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ABSTRACT OF THE DISSERTATION

Variance-based Clustering Methods and Higher Order

Data Transformations and Their Applications

by Nikita I. Lytkin

Dissertation Director: Casimir A. Kulikowski

Two approaches have been proposed in statistical and machine learning communities

in order to address the problem of uncovering clusters with complex structure. One

approach relies on the development of clustering criteria that are able to accommodate

increasingly complex characteristics of the data. The other approach is based on simpli-

fication of structure of data by mapping it to a different feature space via a non-linear

function and then clustering in the new space.

This dissertation covers three related studies: development of a novel multi-dimensional

clustering method, development of non-linear mapping functions that leverage higher-

order co-occurrences between features in boolean data, and applications of these map-

ping functions for improving the performance of clustering methods. In particular,

we treat clustering as a combinatorial optimization problem of finding a partition of

the data so as to minimize a certain criterion. We develop a novel multi-dimensional

clustering method based on a statistically-motivated criterion proposed by J. Neyman

for stratified sampling from one-dimensional data. We show that this criterion is more

reflective of the underlying data structure than the seemingly similar K-means criterion
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when second order variability is not homogeneous between constituent subgroups. Fur-

thermore, experimental results demonstrate that generalization of the Neyman’s crite-

rion to multi-dimensional spaces and development of the associated clustering algorithm

allow for statistically efficient estimation of the grand mean vector of a population.

In the framework of the mapping-based approach to discovering complex cluster

structures, we introduced a novel adaptive non-linear data transformation termed Un-

supervised Second Order Transformation (USOT). The novelties behind USOT are (a)

that it leverages in a unsupervised manner, higher-order co-occurrences between fea-

tures in boolean data, and (b) that it considers each feature in the context of probabilis-

tic relationships with other features. In addition, USOT has two desirable properties.

USOT adaptively selects features that would influence the mapping of a given feature,

and preserves the interpretability of dimensions of the transformed space. Experimen-

tal results on text corpora and financial time series demonstrate that by leveraging

higher-order co-occurrences between features, clustering methods achieved statistically

significant improvements in USOT space over the original boolean space.
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Chapter 1

Introduction

Cluster analysis is a subarea of machine learning that studies methods of unsuper-

vised discovery of homogeneous subsets of data instances from heterogeneous datasets.

Given a heterogeneous set of objects (e.g. time series of returns of mutual funds, or

text documents covering various topics), the objects are automatically clustered such

that objects within a cluster are very similar while objects from different clusters are

highly dissimilar. Methods of cluster analysis have been successfully applied in a wide

spectrum of areas of science and engineering including biology [11, 19, 65], physics [47],

finance [52, 58], image analysis [8, 15, 27, 42, 53, 68], information retrieval and text

mining [3, 6, 59], and cybersecurity [13].

The multitude of methods of cluster analysis [14, 16, 22, 23, 29, 31, 32, 34, 49, 54,

61, 62] developed to date can be divided into two broad categories: heuristic methods

and formal methods based on mathematical formulations of clustering as an optimiza-

tion problem. An example of a heuristic method is clustering by identifying connected

components in a graph that somehow represents a given dataset. Unlike the heuristic

approach to clustering, a mathematical formulation allows for systematic study of ex-

isting clustering methods and for development of novel approaches based on established

theoretical results. In this work, we follow the formal approach and consider clustering

as an optimization problem. In this view, a clustering method is comprised of a criterion

(an objective function), which measures the quality of a clustering, and an algorithm

for optimization of the criterion. A well-known member of this category of clustering

methods is K-means. K-means criterion is minimized by clusterings comprised of tight
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groups of points with each group centered around one of K points characterizing a qual-

itatively different subgroup of data objects. Figure 1.1a demonstrates an example of

such cluster structure comprised of two rounded clouds of points on a two-dimensional

plane. As its name suggests, K-means partitions the data solely on the basis of locations

of the cluster means. A point is associated with that cluster to whose mean it is closest

as measured by the squared Euclidean distance. As we show in Appendix C, this is

equivalent to separating each cluster from all others by a hyperplane whose norm is

determined only by the cluster’s mean vector.

(a) Input dataset (b) Clustering by K-means

Figure 1.1: A simple dataset and its clustering by K-means. Cluster means are indicated
by squares.

Often in practice, however, data clusters have more complex structure than shown

in Figure 1.1. Increased complexity of the data comes in the form requiring that a

clustering method takes into account additional characteristics of the clusters. Consider

Figure 1.2 for instance. While the locations of cluster means are certainly an important

feature for adequately partitioning the data in Figure 1.2a, inherent inability of K-means

to account for cluster variances results in a poor clustering shown in Figure 1.2b. Hence,

a clustering criterion that in addition to cluster means also takes into account cluster

variances would be more appropriate for producing the desirable clustering shown in

Figure 1.2c.

A common feature of the datasets in Figures 1.1 and 1.2 is that both clusters are



3

(a) Input dataset (b) Clustering by K-means (c) Ideal clustering

Figure 1.2: K-means’ inherent inability to account for cluster variances results in a poor
clustering

separable by a linear discriminant boundary. However, a typical real-world data of-

ten exhibits more complex, non-linear cluster structure as exemplified by Figure 1.3.

Applying K-means on this data produces an unsatisfactory clustering shown in Figure

1.3b. In this case, a more flexible clustering criterion that is able to accommodate vary-

ing cluster scatter as well as non-linearity within the data would have better chances

of discovering the more intuitive clustering shown in Figure 1.3c.

(a) Input dataset (b) Clustering by K-means (c) Ideal clustering

Figure 1.3: A more complex dataset exhibiting a non-linear cluster structure

Two approaches have been proposed in statistical and machine learning communities

in order to address the problem of uncovering complex clusters. One approach relies

on the development of clustering criteria that are able to accommodate increasingly
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complex characteristics of the data. The other approach is based on the simplification

of structure of data by mapping it to a different feature space via a non-linear function

and then clustering in the new space. It is hoped that such mapping will increase

separability between the “true” clusters thus making them more obvious for discovery

by simple clustering criteria. However, since different datasets may exhibit drastically

different internal structure, the mapping function applied must be adaptive to the

data. In order to get a better understanding of what makes each cluster distinct from

others, clusters are often analyze as to how well do they capture specifics of individual

or groups of features. For example, do values of a given feature vary equally within

clusters, or does this feature exhibit different behavior in different clusters and what

domain knowledge can be inferred from that? To be able to answer such questions, it

is important that dimensions of the new feature space into which the data is mapped,

maintain their interpretability in terms of the original features.

In this work we make contributions to both of these approaches. In Section 2.1, we

develop first multi-dimensional clustering algorithm for a criterion that was proposed

by Neyman in [51] for stratified sampling from one-dimensional data, but has never

before been applied for clustering in multi-dimensional spaces. We then show that this

criterion is more reflective of the underlying data structure than the seemingly similar K-

means criterion when second order variability is not homogeneous between constituent

subgroups. Neyman’s criterion takes into account cluster means and variances, and, in

general, produces non-linear cluster boundaries. We also discover that K-means and

Neyman’s criteria produce identical clusterings when cluster variances are equal.

Then, in Section 2.2, we introduce a novel adaptive non-linear data transforma-

tion termed Unsupervised Second Order Transformation (USOT). USOT maps data

from a boolean1 space to a real space thereby emphasizing specifics of the various

1Many methods of mapping real-valued data to boolean spaces exist, but their development is beyond
the scope of this dissertation. We did, however, use some of these methods in the experiments in Section
3.5.
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homogeneous subgroups of data instances. USOT leverages probabilistic dependencies

estimated based on indirect co-occurrences between features in the dataset. In our work

[26] on supervised learning, we found these links, termed higher-order paths, to be an

abundant source of extremely valuable information that allowed higher-order classifiers

to consistently outperform the traditional methods. The novelties behind USOT are

(a) that it leverages in a unsupervised manner, higher-order co-occurrences between

features, and (b) that it considers each feature in the context of probabilistic relation-

ships with other features. USOT has two desirable properties. USOT adaptively selects

features that would influence the mapping of a given feature. If a feature j exhibits the

same distribution regardless of the value of a feature i, then feature j will have no effect

on mapping feature i. Moreover, interpretability of dimensions of the USOT space is

retained due to one-to-one correspondence with the original boolean features.

The intuition behind USOT originated from our work on higher-order classifiers [26],

and in particular from the Supervised Second Order Transformation (SSOT) described

in Section 2.2.3. SSOT is a novel data transformation that requires the knowledge of

true class labels of the instances comprising a training set. Both USOT and SSOT

are defined over the space of higher-order paths. However, aside from SSOT being a

supervised transformation, the main difference between USOT and SSOT lies in the

way the two mappings use the higher-order paths. While USOT considers probabilistic

dependencies between a feature and all other features, SSOT makes use of probabilistic

dependencies between a class indicator variable and the features.

In Section 2.2.5, we develop a O
(
(m+ n)n2

)
time algorithm for obtaining the counts

of higher-order paths used by USOT and SSOT. This algorithm improves over the

O
(
m2n3

)
complexity of a straight-forward path counting algorithm also given in Section

2.2.5.
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Overall, this dissertation covers three related studies: development of a novel multi-

dimensional clustering method based on the Neyman’s criterion, development of non-

linear mapping functions that leverage higher-order co-occurrences between features

in boolean data, and applications of these mapping functions for improving the per-

formance of clustering methods. In Section 2.1, we develop a novel multi-dimensional

clustering method based on the Neyman’s criterion. We discuss the related work on

clustering criteria in Section 2.1.4. Since criteria discussed in this work are functions

of cluster variances, we refer to methods based on these criteria as Variance-Based

Clustering. In Section 2.2, we describe the proposed adaptive non-linear data trans-

formations USOT and SSOT. Related work is discussed in Section 2.2.6. Evaluation

of the proposed clustering method on simulated data is presented in Section 3.1. In

Section 3.2, we present experimental results on estimation of the mean vector by strat-

ified sampling in multi-dimensional spaces. In Section 3.4, we present an approach to

unsupervised text categorization by applying the proposed methods. In Section 3.5, we

carry out a Return-Based Style Analysis of approximately 7,000 mutual funds. Chapter

4 concludes this work and outlines further research directions.
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Chapter 2

Methodology

2.1 Variance-Based Clustering

In this work, we treat clustering as a combinatorial optimization problem of minimizing

a certain objective function by partitioning a set of points in a n-dimensional Euclidean

into a pre-specified number of disjoint clusters. In particular, we consider two clustering

criteria

I1 =
K∑
α=1

pασ
2
α, (2.1)

and

I2 =
K∑
α=1

pασα, (2.2)

where K is the number of clusters sought, pα denotes the probability, or relative weight,

of cluster α = 1, . . . ,K, and σ2
α denotes its variance. Intuitively and mathematically,

criteria (2.1) and (2.2) seem very similar. In fact, both of these criteria are minimized

by clusterings comprised of congregations of points tightly centered around the cluster

means. Criterion (2.1) is the well-known and studied objective function of the K-means

method. Clusterings minimizing (2.1) are Voronoi diagrams constructed on the basis

of the given dataset. An efficient minimization algorithm for criterion (2.1) was given

by [44]. It should be noted that in one dimension, globally optimal clusterings for

criteria (2.1) and (2.2) can be obtained by a dynamic programming approach [7, 8].

Unfortunately, in higher dimensions the problem becomes NP-hard and one resorts to

considering locally optimal solutions such as produced by the K-means algorithm [44].

Criterion (2.2) was proposed in [51] for stratified sampling from one-dimensional
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data. However, no algorithm for minimization of (2.2) in spaces of dimensionality

higher than one was given to date. Moreover, the behavior of criterion (2.2) in multi-

dimensional spaces has not been studied in the literature, perhaps due to the lack of a

minimization algorithm for this criterion.

The main contributions of this section are the following. We develop an efficient

clustering algorithm for criterion (2.2) in high-dimensional spaces. In order to do that,

we prove that (2.2) is a strictly concave function of cluster moments, and then show how

the framework of [5] can be applied for minimization of this criterion. We then study

the behavior of criterion (2.2) in multi-dimensional spaces. We show that criterion (2.2)

is more complex than (2.1) and, in general, produces non-linear cluster boundaries. We

also identify another major difference between these clustering criteria. While (2.1)

takes into account only the locations of cluster means1, criterion (2.2) also considers

the cluster variances. Moreover, we uncover a condition under which criteria (2.1) and

(2.2) produce identical clusterings.

In Section 2.1.1, we introduce the necessary foundational concepts used for the

development of clustering algorithms in Section 2.1.2. In Section 2.1.3, we derive the

cluster membership functions for criterion (2.2) and provide an analytical comparison

with criterion (2.1). The related work is discussed in Section 2.1.4.

2.1.1 Mathematical Foundations: Criteria of Optimality for Cluster-

ing

Let X denote an n-dimensional Euclidean space where each distinct data instance is

uniquely characterized by a vector x ∈ X . A clustering H is a partition of space X

into K disjoint regions, and is determined by a set of characteristic functions H =

1In Appendix C, we rewrite criterion (2.1) to show that it effectively only depends on the cluster
means and not the variances.
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(h1(x), . . . , hK(x)), where

hα(x) =

 1, if x belongs to cluster α

0, otherwise.

We denote by H the set of all possible clusterings into K non-empty clusters. The key

role in this work is played by a specific type of clusterings where cluster boundaries in

space X are specified by smooth2 functions. First, we illustrate the relationship between

a clustering criterion and cluster boundaries for the case of two clusters (K = 2), and

then provide a generalization to an arbitrary number of clusters K ≥ 2.

A clustering H = (h1(x), h2(x)) is specified by a discriminant function F (x) as

follows3:

h1(x) =

 1, if F (x) ≥ 0

0, otherwise,
and h2(x) =

 1, if F (x) < 0

0, otherwise.
(2.3)

The boundary between clusters is the discriminant surface F (x) = 0. Further, we only

consider clusterings into two clusters such that certain criteria (functionals) achieve

extremal values on these clusterings.

Functionals considered in this work are differentiable functions of the non-normalized

cluster moments, of order up to r, of the probability distribution function P (x). The

non-normalized cluster moments of the l-th order (l = 0, . . . , r) are defined as

M
(l)
1 =

∫
X

xlh1(x)dP (x) and M
(l)
2 =

∫
X

xlh2(x)dP (x),

where xl denotes the scalar ‖x‖l when l is even and the vector x‖x‖l−1 when l is odd.

The distribution P (x) need not be known and no assumptions are made regarding its

type. It is only assumed that the probability density function Pr(x) of occurrence of

points x ∈ X exists, is continuous and is concentrated in a compact set R of space X ,

i.e., Pr(x) = 0, ∀x /∈ R.

2As will be shown later, cluster boundaries discussed in this work are specified by polynomial
functions.

