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ABSTRACT OF THE THESIS

Physical Layer Design and Analysis of the WINLAB Ne  twork

Centric Cognitive Radio

By Tejaswy Hari

Thesis Director: Prof. Narayan Mandayam

The wireless domain is ever expanding with newretdgies and protocols emerging for
all possible environments. Each new protocol ismprovement over the other. High
performance FPGAs have entered the market with remh signal processing
capabilities which have vast resources and arecéommodate complex designs. The
amalgamation of the two has given rise to prograblenaadios better known as
cognitive radios. This thesis proposes the physiagér design and analysis of the
WINC2R- WINLAB Network Centric Cognitive Radio whids a SoC (System on Chip)
based hardware platform on FPGA. This system isdas the Virtual Flow Paradigm.
The key characteristic of this concept is that fhietocol processing and selecting

specific hardware accelerators is engaged dynalpicalthe software.

The WINC2R consists of three main parts — the tatar, the interconnect layer and the
control layer. All the data processing and funatignis handled by the data layer which

is the focus of this thesis.



We have designed an adaptive modulator and dentoddta WiNC2R. These blocks

exploit the advantages of software flexibility ahdrdware high speeds. It's an inter-
protocol operable processing engine that cateedl tmodulation schemes and can vary
them on the fly. These engines show MIMO capabsitalso due to their data flow
independent design. The software interface to #gister maps instantiated inside the

processing engines which is used to configure yetem before start of the frame.

We successfully sent OFDM frames implemented omudirFlow Paradigm across and
performed timing and utilization analysis. The miador and demodulator parameters
can be conveniently setup in the software. Theilflexhardware design enables fast
switching between WiFi and WIMAX frames. The thestarts with the design of top
level architecture and further dig deeper the aesigjthe Modulator and Demodulator
processing engines. We then conclude with the gnaind area resource analysis and

discuss an improvement in design.
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Chapter 1:

Introduction

The exponential growth of the wireless industrglsar and evident in all aspects. Cell
phones are now coming equipped with all protoc@rability, wireless speeds are slowly
surpassing the wired and remote areas are no loagete. This has been possible with
developments in physical and MAC layer researcp|aging progress in semiconductor
industry and blooming of various languages andotiog tools. The advent of cognitive

radios- radios that can change transmission andiviag parameters based on the
environment is further evidence. These platformmsspss inter-operability and efficient
spectrum usage and fast data rates are their nig@ctives. They will require flexible

physical and complex network layer processing ajlitya

Such platforms have not yet entered the commemsaiket; they are still in the research
phase. The WINLAB Network Centric Cognitive Radsosuch a platform that promises
both speed and flexibility in the multilayer domawh mobile multimedia IP based
communication. Its goal is to provide a scalabld adaptive radio platform hence the
design is SoC oriented and FPGA based. The WiING2&hiexcellent platform for the
research domain for analysis of the mobile appboat computing, communication and
control requirements, performance analysis of thelieations, hardware vs. software
implementation tradeoff analysis. It will also bsetul for understanding the potential

and limitations of traditional CPU architectureaddressing the needs of the emerging



wireless communications in heterogeneous envirotendrhus, this platform will not
only provide a wireless testbed for academia bad alsmart wireless device for various

applications.

The following section will illustrate few such platms that have pre-defined functions

that can be programmed by the user.

1.1: Programmable Radios

1.1.1: USRP
The Universal Software Radio Peripheral is the Waré interface between RF and GNU
software. It is built for general purpose computerfunction as high bandwidth software

radios. It works in baseband frequencies.

The advantage of using USRP is that all the signatessing is done in software, thus
avoiding complex HDL language code. GNU uses pyittmohe to perform all processing
engine functions. The high speed operations likgitali up and down conversion,

decimation and interpolation are done on the FPGA.

The users can develop a wide range of signal psoggsodes without worrying about
the hardware capability and resources. The poweduaibination of flexible hardware,
open-source software and a community of experienseds make it the ideal platform

for your software radio development.

Details of USRP hardware boards [4]



4 high-speed analog to digital converters (ADCs)cheat 12 bits per sample,

64MSamples/sec.

* 4 high-speed digital to analog converters (DACs)heat 14 bits per sample,
128MSamples/sec.

» Altera Cyclone EP1C12 FPGA

* FPGA connects to a USB2 interface chip, the CypiFeé&a and the computer.

» The FPGA connects to a USB2 interface chip, ther€gp FX2. The FPGA

circuitry and USB Microcontroller is programmabieco the USB2 bus.

The FPGA used is the Altera Cyclone EP1C12 FPGAselu®tails are given below. [6]

Feature EP1C12

LEs 12,060

RAM Blocks - M4K 52

Total RAM bits 92,160

PLLs 2

Max user I/O pins 249

Differential Channels 103
Temperature -40°C to +125°C

Table 1.1: Details of FPGA on USRP — Altera Cycl&flC12
As mentioned before, FPGA programming is used terface the ADC and DAC IO
ports to the data-out from the USB. The configomtiypically includes digital down

converters (DDC) implemented with 4 stages cascadtdjrator-comb (CIC) filters.



CIC filters are very high-performance filters usiogly adders and delays. There are
decimators and interpolators so that the dataagjtests to USB interface or the RF. Each
DDC has two inputs | and Q. These values are edgdd when multiple channels are

used. The USRP block diagram is shown in Figutd4.

Software

The software GNU uses is the Linux C++ where thaiegtion program interfaces with

USRP. GNUradio provides USRP interface librariesciwhave to be linked with the

user code. Most of the signal processing is don€+i. Python and SWIG are used to
connect the blocks together and generate a flowth8odata that is output from the

software can be fed directly to the DAC for tranisimg.
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Figure 1.1: USRP Block Diagram([4]

Many complex systems are easily realizable by sofwadio. Fast processors, ever-
expanding memory and high level programming havelenia easy for designers and
researchers in the wireless domain to implementcomcation systems.
The disadvantages of SDRs are

* Whenever a block or function call is invoked, then switches to and fro to the

CPU processor. This drastically increases procgdatency.
* USRP also restricts data flow through USB2.0 wiischot scalable.
» Expertise in SDRs require proficiency in multipenguages — C++ and Python

for software and HDL for configuring FPGA

1.1.2: USRP 2
The USRP2 is an improvement over the USRP boardtaras the following additional

features [4].

+ Gigabit Ethernet interface

« 25 MHz of instantaneous RF bandwidth
+ Xilinx Spartan 3-2000 FPGA

« Dual 100 MHz 14-bit ADCs

« Dual 400 MHz 16-bit DACs

« 1 MByte of high-speed SRAM

« Locking to an external 10 MHz reference



« 1 PPS (pulse per second) input
« Configuration stored on standard SD cards
« The ability to lock multiple systems together folNWD

«  Compatibility with all the same daughterboardshesdriginal USRP

This board has a high performance RF end and & BRf5A. But the data processing
still is implemented in software, this means thHa processing speed depends on the
CPU on which the GNU software is implemented. Henttee data rate is still

bottlenecked at the software.

1.1.3: WARP

WARP is Rice University’'s programmable hardwaretfplan. It stands for Wireless
Open Access Research Platform. Xilinx’s Virtex 2GA3 provide vast recourses for
hardware programmability. Like USRP, WARP also fag daughterboard slots that

support wide range of input-outputs. It comes w#lown programming tools.

The details of the board are given below [5]
» USB and serial port connectivity to PC
» PowerPC 405 Processor
* Rocket IO Trans-receiver
» Xilinx's SystemACE CompactFlash chip for managihg tonfiguration process
of the FPGA. The SystemACE chip acts as an interfatween the FPGA and a

standard CompactFlash slot.



e 160MS/s 16-bit dual DACs - AD9777
e 65MS/s 14-bit dual-ADC - AD9248

The top level architecture of WARP is shown below :

RS-232 UART JTEGMS.E ZBT SRAM
Configuration
Digital /O /Dauggffafd
[~ Virtex-Il Pro —1
User I/O B FPGA i Ll
\ Ethernet
o
Clocking SystemACE Multi-Gigabit
Resources CompactFlash Transceivers

Figure 1.2: WARP Top Level Architecture[5]
The FPGA contains the user logic. The FPGA canrogrammed by using VHDL or
any other HDL. Typically Matlab and simulink is aséo create the bit file that gets

loaded into FPGA.

Details of Virtex2 Pro XC2VP70 are given in theleabelow [6]

Feature XC2VP70

Rocket IO Trans-Receiver Blocks 20

Power PC Processor blocks 2

Logic Cells 74,448

CLB




Slices 33,088
Max distribution RAMs 1,034
Multiplier Blocks 18x18 328
BRAM
18Kb Blocks 328
Max Block RAMs 5,094
DCM 8
Max user I/O Pins 996

Table 1.2: Details of FPGA on WARP — Xilinx Virtdx® XC2VP70

The platform has 2 ADC and 1 DAC as shown in thguf@é 1.3. This radio board is

connected to one of the daughtercard slots.

— Digital Control Signals
Digital ¥Q _ | D/A Converters | Analog I/'Q ——Baseband Analog Signals
(AD9777) N\ —RF Signals
Antenna Antenna
_a—HERX ; —>
= o|_ Digital lo__| A/D Converters | _ Analog ¥Q | RF Transceiver ST Switch Ports
e 8 (AD9248) (MAX2829) |—BETx, | Dua-tan :
283 Power Amp
.g) E ] a
& 83| Digital RSSI | A/D Converter | Analog RSSI
B (AD9200)
Digital Control
Figure 1.3: ADC/DAC interface blocks of WARP[5]
Software

The Open access repository provides the modelherfall SISO and MIMO OFDM

transceiver implemented in Simulink.




The processor used is PowerPC linked to On-chippRenal Bus (OPB). OPB is a
synchronous bus that provides separate 32bit aslelkemd data paths. The data read and
write are implemented with multiplexers. The Syst&enerator tool is responsible for
converting the Matlab code & Simulink blocks to VHDTI he blocks are first created and
linked in Simulink. Once the design is ready, Syst&enerator is invoked and it

performs synthesis and place and route. This desitiien loaded to the FPGA.

Disadvantages of WARP
» Limitations to the FPGA resource space comparethéovastness of software
radio resources.

+ Limitations to Communication blocks in MATLAB'’s Xitx blockset

1.2: WINLAB Network Centric Cognitive Radio — WINC2 R

WINC2R is a network centric cognitive radio deveddpat WINLAB, Rutgers
University. WINC2R is a proof of concept design tthplements the Virtual Flow
Paradigm (VFP) on FPGA. It is a programmable wgglprotocol processing hardware
platform. The VFP[1][2] is a new paradigm for pragmmable communication

processing.

1.3: Virtual Flow Paradigm

The approach here is to strike a balance betwe@wase and hardware. An entire

hardware implementation does not promise scalgbdiid dynamic future evolution.
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Since such a system does not have enough or axbpiliky it fails to process various

communication protocols different from the oned tha hardware is designed for.

