a remarkable manner. The strongest constraints come from the combination
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of the low scale of SUSY breaking required by CSB, and coupling unification. Most models of

gauge mediation, both direct and with an intermediate messenger sector, are ruled out. The

only models we have found, which satisfy these constraints, are variations on the Pyramid

Scheme.

In this paper, we pointed out two new constraints and proposed a class of models that

satisfies them. The first constraint comes from the fundamental requirement that the LEFT of

a theory of stable dS space, must be above the Great Divide. On the other hand, we showed

that flat space field theory models, with a meta-stable SUSY violating vacuum and a SUSic

vacuum a distance M ≪ mP away in field space (and no unnatural fine tuning besides the

tuning of the c.c.), are all below the Great Divide.

CSB requires very low scale SUSY breaking, so the only way to achieve this is for the

LEFT to have no SUSic vacuum at all. The seminal paper of Nelson and Seiberg shows us

that this is achievable in a generic manner, only if the model has an unbroken UR(1), which is

spontaneously broken. This however is incompatible with the requirements of CSB, according

to which a discrete R-symmetry and a SUSic vacuum are both restored in the Λ = 0 limit.

Explicit R-violating terms are then supposed to remove the SUSic vacuum. We argued that

there is no reason to assume those R-violating terms obeyed the rules of quantum field theory

naturalness. We exhibited an explicit variation on the Pyramid Scheme, with a separate singlet

for each leg of the Pyramid, which satisfied all these requirements.

The second issue we studied was the occurrence of Landau poles below the GUT scale in the

hidden sector gauge coupling. We argued that to avoid these, preserving the phenomenological

successes of the model, we either had to take one R-violating trianon mass to be very large & 4×

104 TeV, or embed SUP (3) in SUP (4) with a Higgs mechanism at <∼ 50 TeV. However, the first

idea ruins standard model gauge coupling unification. Thus, the only scheme consistent with

CSB, with gauge coupling unification, and with standard model phenomenology is a pyramid

with an SU(4) apex, reduced to the NF = NC = 3 model by a combination of the Higgs

mechanism and trianon masses. All of the scales of the model are in the 1 − 100 TeV regime.

We have not yet investigated the dynamical mechanism which could account for this new Higgs

mechanism, which breaks SUP (4) to SUP (3).

Finally, everything is connected in the Pyramid Scheme, and we were forced to revisit the

issue of the discrete R-symmetry group and its role in suppressing dimension four and five

operators that violate B and L. The simplest model we found uses a Z13 R-symmetry group.
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Chapter 8

Gamma Ray Spectra from Dark Matter Annihilation and

Decay

8.1 Introduction

In this chapter we discuss in detail the findings of the work done in collaboration with S. Thomas,

J. Shelton and Y. Zhao [28].

Recently several experiments (ATIC [23], H.E.S.S. [24, 25], PAMELA [26], FERMI [27])

have detected an anomaly in the cosmic ray electron spectrum, measuring an excess in the

high-energy positron flux compared to usual diffusion models. Such an excess was not found

for antiprotons [209]. One was thus led to conjecture a new source of primary electrons and

positrons. The most likely sources advanced to explain this anomaly are nearby pulsars or dark

matter (DM) annihilation/decay [210, 211]. In any case, the issue related to the identity of the

new source (pulsars versus DM) will be clarified by the photon spectrum which will be measured

by FERMI and announced later this summer. Indeed, there is an irreducible background of

gamma ray photons coming from final state radiation (FSR) from electrons and/or positrons.

Nearby pulsars would lead to a local photon spectrum while DM would instead generate a

diffuse photon spectrum.

The existence of DM is well established, although its particle identity is still unknown.

Assuming that DM annihilation/decay is the new source of primary electrons and positrons,

several scenarios are possible (see [212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,

224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236] for related work). Apart from

FSR of photons, DM might also annihilate/decay directly to photons. Different photon spectra

are expected from each annihilation/decay mode and a knowledge of the achievable spectra will

help physicists understand the properties of DM at the particle level.

In Section 8.2, we discuss direct production of photons from DM annihilation/decay through

subsequent two-body decay chains. In Section 8.3, we study the irreducible photon background

from charged particles, considering only the dominant process (either FSR of photons or photon
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production from higher-order operators). Next, in Section 8.4 we consider direct photon pro-

duction from taus. Finally, Section 8.5 contains a summary of the results and a comparison of

the different photon spectra and total fluxes obtained from the density of states (DOS). Various

detailed computations are left for the Appendix.

Since we want to address both annihilation and decay, we compute photon DOS throughout

the paper, which it only differs from the spectrum by a constant factor, namely the total number

of photons. One can write the DOS as

1

Nγ

dNγ
dEγ

=
1

〈σv〉
d〈σv〉
dEγ

or
1

Nγ

dNγ
dEγ

=
1

Γ

dΓ

dEγ
,

as distinct from the photon spectra
dNγ

dEγ
. The photon DOS are thus normalized to 1, i.e.

∫
dEγ

1
Nγ

dNγ

dEγ
= 1, except for FSR where the DOS is normalized with respect to the zeroth-order

annihilation cross-section/decay width (see Section 8.3). Thus, the total number of photons Nγ ,

given by Nγ =
∫
dEγ

dNγ

dEγ
, can be found from the photon multiplicity. For example, a scenario

where DM annihilates/decays to two scalar bosons which subsequently decay to two photons

each would have a total number of photons given by Nγ = 4. Since we focus on the photon

DOS, all the results are applicable to both DM annihilation and decay, which can be assessed

simultaneously by taking the parameter M to be 2mDM for DM annihilation or mDM for DM

decay.

Since backgrounds fall roughly like E2
γ , we plot the photon DOS as a function of the dimen-

sionless photon energy 2Eγ/M with an extra E2
γ factor. This is consistent with the standard

representation used by experiments. The M/2 factor appearing in the plots is to make the

quantities dimensionless, where M/2 usually is the maximal energy a photon can get during a

process.

Throughout this paper we assume that DM annihilates/decays only to leptons or photons

as indicated by the experiments. Moreover, we assume that DM annihilation always occurs

in the s-wave approximation. Under this assumption, we can eliminate the operators that can

only contribute in p-wave or higher-order waves when we do operator analysis in later sections.

Furthermore, DM annihilation to leptons or photons is allowed whatever the particle identity

of DM (scalar boson, fermion or gauge boson). However, with the assumptions that standard

model particles are not charged under hidden symmetries and that individual lepton numbers

are conserved, DM decay to leptons or photons is allowed only for scalar boson and abelian

gauge boson DM.

Issues related to the overall annihilation cross-sections/decay rates (Sommerfeld enhance-

ment, non-thermal DM production, etc) and the irreducible astrophysical photon background
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(inverse Compton scattering from starlight and CMB, synchrotron radiation from galactic mag-

netic fields) will not be investigated.

8.2 Direct production of photons through subsequent two-body decay

chain

In this section, we analyze direct production of photons through subsequent two-body decay

chains produced by DM annihilation/decay. We assume the whole process is a chain with k

steps of the form φi−1 → 2φi, where the last φ will decay to two photons, thereby giving 2k

photons as the final products. In Appendix 8.7, we give a general way to calculate the DOS for

two-body decay chains with on-shell intermediate particles. In following subsections, we simply

show some results for different scenarios.

8.2.1 DM + DM → 2γ and DM → 2γ

We first start with the simplest case where DM annihilates/decays directly to two photons.

Since DM particles are almost stationary in the galactic frame, the photon DOS is a pure delta

function,

1

Nγ

dNγ
dEγ

= δ

(
Eγ −

M

2

)
. (8.1)

Since Nγ = 2 the photon spectrum is simply twice the photon DOS.

8.2.2 DM + DM → 2φ and DM → 2φ followed by φ→ 2γ

To compute the photon DOS when DM annihilates/decays to two bosons which subsequently

decay to two photons each, we must first boost the DOS obtained in the previous subsection and

convolve it with the appropriate DOS of DM annihilation/decay to two bosons as explained in

Appendix 8.7. Because the energy of the φ boson is always M
2 and the direction of the photon

in the boson rest frame is uniform, we can simply boost the delta function into the DM center

of mass frame to obtain the photon DOS,

1

Nγ

dNγ
dEγ

=
2

M

√
1 − 4m2

φ

M2

, (8.2)

where the photon energy is between

M

4


1 −

√

1 −
4m2

φ

M2


 < Eγ <

M

4


1 +

√

1 −
4m2

φ

M2



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and mφ is the boson mass. As expected the photon DOS is normalized to one and the photon

spectrum is four times the photon DOS (Nγ = 4). Notice that in the limit where mφ = M
2 ,

in which case the two φ bosons are produced at rest in the DM center of mass frame, the

photon DOS becomes a delta function and matches the photon DOS obtained in the previous

subsection. This is easily understood since in this limit the φ bosons are stationary and decay

to two photons each as in the previous subsection, only the delta function support and the DOS

normalization change.