3To avoid ambiguity, points of the discriminant surface F (x) = 0 are always assigned to cluster 1.



10

Below, we state a theorem published in [2] that given a functional of a general form,

characterizes the corresponding smooth discriminant functions.

Theorem 1. Let the quality of a clustering H ∈ H be measured by a functional of the

form

I
(
M

(0)
1 ,M

(1)
1 , . . . ,M

(r)
1 ,M

(0)
2 ,M

(1)
2 , . . . ,M

(r)
2

)
, (2.4)

where I is a differentiable function of the non-normalized cluster moments of order up

to and including r, and the probability density Pr(x) is a continuous function that is

zero outside a compact set R of space X . Then:

1. if functional (2.4) achieves an extremum on some discriminant function, the same

extremum is achieved on a polynomial discriminant function of degree r defined

as:

F (x) = f2(x)− f1(x) =
r∑
l=0

(
c
(l)
2 , xl

)
−

r∑
l=0

(
c
(l)
1 , xl

)
=

r∑
l=0

(
c
(l)
2 − c

(l)
1 , xl

)
, (2.5)

where

c
(l)
1 =

∂I

∂M
(l)
1

and c
(l)
2 =

∂I

∂M
(l)
2

(2.6)

2. the discriminant function defined by (2.5) and (2.6) endows functional (2.4) with

a stationary value.

In Theorem 1, c(l)α denote scalars when l is even and vectors with coordinates ∂I

∂M
(l)
α,i

when l is odd, where α ∈ {1, 2} is the cluster index and M
(l)
α,i is the i-th component of

the vector M (l)
α ;

(
c
(l)
α , xl

)
denotes multiplication of scalars c(l)α and ‖x‖l when l is even

and the scalar product of vectors c(l)α and x‖x‖l−1 when l is odd.

We note that Theorem 1 is concerned with partitions of the compact set R of space

X rather than of the entire space X . We also note that a functional of the form (2.4)

can be constructed such that clusterings minimizing it are of interest. In this case,

polynomial membership functions

f1(x) =
r∑
l=0

(
c
(l)
1 , xl

)
and f2(x) =

r∑
l=0

(
c
(l)
2 , xl

)
, (2.7)
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are regarded as measures of distance between a point and a cluster. On the other hand,

a functional of the form (2.4) can be constructed such that clusterings maximizing it are

sought. Under this condition, membership functions (2.7) are regarded as measures of

affinity between a point and a cluster. The corresponding discriminant function (2.5),

in this case, has to be taken with a negative sign in definition (2.3) of characteristic

functions.

We now consider a more general problem of finding a clustering minimizing a func-

tional of the form

I
(
M

(0)
1 ,M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K ,M

(1)
K , . . . ,M

(r)
K

)
, (2.8)

where

M (l)
α =

∫
X

xlhα(x)dP (x), α = 1, . . . ,K, (2.9)

denotes the l-th (l = 0, . . . , r) non-normalized moment of cluster α.

Let c =
(
c
(0)
1 , c

(1)
1 , . . . , c

(r)
1 , . . . , c

(0)
K , c

(1)
K , . . . , c

(r)
K

)
denote a vector of coefficients,

where c
(l)
α denote scalars when l is even and n-dimensional vectors when l is odd.

Vector c specifies polynomial membership functions f1(x), f2(x), . . . , fK(x), where

fα(x) =
r∑
l=0

(
c(l)α , x

l
)
. (2.10)

For a given vector c, the polynomial clustering Hc = (hc1(x), . . . , hcK(x)) is specified via

membership functions (2.10) as follows:

hcα(x) =


1, if fα(x) = min

i=1,...,K
fi(x), α = min

i=1,...,K
{i : fi(x) = fα(x)}

0, otherwise.
(2.11)

For convenience, let µ(H) =
(
M

(0)
1 ,M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K ,M

(1)
K , . . . ,M

(r)
K

)
de-

note the vector of the non-normalized cluster moments under a clustering H ∈ H.

Functional (2.8) can then be rewritten as

I = I (µ(H)) . (2.12)
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Two clusteringsH andH∗ are equivalent if µ(H) = µ(H∗). A generalization of Theorem

1 to clusterings into an arbitrary number of clusters (K ≥ 2), follows.

Theorem 2. Let I(µ(H)) be a strictly concave functional that attains a local minimum

on a clustering H∗. Then a polynomial clustering Hc, equivalent to H∗, exists for which

the vector c =
(
c
(0)
1 , c

(1)
1 , . . . , c

(r)
1 , . . . , c

(0)
K , c

(1)
K , . . . , c

(r)
K

)
of coefficients is determined as

a supergradient4 of the functional I(µ(H)) at the point µ(H∗).

The proof of Theorem 2 is provided in Appendix B, and rests on the following

lemma, which is proved in Appendix A.

Lemma 1. For an arbitrary vector c and an arbitrary clustering H ∈ H, the following

inequality holds:

(c, µ(Hc)− µ(H)) ≤ 0.

In Appendix B we also show that set Z = {µ(H) : H ∈ H} of vectors of the non-

normalized cluster moments of all possible clusterings H ∈ H is bounded, closed and

convex. Therefore, all local minima of a strictly concave functional (2.12) are attained

on the boundary points of set Z. Lemma 1 states that polynomial clusterings correspond

to the boundary points of set Z. Theorem 2 specifies the form of the polynomial

clusterings minimizing a strictly concave functional (2.12). A variant of Theorem 2

for the case of maximization of a convex functional I
(
M

(0)
1 ,M

(1)
1 , . . . ,M

(0)
K ,M

(1)
K

)
was

first published in [5].

2.1.2 Algorithms of Search for Extrema of Clustering Criteria

In this section, we present a framework for constructing clustering algorithms based

on the mathematical foundations given in Section 2.1.1. Within this framework, we

develop a clustering algorithm for the Neyman’s criterion (2.2), whose strict concavity

(see Section 2.1.3 for a proof) allows for application of Theorem 2.

4A supergradient of a concave functional I at a point z∗ is a vector q satisfying the condition I(z)−
I(z∗) ≤ (q, z − z∗) for any point z in the domain of functional I.
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The input data for a clustering algorithm is assumed to be given in the form of

a finite sample X = {x1, x2, . . . , xm} of points. We denote by H̃ the set of all pos-

sible clusterings into K non-empty clusters constructed on the basis of the sample

X. Additionally, we denote by pα the zeroth non-normalized moment M (0)
α , i.e., the

probability of cluster α. Given a clustering H = (h1(x), . . . , hK(x)), H ∈ H̃, the vec-

tor µ̃(H) =
(
p̃1, M̃

(1)
1 , . . . , M̃

(r)
1 , . . . , p̃K , M̃

(1)
K , . . . , M̃

(r)
K

)
of the non-normalized sample

cluster moments is estimated over the sample X as follows:

p̃α = 1
m

m∑
i=1
hα(xi) = mα

m ,

M̃
(l)
α = 1

m

m∑
i=1
xlihα(xi), l = 1, . . . , r, α = 1, . . . ,K,

where mα is the number of points in cluster α.

In general, for a given functional I(µ(H)), we are interested in finding a clustering

H∗ such that

H∗ = arg min
H∈H̃

I (µ̃(H)) .

However, an exhaustive enumeration of the set H̃ of all possible partitions of m points

into K clusters is infeasible in most cases, because the number

S(m,K) =
1
K!

K∑
α=1

(−1)K−α

 K

α

αm

of distinct partitions grows rapidly with K and m. For example, there are S(10, 4) =

34, 105 partitions of ten objects into four clusters, while there are S(19, 4) ≈ 1010

partitions of nineteen objects into four clusters [34]. We, therefore, resort to search for

clusterings that provide functional I with local minima.

From Theorem 2 follows directly that, in cases when functional I is a strictly concave

differentiable5 function of the non-normalized cluster moments, the Basic Gradient

Descent (BGD) procedure (Algorithm 1) is guaranteed to converge to a clustering that

5If a concave functional I is differentiable at a point z∗, then there exists a unique supergradient of
I at the point z∗, namely the gradient of functional I at the point z∗.
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provides functional I with a local minimum. In Algorithm 1, ∇I(µ(H)) denotes the

gradient

∇I =

(
∂I

∂M
(0)
1

,
∂I

∂M
(1)
1

, . . . ,
∂I

∂M
(r)
1

, . . . ,
∂I

∂M
(0)
K

,
∂I

∂M
(1)
K

, . . . ,
∂I

∂M
(r)
K

)

of a functional I evaluated at a point µ(H). Step 7 of the BGD avoids degenerate

solutions that contain clusters with fewer points than a predefined threshold b ≥ 0. As

we will see in Section 2.1.3, Neyman’s criterion (2.2) assumes non-zero cluster variances,

estimation of which requires at least two distinct points to be present in each cluster

(b = 2). K-means criterion (2.1), on the other hand, is only concerned with cluster

means. In this case, we allow singleton clusters (b = 1) to be present in the K-means

solution.

Algorithm 1: Basic Gradient Descent (BGD)
Input: Sample X = {x1, x2, . . . , xm} of distinct points
Input: Initial (arbitrary) clustering H
Input: Minimum cluster size b
Output: Clustering H∗

repeat1

H∗ ← H2

Compute vector µ̃(H) of the non-normalized sample cluster moments3

Compute vector c = ∇I(µ̃(H)) of coefficients4

Construct the polynomial clustering Hc using characteristic functions hcα(x)5

defined by (2.11)
H ← Hc6

for α = 1, . . . ,K do7

if
∑
x∈X

hcα(x) < b then
8

Put into cluster α,
(
b−

∑
x∈X

hcα(x)
)

closest points as measured by the
9

corresponding membership function (2.10)
end

end
until µ̃(H∗) = µ̃(H)
return Clustering H∗10

The overall form of the clustering algorithm proposed in this work for functional (2.2)

is the same as that of the K-means algorithm. The difference between the two algorithms

lies in the membership functions (2.10) according to which clusterings are constructed
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in step 5 of the BGD. The precise form of membership functions for criterion (2.2) is

derived in Section 2.1.3, where comparisons with the K-means membership functions

are also drawn. The general clustering algorithm for functionals (2.1) and (2.2) is

given by Algorithm 2, which acts as a wrapper around the BGD. By executing the

BGD starting from N different randomly generated partitions of the data, Algorithm

2 obtains a deeper minimum of the clustering criterion. Algorithm 2 then outputs a

clustering giving the smallest value of the criterion.

Algorithm 2: Clustering Algorithm for Functionals (2.1) and (2.2)
Input: Sample X = {x1, x2, . . . , xm} of distinct points
Input: Number K of clusters
Input: Number N of iterations
Output: The best clustering H∗ found during the N iterations
if Functional (2.1) then1

b = 1
end
if Functional (2.2) then2

b = 2
end
Initialize the set H∗ of locally optimal clusterings: H∗ = ∅3

for i = 1, . . . , N do4

Generate a random assignment Hi of points to clusters (for functional (2.1)5

each cluster must be non-empty; for functional (2.2) each cluster must
contain at least two points)
Execute BGD initialized with Hi: H∗i = BGD(X,Hi, b)6

H∗ = H∗ ∪ {H∗i }7

end
return H∗ = arg min

H∈H∗
I(µ̃(H))

8

The total computational complexity of Algorithm 2 is O(NtKmn) scalar additions

and multiplications, where t is the number of iterations performed by the BGD during

the N iterations in Algorithm 2.
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2.1.3 Cluster Membership Functions for The Neyman’s Criterion

As was mentioned earlier, the Neyman’s criterion (2.2) was originally developed [51] for

stratified sampling from one-dimensional data. We generalize functional (2.2) to multi-

dimensional data as follows. Let M(l)
α denote the l-th normalized moment of cluster

α,

M(l)
α =

M
(l)
α

pα
,

where pα = M
(0)
α is the probability of cluster α. Functional (2.2) can then be rewritten

as

I2 =
K∑
α=1

pασα =
K∑
α=1

pα

√(
M(2)

α −
(
M(1)

α

)2
)
, (2.13)

where
(
M(1)

α

)2
denotes the scalar product

(
M(1)

α ,M(1)
α

)
of the mean vector of cluster

α with itself.

We now prove that functional (2.13) is strictly concave, which makes the application

of Theorem 2 possible. We assume that for any clustering H ∈ H, cluster variances are

positive, i.e., σ2
α > 0, α = 1, . . . ,K.

Claim 1. Functional I2 is strictly concave.

Proof. We prove the claim by showing that the α-th functional I2α = pασα in sum-

mation (2.13) is strictly concave, from which it follows that functional I2 is strictly

concave. First, we compute the gradient ∇I2α =
(
c
(0)
α , c

(1)
α , c

(2)
α

)
of functional I2α:

c
(0)
α = ∂I2

∂pα
= M

(2)
α

2pασα
= M(2)

α
2σα

,

c
(1)
α = ∂I2

∂M
(1)
α

= −M
(1)
α

pασα
= −M

(1)
α
σα

,

c
(2)
α = ∂I2

∂M
(2)
α

= 1
2σα

.

(2.14)

Let the non-normalized cluster moments of cluster α under a clustering H ∈ H be

denoted by µα(H) =
(
pα,M

(1)
α ,M

(2)
α

)
. For any two clusterings H ∈ H and Ĥ ∈ H we
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have

“
∇I2α(µα(H)), µα(Ĥ)− µα(H)

”
=

 
M(2)

α

2σα
(p̂α − pα)−

1

σα

“
M(1)

α , M̂
(1)
α −M(1)

α

”
+

1

2σα

“
M̂

(2)
α −M(2)

α

”!

=
1

2σα

„
M(2)

α p̂α −M(2)
α − 2

“
M(1)

α , M̂
(1)
α

”
+ 2pα

“
M(1)

α

”2
+ M̂

(2)
α −M(2)

α

«
=

p̂α

2σα

“
M(2)

α − 2
“
M(1)

α ,M̂(1)
α

”
+ M̂(2)

α

”
− pασα

=
p̂α

2σα

„
M(2)

α −
“
M(1)

α

”2
+
“
M(1)

α − M̂
(1)
α

”2
−
“
M̂(1)

α

”2
+ M̂(2)

α

«
− pασα

=
p̂α

2σα

„
σ2
α +

“
M(1)

α − M̂
(1)
α

”2
+ σ̂2

α

«
− pασα,

and

I2α(µα(Ĥ))− I2α(µα(H)) = p̂ασ̂α − pασα.

By subtracting the first equation from the second and simplifying, we obtain the fol-

lowing inequality

I2α(µα(Ĥ))− I2α(µα(H))−
(
∇I2α(µα(H)), µα(Ĥ)− µα(H)

)
=

=
p̂α

2σα

(
2σ̂ασα − σ2

α −
(
M(1)

α − M̂(1)
α

)2
− σ̂2

α

)
= − p̂α

2σα

(
(σα − σ̂α)2 +

(
M(1)

α − M̂(1)
α

)2
)
< 0, µα(Ĥ) 6= µα(H).

