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ABSTRACT OF THE DISSERTATION

Statistical Methods for Gene Selection Using

Differential Gene Expression and Building Gene

Co-expression Networks

by Zhaoyu Luo

Dissertation Director: Professor Javier Cabrera

This thesis investigates three most challenging statistical problems that relate to

three important stages of the pipeline of DNA microarray data analysis which are

identification of differentially expressed genes, determination of sample size based

on specified power, desired fold change and given error rate, and construction of

gene co-expression network. At the center of these methods is a new version of

the Stochastic Approximation methodology that works for distribution functions.

The method is applied to estimation problems in the conditional-t procedure

(Amaratunga and Cabrera (2003)) and in the estimation of the covariance matrix.

The new covariance estimates are applied to the estimation of gene co-expression

network (Zhang and Hovarth(2005)). In both cases the new method results in

substantial improvement in performance. This is shown in several simulations

that are presented throughout the thesis. In addition we show examples from

real applications to illustrate the main results.
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Preface

DNA Microarray is the most widely used technology in biomedical research to

investigate the expression patterns of thousands of genes simultaneously. It is a

powerful tool for biologists to explore the world of genes. At the same time, it

imposes challenges for statisticians to analyze it because of its high dimension but

small sample size. We need a set of new methodologies to deal with microarray

data since traditional ones, which usually follow large sample principles, are lack

of power.

We proposed improved conditional t test to detect differentially expressed

genes, which is an important problem in microarray data analysis. Moreover, we

developed a new approach to determine the sample size needed to gain a specific

power and to satisfy some other conditions taking consideration of correlation

among genes. We also built up a weighted gene co-expression network to explore

the graphic information of genes. The use of these methodologies are not limited

to microarray data and small sample size data. They could be applied to data with

large sample size too. We proposed Stochastic Approximation for distribution

(S.A.D) which were used in all three methods.

The outline of this thesis is as follows: Chapter 1 gives an introduction to

microarray experiment and a summary of statistical issues related to microarray

data analysis. We also review some work done in the literature. Since Stochastic

Approximation for distribution (S.A.D) were used in all three methods in the

thesis, the details of it is described in Chapter 2. In Chapter 3, improved condi-

tional t test is introduced in detail. Comparison of various methods on simulated

data and real data shows the superioity of our approach. We talk about our

iii



methodology of sample size calculation in Chapter 4. We make use of estimated

covariance matrix of genes to do simulation and gain more power. This approach

works well in real data, especially for highly correlated gene groups. In Chapter

5, We propose a method to construct a gene co-expression network and apply our

method to simulated data and a cancer data set. Finally, Chapter 6 summarizes

our work and discusses some open questions.
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Chapter 1

Introduction

1.1 DNA Microarray Technology

The emergence of high-throughput experimental technologies has begun a new

period of molecular biology. Tedious ”one gene per experiment” paradigm is no

longer a headache of biologists because DNA microarray, the most widely used

form of this technology, allows biologists to monitor the expression profiles of

a large number of genes at the same time and enables biologists to study how

genes function jointly under a specific condition or under different conditions.

Microarray technology has brought about great opportunities in functional ge-

nomics studies. It is a powerful tool to help scientists find out which pathway

cause a disease or affect responses to treatment. For example, using microarrays

Alizadeh et al.(2000) identified two molecularly distinct forms of diffuse large B-

cell lymphoma (the most common subtype of non-hodgkin’s lymphoma) which

had gene expression patterns indicative of different stages of lymphoma. They

showed that patients with one type of expressed genes had a significantly better

overall survival than those with the other type of expressed genes.

This section gives the basic concepts of modern molecular biology and a typical

protocol of an microarray experiment.
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1.1.1 Biological background

Each gene, either by itself or in combination with some other genes,occupies a

spot on a chromosome and determines a characteristic in an organism. Genes

are made of deoxyribonucleic acid(DNA). A DNA molecule consists of two long

strands wound tightly around each other in a spiral structure, which resembles a

twisted ladder. The sides of DNA ladder are made of sugar and phosphate and

the rungs of DNA ladder are made of bases. There are four kinds of bases: ade-

nine(A),guanine(G),cytidine(C) and thymidine(T). The sequences of bases along

each of the two strands of DNA are complementary to each other, following the

complementary base-paring rules: A coupling to T and G coupling to C.

The genetic information can be transmitted from DNA to protein during gene

expression via the process DNA → mRNA → protein, which means that the

protein-coding instructions from a gene are transmitted indirectly through mes-

senger ribonucleic acid (mRNA) is a molecule like a single strand of DNA except

that in its base, uracil(U) replaces thymine(T).

Two DNA strands (or one DNA strand and one mRNA strand) whose se-

quences are complementary to each other will hybridize to form a single double-

stranded DNA molecule. Even when the sequences on the two strands are not

completely complementary to each other, if they share enough similarity, they

may still form a DNA module with part of bases pairing. This property is ex-

ploited in hybridization assays. In these assays a probe consisting of a homogenous

sample of single-stranded DNA modlecules of known sequence is prepared and la-

beled. A heterogeneous mixture of single-stranded DNA molecules of unknown

composition is challenged by the probe. DNA sequences that are complemetary

to the probe can be identified since the probe will hybridize only to these se-

quences. Among various types of hybridization, Northern blotting is the most

commonly used one to detect gene expression levels. In Northern blotting, the

target mRNA is extracted and transferrred to the surface of a solid support,e.g.,
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a nylon filter. DNA microarrays can be viewed as a massively parallel version of

Northern blotting.

Besides hybridization assays, there are serveral laborratory techniques that

play an great role in microarray experiments. Polymerase chain reaction (PCR) is

a rapid procedure for generating multiple copies of any fragment of DNA. Reverse

transcription is a prcedure for reversing the process of transcription. It isolates

mRNA, which is unstable and is easily degraded, and using it to synthesize a

complementary DNA (cDNA) strand, which is stable and is not easily degraded.

The cDNA generated by reverse transcription can be amplified by PCR, which is

called reverse transcriptase polymerase chain reaction (RT-PCR).

1.1.2 Experiment procedures

In this subsection, I will describe the basic procedure of a typical microarray

exprement. There are five steps:

1. Preparing the microarray: In this step, a drop of each known purified single-

stranded DNA in the collection is robotically spotted to a specially prepared glass

slide, which makes the DNA microarray for the experiment. The DNA spotted

on the microarry are loned copies of cDNA, amplified by PCR, corresponding to

whole or part of a fully sequenced gene. It can be either cDNA or ologonucleotides.

In the former case, the microarry is called a cDNA microarray while in the latter

case, the microarray is called an oligonucleotide array.

2. Preparing the labeled samples: After mRNA molecules are extracted from

sample tissues, they are immediately reverse-transcribed into more stable cDNAs

(for cDNA microarrays) or cRNAs (for oligonucleotide arrays). Then the sample is

labeled with a reporter mocecule that flags their presence. The reporters currently

used in microarray experiments are fluorescent dyes, called fluors or fluorophores.

3. Hybridizing the labeled samples to the microarray: The labeled sample is

poured onto the microarray and allowed to diffuse uniformly all over it. Then it
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is sealed in a hybridzation chamber and incubated at a specific temperature for

enough time to allow the hybridization reactions to complete. Last, it is removed

from the hybridzation chamber and thoroughly washed to eliminate any loose

probes.

4. Scanning the microarray: The microarray is scanned to determine the

amount of probes is bound to each spot. The probes are labeled with fluorescent

reporter molecules which emit detectable light when stimulated by a laser. The

emitted light is captured by a detector, either a charge-coupled device or a con-

focal microscope, that records its intensity. Spots with more bound probes will

have more reporters and will therefore fluoresce more intensely.

5. Interpreting the scanned image: The end product of a microarray experi-

ment is a scanned array image. The image will be converted into spot intensity

measurements by image-processing software. High intensity spot means that DNA

in that spot corresponds to some mRNA in sample and low intensity spot means

that no mRNA in sample corresponds to the DNA at that spot.

1.2 Statistical issues in microarray data analysis

The raw data from a DNA microarray experiment is a series of scanned images

of microarrays,one image per channel. The general plan for analyzing this data

including converting these images into quantitative data, preprocessing the data

and applying appropriate data analysis technques. Due to the extremely high

dimension of microarray data and the many scources of variation intrduced during

microarray experiments, either standard methods has to be tailored for use with

microarray data or an entirely fresh set of tools has to be developed specially to

handle such data. In this section, statistical tools applied to microarray data are

outlined.
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1.2.1 Processing the Scanned Image

The end product of a microarray experiment is a scanned image and the image

have to be converted into spot intensities for the use of analysis. Three steps are

involved in quantifying a scanned image. The first step, gridding, is to define

the location of each spot in the array by assigning the coordinates of the center

of each spot. Automating this part permits high-throughput analysis. The next

step is segmentation;foreground,the set of pixels corresponding to labeled cDNA

hybridizing to its complementary DNA sequence spotted on the microarray, is

separated from the background. The last step is quantification. In this step, an

intensity value is assigned to each spot by measuring the average intensity of the

pixels.

After image conversion, it is recommended to check the quality of the whole

array as well as the individual spots within an array. The quality assessment is

often carried out in serveral steps. First, visual inspection is done by examining

the image plot, in which each image pixel correponds to a spot. If no obvious

nonrandom patterns that would suggest poor data quality is observed, the image

is passed. Second, numerical methods are used to check whether the spot and

background intensities satisfy some quality crieria such as whether the background

are uniformly distributed or clustered together or displayed some pattern. Third,

to ensure the accuracy and precision of an experimental process is maintained, a

quality control procedure should be performed. A simple quality procudere can

be done by plotting an image graph to detect specific problems with the array

and making a side-by-side display of boxplots of the sequence of arrays to detect

specific problems across arrays. Last, the assessment of quality of the indivisual

spots can be done by studying the properties of the intensity distributions of spots

and if replicates are availble, replicates spots can be analyzed to check whether

any value is significantly different from the others.

It is assumed that a spots measured intensity includes a contribution not
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specifically due to the hybridization of the target to the probe, for example non-

specific hybridization and fluorescence emitted from other chemicals on the glass,

called the background fluorescence. Thus we would like to measure and remove

such contribution to obtain a more accurate quantification of hybridization which

is called background adjustment. Background-adjusted spot intensity values are

the results of substracting background from the raw spot intensity values. There

are several background estimating methods.

Global background adjustment. In ths approach, the background is estimated

as the average intensity of all the pixels not belonging to apots. Its usage is

limited because usually the background is not uniform over the entire microarray.

Spot background adjustment. The spot background is substracted from the

spot intensity value in this approach. However, the spot and the background are

usually imperfectly separated and there exists strong correlation between spot

intensity and background intensity. So this approach is rarely effective.

Smoothed background adjustment. Experimental effects, the causes of true

variation in background, vary gradually across the slide so the background should

be smooth and it could be smoothed by running a simple smoothing procedure.

Yang et al.(2000) describe a sophisticated smoothing procedure called mopholog-

ical opening.

Once the background intensity of the gth spotBIg is estimated, the background-

adjusted spot intensity value AIg can be obtained from the equation:

AIg = SIg −BIg, where SIg is the spot intensity at the gth spot.

In some cases, BIg can exceed SIg, which causes a negative value for AIg.

One way to avoid it is to make an adjustment. For an instance, if T is a low

percentile of the SIg values, let AIg = max(SIg −BIg, T ).
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1.2.2 Data Preprocessing

After the images are converted into quantitative data, microarray data still can

not used directly for data analysis without data preprocessing due to the imma-

turity of microarray technology. Data preprocessing addresses three data-related

issues: to transform the data into a scale suitable for analysis, to remove the

effects of systematic sources of variation and to identify discrepant observations

and arrays.

1. Data transformation. The logarithmic transformation,i.e. X → log(X), is

one of the most widely used transformations. It has the advantages of imprving

variance estimation and reducing the skewness of highly skewed distribution. Also

it is easy to interpret the log ratios as log fold changes. Speed (2001) recommends

the use of logarithmix transformation, but it may not be defined over the full range

of data. An alternative approach, X → log(X + c) where c is a positive constant

could be considered. Both transformaton methods are subject to the problem

that they can inflate the variance of observations whose means are near 0.

Given the drawbacks of logarithmic transformation, a transformation for mi-

croarray data which stablize the variance over the full range of data is suggested.

Durbin et al.(2002) propose the following model:

X = α + µeη + ε ,

where X is the measured expression for a single observation for a given gene

on a array, α is the mean background for the given array and the sample, µ is

the true expression level, and η and ε represent normally distributed error terms

with mean zero and variances σ2
η and σ2

ε respectively.

At low expression levels, which µ is close to 0, the measeured expression can be

written as X ≈ α and X is approximately normally distributed with mean α and

variance σ2
ε . At high expression levels, the measured expression can be written

as X ≈ µeη and X is distributed approximately as lognormal with variance µ2S2
η ,
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where S2
η = eσ

2
η(eσ

2
η − 1). In a log scale, log(X) ≈ log(µ) + η, which implies

that the variance of log(X) is a constant. At moderate expression levels, the

measured expression follows a mixture distribution of a normal and a log-normal.

Its variance is µ2S2
η + σ2

η which varies with µ.

2. Data normalization. During the complex and intricate microarray ex-

perimental process, there are many systematic effects are introduced into the

intensity measurements. Among these effects, the most severe one is caused by

different labelling efficiencies across different arrays. For example, suppose there

is one control sample and one treatment sample and gene A is not differentially

expressed between the two samples. However, because of different labelling ef-

ficiencies of the two sample RNAs, the intensities of gene A in the two sample

arrays are observed as 10× and 1× respectively, resulting in an apparent differ-

entiation. In order to improve the comparabilities among different microarrays,

we need to try ans remove the effects of such systemtic variations and process

the data from different microarrays to a common scale. Following the example,

if gene A intensities are adjusted for gene B, whose intensities in the two saple

arrays are observed as 100× and 10× respectively also due to different labelling

efficiencies across the two samples, then this bias is eliminated. This self-control

normalization method is widely used in the statistical world of microarray data

analysis. Normalization by the sum of intensity is an example, which is to sum

the intensities of all spots in an microarrays and to normalize individual spots by

that sum. An equivalent idea is normalization by the mean of intensity. Similar,

but not equivalent, approaches are normalization by the median, normalization by

the log of median, normalization by the third quantiles, normalization by scaled

z score and so on. The rationale for these normalization schemes lie in that some

quantitiative values should be roughly the same across arrays. Although the as-

sumption may not hold well if there are only a few genes under investigation, it

might be very reasonable if the expreesion profiling for up to thousands of genes
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are included in the analysis and only a small proportion of them are believed to

be differentially expresed. In addition to the above global normalization schemes

which are intensity-independent, there are intensity-dependent normalization ap-

proaches in which the the data is normalized through a nonlinear normalized

function: X → f(X). The representives of intensity-dependent normalization

are smooth function normalization and quantile normalization. In the former

approach, a smooth function hi, inverse of fi is estimated by fitting the model

Xgi = hi(Mg) + εgi to invariant gene sets, where Xgi is the transformed spot

intensity for the gth gene in the ith array, Mg = median(Xg1, ..., XgI) and εgi is

random error. Then the normalized value can be obtained form X ′gi = fi(Xgi).

