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ABSTRACT OF THE DISSERTATION

First-principles study of electric polarization in piezoelectric and

magnetoelectric materials

By ANDREI MALASHEVICH

Dissertation Director:

Professor David Vanderbilt

First-principles calculations based on the density-functional theory (DFT) have proven to be ex-

tremely useful in the study of properties of matter. Not only do they provide a sufficient accuracy

to reproduce experimental results, but also they make it possible to predict materials with enhanced

or even new properties. Often first-principles calculations become a cheap alternative to real exper-

iments or even allow one to investigate regimes not accessible experimentally either in principle or

because of limitations of experimental techniques. But the real power of methods based on com-

puter simulations is that they can help one to understand the microscopic mechanisms of physical

processes inside the materials.

In my thesis work I will analyze electric polarization properties of several materials and their

dependence on some physical parameters such as strain, chemical doping, and magnetic order.

In the first part of my thesis I will present an ab-initio study of wurtzite ZnO doped with Mg.

Several ordered structures modeling the Zn1−xMgxO alloy are analyzed with different Mg concen-

trations. The electric polarization is studied as a function of Mg concentration x under different

strain conditions. We find that to a good approximation the polarization depends linearly on x. We

show that a simple model based on the piezoelectric response of pure ZnO can reproduce the results

fairly well.
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In the second part, we study the magnetoelectric coupling in a spiral magnet TbMnO3. It is

known from experiment that at low temperatures a ferroelectric phase appears simultaneously with

the onset of a cycloidal magnetic order. Using first-principles methods, we demonstrate that ferro-

electricity in this material is indeed driven by magnetic order. We show that spin-orbit coupling is

essential for the electric polarization to appear. We also demonstrate that the ionic displacements

induced by a cycloidal magnetic order, though tiny, play a crucial role in producing polarization. We

do a detailed analysis of the forces on ions and ionic displacements from the mode-decomposition

viewpoint, and find that simple models based only on nearest-neighbor interactions between Mn

ions through oxygen are not able to account fully for the results.
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4.8. Relation between the spin components in the local (x̂,ŷ, ẑ) and global (â,b̂,ĉ) frames.
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Chapter 1

Introduction

1.1 Electric polarization and types of insulating crystals

Electric polarization in a finite crystal is defined as an electric dipole moment per volume of the

crystal. If we denote the charge density as ρ(r) and assume that the crystal is neutral as a whole,

then we can write ∫
ρ(r)d3r = 0. (1.1)

In this case one can define the polarization in the crystal as

P =
1
V

∫

V
ρ(r)r d3r, (1.2)

where V is the volume of the crystal. Because of charge neutrality this definition does not depend

on the origin. However, there are several problems with it. First, as can easily be shown [5], the

redistribution of surface charges leads to a finite change in the polarization defined by Eq. 1.2.

Therefore, this is not a good definition of polarization as a bulk property of the crystal. In this

section, we shall assume that the surfaces are perfect and free of defects, so that we don’t have to

worry about surface effects. Also, in the above we assume that the crystal is uniform. If the crystal

is not uniform then one needs to define polarization as a function of position r. One could assume

that this can be done by taking the above definition and redefining V as a ‘small’ volume around

r, and then take a limit V → 0. But as this limit is not guaranteed to exist, the above definition is

not suitable in this case. We will return to the question of the definition of polarization later (see

Sec. 2.5) and will see that a bulk definition is possible freeing us from any assumption about the

surface. In this work we will not consider non-uniform crystals, and the above definition is sufficient

for the discussion of the types of insulating crystals below.
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In ordinary insulators the electric polarization appears only when they are placed in an external

electric field. If the electric field is removed, the polarization also disappears. Typically, in such

materials, the dependence of polarization on applied electric field is linear and is characterized by

the dielectric tensor. Many crystals, however, have finite polarization even in the absence of the

external electric field. Such polarization is called spontaneous polarization, and crystals having

spontaneous polarization are called pyroelectrics. The term pyroelectricity comes from the fact that

spontaneous polarization depends on temperature. The change in temperature then induces a flow

of charge between the surfaces, which is the pyroelectric effect.

In some crystals the spontaneous polarization can be switched by application of an electric

field. Such materials are called ferroelectrics (or sometimes, in the Russian literature, segneto-

electrics) [6]. The dependence of polarization on electric field has a hysteretic behavior analogous

to that of ferromagnets, in which the magnetization depends on applied magnetic field in a similar

fashion. This is the origin of the term ‘ferroelectricity’. Ferroelectric hysteresis loops were first ob-

served by Valasek in 1920 [7] in potassium sodium tartrate or Rochelle salt (KNaC4H4O6 · 4H2O).

This salt was first prepared in the 17th century by Pierre Seignette of La Rochelle, and the term

‘segnetoelectric’ takes its origin from his name.

Electric polarization can be induced by applying stress in some crystals. This effect is called

piezoelectricity. All pyroelectric (and therefore all ferroelectric) materials display piezoelectricity.

In fact, an analysis of the symmetry of the crystal can predict whether the crystal will be piezoelec-

tric (or pyroelectric). There are 32 crystal symmetry classes, of which 21 are non-centrosymmetric;

20 of these can be piezoelectric, and 10 of these can have spontaneous polarization (i.e. be pyro-

electric).

Ferroelectrics find many applications in technology. They can be used in tunable high permit-

tivity capacitors, non-volatile memory devices like FeRAM, sensors, etc. Piezoelectrics are also

widely used in devices where high-precision pointing is required, e.g., in scanning tunneling and

atomic force microscopy.
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1.2 Improper ferroelectrics

A phase transition is called ferroelectric if spontaneous polarization arises in the transition. Ferro-

electric phase transitions are often described by a phenomenological Landau theory of second-order

phase transitions [8] in which an order parameter is an essential ingredient. In ordinary ferro-

electrics, the role of the order parameter is played by electric polarization. But this does not always

have to be the case. It is possible to have an order parameter other than polarization, and at the same

time polarization also can appear in the phase transition. Materials showing this behavior are called

improper ferroelectrics [9].

(b)

(d)(c)

(a)

Figure 1.1: Schematic illustration of barium titanate phases related to a ferroelectric phase tran-
sition: (a) initial high-temperature cubic phase, (b) final low-temperature tetragonal phase (ferro-
electric phase), (c) polarized cubic structure having the same symmetry as (b), (d) deformed high-
temperature phase having higher symmetry than (b). Open circles represent Ba sites, while filled
circles represent Ti sites. The figure demonstrates that the order parameter in BaTiO3 ferroelectric
phase transition is polarization.

To illustrate this point, consider the barium titanate (BaTiO3) transition from the cubic to the
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tetragonal phase. This transition is accompanied by the appearance of spontaneous polarization and

spontaneous deformation of the crystal. If one clamps the crystal, so that the lattice vectors remain

cubic, and polarizes it along one direction as shown in Fig. 1.1(c), the symmetry of the crystal will

be the same as in tetragonal phase observed experimentally, shown in Fig. 1.1(b). On the other hand,

if one deforms the crystal to force it to tetragonal phase, as in Fig. 1.1(d), the deformed crystal will

have a higher symmetry than that observed in the phase transition. Namely, the inversion symmetry

will still be present, and polarization will not appear. This shows that the order parameter here is

indeed polarization, and therefore BaTiO3 is a proper ferroelectric.

In improper ferroelectrics, if one polarizes the initial phase, one will get a higher symmetry

than that observed in the actual phase transition. This means that in a phase transition in improper

ferroelectrics, the appearance of polarization is not a primary effect but rather a secondary (parasitic)

effect accompanying the appearance of some other order parameter. As an example, consider the

ferroelectric phase transition in hexagonal YMnO3 [10]. One could imagine that, as in many other

ferroelectrics, the polarization in YMnO3 appears due to the softening of the Γ-centered phonon

modes. However, as it was shown with the help of first-principles calculations [11], all Γ-centered

phonon modes in this material are, in fact, stable. Therefore, polarization is not a primary order

parameter. What happens in the actual phase transition is the softening of one of the zone-boundary

modes (tilts of MnO5 trigonal bipyramids), which is a primary order parameter. Due to the coupling

of the zone-boundary and zone-centered phonons, this leads to a shift of the equilibrium positions of

one of the Γ-modes, thus creating a ferroelectric distortion. This shows that YMnO3 is an improper

ferroelectric.

Other examples of improper ferroelectrics include TbMnO3, Ni3V2O8 (both are magnetically

induced ferroelectrics and are the subject of this work), rare-earth molybdates, e.g. Gd2(MoO4)3,

boracites, etc. Interestingly, the ‘cousin’ of the first discovered ferroelectric, ammonium Rochelle

salt (NaNH4C4H4O6 · 4H2O), is also an improper ferroelectric [12].
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1.3 Outline of the present work

The rest of this dissertation is organized as follows.