From the definition of a strictly concave function follows that functional I2α is strictly

concave. Therefore, functional I2 =
K∑
α=1

I2α is strictly concave.

Using the gradient (2.14) for specifying membership functions (2.10) yields

fα(x) = c
(0)
α +

(
c
(1)
α , x

)
+ c

(2)
α x2

= M(2)
α

2σα
− 1

σα

(
M(1)

α , x
)

+ x2

2σα

= 1
2σα

(
M(2)

α −
(
M(1)

α

)2
)

+ 1
2σα

((
M(1)

α

)2
− 2

(
M(1)

α , x
)

+ x2

)
= σα

2 + 1
2σα

(
x−M(1)

α

)2
.

(2.15)

The term
(
x−M(1)

α

)2
in (2.15) is the squared Euclidean distance between a point

x ∈ X and the cluster’s mean vector M(1)
α . These squared Euclidean distances are, in

fact, the cluster membership functions fKM
α (x) for the K-means criterion (2.1):

fKM
α (x) =

(
x−M(1)

α

)2
. (2.16)
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A detailed derivation of membership functions (2.16) can be found in Appendix C along

with a proof of strict concavity of the K-means criterion (2.1).

Membership functions (2.16) and (2.15) elucidate a key difference between criteria

(2.1) and (2.2). Note that membership functions (2.16) do not depend on the second

non-normalized moments M (2)
α . This stems from the fact that, as illustrated by equation

(C.2) in Appendix C, the K-means criterion (2.1) depends only on the first two non-

normalized moments pα and M (1)
α , and is independent of M (2)

α . The Neyman’s criterion

(2.13), on the other hand, is more complex since it depends on all three non-normalized

moments pα, M (1)
α and M

(2)
α . As a result, cluster membership functions (2.15) depend

not only on the squared Euclidean distance between a point and the cluster’s mean

M(1)
α , but also on the cluster’s scatter as measured by its standard deviation σα.

In order to show the exact role cluster variances play in criterion (2.2) and to further

underline its differences from criterion (2.1), consider the discriminant surface

F (x) = fα(x)− fβ(x) = σα
2 + 1

2σα

(
x−M(1)

α

)2
− σβ

2 −
1

2σβ

(
x−M(1)

β

)2

= (σβ − σα)x2 + 2
(
σαM(1)

β − σβM
(1)
α , x

)
+

+σβ
(
M(1)

α

)2
− σα

(
M(1)

β

)2
+ σασβ (σα − σβ) = 0.

(2.17)

specified by membership functions (2.15) between two clusters α and β, and compare

(2.17) with the K-means discriminant surface

FKM(x) = fKM
α (x)− fKM

β (x) =
(
x−M(1)

α

)2
−
(
x−M(1)

β

)2

= 2
(
M(1)

β −M
(1)
α , x

)
+
(
M(1)

α

)2
−
(
M(1)

β

)2
= 0.
(2.18)

specified by (2.16). Equations (2.17) and (2.18) reveal the following relationship be-

tween criteria (2.1) and (2.2). When cluster variances are equal, discriminant surface

(2.17) coincides with (2.18). Thus, criterion (2.2) produces the same clustering as

criterion (2.1). Furthermore, surface (2.18) is the hyperplane that contains the mid

point x = 1
2

(
M(1)

β +M(1)
α

)
of the line segment connecting the cluster means M(1)

α
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and M(1)
β , and whose norm 2

(
M(1)

β −M
(1)
α

)
is collinear with that line segment. In

contrast, (2.17) is a quadratic surface that contains a point x = (1− τ)M(1)
α + τM(1)

β ,

τ ∈ (0, 1), where

τ =

σα −

√√√√σασβ

(
(σβ−σα)2“
M(1)

β −M
(1)
α

”2 + 1

)
σα − σβ

. (2.19)

The differences between discriminant surfaces (2.17) and (2.18) are illustrated by

Figure 2.1. The dataset shown in Figure 2.1a consisted of three clusters, each generated

by a Gaussian distribution. The data generator parameters were:

• Cluster probabilities: p1 = 0.4, p2 = 0.2, p3 = 0.4,

• Cluster means: µ1 = (0, 0), µ2 = (12, 6), µ3 = (12,−6),

• Cluster covariance matrices: Σ1 = 4.5I, Σ{2,3} = 2I.

The same set of N = 50 randomly generated initial assignments of points to clusters

was used by each algorithm. Clusterings yielding the smallest values of criteria (2.1)

and (2.2) are shown in Figures 2.1b and 2.1c, respectively. As can be seen from Figure

2.1b, membership functions (2.16) produced linear discriminant surfaces regardless of

cluster probabilities and variances. In contrast, due to unequal variances of the red and

the other two clusters, membership functions (2.15) produced quadratic discriminant

surfaces shown in Figure 2.1c. Since the variance of the red cluster was greater, the

corresponding discriminant surfaces were shifted further away from its mean. The

discriminant surface between the blue and the green clusters remained linear due to

variances of these clusters being equal.

2.1.4 Related Work

Despite the fact that (2.8) encompasses a large family of functions, the only clustering

criterion known to fall under the theoretical framework of [5] was the K-means func-

tional (2.1). In this work, we found that there is another criterion, namely (2.2), that
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(a) Input dataset (b) Criterion I1 (K-means) (c) Criterion I2

Figure 2.1: Clusterings obtained on the dataset shown in Figure 2.1a. Cluster means
are indicated by squares.

also fits within the framework of [5]. We proved that criterion (2.2) is strictly concave

and developed the first multi-dimensional clustering algorithm for minimization of this

criterion.

Another variance-based clustering criterion

I3 =
K∑
α=1

p2
ασ

2
α, (2.20)

was proposed in [37]. A globally optimal clustering minimizing criterion (2.20) can

be obtained in one dimension by a dynamic programming approach [7]. In multi-

dimensional spaces, however, minimization of (2.20) is challenging. As we showed in

[46], criterion (2.20) is non-convex and therefore does not fall within the framework

considered in this work. Hence, a different method for minimizing (2.20) in multi-

dimensional spaces is required.

While in this work we consider efficient local minimization of criteria (2.1) and

(2.2), a number of approximation algorithms were recently proposed [4, 17, 56] for

global minimization of clustering criteria of the general form

J(X,H) =
K∑
α=1

Φα =
K∑
α=1

∑
x,y∈X

φ(x, y)hα(x)hα(y), (2.21)

where φ(x, y) is a non-negative “cost” of placing points x and y into the same cluster.

Unfortunately, none of the aforementioned approximations schemes are applicable for
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minimization of criteria (2.1) and (2.2) as they are not of the form (2.21). By letting

φ(x, y) = ||x−y||2 be the squared Euclidean distance and after some algebra, we obtain

Φα =
∑
x,y∈X

||x− y||2hα(x)hα(y) = 2mα

∑
x∈X
||x− x̄α||2hα(x) = 2m2

ασ
2
α, (2.22)

where mα is the number of points in cluster α, x̄α = 1
mα

∑
x∈X

xhα(x) is its mean vector

and σ2
α is its variance. From (2.22) follows that

pασ
2
α =

mα

m
σ2
α =

Φα

2mαm
,

where m =
K∑
α=1

mα is the total number of points in X. Therefore, criterion (2.1) is not

of the form (2.21). An analogous argument can be applied to show that since

pασα =
√

Φα√
2m

,

criterion (2.2) also is not of the form (2.21).

2.2 Higher Order Transformations

Real-world heterogenous data often have complex structure comprised of overlapping

homogeneous subgroups of data instances that are not linearly separable from the rest

of the dataset. Presence of non-linear dependencies in the data precludes simple clus-

tering criteria such as (2.1) from identifying adequate partitions. This problem can

be addressed by either applying a more complex, non-linear clustering criterion, e.g.

(2.2), or by projecting the data into a different feature space using non-linear mapping

functions. The latter approach aims to increase separability between the underlying

“true” clusters, thus simplifying the structure of the data and making it more suitable

for clustering.

One of the key contributions of this chapter is the Unsupervised Second Order

Transformation (USOT) described in Section 2.2.4. USOT is an adaptive non-linear
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function that maps data from a boolean6 space to a real space thereby emphasizing

specifics of the various homogeneous subgroups of data instances. When mapping a

data instance, USOT uses two types of information – local and global. The local

information is extracted directly from the data instance being mapped. The global

component of USOT comes in the form of probabilistic dependencies between features.

The dependencies are estimated based on indirect co-occurrences between features in

the dataset. As will be explained in more detail in Section 2.2.1, a pair of features i

and j may never co-occur within a single data instance. In fact, such co-occurrences,

termed first-order paths [25], are often very sparse. However, there may exist indirect

links, or higher-order paths between i and j through some intermediate features. In our

work [26] on supervised learning, we found higher-order paths to be an abundant source

of extremely valuable information that allowed higher-order classifiers to consistently

outperform the traditional methods.

The novelty behind USOT is (a) that it leverages in a unsupervised manner, higher-

order co-occurrences between features, and (b) that it considers each feature in the

context of probabilistic relationships with other features. USOT has two desirable prop-

erties. USOT adaptively selects features that would influence the mapping of a given

feature. If a feature j exhibits the same distribution regardless of the value of a feature

i, then feature j will have no effect on mapping feature i. Moreover, interpretability of

dimensions of the USOT space is retained due to one-to-one correspondence with the

original boolean features.

The intuition behind USOT originated from our work on higher-order classifiers [26],

and in particular from the Supervised Second Order Transformation (SSOT) described

in Section 2.2.3. SSOT is a novel data transformation that requires the knowledge of

true class labels of the instances comprising a training set. Both USOT and SSOT

6Many methods of mapping real-valued data to boolean spaces exist, but their development is beyond
the scope of this dissertation. We did, however, use some of these methods in the experiments in Section
3.5.
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are defined over the space of higher-order paths. However, aside from SSOT being a

supervised transformation, the main difference between USOT and SSOT lies in the

way the two mappings use the higher-order paths. While USOT considers probabilistic

dependencies between a feature and all other features, SSOT makes use of probabilistic

dependencies between a class indicator variable and the features.

Another contribution of this chapter is a O
(
(m+ n)n2

)
time algorithm for obtaining

the counts of second-order paths for each feature in a dataset with m instances and n

features. This algorithm improves over the O
(
m2n3

)
complexity of a straight-forward

path counting algorithm. Both algorithms are described in Section 2.2.5.

The rest of this chapter is organized as follows. Section 2.2.1 describes the data

representation underlying the proposed non-linear mapping functions SSOT and USOT,

and defines the notion of a higher-order path. Probabilistic characterization of features

in the space of second-order paths is given in Section 2.2.2. Section 2.2.3 describes

the SSOT and illustrates the effects of transitioning from the traditional feature vector

representation to the space of higher-order paths. USOT is presented in Section 2.2.4.

Related work is discussed in Section 2.2.6.

2.2.1 Data Representation by a Bipartite Graph

Below, we introduce the data representation that will be used in the following sections.

We assume that all data instances are provided in the form of n-dimensional boolean

vectors. The notions of a dataset and a data matrix are therefore assumed to be

equivalent. Rows of a data matrix X = ||xiL|| correspond to objects, while columns

correspond to features. We denote object indices by capital letters, e.g. L, and feature

indices by small letters, e.g. i.

An m × n data matrix X can be viewed as a bipartite graph G = (VO ∪ VF, E).

Vertices in VO correspond to objects, while vertices in VF correspond to features. Two

vertices L ∈ VO and i ∈ VF are connected by an edge (L, i) ∈ E iff object L contains
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the feature i, i.e., iff xiL = 1. An illustration of a data matrix and the corresponding

bipartite graph is given in Figure 2.2.

i k h j

L 1 1 0 0
P 0 1 1 0
R 0 1 0 1

(a) (b)

Figure 2.2: (a) A boolean dataset, and (b) its representation by a bipartite graph

Traditional learning methods operating in vector spaces typically consider each fea-

ture independently of others by, for example, computing frequency of occurrence of

an individual feature without regard for patterns of co-occurrence of this feature with

others. Frequency of occurrence of feature i can be obtained from graph G by taking

the degree of the feature vertex i ∈ VF. The degree of a vertex, however, is only a small

subset of the vast amount of information reflected by G. In order to make use of this

rich information, we depart from the traditional approach by considering (indirect) co-

occurrences between features. Such co-occurrences are captured by chain subgraphs of

graph G. We follow the terminology of Ganiz et al. [24, 25] who termed such subgraphs

as paths and further classified them by the number of object vertices they span. The

number of object vertices determines the order of a path. Below we give formal defini-

tions of the first- and second-order paths that will be used in the following sections. We

also provide an illustration of patterns of connectivity between features as a function

of the path order.

Definition 1. A first-order path (i, L, k) between features i and k is a chain subgraph

where feature vertices i and k are linked through some common object vertex L.

As shown in Figure 2.3, first-order path (i, L, k) captures the co-occurrence between
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features i and k within a single data instance L. We refer to feature co-occurrences

within a single data instance as first-order co-occurrences. The number of first-order

paths connecting features i and k in a dataset equals the frequency of their first-order

co-occurrence.

i k h j

L 1 1 0 0
P 0 1 1 0
R 0 1 0 1

(a) (b)

Figure 2.3: A first-order path (i, L, k) between features i and k is a chain subgraph
that captures the first-order co-occurrence between features i and k within a single
data instance L

Definition 2. A second-order path (i, L, k,R, j) between features i and j is a chain

subgraph where feature vertices i and j are linked through an intermediate feature

vertex k and two distinct object vertices L and R.

A second-order path is exemplified in Figure 2.4. Second-order paths are able to

capture indirect co-occurrences between features that may not co-occur within a single

data instance. In the example shown in Figure 2.4, features i and j do not have a

first-order co-occurrence, but there exists a second-order co-occurrence (i, L, k,R, j)

between them. In fact, second-order co-occurrences are much more abundant than

first-order. Figures 2.5a and 2.5b visualize the frequencies of first- and second-order

co-occurrences, respectively. The black regions in Figure 2.5a indicate the absence of

first-order paths between the corresponding pairs of features. The total of roughly 75%

of pairs of features in Figure 2.5a have no first-order co-occurrences. Figure 2.5b, on

the other hand, demonstrates a drastically different sparsity pattern of the second-order

paths in the same data graph. Virtually every pair of features became connected by at
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least one path as a result of transitioning from first to second order.

i k h j

L 1 1 0 0
P 0 1 1 0
R 0 1 0 1

(a) (b)

Figure 2.4: A second-order path (i, L, k,R, j) between features i and k is a chain sub-
graph that captures the first-order co-occurrence between features i and k within a
single data instance L

Second-order paths simultaneously capture feature co-occurrences within objects as

well as feature sharing patterns across objects, and in doing so provide a much richer

data representation than the traditional feature vector form. As will be demonstrated

by experimental results in Chapter 3, this richness of representation plays a crucial role

in significantly improving the performance of pattern classifiers and clustering methods.

