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Prof. Wade Trappe and Prof. Roy Yates

This thesis examines the challenges of information-theoretic secret communication that

exploits the temporal and spatial variations of the wireless medium to improve secret com-

munication rates.

We first examine the secrecy capacity of a system consisting of independent parallel

channels with one transmitter, one intended receiver and one eavesdropper. We show that

the secrecy capacity of the system is the sum of the secrecy capacities of the individual

subchannels. We further derive the optimal power allocation strategy for a system of parallel

AWGN channels subject to a total power constraint, and also extend the results to random

fading channels with additive Gaussian noise.

We then study the achievable secrecy rate with Gaussian random codes for the situation

where the channel of the intended receiver is a constant AWGN channel, while the eaves-

dropper’s channel is fast Rayleigh fading with unknown realizations but known statistics

to the transmitter. The proposed method with artificial noise and bursting provides ways

to achieve positive secrecy rate even when Bob’s channel is worse than Eve’s channel on
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average.

We also examine the achievable secrecy rate for a multiple antenna system, and the

optimal input structure needed to achieve this rate. For the multiple input single output

case, an analytical solution is derived. Multiple antenna systems provide extra degrees of

freedom to the transmitter so that a beamforming-like approach can be used to provide

advantage to the intended receiver against the eavesdropper.

Next we derive a secrecy capacity outer bound region for a class of one-sided interference

channels. The outer bound is shown to be tight for a class of binary deterministic one-sided

interference channels, and can be achieved within one bit for some Gaussian one-sided

interference channels.

Finally, as Gaussian random codes are impractical, we evaluate achievable secrecy rates

with discrete signaling. We observe that with discrete signaling, there exists an optimal

power that maximizes the achievable secrecy rate. For the AWGN channel, larger con-

stellation is always better. While for fading channel, the optimal constellation size varies

with the power constraint, and discrete signaling can perform better than random Gaussian

coding.
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Chapter 1

Introduction

Ensuring the confidentiality of communications is fundamental to securing any network.

This requirement becomes particularly important for wireless systems, where eavesdropping

is facilitated by the broadcast nature of the wireless medium. Rather than physically guard

the communication medium to provide confidentiality, the traditional approach is to employ

cryptographic algorithms, known as ciphers, that suitably obfuscate the communication

between two entities so that only they can correctly interpret the messages, while all other

entities fail to glean any useful information.

The question of how much information is too much to leak to an eavesdropping adver-

sary is at the heart of modern cryptography, and two important schools of thought have

emerged: information-theoretic and complexity-based security. The basics of information-

theoretic encryption was first formulated by Shannon in 1949 [69], where the adversary is

assumed to have unlimited computational resources and the cipher objective is to ensure

that absolutely no information is released to the adversary. Thus, should the adversary

observe an encrypted message (the ciphertext), the adversary is no better off than just

randomly guessing the original message (the plaintext). Complexity-based cryptography,

on the other hand, discards the notion that the adversary has infinite computing capabili-

ties, and instead assumes the adversary has limitations on how much computation can be

performed. Now, when an adversary witnesses a ciphertext, the necessary computations
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render it practically infeasible for the adversary to deduce the corresponding plaintext.

Common to both approaches, encryption algorithms are characterized by the existence of

some form of information shared between the legitimate entities. This information, which is

often colloquially referred to as a key, parameterizes specific realizations of the encryption

service and must be kept private. This shared secret information is a further means to

differentiate between these two forms of security. On the one hand, Shannon’s fundamental

result revealed the limits of information-theoretic security: a perfectly secret cipher requires

that the legitimate participants share an amount of secret information (the key) that is

as large as the message they wish to exchange securely. While, on the other hand, for

complexity-based cryptography, the size of the key that must be shared can be significantly

shorter than the size of the message or messages that will be exchanged.

This might suggest to some that complexity-based confidentiality is superior, while oth-

ers might well draw the opposite conclusion. Our view is that the real issue in achieving

confidentiality boils down to ensuring that the two communicating parties share the same,

common key. Once this secret information is shared, then using an established encryption

algorithm, such as AES [79], is possible. Unfortunately, establishing encryption keys is a

problem that has plagued security systems for a long time, and inevitably some variation

of the chicken-and-egg problem arises. One promising technique of modern cryptography

that partially addresses this challenge is public key cryptography, where every entity has

two keys: a private key that is closely guarded, and a public key that is publicly an-

nounced [59, 79]. An individual may securely send another entity a message by using that

entity’s public key to encrypt the message, which can only be decrypted using the corre-

sponding private key. The asymmetry inherent in this protocol allows for one to use these

messages to establish and distribute other keys, known as session keys, that can provide



3

confidentiality to services requiring the processing of bulk amounts of data.

Unfortunately, there are several well-known problems with this formulation of public

key cryptography. First, public key cryptography is reliant on the validity of unproven

complexity assumptions, such as the difficulty of factoring or taking discrete logarithms.

However, even if one accepts the intractability of such one-way primitives [4], there is still

no guarantee as to the authenticity of the public key – in short, the public key might or

might not belong to whom you think. The customary solution to this rather severe obstacle

is the use of trusted third parties, such as the government or certificate authorities, e.g.

as in X.509 [3], which are capable of securely distributing public keys. Again, we have the

chicken-and-egg problem, plus now we face issues regarding the availability of these external

entities.

Ideally, rather than require the assistance of trusted third parties, what we would like is

for each communicating pair to take advantage of some physical resource that can facilitate

the sharing of a key. For example, one such physical property that has received considerable

attention over the past few decades is the quantum channel [10,83]. More recently, however,

it has been realized that the wireless channel itself is another such resource for sharing

keys [25, 27, 33, 54]. In fact, the wireless channel provides two distinct strategies for key

formation: extraction and dissemination. Extraction techniques utilize the fact that in

rich, multipath environments the reciprocal radio propagation characteristics between two

entities are unique and decorrelate quickly with distance. This suggests that the wireless

channel itself can be used as a source of common randomness for establishing keys for

encryption without needing the involvement of trusted third parties. Several strategies have

been proposed for extracting secret information from such common randomness [5, 16, 54].

Dissemination strategies, however, were originally cast in the context of the wiretap channel
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[84], and take a different approach to secrecy. In dissemination, the communicating entity

seeks to take advantage of mismatch between the primary channel and any adversarial

channel in order to secretly convey shared bits. It is this second mode of sharing keys via

the wireless channel that is the focus of this thesis.

The main scenario of interest to us is illustrated in Figure 1.1. Alice wants to secretly

transmit a secret message to Bob utilizing the public wireless transmission medium. This

corresponds to the dissemination mode mentioned earlier. Since the transmission medium

is open, a passive eavesdropper Eve can overhear the transmission and guess what Alice is

sending. Due to the complexity of the wireless environment, the channels between Alice-

Bob and Alice-Eve are probably different. This difference can be exploited by proper coding

techniques so that such secret communication is possible. The main focus of this thesis is to

study the rate of such secret communication under various channel scenarios. We note that

this rate can be very low, especially when Eve has a very good channel, such as may arise

when Eve is closer to the transmitter than Bob. However, we may only need this process

to build a key for subsequent communication with computationally efficient symmetric key

algorithms, so even a low secrecy dissemination rate is still very valuable.

The rate at which bits can be securely shared was originally examined in [15,84], where

the notion of secrecy capacity was introduced to describe the rate (in bits per channel

use) that a sender could communicate in an information-theoretically secure manner to

an intended receiver in the presence of an eavesdropper. These early results on secrecy

capacity were rather pessimistic in the sense that the underlying requirements were quite

restrictive from a practical point of view. In particular, using the channel to communicate

a secret to an intended receiver required the channel to the intended receiver to be better

than the channel to the eavesdropper. In practical wireless settings, distance-dependent
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Alice


Bob


Eve


Figure 1.1: The wireless broadcast scenario.

attenuation and spatial variability of the channel make it unlikely that one can always meet

the requirement that the intended channel is better.

The assumptions underlying this pessimism, however, do not reflect the design of modern

communications systems, and in particular do not exploit the large number of degrees of

freedom available to a modern wireless system. Notably, in order to achieve the performance

of modern wireless systems, it is necessary to shift how we looked at the spectral, temporal,

and spatial properties of the wireless environment. For example, even if channels are time-

invariant, it is possible to use multiple subcarriers in order to provide a large number of

parallel subchannels, as is utilized in OFDM transceivers, and the underlying frequency

selectivity induced by multipath may provide a diversity advantage [80]. Further, even in

a single narrowband subchannel, temporal variations due to fading can be exploited rather

than avoided by transmitting during periods of good channel conditions, thereby resulting in

enhanced performance [22]. Lastly, the dimensionality of the wireless system can be further

expanded through the use of multiple antennas, as has been illustrated in recent MIMO

communication systems [19, 76], in which multiple antennas improve the communication
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rates significantly. Overall, the past decade has seen a large and very successful effort by

the wireless research community to exploit these degrees of freedom. Both diversity and

capacity enhancing mechanisms have been proposed, analyzed and practically evaluated,

and new capacity definitions have been proposed to characterize communication over time-

varying channels.

Recently there has been a flurry of activity targeted at applying these strategies to

the problem of enhancing the secrecy of communication between wireless devices. This

literature is generally split into several different thrusts. There is a broad collection of

work focused on establishing the secrecy capacity for a three party communication scenario

(transmitter, receiver and eavesdropper) under varying assumptions on knowledge of the

fading channel states [8,14,23,42,43,47,64]. Variations of the secrecy problem for broadcast

and relay channels have been discussed in [32,35], while the achievable secrecy rate regions

and outer bounds for multiple access channels with various secrecy requirements have been

studied in [45,46,49,50,73,74].

The literature shows that there are many challenging directions for wireless secret com-

munication that have yet to be explored. The overall objective of this thesis is to examine

the challenges of information-theoretic secure communication that utilizes the temporal

variations and spatial diversity advantages of the wireless medium to improve secret com-

munication rates in presence of a passive eavesdropper. This thesis begins with a background

review of information-theoretic secret communications over wireless channels in Chapter 2.

The secrecy capacity of a system consisting of independent parallel channels is examined in

Chapter 3. The secrecy capacity of the system is shown to be simply the summation of the

secrecy capacities of the individual channels. The optimal power allocation strategy for a

system with parallel AWGN channels subject to a total power constraint is derived, and the
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result is extended to random fading channels with additive Gaussian noise. Numerical eval-

uation shows that the diversity, either in frequency or in time, improves the rate of secret

communication and allows secret communication even when the eavesdropper’s channel is

on average better than the legitimate party’s channels.

Next, in Chapter 4, the achievable secrecy rate with Gaussian random codes is studied

for the situation where the main channel is a constant AWGN channel, and Eve’s channel is

fast Rayleigh fading with unknown realizations but known statistics to the transmitter. The

proposed method with artificial noise and bursting provides an approach to achieve positive

secrecy rate even when Bob’s channel is worse than Eve’s channel on average. Then, in

Chapter 5, we examine the achievable secrecy rate for a multiple antenna system, and the

optimal input structure needed to achieve this rate. For the general multiple input multiple

(MIMO) output case, the problem is not convex and is hard to solve. However, for the

multiple input single output (MISO) case, the problem can be reformulated and solved.

An analytical solution is derived for this simple case and the implication of the results are

discussed. Multiple antennas provide extra degrees of freedom to the transmitter so that

a beamforming-like approach can be used to provide advantage to the intended receiver

against the eavesdropper.

In Chapter 6, we derive an outer bound of the secrecy capacity region for a class of one-

sided interference channels. The outer bound is shown to be tight for a class of deterministic

channels, and can be achieved within one bit for some Gaussian one-sided interference

channels. Next, in Chapter 7, we evaluate the effect of discrete signaling on the achievable

secrecy rate since the Gaussian random codes employed in information theoretical analysis

are not practical for use in a real system. We observe that, with discrete signaling, there

always exists an optimal power that maximizes the achievable secrecy rate. Extra power



8

will only benefit the eavesdropper and hurt the secrecy. For the AWGN channel, larger

constellations are always better. While for the fading channel, the optimal constellation size

varies with the power constraint, and discrete signaling can perform better than random

Gaussian coding. Finally, some discussion on future work is presented in Chapter 8.



9

Chapter 2

Background

In an information-theoretic secret communication system, a sender (Alice) wishes to reliably

communicate a secret S to an intended receiver (Bob) in the presence of an eavesdropper

(Eve). The secret S, a random integer from the set
{

1, 2, . . . , 2nR
}

, is transmitted in

n channel uses. In this case, the secret has entropy H(S) = nR bits and the secrecy

communication rate is

R = H(S)/n

bits per channel use. In these n channel uses, Alice transmits the coded signal

Xn = X1, . . . ,Xn,

Bob receives the channel output

Y n = Y1, . . . , Yn

and decodes Ŝ with error probability

Pe = Pr
[

S 6= Ŝ
]

.

From the reliable communication point of view, this error probability should be made as

close to zero as possible with a large enough codeword length n. After Eve overhears the

output

Zn = Z1, . . . , Zn
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, her residual uncertainty regarding the secret message S is given by the conditional entropy

H(S|Zn). The mutual information between S and Zn is

I(S;Zn) = H(S) −H(S|Zn), (2.1)

so the closer the residual uncertainty is to the original message entropy, the more confidential

the message is. This secrecy level is generally expressed as a normalized equivocation rate

∆ = H(S|Zn)/H(S). From the perspective of both reliable and confidential communication,

the system performance depends on both the communication rate R and the equivocation

rate ∆. In particular, the rate tuple (R0,∆0) is achievable if for any ǫ > 0 there exists a

rate R encoder and decoder with equivocation rate ∆ such that for some n,

Pe ≤ ǫ, R ≥ R0 − ǫ, ∆ ≥ ∆0 − ǫ. (2.2)

In this thesis, we focus on the case ∆0 = 1, corresponding to the case where Eve’s informa-

tion per secret information bit regarding the secret S gained by the observation Zn is given

by

I(S;Zn) = H(S) −H(S|Zn) = (1 − ∆)H(S) ≤ ǫH(S). (2.3)

That is, Eve learns arbitrarily little information regarding the secret S.

This model of information-theoretic secret communication started with Wyner’s analysis

of the discrete memoryless wiretap channel [84] in 1975. In Wyner’s system, Eve hears a

degraded version of Bob’s received signal in that the channels are defined by a Markov

chain X → Y → Z. Hence, Eve always has a worse channel than Bob no matter what the

input is. The objective is to find an encoding and decoding scheme to maximize both the

equivocation at the wire-tapper and the transmission rate of the main system. In this paper,

Wyner found the trade-off curve between the equivocation ∆ and the transmission rate R.
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Figure 2.1: (a) Wiretap channel studied by Wyner [84]; (b) Broadcast channel studied by Csiszár
and Körner [15]. The most important difference between the two is that in the wiretap channel
model, Eve’s received signal is a degraded version of Bob’s, while in the broadcast channel model,
this degradation assumption is not assumed. The degradation has a direct effect on the optimal
coding strategy: with degradation, Alice only needs to encode directly in channel symbolsX ; without
degradation, Alice might need to use a virtual channel from an auxiliary random variable V to X
and encode in term of V to achieve secrecy capacity.

He defined the secrecy capacity Cs as the maximum rate R such that the uncertainty at the

wiretapper is arbitrarily close to the entropy of the source. Wyner’s results showed that

there exists a Cs > 0 such that reliable transmission at a rate up to Cs in approximately

perfect secrecy is possible for the wire-tap channel. The secrecy capacity is given by

Cs = max
X

I(X;Y ) − I(X;Z), (2.4)

where the notation maxX for the random variable X is a shorthand for maximization over

the choice of PMF PX (x) when X is discrete or the PDF fX (x) when X is continuous.

This information-theoretic secret communication framework was generalized by Csiszár

and Körner [15] in 1978 to a broadcast system where the Markov condition does not need

to hold (of course, Wyner’s wiretap channel is a special case of a broadcast system). The
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differences between the two channel models are illustrated in Figure 2.1. In Csiszár and

Körner’s model, Alice transmits confidential messages to Bob at rate R as well as common

messages to both Bob and Eve at rate R0. The more important distinction between the two

is that in the wiretap channel model, Eve’s received signal is a degraded version of Bob’s,

while in the broadcast channel model, this degradation relationship is not assumed. The

degradation has a direct effect on the optimal coding strategy: with degradation, Alice only

needs to encode directly in channel symbols X; while without degradation, Alice might need

to use a virtual channel from an auxiliary random variable V to X and encode in terms of

V to achieve secrecy capacity.

The equivocation rate at Eve about the private message is Re. Perfect secrecy is

achieved when Re = R. Csiszar and Korner derived the region for all achievable rate

triples (R,Re, R0). When the rate of common messages is R0 = 0, [15] defined the secrecy

capacity Cs as the maximum rate R, such that the tuple (R,Re = R,R0 = 0) is achievable

and showed that

Cs = max
V →X→Y Z

I(V ;Y ) − I(V ;Z). (2.5)

In this case, given the discrete memoryless channel (DMC) PY Z|X , secrecy capacity is

achieved by maximizing over all joint distributions PV,X (v, x) such that the Markov chain

V → X → Y Z holds.

In terms of coding realization, the underlying techniques involve stochastic encoding and

joint typical decoding. The codebook used is illustrated in Figure 2.2, where each box in

the grid represents a length n codeword vector, denoted as V n. V n is randomly generated

as a sequence of iid symbols according to a probability distribution PV (v). For each secret

message w, there is a total number of 2nR′
codewords, corresponding to the codewords

in the w-th column in the codebook, where R′ is a properly chosen parameter as we will
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Figure 2.2: Codebook used to realize the perfect secret communication in Csiszár and Körner’s
paper [15]. Each box in the grid represents a length n codeword vector, denoted as V n. V n is
randomly generated as a sequence of iid symbols according to a probability distribution PV (v). For
each secret message w, there is a total number of 2nR

′

codewords, corresponding to the codewords in
the w-th column in the codebook, where R′ is a properly chosen parameter. Thus, for 2nR messages,
the codebook has 2nR columns with a total number of 2n(R+R

′) codewords.

see later. Thus, for 2nR messages, the codebook has 2nR columns with a total number of

2n(R+R′) codewords.

To transmit a message with index w, the encoder first randomly picks a codeword V n

among its 2nR′
codewords in the w-th column, then maps it to the transmitted codes Xn

using a predefined mapping function from V to X. After the transmitted signal passes

through the channel, Bob receives Y n and Eve receives Zn. To decode the message, Bob

finds a V̂ n from the entire codebook that’s jointly typical with Y n. Then he determines ŵ

to be the column index of V̂ n. When the size of the codebook satisfies

2n(R+R′) ≤ 2nI(V ;Y ), (2.6)

it can be shown that with a probability close to 1, only the transmitted codeword is jointly

typical with Y n, so the error probability P (ŵ 6= w) can be made arbitrarily small. On the

other hand, to ensure the full equivocation of Eve, i.e. Eve has minimal knowledge of S
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given her observation Zn, the column size 2nR′
should satisfy

2nR′

> 2nI(V ;Z), (2.7)

so that there exists a codeword in every column that is jointly typical with Zn. Thus, a

decoder using joint typicality cannot give the eavesdopper any information on the message

Alice sent. Combining the above two conditions, we get the achievable rate

R ≤ I(V ;Y ) − I(V ;Z).

The maximum achievable rate is obtained by maximizing over the choices of V and the

preprocessing channel from V to X. Note that although the preprocessing V → X channel

reduces the mutual information delivered to Bob, i.e. I(V ;Y ) ≤ I(X;Y ), it reduces the

mutual information delivered to Eve as well. So, it is possible that the auxiliary V and the

auxiliary V → X channel creates more confusion for Eve than that for Bob. In other words,

the loss on mutual information suffered by Eve is more severe than that suffered by Bob,

and hence, the difference I(V ;Y ) − I(V ;Z) is increased. The above is only an intuitive

sketch of the achievability proof. A rigorous proof of achievability and the converse can be

found in [15].

To achieve secret transmission, both papers [15, 84] require the channel between Alice

and Bob to be better than the channel between Alice and Eve, which is a hard condition

to meet in practice. In 1993, Maurer [55] showed that secret key agreement between Alice

and Bob can be achieved even when the channel between Alice and Bob is worse than

the channel between Alice and Eve, as long as these two channels are different and public

discussion is allowed. Bounds on the secret key rate were derived, and several examples

of possible ways to realize secret key agreement were discussed. In these examples, public

discussions help to build a virtual channel between Alice and Bob that is less noisy than
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the virtual channel between Alice and Eve. In this thesis, we do not consider this scenario.

Secrecy capacity with feedback was considered in several recent works [36,37,71].

In subsequent work, Maurer and Wolf [56] showed that the secrecy condition (2.3) em-

ployed by Wyner and by Csiszár and Körner could be strengthened considerably through

a technique called privacy amplification without reducing the secret capacity Cs. In this

thesis, we follow the traditional information-theoretic definitions of secrecy with a focus on

the optimization of Cs while keeping in mind that an actual system would likely employ

privacy amplification [9].

In theory, (2.5) is a complete characterization of the secrecy capacity Cs; however, many

questions remain unanswered. For example, there are no systematic methods to optimize

over the auxiliary input V and the PX|V channel. It was shown that when channels satisfy

the less noisy or more capable conditions, defined as follows following [34], V and the PX|V

are not necessary.

Definition 1 (more capable) The DMC PY |X is more capable than PZ|X if I(X;Y ) −

I(X;Z) ≥ 0 for all inputs X.

Definition 2 (less noisy) The DMC PY |X is less noisy than PZ|X if I(U ;Y )−I(U ;Z) ≥ 0

for all inputs U and DMCs PX|U .

It is known that less noisy implies more capable. However, for channels that do not

satisfy the more capable conditions, it is not clear whether an auxiliary random variable

and a preprocessing channel are beneficial to secret communication or not. Yet the auxiliary

is often essential; an example of how the auxiliary can reshape the communication channel

to enhance the secrecy rate is described below.

Example: Binary Asymmetric Channel
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Figure 2.3: An example of binary asymmetric channel between Alice, Bob and Eve.

Consider the binary asymmetric channel shown in Figure 2.3. The crossover probabilities for

Alice-Bob channel is P (Y = 1|X = 0) = 0, and P (Y = 0|X = 1) = δ. The Alice-Eve channel has the

opposite crossover probabilities, i.e. P (Z = 1|X = 0) = δ, and P (Z = 0|X = 1) = 0. Without loss

of generality, we assume δ ≤ 1/2. With one crossover probability equaling zero, the X → Y channel

and the X → Z channel are commonly referred to as Z-channels because the channel transition

diagram resembles the letter “Z”. However, to avoid confusion with the X → Z channel of Eve, we

refer to these as “Z” channels, where “Z” refers to the shape of the transition diagram, as distinct

from Eve’s receiver output Z.

Let h(p) denotes the binary entropy function, i.e.

h(p) = −p log(p) − (1 − p) log(1 − p).