Different choices of smooth functions are cubic splines, lowess smooth func-

tions etc.

In quantile normalization, the distributions of the transformed spot intensities

of all micrarrays are forced to be equal. Bolstad et al(2003) propose an algorithm

to equate quantiles which is including three steps: (1) sort intensities in each

array; (2) compute mean intensity t each rank across the arrays; (3) Replace

each intensity by the mean intensity at its rank. They also show that quantile

normaliation perfoms best and the lowess normalization is comparable to quantle

normalization.

3. Outlier identification. In microarray data, an outlier is an observation that

is markedly different from the majority of the other values for that gene. Due to

the problem of high dimensional multicariate measures in each sample microarray

but only a few samples available, detection of outliers is a challenging job.

Because they are themselves influenced by outliers, classical tools based on

the mean and standard deviation,for example z-score, are rarely able to detect

outliers (masking effect) and are possible to misclassify normal points as out-

liers (swamping effect). More reliable approaches are based on median and the

MAD(medan absolute deviation) which are resistant to outliers, for an instance;
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The resistant z-score rule. Calculate a resistant z-score z∗gi for every observa-

tion:

z∗gi = Xgi−X̃g
s̃g

, where X̃g and s̃g are the median and MAD of the gth gene.

Call Xgi an outlier if |z∗gi| is large. With very few replicates, the MAD is not

dependable estimate of the scale of the data. As an adjustment, we calculate

a smoothed vresion of MAD, ˜MADg, in the following way. First the absolute

divations from the median:ADgi = |Xgi − X̃g|, then run a smoother through

the relationship of ADgi versus X̃g and the fitted value, ˜MADg, is used as an

estimator of scale for the gth gene. That is the revised rule:

The revised z-score rule. Calculate a revised z-score z∗∗gi for every observation:

z∗∗gi = Xgi−X̃g
s̃′g

. Call Xgi an outlier if |z∗∗gi | is large.

1.2.3 Data Analysis

Once the scanned image has been processed and the initial data has been trans-

formed, normalized and consistantly checked, formal statistical anlysis of data

could be done to extract information for certain use. Application of statistical

methodology is feasible when the microrray experiments can be performed on

replicate samples. Unfortunately, while there are tens of thousands of genes in

data, the replicate is small so that the information content per gene is small. The

typical characteristc of microarray data that the number of genes measured is

much greater than the avaliable sample size imposes a serious challenge to statis-

ticians. Either standard statistical tools need to be tailored or extended to tackle

microarray data or new approaches have to been developed specially to handle

such data.

The rest of this section is focused on reviews of some popular statistical meth-

ods published in the literature. Since the research in microarray data analysis has

grown dramatically during the past serveral years and is related to many other

disciplines such as genomics, bioinformatics and statistical experimental designs,
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it is not realistic to have an exhaustive review of all of these areas. Instead, only

those methods with substantial statistical components from the prospective of

genetic statisticians are reviewed here.

Gene-wise Comparisons. Gene-wise Comparisons across two or more con-

ditions is a major and popular statistical analytic task in microarray data analysis,

in particular, to identify significantly differentially expressed genes across these

conditions. As an example, one experiment might be conducted to identify which

genes are differentialy expressed in diseased cells versus normal cells, which would

enable biologists to identify genes associated with the disease process and enable

the development of drugs targeted to the difference between diseased and normal

cells. We first consider the simplest and most common case: a comparison be-

tween the gene expression profiles of two groups. And we assume that the data

is suitably transformed and normalized. The notation used are as follows: Let

Xgij denote the intensity measurement for the gth gene in the ith microarray in

the jth group, where i=1,...,nj; j=1,2; and g=1,...,G. Moreover, let X̄gj, X̃gj, s̄gj

and s̃gj denote the mean, median, standard deviation, and the median absolute

deviation (MAD) from the median of gene g in the jth group respectively.

Two Sample T-test. The two sample t test is the most basic statistical

gene-by-gene comparison approach.

For gene g, the two sample t test statistic to test

H0g : µg1 = µg2 vs H1g : µg1 6= µg2

is given by Tg =
|X̄g1−X̄g2|
Sg

√
1
n1

+ 1
n2

where S2
g =

(n1−1)s21+(n2−1)s22
(n1+n2−2)

is the pooled estimate of variance.

Under the assumption that Xg11, Xg21, . . . , Xgn11 ∼ N(µg1, σ
2
g) and

Xg12, Xg22, . . . , Xgn22 ∼ N(µg2, σ
2
g), the null distribution of Tg is a t distri-

bution with degrees of freedom ν = n1 + n2 − 2. The p-value is calculated by

pg = Prob(|Tg| > Tg,obs), where Tg,obs is the observed value. A gene is declared to
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be significantly differentially expressed at a specified level α if pg < α.

Genes express different levels and the variablity of a gene may depend on

its expression level which means that the equal variance assumption is likely to

unhold. To overcome the this problem, the unequal-variance version of two sample

t test, called Welch’s test, is proposed. The statistic of Welch’s test is:

T ∗g =
∣∣∣X̄g1 − X̄g2

∣∣∣ /√ s21
n1

+
s22
n2

,

and the null distribution of T ∗g is approximately a t distribution with degrees

of freedom:

v =
(
s21
n1

+
s22
n2

)2
/
[

1
(n1−1)

(
s21
n1

)2
+ 1

(n2−1)

(
s22
n2

)2
]
,

The p-value is calculated by p∗g = Prob(|T ∗g | > T ∗g,obs), where T ∗g,obs is the

observed value. A gene is declared to be significantly differentially expressed at

a specified level α if p∗g < α.

Welch’s test is less powerful than its equal-variance version because it has

fewer degrees of freedom. A drawback of both method is that the dependence

between the t test statistic and the standard error estimate leads to an hight

false positive rate for low variance genes and an high false negative rate for high

variance genes given that the sample size per group is very small in typical gene

expression data. Also how to estimate standard errors well is another issue issue.

Statistical Significance of Microarray(SAM) Tusher et al.(2001) sug-

gested an approach to overcome the drawbacks of standard t test especially the

last one shown above. They added a small positive constant, called fudge factor

to the denominator of the t statistic. The adjusted t statistic of the gth gene is

Tg = |x̄g1 − x̄g2| /(sg + s0),

where sg is the pooled standard error and s0 is the fudge factor. The value

for s0 is chosen to minimize the coeffiecient of variation of Tg, which is computed

as a function of sg. The procedure is as follows: Let sα be the α percentile of

the sg values and let Tαg = rg/(sg + sα). Compute the 100 quantiles of the sg

values, denoted by q1 < q2... < q100. For α ∈ (0, 0.05, 0.1, ...1.0), compute the mad
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(median absolute deviation from the median), vj(α), of the Tαg values within the

interval [qi, qi+1] for i = 1, 2, . . . , n. Then compute the coefficient of variation of

the vj(α), cv(α). Choose α̂ is the one that minimize cv(α). And now ŝ0 is fixed

as sα̂.

Once the fudge factor is determined, adjusted expected t statistics are com-

puted by taking the means of multiple sets of adjusted permuted t statistics,

which are calculated using the same formula as described above except that per-

muted data are used for these calculations. Creating expected data under null

distribution through permutation is a widely adopted technique in microarray

data analysis. A version of permutated data is produced by permuting the re-

sponse data. In the other word, it assigns the same number of observed cases

to the study population and the rest are viewed as controls. This resampling

procedure is repeated many times. Then the adjusted observed and expected

t statistics are ordered respectively and the difference between the two at each

ordered location is calculated. If the difference is larger than the fixed cut-off

value, the corresponding gene is called ”significant positive” and if the difference

is negative and its absolute value exceeds the threshold, the corresponding gene

is called ”‘significant negative”.

Next the total number of significant genes and the median, km, (or the 90th

percentile, k0.9) number of falsely called genes are computed and the proportion

of true null genes in the data set π0 is estimated. The positive false discovery

rate (pFDR) is calculated by the multiple of km (or k0.9) and π0 divided by the

number of significant genes.

Despite the advantage mentioned above, the performance of this approach de-

pends on the assumption that the expected and observed orders of the majority of

those non-differentially expressed genes are the same, while the small proportion

of differentially expressed genes are all located at the extremes. This assumption

is hard to hold without careful experimental design.
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declared significant declared non-significant Total
null U S G0

Alternative V M G1

Total R A G

Table 1.1: Possible Outcomes of Testing

Multiple Testing Adjustment. Since a statistical test is being run on

every gene, doing gene-wise comparisons involves performing a very large number

of tests simutaneously. One drawback of conducting so many tests is that the

more the number of statistical tests perfprmed, the higher the expected number

of false positives. Without making a suitable multiple testing adjustment, the

number of false positives can be high enough to overhelm the actual effects. So

we need to adjust the individual p-values of the tests to possibly alleviate this

probelm. We will outline several ways of adjusting the p-values for the increased

false positive rate do to multiple testing.

Consider the situation that G statistical tests have been performed, possible

outcomes are shown in Table1.

If no adjustment is made for multiple testing, we could control the per-

comparison error rate (PCER): PCER = E(V)/G. A common multiplicity ad-

justment attempts to control the familywise error rate (FWER). The FWER is

defined to be the probability of making at least one false positive error: FWER

= Prob(V ≥ 1). Rejecting each individual test with a type I error rate of α/m

guarantees, by Bonferronis type of argument, that FWER is controlled at level α

in the strong sense, i.e. FWER ≤ α for any combinations of null and alternative

hypotheses. Benjamini and Hochberg (1995) proposed another type of error to

control FDR, which is defined to be the expected proportion of false positives

among the rejected hypotheses:

FDR=E[Q] and Q =


V/R, R > 0

0, R = 0
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factors change sample size change
Variability of Population ↗ ↗
Desired Detectable Fold Changes ↗ ↘
Power ↗ ↗
Error Rate ↗ ↘

Table 1.2: Relationship between Sample Size and Four Factors

Storey (2002) proposed to control positive FDR (pFDR), i.e.

pFDR= E
(
V
R
|R > 0

)
= FDR

Prob(R>0)

The pFDR states the fact that an adjustment is necessary when there are

positive findings.

Sample Size Calculation. When planning microarray experiments, an

often-asked question is how many samples required to ensure adequate statis-

tical power. This applied topic attracts many statisticians. Generally speaking,

there are four factors that affect sample size: 1)Variability of Population; 2)De-

sired Detectable Fold Changes; 3)Power to Detect the Differences; 4)Error Rates.

The relationship between sample size and the four factors are shown in Table1.2

The general procedures are to select a gene selection method (t-test, mixture

model, SAM etc.) and to select one or more reliability criteria (FDR, FWER,

Sensitivity etc.). Serveral articles have addressed the sample size problem.

Pan et al (2002) proposed a mixture model approach. Unfortunately, there is

a major flaw in their approach.

Their model: Xji = µ1i + εji, Yli = µ2i + eli, where Xji is the jth sample

expression of the gene i in first group and Yli is the lth sample expression of the

gene i in second group.

And E(εji) = E(eli) = 0, V ar(εji) = σ2
1i, V ar(eli) = σ2

2i.

Null Hypothesis: H0 : µ1i = µ2i

Test Statistic: Zi =

∑G

j=1
Xji/G

σ1i
−
∑G

j=1
Yji/G

σ2i
= µ1i

σ1i
− µ2i

σ2i
+

∑G

j=1
εji

Gσ1i
−
∑G

j=1
eji

Gσ2i
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E(Zi) = µ1i
σ1i
− µ2i

σ2i
, V ar(Zi) = 2

G

The test statistic can not be used to test the null hypothesis unless σ1i = σ2i.

Zien et al (2003) constructed a model including several different sources of

error. The model itself is non-identifiable, because the authors suggest heuristic

choices for the main parameters in the model insted of using historical data to

directly estimate the necessary parameters. Since the behavior of microarray

data from different microarray technologies and for different biological systems

is extremely varied, it is not reasonable that considering the technical errors

(measurement errors, i.e., the technical part of the variability of measurement

results) and biological variability (biological variation of individual genes, both

between and within classes of samples) of all microarrays are following same

models.

Tsai(2005) estimated sample size using two sample z-test and control the

sensitivity, true discovery or accuracy. But the sample sizes estimated is very

samll and is much less than that needed in practice when controlling true discovery

or accuracy. For example, if V=1, G=10000, π0 = 0.95, power φ = 0.80, true

discovery rate=95%, the required sample size was 3. Let’s see why the sample size

was small. True discovery rate= U/R = (R-V)/R = (R-1)/R. So if we can identify

20 differentially expressed genes, the true discovery rate would be 19/20=95%. Of

course, the sample size required to identify 20 out of 500 differentially expressed

genes would be small. Another example, if V=1, G=10000, π0 = 0.95, power

φ = 0.80, accuracy=95%, the required sample size was 1. The sample size was too

small because accuracy= (G0−V +U)/G = (0.95∗10000−1+U)/G > 0.95, ifU >

1. The sample size required to identify at lease 1 out of 500 differentially expressed

genes would be very small. These two examples show that neither true discovery

nor accuarcy is a good reliability criteria. sensitivity, defined as the fraction of

truly differentially expressed genes identified at the desired power, is much better

according to their sample size table. For an instance, if V=1, G=10000, π0 = 0.95,
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power φ = 0.80, sensitivity=U/G=80%, sample size was 12. The means that, if

we want to identify 80% of the differentially expressed with 80% power, the sample

size required was 12.