The previous section talked about software defiragtios that provide high flexibility
and significant interoperability among protocolsitBhe software latency makes such

systems impractical for high speed designs.

The idea here is to strike a balance between haedarad software implementation. The
virtual flow paradigm solves the problem [1]. Tipgradigm introduces the Virtual Flow
pipelining (VFP) combines the high speed computatiapabilities of FPGA hardware
and flexibility of software. The data flow and pareter inputs to processing blocks are

fed by the user in the form of function calls, the processing happens on hardware.

This type of flow gives us the freedom to add aneoge any functional blocks (FU) or
data processors (DP) dynamically. The blocks atehygsically cascaded together which
means they function independent of their precedingucceeding processors. Hence
there is a requirement of a top controller in thekeks that sets up the flow for every
session. As shown in the figure below, the hardvpgpeline is a pre-decided hard-coded
flow that cannot be easily modified. This makemféasible for cognitive purposes. The
virtual flow pipeline provides room for other blacko fit in a flow. For eg, the first
frame uses the modules FU1, DP1 and FU4 sequgntidile flow for the next frame

shown is completely changed and independent dirdteone.
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Hardware Pipeline
- Frame Period -

FU1 — FuU2 — FU3

< Frame Period 1 = Virtual Flow Pipeline
FUA1(op_a) DPA{th1) FU4(op_b)

- Frame Period 2————— —-
DP2(th7) FU1op_c) FU3(op_x) DP3(th3) FU4{op_b)
L2 Forwrd MAC(TDM) CCler=34) MOD(64QAM) FFT(256)

I

Figure 1.4: Hardware and Virtual Pipelining [9]

This is possible when the software is used to st#taglow—global task flows and ne:
tasks and makes the system look software defined radio lookinigom the application
layer. The underlying functional blocks are all eddn hardware and take the form ¢

typical system on chip design as shown be
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send_frame

| ____setparameters Setup DAC
AckFrame N~ |

Bpsk e lask=NIVY

| |
[ |
L ~ mod_table fill_ configure blocks !
o Ll | | |
- ! I | ! |
Software b L Cnextiasks || :
|
- T - |
P | | | | |
Hardware L o vV v |
[ ! I I >
|
I i i L }
P A } A — }
|
N | |
b \ 4 1 ) 4 1
[ | \ 4
Lo MAC Tx } Modulator
|
e
DAC
Input Output Input Output
Buffer Buffer Buffer Buffer

Figure 1.5: Software in WINC2R

The figure above shows such a scenario where th&€ MA and Modulator are the
functional blocks. Ever Functional Unit (FU) hastol units in them that interpret the
software calls. The next-task processors forwaedpttocessed data from the producer to
the consumer based on a task table that is setthpehyser via software.

The WINLAB Cognitive Radio Platform WINC2R is proged and designed with the
objective of achieving at speed processing of emgrg/LAN and wireless broadband
protocols with flexible architecture. Its underlgifiexibility allows evolution within its
domain space through software upgrades, and measate and collaboration in the

field with waveform and protocol adjustments foe hptimum spectrum utilization. With
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the help of the VFPit places itself between high speed designs agtdyhprogrammable
platforms as shown in t Figure 1.6.

WINC2R on FPGA is well balanced in terms of prognaability and speed. The figu
also shows that the ASIC implementation will furtih@prove the platform and promi
greater speeds. The area of the rectacorresponds tthe complexity of desic or the

number of gates.

A Programmabilty

VANU PicoChip

WinC2R
ASIC

GNU/USRP

WIinC2R
FPGA
Complexity # of gates ~ area of rectangle
WARP

performance

-

|
|
50 Mbps 100 Mbps

© Z.Miljanic P.Spasojevic [2]

Figure 1.6: Hardware Platform Comparison[3]

Since FPGA is resource limited, we cannot achi@esds greater than 50Mbps. We \
require multiple FPGAs interfaced on PCI Expressi€do achieve larger speeds. T

project targets ASIC production to reach the 100Mblestintion. The WINC2R or
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FPGA is merely a proof-of-concept implementatiod #me design procedure is followed
to demonstrate the working of the Virtual Flow Rigan. The modules are not optimized

with respect to resources for commercial use.

1.3 Contribution

The thesis explores the top level design of the @4R. It describes the Virtual Flow
Paradigm implementation on FPGA and the moduled ts@&chieve virtual flows. The
focus of this thesis is the design and analysiphyfsical layer blocks on the WINC2R.
The modulator and demodulator have been designeak¢o to the virtual flow paradigm.
These blocks implement adaptive modulation. The cae setup the constellation points
prior to the transmission. Further, during runtinegch chunk of frame, WiFi or
WIMAX, can be modulated by any 4 types of modulasiolt can be further noted that
the processing engines work independent of eadtr.attence, MIMO transmissions are

possible.

The blocks have also undergone vigorous testingy thie help of a simulated MATLAB
model and the Bus Functional Module (BFM) environieAfter successful
transmissions of frames of various sizes and mddualaschemes, the WINC2R was

programmed on to the FPGA.

Timing analysis and resource analysis has beemnpeetl to determine the processing
latency. Even with high programmability, high spgeedre achievable because the

flexibility is implemented in hardware. The timiagalysis establishes how much latency
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is contributed by the processing engines to the@eeflow. The analysis also provides
FPGA area utilization which will be useful for fueuUWIiNC2R releases.

The following section will explain the top levelchitecture.
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Chapter 2:

WINC2R — Top level Architecture

2.1: Innovative Integration’s X5-400M board
WINCZ2R is implemented on Innovation Integration’S-X00M board. This section talks
about the top architecture design and the intettidmeks instantiated in it. The X5-400M
is PCI Express Mezzanine Card (XMC) IO module hgihre following features [7]

* Two 14-bit, 400 MSPS A/D and two 16-bit, 500 MSP&Mchannels

* Virtex5 FPGA - SX95T

* PCI Express host interface with 8 lanes

« 1GB DDR2 DRAM

4MB QDR-II

The figure below gives us the top level diagrame Bbard has various 10O interfaces that
are mentioned above and all the interfaces aregedi and implemented on VHDL.
WINC2R uses some of these blocks based on therezgeint. The blocks were provided

by Innovative Integration board.
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©lnnovative Integration [8]

Figure 2.1: X5-400M Top Level Architecture[8]

The PCIE interface block (ii_pcie_intf) providestaeaming, control and status interface

to the host PCI Express interface for the userclogiprovides 8 lane motherboard-level

interconnectivity and its scalable shared pardlled architecture caters to high speed data

and control transfers. It is also used to reprogitaerFLASH memory on FPGA. FLASH

memory is a reprogrammable memory that uses omiyngle power supply, making it

ideally suited for in-system programming. The flagtemory is used to store the
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application software. This block also monitors ERRGA temperature. If the temperature
exceeds 85°C, this block triggers alerts and wagsitModules use these indicators to

spawn cooling and shut-down tasks.

2.1.2) RapidIO Interface

The Xilinx RapidlO is a 3 layer endpoint solutiorhieh allows the users to integrate
necessary portions of the design. It comes witlows protocols and frame structures.
The interface block (ii_dio) provides a simple nf@hle interface with registers between
the user logic and RapidlO for memory read andewrit

This module is not instantiated in WINC2R becauagi& O is not used.

2.1.3) DRAM Controller

The ii_128mqg component has a high performance DDRRAM interface and that
requires constrained routing to the microblaze @ssor on the FPGA. It is connected to
the Multi-Port Memory Controller (MPMC) in microlda that supports SDRAM (single
data RAM) , DDR/DDR2 (Dual Data Rate) memory. Twybig, it has an address and
Data Paths, Arbiters for access control, a configle physical interface IDELAY

controller, Clock and Reset Logic.

This interface is used to load the applicationgafe. It as used as a replacement to
Flash memory due to its huge capacity to load apfpin software. Details of this block

will be mentioned in the Software section of thicdment.
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2.1.4) QDR SRAM Controller

This component (ii_qdr_sram) provides an interfadoen the user logic to quad data
rate(QDR) synchronous burst SRAM memories. Therfate component supports the
dual data path architecture of QDR SRAM by providoiual 18-bit address buses for
read and write addressing, dual 32-bit data pathgdad and write from the SRAM
device. SRAMs are not used by WINC2R, hence thoslute is also not used. The top

level 10 pins are terminated as per the user-guide.

2.1.5) DAC
The DAC5687 is used in the WINC2R. It has a 164high speed DAC with
interpolation filters with 2x,4x and 8x capabilityt also has on board Numerically

Controlled Oscillator (NCO) and onboard clock npllar.

The X5-400M board consists of various blocks thedcpss the data and make it
compatible to the DAC. The blocks are instantiated block called ii_dac_intf. The dac
interface block is instantiated between the usgicloutput and the DAC chip on the
board. It works with 16 bit data on the system kloc
e The input to this block comes from the user logesign — WINC2R physical
layer. The data is 16 bits and two modules areimgtted for | and Q values. The
enable is always set high and DAC is always swdcD@&l since frame detection
happens at the receiver. This end works on sysleck.c
* The data is then forwarded to an offset and gamtkblii_offgain). This block

compensated for gain and offset errors. These satam be set by the user
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through the software. There are specific memonrgtioas for these values on
which the user can write and read.

After the error corrections are made, the datadlawo a 1K, 16in-16out FIFO.

The FIFO is written on system clock but it outpuis the sample clock

(dac_plllock) which can be set using the interpofatoefficient. This FIFO has

alarms and flags if the buffer overflows or undenf.

This interface is also equipped with test genesatdy enabling the test

generator, the module outputs a sample sine or veawe based on the amplitude

and frequency offset set by the user.

ADC

The ADC used in WINC2R is the Texas Instrument’'sS8474. It is a 14-bit, 400-MSPS

analog-to-digital converter (ADC) that operatesrirboth a 5-V supply and 3.3-V supply

while providing LVDS-compatible digital outputs Tthaperates upto 500 MSPS.

Just like the DAC, Innovative Integration provideset of blocks for the ADC interface.

The entity ii_adc_intf is an important block in theceiver top and the details are given

below.

The X5-500M provides co-axial connectors for twamhels — ADO and ADL1.
The data from RF or cable is sampled at 200MHz kclate. The clock is
connected to adc_data_ready in ADC control blodie dlata adcO_d and adcl_d
is triggered 1ns before the sample clock so thatpisak is obtained at positive

edge of clock.
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* The adc0 and adcl data flow into the adc contrmt¢lbbnd get combined into 32
bit words. The | and Q values are clubbed togetimet made compatible to the
WINC2R protocol followed.

» The 32 bit words are written to a 1K 32in-32out Glwhere the write enables
follow the sample clock. The reading happens at $iystem clock. The
decimation coefficient is set up by the user. The @tf reads the decimation
value from a designated address location to whiehuser has access to. It is
default set to 4.