Also let P (X = 1) = p. Then, P (Y = 1) = p(1 − δ), and

I(X ;Y ) = H(Y ) −H(Y |X) = h(p(1 − δ)) − ph(δ).

Similarly, P (Z = 1) = p+ (1 − p)δ, and

I(X ;Z) = H(Z) −H(Z|X) = h(p+ (1 − p)δ) − (1 − p)h(δ).
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Figure 2.4: (a) I(X;Y ), I(X;Z) and (b) I(X;Y ) − I(X;Z) for the binary asymmetric
channel X → Y Z with δ = 0.2.

Therefore,

I(X ;Y ) − I(X ;Z) = h(p(1 − δ)) − ph(δ) − h(p+ (1 − p)δ) + (1 − p)h(δ).

The expression is a function of p, and is plotted in Figure 2.4, for δ = 0.2. Since I(X ;Y ) is not

always greater than I(X ;Z), this channel does not satisfy the more capable condition. The technical

question is can we find a joint distribution P (V,X) = P (V )P (X |V ) such that

max
V →X→Y Z

[I(V ;Y ) − I(V ;Z)] > max
X→Y Z

[I(X ;Y ) − I(X ;Z)]?

Let us make a binary “Z” channel from V to X as shown in Figure 2.5(a), with the crossover

probability P (X = 0|V = 1) = γ, and P (X = 1|V = 0) = 0. Then, the resulting V → Y channel

has the crossover probabilities

P (Y = 1|V = 0) = 0

P (Y = 0|V = 1) = γ + (1 − γ)δ = δ + γ(1 − δ),

and the V → Z channel has

P (Z = 1|V = 0) = δ

P (Z = 0|V = 1) = γ(1 − δ).
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(a) (b)

Figure 2.5: (a) The virtual V → X preprocessing “Z” channel. (b) The effective V → Y Z
channel after adding the virtual “Z” channel.

The new binary asymmetric channels between V and Y Z with different crossover probabilities are

illustrated in Figure 2.5(b).

Note that the additional “Z” channel renders the crossover probability from V = 1 to Y = 0

greater than the crossover probability from X = 1 to Y = 0, as well as the crossover probability

from V = 1 to Z = 0 greater than that from X = 1 to Z = 0. Since X = 1 is the better symbol

in terms of decoding for Eve, but the worse symbol for Bob, the additional “Z” channel effectively

degrades Eve’s channel for its best symbol at the price of hurting Bob’s channel for its worst symbol.

Let P (V = 1) = q. With the virtual V → X channel, we have

P (Y = 1) = q(1 − γ)(1 − δ),

and

I(V ;Y ) = H(Y ) −H(Y |X) = h(q(1 − γ)(1 − δ)) − qh((1 − γ)(1 − δ)).

Similarly,

P (Z = 1) = q(1 − γ(1 − δ)) + (1 − q)δ,

and

I(V ;Z) = H(Z) −H(Z|X) = h(q(1 − γ(1 − δ)) + (1 − q)δ) − (1 − q)h(δ) − qh(γ(1 − δ)).
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Figure 2.7: (a) I(V ;Y ), I(V ;Z) and the corresponding I(X;Y ), I(X;Z), (b) I(V ;Y ) −
I(V ;Z) and the corresponding I(X;Y ) − I(X;Z) for the binary asymmetric channel V →
X → Y Z, with δ = 0.2 and γ = 0.231. Introducing a virtual channel from V to X enhances
the achievable secrecy rate.

Now to maximize the achievable secrecy rate with the help of the auxiliary channel V → X , we

would like to solve the following optimization problem:

maximize I(V ;Y ) − I(V ;Z)

subject to 0 ≤ q ≤ 1, 0 ≤ γ ≤ 1.

With the same setting of δ = 0.2, we can plot the objective function I(V ;Y )− I(V ;Z) as a function
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of q and the crossover probability γ as in Figure 2.6. Unfortunately, the objective function is not

convex with respect to the two parameters. Nevertheless, the maximum value is obtained at a

non-zero γ, which indicates that the virtual V → X channel improves the achievable secrecy rate.

Choosing γ = 0.231, which produces the largest I(V ;Y ) − I(V ;Z), we can plot I(V ;Y ) and

I(V ;Z) as a function of q = P (V = 1) in Figure 2.7(a) along with the corresponding I(X ;Y ) and

I(X ;Z). Since varying q from 0 to 1 also changes P (X = 1) from 0 to 1 − γ, I(X ;Y ) and I(X ;Z)

have a similar shape as before. We then plot I(V ;Y ) − I(V ;Z) and I(X ;Y ) − I(X ;Z) together

in Figure 2.7b. Although I(V ;Y ) < I(X ;Y ) and I(V ;Z) < I(X ;Z), max[I(V ;Y ) − I(V ;Z)] is

greater than max[I(X ;Y )−I(X ;Z)]. In other words, introducing V with joint probability P (V,X) =

P (V )P (X |V ) using the above “Z” channel allows a larger secrecy rate.

We note that although one can add a non-zero crossover probability from V = 0 to X = 1 in the

virtual channel, this addition would only hurt the achievable secrecy rate. Intuitively, such addition

hurts Bob’s channel for its best symbol but Eve’s channel for its worst symbol, so that the loss on

mutual information is greater for Bob that that for Eve. On the other hand, this “Z” channel is just

one possible strategy that allows the secrecy rate to be higher than max[I(X ;Y ) − I(X ;Z)], and

may not be the best one.

As mentioned earlier, it was shown in [15] that if Bob’s channel is more capable than

Eve’s channel, the secrecy rate Cs is achieved with V = X. Thus, when Bob has a more

capable channel,

Cs = max
X

I(X;Y ) − I(X;Z). (2.8)

Nevertheless, it remains to find the optimal input X that achieves Cs for common channels.

A fundamental difficulty is that I(X;Y ) and I(X;Z) are both concave functions in the

input distribution PX . Thus the difference I(X;Y )−I(X;Z) is, in general, neither concave

nor convex in PX and may have multiple local maxima. In this case, convex optimization

procedures are not guaranteed to find the optimal input distribution [11]. We do note that
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the case that Bob’s channel is less noisy than Eve’s is an exception since van Dijk [17]

has shown that PY |X is less noisy than PZ|X if and only if I(X;Y ) − I(X;Z) is a concave

function of PX .

The memoryless discrete-time AWGN channel is an important example for which the

secrecy capacity is known. In this model, at time t, Alice’s transmitted signal is Xt and the

received signals of Bob and Eve are

Yt =
√
bXt +W1,t, Zt =

√
gXt +W2,t. (2.9)

The independent additive noisesWi,t are assumed to have unit variance and b and g represent

real link gains normalized by the power spectral density of the additive noise. When b <

g, we can construct an equivalent system in which Yt and Zt have the same conditional

marginal distributions but Bob’s signal Yt is a degraded version of Zt. It follows that

I(X;Y ) − I(X;Z) ≤ 0 for all inputs X. In this case, the secrecy capacity is zero, which

is achieved by any input X with entropy H(X) = 0. When b > g, Bob’s channel is more

capable, and the secrecy capacity is given by (2.8). Here the complication is that while

I(X;Y ) is maximized under an average power constraint by a Gaussian input X so too

is I(X;Z) maximized. Nevertheless, Leung-Yan-Cheong and Hellman [38] verified that a

Gaussian input X also maximizes the secret capacity Cs. In this case, I(X;Y ) and I(X;Z)

are given by AWGN Shannon capacity. Thus, for a real channel, an average power P for

the input X yields a secrecy capacity of

CAWGN
s (b, g, P ) =

1

2

(

log (1 + bP ) − log (1 + gP )
)+
, (2.10)

where (x)+ = max(x, 0). This result is subject to a quite negative interpretation. First,

b ≤ g yields zero secrecy capacity. Second, even if Bob’s channel is more capable, the

capacity is power limited; for arbitrarily large power P , the capacity is upper bounded by
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(1/2) log(b/g), which may be quite small.

The assumptions underlying this pessimism, however, do not reflect the design of mod-

ern communications systems, and in particular do not exploit the large number of degrees of

freedom available to a modern wireless system. Due to fading and shadowing, channel gains

vary significantly across space, frequency and time, and these variations can be exploited

for secret communication. For example, it is possible to use multiple subcarriers to provide

a large number of parallel subchannels, as is utilized in OFDM transceivers, and the under-

lying frequency selectivity induced by multipath may provide a diversity advantage [80].

On the other hand, the time-varying wireless channel provides an opportunity for secret

communication. For a wiretap channel with additive white Gaussian interference known

non-causally to the transmitter, a perfect-secrecy-achieving coding strategy (which is opti-

mal in certain situations) was proposed in [60]. A rate equivocation achievable region for

the discrete memoryless wiretap channel with side information was given in [14]. When

the broadcast channels are fading, Bob’s channel can be better than Eve’s at one time but

worse at another. Outage calculations for Rayleigh fading channels were performed in [8].

When the fading channel states are known to all parties, the secrecy capacity was derived

in [23, 42, 47] and is achievable with Gaussian random codes with optimal power adapta-

tion. When the eavesdropper’s channel is unknown but is slow block fading, the secrecy

capacity of the channel is derived in [23]. However, an important assumption there is that

Eve’s channel is constant during each fading block. In [43], we considered the scenario that

the Alice→Bob channel is AWGN, while the Alice→Eve channel is Rayleigh fading whose

channel statistics (instead of the exact channel realizations) are known to Alice. In partic-

ular, Eve’s channel randomly changes over each symbol time, or equivalently, the codeword

is long enough to see an ergodic realization of Eve’s channels. Strategies with Gaussian
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random coding, additive artificial noise and bursting were discussed. The work showed that

a positive secrecy rate is always achievable regardless of whether Bob’s channel is worse

than Eve’s channel on average or not.

Multiple-input Multiple-output (MIMO) systems have been shown to improve the com-

munication rate due to its multiplexing gain. MIMO can facilitate secret communication as

well. The secret communication problem for MIMO systems was studied in [26], where it

was shown that proper exploitation of space-time diversity at the transmitter can enhance

information security and information hiding capabilities. In particular, for information

security, Hero showed that when the eavesdropper is uninformed about his channel, the

transmitter can enforce a zero information rate to the eavesdropper while delivering a pos-

itive information rate to the intended receiver by restricting the space-time modulation to

a class of complex transmit matrices whose spatial inner product is a constant matrix. The

channel capacity under this perfect secrecy condition, when both the transmitter and the

intended receiver have channel information, was derived. The secrecy capacity of single-

input multiple-output channel under Gaussian noise was studied in [64] by transforming

the channel into scalar wiretap channels. Negi et al. [61, 62] studied secrecy capacity with

MIMO channels when artificial noise is injected. They showed that injecting artificial noise

in the nullspace of the intended receiver’s channel can degrade Eve’s channel and allow pos-

itive secrecy capacity even when Eve’s channel was better before artificial noise injection.

Practical schemes for secret transmission with MIMO using randomization were proposed

in [39,40]. In [41], we derived an achievable secrecy rate for MISO systems. A similar result

was derived independently in [67]. Results for MIMO channel with two transmit antennas,

two receive antennas and one eavesdropping antenna were presented in [66]. The secrecy

capacity for the general MIMO systems was derived later by [31, 53, 63], and the capacity
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for MISO systems coincides with the achievable rate we derived earlier.

Secret communication amongst multiple users has also been an active research field in

recent years. In [48], the fading broadcast channel with confidential messages was investi-

gated, where a source node has common information for two receivers (receivers 1 and 2),

and has confidential information intended only for receiver 1. The confidential information

needs to be kept as secret as possible from receiver 2. The broadcast channel from the

source node to receivers 1 and 2 is corrupted by multiplicative fading gain coefficients in

addition to additive Gaussian noise terms. The channel state information (CSI) is assumed

to be known at both the transmitter and the receivers. The secret capacity region was

established for parallel broadcast channels and Gaussian fading channels. The problem of

broadcasting information to one or more receivers in the presence of potential eavesdroppers

was considered in [30,32]. The sender might broadcast either a common secret message or

independent secret messages to the intended receivers. Upper and lower bounds on the

secrecy rate were derived for both cases and the results were also extended to fading chan-

nels. The Gaussian broadcast channel with multiple transmitting antennas was studied

in [52], where the secrecy capacity region was achieved with dirty paper coding. Besides

the broadcast channel, multiple access channels also have received much attention. The

achievable secrecy rate regions and outer bounds for multiple access channels with various

secrecy requirements were studied in [45,46,49,50,73,74].

User cooperation to facilitate secret communication was first proposed in [35], where

a four-terminal relay eavesdropper channel was introduced. The achievable rate equivoca-

tion region with several cooperation strategies, including decode-and-forward, amplify-and-

forward and noise-forward, were discussed and an outer bound on the optimal equivocation

region was derived. It was shown that the relay was able to facilitate secret communications
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while being totally ignorant of the transmitted messages. In [72], using an independent help-

ing interferer to facilitate the secret communication was proposed. A Gaussian example in

which the interferer has a better channel to the intended receiver than to the eavesdropper

was considered. The interferer can send a (random) codeword at a rate that ensures that it

can be decoded and subtracted from the received signal by the intended receiver but cannot

be decoded by the eavesdropper. Hence, only the eavesdropper is interfered with and the

secrecy level of the confidential message is increased.

It is natural to extend secret communication research to the network scenario, which

is often modeled using an interference channel. In interference channel models, multiple

transmitter-receiver pairs co-exist in the space. Due to the interference nature of the mul-

tiple transmissions, the secrecy capacity depends on the strategy used by each user. Trans-

missions by one user can create interference that enhances the secrecy afforded to the other

user. The secrecy capacity of the two-user interference channels was studied in [49,51]. The

concept of robust secrecy capacity was proposed for the interference channel in [85], where

robust means secrecy is not harmed by unilateral strategy deviations by the other users,

given that the alternative strategy chosen by the other users still guarantee the reliability

of all transmissions and secrecy of their own messages. Secrecy without this robust require-

ment is called semi-secrecy. However, the robust secrecy region for the general interference

channel is still elusive. We studied the semi-secrecy capacity region for a class of one-sided

interference channels in [44]. The derived secrecy capacity outer bound region was shown

to be tight for a class of binary deterministic one-sided channels, and is achievable within

a constant gap for a class of Gaussian one-sided channels. More details on these works are

provided in Chapter 6.
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Chapter 3

Secrecy Capacity of Independent Parallel Channels

Independent parallel channels refer to a class of channels that can be decomposed into mul-

tiple independent components. For example, a wide-band frequency selective channel can be

decomposed into a number of narrow-band channels, each with a flat frequency magnitude

response, and the noise across the channels are independent due to the white noise assump-

tion. This decomposition is the basis of the orthogonal frequency division system (OFDM)

communication systems. Mathematically, a system with independent parallel channels has

M inputs, denoted as

XM = X1, . . . ,XM

and M outputs, denoted as

YM = Y1, . . . , YM .

Moreover, the transition probability can be written as

P (YM |XM ) =

M
∏

m=1

P (Ym|Xm). (3.1)

Independent parallel channels can also be used to model memoryless fading channels, where

the sub-channels are across time instead of frequency as in OFDM.

For the class of additive white Gaussian noise independent parallel scalar channels, the

channel model can be written as

Yi,t =
√

biXi,t +Wi,t i = 1, · · · ,M (3.2)
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Figure 3.1: The independent parallel channel scenario.

where Wi,t is the white Gaussian noise, and bi is the channel gain for the i-th subchannel.

For simplicity of notation, we would omit the time index t for now. The capacity of the

AWGN independent parallel channels with an average power constraint P is given by the

well-known waterfilling solution [80].

In this chapter, we consider the secrecy capacity of a system composed of independent

parallel channels. The system model is described in the next section, followed by the main

results in Section 3.2, with the corresponding proof presented in Section 3.5 at the end of

this chapter. We show that the secrecy capacity of the system is simply the summation

of the secrecy capacities of the individual channels. We further derive the optimal power

allocation strategy for a system with parallel AWGN channels subject to a total power

constraint. The results can be extended to random fading channels with additive Gaussian

noise. Secrecy capacity under various channel conditions and the benefits of the optimal

power allocation strategy are evaluated numerically in Section 3.3.
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3.1 Problem formulation

Consider a system with M independent parallel subchannels as illustrated in Figure 3.1.

Alice’s channel input is XM = X1, . . . ,XM . Bob and Eve receive YM = Y1, . . . , YM and

ZM = Z1, . . . , ZM , respectively. The channel is characterized by the transition probability

P (YMZM |XM ) =

M
∏

m=1

P (YmZm|Xm). (3.3)

Note that Bob’s channel PY M |XM is, in general, not more capable than Eve’s channel

PZM |XM . When there exists a subchannel m̂ satisfying I(Xm̂;Ym̂) ≤ I(Xm̂;Zm̂) for some

input Xm̂, the more capable condition is violated. A natural question raised here is what is

the secrecy capacity of the system and how to achieve this capacity.

From (2.5), the secrecy capacity of the system is

CM
s = max

V →XM→Y MZM
I(V ;YM ) − I(V ;ZM ), (3.4)

where V is some auxiliary random variable, and the maximization is over both the distri-

bution of V and the virtual channel from V to X. Since the more capable condition is

not satisfied in general, it is not clear what V is optimal. In this work, we show that the

system can be decomposed to the sum of each individual channels, thus independent coding

in each sub channel is enough to achieve the secrecy capacity. This is analogous to the

well-known results on ordinary capacity of independent parallel channels. Our main results

are presented in the following subsection.
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3.2 Main results

Theorem 3.1 The secrecy capacity (3.4) of the system with M independent parallel sub-

channels is given by

CM
s =

M
∑

m=1

max
Vm→Xm→YmZm

I(Vm;Ym) − I(Vm;Zm), (3.5)

where Vm is an auxiliary variable designed just for subchannel m.

The method of the proof is essentially the same as that used in [15] to derive a single letter

characterization of the secrecy capacity and is presented in the Appendix at the end of this

chapter. Theorem 3.1 shows that we can code for each subchannel independently without

losing secrecy rate, and thus can choose the optimal Vm for each subchannel independently.

The secrecy capacity of the system is simply the summation of the secrecy capacities of the

individual subchannels. Note that (3.5) holds for any collection of M independent parallel

subchannels, regardless of the model for each subchannel.

When all subchannels are AWGN channels, XM , YM and ZM satisfy

Ym =
√

bmXm +W1,m, Zm =
√
gmXm +W2,m, m = 1, . . . ,M. (3.6)

where m is the channel index, bm is the normalized gain of Bob’s m-th channel , and gm is

the normalized gain of Eve’s m-th channel. The power of the Gaussian white noise W1,m and

W2,m are normalized to 1. We can represent the normalized channel gains for the Alice-Bob

and Alice-Eve subchannels by the vectors b = [b1, · · · , bM ]T and g = [g1, · · · , gM ]T . For

the AWGN case, bm ≤ gm implies subchannel m has zero secrecy capacity, while bm > gm

implies Bob has a more capable subchannel, and hence the optimal Vm = Xm. Therefore,

the secrecy capacity of a system of M orthogonal AWGN channels is

CM
s =

∑

{m|bm>gm}
max

Xm→YmZm

I(Xm;Ym) − I(Xm;Zm), (3.7)
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where the summation is over all subchannels on which Bob is more capable than Eve.

Moreover, because each subchannel is just an AWGN channel, capacity is achieved using

a Gaussian input on each subchannel. Thus, a subchannel m with transmit power Pm

contributes CAWGN
s (bm, gm, Pm), given in (2.10), to the secrecy capacity

CM
s (b,g,P) =

∑

{m|bm>gm}
CAWGN

s (bm, gm, Pm). (3.8)

A fundamental question is how CM
s (b,g,P) depends on the power allocation P =

[P1, · · · , PM ], particularly when we are subject to the total power constraint
∑M

m=1 Pm ≤

Ptot. Our second result gives the optimal power allocation P that maximizes the secrecy

capacity under this situation.

Theorem 3.2 The secrecy capacity of a system of M orthogonal AWGN subchannels, with

normalized link gain b = [b1, · · · , bM ],g = [g1, · · · , gM ], and under the total power constraint

∑M
m=1 Pm ≤ Ptot is

CM
s (b,g, Ptot) =

M
∑

m=1

CAWGN
s (bm, gm, PAWGN(bm, gm, λ)). (3.9)

If bm ≤ gm for every m, the secrecy capacity is zero regardless of the power allocation

strategy. Otherwise, PAWGN(bm, gm, λ) is given by

PAWGN(b, g, λ) =
1

2

(

f(b, g, λ) −
(1

b
+

1

g

)

)+

, (3.10)

where

f(b, g, λ) =

√

(

1

b
+

1

g

)2

+ 4

[

1

λ

(

1

g
− 1

b

)

− 1

gb

]

, (3.11)

and λ > 0 is chosen such that we satisfy the total power constraint

M
∑

m=1

PAWGN(bm, gm, λ) = Ptot. (3.12)
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The proof uses the well-known Lagrangian method, which gives the optimal power allo-

cation solution here due to the convexity of the AWGN channel secrecy capacity. We note

that in the optimal power allocation (3.10), Pm > 0 if and only if bm−gm > λ. Since λ is pos-

itive, subchannel m will go unused if bm ≤ gm. This is expected as CAWGN
s (bm, gm, Pm) = 0

no matter what power is used when bm ≤ gm. For the subchannels with bm > gm, they are

ranked according to the differences bm − gm. For very small Ptot, only the subchannel with

the largest difference is used. As Ptot increases, λ decreases and additional subchannels

are employed in the order given by bm − gm. This solution is conceptually similar to the

familiar capacity-achieving waterfilling solution in that the power level Pm is determined

by the channel parameters and the Lagrange multiplier λ that is used to meet the power

constraint. However, in the secrecy capacity power allocation (3.10) the subchannels are

ranked not by the gain bm but rather by the gain differences bm − gm.

The result above can be extended to the fading channel scenario when the channel

realizations are known to all parties. Consider a discrete-time memoryless channel with

normalized stationary and ergodic time-varying gains
√
bi and

√
gi at the ith time unit for

Bob and Eve, respectively. For convenience, we use γi = (bi, gi) to denote the joint channel

state. The noise is assumed to be AWGN, with unit power spectral density. Let S(γ) denote

the transmit signal power, and S̄ denote the average transmit signal power. Let W denote

the received signal bandwidth, which is assumed to be the same for both Bob and Eve.

The instantaneous received signal-to-noise ratio (SNR) is then S(γi)bi/W and S(γi)gi/W .

Given the knowledge of the channel states, the sequence of fading channels is just a special

case of a system of independent parallel channels. With similar methods, we can show the

following theorem.