In Chapter 2, I will describe the details of the computational methods we use in our studies.

The key aspects of density functional theory (DFT) [13] will be outlined here, although the fact

that it is by now a well-established textbook theory means that we can do so only briefly. It is

important, however, to describe to a sufficient extent the essential ingredients specific to the physics

and materials studied in this work. Thus, I will describe the on-site Coulomb correction (commonly

referred to as the LDA+U method) needed for a better treatment of the d-electrons in transition

metals. This method will be important in the analysis of the TbMnO3 system in this work. Then I

will describe the Berry-phase theory of polarization, which provides a formalism suitable for infinite

periodic bulk crystals. For the treatment of the magnetic structure in TbMnO3, the non-collinear

spin formulation of DFT is needed. To deal with the effects of the lattice and spin degrees of

freedom, the spin-orbit interaction must be included in the theory. The description of these aspects

will conclude the Chapter 2. The technical details specific for each system, such as energy cut-offs

and Brillouine zone meshes, will be provided as needed in the later chapters.

Chapter 3 will be focused on the study of polarization in bulk wurtzite ZnO, MgO and their alloy

compound Zn1−xMgxO. The effects of the epitaxial strain on the polarization will be analyzed. To

understand the behavior of the polarization as a function of Mg concentration in the compound, a

special procedure will be used to decompose the polarization into electronic, lattice and piezoelec-

tric contributions.

In Chapter 4, the improper ferroelectricity in the example of perovskite multiferroic TbMnO3

will be discussed. First, I will give an introduction to the subject of multiferroics and the theories

used to describe them. Then, the application of the above methods to the study of the mechanism of

magnetoelectric coupling will be presented. The effects of the ionic displacements on the polariza-

tion will be analyzed. The chapter will be concluded with a discussion of how well present theories

can account for the description of the ferroelectricity in this material.
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Chapter 2

First-principles calculations

2.1 Density-functional theory

In the present work we study the properties of materials using ab-initio techniques. This means that

we want to have a theory describing materials quantitatively without the use of any experimental

parameters except fundamental physical constants. Density-functional theory (DFT) [13, 14] is one

of the most successful such theories. It is an exact theory in principle, but approximate in practice.

We use DFT in all calculations described in this work.

Density-functional theory is based on the theorem that the total energy of a system of interacting

electrons can be viewed as a functional F [n] of the density of electrons n(r). The true ground-state

energy is then a minimum of this functional, and the density that minimizes the functional is the

true density of electrons in the ground state. Another key idea behind DFT is that the system of

N interacting electrons in an external potential Vext(r) can be ‘mapped’ onto a system of N non-

interacting electrons in an effective Kohn-Sham potential VKS(r) having the same ground state total

energy and density. The Kohn-Sham potential is given by

VKS(r) = Vext(r) +
δEH[n]
δn(r)

+
δEXC[n]
δn(r)

. (2.1)

Here, the last two terms are the functional derivatives of the Hartree energy and the exchange-

correlation energy with respect to density. The Hartree energy is given by

EH[n] =
1
2

∫
d3r d3r′

n(r)n(r′)
|r− r′| , (2.2)

and EXC[n] by definition is everything that is not included in the kinetic energy, external potential
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and Hartree terms:

EXC[n] ≡ F [n]− Ts[n]− EH[n]−
∫
d3rVextn(r). (2.3)

Here, Ts[n] is the kinetic energy of non-interacting electrons written as a functional of density.

Now one has to solve a Schrödinger-like equations using the effective potential in the Hamilto-

nian (Kohn-Sham equations):

(
− h̄2

2m
∇2 + VKS(r)

)
ψi(r) = εi ψi(r). (2.4)

Usually, this is done self-consistently, i.e., at each step the solution of the Kohn-Sham equations

gives the wave functions, from which one can calculate new density, and then updates the effective

potential using the new density. The process is repeated until the desired accuracy is reached.

As described, the theory is exact. The problem is that the functional F [n] is not known. Equiv-

alently, one may say that the exchange-correlation energy functional EXC[n] is not known. In prac-

tice, people use various approximations, the most common being the local-density approximation

(LDA). In this approximation, the exchange-correlation energy is taken from the homogeneous elec-

tron gas. Even though this is perhaps the simplest approximation one can make, it proved to work

reasonably well for a wide range of materials. The generalization of the LDA to spin-polarized elec-

tron systems, the local spin-density approximation, will be briefly reviewed in Sec. 2.3. Throughout

this work, we will use the acronym ‘LDA’ for systems with or without spin-polarization. When we

want to emphasize that we consider the spin-polarized case, we will use the acronym ‘LSDA’.

A thorough description of DFT can be found in references [15, 16].

2.2 On-site Coulomb correction

As follows from its formulation, DFT is meant to describe ground-state properties only. Thus, the

density and total energy in exact DFT should be the same as in real interacting system. On the
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other hand, the Kohn-Sham eigenvalues themselves are not expected to reproduce the exact energy

levels of the interacting system. Nevertheless, often there is some qualitative agreement, making it

appealing to do DFT calculations of the excited-states properties.

For example, in periodic solids, one can calculate the Kohn-Sham energy band structure and

infer from it the band gap defined as the smallest energy difference between conduction and valence

bands. In the LDA, the band gap is systematically underestimated. So if in LDA calculation one

finds a finite band gap, one can expect that in the real system the band gap will be even larger, and

the system can be predicted to have insulating properties.

There are many cases, however, in which the electronic structure predicted with LDA does not

allow one to make definite statements about excited states. This is usually true for systems with

partially filled d or f electron shells. In particular, LDA predicts many transition metal oxides to be

metallic while they are experimentally found to be insulators [17, 18]. For these systems, even the

ground state properties (like magnetism) can be incorrectly predicted by the LDA.

The problem is that localized d and f electrons are strongly correlated. The physics associated

with the strong Coulomb repulsion between electrons localized in the same shell is not correctly

captured in the LDA, which always tends to delocalize electrons. In a homogeneous-gas treatment,

LDA does not distinguish electrons as separate entities in the electron gas, and the effects of localiza-

tion of electrons are not reproduced. Perdew et al. showed [19] that in the exact density-functional

the dependence of energy on the number of electrons N is a series of straight-line segments:

E(N + x) = (1− x)E(N) + xE(N + 1). (2.5)

Instead, in the LDA, E(N) is a smooth function. This is one of the main reasons why the LDA fails

when describing systems with strongly localized electrons.

Anisimov and coworkers [20–22] formulated a generalization of LDA, the so-called ‘LDA+U’

method, which adds the missing screened on-site Coulomb interaction to the theory.
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Before giving a thorough description of the theory itself, we note that LDA+U is not an ab-

initio theory in a strict sense. Here, one introduces additional terms and parameters to the original

LDA functional which can be justified only to some extent by physical intuition. Though param-

eters of the theory have an intuitive physical meaning, they do not have a precise definition and

include all sorts of screening effects. The parameters can be estimated using various approaches,

e.g. constrained-LDA [23]. In practice, however, it is much easier to choose them in such a way

that some physical properties (such as band gap, lattice constants, exchange constants, etc.) agree

with experiment.

2.2.1 Basic idea of the LDA+U method

Suppose we have a system with partially filled d orbitals like a transition metal oxide (MnO, FeO,

CoO, NiO, etc.). For simplicity, we will focus our attention on a d shell of one particular site

only. Let us write the energy of the Coulomb interaction between d electrons in a Hubbard-like

fashion explicitly as U/2
∑

i6=j ninj , where ni are occupation numbers. We add this term to the

LDA functional. However, the LDA functional already has some contribution coming from the

interaction of electrons in the d shell. The Hamiltonian operator corresponding to this interaction

can be written as

Ĥint =
1
2
U

∑

i6=j

n̂in̂j . (2.6)

The expectation value of this operator in the LDA depends on the electron density or, equivalently,

on the total number of electrons N in the d shell. Therefore we can write the interaction energy in

the LDA as

〈
Ĥint

〉
LDA

=
1
2
U

〈∑

i6=j

n̂in̂j

〉

LDA

=
1
2
U

〈
∑

i,j

n̂in̂j −
∑

i

n̂i




〉

LDA

=

1
2
U

〈(
N̂2 − N̂

)〉
LDA
≈ 1

2
UN(N − 1). (2.7)
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To avoid overcounting, we subtract this expression from the energy functional to obtain

E = ELDA − 1
2
UN(N − 1) +

1
2
U

∑

i6=j

ninj . (2.8)

This is still a functional of the total density n(r), but it depends on N occupation numbers as

parameters. In such case, one can show that corresponding orbital energies are the derivatives of the

total energy with respect to these parameters [24]:

εi =
∂E

∂ni
. (2.9)

Inserting N =
∑

i ni into the functional (2.8), we can write

E = ELDA − 1
2
U

∑

i

ni(ni − 1), (2.10)

and we get for the orbital energies

εi = εLDA − U
(
ni − 1

2

)
. (2.11)

One can see that the occupied orbitals (ni = 1) lowered their energies by U/2 while the unoccupied

orbitals (ni = 0) increased their energies by the same amount making the difference between the

energies of occupied and unoccupied d orbitals exactly U .