* The output from the adf_intf is sent to the prosegengine of the receiver.

* The gain and the offset can also be set by softwiser can change these values

dynamically by writing into the addresses assigned.

2.1.7) Application FPGA
Since all the signal processing is left to the FR@A& use a large area FPGA. Virtex5
FPGA - SX95T is best suited for this applicationh&s a large number of DSP blocks

and RAMs to fit in the entire transmitter or recgiv

The details of FPGA are:

Feature SX95T

Rocket IO Trans-Receiver Blocks 16

CMT 6

Ethernet MACs 4
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Endpoints Blocks for PCle 1
CLB

Array (RowXCol) 160 x 46

Slices 14,720

Max Distr RAM (Kb) 1,520
DSP48E 640
BRAM

18Kb Blocks 488

36Kb Blocks 244

Max Block RAMs 8,874
Total /0O Banks 19
Max user I/O Pins 640

Table 2.1: Details of Virtex5 FPGA

2.2: Steps for implementing on FPGA

a. Architecture Design and documentation.

b. The RTL design is in VHDL

c. Simulation in Mentor Graphics Modelsim and FunctbrVerification using
Matlab and Bus Functional Model (BFM).

d. Synthesis - A process that converts high-level rabsbn to low-level. The
VHDL code is converted to gate level implementafionFPGA. The tool used is

Mentor Graphics - Precision RTL Synthesis.
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. Xflow - Xilinx tool to achieve a design flow.

Place and Route — This step places the logic elengemerated after synthesis on
FPGA and interconnects them on FPGA. It is a langg@ss where the Xilinx tool
optimizes the space and routing to meet the timongstraints.

. The step generates a bitfile which is loaded ineoRPGA using Xilinx Impact.

. Xilinx also provides a software development kitlwKilinx libraries to generate
the software image that is loaded in the BRAM. Wam @ccess all memory

locations through the software.
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Chapter 3:

WINC2R Top Level Architecture

This section will explain the WINC2R top architeeuhat is implemented on FPGA.
The systems top level architecture is called ngp_&émd it instantiates the main

architecture ncp_cmn and the 10 buffers [9].
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GigE MAC Detection Witerbi SDRAM
MAC Engine FET and Decoder FIR Cantroller
Extraction

©WINC2R

Figure 3.1: NCP top level architecture
Syntheses provides an option of automated Inpup@uiuffers (IOBUFs) instantiation
where the tool recognizes the 10 ports and plabescbrresponding buffer before it.
Also, when the microblaze processor is built, tha tnternally places an IOBUFs for the

DRAM interfaces. The place and route tool thendlag error due to the contention of
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multiple buffer instantiation. Hence, we manualtgert the buffers where needed in the

top file to isolate the central architecture anel biuffers.

The WINC2R architecture sits in the entity ncp_topn. There are three main parts in
this architecture [9]

* Microblaze — Central Processor

* Functional Units — Signal Processing Units

e X5-400M Interface Units — ADC/DAC interfaces

3.1: Central Processors - Microblaze

The MicroBlaze embedded processor soft core isdaced instruction set computer
(RISC) optimized for implementation in Xilinx FieltProgrammable Gate Arrays
(FPGAS). It is implemented with a Harvard memorgh#tecture; instruction and data
accesses are done in separate address spaceadfaeds space has a 32-bit range (for
example, handles up to 4-Gb of instructions and damory respectively). The
instruction and data memory ranges can be madeeidap by mapping them both to the
same physical memory. This is useful for softwaebudjging. Figure 3.1 shows the

functional block diagram of the Microblaze core[6].

Microblaze has the following features:

» Thirty-two 32-bit general purpose registers,
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 Up to eighteen 32-bit special purpose registerpedding on the configured
options,

e 32-bit instruction word with three operands and adoressing modes,

» 32-bit address bus,

» Single issue pipeline,

* Three interfaces for memory accesses - Local MeniBug (LMB),Processor
Local Bus (PLB) or On-Chip Peripheral Bus (OPB)iil Cache Link (XCL)

» Supports reset, interrupt, user exception, bread hardware exceptions,

e Supports optional direct mapped Instruction andaDeaache for improved
performance,

* Floating Point Units based on IEEE 754 single @ieai floating point format,

* Fast Simplex Link (FSL) that provides a low laterdsdicated interface to the
processor pipeline, extending the processors execuhit with custom hardware
accelerators,

* Debug interface connected to the Xilinx MicroprammsDebug Module (MDM)

core, which interfaces with the JTAG port of XilikPGAs

3.2: Processor Logic Bus v46 BUS
The PLB is a synchronous, high performance bus teséder connect high performance
processor, ASIC and memory cores. It provides tifeastructure for connecting an

optional number of PLB masters and slaves intoaradl PLB system. It consists of a
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bus control unit, a watchdog timer, and separatktemd, write, and read data path units.

The main features of the PLB bus are [6]:

PLB arbitration support for up to 16 masters withmier of PLB masters
configurable via design parameters.

PLB address and data steering support for up tmdsiers128-bit, 64-bit, and 32-
bit support for masters and slaves

PLB address pipelining

Four levels of dynamic master request priority

PLB Reset generated synchronously to the PLB cfomk external reset when
external reset provided

DMA support for buffered, peripheral-to-memory, nawto-peripheral, and

memory to memory transfers
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3.3: Transmitter Architecture

The working force of the system is the team of Fonal Units (FU). The transmitter
blocks are the MAC Tx, Header, Modulator and IFHhe output of the FFT is
connected to the DAC interface block. For the tnaitter case, only these FUs and the

DAC interfaces are instantiated.
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Figure 3.2: Transmiter Architecture
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The Figure 3.2 depicts an 802.1la-lite transmiitaplementing the virtual flow
pipelining to send an OFDM frame. Due to area i&sins, we couldn’t instantiate all
processing blocks of 802.11a. The processor andrdside in the processor core bus.

There are 4 functional units that are plugged &hhs. They include :

* MAC: The software feeds the MAC with the frame ahi block attaches the

required headers as per the standard. This idc@li2.11a-lite MAC.

e Header: This block appends the PLCP header befmdrame and also pads
zeros at the end of the frame to make the frame aiz integral multiple of
number of OFDM symbols

* Modulator: The frame is then modulated accordingh® modulation shceme
decided by the software.

» IFFT: The output of the modulator goes through IR filters.

The content at the output of the FFT are OFDM fdrarad are passed on to the DAC.
The DAC interface block is also connected to thg, Imence the configuration parameters

can also be setup by the user.

3.2 Receiver Architecture
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The receiver structure is similar to the transmit@nly change is that the Functional
units cater to receiver now. The ADC interface @wis to the Synchronizer FU. The
DAC interfaces don’'t get connected and the pins ®meninated. The receiver

implementation diagram is shown the figure 3.3.
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Figure 3.3: Receiver Architecture
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The receiver instantiates the following functionalts :

Synchronizer: This block is responsible for frametedtion and frequency
correction of the received frame.

FFT: The received frame passes through FFT.

Demodulator: This block demodulates the frame basethe modulation scheme
and decision table setup by the user.

Checker: This block contains the parity checkertfe PLCP frame and CRC
checker for the data frame.

MAC: The checker passes the data to MAC which resaothe header and

forwards the frame to the software for verification

The data at the synchronizer is received from tiRECAJust like the DAC, the ADC

parameters can also be configured by the usenéhre.

3.3: System Flow

The data and control flow demonstrated in the WiRG®&mo is that of 802.11a-Lite

ODFM. As mentioned before, the functional unitsrespond to the basic physical and

MAC layer blocks required for basic frame transmoiss The task by task flow, which is

setup by the user, is elaborated in detail below.

3.3.1: Transmitter Flow for OFDM

The transmitted functional units and the commarmdv flof an OFDM transmitter is

shown in the figure below [10].
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Transmit Path Command Flow
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Figure 3.4: Transmit Control Flow

Transmitter Tasks

1. TxDataAvl — The frame, which is written in softwaiie written into the input
buffer of MacTx block. MAC then spawns this tasktb@ frame header creator
and forwards the frame.

2. TxStartCtrl — This task is sent to the receiver RbBTindicate that the control
message is being transmitted. In this case, trenske is sent.

3. TxPreambleCtrl — The preamble is sent directly ie tFFT for transmission
during this task.

4. TxXEndCtrl — This task is sent to the receiver taligate end of preamble

transmission.
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5. TxMod — The modulator identifies this task and meds with modulating the
input buffer. There are three different tasks fo first chunk, last chunk and the
intermediate chunk. But the modulation works indef@nt of these sub-tasks.

6. TXIFFT — The mod forwards the data to the inputféubdf the IFFT during this
task. This is the final task of one frame cycleeTHT forwards the content

directly to The DAC.

3.3.2: Receiver Flow for OFDM

The receiver functional units and their commanavicare shown in the diagram below

[10].
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Figure 3.5: Receiver Command Flow
1. Channelldle — When the receiver is idle, it senbdanoel idle to Mac in the

transmitter. On sensing this, the Mac sends fraznesa channel.
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. RxStartRevCtrl — On receiving this task from thensmitter, the auto-correlator
in the synchronizer scans the channel for validaptdes and extracts the
parameters out of it.

. ChannelBusyCtrl — Once these parameters cater alid OFDM frame, the
receiver locks the channel by sending the busyasighhis is a part of the
medium access control to avoid frame collisions.

. RxHdrDmod — After the preamble is parsed, the Pb&&der (802.11a header) is
demodulated.

. RXPLCPChk — The frame checker checks the parith@header and extracts the
frame parameters from it.

. RxData — Once the header test passes, frame datmuested by the frame
checker. There are three sub-tasks for all thetdates: first, last and intermediate
chunk.

. RxDeMod — This task indicates the frame is readhendemodulator input buffer
to be demodulated.

. RxFrameChk — The frame checker checks the CRC efitlcoming frame
chunkwise and forwards data to the MAC.

. RxMacData — The frame is checked for validity bg MAC and it interrupts the

software accordingly.

10.Channelldle — After the frame is processed by MAE€sends channel idle on the

channel for future frames.
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This concludes the conceptual part of the thedie. oming chapters will illustrate how
this design concept was implemented on FPGA. Thident starts with the basic top
level Functional Unit Design and digs into detalfsevery block. The physical layer
blocks — Modulator and Demodulator are discussedlatail along with the testing

methodologies.
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Chapter 4:

Functional Unit Architecture

The functional unit is the working force of the WGRR. They can be viewed as
functions in software developed on hardware. Threycannected to the slave interface of
the bus only. They are completely independent ol @her hence they can be connected
or disconnected on the fly. All FUs share a comreatity structure and architecture.
They differ on the processing engine instantiatethem.
The FU has three modules [11]

* Bus Interfaces - Intellectual Property Interfadelid)

* Unit Control Module Wrapper (UCM Wrapper)

* Processing Engine (PE)

The top level architecture diagram is shown below.
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Figure 4.1: Functional Unit Architecture
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4.1: Bus Interface

The FU ports must be consistent with the Bus sgniéhe Intellectual Property Interface
(IPIF) features are
* It provides bidirectional interface between therusgic — UCM & PE and the
PLBv46 bus standard [6].
* It provides access to 32,64 and 128 width bus
* Both master and slave interfaces are merged irgdototk
* This block is generated using Xilinx Core Generaiie generated code was

modified to isolate the user logic from the bus.