Theorem 3.3 When the channel side information γ = (b, g) is known to all parties, the
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secrecy capacity of a discrete-time memoryless fading channel with additive unit Gaussian

noise subject to an average power constraint S̄ is

Cs = max
S(γ):Eγ [S(γ)]=S̄

Eγ

[

Cs

(

γ, S(γ)
)]

, (3.13)

where

Cs

(

γ, S(γ)
)

= W

[

log

(

1 +
S
(

γ)b

W

)

− log

(

1 +
S(γ)g

W

)

]

. (3.14)

The optimal power allocation to achieve the secrecy capacity (3.13) is

S∗(γ) =
W

2

(

f(b, g, λ) −
(1

b
+

1

g

)

)+

, (3.15)

where f(b, g, λ) is given by (3.11), and λ is chosen such that the average transmit signal

power satisfies the constraint

Eγ [S∗(γ)] = S̄. (3.16)

Moreover, a single codebook with the dynamic power adaptation (3.15) is sufficient to achieve

the secrecy capacity.

Although a multiplexing codebook scheme similar to that proposed in [22] can be de-

ployed to achieve the secrecy capacity (3.13), we show that it is not necessary. Just as in the

case of ordinary capacity, a single codebook with optimal power adaptation is sufficient to

achieve the capacity [13], it is also enough to achieve the secrecy capacity. The transmitter

transmits only when Bob’s channel gain is greater than Eve’s channel by at least λ, and

the transmitted power is adapted to the variation of channel gains.

3.3 Numerical evaluation

Our results can be easily applied to an OFDM system with independent Rayleigh fading

AWGN subchannels. We start by noting that the secrecy capacity (3.9) is determined by
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Figure 3.2: Change in the secrecy capacity CCDF versus the number of channels M for (a)
E[g] = 0 dB, and (b) E[g] = 10 dB. We fix Ptot = 10 and E[b] = 1.
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Figure 3.3: Change in the secrecy capacity CCDF versus (a) E[g] for Ptot = 10, and (b)
Ptot for E[g] = 0 dB. We fix M = 16 and E[b] = 1.

M , the total number of channels, Bob and Eve’s channel gain vectors b and g, and the

power constraint Ptot. In an OFDM system with fixed frequency spacing of subchannels,

M will be proportional to the transmission bandwidth. For Rayleigh fading, Bob and Eve’s

channel gain vectors b and g can be modeled as independent random vectors (assuming Bob

and Eve are separated by a distance of more than a wavelength) with i.i.d. exponentially
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Figure 3.4: Comparison between optimal power allocation and uniform power allocation for
(a) varying E[g] with M = 16, and (b) varying M with E[g] = 0 dB. We fix Ptot = 10, and
E[b] = 1.

distributed components, and is characterized by their mean E[b] and E[g]. Therefore, an

interesting question is how the secrecy capacity varies with M , E[b], E[g] and Ptot. In this

section, we will study the effect of these factors on the secrecy capacity through numerical

evaluations.

The secrecy capacity depends on the exact channel realizations. For a given set of

parameters {M,E[b], E[g], Ptot}, since channel gains are randomly drawn from their dis-

tributions, CM
s is a random variable. To characterize the distribution of CM

s under each

setting, we choose to show its Complementary Cumulative Distribution Function (CCDF),

i.e. Pr
[

CM
s > C

]

for increasing C, estimated from numerical methods. For simplicity, we

fix E[b] = 1 for all settings. Let us first look at how the secrecy capacity changes with

M . Intuitively, due to the randomness of the channel gains, the larger M is, the more

good subchannels Bob may have relative to Eve’s subchannels. As a result, the secrecy

capacity increases with M . This is illustrated in Figure 3.2 under two levels of E[g]. The

secrecy rate improvement from the single channel to multiple channels is significant. The
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intersection of the curve to the vertical axis represents the probability that Bob has at least

one subchannel better than Eve, given by 1

1 − Pr[b ≤ g]M = 1 −
(

E[g]/(E[b] + E[g])
)M

, (3.17)

which increases rapidly with M . The improvement gets smaller as M gets larger because

the total power is fixed. Even though more good channels are available as M increases,

only a few best are used due to the power limitation.

The change in secrecy capacity with the average Alice-Eve channel gain is plotted in

Figure 3.3(a). As Eve’s channel gets better on average, the secrecy capacity becomes smaller.

For comparison purposes, the ordinary non-secure capacity is also plotted in the same figure.

Obviously, this is an upper bound to the secrecy capacity. We note that if Eve’s channel is

significantly worse than Bob’s channel on average, the capacity reduction due to the secrecy

requirement is quite small. This is as expected, since as E[g] → 0, we should approach the

ordinary capacity. Moreover, even when Eve’s channel is much better on average, we can

still obtain positive secrecy capacity because of the availability of multiple independent

random channels. We also plot the change in secrecy capacity versus the total power in

Figure 3.3(b). Larger power budget improves the secrecy capacity, but will not cause an

unbounded increase because the secrecy capacity of each subchannel is upper bounded by

1/2 log(bm/gm) no matter how large the power is.

To assess the benefits of the optimal power allocation, we can compare against the non-

adaptive uniform power allocation P = P = (Ptot/M)[1, · · · , 1]. This uniform allocation

yields the secrecy rate

CM
s (b,g,P) =

M
∑

m=1

CAWGN
s (bm, gm, Ptot/M). (3.18)

1A similar derivation is provided by J. Barros and M. R. D. Rodrigues in [8].
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The uniform power allocation forfeits power when a subchannel is bad; however, it does

take advantage of good (for secrecy capacity) subchannels. In addition, the uniform power

allocation is easy to analyze since it is a sum of M independent random variables. With

the approximation of log(1 + x) ≈ x/ ln 2 for small x, we can derive from (3.18) and (2.10)

that

lim
M→∞

CM
s (b,g,P) =

Ptot

2 ln 2
E[(b− g)+] (3.19)

=
Ptot

2 ln 2

E[b]2

(E[b] + E[g])
(3.20)

for the uniform power allocation. The secrecy capacity with the optimal power allocation

and the non-adaptive uniform power allocation are compared in Figure 3.4. The result

shows that there is a significant capacity loss due to the non-optimal power allocation.

The penalty becomes increasingly severe as M increases. Thus, optimal power allocation

is crucial for fully exploiting the advantage brought by multiple random channels when the

power budget is tight. On the other hand, the benefits of the simpler power allocation

may be overstated. The fundamental binning code method of Csiszár and Körner [15]

demands knowledge of the channel states. If this requirement is unavoidable, then the

residual complexity of channel-dependent codebooks will likely outweigh any complexity

reduction associated with uniform power allocation. Moreover, OFDM channels become

increasingly difficult to estimate as the average power per subchannel Ptot/M goes to zero.

For traditional data communication, these same issues are addressed in [58,77,81,82].

We also evaluated the secrecy capacity for the Rayleigh fading channels with the optimal

power allocation. Figure 3.5(a) shows how the secrecy capacity in bits per channel use varies

with the average eavesdropper’s channel gain at several average power levels P . Bob’s

average channel gain is always fixed at 1. Figure 3.5(b) shows how the secrecy capacity
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Figure 3.5: Change in the secrecy capacity with (a) E[g] for different P , and (b) P for
different E[g]. E[b] = 1.

increases with the average power at two levels for the average eavesdropper’s channel gain.

When the eavesdropper’s channel is good, the secrecy capacity is mainly limited by the

channel conditions, and increasing power would not increase the secrecy capacity very much.

Nevertheless, unlike the constant AWGN channel, fading allows a positive probability that

an instantaneous realization of Bob’s channel is better than that of Eve’s, so that secret

communication is still possible even when eavesdropper’s channel is on average better.

When the eavesdropper’s channel is bad, the secrecy capacity is mainly power limited, and

significant secrecy rate can be achieved with 20dB SNR for Bob.

3.4 Discussion

In this work, we derived the secrecy capacity of a system consisting of multiple independent

parallel channels. We show that the secrecy capacity of the system is simply the summation

of the secrecy capacities of the individual channels. We further derive the optimal power

allocation strategy for a system with parallel AWGN channels subject to a total power

constraint, and also extend the results to random fading channels with additive Gaussian
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noise. Secrecy capacity was evaluated numerically for OFDM system and Rayleigh fading

channels, which shows that the diversity, either in frequency or in time, improves the rate

of secret communication and allow secret communication even when the eavesdropper’s

channel is better on average.

In this work, we assume that the transmitter knows both Bob’s channel and Eve’s

channel. This assumption is impractical if Eve is an adversary that the transmitter is

not even aware of or has no idea on its channel state. However, consider a scenario with

one transmitter and two receivers, as shown in Figure 3.6. All users belong to the same

network and do communicate with each other. The transmitter wants to convey individual

secret information to each of the receiver without leaking information to the non-intended

receiver, who can overhear the communication. Then, the assumption that all parties know

the channel state information is valid since both receivers are legitimate members of the

network. The results in this chapter can be applied when the channels are composed of

independent parallel channels. In particular, to convey message to both receivers secretly,

the transmitter will check all subchannels, and use the subchannels that receiver 1 is better

to convey secret information to receiver 1, and use the rest subchannels for receiver 2. Then,

the transmitter can do independent coding for each subchannel without hurting the secrecy

rate, and do optimal power allocation among the subchannels. Note that the optimal

power allocation will depend on both the objective function, i.e. the weighted sum rate,

and the channel realizations. Some subchannel might end up unused under the optimal

power allocation. This model is one example of secure broadcast channel, and more results

on secure broadcasting with various settings can be found in [30,52].

The decomposition of the system into subchannels with independent coding is valid only

with a single eavesdropper, and cannot be directly extended to the multiple receiver case. In
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Figure 3.6: The independent parallel broadcast channel scenario.

other words, when there are multiple eavesdroppers, independent coding across subchannels

are likely to be non-optimal. To see this, we can look at a simple binary channel example

Y =









Y1

Y2









=









X1

X2









(3.21)

Z1 = X1 (3.22)

Z2 = X2, (3.23)

where there are two independent 1-bit channels, and two eavesdroppers. The intended re-

ceiver gets both bits perfectly, while eavesdropper 1 gets first bit perfectly, and eavesdropper

2 gets the second bit perfectly. With independent coding, no secrecy can be achieved for

the intended receiver. However, with X1 be random binary noise, while X2 = W +X1, the

intended receiver can get the information bit perfectly by doing Ŵ = Y1 + Y2 = W , while

the eavesdropper gets no information by observing X1 or X2 but not both. Clearly, R = 1

is also the secrecy capacity of the system. So joint coding might be necessary in presence

of multiple non-colluding eavesdroppers.

3.5 Proof

Proof: Theorem 1
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We follow the method used in [15] to derive a single-letter characterization in the secrecy

capacity converse. Denote Y m = Y1 · · ·Ym, and ZM
m = Zm · · ·ZM . From the chain rule, we

can write

I(V ;Y M ) − I(V ;ZM ) =

M
∑

m=1

I(V ;Ym|Y m−1) −
M
∑

m=1

I(V ;Zm|ZM
m+1). (3.24)

Moreover, we can obtain

I(V ;Ym|Y m−1) = H(Ym|Y m−1) −H(Ym|V Y m−1) (3.25)

= H(Ym|Y m−1) −H(Ym|V Y m−1ZM
m+1) +H(Ym|V Y m−1ZM

m+1)

−H(Ym|V Y m−1) (3.26)

= I(V ZM
m+1;Ym|Y m−1) − I(ZM

m+1;Ym|V Y m−1) (3.27)

= I(ZM
m+1;Ym|Y m−1) + I(V ;Ym|Y m−1ZM

m+1)

− I(ZM
m+1;Ym|V Y m−1) (3.28)

=

M
∑

j=m+1

I(Zj ;Ym|Y m−1ZM
j+1) + I(V ;Ym|Y m−1ZM

m+1)

−
M
∑

j=m+1

I(Zj ;Ym|V Y m−1ZM
j+1). (3.29)

Similarly,

I(V ;Zm|ZM
m+1) = H(Zm|ZM

m+1) −H(Zm|V ZM
m+1) (3.30)

= H(Zm|ZM
m+1) −H(Zm|V Y m−1ZM

m+1)

+H(Zm|V Y m−1ZM
m+1) −H(Zm|V ZM

m+1) (3.31)

= I(V Y m−1;Zm|ZM
m+1) − I(Y m−1;Zm|V ZM

m+1) (3.32)

= I(Y m−1;Zm|ZM
m+1) + I(V ;Zm|Y m−1ZM

m+1)

− I(Y m−1;Zm|V ZM
m+1) (3.33)
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With the chain rule, we can further write

I(V ;Zm|ZM
m+1) =

m−1
∑

j=1

I(Yj ;Zm|ZM
m+1Y

j−1)

+ I(V ;Zm|Y m−1ZM
m+1) −

m−1
∑

j=1

I(Yj ;Zm|V ZM
m+1Y

j−1). (3.34)

Note that

M
∑

m=1

M
∑

j=m+1

I(Zj ;Ym|Y m−1ZM
j+1) =

M
∑

m=1

m−1
∑

j=1

I(Yj ;Zm|ZM
m+1Y

j−1) (3.35)

and

M
∑

m=1

M
∑

j=m+1

I(Zj ;Ym|V Y m−1ZM
j+1) =

M
∑

m=1

m−1
∑

j=1

I(Yj ;Zm|V ZM
m+1Y

j−1). (3.36)

Combining (3.24) to (3.36), we get

I(V ;Y M ) − I(V ;ZM ) =

M
∑

m=1

I(V ;Ym|Y m−1) −
M
∑

m=1

I(V ;Zm|ZM
m+1) (3.37)

=

M
∑

m=1

[I(V ;Ym|Y m−1ZM
m+1) − I(V ;Zm|Y m−1ZM

m+1)]. (3.38)

Denote Um = Y m−1ZM
m+1, V̂m = V Um, then

I(V ;Y M ) − I(V ;ZM ) =
M
∑

m=1

[I(V ;Ym|Um) − I(V ;Zm|Um)] (3.39)

=

M
∑

m=1

[I(V Um;Ym|Um) − I(V Um;Zm|Um)] (3.40)

=

M
∑

m=1

[I(V̂m;Ym|Um) − I(V̂m;Zm|Um)] (3.41)

≤
M
∑

m=1

max
V̂m→Xm→YmZm

[I(V̂m;Ym) − I(V̂m;Zm)]. (3.42)

Note that the term inside the sum is just the secrecy capacity of each parallel independent

channel, thus is achievable. The equality holds if and only if each channel achieves its

individual secrecy capacity. 2
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Proof: Theorem 2

To prove Theorem 2, we need to resort to the secrecy capacity results for AWGN chan-

nels, as characterized by (2.10). We observe that if bm ≤ gm, channel m will go unused

since its secrecy capacity is zero, and no power will be allocated to this channel. Thus we

can simplify the subsequent proof by assuming that channels 1, · · · , M̄ satisfy bm > gm,

and only consider the power allocation to these channels. In this case, it is easily veri-

fied that bm > gm implies CAWGN
s (bm, gm, Pm) is concave in Pm. In terms of the vector

P = [P1 · · ·PM̄ ]T , we use (2.10) and form the Lagrangian

L(λ,P) =
M̄
∑

m=1

[log(1 + bmPm) − log(1 + gmPm) − λPm], (3.43)

where λ > 0. Maximization of the Lagrangian requires that ∂L/∂Pm = 0 if Pm > 0 or

∂L/∂Pm ≤ 0 if Pm = 0. This implies that the nonzero Pm satisfy the quadratic equation

(

Pm +
1

gm

)(

Pm +
1

bm

)

− 1

λ

(

1

gm
− 1

bm

)

= 0. (3.44)

We can solve for non-negative Pm and express the general solution as Pm = PAWGN(bm, gm, λ)

described by (3.10). It follows that Pm > 0 if and only if bm − gm > λ. The Lagrange mul-

tiplier λ is chosen so that the power constraint is met. Since (3.10) already implies that

PAWGN(b, g, λ) = 0 for b ≤ g, we have proved Theorem 2 for a general system with M

independent parallel AWGN channels. 2

Proof: Theorem 3

We will prove the converse of the theorem first, and show the achievability afterwards.

Denote W ∈ {1, · · · , 2nR} as the secret message index. To prove the converse, we note
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that

nR = H(W |γn) (3.45)

≤ H(W |Zn, γn) + ǫ (3.46)

= H(W |Y n, γn) + I(W ;Y n|γn) − I(W ;Zn|γn) + ǫ (3.47)

≤ I(W ;Y n|γn) − I(W ;Zn|γn) + η + ǫ, (3.48)

where (3.46) is due to the perfect secrecy requirement and (3.48) is due to the capacity

requirement.

Using the same method as in proof for Theorem 1, we can show that

I(W ;Y n|γn) − I(W ;Zn|γn) =

n
∑

i=1

(

I(W ;Yi|Ui, γ
n) − I(W ;Zi|Ui, γ

n)
)

(3.49)

=
n
∑

i=1

(

I(Vi;Yi|Ui, γ
n) − I(Vi;Zi|Ui, γ

n)
)

(3.50)

≤
n
∑

i=1

max
Vi→Xi→YiZi

(

I(Vi;Yi|γi) − I(Vi;Zi|γi)
)

(3.51)

Since the channel at time i is an AWGN channel with unit noise for a given γi, we can write

max
Vi→Xi→YiZi

I(Vi;Yi|γi) − I(Vi;Zi|γi) = Cs

(

γi, S(γi)
)

, (3.52)

where Cs

(

γ, S(γ)
)

is the secrecy capacity for channel with gain γ and power S(γ), and is

given by (3.14).

Assume that the channel state is a discrete random variable, perhaps derived from

quantization of a continuous channel state, and takes values from {γ1, · · · , γM}. Denote

Nm to be the number of appearance that γ = γm during the n transmissions, we then have

I(W ;Y n|γn) − I(W ;Zn|γn) ≤
n
∑

i=1

Cs

(

γi, S(γi)
)

(3.53)

=

M
∑

m=1

Cs

(

γm, S(γm)
)

Nm. (3.54)
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Combining all above, we see that

R ≤ 1

n

(

I(W ;Y n|γn) − I(W ;Zn|γn) + η + ǫ
)

, (3.55)

≤
M
∑

m=1

Cs

(

γm, S(γm)
)Nm

n
+
η

n
+
ǫ

n
. (3.56)

As n increases, Nm/n approaches p(γm), implying

R ≤ Eγ

[

Cs

(

γ, S(γ)
)]

+
η

n
+
ǫ

n
. (3.57)

Maximizing the right hand side over S(γ) subject to the average power constraint using

the method in the proof of Theorem 2, we get the optimal power allocation (3.15). This

completes the converse for Theorem 3.3.

As for the achievability, we note that a multiplexing codebook scheme similar to that

proposed in [22] can achieve the secrecy rate Eγ

[

Cs

(

γ, S(γ)
)]

. Combining with (3.57), this

ends the proof of (3.13). On the other hand, using similar arguments as in [13], we can

show that a multiplexing codebook is actually not necessary, as detailed below.

Suppose Alice chooses X = S̃(γ)V , where S̃(γ) is a power function adapted to the

channel state γ, and V is a unit power Gaussian random variable independent of γ. In this

case, Bob receives

Y =
√
bS̃(γ)V +W1, (3.58)

and Eve receives

Z =
√
gS̃(γ)V +W2. (3.59)

Since all parties know γ and in turn S̃(γ), we can consider the random channel state Γ as

an output of the channel. Thus, with the coding procedure in [15], a single codebook can
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be used to achieve the secrecy rate of

I(V ;Y Γ) − I(V ;ZΓ) = I(V ;Y |Γ) − I(V ;Z|Γ) (3.60)

= Eγ

[

Cs

(

γ, S̃(γ)
)]

. (3.61)

When S̃(γ) = S∗(γ), the optimum power allocation strategy, we achieve the secrecy capacity

(3.13). 2
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Chapter 4

Ergodic Secrecy Rate of Rayleigh Fading Channels

In the previous chapter, we studied the secrecy capacity of fading channels when the chan-

nel states are known at all parties. In the scenarios where the eavesdropper’s instantaneous

channel realization is not known, but only the channel statistics are known to the transmit-

ter, the optimal power allocation derived in previous chapter does not apply. It is interesting

to study the achievable secrecy rate in such cases, which is the topic of this chapter.

When the eavesdropper’s channel is unknown but is slow block fading, the secrecy ca-

pacity of the channel is derived in [23]. However, an important assumption there is that

Eve’s channel is constant during each fading block, and each fading block is long enough

for sending Gaussian codes with almost zero error probability. With this assumption, a

two-tier coding scheme is proposed which contains a sub-codebook used for each fading

block, and a super-codebook across an ergodic realization of fading blocks. The key is that

for each fading block, the eavesdropper cannot get more information on what has been sent

than the intended receiver. In this work, we consider the situation when the block fading

assumption does not hold. In particular, Eve’s channel randomly changes over each symbol

time, while Bob’s channel is a constant AWGN channel. Note that although in this model

the main channel has a constant gain, not the more general fading gain, it is clear that the

latter is a temporal concatenation of our simple model with various main channel gains.

Thus, power allocation over time can be used to obtain secrecy rates of the more general
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model with fading on both the main channel and the eavesdropper’s channel, and the main

channel state known by Bob. On the other hand, although our channel model is simple, as

we will show later that it already exhibits some intriguing behavior. Moreover, an optimal

solution for this channel remains elusive.

4.1 Problem formulation

In this chapter, we consider the situation when Bob’s channel is an AWGN channel with

a fixed SNR, while Eve has a Rayleigh fading channel with the channel statistics (not the

realizations) known to the other parties. Mathematically,

Yi =
√

b̃X̃i +W1,i, (4.1a)

Zi =

√

G̃iX̃i +W2,i, (4.1b)

where i is the time index, W1,i,W2,i are independent white Gaussian noise with normalized

variance 1, and b̃ is the constant channel gain for Bob. Eve’s time varying channel gain

G̃i is an exponential random variable due to the Rayleigh fading model, and is perfectly

observable by Eve. Alice knows Eve’s average channel gain Ḡ, but not the exact realization.

This is the major difference of the current model from the one studied in last chapter. By

making these assumptions, we have considered a quite powerful adversarial model as Eve

has a more complete information of the system.

We can further normalize the channel gain of Bob by the average channel gain of Eve

through the transformation

Yi =

√

b̃/Ḡ
√

ḠX̃i +W1,i (4.2a)

Zi =

√

G̃i/Ḡ
√

ḠX̃i +W2,i. (4.2b)
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Define b = b̃/Ḡ and Gi = G̃i/Ḡ, then we have the simplified channel model

Yi =
√
bXi +W1,i, (4.3a)

Zi =
√

GiXi +W2,i. (4.3b)

Now, the normalized channel gain Gi follows exponential distribution with mean 1 and

b is the relative gain of Bob against Eve, and the signal power is scaled by Ḡ. From now on,

we will use this model, and refer b as Bob’s channel gain, and P = E
[

X2
i

]

as the average

power of X.

