
PHYSICAL LAYER DESIGN AND ANALYSIS OF WINLAB NETWORK CENTRIC

COGNITIVE RADIO

by

TEJASWY HARI

A Thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Narayan Mandayam

And approved by

New Brunswick, New Jersey

October, 2009

2009

Tejaswy Hari

ALL RIGHTS RESERVED

ii

ABSTRACT OF THE THESIS

Physical Layer Design and Analysis of the WINLAB Ne twork

Centric Cognitive Radio

By Tejaswy Hari

Thesis Director: Prof. Narayan Mandayam

The wireless domain is ever expanding with new technologies and protocols emerging for

all possible environments. Each new protocol is an improvement over the other. High

performance FPGAs have entered the market with advanced signal processing

capabilities which have vast resources and area to accommodate complex designs. The

amalgamation of the two has given rise to programmable radios better known as

cognitive radios. This thesis proposes the physical layer design and analysis of the

WiNC2R- WINLAB Network Centric Cognitive Radio which is a SoC (System on Chip)

based hardware platform on FPGA. This system is based on the Virtual Flow Paradigm.

The key characteristic of this concept is that the protocol processing and selecting

specific hardware accelerators is engaged dynamically by the software.

The WiNC2R consists of three main parts – the data layer, the interconnect layer and the

control layer. All the data processing and functioning is handled by the data layer which

is the focus of this thesis.

iii

We have designed an adaptive modulator and demodulator for WiNC2R. These blocks

exploit the advantages of software flexibility and hardware high speeds. It’s an inter-

protocol operable processing engine that caters to all modulation schemes and can vary

them on the fly. These engines show MIMO capabilities also due to their data flow

independent design. The software interface to the register maps instantiated inside the

processing engines which is used to configure the system before start of the frame.

We successfully sent OFDM frames implemented on Virtual Flow Paradigm across and

performed timing and utilization analysis. The modulator and demodulator parameters

can be conveniently setup in the software. The flexible hardware design enables fast

switching between WiFi and WiMAX frames. The thesis starts with the design of top

level architecture and further dig deeper the design of the Modulator and Demodulator

processing engines. We then conclude with the timing and area resource analysis and

discuss an improvement in design.

iv

Acknowledgements

I would first like to thank my parents and family whose constant support and motivation

has helped me throughout this journey. I would like to thank my advisors Prof. Narayan

Mandayam for his constant guidance and help. I would like to thank Prof. Zoran Miljanic

and Prof. Predrag Spasojevic for instilling a vision for this project and guiding me

through the process. They have dedicated their valuable time and helped me complete my

thesis. I am also indebted to my three most valuable mentors – Khanh Le, Renu

Rajnarayan and Ivan Seskar. Their advice and never ending support has helped me gather

the necessary expertise required to contribute to the team.

I would also like to thank the entire WiNC2R team – Sumit, Shalini, Vijyant, Madhura,

Vaidehi, Akshay, Prasanthi, Mohit and Onkar. They taught me how dedicated team work

can build monuments. I am grateful to be a part of this team. I also thank my friends for

their support. And finally I would thank the staff at WINLAB for providing the facilities

and support required for this thesis.

v

Table of Contents

Acknowledgements .. iv

Lists of tables ... ix

List of illustrations ... xi

Chapter 1: Introduction ... 1

1.1: Programmable Radios ... 2

1.1.1: USRP ... 2

1.1.2: USRP 2 ... 5

1.1.3: WARP ... 6

1.2: WINLAB Network Centric Cognitive Radio – WiNC2R .. 9

1.3: Virtual Flow Paradigm ... 9

1.3 Contribution ... 14

Chapter 2: WiNC2R – Top level Architecture ... 16

2.1: Innovative Integration’s X5-400M board ... 16

2.2: Steps for implementing on FPGA .. 22

Chapter 3: WiNC2R Top Level Architecture ... 24

3.1: Central Processors - Microblaze ... 25

3.2: Processor Logic Bus v46 BUS ... 26

vi

3.3: Transmitter Architecture .. 28

3.2 Receiver Architecture .. 29

3.3: System Flow ... 31

3.3.1: Transmitter Flow for OFDM .. 31

3.3.2: Receiver Flow for OFDM .. 33

Chapter 4: Functional Unit Architecture .. 36

4.1: Bus Interface ... 37

4.2: Unit Control Module Wrap ... 37

4.2.1: UCM ... 37

4.2.2: Buffers .. 38

4.2.3: Task Descriptor (TD) Table ... 39

4.2.4: GTT Table .. 40

4.2.5: Task Scheduler Queue.. 40

4.2.6: Register Maps... 41

4.2.7: Arbiters ... 41

4.2.8: DMA Engine .. 41

4.2.9: Processing Engine .. 42

Chapter 5: Processing Engine (PE)... 43

5.1: PE Modulator.. 45

vii

5.1.1: Input Interface .. 45

5.1.2: Processing Engine .. 46

5.1.3: Output Interface ... 51

5.2: PE – Demodulator and Checker ... 51

5.2.1: PE Demodulator ... 52

5.2.2: PE Checker ... 57

5.3: PE Testbench .. 61

5.3.1: Device under Test .. 62

5.3.2: Reference Text Files .. 62

5.3.3: Testbench Components .. 66

Chapter 6: PE Register Maps and Software ... 68

6.1: Register Map .. 68

6.2: Address Allocation .. 74

6.3: Software on WiNC2R.. 75

Chapter 7: Resource Utilization and Timing .. 78

7.1: FPGA Resource Utilization .. 78

7.1.1: Transmitter Utilization ... 78

7.1.2: Receiver Utilization ... 79

7.2: Timing Analysis ... 80

viii

7.3: Parallel Implementation Design and Analysis ... 83

Chapter 8: Conclusion .. 90

References ... 93

Abbreviations .. 94

ix

Lists of tables

Table 1.1: Details of FPGA on USRP – Altera Cyclone EP1C12 3

Table 1.2: Details of FPGA on WARP – Xilinx Virtex2 Pro XC2VP70 8

Table 2.1: Details of Virtex5 FPGA ... 22

Table 5.1: PE Modulator Command Parameter .. 47

Table 5.2: Mapping Table ... 50

Table 5.3: PE DmodChkr Command Parameters ... 54

Table 5.4: Chunk Sizes for WiFi .. 60

Table 6.1: Normalization factors for various modulation schemes 71

Table 6.2: Modulator Status Register ... 72

Table 6.3: Demodulator Checker Status Register ... 73

Table 6.4: PE RAMs Address Offsets .. 75

Table 7.1: Transmitter Utilization... 79

Table 7.2: Receiver Utilization ... 80

Table 7.3: Modulation Latency ... 81

Table 7.4: Latency w.r.t OFDM symbols ... 82

Table 7.5: PE Demodulator and Checker Latency.. 82

Table 7.6: Demod. Latency w.r.t OFDM Symbols ... 82

Table 7.7: Total PE Latency ... 83

Table 7.8: Latency Reduction in Modulator ... 85

Table 7.9: Latency Reduction in Demodulator ... 88

Table 7.10: Parallel Modulator Area Utilization .. 88

x

Table 7.11: Parallel Demodulator Area Utilization .. 88

xi

List of illustrations

Figure 1.1: USRP Block Diagram[4] .. 5

Figure 1.2: WARP Top Level Architecture[5] ... 7

Figure 1.3: ADC/DAC interface blocks of WARP[5] .. 8

Figure 1.4: Hardware and Virtual Pipelining [9] .. 11

Figure 1.5: Software in WiNC2R ... 12

Figure 1.6: Hardware Platform Comparison[3] .. 13

Figure 2.1: X5-400M Top Level Architecture[8] ... 17

Figure 3.1: NCP top level architecture ... 24

Figure 3.2: Transmiter Architecture ... 28

Figure 3.3: Receiver Architecture ... 30

Figure 3.4: Transmit Control Flow ... 32

Figure 3.5: Receiver Command Flow ... 33

Figure 4.1: Functional Unit Architecture .. 36

Figure 4.2: Buffer Partition ... 38

Figure 5.1: Processing Engine Top Level Diagram .. 44

Figure 5.2: PE Modulator ... 45

Figure 5.3: Complex Number Representation .. 50

Figure 5.4: PE Demodulator and Checker .. 52

Figure 5.5: Demodulator Output RAM ... 56

Figure 5.6: PE Checker ... 58

Figure 5.7: PLCP Header Contents[15] .. 58

xii

Figure 5.8: PE Test Bench Top Level Architecture .. 62

Figure 6.1: PE Mod Register Maps... 68

Figure 6.2: 802.11a constellation diagram .. 70

Figure 7.1: Modulation Latency Graph .. 81

Figure 7.2: Demod. Latency for various frames ... 83

Figure 7.3: Modulator Timing Diagram ... 84

Figure 7.4: Parallel Modulator Implementation .. 85

Figure 7.5: Demodulator Timing Diagram ... 86

Figure 7.6: Parallel Demodulator Implementation ... 87

1

Chapter 1:

Introduction

The exponential growth of the wireless industry is clear and evident in all aspects. Cell

phones are now coming equipped with all protocol operability, wireless speeds are slowly

surpassing the wired and remote areas are no longer remote. This has been possible with

developments in physical and MAC layer research, exploding progress in semiconductor

industry and blooming of various languages and scripting tools. The advent of cognitive

radios- radios that can change transmission and receiving parameters based on the

environment is further evidence. These platforms possess inter-operability and efficient

spectrum usage and fast data rates are their main objectives. They will require flexible

physical and complex network layer processing and agility.

Such platforms have not yet entered the commercial market; they are still in the research

phase. The WINLAB Network Centric Cognitive Radio is such a platform that promises

both speed and flexibility in the multilayer domain of mobile multimedia IP based

communication. Its goal is to provide a scalable and adaptive radio platform hence the

design is SoC oriented and FPGA based. The WiNC2R is an excellent platform for the

research domain for analysis of the mobile applications computing, communication and

control requirements, performance analysis of the applications, hardware vs. software

implementation tradeoff analysis. It will also be useful for understanding the potential

and limitations of traditional CPU architecture in addressing the needs of the emerging

2

wireless communications in heterogeneous environments. Thus, this platform will not

only provide a wireless testbed for academia but also a smart wireless device for various

applications.

The following section will illustrate few such platforms that have pre-defined functions

that can be programmed by the user.

1.1: Programmable Radios

1.1.1: USRP

The Universal Software Radio Peripheral is the hardware interface between RF and GNU

software. It is built for general purpose computers to function as high bandwidth software

radios. It works in baseband frequencies.

The advantage of using USRP is that all the signal processing is done in software, thus

avoiding complex HDL language code. GNU uses python code to perform all processing

engine functions. The high speed operations like digital up and down conversion,

decimation and interpolation are done on the FPGA.

The users can develop a wide range of signal processing codes without worrying about

the hardware capability and resources. The powerful combination of flexible hardware,

open-source software and a community of experienced users make it the ideal platform

for your software radio development.

Details of USRP hardware boards [4]

3

• 4 high-speed analog to digital converters (ADCs), each at 12 bits per sample,

64MSamples/sec.

• 4 high-speed digital to analog converters (DACs), each at 14 bits per sample,

128MSamples/sec.

• Altera Cyclone EP1C12 FPGA

• FPGA connects to a USB2 interface chip, the Cypress FX2, and the computer.

• The FPGA connects to a USB2 interface chip, the Cypress FX2. The FPGA

circuitry and USB Microcontroller is programmable over the USB2 bus.

The FPGA used is the Altera Cyclone EP1C12 FPGA whose details are given below. [6]

Feature EP1C12

LEs 12,060

RAM Blocks - M4K 52

Total RAM bits 92,160

PLLs 2

Max user I/O pins 249

Differential Channels 103

Temperature -40°C to +125°C

Table 1.1: Details of FPGA on USRP – Altera Cyclone EP1C12

As mentioned before, FPGA programming is used to interface the ADC and DAC IO

ports to the data-out from the USB. The configuration typically includes digital down

converters (DDC) implemented with 4 stages cascaded integrator-comb (CIC) filters.

