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ABSTRACT OF THE DISSERTATION

Topics in High-dimensional Inference

by Wenhua Jiang

Dissertation Director: Professor Cun-Hui Zhang

This thesis concerns three connected problems in high-dimensional inference:

compound estimation of normal means, nonparametric regression and penaliza-

tion method for variable selection.

In the first part of the thesis, we propose a general maximum likelihood empir-

ical Bayes (GMLEB) method for the compound estimation of normal means. We

prove that under mild moment conditions on the unknown means, the GMLEB

enjoys the adaptive ration optimality and adaptive minimaxity. Simulation exper-

iments demonstrate that the GMLEB outperforms the James-Stein and several

state-of-the-art threshold estimators in a wide range of settings.

In the second part, we explore the GMLEB wavelet method for nonparamet-

ric regression. We show that the estimator is adaptive minimax in all Besov

balls. Simulation experiments on the standard test functions demonstrate that

the GMLEB outperforms several threshold estimators with moderate and large

samples. Applications to high-throughput screening (HTS) data are used to show

the excellent performance of the approach.

In the third part, we develop a generalized penalized linear unbiased selection

(GPLUS) algorithm to compute the solution paths of concave-penalized negative

ii



log-likelihood for generalized linear model. We implement the smoothly clipped

absolute deviation (SCAD) and minimax concave (MC) penalties in our simu-

lation study to demonstrate the feasibility of the proposed algorithm and their

superior selection accuracy compared with the `1 penalty.
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Chapter 1

Introduction

This thesis concerns three connected problems in high-dimensional inference:

compound estimation of normal means, nonparametric regression and penaliza-

tion method for variable selection.

The first problem, known as the compound estimation of normal means, has

been considered as the canonical model or motivating example in the develop-

ments of empirical Bayes, admissibility, adaptive nonparametric regression, vari-

able selection, multiple testing and many other areas in statistics. Let Xi be

independent observations with Xi ∼ N(θi, 1), i = 1, . . . , n, where θ = (θ1, . . . , θn)

is an unknown deterministic signal vector. Our problem is to estimate θ un-

der the compound loss Ln(θ̂, θ) = n−1
∑n

i=1(θ̂i − θi)
2. There are three main

approaches in the compound estimation of normal means: the general empirical

Bayes (EB) [59, 62], the James-Stein estimator [44, 64], and the threshold method

[1, 5, 22, 23, 47]. Among the three approaches, the later two work well when the

empirical distribution of the unknown means is approximately normal or very

sparse, respectively. The general EB is greedier since it assumes essentially no

knowledge about the unknown means but still aims to attain the performance of

the oracle separable estimator based on the knowledge of the empirical distribu-

tion of the unknowns. Thus, the heart of the question is whether the gain by

aiming at the smaller general EB benchmark risk is large enough to offset the

additional cost of the nonparametric estimation.

We propose a general maximum likelihood EB (GMLEB) in which we first

estimate the empirical distribution of the unknown means by the generalized

maximum likelihood estimator (MLE) [49] and then plug the estimator into the
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oracle general EB rule. Our results affirm that by aiming at the minimum risk of

all separable estimators, the greedier general EB approach realizes significant risk

reduction over linear and threshold methods for a wide range of unknown signal

vectors for moderate and large samples, and this is especially so for the GMLEB.

We prove that the risk of the GMLEB estimator is within an infinitesimal fraction

of the ideal Bayes risk when this risk of greater order than (log n)5/n depending

on the magnitude of the weak `p norm of the unknown means, 0 < p ≤ ∞. Such

adaptive ratio optimality is obtained through an oracle inequality which provides a

uniform upper bound of the regret using the GMLEB estimator. Moreover, we use

this oracle inequality to prove the adaptive minimaxity of the GMLEB estimator

over a broad collection of `p balls. We demonstrate the superb risk performance of

the GMLEB for moderate samples through simulation experiments, and provide

an EM algorithm for the computation of the GMLEB.

The second problem is nonparametric regression which is a typical example

where the compound estimation of normal means can be directly applied. We

have N = 2J noisy samples Yi of a function f , Yi = f(ti) + ei, i = 1, . . . , N

where ti = i/N and ei are independent N(0, σ2) random variables. Our goal is

to recover the unknown function f . In detail, we measure the performance of an

estimate f̂ in term of squared loss at the sample points by the risk R(f̂ , f) =

N−1E‖f̂ − f‖2 = N−1
∑N

i=1 E(f̂(ti)− f(ti))
2.

We propose the GMLEB wavelet method to the nonparametric regression

problem. Our method proceeds by taking the discrete wavelet transform of the

data Yi , processing the resulting coefficients to remove noise by the GMLEB

method, and then transforming back to obtain the estimate. We provide an ora-

cle inequality, that is, an upper bound for the estimation regret for the adaptation

to the ideal risk. Moreover, we show that the worst behavior of our estimation

method when the function f is constrained to lie in a Besov space simultaneously

attains the best possible minimax risk over a wide range of Besov spaces. This

adaptive minimaxity implies the adaptation to spatial inhomogeneity of the un-

known function. We conduct an extensive Monte Carlo simulation study of the
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performance of our estimator using four standard test functions. It turns out

that for moderate and large samples, our procedure outperforms other threshold

estimators and improves over a general EB method based on Fourier smoothing

kernel [74].

The third problem concerns penalization methods for variable selection. In the

wavelet thresholding approach to the standard nonparametric regression model,

the discrete wavelet transform (DWT) proceeds by y = N−1/2WY where W ,

called the finite wavelet transformation matrix, is a real N by N orthonormal

matrix and y is the vector of the discrete wavelet coefficients. The distribution

of y is N(β, ε2IN) with unknown β where ε2 = σ2/N . The wavelet thresholding

amounts to estimate β based on observations Y using the linear model Y =

N1/2WT β + σz where z ∼ N(0, IN). This is a special case in variable selection

since the design is orthogonal. General variable selection is more complicated and

challenging since there are dependencies among variables.

In linear regression, a number of concave penalized least squares methods

have been shown to possess selection consistency and oracle efficiency properties

under much weaker conditions than the `1 penalized methods do [34, 79, 85].

However, minimization of a concave penalized general loss function is still a com-

putationally challenging problem. A penalized linear unbiased selection (PLUS)

algorithm was recently proposed for the computation of a solution path of local

minimizers of concave penalized least squares [78]. The main idea of the PLUS

is to compute possibly multiple local minimizers at individual penalty levels by

continuously tracing the minimizers at different penalty levels. We develop a

generalized PLUS (GPLUS) algorithm to compute the solution paths of concave-

penalized negative log-likelihood. We use end-to-end short linear segments to

approximate the nonlinear paths of generalized linear models. We implement the

smoothly clipped absolute deviation (SCAD) [34] and minimax concave (MC) [78]

penalties in our simulation study to demonstrate the feasibility of the proposed

algorithm and their superior selection accuracy compared with the `1 penalty.
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Chapter 2

General Empirical Bayes Estimation of Normal

Means

2.1 Introduction

This chapter concerns the estimation of a vector with iid normal errors under the

average squared loss. Let Xi be independent statistics with

Xi ∼ ϕ(x− θi) ∼ N(θi, 1), i = 1, . . . , n, (2.1)

under a probability measure Pn,θ, where θ = (θ1, . . . , θn) is an known signal

vector. Our problem is to estimate θ under the compound loss

Ln(θ̂, θ) =
1

n
‖θ̂ − θ‖2 =

1

n

n∑
i=1

(θ̂i − θi)
2 (2.2)

for any given estimator θ̂ = (θ̂1, . . . , θ̂n). Throughout this chapter, the unknown

means θi are assumed to be deterministic as in the standard compound decision

theory [59]. To avoid confusion, the Greek θ is used only with boldface as a

deterministic mean vector θ in Rn or with subscripts as elements of θ.

The problem, known as the compound estimation of normal means, has been

considered as the canonical model or motivating example in the developments of

empirical Bayes, admissibility, adaptive nonparametric regression, variable selec-

tion, multiple testing and many other areas in statistics. It also carries significant

practical relevance in statistical applications since the observed data are often

understood, represented or summarized as the sum of a signal vector and the

white noise.

There are three main approaches in the compound estimation of normal
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means. The first one is the general empirical Bayes (EB) [59, 62], which as-

sumes essentially no knowledge about the unknown means but still aims to attain

the performance of the oracle separable estimator based on the knowledge of

the empirical distribution of the unknowns. Here a separable estimator is one

that uses a fixed deterministic function of the i-th observation to estimate the

i-th mean. This greedy approach, also called nonparametric EB [54], was pro-

posed the earliest among the three, but it is also the least understood, in spite

of [60, 61, 62, 74, 75, 76]. Efron [28] attributed this situation to the lack of ap-

plications with many unknowns before the information era and pointed out that

“current scientific trends favor a greatly increased role for empirical Bayes meth-

ods” due to the prevalence of large, high-dimensional data and the rapid rise of

computing power. The methodological and theoretical challenge, which we focus

on in this chapter, is to find the “best” general EB estimators and sort out the

type and size of problems suitable for them.

The second approach, conceived with the celebrated Stein’s proof of the inad-

missibility of the optimal unbiased estimator and the introduction of the James-

Stein estimator [44, 64], is best understood through its parametric or linear EB

interpretations [30, 31, 54]. The James-Stein estimator is minimax over the en-

tire space of the unknown mean vector and well approximates the optimal linear

separable estimator based on the oracular knowledge of the first two empirical

moments of the unknown means. Thus, it achieves the general EB optimality

when the empirical distribution of the unknown means are approximately normal.

However, the James-Stein estimator does not perform well by design compared

with the general EB when the minimum risk of linear separable estimators is far

different from that of all separable estimators [74]. Still, what is the cost of be-

ing greedy with the general EB when the empirical distribution of the unknown

means is indeed approximately normal?

The third approach focuses on unknown mean vectors which are sparse in the

sense of having many (near) zeros. Such sparse vectors can be treated as members

of small `p balls with p < 2. Examples include the estimation of functions with



6

unknown discontinuity or inhomogeneous smoothness across different parts of a

domain in nonparametric regression [22]. For sparse means, the James-Stein or

the linear estimators could perform much worse than threshold estimators [21].

Many threshold methods have been proposed and proved to possess (near) opti-

mality properties for sparse signals, including the universal [22], SURE [23], FDR

[1], the generalized Cp [5] and the parametric EB posterior median (EBThresh)

[47]. These estimators can be viewed as approximations of the optimal candidate

in certain families of separable threshold estimators, so that they do not perform

well by design compared with the general EB when the minimum risk of separa-

ble threshold estimators is far different from that of all separable estimators [76].

Again, what is the cost of being greedy with the general EB when the unknown

means are indeed very sparse?

Since general EB methods have to spend more “degrees of freedom” for non-

parametric estimation of its oracle rule, compared with linear and threshold meth-

ods, the heart of the question is whether the gain by aiming at the smaller general

EB benchmark risk is large enough to offset the additional cost of the nonpara-

metric estimation.

We propose a general maximum likelihood EB (GMLEB) in which we first es-

timate the empirical distribution of the unknown means by the generalized maxi-

mum likelihood estimator (MLE) [49] and then plug the estimator into the oracle

general EB rule. In other words, we treat the unknown means as iid variables with

a completely unknown common “prior” distribution (for the purpose of deriving

the GMLEB, whether the unknowns are actually deterministic or random), esti-

mate the nominal prior with the generalized MLE, and then use the Bayes rule

for the estimated prior. The basic idea was discussed in the last paragraph of [59]

as a general way of deriving solutions to compound decision problems, although

the notion of MLE was vague at that time without a parametric model and not

much has been done since then about using the generalized MLE to estimate the

nominal prior in compound estimation.
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Our results affirm that by aiming at the minimum risk of all separable esti-

mators, the greedier general EB approach realizes significant risk reduction over

linear and threshold methods for a wide range of unknown signal vectors for mod-

erate and large samples, and this is especially so for the GMLEB. We prove that

the risk of the GMLEB estimator is within an infinitesimal fraction of the general

EB benchmark when the risk is of the order n−1(log n)5 or greater depending on

the magnitude of the weak `p norm of the unknown means, 0 < p ≤ ∞. Such

adaptive ratio optimality is obtained through a general oracle inequality which

also implies the adaptive minimaxity of the GMLEB over a broad collection of

regular and weak `p balls. This adaptive minimaxity result unifies and improves

upon the adaptive minimaxity of threshold estimators for sparse means [1, 23, 47]

and the Fourier general EB estimators for moderately sparse and dense means

[74]. We demonstrate the superb risk performance of the GMLEB for moder-

ate samples through simulation experiments, and describe algorithms to show its

computational feasibility.

This chapter is organized as follows. In Section 2.2, we introduce the general

EB method. In Section 2.3, we introduce the GMLEB method and its compu-

tation. In Section 2.4, we provide upper bounds for the regret of a regularized

Bayes rule using a predetermined and possibly misspecified prior and prove an

oracle inequality for the GMLEB, compared with the general EB benchmark risk.

The consequences of this oracle inequality, including statements of our adaptive

ratio optimality and adaptive minimaxity results in full strength, are also dis-

cussed in Section 2.4. In Section 2.5, we introduce a regularized Fourier general

EB (RF-GEB) estimator and provide an oracle inequality for it. In Section 2.6,

we present some simulation results. Section 2.7 contains some discussions. Math-

ematical proofs of theorems. propositions and lemmas are given either right after

their statements or in Section 2.8.
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2.2 The Empirical Bayes Method

Throughout the chapter, boldface letters denote vectors and matrices, for ex-

ample, X = (X1, . . . , Xn), ϕ(x) = e−x2/2/
√

2π denotes the standard normal

density, L̃(y) =
√
− log(2πy2) denotes the inverse of y = ϕ(x) for positive x

and y, x ∨ y = max(x, y), x ∧ y = min(x, y), x+ = x ∨ 0 and an ³ bn means

0 < an/bn + bn/an = O(1). In a number of instances, log(x) should be viewed

as log(x ∨ e). Univariate functions are applied to vectors per component. Thus,

an estimator of θ is separable if it is of the form θ̂ = t(X) = (t(X1), . . . , t(Xn))

with a predetermined Borel function t(·). In the vector notation, it is convenient

to state (2.1) as X ∼ N(θ, In) with In being the identity matrix in Rn.

The compound estimation of a vector of deterministic normal means is closely

related to the Bayes estimation of a single random mean. In this Bayes problem,

we estimate a univariate random parameter ξ based on a univariate Y such that

Y |ξ ∼ N(ξ, 1), ξ ∼ G, under PG. (2.3)

The prior distribution G = Gn which naturally matches the unknown means

{θi, i ≤ n} in (2.1) is the empirical distribution

Gn(u) = Gn,θ(u) =
1

n

n∑
i=1

I{θi ≤ u}. (2.4)

Here and in the sequel, subscripts n,θ indicate dependence of distribution or prob-

ability upon n and the unknown deterministic vector θ.

The fundamental theorem of compound decisions [59] in the context of the

`2 loss asserts that the compound risk of a separable rule θ̂ = t(X) under the

probability Pn,θ in the multivariate model (2.1) is identical to the MSE of the

same rule ξ̂ = t(Y ) under the prior (2.4) in the univariate model (2.3):

En,θLn(t(X), θ) = EGn(t(Y )− ξ)2. (2.5)

For any true or nominal priors G, denote the Bayes rule as

t∗G = arg min
t

EG(t(Y )− ξ)2 =

∫
uϕ(Y − u)G(du)∫
ϕ(Y − u)G(du)

, (2.6)
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and the minimum Bayes risk as

R∗(G) = EG(t∗G(Y )− ξ)2, (2.7)

where the minimum is taken over all Borel functions. It follows from (2.5) that

among all separable rules, the compound risk is minimized by the Bayes rule with

prior (2.4), resulting in the general EB benchmark

R∗(Gn) = En,θLn(t∗Gn
(X), θ) = min

t(·)
En,θLn(t(X), θ). (2.8)

The general EB approach seeks procedures which approximate the Bayes rule

t∗Gn
(X) or approximately achieve the risk benchmark R∗(Gn) in (2.8).

Given a class of functions D , the aim of the restricted EB is to attain

RD(Gn) = inf
t∈D

En,θLn(t(X), θ) = inf
t∈D

EGn(t(Y )− ξ)2 (2.9)

approximately. This provides EB interpretations for all the adaptive methods dis-

cussed in the introduction, with D being the classes of all linear functions for the

James-Stein estimator, all soft threshold functions for the SURE [23], and all hard

threshold functions for the generalized Cp [5] or the FDR [1]. For the EBThresh

[47], D is the class of all posterior median functions t(y) = median(ξ|Y = y)

under the probability PG in (2.3) for priors of the form

G(u) = ω0I(0 ≤ u) + (1− ω0)G0(u/τ), (2.10)

where w0 and τ are free and G0 is given.

Compared with linear and threshold methods, the general EB approach is

greedier since it aims at the smaller benchmark risk: R∗(Gn) ≤ RD(Gn) for all

D . This could backfire when the regret

rn,θ(t̂n) = En,θLn(t̂n(X), θ)−R∗(Gn) (2.11)

of using an estimator t̂n(·) of the general EB oracle rule t∗Gn
(·) is greater than

the difference RD(Gn) − R∗(Gn) in benchmark, but our simulation and oracle

inequalities prove that rn,θ(t̂n) = o(1)R∗(Gn) uniformly for a wide range of the

unknown vector θ and moderate/large samples.
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Zhang [74] proposed a general EB method based on a Fourier infinite order

smoothing kernel. The Fourier general EB estimator is asymptotically minimax

over the entire parameter space and approximately reaches the general EB bench-

mark (2.8) uniformly for dense and moderately sparse signals, provided that the

oracle Bayes risk is of the order n−1/2(log n)3/2 or greater [74]. Hybrid general

EB estimators have been developed [76] to combine the features and optimality

properties of the Fourier general EB and threshold estimators. Still, the perfor-

mance of general EB methods is sometimes perceived as uncertain in moderate

samples [47]. Indeed, the Fourier general EB requires selection of certain tuning

parameters and its proven theoretical properties are not completely satisfying.

This motivates our investigation.

2.3 The General Maximum Likelihood Empirical Bayes

Method

2.3.1 The GMLEB method

The GMLEB method replaces the unknown prior Gn of the oracle rule t∗Gn
by its

generalized MLE [49]

Ĝn = Ĝ(·; X) = arg max
G∈G

n∏
i=1

fG(Xi), (2.12)

where G is the family of all distribution function and fG is the density

fG(x) =

∫
ϕ(x− u)G(du) (2.13)

of the normal location mixture by distribution G.

The estimator (2.12) is called the generalized MLE since the likelihood is

used only as a vehicle to generate the estimator. The G here is used only as a

nominal prior. In our adaptive ratio and minimax optimality theorems and oracle

inequality, the GMLEB is evaluated under the measures Pn,θ in (2.1) where the

unknowns θi are assumed to be deterministic parameters.
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Since (2.12) is typically solved by iterative algorithms, we allow approximate

solutions to be used. For definiteness and notation simplicity, the generalized

MLE in the sequel is any solution of

Ĝn ∈ G ,
n∏

i=1

fĜn
(Xi) ≥ qn sup

G∈G

n∏
i=1

fG(Xi), (2.14)

with qn = (e
√

2π/n2)∧ 1, although the theoretical results in this chapter all hold

verbatim for less stringent (2.14) with 0 ≤ log(1/qn) ≤ c0(log n) for any fixed

constant c0. Formally, the GMLEB estimator is defined as

θ̂i = t∗
Ĝn

(Xi), i = 1, . . . , n, (2.15)

where t∗G is the Bayes rule in (3.16) and Ĝn is any approximate generalized MLE

(2.14) for the nominal prior (2.4). Clearly, the GMLEB estimator (2.15) is com-

pletely nonparametric and does not require any restriction, regularization, band-

width selection or other forms of tuning.

The GMLEB is location equivariant in the sense that

t∗
Ĝn(·;X+ce)

(X + ce) = t∗
Ĝn(·;X)

(X) + ce (2.16)

for all real c, where e = (1, . . . , 1) ∈ Rn. This is due to the location equivariance

of the generalized MLE: Ĝn(x; X + ce) = Ĝn(x − c; X). Compared with the

Fourier general EB estimators [74, 76], the GMLEB (2.15) is more appealing

since the function t∗
Ĝn

(x) of x enjoys all analytical properties of Bayes rules:

monotonicity, infinite differentiability and more. However, the GMLEB is much

harder to analyze than the Fourier general EB.

2.3.2 Computation of the GMLEB

It follows from the Carathéodory’s theorem [17] that there exists a discrete solu-

tion of (2.12) with no more than n + 1 support points. A discrete approximate

generalized MLE Ĝn with m support points can be written as

Ĝn =
m∑

j=1

ŵjδuj
, ŵj ≥ 0,

m∑
j=1

ŵj = 1, (2.17)
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where δu is the probability distribution giving its entire mass to u. Given (2.17),

the GMLEB estimator can be easily computed as

θ̂i = t∗
Ĝn

(Xi) =

∑m
j=1 ujϕ(Xi − uj)ŵj∑m

j=1 ϕ(Xi − uj)ŵj

, (2.18)

since t∗G(x) is the conditional expectation as in (3.16).

Since the generalized MLE Ĝn is completely nonparametric, the support points

{uj, j ≤ m} and weights {ŵj, j ≤ m} in (2.17) are selected or computed solely

to maximize the likelihood in (2.12). There are quite a few possible algorithms

for solving (2.14), but all depend on iterative approximations. Due to the mono-

tonicity of ϕ(t) in t2, the generalized MLE (2.12) puts all its mass in the interval

I0 = [min1≤i≤n Xi, max1≤i≤n Xi]. Given fine grid {uj} in I0, the EM-algorithm

[20, 71]

ŵ
(k)
j =

1

n

n∑
i=1

ŵ
(k−1)
j ϕ(Xi − uj)∑m

`=1 ŵ
(k−1)
` ϕ(Xi − u`)

(2.19)

optimizes the weights {ŵj}. In Subsection 2.7.2, we provide a conservative sta-

tistical criterion on {uj} and an EM-stopping rule to guarantee (2.14).

We took a simple approach in our simulation experiments. Given {Xi, 1 ≤
i ≤ n} and with X0 = 0, we chose the grid points {uj} as a set of multipliers of

ε = max0≤i<j≤n |Xi −Xj|/999 with uj = uj−1 + ε and the range

−j0ε = u1 − ε < min
0≤i≤n

Xi ≤ u1, um = (m− j0)ε ≤ max
0≤i≤n

Xi < um + ε

with an integer j0 ∈ [1,m]. This ensures uj0 = 0 as a grid point and 999 ≤
m ≤ 1000. We ran 100 EM-iterations (2.19) in our simulations. We have tried

to optimize both the support points {uj} and weights {ŵj} in the EM-algorithm,

but gained limited improvements.

The GMLEB estimator (2.18) depends slightly on the initialization of the EM-

algorithm due to the non-uniqueness of the GMLEB estimator and the fixed num-

ber of EM-iterations in our implementation. Since the generalized MLE (2.12)

is unique only up to the values of {fĜn
(Xi), i ≤ n}, different EM-initializations

lead to different versions of Ĝn, which then result in different values of t∗
Ĝn

(Xi)
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in (2.18). This non-uniqueness persists even when we run infinitely many EM-

iterations. Nevertheless, our theoretical results hold for all versions of the GM-

LEB.

We consider two options in our simulation experiments. The first option

initializes the weights with the uniform distribution ŵj = 1/m. The second

option takes into consideration of the possible sparsity of the signal by putting a

good starting mass at uj0 = 0:

ŵj0 = ω̂0, ŵj =
1− ω̂0

m− 1
, j 6= j0. (2.20)

We estimate the proportion of zeros within the n means by a Fourier method,

ω̂0 =
1

n

n∑
j=1

ψ(Xj; hn), ψ(z; h) =

∫
hψ0(ht)et2/2 cos(zt)dt,

as in [66, 67], where ψ0 is a density function with support [−1, 1] and hn =

{κ(log n)}−1/2 is the bandwidth, κ ≤ 1. In our simulation experiments, the

uniform [−1, 1] density is used as ψ0 and κ = 1/2. To distinguish the two options

of initializing the EM-algorithm, we reserve the name GMLEB for the uniform

initialization and call (sparse-) S-GMLEB the estimator with the initialization

(2.20) when we report simulation results.

2.4 Theoretical Properties of the GMLEB

2.4.1 A regularized Bayes estimator with a misspecified

prior

In this subsection, we consider a fixed probability PG0 under which

Y |ξ ∼ N(ξ, 1), ξ ∼ G0. (2.21)

Recall [9, 60] that for the estimation of a normal mean, the Bayes rule (3.16) and

its risk (2.7) can be expressed in terms of the mixture density fG(x) as

t∗G(x) = x +
f ′G(x)

fG(x)
, R∗(G) = 1−

∫ (f ′G
fG

)2

fG, (2.22)
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in the model (2.3), where fG(x) =
∫

ϕ(x− u)G(du) is as in (2.13).

Suppose the true prior G0 is unknown but a deterministic approximation of it,

say G, is available. The Bayes formula (2.22) could still be used, but we may want

to avoid dividing by a near-zero quantity. This leads to the following regularized

Bayes estimator:

t∗G(x; ρ) = x +
f ′G(x)

fG(x) ∨ ρ
. (2.23)

For ρ = 0, t∗G(x; 0) = t∗G(x) is the Bayes estimator for the prior G. For ρ = ∞,

t∗G(x;∞) = x gives the MLE of ξ which requires no knowledge of the prior.

The following proposition, describes some analytical properties of the regularized

Bayes estimator.

Proposition 2.1. Let L̃(y) =
√
− log(2πy2), y ≥ 0, be the inverse function of

y = ϕ(x). Then, the value of the regularized Bayes estimator t∗G(x; ρ) in (2.23)

is always between those of the Bayes estimator t∗G(x) in (3.16) and the MLE

t∗G(x;∞) = x. Moreover, for all real x




∣∣x− t∗G(x; ρ)
∣∣ =

|f ′G(x)|
fG(x)∨ρ

≤ L̃(ρ), if 0 < ρ < (2πe)−1/2,

0 ≤ (∂/∂x)t∗G(x; ρ) ≤ L̃2(ρ), if 0 < ρ < (2πe3)−1/2.

(2.24)

Remark 2.1. In [74], a slightly different inequality

(f ′G(x)

fG(x)

)2 fG(x)

fG(x) ∨ ρ
≤ L̃2(ρ), 0 ≤ ρ < (2πe2)−1/2, (2.25)

was used to derive oracle inequalities for Fourier general EB estimators. The

extension to the derivative of t∗G(x; ρ) here is needed for the application of the

Gaussian isoperimetric inequality in Proposition 2.4.

The next theorem provides oracle inequalities which bound the regret of using

(2.23) due to the lack of the knowledge of the true G0. Let

d(f, g) =
( ∫

(f 1/2 − g1/2)2
)1/2

(2.26)

denote the Hellinger distance. The upper bounds asserts that the regret is no

greater than square of the Hellinger distance between the mixture densities fG

and fG0 up to certain logarithmic factors.
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Theorem 2.1. Suppose (2.21) holds under PG0. Let t∗G(x; ρ) be the regularized

Bayes rule in (2.23) with 0 < ρ ≤ (2πe2)−1/2. Let fG be as in (2.13).

(i) There exists a universal constant M0 such that

[
EG0{t∗G(Y ; ρ)− ξ}2 −R∗(G0)

]1/2

(2.27)

≤ M0 max
{
| log ρ|3/2, | log(d(fG, fG0))|1/2

}
d(fG, fG0)

+
{∫ (

1− fG0

ρ

)2

+

(f ′G0
)2

fG0

}1/2

,

where R∗(G0) = EG0{t∗G0
(Y )− ξ}2 is the minimum Bayes risk in (2.7).

(ii) If
∫
|u|>x0

G0(du) ≤ M1| log ρ|3ε2
0 and 2(x0 + 1)ρ ≤ M2| log ρ|2ε2

0 for a certain

ε0 ≥ d(fG, fG0) and finite positive constants {x0,M1,M2}, then

EG0{t∗G(Y ; ρ)− ξ}2 −R∗(G0)

≤ 2(M0 + M1 + M2) max
(
| log ρ|3, | log ε0|

)
ε2
0, (2.28)

where M0 is universal constant.

Remark 2.2. For G = G0 (2.27) becomes an identity, so that the square of the

first term on the right-hand side of (2.27) represents an upper bound for the regret

of using a misspecified G in the regularized Bayes estimator (2.23) instead of the

true G0 for the same regularization level ρ. Under the additional tail probability

condition on G0 and for sufficiently small ρ, (2.28) provides an upper bound for

the regret of not knowing G0, compared with the Bayes estimator (2.22) with the

true G = G0.

Remark 2.3. Since the second term on the right-hand side of (2.27) is increasing

in ρ and the first is logarithmic in 1/ρ, we are allowed to take ρ > 0 of much

smaller order than d(fG, fG0) in (2.27), for example, under moment conditions

on G0. Still, the cubic power of the logarithmic factors in (2.27) and (2.28) is

crude.