4.2: Unit Control Module Wrap

The UCM wrapper mainly consists of the UCM and kforequired for its access to the

bus. It consists of the management layer of the @2R- above MAC and PHY .

4.2.1: UCM

It is in charge of scheduling the tasks to the thmt it is associated with, assigning the
task, monitoring the task completion, and commumgawith the other units in the
system for task sequencing. The task schedulingsaqdencing in essence forms Virtual
Flow Pipelining - the sequence of tasks perforntiregfunctions of the network protocol
under the strict time frame constraints or with thest effort approach. The Virtual

Channel is the sequence of tasks linked togethe. lihkage specifies the time frame
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duration which will constrain the duration of theqgsence of tasks within the frame

boundary, as well as repetition period of the taslevery frame.

4.2.2: Buffers
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Figure 4.2: Buffer Partition
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The processing engines the input and output buffeasthe processing engines use for
data processing. They are 1K 33bit Dual port RAMBagated by Xilinx Core Generator.

The buffers are partitioned into two parts — paimégion and data region.

There are common interface blocks in the processmgjne that are aware of these
partitions and write/read into them accordinglyeylare the ones that manage the data in
all the regions[11].

* Region 0 in both the buffers contains data.

 Region 1 contains the parameter word. The parameted contains all the
details of the data that is stored in region O.

* Region 3 in input buffer and Region 15 in the otitpuffer are reserved for
context data. Context contains that data that ateanpart of the frame that is
being transmitted. If two or more processing engieed to share data that is not
a part of the frame but required for the processihthe frame, they use these

regions.

4.2.3: Task Descriptor (TD) Table

The TD interface contains the Task Descriptor tgdbIB). This block specifies the task
flow execution within the PE. In this table, theiae task and next tasks are specified for
every FU. The UCM fetches the information relatec task belonging to a particular PE
from the TD table of that PE. The user has acaeshi$ RAM and can fill in the task
information. The TD table contains the informatiabout the number of input/output

buffers used by the task, the next tasks triggafésl the successful execution of that



40

task and the information about whether a taskasumking/dechunking task or not. This

table can be updated for every task through thisvaod.

4.2.4: GTT Table

The Global Task Table (GTT) is a centralized tahkg resides in the BRAM connected
to the secondary PLB bus. The processor createsdializes the GTT at the start. The
PEs decodes the data written into this table &k &xecution and insert the asynchronous
target (consumer) tasks to the FU's queues. This taves a global view of the data flow
and it can be set for every frame. The TD tableewéry PE refers to this table to
determine what its next task is. It also synclzesitask execution with the completion

of all producer tasks.

The UCM in every FU accesses the GTT. It is amalexed by 15 bit TaskID in the Task
Descriptor Table (TD) which is preset. The valueshie GTT are modified by the UCM

during the task execution. The GTT contains therimftion about the different tasks and
which FU the tasks are associated to. It also halfise task synchronization through the

enable flag processing. It also contains configonasettings for the tasks.

4.2.5: Task Scheduler Queue

When Producer UCM wants to schedule a task, itear# descriptor which is present in
this block to either Synchronous or Asynchronousddetor FIFO. This indicates to
Task Scheduler Queue (TSQ) Controller that a taskady for the en-queuing process.

This block manages tasks by placing them in quandgpushing them whenever needed.
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4.2.6: Register Maps
Every FU also has a register map that interfacetheéouser. The user can set various
parameters directly which the UCM can access. Tinelude information like task

priorities, interrupt handling, error handling aagk scheduling.

4.2.7: Arbiters
Since every block in this wrap has slave accesbddous, arbiters are placed in every
block that grant access whenever the bus is idie.arbiters work on the Bus2IP_CS or

chip select signal to select the correspondingkbloc

4.2.8: DMA Engine

The DMA Engine provides the interface to the PLBWMaG&ster bus. UCM requests for
PLB bus services from the DMA Engine, and providies byte length, source and
destination addresses information. Once configutesl DMA Engine performs the PLB

bus DMA transactions autonomously. The variousstiens handled by the DMA are -

1. Producer Output Buffer -> Consumer Input Buffer (M/transaction)
2. Producer UCM -> Consumer UCM (Write transaction)

3. Producer UCM <- Consumer UCM (Read transaction)

4. Producer UCM -> GTT (Write transaction)

5. Producer UCM <- GTT (Read transaction)
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4.2.9: Processing Engine

The processing engines are the data processingsbiodhe WiNC2R. The main MAC
and PHY layer functioning for OFDM are performedtas level. The interfaces of these
blocks are pre defined and are compatible to th&1pGrts and the bus interface. Details

of these blocks are presented in the further chapte
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Figure 5.1: Processing Engine Top Level Diagram
The figure shows the arrangement of the top levaetgssing engine[10]. The Command
Processor (CP), Frame Delimiter and Generator (FD@&sk Spawning Processor (TSP)
and Register Maps (RMAP) are the blocks that isdlla¢ processing unit from the upper
level control blocks, they are referred to as ‘Rénthon Blocks’. The main objective of
using the common blocks is to standardize PE ioptput ports and make them
independent from the UCM and I/O buffers. The fiorcof the common blocks is given

below-

1. Command Processor (CP): It translates the commemmdgng from the Unit Control
Module (UCM) to single-pulse action signals. Eadd €an setup the number of
action signals and context data required.

2. Frame Delimiter and Generator (FDG): The FDG isititerface between processing
unit and the input buffer. The PE requests datafparticular data region and FDG
extracts the data from the input buffer.

3. Task Spawning Processor (TSP): TSP helps the PEe woi the output buffer.
Whenever PE wants to write its output to the buyfterequests TSP with data region.
After TSP acknowledges, it waits for SOF and Enaiem PE.

4. Register Maps (RMAP): Every PE maintains a registep that adds as a slave
interface to the PLBv46. The user can access P¥gtbrdugh the register map. User
can write to the control register from software. &4 write status details like error
messages, state etc. to the status register scarseead during board testing. Details

of RMAP can be found in RMAP section of Chapter 6.
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The Modulator Processing Engine (pe_mod) is an tagamodulator that uses a user-

defined mapping table. Since WINC2R caters to OFMr@mes, the modulator is

designed for the 802.11 and 802.16 constellationsiged by the standards. But this

module is not restricted for the standards. A uk#med constellation space can also be

defined and loaded into the modulator through dgtster map (pe_mod_rmap).

The block diagram and schematic details of the ratduis shown below.

CP Interface
Commands:
TxMod TSP Interface
Data Write >
FDG Interface
Parameter and Data ol [ IP2Bus_Data[31:0] >
‘ N bits
e tatus |
= conte Control Register
Mapper
> data[32:1] < Bus2IP_RNW
- D Bus2IP_Addr[15:0]
D Bus2IP_Data[31:0]
< Bus2IP_WrReq
para o_rd_en > M_?pgling <
! able
Address 2ddr6:0) >
Decoder
pe_mod pe_mod_rmap

5.1.1: Input Interface

pe_mod_wrap

Figure 5.2: PE Modulator
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CP Interface Commands
The modulator has only one action signal — TxMaat thitiates the mapping of the data
chunk. The assertion of this signal indicates thate is a data chunk in the input buffer

and the modulation procedures can begin.

FDG Interface

The PE fetches the parameter word that lies imggmen 1 of the input buffer. The 32-bit
word contains the properties of the frame to beeiverl. These parameters cannot be
altered and any change would result in modificatiohthe VHDL code.

The details of the parameter word are explainddemext section.

5.1.2: Processing Engine
The crux of the modulator is the RAM which contaihe mapping table and an address
decoder associated with it. The mapper block etdrdte information from the input

buffer and activates the address decoder basdtedgpge of modulation.

Parameter Parsing :

The parameter word bit-mapping is shown below.

Bits Content
b31 Preamble Present
b30 Not End of Burst

b29 - b28 Midamble Interval



b27 - b23

b22

b21- b20

b19

b18

b17-b16

b15-b11

b10-b9

b8-b7

b6

b5-b4

b3-b2

b1-bO

Sub-channelization
Short/Long Preamble
Channel ID

No Coder
Uplink/Downlink
Standard ID

Header Bytes
Header Code Rate
Header Frame ModIn
Header Present
Code Rate

Frame ModIn

Frame Status Bits

Table 5.1: PE Modulator Command Parameter

1. Frame Tag Bits (b1 b0) : ftag

The properties that are used by the modulator are

Indicates which part of the frame the chunk belongs

00 — Start and End of framelO — Middle of frame

01 — Start of frame

11 — End of frame

2. Frame Modulation (b3 b2) : fmod

Indicates the type of modulation for frame

a7
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00 - BPSK 10 - 16QAM

01 - QPSK 11 - 64QAM

. Code Rate (b5 b4) : frate
Indicates the rate of the frame (If coder present)
00 — %2 code 10 — 2/3 code

01 — 3% code 11 — 5/6 code

. Header Present (b6) : Indicates whether PLCP mseptan the chunk
. Header Modulation (b7 b8) : hmod

Indicates the modulation technique for the header

. Header Code Rate (b10 b9) : hrate

Indicates the rate of header

. Header Bytes (b15 — b11) : hsize

Contains the number of bytes present in the header

. Standard ID (b17 — b16) :

00 — WiFi 01 — WiMax
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The control word contains the parameters for thi@ gaesent in the data region of the
input buffer. The modulator becomes aware of taen& type — WiFi or WiMAX and the
type of modulation based on this word.

The 802.11 standard’s PLCP header typically is BPSdulated and %2 coded. If the

coder is not present ¥z repetitive code is impleeuaknt

Data Parsing:
Once the modulator is set based on the parametersequest for the region 0 which
contains of the frame with or without header. I€ theader is present, the first ‘hsize’

number of bytes are modulated using the hmod schante rest of the chunk is

modulated with the fmod scheme.

After the SOF is received, the mapper extractsnumnber of bits from the 32 bit word
received and the address decoder extracts a 8drpgsponding word from the mapping
table. This word is the constellation point asseclawith the bits. The bit-to-word

mapping is given in the mapping table partitiorufigy below.