8.2.3 DM + DM → 2φ and DM → 2φ followed by φ→ 2π and π → 2γ

When DM annihilates/decays to two φ bosons which decay to two π bosons and finally decay

to two photons, the photon DOS can again be computed by boosting the DOS obtained in

the previous subsection and convolving the result with the appropriate DOS of DM annihila-

tion/decay to two bosons. As shown before, the φ DOS is a delta function and the π DOS is a

step function. However the photon DOS gets complicated since, for a fixed photon energy, not

all π with energy in the support of the step function can contribute. Indeed we have to calculate

the minimum and maximum allowed π energies which can generate the relevant photon energy

and compute the photon DOS accordingly. Detailed computations are discussed in Appendix

8.7. Defining the boson masses as mφ and mπ the photon DOS is

1

Nγ

dNγ
dEγ

= A






ln
[
Emax

π +|~p max
π |

mπ

2Eγ

mπ

]
for Emin

γ (Emax
π ) < Eγ < Emin

γ (Emin
π )

ln
[
Emax

π +|~p max
π |

Emin
π +|~p min

π |

]
for Emin

γ (Emin
π ) < Eγ < Emax

γ (Emin
π )

ln
[
Emax

π +|~p max
π |

mπ

mπ

2Eγ

]
for Emax

γ (Emin
π ) < Eγ < Emax

γ (Emax
π )

(8.3)

where

A =
2

M

√
1 − 4m2

φ

M2

√
1 − 4m2

π

m2
φ

Emin
π =

M

4


1 −

√

1 −
4m2

φ

M2

√
1 − 4m2

π

m2
φ




Emax
π =

M

4



1 +

√

1 −
4m2

φ

M2

√
1 − 4m2

π

m2
φ





and |~pπ| =
√
E2
π −m2

π. The limits on the photon energy Eγ are found using

Emin
γ (Eπ) =

Eπ
2

(
1 −

√
1 − m2

π

E2
π

)

Emax
γ (Eπ) =

Eπ
2

(
1 +

√
1 − m2

π

E2
π

)
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Figure 8.1: Photon spectral distribution for DM+DM → 2φ and DM → 2φ followed by φ→ 2π
and π → 2γ with M = 2000 GeV, mφ = 400 GeV and mπ = 0.14 GeV. The distributions peaks
at 2Eγ/M = (Emax

π + |~p max
π |)/Me1/2, where e ≃ 2.718; for the parameters here the peak is at

2Eγ/M ≃ 0.581.

where Emin
γ (Emax

π ) < Emin
γ (Emin

π ) < Emax
γ (Emin

π ) < Emax
γ (Emax

π ). E
min/max
γ (Emin

π ) is the min-

imum/maximum photon energy that can be generated by a π boson with minimum energy

and similarly for E
min/max
γ (Emax

π ). Again the photon DOS is canonically normalized while the

photon spectrum is normalized such that the total number of photons is 8 (Nγ = 8) and it is

shown in figure 8.1 for some given boson masses.

There are three parts in the DOS. The first part of the DOS increases with the photon energy

Eγ logarithmically, then in the second part the DOS is constant independent of the photon

energy Eγ and in the third part the DOS decreases with the photon energy Eγ logarithmically.

With the parameters we chose for figure 8.1, the first part is outside the plot, the second part

corresponds to the straight line in the low-energy regime and, since the DOS is not smooth,

connects with the third part at the kink located at 2Eγ/M = 2Emax
γ (Emin

φ ) ≃ 0.04.

As a consistency check, we can again match the DOS obtained here with the DOS obtained

in the previous subsections by taking different limits on the mass ratios. Indeed, by taking
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the limits mπ

mφ
= 1

2 or
mφ

M = 1
2 (but not both) the DOS becomes a step function because, in

such limits, there are two particles produced at rest in the center of mass frame of the parent

particle(s). Moreover in the limit where both mπ

mφ
= 1

2 and
mφ

M = 1
2 the DOS becomes a delta

function since, in that limit, DM annihilates/decays to two stationary φ bosons, and both φ

decay to two stationary π bosons, which finally decay to a total of eight photons, each of them

taking 1
8 of the initial energy M .

If we take generic values for the two mass ratios mπ

mφ
and

mφ

M , the third part of the DOS,

which decreases as − ln(Eγ), dominates the DOS (it has the largest support). Also, adding more

steps to the decay chain results in a softer photon DOS, a general trend which is intuitively

expected since the total energy is distributed among a larger number of particles.

8.2.4 DM + DM → Nφ and DM → Nφ followed by φ→ 2γ

Finally, we study DM annihilation/decay to N φ bosons which then decay to two photons

each. The computation is done in the massless limit, i.e. mφ = 0. This scenario occurs

for example when two strongly-coupled bound states annihilate to very light pseudo Nambu-

Goldstone bosons (pions in the QCD analogy) which then decay to two photons [10]. In the

massless limit, the φ boson DOS, assuming constant matrix element, can be computed by

dimensional analysis and is given by

1

Nφ

dNφ
dEφ

=
2(N − 1)(N − 2)(M − 2Eφ)

N−32Eφ
MN−1

(8.4)

where 0 < Eφ <
M
2 . Therefore the photon DOS is simply

1

Nγ

dNγ
dEγ

=
2(N − 1)(M − 2Eγ)

N−2

MN−1
(8.5)

where 0 < Eγ <
M
2 (more detail is given in Appendix 8.7). The photon DOS is canonically

normalized and the photon spectrum is normalized to Nγ = 2N . When N = 2 this result

is equivalent to the scenario discussed in subsection 8.2.2, equation (8.2), with mφ = 0. The

photon DOS for different N is shown in figure 8.2. One can easily see that the width grows

with N .

8.3 Photons from final states with charged particles

In this section, we analyze the irreducible photon background coming from charged particles,

considering only the dominant process, i.e. either FSR of photons or direct photon production

from higher-order operators.
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Figure 8.2: Photon spectral distributions for DM + DM → Nφ and DM → Nφ followed by
φ → 2γ in the limit M ≫ mφ, for N = 2, 3, 5, 10 and 20. All the distributions peak at
2NEγ/M = Eγ/(E

max
γ /N) = 2.

For DM annihilation, FSR is the dominant process unless DM is a scalar boson or a Majorana

fermion which annihilates directly to an electron-positron pair. For DM decay, FSR is the

dominant process unless DM is a scalar boson which decays directly to an electron-positron

pair. Indeed, in these specific cases FSR is small due to a large chiral suppression (in the s-wave

approximation for the annihilation scenarios), and might or might not be the dominant process

according to the typical scale of the leading higher-order operators.

Here we will study two different modes which contribute to the photon DOS: DM annihila-

tion/decay to one electron-positron pair and DM annihilation/decay to one boson pair which

subsequently decay to one electron-positron pair each.
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Figure 8.3: Photon spectral distribution for DM + DM → e+ + e− + γ and DM → e+ + e− + γ
from FSR with M = 2000 GeV. The distribution peaks at 2Eγ/M = x where x is the solution
of x(x2−2x+2)/[(1−x)(3x2−4x+2)] = ln

[
M2(1 − x)/m2

e

]
; for the parameters here the peak

is at 2Eγ/M ≃ 0.962.

8.3.1 DM + DM → e+ + e− + γ and DM → e+ + e− + γ

Final state radiation of photons

For direct DM annihilation/decay to one electron-positron pair, the photon DOS from FSR of

a single photon from the electron or the positron, in the collinear limit (a formula at leading

order in the electron mass is given in Appendix 8.8), is simply given by [237]

1

Nγ

dNγ
dEγ

≃ α

π

(
M2 + (M − 2Eγ)

2

M2Eγ
ln

[
M(M − 2Eγ)

m2
e

])
(8.6)

where Ed < Eγ <
M
2

(
1 − 4m2

e

M2

)
and the DOS is shown in figure 8.3. Since this DOS has a

logarithmic soft divergence, we choose to normalize it with respect to the zeroth order approxi-

mation in α, i.e. σDM+DM→e++e− for annihilation and ΓDM→e++e− for decay. Notice here that

the photon spectrum is the same than the photon DOS.
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Direct photon production from higher-order operators

Photons from FSR off electrons may not always be the leading contribution to the spectrum.