The following lemma plays a crucial role in the proof of Theorem 2.1.
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Lemma 2.1. Let d(f, g) be as in (2.26) and L̃(y) =
√
− log(2πy2). Then,

∫
(f ′G − f ′G0

)2

fG ∨ ρ + fG0 ∨ ρ
≤ 2e2d2(fG, fG0) max(L̃6(ρ), 2a2) (2.29)

for ρ ≤ 1/
√

2π, where a2 = max{L̃2(ρ) + 1, | log d2(fG, fG0)|}.

Proof of Theorem 2.1. Let

‖g‖h =
{∫

g2(x)h(x)dx
}1/2

be the L2(h(x)dx) norm for h ≥ 0. Since t∗G0
is the Bayes rule, by (2.23)

[EG0{t∗G(Y ; ρ)− ξ}2 − EG0{t∗G0
(Y )− ξ}2]1/2

= ‖f ′G/(fG ∨ ρ)− f ′G0
/fG0‖fG0

≤ r(fG, ρ) + ‖(1− fG0/ρ)+f ′G0
/fG0‖fG0

, (2.30)

where r(fG, ρ) = ‖f ′G/(fG ∨ ρ)− f ′G0
/(fG0 ∨ ρ)‖fG0

.

Let w∗ = 1/(fG ∨ ρ + fG0 ∨ ρ). For G1 = G or G1 = G0,
∫ ( f ′G1

fG1 ∨ ρ
− 2f ′G1

w∗
)2

fG0 ≤
∫ ( f ′G1

fG1 ∨ ρ
|fG − fG0w∗

)2

fG0

≤ L̃2(ρ)

∫
(fG − fG0)

2w2
∗fG0

due to |f ′G1
|/(fG1 ∨ ρ) ≤ L̃(ρ) by (2.24). Since (

√
fG +

√
fG0)

2w∗ ≤ 2 and

w∗fG0 ≤ 1, we find

r(fG, ρ) ≤ 2‖(f ′G − f ′G0
)w∗‖fG0

+ 2L̃(ρ)‖(fG − fG0)w∗‖fG0

≤ 2‖(f ′G − f ′G0
)‖w∗ + 2L̃(ρ)

√
2d(fG, fG0).

Thus, (2.27) follows from (2.29) and (2.30).

To prove (2.28) we use Lemma 6.1 in [76]:
∫

fG0

(f ′G0

fG0

)2

fG0

≤
∫

|u|>x0

G0(du) + 2x0ρ max{L̃2(ρ), 2}+ 2ρ

√
L̃2(ρ) + 2

≤ (M1 + M2)| log ρ|3ε2
0,

due to | log ρ| ≥ L̃2(ρ) ≥ 2. This and (2.27) imply (2.28). 2
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2.4.2 An oracle inequality for the GMLEB

In this subsection, we provide an oracle inequality which bounds the regret (2.11)

of using the GMLEB t∗
Ĝn

in (2.15) against the oracle Bayes rule t∗Gn
in (3.16).We

provide the main elements leading to the oracle inequality before presenting the

oracle inequality and an outline of its proof.

It follows from the fundamental theorem of compound decisions (2.5) that

for separable estimators θ̂ = t(X), the compound risk is identical to the MSE of

ξ̂ = t(Y ) for the estimation of a single real random parameter xi under PG in (2.3),

so that Theorem 2.1 provides an upper bound for the regret of the regularized

Bayes rule t∗G(X; ρ) in terms of the Hellinger distance d(fG, fGn) and ρ > 0. There

is a large deviation upper bound for the Hellinger distance d(fĜn
, fGn) in [80].

We will show that the GMLEB estimator t∗
Ĝn

(X) is identical to its regularized

version t∗
Ĝn

(X; ρn) for certain | log ρn| ³ log n when the generalized MLE (2.12)

or its approximation (2.14) are used. Still, t∗
Ĝn

(X; ρn) is not separable, since the

generalized MLE Ĝn is based on the same data X. A natural approach of deriving

oracle inequalities is then to combine Theorem 2.1 with a maximal inequality.

This requires in addition an entropy bound for the class of regularized Bayes

rules t∗G(x; ρ) with given ρ > 0 and an exponential inequality for the difference

between the loss and risk for each regularized Bayes rule. In the rest of this

subsection, we provide these crucial components of our theoretical investigation.

(a) A large deviation inequality for the convergence of an approximate general-

ized MLE. Under the iid assumption of the EB model (2.48), Ghosal and van der

Vaart [39] obtained an exponential inequality for the Hellinger loss of the general-

ized MLE of a normal mixture density in terms of the L∞ norm of θi. This result

can be improved upon using their newer entropy calculation in [40]. The results

in [39, 40] are unified and further improved upon in the iid case and extended to

deterministic θ = (θ1, . . . , θn) in weak `p balls for all 0 < p ≤ ∞ in [80]. This

latest result, stated below as Theorem 2.2, will be used here in conjunction of

Theorem 2.1 to prove oracle inequalities for the GMLEB.
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The p-th weak moment of a distribution G is

µw
p (G) =

{
sup
x>0

xp

∫

|u|>x

G(du)
}1/p

(2.31)

with µw
∞(G) = inf{x :

∫
|u|>x

G(du) = 0}. Define convergence rates

ε(n,G, p) = max
[√

2 log n, {n1/p
√

log nµw
p (G)}p/(2+2p)

]√ log n

n

= max
[√2 log n

n
,
{√

log n
µw

p (G)

n

}p/(2+2p)]√
log n (2.32)

with ε(n,G,∞) = {(2 log n) ∨ (
√

log nµw
∞(G))}1/2

√
(log n)/n.

Theorem 2.2. Let X ∼ N(θ, In) under Pn,θ with a deterministic θ ∈ Rn. Let

fG and Gn be as in (2.13) and (2.4), respectively. Let Ĝn be certain approximate

generalized MLE satisfying (2.14). Then, there exists a universal constant x∗ such

that for all x ≥ x∗ and log n ≥ 2/p,

Pn,θ

{
d(fĜn

, fGn) ≥ xεn

}
≤ exp

(
− x2nε2

n

2 log n

)
≤ e−x2 log n, (2.33)

where εn = ε(n,Gn, p) is as in (2.32) and d(f, g) is the Hellinger distance (2.26).

In particular, for any sequences of constants Mn →∞ and fixed positive α and c,

εn ³





n−p/(2+2p)(log n)(2+3p)/(4+4p), if µw
p (Gn) = O(1) with a fixed p,

n−1/2(log n)3/4{M1/2
n ∨ (log n)1/4}, if Gn([−Mn,Mn]) = 1 and p = ∞,

n−1/2(log n)1/(2(2∧α))+3/4, if
∫

e|cu|
α
Gn(du) = O(1) and p ³ log n.

Remark 2.4. Under the condition G([−Mn,Mn]) = 1 and the iid assumption

(2.48) with G depending on n, the large deviation bound in [39] provides the

convergence rate εn ³ n−1/2(log n)1/2{Mn∨(log n)1/2}, and the entropy calculation

in [40] leads to the convergence rate εn ³ n−1/2(log n)
√

Mn. These rates are slower

than the rate in Theorem 2.2 when Mn/
√

log n →∞.

Remark 2.5. The proof of Theorem 2.2 is identical for the generalized MLE

(2.12) and its approximation (2.14). The constant x∗ is universal for qn =

(e
√

2π/n2) ∧ 1 in (2.14) and depends on supn | log qn|/ log n in general.
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(b) Representation of the GMLEB estimator as a regularized one at data

points. The connection between the GMLEB estimator (2.15) and the regularized

Bayes rule (2.23) in Theorem 2.1 is provided by

t∗
Ĝn

(X) = t∗
Ĝn

(X; ρn), ρn = qn/(en
√

2π), (2.34)

where qn is as in (2.14). This is consequence of the following proposition.

Proposition 2.2. Let f(x|u) be a given family of densities and {Xi, i ≤ n} be

given data. Let Ĝn be an approximate generalized MLE of a mixing distribution

satisfying

n∏
i=1

∫
f(Xi|u)Ĝn(du) ≥ qn sup

G

n∏
i=1

∫
f(Xi|u)G(du)

for certain 0 < qn ≤ 1. Then, for all j = 1, . . . , n

fĜn
(Xj) =

∫
f(Xj|u)Ĝn(du) ≥ qn

en
sup

u
f(Xj|u).

In particular, (2.34) holds for f(x|u) = ϕ(x− u).

Proof of Proposition 2.2. Let j be fixed and uj = arg maxu f(Xj|u). Define

Ĝn,j = (1 − ε)Ĝn + εδuj
with ε = 1/n, where δu is the unit mass at u. Since

f(x|u) ≥ 0, fĜn,j
(Xi) ≥ (1− ε)fĜn

(Xi) and fĜn,j
(Xj) ≥ εf(Xj|uj), so that

1

qn

n∏
i=1

fĜn
(Xi) ≥

n∏
i=1

fĜn,j
(Xi) ≥ (1− ε)n−1εf(Xj|uj)

∏

i6=j

fĜn
(Xi).

Thus, fĜn
(Xj) ≥ qn(1 − ε)n−1εf(Xj|uj) with ε = 1/n, after the cancelation of

fwhG(Xi) for i 6= j. The conclusion follows from (1− 1/n)n−1 ≥ 1/e. 2

(c) An entropy bound for regularized Bayes rules. We now provide an entropy

bound for collection of regularized Bayes rule. For any family H of functions

and semidistance d0, the ε-covering number is

N(ε, H , d0) = inf
{

N : H ⊆ ∪N
j=1Ball(hj, ε, d0)

}
(2.35)

with Ball(h, ε, d0) = {f : d0(f, h) < ε}. For each fixed ρ > 0 define the complete

collection of the regularized Bayes rules t∗G(x; ρ) in (2.23) as

Tρ =
{

t∗G(·; ρ) : G ∈ G
}

, (2.36)
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where G is the family of all distribution functions. The following proposition pro-

vides an entropy bound for (2.36) under the seminorm ‖h‖∞,M = sup|x|≤M |h(x)|.

Proposition 2.3. Let L̃(y) =
√
− log(2πy2) be the inverse of y = ϕ(x) as in

Proposition 2.1. Then, for all 0 < η ≤ ρ ≤ (2πe)−1/2,

log N(η∗, Tρ, ‖ · ‖∞,M)

≤
{

4
(
6L̃2(η) + 1

)(
2M/L̃(η) + 3

)
+ 2

}
| log η|, (2.37)

where η∗ = (η/ρ){3L̃(η) + 2}.

(d) An exponential inequality for the loss of regularized Bayes rules. The

last element of our proof is an exponential inequality for the difference between

the loss and risk of regularized Bayes rules t∗G(X; ρ). For each separable rule

t(x), the squared loss ‖t(X)− θ‖2 is a sum of independent variables. However, a

direct application of the empirical process theory to the loss would yield an oracle

inequality of the n−1/2 order, which is inadequate for the sharper convergence rates

in this chapter. Thus, we use the following isoperimetric inequality for the square

root of the loss.

Proposition 2.4. Suppose X ∼ N(θ, In) under Pn,θ. Let tG(x; ρ) be the regu-

larized Bayes rule as in (2.23), with a deterministic distribution G and 0 < ρ ≤
(2πe3)−1/2. Let L̃(ρ) =

√
− log(2πρ2). Then, for all x > 0,

Pn,θ

{
‖t∗G(X; ρ)− θ‖ ≥ En,θ‖t∗G(X; ρ)− θ‖+ x

}
≤ exp

(
− x2

2L̃4(ρ)

)
.

Proof of Proposition 2.4. Let h(x) = ‖t∗G(x; ρ) − θ‖. It follows from Propo-

sition 2.1 that

|h(x)− h(y)| ≤
∥∥t∗G(x; ρ)− t∗G(y; ρ)

∥∥

≤ ‖x− y‖ sup
x
|(∂/∂x)t∗G(x; ρ)| ≤ L̃2(ρ)‖x− y‖.

Thus, h(x)/L̃2(ρ) has the unit Lipschitz norm. The conclusion follows from the

Gaussian isoperimetric inequality [6]. See Page 439 of [70]. 2
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Our oracle inequality for the GMLEB, stated in Theorem 2.3 below, is a key

result from a mathematical point of view. It builds upon Theorem 2.1 and 2.2 and

Proposition 2.2, 2.3 and 2.4 (the regularized Bayes rules with misspecified prior,

generalized MLE of normal mixtures, representation of the GMLEB, entropy

bounds and Gaussian concentration inequality) and leads to the adaptive ratio

optimality and minimaxity.

Theorem 2.3. Let X ∼ N(θ, In) under Pn,θ with a deterministic θ ∈ Rn as

in (2.1). Let Ln(·, ·) be the average squared loss in (2.2) and 0 < p ≤ ∞. Let

t∗
Ĝn

(X) be the GMLEB estimator (2.15) with an approximate generalized MLE

Ĝn satisfying (2.14). Then, there exists a universal constant M0 such that for all

log n ≥ 2/p,

r̃n,θ

(
t∗
Ĝn

(X)
)

=
√

En,θLn

(
t∗
Ĝn

(X), θ
)−

√
R∗(Gn)

≤ M0εn(log n)3/2, (2.38)

where R∗(Gn) is the minimum risk of all separable estimators as in (2.8) with

Gn = Gn,θ as in (2.4), and ε = ε(n,Gn, p) is as in (2.32). In particular, for any

sequences of constants Mn →∞ and fixed positive α and c,

εn ³





n−p/(2+2p)(log n)(2+3p)/(4+4p), if µw
p (Gn) = O(1) with a fixed p,

n−1/2(log n)3/4{M1/2
n ∨ (log n)1/4}, if Gn([−Mn,Mn]) = 1 and p = ∞,

n−1/2(log n)1/(2(2∧α))+3/4, if
∫

e|cu|
α
Gn(du) = O(1) and p ³ log n.

Remark 2.6. In the proof of Theorem 2.3, applications of Theorems 2.1 and 2.2

resulted in the leading term for the upper bound in (2.38), while the contributions

of other parts of the proof are of smaller order.

The consequences of Theorem 2.3 upon the adaptive ratio optimality and min-

imaxity of the GMLEB are discussed in the next two sections. Here is an outline

of its proof. The large deviation inequality in Theorem 2.2 and the representation

of the GMLEB in (2.34) imply that

∥∥t∗
Ĝn

(X)− θ
∥∥ ≤

∥∥t∗
Ĝn

(X; ρn)− θ
∥∥IAn + ζ1n, ρn =

qn

e
√

2πn
, (2.39)
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where An = {d(fĜn
, fGn) ≤ x∗εn} and ζ1n = ‖t∗

Ĝn
(X; ρn)−θ‖IAc

n
with x∗ = x∗∨1.

By (2.22) and Proposition 2.1, |t∗G(Xi; ρn) − θi| ≤ L̃(ρn) + |N(0, 1)|, so that

Theorem 2.2 provides an upper bound for En,θζ
2
1n. By the entropy bound in

Proposition 2.3, there exists a finite collection of distributions {Hj, j ≤ N} of

manageable size N such that

ζ2n =
{
‖t∗

Ĝn
(X; ρn)− θ‖IAn −max

j≤N
‖t∗Hj

(X; ρn)− θ‖
}

+
(2.40)

is small and d(fHj
, fGn) ≤ x∗εn for all j ≤ N . Since the regularized Bayes rules

t∗Hj
(X; ρn) are separable and the collection {Hj, j ≤ N} is of manageable size,

the large deviation inequality in Proposition 2.4 implies that

ζ3n = max
j≤N

{
‖t∗Hj

(X; ρn)− θ‖ − En,θ‖t∗Hj
(X; ρn)− θ‖

}
+

(2.41)

is small. Since d(fHj
, fGn) ≤ x∗εn, Theorem 2.1 implies that

ζ4n = max
j≤N

√
En,θ‖t∗Hj

(X; ρn)− θ‖2 −
√

nR∗(Gn) (2.42)

is no greater than O(x∗εn)(log ρn)3/2, where R∗(Gn) is the general EB benchmark

risk in (2.8). Finally, upper bounds for individual pieces En,θζ
2
jn are put together

via

√
En,θ

∥∥t∗
Ĝn

(X)− θ
∥∥2 ≤

√
nR∗(Gn) +

√√√√En,θ

( 4∑
j=1

|ζjn|
)2

. (2.43)

2.4.3 Adaptive ratio optimality

We discuss here the adaptive ratio optimality of the GMLEB as consequences of

the oracle inequality in Theorem 2.3.

The adaptive ratio optimality holds for an estimator θ̂ : X → Rn if its risk is

uniformly within a fraction of the general EB benchmark

sup
θ∈Θ∗n

En,θ(θ̂, θ)

R∗(Gn,θ)
≤ 1 + o(1) (2.44)

in certain classes Θ∗
n ⊂ Rn of the unknown vector θ, where Ln(·, ·) is the average

squared loss (2.2), Gn,θ = Gn is the empirical distribution of the unknowns in
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(2.4) and R∗(Gn) is the general EB benchmark risk (2.8) achieved by the oracle

Bayes rule t∗Gn
(X).

Theorem 2.4. Let X ∼ N(θ, In) under Pn,θ with a deterministic θ ∈ Rn. Let

t∗
Ĝn

(·) be the GMLEB estimator (2.15) with an approximate solution Ĝn satisfying

(2.14). Let Gn = Gn,θ and R∗(G) be as in (2.4) and (2.7). Then,

En,θLn(t∗
Ĝn

(X), θ)

R∗(Gn)
=

En,θ‖t∗Ĝn
(X)− θ‖2

mint En,θ‖t(X)− θ‖2
≤ 1 + o(1) (2.45)

for the compound loss (2.2), provided that for certain constants bn

nR∗(Gn)

(
√

log n ∨maxi≤n |θi − bn|)(log n)9/2
→∞.

In particular, if maxi≤n |θi − bn| = O(
√

log n) and nR∗(Gn)/(log n)5 → ∞, then

(2.45) holds.

For any sequences of constants Mn →∞, Theorem 2.4 provides the adaptive

ratio optimality (2.44) of the GMLEB in the classes

Θ∗
n =

{
θ ∈ Rn : R∗(Gn,θ) ≥ Mnn

−1(log n)9/2(
√

log n ∨ ‖θ‖∞)
}

.

This is a consequence of an oracle inequality for the GMLEB t̂n = t∗
Ĝn

in Theorem

2.3, which uniformly bound from the above

r̃n,θ(t̂n) =
√

En,θLn

(
t̂n(X), θ

)−
√

R∗(Gn) (2.46)

in term of the weak `p norm of θ. The quantity (2.46) can be viewed as the regret

for the minimization of the squared root of the MSE, instead of (2.11). Clearly,

rn,θ(t̂n)/R∗(Gn) ≤ o(1) iff r̃n,θ(t̂n)/
√

R∗(Gn) ≤ o(1).

In the EB literature, the asymptotic optimality of θ̂ is defined as

Gn
D−→ G ⇒ En,θLn(θ̂, θ)−R∗(Gn) → 0 (2.47)

for deterministic vectors θ ∈ Rn [59, 74]. In the EB model

(Yi, ξi) iid, Yi|ξi ∼ N(ξ, 1), ξi ∼ G, under PG, (2.48)
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with data {Yi}, the EB asymptotic optimality is defined as

lim
n→∞

EG

n∑
i=1

(ξ̂i − ξi)
2/n = R∗(G). (2.49)

We call (2.44) adaptive ratio optimality since it is much stronger than both notions

of asymptotic optimality in its uniformity in θ ∈ Θ∗
n and its focus on the harder

standard of the relative error, due to R∗(Gn) ≤ En,θLn(X, θ) = 1. The difference

among these optimality properties is significant for moderate samples in view of

some very small R∗(Gn) ≈ Oracle/1000 in Table 2.1.

Theorem 2.4 is location invariant, since the GMLEB is location equivalent by

(2.16) and R∗(Gn) is location invariant by (2.8). Thus, if θi = bn for most i ≤ n,

the GMLEB performs equally well whether bn = 0 or not. Moreover, if θi ∈ B ∀i
for a finite set B ⊂ R, the GMLEB adaptively shrinks towards the points in B

[38]. This is evident in Table 2.1 for #{i : θi = 7} ∈ {50, 500} with B = {0, 7}. In

fact, if #{x : x ∈ Bn} = O(1) and minBn3x 6=y∈Bn |x − y| → ∞, then Gn(Bn) = 1

implies R∗(Gn) → 0. Threshold methods certainly do not possess these location

invariance and multiple shrinkage properties.

We state a more general version of Theorem 2.4. Theorem 2.3 immediately

implies the adaptive ratio optimality (2.44) of the GMLEB in the classes Θ∗
n =

Θ∗
n(Mn) for any sequences of constants Mn →∞, where

Θ∗
n(M) =

{
θ ∈ Rn : R∗(Gn,θ) ≥ M(log n)3 inf

p≥2/ log n
ε2(n,Gn,θ, p)

}
(2.50)

with Gn,θ = Gn as in (2.4) and ε(n,G, p) as in (2.32). This formally stated in the

theorem below.

Theorem 2.5. Let X ∼ N(θ, In) under Pn,θ with a deterministic θ ∈ Rn. Let

t∗
Ĝn

(·) be the GMLEB estimator (2.15) with the approximate MLE Ĝn in (2.14).

Let R∗(Gn,θ) be the general EB benchmark in (2.8) with the distribution Gn = Gn,θ

in (2.4). Then for the classes Θ∗
n(M) in (2.50),

lim
(n,M)→(∞,∞)

sup
θ∈Θ∗n(M)

{
En,θLn

(
t∗
Ĝn

(X), θ
)
/R∗(Gn,θ)

}
≤ 1. (2.51)
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Remark 2.7. Since the minimum of ε(n,Gn,θ, p) is taken in (2.50) over p ≥
2/ log n for each θ, the adaptive ratio optimality (2.51) allows smaller R∗(Gn,θ)

than simply using ε(n,Gn,θ,∞) does as in Theorem 2.4. Thus, Theorem 2.5

implies Theorem 2.4.

2.4.4 Adaptive minimaxity

Another main consequence of the oracle inequality in Theorem 2.3 is the adaptive

minimaxity of the GMLEB for a broad range of sequences θ ∈ Rn.

Minimaxity is commonly used to measure the performance of statistical pro-

cedures. For Θ ∈ Rn, the minimax risk for the average squared loss (2.2) is

Rn(Θ) = inf
θ̃

sup
θ∈Θ

En,θLn(θ̃, θ), (2.52)

where the infimum is taken over all Borel mappings θ̃ : X → Rn. An estimator is

minimax in a specific class Θ of unknown mean vectors if it attains Rn(Θ), but

this does not guarantee satisfactory performance since the minimax estimator is

typically uniquely tuned to the specific set Θ. For small Θ, the minimax estimator

has high risk outside Θ. For large Θ, the minimax estimator is too conservative

by focusing on the worst case scenario within Θ. Adaptive minimaxity overcomes

this difficulty by requiring

supθ∈Θn
En,θLn(θ̂, θ)

Rn(Θn)
→ 1 (2.53)

uniformly for a wide range of sequences {Θn ⊂ Rn, n ≥ 1} of parameter classes.

Define (regular or strong) `p balls as

Θp,C,n =
{

θ = (θ1, . . . , θn) : n−1

n∑
i=1

|θi|p ≤ Cp
}

. (2.54)

The quantity C in (2.54), called length-normalized or standardized radius of the

`p ball, is denoted as η in [1, 21, 47], where adaptive minimaxity in `p balls with

C = Cn → 0 and p < 2 is used to measure the performance of estimators for sparse

θ. The following theorem establishes the adaptive minimaxity of the GMLEB in
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`p balls with radii C = Cn in intervals diverging to (0,∞). This covers sparse

and dense θ simultaneously.

Theorem 2.6. Let X ∼ N(θ, In) under Pn,θ with a deterministic θ ∈ Rn. Let

θ̂ = t∗
Ĝn

(X) be the GMLEB in (2.15) with an approximate solution Ĝn satisfying

(2.14). Let Ln(·, ·) be the average squared loss (2.2) and Rn(Θ) be the minimax

risk (2.52). Then, as n → ∞, the adaptive minimaxity (3.34) holds in `p balls

(2.54) with Θn = Θp,Cn,n, provided that

n1/(p∧2)Cn

(log n)κ1(p)
→∞,

Cn

n
(log n)κ2(p) → 0, (2.55)

where κ1(p) = 1/2 + 4/p + 3/p2 for p < 2, κ1(2) = 13/4, κ1(p) = 5/2 for p > 2,

and κ2(p) = 9/2 + 4/p.

Theorem 2.6 is a consequence of the oracle inequality (2.38) and the minimax

theory in [21]. An outline of this argument is given in this subsection. An

alternative statement of the conclusion of Theorem 2.6 is

lim
(n,M)→(∞,∞)

sup
C∈Cp,n(M)

supθ∈Θp,C,n
En,θLn

(
t∗
Ĝn

(X), θ
)

Rn(Θp,C,n)
= 1

where Cp,n(M) = [Mn−1/(p∧2)(log n)κ1(p), n/{M(log n)κ2(p)}]. The powers κ1(p)

and κ2(p) of the logarithmic factors in (2.55) and in the definition of Cp,n(M) are

crude.

Adaptive and approximate minimax estimators of the normal means in `p

balls have been considered in [1, 5, 21, 23, 47, 74, 76]. Donoho and Johnstone

[23] proved that as (n,Cn) → (∞, 0+), with nCp
n/(log n)p/2 →∞ for p < 2,

Rn(Θp,Cn,n) = (1 + o(1)) min
t∈D

max
θ∈Θp,Cn,n

En,θLn(t(X), θ), (2.56)

where D is the collection of all (soft and hard) threshold rules. Therefore, adaptive

minimaxity (3.34) in small `p balls Θn = Θp,Cn,n can be achieved by threshold

rules with suitable data-driven threshold levels. This has been done using the

FDR [1] for (log n)5/n ≤ Cp
n ≤ n−κ with p < 2 and any κ > 0. Zhang [76] proved

that (3.34) holds for the Fourier general EB estimator of [74] in Θn = Θp,Cn,n for

Cp
n

√
n/(log n)1+(p∧2)/2 →∞.
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A number of estimators have been proven to possess the adaptive rate mini-

maxity in the sense of attaining within a bounded factor of the minimax risk.

In `p balls Θp,Cn,n, the EBThresh is adaptive rate minimax for p ≤ 2 and

nCp
n ≥ (log n)2 [47], while the generalized Cp is adaptive rate minimax for p < 2

and 1 ≤ O(1)nCp
n [5]. It follows from [76] that a hybrid between the Fourier

general EB and universal soft threshold estimators is also adaptive rate minimax

in Θp,Cn,n for 1 ≤ O(1)nCp
n.

The adaptive minimaxity as provided in Theorem 2.6 unifies the adaptive

minimaxity of different types estimators in different ranges of the radii Cn of

the `p balls with the exception of the two very extreme ends, due to the crude

power κ1(p) of the logarithmic factor for small Cn and the requirement of an

upper bound for large Cn. The hybrid Fourier general EB estimator achieves

the adaptive rate minimaxity in a wider range of `p balls than what we prove

here for the GMLEB. However, as we have seen in Table 2.1, the finite sample

performance of the GMLEB is much stronger. It seems that the less stringent and

commonly considered adaptive rate minimaxity leaves too much room to provide

adequate indication of finite sample performance.

Instead of the general EB approach, adaptive minimax estimation in small

`p balls can be achieved by threshold methods, provided that the radius is not

too small. However, since (2.56) does not hold for fixed p > 0 and C ∈ (0,∞),

threshold estimators are not asymptotically minimax with Θn = Θp,C,n in (3.34)

for fixed (p, C). Consequently, adaptive minimax estimations in small, fixed and

large `p balls are often treated separately in the literature. We now explain the

general EB approach for adaptive minimax estimation which provides a unified

treatment for `p balls of different ranges of radii. This provides an outline for the

proof of Theorem 2.6.

We first discuss the relationship between the minimax estimation of a deter-

ministic vector θ in `p balls and the minimax estimation of a single random mean

under an unknown “prior” in Lp balls. For positive p and C, the Lp balls of
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distribution functions are defined as

Gp,C =
{

G :

∫
|u|pG(du) ≤ Cp

}
.

Since Gp,C is a convex class of distributions, the minimax theorem provides

R(Gp,C) = min
t

max
G∈Gp,C

EG(t(Y )− ξ)2 = max
G∈Gp,C

R∗(G) ≤ 1 (2.57)

for the estimation of a single real random parameter ξ in the model (2.3), where

R∗(G) is the minimum Bayes risk in (2.7). Thus, since Gn = Gn,θ ∈ Gp,C for

θ ∈ Θp,C,n, the fundamental theorem of compound decisions (2.5) implies that

(2.57) dominates the compound minimax risk (2.52) in `p balls:

Rn(Θp,C,n) ≤ inf
t(x)

sup
θ∈Θp,C,n

En,θLn(t(X), θ) ≤ R(Gp,C) ≤ 1. (2.58)

Donoho and Johnstone [21] proved that as Cp∧2 → 0+

∣∣∣ R(Gp,C)

Cp∧2{2 log(1/Cp)}(1−p/2)+
− 1

∣∣∣ → 0 (2.59)

and that for either p ≥ 2 with Cn > 0 or p < 2 with nCp
n/(log n)p/2 →∞,

∣∣∣Rn(Θp,Cn,n)

R(Gp,Cn)
− 1

∣∣∣ → 0. (2.60)

In the general EB approach, the aim is to find an estimator t̂n of t∗
Ĝn

with

small regret (2.11) or (2.46). If the approximation to t∗
Ĝn

in risk is sufficiently

accurate and uniformly within a small fraction of R(Gp,Cn) for θ ∈ Θp,Cn,n, the

maximum risk of the general EB estimator in Θp,Cn,n would be within the same

small fraction of R(Gp,Cn), since the risk of t∗
Ĝn

is bounded by R∗(Gn,θ) ≤ R(Gp,Cn)

for θ ∈ Θp,Cn,n. Thus, (2.60) plays a crucial role in general EB.