Addr |, . Addr :
Offse WiFi Offset WIMAX
2 points 2 points
00 [BPSK 86 IBPSK
4 points 4 points
02 QPSK 88 QPSK
16 points 16 points
06 16QAM 92 16QAM
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64 points 108 64 points

22 leaoAMm 64QAM

Table 5.2: Mapping Table

As shown in the figure, the RAM is divided into tleur partitions each for tF

modulation scheme. The address of the RAM can loelleéed using the equation belc

RAM address = modulation offset + t

For eg. The modulation offset of 16QAM ispex If the input data is R,, the associated

constellation point can be found at the adc Dyex + 16,ex Which is 23,.

The modulation word represents a complex humber3Bito 16 is associated with t
real part and bit 15 to O contains the imaginamg pad the 16 bit is the floating poi
number. The modulator continuously writes into ¢thweput buffer. This is doneith the

help of TSP.The complex number representation is shown in agrdm beloy

BPSK QPSK
Input : 0 Input : 10
Output: -1 + jO Output: 0.414 - j0.414
< Real value > < Imag value > < Real value > < Imag value >
111000000000000000000000000000000 010110101000001[1101001010111111
uFloating Value uFloating Value
Integer Value Integer Value
Sign Sign

Figure 5.3: Complex Number Representation
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5.1.3: Output Interface
Data Write - The modulator requests region O fa& dlata and provides SOF EOF and
enables for corresponding 32 bit words. Since alids written are 32bit, enable signal is

always OxF. The size of the chunk written dependthe modulation scheme.

After writing the data in region 0, the modulatequests region 1 to write the parameter.
The parameter word is same as the word received fhe input buffer. The modulator

simply forwards this information to the MAC Tx.

5.2: PE — Demodulator and Checker

The Demodulator Processing Engine (pe_dmod) i®eessing engine that demodulates
the data coming from the FFT. Due to FPGA recoumsstrains, the demodulator and
frame checker are combined into one processingienghe software that establishes the
modulating constellation also sets up the deciseggions for the demodulation. The

figure shows the top level architecture of the psstng engine wrapper.
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pe_dmod_wrap

CP Interface

Commands:
RxHdrDmodChkr plcp_hdr_req N TSP Interface
RxDmodChkr frame_hdr_reg ;

Data Write
chkr_done >
FDG Interface

Header and Data PE DEMODULATOR PE CHECKER

\data \data

len RAM en
jsof 1K*38 sof
leof eof

Context Enable

Figure 5.4: PE Demodulator and Checker

The 10 ports of the top level are consistent withttee processing engine pins. The data
read interface is present in the demodulator aedvitite interface is in the checker.

There are other connections that pass controlnmdtion between the two PEs.

5.2.1: PE Demodulator
The demodulator is a standard specific physicaéridjock that demodulates the input

data that arrives from the FFT. Just like all RBs,module works on 32 bit words.

CP Interface

The demodulator has two tasks as mentioned in €h&ptThe RxHdrDmod is the task
that demodulates the header field. The PLCP headksmodulated in a different scheme

than the frame. The FFT treats the header as ereliff task and triggers this task. The
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second task is RxDmod is the task that catersa@éyload. This task is activated when

there is data present in the input buffer of theoéulator.

FDG Interface
The region 0 of the input buffer is reserved fotadd&Region 1 contains the parameter
word that contains more information of the payloBdsed on the requirement, the PE

requests for corresponding region to the FDG.

Processing Engine
The checker engine treats header and frame as iffevedt tasks but the modulator

processes these tasks in a similar way.

Once the autocorelator in the FFT triggers anddesdis the PLCP header and, it writes
the header content to the inbuff. The demodulatet parses the parameter word which

contains the following information.

Bits Content
b31-b28 0x0

b27-b23 Subchannelization
b22 Short/Long Preamble
b21-b20 Channel ID

b19 No Coder

b18 Uplink/Downlink
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b17-b16 Standard ID
b15-b6 0x0

b5-b4 Code Rate

b3-b2 Frame ModIn
b1-bO Frame Status Bits

Table 5.3: PE DmodChkr Command Parameters

The properties that are used by the modulator are
1. Frame status Bits (b1 bO) : ftag
Indicates which part of the frame the chunk belongs
00 — Start and End of frame 10 — Middle of frame

01 — Start of frame 11 — End of frame

2. Frame Modulation (b3 b2) : dmod
Indicates the type of modulation scheme used ®PthCP header
00 — BPSK 10 - 16QAM

01-QPSK 11 -64QAM

3. Code Rate (b5 b4) : frate
Indicates the rate of the frame (If coder present)

00 — v code 10 — 2/3 code
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01 — % code 11 — 5/6 code

4. Standard ID (b17 — b16) :

00 — WiFi 01 — WiMax

The control word for a 14 byte QPSK modulated Wikme would be 800800E& and

that modulated with 16QAM would be 800800E9

Data Parsing

Once the frame modulation scheme is known, thegsing engine demodulates the
header and writes it to the RAM. The checker gatacion signal that indicates header
task. In RxDmod task is similar to this, only driéace is that this task triggers frame

checker action at the checker to indicate payload.

RAM

Since there is no TSP interface, there is a 1K RAM acts like the output buffer to the
Demodulator and the input buffer to the checker.syochronize the delimiters to the
frame, the RAM width is extended to 38 bits. 3Xlaite for the data, 1 for sof,1 for eof

and 4 for the enable associated with the datadidgram of the RAM is shown below.



56

sof eof en data

1 0 1111 110101010010101...
0 0 1111
0 0 1111
0 1 0011

Figure 5.5: Demodulator Output RAM
This RAM does not have data partitions like theuinpnd output buffer. The RAM is

overwritten on every task from address 0x000.

Demodulation

Just like the modulator, the programmability of theamodulator lies in the RMAP. It is
essentially a block RAM that has slave interfaceshe bus. Hence, it can be read and
written by the software or the user. Just like foétware calculates the constellation
points and writes them to the modulator RMAP, tlaene function simultaneously

calculates the decision regions and writes thethéamod rmap.
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After knowing the type of modulation from the paeter word, the demodulator fetches
the required values and stores them internallyeiwode. The structure of the RMAP is

shown in the figure below

The 32 bit word is split into two regions — datasband boundary. We use the lower
bound method to decide boundary region. In thishodt the software calculates the
lower bound(value) for all the boundaries and staraext to the decision it. So, the 16
LSB bits is the lowest value of the decision regamal the MSB 16 bits correspond to the

bits associated with that region.

There are separate words for both the axes. H&meelemodulator works on the real and
imaginary part separately. It concatenates theodeiated words and once 32bits are

formed, it writes to the RAM with delimiters.

5.2.2: PE Checker
The frame checker is a part of the demodulatorkblolt basically consists of a parity
checker, header extractor, byte counter and CRCkelne The detail architecture is

shown in the Figure 5.6.
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pe_chkr
PLCP Check
Frame Check . NEXT TASK
Checker Control
Checker Done
S AAAAL g o= A4k o =l A e A
g S8 § | 5% ° 5 2
Z g S5 L g% £ 3 g
5 2 is.8 TS e 3
S e H HE s El O 2 B
Sleig_ EE il s
yeitigs YVYYSS vys A z
TSP Interface
RAM Interface L L] J\ RxDMOD
PARITY || UCMLENGTH FRAME
Calculator LENGTH ‘|/ CRC
CHECKER (DIVIDER) FWD
TSP Interface ::>

Figure 5.6: PE Checker

Header Extractors

In the task RxHdrDmod, the demodulator sends argbsignal to the checker that
indicates whether the input data is header. Tha fftatn the header is extracted and
stored in appropriate signals. The PLCP HeaderfitB]cture specified in 802.11a

standard is as follows

I PLCP Header I
(B Ll
RATE |Reserved| LENGTH| Parity | Tail | SERVICE " Tail .
4bits | 1bit |12bits | 1bit | 6bits| 16 bits TRk gihibs [CoreOE
i |
T Coded/OFDM Coded/OFDM |
"~ _ (BPSK.r=172) | (RATE is indicated m SIGNAL) |
|- | -t >
PLCP Preamble SIGINAL DATA
12 Symbols One OFDM Symbol Wariable Number of OFDM Symbols

Figure 5.7: PLCP Header Contents[15]
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Parity checker

The only redundancy check that happens on the Rig2Ber is the parity check. 1 bit in
the header is assigned to the parity bit. The ypahieck block checks the parity of the
header. When there is an error, the PE checkes féagerror and triggers the error
handling tasks. In this case, the FFT doesn’t fodviae frame to the MAC and requests

retransmission. If the parity check passes, thoslblriggers the UCM length calculator

block.

The UCM length calculator calculates the numbestninks based on the total frame
length received, the modulation scheme and churek Sihese details are given in the
Table 5.4. Every chunk contains 4 OFDM symbols thwedsize of the chunk is
determined by the data bits per OFDM symbol. Tret Ghunk sizes are different

because the contents of the header are not incilnded frame size. Hence they get

clipped off the first chunk.

Coded Bits|Data Bits (|First
Data . IChunk
Rate IModuIatiorICOOIIng PEl Per Clhunk Size
(Mbps) Rate OFDM OFDM Size lBytes)
P Symbol  [Symbol |(Bytes) n
BPSK 1 48 24 16 24
BPSK 3 48 36 16 24
12 QPSK 1 96 48 40 48
18 QPSK Y 96 72 40 48
24 16-QAM |2 192 96 88 96
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36 16-QAM | % 192 144 88 96
48 64-QAM | 2/3 288 192 136 144
54 64-QAM | % 288 216 136 144

Table 5.4: Chunk Sizes for WiFi
Frame Length Forward Block
The frame length block uses the length field in tfeader to calculate the number of

OFDM symbols based on the following table. The nligenerated divider is used.

This block writes the number of symbols in the eanfield of the outbuffer. This value
is read by the FFT. The UCM in the FFT is respdesitr chunking, it uses this value to
determine the number of chunks for the entire fréoni@ the required number of OFDM
symbols. The number of OFDM symbols per chunk idgehe user through the register

maps

CRC Check
After the PLCP header handling, the top module sentieader check done to the FFT.
After this, the FFT starts sending the frame todkenodulator which is then passed to

the CRC check block in the checker.

The Frame Check Sequence (FCS) unit calculates QRC all the data. It processes



61

each byte of the data per cycle and generates kit 32RC. The CRC generator

polynomial is specified in the standard —

G(X):X’32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1

The CRC generated from a chunk is stored in theéegoffield, which is region 15 of the
output buffer. The initial seed of the CRC blockai$ 1s. Since the frame arrives in
chunks, the seed for every chunk is the CRC gesetday the previous one. This way,
every chunk can be independent and the contexitdeeh be used to pass the intermediate
CRC. The MAC Rx then checks the CRC content diyectlvalidate the integrity of the

frame.

All the processing engines have to be tested befopgementing on the FPGA. The

following section describes the testbench desigul dier automated PE verification.