If we consider the random channel observation Gi at Eve as an output, Eve’s channel

is equivalent to a channel with output (G,Z) and the channel transition probability is

Pr(GZ|X) = Pr(G) Pr(Z|XG). Following Csiszár and Körner’s arguments [15], the secrecy

capacity of the channel model (4.3)is

Cs = max
V →X→Y GZ

I(V ;Y ) − I(V ;GZ) (4.4)

= max
V →X→Y GZ

I(V ;Y ) − I(V ;G) − I(V ;Z|G) (4.5)

= max
V →X→Y GZ

I(V ;Y ) − I(V ;Z|G), (4.6)

where (4.6) follows from the independence of V and G since Alice does not know G and

cannot choose V according to G. This channel does not satisfy the more capable condition,

and it appears to be hard to obtain the optimal V and P (X|V ). Instead, in this work, we

study the achievable secrecy rates that are possible with random Gaussian codes as this is

a natural approach for attacking the problem. The main result of this work is that with

Gaussian random codes, artificial noise injection and power bursting, positive secrecy rate

is achievable even when Bob’ channel is arbitrarily worse than Eve’s average channel.
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4.2 Achievable secrecy rates

4.2.1 Gaussian random codes with constant power

First, we assume the use of Gaussian random codes with a constant power P . We also

assume that no auxiliary random variable is used, or equivalently, X = V . With these two

simplifications, we can achieve the secrecy rate

Rx(P, b) = I(X;Y ) − I(X;Z|G) (4.7)

= log(1 + bP ) − E
[

log(1 +GP )
]

, (4.8)

where E denotes the expectation over the unit mean exponential random variable g. To

simplify the subsequent analysis, we employ the natural log and use nats per channel use

as our units. Note that Rx(P, b) can be negative, which means that simple Gaussian

signaling with power P can not achieve positive rate, and the achievable secrecy rate is

zero. However, we will allow the negative Rx(b, P ) since it is useful to the scheme proposed

in next subsection. Also, since we view Rx(P, b) as a function of P for fixed b, we remove

b from the parameter list from now on to simplify the notation.

We can calculate the second term in (4.8) as

E
[

log(1 +GP )
]

=

∫ ∞

0
log(1 +GP ) exp(−G)dG (4.9)

=

∫ ∞

0
e−G (log(G+ 1/P ) + log(P )) dG (4.10)

=

∫ ∞

1/P
e−t log t dt · e1/P + log(P ). (4.11)

Note that

∫ ∞

1/P
e−t log tdt = −e−t log t|∞1/P +

∫ ∞

1/P

e−t

t
dt (4.12)

= e−1/P log(1/P ) + E1(1/P ), (4.13)
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Figure 4.1: The secrecy rate Rx(P ) of (4.17) versus power P at different levels of b.

where E1(x), the En-function for n = 1, is given by

E1(x) =

∫ ∞

x

e−t

t
dt =

∫ ∞

1

e−xt

t
dt (4.14)

= −γ − ln(x) −
∞
∑

n=1

(−1)nxn

n!n
, (4.15)

and γ = 0.57721566 · · · is the Euler-Mascheroni constant. More detail on the En-function

and Euler-Mascheroni constant can be found in [1, 2, 70]. Substituting (4.13) into (4.11) ,

we obtain

E
[

log(1 +GP )
]

= e1/PE1(1/P ). (4.16)

Therefore, we can write

Rx(P ) = log(1 + bP ) − e1/PE1(1/P ). (4.17)

Evaluating Rx(P ), we can see how the secrecy rate changes with P at different levels of

b, as shown in Figure 4.1. Clearly, the shape of the curve is strongly affected by b and is

not always concave.

We observe from (4.8) that Rx(P ) > 0 if and only if the main channel SNR satisfies

b >
1

P

(

eE
[

log(1+GP )
]

− 1
) ∆

= fpos(P ). (4.18)
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Figure 4.2: fpos(P ) defined in (4.18) and fmon(P ) defined in (4.28).

We plot fpos(P ) with P as the solid line in Figure 4.2. Note that due to the concavity of

the log function, an upper bound on fpos(P ) is given by

fpos(P ) ≤ 1

P

(

elog(1+E[G]P ) − 1
)

= 1. (4.19)

Moreover, it can be shown that limP→0 fpos(P ) = 1 and that fpos(P ) decreases monotoni-

cally with power P . In addition, we can calculate the minimum of fpos(P ) as

lim
P→∞

fpos(P ) = lim
P→∞

eE
[

log(1+GP )
]

P
(4.20)

= lim
P→∞

exp
(

E
[

log(1 +GP ) − log(P )
])

(4.21)

= lim
P→∞

exp

(

E
[

log(
1

P
+G)

]

)

(4.22)

= lim
P→∞

exp
(

∫ ∞

0
e−G log(

1

P
+G) dG

)

(4.23)

= lim
P→∞

exp
(

e1/P

∫ ∞

1/P
e−t log t dt

)

(4.24)

= e−γ ≈ 0.56146, (4.25)

where we used the substitution t = G + 1/P and the property of the Euler-Mascheroni

constant γ = −
∫∞
0 e−t log t dt.

The result above implies that if Bob’s relative channel gain b is less than 0.56146, Alice
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cannot achieve positive secrecy rate with simple random Gaussian codes, no matter how

large P is.

Because (4.8) is essential to our analysis later on, we will look at its properties in more

detail. Let us look at its first derivative with respect to P to see whether the secrecy rate

increases with P monotonically.

R′
x(P ) =

b

(1 + bP )
− E

[ G

1 +GP

]

(4.26)

=
1

(1 + bP )
E
[ b−G

1 +GP

]

. (4.27)

This implies that R′
x(P ) > 0 if and only if

b >
E
[

G/(1 +GP )
]

E
[

1/(1 +GP )
]

∆
= fmon(P ). (4.28)

It’s easy to see that limP→0 fmon(P ) = E[G] = 1. From (4.16), an alternative representation

of fmon(P ) can be found to be

fmon(P ) =
1

e1/PE1(1/P )
− 1

P
. (4.29)

Evaluating fmon(P ), we obtain the dashed line in Figure 4.2, which shows that fmon(P )

decreases monotonically with P . In particular, (4.29) implies limP→∞ fmon(P ) = 0. Thus,

for b ∈ (0, 1), we can find P0(b) = f−1
mon(b) as the value of P that minimizes Rx(P ). The

secrecy rate (4.8) decreases in P monotonically for P < P0(b), and increases for P > P0(b).

Since the minimum value is always non-positive here, fmon(P ) ≤ fpos(P ), with equality if

and only if P = 0. For b ≥ 1, the secrecy rate (4.8) increases with P monotonically.

4.2.2 Constant power transmission with noise injection

The previous scheme is simple, but cannot obtain positive secrecy rate when b < e−γ . Can

we do better for the case with small b? Recall that the auxiliary random variable V and
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the virtual V → X channel can be used to confuse Eve. A simple virtual channel is the

AWGN channel X = V + W , where W is an artificial additive noise. The idea of adding

artificial noise for secrecy is not completely new, and was explored in [62], in the context of

a multiple antenna system in which the noise is chosen to be orthogonal to the information

bearing signal. In our case, it follows from (4.3) that AWGN V → X channel yields the

V → Y Z channel

Yi =
√
bVi +

√
bWi +W1,i, (4.30a)

Zi =
√

GiVi +
√

GiWi +W2,i. (4.30b)

We assume V and W are independent Gaussian random variables with mean 0 and variance

Pv and Pw respectively. The transmit power constraint becomes Px = Pv + Pw ≤ P .

The secrecy rate achieved by this modified channel is

Rv(P ) = I(V ;Y ) − I(V ;Z|G)

= log

(

1 +
bPv

bPw + 1

)

− E

[

log

(

1 +
GPv

GPw + 1

)]

= log (1 + bPw + bPv) − E [log(1 +GPw +GPv)]

− (log (1 + bPw) −E [log(1 +GPw)]) . (4.31)

It follows from (4.8) that

Rv(P ) = Rx(Pw + Pv) −Rx(Pw) (4.32)

= Rx(Px) −Rx(Pw). (4.33)

An important observation from (4.33) is that if Rx(Pw) < 0, we actually gain by injecting

the artificial Gaussian noise W . When b < 1, Rx(P ) < 0 for P < f−1
pos(b). In other words,

Pw ∈ [0, f−1
pos(b)) will produce negative Rx(Pw). Denote P ∗

w(b) as the noise power giving the
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Figure 4.3: Secrecy rate with additive Gaussian white noise.

most negative Rx(Pw) for Bob’s channel gain b. To find P ∗
w(b), we set the derivative of Rx

in (4.8) to zero, and find the zero-yielding solution to be P ∗
w(b) = f−1

mon(b). If P > P ∗
w(b),

we maximize Rv by choosing Pw = P ∗
w(b) to get the most negative Rx(Pw), and choosing

Px = P to maximize Rx(Px), as R′
x(P ) > 0 for P > f−1

mon(b) = P ∗
w(b). When P ≤ P ∗

w(b),

Rx(Px) is negative, and Rx(Pw) > Rx(Px) for Pw < Px < P ∗
w(b). In this case, injecting

noise is not sufficient to boost the secrecy rate above zero. In summary, with this strategy

of injecting artificial additive independent Gaussian noise, the achievable secrecy rate is

Rv(P ) =















Rx(P ) −Rx(P ∗
w(b)), P > P ∗

w(b),

0, P ≤ P ∗
w(b).

(4.34)

Note that P ∗
w(b) = f−1

mon(b), which is zero for b ≥ 1. Thus noise injection does not improve

the secrecy rate for b ≥ 1. Also note that even though Rx(P ) < 0 for b < e−γ , we can still

obtain a positive rate as long as P > P ∗
w(b) because Rx(P ) > Rx(P ∗

w(b)) due to the positive

slope of Rx(P ) after P ∗
w(b). Although there is no analytical solution for P ∗

w(b), we observe
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that

R′
x(P ) =

b

(1 + bP )
−
(

e1/PE1(1/P )
)′

(4.35)

=
1

P 2

(

e1/PE1(1/P ) − P

1 + bP

)

(4.36)

>
1

P 2

(

E1(1/P ) − 1

b

)

(4.37)

>
1

P 2

(

− γ + log(P ) − 1

b

)

for P > 1. (4.38)

Thus for any b ∈ (0, 1), P > eγ+1/b implies that R′
x(P ) > 0, which guarantees that P >

P ∗
w(b) and Rv(P ) > 0. In short, power eγ+1/b can serve as a rule of thumb estimate of the

power needed to achieve a positive secrecy rate using noise injection.

To see the effect of injecting artificial noise, we plot Rx and Rv versus power budget P at

b = 0.7 and b = 0.5 in Figure 4.3. Introducing artificial noise achieves positive secrecy rate

even when b is less than e−γ . This result looks surprising at first sight, since artificial noise

degrades the Alice→Bob channel, and reduces the mutual information conveyed through

this channel. The key point here is that the properly chosen artificial noise limits the SNR

of Eve’s channel even when Eve’s random channel gain is very large. In our case, we inject

white Gaussian noise with power P ∗
w(b) to make a positive secrecy rate achievable for very

small b.

4.2.3 Bursting transmission with noise injection

The previous schemes show that, when b ≥ 1, simple Gaussian codes can achieve a positive

secrecy rate regardless of power budget; when 0 < b < 1, the Gaussian codes with artificial

noise method can achieve positive secrecy rate with sufficiently large P no matter how small

b is. However, for small b, the given power budget may not be sufficient. To obtain positive

secrecy rate with any average power budget P̄ , we can use a burst transmission method
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Figure 4.4: Change of the average secrecy rate (4.39) with δ.
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Figure 4.5: Rv(P ) and the tangent line passing P̃ .

that allows a large power for short periods of time. A simple bursting strategy that uses

power P̄ /δ for δ fraction of time and zero power otherwise achieves the average secrecy rate

R̄s(P̄ , δ) = δRv(P̄ /δ). (4.39)

Evaluating this average secrecy rate for δ ∈ (0, 1] at several different b, we obtain Figure

4.4. The figure shows that for some configurations of {P̄ , b}, a bursting strategy (δ < 1) is

better than the constant power transmission (δ = 1).

To find the optimal δ for a given power P and b, we can take a derivative of (4.39) with
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respective to δ. Obviously, to achieve positive secrecy rate, we only consider the portion of

Rv(P, b) with P > P ∗
w(b), which is differentiable.

∂R̄s(P̄ , δ)

∂δ
= Rv(P̄ /δ) + δ

∂Rv(P̄ /δ)

∂P
·
(−P̄
δ2

)

(4.40)

= Rv(P̄ /δ) − (P̄ /δ)
∂Rv(P̄ /δ)

∂P
. (4.41)

If there is a δ∗ ∈ (0, 1) that maximizes R̄s(δ), it must make the above derivative be zero.

In other words,

Rv(P̄ /δ
∗) = (P̄ /δ∗)

∂Rv(P̄ /δ)

∂P
. (4.42)

Define P̃ be the positive power that satisfies

Rv(P̃ ) = P̃
∂Rv(P̃ )

∂P
. (4.43)

Note that P̃ is actually a function of b, Bob’s relative channel gain. We are interested in P̃

with positive Rv(P̃ ). The above equation is equivalent to

∂Rv(P̃ )

∂P
=

Rv(P̃ )

P̃
. (4.44)

In other words, the tangent line at P̃ passes through the origin with positive slope. For

example, when b = 0.7, P̃ (b = 0.7) = 4.9447. We plot Rv(P ) and the tangent line at

P = P̃ (b = 0.7) together on Figure 4.5(a). The tangent line passes the origin. Another

example for Rv(P ) and the origin-passing tangent line at b = 0.5 is showed in Figure 4.5(b).

The value of P̃ (b) is plotted in Figure 4.6. P̃ (b) increases fast as b decreases.

When the power budget P̄ < P̃ (b), the optimal δ∗ = P̄ /P̃ (b) ∈ (0, 1), and the secrecy

rate achieved is

R̄s(P̄ , δ
∗) =

P̄

P̃ (b)
Rv(P̃ (b)) = P̄R′

v(P̃ ), (4.45)
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Figure 4.6: P̃ (b) that satisfies (4.43).
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Figure 4.7: The achievable secrecy rate and the upper bound (4.46) at P̄ = 10.

which is exactly the tangent line. When the power budget P̄ > P̃ (b), the optimal δ∗ = 1.

No bursting is needed in this case, and we achieve rate Rv(P̄ ). With this selection of the

δ∗, we can achieve the upper envelope of the curves in Figure 4.5. Since this is actually

the convex envelope of Rv(P̄ ), no more complicated power allocation strategy can achieve

better secrecy rate.
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4.3 Numerical evaluation

The scheme introduced above shows that it is possible to achieve positive secrecy rate even

when Bob’s channel is arbitrarily worse than Eve’s average channel. We plot the achievable

secrecy rate R̄s(P̄ , δ
∗) for the proposed scheme at power P̄ = 10 for varying b as the solid

line in Figure 4.7. For each value of b, the achievable secrecy rate is obtained by evaluating

R̄s(P̄ , δ
∗) with the optimal noise injection power P ∗

w(b) and bursting parameter δ∗.

An upper bound on the achievable rate for our model is the capacity result with slow

block fading given in [23] as

E
[

(log(1 + bP̄ ) − log(1 +GP̄ ))+
]

= log(1 + bP̄ ) − e1/P̄
(

E1(1/P̄ ) − E1(b+ 1/P̄ )
)

.

(4.46)

This bound appears as the dashed curve in Figure 4.7. There is a large gap between the

upper bound and the achievable secrecy rate when b is small. However, this upper bound is

likely not tight because it is achieved with the assumption that the timing of channel state

change is known to Alice, which is not assumed in our model. On the other hand, it is clear

that when Bob’s channel gain gets large, the secrecy rate achieved by a Gaussian random

codes in our model approaches this upper bound.

4.4 Discussion

We study the achievable secrecy rate with Gaussian random codes for the situation where

the main channel is a constant AWGN channel, and Eve’s channel is Rayleigh fading with

unknown realizations but known statistics to the transmitter. The proposed method with

artificial noise and bursting provides ways to achieve positive secrecy rate even when Bob’s

channel is much worse than Eve’s average channel gain. Note that this secrecy rate is
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achieved without knowing when Eve’s channel is bad or assumptions on the rate of Eve’s

channel changes.

We note that the proposed scheme with Gaussian random codes, artificial noise injection,

and bursting transmission is not likely to be optimal. Actually, as we will show in the

later chapter on discrete input, discrete input signaling such as QAM could provide larger

secrecy rate than Gaussian signaling for some configurations. The key is still to limit the

information the eavesdropper can gain when his channel is good, similar to our artificial noise

approach. Nevertheless, the method presented in this chapter illustrates how the temporal

variation of the channel facilitates secret communication even when the eavesdropper’s

channel realizations are unknown to the transmitter. The results are also very interesting

in that they show that careful design of the preprocessing V → X channel can enable better

secrecy rate.
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Chapter 5

Secrecy Rate for Multi-antenna Systems

In previous chapters, we showed that the diversity introduced by fading can facilitate secret

communication. It is easy to speculate that the extra spatial dimensions brought by multiple

antennas can also be exploited for secret communication. Multiple antenna systems have

been a popular field in both research and industry in the last decade. The capacity of

the multiple antenna systems was derived in [20, chapter 8], [78], and the rate gain mainly

depends on the rank of the channel matrix. When the channel matrix is known at both

the transmitter and the receiver, the channel can be decomposed into independent parallel

channels, and waterfilling over these channels achieves the capacity. When the channel

matrix is time-varying and unknown at the transmitter but known at the receiver, input

with unit covariance matrix achieves the ergodic capacity.

The secure communication problem for Multiple-input Multiple-output (MIMO) systems

was first studied in [26], where it was shown that proper exploitation of space-time diversity

at the transmitter can enhance information security and information hiding capabilities. In

particular, for information security, Hero showed that when the eavesdropper is uninformed

about his channel, the transmitter can enforce a zero information rate to the eavesdropper

while delivering a positive information rate to the intended receiver by restricting the space-

time modulation to a class of complex transmit matrices whose spatial inner product is a

constant matrix. The channel capacity under this perfect secrecy condition, when both the
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transmitter and the intended receiver have channel information, was derived. However, the

restriction to an eavesdropper uninformed about his channel is quite unrealistic. The secrecy

capacity of single-input multiple-output channel under Gaussian noise was studied in [64]

by transforming the channel into scalar wiretap channels. Negi et al. [61,62] studied secrecy

capacity with MIMO channels when artificial noise is injected. They showed that injecting

artificial noise in the nullspace of the intended receiver’s channel can degrade Eve’s channel

and allow positive secrecy capacity even when Eve’s channel was better before artificial

noise injection. Practical schemes for secret transmission with MIMO using randomization

were proposed in [39,40].

In this work, we examine what kind of input structure should we use to achieve the

secrecy rate for a multiple antenna broadcast channel. Although the secrecy capacity of

the simple Alice-Bob-Eavesdropper channel model is always given by the well-known result

derived by Csiszar and Korner [15], since the MIMO channel does not satisfy the more

capable or less noisy conditions, the key issue is the structure of an appropriate auxiliary

random variable V . However, maxX I(X;Y )− I(X;Z) can be considered as a lower bound

to the achievable secrecy rate, and it is instructive to study this achievable secrecy rate

under the MIMO scenario. To make the problem simpler, we assume Gaussian random

codes are used at the transmitter and both Bob’s and Eve’s channels are known to Alice.

The problem is formulated in Section 5.1. A simplified version of the problem for the

Multiple-Input Single-Output (MISO) case is solved in Section 5.2.

5.1 Problem formulation

In the general broadcast channel scenario, Alice broadcasts her message to Bob, while

Eve eavesdrops and tries to figure out the information communicated between Alice and
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Bob. Let Csec be the largest rate that Alice can transmit with perfect secrecy, denote the

transmitted signal by Alice as X, and the received signal at Bob and Eve as Y and Z

respectively. In [15], it was shown that the secrecy capacity under this case is

Csec = max
V →X→Y Z

I(V ;Y ) − I(V ;Z),

where V is an auxiliary random variable. When Bob’s channel is more capable than Eve’s

channel, the secrecy capacity is reduced to Csec = maxX I(X;Y ) − I(X;Z). In general,

maxX I(X;Y )− I(X;Z) can be considered as a lower bound to the achievable secrecy rate,

and it is instructive to study this achievable secrecy rate under the MIMO scenario. So our

goal here is to find the optimal input structure that maximizes the achievable secrecy rate

Rx = I(X;Y ) − I(X;Z).

When the broadcast channels are MIMO, the outputs at Bob and Eve are modeled as

y = Hx + w1, (5.1a)

z = Gx + w2, (5.1b)

where H is the channel matrix between Alice and Bob, G is the channel matrix between

Alice and Eve, and w1 and w2 are the corresponding noise vectors.

To make the problem simpler, we assume zero mean Gaussian random codes are used

at the transmitter and both Bob’s and Eve’s channels are known to all parties. We further

assume that the noise w1 and w2 are independent Gaussian white noise with the covariance

matrix normalized to identity matrix. The distribution of the input x is characterized by its

covariance matrix Q = E[xx†]. The mutual information between the transmitter and the

receiver with channel matrixH under this MIMO model was shown to be log det(Ir+HQH
†)

in [78], where Ir is the identity matrix with size r, the number of receiving antennas.
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Therefore, to maximize the achievable secrecy rate Rx(Q), we need to

maximize log det(Ir +HQH†) − log det(Ir +GQG†)

subject to tr(Q) ≤ P, Q � 0, Q = Q†, (5.2)

with the optimization variable Q, where � 0 implies positive semidefiniteness. The channel

input is required to satisfy the transmission power constraint P . Here we assume Bob and

Eve have the same number of antennas, which we will extend in later work.

The objective function of the above optimization problem is not convex. This can be

easily seen by noting that log det(Ir +HQH†) is a concave function of Q. So, the objective

function is a difference of two concave functions. For Q’s that make the second term of

the objective function zero, the objective function is concave, while for Q’s that make the

first term of the objective function zero, the objective function is convex. For a simple

2×2 MIMO case, we plot the I(X;Y )−I(X;Z) as a function of Q(1, 1) and Q(1, 2) for two

random channel realizations (assumed real here to allow plotting Q(1, 2)) in Figure 5.1, with

the power constraint satisfied with equality. From the figure, it is clear that maximizing

I(X;Y ) − I(X;Z) is not easy even for this simple example, and a simple Newton method

could be trapped in a local maximum.

By introducing an auxiliary variable t, we can reformulate the problem as

maximize t− log det(Ir +GQG†)

subject to log det(Ir +HQH†)) ≥ t

tr(Q) ≤ P, Q � 0, Q = Q†. (5.3)

This is a convex maximization problem over a convex constraint set. There is rich research

on solving the convex maximization problem (referred to as concave minimization in most
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Figure 5.1: I(X;Y ) − I(X;Z) for 2 × 2 random generated MIMO systems as a function of
the covariance matrix coefficients Q(1, 1) and Q(1, 2), with the power constraint satisfied
with equality.

references) numerically, as described in detail in [28], but their applicability is not straight-

forward to our problem due to the complex function format used here.