It follows from (2.46), (2.57) and (2.54) that

sup
θ∈Θp,C,n

√
En,θLn

(
t̂n(X), θ

) ≤ sup
θ∈Θp,C,n

r̃n,θ(t̂n) +
√

R(Gp,C). (2.61)

Thus, by (2.59) and (2.60), the adaptive minimaxity (3.34) of θ̂ = t̂n(X) in `p

balls Θn = Θp,Cn,n is a consequence of an oracle inequality of the form

sup
θ∈Θp,Cn,n

r̃n,θ(t̂n) = o(1)
√

Jp,Cn (2.62)
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with Jp,C = min{1, Cp∧2{1∨ (2 log(1/Cp))}(1−p/2)+}. In our proof, (2.59) and the

upper bound R(Gp,C) ≤ 1 provide infC R(Gp,C)/Jp,C > 0. Although Jp,C provides

the order of R(Gp,C) for each p via (2.59), explicit expressions of the minimax

risk Rn(Θp,C,n) for general fixed (p, C, n) or the minimax risk R(Gp,C) for fixed

(p, C) with p 6= 2 are still open problems.

We have stated our results for regular `p balls in Theorem 2.6. In the rest of

the subsection, we consider weak `p balls

Θw
p,C,n =

{
θ ∈ Rn : µw

p (Gn,θ) ≤ C
}

, (2.63)

where Gn,θ is the empirical distribution of the components of θ and the function

µw
p (G) is the weak moment in (2.31). Alternatively,

Θw
p,C,n =

{
θ ∈ Rn : max

1≤i≤n
|θi|p

n∑
j=1

I{|θj| ≥ |θi|}/n ≤ Cp
}

.

Theorem 2.7. Let X ∼ N(θ, In) under Pn,θ with a deterministic θ ∈ Rn. Let

Ln(·, ·) be the average squared loss (2.2) and Rn(Θ) be the minimax risk (2.52).

Then, for all approximate solutions Ĝn satisfying (2.14), the GMLEB θ̂ = t∗
Ĝn

(X)

is adaptive minimax (3.34) in the weak `p balls Θn = Θw
p,Cn,n in (2.63), provided

that the radii Cn are within the range (2.55).

Here is our argument. The weak Lp balls that matches (2.63) is

G w
p,C =

{
G : µw

p (G) ≤ C
}

.

Let Jw
p,C(λ) = − ∫∞

0
(t2 ∧ λ2)d{1∧ (C/t)p}, which is approximately the Bayes risk

of the soft threshold estimator for the stochastically largest Pareto Prior in Gp,C .

Let λp,C =
√

1 ∨ {2 log(1/Cp∧2)}. Johnstone [46] proved that

lim
n→∞

Rn(Θw
p,Cn,n)

R(G w
p,Cn

)
= 1 (2.64)

for p > 2 with Cn → C+ ≥ 0 and for p ≤ 2 with nCp
n/(log n)1+6/p → ∞, and

that R(G w
p,Cn

)/Jw
p,Cn

(λp,Cn) → 1 as Cp∧2
n → 0. Abramovich et al. [1] proved

Rn(Θw
p,Cn,n)/Jw

p,Cn
(λp,Cn) → 1 for p < 2 and (log n)5/n ≤ Cp

n ≤ n−κ for all κ > 0.
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The combination of their results implies (2.64) for p ≤ 2 and Cp
n ≥ (log n)5/n.

Therefore, (2.64) holds under (2.55) due to pκ1(p) = p/2 + 4 + 3/p > 5 for

p < 2. As in Section (2.60), the adaptive minimaxity in weak `p balls Θw
p,Cn,n is a

consequence of

sup
θ∈Θw

p,Cn,n

r̃n,θ(t̂n) = o(1)
√

Jp,Cn (2.65)

as in (2.62), due to Jp,Cn ³ R(Gp,Cn) ≤ R(G w
p,Cn

).

2.5 The Fourier General Empirical Bayes Method

2.5.1 The RF-GEB method

Zhang [74] proposed a general EB method based on a Fourier infinite-order

smoothing kernel. It is directly derived from (2.23) using the kernel method

θ̂ = t̂n(X), t̂n(x) = x +
f̂ ′n(x)

f̂n(x) ∨ ρn

, f̂n(x) =
1

n

n∑
i=1

K(Xi − x, an) (2.66)

where f̂n is a kernel estimator of fGn in (2.13) based on X1, . . . , Xn using the

Fourier kernel

K(x, a) =
1

2π

∫ a

−a

eixtdt =





sin(ax)/(πx) if x 6= 0,

a/π if x = 0.

(2.67)

We call the estimator (2.66) F-GEB since we use a special Fourier kernel. The

estimator (2.66) approximates the oracle regularized Bayes estimator of the form

θ̂ = t∗Gn
(X; ρn), t∗Gn

(x; ρn) = x +
f ′Gn

(x)

fGn(x) ∨ ρn

(2.68)

where fG(x) is the normal location mixture density by distribution G as in (2.13).

The oracle regularized Bayes estimator (2.68) has the risk

En,θLn(t∗Gn
(X; ρn), θ) = 1− J(ρn, Gn),

where

J(ρ,G) =

∫ ∞

−∞

{
f ′G(x)

fG(x)

}2 {
2− fG(x)

fG(x) ∨ ρ

}{
fG(x)

fG(x) ∨ ρ

}
fG(x)dx. (2.69)
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A reason for using the Fourier kernel (2.67) is the extreme thin tail of f ∗Gn
(t) =

∫
eixtfGn(x)dx, bounded by e−t2/2 in absolute value, and

Ef̂ (k)
n (x)− f

(k)
Gn

(x)

=
1

2π

∫

|t|≤an

(−it)ke−ixtEn,θ

n∑
i=1

eiXit

n
dt− 1

2π

∫
(−it)ke−ixtf ∗Gn

(t)dt

= − 1

2π

∫

|t|>an

(−it)ke−ixtf ∗Gn
(t)dt,

where h(k) = (∂/∂x)kh for any function h if the derivative exists. Zhang [74]

proved that the F-GEB (2.66) approximates the risk 1− J(ρn, Gn) at the rate of

(log n)3/2/(ρnn) uniformly in θ.

Definition 2.1. Let X be the finite set {x1, . . . , xn} with simple order x1 < x2 <

. . . < xn. A real valued function h on X is isotonic, if xi, xj ∈ X and xi < xj

imply h(xi) ≤ h(xj). Let g be a given function on X. An isotonic function g̃ is

an isotonic regression of g with respect to x1 < x2 < . . . < xn if it minimizes the

sum

∑
x∈X

(
g(x)− h(x)

)2

in the class of all isotonic functions h on X.

Since the oracle Bayes estimator t∗Gn
in (3.16) is monotone increasing, we

consider the regularized Fourier general empirical Bayes (RF-GEB) estimator

θ̂ = t̃n(X), t̃n(x) ≡ arg min
t↑

n∑
i=1

(
t(Xi)− t̂n(Xi)

)2
, (2.70)

where t̂n(·) is the F-GEB as in (2.66). The RF-GEB is the isotonic regression

function of the F-GEB with respect to X1, X2, . . . , Xn.

2.5.2 An oracle inequality for the RF-GEB

Theorem 2.8 below asserts that the RF-GEB (2.70) approximates the truncated

Bayes estimator in risk at the rate of (log n)3/2/(ρnn). In the numerical exper-

iments in Section 2.6, we can see that the RF-GEB has smaller risk than the

F-GEB while we can only prove they have same convergence rate here.
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Theorem 2.8. Let θ̂i = t̃n(Xi) be the RF-GEB estimator given by (2.70). Choose

an > 0 and ρn > 0 such that
√

2 log n ≤ an = O(
√

log n) and an/(ρn

√
n) = o(1)

as n →∞. Then

En,θLn(t̃n(X), θ) ≤ 1− J(ρn, Gn) + O(1)
(log n)3/2

ρnn
. (2.71)

If we denote the original sequence as a1, a2, . . . , an, the following “pairwise

average” procedure will result in the isotonic regression of {an} in limit [3].

1. Set j = 1. Let aj,i ← ai, i = 1, . . . , n.

2. Set i = 1 and aj+1,1 ← aj,1.

3. If aj+1,i > aj,i+1, update aj+1,i = aj+1,i+1 ← (aj+1,i + aj,i+1)/2. If aj+1,i ≤
aj,i+1, update aj+1,i ← aj+1,i and aj+1,i+1 ← aj,i+1.

4. Update i ← i+1, repeat step 3 and stop when i = n. We get a new sequence

aj+1,1, aj+1,2, . . . , aj+1,n.

5. Update j ← j + 1, repeat step 2-4 again and again.

6. Denote the limit of the sequence a1i, . . . , aj,i, . . . as ãi, i = 1, . . . , n. Then

the limit sequence ã1, ã2, . . . , ãn is the isotonic regression of a1, a2, . . . , an.

Some tedious mathematical exercise shows the following two lemmas:

Lemma 2.2. Let a1 ≤ a2, b1 > b2, then

max
{∣∣∣a1 − b1 + b2

2

∣∣∣,
∣∣∣a2 − b1 + b2

2

∣∣∣
}
≤ max{|a1 − b1|, |a2 − b2|}.

Lemma 2.3. Let a1 > a2, b1 > b2, then

∣∣∣a1 + a2

2
− b1 + b2

2

∣∣∣ ≤ max{|a1 − b1|, |a2 − b2|}.

Define the `∞ distance between two finite sequences {ai} and {bi}, 1 ≤ i ≤ n

as

d({ai}, {bi}) = max{|ai − bi|, 1 ≤ i ≤ n}.
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Lemma 2.2 and 2.3 imply that, after each “pairwise average” step, the `∞ distance

between two finite sequences will not increase. Since the isotonic regression is

the limit of “pairwise average” procedure, after the isotonic regression, the `∞

distance between two sequences will not increase. This is formally stated in the

next lemma.

Lemma 2.4. If {ãn} and {b̃n} are isotonic regressions of {an} and {bn}, respec-

tively, then

d({ãn}, {b̃n}) ≤ d({an}, {bn}).

Proof of Theorem 2.8. We expand the risk of t̃n as follows,

1

n

n∑
i=1

En,θ

(
t̃n(Xi)− θi

)2

=
1

n

n∑
i=1

En,θ

(
t̃n(Xi)− t∗Gn

(Xi)
)2

+
1

n

n∑
i=1

En,θ

(
t∗Gn

(Xi)− θi

)2

+
2

n

n∑
i=1

En,θ

(
t̂n(Xi)− t∗Gn

(Xi)
)(

t∗Gn
(Xi)− θi

)

+
2

n

n∑
i=1

En,θ

(
t̃n(Xi)− t̂n(Xi)

)(
t∗Gn

(Xi)− θi

)
. (2.72)

Let g be a real valued function and h be an increasing function, by property

of the isotonic regression,
n∑

i=1

(
g̃(Xi)− h(Xi)

)2 ≤
n∑

i=1

(
g(Xi)− h(Xi)

)2
. (2.73)

where g̃ is the isotonic regression of g with respect to X. Since t∗Gn
(x) = x +

f ′Gn
(x)/fGn(x) is a non-decreasing function, this and (2.73) imply

n∑
i=1

(
t̃n(Xi)− t∗Gn

(Xi)
)2 ≤

n∑
i=1

(
t̂n(Xi)− t∗Gn

(Xi)
)2

. (2.74)

where t̃n and t̂n are the RF-GEB and F-GEB estimators as in (2.70). Thus, by

(2.72) and (2.74),

1

n

n∑
i=1

En,θ

(
t̃n(Xi)− θi

)2 ≤ 1

n

n∑
i=1

En,θ

(
t̂n(Xi)− θi

)2

+
2

n

n∑
i=1

En,θ

(
t̃n(Xi)− t̂n(Xi)

)(
t∗Gn

(Xi)− θi

)
. (2.75)
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Zhang [74] proved that when
√

2 log n ≤ an = O(
√

log n) and an/(ρn

√
n) =

o(1) as n →∞,

1

n

n∑
i=1

En,θ

(
t̂n(Xi)− θi

)2 ≤ 1− J(ρn, Gn) + O(1)
(log n)3/2

ρnn
. (2.76)

In order to bound the cross term on the right hand side of (2.75), we need to

use decoupleing technique in [74]. Let (Yn, λn) be a random vector independent

of (Xi, θi), 1 ≤ i ≤ n, such that

Yn|λn ∼ N(λn, 1), λn ∼ Gn.

Let X ′
1, . . . , X

′
n be random variables such that condition on θ1, . . . , θn, λn, they

are independent of X1, . . . , Xn, Yn and distributed according to X ′
i ∼ N(θi, 1).

Define for 1 ≤ i ≤ n,

t̂n,[i](x) = x + f̂ ′n,[i](x)/ max(f̂n,[i](x), ρn), (2.77)

where f̂n,[i] is the estimate of fGn in (2.13) based on X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn,

f̂n,[i](x) =
1

n

{
K(X ′

i − x, an) +
∑

1≤l≤n,l 6=i

K(Xl − x, an)

}
. (2.78)

Let t̃n,[i](x) be the isotonic regression of t̂n,[i](x) with respect to X1, . . . , Xn. Now

we can bound the cross term in (2.75) as follows

1

n

n∑
j=1

E
(
t̃n(Xi)− t̂n(Xi)

)(
t∗Gn

(Xi)− θi

)

=
1

n

n∑
i=1

En,θ

(
t̃n(Xi)− t̃n,[i](Xi)

)(
t∗Gn

(Xi)− θi

)

+
1

n

n∑
i=1

En,θ

(
t̃n,[i](Xi)− t̂n,[i](Xi)

)(
t∗Gn

(Xi)− θi

)

+
1

n

n∑
i=1

En,θ

(
t̂n,[i](Xi)− t̂n(Xi)

)(
t∗Gn

(Xi)− θi

)
. (2.79)
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The second term on the right hand side of (2.79) actually vanishes.

1

n

n∑
i=1

En,θ

(
t̃n,[i](Xi)− t̂n,[i](Xi)

)(
t∗Gn

(Xi)− θi

)

=
1

n

n∑
i=1

En,θ

(
t̃n(X ′

i)− t̂n(X ′
i)

)(
t∗Gn

(X ′
i)− θi

)

= En,θ

(
t̃n(Yn)− t̂n(Yn)

)(
t∗Gn

(Yn)− λn

)

= 0. (2.80)

By Schwarz inequality and the fact that En,θ

(
t∗Gn

(Xi)− θi

)2
< 1, for the third

term on the right hand side of (2.79),

∣∣∣∣
1

n

n∑
i=1

En,θ

(
t̂n,[i](Xi)− t̂n(Xi)

)(
t∗Gn

(Xi)− θi

)∣∣∣∣
2

≤ 1

n

n∑
i=1

En,θ

(
t̂n,[i](Xi)− t̂n(Xi)

)2
En,θ

(
t∗Gn

(Xi)− θi

)2

≤ 1

n

n∑
i=1

En,θ

(
t̂n(X ′

i)− t̂n,[i](X
′
i)

)2
.

Lemma 3 in [74] states that under the conditions of Theorem 2.8,

{
1

n

n∑
i=1

En,θ

(
t̂n(X ′

i)− t̂n,[i](X
′
i)

)2
}1/2

≤ O(1)
a

3/2
n

ρnn
.

Hence we have

∣∣∣∣
1

n

n∑
i=1

En,θ

(
t̂n,[i](Xi)− t̂n(Xi)

)(
t∗Gn

(Xi)− θi

)∣∣∣∣ ≤ O(1)
a

3/2
n

ρnn
. (2.81)

We need to work a little bit harder on the first term on the right hand side of

(2.79) as it involves the discrepancy between two isotonic sequences. From (2.67),

K ′(x) = (ax cos(ax) − sin(ax))/(πx2). If x ≥ a−1, |K ′(x)| ≤ (2ax)/(πx2) ≤
2a2/π. Using Taylor expansion, it is easy to see |K ′(x)| = (1 + o(1))a3x/(3π),

hence if x < a−1, |K ′(x)| ≤ (1 + o(1))a2/(3π). So we see that K ′(x) ≤ O(1)a2.

Thus we have

∣∣∣f̂ ′n(x)− f̂ ′n,[i](x)
∣∣∣ =

1

n

∣∣K ′(X ′
i − x)−K ′(Xi − x)

∣∣ ≤ O(1)
a2

n

n
. (2.82)
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Since f̂n(x) ∨ ρn ≥ ρn and f̂n,[i](x) ∨ ρn ≥ ρn, by (2.82),

∣∣t̂n(x)− t̂n,[i](x)
∣∣ =

∣∣∣∣∣
f̂ ′n(x)

f̂n(x) ∨ ρn

−
f̂ ′n,[i](x)

f̂n,[i](x) ∨ ρn

∣∣∣∣∣ ≤ O(1)
a2

n

ρnn
. (2.83)

By (2.83) and Lemma 2.4, we have

∣∣t̃n(Xi)− t̃n,[i](Xi)
∣∣ ≤ O(1)

a2
n

ρnn
. (2.84)

So that by (2.84) and Schwarz inequality,

∣∣∣∣
1

n

n∑
i=1

En,θ

(
t̃n(Xi)− t̃n,[i](Xi)

)(
t∗Gn

(Xi)− θi

)∣∣∣∣
2

≤ 1

n

n∑
i=1

En,θ

(
t̃n(Xi)− t̃n,[i](Xi)

)2
En,θ

(
t∗Gn

(Xi)− θi

)2

≤ O(1)
a4

n

ρ2
nn

2
.

Thus, the first term on the right hand side of (2.79) is bounded by

∣∣∣∣
1

n

n∑
i=1

En,θ

(
t̃n(Xi)− t̃n,[i](Xi)

)(
t∗Gn

(Xi)− θi

)∣∣∣∣ ≤ O(1)
a2

n

ρnn
. (2.85)

Adding (2.76), 2.80, 2.81 and 2.85 together, we have

1

n

n∑
i=1

En,θ

(
t̃n(Xi)− θi

)2 ≤ 1− J(ρn, Gn) + O(1)
(log n)3/2

ρnn
.

This completes the proof since Ln(t̃n(X), θ) =
∑n

i=1

(
t̃n(Xi)− θi

)2
/n. 2

2.6 Some Simulation Results

2.6.1 Highlight of main results

Johnstone and Silverman [47] reported results of an extensive simulation study of

18 threshold estimators, including eight options of their EBThresh, the SURE and

adaptive SURE [23], the FDR [1] at three levels, three block threshold methods

[13, 14] and the soft and hard threshold at the universal threshold level
√

2 log n.
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Table 2.1: Average total squared errors ‖θ̂ − θ‖2 for n = 1000 unknown means
in various binary models where θj is either 0 or µ with the number of nonzero
θj = µ being 5, 50 or 500. The “Best” stands for the best simulation results in
Table 1 of Johnstone and Silverman. Each entry is based on 100 replications

# nonzero 5 50 500
µ 3 4 5 7 3 4 5 7 3 4 5 7

James-Stein 45 76 113 199 314 448 560 715 820 892 929 964

EBThresh 36 31 17 9 213 160 102 72 858 876 788 661
SURE 42 62 72 74 417 609 211 211 832 837 838 838

FDR (.01) 44 50 24 6 392 302 128 56 2561 1334 667 527
FDR (.1) 41 34 19 14 279 173 113 101 1154 749 654 646

GMLEB 39 32 21 11 161 112 58 15 461 291 133 20
S-GMLEB 33 26 16 6 154 106 53 10 457 288 130 17

F-GEB 105 98 92 88 233 197 151 118 530 371 232 135
RF-GEB 72 64 58 56 203 154 102 77 504 339 188 89
HF-GEB 36 31 17 9 204 154 102 77 504 339 188 89

“Best” 34 32 17 5 201 156 95 52 829 730 609 505
Oracle 27 21 11 1 147 100 47 3 447 279 123 9

In their simulations, the overall best performer is the EBThresh using the poste-

rior median for the prior (2.10) with the double exponential dG0(u)/du = e−|u|/2

and the MLE of (ω0, τ).

In Table 2.1, we display our simulation results under exactly the same setting

as in [47] for nine estimators: the James-Stein, the EBThresh [47] using the double

exponential dG0 in (2.10) and the MLE of (ω0, τ), the SURE [23], the FDR [1] at

levels q = 0.01 and q = 0.1, the GMLEB (2.15) with the uniform initialization, the

S-GMLEB with the initialization (2.20), the F-GEB and HF-GEB as the Fourier

general EB [74] and a hybrid [76] of its monotone version with the EBThresh.

In each column, boldface entries denote the top three performers other than the

hybrid estimator. We also display as “Best” the best of the simulation results in

[47] over the 18 threshold estimators and as Oracle the average simulated risk of

the oracle Bayes rule t∗Gn
in (2.8).

These simulation results can be summarized as follows. The average `2 loss
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of the S-GMLEB happens to be the smallest among the nine estimators, with

the S-GMLEB and GMLEB clearly outperforming all other methods by large

margins for dense and moderately sparse signals. For very sparse signals, the S-

GMLEB, the EBThresh, the GMLEB and the FDR estimators yield comparable

results, and they all outperform the Fourier general EB and James-Stein estima-

tors. Compared with the oracle, the regrets of the S-GMLEB and GMLEB are

nearly fixed constants. Since the oracle prior (2.4) has a point mass at 0 in all

the models used to generate data in this simulation experiment, the S-GMLEB

yields slightly better results than the GMLEB as expected. The hybrid estimator

correctly switches to the EBThresh for very sparse signals. These simulations and

more presented in this subsection demonstrate the computational affordability of

the proposed GMLEB. The most surprising aspect of the results in Table 2.1 is

the strong performance of the both versions of the GMLEB for the most sparse

signals with 0.5% of θi being nonzero, since the GMLEB is not specially designed

to recover such signals (and threshold estimators are).

2.6.2 More simulation results

In addition to the simulation results reported in Table 2.1, we conducted more

experiments to explore a larger sample size, sparse unknown means without ex-

act zero, and iid unknown means from normal priors. The results for the nine

statistical procedures and the oracle rule t∗Gn
(X) for the general EB are reported

in Tables 2.2-2.4, in the same format as Table 2.1. Each entry is based on an

average of 100 replications. In each column, boldface entries indicate top three

performers other than the hybrid estimator or the oracle.

In Table 2.2 we report simulation results for n = 4000. Compared with Table

2.1, F-GEB replaces EBThresh as a distant third top performer in the moderately

sparse case of #{i : θi = µ} = 200, and almost the same sets of estimators prevail

as top performers in other columns. Since the collections of Gn are identical in

Tables 2.1 and 2.2, the average squared loss ‖θ̂ − θ‖2/n should decrease in n to
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Table 2.2: Average total squared errors ‖θ̂ − θ‖2 for n = 4000 unknown means
in various binary models where θj is either 0 or µ with the number of nonzero
θj = µ being 5, 50 or 500

# nonzero 5 50 500
µ 3 4 5 7 3 4 5 7 3 4 5 7

James-Stein 174 298 446 788 1245 1783 2228 2846 3274 3556 3704 3842

EBThresh 140 120 68 185 877 617 398 285 3426 3494 3135 2633
SURE 173 270 330 349 1729 824 826 826 3309 3329 3329 3329

FDR (.01) 175 203 106 24 1567 1221 509 227 10236 5370 2613 2095
FDR (.1) 160 135 76 54 1118 686 440 396 4634 2974 2605 2576

GMLEB 136 115 71 31 627 428 208 41 1818 1130 504 61
S-GMLEB 112 92 49 10 598 404 186 22 1801 1118 494 52

F-GEB 237 220 180 163 724 546 349 218 1922 1250 643 250
RF-GEB 187 164 127 113 686 496 278 149 1881 1202 585 174
HF-GEB 140 120 68 185 686 496 278 149 1881 1202 585 174

Oracle 106 86 43 3 590 395 178 12 1778 1098 475 33

Table 2.3: Average of ‖θ̂ − θ‖2: n = 1000, θj = µj + unif[−0.2, 0.2], µj ∈ {0, µ},
#{j : µj = µ} =5, 50 or 500

# nonzero 5 50 500
µ 3 4 5 7 3 4 5 7 3 4 5 7

James-Stein 57 87 123 206 318 449 558 711 819 889 925 959

EBThresh 48 43 29 22 226 170 115 86 859 875 789 665
SURE 55 74 84 86 428 623 219 219 832 837 837 837

FDR (.01) 56 60 37 19 397 319 141 70 2560 1357 668 533
FDR (.1) 52 48 32 27 289 189 127 114 1164 756 662 653

GMLEB 48 42 31 22 171 123 68 25 466 300 144 32
S-GMLEB 43 38 28 19 165 119 65 23 463 297 142 30

F-GEB 113 107 100 97 242 206 157 125 532 377 238 142
RF-GEB 81 74 67 65 213 167 111 85 509 348 195 98
HF-GEB 48 43 29 22 213 167 111 85 509 348 195 98

Oracle 39 34 23 14 160 114 60 16 455 290 135 23
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Table 2.4: Average of ‖θ̂ − θ‖2: n = 1000, iid θj ∼ N(µ, σ2)

σ2 0.1 2 40
µ 3 4 5 7 3 4 5 7 3 4 5 7

James-Stein 93 92 93 93 671 672 671 673 981 981 981 980

EBThresh 1089 1069 1047 1025 1023 1043 1040 1025 994 996 997 1002
SURE 1014 1486 3666 13530 995 1004 1041 3311 993 995 996 1000

FDR (.01) 3989 2073 1181 1005 2790 2233 1614 1066 1675 1614 1551 1433
FDR (.1) 1556 1105 1011 1004 1479 1259 1106 1010 1186 1173 1157 1120

GMLEB 95 95 96 96 679 681 681 683 1011 1012 1013 1010
S-GMLEB 98 98 98 103 681 683 682 685 1011 1012 1013 1010

F-GEB 171 169 171 175 745 747 744 750 1131 1120 1139 1125
RF-GEB 142 141 142 142 727 730 726 731 1083 1081 1086 1083
HF-GEB 142 141 142 142 727 730 726 731 1083 1081 1086 1083

Oracle 91 91 91 91 670 672 671 673 981 981 981 980

indicate convergence to the oracle risks for each estimator in each model, but this

is not the case in entries in italics.

In Table 2.3, we report simulation results for sparse mean vectors without

exact zero. It turns out that adding uniform [0.2, 0.2] perturbations to θi does

not change the results much, compared with Table 2.1.

In Table 2.4, we report simulation results for iid θi ∼ N(µ, σ2). This is

the parametric model in which the (oracle) Bayes estimators are linear. Indeed,

the James-Stein estimator is the top performer throughout all the columns and

tracks the oracle risk extremely well, while the GMLEB is not so far behind. It

is interesting that for σ2 = 40, the EBThresh and SURE outperform GMLEB as

they approximate the naive θ̂ = X with diminishing threshold levels. Another

interesting phenomenon is the disappearance of the advantage of the S-GMLEB

over the GMLEB, as the unknowns are no longer sparse.
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Figure 2.1: Plot of estimation functions of the Bayes estimator, GMLEB, S-
GMLEB and F-GEB based on one set of data (1000 means, 5 nonzero means
with µ = 7). The solid, dashed and dotted curves are the estimation function of
the Bayes estimator, the GMLEB and S-GMLEB respectively. The fluctuating
curve represents the F-GEB. The upper tickmarks on the data axis present the
data observed.

2.6.3 Additional simulations

The images of the Bayes estimator, GMLEB, S-GMLEB and F-GEB are shown

in Figure 2.1. From Figure 2.1, we can see that around zero, the S-GMLEB is

closer to the Bayes estimator than the GMLEB. The curve of the F-GEB is quite

erratic, i.e., it is very data-dependent.

The reason why GEB-RML can improve over GEB-ML can be seen from

Figure 2.2. GEB-RML estimates the prior Gn(θ) better than GEB-ML: GEB-

RML puts more weights on 0 while GEB-ML puts lots of weights around 0.

2.7 Discussion

In this section, we discuss general EB with kernel estimates of the oracle Bayes

rule, sure computation of an approximate generalized MLE and a number of
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Figure 2.2: Scatter plot of weights of Ĝn(θ) of the GMLEB (left) and S-GMLEB
(right) based on one set of data (1000 means, 5 nonzero means with µ = 7).

additional issues.

2.7.1 Kernel methods

As discussed in Section 2.5, general EB estimators of the mean vector θ can be

directly derived from the formula (2.22) using the kernel method (2.66). This

was done in [74] with the Fourier kernel K(x, a) = sin(ax)/(πx) and
√

2 log n ≤
an ³

√
log n. The main rationale for using the Fourier kernel is the near optimal

convergence rate of f̂n − fGn = O(
√

(log n)/n) and f̂ ′n − f ′Gn
= O((log n)/

√
n),

uniformly in θ. However, since the relationship between f̂ ′n(x) and f̂n(x) is not

as trackable as in the case of generalized MLE fĜn
, a much higher regularization

level ρn ³
√

(log n)/n in (2.66) were used [74, 76] to justify the theoretical results.