One can introduce charge densities ni(r) of particular orbitals, so that ni =
∫
d3r ni(r). Now

one can view equation (2.8) as a functional of N densities. The variation of this functional with

respect to the densities yields N effective potentials

Vi(r) = VLDA(r)− U
(
ni − 1

2

)
. (2.12)

One should keep in mind thatU is not a bare Coulomb interaction, since it contains the screening

effects of the rest of the s and p electrons. This is the essence of the LDA+U method. In the
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following, we will describe the details essential for the practical implementations of this method.

2.2.2 Exchange and nonsphericity

In addition to the screened Coulomb repulsion, there is also exchange (Hund’s rule) which affects

only same-spin orbitals, so that now the term added to the LDA functional is

1
2

∑

m,m′,σ

Unmσnm′−σ +
1
2

∑

m,m′,σ
m6=m′

(U − J)nmσnm′σ. (2.13)

In this expression, indices m and m′ run from 1 to N/2, because now we distinguish spins. Note

that if we put J = 0, we will regain the previous expression U/2
∑

i6=j ninj , where i and j run

from 1 to N . Again, as in the previous case, we subtract the total energy corresponding to integer

occupation numbers UN(N−1)/2−J (
N↑(N↑ − 1) +N↓(N↓ − 1)

)
/2 to arrive at the functional

E = ELDA −
[

1
2
UN(N − 1)− 1

2
J

∑
σ

Nσ(Nσ − 1)

]
+

1
2

∑

m,m′,σ

Unmσnm′−σ +
1
2

∑

m,m′,σ
m6=m′

(U − J)nmσnm′σ. (2.14)

Here we have introduced the notation Nσ =
∑

m nmσ.

This functional can be generalized further by assuming that Coulomb and exchange interactions

depend on what particular orbitals are occupied (nonsphericity). This means that parameters U and

J must be replaced by matrices Umm′ and Jmm′ leading to the functional [25]

E = ELDA −
[

1
2
UN(N − 1)− 1

2
J

∑
σ

Nσ(Nσ − 1)

]
+

1
2

∑

m,m′,σ

Umm′nmσnm′−σ +
1
2

∑

m,m′,σ
m6=m′

(Umm′ − Jmm′)nmσnm′σ, (2.15)



12

where U is the average over all orbitals of Umm′ and (U − J) is the average of (Umm′ − Jmm′):

U =
1

(2l + 1)2
∑

m,m′
Umm′ ,

U − J =
1

2l(2l + 1)

∑

m6=m′
(Umm′ − Jmm′).

(2.16)

Note that we consider U and (U − J) (and not U and J) because the average is taken over different

numbers of orbitals in the above two expressions.

The term in square brackets in Eq. (2.15) is sometimes referred to as the double-counting term,

Edc[{n}], so that schematically one can write

ELDA+U [ρ(r), {n}] = ELDA[ρ(r)] + EU [{n}]− Edc[{n}], (2.17)

where ρ(r) is the usual charge density and {n} is a set of occupations of d of f orbitals, nmσ.

2.2.3 Rotationally invariant formulation

The on-site Coulomb correction formulated above is not really convenient for practical implemen-

tation. The reason is that the parameters Umm′ and Jmm′ depend on the choice of basis. If, for

example, we rotate the coordinate axes, we will get a different set of d (or f ) orbitals leading to a

new set of parameters.

Fortunately, there is a way to formulate a rotationally invariant version of the LDA+U method

[20]. We will work in a localized orthonormal basis of |nlmσ〉 at each site. For simplicity, we will

also restrict ourselves to particular n and l quantum numbers, and from now on we drop correspond-

ing labels. Instead of orbital densities nmσ one can define density matrices nσ
mm′ . One can proceed

then in the same way as before and write a similar functional as in Eq. (2.17). This time, for the U
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term we have a Hartree-Fock type expression

EU [{n}] =
1
2

∑

{m},σ

[
〈m,m′′|Vee|m′,m′′′〉nσ

mm′n−σ
m′′m′′′+

(
〈m,m′′|Vee|m′,m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉

)
nσ

mm′nσ
m′′m′′′

]
. (2.18)

Here Vee is a Coulomb interaction, and |m,m′〉 = |m〉 ⊗ |m′〉. To arrive to this expression, one can

start from the well-known second-quantized form of the electron-electron interaction operator

V̂ee =
1
2

∑

σ,σ′

∫
d3r

∫
d3r′Vee(r− r′)Ψ̂†

σ(r)Ψ̂†
σ′(r

′)Ψ̂σ′(r′)Ψ̂σ(r). (2.19)

Then the field operators Ψ̂σ(r) can be expanded in the |nlmσ〉 basis as

Ψ̂σ(r) =
∑
m

ĉσmunlm(r), (2.20)

Leading to

V̂ee =
1
2

∑

σ,σ′

∑

{m}
〈m,m′′|Vee|m′,m′′′〉ĉ†σ′m′′ ĉ

†σ
m
ĉ σ
m′ ĉ

σ′
m′′′ . (2.21)

Defining now nσ
mm′ ≡ 〈G|ĉ†σm ĉ σ

m′ |G〉 (where |G〉 is the ground state) one gets for σ′ = σ

〈G|ĉ†σm′′ ĉ
†σ
m
ĉ σ
m′ ĉ

σ
m′′′ |G〉 ≈ nσ

mm′nσ
m′′m′′′ − nσ

mm′′′nσ
m′′m′ , (2.22)

and for σ′ = −σ

〈G|ĉ†−σ
m′′ ĉ

†σ
m
ĉ σ
m′ ĉ

−σ
m′′′ |G〉 ≈ nσ

mm′n−σ
m′′m′′′ . (2.23)

This leads to the expression (2.18). Basically, we have the same LDA+U theory as before (see e.g.

Eq. (2.14)), only now 〈m,m′′|Vee|m′,m′′′〉 plays the role of U , and 〈m,m′′|Vee|m′′′,m′〉 plays the

role of J . The double-counting term will have the same form as before,

Edc[{n}] =
1
2
UN(N − 1)− 1

2
J

[
N↑(N↑ − 1) +N↓(N↓ − 1)

]
, (2.24)
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where N = N↑ + N↓ and Nσ = Tr(nσ
mm′). Note that if density matrix is diagonal, nσ

mm′ =

nσδmm′ , then we get back (2.15).

Now let’s establish a proper relationship between 〈m,m′′|Vee|m′,m′′′〉, 〈m,m′′|Vee|m′′′,m′〉,

U and J . Let’s write explicitly

〈m,m′′|Vee|m′,m′′′〉 =
∫
d3r

∫
d3r′u∗nlm(r)u∗nlm′′(r′)Vee(r− r′)unlm′(r′)unlm′′′(r). (2.25)

For the unscreened Coulomb interaction, one can use the addition theorem for spherical harmonics

to expand

1
|r− r′| =

∞∑

l=0

l∑

m=−l

rl
<

rl+1
>

4π
2l + 1

Y ∗lm(θ>, φ>)Ylm(θ<, φ<), (2.26)

where r< (r>) is the lesser (greater) of r and r′. Then separating integrals of products of spherical

harmonics and radial parts we can write

〈m,m′′|Vee|m′,m′′′〉 =
∑

k

ak(m,m′,m′′,m′′′)F k, (2.27)

where

ak(m,m′,m′′,m′′′) =
4π

2k + 1

k∑

q=−k

〈lm|Ykq|lm′〉〈lm′′|Y ∗kq|lm′′′〉, (2.28)

and F k are the corresponding integrals over r and r′ (Slater integrals [26]). It is known that integrals

of triple products of spherical harmonics can be written in terms of Clebsch-Gordan coefficients or

Wigner’s 3− j symbols [27]. Using their properties one can show [20] that for d electrons (l = 2)

only F 0, F 2 and F 4 are needed.