5.2 A simple case: MISO

Although problem (5.2) is non-convex, and thus hard when H and G are of arbitrary size,

the problem can be simplified for the MISO case, where both receivers at Bob and Eve have

only a single antenna. Denote n to be the number of transmit antennas, then H and G are

1×n vectors in this case. To avoid confusion, we use vectors h and g of size 1×n to denote

the channel realization, and rewrite the channel model as

y = hx + w1, (5.4a)

z = gx + w2. (5.4b)

Both the noise and the outputs are scalar now. We can further simplify the model by a

coordinate transformation. Suppose we have a unitary matrix R of size n×n, with property

RR† = R†R = In. (5.5)
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Then (5.4) is equivalent to

y = hRR†x + w1 = h̃x̃ + w1, (5.6a)

z = gRR†x + w2 = g̃x̃ + w2, (5.6b)

where x̃, h̃ and g̃ are the vector representations of x, h and g in the transformed space

spanned by R. Since R is invertible, it is clear that I(x; y) = I(x̃; y) and I(x; z) = I(x̃; z).

To simplify the model, we can choose R in the following way

1. The first column is r1 = h†/||h||,

2. The second column r2 is orthogonal to r1, and lies in the space spanned by h and g.

Mathematically, this means

r2 =
(g − (gr1)r

†
1)

†

||g − (gr1)r
†
1||

=
(g − ||g||αr†1)†
||g||

√
1 − α†α

, (5.7)

where α is the normalized correlation coefficient, defined as

α =
gh†

||g|| · ||h|| .

(It is assumed that h and g are not in the same direction here, since in that situation,

the channel is just reduced to a scalar Gaussian broadcast channel).

3. The rest of the rows are an arbitrarily chosen orthonormal basis set for the remaining

n− 2 dimensions, and are orthogonal to the first two rows.

With this selection of R, we have

h̃ = hR = ||h|| · [1, 0, · · · , 0], (5.8)

g̃ = gR = ||g|| · [α,
√

1 − α†α, · · · , 0]. (5.9)
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Since h̃ and g̃ both have zero components in the subspace spanned by {r3, · · · , rn}, no

power should be put into those dimensions. So we can focus only on the subspace spanned

by the first two rows of R. This reduces the MISO channel model to

y = ||h|| · [1, 0]









x̃1

x̃2









+ w1, (5.10a)

z = ||g|| ·
[

α,
√

1 − α†α
]









x̃1

x̃2









+ w2. (5.10b)

From now on, we will refer

x̃ =









x̃1

x̃2









, h̃ = ||h||
[

1 0

]

, g̃ = ||g||
[

α
√

1 − α†α

]

.

Our goal is to find the covariance matrix Q = E[x̃x̃†] that maximizes the secrecy rate

I(x̃; y) − I(x̃; z) under the power constraint tr(Q) ≤ P . Once we find Q, we can easily

transfer it back to the original space using the transformation matrix R.

5.2.1 Analytical solution

For the transformed model (5.10), we have

Rx(Q) = I(x̃; y) − I(x̃; z) (5.11)

= log(1 + h̃Qh̃†) − log(1 + g̃Qg̃†) (5.12)

= log
1 + h̃Qh̃†

1 + g̃Qg̃† . (5.13)

So, maximizing Rx(Q) is equivalent to maximizing (1+h̃Qh̃†)/(1+g̃Qg̃†). Since the matrix

Q is Hermitian and positive semidefinite, it can be written as Q =
∑2

i=1 λiuiu
†
i , where ui

are orthogonal unit vectors and λi ≥ 0 for i = 1, 2. Also, since the optimal solution always

uses up all available power (this point is more clear from the alternative method in Section
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5.2.2), we let tr(Q) = P , which yields
∑

i λi = P . Then, we can write

1 + h̃Qh̃† =

2
∑

i=1

λi

P
u†iui +

2
∑

i=1

λih̃uiu
†
i h̃

† (5.14)

=

2
∑

i=1

λi

P
u†iI2ui +

2
∑

i=1

λiu
†
i h̃

†h̃ui (5.15)

=

2
∑

i=1

λi

P
u†i (I2 + P h̃†h̃)ui, (5.16)

where we utilized the fact that for MISO h̃ui is a scalar so that h̃uiu
†
i h̃

† = u†i h̃
†h̃ui.

Similarly, we can write

1 + g̃Qg̃† =

2
∑

i=1

λi

P
u†i (I2 + P g̃†g̃)ui. (5.17)

Thus,

1 + h̃Qh̃†

1 + g̃Qg̃† =

∑2
i=1 λiu

†
i (I2 + P h̃†h̃)ui

∑2
i=1 λiu

†
i (I2 + P g̃†g̃)ui

. (5.18)

Denote ai = u†i (I2+P h̃†h̃)ui and bi = u†i (I2+P g̃†g̃)ui, then maximizing Rx(Q) is equivalent

to

maximize M such that

∑

i λiai
∑

i λibi
≥M. (5.19)

Since λi ≥ 0, ai ≥ 0, and bi ≥ 0, the above problem can be rewritten as
∑

i λi(ai−Mbi) ≥ 0.

The largest M that satisfies the constraint is

M∗ = max
i

ai

bi
, (5.20)

and the corresponding λi are

λj =















P j = arg maxi
ai

bi
,

0 otherwise.

(5.21)

Moreover,

max
i

ai

bi
= max

u

u†i (I2 + P h̃†h̃)ui

u†i (I2 + P g̃†g̃)ui

, (5.22)
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which can be converted to a well known Rayleigh quotient problem. To see this, note that

I2 +P g̃†g̃ is Hermitian and positive definite, so it can be factorized as I2 +P g̃†g̃ = V D2V †

where V is unitary and contains the eigenvectors of the matrix, and D is diagonal and

contains the square roots of the associated eigenvalues. Since the eigenvalues are nonzero,

we can define a new vector related to u by an invertible transformation: v = DV †u. Then

the optimization problem becomes

max
v

v†D−1V †(I2 + P h̃†h̃)V D−1v

v†v
. (5.23)

The optimal solution v∗ is just the eigenvector corresponding to the largest eigenvalue of the

matrix D−1V †(I2 +P h̃†h̃)V D−1. This may then be transformed back to obtain the optimal

normalized solution u∗. The resulting optimal covariance matrix is simply Q∗ = Pu∗u∗†.

We note that the solution u∗ is also the generalized eigenvector corresponding to the largest

generalized eigenvalue of the two matrices I2 + P h̃†h̃ and I2 + P g̃†g̃. In other words, it is

the eigenvector with the largest eigenvalue of the matrix

A = (I2 + P g̃†g̃)−1(I2 + P h̃†h̃) (5.24)

=









P ||g||2α†α+ 1 P ||ĝ||2α†√1 − α†α

P ||g||2α
√

1 − α†α P ||g||2(1 − α†α) + 1









−1 







P ||ĥ||2 + 1 0

0 1









(5.25)

=

(

P ||ĥ||2 + 1

P ||ĝ||2 + 1

)









P ||ĝ||2(1 − ρ2) + 1
−P ||ĝ||2ρ

√
1−ρ2

P ||ĥ||2+1

−P ||ĝ||2ρ
√

1 − ρ2 P ||ĝ||2ρ2+1

P ||ĥ||2+1









(5.26)

5.2.2 Alternative view

The method in previous subsection gives an analytical solution to our problem. An alter-

native view might provide more insight to this problem, as we will explain in this section.
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We can expand (5.10) to the following

y = ||h||x̃1 + w1, (5.27a)

z = ||g||
(

αx̃1 +
√

1 − α†α x̃2

)

+ w2. (5.27b)

Then we can write the achievable secrecy rate as

Rx(Q) = I(x̃; y) − I(x̃; z) (5.28)

= H(y) −H(y|x̃) − (H(z) −H(z|x̃)) (5.29)

= H(y) −H(z) (5.30)

= log(2πePy) − log(2πePz), (5.31)

where the last step uses the assumption that x̃ is a zero mean Gaussian random variable.

Py and Pz are the output powers at Bob and Eve respectively. Denote P1 and P2 as the

power of x̃1 and x̃2, then we have

Py = E[yy†] = ||h||2P1 + 1, (5.32)

Pz = E[zz†] = ||g||2
(

αα†P1 + (1 − α†α)P2 + γ
)

+ 1, (5.33)

with

γ = α
√

1 − α†αE[x̃1x̃
†
2] + α†

√

1 − α†αE[x̃†1x̃2]. (5.34)

Define ρ be the normalized correlation coefficient

ρ =
E[x̃1x̃

†
2]√

P1P2
,

then

γ = α
√

1 − α†αρ
√

P1P2 + α†
√

1 − α†αρ†
√

P1P2 (5.35)

= (αρ+ α†ρ†)
√

(1 − α†α)P1P2 (5.36)

= 2ℜ(αρ)
√

(1 − α†α)P1P2. (5.37)
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Now our problem is converted to finding the optimal {P1, P2, ρ} (which determines Q), to

maximize I(x̃; y) − I(x̃; z) with the power constraint P1 + P2 ≤ P .

An important observation here is that the optimization over the correlation coefficient

ρ can be separated from the optimization over the power allocation. For a given power

allocation {P1, P2}, to maximize Rx(Q), we should minimize H(z), which is equivalent to

minimizing Pz, and in turn minimizing γ. From (5.37), we conclude that we should choose

ρ to minimize ℜ(αρ), and meanwhile satisfy the constraint ρρ† ≤ 1. Let αr and αi denote

the real and imaginary part of α respectively, and similarly for ρr and ρi, then ρr and ρi is

the solution to the following optimization problem:

minimize αrρr − αiρi,

subject to ρ2
r + ρ2

i ≤ 1. (5.38)

This is a convex optimization problem that can be easily solved with the Lagrangian method,

and the optimal solution is ρ∗ = −α†/||α||.

With ρ = ρ∗, we obtain

γ = −2||α||
√

(1 − α†α)P1P2, (5.39)

σ2
z = ||g||2

(

√

α†αP1 −
√

(1 − α†α)P2

)2

+ 1. (5.40)

Substituting (5.32) and (5.40) back to (5.31), we obtain

Rx(P1, P2) = log(Py) − log(Pz) (5.41)

= log







||h||2P1 + 1

||g||2
(

√

α†αP1 −
√

(1 − α†α)P2

)2
+ 1






. (5.42)

Now, we can choose P1 and P2 to maximize the above secrecy rate with the power constraint.

Note that the denominator is minimized when
√

α†αP1 =
√

(1 − α†α)P2, which implies that
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x̃1 and x̃2 cancel each other completely at the eavesdropper’s receiver so that she essentially

gets no information on the input. We call this zero-forcing at Eve, and when it happens,

we have

P2 =
α†α

1 − α†α
P1. (5.43)

Thus, for a given P1, if P − P1 ≥ α†α
1−α†α

P1, which means P1 ≤ (1 − α†α)P , we should

choose P2 = α†α
1−α†α

P1 to maximize Rx(P1, P2). When P1 > (1 − α†α)P , due to the power

constraint, zero-forcing is not possible. To maximize Rx(P1, P2), we should do the canceling

as much as possible, which means P2 = P −P1. With this analysis, we can remove P2 from

the parameter list and obtain

Rx(P1) =



















log(||h||2P1 + 1), P1 ≤ (1 − α†α)P

log

(

||h||2P1+1

||g||2
(√

α†αP1−
√

(1−α†α)(P−P1)
)

2

+1

)

, (1 − α†α)P ≤ P1 ≤ P.
(5.44)

Note that the first segment of Rx(P1) increases with P1, which means it has the maximum

at P1 = (1 − α†α)P . This corresponds to the best secrecy rate with zero-forcing, and can

be consider as the lower bound to our achievable secrecy rate. However, zero-forcing rate is

constant regardless of Eve’s actual channel gain, so it might not be the optimal P1, as we

can see from Figure 5.2. For the same α = 0.7, when Eve’s channel gain is relatively large,

the zero-nulling rate (corresponding to the intersection of the two curves) is very good,

while when Eve’s channel gain is relatively small, it is not the best achievable secrecy rate.

It is easy to see that the power constraint should always be satisfied with equality, since

the optimal P1 satisfies P1 ≥ (1 − α†α)P . Also, we only need to maximize the second

segment of Rx(P1) over its corresponding range of P1. However, the function format is

complicated, and an analytical optimal solution of P1 is hard to obtain in this way.

This view gives some insight on how coding should be performed for secrecy reason.

Note that ρ∗ρ∗† = 1 suggests that x̃2 = cx̃1, where c is some optimally chosen constant.
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In other words, x̃2 is linearly correlated with x̃1 in such a way that they cancel each other

to some optimal extent at Eve. When (5.43) holds, the two inputs completely cancel each

other, and the mutual information between z and the input x̃ is zero. If we consider x̃1

as the information bearing signal, and x̃2 as a jamming signal, then our problem is a little

similar to the correlated jamming case described in [57,68], except that we have a different

objective function, and the jammer and the user are cooperative.

5.3 Numerical evaluation

We now evaluate the achievable secrecy rate R∗
x = maxQ log(1 + hQh†) − log(1 + gQg†),

and see how it varies with the MISO channel realizations h and g pictorially. For a fixed

power budget P , R∗
x is determined by ||h||, ||g|| and α. In evaluation, we fix ||h|| = 1, and

vary ||g|| and α. For simplicity, we consider only the real channel here so that α is real. It

does not matter if α is positive or negative, since ρ∗ will always compensate that factor, so

we only evaluate the secrecy rate with positive α. The results are shown in Figure 5.3.

We note that Eve’s channel gain ||g|| has a significant effect on the secrecy rate only
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Figure 5.3: Change of R∗
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channel gain α. P = 10, ||h|| = 1.

when it is worse than Bob’s channel. When ||g|| > ||h||, zero-forcing strategy is close to

optimal, and ||g|| becomes almost irrelevant. As expected, the larger α, the more correlated

the two channels are, the lower the secrecy rate. α plays the critical role on the achievable

secrecy rate when ||g|| > ||h||. Increasing α results in a sharp drop of the secrecy rate, and

α = 1 shuts down the secure communication completely when ||g|| > ||h||. On the other

hand, we note that when α is small, the rate loss relative to the normal capacity is small.

Moreover, as long as the normalized channel correlation α 6= 1, we can get a positive secrecy

rate no matter how strong Eve’s channel is. Since α = 1 means Eve’s channel is a scaled

version of Bob’s channel, the chance of this to happen is small in a fading environment

with multiple antennas. Also, the more number of transmit antennas, the more likely that

the correlation of the two channels is small. Therefore, multiple transmit antennas provide

more freedom, and in turn allow secret communication even when Eve’s channel is much

better.
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5.4 Discussion

In this work, we studied the achievable secrecy rate for a multiple antenna system, and

the optimal input structure to achieve this rate. For the general multiple input multiple

output case, the problem is not convex and is hard to solve. However, for the MISO case,

the problem can be reformulated, and can be solved. An analytical solution is derived for

this simple case and the implication of the results are discussed in this paper. Multiple

antenna provides extra degree of freedom to the transmitter such that some beamform-

ing like approach can be used to provide advantage to the intended receiver against the

eavesdropper.

We note that a similar result was derived independently in [67]. Result for MIMO

channel with two transmit antenna, two receive antenna and one eavesdropping antenna

was presented in [66]. It was proved later by [31,53,63] that the achievable rate we derived

for a MISO system is indeed the capacity. For the more general MIMO case, a Gaussian

input is optimal, and no auxiliary random variable is needed. However, analytical solution

for the optimal covariance matrix is still hard to obtain. Nevertheless, the authors show

that the optimal covariance matrix will render the eavesdropper’s channel to be a degraded

one of the intended receiver’s channel.
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Chapter 6

Secrecy Rate Region of a Class of One-sided Interference

Channels

Due to the shared nature of the wireless medium, secret communication becomes more com-

plicated when there exist multiple transmitter-receiver pairs simultaneously transmitting in

a network setting. Not only does the communication over the links interfere each other, but

also each transmitter i must encode its messages so that only the corresponding receiver i

can decode the messages. The receiver of any link j 6= i is not permitted to resolve more

than arbitrarily little information regarding the information communicated on link i.

Unlike the single transmitter scenario, in interference channels, the secrecy afforded to

link i from an eavesdropping receiver j may depend on the signaling employed on link j as

well as on other links. For example, in a 2-user Gaussian interference channel, if transmitter

2 is silent, then receiver 2 can act as a traditional eavesdropper of link 1. Similarly, over

a discrete memoryless channel, user 2 may choose to transmit a particular symbol that

best “opens” the channel for eavesdropping. On the other hand, if transmitter 2 sends

at a nonzero rate, because receiver 2 must also decode its own messages, this signal can

interfere with the eavesdropping ability of receiver 2. That is, the rate at which user 1

can communicate secretly will depend on the signaling strategy of user 2. Alternatively,

transmitter 2 can also act as a helper to facilitate transmitter 1’s secret communication,

and then the two transmitters reverse roles in the next round.
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There have been several works on multi-user secret communication in recent years.

Multi-access channels were considered by [50, 75]. The relay channel is considered in [35]

where the second transmitter acts as a helper and does not transmit it’s own message.

Several relay strategies, such as decode and forward, amplify and forward, noise forward-

ing strategies, were considered and their corresponding achievable rates were evaluated.

Both broadcast channels and interference channels were considered in [51], where both

the inner bound and the outer bound of the two-user interference channel were proposed.

The memoryless channel is characterized by the transition probability P (y1,y2|x1,x2) =

∏n
i=1 P (y1,i, y2,i|x1,i, x2,i) where x1,x2 are the length n transmitted codewords, and i is

the time index. The authors showed that the inner bound and the outer bound coincide

for a switch channel example. However, for a switch channel, due to the time sharing na-

ture, there is no real interference among the users. For more general interference channels,

because of the large number of possibilities for the auxiliary random variables and their

correlations, it is hard to evaluate the bound and find the points on the border of the

regions.

In this work, we investigate the secrecy rate region of a class of one-sided interference

channel, as illustrated in Figure 6.1. Although the inner and outer bounds of the general

two user interference channel have been previously derived in [51], these bounds are hard to

compute due to auxiliary random variables in the formulation. In our work, we provide a

more tractable outer bound specifically for the class of one-sided interference channel. We

show that this bound is tight for a deterministic channel example, and is achievable within

one bit for a Gaussian one-sided interference channel example.
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Figure 6.1: One-sided interference channel model.

6.1 Problem formulation

The class of one-sided interference channel model we consider is shown in Figure 6.1. The

channels are memoryless, and the output Y2 = f(X2, V1) is a deterministic function of the

input X1 and the interference V1, where f(·, ·) satisfies the condition

H(Y2|X2) = H(V1), (6.1)

for all product probability distributions on X1 and X2. This condition is equivalent to

requiring the existence of a function h(·, ·) such that V1 = h(X2, Y2). This channel model

is a generalization of the one-sided interference channel model examined in [21], which

considers the case when P (V1|X1) is a deterministic mapping. In this work, the stochastic

mapping P (V1|X1) enables randomness in the channel from X2 to Y2 despite f(X2, V1)

being deterministic. For example, this model covers the Gaussian one-sided interference

channel shown in Figure 6.4 with Y1 = X1 +N1,V1 = aX1 +N2 and Y2 = V1 +X2, where

N1, N2 are unit variance Gaussian noise, and a is the cross channel gain.

There are two communication links in this system. Each transmitter i produces input

xi for each channel use and each receiver i observes the output yi. We assume that each

transmitter i communicates an independent message index Wi ∈ {1, · · · ,Mi} to receiver i

by transmitting a codeword denoted by the vector Xn
i = [xi(1), · · · , xi(n)] of n transmitted

symbols. Given the observation sequence Y n
i = [yi(1), · · · , yi(n)], receiver i guesses a mes-

sage index Ŵi. Each user’s rate is given by Ri = log2(Mi)/n. The secrecy rate R = (R1, R2)
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is said to be achievable if given any ǫ > 0, there exists a coding strategy for the two users

such that the following conditions are satisfied:

• The communication for each user is reliable, i.e., the maximal decoding error proba-

bility maxi P (Wi 6= Ŵi) ≤ ǫ.

• The communication for each user is confidential in spite of the other receiver’s eaves-

dropping. That is, the normalized information leakage satisfies I(Wi;Y
n
j )/n ≤ ǫ for

i = 1, j = 2 and i = 2, j = 1. This is equivalent to the definition H(Wi|Y n
j )/n ≥ R−ǫ,

which has been used in the literature. Note that in our one-sided interference chan-

nel model, the message sent by user 2 is always confidential as there is no link from

transmitter 2 to receiver 1.

We note that, for this definition of secrecy, the transmitters are assumed to be trustwor-

thy and will not deviate from the strategy agreed upon before communication. However,

trustworthy does not mean that they know the signal transmitted by the others or that

they share some common randomness. We aim at finding the capacity region of this class

of one-sided interference channel. However, exact characterization of the secrecy capacity

region is not so straightforward. Instead, we will present an outer bound region in the next

section, which is shown to be tight for the deterministic channel described in Section 6.3,

and is achievable within a constant gap for some Gaussian one-sided interference channels.

6.2 An outer bound

As mentioned earlier, an outer bound for the general interference channel with the transition

probability P (Y1Y2|X1X2) has been investigated in [51]. However, this bound is hard to

compute, even for the class of one-sided interference channel that we have considered here.
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In this work, we focus on our specific one-sided interference channel and derive a bound

that is easier to compute for some cases. The main result of this paper is the following

theorem.

Theorem 6.1 The secrecy capacity region of the channel of Figure 6.1 is contained in the

union over all channel inputs of the form P (u)P (u1|u)P (x1|u1)P (x2) of all pairs (R1, R2)

for which

0 ≤ R1 ≤ I(X1;Y1|Y2), (6.2a)

0 ≤ R2 ≤ I(X2;Y2|X1), (6.2b)

0 ≤ R1 +R2 ≤ I(U1;Y1|U) − I(U1;Y2|X2U) + I(X2;Y2|X1). (6.2c)

When the more capable condition

I(X1;Y1) ≥ I(X1;V1) (6.3)

is satisfied for all possible input distributions P (x1), U1 = X1 and the bound (6.2c) is

replaced by

0 ≤ R1 +R2 ≤ I(X1;Y1|U) − I(X1;Y2|X2U) + I(X2;Y2|X1). (6.4)

The proof of Theorem 6.1 is based on the techniques developed in [15], and is provided below.