The smallness of the electron mass can lead to a large chiral suppression for FSR relative to other

processes, which may cause the leading photon-generating process to be one where photons are

directly generated associated with the e+e− pair. In a low-energy effective theory, one can write

such processes as higher-order operators, assuming the particle mediating the process is heavy.

We will show below that, when the scale of the higher order operators Mint is low, there is a

regime where the higher-order operators dominate over FSR for the following scenarios: direct

scalar boson or Majorana fermion DM s-wave annihilation to one electron-positron pair and

direct scalar boson DM decay to one electron-positron pair.

For all three scenarios (scalar boson DM annihilation, Majorana fermion DM annihilation

and scalar boson DM decay), the higher-order operators share a common piece constructed

from Standard Model fields, given by e†σ̄µeFαβ or ē†σµēFαβ . The only differences in the

higher-order operators are in the piece constructed from DM fields. However, in the s-wave

approximation, the DM piece only contributes different constant coefficients to the spectra of

these scenarios. Since we are calculating the DOS instead of the spectrum, that difference will

be exactly canceled by normalization. Thus, all three scenarios yield a common expression for

the DOS.

Within our assumptions, the photon DOS from the leading contact interactions (as discussed

below) is given by

1

Nγ

dNγ
dEγ

=
320(M − 2Eγ)E

3
γ

M5
(8.7)

in the limit of vanishing electron mass, where Emax
γ = M/2. The photon distribution for this

spectrum is shown in figure 8.4. The photon energy varies in the range 0 < Eγ <
M
2 and the

DOS is normalized to 1. Once again, the photon spectrum is the same as the photon DOS in

this case.

Final state radiation versus direct photon production

When scalar boson or Majorana fermion DM annihilates directly to one electron-positron pair or

scalar boson DM decays directly to one electron-positron pair, higher-order operators dominate

photon production for small Mint while FSR dominates for large Mint. Here we give the leading

operators responsible for both processes in each DM scenario and determine the critical scale

M∗
int below which higher order operators are the dominant contribution to the photon DOS.

We use two-component spinor notation [238].
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Figure 8.4: Photon spectral distribution for DM + DM → e+ + e− + γ and DM → e+ + e− + γ
from the leading short-range contact interaction for scalar boson or Majorana fermion s-wave
annihilation, or scalar boson decay, in the limit M ≫ me. The distribution peaks at 2Eγ/M =
Eγ/E

max
γ = 5/6.

For scalar boson DM φ annihilating directly to one electron-positron pair, FSR is generated

mainly by the dimension 6 operator

LFSR ⊃ hme

M2
int

φ†φ(ēe+ ē†e†), (8.8)

while direct photon production is generated from dimension 8 operators through the following

effective Lagrangian

Leff ⊃
√

4πα

M2
int

∂µ(φ†φ)(e†σ̄νe)[aLFµν + bLF̃µν ] + {L→ R, e→ ē} (8.9)

where the coupling constants {h, aL, bL, aR, bR} should naturally be order one numbers. A

similar operator has also been considered in Ref [233]. The relevant cross-sections are 〈σFSRv〉 ≈

cFSRα
m2

e

M4
int

ln
(

4m2
φ

m2
e

)
and 〈σeffv〉 ≈ ceffα

(2mφ)6

M8
int

, where cFSR ∝ h2 and ceff ∝ a2
L + · · · include

the appropriate order one coupling constants together with the factors from the phase space

integration.

When Majorana DM χ annihilates directly to one electron-positron pair, FSR is generated
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mainly by the dimension 6 operator

LFSR ⊃ hL
M2

int

(χ†σ̄µχ)(e†σ̄µe) + {L→ R, e→ ē}, (8.10)

while direct photon production is generated from dimension 8 operators through the following

effective Lagrangian

Leff ⊃
√

4πα

M4
int

(χ†σ̄µχ)(e†σ̄νe)[aLFµν + bLF̃µν ] + {L→ R, e→ ē} (8.11)

where again the coupling constants {hL, aL, bL, hR, aR, bR} should naturally be order one num-

bers. The relevant cross-sections are 〈σFSRv〉 ≈ cFSRα
m2

e

M4
int

ln
(

4m2
χ

m2
e

)
and 〈σeffv〉 ≈ ceffα

(2mχ)6

M8
int

,

where cFSR ∝ h2
L + h2

R and ceff ∝ a2
L + · · · again include the appropriate order one coupling

constants together with the factors from the phase space integration.

Finally, when scalar boson DM φ decays directly to one electron-positron pair, FSR is

generated mainly by the dimension 5 operator

LFSR ⊃ hme

Mint
φ(ēe+ e†ē†) (8.12)

while direct photon production is generated from dimension 7 operators through the following

effective Lagrangian

Leff ⊃
√

4πα

M3
int

∂µφ(e†σ̄νe)[aLFµν + bLF̃µν ] + {L→ R, e→ ē} (8.13)

where again the coupling constants {h, aL, bL, aR, bR} should naturally be order one numbers.

This operator has also been considered in Ref [233]. The relevant decay rates are ΓFSR ≈

cFSRα
m2

emφ

M2
int

ln
(
m2

φ

m2
e

)
and Γeff ≈ ceffα

m7
φ

M6
int

, where again cFSR ∝ h2 and ceff ∝ a2
L + · · · include

the appropriate order one coupling constants together with the factors from the phase space

integration.

For all scenarios both processes (final state radiation and direct photon production) have

comparable contributions when

M∗
int ≈M

(
M

me

) 1
2
[

h2
L + h2

R

a2
L + b2L + a2

R + b2R
ln

(
M2

m2
e

)]− 1
4

≈ 106 GeV (8.14)

where to assume a numerical estimate we assumed order one coupling constants andM ≈ 1 TeV.

Therefore higher-order operators dominate over FSR for Mint . M∗
int while FSR dominates over

higher-order operators for Mint & M∗
int. Obviously for the scalar boson DM decay the decay

rates are taken to be small enough such that DM is long-lived. This is possible if the operator

coefficients are small, which occurs for example when the effective dimension of the scalar boson

DM is higher. This is the case when the scalar boson DM is a composite field (like a glueball).
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In this case, equation (8.14) is still valid since the effective dimensions of the operators for both

final state radiation and direct photon production increase together. A more detailed analysis

can be found in Appendix 8.9.

8.3.2 DM + DM → 2φ and DM → 2φ followed by φ→ e+ + e− + γ

Here the computation of the photon DOS involves once more a convolution of the boosted (FSR

or higher-order operators) photon DOS obtained in section 8.3.1 with the appropriate DOS of

DM annihilation/decay to two bosons as described in Appendix 8.7.

Final state radiation of photons

Defining the boson mass as mφ, the photon DOS from FSR of a single photon from the electrons

or the positrons is thus

1

Nγ

dNγ
dEγ

≃ α

π

1√
E2
φ −m2

φ






f
(

2Eγ

Eφ−|~pφ|

)
− f

(
2Eγ

Eφ+|~pφ|

)
for Ed < Eγ < Eint

γ

f
(
1 − 4m2

e

m2
φ

)
− f

(
2Eγ

Eφ+|~pφ|

)
for Eint

γ < Eγ < Emax
γ

(8.15)

where the function f is

f(x) =
x2 + x− 2

x
ln

(
m2
φ(1 − x)

m2
e

)
− x+ 1

− 2

[
1 − ln

(
m2
e

m2
φ

)]
ln(x) + 2 dilog(1 − x) (8.16)

and the boson energy and momentum are Eφ = M
2 and |~pφ| = M

2

√
1 − 4m2

φ

M2 respectively. The

limits on the photon energy are

Eint
γ =

Eφ − |~pφ|
2

(
1 − 4m2

e

m2
φ

)
and Emax

γ =
Eφ + |~pφ|

2

(
1 − 4m2

e

m2
φ

)
.

The photon spectrum is simply twice the photon DOS (Nγ = 2) which is shown in figure 8.5

for a given boson mass.

Again it is possible to relate the FSR photon DOS of this subsection to the FSR photon

DOS of the previous subsection by letting the boson mass approach half the parameter M ,

i.e. mφ = M
2 . This corresponds to DM annihilation/decay to two bosons at rest in the DM

center of mass frame which subsequently decay to one electron-positron pair each with a single

FSR photon. Notice that, in this limit, the (E2
φ −m2

φ)
− 1

2 prefactor in the photon DOS is very

important for the matching to work.
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Figure 8.5: Photon spectral distribution for DM + DM → 2φ and DM → 2φ followed by
φ → e+ + e− + γ from FSR with M = 2000 GeV and mφ = 400 GeV. The distribution peaks
at 2Eγ/M ≃ 0.394.