Although F k are introduced for the unscreened Coulomb interaction, we will assume that the

same procedure is valid for the screened interaction, and in our case F k will include effects of

screening by all electronic states except the states in the open d (or f ) shell.
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A calculation of the averages similar to (2.16) yields [25] the relations

U = F 0,

J = (F 2 + F 4)/14
(2.29)

between U , J , and F k values. For most transition metals, the ratio F 4/F 2 ≈ 0.625 [28]. In

DFT code packages, the LDA+U is usually implemented in this form, that is, Eq. (2.16) with the

terms EU [{n}] and Edc[{n}] given by (2.17) and (2.24) respectively, and matrix elements given by

(2.27-2.29).

2.2.4 Simplified version of LDA+U

As was mentioned, in the derivation of the LDA+U functional in the previous section we took into

account the nonsphericity of the Coulomb interaction. In many cases, this leads to small corrections

that can be neglected. Then one can start directly from Eq. (2.14), keeping in mind that U and J are

now spherically-averaged matrix elements of the screened Coulomb interaction. If one plugs into

this expression N =
∑

m,σ nmσ and Nσ =
∑

m nmσ, then the functional takes a very simple form

[29]

ELDA+U = ELDA +
U − J

2

∑
m,σ

[
nmσ − n2

mσ

]
. (2.30)

One can also write the rotationally invariant analogue of the above expression as

ELDA+U = ELDA +
U − J

2

∑
σ

[Tr(nσ)− Tr(nσnσ)] . (2.31)

This is another form of the LDA+U method widely used in practical calculations. Note that in this

case the functional depends only on one parameter (U − J).
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2.3 Noncollinear magnetism

Before discussing approaches to noncollinear magnetism in DFT, we quickly review the local spin-

density approximation (LSDA) used for spin-polarized calculations. Because up and down electrons

are treated separately in the LSDA, it opens the possibility for studying magnetic systems.

How does one generalize the LDA to the spin-polarized case? The straightforward way is to

assume the total energy to be a functional of two densities, for up and down spins. Then for each

spin channel there will be a separate effective Kohn-Sham potential

V α
KS(r) = Vext(r) +

δEH[n↑, n↓]
δnα(r)

+
δEXC[n↑, n↓]
δnα(r)

, (2.32)

where α can be either ↑ or ↓. The Hartree energy can be immediately written from Eq. (2.2), where

one should put n(r) = n↑(r) + n↓(r). Since the exchange energy EX is the sum of contributions

from both channels (up and down spins), it is straightforward to write the expression for it in terms

of the LDA unpolarized functional

EX[n↑, n↓] =
1
2

{
Eunpol

X [2n↑] + Eunpol
X [2n↓]

}
. (2.33)

The correlation energy is more complicated and cannot be written as a sum of two separate con-

tributions from up and down spins. The parametrization for the correlation energy is extracted

from quantum Monte-Carlo (QMC) simulations or many-body techniques applied to the uniform

spin-polarized electron gas. Thus, there exist well-known expressions for the correlation energy in

LSDA [30–32].

Von Barth and Hedin [31] proposed a formal justification of the spin-polarized density functional

theory. They suggested to introduce a (2×2) density matrix nαβ(r), and replaced the scalar external

potential Vext(r) by V αβ
ext (r). They showed that in this case there is no one-to-one correspondence

between V αβ
ext (r) and nαβ(r) (unlike in the non-polarized case), but nevertheless any ground state

property is a functional of nαβ(r). In this formulation, the exchange-correlation potential is given
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by

V αβ
XC (r) =

δEXC

δnαβ(r)
. (2.34)

Then dividing the system into small boxes, one can assume that in each box the exchange-correlation

energy density is given by the expression for a homogeneous spin-polarized electron gas,

εXC(n↑, n↓), where now n↑(r) and n↓(r) are eigenvalues of the density matrix nαβ(r):

EXC[{nαβ(r)}] =
∫
d3r

{
n↑(r) + n↓(r)

}
εXC(n↑, n↓). (2.35)

Here the labels ↑ and ↓ refer to a local spin quantization axis given by
∑

α,β σβαnαβ , where σ =

(σx, σy, σz) are Pauli matrices. This leads to the expression

V α
XC(r) =

∂

∂nα(r)

[{
n↑(r) + n↓(r)

}
εXC(n↑, n↓)

]
(2.36)

for the exchange-correlation potential.

Note that von Barth and Hedin used the density matrix as a stepping stone to arrive at the LSDA

theory. In the end, the functional depends on n↑ and n↓. However, their formalism is naturally fit

to the description of systems with noncollinear spins. Kübler et al. [33] were among the first to

realize this idea by allowing the spin-quantization axis to change throughout the system. Basically,

they still used the LSDA functional which depended on n↑ and n↓, but the quantization axis was

allowed to vary in space. More specifically, they suggested to calculate the density matrix at each

position, diagonalize it, and use Eq. (2.36) for the exchange-correlation potential at this point. (For

simplicity, they used the atomic sphere approximation, assuming that the spin-quantization axis

does not change within some sphere centered on an atom.)

An equivalent way of treating noncollinear magnetism is to vary the energy functional with

respect to the whole density matrix nαβ(r) and to use four exchange-correlation potentials V αβ
XC (r)
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as in the original formalism of von Barth and Hedin. Then there is no need to consider local spin-

quantization axes. In this case, the exchange-correlation functional is given by

EXC[{nαβ}] =
∫
d3r n0(r)εXC({nαβ(r)}). (2.37)

We note that n0(r) = Tr(n) ≡ ∑
α n

αα is the usual electron density; the index 0 was added to

distinguish it from the density matrix in this discussion. Any (2 × 2) matrix can be decomposed

into the set of identity and Pauli matrices. Therefore, we can write

nαβ(r) =
1
2

[
n0(r)δαβ + m(r) · σαβ

]
. (2.38)

One can easily check by taking a trace of this expression that indeed n0(r) = Tr(n). Also, multi-

plying this expression by each of the Pauli matrices and taking a trace, one can find that

m(r) = Tr[n(r)σ] =
∑

α,β

nαβ(r)σβα. (2.39)

So the functional of the exchange-correlation energy can be written as

EXC[n0(r),m(r)] =
∫
d3rn0(r)εXC(n0(r),m(r)). (2.40)

However, for the homogeneous electron gas the energy density εXC does not depend on the direction

of the magnetic moment, i.e. εXC(n0,m) = εXC(n0,m). This means that in case of noncollinear

magnetism, we can use the same parametrization as in the LSDA for the exchange-correlation en-

ergy density, but using n↑ = 1
2(n0 +m) and n↓ = 1

2(n0 −m).
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2.4 Relativistic effects and spin-orbit interaction

In Chapter 4, the electric polarization induced by non-collinear magnetic order in TbMnO3 will be

studied. As we discuss later, this effect is believed to be mostly due to the inverse Dzyaloshinskii-

Moriya interaction, which is one of the consequences of the spin-orbit interaction. Therefore, it

is important to include spin-orbit coupling in DFT calculations. This section describes how this is

done in principle; the practical implementations vary from code to code.

2.4.1 General considerations

For a proper treatment of relativistic effects, instead of the Schrödinger equation one has to solve

the Dirac equation [34, 35]

ih̄
∂

∂t
Ψ = (cα · p + βmc2)Ψ. (2.41)

Here Ψ is a four-component spinor, and α and β are (4× 4) matrices which can be written in terms

of Pauli matrices and (2× 2) identity matrix 1 as

α =




0 σ

σ 0


 , β =




1 0

0 −1


 . (2.42)

It is convenient to measure energies relative to the rest-mass energy of the electron:

H = cα · p + (β − 1)mc2 + V (r), (2.43)

where we also added the external potential. Since the relativistic effects are only significant close

to the nucleus, it is safe to assume the potential V (r) to be spherically symmetric. In this case, the

stationary solution can be shown to have the form [36]

Ψl
njm =




gl
nj(r)φ

l
jm

if l
nj(r)

σ·r
r φ

l
jm


 , (2.44)
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where φl
jm are two-component spinors which are relativistic equivalents of the usual spherical har-

monics. We will drop the index n from now on. The dependence of the radial functions gl
j(r) and

f l
j(r) on quantum numbers l and j can be written in terms of a quantum number k defined as

k =





l if j = l − 1
2 ,

−(l + 1) if j = l + 1
2 .

(2.45)

Then, as follows from the Dirac equation [37], the radial functions gk(r) and fk(r) must satisfy

equations

dfk(r)
dr

=
1
h̄c

(V (r)− E)gk(r) +
(
k − 1
r

)
fk(r),

dgk(r)
dr

= −
(
k + 1
r

)
gk(r) +

2
h̄
M(r)cfk(r).