The first bound (6.2a) is obtained by enhancing receiver 1 such that it has knowledge of what

receiver 2 gets. The second bound (6.2b) is the maximum rate that user 2 can obtain, and is

very straightforward. The third bound (6.2c) characterizes the sum rate bound, and shows

the trade-off between the rates of the two users. Note that I(U1;Y1|U) − I(U1;Y2|X2U)

in (6.2c) is essentially the secrecy capacity for the channel of X1 to Y1, with V1 being the

eavesdropper’s observation. So, if X2 is silent, that is the maximum secrecy rate user 1 can



81

get. However, if X2 is not silent and is willing to sacrifice its own rate, then user 1 might

get a higher rate than he would otherwise.

Proof: The bounds (6.2b) are obvious. Now we will prove the R1 bound (6.2a) and the

sum rate bound (6.2c).

nR1 ≤ I(W1;Y
n
1 ) + nǫ1 (6.5)

≤ I(W1;Y
n
1 ) − I(W1;Y

n
2 ) + n(ǫ1 + ǫ2). (6.6)

The inequality in (6.5) utilizes the Fano inequality, and the inequality in (6.6) utilizes the

secrecy constraint I(W1;Y
n
2 ) ≤ nǫ2.

Let ǫ = ǫ1 + ǫ2, we can further write

nR1 ≤ I(W1;Y
n
1 Y

n
2 ) − I(W1;Y

n
2 ) + nǫ (6.7)

= I(W1;Y
n
1 |Y n

2 ) + n(ǫ) (6.8)

≤ H(Y n
1 |Y n

2 ) −H(Y n
1 |W1X

n
1 Y

n
2 ) + nǫ (6.9)

≤
n
∑

i=1

[H(Y1,i|Y2,i) −H(Y1,i|X1,iY2,i)] + nǫ, (6.10)

where the last step is due to the chain rule, the Markov chain W1 → X1 → Y1Y2 and the

memoryless property of the channel.

For the sum rate, we have

nR1 + nR2 ≤ I(W1;Y
n
1 ) − I(W1;Y

n
2 ) + I(Xn

2 ;Y n
2 ) + nǫ (6.11)

= I(W1;Y
n
1 ) − I(W1;Y

n
2 V

n
1 ) + I(W1;V

n
1 |Y n

2 ) + I(Xn
2 ;Y n

2 ) + nǫ (6.12)

= I(W1;Y
n
1 ) − I(W1;V

n
1 ) − I(W1;Y

n
2 |V n

1 ) + I(W1;V
n
1 |Y n

2 )

+ I(Xn
2 ;Y n

2 ) + nǫ. (6.13)
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Define Y i−1
1 = Y1,1 · · ·Y1,i−1, Ṽ

i+1
1 = V1,i+1 · · ·V1,n, Ui = Y i−1

1 Ṽ i+1
1 and U1,i = (W1, Ui).

We also have

I(W1;Y
n
1 ) − I(W1;V

n
1 ) =

n
∑

i=1

I(U1,i;Y1,i|Ui) − I(U1,i;V1,i|Ui). (6.14)

The details of the intermediate steps are essentially the same as in (3.24) - (3.41), with some

notation changes, in particular, the W1 here for V in (3.24), Y n
1 here for YM in (3.24), V n

1

here for ZM in (3.24), U1,i here for V̂m in (3.41) and Ui here for Um in (3.41). This proof

is derived from [15, section V], and a similar result with a slightly different proof can be

found in [51, section IV].

Due to the Markov chain W1 → X1 → V1 → Y2,

I(W1;Y
n
2 |V n

1 ) = 0. (6.15)

Moreover, we can write

I(W1;V
n
1 |Y n

2 ) = H(V n
1 |Y n

2 ) −H(V n
1 |Y n

2 W1) (6.16)

≤ H(V n
1 |Y n

2 ) −H(V n
1 |Y n

2 X
n
1W1) (6.17)

= H(V n
1 |Y n

2 ) −H(V n
1 |Y n

2 X
n
1 ) (6.18)

= H(V n
1 Y

n
2 ) −H(Y n

2 ) −H(V n
1 |Y n

2 X
n
1 ) (6.19)

= H(V n
1 ) +H(Y n

2 |V n
1 ) −H(Y n

2 ) −H(V n
1 |Y n

2 X
n
1 ).

The property of the deterministic mapping (3.11) implies that

I(W1;V
n
1 |Y n

2 ) ≤ H(Y n
2 |Xn

2 ) +H(Y n
2 |V n

1 ) −H(Y n
2 ) −H(V n

1 |Y n
2 X

n
1 )

= −I(Xn
2 ;Y n

2 ) +H(Y n
2 |V n

1 ) −H(V n
1 |Y n

2 X
n
1 ). (6.20)
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So,

I(W1;V
n
1 |Y n

2 ) + I(Xn
2 ;Y n

2 ) ≤ H(Y n
2 |V n

1 ) −H(V n
1 |Y n

2 X
n
1 ) (6.21)

= H(Y n
2 |V n

1 ) −H(V n
1 Y

n
2 |Xn

1 ) +H(Y n
2 |Xn

1 ) (6.22)

= H(Y n
2 |V n

1 ) −H(V n
1 |Xn

1 ) −H(Y n
2 |V n

1 X
n
1 )

+H(Y n
2 |Xn

1 ) (6.23)

= −H(V n
1 |Xn

1 ) +H(Y n
2 |Xn

1 ). (6.24)

Since all channels are memoryless, we can write

I(W1;V
n
1 |Y n

2 ) + I(Xn
2 ;Y n

2 ) =

n
∑

i=1

H(Y2,i|Y i−1
2 Xn

1 ) −H(V1,i|V i−1
1 Xn

1 ) (6.25)

≤
n
∑

i=1

H(Y2,i|X1,i) −H(V1,i|X1,i). (6.26)

Substituting (6.14), (6.15) and (6.26) into (6.13) and dropping the ǫ1, ǫ2, we get

n(R1 +R2) ≤
n
∑

i=1

[I(U1,i;Y1,i|Ui) − I(U1,i;V1,i|Ui) +H(Y2,i|X1,i)

−H(V1,i|X1,i)]. (6.27)

Introducing a random variable Q uniformly distributed over {1, · · · n}, we can boundR1+R2

as follows

n(R1 +R2) ≤ n

n
∑

i=1

1

n
[I(U1,i;Y1,i|Ui, Q = i) − I(U1,i;V1,i|Ui, Q = i)

+H(Y2,i|X1,i, Q = i) −H(V1,i|X1,i, Q = i)]

= n[I(U1,Q;Y1,Q|UQ, Q) − I(U1,Q;V1,Q|UQ, Q)

+H(Y2,Q|X1,Q, Q) −H(V1,Q|X1,Q, Q)] (6.28)

Defining U = (UQ, Q), U1 = U1,Q, V1 = V1,Q, X1 = (X1,Q, Q), X2 = (X2,Q, Q), Y1 =

(Y1,Q, Q), Y2 = (Y2,Q, Q), we can see that the conditional probabilities remain the same as
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the original variables, and the same Markov chain U → U1 → X1 → Y1V1 holds. Then, we

get

R1 +R2 ≤ I(U1;Y1|U) − I(U1;V1|U) +H(Y2|X1) −H(V1|X1). (6.29)

Applying the same trick to (6.10), we get the bound (6.2a) on R1.

Since the function Y2 = f(X2, V1) is deterministic with property (3.11), and V1 and X2

are independent, we have

H(V1|X2Y2) = H(V1X2Y2) −H(X2Y2) (6.30)

= H(V1) +H(X2|V1) +H(Y2|V1X2) −H(X2) −H(Y2|X2) (6.31)

= 0. (6.32)

Then,

H(V1|X1) = H(V1) +H(X1|V1) −H(X1) (6.33)

= H(Y2|X2) +H(X1|V1X2Y2) −H(X1|X2), (6.34)

with the last step utilizing the independence of X1 and X2, and of X1 and X2Y2 conditioned

on V1. It follows that

H(V1|X1) = H(Y2|X2) +H(X1|X2Y2) +H(V1|X1X2Y2) −H(V1|X2Y2)

−H(X1|X2) (6.35)

= H(X1Y2|X2) −H(X1|X2) (6.36)

= H(Y2|X1X2). (6.37)

With the Markov chain U → U1 → X1 → V1, a similar manipulation yields

H(V1|U) = H(Y2|X2U) (6.38)
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and

H(V1|U1U) = H(Y2|X2U1U). (6.39)

Thus,

I(U1;V1|U) = H(V1|U) −H(V1|U1U) = I(U1;Y2|X2U). (6.40)

Substituting (6.37) and (6.40) into (6.29), we get

R1 +R2 ≤ I(U1;Y1|U) − I(U1;Y2|X2U) +H(Y2|X1) −H(Y2|X1X2) (6.41)

= I(U1;Y1|U) − I(U1;Y2|X2U) + I(X2;Y2|X1). (6.42)

When the channel from X1 to Y1 is more capable than the channel from X1 to V1,

I(X1;Y1|U1U) − I(X1;V1|U1, U) =
∑

u1,u

[I(X1;Y1|u1, u) − I(X1;V1|u1, u)]P (u1, u)

≥ 0 (6.43)

for any probability distribution P (U1, U). Therefore,

I(U1;Y1|U) − I(U1;V1|U) = I(X1;Y1|U) − I(X1;V1|U) − [I(X1;Y1|U1U)

− I(X1;V1|U1U)] (6.44)

≤ I(X1;Y1|U) − I(X1;V1|U). (6.45)

So,

R1 +R2 ≤ I(X1;Y1|U) − I(X1;V1|U) + I(X2;Y2|X1)

= I(X1;Y1|U) − I(X1;Y2|X2U) + I(X2;Y2|X1).

This completes the proof of Theorem 6.1. 2
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Figure 6.2: Examples of binary expansion one-sided deterministic interference channel.

6.3 Binary expansion deterministic one-sided interference channel

In this section, we consider the secrecy rate region of a binary expansion deterministic one-

sided interference channel. This type of deterministic channel model was introduced in [7]

as a model for the Gaussian interference channel in high SNR. Following the notation used

there, we use q to denote the maximum number of binary inputs that both transmitters
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can have, and S to denote the q × q shift matrix

S =

































0 0 0 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 1 0

































. (6.46)

Among the q binary inputs of x1, the first n1 bits (called the most significant bits) are

delivered to receiver 1 noiselessly. In other words, the received signal y1 is a (q − n1)

down-shifted version of the transmitted signal x1. Mathematically, this is

y1 = Sq−n1x1. (6.47)

Due to the interference link between transmitter 1 and receiver 2, receiver 2 will get n12

most significant bits from transmitter 1, as well as n2 most significant bits from transmitter

2. The interaction of the interference bits and the signal bits from transmitter 2 is modeled

as modulo 2. Mathematically, the received signal at receiver 2 can be written as

y2 = Sq−n12x1 ⊕ Sq−n2x2. (6.48)

There are four possible combinations of the ordering between n1 and n12, and n2 and

n12, as listed below:

1. n1 ≥ n12, n2 ≥ n12;

2. n1 ≥ n12, n2 < n12;

3. n1 < n12, n2 ≥ n12;

4. n1 < n12, n2 < n12;
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An example of each case is shown in Figure 6.2 with q = 4.

Define x+ = min(x, 0). With the help of Theorem 6.1, we obtain the following result.

Theorem 6.2 The secrecy capacity region of the deterministic one-sided interference chan-

nel (6.47)-(6.48) is

0 ≤ R1 ≤ (n1 − (n12 − n2)
+)+, (6.49a)

0 ≤ R2 ≤ n2, (6.49b)

0 ≤ R1 +R2 ≤ (n1 − n12)
+ + n2. (6.49c)

Proof: First, we label the inputs for transmitter i at level j to be xi,j, with the highest

level (most significant bit) be j = 1. Then, we can write down the received signal at receiver

1 explicitly as

y1 = (x1,1, · · · , x1,n1
). (6.50)

For receiver 2, when n2 ≥ n12, the received signal is

y2 = (x2,1, · · · , x2,n2−n12
, x2,n2−n12+1 ⊕ x1,1, · · · , x2,n2

⊕ x1,n12
). (6.51)

When n2 < n12, the received signal is

y2 = (x1,1, · · · , x1,n12−n2
, x2,1 ⊕ x1,n12−n2+1, · · · , x2,n2

⊕ x1,n12
). (6.52)

Note that we omit those output levels that do not receive input signal in this representation.

To evaluate the rate bound (6.2a) for rate R1, we note that the bound can be simplified

as

R1 ≤ I(X1;Y1|Y2) = H(Y1|Y2) (6.53)

≤ H(Y1) ≤ n1. (6.54)
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Moreover, when n2 < n12, we can tighten the bound by noticing that

H(Y1|Y2) ≤ H((X1,1, · · · ,X1,n1
)|(X1,1, · · · ,X1,n12−n2

)) (6.55)

≤ (n1 − (n12 − n2))
+. (6.56)

Combining both bounds, we get (6.49a).

The second bound (6.49b) is straightforward because it is just the capacity of the second

transmitter-receiver pair’s channel. Since there is no leakage of information from transmitter

2 to receiver 1, the rate bound is not affected by the secrecy requirement.

The sum rate bound (6.49c) is obtained by evaluating (6.2c). From (6.40), we can get

I(U1;Y1|U) − I(U1;Y2|X2U) = I(U1;Y1|U) − I(U1;V1|U), (6.57)

which is the secrecy capacity of the channel X1 → Y1V1, with V1 being the eavesdropper’s

output. Since the channel X1 → Y1V1 is degraded one way or the other depending on the

order of n1 and n12,

I(U1;Y1|U) − I(U1;V1|U) ≤ (n1 − n12)
+, (6.58)

where the equality holds when U1 = X1 if n1 > n12 or U1 = 0 if n1 ≤ n12 and U be

a constant. Together with I(X2;Y2|X1) = H(Y2|X1) ≤ n2, we get the sum rate bound

(6.49c).

To prove the achievability, let us consider the cases with different ordering of n1, n2 and

n12 respectively.

1. n1 ≥ n12, n2 ≥ n12.
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For this case, the bound (6.49) is simplified to

0 ≤ R1 ≤ n1, (6.59a)

0 ≤ R2 ≤ n2, (6.59b)

0 ≤ R1 +R2 ≤ n1 − n12 + n2. (6.59c)

This outer bound region is illustrated in Figure 6.3(a). We note that for this exam-

ple, the outer bound is the same as the capacity region without secrecy constraint

(obtained by evaluating Theorem 2 in [21]). However, the two regions are not always

the same in general. To prove the achievability, we note that the outer bound is

characterized by the four corner rate pairs (R1, R2) equaling (n1, 0), (n1, n2 − n12),

(n1 − n12, n2), and (0, n2). If the four corner rate pairs can be achieved, then the

whole region can be achieved by time sharing. Now we will show that these four rate

pairs are actually achievable.

To achieve the rate (R1, R2) = (n1, n2 − n12), user 1 can transmit independent bi-

nary information bits through each of his 1-bit uncoded channels, while user 2 puts

equiprobable random noise bits into his n2−n12+1 to n2 1-bit channels and transmits

independent uncoded information bits through the remaining n2 −n12 1-bit channels.

Hence, the transmission rates of user 1 and user 2 are n1 and n2 − n12 respectively.

The reliability of the information bits is obvious given the deterministic nature of

the channel. Since the information bit is uncoded and is represented by X1, the

information leakage of user 1 is given by I(X1;Y2). Denote

Y2,c = (X2,1, · · · ,X2,n2−n12
) (6.60)

Y2,i = (X2,n2−n12+1 ⊕X1,1, · · · ,X2,n2
⊕X1,n12

), (6.61)
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we can write

I(X1;Y2) = I((X1,1, · · · ,X1,n1
);Y2,c, Y2,i) (6.62)

= I((X1,1, · · · ,X1,n1
);Y2,c) + I((X1,1, · · · ,X1,n1

);Y2,i|Y2,c) (6.63)

= H(Y2,i) −H(X2,n2−n12+1, · · · ,X2,n2
) (6.64)

= 0. (6.65)

Thus, the receiver 2 cannot get any information on X1 from Y2, and perfect secrecy

is achieved.

To achieve the rate (R1, R2) = (n1 − n12, n2), user 1 can transmit binary information

bits through his n12 + 1 to n1 1-bit channels and be silent in the rest, while user 2

transmits information bits through all of his 1-bit channels. Clearly, this strategy

satisfies both the reliability and the secrecy requirement.

The achievability of the other two corner rate pairs are just trivial. Thus, the outer

bound is actually the capacity region. Note that by choosing the auxiliary random

variables matching to the scheme here, the inner bound proposed in [51] provides the

same secrecy rate.

2. n1 ≥ n12, n2 < n12;

For this case, the bound (6.49) is simplified to

0 ≤ R2 ≤ n2, (6.66a)

0 ≤ R1 +R2 ≤ n1 − n12 + n2. (6.66b)

This outer bound region is illustrated in Figure 6.3(b). The corner rate pairs are

(0, n2), (n1 − n12, n2) and (n1 − n12 + n2, 0). Rate pair (0, n2) is trivially achieved

by transmitter 2 transmitting binary signal bits in all its levels while transmitter 1
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keeping silent. Rate pair (n1 −n12, n2) can be achieved by transmitter 2 transmitting

binary signal bits in all its levels, while transmitter 1 transmits binary signal bits

only in the levels that do not generate interference at receiver 2, for example, the

lowest level of user 1 in Figure 6.2(b). The number of such levels is n1 − n12, so user

1 gets rate n1 − n12. Then rate pair (n1 − n12 + n2, 0) is achieved by transmitter 2

transmitting binary noise in all its levels, while transmitter 1 transmits in the lowest

n1 − n12 + n2 levels. Among the bits transmitter 1 transmits, those in the lowest

n1 − n12 levels are not heard by receiver 2 at all, and thus are secret. The bits in the

n2 levels above the lowest n1 − n12 levels will reach receiver 2. However, due to the

random noise generated by transmitter 2, receiver 2 cannot derive any information on

the transmitted signal. This can be proved in the similar way as that in (6.62)-(6.65).

3. n1 < n12, n2 ≥ n12;

For this case, the bound (6.49) is simplified to

0 ≤ R1 ≤ n1 (6.67a)

0 ≤ R1 +R2 ≤ n2. (6.67b)

This outer bound region is illustrated in Figure 6.3(c). The corner rate pairs are

(0, n2) and (n1, n2 − n1). Rate pair (0, n2) is trivially achieved by transmitter 2

transmitting binary signal bits in all its levels while transmitter 1 keeping silent. To

achieve rate pair (n1, n2−n1), transmitter 1 transmits binary signal bits in its first n1

levels. These inputs would reach level q − n12 + 1 to q − n12 + n1 at receiver 2. So to

prevent the information leakage and deafen receiver 2, transmitter 2 should transmit

binary noise in the levels 2q − n12 − n2 + 1 to 2q − n12 − n2 + n1, such that the noise

would add to the information signal from transmitter 1 at receiver 2 and protect the
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Figure 6.3: The secrecy capacity region of the one-sided deterministic interference channel.
(a) n1 ≥ n12, n2 ≥ n12; (b) n1 ≥ n12, n2 < n12; (c) n1 < n12, n2 ≥ n12; (d) n1 < n12,
n2 < n12;

information signal. Meanwhile, transmitter 2 can transmit binary information signal

in its remaining n2 − n1 levels to get a rate n2 − n1. For example, for the channel in

Figure 6.2(c), transmitter 1 will transmit information bits in its first two levels, while

transmitter 2 transmits noise in its second and third level, and information bits in its

first and fourth level to achieve a rate pair (2, 2).

4. n1 < n12, n2 < n12;

For this case, the bound (6.49) is simplified to

0 ≤ R1 ≤ (n1 − n12 + n2)
+, (6.68a)

0 ≤ R1 +R2 ≤ n2. (6.68b)

This outer bound region is illustrated in Figure 6.3(c). If n1 − n12 + n2 ≤ 0, a

positive secrecy rate from transmitter 1 to receiver 1 is not possible. Otherwise, a

maximum of n1 − n12 + n2 bits can be transmitted secretly to receiver 1. The key
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behind achievability is similar as in the earlier cases. That is, to achieve the rate pair

(n1 −n12 +n2, n12 −n1), user 1 transmits binary information bit in its n12 −n2 +1 to

n1 levels, while user 2 transmits binary noise in its first n1−n12 +n2 levels and binary

information bit in its n1 − n12 + n2 + 1 to n2 levels. For example, for the channel in

Figure 6.2(d), transmitter 1 will transmit information bits in its second level, while

transmitter 2 transmits noise in its first level, and information bits in its second and

third level to achieve a rate pair (1, 2).

In summary, we proved that the region defined by (6.49) is the capacity region of the

deterministic one-sided interference channel (6.47) and (6.48). 2

6.4 Gaussian one-sided interference channel

In this section, we consider the Gaussian one-sided interference channel

Y1 = h11X1 +N1, (6.69a)

Y2 = h22X2 + h12X1 +N2, (6.69b)

where N1 and N2 are unit variance Gaussian noise. The channel model is illustrated in

Figure 6.4. Define SNR1 = h2
11P̄X1

, INR1 = h2
12P̄X1

, SNR2 = h2
22P̄X2

, where P̄Xi
is the

maximum average power of user i, so that SNRi and INR1 are the maximum signal-to-noise

ratio and interference-to-noise ratio, respectively. Since the actual transmit power might be

lower than the maximum available power, we will use SNRi and INR1 to denote the actual

signal-to-noise ratio and interference-to-noise ratio. Note that SNR1/INR1 = SNR1/INR1 =

h2
11/h

2
12. Because the capacity function of an AWGN channel log2(1 + x) (with the factor

1
2 omitted for simplicity) will appear many times, we will use

C (x) = log2(1 + x)
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Figure 6.4: A Gaussian one-sided interference channel example.

to simplify the notation from now on.

Using Theorem 6.1, we can obtain the following outer bound.

Theorem 6.3 An outer bound to the secrecy capacity region of the one-sided interference

channel is given by

0 ≤ R1 ≤ C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

)

, (6.70a)

0 ≤ R2 ≤ C
(

SNR2

)

(6.70b)

0 ≤ R1 +R2 ≤
(

C
(

SNR1

)

− C
(

INR1

))+
+ C

(

SNR2

)

. (6.70c)

Proof: The outer bound is a direct application of Theorem 6.1 evaluated with Gaussian

input. With V1 = h12X1 +N2, the channel X1 → Y1, V1 is equivalent to a broadcast AWGN

channel. Due to (6.40), we can write

I(U1;Y1|U) − I(U1;Y2|X2U) = I(U1;Y1|U) − I(U1;V1|U).

The right side is maximized by Gaussian input U1 = X1 with maximum power and a

constant U [17, 38] when SNR1 ≥ INR1, and is zero otherwise. Meanwhile, Gaussian X2

maximizes I(X2;Y2|X1). So, Gaussian input maximizes (6.2c). Evaluating (6.2c) with

Gaussian input, we can obtain the outer bound (6.70c). The bound (6.70b) is self-evident.
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We will prove the first bound (6.70a) below.