An intersting resampling method is proposed by Shuying S.Li et al (2005). The

authors calculated power of the FDR-controlling procedures when array datasets

with a pre-specified size were generated by reampling method, which maintained

the correlation among genes. They compared the results of two direct FDR-

controlling procedures (BH and ST) and four reampling-based FDR-controlling

procedures (BH, ST and other two appraches discussed in Yekutieli and Ben-

jamini(1999)). The simulation results showed that the actual FDR could be two

times higher than the pre-specified level if (1−π0) is small (<1 percent) and grad-

ually achieves the pre-specified level as (1− π0) increases to 20 percent. In either

the direct or the resmapling-based appraoch, π0 is under estimated except when

π0 = 0.80. Since these testing procedures under-control the actual FDR when

the genes are correlated and the proportion of differenctially expressed genes is

less than 20 percent, in practice, they recommended adjusting the pre-specified

level. For example, it is recommended to adjust the pre-specified level by half if

the proportion of positive genes is below 10 percent.

Shao and tseng(2007) presented a method that make dependence adjustment

to one-sided z-test controlling FDR. It assumes many small dependent blocks in

the arrays. The advantages of this appraoch are correlation among DE genes

considered and FDR level controlled. The BH procedure controls the FDR at the

nominal level and the ST procedure yields more liberal FDR. One drawback is

that we need the correlation among test statistics of differentially expressed genes

as input. In general, we know or we can estimate the proportion of differentially

expressed genes from pilot data, but we do not know which genes are differentially

expressed so that we. Therefore, this approach is not feasible in explorotary

analysis in which we can not provide the correlation matrix of differentially genes
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which is needed by the procedure.

Two more papers discussing sample size calculation controlling the FDR are

Pawitan et al (2005) and Liu and Hwang (2007).

Cluster Analysis is a useful multivariate data analysis techniques for the

analysis of microarray data. It organizes the entirety of genes into an assortment

of clusters so that the genes that behaved the most similarly in the experiment

will be members of the same cluster, while genes that behaved differently will

be members of different clusters. The principle is that it is reasonable to expect

that genes performing similar functions or operating in the same genetic path-

way would behave similarly across conditions. Since the seminal paper by Eisen

et al (1998), a wide range of clustering approaches have been developed in the

context of microarray data such as hierarchical clustering, partitioning methods,

and model-based clustering etc.

Hierarchical Clustering is the most popular clustering method. It produce a

hierarchy of clusters, called a tree or dendrogram, in two dstinct ways: bottom

up (agglomerative clustering) and top down (divisive clustering). Agglomerative

algorithm begins with each gene in its own cluster, then the closest pair of clusters

are combined whereas d ivisive algorithm begins with all genes situated in one

giant cluster, then the loosest cluster is divided into two clusters. Although in

principle, bottom-up clustering process can be ontinued until all genes are in one

cluster and top-down clustering process can be continued until each gene in its

own cluster, typical clustering process ends when it reaches the desired clusters or

a specific criteria is satisfied. Various hierarchical clustering methods with their

application to microarray data have been discussed by Eisen et al (1998), Cheng

and Church (2000), Friedman and Meulman (2002), Madeira and Oliveira(2004),

Chipman and Tibshirani(2006), Higham et al.(2007) and Nowak and Tibshirani

(2008).



19

Partitioning method splits the genes into a specified number of mutually ex-

clusive and exhaustive groups. It iteratively reallocate the observations to clusters

until some criterion is met, for example, minimize within-cluster sum of squared

dissimilarities. Examples of application of partitioning methods to microarray

data are: Tamayo et al (1999) and Toronen et al (1999) used self-organizing map

(SOM) for clustering microarray data; Dudoit and Fridyland (2002) applied k-

medoids to gene expression data; Dembele and Kastner (2003) and Asyali and

Alci(2003) cluster microrray data by fuzzy c-means. Tseng (2007) used penalized

and weighted k-means in clusering gene expression data.

Model-based clustering has been applied to microarray data by Yeung et

al.(2001), McLachlan et al.(2002), Pan et al.(2002), Medvedovic and Sivagane-

sam (2002), Medvedovic et al.(2004) and Pan (2006). It is a partitioning method

which assumes that each cluster is generated by a probability distribution such as

multivariate normal, mixed normal, gamma etc.. The advantage of model-based

clustering is that we do not need to heuristically judge which clustering result is

the best which has to be done with most other clustering procedures. One could

fit the model with different parameter values of probability density functions and

then pick up a best model according to a specific criterion function such as AIC

and BIC.

Gene Co-expression Netwoek. Graph-theoretic approaches are increas-

ingly used to explore the functionality of genes. An example is gene co-expression

network which tends to exhibit modular structure grouping together genes re-

sponsible for individual biological processes and functions. In this sense, gene

co-expression network provides the interaction between individual genes and a

system-level view of the organism.

The concept of gene co-expression network is quite straightforward: nodes

represnt genes and nodes are conneted if the correponding gene pairs are signifi-

cantly co-expressed. Generally, the connections between genes are converted from
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a co-expression measure, for example, the absolute value of Pearson correaltion

coefficient which is the most commonly used co-expression measure. Serveral re-

searchers have suggested to threshold this Pearson correlation coeffficient to con-

struct gene co-expression networks (Butte and Kohane,2000; Carter et al 2004;

Davidson et al.,2001). There are two ways to pick a threshold: one way is pick-

ing a ’hard’ threshold (a number) based on the notion of statistical significane

so gene co-expression is encoded using binary infromation(conneted=1, uncon-

nected=0);the other way is called ’soft’ thresholding which weighs each connetion

by a number between 0 and 1. The drawbacks of ’hard’ thresholding include loss

of information of the magnitude of gene connections and sensitivity to the choice

of the threshold(Carter et al.,2004). Moreover, an important question is whether

it is biologically meaningful.

’Hard’ threshodling results in unweighted networks while ’soft’ thresholding

results in weighted networks. After thresholding, connection strength among

genes are produced. The resulting matrix is used to define a measure of node

dissimilarity (distance). The node dissimilarity measure will be used as input

of a clustering method to define network modules(clusters of nodes). Once the

modules have been defined, one can build a gene network and define additional

network concepts. Finally, the modules and their highly connected genes are often

related to external gene information. For example, the highly correlated genes of

a certain module could predict cancer survival (Mischel et al.,2005).

1.3 Summary and Commonly Used R Packages

Today, microarrays are manufactured by multiple companies (two of which are

Affimetrix, and Agilent Technologies). Related analyses of the information gained

from microarrays help provide answers to many questions such as:

* How does diseased tissue differ from normal tissue?
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Figure 1.1: Schematic of a typical microarray data analysis

* What stage of a disease is present in a person?

* Which drugs will be best for treatment?

* How can drugs be improved for treatments?

* Which drugs work best at different stages of a disease?

* Which genes are acting together, as a cluster?

* What or which groups of genes are responsible for a hereditary characteristic,

hereditary syndrome, or disease?

Figure 2.1 shows the schematic of a typical microarray data analysis. This

thesis focus on the statistical methods for the Analyzing Data step. R is the

most commonly used softwares and it contains a number of packages to analyze

microarray data. Table 1.3 lists a few of them.
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Table 1.3: Most Commonly Used R Packages

USAGE STATISTICAL METHODS R PACKAGES
(Improved) Conditional T test DNAMRGene Identification
SAM samr

Pattern Discovery Model-based clustering mclust
Random Forest RandomForest

Class Prediction Neural Network nnet
Support Vector Machine e1071
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Chapter 2

Stochastic Approximation for Distributions

Abstract Stochastic approximation is proposed by Robbins and Monro (1951)

to find the solution to M(x) = θ given θ is known and M(x) is an unknown

monotone function. It finds a series of x1, x2, . . ., in such a way that xn, will tend

to x∗ in probability. It is very powerful in most cases. however, it does not work for

distribution because its intermediate estimator may not be a distribution. Thus

target estimation is induced to solve this roblem. The newly proposed method is

called S.A.D.. We present good propetties of S.A.D. and give some examples.

2.1 Introduction

Stochastic approximation is proposed by Robbins and Monro (1951). Let M(x)

denote the expected value at level x of the response to a certain experiment.

M(x) is an unknown monotone function of x and a solution x = θ to M(x) = α

is needed. Stochastic approximation method gives successive x1, x2, . . ., in such a

way that xn, will tend to θ in probability.

Suppose for each value x, H(y|x) is a distribution function in y such that

M(x) =
∫∞
−∞ ydH(y|x) and there exists a positive constant C such that Pr[|Y (x)|] =∫ C

−C dH(y|x) = 1 for all x. A nonstationary Markov chain xn is defined as follows:

x1 is an arbitrary constant; xn+1−xn = an(α−yn), where yn is a random variable

such that Pr[yn|xn] = H(y|xn). Let bn = E(xn − θ)2 and limn→∞ bn = b.

Theorem 2 in Robbins and Monro (1951) tells us if an is of type 1/n and if

M(x) satisfies
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(1) M(x) is nondecreasing (2) M(θ) = α (3) M ′(θ) > 0 then b = 0.

2.2 Stochastic Approximation for Distributions

Now if M(.) is a funtional of continous distributions, we need to find a solution

F θ(x) such that M(F θ(x)) = Fα(x) where Fα(x) is a given distribution function.

A straghtforward way to solve this problem using stochastic approximation is to

calculate

F n+1(x)− F n(x) = an(F 0(x)−M(F n(x)))

and get F 1(x), F 2(x), . . . , F n(x), . . . such that F n(x) converges given that

some specific conditions hold. But there is a problem here since Fn+1, the in-

termediate estimator may not be a distribution function. A simple example is

that Fn+1 could be bigger than one or less than zero.

Think the other way, if M(F θ(x)) = Fα(x) can be described as

h(q(i/m)) = s(i/m) i = 1, 2, . . . ,m,

where h : [−1, 1]→ [−1, 1] is a monotone increasing function,

q(i/m) is the (i/m)th quantile of F θ(x) and s(i/m) is the (i/m)th quantile of

Fα(x).

then q(i/m) can be approximated by qn+1
(i/m) = qn(i/m)+an(q0

(i/m)−E(qn(i/m))) when

specific conditions are satisfied.

This stochastic approaximation method used to estimate distribution func-

tions is called S.A.D.

2.3 An Example

2.3.1 Original Problem and Algorithms

This problem comes from microarray data analysis. Microarray model: Xgij =

µgj + σgεgij, where Xgij is log transformed and suitably normalized intensities,
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µgj is the mean of the gth gene in the jth group, and σ2
g is the variance of the gth

gene. Also, g(g=1. . . G) indexes the genes on the microarray, j(j=1,2) indexed

the groups, and i ( i=1. . .nj) indexes the objects. We want to estimate Fσ, where

Fσ is the distribution of σg and Fσ is the same for all the groups and all the

genes. Although one can use the emprical distribution of σg as the distribution

estimator, it is not accurate because the estimate of σg for all g comes from a

sample standard deviation of few samples.

In Amaratunga and Cabrerra(2003)(2007) and Cabrera and Yu(2007), there

is an old algorithm:

a) Generate a null distribution for the data by substracting the sample means

and dividing by the standard deviations.

b) Calculate the emprical distribution of sg, say F̂s. Assume that F̂s(x) is the

true distribution of σ, then resample from the null distribtuion of x and multiply

each sample by a σ generated from F̂s(x). Repeat this 10,000 times and get 10,000

pairs of samples.

c) From each pair of samples, calculate a value for the pooled sample standard

deviation, namely s∗g, for g = 1, . . . , 10, 000. Let F̂s∗(x) be the empirical distri-

bution of the s∗
′
g s. Then the estimator of g is obtained by mapping the emprical

distribution F̂s(x) into F̂s∗(x). More in detail, ĝ(y = F̂s(x)) = F̂s∗(F̂
−1
s (y)) and

ĝ−1(y) = F̂s(F̂
−1
s∗ (y)).

Therefore, the estimator of Fσ is Fσ(x) = F̂s(F̂
−1
s∗ (F̂s(x))).

This old algorithm does not work very well in some cases, so we developed

the following new algorithm:

(1) For g = 1, ..., G, calculate the sample deviation ŝ(0)
g of

(xg11, . . . , xg1n1 , xg21, . . . , xg2n2).

Let ŝ(0) = (ŝ
(0)
1 , ŝ

(0)
2 , . . . , ŝ

(0)
G ).

The empirical distribution of ŝ(0)
g , say F̂ (0), will serve as the initial estimator

of Fσ.
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(*) For k, sample σ(k−1)
g from F̂ (k−1) and sample x

(k−1)
g11 , . . . , x

(k−1)
g1n1

, x
(k−1)
g21 , . . . , x

(k−1)
g2n2

independently from N(0, σ2(k−1)
g ).

Calculate sample devation ŝ(k−1)
g of x

(k−1)
(g11 , . . . , x

(k−1)
(g1n1

, x
(k−1)
(g21 , . . . , x

(k−1)
(g2n2

and

empirical distribution of (ŝ
(k)
1 , ŝ

(k)
2 , . . . , ŝ

(k)
G ).

Repeat a few times and get E(F̂ (k−1))

(2) For k = 1, 2, . . . , K (a spcified number),

Let F̂ (k) = F̂ (k−1) − 1
n+1

(E(F̂ (k−1)) − F̂ (0)), where E(F̂ (k−1)) is estimated by

(*).

Then F̂ (K) is our final estimator of Fσ.

2.3.2 Simulation

Without loss of generality, we simulate σ2
g ∼ χ2

10/10 and xg1, xg2, . . . , xg6 ∼

N(0, σ2
g) iid, for g=1,2,...,10000. It is found that as the interation goes, our

estimator goes closer and closer to true distribution. And it converges pretty

fast. Figure 2.1 shows the results, where the green line is the true distribution

function, the black one is the empirical distribution of ŝg and the red one is our

estimator after 8 interations.

2.4 Extention to Correlation Matrix Estimation

2.4.1 The Origin of the Problem

Correlation matrix estimation is one of the most essential problems in multivariate

data analysis. In particular, correlation estimation among genes plays an impor-

tant role in microarra data analysis. For example, induce correlation correction

to gene expression identification could improve the statistical power for detec-

tion of differentially expressed genes. Intuitively, more power would be gained

among highly correlated genes than independent genes given all other conditions
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Figure 2.1: Estimators of Distribution. Green:True distribution function; Black:
Empirical distribution; Red: Estimator by S.A.D.

are same. Another example, correlation among genes measures the connection

strength of gene pairs which leads us to define an unweighted or weighted gene

co-expression network, a powerful tool to explore the system level functionality

of genes.