Direct photon production from higher-order operators

As previously shown, photon production from scalar boson decay to electron-positron pair is

not dominated by FSR when the typical scale of the interactions Mint is low. In that case, the

photon DOS from higher-order operators is given by

1

Nγ

dNγ
dEγ

=





160[2m2
φ(M2−m2

φ)−3M(M2−2m2
φ)Eγ ]E3

γ

3m8
φ

for 0 < Eγ <
Eφ−|~pφ|

2

5[(Eφ+|~pφ|)4−16(2Eφ+2|~pφ|−3Eγ)E3
γ ]

3|~pφ|(Eφ+|~pφ|)4 for
Eφ−|~pφ|

2 < Eγ <
Eφ+|~pφ|

2

(8.17)

where the boson energy and momentum are Eφ = M
2 and |~pφ| = M

2

√
1 − 4m2

φ

M2 respectively. The

photon DOS, which is shown in figure 8.6, is canonically normalized and the photon spectrum

is simply twice the photon DOS (Nγ = 2). Once more, it is possible to relate the photon

DOS obtained in this subsection to the photon DOS obtained in the previous subsection for

higher-order operators by taking the limit mφ = M
2 .



154

0.1 1

1E-3

0.01

0.1

 

 

 2E M

 
 

d N
 N d E

E 22
M

Figure 8.6: Photon spectral distribution for DM + DM → 2φ and DM → 2φ followed by
φ → e+ + e− + γ from the leading short-range contact interaction with M = 2000 GeV and
mφ = 400 GeV, and neglecting the electron mass. The distribution peaks at 2Eγ/M ≃ 0.577.

8.4 Photons from taus

Tau leptons represent another interesting decay mode for dark matter annihilation/decay. Since

baryon number is conserved in tau decays, and the tau mass is less than the sum of the proton

and neutron masses, mτ < mp +mn, tau decays include only (anti)leptons and (anti)mesons,

with no (anti)baryons. Dark matter that annihilates/decays preferentially to tau leptons is

therefore not necessarily in conflict with stringent limits on the antiproton flux in cosmic rays.

However, tau leptons do provide an interesting source of photons since tau decays include a

significant fraction of neutral pions, τ → X+π0, that subsequently decay to photons, π0 → 2γ.

The average number of π0 produced in a single τ decay is approximately 〈Nπ0〉 ≃ 0.51,

giving an average of roughly one photon per τ decay, Nγ/Nτ ≃ 1. Most π0 from τ decays come

from the hadronic one-prong decay modes τ− → ντ + ρ− → ντ + π− + π0 (branching fraction

25.4%) and τ− → ντ +a−1 → ντ +π−+2π0 (branching fraction approximately 9% [239]). These

two decay modes account for approximately 85% of all the neutral pions arising from τ decay.
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The other main sources of neutral pions are the three-prong mode τ− → ντ + 2π− + π+ + π0

(branching fraction 4.3%) and the one-prong mode τ− → ντ + π− + 3π0 (branching fraction

1.1%), as well as continuum contributions. All branching fractions are taken from the PDG

[240]. Below we include only the dominant decays through the ρ and a1 resonances.

To obtain the photon DOS we first need to obtain the DOS of neutral pions. We have

explicitly computed the contribution to the pion spectrum from the principal decay modes,

with intermediate ρ and a1 vector meson resonances. The general τ differential decay rate takes

the form

dΓ ∝
∫
dΠ2(τ → ντ + v) dm2

v dΠn(v → nπ)

× |M̌µ,±(τ → ντ + v)Pµνv (m2
v)M̂ν(v → nπ)|2 (8.18)

The π0 DOS is obtained by removing a single π0 from the final state phase space integration.

Here Pµνv (m2
v) is the vector meson propagator, M̌µ,±(τ → ντ + v) denotes the matrix element

for a τ of helicity h = ± 1
2 corresponding to right- or left-handed respectively, to decay to a

vector meson, and M̂ν(v → nπ) denotes the matrix element for the vector meson to decay to

n pions.

First consider the decay through the ρ resonance. Obtaining the pion spectrum from the

sequence of two-body cascades τ → ν + ρ→ ν + 2π uses many of the techniques as used in the

scalar cascades in Section 8.2. The major differences are first, nonconstant matrix elements,

resulting from the nonzero spin of the intermediate ρ, and second, the large decay width of

the ρ, which necessitates the use of a Breit-Wigner with a running width. We use a ρ mass

and width of m0,ρ = 770 MeV and Γ0,ρ = 150 MeV. Next consider the decay through the

a1 resonance which differs from the ρ mode in that the final decay a1 → 3π is not two-body.

The spectrum of the observed pion therefore requires additional integrations over the phase

space of the unobserved pions in the final state. Following [239, 241], we use relatively simple

parameterizations given in [242] for both the a1 → 3π matrix element and running width. We

use an a1 mass and width of m0,a = 1.22 GeV and Γ0,a = 420 MeV.

The photon DOS may be obtained from the pion DOS by convolution, as before. We work

in the collinear limit M ≫ mτ in which the components of the π0, and therefore photon,

momentum transverse to the tau direction of motion in the original annihilation/decay frame

are irrelevant. The results for the normalized photon DOS under the assumption that the DM

annihilates/decays to a single tau-antitau pair are well fit by the parameterized functional form

Emax
γ

Nγ

dNγ
dEγ

= f(Eγ/E
max
γ )e−g(Eγ/E

max
γ ) (8.19)
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Figure 8.7: Photon spectral distribution for DM + DM → 2τ and DM → 2τ followed by
τ → X + π0 and π0 → 2γ in the limit M ≫ mτ . The distribution peaks at 2Eγ/M =
Eγ/E

max
γ ≃ 0.307.

where Emax
γ = M/2, and

f(x) = xa
4∑

n=0

bnx
n

g(x) =

3∑

n=1

cnx
n. (8.20)

For positive helicity or right-handed taus the best fit parameters are a+ = −0.192, b+,i =

{4.24,−2.46,−16.96, 35.85,−21.17}, c+,i = {8.94,−16.10,−19.45}, while for negative helicity

or left-handed taus the best fit parameters are a− = −0.040, b−,i = {6.42, 4.96,−12.65, 0, 0},

c−,i = {7.36, 0, 0}. Similar distributions have also been obtained by fits to pythia decays in

[236]. The differences between the photon DOS arising from right- and left-handed taus are

only minor. It seems unlikely that a measurement of the photon spectrum alone could ever

distinguish the helicity of taus arising from DM annihilation/decay. The photon distribution

arising from DM annihilation/decay directly to a single tau-antitau pair and averaging over tau

helicity is shown in figure 8.7. In this case the photon spectrum is roughly twice the photon
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Figure 8.8: Photon spectral distribution for DM+DM → 2φ and DM → 2φ followed by φ→ 2τ
and τ → X + π0 and π0 → 2γ in the limit M ≫ mφ ≫ mτ . The distribution peaks at
2Eγ/M ≃ 0.192.

DOS, Nγ ≃ 2, since there is roughly one photon per tau on average and two taus per DM

annihilation/decay.

If we assume DM particles annihilate/decay to two intermediate bosons φ, each of which

subsequently decays to a tau-antitau pair, then we again need to boost the DOS obtained

above and convolve it with the appropriate DOS of DM annihilation/decay to two bosons, as

explained in Appendix 8.7. The final photon spectral distribution for this case in the collinear

limits M ≫ mφ ≫ mτ , and averaging over tau helicities is shown in figure 8.8. The photon

spectrum in this case is roughly four times the photon DOS, Nγ ≃ 4. We can see that the final

photon DOS is softer compared to Fig. 8.7 due to the extra intermediate state.
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8.5 Photon spectra and flux

8.5.1 Photon spectra

Strictly speaking, all computations we have performed so far are photon DOS in different

scenarios. The different photon DOS are superimposed in figure 8.9. However, in the likely

case where several scenarios add up, the different spectra must be added with the appropriate

weight. The full photon spectrum obtained is given by

dN total
γ

dEγ
=
∑

i

Br(i)
dN

(i)
γ

dEγ
(8.21)

where the sum is over all allowed scenarios i, with photon spectrum
dN(i)

γ

dEγ
and branching ratio

Br(i). In comparing with the background of gamma ray photons, the only difference between

DM annihilation and DM decay comes from the power of the DM density profile in the appro-

priate equations as discussed in the next subsection.