This could be an explanation for the poor performance of the Fourier general EB

estimator for very sparse θ in our simulations. From this point of view, the

GMLEB is much more appealing since its estimating function retains all analytic

properties of the Bayes rule. Consequently, the GMLEB requires no regularization

for the adaptive ratio optimality and adaptive minimaxity in our theorems.

Brown and Greenshtein [11] have studied (2.66) with the normal kernel K(x) =

ϕ(x) and possibly different bandwidth 1/an, and have proved the adaptive ratio
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optimality (2.44) of their estimator when ‖θ‖∞ and R∗(Gn,θ) have certain dif-

ferent polynomial orders. The estimating function t̂n(x) with the normal kernel,

compared with the Fourier kernel, behaves more like the regularized Bayes rule

(2.23) analytically with the positivity of f̂n(x) and more trackable relationship

between f̂ ′n(x) and f̂n(x). Still, without some basic properties of the Bayes rule

in Proposition 2.1 and Theorem 2.1, it is unclear if the kernel methods of the

form (2.66) would possess as strong theoretical properties as in Theorems 2.3,

2.4, 2.5, 2.6 and 2.7 or perform as well as the GMLEB for moderate samples in

simulations.

2.7.2 Sure computation of an approximate generalized MLE

We present a conservative data-driven criterion to guarantee (2.14) with the EM-

algorithm. This provides a definitive way of computing the map from {Xi} to Ĝn

in (2.14) and then to the GMLEB via (2.18).

Set u1 = min1≤i≤n Xi, um = max1≤i≤n Xi, and

ε = (um − u1)/(m− 1), uj = uj−1 + ε. (2.86)

Proposition 2.5. Suppose ε2{(um − u1)
2/4 + 1/8} ≤ 1/n with a sufficient large

m in (2.86). Let ŵ
(0)
j > 0 ∀ j ≤ m with

∑m
j=1 ŵ

(0)
j = 1. Suppose that the

EM-algorithm (2.19) is stopped at or beyond an iteration k > 0 with

max
1≤j≤m

log
(
ŵ

(k)
j /ŵ

(k−1)
j

)
≤ 1

n
log

( 1

eqn

)
, (2.87)

where qn = (e
√

2π/n2) ∧ 1. Then, (2.14) holds for Ĝn =
∑m

j=1 ŵ
(k)
j δuj

.

Heuristically, smaller m provides larger minj ŵ
(k)
j and faster convergence of

the EM algorithm, so that the “best choice” of m is

m− 2 < (um − u1)
√

n{(um − u1)2/4 + 1/8} ≤ m− 1.

For maxi |Xi| ³
√

log n, this ensures the first condition of Proposition 2.5 with

m ³ (log n)
√

n and ε ³ (n log n)−1/2. Proposition 2.5 is proved via the smooth-

ness of the normal density and Cover’s upper bound [18, 71] for the maximum

likelihood in finite mixture models.
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2.7.3 Additional remarks

A crucial element for the theoretical results for the GMLEB is the oracle in-

equality for the regularized Bayes estimator with misspecified prior, as stated in

Theorem 2.1. However, we do not believe that mathematical induction is sharp

in the argument with higher and higher order of differentiation in the proof of

Lemma 2.1. Consequently, the power κ1 in Theorem 2.6 and 2.7 is larger than its

counterpart more directly established for threshold estimators [1, 47]. Still, the

GMLEB performs as well as any threshold estimators in our simulations for the

most sparse mean vectors. As expected, the gain of the GMLEB is huge against

the James-Stein estimator for sparse means and against threshold estimators for

dense means.

It is interesting to observe in Table 2.1-2.3 that the simulated `2 risk for the

GMLEB sometimes dips well below the benchmark
∑n

i=1 θ2
i ∧ 1 = #{i : θi 6= 0}

for the oracle hard threshold rule θ̂i = XiI{|θi| ≤ 1} [36], while the simulated `2

risk for threshold estimators is always above that benchmark.

An important consequence of our results is the adaptive minimaxity and other

optimality properties of the GMLEB approach to nonparametric regression un-

der suitable smoothness conditions. For example, applications of the GMLEB

estimator to the observed wavelet coefficients at individual resolution levels yield

adaptive exact minimaxity in all Besov spaces as in [76].

The adaptive minimaxity (3.34) in Theorems 2.6 and 2.7 is uniform in the

radii C for fixed shape p. A minimax theory for (weak) `p balls uniform in

(p, C) can be developed by careful combination and improvement of the proofs in

[21, 46, 76]. Since the oracle inequality (2.38) is uniform in p, uniform adaptive

minimaxity in both p and C is in principle attainable for the GMLEB. The

theoretical results in this chapter are all stated for deterministic θ = (θ1, . . . , θn).

By either mild modifications of the proofs here or conditioning on the unknowns,

analogues versions of our theorems can be established for the estimation of iid

means {ξi} in the EB model (2.48). Other possible directions of extension of
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the results in this chapter are the cases of Xi ∼ N(θi, σ
2
n) via scale change, with

known σ2
n or an independent consistent estimate of σ2

n, and Xi ∼ N(θi, σ
2
i ) with

known σ2
i .

2.8 Proof

Here we prove Proposition 2.1, Lemma 2.1, Proposition 2.3, Theorem 2.3, 2.6

and 2.7 and then Proposition 2.5. We need one more lemma for the proof of

Proposition 2.1. Throughout this subsection, bxc denotes the greatest integer

lower bound of x, and dxe denotes the smallest integer upper bound of x.

Lemma 2.5. Let fG(x) be as in (2.13) and L̃(y) as in Proposition 2.1. Then,

(f ′G(x)

fG(x)

)2

≤ f ′′G(x)

fG(x)
+ 1 ≤ L̃2(fG(x)) = log

( 1

2πf 2
G(x)

)
. (2.88)

Proof of Lemma 2.5. Since Y |ξ ∼ N(ξ, 1) and ξ ∼ G under PG, by (2.22)

f ′G(x)

fG(x)
= EG[ξ − Y |Y = x],

f ′′G(x)

fG(x)
+ 1 = EG[(ξ − Y )2|Y = x].

This gives the first inequality of (2.88). The second inequality of (2.88) follows

from Jensen’s inequality: for h(x) = ex/2,

h
(f ′′G(x)

fG(x)
+ 1

)
≤ EG

[
h
(
(ξ − Y )2

)|Y = x
]

=
1√

2πfG(x)
.

This completes the proof. 2

Proof of Proposition 2.1. Since fG(x) =
∫

ϕ(x − u)G(du) ≥ 0, the value of

(2.23) is always between t∗G(x) and x. By Lemma 2.5

∣∣t∗G(x; ρ)− x
∣∣ ≤ fG(x)

fG(x) ∨ ρ
L̃

(
fG(x)

) ≤ L̃(ρ)

for ρ ≤ (2πe)−1/2, since L̃(y) is decreasing in y2 and y2L̃2(y) is increasing in

y2 ≤ 1/(2πe). Similarly, the second line of (2.24) follows from Lemma 2.5 and

∂t∗G(x; ρ)

∂x
=





1 + f ′′G(x)/fG(x)− {f ′G(x)/fG(x)}2, if fG(x) > ρ,

1 + f ′′G(x)/ρ, if fG(x) < ρ.
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Note that L̃(fG(x)) ≤ L̃(ρ) for fG(x) ≥ ρ, and for fG(x) < ρ ≤ (2πe3)−1/2,

0 ≤ 1− fG(x)

ρ
≤ 1 +

f ′′G(x)

ρ
≤ 1 +

fG(x)

ρ

(
L̃2(fG(x))− 1

)
≤ L̃2(ρ)

due to the monotonicity of y{L̃2(y)− 1} in 0 ≤ y ≤ (2πe3)−1/2. 2

Proof of Lemma 2.1. Let D = d/dx. We first prove that for all integers k ≥ 0

and a ≥ √
2k − 1,
∫
{Dk(fG − fG0)}2dx ≤ 4a2k

√
2π

d2(fG, fG0) +
4a2k−1

π
e−a2

. (2.89)

Let h∗(u) =
∫

eiuxh(x)dx for all integrable h. Since |f ∗G(u)| ≤ ϕ∗(u) = e−u2/2, it

follows from the Plancherel identity that
∫
{Dk(fG − fG0)}2dx =

1

2π

∫
u2k|f ∗G(u)− f ∗G0

(u)|2du

≤ a2k

2π

∫
|f ∗G(u)− f ∗G0

(u)|2du +
4

2π

∫

|u|>a

u2ke−u2

du

= a2k

∫
|fG − fG0|2dx +

4

π
ck,

where ck =
∫

u>a
u2ke−u2

du. Since (k − 1/2) ≤ a2/2, integrating by parts yields

ck = 2−1a2k−1e−a2

+ {(k − 1/2)/a2}a2ck−1

≤ 2−1a2k−1e−a2

(1 + 1/2 + · · ·+ 1/2k−1) + 2−ka2kc0

≤ a2k−1e−a2

due to c0 ≤ a−1
∫

u>a
ue−u2

du = e−a2
/(2a). Since fG(x) ≤ 1/

√
2π,

∫
|fG − fG0|2dx ≤

∥∥∥
√

fG +
√

fG0

∥∥∥
2

∞
d2(fG, fG0) ≤

4√
2π

d2(fG, fG0).

The combination of the above inequalities yields (2.89).

Define w∗ = 1/(fG ∨ ρ + fG0 ∨ ρ) and ∆k = (
∫ {Dk(fG − fG0)}2w∗)1/2. Inte-

grating by parts, we find

∆2
k = −

∫
{Dk−1(fG − fG0)}{Dk+1(fG − fG0)w∗ + (Dk(fG − fG0))(Dw∗)}.

Since |(Dw∗)(x)| ≤ 2L̃(ρ)w∗(x) by Proposition 2.1, Cauchy-Schwarz gives

∆2
k ≤ ∆k−1∆k+1 + 2L̃(ρ)∆k−1∆k.



47

Let k0 be a nonnegative integer satisfying k0 ≤ L̃2(ρ)/2 < k0 + 1. Define k∗ =

min{k : ∆k+1 ≤ k02L̃(ρ)∆k}. For k < k∗, we have ∆2
k ≤ (1 + 1/k0)∆k−1∆k+1, so

that for k∗ ≤ k0,

∆1

∆0

≤
(
1 +

1

k0

)∆2

∆1

≤
(
1 +

1

k0

)k∗∆k∗+1

∆k∗
≤ ek02L̃(ρ) ≤ eL̃3(ρ).

Since
(
f

1/2
G + f

1/2
G0

)2
w∗ ≤ 2, we have ∆2

0 ≤ 2d2(fG, fG0). Thus, for k∗ ≤ k0,

∆1 ≤ eL̃3(ρ)
√

2d(fG, fG0). (2.90)

For k0 < k∗, ∆1/∆0 ≤ (1 + 1/k0)
k∆k+1/∆k for all k ≤ k0, so that

∆1

∆0

≤
[ k0∏

k=0

{
(1 + 1/k0)

k∆k+1/∆k

}]1/(k0+1)

= (1 + 1/k0)
k0/2

{
∆k0+1/∆0

}1/(k0+1)

. (2.91)

To bound ∆k0+1 by (2.89), we pick the constant a > 0 with the a2 in (2.29), so

that a2 ≥ 2(k0 + 1/2) and e−a2 ≤ d2(fG, fG0). Since w∗ ≤ 1/(2ρ), an application

of (2.89) with this a gives

∆2
k0+1 ≤ 1

2ρ

∫
{Dk0+1(fG − fG0)}2

≤ 2a2(k0+1)

ρ
√

2π
d2(fG, fG0)

(
1 + a−1

√
2/π

)
.

Since ∆2
0 ≤ 2d2(fG, fG0), inserting the above inequality into (2.91) yields

∆1 ≤ (1 + 1/k0)
k0/2∆

k0/(k0+1)
0 ∆

1/(k0+1)
k0+1

≤ (1 + 1/k0)
k0/2

√
2d(fG, fG0)a

(1 +
√

2/π

ρ
√

2π

)1/(2k0+2)

≤ √
ed(fG, fG0)a

√
2(2πρ2)−1/(4k0+4). (2.92)

Since | log(2πρ2)| = L̃2(ρ) < 2k0 + 2, (2.29) follows from (2.90) and (2.92). 2

Proof of Proposition 2.3. We provide a dense version of the proof since it is

similar to the entropy calculation in [39, 40, 80].

It follows from (2.23), (2.24) and Lemma 2.5 that

∣∣∣t∗G(x; ρ)− t∗H(x; ρ)
∣∣∣ ≤ 1

ρ

∣∣∣f ′G(x)− f ′H(x)
∣∣∣ +

L̃(ρ)

ρ

∣∣∣fG(x)− fH(x)
∣∣∣, (2.93)
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so that we need to control the norm of both fG and f ′G.

Let a = L̃(η), j∗ = d2M/a + 2e and k∗ = b6a2c. Define semiclosed intervals

Ij =
(−M + (j − 2)a, (−M + (j − 1)a) ∧ (M + a)

]
, j = 1, . . . , j∗,

to form a partition of (−M − a,M + a]. It follows from the Carathéodory’s theo-

rem [17] that for each distribution function G there exists a discrete distribution

function Gm with support [−M−a,M +a] and no more than m = (2k∗+2)j∗+1

support points such that

∫

Ij

ukG(du) =

∫

Ij

ukGm(du), k = 0, 1, . . . , 2k∗ + 1, j = 1, . . . , j∗. (2.94)

Since the Taylor expansion of e−t2/2 has alternating signs, for t2/2 ≤ k∗ + 2,

0 ≤ Rem(t) = (−1)k∗+1
{

ϕ(t)−
k∗∑

k=0

(−t2/2)k

k!
√

2π

}
≤ (t2/2)k∗+1

(k∗ + 1)!
√

2π
.

Thus, since k∗ + 1 ≥ 6a2, for x ∈ Ij ∩ [−M,M ], the Stirling formula yields

∣∣∣f ′G(x)− f ′Gm
(x)

∣∣∣

≤
∣∣∣
∫

(Ij−1∪Ij∪Ij+1)c

(x− u)ϕ(x− u){G(du)−Gm(du)}
∣∣∣

+
∣∣∣
∫

Ij−1∪Ij∪Ij+1

(x− u)Rem(x− u){G(du)−Gm(du)}
∣∣∣

≤ max
t≥a

tϕ(t) +
4a{(2a)2/2}k∗+1

√
2π(k∗ + 1)!

≤ aη +
4a(e/3)k∗+1

2π(k∗ + 1)1/2
(2.95)

due to a ≥ 1. Similarly, for |x| ≤ M ,

∣∣∣fG(x)− fGm(x)
∣∣∣ ≤ η +

(e/3)k∗+1

2π(k∗ + 1)1/2
. (2.96)

Furthermore, since (e/3)6 ≤ e−1/2 and k∗ + 1 ≥ 6a2 ≥ 6, we have (e/3)k∗+1 ≤
e−a2/2 =

√
2πη, so that by (2.93), (2.95) and (2.96),

∥∥∥t∗G(·; ρ)− t∗Gm
(·; ρ)

∥∥∥
∞,M

≤ ρ−1
(
aη +

4ae−a2/2

2π
√

6a2

)
+ ρ−1L̃(ρ)

(
η +

e−a2/2

2π
√

6a2

)

≤ ρ−1η
(
2L̃(η) + 5/

√
12π

)
. (2.97)
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Let ξ ∼ Gm, ξη = η sgn(ξ)b|ξ|/ηc and Gm,η ∼ ξη. Since |ξ − ξη| ≤ η,

∥∥∥fGm − fGm,η

∥∥∥
∞
≤ C∗

1η,
∥∥∥f ′Gm

− f ′Gm,η

∥∥∥
∞
≤ C∗

2η,

where C∗ = supx |ϕ′(x)| = (2eπ)−1/2 and C∗
2 = supx |ϕ′′(x)| =

√
2/πe−3/2. This

and (2.93) imply

∥∥∥t∗Gm
(·; ρ)− t∗Gm,η

(·; ρ)
∥∥∥
∞
≤ η

ρ

{
C∗

2 + C∗
1 L̃(ρ)

}
. (2.98)

Moreover, Gm,η has at most m support points.

Let Pm be the set of all vectors w = (w1, . . . , wm) satisfying wj ≥ 0 and
∑m

j=1 wj = 1. Let Pm,η be an η-net of N(η, Pm, ‖ · ‖1) elements in Pm:

inf
wm,η∈Pm,η

‖w −wm,η‖1 ≤ η, ∀ w ∈ Pm.

Let {uj, j = 1, . . . , m} be the support of Gm,η and wm,η be a vector in Pm,η with
∑m

j=1 |Gm,η({uj})− wm,η
j | ≤ η. Set G̃m,η =

∑m
j=1 wm,η

j δuj
. Then,

∥∥∥fGm,η − fG̃m,η

∥∥∥
∞
≤ C∗

0η,
∥∥∥f ′Gm,η

− f ′
G̃m,η

∥∥∥
∞
≤ C∗

1η,

where C∗
0 = ϕ(0) = 1/

√
2π. This and (2.93) imply

∥∥∥t∗Gm,η
(·; ρ)− t∗

G̃m,η
(·; ρ)

∥∥∥
∞
≤ η

ρ

{
C∗

1 + C∗
0 L̃(ρ)

}
. (2.99)

The support of Gm,η and G̃m,η is Ωη,M = {0,±η,±2η, . . .} ∩ [−M − a,M + a].

Summing (2.97), (2.98) and (2.99) together, we find

∥∥∥t∗G(·; ρ)− t∗
G̃m,η

(·; ρ)
∥∥∥
∞,M

≤ (η/ρ)
[
{2 + C∗

1 + C∗
0}L̃(η) + 5/

√
12π + C∗

2 + C∗
1

]

≤ (η/ρ)
{

2.65L̃(η) + 1.24
}
≤ η∗.

Counting the number of ways to realize {uj} and wm,η, we find

N(η∗, Tρ, ‖ · ‖∞,M) ≤
(|Ωη,M |

m

)
N(η, Pm, ‖ · ‖1), (2.100)

with m = (2k∗+2)j∗+1, |Ωη,M | = 1+2b(M + a)/ηc, a = L̃(η), j∗ = d2M/a+2e
and k∗ = b6a2c.
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Since Pm is in the `1 unit-sphere of Rm, N(η, Pm, ‖ · ‖1) is no greater than

the maximum number of disjoint Ball(vj, η/2, ‖ · ‖1) with centers vj in the unit

sphere. Since all these balls are inside the (1 + η/2) `1-ball, volume comparison

yields N(η, Pm, ‖ · ‖1) ≤ (2/η + 1)m. With another application of the Stirling

formula, this and (2.100) yield

N(η∗, Tρ, ‖ · ‖∞,M)

≤ (2/η + 1)m|Ωη,M |m/m!

≤ {(1 + 2/η)(1 + 2(M + a)/η)}m{(m + 1)m+1/2e−m−1
√

2π}−1

≤ {(η + 2)(η + 2(M + a))e/(m + 1)}mη−2me{2π(m + 1)}−1/2. (2.101)

Since m− 1 ≥ 12a2(2M/a + 2) = 24a(M + a) and a ≥ 1 ≥ 1/2 ≥ η,

(η + 2)(η + 2(M + a))e ≤ 8{1/2 + 2(M + a)} ≤ m + 1.

Hence, (2.104) is bounded by η−2m with m ≤ 2(6a2 + 1)(2M/a + 3) + 1. 2

Proof of Theorem 2.3. Throughout the proof, we use M0 to denote a universal

constant which may take different values from one appearance to another. For

simplicity, we take qn = (e
√

2π/n2)∧1 in (2.14) so that (2.34) holds with ρn = n−3.

Let εn and x∗ be as in Theorem 2.2 and L̃(ρ) =
√
− log(2πρ2) be as in

Proposition 2.1 and 2.4. With ρn = n−3, set

η =
ρn

n
=

1

n4
, η∗ =

η

ρn

{3L̃(η) + 2}, M =
2nε2

n

(log n)3/2
. (2.102)

Let x∗ = max(x∗, 1) and {t∗Hj
(·; ρn), j ≤ N} ba a (2η∗)-net of

Tρn ∩ {t∗G : d(fG, fGn) ≤ x∗εn} (2.103)

under the ‖·‖∞,M seminorm as in proposition 2.3, with distributions Hj satisfying

d(fHj
, fGn) ≤ x∗εn and N = N(η∗, Tρn , ‖ · ‖∞,M). It is a (2η∗)-net due to the

additional requirement on Hj. Since M ≥ 4
√

log n and η = 1/n4 by (2.32) and

(2.102), Proposition 2.3 and (2.102) give

log N ≤ M0(log n)3/2M/2 ≤ M0nε2
n. (2.104)
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We divide the `2 distance of the error into 5 parts:

∥∥∥t∗
Ĝn

(X; ρn)− θ
∥∥∥ ≤

√
nR∗(Gn) +

4∑
j=1

ζjn,

where ζjn are as in (2.39), (2.40), (2.41) and (2.42). As we have mentioned in the

outline, the problem is to bound En,θζ
2
jn in view of (2.43).

Let An and ζ1n be as in (2.39). Since x∗ = 1 ∨ x∗ ≥ 1 and nε2 ≥ 2(log n)2 by

(2.32), Theorem 2.2 gives Pn,θ{Ac
n} ≤ exp

( − (x∗)2nε2
n/(2 log n)

) ≤ 1/n. Thus,

since L̃2(ρn) = − log(2π/n6) with ρn = n−3, Proposition 2.1 gives

En,θζ
2
1n = En,θ

n∑
i=1

{
(t∗

Ĝ
(Xi; ρn)−Xi) + (Xi − θi)

}2

IAc
n

≤ 2nL̃2(ρn)Pn,θ{Ac
n}+ 2En,θ

n∑
i=1

(Xi − θi)
2IAc

n

≤ M0 log n + 2n

∫ ∞

0

min
(
P{|N(0, 1)| > x}, 1/n)

dx2.

Since P{N(0, 1) > x} ≤ e−x2/2 and
∫∞

0
min(ne−x2/2, 1)dx2/2 = 1 + log n,

En,θζ
2
1n ≤ M0 log n ≤ M0nε2

n. (2.105)

Consider ζ2
2n. Since t∗Hj

(·; ρn) form a (2η∗)-net of (2.103) under ‖ · ‖∞,M and

|t∗G(x; ρ)− x| ≤ L̃(ρ) by Proposition 2.1, it follows from (2.40) that

ζ2
2n ≤ min

j≤N
‖t∗

Ĝn
(X; ρn)− t∗Hj

(X; ρn)‖2IAn

≤ (2η∗)2#{i : |Xi| ≤ M}+ {2L̃(ρn)}2#{i : |Xi| > M}.

By (2.32), (nε2
n/ log n)p+1 ≥ n{√log nµw

p (Gn)}p, so that by (2.31) and (2.102),

∫

|u|≥M/2

Gn(du) ≤
(µw

p (Gn)

M/2

)p

≤
( 2nε2

n

M(log n)3/2

)p ε2
n

log n
=

ε2
n

log n
. (2.106)

Thus, since η∗ = n−1{3L̃(n−4) + 2} and M ≥ 4
√

log n by (2.102) and (2.32),

En,θζ
2
2n ≤ n(2η∗)2 + 4L̃2(n−3)En,θ#{i : |Xi| > M}

≤ M0(log n)n
( 1

n2
+

∫

|u|≥M/2

Gn(du) + P{|N(0, 1)| > 2
√

log n}
)

≤ M0(log n)
( 1

n
+

nε2
n

log n
+

2

n

)
.
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Since nε2
n ≥ 2(log n)2 by (2.32), we find

En,θζ
2
2n ≤ M0nε2

n. (2.107)

Now, consider ζ2
3n. Since L̃2(ρn) ≤ M0 log n, it follows from (2.41), Proposition

2.4 and (2.104) that

En,θζ
2
3n =

∫ ∞

0

Pn,θ{ζ3n > x}dx2

≤
∫ ∞

0

min
{

1, N exp
(− x2/(2L̃4(ρn)

)}
dx2

= 2L̃4(ρn)(1 + log N)

≤ M0(log n)2nε2
n. (2.108)

For ζ2
4n, it suffices to apply Theorem 2.1 (ii) with G0 = Gn, G = Hj, ρ = ρn =

n−3, x0 = M/2 and ε0 = x∗εn ≥ d(fHj
, fGn), since

ζ2
4n ≤ n max

j≤N

{
EGn{t∗Hj

(Y ; ρn)− ξ)2 −R∗(Gn)
}

(2.109)

by (2.42) and (2.5). It follows from (2.106) that the M1 in Theorem 2.1 (ii) is no

greater than
∫
|u|≥M/2

Gn(du)

| log ρn|3(x∗εn)2
≤ ε2

n/ log n

(3 log n)3ε2
n

≤ M0.

Since M = 2nε2
n/(log n)3/2 by (2.102) and nε2

n ≥ 2(log n)2 by (2.32), the M2 in

Theorem 2.1 (ii) is no greater than

2(M/2 + 1)ρn

(log ρn)2(x∗εn)2
≤ 2(nε2

n/(log n)3/2 + 1)/n3

(3 log n)2ε2
n

≤
√

log n + 1

n2(log n)4
≤ M0

with ρn = n−3. Thus, by Theorem 2.1 (ii) and (2.109)

ζ2
4n ≤ M0n|(log ρn)/3|3ε2

n = M0nε2
n(log n)3. (2.110)

Adding (2.105), (2.107), (2.108) and (2.109) together, we have

En,θ

( 4∑
j=1

|ζjn|
)2

≤ M0nε2
n(log n)3.

Since Ln(θ̂, θ) = ‖θ̂ − θ‖2/n, this and (2.43) complete the proof. 2
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Proof of Theorem 2.6. As we have mentioned, by (2.59), (2.60) and (2.61),

the adaptive minimaxity (3.34) with Θn = Θp,Cn,n follows from (2.62). By (2.31)

and (2.54), µw
p (Gn,θ) ≤ C for θ ∈ Θp,C,n, so that by (2.32) and Theorem 2.3,

supθ∈Θp,C,n
r̃n,θ(t̂n) ≤ εp,C,n(log n)3/2 with

ε2
p,C,n = max

[
2 log n,

{
nCp(log n)p/2

}1/(1+p)
]
(log n)/n. (2.111)

Thus, it suffices to verify that for sequences Cn satisfying (2.55),

ε2
p,Cn,n(log n)3/Jp,Cn → 0, (2.112)

where Jp,C = min{1, Cp∧2{1 ∨ (2 log(1/Cp))}(1−p/2)+} as in (2.62).

We consider three cases. For C2∧p
n > e−1/2, Jp,Cn ≥ e−1/2 and

ε2
p,Cn,n(log n)3 = max

[2(log n)5

n
,
{
Cn(log n)9/2+4/p/n

}p/(1+p)
]

= o(1),

since κ2(p) = 9/2 + 4/p in (2.55).

For p < 2 and Cp
n ≤ e−1/2, Jp,Cn = Cp

n{2 log n(1/Cp
n)}1−p/2, so that by (2.112),

ε2
p,Cn,n(log n)3/Jp,Cn

= max
[ 2(log n)5

nCp
n{2 log(1/Cp

n)}1−p/2
,

(log n)4+p/(2+2p)

(nCp
n)p/(1+p){2 log(1/Cp

n)}1−p/2

]
.

Since the case Cp
n > n−1/2 is trivial, it suffices to consider the case Cp

n ≤ n−1/2

where

ε2
p,Cn,n(log n)3

Jp,Cn

³ max
[(log n)4+p/2

nCp
n

,
(log n)3+p/2+p/(2+2p)

(nCp
n)p/(1+p)

]
.

Since 4 + p/2 ≤ pκ1(p) = 4 + 3/p + p/2 = (1 + 1/p){3 + p/2 + p/(2 + 2p)}, (2.55)

still implies (2.112).

Finally, for p ≥ 2 and C2
n ≤ e−1/2, Jp,Cn = C2

n, so that

ε2
p,Cn,n(log n)3

Jp,Cn

= max
[2(log n)5

nC2
n

,
{Cn(log n)9/2+4/p

nC
2(1+1/p)
n

}p/(1+p)]
.

Since nC
1+2/p
n = n1/2−1/p(nC2

n)1/2+1/p, we need (log n)5/(nC2
p) → 0 for p > 2 and

(log n)13/2/(nC2
n) → 0 for p = 2. Again (2.55) implies (2.112). 2
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Proof of Theorem 2.7. Since the oracle inequality (2.38) is based on the weak

`p norm, the proof of Theorem 2.6 also provides (2.65). 2

Proof of Proposition 2.5. Let Ĝ∗
n be the exact generalized MLE as in (2.12).