Pearson’s correlation coefficient is the most popular correlation estimator used

in multivariate analysis. However, its performance is poor when applied to mi-

croarray data because typical microarray data has thousands of genes with few

samples. So we extend S.A.D to estimate correlation matrix of genes in microar-

ray.

2.4.2 Methodology and Algorithm

Target Estimation
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Target estimation is explored by Cabrera and Meer(1996), Cabrera and Wat-

son(1997) and Cabrera and Fernholz (1999). The aim of this procedure is to

reduce bias and variance of a one dimensional statistic. Cabrera and Fernholz

(2003) extended this method to multivariate situations. For a higher dimensional

statistic, conditions are given to ensure no bias and lower variance after target-

ing. We apply a version of this approach for estimating the correlation matrix of

genes.

The idea is to estimate the function h : [−1, 1]n → [−1, 1]n definded by h(ε) =

ε̂,

where Σ = (εij) is the true correlation matrix of all genes.

ε is the vector of lower triangle matrix of Σ.

Σ̂ = (ε̂ij) is the Peason correlation coefficient of all genes.

ε̂ is the vector of lower triangle matrix of Σ̂.

Once we have h, ε can be estimated by ε̃ = h−1(ε̂) thus we have Σ.

A possible way to estimate h is sampling gene sets, say Y, from multivariate

normal distribution with mean 0 and variance Σ̂. And then calculate the Pearson’s

correlation coefficient of Y, say Σ̂∗. After these, h can be got by mapping Σ̂ into

Σ̂∗. It performs well when the total number of genes is relatively small but it is

not so good when there are thousands of genes in the dataset. So we use S.A.D.

to estimate function h.

To estimate h, we extend S.A.D. to fit a more complex situation, let y be

ordered ε̂ and x be ordered ε. The algorithm is as follows:

(A1) Calculate the Pearson Correlation Coefficients Σ̂ and the vector of lower

triangle ε̂.

(A2) For n=100,101,...,nn(a specified number), compute

ε̂n+1 = εn − 1
n+1

(E[εn]− ε̂), εn+1 = sort(ε̂n+1)

Calculation of E[εn]:
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Suppose we have G genes and m samples, get 100 samples Z ∼MVN(m,mu =

0, Σ̂n), where εn is the vector of lower triangle of Σ̂n. E[εn] is the average of or-

dered vector of lower triangle of cor(Z).

2.4.3 A Simulated Example

We use a very similar simulated example in Zhang and Horvath (2005). The

correlation matrix is a block diagonal one:

C =



C1 0 0 0

0 C2 0 0

0 0 C3 0

0 0 0 C4


where Cm is nm × nm matrix and n1 = 100, n2 = 200, n3 = 300, n4 = 500, n =∑
ni = 1100.

C4 = I , Identity matrix.

For m = 1,2 and 3,

C∗m(i, j) =



(1− 0.3×max(i,j)
nm

)5, i≤ 0.95nm and j ≤ 0.95nm

(0.85 + 0.3×i
n

)5 × (0.85 + 0.3×i
n

)5, i>0.95nm and j ≤ 0.95nm

(0.85 + 0.3×i
n

)5 × (0.85 + 0.3×i
n

)5, i≤ 0.95nm and j > 0.95nm

0.955, i>0.95nm and j > 0.95nm

.

C∗m is not positive semi-definite, so we keep the eigenvectors and change the

negative eigenvalues to a small postive constant and then we get a positive semi-

definite matrix. Transform the positive semi-definite matrix to a correlation ma-

trix, that is Cm.

A color coded picture of matrix C is shown in Figure 2.

Our simulated data contains 50 samples which come from multivariate normal

distribution, i.e.

Data ∼MVN(50, 0,Σ = C) .

First we use target estimation and stochastic approximation to correct the
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Figure 2.2: Plots of True Correlation

Pearson correlation coefficients of the simulated data. Figure 3 displayed the

color pictures of the Pearson correlation coefficients matrix (a) and the corrected

one (b) (after 100 interations). It is easily seen that the bias of Pearson correlation

coefficients is greatly reduced after correction.

The mean absolute difference between estimated correlation matrix and true

correlation is shown in Table 1. From it, it is easily seen that the difference

becomes smaller and smaller as the interations are increasing. The mean value of

absolute difference between Pearson’s correlation coefficents and true correlations

is 0.12 at the beginning. While after 161 interations, the mean absolute difference

decreased to around 0.05.
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Figure 2.3: Color picture of correlaton matrix. (a) Pearson correlation coeffi-
cients (b) Corrected correlation coefficients by target estimation and stochastic
approximation

2.5 Discussions

The idea of S.A.D originates from the estimation issue that appear in microarray

data analysis. As mentioned in section 2.3, we need to estimate the common

distribution of the standard deviation of all genes. We mentioned two algorithms

in section 2.3.1.

It was seen that the old algorithm is not an step by step approximation. It is

not like S.A.D. which can produce a series of distribution functions t approximate

true distribution. Theoretically, we can always achieve better estimator by S.A.D

than by the old algorithm though the difference between two estimators could be

small.

Similarly, the old algorithm can also be applied to correlation matrix esti-

mation. In this case, the improvement of S.A.D is bigger than the prevous case

especially when our data size is very big and data shows many clusters.
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Table 2.1: Difference Between Estimated Correlation and True Correlation

Interations mean (|estimated correlation - true correlation |)
01 0.1217543
11 0.1041911
21 0.0918061
31 0.0829661
41 0.0763751
51 0.0712563
61 0.0671681
71 0.0639897
81 0.0613384
91 0.0591308
100 0.0574079
101 0.0572951
111 0.0557598
121 0.0544193
131 0.0532888
141 0.0523036
151 0.0514560
161 0.0507081

Generally, better perfermance means more computing time and S.A.D is not

an exception. So the old algorithm is still a good alternative way to estimate

distribution or correlation matrix if less time is more important in some cases.
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Chapter 3

Improved Conditoinal T Approach to Identify

Differentially Expressed Genes

Abstract Amaratunga and Cabrera (2003)(2007) proposed a conditional t suite

of tests (Ct) for identifying differentially expressed genes in a microarray experi-

ment. But the correlation between the mean and the variance of gene expressions

is very strong in raw data. Although in many cases, the relationship is greatly

reduced after taking transformation, if the correlation exists, we need deal with

it. So we developed improved conditional t test to take consideration of such

situations.

When the mean and the variance are independent, improved conditional t tests

give us similar results as Ct. While the mean and the variance are correlated,

improved Ct is evidently better than Ct in the sense that it gains more power

and identifies more significantly differentially expressed genes.

3.1 Introduction

In contrast to one gene per experiment or tens of genes per experment, DNA mi-

croarrays can simutaneously measure the expression profiles of thousands of genes,

often the entire repertoire of a cell population or tissue under investigation. This

technology is a powerful tool to help scientists study diverse biological systems.

And it is increasingly applied to address a wide range of biological questions.

A major and popular statistical analytic task in microarray data analysis is to

identify significantly differentially expressed genes across two or more conditions.
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Why do we need to study gene differentail expression? Because differential gene

expression leads to altered cell states. Mutations of genes could cause diseases

which are called generic diseases. For example,. So one experiment could be

conducted to identify genes associated with the disease process so that the devel-

opment of drugs can target to these genes. The simplest and most common case

is a comparison between the gene expression profiles of two different experimental

conditions, such as control and treatment.

Early gene expression studies declared a gene differentially expressed if its fold

increase or fold decrease over a background expression level exceeded a specified

cutoff, which is the simplest heuristic rule. For example, in their seminal paper

on using microarrays to study gene expression in Arabidopsis thaliana, Schena et

al. (1995) declared a gene differentially expressed if its expression level exhibited

a fivefold difference between the two mRNA smaples. Also DeRisi et al. (1997)

looked for two-fold induction of gene expression compared to baseline and in Iyer

et al.(1999), genes were selected if their expression level deviated from that in

control by at least a factor of 2.20 in at least two of the samples from specific

cells. This approach has been criticized because it relies on fold change alone and

ignores the variablity of estimates. Genes with high variablity have a larger chance

to have a large fold change than genes with low variablity. Therefore, it is possible

that a gene shows a five-fold change but it not significant because its expression

level measurements have high variablity while a gene shows onefold change and

it is significant statistically and biologically because it has low variability.

Besides heuristic rules, data mining tools such as classification appraches and

clustering methods are commonly used for identifying differentially expressed

genes too. for an instance, Xiong et al.(2001) identified indicator genes based

on classification errors by feature wrappers (including linear discriminant analy-

sis, logistic regression and support vector machines). Yuan and Kendziorski(2006)
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proposed a unified approach for simultaneous gene clustering and differential ex-

pression identification. The clustering approach they used is lognormal-normal

model(LNN) based clustering approach and AIC (Akaike information criterion),

BIC (Bayesian information criterion), HQ (the criterion proposed by Hannan and

Quinn (1979)) and TC (fixed cluster number at the true value) are used to select

the number of clusters.

Another most widely used tools applied to micaroarray analysis are the prob-

abilistic approaches which include non-parametric approaches and parametric ap-

proaches. Some statisticians suggest using non-parametric methods considering a

microarray data often contains many noises and may be not normally distributed.

Raychaudhuri et al.(2000) and Tsodikov et al. (2002) applied rank-transformed

data to analyze microarray data. Dudoit et al.(2002a) used a nonparametric t-test

with family wise error rate corrected p-values. Chambers et al.(1999) used the

Mann-Whitney-Wilcoxon rank sum test in the analysis of microarray data from

a study of human cytomegalovirus infection. Park et al(2001) scored genes based

on the number of permutations of expression values required to make that gene

into a perfectly discriminating marker, where all high expression values belong to

one group of experiments and all low expression values belong to the other group.

Significance of scores was assessed based on column permutations of the data set

and comparison of the distribution of scores from permuted data to that of the

original data. Other investigators used similar approaches, but looked for genes

with high correlation to an idealized expression pattern that perfectly discrimi-

nates between two groups; they determined statistical significance from repeating

the analysis on permuted data(Galtiske et al.(1999); Golub et al.(1999)). Troy-

anskaya et al.(2002) compared three model-free approaches: (1) a nonparamatric

t test (2)a rank sum test and (3) a heuristic method based on high Pearson corre-

lation to a perfectly differentiating gene and claimed that (3) was the best among

the three approaches.
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Although those non-parametric tests do not depend on strong distributional

assumptions holding to be valid and can be used in a wide range of situations,

they are less powerful than their parametric counterparts. Their p-values tend to

be higher so it is harder to detect real statistically significant dfferences. When

the sample size is large, the difference in power is not evident. But when sample

size is small, as in typical microarray experiments, non-parametric tests have very

little power to detect differences.

The parametric approaches use prabalilistic inference based on a specific data

model. For example, Newton et al.(2001) identified differentially expressed genes

by posterior odds of change based on a hierachical Gamma-Gamma-Bernouli

model of expresion ratios. Long et al.(2001) used analysis of variance (ANOVA)

based on a bayesian estimate of variance among experiment replicates with a

Gaussian model for expression measurement. And a hierachical Bayesian mod-

eling framework with Gaussian gene-independent models combined with a t-test

(Baldi and Long 2001). Pan(2002) used a mixture modeling approach that esti-

mates the distribution of t-statistic-type scores using normal mixture models and

compared it with two parametric approaches, including a regular t-test.

If only two groups in comparison, two sample t test is the most basic one

among all these parametric approaches. But with small samples, the t test tends

to pick up significant findings at a higer rate form among the genes with low

sample variance than from aong the genes with high sample variance because of

the strong correlation between t statistic and the standard error estimate. This

property of t test leads to a high false positive rate for genes whose variablity is low

and a high false negative rate for genes whose variablity is high since the sample

sizes used in microarray experiments are typically very small. There are some

proposals to overcome this drawback of t test pubilished in the microarray data

analysis literature. One was suggested by Tusher et al. (2001). Their significance

analysis of macioarrays (SAM) method selected a constant, called fudge factor to
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add to the denominator of the t test statistic and used permutations of repeated

measurements to estimate the false discovery rate of differentially expressed genes.

Broberg (2002) proposed an alternative method for estimating the fudge factor.

For various values, the value that corresponds to the point on the ROC curve (a

relationship between the false negative rate and the false negative rate) that is

nearest the origin is chosen as the fudge factor.

Amaratunga and Cabrera(2003) proposed a conditional t (Ct) suite of tests

to overcome the shortcomings of t tests. They estimated the distribution of t test

statistic conditional on standard error under null hypothesis and produced a crit-

ical envelope instead of a critical value to decide which genes are up-regulated or

down-regulated. According to simulation results, Ct is slightly better than SAM

on both simulated data and real data. Now we extend Ct to handle the situation

when the correlation between the mean and the variance of gene expressions ex-

ist even after data transformation or normalization. Figure 2.1 plots the sample

standard deviations (s) vs sample means (x) on nomalized mice data in the R

package DNAMR which shows the dependence between mean and variance.

This chapter is organized as follows. Section 3.2 reviews the Ct test. Section

3.3 introduces improved Ct test and shows its asymptotical properties. Section

3.4 shows the simulation results of Improved Ct test and its better performance

compared to Ct. The proofs of theorems in section 3.3 are provided in section

3.5. Finally, section 3.6 discusses our findings and conclusions of chapter 3.

3.2 Conditional t test

In this section, we provide the procedures of conditional t(Ct) tests, which was

proposed by Amaratunga and Cabrera (2003), and we compare the performance

of conditional t test with the standard t test and SAM.

First we look at the model: Xgij = µgj + σgεgij, where Xgij is log transformed



38

Figure 3.1: mice data: sample standard deviations (s) vs sample means (x)

and suitably normalized intensities, µgj is the mean of the gth gene in the jth

group, and σ2
g is the variance of the gth gene. Also, g(g=1. . . G) indexes the

genes on the microarray, j(j=1,2) indexed the groups, and i ( i=1. . .nj) indexes

the objects.

They produced a critical envelope instead of a critical value based on the

estimated distribution of Tg conditioned on sg. The procedure is comprised of

two steps (Amratunga and Cabrera (2003)(2007)):

Step1: Estimate Fσ, where Fσ is the distribution of σg and Fσ is the same for

all the groups and all the genes. We use S.A.D presented in chapter 2 to estimate

Fσ. The estimator, say Fσ(x), will be used in the following step to generate the

standard deviations of the gene populations.