(2.46)

Here M(r) is an effective mass which now depends on r:

M(r) ≡ m+
1

2c2
(E − V (r)). (2.47)

Eliminating fk(r) from equations (2.46), one gets the following differential equation for gk(r):

(−h̄2

2M

)[
g′′k +

2
r
g′k −

l(l + 1)
r2

gk

]
− V ′g′kh̄

2

4M2c2
− k + 1

r

V ′gkh̄
2

4M2c2
= (E − V )gk. (2.48)

The function fk can then be found using the second equation in (2.46). These radial functions must

also satisfy the normalization condition

∫
(g2

k + f2
k )r2dr = 1. (2.49)

Equation (2.48) looks like the Schrödinger equation except that the mass M(r) is a function

of radius, and there are two additional terms. These terms are the last two terms on the left hand

side of the equation, which can be identified as the Darwin term and the spin-orbit coupling term,
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respectively. Using the relation

L · σφkm = −h̄(k + 1)φkm, (2.50)

one can rewrite the spin-orbit coupling as an operator in a more familiar form

HSO =
h̄2

2M2c2
1
r

∂V

∂r
L · S, (2.51)

where L is the angular momentum operator and S is the spin operator.

In practice, when solving the relativistic equation (2.48) the spin-orbit coupling is often assumed

to be small and neglected. In this case, Eq. (2.48) is called the scalar relativistic equation. Then, if

needed, the spin-orbit coupling contribution can be calculated using perturbation theory.

2.4.2 Relativistic effects in the pseudopotential context

In order to solve the Kohn-Sham equations, the electronic wave functions are expanded in a set of

basis functions like plane waves or atomic orbitals. Plane-wave basis sets are usually used in solid

state physics because they are well suited for problems with periodic boundary conditions. They also

have an advantage that the precision of the calculations is controlled by the number of plane waves

in the basis. However, there are shortcomings too. Because the Kohn-Sham wave functions oscillate

rapidly in the vicinity of the nuclei, their expansion into plane waves requires very large basis sets,

which makes the calculations very inefficient. There are several ways to avoid this problem, most

common being the use of the pseudopotential and projector augmented wave (PAW) [38] methods.

In the pseudopotential approach, the bare Coulomb potentials of the nuclei that make the external

potential are replaced with effective potentials that effective potentials are constructed in such a way

that the chemically active valence electrons are described by nodeless pseudo wave functions. At the

same time, the less important core electrons are built into the pseudopotentials. When constructing

the pseudopotential, one makes sure that the eigenenergies and scattering properties are reproduced.

Modern pseudopotential calculations are usually based on norm-conserving [39] or ultrasoft [40]
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pseudopotentials.

Since the relativistic effects discussed in this section have their origin deep in the core, one can

incorporate them into the pseudopotentials. This is done by generating two pseudopotentials for

each l > 0, one for j = l + 1/2 and one for j = l − 1/2 (only one pseudopotential is constructed

for l = 0). The pseudopotentials are generated in two steps. First, one solves the fully-relativistic

Eq. (2.48) for a single atom by doing an all-electron calculation. Then, for each j, one searches for

a pseudopotential Vj such that the Schrödinger equation with this Vj has solutions having the same

eigenvalues and the same wavefunction tails beyond some cut-off radii as solutions of Eq. (2.48).

Having pseudopotentials generated, one can then define the averaged pseudopotential

Vl =
1

2l + 1
[
(l + 1)Vl+1/2 + lVl−1/2

]
. (2.52)

This weighted averaging procedure done on Eq. (2.48) results in omitting the spin-orbit coupling

term. Therefore, the pseudopotential Vl will incorporate only the scalar relativistic effects (the mass

shift and the Darwin term). One also defines

δV SO
l =

2
2l + 1

[
Vl+1/2 − Vl−1/2

]
, (2.53)

which stores information about the spin-orbit coupling.

Now one can do the usual Kohn-Sham calculations using the above pseudopotentials Vl, and the

scalar relativistic effects for the core electrons will automatically be taken into account. In order to

include the spin-orbit coupling, one has to add a term to the Hamiltonian [41]:

HSO =
∑

l

|l〉δV SO
l (r)L · S〈l|. (2.54)

It is important to emphasize that once the relativistic effects are incorporated in the pseudopoten-

tials, one can then solve the non-relativistic Kohn-Sham equations. This approach is implemented

in many code packages, e.g., in ABINIT [42] and QUANTUM-ESPRESSO [43].
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2.4.3 Relativistic effects in the context of the PAW method

The PAW method [38] is a general formulation of DFT in which the pseudo wave functions are

mapped onto the Kohn-Sham wave functions by a linear transformation. The wave functions are

divided into parts residing in the atom-centered sphere (augmentation region ΩR) and in the region

outside the sphere. The all-electron (AE) and pseudo (PS) wave functions coincide outside the

augmentation region. Within ΩR the wave functions are expanded into partial waves as

|Ψ̃〉 =
∑

i

ci|φ̃i〉,

|Ψ〉 =
∑

i

ci|φi〉,
(2.55)

where tilde denotes PS wave functions. The coefficients ci are the same in the both expansions,

which means that partial waves φi and φ̃i are related by the same transformation as Ψ and Ψ̃. The

linearity of the transformation implies that ci can be written as

ci = 〈p̃i|Ψ̃〉, (2.56)

with the set of projector functions p̃i satisfying the orthogonality condition

〈p̃i|φ̃j〉 = δij . (2.57)

Now the transformation from the PS to AE wave function can be written as

|Ψ〉 = |Ψ̃〉+
∑

i

(
|φi〉 − |φ̃i〉

)
〈p̃i|Ψ̃〉 = τ̂ |Ψ̃〉. (2.58)

The PS version of any operator Â is then simply Ã = τ̂ †Âτ̂ . The PS version of the identity operator

becomes the overlap operator

S̃ = 1 +
∑

i,j

|p̃i〉
[
〈φi|φj〉 − 〈φ̃i|φ̃j〉

]
〈p̃j |. (2.59)



24

Then instead of the Schrödinger (or scalar relativistic) equation, one has to solve the generalized

eigenvalue equation

H̃|Ψ̃n〉 = εnS̃|Ψ̃n〉. (2.60)

The explicit form of the Hamiltonian can be found in Ref. [38] or Ref. [44].

In order to treat the spin-orbit interaction in the PAW formalism, one has to add the PS version

ofHSO given by Eq. (2.51). Usually, in this case one makes several approximations. First, the spin-

orbit operator is added only in the augmentation region, which is justified because the spin-orbit

effect dominates in the region close to the nuclei. And second, only the spherically symmetric part

(or l = 0) of the effective potential V (r) is put in the spin-orbit part of the Hamiltonian. This way

it is implemented in the VASP code package [45].

2.5 Berry-phase polarization

In this section the modern theory of polarization developed by King-Smith, Vanderbilt and Resta

[46, 47] will be discussed. As was already mentioned in the introduction, the simple definition

given by Eq. (1.2) is not suited for the definition of the local polarization at each point in the

material, because the limit V → 0 is not well-defined. Moreover, even for the averaged polarization

where the integral is taken over some finite volume element V , the above definition fails for infinite

periodic crystals. Indeed, in this case the value of polarization will depend on the choice of the unit

cell V . The modern theory of polarization overcomes these troubles and gives a definition of the

polarization closely connected to the way it is measured experimentally. Also, the formalism of the

modern theory of polarization is readily adapted to DFT calculations. The discussion below closely

follows Ref. [5].

The modern theory is based on the argument that polarization P itself cannot be defined, be-

cause only the difference in polarization ∆P that occurs during some physical process has physical

meaning. The situation is analogous to the measurement of the energy of some system: one does

not measure the value of the energy itself but rather the difference in energies of the final and initial
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states. Therefore, the proper definition of the change in polarization would be

∆P =
∫
dt

1
V

∫

V
dr j(r, t), (2.61)

where j(r, t) is the electric current density in the sample during some physical process and V is a

unit cell of the crystal. One can then consider a more general situation, where polarization depends

on some parameter λ that changes adiabatically during some process, and write

∆P =
∫ 1

0
dλ
dP
dλ

. (2.62)

Although now we do not assign any meaning to the polarization P at any particular λ, one can ask

how to relate this definition to the experimentally measured polarization. If, for example, the state

with λ = 0 corresponds to the crystal having inversion symmetry, then one can say that this crystal

has zero polarization (Peff
λ=0 = 0). Now one can define the spontaneous polarization as

Psp =
∫ 1

0
dλ
dP
dλ

, (2.63)

where λ = 1 corresponds to the polarized state of interest. Thus, if one wants to make a connection

of the theory with experiment, one needs to consider some reference structure, and then calculate

the difference of polarization between the given structure and the reference structure.