4

CIC filters are very high-performance filters using only adders and delays. There are

decimators and interpolators so that the data rate adjusts to USB interface or the RF. Each

DDC has two inputs I and Q. These values are interleaved when multiple channels are

used. The USRP block diagram is shown in Figure 1.1 [4]

Software

The software GNU uses is the Linux C++ where the application program interfaces with

USRP. GNUradio provides USRP interface libraries which have to be linked with the

user code. Most of the signal processing is done in C++. Python and SWIG are used to

connect the blocks together and generate a flow. So the data that is output from the

software can be fed directly to the DAC for transmitting.

5

Figure 1.1: USRP Block Diagram[4]

Many complex systems are easily realizable by software radio. Fast processors, ever-

expanding memory and high level programming have made it easy for designers and

researchers in the wireless domain to implement communication systems.

The disadvantages of SDRs are

• Whenever a block or function call is invoked, the flow switches to and fro to the

CPU processor. This drastically increases processing latency.

• USRP also restricts data flow through USB2.0 which is not scalable.

• Expertise in SDRs require proficiency in multiple languages – C++ and Python

for software and HDL for configuring FPGA

1.1.2: USRP 2

The USRP2 is an improvement over the USRP board and it has the following additional

features [4].

• Gigabit Ethernet interface

• 25 MHz of instantaneous RF bandwidth

• Xilinx Spartan 3-2000 FPGA

• Dual 100 MHz 14-bit ADCs

• Dual 400 MHz 16-bit DACs

• 1 MByte of high-speed SRAM

• Locking to an external 10 MHz reference

6

• 1 PPS (pulse per second) input

• Configuration stored on standard SD cards

• The ability to lock multiple systems together for MIMO

• Compatibility with all the same daughterboards as the original USRP

This board has a high performance RF end and a large FPGA. But the data processing

still is implemented in software, this means that the processing speed depends on the

CPU on which the GNU software is implemented. Hence, the data rate is still

bottlenecked at the software.

1.1.3: WARP

WARP is Rice University’s programmable hardware platform. It stands for Wireless

Open Access Research Platform. Xilinx’s Virtex 2 FPGAs provide vast recourses for

hardware programmability. Like USRP, WARP also has four daughterboard slots that

support wide range of input-outputs. It comes with its own programming tools.

The details of the board are given below [5]

• USB and serial port connectivity to PC

• PowerPC 405 Processor

• Rocket IO Trans-receiver

• Xilinx's SystemACE CompactFlash chip for managing the configuration process

of the FPGA. The SystemACE chip acts as an interface between the FPGA and a

standard CompactFlash slot.

7

• 160MS/s 16-bit dual DACs - AD9777

• 65MS/s 14-bit dual-ADC - AD9248

The top level architecture of WARP is shown below :

Figure 1.2: WARP Top Level Architecture[5]

The FPGA contains the user logic. The FPGA can be programmed by using VHDL or

any other HDL. Typically Matlab and simulink is used to create the bit file that gets

loaded into FPGA.

Details of Virtex2 Pro XC2VP70 are given in the table below [6]

Feature XC2VP70

Rocket IO Trans-Receiver Blocks 20

Power PC Processor blocks 2

Logic Cells 74,448

CLB

8

 Slices 33,088

 Max distribution RAMs 1,034

Multiplier Blocks 18x18 328

BRAM

 18Kb Blocks 328

 Max Block RAMs 5,094

DCM 8

Max user I/O Pins 996

Table 1.2: Details of FPGA on WARP – Xilinx Virtex2 Pro XC2VP70

The platform has 2 ADC and 1 DAC as shown in the Figure 1.3. This radio board is

connected to one of the daughtercard slots.

Figure 1.3: ADC/DAC interface blocks of WARP[5]

Software

The Open access repository provides the model for the full SISO and MIMO OFDM

transceiver implemented in Simulink.

9

The processor used is PowerPC linked to On-chip Peripheral Bus (OPB). OPB is a

synchronous bus that provides separate 32bit addresses and data paths. The data read and

write are implemented with multiplexers. The System Generator tool is responsible for

converting the Matlab code & Simulink blocks to VHDL. The blocks are first created and

linked in Simulink. Once the design is ready, System Generator is invoked and it

performs synthesis and place and route. This design is then loaded to the FPGA.

Disadvantages of WARP

• Limitations to the FPGA resource space compared to the vastness of software

radio resources.

• Limitations to Communication blocks in MATLAB’s Xilinx blockset

1.2: WINLAB Network Centric Cognitive Radio – WiNC2 R

WiNC2R is a network centric cognitive radio developed at WINLAB, Rutgers

University. WiNC2R is a proof of concept design that implements the Virtual Flow

Paradigm (VFP) on FPGA. It is a programmable wireless protocol processing hardware

platform. The VFP[1][2] is a new paradigm for programmable communication

processing.

1.3: Virtual Flow Paradigm

The approach here is to strike a balance between software and hardware. An entire

hardware implementation does not promise scalability and dynamic future evolution.

10

Since such a system does not have enough or any flexibility it fails to process various

communication protocols different from the ones that the hardware is designed for.

The previous section talked about software defined radios that provide high flexibility

and significant interoperability among protocols. But the software latency makes such

systems impractical for high speed designs.

The idea here is to strike a balance between hardware and software implementation. The

virtual flow paradigm solves the problem [1]. This paradigm introduces the Virtual Flow

pipelining (VFP) combines the high speed computation capabilities of FPGA hardware

and flexibility of software. The data flow and parameter inputs to processing blocks are

fed by the user in the form of function calls, but the processing happens on hardware.

This type of flow gives us the freedom to add or remove any functional blocks (FU) or

data processors (DP) dynamically. The blocks are not physically cascaded together which

means they function independent of their preceding or succeeding processors. Hence

there is a requirement of a top controller in these blocks that sets up the flow for every

session. As shown in the figure below, the hardware pipeline is a pre-decided hard-coded

flow that cannot be easily modified. This makes it infeasible for cognitive purposes. The

virtual flow pipeline provides room for other blocks to fit in a flow. For eg, the first

frame uses the modules FU1, DP1 and FU4 sequentially. The flow for the next frame

shown is completely changed and independent of the first one.

Figure

This is possible when the software is used to setup the flow

tasks and makes the system look like

layer. The underlying functional blocks are all coded in hardware and take the form of a

typical system on chip design as shown below.

Figure 1.4: Hardware and Virtual Pipelining [9]

This is possible when the software is used to setup the flow –global task flows and next

tasks and makes the system look like software defined radio looking from

layer. The underlying functional blocks are all coded in hardware and take the form of a

typical system on chip design as shown below.

11

global task flows and next

from the application

layer. The underlying functional blocks are all coded in hardware and take the form of a

12

Figure 1.5: Software in WiNC2R

The figure above shows such a scenario where the MAC Tx and Modulator are the

functional blocks. Ever Functional Unit (FU) has control units in them that interpret the

software calls. The next-task processors forward the processed data from the producer to

the consumer based on a task table that is setup by the user via software.

The WINLAB Cognitive Radio Platform WiNC2R is proposed and designed with the

objective of achieving at speed processing of emerging WLAN and wireless broadband

protocols with flexible architecture. Its underlying flexibility allows evolution within its

domain space through software upgrades, and measurements and collaboration in the

field with waveform and protocol adjustments for the optimum spectrum utilization. With

the help of the VFP, it places itself between high speed designs and highly programmable

platforms as shown in the

WiNC2R on FPGA is well balanced in terms of programmability and speed. The figure

also shows that the ASIC implementation will further improve the platform and promise

greater speeds. The area of the rectangle

number of gates.

VANU

GNU/USRP

Programmabilty

Figure

Since FPGA is resource limited, we cannot achieve speeds greater than 50Mbps. We will

require multiple FPGAs interfaced on PCI Express cards to achieve larger speeds. This

project targets ASIC production to reach the 100Mbps destina

, it places itself between high speed designs and highly programmable

platforms as shown in the Figure 1.6.

WiNC2R on FPGA is well balanced in terms of programmability and speed. The figure

also shows that the ASIC implementation will further improve the platform and promise

greater speeds. The area of the rectangle corresponds to the complexity of design

WinC
ASIC

performance

Complexity # of gates ~ area of rectangle

VANU

WARP

PicoChip

100

WinC2R
FPGA

50 Mbps

Figure 1.6: Hardware Platform Comparison[3]

Since FPGA is resource limited, we cannot achieve speeds greater than 50Mbps. We will

require multiple FPGAs interfaced on PCI Express cards to achieve larger speeds. This

project targets ASIC production to reach the 100Mbps destination. The WiNC2R on

13

, it places itself between high speed designs and highly programmable

WiNC2R on FPGA is well balanced in terms of programmability and speed. The figure

also shows that the ASIC implementation will further improve the platform and promise

the complexity of design or the

WinC2R
ASIC

performance

area of rectangle

100 Mbps

Since FPGA is resource limited, we cannot achieve speeds greater than 50Mbps. We will

require multiple FPGAs interfaced on PCI Express cards to achieve larger speeds. This

tion. The WiNC2R on

14

FPGA is merely a proof-of-concept implementation and the design procedure is followed

to demonstrate the working of the Virtual Flow Paradigm. The modules are not optimized

with respect to resources for commercial use.

1.3 Contribution

The thesis explores the top level design of the WiNC2R. It describes the Virtual Flow

Paradigm implementation on FPGA and the modules used to achieve virtual flows. The

focus of this thesis is the design and analysis of physical layer blocks on the WiNC2R.

The modulator and demodulator have been designed to cater to the virtual flow paradigm.

These blocks implement adaptive modulation. The user can setup the constellation points

prior to the transmission. Further, during runtime, each chunk of frame, WiFi or

WiMAX, can be modulated by any 4 types of modulations. It can be further noted that

the processing engines work independent of each other. Hence, MIMO transmissions are

possible.

The blocks have also undergone vigorous testing with the help of a simulated MATLAB

model and the Bus Functional Module (BFM) environment. After successful

transmissions of frames of various sizes and modulation schemes, the WiNC2R was

programmed on to the FPGA.

Timing analysis and resource analysis has been performed to determine the processing

latency. Even with high programmability, high speeds are achievable because the

flexibility is implemented in hardware. The timing analysis establishes how much latency

15

is contributed by the processing engines to the entire flow. The analysis also provides

FPGA area utilization which will be useful for future WiNC2R releases.

The following section will explain the top level architecture.

16

Chapter 2:

WiNC2R – Top level Architecture

2.1: Innovative Integration’s X5-400M board

WiNC2R is implemented on Innovation Integration’s X5-400M board. This section talks

about the top architecture design and the interface blocks instantiated in it. The X5-400M

is PCI Express Mezzanine Card (XMC) IO module having the following features [7]

• Two 14-bit, 400 MSPS A/D and two 16-bit, 500 MSPS DAC channels

• Virtex5 FPGA - SX95T

• PCI Express host interface with 8 lanes

• 1 GB DDR2 DRAM

• 4MB QDR-II

The figure below gives us the top level diagram. The board has various IO interfaces that

are mentioned above and all the interfaces are designed and implemented on VHDL.

WiNC2R uses some of these blocks based on the requirement. The blocks were provided

by Innovative Integration board.