Step2: Estimate the conditional distribution of Tg|sg, and then estimate the

values tα(sg) for a few α′s.

a) Generate a null distribution for the data by substracting the sample means
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and dividing by the standard deviations.

b) Resample from the null distribution of x and multiply each sample by a σ

generated from Fσ(x). Repeated this 10,000 times and in this way, obtain 10,000

pairs of samples. From each pair of samples, calculate a value for the pooled

sample standard deviation and the two sample t statistic, namely sg and tg for

g = 1, . . . , 10, 000.

c) Estimate tα(sg) according to P (|T | > tα(sg)|sg) = α using a quantile re-

gression estimate for tg verse sg and estimate the regression quantile curve for the

(1− α)th quantile. A rough but effective way to estimate the regression quantile

curve is to split the 10,000 points into 100 groups with 100 points in each group

sorted by sg and calculate the 1 − α quantile for each group which is called t(j).

Then the group medians for sg, called s(j)j = 1, . . . , 100, are calculated. Last,

estimate tα(sg) by fitting a smoother such as lowess or a smoothing spline to t(j)

versus s(j). It is recommended to take the log of t(j) and s(j) first before estimating

the quantile function.

Amratunga and Cabrera (2003)(2007) compare Ct to tradional t test and

SAM based on simulated data and real data. Results show that the performance

of Ct is slightly better than SAM, and much better than standard t test.

3.3 Improved conditional t test

When the variance (σ2) and the mean (µ) of gene expressions are correlated, a

straightforward extention of Ct is to estimate the joint distribution of σ and µ

and get the distribution of Tg conditioned on joint (σ, µ). But computationally it

needs using two-dimensitional smoothers and inverting two-dimentional functions,

which is not easy. An alternative way is to split data by ordered mean values

and apply Ct to each of the subsets. In this section, first we introduce Improved

Conditional t test and then show its asympotical properties and simulation results.
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3.3.1 Procedures of improved conditional t test

Interate our model: Xgij = µgj + σgεgij. g=1. . . G; j=1,2; and i=1. . .nj.

We show three methods here:

Method 0 ( Conditional t test). Apply Ct test on the whole data, and genes

fall outside the critical curve h(sg) are said to be significant.

Let G be the number of genes and let x̄(1),x̄(2),. . . ,x̄(G) be the order statis-

tics of x̄(g) , where x̄(g) is the mean intensities of gene g. We split the data

to K blocks by the values of x̄(g) and let Gk denote the number of genes in

the kth block. Then the intervals of mean gene expressions of K blocks are

[x̄(1),x̄(G1)),[x̄(G1),x̄(G1+G2−1)),. . . ,[x̄(G−GK+1),x̄(G)]. In practice, we set Gk = nb

where nb is a fixed value. Since x̄(1) is the minimum and x̄(G) is the maxi-

mum, block [x̄(1),x̄(G1)) is equivalent to block (−∞,x̄(G1)) and similarly, block

[x̄(G−GK+1),x̄(G)] is equivalent to block [x̄(G−GK+1),+∞) for genes that belong to

the two blocks.

Method 1. Apply Ct test on the kth block to estimate a critical curve h1
k(sg),

and genes in the kth block that fall outside h1
k(sg) are said to be statistically

significant for k=1,2,...,K.

Method 2. (Improved Conditional t test) It contains three steps:

1) Apply Ct test on the first 2 blocks to estimate a critical curve h1(sg),

and genes in the first block that fall outside h1(sg) are said to be statistically

significant.

2) Apply Ct test on the (k−1)th, kth and (k+ 1)th block to estimate a critical

curve hk(sg), and genes in the kth block that fall outside hk(sg) are said to be

statistically significant for k=2,...,(K-1).

3) Apply Ct test on the last 2 blocks to estimate a critical curve hK(sg),

and genes in the last block that fall outside hK(sg) are said to be statistically

significant.
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3.3.2 Properties

In subsection 3.3.1, we describe three methodologies for identification of signifi-

cantly differetially expressed genes, here we explore the asympotical properties of

these methods.

Some notations:

x: random variables representing the mean intensity;

s: random variables representing the pooled standard error estimate;

t: random variables representing the observed t-statistic;

f(t,s,x): joint probability density function of t s and x;

f(t): marginal distribution of t;

tα: critical t value which satisfies
∫∞
tα
f(t) = α.

First we explore the relationship between Conditional t test and standard two

sample t test, that is:

Theorem 3.3.1: For Conditional t test (Method 0), as n1 → ∞, n2 → ∞,

h(sg)→ tα.

This theorem points out that Ct test goes to general two sample t test as the

group sizes go to infinity.

Lemma 3.3.2: In Method 1 and Method 2,

x̄(G1+...+Gk−1+Gk) − x̄(G1+...+Gk−1+1) → 0, as Gk → 0, K → ∞, Gk
G
→ 0, for

k = 1, ..., K.

Theorem 3.3.3:(levels of three tests)

(A) Ct (Method 0) is a level α test. (B) Method 1 is a level α test.

(C) Improved Ct (Method 2) is a level α test asymptotically.

Theorem 3.3.4: If µgj is asymptotically independent of σ2
g , then three methods

are equivalent.

The variance and the mean can not be completely independent, but if the

correlation is very weak, we can still use Ct to save computing time. If computing
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is not a problem, then Improved Ct is recommended since it is better than Ct in

any case.

3.3.3 Simulation results

To compare the performance of Improved Ct and Ct, we apply these two proce-

dures to simulated datasets.

Senario 1: First we simulate Xgij ∼ NID(τg, 1), with 10000 genes and 4

samples in each group. And τg = δ for g=1,...,1000 and τg = 0 otherwise. So in

this senario, 1000 genes are set up to be differentially expressed.

For various δ (δ = 1 or 2) and α (α = 0.01 or 0.05), the number of statistically

significant genes (gsig) at level α, the number of false discovered genes (fsig) and

pFDR by Ct and Improved Ct with different block size Gi are recorded in Table

3.1. These results are the average of 500 simulations. Blocka are evenly splitted

(except for the last block) in Improved approach. In detail, block size Gk means

that the block size of the first (K-1) group, where K =
⌊
G
Gi

⌋
, is chosen to be Gk

and the block size of the Kth group, i.e. the last group, is G− (K − 1) ∗Gk.

From Table 3.1, not surprisely, pFDR is much lower at δ = 1 then at δ = 2

given all the other conditions are same because as the true difference increases,

methods performs better in general. For α = 0.01, except the highest pFDR goes

to Improved Ct with block size 100, the smallest block size, for both δ and smaller

block sizes tend to produce higher pFDR if δ = 2, pFDR of Improved Cts and

Ct are comparable at either δ. While when α = 0.05, things are a little different;

in this case, no matter δ = 1 or δ = 2, there is no much difference among gsig or

fsig or pFDR of Ct and Improved Ct with various block size.

Table 3.2 and Table 3.3 shows the 20 most significant genes calculated by Ct

and Improved Ct in one simulation for δ = 1 and δ = 2 respectively. Numbers in

two tables are the labels of genes. The genes whose labels are larger than 1000

are falsely declared genes since only the first 1000 genes are truely differentially
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Table 3.1: (Senario I) gsig, fsig and pFDR calculated by Ct and Improved Ct
Xgij ∼ NID(τg, 1), τg = δ · 1(1≤g≤1000), G = 10, 000. n1 = n2 = 4

α = 0.01 α = 0.05
δ = 1 gsig fsig pFDR gsig fsig pFDR

Ct 208 86 41.3% 823 503 61.1%
100 278 135 48.6% 877 564 64.3%
150 238 105 44.1% 865 549 63.4%
200 206 78 37.9% 794 482 60.7%
250 214 96 44.9% 818 500 61.1%
300 222 96 43.2% 839 527 62.8%
350 232 104 44.8% 820 514 62.7%Gi

400 245 109 44.5% 880 556 63.2%
500 239 115 48.1% 875 556 63.5%
600 219 96 43.9% 825 515 62.4%
700 204 83 40.7% 836 516 61.7%
800 229 99 43.2% 855 533 62.3%
900 231 99 42.9% 846 523 61.8%

δ = 2
Ct 679 85 12.5% 1324 500 37.8%
100 684 116 17.0% 1287 516 40.1%
150 724 119 16.4% 1378 553 40.1%
200 713 113 15.8% 1358 531 39.1%
250 702 118 16.8% 1347 528 39.2%
300 706 107 15.2% 1359 531 39.1%
350 719 115 16.0% 1386 557 40.2%Gi

400 711 107 15.0% 1359 524 38.6%
500 690 88 12.8% 1342 511 38.0%
600 709 96 13.5% 1346 517 38.4%
700 692 92 13.9% 1356 527 38.9%
800 683 83 12.2% 1320 498 37.7%
900 692 87 12.6% 1332 512 38.4%
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Table 3.2: Simulation I: 20 most significant genes in one simulation. G = 10, 000,
n1 = n2 = 4, Xgij ∼ NID(τg, 1), τg = 1(1≤g≤1000)

Gi

Ct 100 200 300 400 500 600 700 800 900
1 943 5881 4272 943 943 943 943 943 943 943
2 686 9195 943 686 551 686 939 2056 686 370
3 518 4272 9059 2056 785 518 686 686 518 686
4 2056 6222 2056 518 796 2431 518 518 2056 785
5 785 686 686 9059 518 796 370 284 551 518
6 649 4132 683 785 2056 655 683 785 9059 9059
7 9059 943 68 370 370 284 68 2431 649 2056
8 370 518 649 504 686 785 504 649 370 68
9 551 8160 785 68 9059 9059 649 370 785 551
10 68 655 518 551 504 807 785 436 796 649
11 605 504 771 683 683 7595 796 605 284 317
12 796 730 504 317 839 771 655 68 605 284
13 807 807 796 655 436 649 605 9059 655 605
14 655 939 448 796 68 730 807 796 683 796
15 317 785 317 436 655 504 19 655 504 655
16 436 9858 839 807 284 683 9059 317 807 436
17 284 9059 730 649 7595 839 284 839 317 504
18 683 4610 8160 284 317 551 2056 551 771 807
19 771 7595 19 860 19 605 884 7595 436 683
20 504 68 835 839 835 2116 730 730 839 835
#non 2 10 4 2 3 3 2 4 2 2



45

Table 3.3: Simulation II: 20 most significant genes in one simulation. G = 10, 000,
n1 = n2 = 4, Xgij ∼ NID(τg, 1), τg = 2 · 1(1≤g≤1000)

Gi

Ct 100 150 200 250 300 400 500 600 700 800 900
1 943 4932 796 943 370 943 4232 943 943 943 943 943
2 686 8160 943 518 943 686 588 683 686 68 686 370
3 518 966 370 686 452 518 370 686 518 683 785 68
4 370 452 730 835 518 655 68 518 649 370 370 686
5 785 68 68 683 68 730 943 19 605 785 518 518
6 68 686 884 588 686 796 551 504 436 19 284 436
7 649 317 518 317 551 860 436 302 796 504 771 785
8 284 889 686 436 655 839 966 317 317 401 209 649
9 551 518 504 209 796 828 284 796 209 436 452 807
10 683 236 785 655 966 793 807 807 655 649 401 551
11 436 943 860 370 785 649 924 401 504 209 68 605
12 807 655 649 796 29 360 317 142 683 142 655 796
13 796 796 61 19 554 361 309 612 370 605 796 655
14 605 501 655 771 771 370 686 889 785 884 839 884
15 504 504 175 302 730 924 785 370 551 518 807 284
16 655 436 137 68 605 785 518 655 401 686 436 839
17 771 257 360 649 860 58 839 884 68 924 317 683
18 317 835 605 828 257 309 884 551 771 796 649 966
19 839 839 924 142 61 504 448 785 730 284 551 730
20 730 248 614 939 835 424 771 209 284 309 730 504
#non 0 2 0 0 0 0 1 0 0 0 0 0
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expressed. The last row displays the falsely discovered genes among top 20 genes.

From Table 3.2, it is easily seen that Ct and Improved Ct with different block sizes

share common declared significantly differentially expressed genes including truely

differentially expressed genes and falsely discovered genes. There are 10 falsely

discovered genes among top 20 when block size is 100 and 2 to 6 falsely discovered

genes in other cases. It partially implies worse performance of Improved Ct with

blcok size 100, which is consistent with the results shown in Table 3.1. Similar

phenomenon exist in Table 3.3. But since the true difference has increased from

1 to 2, there is few falsely discovered genes among top 20 significant genes.

Senario 2: we simulate Xgij ∼ NID(τgj, s
2
g), with G genes and 4 samples

in each group. And τg1 ∼ U(0, 100), τg2 = τg1 + δ for g=1,...,1000 and τg2 = τg1

otherwise. s2
g = τg1 + χ2

3. In this senario, still 1000 genes are set up to be

differentially expressed.

Under Senario 2, for various δ and G, the number of statistically significant

genes (gsig) at level α, the number of false discovered genes (fsig) and pFDR by

Ct and Improved Ct with different block size Gk are recorded in Table 3.4 - Table

3.6. These results are the average of 500 simulations. Blocks splitting method in

Improved Ct are the same as previous simulation under Senario 1.

From Table 3.4, when α = 0.01, the pFDRs of all Improved Ct are uniformly

less than that of Ct while the number of statistically significant genes (gsigs) and

the number of false discovered genes (fsigs) are greater than those of Ct. And

as the block size of Improved Ct increases, both gsig and fsig tend to decrease.