Since ϕ(x) is decreasing in |x|, we have Ĝ∗
n([u1, um]) = 1. Let Ij = (uj−1, uj] and

I∗j = [uj−1, uj] for j ≥ 2 and I1 = I∗1 = {u1}. Let Hm,j be sub-distributions with

support {uj−1, uj} ∩ I∗j such that

Hm,j(I
∗
j ) = Ĝ∗

n(Ij),

∫

I∗j

uHm,j(du) =

∫

Ij

uĜ∗
n(du), 1 ≤ j ≤ m. (2.113)

Let j > 1 and x ∈ [u1, um] be fixed. Set xj = x − (uj + uj−1)/2 and t =

u− (uj + uj−1)/2 for u ∈ I∗j . Since |xjt| ≤ (um − u1)ε/2 ≤ n−1/2 ≤ 1,

−(1− e−t2/2)exjt ≤ exjt−t2/2 − (1 + xjt) ≤ x2
j t

2exjt−t2/2, (2.114)

where the second inequality follows from e−t2/2(1−xjt) ≤ e−xjt. Since ϕ(x−u) =

ϕ(xj − t) = ϕ(xj) exp(xjt− t2/2), (2.113) and (2.114) yield

∫

Ij

ϕ(x− u)Ĝ∗
n(du)−

∫

I∗j

ϕ(x− u)Hm,j(du)

≤
∫

Ij

x2
j t

2ϕ(x− u)Ĝ∗
n(du) +

∫

I∗j

(et2/2 − 1)ϕ(x− u)Hm,j(du)

≤ (um − u1)
2(ε/2)2

∫

Ij

ϕ(x− u)Ĝ∗
n(du) + (eε2/8 − 1)

∫

I∗j

ϕ(x− u)Hm,j(du).

Let Hm =
∑m

j=1 Hm,j. Summing the above inequality over j, we find eε2/8fHm(x) ≥
(1− η)fĜ∗n

(x) with η = ε2(um − u1)
2/4 ≤ 1/n− ε2/8. Thus,

n∏
i=1

fHm(Xi)

fĜ∗n
(Xi)

≥ e−nε2/8(1− η)n ≥ e−n(ε2/8+η) ≥ e−1. (2.115)

Let Hm be the set of all distributions with support {u1, . . . , um} and Ĝn =
∑m

j=1 ŵ
(k)
j δuj

. The upper bound in [18, 71] and (2.87) provide

sup
H∈Hm

n∏
i=1

fH(Xi)

fĜn
(Xi)

≤ max
j≤m

( w
(k)
j

w
(k−1)
j

)n

≤ 1

eqn

.

This and (2.115) imply
∏n

i=1 fĜ∗n
(Xi) ≤ q−1

n

∏n
i=1 fĜn

(Xi). 2
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Chapter 3

General Maximum Likelihood Empirical Bayes

Wavelet Method and Exactly Adaptive

Minimax Estimation

3.1 Introduction

Consider the nonparametric regression model

Yi = f(ti) + ei, i = 1, . . . , N, (3.1)

where ti = i/N , and ei are iid N(0, σ2). We wish to recover the unknown function

f based on the sample Y ≡ (Yi, i = 1, . . . , N). For example, how do we recover a

piecewise polynomial with unknown number and locations of discontinuities? In

general, we would like to consider the estimation of a regression function f with

unknown discontinuities or inhomogeneous smoothness across different parts of a

domain. Through a discrete wavelet transform (DWT) the nonparametric regres-

sion problem can be turned into a problem of estimating the wavelet coefficients

at individual resolution levels. The estimation at a single resolution level can be

treated by considering a more fundamental problem, that is, compound estima-

tion of a vector of normal means. From many points of view, the normal mean

problem occupies the heart of statistical estimation theory. It has been considered

as the canonical model or motivating example in the developments of adaptive

nonparametric regression, empirical Bayes, admissibility, variable selection, mul-

tiple testing and many other areas in statistics.

Nonparametric regression is typically studied under smoothness conditions on

the known regression function f . Such smoothness conditions have interpretation

as sparsity of wavelet coefficients in the sense of having many (near) zeros. Sparse
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vectors of wavelet coefficients can be treated as members of Besov balls with a

small sparsity index p > 0. For sparse means, the linear estimators, e.g., the

James-Stein estimator, do not achieve the optimal rates of minimax risk [21, 24].

Many wavelet threshold methods have been proposed and proved to be highly

adaptive. These threshold methods include the universal threshold estimator

[22], and adaptive procedures SURE [23], FDR [1], and parametric EB posterior

median (EBThresh) [47, 48]. Block threshold methods have also been considered,

e.g., by Cai [12] and Cai and Zhou [15].

Adaptive threshold estimators can be viewed as approximations of an optimal

candidate in certain families of separable threshold functions. Instead of restrict-

ing the approximation in a particular function family, general empirical Bayes

(EB), a greedier approach proposed earlier by Robbins [59, 60], aims to attain

the oracle performance of the optimal rule within the class of all separable esti-

mation functions. Here a separable estimator is one that uses fixed deterministic

function to estimate all wavelet coefficients within individual resolution levels.

Thus, the general EB is greedier in the sense of aiming at the smaller benchmark

risk than adaptive threshold methods. This naturally raises the question that

whether the gain by aiming at the smaller general EB benchmark is large enough

to offset the additional cost of having to pick from a nonparametric family of

estimation functions.

Jiang and Zhang [45] proposed a general maximum likelihood EB (GMLEB)

method for compound estimation of normal means. They treat the unknown

means as iid variables with a completely unknown common “prior” distribution,

estimate this nominal prior with the generalized MLE [49], and then use the

Bayes rule for the estimated prior. The results there affirm that by aiming at

the minimum risk of all separable estimators, the greedier general EB approach

realizes significant risk reduction over state-of-the-art threshold methods for the

unknown signal vectors of different degrees of sparsity with moderate and large

samples.
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In this chapter we develop the GMLEB wavelet method in nonparametric re-

gression. We transform the problem in the function domain into to the sequence

domain of estimating the wavelet coefficients by DWT, and then apply the GM-

LEB estimator to observed wavelet coefficients in individual resolution levels.

Both the numerical performance and asymptotic properties of the GMLEB are

studied. We provide an oracle inequality, that is, an upper bound for the esti-

mation regret. Moreover, it is shown that the GMLEB simultaneously achieves

the exactly adaptive minimaxity over all Besov balls, without prior knowledge

of the smoothness index of the underlying function. As mentioned earlier, adap-

tive minimaxity implies the adaptation to spatial inhomogeneity of the unknown

function. We conduct an extensive Monte Carlo simulation study of the perfor-

mance of our estimator with four standard test functions and two signal-to-noise

levels. It turns out that our procedure has superior finite sample performance in

comparison to the other leading wavelet threshold estimators and a Fourier EB

estimator [74, 76]. Applications to the high-throughput screening (HTS) data are

used to explore the practical performance of the approach.

This chapter is organized as follows. In Section 3.2, we present the wavelet

transform approach and the Besov constraints over unknown functions. We re-

view the GMLEB estimator and implement it in nonparametric regression models

in Section 3.3. We state the main theoretical properties of the GMLEB wavelet es-

timators in Section 3.4. We investigate the practical performance of the proposed

method by simulation in Section 3.5. A real data set is considered in Section 3.6.

Section 3.7 contains the mathematical proofs of the main theorems.

3.2 Problem Formulation

We introduce some notations used throughout this chapter. Suppose the sample

size is N = 2J+1 for some integer J > 0. Let fN ≡ (f(ti), i = 1, . . . , N) and

f̂N ≡ (f̂(ti), i = 1, . . . , N) denote the vectors of true and estimated functions

respectively. Let ‖x‖2 ≡ ∑N
i=1 x2

i be the `2 norm. We measure the performance
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of f̂N under the mean squared error (MSE)

R(N)(f̂N , fN) = N−1E‖f̂N − fN‖2 = N−1E

N∑
i=1

(f̂(ti)− f(ti))
2 (3.2)

for any given estimator f̂N . Although the notation f suggests a function of a real

variable t, in this chapter we work only with the sample points ti.

Most of wavelet-based approaches to the nonparametric regression estimation

of fN proceed by taking the DWT of the data Yi, processing the noisy wavelet co-

efficients to estimate the true discrete wavelet coefficients, and then transforming

back to obtain the estimate f̂N . The underlying notion behind wavelet method

is that the unknown function has an economical wavelet expression, that is, the

large coefficients occur mostly around the spatial inhomogeneities of the unknown

function [26]. Hence, the regression function f can be well approximated by esti-

mating a small proportion of relatively large wavelet coefficients.

3.2.1 Wavelet transform

For any f ∈ L2(R), wavelet transform is based on translations and dilations of

two basis functions called the scaling function φ and the mother wavelet ψ. It

can be written as

f(t) =
2j0∑

k=1

β̃j0kφj0k(t) +
∞∑

j=j0

2j∑

k=1

βjkψjk(t), (3.3)

where j indicates the resolution level associated with frequency and k indicates

the location. The wavelet coefficients are given by β̃jk =
∫

f(t)φjk(t)dt and βjk =
∫

f(t)ψjk(t)dt. In (3.3), β̃j0k are the coefficients at the coarsest level representing

the gross structure of the function f , and βjk are the wavelet coefficients which

representing finer structures of the function f as the resolution level j increases.

An orthonormal wavelet basis has an associated exact orthogonal DWT. Sup-

pose N = 2J+1, a DWT of Y yields empirical wavelet coefficients vector y via

y = N−1/2WY (3.4)
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where W , called the finite wavelet transformation matrix, is a real N × N or-

thonormal matrix. Write y = (ỹj01, . . . , ỹj02j0 , yj01, . . . , yj02j0 , . . . , yJ1, . . . , yJ2J ).

Here ỹj0k are the observed gross structure terms at the lowest resolution level,

and the coefficients yjk, (j = j0, . . . , J, k = 1, . . . , 2j) are observed fine structure

wavelet terms.

The DWT (3.4) transforms the problem in the function domain into a prob-

lem of estimating the wavelet coefficients in the sequence domain. Let βN ≡
N−1/2WfN be the DWT of unknown fN and denote

βN = (β̃j01, . . . , β̃j02j0 , βj01, . . . , βj02j0 , . . . , βJ1, . . . , βJ2J ).

Here βjk is approximately the true wavelet coefficient
∫

f(t)ψjk(t)dt of f . In the

wavelet domain, we observe the noisy wavelet coefficients yjk up to level J

yjk = βjk + zjkσN , j = j0, . . . , J, k = 1, . . . , 2j, (3.5)

where zjk are independent standard normal random variables and σN = σ/
√

N .

We wish to estimate βN with small squared error loss ‖β̂N − β̂N‖2. Applying the

inverse DWT, we obtain the estimate of f at the sample points. That is, fN is

estimated by f̂N = N1/2WT β̂N . The estimate of the whole function f is given

by

f̂N(t) =
2j0∑

k=1

̂̃
βj0kφj0k(t) +

J∑
j=j0

2j∑

k=1

β̂jkψjk(t). (3.6)

By the Parseval identity, we have N−1‖f̂N − fN‖2 = ‖β̂N − βN‖2.

Nonparametric regression model (3.1) is closely related to the white noise

model in which we observe a stochastic process

Y (t) ≡
∫ t

0

f(u)du + εW (t), 0 ≤ t ≤ 1, (3.7)

where f ∈ L2[0, 1] is unknown and W (·) is a standard Brownian motion. The

noise level between the two models matches with ε2 = σ2/N . In the white noise

model, a wavelet coefficients sequence yjk =
∫

ψjkdY (t) ∼ N(βjk, ε
2) of infinite

length is observed while in nonparametric regression, coefficients are observed

only up to level J .
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3.2.2 The Besov constraints over the unknown function

Following the classical way to study the adaptivity of wavelet smoothing methods,

we shall study the worst behavior when the wavelet coefficients are constrained to

lie in a particular Besov ball, corresponding to Besov function space membership

of the function itself. We shall show that the GMLEB method automatically

achieves the exact minimax risks simultaneously in all Besov balls. Especially,

this exactly adaptive minimax in Besov balls with small parameter p > 0 allows

the spatial adaptation to unknown discontinuities or inhomogeneous smoothness

in f .

Besov balls with different parameters allow varying degrees of smoothness in

the functions which they contain since wavelet coefficients can measure global

smoothness. Roughly speaking, the Besov ball Bα
p,q contains functions having α

bounded derivatives in Lp norm. Full details of Besov balls are given, for example,

in [69]. The Besov norm of the wavelet coefficients of a function f is

‖β‖α
p,q ≡

{ ∞∑
j=j0

(
2j(α+1/2−1/p)

( 2j∑

k=1

|βjk|p
)1/p

)q}1/q

. (3.8)

Note that the Besov function norm of index (α, p, q) of a function f is equivalent

to the sequence norm (3.8) of the wavelet coefficients of the function. See [53].

The Besov ball is

Bα
p,q(C) ≡

{
β : ‖β‖α

p,q ≤ C
}

. (3.9)

Since the sequence fN is of primary interest, we place the Besov restric-

tion on the discrete wavelet coefficients βN = N−1/2WfN . The constraint

βN ∈ Bα
p,q(C) depends on both the function f and N . Our asymptotic min-

imaxity theorem should be thought of as a “triangular array” result for fN ,

rather than a limiting result for f . With the notation βN ∈ Bα
p,q(C), we au-

tomatically treat βjk = 0 when j > J since βN has only N = 2J+1 coor-

dinates. Let R(Bα
p,q(C)) = infβ̂ supβ∈Bα

p,q(C) E
∑∞

j=j0

∑2j

k=1(β̂jk − βjk)
2 be the

minimax risk of estimating f over the Besov ball Bα
p,q(C). Donoho and John-

stone [24] show that R(Bα
p,q(C)) ³ N−α/(α+1/2). Moreover, by Hölder inequality,
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supβ∈Bα
p,q(C)

∑
j>J

∑
k β2

jk ³ N−2(α+1/2−1/p). Thus, condition α + 1/2 − 1/p >

α/(2α + 1), that is,

2α2

2α + 1
>

1

p
− 1

2
(3.10)

allows the term for j > J negligible with respect to the minimax risk, which is

necessary for the discussion of the minimax risk rate with only N samples.

3.2.3 Adaptation to inhomogeneous smoothness of the un-

known regression function

The idea of adaptive nonparametric regression aims at recovering regression func-

tions with unknown spatial inhomogeneities. Such adaptation to inhomogeneous

smoothness is achieved through adaptation to minimax risks in Besov balls with

different smoothness and sparse indices. In this subsection, we formally quantify

the notion of adaptation to inhomogeneous smoothness.

Let Fd,m(C) be the collection of all piecewise polynomials f of degree d in

[0, 1], with at most m pieces and ‖f‖∞ ≤ C. Let ψ be a mother wavelet with
∫

ψ(t)dt = 0 and ψ(t) = 0 outside an interval I0 of length |I0|. For f ∈ Fd,m(C),

the wavelet coefficients βjk =
∫

f(t)ψjk(t)dt = 2j/2
∫

f(t)ψ(2jt − k)dt = 0 if ψjk

does not contain any discontinuous point and |βjk| ≤ 2−j/2C
∫ |ψ(t)|dt otherwise.

Thus, ‖β[j]‖p ≤ 2−j/2m1/pCM0 where M0 = (|I0| + 1)1/p
∫ |ψ(t)|dt. By (3.8),

‖β‖α
p,q ≤ ∞ if α < 1/p for q < ∞. Combining α < 1/p with (3.10) leads

to α < 1/p < 2α2/(2α + 1) + 1/2. This example enlighten us to express the

adaptation to inhomogeneous smoothness in definition below.

Definition 3.1. For nonparametric regression model (3.1), an estimator f̂N is

adaptive to inhomogeneous smoothness of the unknown regression function f if

the exactly adaptive minimaxity

sup
fN∈B

R(N)(f̂N , fN) = (1 + o(1)) inf
f̂N

sup
fN∈B

R(N)(f̂N , fN) (3.11)
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holds in all Besov balls Bα
p,q(C) satisfying

α <
1

p
<

2α2

2α + 1
+

1

2
, (3.12)

where R(N)(f̂N , fN) is as in (3.2).

3.3 The GMLEB Wavelet Method

As mentioned in Section 3.2.1, through DWT the nonparametric regression prob-

lem can be turned into a problem of estimating the wavelet coefficients at indi-

vidual resolution levels. The function estimation procedure as well as the analysis

become clear once the problem of estimating the wavelet coefficients at a given

resolution level is well understood. The estimation at a single resolution level

can be treated by considering a more fundamental problem, that is, compound

estimation of a vector of normal means.

The general maximum likelihood empirical Bayes (GMLEB) method for the

compound estimation of normal means is considered in detail by [45]. There,

they showed that the GMLEB outperforms the James-Stein and several state-of-

the-art threshold estimators in a wide range of settings. In this section, we shall

briefly review the basic method presented there and describe how to construct the

GMLEB wavelet estimator. We divide the section into 2 subsections to describe

(1) the general EB and the GMLEB method and (2) the GMLEB wavelet method.

3.3.1 Empirical Bayes and the GMLEB method

Suppose that X = (X1, . . . , Xn) are observations satisfying

Xi = θi + zi, (3.13)

where zi are independent standard normal random variables. Compound estima-

tion of normal means concerns the estimation of the vector θ = (θ1, . . . , θn) under

the compound squared loss Ln(θ̂, θ) = n−1‖θ̂ − θ‖2 = n−1
∑n

i=1(θ̂i − θi)
2 for any

estimation rule θ̂ = (θ̂1, . . . , θ̂n). The estimator θ̂i : X → R is separable if θ̂i is a
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fixed deterministic function only of Xi. The compound estimation of a vector of

deterministic normal means is closely related to the Bayes estimation of a single

random mean. In the Bayes estimation problem,

Y |λ ∼ N(λ, 1), λ ∼ G, (3.14)

and we estimate the parameter λ based on the univariate observation Y . The

prior distribution G = Gn here which naturally matches the unknown means θ is

the empirical distribution Gn(u) = Gn,θ(u) = n−1
∑n

i=1 I(θi ≤ u).

In the context of the squared loss, the fundamental theorem of compound

estimation [59] asserts that the compound risk of a separable rule θ̂ = t(X) in

the multivariate model (3.13) is identical to the mean squared error of the same

rule λ̂ = t(Y ) under the prior of empirical distribution Gn in the univariate model

(3.14):

EθLn(t(X), θ) =

∫
Eλ(t(Y )− λ)2dGn(λ). (3.15)

For any true or nominal prior G, the optimal Bayes rule is

t∗G(Y ) = arg min
t

∫
Eλ(t(Y )− λ)2dG(λ) =

∫
uϕ(Y − u)G(du)∫
ϕ(Y − u)G(du)

= Y +
f ′G(Y )

fG(Y )
,(3.16)

where ϕ is the standard normal density, fG(y) ≡ ∫
ϕ(y − u)G(du) is the density

of the normal location mixture by distribution G, and f ′G(y) ≡ dfG(y)/dy. The

minimum Bayes risk is R∗(G) =
∫

Eλ(t
∗
G(Y )−λ)2dG(λ) = 1−∫

(f ′G/fG)2fGdy. It

follows from (3.15) that among all separable rule, the compound risk is minimized

by the Bayes rule t∗G in (3.16) with prior G = Gn, resulting in the general EB

benchmark R∗(Gn). The general EB approach seeks procedures which approxi-

mate the Bayes rule t∗Gn
or approximately achieve the risk benchmark R∗(Gn).

As a natural approach, we consider using the estimation rule t(·) = t∗
Ĝn

(·) with

a suitable estimate Ĝn of Gn based on X. The GMLEB method [45] replaces the

unknown nominal prior Gn of the oracle rule t∗Gn
by its generalized MLE [49]

Ĝn = arg max
G∈G

n∏
i=1

fG(Xi) (3.17)
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where G is the family of all distributions and

fG(x) =

∫
ϕ(x− u)G(du) (3.18)

is the normal mixture with respect to G. Formally, the GMLEB estimator is

defined as

θ̂i = t∗
Ĝn

(Xi) = Xi +
f ′

Ĝn
(Xi)

fĜn
(Xi)

, i = 1, . . . , n, (3.19)

where t∗G is the Bayes rule in (3.16), Ĝn is the generalized MLE (3.17) and fG(x)

is as in (3.18).

The estimator (3.17) is called the generalized MLE since the likelihood is used

only as a vehicle to generate the estimator. Here G = Gn is a nominal prior in that

the unknown θi are assumed to be deterministic parameters instead of random

samples from the nominal prior Gn. Thus, the mixture density fGn is used for

the purpose of deriving the GMLEB instead of being the marginal density of Xi.

3.3.2 The GMLEB wavelet method

With the general EB approach for compound estimation of normal means de-

scribed in Section 3.3.1, wavelet regression at a single resolution level is the case

of estimating a vector of normal means, but with unknown common variance.

For j ≥ j0, denote β[j] = (βjk, k = 1, . . . , 2j) and y[j] = (yjk, k = 1, . . . , 2j) so

that βN = (β̃[j0], β[j0], . . . , β[J ]) and y = (ỹ[j0], y[j0], . . . , y[J ]). As in model (3.5),

we consider the estimation of β[j] under the compound squared loss based on

independent observations y[j]. Let (θjk, xjk) ≡ (βjk, yjk)/σN be the standardized

parameters and observations with unit variance and G[j](u) = n−1
j

∑2j

k=1 I(θjk ≤
u) be the empirical distribution of θ[j] = β[j]/σN . Based on Section 3.3.1, the

GMLEB estimator of β[j] is β̂[j] ≡ (β̂jk, k = 1, . . . , 2j) with the coordinates

β̂jk ≡ β̂jk(y[j]) ≡ σN t∗
Ĝ[j]

(yjk/σN) = σN t∗
Ĝ[j]

(xjk). (3.20)

where Ĝ[j] = arg maxG∈G

∏2j

k=1 fG(xjk) is the generalized MLE of G[j] as in (3.17),

and t∗
Ĝ[j]

is the estimate of t∗G[j]
.
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In (3.16) we may need to avoid dividing by a near zero quantity, which will

result in dramatic change in ratio. This notion leads to the following regularized

Bayes estimator

t∗G(x; ρ) = x +
f ′G(x)

fG(x) ∨ ρ
. (3.21)

For ρ = 0, t∗G(x; 0) = t∗G(x) is the Bayes estimator for the prior G. For ρ = ∞,

t∗G(x;∞) = x gives the classical MLE which requires no knowledge of the prior.

Let nj = 2j. As stated in Proposition 2 of [45], the connection between the

GMLEB estimator (3.19) and the regularized Bayes rule (3.21) is provided by

t∗
Ĝ[j]

(xjk) = t∗
Ĝ[j]

(xjk; ρnj
), ρnj

= qnj
/(enj

√
2π), qnj

= (e
√

2π/n2
j) ∧ 1, (3.22)

when the approximated generalized MLE Ĝ[j] satisfies that

nj∏

k=1

fĜ[j]
(xjk) ≥ qnj

sup
G∈G

nj∏

k=1

fG(xjk), Ĝ[j] ∈ G , (3.23)

where G is the family of all distribution functions and xjk = yjk/σN . Thus, when

condition (3.23) holds, the regularized GMLEB (3.21) is identical to the GMLEB

(3.20). The purpose to represent the GMLEB estimator as a regularized one is to

facilitate the theoretical investigation so that an oracle inequality which provides

a uniform upper bound of the regret is derived, see [45].

In view of (3.20) and (3.21), we construct a GMLEB wavelet estimator in the

multi-resolution analysis problem (3.5) for j ≥ j0.

β̂[j] ≡ β̂(y[j]) ≡ {β̂jk}, β̂jk ≡ σN t∗
Ĝ[j]

(yjk/σN ; ρnj
), (3.24)

where t∗G(·; ρ) is as in (3.21), and ρnj
is as in (3.22). For unknown σN , estimator

of σN can be constructed from the median absolute deviations (MAD) of the

observations at the highest resolution level, that is,

σ̂N ≡ MAD(y[J ]) ≡
median(|yJk| : 1 ≤ k ≤ 2J)

median(|N(0, 1)|) . (3.25)

We estimate the coefficients βjk for j ≥ j0 level by level by the estimate in

(3.24). The coefficients β̃j0k are estimated by their observed values ỹj0k. So

β̂N = (ỹj01, . . . , ỹj02j0 , β̂j01, . . . , β̂j02j0 , . . . , β̂J1, . . . , β̂J2J ). (3.26)
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To obtain the estimates f̂N(ti) of the function values f(ti), apply the inverse

DWT, f̂N =
√

NWT β̂N .

3.4 The Oracle Inequality and Its Consequences

In this section we state the concepts of uniform ideal adaptivity and exactly adap-

tive minimaxity. Also, we shall derive these properties of the GMLEB wavelet

method.

3.4.1 An oracle inequality

Consider the estimation of unknown wavelet coefficients βN based on observed

wavelet coefficients y following that yjk ∼ N(βjk, σ
2/N), j = j0, . . . , J , k =

1, . . . , 2j with σ2
N = σ2/N . For a level-by-level estimator β̂N , denote

R(N)(β̂[j], β[j]) ≡ Eβ[j]

∥∥∥β̂[j] − β[j]

∥∥∥
2

, (3.27)

R(N)(β̂N , βN) ≡
J∑

j=j0

R(N)(β̂[j], β[j]), (3.28)

so that R(N)(β̂[j], β[j]) and R(N)(β̂N , βN) are the `2 risk for the j-th resolution

level and the total levels, respectively. An oracle expert with the knowledge of

t∗G[j]
could use the ideal separable rule σN t∗G[j]

(yjk/σN) in (3.20) for βjk to achieve

the ideal risk

R(N,∗)(β[j]) ≡ min
β̂[j]∈Ds

R(N)(β̂[j], β[j]) ≡ min
t(·)

Eβ[j]

∥∥σN t(y[j]/σN)− β[j]

∥∥2
,(3.29)

R(N,∗)(βN) ≡
J∑

j=j0

min
β̂[j]∈Ds

R(N)(β̂[j], β[j]) ≡
J∑

j=j0

R(N,∗)(β[j]), (3.30)

where Ds is the collection of all separable estimates of the form β̂jk = tj(yjk).

Although σN t∗G[j]
(yjk/σN) are not statistics, the ideal risk (3.30) provides a bench-

mark for each level in our problem. Theorem 3.1 provides a crucial oracle inequal-

ity in the derivation of our main results. It allow us to bound the maximum regret

of our estimator in all Besov balls.
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Theorem 3.1. Let β̂N be the GMLEB estimator (3.26) with approximate gen-

eralized MLEs Ĝ[j] satisfying (3.23) for all j0 ≤ j ≤ J . Let R(N)(β̂N , βN) be the

total `2 risk as in (3.28) and R(N,∗)(βN) be the ideal risk in (3.30). Let Bα
p,q(C)

be the Besov ball as in (3.9). Denote nj = 2j, j1 ≡ max(inf{j : log nj ≥ 2/p}, j0),

and ξ0 as an arbitrary positive constant. Under condition (3.10), there exists a

universal constant M such that

sup
βN∈Bα

p,q(C)

{
R(N)(β̂N , βN)−R(N,∗)(βN)

}
(3.31)

≤ Mσ2/N

{ j1−1∑
j=j0

nj log nj +
(
1 +

1

ξ0

) J∑
j=j1

njrp

(
nj,

Cn
−(α+1/2)
j

σ/
√

N

)}

+Mξ0N
−α/(α+1/2)C1/(α+1/2).

where rp(n,D) = (log n)5/n + (log n)4+p/(2+2p)(D/n)p/(1+p).

3.4.2 Uniform ideal adaptation

For any class B, the minimax risk for the total squared loss (3.28) is

R(N)(B) ≡ inf
β̂N

sup
βN∈B

R(N)(β̂N , βN). (3.32)

We call β̂N uniformly adaptive to the ideal risk R(N,∗)(βN) as in (3.30), with re-

spect to a collection B, if for all B ∈ B, supβN∈B

{
R(N)(β̂N , βN)−R(N,∗)(βN)

}
=

o(1)R(N)(B) where R(N)(B) is the minimax risk in (3.32). In other words, uni-

form ideal adaptation demands that, for all B ∈ B and in the minimax sense,

the regret r(N)(β̂N , βN) ≡ R(N)(β̂N , βN)−R(N,∗)(βN) to be uniformly of smaller

order than the minimax rates in B. The following theorem states that the GM-

LEB wavelet estimator (3.26) possesses the uniform ideal adaptivity property

with respect to all Besov balls as in (3.9).

Theorem 3.2. Let β̂N be the GMLEB estimator (3.26) with approximate gen-

eralized MLEs Ĝ[j] satisfying (3.23) for all j0 ≤ j ≤ J . Let R(N)(β̂N , βN) be the

total squared risk as in (3.28) and R(N,∗)(βN) be the ideal risk in (3.30). Under
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(3.10),

sup
βN∈Bα

p,q(C)

{
R(N)(β̂N , βN)−R(N,∗)(βN)

}
= o(1)R(N)(Bα

p,q(C)). (3.33)

3.4.3 Adaptive minimaxity

A main consequence of the uniform ideal adaptivity is the exactly adaptive min-

imaxity over all Besov balls. Minimaxity is commonly used to measure the per-

formance of statistical procedures. An estimator is minimax in a specific class

B of unknown mean vectors if it attains R(N)(B), but this does not guarantee

satisfactory performance since the minimax estimator is typically uniquely tuned

to the specific set B. For small B, the minimax estimator has high risk outside

B. For large B, the minimax estimator is too conservative by focusing on the

worst case scenario within B. Adaptive minimaxity overcomes this difficulty by

requiring supβN∈B R(N)(β̂N , βN) = (1+ o(1))R(N)(B) simultaneously for all B in

certain class B. The adaptive minimaxity in Besov balls with small index p > 0

is used to measure the performance of estimators for spatially inhomogeneous

function f . The following theorem establishes the exactly adaptive minimaxity

of the GMLEB wavelet estimator (3.26).