Our experimental results [26] demonstrate that the use of first-order paths does not

improve classification accuracy. At the same time, while the use of second-order paths

yields statistically significant performance improvements, the effect of incorporating

third- and higher-order paths is insignificant. Moreover, computation of paths of order

higher than two adds considerably to the algorithmic complexity. In order to keep the

computational complexity of our algorithms manageable while retaining the desired

performance improvements, we restrict our attention to the second-order paths.

2.2.2 Probabilistic Characterization of Features by Second Order Paths

We begin this section with a description of the traditional (i.e., zero-order) probabilistic

characterization of boolean features and then show an extension, first proposed in [24],
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(a) First-order (b) Second-order

Figure 2.5: Feature co-occurrence matrices of the RELIGION dataset. Rows and
columns of the matrices were rearranged for visualization. Red color indicates higher
co-occurrence frequency than indicated by yellow color. Black color indicates no co-
occurrence (i.e., zero frequency). Note that colors are not comparable across plots due
to different inter-quantile ranges of the co-occurrence frequencies.

of this characterization into the space of higher-order paths. The probabilistic higher-

order characterization will be used for developing novel data transformations in Sections

2.2.3 and 2.2.4.

The zero-order probability mass function P (xi|X) of feature i is defined over two

events: presence of feature i in a randomly chosen object from a dataset X, and the

absence of that feature. The corresponding conditional probabilities are estimated using

the frequency of occurrence of feature i in dataset X by

P (xi = 1|X) =
|{x : xi = 1, x ∈ X}|

|X|
and P (xi = 0|X) = 1− P (xi = 1|X).

(2.23)

Probabilistic characterization (2.23) was extended into the space of higher-order

paths by [24] who defined events over sets of higher-order paths rather than individual

data instances. We now describe this extension.

Let Φ(X) denote the set of all second-order paths in a dataset X. Further let
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ϕ(i,X) ⊆ Φ(X) denote the subset of second-order paths that contain feature i in

dataset X. Set ϕ(i,X) defines an event that a randomly chosen second-order path

contains feature i. Together, sets Φ(X) and ϕ(i,X) allow for characterization of each

feature i by a probability mass function P̂ (xi|X) defined over two events: presence of

feature i in a randomly chosen second-order path, and the absence of that feature from

a randomly chosen second-order path. The corresponding conditional second-order

probabilities can then be estimated by

P̂ (xi = 1|X) =
|ϕ(i,X)|
|Φ(X)|

, and P̂ (xi = 0|X) = 1− P̂ (xi = 1|X). (2.24)

2.2.3 Supervised Second Order Transformation

In this section, we present a novel data transformation that allows any classifier operat-

ing in vector spaces to take advantage of higher-order co-occurrences between features.

We describe our approach for the case of binary classification. This, however, does

not limit the applicability of the proposed approach, because numerous methods for

multi-class classification based on binary classifiers have been proposed (see [55] for an

overview). The proposed data transformation proceeds as follows.

Let C = {c1, . . . , cK} denote the set of class labels. Given two sets Xj and Xk of

(training) objects from classes cj and ck, respectively, the class conditional second-order

feature probabilities (2.24) are computed. Let us denote the corresponding conditional

log likelihood ratios as

φ
(1)
i = log

P̂ (xi|Xj)
P̂ (xi|Xk)

, (2.25)

and

φ
(0)
i = log

1− P̂ (xi|Xj)
1− P̂ (xi|Xk)

. (2.26)

Each binary vector x = (x1, . . . , xn), x ∈ Xj∪Xk, is then transformed into a real vector
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x̂ = (x̂1, . . . , x̂n), where

x̂i =



φ
(1)
iq
|φ(1)
i |
, if xi = 1, φ(1)

i 6= 0

φ
(0)
iq
|φ(0)
i |
, if xi = 0, φ(0)

i 6= 0

0, otherwise.

(2.27)

Finally, the resulting dataset X̂j ∪ X̂k is used as input for training a binary classifier

for classes cj and ck.

Data transformation (2.27) assigns weights that are high in absolute values for highly

discriminative features present in an object. The normalizing factors7 in (2.27) moder-

ate the spread of values of each feature in order to allow less discriminative features to

retain a certain level of influence over the classification. This level of influence depends

on the discriminative power of a feature as measured by (2.25) and (2.26).

In order to gain a deeper understanding of the effect of using higher-order paths

for estimation of conditional feature probabilities (2.24), let us consider Figure 2.6

generated using a 5% (25 documents per class) random sample from “alt.atheism” and

“soc.religion.christian” classes of the RELIGION dataset. For every term xi, Figure

2.6a presents a plot of the conditional log probability ratio (2.25) obtained from higher-

order probabilities (2.24) (horizontal axis) versus the log ratio obtained from zero-order

probabilities (2.23) (vertical axis). Notice the differences in scales of values on the axes

of Figure 2.6a: [−20, 20] for higher-order log ratios versus [−4, 4] for zero-order log

ratios. Additionally, three distinct groups of terms appeared as a result of estimating

conditional feature probabilities in the space of higher-order paths. We found that terms

that fell into the right (left) most group are highly-discriminative terms that appeared

in documents of only one of the classes. Figure 2.6a reveals that due to drastic increase

in scale of values of higher-order log ratios, the variance along highly-discriminative

dimensions increases dramatically by several orders of magnitude. In effect, this leads

7It is possible to omit the normalizing factors in (2.27). However, we have found experimentally
that the normalized transformation, on average, yields slightly higher classification accuracies.
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to increase in separability between classes and allows highly-discriminative terms to

exert stronger influence on classification in higher- than in zero-order spaces.

(a) (b)

Figure 2.6: Conditional log probability ratios obtained from higher-order probabilities
(2.24) (horizontal axes) versus the log ratios obtained from zero-order probabilities
(2.23) (vertical axes) on “alt.atheism” and “soc.religion.christian” classes of one of the
5% (25 documents per class) training samples from the RELIGION dataset

Figure 2.6b shows a plot of the conditional log probability ratios (2.26) of non-

occurrence of a term in a higher-order model versus a zero-order model. An important

feature in this figure is the one order of magnitude difference in values on the axes:

[−0.1, 0.1] for higher-order log ratios on the horizontal axis versus [−1.5, 1.5] for zero-

order log ratios on the vertical axis. Together, Figures 2.6a and 2.6b illustrate that

while both first- and higher-order models take into account presence of terms as well

as their absence, higher-order models tend to place more emphasis on the presence of

terms in a document being classified.

As was noted earlier, the normalizing factors in (2.27) were introduced in order to

allow features that may appear in multiple classes, but are still good discriminators as

measured by the log likelihood ratios (2.25) and (2.26), to have a non-negligible impact

during classification. The effect of these normalizing factors can be seen by comparing
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Figures 2.6a and 2.6b with Figures 2.7a and 2.7b.

(a) (b)

Figure 2.7: Conditional log probability ratios obtained from higher-order probabilities
(2.24) and normalized as in (2.27) (horizontal axes) versus the log ratios obtained from
zero-order probabilities (2.23) (vertical axes) on the same dataset as in Figure 2.6

On the vertical axes in Figures 2.7a and 2.7b are plotted the same zero-order con-

ditional log probability ratios as in Figures 2.6a and 2.6b, respectively. Plotted on the

horizontal axes of Figures 2.7a and 2.7b are the higher-order conditional log probability

ratios shown on the horizontal axes of Figures 2.6a and 2.6b, respectively, and normal-

ized as in (2.27). Note the change in scales of the horizontal axes once normalization

has been applied: [−20, 20] before normalization (Figure 2.6a) versus [−4, 4] after, and

[−0.1, 0.1] before normalization (Figure 2.6b) versus [−0.3, 0.3] after. In addition, the

middle group of terms seen in Figure 2.6a split into two subgroups in Figure 2.7a as

a result of normalization. This split coupled with the change in scale of values of the

higher-order log probability ratios allowed good discriminator terms from the middle

group in Figure 2.6a to increase their relative significance during classification.

Although it is trivial to identify strongly discriminative features in a given training

set, the question remains of how to weight those features for pattern classification. The

supervised transformation proposed in this section addresses this question by leveraging
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higher-order co-occurrences between features.

2.2.4 Unsupervised Second Order Transformation

In this section we present a novel Unsupervised Second Order Transformation (USOT)

that aims to simplify the structure of heterogeneous data by increasing separability

between various homogeneous subgroups of data instances thus making the data more

adequate for clustering. The overall scheme of USOT is as follows. Each feature i

partitions a n-dimensional boolean space X = {0, 1}n into two subspaces: X1(i) = {x :

xi = 1, x ∈ X} and X0(i) = X \ X1(i). In each of the subspaces X1(i) and X0(i), we

represent feature i as a probabilistic function of all features. This probabilistic function

is defined over the space of higher-order paths. Another function then unifies these

representations across subspaces X1(i) and X0(i), and produces the final transformation.

The unifying function also acts as a filter and prevents features that exhibit the same

distribution in both subspaces X1(i) and X0(i), from influencing the transformation of

feature i. This is a desirable property since features that follow the same distribution

regardless of the value of feature i can be seen as independent of feature i and should

not influence its mapping.

The novelty behind USOT is (a) that it leverages in a unsupervised manner, higher-

order co-occurrences between features, and (b) that it considers each feature in the

context of probabilistic relationships with other features. Unlike SSOT introduced in

Section 2.2.3, USOT does not require any knowledge of the “true” class labels. Aside

from SSOT being a supervised transformation, the main difference between USOT and

SSOT lies in the way the two transformations use the higher-order paths. While USOT

considers probabilistic dependencies between a feature and all other features, SSOT

makes use of probabilistic dependencies between a class indicator variable and each

feature independently.

Given a set X ⊆ X of n-dimensional boolean vectors, we denote by X1(i) = {x :
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xi = 1, x ∈ X} and X0(i) = X \ X1(i), the two disjoint subsets determined by some

feature i. Here, as before, ϕ (i,X) will denote the subset of second-order paths that

contain feature i in a dataset X, while Φ (X) will denote the set of all second-order

paths in X.

In order to capture the probabilistic relationships between feature i and other fea-

tures, we define the conditional higher-order probability mass function

P ′
(
xi|x1, . . . , xn

)
=
P ′
(
x1, . . . , xn|Xxi(i)

)
P ′ (Xxi(i))

P ′ (x1, . . . , xn)
, (2.28)

where the higher-order probability P ′ (Xxi(i)) of subset Xxi(i) is estimated by the ratio

of the number of second-order paths in that subset,

P ′ (Xxi(i)) =
|Φ (Xxi(i)) |

|Φ (X1(i)) |+ |Φ (X0(i)) |
. (2.29)

To make computation of the joint probability P ′
(
x1, . . . , xn|Xxi(i)

)
tractable, we make

the common (naive) assumption of conditional independence of features given the value

of feature i. It follows that

P ′
(
x1, . . . , xn|Xxi(i)

)
=

n∏
j=1

P ′
(
xj |xi

)
, (2.30)

where the conditional second-order probability mass function P ′
(
xj |xi

)
is estimated by

P ′
(
xj = 1|xi

)
=
|ϕ (j,Xxi(i)) |
|Φ (Xxi(i)) |

. (2.31)

The probability mass function P ′
(
xj |xi

)
is completely defined by (2.31), since we have

P ′
(
xj = 0|xi

)
= 1− P ′

(
xj = 1|xi

)
.

The proposed USOT is a non-linear mapping Z =
(
z1(x), . . . , zn(x)

)
: {0, 1}n → <n,

from a n-dimensional boolean space X to a n-dimensional real space Z. A notable

feature of this mapping is that dimensions of space Z correspond to the original features

and, therefore, maintain their interpretability. Function Z maps each boolean feature

i to the real domain by a non-linear function zi
(
x1, . . . , xn

)
: {0, 1} → <n. Mapping
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functions zi are defined over the space of second-order paths as

zi
(
x1, . . . , xn

)
=
P ′
(
xi = 1|x1, . . . , xn

)
P ′ (xi = 0|x1, . . . , xn)

=
n∏
j=1

P ′
(
xj |xi = 1

)
P ′ (xj |xi = 0)

P ′ (X1(i))
P ′ (X0(i))

. (2.32)

For convenience of numerical computation, in practice we use log transformation of the

mapping functions (2.32)

log zi
(
x1, . . . , xn

)
=

n∑
j=1

P ′
(
xj |xi = 1

)
P ′ (xj |xi = 0)

+ log
P ′ (X1(i))
P ′ (X0(i))

. (2.33)

A relationship with the supervised learning theory can be noted here. It is easy to

recognize the mapping function (2.33) as the Naive Bayes discriminant function defined

over the space of second-order paths rather than the traditional feature frequencies,

and where feature i plays a role of the class indicator.

Our framework (2.33) allows the use of feature frequencies, in which case the prob-

ability mass function P
(
xj |xi

)
is estimated by

P
(
xj = 1|xi

)
=
|{x : xj = 1, x ∈ Xxi(i)}|

|Xxi(i)|
, (2.34)

instead of the second-order probability (2.31). Similarly, the probability P (Xxi(i)) of

subset Xxi(i) is estimated by the ratio of the number of data instances in that subset,

P (Xxi(i)) =
|Xxi(i)|

|X1(i)|+ |X0(i)|
, (2.35)

rather than by the ratio (2.29) of the number of second-order paths. We refer to such

transformation as Unsupervised Zero Order Transformation (UZOT).