When α = 0.05, the pFDRs of Improved Ct and Ct are very close. Results are

similar in Table 3.5 and Table 3.6.
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Table 3.4: gsig, fsig and pFDR calculated by Ct and Improved Ct. G = 10000,
n1 = n2 = 4, Xgij ∼ NID(τgj, s

2
g), τg1 ∼ U(0, 100), τg2 = τg1 + δ · 1(1≤g≤1000),

s2
g = τg1 + χ2

3

α = 0.01 α = 0.05
δ = 5 gsig fsig pFDR gsig fsig pFDR

Ct 129 78 60.5% 606 430 71.0%
100 250 139 55.6% 798 555 69.6%
150 226 109 58.2% 793 551 69.5%
200 230 118 51.3% 785 546 69.6%
250 229 117 51.1% 793 542 68.3%
300 213 101 47.4% 794 548 69.0%
350 215 104 48.3% 787 546 69.3%
400 218 108 49.5% 769 529 68.8%

Gi 500 201 100 49.8% 764 519 67.9%
600 203 101 49.8% 755 520 68.9%
700 202 98 48.5% 751 512 68.2%
800 180 87 48.3% 716 489 68.3%
900 189 89 47.0% 726 499 68.7%
1000 175 84 48.0% 725 494 68.1%
1100 173 86 49.7% 719 496 69.0%
1200 171 86 50.3% 706 483 68.4%

δ = 10
Ct 333 89 26.7% 953 449 47.1%
100 513 136 26.5% 1147 583 50.8%
150 479 119 24.8% 1124 570 50.7%
200 462 118 25.5% 1086 539 49.6%
250 467 113 24.2% 1136 573 50.4%
300 454 102 22.5% 1084 535 49.4%
350 475 110 23.1% 1082 541 50.0%
400 467 114 24.4% 1095 536 48.9%

Gi 500 457 106 23.2% 1068 516 48.3%
600 438 93 21.2% 1081 529 58.9%
700 447 100 22.3% 1068 521 48.8%
800 441 97 22.0% 1075 517 48.1%
900 418 85 20.3% 1040 491 47.2%
1000 421 91 21.6% 1045 497 47.6%
1100 406 83 20.4% 1030 484 47.0%
1200 403 75 18.6% 1032 486 47.1%
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Table 3.5: gsig, fsig and pFDR calculated by Ct and Improved Ct G = 20000,
n1 = n2 = 4, Xgij ∼ NID(τgj, s

2
g), τg1 ∼ U(0, 100), τg2 = τg1 + δ · 1(1≤g≤1000),

s2
g = τg1 + χ2

3

α = 0.01 α = 0.05
δ = 5 gsig fsig pFDR gsig fsig pFDR

Ct 216 153 70.8% 1118 882 78.9%
100 348 225 64.7% 1389 1132 81.5%
150 354 231 65.3% 1427 1165 81.6%
200 344 222 64.5% 1382 1118 80.9%
250 326 206 63.2% 1394 1132 81.2%
300 309 193 62.5% 1355 1092 80.1%
350 307 192 62.5% 1326 1069 80.6%
400 305 189 62.0% 1326 1070 80.7%

Gi 500 306 195 63.7% 1343 1078 80.2%
600 293 183 62.5% 1325 1066 80.5%
700 284 181 63.7% 1282 1022 79.7%
800 284 185 65.1% 1303 1045 80.1%
900 269 174 64.7% 1281 1028 80.2%
1000 273 170 62.3% 1270 1013 79.8%
1100 262 167 63.7% 1251 1001 80.0%
1200 264 172 65.2% 1274 1019 80.0%
1300 253 159 62.8% 1271 1014 79.8%
1400 237 155 65.4% 1246 998 80.1%
1500 247 164 66.4% 1274 1024 80.4%
1600 252 169 67.1% 1253 1001 79.9%
1700 233 158 67.8% 1221 973 79.7%
1800 239 164 68.6% 1232 977 79.3%
1900 234 162 69.2% 1212 962 79.4%
2000 240 164 68.3% 1238 991 80.0%
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Table 3.6: gsig, fsig and pFDR calculated by Ct and Improved Ct G = 20000,
n1 = n2 = 4, Xgij ∼ NID(τgj, s

2
g), τg1 ∼ U(0, 100), τg2 = τg1 + δ · 1(1≤g≤1000),

s2
g = τg1 + χ2

3

α = 0.01 α = 0.05
δ = 10 gsig fsig pFDR gsig fsig pFDR
Ct 402 148 36.8% 1438 855 59.5%
100 613 242 39.5% 1707 1137 66.6%
150 624 226 36.2% 1724 1132 65.7%
200 602 214 35.5% 1714 1123 65.5%
250 562 186 33.1% 1682 1085 64.5%
300 564 189 33.5% 1636 1058 64.7%
350 583 204 35.0% 1654 1070 64.7%
400 554 180 32.5% 1645 1057 64.2%

Gi 500 562 188 33.4% 1649 1061 64.3%
600 559 176 31.5% 1631 1045 64.1%
700 566 193 34.1% 1649 1060 64.3%
800 565 187 33.1% 1645 1055 64.1%
900 554 180 32.4% 1627 1039 63.9%
1000 539 172 31.9% 1571 992 63.1%
1100 552 182 33.0% 1570 987 62.9%
1200 552 182 33.0% 1618 1032 63.8%
1300 551 183 33.2% 1623 1040 64.1%
1400 519 156 30.1% 1576 994 63.0%
1500 532 160 30.1% 1588 1006 63.4%
1600 532 170 32.0% 1586 1008 63.6%
1700 533 170 31.9% 1572 991 63.0%
1800 517 159 30.8% 1568 985 62.8%
1900 513 154 30.0% 1532 948 61.9%
2000 506 152 30.0% 1541 967 62.8%
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Comparison: To compare Ct, Improved Ct with traditional t test, FDR50,

the proportion of the top 50 genes that are not within the differentially expressed

genes, is used as a criterion in the following two situations: first, we simulate

Xgij ∼ NID(τg, 1), with 5000 genes and 4 samples in each group, where τg = δ for

g=1,...,100 and τg = 0 otherwise. FDR50 curves from 500 simulations performed

for each of 5 different values of δ between 0.5 and 2.5 are shown in Figure 3.2. The

block size we use in Improved Ct is 500. Then we simulate Xgij ∼ NID(τgj, s
2
g),

with 5000 genes and 4 samples in each group. And τg1 ∼ U(0, 100), τg2 = τg1 + δ

for g=1,...,100 and τg2 = τg1 otherwise. s2
g = τg1 + χ2

3. Figure 3.3 shows FDR50

curves from 500 simulations performed for each of 7 different values of δ between

4 and 16.

It is easily seen that when the mean and the variance are independent, Ct

is comparable to Improved Ct and both are much better than traditional t test.

While when there is strong dependence between the mean and the variance, Im-

proved Ct is much better than the other two.

We also used Khans pediatric tumor dataset (Khan et al (2001) which contains

2308 genes to check the performance of Ct, Improved Ct and traditional t. From

this dataset, we chose columns 6 to 13 corresponding to 8 patients with Ewing

tumors since these columns appear to have no differentially expressed genes and

we can add a δ to randomly selected genes in the treatment group so that these

genes are artificially differentially expressed. We split the subset into a control

group (columns 6 to 9) and a treatment group (columns 10 to 13). Each time,

we added δ to 100 randomly selected genes for the treatment group. The average

FDR50 of 500 times calculated by three methods corresponding to 7 values of

δ between 0.2 and 0.8 are shown in Figure 3.3. The block size we choose for

Improved Ct is 350 which results in six blocks.
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Figure 3.2: FDR50 Curves: Red: Improved Ct (block size 500); Black: Ct; Green:
t test approach
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Figure 3.3: FDR50 Curves: Red: Improved Ct (block size 500); Black: Ct; Green:
t test approach
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Figure 3.4: FDR50 Curves: Red: Improved Ct (block size 350); Black: Ct; Green:
t test approach
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3.4 Proofs

In this section, we provide the detailed proofs of theorems in section 3.3.

Theorem 3.3.1: For Conditional t test (Method 0), as n1 → ∞, n2 → ∞,

h(sg)→ tα.

Proof : As n1 →∞ and n2 →∞, by the Law of Large Number,

it is easily seen that sg → σg a.s. which implies
σ2
g

s2g
→ 1 a.s.

By the central limit theorem, we have Tg|sg = Xg2−Xg1
sg

√
1
n1

+ 1
n2

→ N(0, 1)

Since tα(sg) is defined by P (|T | > tα(sg) |sg;H0 ) = α,,

Tα(sg)→ ϕα, tα → ϕα

where ϕα is the α quantile of the standard normal distribution.

Hence, Tα(sg)→ tα.

Lemma 3.3.2: In Method 1 and Method 2,

x̄(G1+...+Gk−1+Gk) − x̄(G1+...+Gk−1+1) → 0, as Gk → 0, K → ∞, Gk
G
→ 0, for

k = 1, ..., K.

Proof : Let fx(x) and Fx(x) be the density function and distribution function

of x, the mean intensity of a random selcted gene.

As Gk → 0, K →∞, Gk
G
→ 0, by laws of large numbers,

x̄(G1+...+Gk−1+Gk) → G1+...+Gk−1+Gk
G

th quantile

x̄(G1+...+Gk−1+1) → G1+...+Gk−1+1
G

th quantile

Fx(x̄(G1+...+Gk−1+Gk))− Fx(x̄(G1+...+Gk−1+1))→ Gk−1
G
→ 0

⇒
∫ x̄(G1+...+Gk−1+Gk)

x̄(G1+...+Gk−1+1)

fx(x) dx→ 0

Since fx(x) > 0 a.e, we have x̄(G1+...+Gk−1+Gk) − x̄(G1+...+Gk−1+1) → 0.

Theorem 3.3.3: (A) Ct (Method 0) is a level α test. (B) Method 1 is a level

α test. (C) Improved Ct (Method 2) is a level α test asymptotically.

Proof : Part (A): Method 0 is a level α test, which is proved in Amaratunga

and Cabrera (2003).
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In Ct procedure, the null hypothesis is rejected if t > h(s) and conditionng

on s the probability of type one error is α. The overall unconditional probability

of type one error is also α because:

∞∫
0

∞∫
tα(s)

f(t, s)dtds =
∞∫
0

(
∞∫
−∞

f(t, s)dt)

∞∫
tα(s)

f(t,s)dt

∞∫
−∞

f(t,s)dt

ds

=
∞∫
0

∞∫
−∞

f(t, s)dtαds = α
∞∫
0

∞∫
−∞

f(t, s)dtds = α

Part (B): Method 1 is a level α test.

Based on the procedure of Method 1, we have the conditional probability of

type one error is α, i.e.

P (T > h1
k(sg)

∣∣∣x̄g ∈ [x̄(G1+...+Gk−1+1), x̄(G1+...+Gk−1+Gk)], sg ) = α,

for k = 1, 2, · · · , K.

Let h(s) be the family of critical curves, the overall unconditional probability

of Type I error is α because of the following calculation:

∞∫
−∞

∞∫
0

∞∫
h(s)

f(t, s, x) dtdsdx =
K∑
k=1

x̄(G1+...+Gk−1+Gk)∫
x̄(G1+...+Gi−1+1)

∞∫
0

∞∫
h(s)

f(t, s, x) dtdsdx

=
K∑
k=1

x̄(G1+...+Gk−1+Gk)∫
x̄(G1+...+Gk−1+1)

∞∫
0

∞∫
h1
k
(s)

f(t, s, x) dtdsdx

=
K∑
k=1

x̄(G1+...+Gk−1+Gk)∫
x̄(G1+...+Gk−1+1)

∞∫
0

α

∞∫
−∞

f(t, s, x) dtdsdx

= α(

x̄G1+G2∫
−∞

+
K−1∑
k=2

x̄(G1+...+Gk−1+Gk)∫
x̄(G1+...+Gk−1+1)

+

∞∫
x̄G−GK+1

)

∞∫
0

∞∫
−∞

f(t, s, x) dtdsdx

= α

∞∫
−∞

∞∫
0

∞∫
−∞

f(t, s, x) dtdsdx = α

(3.2)
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Part (C):Improved Ct (Method 2) is a level α test asymptotically.

We will show type I error of Improved Ct → α, as Gk → 0, K →∞, Gk
G
→ 0,

k = 1, ..., K.

Let fx(x) be the density function of x, the mean intensity of a random selcted

gene, and f(x |T > hk(sg)) be the conditional density of x, given T > hk(sg).

Let x̃ = x̄(G1+...+Gk−1+1), then we have x̄(G1+...+Gk−2+1) = x̃−∆x1,

x̄(G1+...+Gk−1+Gk) = x̃+ ∆x2, x̄(G1+...+Gk−1+Gk+1) = x̃+ ∆x2 + ∆x3

by Lemma2.3.2, we get ∆x1 → 0,∆x2 → 0,∆x3 → 0 as Gk → 0, K →

∞, Gk
G
→ 0, for k = 1, ..., K .

P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+Gk−1+1), x̄(G1+...+Gk−1+Gk)], sg )

= P ((T > hk(sg)|sg) |x̄g ∈ [x̃, x̃+ ∆x2))

= (P (x̄g ∈ [x̃, x̃+ ∆x2) |T > hk(sg)) · P (T > hk(sg))/P (x̄g ∈ [x̃, x̃+ ∆x2))

= f(x̃ |T > hk(sg)) ·∆x2 · P (T > hk(sg))/(f(x̃) ·∆x2)

= f(x̃ |T > hk(sg)) · P (T > hk(sg))/f(x̃).

Similarly, P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+Gk−2+1), x̄(G1+...+Gk+Gk+1)], sg )

= P ((T > hk(sg)|sg) |x̄g ∈ [x̃−∆x1, x̃+ ∆x2) + ∆x3 )

= f(x̃ |T > hk(sg)) · P (T > hk(sg))/f(x̃).

So P (T hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+Gk−1+1), x̄(G1+...+Gk−1+Gk)], sg )

= P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+Gk−2+1), x̄(G1+...+Gk+Gk+1)], sg ),

for k = 2, · · · , (K − 1).

With the same strategy, we can show that asymptotically,

P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(1), x̄(G1)], sg ) = P (T > hk(sg)

∣∣∣x̄g ∈ [x̄(1), x̄(G1+G2)], sg )

and P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+GK−1+1), x̄(G)], sg )

= P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+GK−2+1), x̄(G)], sg ).

It is easily seen that Improved ct is a level α test asymptotically using the

same way as shown in Lemma 1. What we need do is replacing h1
k(s) by hk(s).
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Theorem 2.3.4. If µgj is asymptotically independent of σ2
g , then three meth-

ods are equivalent.

Proof :

Method 0: P (T > h(sg)|sg) = α.

Method 1:

α = P (T > h1
k(sg)

∣∣∣x̄g ∈ [x̄(G1+...+Gk−1+1), x̄(G1+...+Gk−1+Gk)], sg )

→ P (T > h1
k(sg)|sg).