Theorem 3.3. Let β̂N be the GMLEB estimator (3.26) with approximate gen-

eralized MLEs Ĝ[j] satisfying (3.23) for all j0 ≤ j ≤ J . Let R(N)(β̂N , βN) be the

total `2 risk as in (3.28) and R(N,∗)(βN) be the ideal risk in (3.30). Under the

constraint (3.10), the adaptive minimaxity

sup
βN∈Bα

p,q(C)

R(N)(β̂N , βN) = (1 + o(1))R(N)(Bα
p,q(C)) (3.34)

holds for all Besov balls.

We translate the exactly adaptive minimaxity (3.34) to the function space.

The following theorem is immediate since N−1‖f̂N − fN‖2 = ‖β̂N − βN‖2 =

2j0σ2/N +
∑J

j=j0
‖β̂[j] − β[j]‖2.
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Theorem 3.4. Let f̂N =
√

NWT β̂N be the estimates of fN based on β̂N as in

(3.26). Under the constraint (3.10),

sup
fN∈Bα

p,q(C)

R(N)(f̂N , fN) = (1 + o(1)) inf
f̂N

sup
fN∈Bα

p,q(C)

R(N)(f̂N , fN), (3.35)

where R(N)(f̂N , fN) = N−1E‖f̂N −fN‖2 is as in (3.2). Thus, by Definition 3.1,

the GMLEB wavelet estimator (3.26) is adaptive to inhomogeneous smoothness

of the unknown function.

3.5 Some Simulation Results

A simulation study is carried out for the nonparametric regression models which

are standard in the consideration of wavelet methods. We compare the numerical

performance of the GMLEB with that of SURE [23], FDR [1], and EBThresh

[47]. SURE is a soft threshold procedure which selects the threshold level at

each resolution level by minimizing Stein’s unbiased risk estimate. EBThresh

is a threshold method based on the posterior median for Gaussian errors with

respect to a prior as the mixture of the point mass at zero and a given symmetric

distribution. For further details see the original paper.

Four standard test functions, representing different degrees of spatial variabil-

ity, and various signal-to-noise ratios (SNR) are used for comparison. Sample

sizes of N = 2048 and N = 4096 and SNR of 3 and 7 are considered. The SNR

is the ratio of the standard deviation of the function values to the standard devi-

ation of the noise. Johnstone and Silverman [48] reported results of an extensive

simulation study of fourteen estimators. In Table 1, we display our simulation

results under the same settings as in [48]. Fifteen estimators of various wavelet

methods are compared: the James-Stein, the EBThresh using the Laplace pos-

terior median and mean, Cauchy posterior median, the SURE applied to the 4

and 6 highest levels of coefficients, the soft threshold at the universal threshold

level
√

2 log n, the FDR at levels q = 0.01, 0.05, 0.1 and 0.4, the GMLEB with

the uniform initialization, the S-GMLEB with the initialization as in (2.20), the
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Table 3.1: Average total squared errors σ̂−2‖f̂N − fN‖2 for N = 2048 points for
various models and methods. Each entry is based on 100 replications. In each
replication, the signal f(ti) is generated by repeating the original signal function
with length 512 four times.

High noise (SNR = 3) Low noise (SNR = 7)
method bumps blocks doppler heavisine bumps blocks doppler heavisine
James-Stein 1166 766 644 142 1453 1280 1101 320

Laplace (median) 749 616 424 146 753 709 555 250
Cauchy (median) 752 676 425 159 719 657 539 270
Laplace (mean) 685 576 387 143 691 640 506 238

SURE (4 levels) 970 832 527 185 841 762 828 368
SURE 975 912 514 151 971 955 822 417
Universal soft 3039 1884 1080 266 4554 3065 1917 582
FDR (q = 0.01) 1053 889 486 222 906 859 695 335
FDR (q = 0.05) 899 758 466 192 808 783 605 290
FDR (q = 0.1) 867 726 472 184 807 768 599 282
FDR (q = 0.4) 979 810 598 222 1008 939 779 349

GMLEB 651 569 371 150 642 591 464 243
S-GMLEB 648 560 365 144 640 586 461 235

F-GEB 865 772 560 366 857 795 660 443
HF-GEB 744 646 429 149 746 690 558 265

F-GEB and HF-GEB as the Fourier general EB [74] and a hybrid of its monotone

version with the EBThresh. Except the SURE applied to the 4 highest resolution

levels, all the other methods are applied to the 6 highest resolution levels. When

different approaches are used in the wavelet context, the methods are applied

separately at each level. In Table 3.1, for each model and noise level, 100 replica-

tions are generated. In each replication, the function is generated by repeating 4

times of 512 equally spaced points ti. The same standard normal noise variables

are simulated for each of the models and noise levels in every replication. The

error reported here are σ̂−2‖f̂N − fN‖2 where in each realization, the estimated

noise variance σ̂ is the median absolute deviations of the wavelet coefficients at

the highest resolution level. In each column, boldface entries denote the top three

estimators other than the hybrid estimator.
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Table 3.2: Average total squared errors σ̂−2‖f̂N − fN‖2 for N = 4096 points for
various models and methods. Each entry is based on 100 replications. In each
replication, the signal f(ti) is generated by repeating the original signal function
with length 1024 four times.

High noise (SNR = 3) Low noise (SNR = 7)
method bumps blocks doppler heavisine bumps blocks doppler heavisine
James-Stein 1845 1176 862 199 2668 2252 1518 460

Laplace (median) 1118 856 558 193 1273 1083 754 306
Cauchy (median) 1118 896 572 206 1225 1022 738 307
Laplace (mean) 1027 791 511 187 1149 966 695 290

SURE (4 levels) 1279 1036 778 325 1402 1497 898 502
SURE 1269 1011 709 220 1399 1486 851 430
Universal soft 4186 2361 1264 220 6268 3987 2344 536
FDR (q = 0.01) 1462 1118 650 220 1500 1295 892 359
FDR (q = 0.05) 1270 996 626 215 1373 1186 818 335
FDR (q = 0.1) 1235 969 633 216 1374 1177 822 335
FDR (q = 0.4) 1491 1148 804 292 1750 1473 1086 441

GMLEB 1033 791 500 213 1115 927 666 306
S-GMLEB 1018 776 483 197 1104 916 653 291

F-GEB 1309 1058 776 496 1405 1192 954 580
HF-GEB 1127 867 572 199 1244 1064 770 327

These simulation results can be summarized as follows. The average `2 loss

of the S-GMLEB happens to be the smallest among the fifteen estimators. The

S-GMLEB and GMLEB clearly outperform all other methods by large margin

except for heavisine. For high noise signals with SNR = 3, the EBThresh with

Laplace mean, the S-GMLEB and GMLEB estimators yield comparable results,

and they all outperform the Fourier general EB and James-Stein estimators. For

the HeaviSine signal, the EBThresh with Laplace mean yields very strong results

as competitive as the S-GMLEB. Since the oracle prior (2.20) has a point mass

at 0 in all the models used to generate data in this simulation experiment, the

S-GMLEB yields slightly better results than the GMLEB as expected.

In Table 3.2 we report simulation results for n = 4096. In each replication,

the function is generated by repeating 4 times of 1024 equally spaced points



72

ti. Compared with Table 3.1, the EBThresh with Laplace median replaces the

James-Stein as a third top performer for heavisine function with SNR = 3. The

simulations presented here demonstrate the computational feasibility of the pro-

posed GMLEB wavelet method. The strong performance of the both versions of

the GMLEB is impressive, since the GMLEB is not specially designed to recover

spatial inhomogeneous signals as threshold estimators are.

3.6 Illustrative Data Example

3.6.1 The HTS data

High-throughput screening (HTS) is a large-scale manufacturing process that

screens hundreds of thousands to millions of compounds in order to identify po-

tentially leading candidates rapidly and accurately. In HTS, the input is samples

to be measured and “reagents” (possibly including membranes, whole cells, or

other biological entities as well as chemicals) with which to measure them, and

the output is numbers. We show two examples of the HTS data in Figure 3.1.

Since the scanning machine measures the difference of certain disease-indicating

index, the data points with large negative values indicate the potential leading

candidate.

As with any manufacturing process, the output varies. Some of the variability

in the results is due to systematic variation in the measurement process. In the

bottom panel in Figure 3.1, there is a piece of data located at the down side of the

sequence. This may caused by the failure of some experiment devices. This piece

of data cannot be considered as the further candidates instead of other scattered

outliers, although they are with large absolute negative values. Meanwhile, in

Figure 3.1, we can see some baseline curve pattern in each sequence caused by

position effect. The baseline pattern will change from sequence to sequence. Our

objective is to remove the downside piece of data and the baseline curves.
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Figure 3.1: Two examples of the HTS data. Each panel corresponds to a par-
ticular location among all the plates. Top: a “good” example; bottom: a “bad”
example.

3.6.2 Analysis of the HTS data

By the preceding description, for each sequence, we model the data as

Yi = g(ti) + µi + σzi, i = 1, . . . , N, (3.36)

where Yi represents the observed data, the function g represents the baseline

curve and, if necessary, the downside piece of data as shown in the bottom panel

of Figure 3.1, µi represents the true value of the disease-indicating index, and zi

are independent standard normal variables. The data points with large absolute

negative value of µi are strong candidates. Our objective is to estimate g so that

further analysis could be based on the residuals Xi ≡ Yi − ĝ(ti).

The GMLEB smoothing technique proceeds as follows. Suppose that y =

N−1/2WY are the discrete wavelet coefficients of the original sequence Y . The

coefficients yjk follow the model

yjk = βjk + zjkσ/
√

N, (3.37)

where zjk are independent standard normal random variables. We obtain the
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Figure 3.2: The analysis on the bottom sequence in Figure 3.1 by the GMLEB
smoothing procedure (3.38), j0 = 3 and j∗ = 5. Top: the original sequence; mid-
dle: the separated baseline pattern and downside piece ĝ; bottom: the residuals
by subtracting ĝ from the original signal.

estimation ĝ based on the coefficients

(ỹj01, . . . , ỹj02j0 , β̂j01, . . . , β̂j02j0 , . . . , β̂j∗1, . . . , β̂j∗2j∗ , 0, . . . , 0). (3.38)

where β̂jk are the estimations by implementing the GMLEB procedure (3.20) level

by level for j0 ≤ j ≤ j∗. Figure 3.2 shows the results by applying the smoothing

procedure to the bottom sequence in Figure 3.1. In this example we use the

Daubechies’ d4 wavelet basis, with N = 512, j0 = 3 and j∗ = 5.

In Figure 3.2, strong edge effect at the two ends of downside piece of data can

be observed. The edge effect means that instead of mimicking the jump points,

the bad part is connected with other pieces of sequence in both ends. The reason

of the edge effect is that in procedure (3.38), we “kill” all the coefficients in the

resolution levels higher than j∗. Thus, we not only remove the random error, but

also throw away the true coefficient. Since the coefficients at high levels capture
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the local feature of a function, ignoring them will result in the loss of the “local

information”. Since the outliers and the jump points are local features, both of

them disappear. Indeed, our purpose is to retain the jump points in ĝ and exclude

the outliers.

3.6.3 Removing the edge effect

In this subsection we discuss how to remove the edge effect. Our strategy is to

expand the data sequence with respect to some wavelet basis, plot the coefficients

at several high resolution levels. There will be large coefficients around the outliers

and the discontinuous points. If these two types of large coefficients are different,

and moreover, it is possible to design algorithm to classify these two types, then

it is promising to remove the edge effect.

To investigate the feasibility of our plan, we first plot some high resolution

coefficients. We still work on the bottom sequence in Figure 3.1. In Figure 3.3, we

plot coefficients of the five highest resolution levels. As we can see, in the top three

levels, large coefficients appear around both outliers and discontinuous points.

However, in lower levels, large coefficients only appear around the discontinuous

points gradually.

We propose an algorithm below.

1. Set the candidate set C as empty, C = ∅.

2. Compute the discrete wavelet coefficients by (3.4).

3. For the J-th resolution level, denote K ≡ {k : |yJ,k| ≥ σ̂Jz(α1/2)} where

σ̂J = MAD(y[J ]) and z is the right Gaussian quantile. We denote the

member of set K as k1, . . . , km where k1 < · · · < km.

4. Set i = 1.

5. If (i) |yJ,k∗1 | < σ̂Jz(α2/2) for k∗1 = ki + 1, . . . , ki+1 − 1 and (ii) there exists

some k∗2, dkie/8 ≤ k∗2 ≤ dki+1e/8 such that |yJ−3,k∗2 | ≥ σ̂J−3z(α2/2), then

update C ← C ∪ {2ki, 2ki + 1, . . . , 2ki+1}. Otherwise keep C.
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Figure 3.3: The wavelet coefficients of five highest resolution levels of the bottom
sequence in Figure 3.1 using the Daubechies’ d4 wavelet basis.

6. Update i ← i + 1 and repeat step 5 until i = m.

7. We obtain the estimation ĝ based on the coefficients





β̂jk, if j0 ≤ j ≤ j∗ or j > j∗ and k ∈ Cj,

0, if j > j∗ and k /∈ Cj,

(3.39)

where β̂jk are the estimations by implementing the GMLEB procedure

(3.20) level by level. and Cj = dC/2J−je where J is the highest resolu-

tion level.

There are three tuning parameters in the algorithm. Parameters α1 and α2

select large wavelet coefficients by setting a threshold level. Parameter α3 filters
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Figure 3.4: Applying the smoothing algorithm to the bottom sequence in Figure
3.1 to remove the edge effect. Top: the original sequence; middle: the separated
baseline pattern and downside piece ĝ computed by the proposed smoothing al-
gorithm; bottom: the residuals by subtracting ĝ from the original signal. The
parameters are α1 = 0.1, α2 = 0.3, α3 = 0.05, j0 = 3 and j∗ = 5.

some selected large coefficients by requiring that each coefficient between two

neighboring large coefficients to be under certain threshold level.

To explore how the proposed smoothing algorithm works, we conduct some

analysis on the bottom sequence in Figure 3.1. The result in Figure 3.4 is very

encouraging. With the choices of α1 = 0.1, α2 = 0.3 and α3 = 0.05, the edge

effects are successfully removed, compared with the results in Figure 3.2. By

removing the edge effect, we avoid introducing new outliers which are caused by

the continuous edge.

The algorithm can be generalized to remove multiple edge effects directly. We

provide such an example in Figure 3.5. We add artificial errors with different

lengths to the same sequence. The algorithm works well since it removes all six
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Figure 3.5: Applying the smoothing algorithm to remove the multiple edge effects.
Top: the original sequence; middle: the separated baseline pattern and downside
piece ĝ computed by the proposed smoothing algorithm; bottom: the residuals by
subtracting ĝ from the original signal. The parameters are α1 = 0.002, α2 = 0.05,
α3 = 0.05, j0 = 3 and j∗ = 5.

edges simultaneously. Our parameters are α1 = 0.002, α2 = 0.05, α3 = 0.05,

j0 = 3 and j∗ = 5.

3.7 Proof

We shall use M to denote a universal constant which may take different values

from one appearance to another, that is, M ≡ O(1) uniformly.

Proof of Theorem 3.1. For convenience, we denote Aj = R(N)(β̂[j], β[j])−
R(N,∗)(β[j]) as the regret of β̂ at the j-th level. Let Y |λ ∼ N(λ, 1) and λ ∼ G be

the univariate model as in (3.14). The minimum Bayes risk is

R∗(G) = inf
t

∫
Eλ(t(Y )− λ)2dG(λ) =

∫
Eλ(t

∗
G(Y )− λ)2dG(λ),
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where t∗G is the oracle separable rule in (3.16). By Theorem 5 of [45], for j ≥ j1 ≡
max(inf{j : log nj ≥ 2/p}, j0), there exists a universal constant M such that

{
n−1

j Eβ[j]

∥∥∥β̂[j]/σN − β[j]/σN

∥∥∥
2
}1/2

−
{

R∗(G[j])
}1/2

≤ Mζnj
(log nj)

3/2, (3.40)

where G[j](u) = n−1
j

∑nj

k=1 I(βjk/σN ≤ u) is the empirical distribution of the

standardized vector β[j]/σN , and

ζnj
= max

{√
2 log nj, {n1/p

j

√
log njµ

w
p (G[j])}p/(2+2p)

}√
log nj

nj

(3.41)

with µw
p (G) = {supx>0 xp

∫
|u|>x

G(du)}1/p as the p-th weak moment of a distribu-

tion G. By the definition of the weak moment and the Besov norm (3.8),

µw
p (G[j]) ≤

( 1

nj

nj∑

k=1

∣∣∣βjk

σN

∣∣∣
p)1/p

≤ Cn
−(α+1/2)
j /σN . (3.42)

From (3.41), it is easy to see

ζ2
nj
≤ 2(log nj)

2

nj

+ (log nj)
1+p/(2+2p)

(µw
p (G[j])

nj

)p/(1+p)

. (3.43)

By (3.40) and the inequality 2ab ≤ a2 + b2, for any positive constant ξ0,

J∑
j=j1

Aj = σ2
N

J∑
j=j1

nj

{
n−1

j Eβ[j]

∥∥∥β̂[j]/σN − β[j]/σN

∥∥∥
2

−R∗(G[j])
}

≤ σ2
N

J∑
j=j1

nj

{
Mζnj

(log nj)
3/2

}{
2
√

R∗(G[j]) + Mζnj
(log nj)

3/2
}

≤ σ2
N

J∑
j=j1

nj

{
M

(
1 +

1

ξ0

)
(log nj)

3ζ2
nj

+ ξ0R
∗(G[j])

}
. (3.44)

With (3.42), (3.44) and the upper bound (3.43), we have the following bound

J∑
j=j1

Aj ≤ Mσ2
N

(
1 +

1

ξ0

) J∑
j=j1

nj

{
(log nj)

5

nj

+ (log nj)
4+ p

2+2p

(µw
p (G[j])

nj

) p
1+p

}

+σ2
Nξ0

J∑
j=j1

njR
∗(G[j])

≤ Mσ2
N

(
1 +

1

ξ0

) J∑
j=j1

njrp

(
nj,

Cn
−(α+1/2)
j

σN

)

+σ2
Nξ0

J∑
j=j1

njR
∗(G[j]), (3.45)
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where rp(n,D) = (log n)5/n + (log n)4+p/(2+2p)(D/n)p/(1+p).

We need to bound the rate of the second term in (3.45). This is done as

follows. From (3.8), ‖βN‖α
p,q ≤ C if and only if for each j ≥ j0, ‖β[j]‖p ≡

(n−1
j

∑nj

k=1 |βjk|p)1/p ≤ Cj where Cj satisfy (
∑

Cq
j w

q
j )

1/q ≤ C with wj = 2−j(α+1/2),

R(N)(Bα
p,q(C)) ≡ inf

β̂N

sup
βN∈Bα

p,q(C)

R(N)(β̂N , βN)

= inf
β̂N

sup
(
∑

Cq
j wq

j )1/q≤C

sup
‖β[j]‖p≤Cj

J∑
j=j0

R(N)(β̂[j], β[j])

≥ sup
(
∑

Cq
j wq

j )1/q≤C

J∑
j=j0

inf
β̂[j]

sup
‖β[j]‖p≤Cj

R(N)(β̂[j], β[j]). (3.46)

Moreover, by the minimax theory,

inf
β̂[j]

sup
‖β[j]‖p≤Cj

R(N)(β̂[j], β[j]) = σ2
N sup
‖β[j]‖p≤Cj

{
njR

∗(G[j])(1 + o(1))
}

. (3.47)

By (3.46) and (3.47), there exists some generic constant M so that

σ2
N sup

βN∈Bα
p,q(C)

J∑
j=j0

njR
∗(G[j]) = σ2

N sup
(
∑

Cq
j wq

j )1/q≤C

sup
‖β[j]‖p≤Cj

J∑
j=j0

njR
∗(G[j])

≤ MR(N)(Bα
p,q(C)). (3.48)

By the definition of minimax risk,

R(Bα
p,q(C)) = inf

β̂
sup

β∈Bα
p,q(C)

E
∞∑

j=j0

nj∑

k=1

(β̂jk − βjk)
2

≤ inf
β̂

sup
β∈Bα

p,q(C)

E
J∑

j=j0

nj∑

k=1

(β̂jk − βjk)
2 + sup

β∈Bα
p,q(C)

∑
j>J

β2
jk

≤ R(N)(Bα
p,q(C)) + sup

β∈Bα
p,q(C)

∑
j>J

∑

k

β2
jk.

So that we have

R(Bα
p,q(C))− sup

β∈Bα
p,q(C)

∑
j>J

∑

k

β2
jk ≤ R(N)(Bα

p,q(C)) ≤ R(Bα
p,q(C)). (3.49)

By (3.10) of [76], R(Bα
p,q(C)) ³ N−α/(α+1/2)C1/(α+1/2). Moreover, by Hölder

inequality, we have supβ∈Bα
p,q(C)

∑
j>J

∑
k β2

jk ³ N−2(α+1/2−1/p). When α2/(α +
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1/2) > 1/p − 1/2, the second term in the left hand side of (3.49) is negligible.

Thus we have the minimax risk rate

R(N)(Bα
p,q(C)) ³ N−α/(α+1/2)C1/(α+1/2). (3.50)

Actually we have shown stronger result that R(N)(Bα
p,q(C)) = (1+o(1))R(Bα

p,q(C))

uniformly for all Besov balls. Combining (3.45), (3.48) and (3.50) together, we

have

sup
βN∈Bα

p,q(C)

J∑
j=j1

Aj

≤ Mσ2
N

(
1 +

1

ξ0

) J∑
j=j1

njrp

(
nj,

Cn
−(α+1/2)
j

σN

)

+Mξ0N
−α/(α+1/2)C1/(α+1/2). (3.51)

Denote (xjk, θjk) = (yjk, βjk)/σN as the standardization with the unit variance.

Then,

j1−1∑
j=j0

Aj ≤ σ2
N

j1−1∑
j=j0

Eβ[j]

∥∥∥β̂[j]/σN − β[j]/σN

∥∥∥
2

= σ2
N

j1−1∑
j=j0

Eθ[j]

∥∥∥∥x[j] +
f ′

Ĝ[j]
(x[j])

fĜ[j]
(x[j]) ∨ ρnj

− θ[j]

∥∥∥∥
2

, (3.52)

where fĜ[j]
(x) =

∫
ϕ(x−u)Ĝ[j](du) and ρnj

is as in (3.22). Let L̃(ρ) =
√
− log(2πρ2).

By (3.22), and the fact that for any G, |f ′G(x)|/(fG(x)∨ ρ) ≤ L̃(ρ) when 0 < ρ <

(2πe)−1/2 [45], there exists an constant M such that

j1−1∑
j=j0

Eθ[j]

∥∥∥∥x[j] +
f ′

Ĝ[j]
(x[j])

fĜ[j]
(x[j]) ∨ ρnj

− θ[j]

∥∥∥∥
2

≤
j1−1∑
j=j0

2nj(1 + L̃2(ρnj
)) ≤ M

j1−1∑
j=j0

nj log nj.(3.53)

In view of (3.52) and (3.53),

j1−1∑
j=j0

Aj ≤ Mσ2
N

j1−1∑
j=j0

nj log nj. (3.54)

We arrive the oracle inequality (3.31) by combining (3.51) and (3.54) together.

2
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Proof of Theorem 3.2. By (3.50) in the proof of Theorem 3.1, we only need

to show that the left hand side of (3.33) is of smaller order than N−α/(α+1/2)C1/(α+1/2).

Let δ be a constant such that 0 < δ < p/[(α + 1/2)(1 + p)] and γ = (α +

3/2)p/(1 + p)− 1. We set the critical index j1 as

j1 = max(bγ−1(p/(1 + p)− 1/(α + 1/2) + δ) log2(C/σN)c+ 1, j0), (3.55)

where bxc stands for the largest integer no larger than x. As that in the proof

of Theorem 3.1, we denote Aj = R(N)(β̂[j], β[j])−R(N,∗)(β[j]) as the regret at the

j-th level. We first show that the when cut off at the resolution level j1 − 1, the

sum of regret is of smaller than N−α/(α+1/2)C1/(α+1/2). By (3.54) and (3.55), there

exists a constant M such that

j1−1∑
j=j0

Aj ≤ Mσ2
N

j1−1∑
j=j0

nj log nj

≤ Mσ2
N(j1 + 1)2j1−1 log 2j1

≤ Mσ2
Nj1(j1 + 1)

( C

σN

)γ−1(p/(1+p)−1/(α+1/2)+δ)

.

Since 0 < δ < p/[(α + 1/2)(1 + p)], simple algebraic computation gives that

γ−1(p/(1 + p)− 1/(α + 1/2) + δ < 1/(α + 1/2). Thus

j1−1∑
j=j0

Aj ≤ o(1)N−α/(α+1/2)C1/(α+1/2). (3.56)

From the (3.42) and the proof of Theorem 3.1, there exists a sequence of

constants ξN such that

J∑
j=j1

Aj ≤ Mσ2
N

J∑
j=j1

nj

(
1 +

1

ξN

){(log nj)
5

nj

+ (log nj)
4+p/(2+2p)

(Cn
−(α+3/2)
j /σN)p/(1+p)

}
+ MξNN−α/(α+1/2)C1/(α+1/2)

= Mσ2
N

J∑
j=j1

(
1 +

1

ξN

){
(log nj)

5 + (log nj)
4+p/(2+2p)n−γ

j

( C

σN

)p/(1+p)}

+MξNN−α/(α+1/2)C1/(α+1/2). (3.57)

In view of the choice of γ and j1 in (3.55), when j ≥ j1,

n−γ
j

( C

σN

)p/(1+p)

≤
( C

σN

)1/(α+1/2)−δ

. (3.58)
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Combining (3.57) and (3.58) leads to that

J∑
j=j1

Aj ≤ Mσ2
N

J∑
j=j1

(
1 +

1

ξN

){
(log nj)

5 + (log nj)
4+p/(2+2p)

( C

σN

)1/(α+1/2)−δ}

+MξNN−α/(α+1/2)C1/(α+1/2)

≤ Mσ2
NJ

(
1 +

1

ξN

){
(log N)5 + (log N)4+p/(2+2p)

( C

σN

)1/(α+1/2)−δ}

+MξNN−α/(α+1/2)C1/(α+1/2). (3.59)

We pick ξN satisfying ξN → 0 and ξNN δ/2 → ∞. Then, under the calibration

σ2
N = σ2

N ,

MξN → 0,
(
1 +

1

ξN

)( C

σN

)−δ

→ 0.

Thus, from (3.59), the order of sum of regret at the resolution levels from j1 to J

is also smaller than N−α/(α+1/2)C1/(α+1/2). We arrive the uniform ideal adaptation

(3.33). 2

Proof of Theorem 3.3. By (3.33) in Theorem 3.2, under condition (3.10),

sup
βN∈Bα

p,q(C)

R(N)(β̂N , βN) ≤ o(1)R(N)(Bα
p,q(C)) + sup

βN∈Bα
p,q(C)

R(N,∗)(βN). (3.60)

where R(N)(β̂N , βN) and R(N,∗)(βN) are as in (3.28) and (3.30) respectively.

By (3.11) of [76], for all Besov balls Bα
p,q(C),

sup
βN∈Bα

p,q(C)

R(N,∗)(βN) ≤ (1 + o(1))R(Bα
p,q(C)). (3.61)

In the proof of Theorem 3.1, we have shown that

R(N)(Bα
p,q(C)) = (1 + o(1))R(Bα

p,q(C))

under (3.10). This fact with (3.61) demonstrate that

sup
βN∈Bα

p,q(C)

R(N,∗)(βN) ≤ (1 + o(1))R(N)(Bα
p,q(C)). (3.62)

The exactly adaptive minimaxity (3.34) follows from (3.60) and (3.62). 2
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Chapter 4

A Penalized Linear Unbiased Selection

Algorithm for Generalized Linear Model

4.1 Introduction

By discovering important relevant variables, variable selection can improve upon

the prediction accuracy and interpretability of a statistical model. Classical vari-

able selection procedures such as AIC, BIC, and Cp essentially impose a penalty

on loss based on the number of selected variables. Using such model selection cri-

terion, we need to evaluate each candidate model and pick up the best one. This is

computationally infeasible with even moderately high-dimensional data. Hence,

regularization techniques are used to fulfill continuous selection. The LASSO [68]

method minimizes the square loss function with the `1 penalty on the parameters

in a linear regression model. Due to the singularity of the `1 penalty at the origin,

the LASSO has variable selection feature of shrinking some coefficients exactly

to zero [25]. Under the same paradigm, the penalized negative log-likelihood ap-

proach with the `1 penalty is used to select variables in generalized linear models

[50]. Fan and Li [34] advocated that a good penalty should result in an estimator

with unbiasedness, sparsity and continuity. They formulated the smoothly clipped

absolute deviation (SCAD) penalty which provides certain oracle properties. The

SCAD enjoys the oracle property in term of selection accuracy and estimation

efficiency when the regularization parameter is appropriately chosen. However,

the computation of the SCAD is challenging because of its concavity over (0,∞).