2.2.5 Algorithms for Counting Second Order Paths

The number of second-order paths for each feature in a boolean dataset X with m ob-

jects and n features can be obtained in O
(
m2n3

)
time by Algorithm 3. This algorithm

is trivial to implement and requires no additional memory space beyond the O(mn)

space needed to store the dataset X.
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Algorithm 3: Count Second-Order Paths
Input: Boolean m× n matrix X = ||xiL||
Output: Vector p =

(
p1, . . . , pn

)
, whose i-th coordinate pi equals the number of

second-order paths that contain feature i = 1, . . . , n
Output: The total number t of second-order paths
Initialize vector p to be a zero vector: pi := 0, i = 1, . . . , n1

Initialize the path counter t := 02

for i ∈ {1, . . . , n} do3

for k ∈ {1, . . . , n} \ {i} do4

for j ∈ {1, . . . , n} \ {i, k} do5

for L ∈ {1, . . . ,m− 1} do6

for M ∈ {L+ 1, . . . ,m} do7

a := xiLx
k
Lx

k
Mx

j
M8

pi := pi + a9

pk := pk + a10

pj := pj + a11

t := t+ a12

end
end

end
end

end
return (p, t)13
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However, the O
(
m2n3

)
computational complexity can be reduced to O

(
(m+ n)n2

)
if enough memory is available to store two additional symmetric n× n matrices, which

we denote by A and A2. Matrix A = XTX holds the number of first-order paths

between every pair of features, and is used to compute the matrix A2 = AA. The ij-th

element a(2)
ij of matrix A2 holds the upper bound on the number of second-order paths

where features i and j are the two end vertices. In order to obtain the exact number

of such second-order paths, the value a(2)
ij must be corrected by first subtracting the

number of paths where one of the features appears more than once (e.g. (i, L, i,M, j))

and then subtracting the number of paths where the same object vertex appears twice

(e.g. (i, L, k, L, j)). The first correction can be accomplished by setting to zero all

the diagonal elements of matrix A prior to computing A2. Matrix A can also be used

for obtaining for each feature i, the count of second-order paths where feature i is the

middle vertex (e.g. (k, L, i,M, j)).

Algorithm 4 implements this faster, but more memory consuming approach. The

two correction steps mentioned above are implemented by steps 6 and 12-14. Com-

putation of matrices A and A2 in steps 5 and 8, respectively, of Algorithm 4 takes

O(mn2 + n3) time. The loop in step 9 takes O(mn2) due to step 12, which iterates

over the data instances. The computational complexity of Algorithm 4 is dominated

by computation of matrices A and A2, and is therefore O
(
(m+ n)n2

)
. Because of its

lower computational complexity, Algorithm 4 was used in all the experiments reported

in this work.

2.2.6 Related Work

Our motivation for using higher-order co-occurrences between features stems from ad-

vances in the areas of link mining [28] and information retrieval. In addition to (or

sometimes instead of) using the more traditional data representation by feature vectors

characterizing each data instance independently of the others, link-based approaches
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Algorithm 4: Count Second-Order Paths
Input: Boolean m× n matrix X = ||xiL||
Output: For each feature i = 1, . . . , n, output the number of second-order paths

that include feature i
Output: The total number of second-order paths in X

Initialize vector p =
(
p1, . . . , pn

)T of per-feature path counts to be a zero vector1

pi := 0, i = 1, . . . , n
Initialize scalar t, which will store the total number of second-order paths2

t := 0
Compute vector l =

(
l1, . . . , lm

)T of `1 norms of object (row) vectors of X3

lL =
n∑
i=1
xiL, L = 1, . . . ,m

Compute vector r =
(
r1, . . . , rm

)T of numbers of pairs of non-zero features4

within each data instance with one feature removed
rL = 1

2(lL − 1)(lL − 2), L = 1, . . . ,m
Compute the first-order feature co-occurrence matrix A = ||aij ||5

A := XTX
Set all diagonal elements aii of A to zero6

diag(A) := 0
Compute vector c =

(
c1, . . . , cn

)T of squared column sums of A7

ci =

(
n∑
j=1

aji

)2

, i = 1, . . . , n

Compute the second-order feature co-occurrence matrix A2 = ||a(2)
ij ||8

A2 := AA
for i = 1, . . . , n do9

if i < n then10

for j = i+ 1, . . . , n do11

Compute the number s of paths (i, L, k, L, j), k ∈ {1, . . . , n} \ {i, j},12

where feature i (j) is an end vertex and where both object vertices are
the same
s =

m∑
L=1

xiLx
j
L

(
lL − 2

)
pi := pi + a

(2)
ij - s13

pj := pj + a
(2)
ij - s14

t := t+ a
(2)
ij - s15

end
end
Add to pi the number of paths (k, L, i,M, j), k, j 6= i, k 6= j, L 6= M , where16

feature i is the middle vertex
Let b =

(
b1, . . . , bn

)T be a vector of cumulative sums of elements of the i-th

column a·i of matrix A, i.e., bh =
h∑
g=1

agi, h = 1, . . . , n

pi := pi + ci − aT·ib− rTxi
end
return (p, t)17



38

[45, 50, 60] to collective classification leverage explicit dependencies, or links, within

networked data [50]. Several studies [12, 33, 60] have shown that collective classification

can achieve significant reductions in classification errors by performing inferences about

multiple data instances simultaneously. However, such methods are context-dependent

and are therefore not designed to classify single data instances. This restriction signif-

icantly limits the domain of applicability of link-based classifiers.

In contrast with link mining approaches, the proposed transformations SSOT and

USOT leverage higher-order dependencies in the form of implicit links between features.

Unlike collective classifiers, methods presented in this work maintain the ability to

transform single data instances without requiring any additional context information.

In case of SSOT, parameters of the transformation are estimated using the training

data and then used to map each individual test instance to the SSOT feature space.

Similarly, parameters of the USOT are estimated using a given dataset and can then

be used to map any additional data instances as they become available.

Another motivation for our work originates from the results of [39], who gave a

mathematical proof supported by empirical results of the dependence of Latent Seman-

tic Indexing (LSI) [18], a technique often used in text mining and information retrieval,

on higher-order term co-occurrences. Specifically, [39] showed that two terms will have

a non-zero value in the LSI term co-occurrence matrix if and only if there exists at least

one co-occurrence (be it of first- or higher-order) between these terms.

Higher-order relations play an important role in many other systems for text mining,

information retrieval and network analysis. In [43], higher-order associations between

entities (i.e., record-value pairs) in distributed databases were used for identification

of records to be consolidated at a single site and subsequently mined for association

rules. Higher-order term co-occurrences in lexical networks were used in [21] for solving

a component of the problem of lexical choice, which identifies most typical synonyms in

a given context. In another effort, [67] used second-order co-occurrences for extracting
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a potentially relevant subset of documents to be processed by LSI, thus improving

its runtime performance. Higher-order co-occurrences have also been used in other

applications including word sense disambiguation [57] and stemming [66].

The famous web search ranking algorithm HITS [38] also exploits higher-order as-

sociations between sites in the World Wide Web. Given a query, HITS first extracts all

web pages that contain the query terms. This simplistic retrieval procedure typically

misses a large number of highly authoritative sources on the subject. As was noted in

[38], authoritative pages often do not contain the exact query terms. However, there

exist a number of “hub” sites that contain the query terms and actively link to the

authoritative sources. In order to provide high-quality ranking of search results, HITS

identifies hub and authoritative sources relevant to the query by expanding the set of

potentially relevant sites to include those that either link to, or are linked from the

pages containing the query terms.

In the context of social network analysis, [36] proposed a social status index based

on higher-order paths between individuals casting votes for each other’s popularity.

Similarly to the feature co-occurrence matrix considered in this work, [36] considered

a square choice matrix C = ||cij || whose rows and columns correspond to individuals

in a group. The ij-th element cij of the choice matrix C equals one if individual i

voted for individual j. However, unlike the feature co-occurrence matrix, the choice

matrix is not necessarily symmetric (i may vote for j, but j may not vote for i) and

therefore encodes a directed graph. The standing of individual i as defined by [36] is

proportional to the total number of paths terminating in i. The contribution of a path

to the standing index decreases exponentially with increasing length, i.e., order, of the

path. In essence, the standing index [36] takes into account not only the individual

(zero-order) vote counts for an individual i, but also the vote counts of individuals that

voted for i and of individuals that voted for those who voted for i, etc.

In a more recent effort, a supervised collective classification method termed Higher
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Order Path Analysis (HOPA) was proposed in [25]. Unlike discriminative classifiers

such as Support Vector Machine [64], HOPA constructs a separate model for each class

independently of the others. Given a set of training data instances of one class, HOPA

collects statistics on the distribution of counts of same-frequency third-order sub-paths

extracted from the fourth-order paths present in the data. No assumption is made

regarding the type of this distribution; its empirical estimate is used as the class model.

Given a test set, HOPA extracts the counts of same-frequency third-order sub-paths

and compares the distribution of these counts with the class model using the t-test. If,

given a user-specified confidence level, the means of the two distributions are found to

be significantly different, all the instances in the test set are classified as not belonging

to the modeled class.

There are several crucial conceptual differences between HOPA and the transforma-

tions proposed in this work. First, the class model constructed by HOPA is based on

aggregate frequencies of higher-order paths. The aggregation of path statistics makes it

impossible to interpret HOPA’s class model in terms of the original features. SSOT and

USOT, on the other hand, maintain a one-to-one correspondence between dimensions of

the original space and the higher-order feature space, thus retaining the interpretability.

Furthermore, unlike SSOT and USOT, HOPA is context-dependent since it can only

classify sets of instances, but not the individual instances independently of each other.

Finally, HOPA is a classifier in and of itself and does not permit a straightforward

integration with other learning methods as do SSOT and USOT. Nevertheless, HOPA

was able to detect and classify anomalous events in the Border Gateway Protocol and

further confirmed the value of using higher-order paths for pattern classification.

Another higher-order classifier termed Higher Order Naive Bayes (HONB) was pro-

posed in [24]. HONB extends the Naive Bayes (NB) classifier for binomial data by

estimating conditional feature probabilities over the space of higher-order paths (2.24)

instead of individual data instances (2.23). HONB drastically outperformed NB on
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a series of text classification problems, especially when training samples were small

[24, 26]. SSOT also makes use of the higher-order conditional probabilities (2.24) and

further generalizes HONB by allowing any classifier operating in vector spaces to take

advantage of the higher-order co-occurrence relations.
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Chapter 3

Experimental Results

3.1 Comparative Study of the K-means and Neyman’s Clustering Cri-

teria on Simulated Data

As was established in Section 2.1.3, criteria (2.1) and (2.2) produce identical cluster-

ings when cluster variances are equal. Therefore, studying the behavior of these criteria

under the conditions of unequal cluster variances is of most value. In this section, we

present results on simulated data generated by two five-dimensional Gaussian distribu-

tions N (µ1,Σ1) and N (µ2,Σ2), which we will refer to as classes. Each class contained

fifteen thousand points. The covariance matrices Σ1 and Σ2 were diagonal with varying

standard deviations along each dimension. The standard deviations are shown in Table

3.1. Mean µ1 of the first class was held fixed at the origin, while mean of the other

Table 3.1: Standard deviations of the data generator

Dimension Class 1 Class 2
1 1.2 6
2 1.4 7
3 1.6 8
4 1.8 9
5 2 10

class was µ2 = t1, where 1 is a five-dimensional vector of ones and t is a real-valued

parameter. Varying t allowed us to observe the behavior of clustering criteria (2.1)

and (2.2) as a function of distance between mean vectors of the two classes. For each

value of t, the corresponding dataset was clustered into two clusters by each of the



43

criteria. The results are shown in confusion Tables 3.2–3.6 and are summarized by the

class reconstruction accuracies plotted in Figure 3.1. These accuracies were obtained

by solving an optimal assignment problem [1] over each confusion table. The cost of

assigning cluster α to class i was the number of points from class i that were placed

into cluster α. An optimal assignment of clusters to classes was that which maximized

the total cost over all clusters and assigned each cluster to exactly one class to which

no other cluster was assigned. Clustering results visualized in several two-dimensional

subspaces of the five-dimensional space are shown in Figure 3.2.

Figure 3.1: Class reconstruction accuracies

Accuracies reported in Figure 3.1 demonstrate that as the means of the two classes

came closer together with decreasing t, K-means criterion (2.1) “misclassified” an in-

creasing number of points from the larger-variance class two. This degradation in

performance of criterion (2.1) is a direct consequence of its inherent disregard for clus-

ter variances. In contrast, criterion (2.2) was able to accommodate the discrepancy in

cluster variances and much more accurately reflected the underlying data structure as

made evident by Figures 3.1 and 3.2 and by the confusion Tables 3.2–3.6.



44

Figure 3.2: Clusterings obtained by criteria (2.1) (left) and (2.2) (right), and visual-
ized in several two-dimensional subspaces of the five-dimensional space. The value of
parameter t that resulted in the dataset shown was fifteen.
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Table 3.2: Confusion tables for t = 5

I1 I2
Class \ Cluster 1 2 1 2

1 0 15000 0 15000
2 9148 5852 14431 569

Table 3.3: Confusion tables for t = 10

I1 I2
Class \ Cluster 1 2 1 2

1 0 15000 0 15000
2 13210 1790 14879 121

Table 3.4: Confusion tables for t = 15

I1 I2
Class \ Cluster 1 2 1 2

1 0 15000 0 15000
2 14649 351 14990 10

Table 3.5: Confusion tables for t = 20

I1 I2
Class \ Cluster 1 2 1 2

1 0 15000 0 15000
2 14951 49 15000 0

Table 3.6: Confusion tables for t = 30

I1 I2
Class \ Cluster 1 2 1 2

1 0 15000 0 15000
2 15000 0 15000 0
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Two particular aspects of criterion (2.2) allowed it to accurately recover the gener-

ated class structure for each value of t. In cases where class means were close, but the

data points from the two classes did not overlap as exemplified in Figure 3.3, the shift in

the discriminant surface (2.17) away from the larger-variance cluster was enough to al-

low criterion (2.2) to reconstruct the class structure with high accuracy. As class means

moved closer together, nonlinearity of criterion (2.2) started to play an increasingly im-

portant role. In case of an extreme overlap where points from the lower-variance class

became absorbed by the cloud of points from the larger-variance class, as illustrated by

the two-dimensional dataset shown in Figure 3.4, nonlinearity of criterion (2.2) became

crucial for maintaining the high accuracies shown in Figure 3.1. Note the dramatic

18% decrease in accuracy suffered by the K-means criterion (2.1) once t decreased be-

low fifteen causing points of class one to become engulfed by the points of class two.

As a result, criterion (2.1) misclassified an increasingly larger number of points as can

be seen from Tables 3.2 and 3.3. Meanwhile, criterion (2.2) was able to maintain the

roughly 98% accuracy.

(a) Input dataset (b) Clustering by criterion (2.1) (c) Clustering by criterion (2.2)

Figure 3.3: The shift in the discriminant surface (2.17) away from the larger-variance
cluster allowed criterion (2.2) to reconstruct the underlying class structure with high
accuracy

Another reason for the high accuracies attained by criterion (2.2) despite the ex-

treme overlap between points of the two classes lies in its ability to discover clusters
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(a) Ground truth (b) Clustering by criterion (2.1) (c) Clustering by criterion (2.2)

Figure 3.4: Clustering under the conditions of an extreme overlap between points of
the underlying classes. Points of class one (marked by circles) are completely covered
by the points of class two (marked by crosses).

within clusters. In particular, clusterings produced by criterion (2.2) are not Voronoi

tessellations as is the case with criterion (2.1). This aspect is best illustrated with a

one-dimensional example shown in Figure 3.5. Suppose there are two clusters with

means M(1)
1 = 3 and M(1)

2 = 9 and standard deviations σ1 = 0.1 and σ2 = 2. By

plotting the discriminant function (2.15) for each of the clusters, in Figure 3.5b we

can see that there are two intervals (−∞, 1.203) and (4.166,+∞) on the x axis where

points would be assigned to the larger variance cluster two. These are the intervals

where the distance from a point to cluster two is smaller than to cluster one, i.e. where

function F (x) = f1(x) − f2(x), also shown in Figure 3.5b, takes on positive values.