Method 2:



α = P (T > h1(sg)
∣∣∣x̄g ∈ [x̄(1), x̄(G1+G2)], sg )→ P (T > h1(sg)|sg)

α = P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+Gk−2+1), x̄(G1+...+Gk+Gk+1)], sg )

→ P (T > hk(sg)|sg)

α = P (T > hk(sg)
∣∣∣x̄g ∈ [x̄(G1+...+Gk−2+1), x̄(G)], sg )→ P (T > hk(sg)|sg)

so for any given sg,

P (T > h(sg)|sg) = P (T > h1
k(sg)|sg) = P (T > hk(sg)|sg) = α.

Let ft,s(t, s) be the joint distribution of t and s, then∫ ∞
h(sg)

f(t, s) dt∫ ∞
−∞

f(t, s) dt
=

∫ ∞
h1
k
(sg)

f(t, s) dt∫ ∞
−∞

f(t, s) dt
=

∫ ∞
hk(sg)

f(t, s) dt∫ ∞
−∞

f(t, s) dt

It is easily seen that h(sg) = h1
k(sg) = hi(sg), a.s, so the three methods are

equivalent.

3.5 Discussions

We have proposed Improved Ct methodology to identify differentially expressed

genes. It is an extenstion of Ct proposed by Amaratunga and Cabrera (2003)(2007).

When the dependence between the mean and the variance is weak, simulation re-

sults show that pFDR of Ct and Improved Ct are very close. In this case, Ct may

be considered superior to Improved Ct in the sense that Ct is computationally

faster.
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When the dependence between the mean and the variance is strong, Improved

Ct with suitable block sizes is better than Ct. One problem is how to select

block size. If the block size is too small, e.g. 100 in simulation, the standard

error estimate is very biased so that the performance of Improved Ct could be

worse than that of Ct and small block size means large blocks and means much

computing time. As the block size becomes larger, Improved Ct will be better

than Ct. But if the block size is too large, which means the number of blocks is

few, the results of Improved Ct will be smilar to those of Ct note that Ct is a

special case of Improved Ct where there is only one or two blocks. So the block

size can not be too small or too large, one should choose moderate block size. We

do not have a formulato calculate the best block size because it is data dependent

which can be seen from Table 2.4: two kinds of datasets contan the same number

of genes but they do not have the same best block sizes.

In our simulation, we split the data evenly so that all blocks are approximately

of same number of genes. There are some other ways to split data, for example,

we could let genes whose means fall in [x̄(1) + (k − 1)
x̄(G)−x̄(1)

K
, x̄(1) + k

x̄(G)−x̄(1)
K

)

belong to the kth block so that all K blocks have equall interval
x̄(G)−x̄(1)

K
. One

can choose appropriate ways based on distribution properties of data.
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Chapter 4

Improve Statistical Power for Analysis of

Microarray Data Using Clustering and Variance

Correction

Abstract Assessing differentially expressed genes is an important goal of mi-

croarray experiment. A common problem related to it is how to improve the

power for detection of differentially expressed genes. One possible solution is to

induce clustering and correlation correction to gene expression identification. On

one hand, after a cluster analysis, genes performing similar functions or partici-

panting in the same genetic pathway would congregate in the same cluster. we

could choose one or more clusters we are interested in to do analysis. On the

other hand, various researchers have suggested that accounting for correlation

among genes could improve the power. There exists, however, three challenges

when considering the the cluster pattern and correlation structure among genes:

the first one is which clustering method we choose, the second one is how to re-

liably estimate the covariance matrix of genes and the last one is how to model

the data, perform the appropriate statistical test and calculate the power. In this

article, we present our methodology to tackle these problems.

4.1 Introduction

As a tremendous improvement over tedious ”‘one gene per experiment” paradigm,

DNA microarray is the most widely used technology in biomedical research to

investigate the expression patterns of thousands of genes simultaneously. This
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powerful tool allows scientists to study how genes function, not only each on its

own, but jointly as well.

In a typical microarray data, the number of genes is large, say a few thousands

or more, and the number of samples is very small, say between 5 and 50. This

characteristic of microarray data imposes challenges for statisticians.

An important goal of microarray experiment is assessing differentially ex-

pressed genes under different conditions, especially two conditions because dif-

ferential gene expression leads to altered cell states. Various researchers have

suggested that accounting for correlation among genes could improve the power

for detection of differentially expressed genes. Intuitively, more power would be

gained among highly correlated genes than independent genes given all other

conditions are the same.

Cluster analysis is another major and popular statistical task in micrarray

data analysis. It sorts the entirety of genes into a series of clusters so that the

genes that behaved the most similarly in the experiment will be members of the

same cluster, while genes that behaved differently will be members of different

clusters. The rationale lies in it is that it is reasonable to expect that genes per-

forming similar functions or operating in the same genetic pathway would behave

similarly across conditions. Since the seminal paper by Eisen et al (1998), various

clustering approaches have been developed in the context of microarray data such

as hierarchical clustering, partitioning methods, and model-based clustering etc.

Cluster analysis is usually not used to improve power of gene differential ex-

pression idnetification although it is essential. But if we notice that microarray

data contains large proportions of noises which reduces power of analysis, it is

quite straightforward to do cluster analysis before more work so that we could

focus on the interested clusters only.
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4.2 Methodology

We only consider the simplest and most common case — a comparison between

the gene expression profiles of two groups: control group and treatment group.

And we assume data is suitably transformed and normalized. Let Xgij denote

the intensity measurement for the gth gene in the ith microarray in the jth group,

where i=1,...,nj (n = n1 + n2); j=1,2; and g=1,...,G.

The data structure is like:

g =



i = 1, 2, ... n1 i = 1, 2, ... n2

1 X111, X121, ... X1n11 X112, X122, ... X1n12

2 X211, X221, ... X2n11 X212, X222, ... X2n12

.. ... ...

G XG11, XG21, ... XGn11 XG12, XG22, ... XGn12



4.2.1 Model-Based Clustering and Correlation Matrix Es-

timation

Model-based clustering has been applied to microarray data by Yeung et al.(2001),

McLachlan et al.(2002) and Pan et al.(2002). Some similar approaches are for-

mulated by Holmes and Bruno (2000) and Barash and Friedman(2002). It is a

partitioning method which assumes that each cluster is generated by a probability

distribution. Namely, if gene g comes from the kth cluster, and let fk(., .) be the

distribution of the kth cluster, then

xg = (xg1, xg2) ∼ fk(xg1, xg2),

where xg1 = (xg11, xg21, ..., xgn11) and xg2 = (xg12, xg22, ..., xgn22).

Given the prior probability, pk (where
∑r
k=1 pk = 1), of the gth gene belong to

the kth cluster, an observation of gene g should follow the mixture distribution:

xg = (xg1, xg2) ∼ ∑r
k=1 pkfk(xg1, xg2),

When The distribution of fk(xg1, xg2) is multivariate normal distribution with
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parameters µk (mean vector) and Σk (covariance matrix):

fk(xg1, xg2|µk,Σk) =
exp{− 1

2
(xg−µk)T

∑−1

k
(xg−µk)}√

det(2πΣk)

Yeung et al.(2001) detailedly addressed various formats of covariance ma-

trix Σk corresponding to various models: (1) Equal volume spherical clusters:

Σk = λI, where I is the identity matrix; (2) Spherical clusters of possibly un-

equal volume: Σk = λkI; (3) Elliptical clusters having equal volume, shape and

orientation: Σk = λDADT , where A is a diagonal matrix and D is an orthogonal

matrix; (4) Unconstrained model: not imposing any structure on Σk.

The advantage of model-based clustering is that we do not need to heuristically

judge which clustering result is the best which has to be done with most other

clustering procedures. One could fit the model with different values of r and

different structures of Σk and then pick up a best model according to a specific

criterion function such as AIC and BIC.

Target estimation and stochastic approximation can be combined to well cor-

rect the biase of Pearson’s correlation coefficients of genes. The details of this

aproach and good performance are presented in chapter 2, section 2.4.3 so we

won’t talk much about it in this chapter. Here we apply it to estimate the corre-

lation matrix of genes in the same cluster.

4.2.2 Statistical Model and Procedures

Our statistical model:

Xgij = µgj + σgjεgij

where Xgij is log transformed and suitably normalized intensities; µgj is the

mean intensity of the gth gene in the jth group; σ2
gj is the variance of the gth

gene; and g(g=1,...G) indexes the genes on the microarray; j(j=1,2) indexes the

two groups and i(i=1,...,ni) indexes the objects. Generally, we consider a balanced

design where n = n1 = n2.
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Let x1 = (x1
1, x

1
2, . . . , x

1
g, . . . , x

1
G) and x2 = (x2

1, x
2
2, . . . , x

2
g, . . . , x

2
G) denote the

random vectors of gene expressions in control group and treatment group respec-

tively. We assume x1 ∼MVN(µ1,Σ1) and x2 ∼MVN(µ2,Σ2)

Procedures:

(B1) Do a model based clustering analysis. After this step, suppose we have

C clusters and the number of genes in cluster k is Gk.

(B2) Assign an error rate αk = αGk/G to cluster k. In general, α = 0.05

(B3) For each cluster k, calculate different powers βk(n1, n2, δ) based on dif-

ferent sample sizes (n1, n2) and effect sizes (δ) controlling family wise error αk.

The calculation of power βk(n1, n2, δ) for cluster k contains 7 substeps:

(B3.1) Use S.A.D. to estimate the correlation matrix of two groups Σ̂1 and

Σ̂2.

(B3.2) Determine cutoff p-values for up-regulated genes and down-regulated

genes pupcut and pdowncut (More details are provided after (B4)).

(B3.3) Sample control group data matrix from MVN(0, Σ̂1) with sample size

n∗1.

(B3.4) Sample treatment group data matrix from MVN(δ̂, Σ̂2) with sample

size n∗2, where δ̂ is an effect size vector and its elements are either δ, −δ or 0.

(B3.5) For each gene, calculate the probability p=Pr(t¿observed value), where

t ∼ tn1+n2−2. If p < pupcut or p > pdowncut, then this gene is considered to be

differentially expressed.

(B3.6) Calculate the percentage of differentially expressed genes detected.

(B3.7) Repeat (B3.1)-(B3.6) 1000 times and get a mean power.

(B4) Let the proportion of differentially expressed genes in cluster k is πk0 .

The overall power β(n1, n2, δ) =
β1π1

0G1+β2π2
0G2+···+βCπC0 GC

π1
0G1+π2

0G2+···+πC0 GC

(B5) For every pair (n∗1, n∗2), we have an overall power. Smallest pair that

achieve the desired power is selected as sample size.
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To determine cutoff p-values for up-regulated genes and down-regulated genes

controlling family wise error, we estimate the distribution of t statistic p-values

under null hypothesis and choose the 1 − αk/2 quantile of maximum and αk/2

quantile of minimum as pupcut and pdowncut. The detailed process is as follows:

(C1) Sample nn (say 20) objects from MVN(0, Σ̂1) as control group and

sample nn objects from MVN(0, Σ̂2) as treatment group.

(C2) Calculate the probability Pr(T > sign∗two sample t statistic) for each

gene where T ∼ t2n−2.

(C3) Let p(1) be the minimum and p(G) be the maximum of p-values from

(C2).

(C4) Repeat (C1)- (C3) m (for example 1000) times and get (p1
(1), p

2
(1), ..., p

m
(1))

and (p1
(G), p

2
(G), ..., p

m
(G)). Then we use Q(αk/2) of p(1)

′s as cutoff p-value for up-

regulated genes and Q(1−αk/2) of p(G)
′s as cutoff p-value for down-regulated genes.

Why family wise error controlled in our methodology? Here we will prove it

in the situation that there is only on cluster.

By the definition, the family wise error is P ( at least one gene is considered

diffentially expressed | H0)

=P (pi < pupcut or pi > pdowncut for some i = 1, · · · , G|H0)

=P (p(1) < pupcut or p(G) > pdowncut|H0)

=1− P (pupcut < p(1) < p(G) < pdowncut|H0)

However, pupcut → Q0.025 of p(1) , pdowncut → Q0.975 of p(G)

Hence, family wise error = 1− P (pupcut < p(1) < p(G) < pdowncut|H0) < 0.05

Two extreme cases: when genes are all independent, namely, the correlation

matrix of genes are I, our approach gives us the close results to t test based

approach using bonferonni correction because

pi1, p
i
2, · · · , piG i.i.d U [0, 1], so pi(1) Beta(1, G).

Given p1
(1), p

2
(1), · · · , p1000

(1) i.i.d Beta(1, G), Q(0.025) ≈ 1− 0.975
1
G
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P (pi < Q(0.025) for some i = 1, 2, · · · , G|H0)

=1− P (pi > Q(0.025), i = 1, 2, · · · , G|H0)

=1-0.975=0.025

And when genes are all pair wise linear correlated, pi1 = pi2 = · · · = piG =

pi(1) = p,

Given p1
(1), p

2
(1), · · · , p1000

(1) i.i.d U(0, 1), Q(0.025) ≈ 0.025

P (pi < Q(0.025) for some i = 1, 2, · · · , G|H0)

=P (p < Q(0.025)|H0)

=0.025 which is consistent with the results of testing one gene only.

4.3 Simulation

We have done three parts of simulation study. First, we evaluate the performance

of our approach on highly correalted genes set. Since the whole set of genes are

highly correlated in these simulated data we do not need to do clustering analysis.

In this case, we only have one cluster, i.e. C = 1, G1 = G and α1 = α in step (B1)

and (B2). In the second part, we check the perfrmance of model-based clustering

on simulated data. Last, we applied our methodologies to simulated data and

real data which shows clustered pattern.

Part I: We start simulating a dataset with 100 genes and 4 samples each group

from MVN(0,Σ) where Σ is a 100 × 100 positive finite matrix. The average

absolute value of correlation matrix is 0.8. We applied two methods to this

smulated data set.

Method 1 is our new method. In this case, image plot (See figure 4.1) shows

data are highly correlated in one cluster. We calculate the mean power of different

sample sizes controlling family wise error.

Method 2 is two sample t tests based approach using bonferonni correction.

The procdures are as follows:
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Figure 4.1: Simulated 100 genes data set: Ordered Gene Distance Matrix. Red
represents small distance and white represents large distance.

S1: Sample control group data matrix (100*n) independently from standard

normal distribution, e.g N(0, 1)iid

S2: Sample treatment group data matrix (100*n) independently from normal

distribution N(∆, 1), where ∆ is desired detectable fold change.