R1 ≤ I(X1;Y1|Y2) (6.71)

= I(X1;Y1Y2) − I(X1;Y2) (6.72)

= I(X1X2;Y1Y2) − I(X2;Y1Y2|X1) − I(X1X2;Y2) + I(X2;Y2|X1) (6.73)

= I(X1X2;Y1Y2) − I(X1X2;Y2), (6.74)

where the last equality follows the independence between X2 and Y1 conditioned on X1.

The right hand side of (6.74) is equivalent to the secrecy capacity of a wiretap channel with

two independent inputs X1 and X2, and the intended receiver receives both Y1 and Y2,

while the eavesdropper receives only Y2. So, the intended receiver has a less noisy channel.

Since full power Gaussian inputs maximize both I(X1X2;Y1Y2) and I(X1X2;Y2), it will

maximize the right side of (6.74) as well [17]. Therefore, we can continue to write

R1 ≤ I(X1X2;Y1Y2) − I(X1X2;Y2) (6.75)

= H(Y1Y2) −H(N1N2) −H(Y2) +H(N2) (6.76)

≤ 1

2
log
(

(2πe)2|Λ|
)

− 1

2
log
(

(2πe)(h2
12P̄X1

+ h2
22P̄X2

+ 1)
)

−H(N1) (6.77)

=
1

2
log (|Λ|) − 1

2
log
(

h2
12P̄X1

+ h2
22P̄X2

+ 1
)

, (6.78)

where Λ is the covariance of the joint Gaussian distribution Y1Y2, given by

Λ =









h2
11P̄X1

+ 1 h11h12P̄X1

h11h12P̄X1
h2

12P̄X1
+ h2

22P̄X2
+ 1









. (6.79)
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To be consistent with the earlier simplification, we omit the factor 1/2 and get

R1 ≤ log
(

(h2
11P̄X1

+ 1)(h2
12P̄X1

+ h2
22P̄X2

+ 1) − h2
11h

2
12P̄

2
X1

)

− log
(

h2
12P̄X1

+ h2
22P̄X2

+ 1
)

(6.80)

= log

(

(h2
11P̄X1

+ 1) −
h2

11h
2
12P̄

2
X1

h2
12P̄X1

+ h2
22P̄X2

+ 1

)

(6.81)

= C
(

SNR1 −
SNR1INR1

INR1 + SNR2 + 1

)

(6.82)

= C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

)

, (6.83)

which is the rate bound (6.70a). 2

When SNR1 ≥ INR1, (6.70c) is just

R1 +R2 ≤ C
(

SNR1

)

− C
(

INR1

)

+ C
(

SNR2

)

.

Combine this with the bound (6.70a), we can get that

R1 ≤ min

{

C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

)

, C
(

SNR1

)

− C
(

INR1

)

+ C
(

SNR2

)

}

(6.84)

≤ C
(

SNR1

)

−
(

C
(

INR1

)

− C
(

SNR2

))+
. (6.85)

Note that the last step above actually loosens the upper bound for R1. However, it works

fine when SNR1 ≥ INR1 in the sense that it can be shown that this loose upper bound

can still be achieved within a 1 bit gap. It also provides a good analogy to the binary

deterministic channel. Therefore, we will use it as the bound for R1 when SNR1 ≥ INR1

and rewrite the outer bound region as

R1 ≤ C
(

SNR1

)

−
(

C
(

INR1

)

− C
(

SNR2

))+
, (6.86a)

R2 ≤ C
(

SNR2

)

, (6.86b)

R1 +R2 ≤ C
(

SNR1

)

− C
(

INR1

)

+ C
(

SNR2

)

. (6.86c)

For this case, we can obtain the achievability result stated in the following theorem.



98

Theorem 6.4 When SNR1 ≥ INR1, the region

R1 ≤ C
(

SNR1

)

−
(

C
(

INR1

)

− C
(

SNR2

))+ − 1 (6.87a)

R2 ≤ C
(

SNR2

)

− 1 (6.87b)

R1 +R2 ≤ C
(

SNR1

)

+ C
(

SNR2

)

− C
(

INR1

)

− 2 (6.87c)

is achievable, which is within one bit of the outer bound (6.86).

Proof: To prove the result on achievable rates, we note that both the outer bound and

the achievable rate region in Theorem 6.4 have the same shape as that in Figure 6.3(a) when

SNR2 > INR1, and Figure 6.3(b) when SNR2 ≤ INR1, with n1, n2 and n12 being replaced

by C
(

SNR1

)

, C
(

SNR2

)

and C
(

INR1

)

respectively for outer bound or being replaced by

C
(

SNR1

)

− 1, C
(

SNR2

)

− 1 and C
(

INR1

)

respectively for the achievable rate region. The

achievable rate region is within one bit (the sum rate is within two bits for the two users)

of the outer bound. This is similar to the result in [18], which proposed a scheme to come

within one bit of the outer bound of the Gaussian interference channel.

When SNR2 > INR1, the rate region defined by (6.87) is characterized by the four corner

rate pairs

(R1, R2) =
(

0, C
(

SNR2

)

− 1
)

,

(R1, R2) =
(

C
(

SNR1

)

− C
(

INR1

)

− 1, C
(

SNR2

)

− 1
)

,

(R1, R2) =
(

C
(

SNR1

)

− 1, C
(

SNR2

)

− C
(

INR1

)

− 1
)

,

(R1, R2) =
(

C
(

SNR1

)

− 1, 0
)

.

When SNR2 < INR1, the last two corner rate pairs are replaced by one at

(R1, R2) =
(

C
(

SNR1

)

+ C
(

SNR2

)

− C
(

INR1

)

− 1, 0
)

.
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If we can achieve these corner rate pairs, by time sharing we can achieve the whole region.

Now we will show we can actually achieve higher rates than these corner rate pairs with

Gaussian signaling.

1. As
(

0, C
(

SNR2

))

is trivially achievable with X1 = 0 and X2 maximum power with

Gaussian signaling, so is the corner rate pair
(

0, C
(

SNR2

)

− 1
)

.

2. To achieve the rate pair
(

C
(

SNR1

)

− C
(

INR1

)

− 1, C
(

SNR2

)

− 1
)

, we set the power

of X1 to be PX1
= min{1/h2

12, P̄X1
} so that the actual interference to noise ratio at

receiver 2 caused by user 1 is INR1 = min{1, INR1}. User 2 uses the usual deterministic

Gaussian signaling with full power and treats the interference from user 1 as noise.

Since user 2 uses a deterministic encoding, receiver 2 can strip X2 off after decoding

the message from the transmitter 2. Receiver 2 then gets a clean look at V1. For

user 1, this is simply a Gaussian broadcast channel, whose secrecy capacity is given

by the difference between the capacity of the X1 → Y1 channel and the capacity of

the X1 → V1 channel, using the result in [17, 38]. Thus, the rate achievable by this

scheme is

R1 = C (SNR1) − C (INR1) (6.88)

= C
(

SNR1INR1

INR1

)

− C (INR1) (6.89)

= C
(

min

{

SNR1

INR1

,SNR1

})

− C
(

min{1, INR1}
)

, (6.90)

R2 = C
(

SNR2

INR1 + 1

)

= C
(

SNR2

min{1, INR1} + 1

)

. (6.91)

If INR1 ≤ 1, R1 = C
(

SNR1

)

− C
(

INR1

)

. Otherwise, INR1 > 1 and

R1 = C
(

SNR1

INR1

)

− 1 > C
(

SNR1

)

− C
(

INR1

)

− 1. (6.92)
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We also have

R2 ≥ C
(

SNR2

2

)

> C
(

SNR2

)

− 1. (6.93)

Thus, the achievable rate pair with this scheme is higher than the corner rate pair

(

C
(

SNR1

)

− C
(

INR1

)

− 1, C
(

SNR2

)

− 1
)

.

3. When SNR2 > INR1, the rate outer bound region has the shape in Figure 6.3(a).

In order to achieve the rate pair
(

C
(

SNR1

)

− 1, C
(

SNR2

)

− C
(

INR1

)

− 1
)

, we let

X2 = U2 + A2, where U2 is an information bearing signal with power PU , and A2

is an independent artificial noise with power PA = PX2
− PU . Define SNRU = h2

22PU ,

and SNRA = h2
22PA. Moreover, we choose the power of PU and PA such that

SNRA = max{INR1 − 1, 0} and SNRU + SNRA = SNR2. Deterministic coding is used

for the information bearing signal U2, with A2 being considered as random Gaussian

noise. So, after decoding the message, receiver 2 can strip U2 off, but not A2. Thus,

transmitter 1 effectively faces a broadcast channel with the intended receiver facing

the additive white Gaussian noise N1, and the eavesdropper (receiver 2) facing the

additive white noise N2 + h22A2. With similar reasoning as earlier, we can get the

achievable secrecy rate be

R1 = C
(

SNR1

)

− C
(

INR1

SNRA + 1

)

, (6.94)

R2 = C
(

SNRU

SNRA + INR1 + 1

)

. (6.95)
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Moreover,

R1 ≥ C
(

SNR1

)

− 1, (6.96)

R2 = C
(

SNR2 + INR1

)

− C
(

SNRA + INR1

)

(6.97)

≥ C
(

SNR2

)

− C
(

max{2INR1 − 1, INR1}
)

(6.98)

> C
(

SNR2

)

− C
(

INR1

)

− 1 (6.99)

Thus, the achievable rate pair with this scheme is higher than the corner rate pair

(

C
(

SNR1

)

− 1, C
(

SNR2

)

− C
(

INR1

)

− 1
)

.

4. When SNR2 ≤ INR1, the rate outer bound region has the shape in Figure 6.3(b). In

order to achieve the rate pair
(

C
(

SNR1

)

+ C
(

SNR2

)

− C
(

INR1

)

− 1, 0
)

, we set PX1
=

min{(h2
22P̄X2

+ 1)/h2
12, P̄X1

} so that the actual interference to noise ratio at receiver

2 caused by user 1 is INR1 = min{SNR2 +1, INR1}. Also, since the rate for the second

transmitter-receiver pair is zero, transmitter 2 can transmit white Gaussian noise with

all its power P̄X2
. The achievable rate of this scheme is

R1 = C (SNR1) − C
(

INR1

SNR2 + 1

)

(6.100)

= C
(

min

{

SNR1(SNR2 + 1)

INR1

,SNR1

})

− C
(

min{SNR2 + 1, INR1}
SNR2 + 1

)

, (6.101)

R2 = 0. (6.102)

When INR1 ≥ SNR2 + 1, INR1 = SNR2 + 1, and the rate R1 can be bounded as

R1 = C
(

SNR1(SNR2 + 1)

INR1

)

− C (1) (6.103)

= log2

(

INR1

SNR2 + 1
+ SNR1

)

+ C
(

SNR2

)

− log2(INR1) − 1 (6.104)

≥ C
(

SNR1

)

+ C
(

SNR2

)

− C
(

INR1

)

− 1. (6.105)
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When SNR2 < INR1 < SNR2 + 1, INR1 = INR1, and the rate R1 can be bounded as

R1 = C
(

SNR1

)

− C
(

INR1

SNR2 + 1

)

(6.106)

= C
(

SNR1

)

+ C
(

SNR2

)

− C
(

SNR2 + INR1

)

(6.107)

≥ C
(

SNR1

)

+ C
(

SNR2

)

− C
(

2INR1

)

(6.108)

≥ C
(

SNR1

)

+ C
(

SNR2

)

− C
(

INR1

)

− 1. (6.109)

So for both cases, the outer bound of R1 is achieved within one bit.

5. Finally, when SNR2 > INR1, by making X2 = A2 and SNRA = SNR2, i.e., user 2 does

not transmit an information bearing signal but pure Gaussian white noise, we achieve

the rate

R1 = C
(

SNR1

)

− C
(

INR1

SNR2 + 1

)

(6.110)

R2 = 0. (6.111)

Clearly, R1 > C
(

SNR1

)

− 1. So, we achieve a better rate rate than the corner rate

pair
(

C
(

SNR1

)

− 1, 0
)

.

Since all corner rate pairs of the region defined by (6.87) can be achieved, the whole region

can be achieved with time sharing. 2

When SNR1 < INR1, (6.70c) becomes

R1 +R2 ≤ C
(

SNR2

)

,

which makes bound (6.70b) redundant. If

SNR1
SNR2 + 1

INR1 + SNR2 + 1
< SNR2, (6.112)
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which is equivalent to

INR1 > (SNR2 + 1)

(

SNR1

SNR2

− 1

)

, (6.113)

the outer bound will have four sides (including the axis) and are characterized by the rate

pairs

(R1, R2) =

(

C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

)

, 0

)

(6.114a)

(R1, R2) =

(

C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

)

, C
(

SNR2

)

− C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

))

,

(6.114b)

(R1, R2) =
(

0, C
(

SNR2

))

. (6.114c)

Otherwise, bound (6.70a) will also be redundant, and the outer bound will have a triangle

shape that is characterized by the rate pairs (C
(

SNR2

)

, 0) and (0, C
(

SNR2

)

).

With the similar strategy as before, we can achieve the rate region stated as following.

Theorem 6.5 When SNR1 ≤ INR1 ≤ SNR2 + 1, the four-sided region defined by the origin

and the following three corner points

(R1, R2) =

(

C
(

SNR1

)

− C
(

INR1

SNR2 + 1

)

, 0

)

, (6.115a)

(R1, R2) =
(

C
(

SNR1

)

− 1, C
(

SNR2 + INR1

)

− C
(

max{2INR1 − 1, INR1}
))

, (6.115b)

(R1, R2) =
(

0, C
(

SNR2

))

, (6.115c)

is achievable.

Proof: The achievability scheme is similar as before. The first corner rate pair is achieved

by transmitter 2 transmits noise while transmitter 1 transmits Gaussian codewords with

stochastic coding. The second rate pair is achieved by letting user 1 transmit at full power
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with Gaussian codes, while user 2 transmits X2 = U2 + A2, where U2 is an information

bearing signal with power PU , and A2 is an independent artificial noise with power PA =

PX2
−PU . Moreover, the power of PU and PA are chosen such that SNRA = max{INR1−1, 0}

and SNRU = SNR2 − SNRA. With the same reasoning as earlier, we can get the achievable

secrecy rate be

R1 = C
(

SNR1

)

− C
(

INR1

SNRA + 1

)

, (6.116)

≥ C
(

SNR1

)

− 1, (6.117)

R2 = C
(

SNRU

SNRA + INR1 + 1

)

(6.118)

= C
(

SNR2 + INR1

)

− C
(

SNRA + INR1

)

(6.119)

= C
(

SNR2 + INR1

)

− C
(

max{2INR1 − 1, INR1}
)

(6.120)

The third rate pair is achieved trivially by transmitter 1 being silent, and transmitter 2

transmits at his own capacity. Since all corner rate pairs are achievable, the whole region

can be achieved with time sharing. 2

We note that although (6.115a) and (6.115c) are within 1 bit of the outer bound corner

rate pair (6.114a) and (6.114c), (6.115b) might be not. In particular, consider the case

where INR1 = SNR2 + 1, then (6.115b) gives zero rate for user 2, while the outer bound

(6.114b) can be non-zero. So, either a better bound or a more complicated signaling strategy

is necessary to reduce the gap.

When INR1 > SNR2 + 1, the power of transmitter 2 is not enough to hide the message

sent by the transmitter 1. For this case, transmitter 1 has to lower its signal power for

secrecy. Specifically, user 1 can transmit at the power PX1
= (h2

22P̄X2
+ 1)/h2

12 such that

the interference it generates at receiver 2 is INR1 = SNR2 + 1. Then, transmitter 2 can
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transmit white Gaussian noise with all its power P̄X2
. The achievable rate of this scheme is

R1 = C (SNR1) − C
(

INR1

SNR2 + 1

)

(6.121)

= C
(

SNR1(SNR2 + 1)

INR1

)

− 1 (6.122)

R2 = 0. (6.123)

To summarize, we have the following theorem.

Theorem 6.6 When SNR1 ≤ INR1, and SNR2+1 ≤ INR1, the triangle defined by the origin

and the following two corner points

(R1, R2) =

(

C
(

SNR1(SNR2 + 1)

INR1

)

− 1, 0

)

(6.124a)

(R1, R2) =
(

0, C
(

SNR2

))

. (6.124b)

is achievable.

We note that the achievable rate (6.124a) is within 1 bit gap to the outer bound rate

pair (6.114a) because

C
(

SNR1(SNR2 + 1)

INR1

)

> C
(

SNR1
SNR2 + 1

INR1 + SNR2 + 1

)

. (6.125)

However, due to the outer bound rate pair (6.115b) when (6.113) is satisfied, a significant

gap can exist between the achievable rate and the outer bound. Again, either a better

bound or a more complicated signaling strategy is necessary to reduce the gap.

6.5 Discussion

In this chapter, we derived an outer bound for the secrecy capacity region of the one-

sided interference channel. The outer bound is shown to be tight for the binary expansion

deterministic channel. For the Gaussian one-sided interference channel, the outer bound
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is evaluated and is shown to be achievable within one bit when the interference channel is

noisier than the corresponding main channel, i.e. SNR1 ≥ INR1. The achievability scheme

used for Gaussian channel is analogous to that used for the binary expansion deterministic

channel counter part. This is not surprising as it was illustrated in [7] that the deterministic

channel can serve as a good approximation of the Gaussian channel.

For the one-sided Gaussian channel with SNR1 < INR1, the achievable rates are not

always within a constant gap to the outer bound. Comparing to the binary expansion

deterministic channel counterpart, we can see that, the major difference between the binary

channel and the Gaussian channel is that the former can easily deploy independent coding

for each input level so that information-bearing signal in low SNR can be transmitted

despite of the noise at high SNR, and thus can assign the levels in an optimal way without

wasting any power. Therefore, a more complicated coding scheme for Gaussian channels

might be needed to reduce the gap between the achievable rates and the outer bounds.
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Chapter 7

Secrecy Rate with Practical Signaling

So far in this thesis, we have been mainly focused on the performance of Gaussian random

codes for secret communication. However, in a practical digital communication system,

Gaussian random codes cannot be implemented. Instead, the input often has a finite alpha-

bet, and thus discrete signaling is actually used, such as Quadrature Amplitude Modulation

(QAM) or Phase Shift Keying (PSK). For communication without a secrecy requirement,

coding across time is often used to achieve a reliable communicate rate close to the mutual

information between the channel input and channel output. However, this rate is always

limited by the size of the underlying constellations, and is always smaller than the capacity

that is achievable with the optimal Gaussian codes. Increasing the size of the constellation

will reduce the gap to the capacity. For the same input constellation, increasing the signal

power results in a larger SNR, and thus better error performance. Does discrete signaling

have a similar influence on secret communication? This is the main question we want to

address in this chapter.

In this work, we examine the information-theoretic limits behind secret communication

using practical, discrete modulation schemes. Since much of the analysis leads to unwieldy

equations, we will often resort to numerical evaluations. We focus on both the AWGN

channel and the fading channel studied in earlier chapters, and we observe that the effect

of discrete signaling is different for the two channels. Unlike prior Gaussian coding secrecy
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results, where a larger transmission power is always better, for discrete constellations, there

exists an optimal power level beyond which additional power helps an eavesdropper and

hurts secret communication. For the AWGN channel, a larger constellation is always better,

while for the fading channel, the optimal constellation size varies with the power constraint

and can even perform better than random Gaussian coding! The result also reflects the

difficulty of finding the optimal input for fast fading channels.

7.1 Problem setup

7.1.1 Channel models

There will be two primary wireless channel models that we will consider in this chapter:

the AWGN broadcast channel, and the fading broadcast channel.

AWGN Broadcast Channel: The first communication model that we shall consider is

the real AWGN broadcast channel

Y =
√
bX +W1, (7.1a)

Z = X +W2, (7.1b)

where X is the signal transmitted by Alice, Y is the signal received by Bob, and Z is

the signal received by EVE respectively, W1 and W2 are white Gaussian noise with unit

power, b is Bob’s channel gain normalized by Eve’s channel gain, and Eve’s channel gain is

normalized to 1.

Fading Broadcast Channel:

The second model we consider is a fading broadcast channel where the main channel

(Alice→Bob) is a constant AWGN channel and the eavesdropper channel is fast Rayleigh

fading. The realizations of the fading channel are known to the eavesdropper only, and the
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transmitter just knows the fading statistics. This model was described in Chapter 4, where

the performance of Gaussian signaling was discussed. Mathematically, the channel model

is

Y =
√
bX +W1, (7.2a)

Z =
√
GX +W2 (7.2b)

where W1 and W2 are white Gaussian noise of unit variance, b is Bob’s channel gain nor-

malized by Eve’s average channel gain, and Eve’s channel gain G is an exponential random

variable because of Rayleigh fading. The mean of G is normalized to one. Note that the

fast fading assumption instead of slow fading is very important. For a slow fading Gaussian

channel, it has been shown in [23] that a Gaussian two-tier signaling scheme is secrecy-

capacity-achieving. But for a fast fading Gaussian channel, the secrecy capacity is still

unknown so far, and as we will shown later, Gaussian signaling is not always optimal.

7.1.2 Discrete modulation scheme

Gaussian coding has served as the basis for studying the conventional capacity of commu-

nications systems. In practice, however, discrete input constellations, such as BPSK and

QPSK, are used instead. One notable reason for this is that discrete coding has an easier

implementation at both the transmitter and the receiver, although it suffers the price of

reduced communication rate.

In this work, we shall consider quadrature amplitude modulation (QAM) because of its

simplicity and popularity. The observations we make here for QAM will apply to other

discrete constellation as well. Note that for QAM modulation, the transmitted signal is

complex since it has both the in-phase and the quadrature components. The channel at-

tenuation is often complex as well. However, since both the intended receiver and the
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eavesdropper are assumed to know their channel states, they can compensate for the chan-

nel phase rotation and reduce the channel to two real sub-channels with identical channel

gain (but independent noise), one for each input dimension. Hence, we use the real AWGN

channel model (7.1) and the real fading channel model (7.2) for mathematical simplicity,

while keeping in mind that they only represent one component of the actual channel.

Quadrature Amplitude Modulation: The signal space representation of QAM signaling

is

xi =









ai

bi









, i = 1, · · · ,M, (7.3)

where ai and bi are the amplitudes of the quadratic carriers of the information bearing signal.

The constellation points are equally spaced and are equally probable. In this work, we

consider the case for M = 4, 16, 64, so ai and bi each takes the value from {(−
√
M+2i−1)d}

for i = 1, · · · ,
√
M with equal probability. d is chosen such that the average symbol power

is P . With some algebra, we can calculate d to be

d =

√

√

√

√

√
MP

2
∑

√
M

i=1 (−
√
M + 2i− 1)2

. (7.4)

For example, the constellation for 16-QAM is shown in Figure 7.1, where d =
√

P/10.