From now on we will focus on periodic systems for which Bloch’s theorem is valid. In this case

the eigenfunctions of the Hamiltonian will have the form

ψnk(r) = eik·runk(r), (2.64)

where unk(r) has the periodicity of the lattice. One can rewrite the Schrödinger equation as

Hk|unk〉 = Enk|unk〉 (2.65)
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with

Hk =
(p + h̄k)2

2m
+ V. (2.66)

For simplicity we assume that there are no band degeneracies, and we do not consider spin. The

Hamiltonian depends on λ which varies adiabatically, so one can use adiabatic perturbation theory

to find the change in the eigenstate to first order:

|δψnk〉 = −ih̄dλ
dt

∑

m6=n

〈ψmk|∂λψnk〉
Enk − Emk

|ψmk〉. (2.67)

Then the contribution to the electric current from band n will be given by

jn =
dPn

dt
=

ih̄e

(2π)3m
dλ

dt

∑

m6=n

∫
dk
〈ψnk|p|ψmk〉〈ψmk|∂λψnk〉

Enk −Emk
+ c.c. (2.68)

This result can be further simplified [5] to

dPn

dλ
=

ie

(2π)3

∫
dk〈∇kunk|∂λunk〉+ c.c. (2.69)

Now the total change in the polarization can be written as

∆P = ∆Pion + ∆Pel, (2.70)

where the ionic contribution comes from the displacements of the nuclei and the electronic contri-

bution is found by integrating Eq. (2.69) and summing over all bands n. In the end one can formally

define the total polarization as

P = Pel + Pion =
e

(2π)3
Im

∑
n

∫
dk〈unk|∇k|unk〉+ e

Ω

∑
s

Z ion
s rs. (2.71)

The sum in the ionic contribution is taken over all nuclei in the unit cell. It should be emphasized that

this is a formal definition. Calculation of the polarization by the above formula will not in general
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correspond to the polarization measured in the experiment, but the change in the polarization will.

The integral in the expression for Pel is known as the Berry phase. That is why the theory is

often referred to as the Berry-phase polarization theory. An important consequence of this derivation

is that the polarization turns out to be defined only modulo some quantum, because the Berry phase

itself is defined only modulo 2π. A simple calculation shows that the quantum of polarization is

given by eR/Ω, where R is any lattice vector. This is not a problem in practice, because when one

calculates changes in polarization the quantum cancels out.
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Chapter 3

Polarization properties of Zn1−xMgxO alloys

3.1 Introduction

Recently, much attention has been paid to wurtzite Zn1−xMgxO alloys as candidates for applications

in optoelectronic devices in the blue and ultraviolet region. ZnO is a wide-band-gap semiconductor

with a direct gap of ∼3.3 eV. The band gap becomes even larger if Zn atoms are substituted by Mg

atoms, which have a similar ionic radius, allowing the construction of quantum-well and superlattice

devices [48]. Similar behavior is well known for the zincblende GaAs/AlxGa1−xAs system and

is the basis of much of modern optoelectronics [49]. Recent trends have led in the direction of

fabricating similar structures in wide-gap semiconductor systems such as wurtzite III-V nitrides [50]

and in Zn1−xMgxO [48, 51, 52]. There has also been recent interest in other kinds of nanostructures

based on the ZnO and Zn1−xMgxO materials systems [53–56].

Pure ZnO prefers the wurtzite crystal structure, while MgO adopts the cubic rocksalt structure.

Substitution of Zn by Mg results in a metastable wurtzite alloy for certain magnesium concentra-

tions. Experimental reports concerning the growth of these alloys on sapphire substrates indicate

that Mg concentrations up to ∼30% [48, 52], or even ∼50% [57], can be achieved.

Many ab-initio calculations of the properties of the parent compounds MgO and ZnO have

appeared in the literature [58–61]. The properties of ternary Zn1−xMgxO alloys have been less

well studied. There have been calculations of the dependence of the band structure and band gap

on concentration x [62]. Regarding the question of crystal structure and stability, Kim et al. have

shown that the wurtzite Zn1−xMgxO alloy is stable with respect to the corresponding rocksalt alloy

for x < 0.375 [63]. Similar results were obtained by Sanati et al. but for x < 0.33 [64]. However,

Sanati et al. also have shown that Zn1−xMgxO is unstable with respect to phase separation into

wurtzite ZnO and rocksalt MgO phases even for low x values. This means that Zn1−xMgxO alloys
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are not thermodynamically stable, consistent with a rather low observed solid solubility limit for Mg

in ZnO [65]. The success in fabricating samples with higher concentrations indicates that the phase

separation is kinetically limited, i.e., the time scale required for the alloy to phase segregate into the

two lower-energy constituents is long compared to the growth time at the growth temperature.

To our knowledge, there have not been any previous calculations of the the polarization proper-

ties in the Zn1−xMgxO system. This is an important property to study, since if an interface occurs

between a ZnO region and a Zn1−xMgxO region within a superlattice or quantum-well structure,

bound charges are expected to appear at the interface. These charges, in turn, will create electric

fields that are likely to affect the electrical and optical properties of the quantum-well devices. In the

present work, therefore, we have undertaken a study of the polarization and piezoelectric properties

of Zn1−xMgxO [1].

The structure of the chapter is as follows. In the next section we describe the computational

methods used in our work. In Sec. 3.3 we introduce the six supercell structures that were constructed

and used as the structural models for the alloys of interest. Then, in Sec. 3.4, we report the main

results of this work. Finally, a brief summary is given in Sec. 3.5.

3.2 Computational methods

Calculations of structural and polarization properties are carried out using a plane-wave pseudopo-

tential approach to density-functional theory (DFT). We use the ABINIT code package [42] with the

local-density approximation (LDA) implemented using the Teter parametrization of the exchange-

correlation [66] and with Troullier-Martins pseudopotentials [67]. For the Zn pseudopotential the

3d valence electrons are included in the valence, as their presence has a significant effect on the ac-

curacy of the results [68]. A plane-wave basis set with an energy cutoff of 120 Ry is used to expand

the electronic wave functions. A 6×6×4 Brillouin-zone k-point sampling is used for pure wurtzite

ZnO, and equivalent k-point meshes are constructed for use in all wurtzite supercell calculations.

The electric polarization is calculated using the Berry-phase approach [46].
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3.3 Supercell structures

In the present work we study the properties of six different models of the ternary Zn1−xMgxO

alloy, to be described shortly. However, first consider pure wurtzite ZnO. It can be viewed as two

identical hexagonal closed-packed (hcp) lattices; we take the O sublattice to be shifted in the +ẑ

direction relative to the Zn sublattice. Three parameters determine this structure: a and c are the

lattice constants of the hcp lattice, and u describes the shift between the two sublattices.

Replacing some of the Zn atoms by Mg atoms, we get a ternary Zn1−xMgxO alloy. Of course,

the real alloy is highly disordered. In order to carry out calculations using periodic boundary condi-

tions, we construct ordered supercells having the same Mg concentration x as the alloy of interest.

By comparing properties of different supercells having the same x, we may obtain a rough estimate

of the size of the errors that result from the replacement of the true disordered alloy by an idealized

supercell model.

When constructing supercells, we restricted ourselves to structures having hexagonal symmetry

about the z-axis, since real Zn1−xMgxO alloys have this symmetry on average. This makes the

calculation and interpretation of the results easier. We constructed six model alloy structures: one

for x = 1/6 (Model 1), two for x = 1/4 (Models 2 and 3), one for x = 1/3 (Model 4) and two for

x = 1/2 (Models 5 and 6), as follows.

The simplest alloy one can make (Model 5) is obtained by replacing the Zn atoms by Mg atoms

in every second Zn layer along z, giving a structure with Mg concentration x = 1/2 and retaining

the primitive periodicity of pure ZnO (four atoms per cell). Similarly, if one replaces every fourth

layer of Zn by Mg, one arrives a model with x = 1/4 (Model 2); this has an eight-atom supercell

with the primitive 1× 1 in-plane periodicity but with a doubled periodicity along the z-direction.