17

©Innovative Integration [8]

Figure 2.1: X5-400M Top Level Architecture[8]

2.1.1) PCIe interface – PCI express 8 lanes

The PCIE interface block (ii_pcie_intf) provides a streaming, control and status interface

to the host PCI Express interface for the user logic. It provides 8 lane motherboard-level

interconnectivity and its scalable shared parallel bus architecture caters to high speed data

and control transfers. It is also used to reprogram the FLASH memory on FPGA. FLASH

memory is a reprogrammable memory that uses only a single power supply, making it

ideally suited for in-system programming. The flash memory is used to store the

18

application software. This block also monitors the FPGA temperature. If the temperature

exceeds 85°C, this block triggers alerts and warnings. Modules use these indicators to

spawn cooling and shut-down tasks.

2.1.2) RapidIO Interface

The Xilinx RapidIO is a 3 layer endpoint solution which allows the users to integrate

necessary portions of the design. It comes with its own protocols and frame structures.

The interface block (ii_dio) provides a simple modifiable interface with registers between

the user logic and RapidIO for memory read and write.

This module is not instantiated in WiNC2R because RapidIO is not used.

2.1.3) DRAM Controller

The ii_128mq component has a high performance DDR2 DRAM interface and that

requires constrained routing to the microblaze processor on the FPGA. It is connected to

the Multi-Port Memory Controller (MPMC) in microblaze that supports SDRAM (single

data RAM) , DDR/DDR2 (Dual Data Rate) memory. Typically, it has an address and

Data Paths, Arbiters for access control, a configurable physical interface IDELAY

controller, Clock and Reset Logic.

This interface is used to load the application software. It as used as a replacement to

Flash memory due to its huge capacity to load application software. Details of this block

will be mentioned in the Software section of this document.

19

2.1.4) QDR SRAM Controller

This component (ii_qdr_sram) provides an interface from the user logic to quad data

rate(QDR) synchronous burst SRAM memories. The interface component supports the

dual data path architecture of QDR SRAM by providing dual 18-bit address buses for

read and write addressing, dual 32-bit data paths for read and write from the SRAM

device. SRAMs are not used by WiNC2R, hence this module is also not used. The top

level IO pins are terminated as per the user-guide.

2.1.5) DAC

 The DAC5687 is used in the WiNC2R. It has a 16-bit high speed DAC with

interpolation filters with 2x,4x and 8x capability. It also has on board Numerically

Controlled Oscillator (NCO) and onboard clock multiplier.

The X5-400M board consists of various blocks that process the data and make it

compatible to the DAC. The blocks are instantiated in a block called ii_dac_intf. The dac

interface block is instantiated between the user logic output and the DAC chip on the

board. It works with 16 bit data on the system clock.

• The input to this block comes from the user logic design – WiNC2R physical

layer. The data is 16 bits and two modules are instantiated for I and Q values. The

enable is always set high and DAC is always switched ON since frame detection

happens at the receiver. This end works on system clock.

• The data is then forwarded to an offset and gain block (ii_offgain). This block

compensated for gain and offset errors. These values can be set by the user

20

through the software. There are specific memory locations for these values on

which the user can write and read.

• After the error corrections are made, the data flows into a 1K, 16in-16out FIFO.

The FIFO is written on system clock but it outputs on the sample clock

(dac_plllock) which can be set using the interpolation coefficient. This FIFO has

alarms and flags if the buffer overflows or underflows.

• This interface is also equipped with test generators. By enabling the test

generator, the module outputs a sample sine or ramp wave based on the amplitude

and frequency offset set by the user.

2.1.6) ADC

The ADC used in WiNC2R is the Texas Instrument’s ADS5474. It is a 14-bit, 400-MSPS

analog-to-digital converter (ADC) that operates from both a 5-V supply and 3.3-V supply

while providing LVDS-compatible digital outputs That operates upto 500 MSPS.

Just like the DAC, Innovative Integration provides a set of blocks for the ADC interface.

The entity ii_adc_intf is an important block in the receiver top and the details are given

below.

• The X5-500M provides co-axial connectors for two channels – AD0 and AD1.

The data from RF or cable is sampled at 200MHz clock rate. The clock is

connected to adc_data_ready in ADC control block. The data adc0_d and adc1_d

is triggered 1ns before the sample clock so that the peak is obtained at positive

edge of clock.

21

• The adc0 and adc1 data flow into the adc control block and get combined into 32

bit words. The I and Q values are clubbed together and made compatible to the

WiNC2R protocol followed.

• The 32 bit words are written to a 1K 32in-32out FIFO where the write enables

follow the sample clock. The reading happens at the system clock. The

decimation coefficient is set up by the user. The adc_intf reads the decimation

value from a designated address location to which the user has access to. It is

default set to 4.

• The output from the adf_intf is sent to the processing engine of the receiver.

• The gain and the offset can also be set by software. User can change these values

dynamically by writing into the addresses assigned.

2.1.7) Application FPGA

Since all the signal processing is left to the FPGA, we use a large area FPGA. Virtex5

FPGA - SX95T is best suited for this application. It has a large number of DSP blocks

and RAMs to fit in the entire transmitter or receiver.

The details of FPGA are:

Feature SX95T

Rocket IO Trans-Receiver Blocks 16

CMT 6

Ethernet MACs 4

22

Endpoints Blocks for PCIe 1

CLB

 Array (RowXCol) 160 x 46

 Slices 14,720

 Max Distr RAM (Kb) 1,520

DSP48E 640

BRAM

 18Kb Blocks 488

 36Kb Blocks 244

 Max Block RAMs 8,874

Total I/O Banks 19

Max user I/O Pins 640

Table 2.1: Details of Virtex5 FPGA

2.2: Steps for implementing on FPGA

a. Architecture Design and documentation.

b. The RTL design is in VHDL

c. Simulation in Mentor Graphics Modelsim and Functional Verification using

Matlab and Bus Functional Model (BFM).

d. Synthesis - A process that converts high-level abstraction to low-level. The

VHDL code is converted to gate level implementation for FPGA. The tool used is

Mentor Graphics - Precision RTL Synthesis.

23

e. Xflow - Xilinx tool to achieve a design flow.

f. Place and Route – This step places the logic elements generated after synthesis on

FPGA and interconnects them on FPGA. It is a long process where the Xilinx tool

optimizes the space and routing to meet the timing constraints.

g. The step generates a bitfile which is loaded into the FPGA using Xilinx Impact.

h. Xilinx also provides a software development kit with Xilinx libraries to generate

the software image that is loaded in the BRAM. We can access all memory

locations through the software.

24

Chapter 3:

WiNC2R Top Level Architecture

This section will explain the WiNC2R top architecture that is implemented on FPGA.

The systems top level architecture is called ncp_top and it instantiates the main

architecture ncp_cmn and the IO buffers [9].

©WiNC2R

Figure 3.1: NCP top level architecture

Syntheses provides an option of automated Input-Output buffers (IOBUFs) instantiation

where the tool recognizes the IO ports and places the corresponding buffer before it.

Also, when the microblaze processor is built, the tool internally places an IOBUFs for the

DRAM interfaces. The place and route tool then flags an error due to the contention of

25

multiple buffer instantiation. Hence, we manually insert the buffers where needed in the

top file to isolate the central architecture and the buffers.

The WiNC2R architecture sits in the entity ncp_top_cmn. There are three main parts in

this architecture [9]

• Microblaze – Central Processor

• Functional Units – Signal Processing Units

• X5-400M Interface Units – ADC/DAC interfaces

3.1: Central Processors - Microblaze

The MicroBlaze embedded processor soft core is a reduced instruction set computer

(RISC) optimized for implementation in Xilinx Field Programmable Gate Arrays

(FPGAs). It is implemented with a Harvard memory architecture; instruction and data

accesses are done in separate address spaces. Each address space has a 32-bit range (for

example, handles up to 4-Gb of instructions and data memory respectively). The

instruction and data memory ranges can be made to overlap by mapping them both to the

same physical memory. This is useful for software debugging. Figure 3.1 shows the

functional block diagram of the Microblaze core[6].

Microblaze has the following features:

• Thirty-two 32-bit general purpose registers,

26

• Up to eighteen 32-bit special purpose registers, depending on the configured

options,

• 32-bit instruction word with three operands and two addressing modes,

• 32-bit address bus,

• Single issue pipeline,

• Three interfaces for memory accesses - Local Memory Bus (LMB),Processor

Local Bus (PLB) or On-Chip Peripheral Bus (OPB),Xilinx Cache Link (XCL)

• Supports reset, interrupt, user exception, break, and hardware exceptions,

• Supports optional direct mapped Instruction and Data cache for improved

performance,

• Floating Point Units based on IEEE 754 single precision floating point format,

• Fast Simplex Link (FSL) that provides a low latency dedicated interface to the

processor pipeline, extending the processors execution unit with custom hardware

accelerators,

• Debug interface connected to the Xilinx Microprocessor Debug Module (MDM)

core, which interfaces with the JTAG port of Xilinx FPGAs

3.2: Processor Logic Bus v46 BUS

The PLB is a synchronous, high performance bus used to inter connect high performance

processor, ASIC and memory cores. It provides the infrastructure for connecting an

optional number of PLB masters and slaves into an overall PLB system. It consists of a

27

bus control unit, a watchdog timer, and separate address, write, and read data path units.

The main features of the PLB bus are [6]:

• PLB arbitration support for up to 16 masters with number of PLB masters

configurable via design parameters.

• PLB address and data steering support for up to 16 masters128-bit, 64-bit, and 32-

bit support for masters and slaves

• PLB address pipelining

• Four levels of dynamic master request priority

• PLB Reset generated synchronously to the PLB clock from external reset when

external reset provided

• DMA support for buffered, peripheral-to-memory, memory-to-peripheral, and

memory to memory transfers

28

3.3: Transmitter Architecture

The working force of the system is the team of Functional Units (FU). The transmitter

blocks are the MAC Tx, Header, Modulator and IFFT. The output of the FFT is

connected to the DAC interface block. For the transmitter case, only these FUs and the

DAC interfaces are instantiated.

Processor Core

FU
MAC
TX

FU
HDR

FU
MOD

FU
IFFT

Microblaze PLBv46 BUS LMBv10

BRAM
BRAM I/F Contr

XPS_uartlite XPS_gpio XPS_intc

xps_mch_emc mpmc ipif_final

Bus Interface

Unit Control
Module Wrapper

Processing
Engine

fpga_0_RS232_RX_pin
fpga_0_RS232_TX_pin
sys_clk_pin
sys_rst_pin
xps_gpio_0_GPIO_d_out_pin
xps_mch_emc_0_Mem_DQ_pin
xps_mch_emc_0_Mem_A_pin
xps_mch_emc_0_Mem_RPN_pin
xps_mch_emc_0_Mem_CEN_pin
xps_mch_emc_0_Mem_OEN_pin
xps_mch_emc_0_Mem_WEN_pin
mpmc_0_DDR_DQS
mpmc_0_DDR_DM_pin
mpmc_0_DDR_DQ
mpmc_0_DDR_Addr_pin
mpmc_0_DDR_BankAddr_pin
mpmc_0_DDR_WE_n_pin
mpmc_0_DDR_CAS_n_pin
mpmc_0_DDR_RAS_n_pin
mpmc_0_DDR_CS_n_pin
mpmc_0_DDR_CE_pin
mpmc_0_DDR_Clk_n_pin
mpmc_0_DDR_Clk_pin
global_timer_rst
global_timer_tick

ncp_top_tx

I/O
 B

U
F

S

ncp_top_tx_wrap

pcore

Functional Unit

CLK
Reset
Logic

DAC
Trigger

DAC
Interface

Block

FU
PCIe

Data to DAC

Data

Figure 3.2: Transmiter Architecture

29

The Figure 3.2 depicts an 802.11a-lite transmitter implementing the virtual flow

pipelining to send an OFDM frame. Due to area restrictions, we couldn’t instantiate all

processing blocks of 802.11a. The processor and bus reside in the processor core bus.

There are 4 functional units that are plugged to the bus. They include :

• MAC: The software feeds the MAC with the frame and this block attaches the

required headers as per the standard. This is called 802.11a-lite MAC.