8.5.2 Photon flux

An observation of gamma rays from dark matter annihilation/decay involves not only the spec-

trum but also the absolute magnitude. The photon flux

Φγ ≡ dNγ
dAdtdΩ

(8.22)

where dA and dΩ are the detector area and solid angle elements, can be computed from an

integral over the source along the line of sight (los) [243] since gamma rays are not significantly

attenuated on galactic length scales. For annihilation of a single species of DM particle that is

its own antiparticle the spectral flux is given by

dΦγ
dEγ

(Eγ ,Ω) =
〈σv〉

4πm2
DM

dNγ
dEγ

∫

los

ρ2
DM(r,Ω)dr (8.23)

where 〈σv〉 is the phase space averaged annihilation cross section times velocity, ρDM is the

dark matter density, and dNγ/dEγ is the photon spectrum with Nγ =
∫
dEγ(dNγ/dEγ) pho-

tons emitted per annihilation. If the DM is composed of distinct particle and antiparticle

particle species with equal densities that can annihilate only through the particle-antiparticle

channel, the flux equation (8.23) should be multiplied by an additional factor of 1
4 . In terms of

dimensionful units the annihilation spectral flux equation (8.23) may be written as

dΦγ(Eγ ,Ω)/dEγ
cm−2 · s−1 · sr−1

≃ 5.6 × 10−10

( 〈σv〉
3 × 10−26 cm3 · s−1

)(
100 GeV

mDM

)2
dNγ
dEγ

J2(Ω) (8.24)
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Figure 8.9: Photon spectral disbributions arising from different DM annihilation/decay scenarios
for M = 2000 GeV, mφ = 400 GeV and mπ = 0.14 GeV. For DM annihilation/decay to N
intermediate φ bosons the limit M ≫ mφ is presented with N = 10. For DM annihilation/decay
through intermediate τ ’s the limits M ≫ mτ or M ≫ mφ ≫ mτ are presented. In each case
the photon DOS is normalized to unit probability, except for FSR and Boosted FSR which are
normalized with respect to the leading decay without FSR.

where

J2(Ω) ≡ 1

8.5 kpc

(
1

0.3 GeV · cm−3

)2 ∫

los

ρ2(r,Ω)dr (8.25)

is a dimensionless order one factor that represents astrophysical parameters.

For decay of a single species of DM the spectral flux is given by

dΦγ
dEγ

(Eγ ,Ω) =
Γ

4πmDM

dNγ
dEγ

∫

los

ρDM(r,Ω)dr (8.26)

where Γ is the DM decay rate with Nγ =
∫
dEγ(dNγ/dEγ) photons emitted per decay. In terms

of dimensionful units the decay spectral flux may be written as

dΦγ(Eγ ,Ω)/dEγ
cm−2 · s−1 · sr−1

≃ 6.26 × 10−9

(
Γ

10−27 s−1

)(
100 GeV

mDM

)
dNγ
dEγ

J1(Ω) (8.27)

where

J1(Ω) ≡ 1

8.5 kpc

(
1

0.3 GeV · cm−3

)∫

los

ρDM(r,Ω)dr (8.28)
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is a dimensionless order one factor characterizing the astrophysical parameters. With the spec-

tral flux equations (8.23) and (8.26) comparisons with the gamma ray background are straight-

forward.

8.6 Conclusion

High-energy photons are hardly deflected when they propagate through the galaxy. This is an

advantage over charged particles, like electrons and positrons, which interact with the galactic

magnetic field. Moreover, once charged particles are accelerated, photons are always produced

due to radiation. The different photon spectra which arise in each process can provide in-

formation on the process(es) generating the photons. In this paper, we studied the spectra

of high-energy photons generated by various dark matter annihilation/decay scenarios includ-

ing: direct photon production from arbitrary two-body decay chains, final state radiation from

charged particles generated by dark matter annihilation/decay, direct photon production to-

gether with charged particles from higher-order operators, and the special case where photons

are produced from taus generated by dark matter annihilation/decay.

We noted also that, for processes which generate photons and leptons, effective field theory

allows a comparison between the spectra from final state radiation and the ones from direct

photon production due to higher-order operators. Interestingly, we found that while FSR is

the dominant source of photons in most cases, in certain cases (scalar dark matter annihila-

tion/decay and Majorana fermion dark matter annihilation), direct photon production from

higher order operators can dominate over final state radiation. In these three cases, for a dark

matter mass of O(1 TeV), we found that direct photon production from higher-order operators

dominates if the scale of the leading operator is lower than O(1000 TeV). Finally, it is also very

interesting to see that the hardest spectrum among the spectra studied here (see figure 8.9)

comes from these exceptions, i.e. direct photon production from higher-order operators.

Once the flux of cosmic gamma rays is measured, an eventual dark matter signal could be

compared with the different spectra presented here and a great deal of information on the nature

of dark matter at the particle physics level could be deduced.
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8.7 Appendix: Density of states

In this appendix we review how the DOS is obtained from general considerations. The DOS for

Φ annihilation/decay to φ is simply given by

1

N

dN

dE
=

1

〈σv〉
d〈σv〉
dE

and
1

N

dN

dE
=

1

Γ

dΓ

dE
(8.29)

respectively, and is thus normalized to one. For example, assuming constant averaged matrix

element squared, the DOS in the Φ center of mass frame for 2 → 2 annihilation in the s-wave

approximation and 1 → 2 decay is simply obtained from the phase space,

1

N

dN

dE
=

[∫
d3p

EdE

d3q

E′ δ
(4)(P − p− q)

]

×
[∫

d3p

E

d3q

E′ δ
4(M − p− q)

]−1

= δ

(
E − M

2

)
(8.30)

where Pµ = (M,~0) with M = 2mΦ for Φ annihilation and M = mΦ for Φ decay.

For Φ decay in a boosted frame, the DOS follows from Lorentz covariance. Indeed N ≡
∫
dE dN

dE is a Lorentz scalar thus NCM = NBoost. Therefore one can rewrite the boosted DOS

as

NBoost =

∫
dECMdzCM dNCM

dzCMdECM
=

∫
dEdzCM

∣∣∣∣
∂(ECM, zCM)

∂(E, zCM)

∣∣∣∣
dNCM

dzCMdECM

or
1

N

dNBoost

dE
=

∫
dzCM

∣∣∣∣
∂(ECM, zCM)

∂(E, zCM)

∣∣∣∣
1

N

dNCM

dzCMdECM
. (8.31)

Here zCM = cos θ = p̂Φ · p̂CM
φ is the angle between the boosted Φ and the unboosted φ. Since

the DOS in the Φ rest frame is uniform, then dNCM

dzCMdECM = 1
2
dNCM

dECM . Finally, the φ energy in the

Φ center of mass frame is related to the φ energy in the boosted frame by

E =
1

mΦ

(
ECMEΦ + zCM

√
ECM2 −m2

φ

√
E2

Φ −m2
Φ

)
. (8.32)

The bounds on E can be found from the bounds in the Φ center of mass frame plus the physical

constraint that −1 < zCM < 1. Boosting the DOS of the previous example in the frame where

Φ has four-momentum pµΦ = EΦ(1, p̂Φ

√
1 −m2

Φ/E
2
Φ), one gets

1

N

dNBoost

dE
=

1√
1 − 4m2

φ/m
2
Φ

1√
E2

Φ −m2
Φ

(8.33)

where the φ energy is bounded by

Emax =
EΦ

2

[
1 +

√
1 − 4m2

φ/m
2
Φ

√
1 −m2

Φ/E
2
Φ

]

Emin =
EΦ

2

[
1 −

√
1 − 4m2

φ/m
2
Φ

√
1 −m2

Φ/E
2
Φ

]
.
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Convolution and matching of DOS

For a two-body decay chain φ0 → 2φ1 to φk−1 → 2φk the DOS in the φ0 rest frame can be

found by iteration and is given by

1

Nk

dNk
dEk

=

∫
dEk−1 · · ·dE1

1

N1

dNCM
1

dE1

1

N2

dNBoost
2

dE2
· · · 1

Nk

dNBoost
k

dEk

=

∫
dEk−1

1

Nk−1

dNk−1

dEk−1

1

Nk

dNBoost
k

dEk
(8.34)

where the bounds are complicated functions of the energies. For example, with the same

assumptions as above, the two-body decay chain φ0 → 2φ1 followed by φ1 → 2φ2 gives

1

N2

dN2

dE2
=

∫
dE1

1

N1

dN1

dE1

1

N2

dNBoost
2

dE2

=

∫
dE1δ

(
E1 −

m0

2

) 1√
1 − 4m2

2/m
2
1

1√
E2

1 −m2
1

=
2

m0

√
1 − 4m2

1/m
2
0

√
1 − 4m2

2/m
2
1

(8.35)

where the φ2 energy is bounded by

Emax
2 =

m0

4

[
1 +

√
1 − 4m2

1/m
2
0

√
1 − 4m2

2/m
2
1

]

Emin
2 =

m0

4

[
1 −

√
1 − 4m2

1/m
2
0

√
1 − 4m2

2/m
2
1

]
.