Cluster one, in this case, covers the interval [1.203, 4.168]. In comparison, the K-means

criterion (2.1) would partition the data axis x half way between the two cluster means

into two consecutive intervals (−∞, 6] and (6,+∞) corresponding to clusters one and

two, respectively, as shown in Figure 3.5a.

Sensitivity of criterion (2.2) to cluster variance makes this criterion a promising al-

ternative to the K-means criterion (2.1), when used for initialization of the Expectation

Maximization (EM) procedure for reconstruction of hidden mixtures of Gaussians [48].

EM is known for its sensitivity to initial conditions. Hence, successful reconstruction
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(a) Criterion (2.1) (b) Criterion (2.2)

Figure 3.5: Solid lines show discriminant functions (2.16) (left) and (2.15) (right) for
two clusters with meansM(1)

1 = 3 andM(1)
2 = 9 (marked by black circles) and standard

deviations σ1 = 0.1 and σ2 = 2. Dashed lines show the difference F (x) = f1(x)− f2(x)
between the discriminant functions.

by the Gaussian Mixture Model (GMM) of the underlying data structure relies heavily

on an adequate initialization of the EM algorithm. Figure 3.6 shows that criterion (2.2)

more accurately reconstructed locations of the class means than did criterion (2.1). In

addition, criterion (2.2) also reconstructed class covariance matrices with higher accu-

racy. The error in reconstruction of class covariance matrices can be measured by a

non-negative discrepancy score (
σ̃i
σi
− 1
)2

, (3.1)

where σi is the standard deviation of the generator model along the i-th dimension (see

Table 3.1) and σ̃i is an empirical estimate of σi. If a clustering coincides with the class

labeling of points (e.g. see Table 3.6), the discrepancy scores (3.1) will be close1 to zero

across all dimensions and clusters. Scores (3.1) increase with increasing deviation of the

cluster structure from the class labeling (e.g. see clustering by criterion (2.1) in Table

1When cluster structure coincides with the class labeling, scores (3.1) would not be exactly zero,
because the data points being clustered are only a sample generated by the theoretical model. See
Tables 3.6 and 3.11 for example.
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3.2). Tables 3.7–3.11 show the discrepancy (3.1) for each criterion, dimension, class

and across a range of values of t. These tables demonstrate that discrepancy scores for

criterion (2.2) were consistently smaller than for criterion (2.1) until the point (t = 30)

where mean vectors of the two classes became so far apart that both clustering criteria

produced identical partitions of the data points. The difference between criteria (2.1)

and (2.2) was especially apparent when points of the two classes overlapped strongly

(t < 15). Discrepancy scores for criterion (2.2), in such cases, were several orders of

magnitude smaller than for criterion (2.1). These results demonstrate that criterion

(2.2) was able to recover the underlying class means and covariance matrices with

higher accuracy than criterion (2.1). Although real-world data typically have more

complex structure than was simulated here, the obtained experimental results suggest

that criterion (2.2) is a potentially superior alternative to criterion (2.1) for initialization

of the EM algorithm for GMM. We intend to investigate this further as a part of our

future work.

(a) Class one (b) Class two

Figure 3.6: Squared Euclidean distance from a cluster mean to the corresponding gen-
erator class mean as a function of distance between the two class means
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Table 3.7: Reconstruction error of class covariance matrices for t = 5

Class one
Criterion \ Dimension 1 2 3 4 5

I1 4.428 3.525 2.913 2.474 1.768
I2 0.017 0.009 0.007 0.004 0.004

Class two
Criterion \ Dimension 1 2 3 4 5

I1 2× 10−4 0.001 0.001 0.006 0.029
I2 9× 10−6 5× 10−6 7× 10−6 5× 10−6 8× 10−5

Table 3.8: Reconstruction error of class covariance matrices for t = 10

Class one
Criterion \ Dimension 1 2 3 4 5

I1 2.504 1.448 0.942 0.579 0.465
I2 0.003 0.002 0.001 10−4 4× 10−4

Class two
Criterion \ Dimension 1 2 3 4 5

I1 3× 10−4 0.001 0.001 0.002 0.004
I2 10−4 8× 10−5 10−4 6× 10−5 4× 10−6

Table 3.9: Reconstruction error of class covariance matrices for t = 15

Class one
Criterion \ Dimension 1 2 3 4 5

I1 0.62 0.267 0.116 0.046 0.033
I2 2× 10−4 10−4 2× 10−5 3× 10−5 7× 10−6

Class two
Criterion \ Dimension 1 2 3 4 5

I1 2× 10−4 2× 10−4 4× 10−4 4× 10−4 4× 10−4

I2 4× 10−5 6× 10−5 10−4 5× 10−5 2× 10−6
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Table 3.10: Reconstruction error of class covariance matrices for t = 20

Class one
Criterion \ Dimension 1 2 3 4 5

I1 0.056 0.024 0.006 9× 10−4 7× 10−4

I2 10−7 3× 10−6 10−7 4× 10−5 6× 10−8

Class two
Criterion \ Dimension 1 2 3 4 5

I1 5× 10−5 8× 10−5 10−4 9× 10−5 3× 10−5

I2 4× 10−5 4× 10−5 9× 10−5 4× 10−5 5× 10−7

Table 3.11: Reconstruction error of class covariance matrices for t = 30

Class one
Criterion \ Dimension 1 2 3 4 5

I1 10−7 3× 10−6 10−7 4× 10−5 6× 10−8

I2 10−7 3× 10−6 10−7 4× 10−5 6× 10−8

Class two
Criterion \ Dimension 1 2 3 4 5

I1 4× 10−5 4× 10−5 9× 10−5 4× 10−5 5× 10−7

I2 4× 10−5 4× 10−5 9× 10−5 4× 10−5 5× 10−7
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3.2 Estimation of the Mean Vector of Multi-dimensional Data by

Stratified Sampling

The problem of estimation of the mean value of a scalar variable has been extensively

studied [9, 10, 51, 37] by researchers in the statistical community. Given a random

variable X , an unbiased estimator x̄ of the expectation E(X ) is

x̄ =
1
k

∑
x∈X

x, (3.2)

where X is an independent and identically distributed sample of size k. The variance

D(x̄) of estimator (3.2) is

D(x̄) =
1
k
σ2, (3.3)

where σ2 is the variance of X . Suppose a complete partition H = (h1(x), . . . , hK(x))

into K disjoint intervals of the range of values of variable X is also given. As before,

hα(x) denotes the characteristic function of the α-th interval. The estimator (3.2) can

be rewritten as

x̄ =
K∑
α=1

pαx̄α, (3.4)

where pα is the probability of interval α, x̄α = 1
kα

∑
x∈X

xhα(x) is the estimator of the

mean value of variable X in the interval α and kα is the number of sample points from

that interval. Since the exact knowledge of the probability pα is typically not available,

it is estimated from the sample X by pα = kα
k .

In 1926, Bowley [9] proposed the following sampling scheme. Given a partition H

and a sample size k, randomly sample from each interval α

kα = pαk (3.5)

number of points and apply estimator (3.4). Under this sampling scheme, variance

DB(x̄) of the estimator (3.4) becomes

DB(x̄) =
1
k

K∑
α=1

pασ
2
α, (3.6)



53

where σ2
α is the variance of X in the interval α. Therefore, (3.6) is minimized when

the range of values of variable X is partitioned by criterion (2.1). Since (3.6) is always

smaller than (3.3), Bowley’s sampling scheme is more efficient than the simple random

sample (3.2) [9, 10].

Bowley’s scheme was further refined by Neyman who found [51] that the optimal

number of points to be sampled from each interval α while minimizing the variance of

estimator (3.4) is

kα =
pασα
K∑
β=1

pβσβ

k. (3.7)

In this case, variance DN(x̄) of estimator (3.4) becomes

DN(x̄) =
1
k

(
K∑
α=1

pασα

)2

. (3.8)

It follows that partitioning the range of X so as to minimize criterion (2.2), minimizes

(3.8). Theoretically, Neyman’s sampling is more efficient than Bowley’s, because (3.8)

is no greater than (3.6) [10, 51]. We thus have

DN(x̄) ≤ DB(x̄) ≤ D(x̄).

In this section, we test whether Neyman’s sampling scheme is more efficient when

the data is sampled from a multi-dimensional space. The data generator used in the

experiments consisted of three five-dimensional Gaussian distributions with diagonal

covariance matrices Σ1 = 100I, Σ2 = 25I and Σ3 = I. Means of these distributions are

shown in Table 3.12. A sample X of m points representing the entire population to be

sampled from was generated and clustered by criteria (2.1) and (2.2). Then, a number

k � m of points were sampled N times according to Bowley and Neyman’s schemes

(3.5) and (3.7), respectively. Using the estimator (3.4), for each sample of k points we

computed the estimate x̄s of the grand mean vector x̄ = 1
m

∑
x∈X

x. Finally, we evaluated

the efficiency of the sampling schemes by the squared Euclidean distance between x̄s

and x̄, averaged over the N trials. The resulting mean squared distances are shown in



54

Figure 3.7 for varying sample size k. In order to evaluate the sampling schemes under

the conditions of varying class densities, we varied the number of points generated by

each of the three Gaussian distributions.

Table 3.12: Means of the distributions comprising the data generator

Distribution Mean vector
1 (−20, 30, 0, 0, 0)T

2 (15, 10, 0, 0, 0)T

3 (0, 0, 0, 0, 0)T

As can be seen from Figure 3.7, Neyman’s sampling scheme (3.7) consistently out-

performed Bowley’s scheme (3.5) across the range of sample sizes and class densities.

In all cases, both schemes performed better than the simple random sample (3.2), par-

ticularly when the sample size k was small (e.g. k = 20,m = 3000). All differences were

statistically significant at the 5% level. The number of samples drawn for each value of

k was N = 200. Robust performance of sampling schemes (3.5) and (3.7) is especially

encouraging since financial and temporal constraints often prohibit the acquisition of

larger samples in most real-world applications.

The problem of efficient estimation of the mean value of a scalar variable was ex-

tensively studied in prior work [9, 10, 51]. Experimental results reported in this section

demonstrate that generalization of criterion (2.2) to multi-dimensional spaces and de-

velopment of the associated clustering algorithm in Section 2.1 allowed for efficient

estimation of the mean vector. The results also suggest that aside from estimation of

the mean vector of multi-dimensional data, criterion (2.2) would be particularly useful

for construction of training samples for supervised machine learning (classification and

regression). Small training samples that accurately capture the underlying distribution

of the data are crucial for practical applications of computationally demanding meth-

ods such as Support Vector Machine [63] on massive real-world datasets comprised of

millions of data instances. Low computational complexity of the proposed clustering
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algorithm for criterion (2.2) opens the possibility of construction of small training sam-

ples from large-scale datasets. Further investigation of this topic constitutes one of the

future research directions stemming from this work.

3.3 Supervised Second Order Transformation in Text Classification

Experimental evaluation of the Supervised Second Order Transformation (SSOT) de-

scriber in Section 2.2.3 was carried out on three widely-used text corpora: RELIGION,

SCIENCE and POLITICS subsets of the 20 News Groups (20NG) [41] benchmark data.

Our preprocessing procedures closely followed those commonly used in the literature

[59, 35]. First, all cross-postings in the 20NG data were removed. Then, for each dataset

we performed stop word removal, stemming and removal of all terms that occurred in

fewer than three documents in the dataset. The remaining terms were ranked by Infor-

mation Gain. The top 2000 terms were selected. Finally, 500 documents were sampled

at random from each class to comprise the 20NG datasets used in our experiments. A

summary description of the datasets is provided in Table 3.13.

Table 3.13: Datasets used in the experiments

Dataset Classes
RELIGION (3) alt.atheism, soc.religion.christian, talk.religion.misc
SCIENCE (4) sci.crypt, sci.electronics, sci.med, sci.space
POLITICS (3) talk.politics.guns, talk.politics.mideast, talk.politics.misc

Support Vector Machine (SVM) [63] was chosen as the base classifier for evaluation

of the SSOT. SVM with the linear kernel has been shown [35] to perform well on text

classification problems. The linear kernel allowed us to observe directly the impact

of leveraging higher-order co-occurrences, without any additional data transformations

as performed implicitly by other kernel functions. Multi-class problems were addressed

using the “one-against-one” classification scheme [40]. Under this scheme, a binary SVM

classifier is constructed for every pair of classes. A data instance is then classified by
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(a) m1 = 1000, m2 = 1000, m3 = 1000 (b) m1 = 1000, m2 = 1000, m3 = 1000

(c) m1 = 1000, m2 = 500, m3 = 250 (d) m1 = 1000, m2 = 500, m3 = 250

(e) m1 = 250, m2 = 500, m3 = 1000 (f) m1 = 250, m2 = 500, m3 = 1000

Figure 3.7: Average squared Euclidean distance between the grand mean x̄ and the
mean x̄s obtained by different sampling schemes. Plots in the left column show the
absolute values, while plots in the right column show values normalized by the aver-
age distance attained by the simple random sample (3.2). The number mα of points
generated by each Gaussian distribution is also shown.
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each binary classifier and the final classification is determined by the majority vote over

the assigned class labels. We refer to a SVM classifier constructed on the transformed

data as Higher Order SVM (HOSVM).

Figure 3.8 shows mean classification accuracies obtained by varying training set

size from 5% (25 documents per class) up to 60%. For each training set size, eight

trials were performed. On each trial, a set of documents were randomly sampled from

each class for training, while the rest were used for testing. On every trial, all terms

that did not appear in any of the training documents were disregarded. The classifiers

were then trained in the corresponding subspace of the original term space. When

selecting the value of the soft margin cost parameter C for SVM, we considered the set

{10−4, 10−3, . . . , 104} of possible values. On every trial, we picked the smallest value of

C which resulted in the highest accuracy obtained on the training set.

As can be seen from Figures 3.8a–3.8c, HOSVM consistently outperformed SVM

across varying training set sizes and datasets. All accuracy improvements were sta-

tistically significant at the 5% level. Consistent and statistically significant accuracy

improvements attained by HOSVM even on small training sets led us to explore this

aspect further. In order to simulate a real-world scenario where only a few labeled data

instances are available, we focused our attention on 5% training samples. This corre-

sponded to training on 25 documents per class and testing on the other 475 documents

per class. Classification accuracies averaged over eight trials are reported in Table 3.14.