• Header: This block appends the PLCP header before the frame and also pads

zeros at the end of the frame to make the frame size an integral multiple of

number of OFDM symbols

• Modulator: The frame is then modulated according to the modulation shceme

decided by the software.

• IFFT: The output of the modulator goes through IFFT and filters.

The content at the output of the FFT are OFDM format and are passed on to the DAC.

The DAC interface block is also connected to the bus, hence the configuration parameters

can also be setup by the user.

3.2 Receiver Architecture

30

The receiver structure is similar to the transmitter. Only change is that the Functional

units cater to receiver now. The ADC interface connects to the Synchronizer FU. The

DAC interfaces don’t get connected and the pins are terminated. The receiver

implementation diagram is shown the figure 3.3.

Processor Core

FU
MAC
RX

FU
DMOD

FU
CHKR

FU
SYNC

Microblaze PLBv46 BUS LMBv10

BRAM
BRAM I/F Contr

XPS_uartlite XPS_gpio XPS_intc

xps_mch_emc mpmc ipif_final

Bus Interface

Unit Control
Module Wrapper

Processing
Engine

fpga_0_RS232_RX_pin
fpga_0_RS232_TX_pin
sys_clk_pin
sys_rst_pin
xps_gpio_0_GPIO_d_out_pin
xps_mch_emc_0_Mem_DQ_pin
xps_mch_emc_0_Mem_A_pin
xps_mch_emc_0_Mem_RPN_pin
xps_mch_emc_0_Mem_CEN_pin
xps_mch_emc_0_Mem_OEN_pin
xps_mch_emc_0_Mem_WEN_pin
mpmc_0_DDR_DQS
mpmc_0_DDR_DM_pin
mpmc_0_DDR_DQ
mpmc_0_DDR_Addr_pin
mpmc_0_DDR_BankAddr_pin
mpmc_0_DDR_WE_n_pin
mpmc_0_DDR_CAS_n_pin
mpmc_0_DDR_RAS_n_pin
mpmc_0_DDR_CS_n_pin
mpmc_0_DDR_CE_pin
mpmc_0_DDR_Clk_n_pin
mpmc_0_DDR_Clk_pin
global_timer_rst
global_timer_tick

ncp_top_rx

I/O
 B

U
F

S

ncp_top_rx_wrap

pcore

Functional Unit

CLK
Reset
Logic

ADC Ctrl
& Trigger

ADC
Interface

Block

FU
IFFT

Data from ADC

FU
PCIe

Data

Figure 3.3: Receiver Architecture

31

The receiver instantiates the following functional units :

• Synchronizer: This block is responsible for frame detection and frequency

correction of the received frame.

• FFT: The received frame passes through FFT.

• Demodulator: This block demodulates the frame based on the modulation scheme

and decision table setup by the user.

• Checker: This block contains the parity checker for the PLCP frame and CRC

checker for the data frame.

• MAC: The checker passes the data to MAC which removes the header and

forwards the frame to the software for verification

The data at the synchronizer is received from the ADC. Just like the DAC, the ADC

parameters can also be configured by the user at runtime.

3.3: System Flow

The data and control flow demonstrated in the WiNC2R demo is that of 802.11a-Lite

ODFM. As mentioned before, the functional units correspond to the basic physical and

MAC layer blocks required for basic frame transmission. The task by task flow, which is

setup by the user, is elaborated in detail below.

3.3.1: Transmitter Flow for OFDM

The transmitted functional units and the command flow of an OFDM transmitter is

shown in the figure below [10].

32

©Renu Rajnarayan

Figure 3.4: Transmit Control Flow

Transmitter Tasks

1. TxDataAvl – The frame, which is written in software, is written into the input

buffer of MacTx block. MAC then spawns this task to the frame header creator

and forwards the frame.

2. TxStartCtrl – This task is sent to the receiver FFT to indicate that the control

message is being transmitted. In this case, the preamble is sent.

3. TxPreambleCtrl – The preamble is sent directly to the IFFT for transmission

during this task.

4. TxEndCtrl – This task is sent to the receiver to indicate end of preamble

transmission.

33

5. TxMod – The modulator identifies this task and proceeds with modulating the

input buffer. There are three different tasks for the first chunk, last chunk and the

intermediate chunk. But the modulation works independent of these sub-tasks.

6. TxIFFT – The mod forwards the data to the input buffer of the IFFT during this

task. This is the final task of one frame cycle. The FFT forwards the content

directly to The DAC.

3.3.2: Receiver Flow for OFDM

The receiver functional units and their command flows are shown in the diagram below

[10].

©Renu Rajnarayan

Figure 3.5: Receiver Command Flow

1. ChannelIdle – When the receiver is idle, it sends channel idle to Mac in the

transmitter. On sensing this, the Mac sends frame across channel.

34

2. RxStartRevCtrl – On receiving this task from the transmitter, the auto-correlator

in the synchronizer scans the channel for valid preambles and extracts the

parameters out of it.

3. ChannelBusyCtrl – Once these parameters cater to a valid OFDM frame, the

receiver locks the channel by sending the busy signal. This is a part of the

medium access control to avoid frame collisions.

4. RxHdrDmod – After the preamble is parsed, the PLCP header (802.11a header) is

demodulated.

5. RxPLCPChk – The frame checker checks the parity of the header and extracts the

frame parameters from it.

6. RxData – Once the header test passes, frame date is requested by the frame

checker. There are three sub-tasks for all the data tasks: first, last and intermediate

chunk.

7. RxDeMod – This task indicates the frame is ready in the demodulator input buffer

to be demodulated.

8. RxFrameChk – The frame checker checks the CRC of the incoming frame

chunkwise and forwards data to the MAC.

9. RxMacData – The frame is checked for validity by the MAC and it interrupts the

software accordingly.

10. ChannelIdle – After the frame is processed by MAC, its sends channel idle on the

channel for future frames.

35

This concludes the conceptual part of the thesis. The coming chapters will illustrate how

this design concept was implemented on FPGA. The document starts with the basic top

level Functional Unit Design and digs into details of every block. The physical layer

blocks – Modulator and Demodulator are discussed in detail along with the testing

methodologies.

36

Chapter 4:

Functional Unit Architecture

The functional unit is the working force of the WiNC2R. They can be viewed as

functions in software developed on hardware. They are connected to the slave interface of

the bus only. They are completely independent of each other hence they can be connected

or disconnected on the fly. All FUs share a common entity structure and architecture.

They differ on the processing engine instantiated in them.

The FU has three modules [11]

• Bus Interfaces - Intellectual Property Interface (IPIF)

• Unit Control Module Wrapper (UCM Wrapper)

• Processing Engine (PE)

The top level architecture diagram is shown below.

©WiNC2R

Figure 4.1: Functional Unit Architecture

37

4.1: Bus Interface

The FU ports must be consistent with the Bus signals. The Intellectual Property Interface

(IPIF) features are

• It provides bidirectional interface between the user logic – UCM & PE and the

PLBv46 bus standard [6].

• It provides access to 32,64 and 128 width bus

• Both master and slave interfaces are merged into one block

• This block is generated using Xilinx Core Generator. The generated code was

modified to isolate the user logic from the bus.

4.2: Unit Control Module Wrap

The UCM wrapper mainly consists of the UCM and blocks required for its access to the

bus. It consists of the management layer of the WiNC2R- above MAC and PHY .

4.2.1: UCM

It is in charge of scheduling the tasks to the unit that it is associated with, assigning the

task, monitoring the task completion, and communicating with the other units in the

system for task sequencing. The task scheduling and sequencing in essence forms Virtual

Flow Pipelining - the sequence of tasks performing the functions of the network protocol

under the strict time frame constraints or with the best effort approach. The Virtual

Channel is the sequence of tasks linked together. The linkage specifies the time frame

38

duration which will constrain the duration of the sequence of tasks within the frame

boundary, as well as repetition period of the tasks in every frame.

4.2.2: Buffers

OutDataPtr0

OutDataSize0

0x0080

0x0084

OutDataPtr1

OutDataSize1

. .
 .

OutDataPtr15

OutDataSize15

0x00F8

0x00FC

. .
 .

Data Region 0

Data Region 1

0x0100

FlowContex

Pointer Set Region

Pointers to
Data Regions

Error Messaging

OutDataPtr14

OutDataSize14

Pointer to
Error Messaging

Pointer to
FlowContext

Buffer Region

0x1FFC

DMA Mailbox Region
Outgoing Mailbox

(16-Word)

Incoming Mailbox
(16-Word)

0x0000

0x0040

InDataPtr0

InDataSize0

0x0000

0x0004

InDataPtr1

InDataSize1

InDataPtr3

InDataSize3

0x0020

. .
 .

Buffer 0

Buffer 1

FlowContext

Pointers to active
buffers

InDataPtr2

InDataSize2

Buffer Region

0x1FFC

Context Region

Data Pointer Set

Control Pointer Set

©WiNC2R

Figure 4.2: Buffer Partition

Input Buffer Output Buffer

39

The processing engines the input and output buffers that the processing engines use for

data processing. They are 1K 33bit Dual port RAMs generated by Xilinx Core Generator.

The buffers are partitioned into two parts – pointer region and data region.

There are common interface blocks in the processing engine that are aware of these

partitions and write/read into them accordingly. They are the ones that manage the data in

all the regions[11].

• Region 0 in both the buffers contains data.

• Region 1 contains the parameter word. The parameter word contains all the

details of the data that is stored in region 0.

• Region 3 in input buffer and Region 15 in the output buffer are reserved for

context data. Context contains that data that are not a part of the frame that is

being transmitted. If two or more processing engine need to share data that is not

a part of the frame but required for the processing of the frame, they use these

regions.

4.2.3: Task Descriptor (TD) Table

The TD interface contains the Task Descriptor table (TD). This block specifies the task

flow execution within the PE. In this table, the active task and next tasks are specified for

every FU. The UCM fetches the information related to a task belonging to a particular PE

from the TD table of that PE. The user has access to this RAM and can fill in the task

information. The TD table contains the information about the number of input/output

buffers used by the task, the next tasks triggered after the successful execution of that

40

task and the information about whether a task is a chunking/dechunking task or not. This

table can be updated for every task through the software.

4.2.4: GTT Table

The Global Task Table (GTT) is a centralized table that resides in the BRAM connected

to the secondary PLB bus. The processor creates and initializes the GTT at the start. The

PEs decodes the data written into this table for task execution and insert the asynchronous

target (consumer) tasks to the FU's queues. This table gives a global view of the data flow

and it can be set for every frame. The TD table of every PE refers to this table to

determine what its next task is. It also synchronizes task execution with the completion

of all producer tasks.

The UCM in every FU accesses the GTT. It is array indexed by 15 bit TaskID in the Task

Descriptor Table (TD) which is preset. The values in the GTT are modified by the UCM

during the task execution. The GTT contains the information about the different tasks and

which FU the tasks are associated to. It also helps in the task synchronization through the

enable flag processing. It also contains configuration settings for the tasks.

4.2.5: Task Scheduler Queue

When Producer UCM wants to schedule a task, it writes a descriptor which is present in

this block to either Synchronous or Asynchronous Descriptor FIFO. This indicates to

Task Scheduler Queue (TSQ) Controller that a task is ready for the en-queuing process.

This block manages tasks by placing them in queues and pushing them whenever needed.

41

4.2.6: Register Maps

Every FU also has a register map that interfaces to the user. The user can set various

parameters directly which the UCM can access. They include information like task

priorities, interrupt handling, error handling and task scheduling.

4.2.7: Arbiters

Since every block in this wrap has slave access to the bus, arbiters are placed in every

block that grant access whenever the bus is idle. The arbiters work on the Bus2IP_CS or

chip select signal to select the corresponding block.