Recently, motivated by alleviating the degree of concavity of the SCAD, Zhang
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[78] proposed the minimax concave (MC) penalty. The MC minimizes the max-

imum concavity among all penalties satisfying an unbiasedness condition. Both

the SCAD and MC are spline quadratic functions which are singular at the origin

and concave over (0,∞).

Implementation of concave penalization methodologies demands an efficient

algorithm to compute the selector at different penalty levels, or even better, a

path of solutions encompassing a suitable range of penalty levels. This is crucial

since the “best” penalty level is typically data driven. The computation of the

LASSO paths is relatively friendly since the `1 penalty is convex. In the linear

regression case, efficient algorithms have been developed for the exact computa-

tion of the LASSO path [55, 56, 29]. The computation of the concave penalty

path is much more difficult since the penalized loss might be non-convex. Inspired

by algorithms for the LASSO, Zhang [78] proposed the penalized linear unbiased

selection (PLUS) algorithm to compute the solution paths of possibly non-convex

penalized least squares. The PLUS algorithm assumes that the penalty func-

tion is a quadratic spline in [0,∞) so that the LASSO, SCAD and MC methods

are included. The PLUS continuously tracks a path in certain main branch of

solution graph of possibly multiple local minimizers. It computes multiple local

minimizers at an individual penalty level by continuously tracing a path of critical

values of the penalized loss at different penalty levels. This special computational

strategy of the PLUS enables it to efficiently generate a solution path of concave

penalized least squares.

In contrast to the great advance achieved in linear model, computation of

penalized selection and estimation in the generalized linear model is consider-

ably less developed. In this area, several algorithms for approximating a (lo-

cal) minimizer at an individual pre-selected penalty level have been developed.

This type of algorithms includes the local quadratic approximation (LQA) [34],

the minorize-maximize (MM) algorithm [43] and the local linear approximation

(LLA) [86] for the SCAD method, and the CLG algorithm [37] for large scale

`1-penalized logistic model. Park and Hastie [57] and Zhao and Yu [84] proposed



86

path approximation algorithms for the minimization of the `1-penalized negative

log-likelihood. However, as far as we are aware, a path approximation algorithm

for the concave-penalized negative log-likelihood does not exist.

In this chapter we propose the generalized PLUS (GPLUS) algorithm to com-

pute the paths of concave-penalized generalized linear model. The GPLUS retains

the same mechanism of the PLUS to find the multiple local minimizers and the

same assumption that the penalty is a concave quadratic spline function. Being

different with linear model, the paths of generalized linear model are not piece-

wise linear. Our strategy is approximating the nonlinear paths with end-to-end

short linear segments. The length of each segment controls the overall accuracy of

the path. The new algorithm works in a stagewise fashion: in each iteration, the

paths traverse along the current direction with a small step. We prove that under

suitable regularity conditions, the computed paths converge to the true paths over

a certain range of penalty levels. In the simulation study, we put emphasis on

applying the GPLUS algorithm to the penalized logistic regression model because

of its importance in data classification and prediction. Interestingly, depending

on whether the minimization problem is convex and whether the solution paths

are piecewise linear, the computational strategies of path following algorithms are

different. We shall discuss the relationship among several existing algorithms in

this chapter.

The remaining part of this chapter is organized as follows. In Section 4.3, we

discuss concave-penalized negative log-likelihood approach for variable selection.

In Section 4.3 we present the GPLUS algorithm to compute the concave penal-

ization method and discuss its relationship with other existing path following

algorithms. We show numerical examples with both simulated and real data in

Section 4.4. Section 4.5 is a discussion and quick summary. The mathematical

proof is contained in Section 4.6.
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4.2 The Concave Penalization Method

We first introduce some notations which are used throughout this chapter. Con-

sider a dataset Z ≡ {(xi, yi)
n
i=1} containing n identically and independently dis-

tributed observations, where yi are response variables and xi ∈ Rp are predictors.

The n by p design matrix is X ≡ (x1, . . . , xn)T = (x1, . . . , xp) where xj is the

j-th variable.

In generalized linear model, yi depends on xi through a linear combina-

tion xT
i β where β ≡ (β1, . . . , βp)

T . The regression coefficient βj = 0 means

the j-th variable do not influence the response. Model selection aims to lo-

cate those variables xj with nonzero βj. Given xi and yi, the log-likelihood

is `i(β, φ) ≡ `i(x
T
i β, yi, φ) where φ is a dispersion parameter. In logistic regres-

sion, no dispersion parameter φ exists. In linear regression, the estimation of φ

has no influence on the estimation of β. Therefore, the penalized negative log-

likelihood approach does not penalize φ, and the log-likelihood can be written as

`i(β) ≡ `i(β, φ). The regularized estimates are given by

β̂(λ) = arg min
β

{
ψ(β) +

p∑
j=1

ρ(|βj|; λ)

}
, (4.1)

where ψ(β) ≡ − 1
n

∑n
i=1 `i(β) is the negative log-likelihood and ρ(t; λ) is a penalty

function indexed by regularization parameter λ ≥ 0.

The LASSO method uses the `1 penalty ρ(t; λ) = λt with t ≥ 0. The `1

penalty is the only member generating continuous and sparse estimation among

`α (α > 0) family of penalties, but it will result in estimation bias. Some recent

research on the LASSO consistency show that, due to the bias, strong conditions

are required for selection consistency under the `1 penalty in the linear regression

model [51, 83, 81].

In the earlier studies on the effect of the bias of more general penalized estima-

tors on estimation efficiency, Fan and Li [34] suggested using a penalty function

which keeps a constant beyond certain level so that the bias of sufficiently large
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coefficient is nearly removed. They carefully formulated the SCAD penalty

ρ(t; λ) = λ

∫ t

0

min

{
1,

(γ − x/λ)+

(γ − 1)

}
dx, γ > 2, (4.2)

as a variable selector to realize their advocation and showed that the SCAD

performs as well as the oracle procedure in terms of selecting the correct subset

model and estimating the true nonzero coefficients.

The SCAD penalty (4.2) satisfies the constraints

ρ̇(t; λ) = 0 for t ≥ γλ, ρ̇(0+; λ) = λ, (4.3)

where ρ̇(t; λ) ≡ (∂/∂t)ρ(t; λ). However, these constraints will result in concave

penalties, or equivalently non-convex penalized negative log-likelihood. Zhang

[78] pointed out that the degree of concavity of the penalized negative log-

likelihood considerably influences the computational complexity of path. There,

Zhang further proposed the MC

ρ(t; λ) = λ

∫ t

0

(
1− x

γλ

)
+
dx, (4.4)

as the minimizer of the maximum concavity

κ(ρ; λ) ≡ sup
t>0

{
− ρ̈(t; λ)

}
, ρ̈(t; λ) ≡ (∂/∂2t)ρ(t; λ), (4.5)

among all penalty functions satisfying the constraints (4.3). The penalty function

has selection features if ρ̇(0+; λ) > 0. The second part of (4.3) standardizes the

index λ so that it has the interpretation as the threshold for βj for standardized

designs with ‖xj‖2/n = 1. Fan and Li [34] pointed out that the first part of

(4.3) allows nearly unbiased estimation for βj with large absolute values. Thus,

(4.3) is called the unbiased selection conditions [79]. Being the minimizer of the

maximum concavity among all penalty functions satisfying the unbiased selection

conditions, the MC method retains the convexity of the penalized negative log-

likelihood in (4.1) to the greatest extent under constraints (4.3). Conversely,

given the maximum concavity κ(ρ; λ), the MC provides the smallest γλ which

is the left end of unbiased selection region (γλ,∞). The maximum concavity
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Figure 4.1: The penalty functions for the LASSO (solid), SCAD (dotted) and
MC (dashed) with γ = 2.5. Left: the penalties ρ(t); right: their derivatives ρ̇(t).

κ(ρ; λ) = 1/(γ − 1) and 1/γ for the SCAD and MC, respectively. Hence, the

tuning parameter γ in the SCAD and MC regulates the computational complexity

of the solution paths via controlling the maximum concavity κ(ρ; λ).

Theoretical investigation shows that the concave-penalized least squares meth-

ods possess selection consistency and oracle efficiency properties under much

weaker conditions than the `1 penalized methods do. Such desirable proper-

ties are expected to extend to the generalized linear models including the logistic

regression. However, due to the singularity and concavity of the penalty func-

tion, minimization of concave-penalized negative log-likelihood is still commonly

viewed as a computationally challenging problem. Computational difficulties of

(4.1) such as multiple local minimizers will arise.

Mathematically, the `1, the SCAD and the minimax concave penalties de-

scribed above are all special cases of more general penalties of the form ρ(t; λ) =

λ2ρ(t/λ), where ρ(t) is an increasing quadratic spline in [0,∞). Such ρ(t) have

piecewise linear, continuous and nonnegative derivative ρ̇(t) for t ≥ 0.

ρ(t; λ) = λ2ρ(t/λ), ρ̇(t) ≡ d

dt
ρ(t) =

m∑
i=1

(ui − vit)I(ti ≤ t ≤ ti+1) (4.6)

with knots 0 = t1 < t2 < · · · < tm = γ satisfying ui − viti+1 = ui+1 − vi+1ti+1, i =

1, . . . , m. We set u1 = 1, um = vm = 0 and tm+1 = ∞ so that condition (4.3)

holds. The penalty class (4.6) includes the `1 penalty as a special member with
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m = 1 and ρ̇(t) = 1, the MC with m = 2 and ρ̇(t) = (1 − t/γ)+, and the SCAD

penalty with m = 3 and ρ̇(t) = min(1, (γ − t)+/(γ − 1)). Figure 4.1 shows these

three penalties with their derivatives for γ = 2.5.

4.3 The GPLUS Algorithm

In this section, we describe the GPLUS algorithm in detail. The GPLUS is

designed to approximate the solution paths of optimization problem (4.1) where

the penalty function ρ(t; λ) is a quadratic spline as in (4.6). Throughout the

section we refrain from specifying the concrete form of ψ(β) since the derivations

apply equally to any ψ(β) with continuous first two derivatives with respect to β.

We divide this section into 3 subsections to cover the Karush-Kuhn-Tucker type

condition, the GPLUS algorithm, and the comparison of several existing path

following algorithm.

4.3.1 The Karush-Kuhn-Tucker type condition and the

PLUS algorithm

With penalty of the form (4.6), the Karush-Kuhn-Tucker type condition of opti-

mization problem (4.1) is





ψ̇j(β(λ)) + λ sgn(βj(λ)) ρ̇(|βj(λ)|/λ) = 0, if βj(λ) 6= 0,

|ψ̇j(β(λ))| ≤ λ, if βj(λ) = 0.

(4.7)

where ψ̇ ∈ Rp is the gradient vector of ψ. In order to solve the minimization

problem (4.1), essentially we need to trace the solutions of (4.7) as λ varies.

Under the scale transformation τ ≡ 1/λ and b(τ) ≡ β(λ)/λ, (4.7) becomes to

be




τ ψ̇j(b(τ)/τ) + sgn(bj(τ)) ρ̇(|bj(τ)|) = 0, if bj(τ) 6= 0,

τ |ψ̇j(b(τ)/τ)| ≤ 1, if bj(τ) = 0.

(4.8)
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Condition (4.8) is an equivalent version of (4.7), while constant 1 in the inequality

constraint will provide convenience in the derivation of algorithm. Therefore, in

the remainder of this article, we work with (4.8) instead of (4.7).

Define

u(i) ≡ u|i|, v(i) ≡ v|i|, t(i) ≡





ti, if 0 < i ≤ m + 1,

−t|i|+1, if −m ≤ i ≤ 0,

(4.9)

where the ui, vi and ti are as in (4.6). Let η ∈ {−m, . . . , m}p be a p-indicator

such that

t(ηj) ≤ bj(τ) ≤ t(ηj + 1), j = 1, . . . , p. (4.10)

In other words, η represents the penalty intervals of b(τ).

When t(ηj) ≤ bj(τ) ≤ t(ηj + 1), by (4.6), we have sgn(bj(τ))ρ̇(|bj(τ)|) =

sgn(ηj)u(ηj)− bj(τ)v(ηj). We rewrite (4.8) in more explicit form: define

S(η) ≡ all y ⊕ b satisfying



τ ψ̇j(b(τ)/τ) + sgn(ηj)u(ηj)− bj(τ)v(ηj) = 0, if ηj 6= 0,

−1 ≤ τ ψ̇j(b(τ)/τ) ≤ 1, if ηj = 0,

t(ηj) ≤ bj(τ) ≤ t(ηj + 1), if ηj 6= 0,

bj(τ) = 0, if ηj = 0.

(4.11)

(4.8) holds iff (4.11) holds for certain η. For each η, since (4.11) has p equations

and p pairs of parallel inequalities, S(η) are p-dimensional blocks living in R2p.

Due to the continuity of ρ̇(t) = (d/dt)ρ(t) in t by (4.6) and that of ψ̇j in both

y and b, the solutions of (4.11) are identical in the intersection of any pair of

S(η) with adjacent η. Moreover, the p-dimensional interiors of different S(η)

are disjoint in view of the constraints on b of (4.11). Thus, the union of all

the p-dimensional blocks S(η) forms a continuous p-dimensional surface S ≡
∪{

S(η) : η ∈ {−m, . . . , m}p
}

in R2p. Given data y, the solution set of (4.8) is

the intersection of this p-surface S and the p-subspace {y ⊕ b : b ∈ Rp}.
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Let P η be the projection matrix P ηb = (bj : ηj 6= 0)T , the first equation of

(4.11) could be written in matrix notation

τP η

(
ṡ(b(τ)/τ)

)
+ P η

(
sgn(η)u(η)− b(τ)v(η)

)
= 0, (4.12)

where the multiplication in the second parentheses is componentwise. Let Ψ̈ ∈
Rp×p be the Hessian matrix of ψ and denote

Q(b(τ), τ) = P ηΨ̈
(
b(τ)/τ

)
P T

η − diag
(
v(ηj), ηj 6= 0

)
, (4.13)

w(b(τ), τ) = P η

(
Ψ̈(b(τ)/τ)b(τ)/τ − ṡ(b(τ)/τ)

)
. (4.14)

Taking differentiation of (4.12) with respect to τ , we get the differentiation form

of the KKT equation

Q(b(τ), τ) P η s(b(τ), τ) = w(b(τ), τ), ηj = 0 ⇒ sj = 0. (4.15)

where s(b(τ), τ) = (d/dτ)b(τ) is the local “slope” of b(τ).

To get insights into the GPLUS algorithm described in next subsection, we

give a quick review of the PLUS algorithm for the linear regression model where

ψ(β) = ‖y − Xβ‖2/(2n) is taken to be the squared loss. It is easy to show

that Q(b(τ), τ) = P η(XT X/n)P T
η − diag(v(ηj), ηj 6= 0) and w(b(τ), τ) =

P η(XT y/n). This implies that the slope s(b(τ), τ) is constant in each block η,

because when η does not change, P η, Q(b(τ), τ) and w(b(τ), τ) will not change

either. Hence it indicates that the solution paths b(τ) are piecewise linear in τ .

The piecewise linearity will greatly facilitate the computation of entire trajecto-

ries: as long as we find all the turning points, all values in between are obtained

by linear interpolation. In linear regression model, almost everywhere in X and

γ, the solution set of (4.8) is composed of a main branch and separate loops. The

main branch is piecewise linear, begins with b = 0, and ends with least squares

solution satisfying XT (y−Xb(τ (k∗))/τ (k∗)) = 0. The PLUS algorithm traces the

main branch of the solution paths by computing one line segment between two

turning points in each step.
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4.3.2 The GPLUS algorithm

In generalized linear models, the paths are not piecewise linear. Our strategy

is discretely approximating the nonlinear paths by many end-to-end short line

segments.

The GPLUS procedure works roughly as follows. We start with b(0) = 0,

and find the largest possible value τ = τ (0) at which all bj are zero. In the k-th

iteration, with one endpoint b(k−1), we compute a second endpoint of the k-th

piece of segment. We firstly find the index η(k) which indicates the block where

the k-th piece of segment lives. Starting from b(k−1), the paths proceed in a

direction s(k) with the step size ∆(k) until b(k). s(k) is decided by all the equation

constraints in (4.8). The step size ∆(k) is designed up to be a pre-determined

constant ∆ and to make sure that each piece of segment is wholly contained in

one block. In other words, we “cut” the path exactly at the block boundary when

it is going to enter into a new block. The main updating rules are

τ (k) = τ (k−1) + ξ(k)∆(k), b(k) = b(k−1) + (τ (k) − τ (k−1))s(k),

where ξ(k) = ±1 characterizes whether the paths go back or forth with respect

to τ in each iteration. In the GPLUS algorithm, the value of τ may not be

monotone increasing. When ξ(k) = −1, τ will decrease so that the multiple local

minimizers are obtained (same τ , different b). Once we obtain all the turning

points (b(k), τ (k)), the paths are given by linear interpolation

β̂(λ) = b̂(τ)/τ, b̂(τ) =
τ (k) − τ

τ (k) − τ (k−1)
b(k−1) +

τ − τ (k−1)

τ (k) − τ (k−1)
b(k). (4.16)

We summarize the GPLUS algorithm in the following syllabus and explain in

details next.
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Initialization: Compute η(0), τ (0) and b(0). Set k = 1.

Iterations:

1. Compute the block index η(k).

2. Compute the proceeding direction vector s(k).

3. Compute the direction indicator ξ(k) = 1 or -1.

4. Compute the step length ∆(k).

5. Compute τ (k) and b(k). Increase k by one, k ← k + 1.

Output: η(k), b(k), τ (k), k = 0, 1, . . . , k∗.

• Initialization

We initialize the GPLUS algorithm with

η(0) = 0, τ (0) = 1/ max
j
|ψ̇(0)

j |, b(0) = 0, (4.17)

where ψ̇
(0)
j = ψ̇j(b)|b=0. In view of the inequalities in the KKT condition (4.8),

the initial segment is b(τ) = 0 for all 0 ≤ τ ≤ τ (0). We note that λ(0) = 1/τ (0) is

the smallest value of λ that makes all bj zero, j = 1, . . . , p.

• Iterations

In the k-th iteration, we compute η(k), s(k), ξ(k), ∆(k), τ (k) and b(k) in sequence

based on η(k−1), τ (k−1) and b(k−1). As mentioned in the syllabus above, each

iteration is divided into 5 steps.

Step 1: compute η(k). Denote ψ̇
(k−1) ≡ ψ̇(b(k−1)/τ (k−1)) and Ψ̈

(k−1) ≡
Ψ̈(b(k−1)/τ (k−1)) as the gradient and Hessian of ψ(β) at β = b(k−1)/τ (k−1). Let

C(k−1) ≡ C
(k−1)
1 ∪ C

(k−1)
2 ≡

{
j : |b(k−1)

j | ∈ {t1, . . . , tm} with η
(k−1)
j 6= 0

}

∪
{

j : |τ (k−1)ψ̇
(k−1)
j | ≥ 1 with η

(k−1)
j = 0

}
.

be the set of critical indices j of which bj hits the boundary of the inequalities in

(4.11) at τ = τ (k−1). Based on η(k−1) and C(k−1), we compute next index vector
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η(k) according to the following rule,

η
(k)
j =





η
(k−1)
j , if j /∈ C(k−1),

η
(k−1)
j + 1 if j ∈ C

(k−1)
1 and ξ(k−1)s

(k−1)
j > 0,

η
(k−1)
j − 1, if j ∈ C

(k−1)
1 and ξ(k−1)s

(k−1)
j < 0,

1, if j ∈ C
(k−1)
2 and τ (k−1)ψ̇

(k−1)
j ≤ −1,

−1, if j ∈ C
(k−1)
2 and τ (k−1)ψ̇

(k−1)
j ≥ 1.

(4.18)

Step 2: compute s(k). Let Q(k) and w(k) be as defined in (4.13) and (4.14)

but depend only on b(k−1), τ (k−1) and η(k). More explicitly,

Q(k) = P η(k)Ψ̈
(k−1)

P T
η(k) − diag

(
v(η

(k)
j ), η

(k)
j 6= 0

)
, (4.19)

w(k) = P η(k)

(
Ψ̈

(k−1)
b(k−1)/τ (k−1) − ψ̇

(k−1))
, (4.20)

where P η(k) is the projection matrix such that P η(k)z = (zj : η
(k)
j 6= 0)T . The

direction vector s(k) is determined by the equation

Q(k)P η(k)s(k) = w(k), η
(k)
j = 0 ⇒ s

(k)
j = 0, (4.21)

where Q(k) and w(k) are defined in (4.19) and (4.20). The progress direction s(k)

can be view as compromise among the currently active covariates.

Step 3: compute ξ(k). Given η(k) and s(k), we pick the direction indicator

ξ(k) = 1 or -1 which make s(k) indeed carry the k-th segment of the paths from

S(η(k−1)) to S(η(k)). Formally, the definition of ξ(k) is ξ(k) ≡ sgn(τ (k) − τ (k−1)).

It decides whether the paths go ahead (ξ(k) = 1) or back (ξ(k) = −1) in current

iteration. Since τ (k) is unknown at this moment, we utilize η(k) and s(k) to

characterize it.

If C(k−1) is empty, that is, η(k−1) = η(k), then the (k−1)-th and k-th segments

are in the same block. ξ(k) is given by

ξ(k) =




−ξ(k−1), if sgn(s(k)) sgn(s(k−1)) ∈ {−1, 0}p,

ξ(k−1), otherwise.

(4.22)
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In another word, when η(k−1) = η(k), if at least one pair of s(k) and s(k−1) have

same sign, the PLUS paths will keep the same direction as previous step. Other-

wise the paths will turn around.

If C(k−1) is non-empty, it amounts to verify the following set of conditions




ξ(k)(η
(k)
j − η

(k−1)
j )s

(k)
j ≥ 0, if η

(k−1)
j 6= η

(k)
j 6= 0,

ξ(k)η
(k−1)
j

d
dτ

(τ (k−1)ψ̇
(k−1)
j ) ≥ 0, if η

(k−1)
j 6= η

(k)
j = 0.

(4.23)

Step 4: compute ∆(k). Let ∆(k) ≡ |τ (k) − τ (k−1)| be the length of the k-th

segment of the paths measured in τ . If we fix the step length to be some constant

∆ in each iteration, it will happen that two endpoints of certain segment are

located in different blocks. In such cases, bj may directly change from positive

value to negative without staying at zero, or vice verse. To avoid such jumps, we

cut the path exactly on the boundary when the crossing is going to happen. The

allowed maximum step size ∆
(k)
j of the j-th coordinate is

∆
(k)
j =





ξ(k){t(η(k)
j + 1)− b

(k−1)
j }/s(k)

j , if η
(k)
j 6= 0 and ξ(k)s

(k)
j > 0,

ξ(k){t(η(k)
j )− b

(k−1)
j }/s(k)

j , if η
(k)
j 6= 0 and ξ(k)s

(k)
j < 0,

∞, if η
(k)
j = 0.

(4.24)

Finally, ∆(k) is given by

∆(k) = min{∆, ∆
(k)
j , 1 ≤ j ≤ p} (4.25)

Step 5: compute τ (k) and b(k).

τ (k) = τ (k−1) + ξ(k)∆(k), b(k) = b(k−1) + (τ (k) − τ (k−1))s(k), (4.26)

Remark 4.1. Since the end-to-end line segments computed are not the exact solu-

tions to (4.8), it may happen that when b
(k−1)
j re-hit the knot t = 0, |τ (k−1)ψ̇

(k−1)
j | >

1 and |τ (k)ψ̇
(k)
j | > 1. Consequently, according to the rule (4.18), we have η

(k−1)
j 6=

0, η
(k)
j = 0 and η

(k+1)
j 6= 0. Thus, the j-th variable is excluded from and in-

cluded into the model alternatively during the consecutive iterations. To prevent

the selection from such oscillation, once we observe that

η
(k−1)
j 6= 0, b

(k−1)
j = 0, |τ (k−1)ψ̇

(k−1)
j | > 1, (4.27)
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we shall exclude the j-th variable from the model until the value of |τ ψ̇j| is strictly

smaller than 1 and then goes beyond 1 again.

Remark 4.2. The GPLUS algorithm works based on the notion that in each

block, tiny amount of departure from the true paths at very beginning stage will

not cause dramatic error when the approximation proceeds. This stability property

results from the continuity conditions on ψ and ρ. The parameter ∆ controls how

close the algorithm approximates the path. A smaller step size leads to a closer

approximation.

Remark 4.3. In the GPLUS algorithm, we trace the gradients to select new vari-

ables and use Hessian matrix to find the proceeding directions of selected variables

simultaneously. As is in (4.21), we only need to compute the inverse sub-Hessian

matrix of selected variables. Hence the computation of matrix inverse is efficient

in sparse model.

Theorem 4.1. Let b(τ) be the solution of (4.8) and b̂(τ) be the computed paths

as in (4.16). We use the notation b ∈ η to denote the condition (4.10), that is,

b lives in the block indexed by η. Assume that b(τ) is second differentiable with

respect to τ . For the block indexed by η, if the following conditions hold:

(i) Let k0 be the smallest integer such that {b̂(τ (k0)), b(τ (k0))} ∈ η, the initial

error ‖b̂(τ (k0))− b(τ (k0))‖ → 0 as ∆ → 0.

(ii) For the block η, there exists constants δ and M1 such that when ‖b −
b(τ)‖ ≤ δ, the Lipschitz condition ‖s(b, τ) − s(b(τ), τ)‖ ≤ M1‖b − b(τ)‖ holds

where s(·, τ) is as in (4.15) and {b, b(τ)} ∈ η.

(iii) There exists a constant M2 such that sup{τ : b(τ)∈η} ‖ d
dτ

s(b(τ), τ)‖ ≤ M2.

(iv) There exists a constant M3 such that sup∆>0

∑
{j : b̂(τ (j))∈η} ∆(j+1) < M3.

Then, when {b̂(τ (k)), b(τ (k))} ∈ η, ‖b̂(τ (k))− b(τ (k))‖ → 0 as ∆ → 0.

4.3.3 Discussion of path following algorithms

From a unified point of view, all the paths algorithms aim at the same task: trac-

ing the solution paths of a set of the KKT equations (4.8). However, depending
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on whether the optimization problem is convex and whether the solution paths

are piecewise linear, the computational strategies are pretty different.

As mentioned earlier, the computation of the LASSO paths is relatively friendly

since the `1-penalized least squares is convex and the LASSO paths are piecewise

linear. Efficient algorithms that give the entire Lasso paths have been established,

namely, the homotopy method [55, 56] and similarly the LARS algorithm [29].

The LARS provides a nice geometrical interpretation of these methods: in the

`1-penalized least squares problem, the selected variables share the same absolute

correlation with current fitting residuals y −Xβ̂. Thus, in each step, the LARS

proceeds equiangularly between the selected variables (variables with nonzero es-

timated coefficient), that is, along the “least angle direction”, until next variable

enters or one of selected variables is removed.

The PLUS algorithm essentially generalizes the LARS to compute the concave-

penalized least squares. Since there are multiple phases of concave penalty, the

paths are much more complex but still piecewise linear. The GPLUS algorithm

applies the computational strategy of the PLUS to the generalized linear model

in a pretty direct manner. However, because of the nonlinearity of the generalized

linear model path, the procedures are more deliberate.

Motivated by the LARS, Park and Hastie [57] introduced an efficient path

following algorithm for `1-penalized generalized linear model. Their algorithm

computes the entire nonlinear solution paths by using the predictor-corrector

method of convex optimization. In each iteration, with certain carefully chosen λ

at which the set of non-zero coefficients changes, the corrector step finds accurate

minimizer (4.1) of the convex objective function based on a good starting estima-

tor provided by the predictor step. Their method uses end-to-end linear segments

of moderate size to approximate the nonlinear paths and yields exact order of the

variable selection. However, Park and Hastie’s predictor-corrector method is not

suitable for concave penalty since the corrector step is difficult to implement in

the non-convex minimization problem. That explains why we proceed with tiny

steps in the GPLUS algorithm.
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We summarize the relationship between the aforementioned algorithms in the

following chart.

LARS
concave penalty−−−−−−−−−−−−→ PLUS

GLM

y
yGLM

Park and Hastie′s −−−−−−−−−−−−→
concave penalty

GPLUS

All four algorithms can be viewed as moderately greedy forward stepwise pro-

cedures whose progress direction is determined by compromise among the cur-

rently selected variables. Hence in each iteration, we update all coordinates simul-

taneously. Zhao and Yu [84] proposed the BLASSO algorithm which update only

one coordinate each time. Therefore their method avoids the matrix inversion.

The BLASSO is designed to approximate the paths of any `1-penalized convex

loss function by accommodating the backward steps into the forward stagewise

fitting. The backward step in the BLASSO can remove the selected irrelevant

variables.