Highest accuracies attained on each dataset are highlighted in bold. The corresponding

standard deviations are also reported in Table 3.14.

The obtained results indicate that leveraging higher-order co-occurrences lead to sig-

nificant improvements in classification accuracies. HOSVM consistently outperformed

SVM by an average of 3.1%. The improvements of HOSVM over SVM were statisti-

cally significant at the 5% level on all but one dataset. Although the difference in SVM

and HOSVM accuracies on the POLITICS dataset was significant at level α = 0.158,
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(a) RELIGION (b) SCIENCE

(c) POLITICS

Figure 3.8: Scalability across training set size

Table 3.14: Mean classification accuracies

SVM HOSVM
Dataset Acc. St. dev. Acc. St. dev.

RELIGION (3) 0.699 0.022 0.723 0.023
SCIENCE (4) 0.751 0.029 0.792 0.039
POLITICS (3) 0.763 0.03 0.793 0.047
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HOSVM outperformed SVM on seven out of eight trials on that data by an average of

3%.

In order to further verify the value of leveraging higher-order co-occurrences within

the data, additional experiments were conducted. In these experiments, prior to training

an SVM classifier with the linear kernel, transformation (2.27) was performed using

the zero-order conditional probabilities (2.23) instead of the higher-order probabilities

(2.24). The resulting approach is referred to as ZOSVM. Mean classification accuracies

attained by ZOSVM are shown in Table 3.15. Comparison of Tables 3.14 and 3.15

makes it clear that ZOSVM performed worse than both SVM and HOSVM. These

results indicate that taking advantage of higher-order co-occurrences was indeed crucial

for achieving the performance improvements attained by HOSVM.

Table 3.15: Mean classification accuracies of ZOSVM

Dataset ZOSVM HOSVM
RELIGION (3) 0.678 0.723
SCIENCE (4) 0.745 0.792
POLITICS (3) 0.759 0.793

We have also conducted experiments with the Radial Basis Function (RBF) kernel

for the HOSVM and SVM classifiers. The results were consistent with the findings

of [35]. Namely, there were no significant differences between classification accuracies

attained with the linear kernel and those attained with the RBF kernel.

3.4 Clustering Text Documents

In this chapter we evaluate the efficacy of the Unsupervised Second Order Transforma-

tion (USOT) proposed in Section 2.2.4. We use datasets with known class labels and

cluster the data with criteria (2.1) and (2.2). If USOT was successful at emphasizing

the specifics of the various homogenous subgroups of data instances and at increasing
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separability between those subgroups, we would expect both clustering methods to re-

produce the known classification with higher accuracy in the USOT space than in the

original boolean space.

Experimental evaluation was carried out on four benchmark text corpora. Three of

these datasets were the RELIGION, SCIENCE and POLITICS subsets of the 20 News

Groups (20NG) [41] benchmark data with all cross postings and stop words removed

and all other words stemmed. To keep the computation manageable, 500 documents

were sampled at random from each class to comprise the 20NG datasets used in our

experiments. The other dataset, BBC [30], contained 2225 news stories from the British

Broadcasting Corporation (BBC). Each news story belonged to one of five classes:

business, entertainment, politics, sport, or tech. The BBC dataset was preprocessed

by the authors of [30] who removed stop words and stemmed the remaining words. For

each dataset, we selected those terms whose minimum-frequency value covered at least

five percent of data instances in the dataset. Other terms would have low variability and

would therefore be largely ignored by the clustering process. A summary description

of the datasets is provided in Table 3.16.

Table 3.16: Four datasets used in the experiments

Dataset Classes Dimensionality
RELIGION (3) alt.atheism, soc.religion.christian, talk.religion.misc 429
SCIENCE (4) sci.crypt, sci.electronics, sci.med, sci.space 505
POLITICS (3) talk.politics.guns, talk.politics.mideast, talk.politics.misc 290

BBC (5) business, entertainment, politics, sport, tech 635

As before, we clustered each dataset into the same number of clusters as there are

classes. Each cluster was then assigned a unique class label by the optimal assignment

method. In order to assess statistical significance of results, we ran each clustering

algorithm ten times (M = 10) in the original boolean space and in the USOT space.

Each run was initialized with ten random partitions. We then computed the average
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class reconstruction error rates ĒBool and ĒUSOT, and assessed statistical significance

of their difference ĒBool − ĒUSOT using the t-criterion,

t =
ĒBool − ĒUSOT√

s2Bool
M + s2USOT

M

,

where s2Bool and s2USOT are the unbiased estimates of variances of the classification

errors.

Class reconstruction errors attained by clustering criteria (2.1) and (2.2) in boolean

(original), UZOT and USOT spaces are reported in Table 3.17. All performance im-

provements attained as a result of applying USOT were statistically significant at the

5% level. Moreover, the improvements were consistent across datasets and clustering

criteria, which indicates that USOT was able to increase separability between the vari-

ous homogeneous subgroups of data instances. Table 3.17 also demonstrates that using

only the zero-order (i.e., term frequency) information was not sufficient for increas-

ing separability between the underlying subgroups. This is consistent with our findings

published in [26] and presented in Section 3.3 on using higher-order paths for supervised

pattern classification.

Table 3.17: Average classification errors

I1 I2
Data Bool. UZOT USOT Bool. UZOT USOT

REL(3) 0.632 0.627 0.56 0.641 0.634 0.579
POL(3) 0.642 0.643 0.523 0.633 0.642 0.573
SCI(4) 0.587 0.7 0.545 0.689 0.698 0.525
BBC(5) 0.222 0.284 0.185 0.297 0.291 0.178

3.5 Return Based Style Analysis of Mutual Funds

A fundamental element of dynamic qualitative analysis of portfolios of mutual funds is

the Return Based Style Analysis (RBSA). As suggested by its name, RBSA is concerned

with analysis of styles of management of mutual based on time series of their returns.
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A mutual fund’s management style is reflected in continuous adjustments of the fund’s

portfolio performed by the manager in order to balance risk and profit while, at the

same time, keeping with the stated investment objectives of the fund. The information

regarding the fund’s management style is of great value to individual investors and

financial institutions, but is generally not revealed in detail by the managers. Only a

broad overall objective of a mutual fund is typically stated in the fund’s prospectus.

What makes the style analysis more challenging is that, according to the current U.S.

regulations, mutual funds are required to report the composition of their portfolios only

four times per year (quarterly). In contrast, the return on a fund’s portfolio is declared

daily. The pattern of returns (Figure 3.9) of an individual mutual fund is generally

thought of as a stochastic process. However, we hypothesize that funds with similar

portfolios and dynamics of their adjustments performed by the managers would tend

to have similar patterns of behavior of the funds’ returns.

Figure 3.9: Time series of returns of two mutual funds (May 2005 – May 2006)

In this section, we present initial experimental results demonstrating that mutual

funds can be grouped based on time series of their returns such that funds within a group

reflect similar management styles. We follow the evaluation methodology described in
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Section 3.4 and apply clustering criteria (2.1) and (2.2) in conjunction with USOT.

The dataset used in the experiments consisted of time series of weekly returns of 6665

mutual funds spanning the period from May 2005 until May 2006. Return rti of fund i

at week t is determined as

rti =
pti − p

t−1
i

pt−1
i

,

where pti is the closing share price of fund i at the end of week t. It is well-known that

returns of mutual funds are often highly correlated with the market, a phenomenon

known as the market trend. In fact, for 42% of the funds in our dataset at least 80%

of the variability in returns was explained by the market’s return represented by the

Standard & Poor’s2 500 (S&P500) index. S&P500 is a leading economic indicator that

models the economy of the U.S. and is a value weighted index that includes 500 leading

companies across major industries of the U.S. Deviations of the funds’ returns from

the market are caused by particular management decisions and reflect the specifics of

management styles. Therefore, the market trend had to be removed from the time

series of returns in order to reveal the specifics of management styles of the funds. We

addressed this problem by constructing for each fund i a least squares linear regression

model

ri = ais+ bi + εi, (3.9)

where s is the vector of returns of the S&P500 index. The residual vector εi reflects the

behavior of the fund’s return that is not explained by the market trend, and contains a

more refined representation of the fund’s management style. The residual vectors were

subsequently used as the input data in our experiments.

Let Y = ||yiL|| denote a m × n real data matrix of residuals of returns. Rows of

Y indexed by capital letters correspond to mutual funds, while columns indexed by

small letters correspond to time points, or dimensions of the time series. To allow ap-

plication of USOT, criterion (2.1) was used to convert real-valued residuals of returns

2http://www2.standardandpoors.com



64

into boolean from. The conversion was achieved by first clustering mutual funds into

five3 clusters along each dimension i independently using a dynamic programming algo-

rithm [7] for criterion (2.1). As was noted earlier, this dynamic programming algorithm

gives a globally optimal clustering of one-dimensional data. Let such clustering along

the i-th dimension be denoted by H i =
(
hi1(yi), . . . , hi5(yi)

)
. Five boolean variables

xi1, . . . , xi5 were then created corresponding to the five clusters (i.e. intervals) along

the i-th dimension. Finally, each data point yiL, L = 1, . . . ,m, was mapped to a boolean

representation

xijL =

 1, if hij(y
i
L) = 1, j = 1, . . . , 5

0, otherwise,

that encoded which interval did a fund fell into along the i-th dimension.

During the evaluation of experimental results, we used an external classification of

mutual funds. This classification was provided by financial experts from Lipper4, a

financial analytics company. Each fund was assigned by the experts to one of seven

classes shown in Table 3.5. We clustered the funds into seven clusters in the boolean

and USOT spaces. The average class reconstruction errors shown in Table 3.19 demon-

strate a consistent and statistically significant (at the 5% level) reductions in class

reconstruction errors as a result of applying USOT. Similarly to the results obtained in

Section 3.4, the performance improvements were attained across both clustering criteria

indicating that USOT was successful at increasing separability between the underly-

ing subgroups of mutual funds. Results obtained by clustering mutual funds based on

the non-booleanized residuals provide a baseline for comparison with the boolean and

USOT representation and indicate the plausibility of grouping mutual funds based on

time series of their returns such that funds within a group have similar management

styles. These results also suggest that the employed booleanization scheme introduced

3The number of clusters was chosen equal to five in order to provide enough resolution while keeping
dimensionality of the resulting boolean space manageable for application of USOT.

4http://www.lipperweb.com/
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additional noise that resulted in higher error rates on the boolean and USOT repre-

sentations than on the original real-valued residuals. Although the problem of optimal

booleanization of real data is beyond the scope of this thesis, in the future we plan to

investigate if other booleanization approaches would be more effective. It is possible,

however, that booleanization may result in appearance of spurious clusters in the data.

As a part of future research, we intend to extend higher-order transformations beyond

boolean data in order to circumvent potential problems associated with booleanization.

Table 3.18: Classes of mutual funds

Class Description
Domestic Invest in companies inside the U.S.

Fixed Income Invest at least 65% of their assets in debt issues
Global Invest at least 75% of their assets in companies both inside and outside

of the U.S.
International Invest at least 75% of their assets in companies strictly outside of the

U.S.
Mixed Equity Maintain a mix of stocks, bonds and money market instruments
Region-specific Invest in specific regions
Sector-specific Invest in specific economic sectors

Table 3.19: Average class reconstruction errors

I1 I2
<n Bool. USOT <n Bool. USOT

Ē 0.466 0.57 0.495 0.398 0.61 0.581
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Chapter 4

Conclusion

Two approaches have been proposed in statistical and machine learning communities

in order to address the problem of uncovering complex clusters. One approach relies

on the development of clustering criteria that are able to accommodate increasingly

complex characteristics of the data. The other approach is based on the simplification

of structure of data by mapping it to a different feature space via a non-linear function

and then clustering in the new space. It is hoped that such mapping will increase

separability between the “true” clusters thus making them more obvious for discovery

by simple clustering criteria. However, since different datasets may exhibit drastically

different internal structure, the mapping function applied must be adaptive to the

data. In order to get a better understanding of what makes each cluster distinct from

others, clusters are often analyze as to how well do they capture specifics of individual

or groups of features. For example, do values of a given feature vary equally within

clusters, or does this feature exhibit different behavior in different clusters and what

domain knowledge can be inferred from that? To be able to answer such questions, it

is important that dimensions of the new feature space into which the data is mapped,

maintain their interpretability in terms of the original features.

This dissertation covers three related studies: development of a novel multi-dimensional

clustering method, development of non-linear mapping functions that leverage higher-

order co-occurrences between features in boolean data, and applications of these map-

ping functions for improving the performance of clustering methods. In particular, we

developed first multi-dimensional clustering algorithm for the Neyman’s criterion (2.2)
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that was proposed in [51] for stratified sampling from one-dimensional data, but has

never before been applied for clustering in multi-dimensional spaces. We then showed

that this criterion is more reflective of the underlying data structure than the seemingly

similar K-means criterion (2.1) when second order variability is not homogeneous be-

tween constituent subgroups. Unlike criterion (2.1), criterion (2.2) takes into account

cluster means and variances, and, in general, produces non-linear cluster boundaries.

We also discovered that criteria (2.1) and (2.2) produce identical clusterings when clus-

ter variances are equal. Experimental results on simulated data generated by a mixture

of multi-dimensional Gaussian distributions with different diagonal covariance matrices

demonstrated that criterion (2.2) was able to recover the underlying class means and

covariance matrices with higher accuracy than criterion (2.1). Although real-world data

typically have more complex structure than was simulated in the aforementioned ex-

periments, the obtained experimental results suggest that criterion (2.2) is a potentially

superior alternative to criterion (2.1) for initialization of the Expectation Maximization

procedure for reconstruction of hidden mixtures of Gaussians. We intend to investigate

this possibility further as a part of our future work.

Development of criterion (2.2) was motivated by the problem of efficient estimation

of the mean value of a scalar variable [10, 51]. A series of experimental results reported

in this work demonstrate that generalization of criterion (2.2) to multi-dimensional

spaces and development of the associated clustering algorithm allowed for efficient es-

timation of the grand mean vector of a population. Criterion (2.2) and the associated

sampling scheme consistently and statistically significantly outperformed criterion (2.1)

across the range of sample sizes and class densities when estimating the mean vector in

multi-dimensional spaces. In all cases, both sampling schemes performed better than

the simple random sample, particularly when the sample size was small. Robust perfor-

mance of the stratified sampling schemes is especially encouraging since financial and

temporal constraints often prohibit the acquisition of larger samples in most real-world
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applications. The results also suggest that aside from estimation of the mean vector

of multi-dimensional data, criterion (2.2) would be particularly useful for construc-

tion of training samples for supervised machine learning (classification and regression).