5.3: PE Testbench

Every design has to be backed with extensive @stm FPGA, the top level entity is
called testbench. The testbench consists of twomtamponents — The device under test

is the user logic and the testbench components.
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Figure5.8: PE Test Bench Top Level Architect

5.3.1: Device under Test
The device herés pe_to| [10]. It consists of the basic processing unit (PUhvall the
common blocks. The common blocks are independeiedyed, so the testbench

established to test the processing unit al

5.3.2: Reference Text Files

The testbench components are RTL coded and arldiomnnected to the PE. They
designed to fake an UCM wrap environment. One sfdaese components is the test
side where the signals are compatible to the WiNGREcific pe_top signals and

other side is the reference model which is designédatlab.
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The entire OFDM chain is redesigned in Matlab whacls as the reference for testing.
The model generates input and output buffer datalfgorocessing engines for various
parameters. The parameters include number of frafm@®ie length, modulation etc.
Following is the list of the text files that are ngeated for a 14 byte frame with

modulation scheme of BPSK.

1. cmd — This file contains the list of commands fosiagle testbench session. The

commands are compatible to the tasks mentionedhapter 2.

#H#Cmd Namef #FrmTag# #No.Of Bufs# #Ctxt Prsnt#  #Wait Cnt# #Enable PreCmd Proc Drv# #Ensble PostCmd Proc Mon##

## Standard ID: 0O Frame Modln: O Header Present: 1##
TxMod hO0OD 2 FALSE O TRUE TRUE

2. lbuf — This text file is synchronous to the cmdcefillt contains the content that is
supposed to be in the input buffer for the corresipmy command. The size of the

data is also mentioned in this file
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## Standard ID: 0O Frame Modln: O Header Present: 1##
# Data HRegion O
# Size

24

# Data

x0 =3 xFO xCF
x0 =0 x0 =0

x0 =80 =0 xES
x56 X788 x94 xEBC
¥92 x10 x12 x34
x0 =0 x55 x7

# Data Region 0
# Size

4

# Data

x23040

Obuf — This file contains the correct output buientents corresponding to the ibuf f

## Standard ID: O Frame Modln: 0O Header Present: 1##
# Data FRegion O

# Size

Te8

#lhata

x4000 =0

x4000 =0

x4000 =0

x4000 =0

x4000 =0
xC000 =0
xC000 =0
xC000 =0
xC000 =0
xC000 =0
xC000 =0
xC000 =0
xC000 =0

# Data Region 1
# Size

4

# Data

x23040
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4. Tvec — This file is used to compare the next tasbtars coming from the processing

engine to the reference matlab model.

##Next Task Req Vector## #fillext Task Status Vector##
efebodedogedogodegigegidedidefidohipobipepepepepapofadofodofodofodofodafid it fidiedfodofidgifgiapifadiy
## 3tandard ID: 0 Frame Modln: 0O Header Present: 1H#
LOooooooooQoo0o0l kOoooooooooooooo11

5. Rmap_drv — The register map control words can beualdy entered to this text file

with corresponding addresses

#5ize

34

# Address #Control Register wvalues
X100 x20C4

¥104 x00100180

X108 OxO3FANIOF

xO08 QxAnAARBER

# Mapping table [loock up
#WIFI

LS00 HO001 0000

E04 00000000

#

xB08  x00010000

HLEOC 00000000

HE10 OO0 0000

HE14 W O0O00000

*

6. Rmap_stat — The status messages from the processgnge is written into this file

along with the address.

command Mame Command Code command number Trans. Mo. Address received value Expacted value
RxStartRow OxB1 4] 7 00200 Cx 00000000 Ox003382F3
RxStartRow OxB1 4] 8 Ox0204 Ox 00000000 Ox00276054
RESTArtRCy OxBl 0 10 OwQ20C 0x00000035 OxQ00000Ls
REStartRcy OxBL 0 11 Ox Q210 Ox00000000 Ox0002EZBA
RMSTArtRCY OxBL o] 12 Ow0214 Ox000015AC Ox00000329
RXSTArtRCV OxEBL o] 13 Ox0218 Ox00000B00 Ox00000081

7. Error files — If the PE produces errors, the outpuifer contents that are in error are

written into this file.
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COMMARND_MUMBER. COMMAND_MAME BUFFER_MNO DATA_THDEX EXFPECTED_DATA DATA_IN_CUTPUT_BEUFFER

e T T T s s o B e T S EamnGan s S|
1 RxStartRoy 15 1 Ox 0000003 A Ox00000FF3
1 RxSTartRcy 15 2 0xC704DD7E 0x00000000

COMMAND MUMBER : 1

COMMAND MAME @ RXSTartRow

STATUS TOMHEATLHW

R T T T T A A L AT R R TR T TR TR T R ST ST

5.3.3: Testbench Components

1.

Ibuf Driver — When triggered, this module write® tbontent of the ibuf text file to
the inout buffer. It follows the input buffer pamins and writes to the RAM on every

command.

Obuf Monitor — This component is responsible foe ttomparison of the output
buffer to the reference obuf text file. It also geates the error file which shows the

addresses where the word was written in error.

Rmap Driver — The RMAP driver has the slave intsgfathat are connected to the
RMAP interfaces. This acts like the bus and writessrmap_drv test file’s content to
the RMAP RAM. The pre-command processor loads tmrol words to the register
and the post-command processor compares the caritéhé status register to the

rmap_stat text file.

Simulation Manager — This is the main controllertbbé test bench. It is a light
version of UCM where only the command processestia@dext task processes are

simulated. The simulation manager forwards the camdrfrom the text file to the
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command decoder of the processing engine and asitse command done from the
PE. It also triggers the driver and monitor andpsethe test bench synchronous to the

processing command.
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PE Register Maps and Software

6.1: Register Map

To avoid complexity in hardware, the adaptabilityd&flexibility of the modulator is

implemented in the software. Xilinx provides a s@fte development tool in C that has

functions required to access the FPGA via Joint Aeson Group (JTAG) cable. Hence,

it becomes convenient to code the mapping tableC ithan VHDL. The software

basically consists of data processing, thresholdutaions and writing them to the

designated RAMS. The control and status registees designated to a block ram

instantiated in RMAP module.

The software — RMAP interface is shown in the fegbelow.

- - Status Register

IP2Bus_Data[31:0]

°°°°°°° Control Register

data[32:1]

Bus2IP_RNW

A

o_rd_en

A A

Bus2IP_Addr[15:0]

Bus2IP_Data[31:0]

Bus2IP_WrReq

A

Mapping

addr[6:0]

Table

A\ 4

pe_mod_rmap

pe_mod_wrap

Figure 6.1: PE Mod Register Maps

Xilinx C Functions
xil_read(address);
xil_write(address,data);

filModTable();
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The modulator register map is the crux of the pseirg engine. It is the only interface
that talks to the user. This part of the procesgngine has signals that connect to the

bus. Hence the software can directly read or wimii@ the RAM present in the RMAP.

The control registers are those words that canrtéew by the user. The control register
in the modulator and demodulator for this releaskbased on the constellation specified

by the 802.11 standard. The constellation diagsaghown below [15]
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Figure 6.2: 802.11a constellation diagram

The entire constellation points are converted ogmplex numbers and arranged in the
from specified in section 5.1.2: . Similarly thenaledulation registers are simultaneously
calculated and filled up. The standard specifie;oamalization factor to all the

modulations that normalize all the energies. Tietas given below
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Muodulation Baron
BPFSE 1
QPSE 12

16-0AM 14710
G4-AN 1742

Table 6.1: Normalization factors for various modida schemes

The status registers are written by the processnggne and are read by the user. They

are used for hardware debugging purposes. Thesgtagisters are constantly updated by

the engine so that at any point of time the usarread its status. Hence they have to be

well defined to make FPGA board testing simple.

The demodulator and modulator status registergigen in detail below.

STATUS | BIT | DESCRIPTION
State 11 | State of the Modulator. See table belowlétails
State 10
State 9
State 8

7

6

5
Cmd

4 Invalid Command
Invalid
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Eof error | 3 If eof arrives before sof
Sof error | 2 In case of multiple instances of safrfe
Error Flag | 1 Error Flag
Indicates whether the Task was completed
Task Done| O
Successfully
MSR(11 to 8) | State Description
0000 IDLE Initial State of the Modulator
0001 ST_PTR_ACK Waiting for pointer ack from FDG
0010 ST_SOF Wait for SOF from input buffer
0011 ST BUF _ACK Waiting for buffer ack from TSP
0100 ST_CTRL_PARA Acquiring control parameters
0101 ST_MOD Modulation State (main)
0110 ST END_WORD Wait for End of frame
0111 ST _16QAM Waiting for Buffer data for 64QAM
1000 ST_DATA _AVAIL Wait for Data Avail for 64QAM
1001 ST_DATA_EN Data Enable to TSP
1111 ST_DONE Modulation Done

Table 6.2: Modulator Status Register

The PE Demodulator and Checker share a commorsstister.

State

Bit

Description

Header Cnt | 31-28§

Number of Headers received




Chunk Cnt | 27-24 Number of Chunks received
Flag 19 Always 1

First Chunk | 18 Received First Chunk

Last Chunk | 17 Received Last Chunk

Err 16 Dmod Error Flag

State 15 Checker Frame State
State 14

State 13

State 12 Checker Length State
State 11

Parity Fail 10 ‘1’ when Header parity fails
Length O 9 ‘1" if length from PLCP Header is zero
State 8 Checker States

State 7

State 6 Checker Control States
State 5

State 4 Demodulator States

State 3

State 2

State 1

EOF Err 0 No EOF Found

Table 6.3: Demodulator Checker Status Register

73
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The words are placed in sequential order of theesponding bits. This reduces the
complexity of the address decoder and increasé¢®fline software. We take advantage
of the higher level abstraction of C. The softwaf&ViNC2R is explained in the section

below.

6.2: Address Allocation

Every functional model is assigned to various asklrepaces on the FPGA. These
addresses are used by the software to access gisteremaps of the modulator and
demodulator. Every unit has a base address defthethg the embedded system
integration. The base address for the ModulatorOx£364000 and that of the

demodulator checker is 0xC367000. The internal RAMiEhese blocks are offsets and

are consistent for all functional units. The ofésate as follows-

RAM Block Offset
IPIF RAM 0x0000
UCM RMAP 0x1000
UCM TD Table 0x2000
UCM TS Queue 0x4000

PE Common RMAP| 0x6000

PU RMAP 0x7000

Input Buffer 0x8000
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Output Buffer 0xC000

Table 6.4: PE RAMs Address Offsets

6.3: Software on WINC2R

Xilinx provides a software development kit for irfecing the software GUI to the FPGA
board. This kit compiles and builds an image of shé&ware that is loaded on to the
block RAM on the board. It is a Java based apptinatevelopment tool which has

C/C++ editors and the required Xilinx libraries.