When the input X is distributed over the discrete set {xi}, the probability distribution

function of X can be written as

fX(x) =

M
∑

i=1

piδ(x − xi), (7.5)

where pi is the probability of x = xi, and M is the total number of possible x values. For

QAM, all constellation points are equally likely, so pi = 1/M .
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Figure 7.1: Signal constellation for 16-QAM modulation

7.2 Secrecy rate in AWGN scenarios

We begin with the real AWGN broadcast channel described in Section 7.1. It has been

shown in [38] that the secrecy capacity of this channel in bits per channel use with a power

constraint P is

Cs =
1

2
[log2(1 + bP ) − log2(1 + P )]+, (7.6)

and that a Gaussian input of power P achieves the secrecy capacity. The secrecy capacity

is exactly the difference between the main channel’s mutual information and the eavesdrop-

per’s channel mutual information. To achieve a positive secrecy capacity, the main channel

normalized channel gain b must be greater than 1.

Gaussian coding, however, is not practical, and thus it is important to consider the

implications of discrete input constellations on the secrecy rate. In this case, the input

distribution is of the form of (7.5). The secrecy rate with this discrete signaling is given

by the mutual information difference between the main channel and the eavesdropper’s
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channel, i.e.

RAWGN = I(X;Y ) − I(X;Z) (7.7)

= H(Y ) −H(Y |X) −H(Z) +H(Z|X) (7.8)

= −
∫ ∞

−∞
fY (y) log2(fY (y)) dy +

∫ ∞

−∞
fZ(z) log2(fZ(z)) dz (7.9)

where fY (y) and fZ(z) are the probability distribution function of the output Y and Z

respectively.

Let N (t, µ) be the unit Gaussian distribution

N (t, µ) =
1

(2π)N/2
exp

(

−||t − µ||2
2

)

, (7.10)

where N is the dimensionality of the input, which is 1 for BPSK, and 2 for M-QAM and

M-PSK with M > 2. For the AWGN model (7.1), fY (y) and fZ(z) are given by

fY (y) =

M
∑

i=1

piN (y,
√
bxi), fZ(z) =

M
∑

i=1

piN (z,xi). (7.11)

As an example, for BPSK signaling with input power P , the input is one dimensional

with probability distribution function

fX(x) =
1

2
δ(x −

√
P ) +

1

2
δ(x +

√
P ). (7.12)

Hence, the output probability distributions are

fY (y) =
1

2
N (y,

√
bP ) +

1

2
N (y,−

√
bP ), (7.13)

fZ(z) =
1

2
N (z,

√
P ) +

1

2
N (z,−

√
P ). (7.14)

Define γb = bP and γe = P , which correspond to the SNR for Bob and Eve, respectively.

Also define

ψ+(y, γ) = N (y,
√
γ),
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ψ−(y, γ) = N (y,−√
γ).

Then we can rewrite the output probability distributions as

fY (y) =
1

2
ψ+(y, γb) +

1

2
ψ−(y, γb), (7.15)

fZ(z) =
1

2
ψ+(z, γe) +

1

2
ψ+(z, γe). (7.16)

Note that

ψ−(y, γ) = ψ+(y, γ) exp (−2y
√
γ) = ψ+(−y, γ). (7.17)

Using the expression in (7.15), we can write

−
∫

fY (y) log2(fY (y)) dy

= −
∫ ∞

−∞

ψ+(y, γb) + ψ−(y, γb)

2
log2

ψ+(y, γb) + ψ−(y, γb)

2
dy (7.18)

= −1

2

∫ ∞

−∞
ψ+(y, γb) log2

(

ψ+(y, γb) + ψ−(y, γb)
)

dy

− 1

2

∫ ∞

−∞
ψ−(y, γb) log2

(

ψ+(y, γb) + ψ−(y, γb)
)

dy + 1, (7.19)

Note that

∫ ∞

−∞
ψ+(y, γb) log2

(

ψ+(y, γb) + ψ−(y, γb)
)

dy (7.20)

=

∫ ∞

−∞
ψ+(y, γb) log2 ψ

+(y, γb) (1 + exp (−2y
√
γb)) dy (7.21)

= −1

2
log2(2πe) +

∫ ∞

−∞
ψ+(y, γb) log2 (1 + exp (−2y

√
γb)) dy, (7.22)

and

∫ ∞

−∞
ψ−(y, γb) log2

(

ψ+(y, γb) + ψ−(y, γb)
)

dy (7.23)

=

∫ ∞

−∞
ψ+(−y, γb) log2

(

ψ−(−y, γb) + ψ+(−y, γb)
)

dy (7.24)

=

∫ ∞

−∞
ψ+(y, γb) log2

(

ψ−(y, γb) + ψ+(y, γb)
)

dy. (7.25)
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Figure 7.2: Secrecy rate of AWGN channel with Gaussian signaling and M-QAM discrete
signaling. b = 3.

Thus,

−
∫

fY (y) log2(fY (y)) dy = 1 +
1

2
log2(2πe) −

∫ ∞

−∞
ψ+(y, γb) log2 (1 + exp (−2y

√
γb)) dy.

(7.26)

Similarly,

−
∫

fZ(z) log2(fZ(z)) dz = 1 +
1

2
log2(2πe) −

∫ ∞

−∞
ψ+(z, γe) log2 (1 + exp (−2z

√
γe)) dz.

(7.27)

Substituting (7.26) and (7.27) into (7.9), we can get that the secrecy rate for BPSK

signaling with power P is given by

RA
BPSK(P ) = φ(γb) − φ(γe), (7.28)

where the superscript A indicates AWGN channel, and the function φ(γ) is defined as

φ(γ) = −
∫ ∞

−∞
N (t,

√
γ) log2(1 + exp(−2t

√
γ))dt. (7.29)

The secrecy rate for 4-QAM is equivalent to two BPSK channels with the same channel

gain, but each channel has a power budget P/2 in order to satisfy the total power constraint.

Mathematically, that is

RA
4QAM (P ) = 2RA

BPSK(
P

2
). (7.30)
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The simplification of (7.9) becomes more complicated as the size of the constellation in-

creases, and we always end up with some complex integrals that cannot be evaluated an-

alytically, even for the above BPSK example. Hence, we resort to numerical methods to

evaluate the secrecy rate, hoping to gain some insights on the behavior of the secrecy rate

with discrete input constellations. Figure 7.2 shows how the secrecy rates evaluated nu-

merically vary with the power used and the size of QAM constellation. Here are the key

observations:

1. Secrecy rates with discrete inputs are smaller than the rates with Gaussian signaling.

The achievable secrecy rates increase with the size of the input constellation size. This

is expected as Gaussian signaling has been shown to be optimal, i.e., it is secrecy-

capacity-achieving. A larger input constellation reduces the difference between the

achievable secret rate and the optimal Gaussian distribution’s secret communication

rate.

2. With discrete inputs, there always exists an optimal power P ∗ corresponding to the

maximal secrecy rate. Using more power than P ∗ will only decrease the secrecy rate.

This is very different from the Gaussian input case, where larger power is always

better. Intuitively, this means you need to use just enough power so that Bob can

decode correctly. Any additional power beyond necessary will only benefit Eve, and

in turn reduce the secrecy.

In general, we can denote the mutual information of the AWGN channel for a given size-

M uniform discrete constellation as I(γ), which is a function of SNR γ. With transmission

power P , the main channel has SNR γb = bP , and the eavesdropper’s channel has SNR
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γe = P . Thus, the achievable secrecy rate can be written as

RA(P ) = I(bP ) − I(P ). (7.31)

It is clear that

lim
P→0

RA(P ) = 0, (7.32)

lim
P→∞

RA(P ) = log2M − log2M = 0. (7.33)

Since b > 1 and I(γ) is a monotonically increasing function of γ for the AWGN channel,

RA(P ) is always non-negative. Therefore, there must exist a positive power P ∗ < ∞ that

maximizes the secrecy rate RA(P ). Also, P ∗ satisfies

d

dP
RA(P ∗) = 0. (7.34)

In other words,

bI ′(bP ∗) = I ′(P ∗). (7.35)

As proved in [24], the derivative of the mutual information for AWGN channel corresponds

to the minimum mean square error (MMSE) of the MMSE estimate of the input given the

output, and is monotonically decreasing with the SNR. Mathematically, this means for a

X → Y AWGN channel with SNR γ,

dI(γ)

dγ
=

1

2
E
[

(X − E[X|Y, γ])2
]

.

Hence, at the optimal P ∗, the MMSE of the eavesdropper’s channel is b times of the MMSE

of the main channel.

The optimal P ∗ is a function of both the constellation size and the main channel’s

normalized channel gain b. Variation of P ∗ with b for several QAM constellation sizes M is

plotted in dashed lines in Figure 7.3(a). Note that P ∗ is also the SNR for Eve at the optimal
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Figure 7.3: (a) The channel SNR with the optimal power for AWGN with M-QAM signal-
ing. The solid curves are the main channel optimal SNR and the dashed curves are the
eavesdropper’s channel SNR. (b) The secrecy rate corresponding to the optimal power for
the AWGN channel with M-QAM signaling.

power. For the same M , P ∗ decreases with b. Intuitively, the optimal P ∗ should be just

enough to ensure the main channel’s reliability. We also plot the main channel SNR bP ∗

using solid lines in Figure 7.3(a). Although the main channel SNR is not flat across different

b, its variation is small. The optimal power also increases with the constellation size, as

larger power is necessary to decode a higher input constellation reliably. Figure 7.3(b)

shows the rate achieved with the optimal P ∗. As expected, the maximal achievable secrecy

rate increases with the constellation size. However, the benefit of a larger constellation

diminishes gradually since the secrecy capacity is always upper bounded by log2(b), plotted

using a dashed line in Figure 7.3(b), regardless of the power used.

7.3 Secrecy rate in fading scenarios

For the fading model (7.2), if we consider the random channel observation Gi at Eve as

an output, Eve’s channel is equivalent to a channel with output (G,Z) and the channel

transition probability is Pr(GZ|X) = Pr(G) Pr(Z|XG). Following Csiszár and Körner’s
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arguments [15], the secrecy capacity of the channel model (7.2) is

Cs = max
V →X→Y GZ

I(V ;Y ) − I(V ;GZ) (7.36)

= max
V →X→Y GZ

I(V ;Y ) − I(V ;G) − I(V ;Z|G) (7.37)

= max
V →X→Y GZ

I(V ;Y ) − I(V ;Z|G), (7.38)

where (7.38) follows from the independence of V and G since Alice does not know G and

cannot choose V according to G. V is an auxiliary random variable that satisfies the Markov

condition V → X → Y GZ. It has been shown in [15, 17] that when the more capable

condition I(X;Y ) ≥ I(X;ZG) for any input X is satisfied, V is not necessary, or in other

words, the optimal V equals X. However, our channel does not satisfy the more capable

condition, and it appears to be hard to obtain the optimal V and the mapping P (X|V ). In

Chapter 4, we discussed an achievable secrecy rate that is possible with Gaussian inputs,

including artificial noise and bursting strategy. In this work, we will evaluate the achievable

secrecy rates when the input are discrete and when V = X.

The achievable secrecy rate with V = X is given by

RF
x = I(X;Y ) − I(X;Z|G) (7.39)

= H(Y ) −H(Z|G) (7.40)

= −
∫ ∞

−∞
fY (y) log2(fY (y)) dy

+

∫ ∞

0

∫ ∞

−∞
fZ|G(z) log2(fZ|G(z)) dz e−gdg. (7.41)

For a discrete input with probability distribution given by (7.5), the distribution of Y is

the same as that in (7.11), but the distribution of Z depends on the random realization of

Eve’s channel gain. The conditional distribution of Z conditioned on the eavesdropper’s
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Figure 7.4: The secrecy rate of the fading channel (7.2) with Gaussian signaling and discrete
signaling. b = 3.

channel realization G is given by

fZ|G(z) =
M
∑

i=1

piN (z,
√
gxi). (7.42)

Again, the analytical expression of the achievable rate is hard to obtain, and we resort

to numerical evaluation to gain insight on how the system behaves with discrete input.

Numerically evaluating (7.41) with Gaussian input distribution and also M-QAM for b = 3,

we get Figure 7.4. Note that the secrecy rate of the fading channel is higher than that of the

AWGN channel, under the same configuration and average SNR, because fading effectively

degrades the eavesdropper’s channel. The shapes of the curves look similar to that of the

AWGN case as shown in Figure 7.2. Again, for discrete inputs, there exists an optimal

power P ∗ that maximizes the secrecy rate. Using a power greater than the P ∗ will hurt

the secrecy. The underlying reasoning is exactly the same as that for the AWGN channel

model. For this example, Gaussian input performs better than M-QAM.

We plot the optimal channel SNR as a function of the main channel’s normalized channel

gain b at several constellation sizes in Figure 7.5(a). The solid lines are the main channel

SNR and the dashed line are the eavesdropper’s channel SNR. The optimal power decreases
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Figure 7.5: (a) The channel SNR with the optimal power for fading channel model (7.2)
with M-QAM signaling. The solid curve are the main channel optimal SNR and the dashed
curves are the eavesdropper’s channel average SNR. (b) The secrecy rate corresponding to
the optimal power.

with b to lower the eavesdropper’s SNR, while maintaining the main channel SNR to an al-

most stable level. As the size of the constellation increases, the optimal power also increases.

The secrecy rates corresponding to the optimal power are shown in Figure 7.5(b).

Gaussian input, however, is not always optimal for the fading scenario. When we evalu-

ate the secrecy rate for b = 0.7 and b = 1 with both Gaussian inputs and discrete inputs, we

get a different result, as shown in Figure 7.6. Gaussian I corresponds to the strategy of using

a simple Gaussian input with power P , while Gaussian II corresponds to the strategy of

using a Gaussian input combined with artificial noise and bursting, as proposed in Chapter

4. When b < 1, the latter strategy can improve the achievable secrecy rate. For this setting,

discrete signaling does better than Gaussian signaling. Moreover, a larger constellation is

not always better than a smaller constellation. With a small power, smaller constellations

work better. As the power used increases, larger constellations start to perform better. So

the optimal constellation depends on the power constraint. The figure also implies that by

time sharing among the constellations, the upper envelop of the curves for discrete inputs
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Figure 7.6: Secrecy rate of fading channel (7.2) with Gaussian signaling and M-QAM sig-
naling. (a) b = 0.7 (b) b = 1.

can be achieved.

The reason that discrete signaling can work better than Gaussian signaling when the

main channel is on average worse than the eavesdropper’s channel is because discrete inputs

effectively limit the information that can be obtained by the eavesdropper when his channel

realizations are better than the main channel. During those instances when the eavesdrop-

per’s channel is better than the main channel, the eavesdropper can gain more information

than the legitimate receiver. Gaussian inputs would maximize this information leakage.

Because the main channel is worse than the eavesdropper’s channel on average, the excess

information leakage due to Gaussian input cannot be compensated for by the information

gain at the time instances when the main channel is better. On the other hand, with dis-

crete input, the information leakage when the eavesdropper’s channel is better is limited

by the input entropy, which is log2M , no matter how good the eavesdropper’s channel is.

Therefore, discrete input provides some advantage in terms of secret communication when

the eavesdropper’s channel is better on average, and this advantage is more significant as

the main channel channel gain gets worse. The gain diminishes as the main channel becomes



122

comparable or even better than the eavesdropper’s average channel gain.

7.4 Discussion

In this work, we evaluated the secrecy rate for communication involving discrete signaling

for both the AWGN channel and Rayleigh fast fading channel. Because practical signaling

always adopts discrete inputs with regular constellations in signal space, investigating a

communication system’s performance under discrete inputs is important. The results show

that for discrete signaling there always exists an optimal power for maximal secrecy rate.

Extra power will only benefit the eavesdropper and hurt secrecy. For AWGN channels,

larger constellations are always better, while for fading channels, the optimal constellation

size varies with the power constraint and can perform better than random Gaussian coding.

The result also reflects the difficulty of finding the optimal inputs for the fast fading channel.

In this work, we only evaluated the performance with QAM because of its popularity in

practical system, but theoretically arbitrary discrete input {pi,xi} can be used, and it is

very hard to obtain the optimal input distributions which might vary with the channel

parameters and the power constraint.

The observation that discrete input can perform better than Gaussian input for the

fading scenario is very interesting, as it reminds us that, for communication capacity without

a secrecy requirement, discrete input distributions have been shown to be capacity achieving

when the channel state information is available to neither the transmitter nor the receiver

[29]. The proof relies on the concavity of the mutual information function. Computing the

optimal input distribution achieving this capacity, often referred as non-coherent capacity, is

a difficult task. Nevertheless, numerical computation of the capacity and the optimal input

distribution has been made possible using the Kuhn-Tucker condition which is a necessary
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and sufficient condition for optimality, for a SISO channel [29] and for a MIMO channel [65].

However, the secrecy capacity is often not concave. As a result, the approach applicable to

the conventional capacity might not be directly applied to secrecy capacity.
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Chapter 8

Future work

8.1 Thesis summary

This thesis examines the challenges of information-theoretic secret communication that

utilizes the temporal variations and spatial diversity advantages of the wireless medium

to improve secret communication rates. We examined the secrecy capacity of a system

consisting of independent parallel channels with one transmitter, one intended receiver

and one eavesdropper. We showed that the secrecy capacity of the system is simply the

summation of the secrecy capacities of the individual channels. We further derived the

optimal power allocation strategy for a system with parallel AWGN channels subject to a

total power constraint, which shows that the power should be allocated according to the

difference of the channel gain between the main channel and the eavesdropper’s channel. The

results were also extended to random fading channels with additive Gaussian noise. Secrecy

capacity was evaluated numerically for OFDM channels and Rayleigh fading channels. It

was shown that the diversity, either in frequency or in time, improves the rate of secret

communication and allows secret communication even when the eavesdropper’s channel is

on average better than the legitimate party’s channels.

We then studied the achievable secrecy rate with Gaussian random codes for the situ-

ation where the channel of the intended receiver is a constant AWGN channel, while the
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eavesdropper’s channel is fast Rayleigh fading with unknown realizations but known statis-

tics to the transmitter. When Bob’s channel is on average worse than Eve’s channel, A

simple Gaussian input distribution with average power P cannot always guarantee positive

secrecy capacity. We proposed a scheme with artificial noise and bursting, which will allow

positive secrecy rate even when Bob’s channel is on average worse than Eve’s channel. This

secrecy rate is achieved without knowing when Eve’s channel is bad or the changing rate of

the eavesdropper’s channel.

We also examined the achievable secrecy rate for a multiple antenna system, and the

optimal input structure needed to achieve this rate. For the general multiple input multiple

output (MIMO) case, the problem is not convex and is hard to solve. However, for the

multiple input single output (MISO) case, the problem can be reformulated and solved. An

analytical solution was derived for this simple case and the implication of the results were

discussed. Multiple antenna systems provide extra degrees of freedom to the transmitter so

that a beamforming-like approach can be used to provide advantage to the intended receiver

against the eavesdropper.

Next we derived an outer bound of secrecy capacity region for a class of one-sided inter-

ference channels. The outer bound is shown to be tight for a class of binary deterministic

one-sided interference channels, and can be achieved within one bit for some Gaussian one-

sided interference channels. Finally, since the Gaussian random codes are not practical

for a real system, we evaluated the effect of discrete signaling on achievable secrecy rate.

We observed that with discrete signaling, there always exists an optimal power that max-

imizes the achievable secrecy rate. Extra power will only benefit the eavesdropper and

hurt the secrecy. For the AWGN channel, larger constellation is always better. While for

fading channel, the optimal constellation size varies with the power constraint, and discrete
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signaling can perform better than random Gaussian coding.

8.2 Future work

Although information theoretic secret communication for wireless channels was first studied

by Wyner in 1975, the research on this topic had been sparse for decades since then.

Recently, this old topic has attracted more attentions from the information theory society,

due to the opportunities provided by the diversity of wireless channels. This thesis presented

some opportunistic ways to utilize the temporal and spatial variations of wireless channels

for secret communication. As always the case, there are many more interesting problems in

this field that deserve further exploration. We will conclude this thesis by discussing some

possible directions for future research.

In this thesis, we have always assumed that the transmitter knows the channel state

information associated with the intended receiver. The channel state information can be

obtained by either a feed-back channel from the receiver, or by utilizing the reciprocity

and the duplex properties of the link, i.e. by the intended receiver transmitting a training

sequence so that the transmitter can estimate the channel. However, sometimes getting the

channel state information at the transmitter is so difficult or inconvenient that it is desirable

to work without the channel state information at the transmitter. The secrecy capacity for

this scenario, as well as any viable secret communication scheme under this scenario would

be very interesting to study.

Multiple antennas have been shown to be beneficial to both the conventional capacity

and the secrecy capacity. Optimal space-time codings on multiple antenna systems for

conventional capacity have been extensively studied since the pioneering work in [86]. When

it comes to secrecy capacity, the same set of questions arise: what are the tradeoffs among
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the secrecy, rate and the diversity? The problem becomes even more interesting when we

extend the Alice-Bob-Eve model to multiple access channels and broadcast channels, due

to the extra degree of the freedom provided by the multiple antennas and the interference

nature of wireless channels. For example, consider a scenario where there are one receiver

with two antennas, two transmitters with two antennas, and one eavesdropper with two

antennas. Due to the extra degree of freedom, the transmitter might choose to transmit

some artificial noise to reduce the information leakage to the eavesdropper. Then how

should the users position their signal and noise to maximize the confusion at Eve and the

sum rate at the receiver? How does the rate scale with the number of each party’s antenna?

Another direction that is worth exploring is the secrecy capacity in a network scenario

with multiple transmitter-receiver pairs. Recently, tight outer bounds for the capacity

without the secrecy requirement of the two-user Gaussian interference channel were derived

in [6,18]. A similar approach might be useful to study the secrecy capacity of the two-user

Gaussian interference channel. Extending the results to multiple users could be even more

exciting, because the mixture of the interference from the multiple users might provide

a natural means to protect each individual message against a non-intended receiver or

the out-of-network eavesdropper. The interference alignment approach proposed in [12]

could be an excellent option because the interference from multiple transmitter are aligned

perfectly. Due to the careful alignment, the intended receiver can extract the signal sent to

her cleanly, while the non-intended receiver would only get a mixture consisting of signals

from all transmitters, and would not have enough SNR to extract any particular message

from the mixture. Examining more forms of cooperation and their performance in secret

communication is a challenging and promising direction to explore.

The research on information theoretic secret communication has been mainly focused on
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the information theoretic limit of the secrecy rate over various wireless channels. However,

to implement the idea in a real system, we need to study the practical coding schemes and

analyze their performance. LDPC codes and turbo codes are the most promising candi-

dates since they achieve communication rates close to the conventional capacity without

secrecy requirement. Studying how these codes can be modified for secret communication,

and evaluating their performance and sensitivity to coding parameters is another valuable

direction for future research.
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