4.2.8: DMA Engine

The DMA Engine provides the interface to the PLBv46 Master bus. UCM requests for

PLB bus services from the DMA Engine, and provides the byte length, source and

destination addresses information. Once configured, the DMA Engine performs the PLB

bus DMA transactions autonomously. The various transfers handled by the DMA are -

1. Producer Output Buffer -> Consumer Input Buffer (Write transaction)

2. Producer UCM -> Consumer UCM (Write transaction)

3. Producer UCM <- Consumer UCM (Read transaction)

4. Producer UCM -> GTT (Write transaction)

5. Producer UCM <- GTT (Read transaction)

42

4.2.9: Processing Engine

The processing engines are the data processing blocks in the WiNC2R. The main MAC

and PHY layer functioning for OFDM are performed at this level. The interfaces of these

blocks are pre defined and are compatible to the UCM ports and the bus interface. Details

of these blocks are presented in the further chapters.

43

Chapter 5:

Processing Engine (PE)

©WiNC2R

44

Figure 5.1: Processing Engine Top Level Diagram

The figure shows the arrangement of the top level processing engine[10]. The Command

Processor (CP), Frame Delimiter and Generator (FDG) , Task Spawning Processor (TSP)

and Register Maps (RMAP) are the blocks that isolate the processing unit from the upper

level control blocks, they are referred to as ‘PE Common Blocks’. The main objective of

using the common blocks is to standardize PE input/output ports and make them

independent from the UCM and I/O buffers. The function of the common blocks is given

below-

1. Command Processor (CP): It translates the commands coming from the Unit Control

Module (UCM) to single-pulse action signals. Each PE can setup the number of

action signals and context data required.

2. Frame Delimiter and Generator (FDG): The FDG is the interface between processing

unit and the input buffer. The PE requests data for a particular data region and FDG

extracts the data from the input buffer.

3. Task Spawning Processor (TSP): TSP helps the PE write to the output buffer.

Whenever PE wants to write its output to the buffer, it requests TSP with data region.

After TSP acknowledges, it waits for SOF and Enables from PE.

4. Register Maps (RMAP): Every PE maintains a register map that adds as a slave

interface to the PLBv46. The user can access PE only through the register map. User

can write to the control register from software. PE can write status details like error

messages, state etc. to the status register so user can read during board testing. Details

of RMAP can be found in RMAP section of Chapter 6.

45

5.1: PE Modulator

The Modulator Processing Engine (pe_mod) is an adaptive modulator that uses a user-

defined mapping table. Since WiNC2R caters to OFDM frames, the modulator is

designed for the 802.11 and 802.16 constellations provided by the standards. But this

module is not restricted for the standards. A user-defined constellation space can also be

defined and loaded into the modulator through the register map (pe_mod_rmap).

The block diagram and schematic details of the modulator is shown below.

Figure 5.2: PE Modulator

5.1.1: Input Interface

46

CP Interface Commands

The modulator has only one action signal – TxMod that initiates the mapping of the data

chunk. The assertion of this signal indicates that there is a data chunk in the input buffer

and the modulation procedures can begin.

FDG Interface

The PE fetches the parameter word that lies in the region 1 of the input buffer. The 32-bit

word contains the properties of the frame to be received. These parameters cannot be

altered and any change would result in modifications of the VHDL code.

The details of the parameter word are explained in the next section.

5.1.2: Processing Engine

The crux of the modulator is the RAM which contains the mapping table and an address

decoder associated with it. The mapper block extracts the information from the input

buffer and activates the address decoder based on the type of modulation.

Parameter Parsing :

The parameter word bit-mapping is shown below.

Bits Content

b31 Preamble Present

b30 Not End of Burst

b29 - b28 Midamble Interval

47

b27 - b23 Sub-channelization

b22 Short/Long Preamble

b21- b20 Channel ID

b19 No Coder

b18 Uplink/Downlink

b17-b16 Standard ID

b15-b11 Header Bytes

b10-b9 Header Code Rate

b8-b7 Header Frame Modln

b6 Header Present

b5-b4 Code Rate

b3-b2 Frame Modln

b1-b0 Frame Status Bits

Table 5.1: PE Modulator Command Parameter

The properties that are used by the modulator are

1. Frame Tag Bits (b1 b0) : ftag

Indicates which part of the frame the chunk belongs

00 – Start and End of frame

01 – Start of frame

10 – Middle of frame

11 – End of frame

2. Frame Modulation (b3 b2) : fmod

Indicates the type of modulation for frame

48

00 – BPSK

01 – QPSK

10 – 16QAM

11 – 64QAM

3. Code Rate (b5 b4) : frate

Indicates the rate of the frame (If coder present)

00 – ½ code

01 – ¾ code

10 – 2/3 code

11 – 5/6 code

4. Header Present (b6) : Indicates whether PLCP is present in the chunk

5. Header Modulation (b7 b8) : hmod

Indicates the modulation technique for the header

6. Header Code Rate (b10 b9) : hrate

Indicates the rate of header

7. Header Bytes (b15 – b11) : hsize

Contains the number of bytes present in the header

8. Standard ID (b17 – b16) :

00 – WiFi 01 – WiMax

49

The control word contains the parameters for the data present in the data region of the

input buffer. The modulator becomes aware of the frame type – WiFi or WiMAX and the

type of modulation based on this word.

The 802.11 standard’s PLCP header typically is BPSK modulated and ½ coded. If the

coder is not present ½ repetitive code is implemented.

Data Parsing:

Once the modulator is set based on the parameters, we request for the region 0 which

contains of the frame with or without header. If the header is present, the first ‘hsize’

number of bytes are modulated using the hmod scheme and rest of the chunk is

modulated with the fmod scheme.

After the SOF is received, the mapper extracts ‘n’ number of bits from the 32 bit word

received and the address decoder extracts a 32 bit corresponding word from the mapping

table. This word is the constellation point associated with the bits. The bit-to-word

mapping is given in the mapping table partition figure below.

Addr
Offset

WiFi
Addr
Offset

WiMAX

00
2 points
BPSK

86
2 points
BPSK

02
4 points
QPSK

88
4 points
QPSK

06
16 points
16QAM

92
16 points
16QAM

22

As shown in the figure, the RAM is divided into the four partitions each for the

modulation scheme. The address of the RAM can be calculated using the equation below.

RAM address = modulation offset + bits

For eg. The modulation offset of 16QAM is 16

constellation point can be found at the address

The modulation word represents a complex number. Bit 31 to 16 is associated with the

real part and bit 15 to 0 contains the imaginary part and the 16 bit is the floating point

number. The modulator continuously writes into the output buffer. This is done w

help of TSP. The complex number representation is shown in the diagram below

Figure

64 points
64QAM

108
64 points
64QAM

Table 5.2: Mapping Table

As shown in the figure, the RAM is divided into the four partitions each for the

modulation scheme. The address of the RAM can be calculated using the equation below.

RAM address = modulation offset + bits

r eg. The modulation offset of 16QAM is 16hex. If the input data is Dhex

constellation point can be found at the address Dhex + 16hex which is 23hex

The modulation word represents a complex number. Bit 31 to 16 is associated with the

real part and bit 15 to 0 contains the imaginary part and the 16 bit is the floating point

number. The modulator continuously writes into the output buffer. This is done w

The complex number representation is shown in the diagram below

Figure 5.3: Complex Number Representation

50

As shown in the figure, the RAM is divided into the four partitions each for the

modulation scheme. The address of the RAM can be calculated using the equation below.

hex, the associated

hex.

The modulation word represents a complex number. Bit 31 to 16 is associated with the

real part and bit 15 to 0 contains the imaginary part and the 16 bit is the floating point

number. The modulator continuously writes into the output buffer. This is done with the

The complex number representation is shown in the diagram below

51

5.1.3: Output Interface

Data Write - The modulator requests region 0 for the data and provides SOF EOF and

enables for corresponding 32 bit words. Since all words written are 32bit, enable signal is

always 0xF. The size of the chunk written depends on the modulation scheme.

After writing the data in region 0, the modulator requests region 1 to write the parameter.

The parameter word is same as the word received from the input buffer. The modulator

simply forwards this information to the MAC Tx.

5.2: PE – Demodulator and Checker

The Demodulator Processing Engine (pe_dmod) is a processing engine that demodulates

the data coming from the FFT. Due to FPGA recourse constrains, the demodulator and

frame checker are combined into one processing engine. The software that establishes the

modulating constellation also sets up the decision regions for the demodulation. The

figure shows the top level architecture of the processing engine wrapper.

52

Figure 5.4: PE Demodulator and Checker

The IO ports of the top level are consistent with all the processing engine pins. The data

read interface is present in the demodulator and the write interface is in the checker.

There are other connections that pass control information between the two PEs.

5.2.1: PE Demodulator

The demodulator is a standard specific physical layer block that demodulates the input

data that arrives from the FFT. Just like all PEs, the module works on 32 bit words.

CP Interface

The demodulator has two tasks as mentioned in Chapter 2. The RxHdrDmod is the task

that demodulates the header field. The PLCP header is demodulated in a different scheme

than the frame. The FFT treats the header as a different task and triggers this task. The

53

second task is RxDmod is the task that caters to the payload. This task is activated when

there is data present in the input buffer of the demodulator.

FDG Interface

The region 0 of the input buffer is reserved for data. Region 1 contains the parameter

word that contains more information of the payload. Based on the requirement, the PE

requests for corresponding region to the FDG.

Processing Engine

The checker engine treats header and frame as two different tasks but the modulator

processes these tasks in a similar way.

Once the autocorelator in the FFT triggers and validates the PLCP header and, it writes

the header content to the inbuff. The demodulator first parses the parameter word which

contains the following information.

Bits Content

b31-b28 0x0

b27-b23 Subchannelization

b22 Short/Long Preamble

b21-b20 Channel ID

b19 No Coder

b18 Uplink/Downlink

54

b17-b16 Standard ID

b15-b6 0x0

b5-b4 Code Rate

b3-b2 Frame Modln

b1-b0 Frame Status Bits

Table 5.3: PE DmodChkr Command Parameters

The properties that are used by the modulator are

1. Frame status Bits (b1 b0) : ftag

Indicates which part of the frame the chunk belongs

00 – Start and End of frame

01 – Start of frame

10 – Middle of frame

11 – End of frame

2. Frame Modulation (b3 b2) : dmod

Indicates the type of modulation scheme used for the PLCP header

00 – BPSK

01 – QPSK

10 – 16QAM

11 – 64QAM

3. Code Rate (b5 b4) : frate

Indicates the rate of the frame (If coder present)

00 – ½ code 10 – 2/3 code

55

01 – ¾ code 11 – 5/6 code

4. Standard ID (b17 – b16) :

00 – WiFi 01 – WiMax

The control word for a 14 byte QPSK modulated WiFi frame would be 800800E5hex and

that modulated with 16QAM would be 800800E9hex

Data Parsing

Once the frame modulation scheme is known, the processing engine demodulates the

header and writes it to the RAM. The checker gets an action signal that indicates header

task. In RxDmod task is similar to this, only difference is that this task triggers frame

checker action at the checker to indicate payload.

RAM

Since there is no TSP interface, there is a 1K RAM that acts like the output buffer to the

Demodulator and the input buffer to the checker. To synchronize the delimiters to the

frame, the RAM width is extended to 38 bits. 32 bits are for the data, 1 for sof,1 for eof

and 4 for the enable associated with the data. The diagram of the RAM is shown below.

56

Figure 5.5: Demodulator Output RAM

This RAM does not have data partitions like the input and output buffer. The RAM is

overwritten on every task from address 0x000.

Demodulation

Just like the modulator, the programmability of the demodulator lies in the RMAP. It is

essentially a block RAM that has slave interfaces to the bus. Hence, it can be read and

written by the software or the user. Just like the software calculates the constellation

points and writes them to the modulator RMAP, the same function simultaneously

calculates the decision regions and writes them to the dmod rmap.