4.4 Numerical Experiments

4.4.1 Linear regression

In this experiment, we compare the selection accuracy of the LASSO, SCAD and

MC methods in linear model

y =

p∑
j=1

βjx
j + ε, (4.28)

where y = (y1, . . . , yn)T is the response vector, xj = (x1j, . . . , xnj)
T ∈ Rn, j =

1, . . . , p, are p predictors, β ≡ (β1, . . . , βp)
T are regression coefficients, and ε =

(ε1, . . . , εn)T are noises. Hereafter throughout this paper, we denote Ao ≡ {j : βj 6=
0} as the set of variables contribute to the model, Â ≡ {j : β̂j 6= 0} as the set of

selected variables, and do ≡ |Ao| = #{j : βj 6= 0} is the size of Ao.
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Our design is randomly generated as described below to guarantee a fair

amount of correlation among the covariates. We generate an n×p random design

X with each observation xi following an AR(1) model. In detail, we generate the

observations one by one independently. For the i-th observation, the first covari-

ate xi1 is sampled from the standard normal distribution. For j = 2, . . . , p, the

j-th feature is generated according to the AR(1) model xij = ρxi,j−1 + eij where

eij are independent N(0, ε2) random variables. We set ρ2 + ε2 = 1 so that each

variable has unit variance, i.e., Var(xij) = 1, j = 1, . . . , p. Finally we normalize

X so that each column has mean zero and `2 norm
√

n. In this experiment, our

dimension setting is (n, p) = (300, 200).

We evaluate selection performance for low correlation ρ = 0.25 and high cor-

relation ρ = 0.75 in Table 4.1 and 4.2, respectively. In each table, there are

three measurements: CS ≡ I{Â = Ao} is the indicator of correct selection,

TM ≡ |Â\Ao| + |Ao\Â| is the total miss as the sum of false discovery and

missing discovery, and k is the number of steps. All the results reported are

based on 100 replications. In each replication, Ao, β and ε are randomly sam-

pled. The response vector y is generated from model (4.28) where βj = ±β∗

for j ∈ Ao, βj = 0 for j /∈ Ao and ε ∼ N(0, In). The parameters here are

(β∗, γ) = (0.7, 3.7) where γ is the regularization parameter as in (4.2) and (4.4).

The value γ = 3.7 is suggested by Fan and Li (2001). We present the results at

four penalty levels: λ = σ̂
√

a(log p)/n, a = 1, . . . , 4, where σ̂2 is the mean squared

error with n− p degrees of freedom in full rank design. Bold face entries indicate

P{Â = Ao} ≈ CS > 0.5.

As can be seen from Table 4.1, it is clear that the variable selection accuracy of

the SCAD and MC dominate the LASSO. The superiority is overwhelming when

do = 20 and 40. Especially, when do = 40, the LASSO only correctly identify the

true variables at most once among 100 replications with four different penalty

levels, while the MC still shows strong selection accuracy with λ = σ̂
√

2(log p)/n

and σ̂
√

4(log p)/n. In fact, the simulation and theoretical results in [78] show

that the universal penalty level λ = σ̂
√

2(log p)/n is nearly the optimal choice
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Table 4.1: Performance of the LASSO, SCAD and MC methods in linear regres-
sion based on 100 replications: n = 300, p = 200, β∗ = 0.7, γ = 3.7. Each
observation is generated from an AR(1) model xij = ρxi,j−1 + eij with low corre-
lation ρ = 0.25, eij ∼ N(0, ε2), and ρ2 + ε2 = 1

do = 10 do = 20 do = 40
λ/σ̂ LASSO SCAD MC LASSO SCAD MC LASSO SCAD MC

CS 0.00 0.03 0.03 0.00 0.09 0.09 0.00 0.13 0.13√
(log p)/n TM 5.89 3.66 3.49 8.45 2.92 2.85 13.08 2.19 2.14

=0.1329 k 17 35 24 30 65 44 55 132 86
CS 0.28 0.75 0.75 0.07 0.83 0.84 0.01 0.85 0.90√

2(log p)/n TM 1.26 0.30 0.30 2.63 0.21 0.19 7.77 0.16 0.11
=0.1879 k 12 27 17 24 53 32 49 112 66

CS 0.80 0.97 1.00 0.46 0.84 0.97 0.01 0.13 0.83√
4(log p)/n TM 0.20 0.03 0.00 0.83 0.19 0.03 5.32 2.44 0.18
=0.2658 k 11 21 11 22 40 21 46 77 44

CS 0.93 0.93 1.00 0.53 0.51 0.80 0.00 0.00 0.06√
8(log p)/n TM 0.07 0.07 0.00 0.65 0.66 0.25 6.81 6.85 4.46
=0.3759 k 11 14 11 21 27 21 41 51 39

Table 4.2: The comparison of selections where each observation of the design
matrix X is generated from an AR(1) model with high correlation ρ = 0.75.
Other settings are the same as those in Table 4.1

do = 10 do = 20 do = 40
λ/σ̂ LASSO SCAD MC LASSO SCAD MC LASSO SCAD MC

CS 0.00 0.20 0.20 0.00 0.25 0.25 0.00 0.09 0.17√
(log p)/n TM 9.36 1.90 1.76 14.71 1.49 1.46 24.11 4.00 3.52

=0.1329 k 21 42 28 36 124 84 66 1544 884
CS 0.01 0.67 0.73 0.00 0.20 0.31 0.00 0.00 0.00√

2(log p)/n TM 5.13 0.54 0.45 10.99 2.06 1.84 23.36 12.06 11.17
=0.1879 k 16 32 20 30 82 55 58 895 466

CS 0.05 0.43 0.60 0.00 0.00 0.07 0.00 0.00 0.00√
4(log p)/n TM 3.23 1.09 0.84 9.06 4.98 3.64 23.67 20.44 18.69
=0.2658 k 13 23 13 26 57 32 49 494 254

CS 0.11 0.13 0.32 0.00 0.00 0.00 0.00 0.00 0.00√
8(log p)/n TM 2.45 2.21 1.34 8.60 8.10 6.14 25.20 25.58 24.00
=0.3759 k 12 15 11 22 37 24 39 203 112
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Table 4.3: Performance of the LASSO, SCAD and MC methods in linear regres-
sion based on 100 replications: n = 300, p = 200, β∗ = 1/2, γ = 3.7. The design
matrix X is generated by greedy sequential group sampling from a larger pool
random matrix

do = 10 do = 20 do = 40
λ/σ̂ LASSO SCAD MCP LASSO SCAD MCP LASSO SCAD MCP

CS 0.00 0.05 0.04 0.00 0.05 0.07 0.00 0.06 0.13√
(log p)/n TM 5.60 3.77 3.63 8.03 3.39 3.22 11.17 2.65 2.28

=0.1329 k 17 30 20 29 56 35 53 114 67
CS 0.42 0.68 0.79 0.09 0.38 0.72 0.00 0.09 0.52√

2(log p)/n TM 1.03 0.37 0.25 2.64 0.98 0.33 6.73 3.76 0.78
=0.1879 k 12 21 11 24 40 22 47 78 44

CS 0.87 0.87 0.95 0.31 0.35 0.64 0.00 0.01 0.09√
4(log p)/n TM 0.13 0.13 0.05 1.23 1.10 0.48 6.49 6.66 4.27
=0.2658 k 11 14 11 21 27 21 42 52 40

CS 0.40 0.40 0.45 0.03 0.03 0.05 0.00 0.00 0.00√
8(log p)/n TM 1.11 1.11 1.06 4.72 4.73 4.83 13.32 13.43 14.01
=0.3759 k 10 10 10 17 17 16 31 32 29

for variable selection in linear model with ε ∼ N(0, σ2In) and the normalization

‖xj‖2/n = 1. Moreover, the computational complexity of the MC is competitive

with the LASSO as demonstrated by the average number of steps k̄.

In Table 4.2, we report the selection performances when each observation of

the design matrix X is generated from an AR(1) model with high correlation

ρ = 0.75. Other settings are the same as those in Table 4.1. As expected, with

higher correlations among the variables, the computation of the SCAD and MC is

more costly. Dramatic rise in the number of computation steps is observed when

do = 40. Again, the average CS and TM over 100 replications demonstrates

the superior performance of the concave methods in our simulation experiments.

Especially, when do = 20 and 40, the LASSO fails to identify the true variables

correctly in each replication, while the other two demonstrate considerable accu-

racy with proper penalty amount.

We present another set of simulation results in Table 4.3. In this simulation,

we first generate a n×p∗ pool random matrix Xpl with each cell iid standard nor-

mal random variable. We normalize Xpl so that each column has mean zero and
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`2 norm
√

n. The design matrix X = (x1, . . . , xp) is generated by greedy sequen-

tial group sampling from Xpl. In this experiment, (n, p∗, p) = (300, 1000, 200).

Each sampling group consists of 20 most correlated vectors from the remaining

columns of Xpl. For the m-th group, we sample from the remaining 1020− 20m

columns one member x20m−19 and 19 more to maximize the absolute correla-

tion |x′jx20m−19|/n, j = 20m − 18, . . . , 20m, m = 1, . . . , 10. The design X is

fixed throughout this experiment, the maximum absolute correlation between the

columns is 0.2299. The selection results in Table 4.3 are similar to Table 4.1, it is

clear that the variable selection accuracy of the MC is better than the other two

methods. The superiority is overwhelming when do = 20 and 40. When do = 40,

the LASSO fails to identify the correct set in every replication, while the MC still

shows strong selection accuracy with λ = σ̂
√

2(log p)/n.

4.4.2 Logistic regression

In this example, we assess the performance of the GPLUS algorithm for logistic

regression model. In logistic regression model, we have a set of n independent

pairs xi, yi, where xi ∈ Rp is a p-vector of predictors for the i-th observation.

Given xi, yi ∈ {0, 1} is the i-th binary response with probability of success

pi ≡ P (yi = 1|xi) =
exp(xT

i β)

1 + exp(xT
i β)

. (4.29)

The loss function ψ(β) is taken to be the negative log-likelihood

ψ(β) = − 1

n

n∑
i=1

`(yi, x
T
i β) = − 1

n

n∑
i=1

(
yix

T
i β − log(1 + exp(xT

i β))
)
. (4.30)

Let X = (x1, . . . , xn)T = (x1, . . . , xp) be design matrix of size n×p. The gradient

and Hessian matrix are ψ̇(β) = −XT (y − p)/n and Ψ̈(β) = XT WX/n where

p = (p1, . . . , pn)T and W is an n×n diagonal matrix of weights with i-th element

pi(1− pi).

Each observation xi is drawn independently from a multivariate normal dis-

tribution with zero mean and correlation ρ|j−k| between j-th and k-th entries
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with ρ = 0.5. The number of covariate predictors is p = 100. We generate a

training design X with n = 200 observations. Again, X is normalized so that

each column has mean zero and `2 norm
√

n. Throughout this experiment, X is

fixed . All the results reported are based on 100 replications. In each replication,

as the procedures in Experiment 1, Ao and β are sampled with βj = ±β∗ for

j ∈ Ao, βj = 0 for j /∈ Ao. Then the response y is generated according to (4.29).

Besides reporting the correct selection CS and total miss TM , we compute the

Kullback-Leibler divergence between the true distribution P and its estimation

P̂ ,

KL(P, P̂ ) = P (y = 1) log
P (y = 1)

P̂ (y = 1)
+ P (y = 0) log

P (y = 0)

P̂ (y = 0)

= xT (β − β̂)
exp(xT β)

1 + exp(xT β)
+ log

1 + exp(xT β̂)

1 + exp(xT β)
. (4.31)

We use a Monte Carlo simulation to compute the Kullback-Leibler divergence

(4.31).

We provide two sets of diagrams in Figure 4.2-4.5 with do = 5 and do = 10 re-

spectively. Other parameters are β∗ = 1.25, γ = 16 or 32 and step size ∆ = 0.005.

We plot the CS, TM and KL as functions of λ based on 100 replications. As can

be seen from Figure 4.2-4.5, the SCAD and MC make considerable improvement

over the LASSO in the sense of better selection accuracy, smaller total miss and

Kullback-Leibler divergence. In fact, among the interval of λ plotted, the SCAD

and MC overwhelmingly dominate the LASSO. Moreover, the performances of

the MC are always a little bit better than those of the SCAD.

In Figure 4.6, we plot the solution for one replication with parameters n = 200,

p = 100, do = 5, β∗ = 1.25, γ = 16 and ∆ = 0.005. The solutions plotted are

build up in 4000 steps. Middle (the SCAD) and right (the MC) panels are nearly

indistinguishable from each other. All the three methods select five true variables

in the early stage. In the first 4000 steps, the LASSO selects more noisy variables

than the other two methods. An interesting phenomenon exhibited in Figure 4.6

is that, for the SCAD and MC paths, there exists an interval of λ during which
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Figure 4.2: The comparison between the LASSO (black, solid), SCAD (red,
dashed) and MC (green, dotted) in logistic regression based on 100 replications.
The correct selection probability CS, total miss TM and Kullback-Leibler diver-
gence KL are plotted against the penalty level λ. Top panels: CS; middle panels:
TM ; bottom panels: KL; left panels: γ = 16; right panels: γ = 32. Parameters:
n = 200, p = 100, do = 5, β∗ = 1 and ∆ = 0.005.
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Figure 4.3: The comparison between the LASSO (black, solid), SCAD (red,
dashed) and MC (green, dotted) in logistic regression based on 100 replications.
The correct selection probability CS, total miss TM and Kullback-Leibler diver-
gence KL are plotted against the penalty level λ. Top panels: CS; middle panels:
TM ; bottom panels: KL; left panels: γ = 16; right panels: γ = 32. Parameters:
n = 200, p = 100, do = 5, β∗ = 1.25 and ∆ = 0.005.
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Figure 4.4: The comparison between the LASSO (black, solid), SCAD (red,
dashed) and MC (green, dotted) in logistic regression based on 100 replications.
The correct selection probability CS, total miss TM and Kullback-Leibler diver-
gence KL are plotted against the penalty level λ. Top panels: CS; middle panels:
TM ; bottom panels: KL; left panels: γ = 16; right panels: γ = 32. Parameters:
n = 200, p = 100, do = 10, β∗ = 1 and ∆ = 0.005.
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Figure 4.5: The comparison between the LASSO (black, solid), SCAD (red,
dashed) and MC (green, dotted) in logistic regression based on 100 replications.
The correct selection probability CS, total miss TM and Kullback-Leibler diver-
gence KL are plotted against the penalty level λ. Top panels: CS; middle panels:
TM ; bottom panels: KL; left panels: γ = 16; right panels: γ = 32. Parameters:
n = 200, p = 100, do = 10, β∗ = 1.25 and ∆ = 0.005.
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Figure 4.6: The solution paths of the LASSO, SCAD and MC with one replication
for n = 200, p = 100, do = 5, β∗ = 1.25, γ = 16 and ∆ = 0.005. The estimates
β̂j are plotted against the penalty level λ. The colored solid curves correspond to
the covariates with βj 6= 0. The dashed curves correspond to the covariates which
do not influence the response with βj = 0. The solutions plotted are build up in
4000 steps. The SCAD and the MC paths are almost indistinguishable with each
other, while the LASSO paths are different from the SCAD and MC.

the estimated values of coefficients of true variables roughly “keep” after several

noisy variables are incorporated, while the LASSO paths keep increasing.

An explanation for setting γ = 16 is as follows: in logistic regression, the

variance pi(1− pi) is no more than 1/4. Therefore, the eigenvalues of XT WX/n

are approximately 4 more times smaller than those of XT X/n. To roughly keep

the convexity as in the linear model, the value of γ in logistic model should be

more than 4 times of 3.7, the typical value of γ suggested for linear model.

4.4.3 S&P 500 Index data

The S&P 500 (Standard & Poor’s 500) is a market-value-weighted index of 500

stocks that are traded on the New York Stock Exchange (NYSE), American Stock

Exchange (AMEX), and the NASDAQ National Market System. Companies se-

lected for the S&P 500 Index (SPX) are representative of important industries

within the U.S. economy and many also are the leaders of their industries. The
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SPX is the summation of the weighted stocks prices,

I(s) =
500∑
j=1

wjX
j(s), (4.32)

where I(s) is the SPX at time s, Xj(s) is the price of the j-th stock at time s, and

wj are the weights which make each company’s influence on the SPX performance

directly proportional to their market values. In evaluations and performance

charts of stocks and mutual funds, the SPX is regarded as one important baseline

for comparison. For example, a performance chart of a mutual fund will show the

SPX along with their financial product. Many ETF’s (exchange-traded funds)

attempt to replicate the performance of the SPX. However, it would cost too

much effort and capital to hold all S&P stocks to replicate the SPX. Thus, one

way to mimic the SPX is to hold a subset of all stocks and figure out their weights

simultaneously.

In this experiment, we select a subset of all S&P stocks and figure out a linear

combination of them to estimate the future index. We collect close index and close

prices of S&P stocks from July 26, 2007 to July 25, 2008. We use a moving window

method to compare the one-step replication performances of the LASSO, SCAD

and MC. In detail, denote Z(s) = (I(s), Xj(s), j = 1, . . . , p), s = 1, . . . , n as the

raw close-of-day data of the s-th trading day. Let (Z(s), s = s0, . . . , s0+m−1) be

the raw data of m consecutive days. We fit penalized linear models to estimate the

regression coefficients ŵ(d) = (ŵj(d), j = 1, . . . , p) where d denotes the number of

nonzero ŵj. Thus, a subset of d stocks is selected. We next compute the one-step

replication error em(s0 + m, d) on next data Z(s0 + m),

em(s0 + m, d) ≡
∣∣∣I(s0 + m)−

p∑
j=1

ŵj(d)Xj(s0 + m)
∣∣∣.

In Table 4.4, we report the average replication errors ēm(d) ≡ ∑n−m
s0=1 em(s0 +

m, d)/(n−m) with n = 253, m = 200 and d = 5k, k = 2, . . . , 13. From Table 4.4,

it can be seen that with almost all d ≤ 65, the average error of either the SCAD or

MC improves over the LASSO. An interesting phenomenon is that when the sizes
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Table 4.4: One-step replication performances of the LASSO, SCAD and MC with
the moving window method. Average replication errors ēm(d) ≡ ∑n−m

s0=1 em(s0 +
m, d)/(n −m) with the window size m = 200 and stocks subset of sizes d = 5k,
k = 2, . . . , 13 are reported.

d 10 15 20 25 30 35
LASSO 16.08 14.40 13.44 11.41 8.74 5.90
SCAD 16.08 14.40 13.44 11.41 8.74 5.90
MC 16.06 14.42 13.07 10.75 7.73 4.79
d 40 45 50 55 60 65

LASSO 4.77 3.91 3.51 3.28 2.96 2.77
SCAD 4.77 3.91 3.52 3.38 3.18 2.92
MC 4.08 3.73 3.48 3.04 2.99 2.68

of the stock subsets are small, the replication results of the LASSO and SCAD

are same. This is not surprising since the penalty functions ρ(t) of the LASSO

and SCAD are identical when 0 ≤ t ≤ 1 (see Figure 4.1).

4.4.4 South African heart disease data

As another real data example, we consider the South African heart disease data as

used in [42]. In this dataset, there are p = 9 variables and n = 462 observations.

The response is a binary variable which indicates the presence (y = 1) or absence

(y = 0) of myocardial infarction.

Figure 4.7 shows the approximated paths of the three methods. The `1 norm

of the coefficients forms the x-axis and the fitted coefficients β̂ are plotted against

the `1 norm. The data are processed so that each feature has mean zero and `2

norm
√

n. In each panel, the solutions are computed in 30000 steps (with the

step size ∆ = 0.01 and γ = 16). The SCAD paths and MC paths are almost

identical.

In the second part of this experiment, we add 100 noisy variables xj, j =

10, . . . , 109 to the original 9 variables x1, . . . , x9, so that the design is X =

(x1, . . . , x109). To generate the noisy variables Xno = (x10, . . . , x109), we first

generate an n × p∗ pool random matrix Xpl with each cell iid standard nor-

mal random variable. In this experiment, (n, p∗) = (462, 500). Still, Xpl is
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Figure 4.7: The solutions paths of the various penalized logistic regression models
for the South African heart disease data. The fitted coefficients are plotted against
the `1 norm. Still, the SCAD and MC paths are almost identical.

standardized so that each column has mean zero and `2 norm
√

n. The noisy

variables Xno is then generated by greedy sequential group sampling from Xpl.

Each sampling group consists of 10 most correlated vectors from the remaining

columns of Xpl. For the m-th group, we sample from the remaining 510 − 10m

columns one member as x10m−9 and 9 more to maximize the absolute correlation

|xjT x10m−9|/n, j = 10m− 8, . . . , 10m,m = 1, . . . , 10.

We apply logistic regression model with the `1, the SCAD and MC methods

to the heart disease data with noisy variables and exhibit their model selection

properties in Table 4.5. Our parameter here is again (γ, ∆) = (16, 0.01). When

the selection is only among the original variables, the three methods select all 9

variables in 25000 steps. With the presence of noisy variables, all three procedures

select variables 2, 3, 5 and 9 in the very beginning stage without the influence of

the noises. The LASSO selects variable 1 somewhat later and variables 4, 7 and 8

after lots of noisy variables, while the SCAD and MC select variable 7 somewhat

later and variables 1, 4 and 8 much later. These observations may imply that

variables 2, 3, 5 and 9 are important variables to explain their joint effect on the

prevalence of myocardial infarction. This selection properties are the same as the

result of stepwise logistic regression fit summarized in Table 4.3 in [42].
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Table 4.5: The selection order for the original 9 variables. The “w.n.” indicates
the selection with noises: 100 simulated noisy variables are added to the original
9 variables

Variables 1 2 3 4 5 6 7 8 9
LASSO 6 3 4 8 2 5 7 9 1

LASSO (w.n.) 21 3 4 90 2 6 42 60 1
SCAD 7 3 4 9 2 5 6 8 1

SCAD (w.n.) 46 3 4 88 2 5 27 49 1
MC 7 3 4 9 2 5 6 8 1

MC (w.n.) 45 3 4 87 2 5 26 48 1

Table 4.6: The selection order for the original 9 variables. The “w.n.” indicates
the selection with noises: 100 simulated noisy variables are added to the original
9 variables. Artificial responses yi are generated from bernoulli distributions with
probabilities P (yi = 1|xi) = exp(xT

i β̃)/(1 + exp(xT
i β̃)) where β̃j = β̂MLE

j , j =

1, . . . , 9 and β̃j = 0, j = 10, . . . , 109

Variables 1 2 3 4 5 6 7 8 9
LASSO 5 4 3 9 2 6 7 8 1

LASSO (w.n.) 5 4 3 75 2 7 17 1
SCAD 6 7 3 9 2 4 5 8 1

SCAD (w.n.) 12 16 3 42 2 4 9 1
MC 6 7 3 9 2 4 5 8 1

MC (w.n.) 11 15 3 42 2 4 8 1

In the third part of this experiment, we generate artificial responses yi from

bernoulli variables whose probabilities of success are P (yi = 1|xi) = exp(xT
i β̃)/(1+

exp(xT
i β̃)) where β̃j = β̂MLE

j , j = 1, . . . , 9 and β̃j = 0, j = 10, . . . , 109. The de-

sign matrix X = (x1, . . . , x109) is the same as that used in the second part of this

experiment. We run the same six procedures as listed in Table 4.6 to the artificial

data. We set (γ, ∆) = (16, 0.01). In the first 25000 steps, with the artificial data

and the presence of noisy variables, all the three procedures dismiss variable 8.

The LASSO select variables 1, 2, 3, 5 and 9 in the very beginning stage without

the influence of the noises, while the SCAD and MC achieve so for variables 3, 5,

6 and 9. The LASSO selects variable 7 somewhat later and variables 4 very late,

while the SCAD and MC select variable 1 and 2 somewhat later and variables 4

very late.
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4.5 Discussion

In this chapter, we present the GPLUS algorithm to compute the solution paths

of the concave-penalized negative log-likelihood. Generally speaking, the GPLUS

algorithm may be applied to any situation where the objective function ψ(β),

whether is likelihood or not, has continuous first two derivatives.

As pointed by [86], the `1 and concave penalties represent the two main

streams of penalization method for variable selection in the recent literature.

The `1 penalty results in convex minimization problem thus it is computational

more friendly, while the concave method is asymptotically unbiased and enjoys

the oracle properties. Applying the GPLUS algorithm to these penalty-based

variable selection methods, the MC and SCAD generate much better variable

selection accuracy than the LASSO in sparse linear models. In sparse binary

logistic regression models, concave penalization approach still shows considerable

improvement over the `1 method. The surprising aspect is that in section 4.4.1,

with proper choice of parameters of controlling the convexity of penalized least

squares, the MC shows great improvement over the SCAD. In logistic regression,

such improvement is much less prominent because of the loss of convexity.

We note that the “one-at-a-time” condition |C(k)
1 | = 1 holds almost every-

where. That means the boundary crossing never involves more than a single

index j with η
(k)
j 6= 0. Since one-at-a-time condition, perhaps with some jitter

of ∆, holds to all practical situations, we do not consider the many-at-a-time

problems in the GPLUS procedure. Instead, even if the one-at-a-time condition

does not hold, we admit that the crossings happen for all the critical indices in

C
(k)
1 .

The simulation and theoretical results in [78] show that the universal penalty

level λ = σ̂
√

2(log p)/n is nearly the optimal choice for variable selection in

linear model (4.28) with N(0, σ2) errors. When p < n, the mean residual squares

‖y−ũ‖2/{n−rank(X)} provides a good estimator of σ2 where ũ is the projection

of y to the linear span of the design vectors {xj, j ≤ p}. Similarly, in logistic
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regression, the optimal penalty level is

λ∗ =
( n∑

i=1

pi(1− pi)/n
)1/2√

2(log p)/n, (4.33)

where pi is the probability of success in (4.29). In our investigation, estimating

λ∗ based on the MLE of β does not work well since MLE of logistic regression

typically generates poor estimation even with moderately large p. We have also

tried to carry out estimation of β and variable selection simultaneously but gained

limited improvements in selection accuracy. We believe that a good estimation

of λ∗ should based on the direct estimation of the first factor on the right hand

side of (4.33) instead of β. With proper choice of penalty level and some general

regularity conditions, we expect that the asymptotic error bounds for variable

selection can be established. In this chapter we focus on the algorithm without

the discussion of theories.

4.6 Proof

Proof of Theorem 1. To state the proof, we will use some more explicit nota-

tion. Denote b̂(τ (j)) ≡ b(j) and s(b̂(τ (j)), τ (j)) ≡ s(j) where b(j) is the j-th turning

point computed by the GPLUS algorithm as in Section 3.2. For simplicity, denote

ρj ≡ ‖b̂(τ (j))− b(τ (j))‖.
By Taylor expansion and the GPLUS algorithm

b(τ (k0+1)) = b(τ (k0)) + (τ (k0+1) − τ (k0))s(b(τ (k0)), τ (k0))

+
1

2

( d

dτ
s(b(τ), τ)|τ=τ̃

)
(τ (k0+1) − τ (k0))2, (4.34)

b̂(τ (k0+1)) = b̂(τ (k0)) + (τ (k0+1) − τ (k0))s(b̂(τ (k0)), τ (k0)). (4.35)

where τ̃ = τ (k0) + θ(τ (k0+1) − τ (k0)) with some 0 < θ < 1. We choose ∆ small

enough such that ρk0 ≤ δ and (ρk0 +M2M3∆) exp(M1M3) ≤ δ. Comparing (4.34)
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with (4.35) and utilizing the conditions (ii), (iii) and (iv), we have

ρk0+1 ≤ ρk0 + ∆(k0+1)‖s(b̂(τ (k0+1)), τ (k0+1))− s(b(τ (k0)), τ (k0))‖+ M2(∆
(k0+1))2

≤ (1 + ∆(k0+1)M1)ρk0 + M2(∆
(k0+1))2

≤ (ρk0 + M2(∆
(k0+1))2) exp(M1∆

(k0+1))

≤ (ρk0 + M2M3∆) exp(M1M3) ≤ δ. (4.36)

Generally, when ρj ≤ δ for j = k0 + 1, . . . , k − 1, by induction we have

ρk ≤ M2(∆
(k))2 + ρk−1(1 + ∆(k)M1)

≤ M2(∆
(k))2 + M2(∆

(k−1))2(1 + ∆(k)M1) + ρk−2(1 + ∆(k−1)M1)(1 + ∆(k)M1)

≤ M2(∆
(k))2 + M2(∆

(k−1))2(1 + ∆(k)M1)

+M2(∆
(k−2))2(1 + ∆(k−1)M1)(1 + ∆(k)M1)

+ · · ·+ M2(∆
(k0+1))2

k∏

j=k0+2

(1 + ∆(j)M1) + ρk0

k∏

j=k0+1

(1 + ∆(j)M1)

≤ (ρk0 + M2

k∑

j=k0+1

(∆(j))2) exp(M1

k∑

j=k0+1

∆(j))

≤ (ρk0 + M2M3∆) exp(M1M3) ≤ δ,

Hence, we have proved that in the block η, when ∆ is small enough, the

fact that all the previous estimated turning points b̂(τ (j)), j = k0, . . . , k − 1 are

located in the δ-“tube” around the true paths b(τ (j)) will result in the next turning

point b̂(τ (k)) living in the δ-tube around b(τ (k)). Thus, our induction can move

on. Notice that (ρk0 + M2M3∆) exp(M1M3) → 0 as ∆ → 0, which implies that

ρk → 0 as ∆ → 0. This completes the proof. 2
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