Small training samples that accurately capture the underlying distribution of the data

are crucial for practical applications of computationally demanding methods such as

Support Vector Machine [63] on massive real-world datasets comprised of millions of

data instances. Low computational complexity of the proposed clustering algorithm

for criterion (2.2) opens the possibility of construction of small training samples from

large-scale datasets. Further investigation of this topic constitutes one of the future

research directions stemming from this work.

Recently, locally adaptive distance functions were proposed [20] as a data transfor-

mation that takes into account local differences in variance along each dimension for

clustering. Locally Adaptive Clustering (LAC) proposed in [20] is essentially a modifi-

cation of criterion 2.1. For each cluster and each dimension, LAC associates a weight

that is used to adjust the Euclidean distance with respect to variance characteristics of

the particular cluster. The weighted distances are then used in an iterative clustering

procedure. LAC brings forward two issues that we intend to address in a future work

related to criterion 2.2. The generalization of criterion (2.2) considered in this work

aggregates the cluster variances across all dimension and does not treat them separately

as does LAC. This behavior may produce unwanted results when the true clusters have

ellipsoidal shapes highly elongated along certain dimensions. We therefore plan to in-

vestigate possible generalizations of criterion (2.2) that would work with arbitrary, not

necessarily diagonal, covariance matrices instead of scalars characterizing clusters’ vari-

ances. We also intend to investigate ways of introducing local weighting functions akin

to LAC, but this time for clustering by criterion (2.2).

Since both criteria (2.1) and (2.2) are strictly concave, it follows from the definition
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of a strictly concave function that criterion

I4 = γI1 + (1− γ)I2, γ ∈ [0, 1], (4.1)

is also strictly concave and can therefore be minimized by Algorithm 1. The utility of

criterion (4.1) is unclear at this point, although this criterion may find its use in an

interactive system for explorative analysis of data. By varying parameter γ, a user would

be able to better understand the degree of separability between constituent subgroups.

Subgroups that are well separated from the rest will tend to be stable with respect to

the value of γ, i.e. would form separate clusters regardless of the value of γ. Clusterings

of more commingled subgroups, on the other hand, would be sensitive to the setting of

γ. Investigation of utility of criterion (4.1) and development of efficient minimization

algorithms for the statistically-motivated non-convex criterion (2.20) proposed in [37]

constitute two additional directions for future work.

In the framework of the mapping-based approach to discovering complex cluster

structures, we introduced a novel adaptive non-linear data transformation termed Un-

supervised Second Order Transformation (USOT). USOT maps data from a boolean

space to a real space thereby emphasizing specifics of the various homogeneous sub-

groups of data instances. The novelties behind USOT are (a) that it leverages in a

unsupervised manner, higher-order co-occurrences between features, and (b) that it

considers each feature in the context of probabilistic relationships with other features.

In addition, USOT has two desirable properties. USOT adaptively selects features that

would influence the mapping of a given feature, and preserves the interpretability of

dimensions of the transformed space.

The intuition behind USOT originated from our work on higher-order classifiers

[26], and in particular from the Supervised Second Order Transformation (SSOT) also

presented in this work. SSOT is a novel data transformation that requires the knowledge

of true class labels of the instances comprising a training set. Both USOT and SSOT

are defined over the space of higher-order paths. However, aside from SSOT being a
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supervised transformation, the main difference between USOT and SSOT lies in the

way the two mappings use the higher-order paths. While USOT considers probabilistic

dependencies between a feature and all other features, SSOT makes use of probabilistic

dependencies between a class indicator variable and the features.

We also developed a O
(
(m+ n)n2

)
time algorithm for obtaining the counts of

higher-order paths used by USOT and SSOT. This algorithm improves over theO
(
m2n3

)
complexity of a straight-forward path counting algorithm.

Experimental results on text corpora and financial time series demonstrated that

by leveraging higher-order co-occurrences between features, the proposed transforma-

tions achieved statistically significant improvements over the traditional methods. The

experiments on financial time series also showed that pre-processing of real-valued data

into boolean form may introduce additional noise and make the underlying subgroups

of data instances more difficult to separate into clusters. Hence, one direction for fu-

ture work lies in the extension of higher-order transformations beyond boolean data.

Development of a rigorous theoretical framework encompassing and quantifying higher-

order relations in the context of clustering and classification constitutes another future

research direction.
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Appendix A

Proof of Lemma 1

The proof of Lemma 1 follows from the method (2.11) of constructing polynomial

clusterings. Suppose, H = (h1(x), . . . , hK(x)) , H ∈ H, is an arbitrary clustering whose

vector of the non-normalized cluster moments is

µ(H) =
(
M

(0)
1 ,M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K ,M

(1)
K , . . . ,M

(r)
K

)
.

Let c =
(
c
(0)
1 , c

(1)
1 , . . . , c

(r)
1 , . . . , c

(0)
K , c

(1)
K , . . . , c

(r)
K

)
denote an arbitrary vector of coeffi-

cients and let Hc = (hc1(x), . . . , hcK(x)) denote the corresponding polynomial clustering.

Further, let µ(Hc) =
(
M̂

(0)
1 , M̂

(1)
1 , . . . , M̂

(r)
1 , . . . , M̂

(0)
K , M̂

(1)
K , . . . , M̂

(r)
K

)
denote the vec-

tor of the non-normalized cluster moments under polynomial clustering Hc. Then, the

scalar product (c, µ(Hc)− µ(H)) is

(c, µ(Hc)− µ(H)) =
K∑
α=1

r∑
l=0

(
c(l)α , M̂

(l)
α −M (l)

α

)
.

By definition (2.9) of the non-normalized cluster moments, we obtain

(c, µ(Hc)− µ(H)) =
K∑
α=1

r∑
l=0

c(l)α ,∫
X

xlhcα(x)dP (x)−
∫
X

xlhα(x)dP (x)


=

K∑
α=1

∫
X

r∑
l=0

(
c(l)α , x

l
)
hcα(x)dP (x)−

∫
X

r∑
l=0

(
c(l)α , x

l
)
hα(x)dP (x)


=

K∑
α=1

∫
X

fα(x)hcα(x)dP (x)−
∫
X

fα(x)hα(x)dP (x)


=

∫
X

[
K∑
α=1

fα(x)hcα(x)−
K∑
α=1

fα(x)hα(x)

]
dP (x).

From definition (2.11) of characteristic functions hcα(x) follows that

(c, µ(Hc)− µ(H)) ≤ 0, ∀H ∈ H.
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Appendix B

Proof of Theorem 2

Before proceeding to the proof of Theorem 2, we show that set Z = {µ(H) : H ∈ H} of

vectors of the non-normalized cluster moments is bounded, closed and convex. A point

µ(H) =
(
M

(0)
1 ,M

(1)
1 , . . . ,M

(r)
1 , . . . ,M

(0)
K ,M

(1)
K , . . . ,M

(r)
K

)
belongs to set Z if and only

if the following equations are satisfied:

K∑
α=1

M (l)
α =

∫
X

xldP (x), l = 0, . . . , r. (B.1)

Set Z is bounded since the probability density function P (x) is zero outside of the

bounded region R.

Equations (B.1) imply that set Z is closed, because its complement Z̄ is defined by

strict inequalities and is therefore open.

Convexity of set Z follows from the fact that for any two points µ(H), µ(Ĥ) ∈ Z,

and any ε ∈ [0, 1], the point µε = (1− ε)µ(H) + εµ(Ĥ) also lies in set Z, i.e.,

K∑
α=1

[
(1− ε)M (l)

α − εM̂ (l)
α

]
= (1− ε)

∫
X

xldP (x) + ε

∫
X

xldP (x) =
∫
X

xldP (x),

where M (l)
α and M̂ (l)

α are the non-normalized cluster moments under clusterings H and

Ĥ, respectively.

It follows that all local minima of a strictly concave functional I(µ(H)) are attained

on the boundary points of set Z. Lemma 1 establishes the fact that the boundary

points of set Z correspond to polynomial clusterings. Now, we prove Theorem 2, which

specifies the form of polynomial clusterings minimizing the strictly concave functional

I.
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First, we prove that local extremality of a strictly concave functional I(µ(H)) on

a clustering H∗ implies that µ(H∗) = µ(Hc), where Hc is the polynomial clustering

specified using vector c determined as a supergradient of functional I at the point

µ(H∗).

Suppose that clusterings H∗ and Hc are not equivalent, i.e., µ(H∗) 6= µ(Hc). Then,

we can construct a point µε = (1− ε)µ(H∗) + εµ(Hc), ε ∈ (0, 1), µε ∈ Z.

By concavity of functional I, the following inequality holds:

I(µε) ≤ I(µ(H∗)) + (c, µε − µ(H∗)) .

Due to strict concavity of functional I, the equality is attained if and only if µε = µ(H∗),

which contradicts the assumption. Therefore, it follows that

I(µε)− I(µ(H∗)) < ε (c, µ(Hc)− µ(H∗)) ,

and from Lemma 1 follows that

ε (c, µ(Hc)− µ(H∗)) ≤ 0.

Thus,

I(µε)− I(µ(H∗)) < 0,

which, given that ε was chosen arbitrarily, contradicts local extremality of H∗.

We complete the proof by showing that the existence of a polynomial clustering

Hc equivalent to a clustering H∗ that provides the functional I with a local minimum

implies that the vector c is a supergradient of functional I at the point µ(H∗).

Suppose that polynomial clusterings Hc and Hk are not equivalent, i.e., µ(Hc) 6=

µ(Hk), for any vector k determined as a supergradient of functional I at the point

µ(H∗). Then, we can form a point µε = (1− ε)µ(Hc) + εµ(Hk), ε ∈ (0, 1), µε ∈ Z.

From concavity of functional I and equivalence of clusterings H∗ and Hc follows

that

I(µε) ≤ I(µ(Hc)) + (k, µε − µ(Hc)) ,
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where, due to strict concavity of functional I, the equality is attained if and only if

µε = µ(Hc), which contradicts the assumption.

Therefore, it follows that

I(µε)− I(µ(Hc)) < ε
(
k, µ(Hk)− µ(Hc)

)
,

and from Lemma 1 follows that

ε
(
k, µ(Hk)− µ(Hc)

)
≤ 0.

Thus,

I(µε)− I(µ(Hc)) < 0,

which, given that ε was chosen arbitrarily, contradicts local extremality of clustering

H∗.
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Appendix C

The K-means Criterion

The K-means criterion

I1 =
K∑
α=1

pασ
2
α =

K∑
α=1

pα

(
M(2)

α −
(
M(1)

α

)2
)
, (C.1)

is a member of the large family of clustering criteria (2.8) and hence falls into the

framework presented in Section 2.1. Below we prove that functional (C.1) is strictly

concave, which ensures convergence of the BGD (Algorithm 1) to a locally optimal

clustering for this criterion. It should be noted that functional (C.1) is independent

of the second non-normalized cluster moments M (2)
α . This can be shown by rewriting

functional (C.1) as

I1 =
K∑
α=1

pασ
2
α =

K∑
α=1

pα

(
M(2)

α −
(
M(1)

α

)2
)

=
K∑
α=1

M
(2)
α −

K∑
α=1

pα

(
M(1)

α

)2

=
K∑
α=1

∫
X
x2hπα(x)dP (x)−

K∑
α=1

pα

(
M(1)

α

)2

=
∫
X
x2dP (x)−

K∑
α=1

pα

(
M(1)

α

)2
,

= C −
K∑
α=1

pα

(
M(1)

α

)2
,

(C.2)

where C is a constant independent of a clustering H ∈ H. It follows that minimization

of functional (C.1) corresponds to maximization of functional I ′1 =
K∑
α=1

pα

(
M(1)

α

)2
.

As we will see shortly, independence of functional (C.1) from second non-normalized

cluster moments results in independence from these moments of the cluster membership

functions for functional (C.1).

Claim 2. Functional I1 is strictly concave.
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Proof. We prove the claim by showing that the α-th functional I1α = pασ
2
α in summa-

tion (C.1) is strictly concave, from which it follows that functional I1 is concave.

Computing the gradient ∇I1α =
(
c
(0)
α , c

(1)
α , c

(2)
α

)
of functional I1α yields

c
(0)
α = ∂I1

∂pα
=

“
M

(1)
α

”2

p2α
=

(
M(1)

α

)2
,

c
(1)
α = ∂I1

∂M
(1)
α

= −2M
(1)
α
pα

= −2M(1)
α ,

c
(2)
α = ∂I1

∂M
(2)
α

= 1.

(C.3)

Let the non-normalized cluster moments of cluster α under a clustering H ∈ H be

denoted by µα(H) =
(
pα,M

(1)
α ,M

(2)
α

)
. For any two clusterings H ∈ H and Ĥ ∈ H we

have

(
∇I1α(µα(H)), µα(Ĥ)− µα(H)

)
=

(
M

(1)
α

pα

)2

(p̂α−pα)− 2
pα

(
M (1)
α , M̂ (1)

α −M (1)
α

)
+M̂ (2)

α −M (2)
α ,

and

I1α(µα(Ĥ))− I1α(µα(H)) = M̂ (2)
α −

(
M̂

(1)
α

)2

p̂α
−M (2)

α +

(
M

(1)
α

)2

pα
.

By subtracting the first equation from the second and simplifying, we have

I1α(µα(Ĥ))− I1α(µα(H))−
(
∇I1α(µα(H)), µα(Ĥ)− µα(H)

)
=

= −

(
M̂

(1)
α

)2

p̂α
−

(
M

(1)
α

pα

)2

p̂α +
2
pα

(
M (1)
α , M̂ (1)

α

)
= −p̂α

(
M

(1)
α

pα
− M̂

(1)
α

p̂α

)2

= −p̂α
(
M(1)

α − M̂(1)
α

)2
< 0, M(1)

α 6= M̂(1)
α

It follows that, by definition of a strictly concave function, functional I1α is strictly

concave, i.e.,

I1α(µα(Ĥ)) < I1α(µα(H)) +
(
∇I1α(µα(H)), µα(Ĥ)− µα(H)

)
, M(1)

α 6= M̂(1)
α

Therefore, functional I1 =
K∑
α=1

I1α is strictly concave.



77

Using the gradient (C.3) for specifying membership functions (2.10) yields

fα(x) = c
(0)
α +

(
c
(1)
α , x

)
+ c

(2)
α x2

=
(
M(1)

α

)2
− 2

(
M(1)

α , x
)

+ x2

=
(
x−M(1)

α

)2
,

(C.4)

where
(
x−M(1)

α

)2
is the squared Euclidean distance between a point x ∈ X and the

mean vectorM(1)
α of cluster α. Note that membership functions (C.4) are independent

of the second non-normalized cluster moments M (2)
α . From the definitions of character-

istic functions (2.11) and membership functions (C.4) follows that under a polynomial

clustering Hc, a point is assigned to a cluster whose mean vector is closest to that point,

according to the squared Euclidean distance.
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