In the remaining models, we retain the primitive periodicity along z but expand the size of

the supercell in the x-y plane, as illustrated in Fig. 3.1. Models having 2 × 2 in-plane periodicity

(Models 3 and 6) are specified with reference to Figs. 3.1(a) and (b), and those having
√

3 × √3

periodicity (Models 1 and 4), are shown in Figs. 3.1(c) and (d). Models 3 and 6 thus have 16 atoms
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(a) (b)

(d)(c)

Figure 3.1: Top view of cation layers of supercell models for Zn1−xMgxO alloys [1]. Dark-green
circles correspond to Zn and light-blue circles correspond to Mg. The black outline over some
circles emphasizes that these ions belong to the top layer while the rest of the ions belong to the
bottom layer. (a) Structure with 2× 2 periodicity and concentration of Mg x = 1/4 (Models 3). (b)
Structure with 2 × 2 periodicity and x = 1/2 (Models 6). (c) Structure with

√
3 ×√3 periodicity

and x = 1/6 (Models 1). (d) Structure with
√

3×√3 periodicity and x = 1/3 (Models 4).

per supercell, while Models 1 and 4 have 12 atoms. As one can see from the figure, Model 3 is

a model with x = 1/4 in each cation layer and x = 1/4 overall. In Model 6 one has alternating

cation layers with x = 1/4 and x = 3/4, for an overall Mg concentration of x = 1/2. Turning

to the
√

3 × √3 structures, one can see that the hexagonal symmetry requires that all atoms must

be the same in every second layer (see Figs. 3.1(c) and (d)). We construct Model 1 by alternating

layers with x = 0 and x = 1/3 for an average x = 1/6. Finally, for Model 4 we alternate layers

with x = 0 and x = 2/3, averaging to x = 1/3.

Of course, it would be possible to generate more supercell models of the alloy by expanding

the periodicity or reducing the symmetry. However, the six models described above provide a

reasonable coverage of concentrations in the range 0 ≤ x ≤ 1/2 with some redundancy (for x =

1/4 and x = 1/2). We have thus chosen to limit ourselves to these six models in the present work.
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3.4 Results

3.4.1 Pure ZnO and MgO

To determine the crystal structures and cell parameters of pure ZnO and MgO, we carried out DFT

calculations for both materials in both the wurtzite and rocksalt structures. For wurtzite ZnO we

obtained lattice parameters a = 3.199 Å, c = 5.167 Å and u = 0.379. While these results are

very close to previously reported theoretical values [69], they slightly differ from experimental

values [70] (a = 3.258 Å, c = 5.220 Å and u = 0.382). The cohesive energy (defined as the energy

per formula unit needed to separate the crystal into atoms) is found to be 8.26 eV. Comparing this

to the cohesive energy of rocksalt ZnO (8.03 eV), one may conclude that ZnO prefers the wurtzite

structure, in agreement with experiment. For rocksalt MgO we found a = 4.240 Å and a cohesive

energy of 10.00 eV. We find that if we start with a plausible wurtzite MgO structure with a, c and u

similar to that of ZnO, the crystal can monotonically lower its energy along a transformation path

in which a increases, c decreases, and u tends toward 1/2 in agreement with the previous results of

Ref. [60]. The minimum occurs at u = 1/2, which corresponds to the higher-symmetry h-MgO

structure [60]. For this structure we obtain a = 3.527 Å and c = 4.213 Å, in good agreement [58,

60] with previous calculations. We find its cohesive energy to be 9.81 eV, consistent with the fact that

MgO prefers the rocksalt structure. (For more details concerning the previous theoretical literature

on lattice parameters and binding energies, see Ref. [58].)

The main goal of the present work is to study the polarization and piezoelectric properties of

Zn1−xMgxO. We recall (Sec. 2.5) that only changes in polarization have physical meaning. There-

fore, the calculated values of polarization are usually reported relative to some reference structure

(corresponding to λ = 0 in Eq. 2.62). In ferroelectrics, one can take as a reference a centrosymmet-

ric structure corresponding to a paraelectric phase (where polarization can be said to be zero from

symmetry arguments). In simple cases, such a structure can be obtained by taking the average of the

atomic positions in structures with polarizations P and−P. Wurtzite ZnO (as well as Zn1−xMgxO)
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is not a ferroelectric but a pyroelectric material, which means that one cannot find a physical cen-

trosymmetric structure corresponding to λ = 0. Instead, to find a reference value of polarization, we

use an ideal wurtzite (u = 3/8) ionic model, where Zn and O atoms are replaced by point charges

with values +2e and−2e respectively. One can show that in this model, the polarization is (modulo

ec/V )

Pmodel =
1
2
ec

V
= 0.9041 C/m2. (3.1)

Actual Berry-phase calculation for the optimized structure (i.e. u = 0.379) gave P ′ = 0.8719 C/m2.

Thus, we report the value of polarization relative to the reference value as P = P ′ − Pmodel =

−0.0322 C/m2. Note that the Berry phase calculation for u = 0.375 gives 0.9015 C/m2, which is

very close to the result obtained with the ionic model. This indicates that the polarization in ZnO

comes mostly from the relaxation of u. From now on (unless mentioned otherwise) the values of

polarization will be given relative to Pmodel. Note that the value of the spontaneous polarization

differs somewhat from the previous theory of Dal Corso et al. [59], who reported a polarization of

−0.05 C/m2 when using the experimental u = 0.382; our value becomes much closer to theirs if

we also use the experimental u. Since we are primarily interested in differences of the polarization

with respect to pure ZnO, we do not believe that these small discrepancies are important.

For reference, our calculated piezoelectric coefficients for pure ZnO are found to be e31 =

a∂Pc/∂a = −0.634 C/m2 and e33 = c∂Pc/∂c = 1.271 C/m2. The values of piezoelectric coef-

ficients are in good agreement with previous theoretical calculations of Wu et al. [71] who found

e31 = −0.67 C/m2 and e33 = 1.28 C/m2 (and who also provide comparisons with other theoretical

and experimental results).

3.4.2 Crystal structure and energies of alloys

For each model described in Sec. 3.3, we calculated the hcp lattice parameters a and c in the equi-

librium state. Since we are interested in properties of Zn1−xMgxO layers that might be grown on

a ZnO substrate, we also calculated the lattice parameters for epitaxially strained structures (i.e., a



34

Table 3.1: Theoretical equilibrium lattice parameters for bulk ZnO and for models
of Zn1−xMgxO [1]. Subscript ‘free’ indicates zero-stress elastic boundary conditions, while ‘epit’
indicates that a is constrained to be identical to that of bulk ZnO (the values in column V are thus
identical by construction).

x afree (Å) (c/a)free aepit (Å) (c/a)epit

ZnO 0.0 3.199 1.615 3.199 1.615
Model 1 0.17 3.216 1.605 3.199 1.624
Model 2 0.25 3.230 1.593 3.199 1.625
Model 3 0.25 3.225 1.600 3.199 1.628
Model 4 0.33 3.238 1.589 3.199 1.630
Model 5 0.5 3.266 1.564 3.199 1.635
Model 6 0.5 3.256 1.580 3.199 1.640

Table 3.2: Theoretical cohesive and formation energies (eV per formula unit) for bulk ZnO and
MgO and for each supercell model [1].

x Ecoh Eform

ZnO 0.0 8.258 0.0
Model 1 0.17 8.496 −0.053
Model 2 0.25 8.602 −0.093
Model 3 0.25 8.612 −0.083
Model 4 0.33 8.729 −0.123
Model 5 0.5 8.955 −0.176
Model 6 0.5 8.958 −0.173
MgO 1.0 10.004 0.0

fixed to that of pure ZnO). The results are given in Tab. 3.1. In both cases, the c/a ratio exhibits an

almost linear dependence on x. However, this ratio is found to decrease with x for the fully relaxed

structures, while it increases with x when the epitaxial strain condition is enforced. When the cell

is allowed to relax, a increases and c/a decreases with magnesium concentration making the lattice

parameters closer to the parameters of the h-MgO structure discussed in Sec. 3.4.1. The latter trend

is somewhat surprising because the ZnO and MgO are both ionic compounds, and the ionic radius

of Mg is slightly less than that of Zn. Perhaps, charge transfer plays some role by making the bonds

partially covalent (the covalent radius of Mg is larger than that of Zn).

In Tab. 3.2 we give cohesive and formation energies for each alloy. One can see that in every

case the formation energy is negative. Thus, according to our LDA calculations, at zero temperature

the Zn1−xMgxO alloy is never stable with respect to phase-separated wurtzite ZnO and rocksalt
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Table 3.3: Calculated values of total polarizations of Zn1−xMgxO alloy models (10−2×C/m2) [1].
Subscript ‘free’ indicates zero-stress elastic boundary conditions, while ‘epit’ indicates that a is
constrained to be identical to that of bulk ZnO. Superscript ‘est’ indicates value estimated by the
model of Eq. (3.2).

x Pfree Pepit P est
epit

ZnO 0.0 −3.22 −3.22
Model 1 0.17 −4.23 −2.77 −2.79
Model 2 0.25 −5.01 −2.47 −2.47
Model 3 0.25 −4.70 −2.44 −2.50
Model 4 0.33 −5.65 −2.30 −2.39
Model 5 0.5 −7.89 −1.99 −2.22
Model 6 0.5 −6.99 −2.02 −2.25

MgO. (Of course, at T > 0 a small solid solubility of Mg in wurtzite ZnO is expected [65].)