By taking limits where intermediate particles are created at rest in the center of mass

frame of the parent particle, it is possible to match different DOS. Indeed in the limit where

mi+1 → mi

2 , the decay chain is effectively cut by one step, with all the previous steps being

unchanged, the i-th step being deleted and the subsequent steps being modified due to the

energy redistribution. The DOS satisfies

[
lim

mi+1→ mi
2

1

Nk

dNk
dEk

]

mi=2mi+1

=

[
1

Nk−1

dNk−1

dEk−1

]

m0=
m0
2 ,...,mi−1=

mi−1
2 ;mi=mi+1,...,mk−1=mk

(8.36)

where the ith step is not included on the LHS. This allows us to check the different DOS formula.

8.8 Appendix: FSR collinear divergence

In the calculation of FSR, it is necessary to deal with the collinear divergence, which appears

in the limit of vanishing electron mass. At finite electron mass, the three-body decay rate does

not suffer from a collinear divergence and it can be easily computed using Dalitz coordinates
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[237]. Here we show the result for φ → e+ + e− + γ, where the FSR comes from the following

vertex hme

Mint
φ(ēe+ ē†e†), with decay rate

dΓ

dEγ
=

αh2m2
e

8π2M2
int

(
m2
φ + (mφ − 2Eγ)

2

mφEγ
ln

[
mφ(mφ − 2Eγ)

m2
e

]

+
2(mφ − 2Eγ)

Eγ
+ O(m2

e)

)
. (8.37)

Such a spectrum has a soft photon divergence, so we choose to normalize the spectrum with

respect to its zeroth order approximation in α, which corresponds to the process φ→ e+ + e−,

i.e.
1

Nγ

dNγ
dEγ

≃ 1

Γφ→e++e−

dΓ

dEγ
(8.38)

where Γφ→e++e− =
h2m2

emφ

8πM2
int

.

The first term of the formula comes from long distance contributions since it is not sensitive

to the details of the vertex, and it diverges logarithmically when me goes to zero. The second

term remains finite when the massless limit is taken. This is the term which is dropped in the

collinear approximation, where only long distance contributions are kept. In the collinear limit

(see equation (8.41)), after the last term of equation (8.37) is dropped, one gets the photon

DOS equation (8.6) introduced in section 8.3.

Next, we consider the case where FSR comes from a decay chain with an additional step, i.e.

DM annihilates/decays to an intermediate particle φ, which subsequently decays to an e+e−

pair accompanied by a FSR photon.

In a frame where the intermediate particle φ has four-momentum pµφ = Eφ(1, p̂φ
√

1 −m2
φ/E

2
φ),

the boosted DOS can be found from the general formula. However, since the photon is massless,

the Jacobian simplifies greatly, leading to

dNBoost
γ

NγdEγ
=

∫
dzCM

2

mφ

Eφ + zCM
√
E2
φ −m2

φ

dNCM
γ

NγdECM
γ

(8.39)

The integral is easily done using the new variable w =
mφ

Eφ+zCM
√
E2

φ−m2
φ

, in terms of which

ECM
γ = wEγ . The bounds on w can be found from the bounds on ECM

γ due to the bounds on

Eγ in the original frame and from the physical constraint −1 < zCM < 1, giving two different

regimes,

mφ

Eφ +
√
E2
φ −m2

φ

< w < min





mφ

Eφ −
√
E2
φ −m2

φ

,
mφ

2Eγ

(
1 − 4m2

e

m2
φ

)

 (8.40)

as discussed in the text. Convolving this boosted DOS with the two-body decay DOS one

obtains the DOS for DM → 2φ followed by φ→ e+ + e− + γ mentioned above.
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8.9 Appendix: Higher-order operators

In some specific scenarios, FSR suffers a large chiral suppression due to the small electron

mass. In these cases, direct photon production from higher-order operators might dominate. In

this Appendix we determine the necessary conditions for which direct photon production from

higher-order operators dominates over FSR. To reach the most general conclusions, effective

field theory is used throughout the analysis. Therefore, the chirality rule, which states that

chirality-violating operators must come with an overall mass term, is enforced. Moreover, to

evaluate the appropriate FSR annihilation cross-section/decay rate, the collinear limit is taken

[244],

dXe++e−+γ

dx
≃ α

π

(
1 + (1 − x)2

x
ln

[
M2(1 − x)

m2
e

])
Xe++e−

⇒ XFSR ≈ α

π
Xe++e− ln

[
M2

m2
e

]
(8.41)

where x = 2Eγ/M and X = 〈σv〉 with M = 2mDM for DM annihilation or X = Γ with

M = mDM for DM decay respectively. Notice that for DM annihilation, DM is assumed to

be almost at rest, thus the s-wave approximation can be taken. The lowest-dimension electron

operators are given in table 8.1. When the operator does not violate chirality, only the operators

with e alone are considered since operators mixing e and ē will lead to chirality-suppressed

mixing terms. The photon can either appear in a covariant derivative, which is already taken

O(x) dim 〈e+e−|O|0〉 |M|2
me(ēe + e†ē†) 4 me[(y−y+) + (x†

−x
†
+)] 4m2

e[(p− · p+) − m2
e]

ime(ēe − e†ē†) 4 ime[(y−y+) − (x†
−x

†
+)] 4m2

e[(p− · p+) + m2
e]

me(ēσ
µνe + e†σ̄µν ē†) 4

ime(ēσ
µνe − e†σ̄µν ē†) 4

e†σ̄µe 3 (x†
−σ̄µy+) 2[pµ−p

µ′

+ + p
µ
+p

µ′

− − gµµ
′

(p− · p+) + iǫαµα
′µ′p−αp+α′ ]

∂ν(e†σ̄µe) 4
i(Dνe†σ̄µe − e†σ̄µDνe) 4

∂λ∂ν(e†σ̄µe) 5
i∂λ(Dνe†σ̄µe − e†σ̄µDνe) 5
DλDνe†σ̄µe + e†σ̄µDλDνe 5

i(DλDνe†σ̄µe − e†σ̄µDλDνe) 5

Table 8.1: Relevant electron-positron operators in the effective Lagrangian approach. The
empty boxes correspond to operators which are not needed in the analysis.

into account in the electron operators, or in the field strength tensor as in table 8.2. To simplify

the analysis, the Lorentz indices are kept free and are contracted with the appropriate tensors

(gµν or ǫµνλρ) only at the end of the analysis. In this way, one does not have to deal with the

complete set of operators at this stage of the analysis (for example, the operator corresponding

to the dual field strength tensor can be forgotten).
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O(x) dim 〈γ|O|0〉 |M|2
F µν 2 i(pµγǫ

ν∗ − pνγǫ
µ∗) −(pµγp

µ′

γ gνν
′ − pµγp

ν′

γ gνµ
′ − pνγp

µ′

γ gµν
′

+ pνγp
ν′

γ gµµ
′

)

Table 8.2: Relevant photon operators in the effective Lagrangian approach.

Scalar boson DM annihilation to e+ + e− + γ

The relevant lowest-dimension scalar boson operators are given in table 8.3. Combining oper-

O(x) dim 〈0|O|φ†φ〉 |M|2
(
|M|2

)
s−wave

φ†φ 2 1 1 1

∂µ(φ†φ) 3 −i(pµ∗ + pµ) (pµ∗ + pµ)(pµ
′

∗ + pµ
′

) 4m2
φδ

µ0δµ
′0

i(∂µφ†φ − φ†∂µφ) 3 (pµ∗ − pµ) (pµ∗ − pµ)(pµ
′

∗ − pµ
′

) 0

Table 8.3: Relevant scalar boson DM operators for DM annihilation.

ators of table 8.3 with operators of table 8.1, the leading operator for FSR seems to be con-

structed from ∂µ(φ†φ) and (e†σ̄µe). It is a dimension 6 operator and it is not explicitly chirality-

suppressed. However, in the s-wave approximation, pµ+ = (mφ, ~pe) and pµ− = (mφ,−~pe), thus

|〈e+e−|(e†σ̄0e)|0〉|2 = 2m2
e which is chirality-suppressed. Therefore, the leading FSR operators

are dimension 6 but are chirality-suppressed. For example, one such operator can be constructed

out of φ†φ and me(ēe+ e†ē†). The related FSR cross-section is

〈σFSRv〉 ≈ cFSRα
m2
e

M4
int

ln

[
4m2

φ

m2
e

]
(8.42)

where cFSR includes the operator coupling constant and the π factors from the phase space

integration.