The software image which has an extension ‘“.elb&led on to the FPGA via the JTAG
cable. The command interface is provided by the X®MBbugger. XMD stands for

Xilinx Microprocessor Debugger and it communicateth the hardware. Memory read
and write can be performed using this tool. The D&@ ADC interfaces can be tested

using this tool before invoking the software.

The WINC2R software is written in C. Following willlustrate the functions and

methods used to configure the system.

1. struct complex mod,dmod
The modulation functions generate constellatiomtsoihat are complex numbers.
2. struct complex modulate(int n,int input,int std_id)
This is the function that returns the complex numigpresenting the constellation

point for input. The argument n is the number ¢$ laissociated with input. Since two
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different sets of modulation schemes are allowed ditme by a single software
session, std_id is used to configure both. In taise std_id = O indicates WiFi and

std_id =1 is WiMax.

This function also calculates the decision regimnghe demodulator and stores them
in an array. These values are then forwarded to RIMAP procedure for
demodulator. The values are stored in complex foramal then converted to the

WINC2R compatible data type.

3. struct complex* mod_rmap()
This function generates an array of complex numbeas has to be written to the
modulator register map. As per Table 5.2 the variowodulation techniques are
placed in a manner which is interpreted by the reddus address decoder. The

array that is returned by this function follows #@&mne convention.

4. Xuint32* mod2xuint(struct complex* mod_val)
Since all these values are fed into the BRAM ofdh&tem, they have to be converted
to 32 bit hexadecimal format. Xilinx software dey@inent kit provides data types
that are recognizable by the loader. This formatust32 for 32 bit words which are
essentially hexadecimal numbers. The mod2xuinttfandakes complex numbers as
input and converts them to the xuint32 format.

5. RMAP.c
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This file consists of all the methods to populate tegister maps, RAMS and
initialize queues. It first recognizes the FPGAdpavhether it is transmitter or
receiver and then instigates the necessary furgctiéor modulator and demodulator,

the arrays setup by the above functions are loadaalthe corresponding addresses.

The software initializes the frame and triggers M#®C Tx. The receiver software then

waits for the MAC RXx interrupt flag to be set. Hetfee data is verified for its integrity.

The software can be setup by the user dynamicale cognitive algorithms can be
implemented at the user level in higher level lagps. The PE also exhibit chunks
independency i.e. they treat every chunk independérthe other. This means that
multiple frames can be interleaved and sent. Thigpgrty is helpful for MIMO

applications. The software can be used for multipdene organization and data flow

allocation.
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Chapter 7:

Resource Utilization and Timing

7.1: FPGA Resource Utilization

The programmable elements inside a FPGA called iQanaible Logic Blocks (CLB). A

FPGA consists of slices which consist of configleadwitch matrix with 4 or 6 inputs,

known as look-up tables or function generators (F®jne multiplexers and flip-flops
(FF). A configurable logic block consists of 4 suglites. This combined architecture
gives benefits in the final system such as incrkgserformance of logic execution.
FPGAs are also equipped with Block RAMs which aloan-chip memory allocations.
These memories are used for input/output buffei3,tdbles and register maps. The
DSP48E is a Virtex5 FPGA slice that are used fawgrul DSP applications and math
intensive processing that eliminate the use of génaurpose routing and other logic

resources.

The synthesis tool in FPGA design converts the VHiIDHe to these basic logic blocks.
The design is assigned specific locations on th@ARHence, every design is restricted
by these FPGA resources. The area utilization ligfileto determine the robustness and

scalability of the design.

The following section provides the utilization krins of percentage occupied on Xilinx
Virtex5 FPGA.

7.1.1: Transmitter Utilization
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eS BRA DSP48
Top Level 0.51% 0.90% 0.88% 0.00% 0.47%
Pr ocessor 9.13% 9.91% 9.70% | 16.80% 0.47%
PE
pe pcie 0.72% 0.99% 0.97% 0.00% 0.00%
pe mac tx 1.55% 1.56% 1.19% 0.00% 0.00%
pe hdr 0.98% | 1.05% | 1.03% | 0.00% 0.16%
pe mod 0.67% 0.69% 0.67% 0.00% 2.05%
pe tx fft 7.20% 7.32% 7.16% 3.28% 11.25%
Total 11.12% | 11.62% | 11.02% 3.28% 13.46%
FU
fu pcie 0.77% 0.77% 0.54% 0.00% 0.00%
fu mac tx 3.76% 3.76% 2.74% 0.41% 0.47%
fu_hdr 3.22% 3.22% 2.61% 0.00% 0.63%
fu _mod 2.97% 2.98% 2.19% 0.41% 0.78%
fu tx fft 2.39% 2.40% 1.72% 0.00% 0.31%
Total 13.11% | 13.13% 9.80% 0.82% 2.19%
UCM Wrap
fu_ucm_wrap 10.30% | 10.31% 7.36% 0.00% 2.81%
fu ucm wrap x 4 41.20% | 41.22% | 29.43% 0.00% 6.56%
Total 41.20% | 41.22% | 29.43% 0.00% 6.56%

Total Resource 75.08% | 76.78% | 60.83% | 20.90% 21.88%

Table 7.1: Transmitter Utilization

7.1.2: Receiver Utilization

FG Slices FF BRAM DSP48Es
Top level 1.00% | 1.24%| 1.21% 0.00% 0.789
Processor 9.13% | 9.91%| 9.70% 16.80%  0.479
PE
pe pcie 0.72% | 0.99%| 0.97% 0.00% 0.00¢
pe mac rx 1.23% | 1.24%| 0.94% 0.00% 0.169
pe dmod 2.09% [ 2.09% | 1.81% | 0.00% | 0.47%
pe sync 33.40%| 33.40%4 31.00% 9.84%  34.53
Total 37.44% | 37.72% | 34.71% | 9.84% | 35.16%
FU
fu_pcie 0.77% | 0.77%| 0.54% 0.00% 0.00¢
fu_mac rx 2.26% | 2.27%| 1.64% 0.00% 0.479
fu_dmod 2.26% | 2.26% | 1.64% | 0.00% | 0.47%
fu_sync 227% | 2.28%| 1.65% 0.00% 0.479
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Total 757% | 758% | 547% | 0.00% | 1.41%
fu_ucm_wrap 10.30%| 10.31% 7.3694 0.00% 2.81%
fu ucm wrap x3 | 30.90%| 30.92% 22.07% 0.00%0 6.56%
Total 30.90% | 30.92% | 22.07% | 0.00% | 6.56%
Total Resource 86.04% | 87.36% | 73.15% | 26.64% | 44.38%

Table 7.2: Receiver Utilization
From the above tables, we observe that almost 80-@&3the FPGA has been utilized for
the design. Fitting more design into this will cdrogte the routing process and increase
the time for programming FPGA. Hence, for the fatdesigns, we have eliminated the
PCle block and combined the synchronizer and defataiu
The modulator and demodulator utilization is highted in the table above. It has also
been noted that most of the space is occupied biypeuJCM. Each processing engine

requires UCM which means that addition of any fioral unit would cost 10% area.

7.2: Timing Analysis

In this section, we calculate the Modulator and Ddulator processing latency. Table
7.3 illustrates the number of clock cycles requibgdthe modulator to process various
frame sizes from 500 to 1500 bytes. The mid-chamdricy includes the time required by

the UCM to process the chunk and trigger modulat#si for the next chunk.

Frame Size (bytes)

Modulation Mid Chunk
750 1000 1250 1500 Latency
BPSK 53724 91107 105375 133236 159147 1918
QPSK 25890 38868 53725 66696 79676 1890
16QAM 12936 20448 25947 33438 38939 1678

64QAM 8113 13035 17904 21192 26061 1730




Table 7.3: Modulation Latency

Figure 7.1 illustrates the table and shows thenatéor various modulations.
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16QAM
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Figure 7.1: Modulation Latency Graph
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Every chunk consists of 4 OFDM symbols. Sometintes last chunk consists of less

than 4 OFDM symbols the processing time reducesrdowly. Table 7.4 illustrates the

processing time with respect to number of OFDM sgisibThe software setup latency is

the time required by the software to fill up thedutation table of the PE.

From the analysis, we can observe that the moduktincy is the worst for large frame

values modulated in BPSK. This is pretty evidentduse BPSK works on bit level.

Also, there are more OFDM symbols for BPSK for aegi frame size compared to other

modulations. The steep increase in the processidge to data processing of other FUs.

Clock Cycles | Time(ns)

No of OFDM Symbols

1 190 3.8

2 374 7.48
3 508 10.16
4 640 12.8
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Softwar e Setup 552 11.04
Table 7.4: Latency w.r.t OFDM symbols

Table 7.5 displays the processing latency of thenatkilator and checker. The
demodulator first processes the header and thechineks. Every chunk consists of 4
OFDM symbols. Similarly, the Checker latency isoatvided into two parts, first the
PLCP header parsing and then the CRC check foruakchThe total latency is the
processing time taken by the combined processigghenThe mid chunk latency is the
UCM latency between the end of one chunk and sfdhte next.

M od Header| Chunk | Header CRC Check| Header Chunk

BPSK 219 826 67 62 291 887 1665
QPSK 219 862 67 80 286 928 1627
16QAM 219 934 63 114 283 1049 1519
64QAM 219 1030 63 152 283 1181 1371

Table 7.5: PE Demodulator and Checker Latency
Just like the modulator, the chunk processing tdepends on the number of OFDM
symbols it contains. All the intermediate chunksitamn 4 symbols, but the last chunk
can have less. Table 7.6 illustrates the numbelauk cycles consumed by the PE for

various number of OFDM cycles.

No Ofsy?nFDM Demodulation gﬁec(::k Total
1 230 49 330
2 491 77 510
3 630 122 726

Table 7.6: Demod. Latency w.r.t OFDM Symbols
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Combining the latencies of both the processingrexiTable 7.7 shows the number of

clock cycles required to demodulate various frainess

Mod

Scheme

Frame Size (bytes)

500 750 1000 1250

1500

BPSK 54804 82362 108569 135813 1620R0
QPSK 28624 41749 54855 69264 82396
16QAM 15551 21684 28681 36018 4182
64QAM 10844 15593 19255 24004 2875
Table 7.7: Total PE Latency
180000
160000 /
140000
43 120000 //
< 100000 —o—BPSK
o
S 80000 ~a
5 oo / — —B—QPSK
3 L 4 16QAM
40000 ././ — L onm
20000
—
O T T T T 1
500 750 1000 1250 1500
Frame Size in bytes

Figure 7.2: Demod. Latency for various frames

7.3: Parallel Implementation Design and Analysis

From the previous section, it is observed thatptoeessing time for lower modulations

is very high. This is because the modulator sedgalgnscans the bits of the incoming 32-

bit word. For a single 32-bit word, there are 32rdgowritten in BPSK. This drastically

affects the total transmission latency. Figure di§plays the timing diagram of the

modulator at PE level. The command TxMOD triggéwes modulator and after 32 clock
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cycles the first data is written to the output buffA single word is written in 1 clock
cycle (marked in yellow) and the dead time between data-writes is 2 clock cycles

(marked in grey).