S3: Two sample t-test used and cutoff p-value 0.05/100 used for each gene

S4: Calculate the percentage of differentially expressed genes detected

Repeat S1-S4 1000 times to get a mean power

Figure 4.2 plots power estimation vs. sample size calculated by two methods

when effect size is 3, 2, 1.5 and 1 based on simulated 100 genes data set. From

Figure 4.2, it is easily seen that our approach is much better than t test based

approach in all four situations. For example, in the lower right graph, where

the desired fold change is 1, 30 samples each group are required by t test based

approach while only 17 samples are required by our approach.
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Figure 4.2: power estimation vs. sample size calculated by two methods when
effect size is 3, 2, 1.5 and 1 based on simulated 100 genes data set



68

Figure 4.3: Simulated 100 genes data set: Ordered Gene Distance Matrix. Red
represents small distance and white represents large distance.

Another dataset we simulate contains 1000 genes and 20 samples each group

from MVN(0,Σ) where Σ is a given positive finite matrix. Same as simulation

I, two methods are used and the comparison is made. We consider 25 percent of

genes are significantly differentially expressed. Results of power estimation and

sample size calculation when effect size is 3, 2, 1.5 and 1 are shown in Figure4.2.

Part II: In our procedure, we choose model-based clustering method proposed

by Yeung et al.(2001) because of the follwing two reasons:

(1) The distribution they assume for each cluster is multivariate normal dis-

tribution which is consistent with our assumption.

(2) Computing is easy since the methodology has already been implemented

in R package mclust.

In their original paper, datasets used to demonstrate the performance of clus-

tering methods are of small number of genes and do not fit our scheme. So we
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Figure 4.4: power estimation vs. sample size calculated by two methods when
effect size is 3, 2, 1.5 and 1 based on simulated 1000 genes data set
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simulate some datasets to check how it performs in our settings.

Part III: As we state before, when the whole set of genes are highly correlated,

we do not need do clustering analysis. But when data displays clustered pattern,

we need make clustering analysis to improve power. Let’s see an example: our

data set contains 500 genes in which 100 genes are pairwise linear correlated and

the other 400 are independent. If we use t test based approach, the critical t

value for each gene t∗1 satisfies p(|t| > t∗1) ≈ 0.05/500. And if we use ur approach

and do not cluster the data, the critical t value for each gene t∗2 satisfies p(|t| >

t∗2) ≈ 0.05/401. Since the two critical values are close, the statistical power won’t

be improved much!

We simulate a dataset with 500 genes in which 100 highly correlated genes

are independent of the other 400 highly correlated genes. Model based clustering

approach is used and data is split perfectly. We are interested in the 400 genes

and assume the 400 genes are differentially expressed. Results of power estimation

and sample size calculation when effect size is 3 or 1.5 are shown in Figure4.6.

4.4 Discussions

We check the possible cluster pattern among genes before power calculation in

our methods. Acctually, if this step is skipped, the performance is still pretty

good. But when there are too many genes, say 50,000, clustering is strongly

recommended to screen genes and select interested clusters because S.A.D will

cost lots of time in estimating the big N*N correlation matrix and if N is too

big, general personal computers even dont have enough memory to support this

estimation.

The sample size determined by our approach rely upon the association among

genes. The stronger association, the less sample size which coincides common

sense. This method is not recommended if the genes are independent or very
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Figure 4.5: Simulated 500 genes data set: Ordered Gene Distance Matrix. Red
represents small distance and white represents large distance.

Figure 4.6: Power Estimation by three methods based on simulated 500 genes data
Black: New approach with clustering; Pink:New approach without clustering;
Blue: t test approach
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weakly associated since our method will give us the similar result of t test ap-

proached using bonferroni adjustment which is very consertve.

In our approach, we used standard t test to calculate the statistics. T test can

be replaced by Conditional t test or improved Conditional t test, the performance

will be assessed in future work.
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Chapter 5

Analysis of Gene Co-Expression Network

Abstract Graph based approaches are increasingly used to explore the function-

ality of genes. Gene co-expression networks are one of the examples. The concept

is straightforward: nodes represent genes and nodes are connected if the corre-

sponding gene pairs are significantly co-expressed. In this thesis, we build up

a weighted gene co-expression network by converting the co-expression measure

into a connection weight. We apply our method to simulated data and to a real

microarray example and compared our method to other methods.

5.1 Introduction

Networks are defined by a series of points (nodes) interconnected by communica-

tion paths. Networks are increasingly used in biology and genetics because they

provide an effective way to summary genes and proteins correlations. Types of

networks include protein interaction networks (Uetz et al, 2000; Ito et al, 2001;

Jeong et al, 2001; Wagner, 2001), metabolic networks (Fell and Wagner (2000);

Jeong et al.(2000); Ma and Zeng (2003)), gene co-expression networks (Snel et al.

(2002)) etc. In this chapter, we focus on gene co-expression networks, in which

nodes represnt genes and nodes are conneted if the correponding gene pairs are

significantly co-expressed.

Gene co-expression networks provide the interaction between individual genes

and a system-level view of the organism and are widely used to explore the func-

tioning of a cell.
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Figure 5.1: Flowchart of building a gene co-expression network

Below, we describe a general way to build gene co-expression networks. In

Section 5.2, we present the steps of the network analysis. Then we talked some

network concepts in Section 5.3. At last, we use simulated data and real data to

compare our methods to other methods in Section 5.4. Conclusions are summa-

rized in section 5.5.

5.2 Steps of Gene Co-expression Network Analysis

A flowchart of build a gene co-expression network is shown in Figure 4.1. This is

tailored from Zhang and Horvath(2005)’s to fit our situations.

5.2.1 Define a Gene Co-expression Measure

A gene co-expression measure is needed to measure the level of concordance be-

tween gene expression profiles (Zhang and Horvath (2005)). Let mij denote the
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co-expression measure of gene i and gene j, the most widely used one is the abso-

lute value of Pearson correlation coefficient, i.e. mij = |cor(i, j)|. When samples

of genes are small, which is normal in gene expression data, Pearson correlation

coefficients are greatly biased and target estimation could be used to correct the

biase and reduce the mean square error of Pearson correlation coefficient. The

algorithm of target estimation used in correlation matrix estimation is presented

in Chapter 2 thus we do not show any details here. We will use the absolute

value of corrected Pearson correlation coefficient as gene co-expression measure,

namely, mij = |cor∗(i, j)|.

5.2.2 Define an Adjacency Matrix

Each network corresponds to an adjacency matrix which encodes the connection

strength between each pairs of nodes. The adjacency matrix can be obtained

by thresholding the gene co-expression measure matrix M = (mij) (Butte and

Kohane (2000); Carter et al. (2004); Davidson et al.(2001)). There are two ways

to pick a threshold: one way is picking a ’hard’ threshold (a number) based on

the notion of statistical significane so gene co-expression is encoded using binary

infromation(conneted=1, unconnected=0). Let A = (aij) denote the adjacency

function, then the transformation from measure matrix can be described by a

signum function:

aij = signum(mij) =


1, mij ≥ τ

0, mij < τ

The drawbacks of ’hard’ thresholding include loss of information of the mag-

nitude of gene connections and sensitivity to the choice of the threshold(Carter

et al.,2004). Moreover, an important question is whether it is biologically mean-

ingful.

the other way is called ’soft’ thresholding which weighs each connetion by a

number between 0 and 1.
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’Hard’ threshodling results in unweighted networks while ’soft’ thresholding

results in weighted networks.

5.2.3 Define Network Modules

Ravasz et al.(2003) define modules as groups of nodes with high topological over-

lap. Different from that, our definition, adopted from Bergmann et al.(2004), is

that modules are groups of genes whose expression profiles are highly correlated

across samples. In general, hierarchical clustering method will be performed to

generate a clustering tree and genes modules correspond to the branches of the

tree(dendrogram). It is the simplest way that choosing a height cutoff to cut

branches off the tree although it is not necessarily the best way. The choice of

height cutoff is kind of arbitrary as in all hierachical clustering analyses. Ususally

we pick up a balance point between the number of clusters and properties of

dendrogram.

5.2.4 Define Network Concepts

Once the network has been constructed, one can explore the relationship among

network concepts. One could study the properties of each cluster such as connec-

tivity strength and number and percentage of connectivies or strong connectivies.

Also, the relationship among clusters can be assessed such as calculating the cor-

relation among modules and so on and compare different modules. It suggests

to combine two clusters if the corresponding module genes are highly correlated.

Modules showing similar network should have similar properties.

5.2.5 Extract useful information

The main usage of gene co-expression network is to extract useful biological nfor-

mation. From the constructed network, we could explore the functionality and
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pathway of genes, identify essential genes susceptible to diseases etc. For example,

we will pay special attention to the gene which carry the strongest connectivity

in a module because it could be a crucial gene to predict functionality or detect a

disease. And the genes with strong association with this gene are of interest too.

There are a few post-genomic methods which are used to analyze gene co-

expression networks. However, it is beyond the scope of this thesis.

5.2.6 Comparison with Zhang and Horvarth (2005)

The comparison of our approach with Zhang snf Horvarth (2005)’s is shown in

Table 5.1. The differences of two methods lie in two points: One point is dif-

ferent adjaccency matrix; the oher point is different dissimilarity measure. They

defined the adjacency matrix as the power function or sigmoid function of the

absolute value of Pearson’s correlation coefficient and they defined the dissimilar-

ity measure as the topological overlap matrix substraced fom one. Our adjacency

matrix is the absolute value of estimated genes correlation matrix by S.A.D and

the dissimilarity measure is correlation based distance.

5.2.7 A simulated example

We used the example mentioned in section 2.4. Data comes from multivariate

normal with mean 0 and variance C. First we estimate the correlation matrix by

target estimaton and stochastic approximation. Then the absolute value of esti-

mated correlation was chosen as co-expression similarity measure and adjacency

matrix. For Module detection, we conduct average linkage hierarchical clustering

coupled with the dissimilarity measure dij =
√

1− a2
ij. To compare the perfor-

mance of two methods, we tried different height cut-off values and then calculated

corresponding missclasification rates. The smallest misclarification rate our ap-

proach can achieve is 117 when height cut-off value is 0.94 while their method can
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Table 5.1: Comparison of Two Network Construction Methods

Zhang and Horvath(2005) New
Gene Co-expression mij = |cor(i, j)| mij = |cor∗(i, j)|
Measure Pearson’s Correlation Estimated Correlation
Adjacency aij = power(mij) aij = mij

Matrix or aij = sigmoid(mij)

Dissimilarity dij = 1− lij+aij
min{ki,kj}+1−aij dij =

√
1− a2

ij

Measure lij =
∑
u aiuauj and ki =

∑
u aiu

approach 144 if height cut-off value is 0.88. Our method has better performance

in the sense that it can achieve smaller misclasification rate.

5.2.8 Application to Yeast Cell-Cycle Microarray Data

Yeast cell-cycle micrarray data contains 44 samples and it recorded gene expres-

sion levels during different stages of the cell cycles in yeasts. The yeast data

are described in Eisen et al.(1998). We chose a subset of genes of it omitting

the genes with lots of missing values and balancing the essential genes and non-

essential genes. The final dataset contains 1290 genes and 44 samples where 645

genes are essential for yeast survival and the other half genes are not. Figure 5.2

displays the color coded picture of correlation among genes.

Similarly, we used S.A.D to estimate the correlation matrix of genes, then

follow the flowchart (Figure 5.1) to construct the gene network. The average

linkage hierarchical clustering was undertaken where the dissimilarity measure

dij =
√

1− a2
ij. The clustering tree is shown in Figure 5.3(A). We choose .97 as

the cut-off height and Figure 5.3(B) displays the corresponding branch colors. To

examinine the gene essentiality, we plotted the essential genes in Figure 5.3(C). It

is easily seen that essential genes are concentrated in yellow and turquoise module.

Figure 5.4 plots the mean gene significance in modules and the 95% confidence

interval of the mean which is consistent with Figure 5.3(C). These plots using R
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Figure 5.2: Distance Matrix of Yeast data

codes from http://www.genetics.ucla.edu/labs/horvath/GeneralFramework/.

5.3 Discussions

This chapter presents a procedure of building a gene co-expression network. The

difference among network construction methods comes from different choices of

gene co-expression measure, dissimilarity measure, adjacency Matrix, clustering

methods and module selection. Our approach is very straightforward and it is very

easy to understand. We emphasized on the good performance of our approach on

general datasets and presents a common gene network construction methods here.

While in the future, we will explore more about the properties of gene network

and we will also do some research on special networks.
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Figure 5.3: Results of Yeast Data (A):Clustering tree; (B):Corresponding branch
colors; (C): Essential genes (black)

Figure 5.4: Gene Significance across Modules
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Chapter 6

Conclusions and Future Work

In this thesis, we first talked about stoachstic approaximation for distributions

(S.A.D.) which produces a series of distribution functions which converge to true

distribution function in probablity under moderate conditions. One application of

S.A.D to microarray data is to estimate the common distribution of standard de-

viation of all genes. With it, we could generate an envelope of t-values conditional

on standard deviation which are aimed to judge whether a gene is significantly

dfferentiately expressed or not. Comparison results on simulated dataset and real

data set demonstrate that the proposed improved Conditional t test is better

than Conditonal t test thus it is better than SAM and t test. S.A.D. can also be

undertaken to estimate correlation matrix of genes which is a challenge for statis-

ticians in microarray data analysis. It shows superiority to Pearson’s correlation

coefficients. Then A sample size determination method including model-based

clustering and accurately estimated correlation matrix is presented and control-

ling family wise error was presented. It is much better than t test based approach.

Last we described the steps of our gene network construction method and showed

the simplicity and better performance than the method in the literature.

Although all these methods are aimed to do microarray data analysis, their

usages are not limited to microarray data. They works well for any large dataset

with few replicates.

In the future, we have a few things could do in our mind. First, we will try to

improve the algoithm of S.A.D to make it more efficient and save user computing
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time. when determine the sample size we need. Then when we determine the

sample size needed, we could replace t test approach with Conditional t approach

or improved Conditional t approach and compare the performance. In our paper,

we only consider the cases that there are only two groups in microarray data.

We will exploer more if there are two or more groups. Last, we are plan to do

some research on special networks and explore more about perperties of gene

co-expression network.
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