For direct photon production from higher-order operators to dominate, the operators should

not be chirality-suppressed and/or should be of lower dimension. Combining again operators of

table 8.3 with operators of tables 8.1 and 8.2 such that one photon can be created in the final

state, the leading operators for direct photon production are dimension 8 and are not chirality-

suppressed. The operator made out of ∂µ(φ†φ), (e†σ̄νe) and Fµν is an example. Following

the general rules of effective field theory, a factor of α should be put in front of this type of

operators. The related direct photon production cross-section is

〈σeffv〉 ≈ ceffα
(2mφ)

6

M8
int

(8.43)
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where ceff includes the operator coupling constant and the π factors from the phase space

integration1.

It is now straightforward to compare FSR and direct photon production cross-sections,

〈σFSRv〉 ≈ 〈σeffv〉
cFSR

ceff

m2
eM

4
int

(2mφ)6
ln

[
4m2

φ

m2
e

]
(8.44)

which leads to equation (8.14) of section 8.3. Direct photon production from higher-order

operators will therefore dominate over FSR when Mint . M∗
int (see equation (8.14)). In the

remaining subsections, the analysis is more concise since it closely follows what has been done

here.

Majorana DM annihilation to e+ + e− + γ

The relevant lowest-dimension Majorana operators are given in table 8.4. Combining operators

O(x) dim 〈0|O|χχ〉 |M|2
(
|M|2

)
s−wave

mχ(χχ + χ†χ†) 4 2mχ[(x1x2) + (y†
1y

†
2)] 4m2

χ[(p1 · p2) − m2
χ] 0

imχ(χχ − χ†χ†) 4 2imχ[(x1x2) − (y†
1y

†
2)] 4m2

χ[(p1 · p2) + m2
χ] 8m4

χ

mχ(χσµνχ + χ†σ̄µνχ†) 4 0 0 0
imχ(χσµνχ − χ†σ̄µνχ†) 4 0 0 0

χ†σ̄µχ 3 (y†
1σ̄

µx2) − (y†
2σ̄

µx1) p
µ
1p

µ′

2 + p
µ
2p

µ′

1 − gµµ
′

(p1 · p2) + m2
χg

µµ′ 2m2
χδ

µ0δµ
′0

∂ν(χ†σ̄µχ) 4 −i(pν1 + pν2) × ibid (pν1 + pν2)(p
ν′

1 + pν
′

2 ) × ibid 8m4
χδ

µ0δµ
′0δν0δν

′0

i(∂νχ†σ̄µχ − χ†σ̄µ∂νχ) 4 (pν1 − pν2) × {− → +} (pν1 − pν2)(p
ν′

1 − pν
′

2 ) × {+m2
χ → −m2

χ} 0

Table 8.4: Relevant Majorana DM operators for DM annihilation. Notice that χσ̄µνχ = 0 since
χ is a Majorana fermion.

of table 8.4 with operators of table 8.1, the leading order operators for FSR are dimension 6

operators of the form (χ†σ̄µχ)(e†σ̄µe). Again, these operators are chirality-suppressed in the

s-wave approximation, and thus the related FSR cross-section is

〈σFSRv〉 ≈ cFSRα
m2
e

M4
int

ln

[
4m2

χ

m2
e

]
(8.45)

where cFSR includes the operator coupling constant and the π factors from the phase space

integration.

Combining operators of table 8.4 with operators of tables 8.1 and 8.2, the leading operators

for direct photon production are dimension 8 and are not chirality-suppressed. The operator

made out of (χ†σ̄µχ), (e†σ̄νe) and Fµν is an example. The related direct photon production

cross-section is

〈σeffv〉 ≈ ceffα
(2mχ)

6

M8
int

(8.46)

1cFSR and ceff have the same phase space factors since both are obtained from a three-particle final state.
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where ceff includes the operator coupling constant and the π factors from the phase space

integration.

Comparing FSR and direct photon production cross-sections leads to the equivalent of equa-

tion (8.44) with the same overall conclusions as scalar boson DM annihilation.

Dirac DM annihilation to e+ + e− + γ

The relevant lowest-dimension Dirac operators are given in table 8.5. Combining operators

O(x) dim 〈0|O|ηη̄〉 |M|2
(
|M|2

)
s−wave

η†σ̄µη + η̄†σ̄µη̄ 3 (y†
∗σ̄

µx) − (y†σ̄µx∗) pµpµ
′

∗ + pµ∗p
µ′ − gµµ

′

(p · p∗) + m2
ηg

µµ′ 2m2
ηδ
µ0δµ

′0

η†σ̄µη − η̄†σ̄µη̄ 3 (y†
∗σ̄

µx) + (y†σ̄µx∗) pµpµ
′

∗ + pµ∗p
µ′ − gµµ

′

(p · p∗) − m2
ηg

µµ′ 2m2
η[δ

µ0δµ
′0 − gµµ

′

]

Table 8.5: Relevant Majorana DM operators for DM annihilation.

of table 8.5 with operators of table 8.1, the leading order operators for FSR are dimension 6

operators of the form [(η†σ̄µη) − (η̄†σ̄µη̄)](e†σ̄µe). However, these operators are not chirality-

suppressed in the s-wave approximation, and thus the related FSR cross-section is

〈σFSRv〉 ≈ cFSRα
4m2

η

M4
int

ln

[
4m2

η

m2
e

]
(8.47)

where cFSR includes the operator coupling constant and the π factors from the phase space

integration.

Combining operators of table 8.5 with operators of tables 8.1 and 8.2, the leading operators

for direct photon production are dimension 8 and are not chirality-suppressed, as in the Majo-

rana DM annihilation case. The operator made out of [(η†σ̄µη) + (η̄†σ̄µη̄)], (e†σ̄νe) and Fµν is

an example. The related direct photon production cross-section is

〈σeffv〉 ≈ ceffα
(2mη)

6

M8
int

(8.48)

where ceff includes the operator coupling constant and the π factors from the phase space

integration.

Comparing FSR and direct photon production cross-sections leads to

〈σFSRv〉 ≈ 〈σeffv〉
cFSR

ceff

M4
int

(2mη)4
ln

[
4m2

η

m2
e

]
≫ 〈σeffv〉 (8.49)

and, for order one coefficients, FSR always dominates over direct photon production from

higher-order operators.
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Gauge boson DM annihilation to e+ + e− + γ

The relevant lowest-dimension gauge boson operators are given in table 8.6. Combining opera-

O(x) dim 〈0|O|XX〉 |M|2
(
|M|2

)
s−wave

XµνXλρ 4 −[(pµ1ǫ
ν
1 − pν1ǫ

µ
1 )(pλ2ǫ

ρ
2 − p

ρ
2ǫ
λ
2) + {1 ↔ 2}]

Dκ(XµνXλρ) 5 −i(pκ1 + pκ2) × ibid (pκ1 + pκ2)(p
κ′

1 + pκ
′

2 ) × ibid 4m2
Xδκ0δκ

′0 × ibid

Table 8.6: Relevant gauge boson DM operators for DM annihilation.

tors of table 8.6 with operators of table 8.1, the leading order operators for FSR are dimension

8 operators of the form XµλXνλi(D
νe†σ̄µe − e†σ̄µDνe). However, these operators are not

chirality-suppressed in the s-wave approximation, and thus the related FSR cross-section is

〈σFSRv〉 ≈ cFSRα
(2mX)6

M8
int

ln

[
4m2

X

m2
e

]
(8.50)

where cFSR includes the operator coupling constant and the π factors from the phase space

integration.

Combining operators of table 8.6 with operators of tables 8.1 and 8.2, the leading operators

for direct photon production are dimension 8 and are not chirality-suppressed. The operator

made out of XµλXνλ and i(Dνe†σ̄µe − e†σ̄µDνe) is an example. The related direct photon

production cross-section is

〈σeffv〉 ≈ ceffα
(2mX)6

M8
int

(8.51)

where ceff includes the operator coupling constant and the π factors from the phase space

integration.

Comparing FSR and direct photon production cross-sections leads to

〈σFSRv〉 ≈ 〈σeffv〉
cFSR

ceff
ln

[
4m2

X

m2
e

]
& 〈σeffv〉 (8.52)

and, for order one coefficients, FSR always dominates over direct photon production from

higher-order operators, although only slightly.

Scalar boson DM decay to e+ + e− + γ

This case follows closely the scalar boson DM annihilation case. The relevant lowest-dimension

scalar boson operators are given in table 8.7. Combining operators of table 8.7 with operators of

table 8.1, the leading order operators for FSR are dimension 5 operators of the form meφ(ēe+

e†ē†). These operators are chirality-suppressed and thus the related FSR decay rate is

ΓFSR ≈ cFSRα
m2
emφ

M2
int

ln

[
m2
φ

m2
e

]
(8.53)
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O(x) dim 〈0|O|φ〉 |M|2
(
|M|2

)

s−wave

φ 1 1 1 1

∂µφ 2 −ipµ pµpµ
′

m2
φδ

µ0δµ
′0

Table 8.7: Relevant scalar boson DM operators for DM decay.

where cFSR includes the operator coupling constant and the π factors from the phase space

integration.