57

After knowing the type of modulation from the parameter word, the demodulator fetches

the required values and stores them internally to decode. The structure of the RMAP is

shown in the figure below

The 32 bit word is split into two regions – data bits and boundary. We use the lower

bound method to decide boundary region. In this method, the software calculates the

lower bound(value) for all the boundaries and stores it next to the decision it. So, the 16

LSB bits is the lowest value of the decision region and the MSB 16 bits correspond to the

bits associated with that region.

There are separate words for both the axes. Hence, the demodulator works on the real and

imaginary part separately. It concatenates the demodulated words and once 32bits are

formed, it writes to the RAM with delimiters.

5.2.2: PE Checker

The frame checker is a part of the demodulator block. It basically consists of a parity

checker, header extractor, byte counter and CRC checker. The detail architecture is

shown in the Figure 5.6.

58

Figure 5.6: PE Checker

Header Extractors

In the task RxHdrDmod, the demodulator sends a control signal to the checker that

indicates whether the input data is header. The data from the header is extracted and

stored in appropriate signals. The PLCP Header[15] structure specified in 802.11a

standard is as follows

Figure 5.7: PLCP Header Contents[15]

59

Parity checker

The only redundancy check that happens on the PLCP header is the parity check. 1 bit in

the header is assigned to the parity bit. The parity check block checks the parity of the

header. When there is an error, the PE checker flags an error and triggers the error

handling tasks. In this case, the FFT doesn’t forward the frame to the MAC and requests

retransmission. If the parity check passes, this block triggers the UCM length calculator

block.

The UCM length calculator calculates the number of chunks based on the total frame

length received, the modulation scheme and chunk size. These details are given in the

Table 5.4. Every chunk contains 4 OFDM symbols and the size of the chunk is

determined by the data bits per OFDM symbol. The first chunk sizes are different

because the contents of the header are not included in the frame size. Hence they get

clipped off the first chunk.

Data
Rate
(Mbps)

Modulation
Coding
Rate

Coded Bits
Per
OFDM
Symbol

Data Bits
Per
OFDM
Symbol

First
Chunk
Size
(Bytes)

Chunk
Size
(Bytes)

6 BPSK ½ 48 24 16 24

9 BPSK ¾ 48 36 16 24

12 QPSK ½ 96 48 40 48

18 QPSK ¾ 96 72 40 48

24 16-QAM ½ 192 96 88 96

60

Table 5.4: Chunk Sizes for WiFi

Frame Length Forward Block

The frame length block uses the length field in the header to calculate the number of

OFDM symbols based on the following table. The Xilinx generated divider is used.

This block writes the number of symbols in the context field of the outbuffer. This value

is read by the FFT. The UCM in the FFT is responsible for chunking, it uses this value to

determine the number of chunks for the entire frame to fit the required number of OFDM

symbols. The number of OFDM symbols per chunk is set by the user through the register

maps

CRC Check

After the PLCP header handling, the top module sends a header check done to the FFT.

After this, the FFT starts sending the frame to the demodulator which is then passed to

the CRC check block in the checker.

The Frame Check Sequence (FCS) unit calculates CRC over all the data. It processes

36 16-QAM ¾ 192 144 88 96

48 64-QAM 2/3 288 192 136 144

54 64-QAM ¾ 288 216 136 144

61

each byte of the data per cycle and generates a 32-bit CRC. The CRC generator

polynomial is specified in the standard –

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

The CRC generated from a chunk is stored in the context field, which is region 15 of the

output buffer. The initial seed of the CRC block is all 1s. Since the frame arrives in

chunks, the seed for every chunk is the CRC generated by the previous one. This way,

every chunk can be independent and the context field can be used to pass the intermediate

CRC. The MAC Rx then checks the CRC content directly to validate the integrity of the

frame.

All the processing engines have to be tested before implementing on the FPGA. The

following section describes the testbench design used for automated PE verification.

5.3: PE Testbench

Every design has to be backed with extensive testing. In FPGA, the top level entity is

called testbench. The testbench consists of two major components – The device under test

is the user logic and the testbench components.

5.3.1: Device under Test

The device here is pe_top

common blocks. The common blocks are independently tested, so the testbench is

established to test the processing unit alone.

5.3.2: Reference Text Files

The testbench components are RTL coded and are directly connected to the PE. They are

designed to fake an UCM wrap environment. One side of these components is the testing

side where the signals are compatible to the WiNC2R specific pe_top signals and the

other side is the reference model which is designed in Matlab.

Figure

5.3.1: Device under Test

is pe_top [10]. It consists of the basic processing unit (PU) with all the

common blocks. The common blocks are independently tested, so the testbench is

established to test the processing unit alone.

Reference Text Files

The testbench components are RTL coded and are directly connected to the PE. They are

designed to fake an UCM wrap environment. One side of these components is the testing

side where the signals are compatible to the WiNC2R specific pe_top signals and the

other side is the reference model which is designed in Matlab.

Figure 5.8: PE Test Bench Top Level Architecture

62

. It consists of the basic processing unit (PU) with all the

common blocks. The common blocks are independently tested, so the testbench is

The testbench components are RTL coded and are directly connected to the PE. They are

designed to fake an UCM wrap environment. One side of these components is the testing

side where the signals are compatible to the WiNC2R specific pe_top signals and the

63

The entire OFDM chain is redesigned in Matlab which acts as the reference for testing.

The model generates input and output buffer data for all processing engines for various

parameters. The parameters include number of frames, frame length, modulation etc.

Following is the list of the text files that are generated for a 14 byte frame with

modulation scheme of BPSK.

1. cmd – This file contains the list of commands for a single testbench session. The

commands are compatible to the tasks mentioned in Chapter 2.

2. Ibuf – This text file is synchronous to the cmd file. It contains the content that is

supposed to be in the input buffer for the corresponding command. The size of the

data is also mentioned in this file

64

3. Obuf – This file contains the correct output buffer contents corresponding to the ibuf f

65

4. Tvec – This file is used to compare the next task vectors coming from the processing

engine to the reference matlab model.

5. Rmap_drv – The register map control words can be manually entered to this text file

with corresponding addresses

6. Rmap_stat – The status messages from the processing engine is written into this file

along with the address.

7. Error files – If the PE produces errors, the output buffer contents that are in error are

written into this file.

66

5.3.3: Testbench Components

1. Ibuf Driver – When triggered, this module writes the content of the ibuf text file to

the inout buffer. It follows the input buffer partitions and writes to the RAM on every

command.

2. Obuf Monitor – This component is responsible for the comparison of the output

buffer to the reference obuf text file. It also generates the error file which shows the

addresses where the word was written in error.

3. Rmap Driver – The RMAP driver has the slave interfaces that are connected to the

RMAP interfaces. This acts like the bus and writes the rmap_drv test file’s content to

the RMAP RAM. The pre-command processor loads the control words to the register

and the post-command processor compares the content of the status register to the

rmap_stat text file.

4. Simulation Manager – This is the main controller of the test bench. It is a light

version of UCM where only the command processes and the next task processes are

simulated. The simulation manager forwards the command from the text file to the

67

command decoder of the processing engine and waits on the command done from the

PE. It also triggers the driver and monitor and keeps the test bench synchronous to the

processing command.

68

Chapter 6:

PE Register Maps and Software

6.1: Register Map

To avoid complexity in hardware, the adaptability and flexibility of the modulator is

implemented in the software. Xilinx provides a software development tool in C that has

functions required to access the FPGA via Joint Test Action Group (JTAG) cable. Hence,

it becomes convenient to code the mapping table in C than VHDL. The software

basically consists of data processing, threshold calculations and writing them to the

designated RAMS. The control and status registers are designated to a block ram

instantiated in RMAP module.

The software – RMAP interface is shown in the figure below.

P

L

B

pe_mod_wrap

Status Register

pe_mod_rmap

Control Register

BPSK

QPSK

16QAM

64QAM

Mapping
Table

Bus2IP_RNW

Bus2IP_Addr[15:0]

Bus2IP_Data[31:0]

Bus2IP_WrReq
o_rd_en

addr[6:0]

data[32:1]

status control

IP2Bus_Data[31:0]

Xilinx C Functions

 xil_read(address);

 xil_write(address,data);

 fillModTable();

Figure 6.1: PE Mod Register Maps

69

The modulator register map is the crux of the processing engine. It is the only interface

that talks to the user. This part of the processing engine has signals that connect to the

bus. Hence the software can directly read or write into the RAM present in the RMAP.

The control registers are those words that can be written by the user. The control register

in the modulator and demodulator for this release is based on the constellation specified

by the 802.11 standard. The constellation diagram is shown below [15]

70

Figure 6.2: 802.11a constellation diagram

The entire constellation points are converted into complex numbers and arranged in the

from specified in section 5.1.2: . Similarly the demodulation registers are simultaneously

calculated and filled up. The standard specifies a normalization factor to all the

modulations that normalize all the energies. The table is given below

71

Table 6.1: Normalization factors for various modulation schemes

The status registers are written by the processing engine and are read by the user. They

are used for hardware debugging purposes. The status registers are constantly updated by

the engine so that at any point of time the user can read its status. Hence they have to be

well defined to make FPGA board testing simple.

The demodulator and modulator status registers are given in detail below.

STATUS BIT DESCRIPTION

State 11 State of the Modulator. See table below for details

State 10

State 9

State 8

7

6

5

Cmd

Invalid
4 Invalid Command

72

Eof error 3 If eof arrives before sof

Sof error 2 In case of multiple instances of sof frame

Error Flag 1 Error Flag

Task Done 0
Indicates whether the Task was completed

Successfully

MSR(11 to 8) State Description

0000 IDLE Initial State of the Modulator

0001 ST_PTR_ACK Waiting for pointer ack from FDG

0010 ST_SOF Wait for SOF from input buffer

0011 ST_BUF_ACK Waiting for buffer ack from TSP

0100 ST_CTRL_PARA Acquiring control parameters

0101 ST_MOD Modulation State (main)

0110 ST_END_WORD Wait for End of frame

0111 ST_16QAM Waiting for Buffer data for 64QAM

1000 ST_DATA _AVAIL Wait for Data Avail for 64QAM

1001 ST_DATA_EN Data Enable to TSP

1111 ST_DONE Modulation Done

Table 6.2: Modulator Status Register

The PE Demodulator and Checker share a common status register.

State Bit Description

Header Cnt 31-28 Number of Headers received

73

Chunk Cnt 27-24 Number of Chunks received

Flag 19 Always 1

First Chunk 18 Received First Chunk

Last Chunk 17 Received Last Chunk

Err 16 Dmod Error Flag

State 15 Checker Frame State

State 14

State 13

State 12 Checker Length State

 State 11

Parity Fail 10 ‘1’ when Header parity fails

Length 0 9 ‘1’ if length from PLCP Header is zero

State 8 Checker States

 State 7

State 6 Checker Control States

State 5

State 4 Demodulator States

 State 3

State 2

State 1

EOF Err 0 No EOF Found

Table 6.3: Demodulator Checker Status Register

74

The words are placed in sequential order of the corresponding bits. This reduces the

complexity of the address decoder and increases that of the software. We take advantage

of the higher level abstraction of C. The software of WiNC2R is explained in the section

below.