]
=1 ACTION Signal
[ TxMOD

Parameter Fetch ' Input Data Fetch ' Setup Qutput Buffer Modulate
——— e m—
A 10 Clock Cycles H 9 Clock Cycles 4 11 Clock Cycles
0

Data Write | |
1 clock cycle |

Dead Time
2 clock cycles

Figure 7.3: Modulator Timing Diagram
The overall latency of processing can be reducedlinyinating this dead time. Since it
takes 3 clock cycles to process the input bits,cae implement three modulators in
parallel. In this way, each of them gets one stk cycle) to write an output word.
Figure 7.4 shows the architectural diagram of alfgrmodulator implementation in a

single PE.
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Figure 7.4: Parallel Modulator Implementation
The input switch constantly feeds the modulatorshwbits. The output arbiter is
responsible for collecting the date from the motiwkaand writing them sequentially to

the output buffer. The reduction in latency is shawthe table below.

Size of Frame

Mod
500 750 1000 1250 1500 A\V/
BPSK 69.54 69.65 69.71 69.75 69.78 69.69
QPSK 70.28 70.51 70.64 70.71 70.75 70.58

16QAM 71.74 72.14 72.29 72.43 72.50 72.22
64QAM 61.70 62.32 55.69 67.36 73.30 64.07
Percentage Reduction
Table 7.8: Latency Reduction in Modulator




It is seen that the latency reduces to 70%. Theatézh is not much for 64QAM. This is
a special case because the input 6 bits don’t aral32-bit word boundary. Hence, there

are 2 clock cycles required to buffer the bits apdend them to the next word.

Similar implementation can be adopted by the derdabdiu Figure 7.5 shows the timing
diagram of the demodulator. This PE takes 135 clongaltes from receiving the task to
writing the first word in BPSK. This is because themodulator requires 32 modulated
BPSK symbols to generate a 32-bit word. In thidhs dead time refers to the time gap

between receiving 2 input data.

H
:Parameter:
v Fetchis TAput Data Fetch

H
H
i
'
H
103 125 Clock Cycles H

Figure 7.5: Demodulator Timing Diagram

From the figure, we see that 4 clock cycles araiired to process an input word. We

hence implement 4 parallel demodulators to elingitae dead time. The architectural
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diagram shown in Figure 7.6 is similar to the madiod. The input switch is simpler as it

sequentially fetches data from the input buffer distkibutes it to the demodulators.

pe_dmod

Input Buffer

INPUT
SWITCH

CONTROL BLOCK

pe_dmod 1

table [

pe_dmod 2

Y

table

OUTPUT

pe_dmod n

table Lt

Yy

ARBITER

A

Qutput Buffer

Figure 7.6: Parallel Demodulator Implementation

\

Table 7.9 shows the latency reduction in percenfageall modulations and various

frame sizes.
Size of Frame
Mod
500 750 1000 1250 1500 Avg
BPSK 75.37 75.43 75.46 75.48 75.49 75.44
QPSK 77.64 77.74 77.79 77.83 77.85 77.77
16QAM 81.69 81.83 81.93 82.00 82.03 81.90
64QAM 79.66 79.90 79.97 80.06 80.12 79.94
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Percentage Reduction
Table 7.9: Latency Reduction in Demodulator

The table shows that there is a drastic decreasigeiprocessing timing because of the
additional four demodulators used. The number afickycles reduces to almost %/df

the original.

Since we are adding more blocks to implement paralhgines, a single PE now will
occupy more space on the FPGA. The tables below ghe area utilization of this

implementation.

Area on FPGA (%)

Input  Output 3 %
Control Swri)tch Swi![Och Mod Mods PE_MOD Increase
Function Generators 0.07 0.17 0.19 0.58 1.89 0.67 64.55
CLB Slices 0.31 0.35 0.19 0.58 1.35 0.69 48.89
Dffs or Latches 0.3 0.34 0.12 0.46 0.94 0.67 28.72
Block RAMs 0 0 0 0.82 2.46 0.82 66.67
DSP48Es 0 0 0 0.78 2.34 0.78 66.67

Table 7.10: Parallel Modulator Area Utilization

Area on FPGA (%)

Input  Output
Switch  Switch

%

Control
Increase

4
Demod Demo

PE DMOD
mods ——

Function Generators| 0.07 0.17 0.19 4.02 | 12.21 4.02 75.12
CLB Slices 0.31 0.35 0.19 4.02 | 11.67 4.02 73.86
Dffs or Latches 0.3 0.34 0.12 0.86 | 2.14 0.86 68.15
Block RAMs 0 0 0 1.64 | 4.92 1.64 75.00
DSP48Es 0 0 0 4.38 | 13.14 4.38 75.00

Table 7.11: Parallel Demodulator Area Utilization
We use 3 modulating engines in parallel; as a réiseltotal area utilization has increased

three times. Similarly, the demodulator area hasegsed four times.
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We can choose the parallel implementation basedhenapplication. In WINC2R’s
802.11a-Lite implementation, the main focus wasucgidn of area. The UCM wrap
takes up most of the resources. It was necessatywd reduce the area used by the
processing engines. Thus, only one modulator antodalator was used. If the
application is restricted to latency, then we caa the parallel implementation with the
cost of FPGA resource. The timing and area analyars be used to make decisions

regarding the choice of implementation.
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Chapter 8: Conclusion

The thesis discussed the design on the modulatbdamodulator on the WINC2R. We
explored the flexibility of these engines with respto the modulation schemes. The
constellation points can be programmed by the dgeamically. These blocks are a part
of the 802.11a-lite implementation of the Virtualow Pipeline and have shown

successful results in simulation and hardware.

We have observed that the involvement of softwasstetally reduces the processing
time. Hence the data signal processing is leftitte¥5 FPGA. The task and data flow is
setup by software. The concept of having a dynashaia flow for every session and

every frame is called virtual flow pipelining.

We have discussed the WINC2R platform that implesére virtual flow pipelining for
802.11a-lite protocol. The transmitter and receil@v was divided into various global
tasks. The task flow demonstrated in the firstas¢eis as follows —

* Transmitter: MAC — HEADER — MODULATOR — IFFT

* Receiver: SYNCHRONIZER — FFT — DEMODULATOR — CHECRE- MAC
It has been shown that the WINC2R is able to semdessful frames across the entire
chain with the above flow. The FU chain is setuphia global task table and any FU can
be added between frames. Protocol inter-operalidigchieved this way by plugging the
required FU inside the flow. Hence, the more Fumal Units are designed for better

performance, scalability and robustness.
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We have also created the functional unit flexiblthim the restrictions of hardware. With
the help of mapping table inside the modulator #ne decision table inside the
demodulator, the user has more freedom to tunee thesctional units. Such units find
many applications especially in vehicular environisewhere the channel must be
constantly monitored and the radio parameters chatge on the fly. Research institutes
can also use the functional units for experimentwvith new protocols and study its

performance on various environments.

The timing and area analysis can be used for futeleases to calculate latency and
utilization. The values are constant for every ¢hand can be used as estimates for
calculating system latency. From the timing analysiis observed that UCM needs to be
further improved in terms of latency. There will dgreat loss in data rate for huge frame
sizes due to the mid-chunk latency. In terms o&atiee modulator and demodulator take
up an insignificant amount of resources. But agdme to UCM complexity, every

instance adds 10% to the total area. Hence, meeareh has to be dedicated to UCM to

reduce area or reuse logic.

We have also proposed a parallel modulator/deméatulaplementation that reduces the
latency by 1/3. The cost of reducing this latency is FPGA are&increases almost 3
times. This analysis can be used in the futureasgle to make decisions on implementing

the modulator and demodulator.
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Future Work

1)

2)

3)

4)

5)

The modulator design can be improved for complatanstellation points. This
type of RAM structure supports only rectangularstehiations. The designed can
be improved further for phase shift modulation scbs.

Error coder and decoder can also be designed isithigar fashion where the
mapping table can contain the codeword diction&mcryption of data is also
possible where the user can use the software temgnmt various techniques and
the processing engine picks up the coded messawetifie register map.

We can save more FPGA resource area by reusingdhkelator code. Since both
the processing engines operate using look-up tatflessame processing engine
can be reused for encoding or encryption.

The area of the entire system can also be redugecdlustering multiple
Functional Units to a single unit control moduléisT also gives more room to
accommodate more processing engines.

The software of WINC2R needs to be improved witlyards to the traffic

generation, dynamic flow setups and user-friengbne
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Abbreviations

ADC Analog to Digital Converters
BPSK Binary Phase Shift Keying
BRAM Block Random Access Memory
CLB Configurable Logic Block

CP Command Processor

CRC Cyclic Redundancy Check
DAC Digital to Analog Converters
DDR Double Data Rate

DMA Direct Memory Access

DMOD Demodulator

DP Data Processors

EOF End of Frame

FCS Frame Check Sequence

FDG Frame Delimiter and Generator
FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programming Gate Array
FU Functional Unit

GNU GNU Not Unix

GTT Global Task Descriptor

HDL Hardware Description Language

94



HDR
IFFT
IPIF
JTAG
MAC
MDM
MIMO
MOD
MPMC
MSPS
NCO
OFDM
OPB
PCI
PE
PHY
PLB
PLCP
QAM
QDR
QoS

QPSK

Header

Inverse Fast Fourier Transform
Intellectual Property Interface

Joint Test Action Group

Medium Access Control
Microprocessor Debug Module
Multiple In Multiple Out

Modulator

Multi Port Memory Controller

Mega Samples Per Second
Numerically Controlled Oscillator
Orthogonal Frequency Division Multiplexing
On-Chip Peripheral Bus

Peripheral Component Interconnect
Processing Engine

Physical Layer

Processor Logic Bus

Physical Layer Convergence Protocol
Quadrature Amplitude Modulation
Quad Data Rate

Quiality of Service

Quadrature Phase Shift Keying
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RF

RMAP

RSSI

RTL

Rx

SDR

SISO

SoC

SOF

SWIG

SYNC

D

TSP

Tx

UCM

uUSB

USRP

VFP

WARP

WiFi

WIMAX

WINC2R

Radio Frequency

Register Maps

Received Signal Strength Indicator
Register Transfer Level

Receiver

Software Defined Radios

Single In Single Out

System on Chip

Start of Frame

Simplified Wrapper and Interface Generator
Synchronizer

Task Descriptor

Task Spawning Processor

Transmitter

Unit Control Module

Universal Serial Bus

Universal Software Radio Peripheral
Virtual Flow Paradigm

Wireless Open Access Research Platform
Wireless Fidility
Worldwide Interoperability for Microwave Acss

WINLAB Network Centric Cognitive Radio
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WINLAB

WLAN

XMC

Wireless Information Network Laboratory
Wireless Local Area Network

Express Mezzanine Card
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