Combining operators of table 8.7 with operators of tables 8.1 and 8.2, the leading operators

for direct photon production are dimension 7 and are not chirality-suppressed. The operator

made out of ∂µφ, (e†σ̄νe) and Fµν is an example. The related direct photon production decay

rate is

Γeff ≈ ceffα
m7
φ

M6
int

(8.54)

where ceff includes the operator coupling constant and the π factors from the phase space

integration.

Comparing FSR and direct photon production decay rates leads to the equivalent of equation

(8.44) for decay rates,

ΓFSR ≈ Γeff
cFSR

ceff

m2
eM

4
int

(2mφ)6
ln

[
4m2

φ

m2
e

]
, (8.55)

with the same overall conclusions as scalar boson DM annihilation.

Abelian gauge boson DM decay to e+ + e− + γ

The relevant lowest-dimension gauge boson operators are given in table 8.8. Combining opera-

O(x) dim 〈0|O|X〉 |M|2
(
|M|2

)
s−wave

Xµν 2 −i(pµǫν − pνǫµ)

∂λXµν 3 −ipλ × ibid pλpλ
′ × ibid m2

Xδλ0δλ
′0 × ibid

Table 8.8: Relevant gauge boson DM operators for DM decay.

tors of table 8.8 with operators of table 8.1, the leading order operators for FSR are dimension

6 operators of the form ∂µXµν(e
†σ̄νe). However, these operators are not chirality-suppressed

and thus the related FSR decay rate is

ΓFSR ≈ cFSRα
m5
X

M4
int

ln

[
m2
X

m2
e

]
(8.56)
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where cFSR includes the operator coupling constant and the π factors from the phase space

integration.

Combining operators of table 8.8 with operators of tables 8.1 and 8.2, the leading operators

for direct photon production are dimension 6 and are not chirality-suppressed. The operator

made out ofXµν and i(Dνe
†σ̄µe−e†σ̄µDνe) is an example. The related direct photon production

decay rate is

Γeff ≈ ceffα
m5
X

M4
int

(8.57)

where ceff includes the operator coupling constant and the π factors from the phase space

integration.

Comparing FSR and direct photon production cross-sections leads to

ΓFSR ≈ Γeff
cFSR

ceff
ln

[
m2
X

m2
e

]
& Γeff (8.58)

and, for order one coefficients, FSR always dominates over direct photon production from

higher-order operators, although only slightly.

DOS for direct photon production from higher-order operators: An

example for Majorana DM annihilation

When direct photon production from higher-order operators dominates over FSR, the photon

DOS can be obtained from the most general effective Lagrangian. Here we study the case of

Majorana DM annihilation to electron-positron pair, χ + χ → e+ + e− + γ. The other cases

where direct photon production from higher-order operators dominates over FSR are basically

equivalent.

The lowest-dimension operators relevant to χ+ χ → e+ + e− + γ are effective dimension 8

operators due to the chirality rule, and thus only effective mass dimension 8 operators will be

considered. The highest possible effective mass dimension for the DM (χ) operators is therefore

4. The photon can either appear in a covariant derivative or in the field strength tensor.

With the help of tables 8.1, 8.2 and 8.4, the minimal set (in the sense that any operator

relevant for χ + χ → e+ + e− + γ can be rewritten as a linear combination of the operators

in the minimal set) of operators of the mass dimension 8 effective Lagrangian for the process

χ+ χ→ e+ + e− + γ can be found.

From the electron operators without covariant derivatives, only the one with mass dimension

3 is relevant, leading to (χ†σ̄µχ)(e†σ̄νe)Fλρ. From the electron operators with one covariant
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derivative, only i(χ†σ̄µχ)∂ρ(Dλe†σ̄νe−e†σ̄νDλe) survives (there are two different ways of build-

ing this operator) since all other operators are either zero to lowest order in me from the equa-

tions of motion (the σ matrix and the covariant derivative are forced to be contracted together)

or vanish in the s-wave. Finally there are only two operators that can be built from the electron

operators with two covariant derivatives, which are (χ†σ̄µχ)(DρDλe†σ̄νe + e†σ̄νDρDλe) and

i(χ†σ̄µχ)(DρDλe†σ̄νe− e†σ̄νDρDλe).

All operators have four Lorentz indices and must therefore be contracted with gµνgλρ, gµλgνρ,

gµρgνλ and ǫµνλρ. Using the equations of motion, this fact leads to an even smaller minimal set

(to lowest order in me), since gµν1 = σµσ̄ν + 2iσµν and [Dµ, Dν ] = −i
√

4παFµν . Indeed one

has

gλρ(e
†σ̄νDρDλe) = e†σ̄ν(σρσ̄λD

ρDλ + gσρλF
ρλ)e ∼ Fλρ−term + O(me)

gνρ(e
†σ̄νDρDλe) = gνρe

†σ̄ν(DλDρ + [Dρ, Dλ])e ∼ Fλρ−term + O(me)

gνλ(e
†σ̄νDρDλe) ∼ O(me)

ǫµνλρ(e
†σ̄νDρDλe) =

1

2
ǫµνλρ(e

†σ̄ν [Dρ, Dλ]e) ∼ Fλρ−term

thus eliminating all operators with two covariant derivatives. Moreover, the operator with one

covariant derivative can be rewritten in terms of two covariant derivatives as i(χ†σ̄µχ)(Dρe†σ̄νDλe−

Dλe†σ̄νDρe), leading to

gλρ(D
ρe†σ̄νDλe−Dλe†σ̄νDρe) = 0

gνρ(D
ρe†σ̄νDλe−Dλe†σ̄νDρe) ∼ O(me)

gνλ(D
ρe†σ̄νDλe−Dλe†σ̄νDρe) ∼ O(me)

ǫµνλρ(D
ρe†σ̄νDλe−Dλe†σ̄νDρe) = 2 ǫµνλρ(D

ρe†σ̄νDλe)

= 2 ǫµνλρ[∂
ρ(e†σ̄νDλe) − (e†σ̄νDρDλe)]

∼ ǫµνλρ∂
ρ(e†σ̄νDλe) + Fλρ−term

therefore eliminating three of the four possible operators. Finally, for the operators with Fµν ,

only two operators survive since the field strength tensor is antisymmetric.

Then the minimal set consists of (χ†σ̄µχ)(e†σ̄νe)Fµν , (χ†σ̄µχ)(e†σ̄νe)F̃µν and

iǫµνλρ∂
ρ(χ†σ̄µχ)(e†σ̄νDλe). In the s-wave approximation, the last term also vanishes, thus

leading to only two operators relevant for the mass dimension 8 effective Lagrangian of χ+χ→

e+ + e− + γ (at lowest order in me),

Leff =

√
4πα

M4
int

(χ†σ̄µχ)(e†σ̄νe)[aLFµν + bLF̃µν ] + {L→ R, e→ ē} (8.59)
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where the coupling constants are assumed to be order one numbers. Since the operators do not

interfere (they couple the electrons to different photon states), the probability is simply given

by

|M|2 = −32πα(a2
L + b2L + a2

R + b2R)m2
χM

−8
int

×[(pγ · p+)(pγ · p−) − EγE+(pγ · p−) − EγE−(pγ · p+)]

= 64πα(a2
L + b2L + a2

R + b2R)m3
χ(mχ − Eγ)M

−8
int

×(2m2
χ − 2mχEγ − 4mχE+ + E2

γ + 2EγE+ + 2E2
+)

where ~p− = −~pγ−~p+, E− =
√
E2
γ + E2

+ + 2zEγE+ = 2mχ−Eγ−E+, z =
2m2

χ−2mχEγ−2mχE++EγE+

EγE+

and mχ − Eγ < E+ < mχ. Here z = cos θ and θ is the angle between the positron and the

photon. In the vanishing electron mass limit the annihilation cross-section is thus

d〈σv〉
dEγ

=
1

4m2
χ

∫ Eγ

mχ−Eγ

dE+

32π3
|M|2 =

α(a2
L + b2L + a2

R + b2R)mχ

3π2M8
int

(mχ − Eγ)E
3
γ (8.60)

with 0 < Eγ < mχ, which gives the DOS mentioned in the text. Notice that the annihilation

cross-section vanishes like the cube of the photon energy, E3
γ , as Eγ → 0.
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