6.2: Address Allocation

Every functional model is assigned to various address spaces on the FPGA. These

addresses are used by the software to access the register maps of the modulator and

demodulator. Every unit has a base address defined during the embedded system

integration. The base address for the Modulator is 0xC364000 and that of the

demodulator checker is 0xC367000. The internal RAMS of these blocks are offsets and

are consistent for all functional units. The offsets are as follows-

RAM Block Offset

IPIF RAM 0x0000

UCM RMAP 0x1000

UCM TD Table 0x2000

UCM TS Queue 0x4000

PE Common RMAP 0x6000

PU RMAP 0x7000

Input Buffer 0x8000

75

Output Buffer 0xC000

Table 6.4: PE RAMs Address Offsets

6.3: Software on WiNC2R

Xilinx provides a software development kit for interfacing the software GUI to the FPGA

board. This kit compiles and builds an image of the software that is loaded on to the

block RAM on the board. It is a Java based application development tool which has

C/C++ editors and the required Xilinx libraries.

The software image which has an extension ‘.elf’ is loaded on to the FPGA via the JTAG

cable. The command interface is provided by the XMD Debugger. XMD stands for

Xilinx Microprocessor Debugger and it communicates with the hardware. Memory read

and write can be performed using this tool. The DAC and ADC interfaces can be tested

using this tool before invoking the software.

The WiNC2R software is written in C. Following will illustrate the functions and

methods used to configure the system.

1. struct complex mod,dmod

The modulation functions generate constellation points that are complex numbers.

2. struct complex modulate(int n,int input,int std_id)

This is the function that returns the complex number representing the constellation

point for input. The argument n is the number of bits associated with input. Since two

76

different sets of modulation schemes are allowed at a time by a single software

session, std_id is used to configure both. In this case std_id = 0 indicates WiFi and

std_id = 1 is WiMax.

This function also calculates the decision regions for the demodulator and stores them

in an array. These values are then forwarded to the RMAP procedure for

demodulator. The values are stored in complex format and then converted to the

WiNC2R compatible data type.

3. struct complex* mod_rmap()

This function generates an array of complex numbers that has to be written to the

modulator register map. As per Table 5.2 the various modulation techniques are

placed in a manner which is interpreted by the modulator’s address decoder. The

array that is returned by this function follows the same convention.

4. Xuint32* mod2xuint(struct complex* mod_val)

Since all these values are fed into the BRAM of the system, they have to be converted

to 32 bit hexadecimal format. Xilinx software development kit provides data types

that are recognizable by the loader. This format is Xuint32 for 32 bit words which are

essentially hexadecimal numbers. The mod2xuint function takes complex numbers as

input and converts them to the xuint32 format.

5. RMAP.c

77

This file consists of all the methods to populate the register maps, RAMS and

initialize queues. It first recognizes the FPGA load, whether it is transmitter or

receiver and then instigates the necessary functions. For modulator and demodulator,

the arrays setup by the above functions are loaded onto the corresponding addresses.

The software initializes the frame and triggers the MAC Tx. The receiver software then

waits for the MAC Rx interrupt flag to be set. Here, the data is verified for its integrity.

The software can be setup by the user dynamically. The cognitive algorithms can be

implemented at the user level in higher level languages. The PE also exhibit chunks

independency i.e. they treat every chunk independent of the other. This means that

multiple frames can be interleaved and sent. This property is helpful for MIMO

applications. The software can be used for multiple frame organization and data flow

allocation.

78

Chapter 7:

Resource Utilization and Timing

7.1: FPGA Resource Utilization

The programmable elements inside a FPGA called Configurable Logic Blocks (CLB). A

FPGA consists of slices which consist of configurable switch matrix with 4 or 6 inputs,

known as look-up tables or function generators (FG), some multiplexers and flip-flops

(FF). A configurable logic block consists of 4 such slices. This combined architecture

gives benefits in the final system such as increased performance of logic execution.

FPGAs are also equipped with Block RAMs which allows on-chip memory allocations.

These memories are used for input/output buffers, TD tables and register maps. The

DSP48E is a Virtex5 FPGA slice that are used for powerful DSP applications and math

intensive processing that eliminate the use of general purpose routing and other logic

resources.

The synthesis tool in FPGA design converts the VHDL code to these basic logic blocks.

The design is assigned specific locations on the FPGA. Hence, every design is restricted

by these FPGA resources. The area utilization is helpful to determine the robustness and

scalability of the design.

The following section provides the utilization in terms of percentage occupied on Xilinx

Virtex5 FPGA.

7.1.1: Transmitter Utilization

79

 FG Slices FF BRAM DSP48Es
Top Level 0.51% 0.90% 0.88% 0.00% 0.47%
Processor 9.13% 9.91% 9.70% 16.80% 0.47%
PE
pe_pcie 0.72% 0.99% 0.97% 0.00% 0.00%
pe_mac_tx 1.55% 1.56% 1.19% 0.00% 0.00%
pe_hdr 0.98% 1.05% 1.03% 0.00% 0.16%
pe_mod 0.67% 0.69% 0.67% 0.00% 2.05%
pe_tx_fft 7.20% 7.32% 7.16% 3.28% 11.25%
Total 11.12% 11.62% 11.02% 3.28% 13.46%
FU
fu_pcie 0.77% 0.77% 0.54% 0.00% 0.00%
fu_mac_tx 3.76% 3.76% 2.74% 0.41% 0.47%
fu_hdr 3.22% 3.22% 2.61% 0.00% 0.63%
fu_mod 2.97% 2.98% 2.19% 0.41% 0.78%
fu_tx_fft 2.39% 2.40% 1.72% 0.00% 0.31%
Total 13.11% 13.13% 9.80% 0.82% 2.19%
UCM Wrap
fu_ucm_wrap 10.30% 10.31% 7.36% 0.00% 2.81%
fu_ucm_wrap x 4 41.20% 41.22% 29.43% 0.00% 6.56%
Total 41.20% 41.22% 29.43% 0.00% 6.56%

Total Resource 75.08% 76.78% 60.83% 20.90% 21.88%

Table 7.1: Transmitter Utilization

7.1.2: Receiver Utilization

 FG Slices FF BRAM DSP48Es

Top level 1.00% 1.24% 1.21% 0.00% 0.78%

Processor 9.13% 9.91% 9.70% 16.80% 0.47%

 PE

pe_pcie 0.72% 0.99% 0.97% 0.00% 0.00%

pe_mac_rx 1.23% 1.24% 0.94% 0.00% 0.16%

pe_dmod 2.09% 2.09% 1.81% 0.00% 0.47%

pe_sync 33.40% 33.40% 31.00% 9.84% 34.53%

Total 37.44% 37.72% 34.71% 9.84% 35.16%

 FU

fu_pcie 0.77% 0.77% 0.54% 0.00% 0.00%

fu_mac_rx 2.26% 2.27% 1.64% 0.00% 0.47%

fu_dmod 2.26% 2.26% 1.64% 0.00% 0.47%

fu_sync 2.27% 2.28% 1.65% 0.00% 0.47%

80

 Total 7.57% 7.58% 5.47% 0.00% 1.41%

fu_ucm_wrap 10.30% 10.31% 7.36% 0.00% 2.81%

fu_ucm_wrap x 3 30.90% 30.92% 22.07% 0.00% 6.56%

Total 30.90% 30.92% 22.07% 0.00% 6.56%

Total Resource 86.04% 87.36% 73.15% 26.64% 44.38%
Table 7.2: Receiver Utilization

From the above tables, we observe that almost 80-85% of the FPGA has been utilized for

the design. Fitting more design into this will complicate the routing process and increase

the time for programming FPGA. Hence, for the future designs, we have eliminated the

PCIe block and combined the synchronizer and demodulator.

The modulator and demodulator utilization is highlighted in the table above. It has also

been noted that most of the space is occupied by multiple UCM. Each processing engine

requires UCM which means that addition of any functional unit would cost 10% area.

7.2: Timing Analysis

In this section, we calculate the Modulator and Demodulator processing latency. Table

7.3 illustrates the number of clock cycles required by the modulator to process various

frame sizes from 500 to 1500 bytes. The mid-chunk latency includes the time required by

the UCM to process the chunk and trigger modulation task for the next chunk.

Modulation
Frame Size (bytes)

500 750 1000 1250 1500
Mid Chunk

Latency
BPSK 53724 91107 105375 133236 159147 1918
QPSK 25890 38868 53725 66696 79676 1890
16QAM 12936 20448 25947 33438 38939 1678
64QAM 8113 13035 17904 21192 26061 1730

81

Table 7.3: Modulation Latency

Figure 7.1 illustrates the table and shows the latency for various modulations.

Figure 7.1: Modulation Latency Graph

Every chunk consists of 4 OFDM symbols. Sometimes the last chunk consists of less

than 4 OFDM symbols the processing time reduces accordingly. Table 7.4 illustrates the

processing time with respect to number of OFDM symbols. The software setup latency is

the time required by the software to fill up the modulation table of the PE.

From the analysis, we can observe that the modulator latency is the worst for large frame

values modulated in BPSK. This is pretty evident because BPSK works on bit level.

Also, there are more OFDM symbols for BPSK for a given frame size compared to other

modulations. The steep increase in the processing is due to data processing of other FUs.

Process Clock Cycles Time (ns)
No of OFDM Symbols 1 190 3.8

2 374 7.48

3 508 10.16

4 640 12.8

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

500 750 1000 1250 1500

N
u

m
b

e
r

o
f

C
lo

ck
 C

y
cl

e
s

Frame Size in bytes

BPSK

QPSK

16QAM

64QAM

82

Software Setup 552 11.04

Table 7.4: Latency w.r.t OFDM symbols

Table 7.5 displays the processing latency of the demodulator and checker. The

demodulator first processes the header and then the chunks. Every chunk consists of 4

OFDM symbols. Similarly, the Checker latency is also divided into two parts, first the

PLCP header parsing and then the CRC check for a chunk. The total latency is the

processing time taken by the combined processing engine. The mid chunk latency is the

UCM latency between the end of one chunk and start of the next.

 Demodulator Checker Total Mid-chunk
Latency

Mod Header Chunk Header CRC Check Header Chunk

BPSK 219 826 67 62 291 887 1665
QPSK 219 862 67 80 286 928 1627
16QAM 219 934 63 114 283 1049 1519
64QAM 219 1030 63 152 283 1181 1371

Table 7.5: PE Demodulator and Checker Latency

Just like the modulator, the chunk processing time depends on the number of OFDM

symbols it contains. All the intermediate chunks contain 4 symbols, but the last chunk

can have less. Table 7.6 illustrates the number of clock cycles consumed by the PE for

various number of OFDM cycles.

No of OFDM
sym Demodulation CRC

Check Total

1 230 49 330

2 491 77 510

3 630 122 726
Table 7.6: Demod. Latency w.r.t OFDM Symbols

83

Combining the latencies of both the processing engines, Table 7.7 shows the number of

clock cycles required to demodulate various frame sizes.

Mod
Scheme

Frame Size (bytes)
500 750 1000 1250 1500

BPSK 54804 82362 108569 135813 162020
QPSK 28624 41749 54855 69264 82386
16QAM 15551 21684 28681 36018 41827
64QAM 10844 15593 19255 24004 28750

Table 7.7: Total PE Latency

Figure 7.2: Demod. Latency for various frames

7.3: Parallel Implementation Design and Analysis

From the previous section, it is observed that the processing time for lower modulations

is very high. This is because the modulator sequentially scans the bits of the incoming 32-

bit word. For a single 32-bit word, there are 32 words written in BPSK. This drastically

affects the total transmission latency. Figure 7.3 displays the timing diagram of the

modulator at PE level. The command TxMOD triggers the modulator and after 32 clock

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

500 750 1000 1250 1500

N
o

 o
f

cl
o

ck
 c

y
cl

e
s

Frame Size in bytes

BPSK

QPSK

16QAM

64QAM

84

cycles the first data is written to the output buffer. A single word is written in 1 clock

cycle (marked in yellow) and the dead time between two data-writes is 2 clock cycles

(marked in grey).

ACTION Signal

TxMOD

Input Buffer Requests

Output Buffer Requests

Data Write

1 clock cycle

Dead Time

2 clock cycles

Parameter Fetch Input Data Fetch Setup Output Buffer Modulate

10 Clock Cycles 9 Clock Cycles 11 Clock Cycles

Figure 7.3: Modulator Timing Diagram

The overall latency of processing can be reduced by eliminating this dead time. Since it

takes 3 clock cycles to process the input bits, we can implement three modulators in

parallel. In this way, each of them gets one slot (clock cycle) to write an output word.

Figure 7.4 shows the architectural diagram of a parallel modulator implementation in a

single PE.

85

pe_mod

Input Word

31 0

...

...

OUTPUT

ARBITER

pe_mod 1

table

pe_mod 2

table

pe_mod n

table

INPUT

SWITCH

Output Buffer

CONTROL BLOCK

Figure 7.4: Parallel Modulator Implementation

The input switch constantly feeds the modulators with bits. The output arbiter is

responsible for collecting the date from the modulators and writing them sequentially to

the output buffer. The reduction in latency is shown in the table below.

Mod
 Size of Frame

500 750 1000 1250 1500 Avg

BPSK 69.54 69.65 69.71 69.75 69.78 69.69

QPSK 70.28 70.51 70.64 70.71 70.75 70.58

16QAM 71.74 72.14 72.29 72.43 72.50 72.22

64QAM 61.70 62.32 55.69 67.36 73.30 64.07

Percentage Reduction

Table 7.8: Latency Reduction in Modulator

86

It is seen that the latency reduces to 70%. The reduction is not much for 64QAM. This is

a special case because the input 6 bits don’t end on a 32-bit word boundary. Hence, there

are 2 clock cycles required to buffer the bits and append them to the next word.

Similar implementation can be adopted by the demodulator. Figure 7.5 shows the timing

diagram of the demodulator. This PE takes 135 clock cycles from receiving the task to

writing the first word in BPSK. This is because the demodulator requires 32 modulated

BPSK symbols to generate a 32-bit word. In this case the dead time refers to the time gap

between receiving 2 input data.

Figure 7.5: Demodulator Timing Diagram

From the figure, we see that 4 clock cycles are required to process an input word. We

hence implement 4 parallel demodulators to eliminate the dead time. The architectural

87

diagram shown in Figure 7.6 is similar to the modulator. The input switch is simpler as it

sequentially fetches data from the input buffer and distributes it to the demodulators.

Figure 7.6: Parallel Demodulator Implementation

Table 7.9 shows the latency reduction in percentage for all modulations and various

frame sizes.

Mod
 Size of Frame

500 750 1000 1250 1500 Avg

BPSK 75.37 75.43 75.46 75.48 75.49 75.44

QPSK 77.64 77.74 77.79 77.83 77.85 77.77

16QAM 81.69 81.83 81.93 82.00 82.03 81.90

64QAM 79.66 79.90 79.97 80.06 80.12 79.94

88

Percentage Reduction

Table 7.9: Latency Reduction in Demodulator

The table shows that there is a drastic decrease in the processing timing because of the

additional four demodulators used. The number of clock cycles reduces to almost 1/4th of

the original.

Since we are adding more blocks to implement parallel engines, a single PE now will

occupy more space on the FPGA. The tables below show the area utilization of this

implementation.

 Area on FPGA (%)

 Control Input
Switch

Output
Switch Mod 3

Mods PE_MOD %
Increase

Function Generators 0.07 0.17 0.19 0.58 1.89 0.67 64.55
CLB Slices 0.31 0.35 0.19 0.58 1.35 0.69 48.89
Dffs or Latches 0.3 0.34 0.12 0.46 0.94 0.67 28.72
Block RAMs 0 0 0 0.82 2.46 0.82 66.67
DSP48Es 0 0 0 0.78 2.34 0.78 66.67

Table 7.10: Parallel Modulator Area Utilization

Area on FPGA (%)

Control Input

Switch
Output
Switch Demod 4

Demods PE_DMOD %
Increase

Function Generators 0.07 0.17 0.19 4.02 12.21 4.02 75.12

CLB Slices 0.31 0.35 0.19 4.02 11.67 4.02 73.86

Dffs or Latches 0.3 0.34 0.12 0.86 2.14 0.86 68.15

Block RAMs 0 0 0 1.64 4.92 1.64 75.00

DSP48Es 0 0 0 4.38 13.14 4.38 75.00

Table 7.11: Parallel Demodulator Area Utilization

We use 3 modulating engines in parallel; as a result the total area utilization has increased

three times. Similarly, the demodulator area has increased four times.

89

We can choose the parallel implementation based on the application. In WiNC2R’s

802.11a-Lite implementation, the main focus was reduction of area. The UCM wrap

takes up most of the resources. It was necessary that we reduce the area used by the

processing engines. Thus, only one modulator and demodulator was used. If the

application is restricted to latency, then we can use the parallel implementation with the

cost of FPGA resource. The timing and area analysis can be used to make decisions

regarding the choice of implementation.

90

Chapter 8: Conclusion

The thesis discussed the design on the modulator and demodulator on the WiNC2R. We

explored the flexibility of these engines with respect to the modulation schemes. The

constellation points can be programmed by the user dynamically. These blocks are a part

of the 802.11a-lite implementation of the Virtual Flow Pipeline and have shown

successful results in simulation and hardware.

We have observed that the involvement of software drastically reduces the processing

time. Hence the data signal processing is left to Virtex5 FPGA. The task and data flow is

setup by software. The concept of having a dynamic data flow for every session and

every frame is called virtual flow pipelining.

We have discussed the WiNC2R platform that implements the virtual flow pipelining for

802.11a-lite protocol. The transmitter and receiver flow was divided into various global

tasks. The task flow demonstrated in the first release is as follows –

• Transmitter: MAC – HEADER – MODULATOR – IFFT

• Receiver: SYNCHRONIZER – FFT – DEMODULATOR – CHECKER – MAC

It has been shown that the WiNC2R is able to send successful frames across the entire

chain with the above flow. The FU chain is setup in the global task table and any FU can

be added between frames. Protocol inter-operability is achieved this way by plugging the

required FU inside the flow. Hence, the more Functional Units are designed for better

performance, scalability and robustness.

91

We have also created the functional unit flexible within the restrictions of hardware. With

the help of mapping table inside the modulator and the decision table inside the

demodulator, the user has more freedom to tune these functional units. Such units find

many applications especially in vehicular environments where the channel must be

constantly monitored and the radio parameters must change on the fly. Research institutes

can also use the functional units for experimenting with new protocols and study its

performance on various environments.

The timing and area analysis can be used for future releases to calculate latency and

utilization. The values are constant for every chunk and can be used as estimates for

calculating system latency. From the timing analysis, it is observed that UCM needs to be

further improved in terms of latency. There will be a great loss in data rate for huge frame

sizes due to the mid-chunk latency. In terms of area, the modulator and demodulator take

up an insignificant amount of resources. But again, due to UCM complexity, every

instance adds 10% to the total area. Hence, more research has to be dedicated to UCM to

reduce area or reuse logic.

We have also proposed a parallel modulator/demodulator implementation that reduces the

latency by 1/3rd. The cost of reducing this latency is FPGA area which increases almost 3

times. This analysis can be used in the future releases to make decisions on implementing

the modulator and demodulator.

92

Future Work

1) The modulator design can be improved for complicated constellation points. This

type of RAM structure supports only rectangular constellations. The designed can

be improved further for phase shift modulation schemes.

2) Error coder and decoder can also be designed in the similar fashion where the

mapping table can contain the codeword dictionary. Encryption of data is also

possible where the user can use the software to implement various techniques and

the processing engine picks up the coded message from the register map.

3) We can save more FPGA resource area by reusing the modulator code. Since both

the processing engines operate using look-up tables, the same processing engine

can be reused for encoding or encryption.

4) The area of the entire system can also be reduced by clustering multiple

Functional Units to a single unit control module. This also gives more room to

accommodate more processing engines.

5) The software of WiNC2R needs to be improved with regards to the traffic

generation, dynamic flow setups and user-friendliness.

93

References

[1] Z. Miljanic, I. Seskar, K. Le, and D. Raychaudhuri, WINLAB Network Centric
Cognitive Radio Hardware Platform - WiNC2R, in Proceedings of International
Conference on Cognitive Radio Oriented Wireless Networks and
Communications, Orlando, Florida, 2007. CrowCom 2007.

[2] Zoran Miljanic and Predrag Spasojevic, Resource Virtualization with
Programmable Radio Processing Platform WICON 2008, Maui Hawaii, USA.

[3] Network Centric Cognitive Radio (WiNC2R)
http://www.winlab.rutgers.edu/docs/focus/WiNC2R.html

[4] GNURadio wiki page : http://gnuradio.org/trac
[5] WARP wiki page : http://warp.rice.edu/trac
[6] Xilinx Documentation : http://www.xilinx.com/support/documentation/
[7] Innovative Integration’s X5-400M Manual : http://www.innovative-

dsp.com/support/manuals/X5-400M.pdf
[8] Innovative Integration’s X5-400M Logic User Guide
[9] WiNC2R wiki page
[10] WiNC2R – Processing Engine Documents
[11] WiNC2R – Functional Unit Documents
[12] WiNC2R – Network Centric Protocol Documents.
[13] S.Jain. Hardware and software for WiNC2R. Masters Thesis, Rutgers

University, October 2008.
[14] Vijayant Bhatnagar. Performance and Hardware Complexity Analysis of

Programmable Radio Platform for MIMO OFDM Based WLAN Systems.
Masters Thesis, Rutgers University, May 2008.

[15] “IEEE 802.11a Physical and MAC Layer Specifications,” IEEE 802.11a, 1999.
[16] S.Satarkar. Performance Analysis of WiNC2R Platform.

 Masters Thesis, Rutgers University, August 2009

94

Abbreviations

ADC Analog to Digital Converters

BPSK Binary Phase Shift Keying

BRAM Block Random Access Memory

CLB Configurable Logic Block

CP Command Processor

CRC Cyclic Redundancy Check

DAC Digital to Analog Converters

DDR Double Data Rate

DMA Direct Memory Access

DMOD Demodulator

DP Data Processors

EOF End of Frame

FCS Frame Check Sequence

FDG Frame Delimiter and Generator

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programming Gate Array

FU Functional Unit

GNU GNU Not Unix

GTT Global Task Descriptor

HDL Hardware Description Language

95

HDR Header

IFFT Inverse Fast Fourier Transform

IPIF Intellectual Property Interface

JTAG Joint Test Action Group

MAC Medium Access Control

MDM Microprocessor Debug Module

MIMO Multiple In Multiple Out

MOD Modulator

MPMC Multi Port Memory Controller

MSPS Mega Samples Per Second

NCO Numerically Controlled Oscillator

OFDM Orthogonal Frequency Division Multiplexing

OPB On-Chip Peripheral Bus

PCI Peripheral Component Interconnect

PE Processing Engine

PHY Physical Layer

PLB Processor Logic Bus

PLCP Physical Layer Convergence Protocol

QAM Quadrature Amplitude Modulation

QDR Quad Data Rate

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

96

RF Radio Frequency

RMAP Register Maps

RSSI Received Signal Strength Indicator

RTL Register Transfer Level

Rx Receiver

SDR Software Defined Radios

SISO Single In Single Out

SoC System on Chip

SOF Start of Frame

SWIG Simplified Wrapper and Interface Generator

SYNC Synchronizer

TD Task Descriptor

TSP Task Spawning Processor

Tx Transmitter

UCM Unit Control Module

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VFP Virtual Flow Paradigm

WARP Wireless Open Access Research Platform

WiFi Wireless Fidility

WiMAX Worldwide Interoperability for Microwave Access

WiNC2R WINLAB Network Centric Cognitive Radio

97

WINLAB Wireless Information Network Laboratory

WLAN Wireless Local Area Network

XMC Express Mezzanine Card