3.4.3 Polarization and piezoelectric properties

The results of the calculations of spontaneous polarization are given in Tab. 3.3, both for the fully

relaxed and for the epitaxially strained cases. Note that the values of polarization for models having

the same x are fairly consistent with one another; the choice of supercell does not significantly affect

the overall trend with x, which is reasonably smooth. A linear fit P (x) = P (ZnO) + Ax yields

coefficients of Afree = (−0.088± 0.009) C/m2 and Aepit = (0.024± 0.002) C/m2. The latter value

may be of direct interest for experimental studies of epitaxial superlattices and quantum wells.

Thus, with increasing Mg concentration x, the absolute value of the polarization increases for

the relaxed structures and decreases for the epitaxial structures with fixed a. This behavior is very

similar to what we saw in Sec. 3.4.2 for the c/a ratios, suggesting that the c/a ratio may be a

dominant factor in determining the total polarization. Indeed, since 2e31 + e33 ≈ 0, one expects the

polarization to be almost independent of a change in volume (isotropic strain), so that the change of

c/a should be the most important strain effect.

In order to study more thoroughly the role of strain and other factors in determining the po-

larizations of the Zn1−xMgxO structures, we first define ∆Ptot to be the polarization of the alloy

superlattice structure relative to that of pure ZnO. We then decompose ∆Ptot into “electronic,”
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“ionic,” and “piezoelectric” contributions as follows. First, we construct an artificial Zn1−xMgxO

superlattice structure in which the structural parameters (a, c, and all internal coordinates) are frozen

to be those of pure ZnO, and define ∆Pelec to be the polarization of this structure relative to that of

pure ZnO. Next, we allow only the internal coordinates of the Zn1−xMgxO supercell to relax, while

continuing to keep a and c frozen at the pure-ZnO values, and let ∆Pion be the polarization change

produced by this internal relaxation. Finally, we allow the lattice constants to relax as well, and de-

fine ∆Ppiezo to be the associated change in polarization. Clearly ∆P = ∆Pelec +∆Pion +∆Ppiezo.

The results of such a decomposition are given in Tab. 3.4 for both the stress-free and epitaxial-

strain cases. For scale, recall that these are changes relative to P (ZnO) = −0.0322C/m2. The

purely electronic and ionic contributions are the same in both cases because of the way ∆Pion and

∆Pelec are defined. The purely electronic contributions ∆Pelec are quite small, showing a relatively

poor correlation with x. The contribution ∆Pion associated with the ionic relaxations is also quite

small, although it is typically 2-3 times larger than ∆Pelec and shows a clearer trend (becoming

more negative with increasing x). In the stress-free case, by far the largest contribution comes from

the piezoelectric effect of the strain relaxation, being typically 5-10 times larger than the ionic one.

As is seen from the table, the piezoelectric contribution also dominates in the epitaxial-strain case.

This being the case, it seems likely that many of the polarization-related properties of the

Zn1−xMgxO alloy can be estimated by using a model based on the piezoelectric effect alone. For

example, one might hope that δP = Pepit−Pfree, the difference between the epitaxially-constrained

and free-stress polarizations at a given x, could be estimated by a linear approximation of the form

δP = 2e31
aepit − afree

afree
+ e33

cepit − cfree
cfree

. (3.2)

In fact, we find that this is the case even if we use the piezoelectric constants of bulk ZnO, already

obtained in Sec. 3.4.1, in this formula. Using the computed value of Pfree reported in the third

column of Tab. 3.3, together with the constrained a values and epitaxially-relaxed c values given in

the last two columns of Tab. 3.1, we report the computed estimates P est
epit = Pfree + δP in the last
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Table 3.4: Theoretical values of electronic, ionic, piezoelectric and total contributions to polariza-
tion (10−2×C/m2) for each model, relative to bulk ZnO. Superscript ‘free’ indicates zero-stress
elastic boundary conditions, while ‘epit’ indicates that a is constrained to be identical to that of bulk
ZnO.

x ∆Pelec ∆Pion ∆P free
piezo ∆P free

tot ∆P epit
piezo ∆P epit

tot

ZnO 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Model 1 0.17 0.01 −0.22 −0.81 −1.01 0.65 0.45
Model 2 0.25 0.18 −0.23 −1.75 −1.80 0.80 0.75
Model 3 0.25 0.00 −0.27 −1.22 −1.48 1.05 0.78
Model 4 0.33 0.09 −0.38 −2.14 −2.43 1.21 0.92
Model 5 0.5 0.23 −0.63 −4.27 −4.67 1.63 1.23
Model 6 0.5 −0.19 −0.62 −2.96 −3.77 2.01 1.20

column of Tab. 3.3. The use of the piezoelectric coefficients of pure ZnO is not obviously justified

except at small x, but the results show excellent agreement with the computed Pepit values in the

fourth column even up to x = 0.5, where the error is only about 10%. This approximation thus

seems to work quite well.

3.5 Summary

We have investigated the polarization-related properties of wurtzite Zn1−xMgxO alloys using calcu-

lations based on density-functional theory in the local-density approximation and the Berry-phase

approach to calculating electric polarization. In particular, we have studied the dependence of the

spontaneous polarization on Mg concentration using six alloy supercell models with hexagonal

symmetry, spanning the range of Mg concentration from x = 1/6 to 1/2. We performed these

calculations both for free-stress and epitaxial-strain elastic boundary conditions.

Our results indicate a roughly linear dependence of spontaneous polarization on Mg concen-

tration, although the sign of the linear coefficient is opposite in the free-stress and epitaxial-strain

cases. In order to understand this behavior in more detail, we decomposed the change in polariza-

tion into electronic, lattice-displacement-mediated, and strain-mediated components, and found that

the latter component is dominant. This means that the change in polarization is mostly governed

by piezoelectric effects connected with the x-dependent changes of the a and c lattice constants.
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We further confirmed this picture by showing that the polarization changes could be well approxi-

mated by a model in which the only first-principles inputs to the model are the piezoelectric coef-

ficients of pure ZnO and the x-dependence of the equilibrium lattice constants of the Zn1−xMgxO

alloy. These results suggest that charging effects associated with polarization discontinuities in

ZnO/Zn1−xMgxO superlattices and quantum wells should be subject to prediction and interpreta-

tion in a fairly straightforward manner.
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Chapter 4

Improper ferroelectricity in TbMnO3

4.1 Introduction

4.1.1 Multiferroics and magnetoelectrics

In the introduction, we defined a ferroelectric as a material having a spontaneous polarization that is

switchable under applied electric field. As was mentioned already, this behavior is similar to that of

ferromagnets, which have a spontaneous magnetization that is switchable under applied magnetic

field. In general, one may refer to any order parameter that appears spontaneously and is switchable,

as in the above two examples, as a ferroic order parameter. Four primary ferroic order parameters

are frequently discussed. Apart from the aforementioned ferroelectric and ferromagnetic orderings,

there are also ferroelastic and ferrotoroidic orderings [72]. Some materials may have more than one

primary ferroic order parameter in a single phase. Such materials are called multiferroics. In the

literature, the term ‘multiferroic’ is often used to describe a wider range of materials, which may

include other orderings such as antiferromagnetism, ferrimagnetism etc. We will also use this term

in a general sense.

Materials in which electric and magnetic properties are coupled are called magnetoelectrics.

Multiferroics are often magnetoelectrics and vice-versa. However, in general one should distinguish

between the meanings of these terms.

Multiferroic and magnetoelectric materials are currently under intensive study, both from the

point of view of fundamental materials physics, and because of their potential application in mem-

ories, sensors, and transducers [72]. An interesting class of systems are improper ferroelectrics (see

Sec. 1.2) in which an electric polarization is induced by the magnetic order.

Magnetically induced ferroelectricity provides a route to materials with a large magneto-electric

(ME) effect. The appearance of the ferroelectric phase associated with a particular magnetic order
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already suggests that magnetic and electric properties are closely interconnected within a given

material. Therefore, one might expect to observe a strong dependence of the electric polarization on

external magnetic fields in such materials, or a strong dependence of magnetic properties on electric

fields. A large interplay between ferroelectricity and magnetism has been experimentally observed

in a variety of compounds of this type, including (Gd,Tb,Dy)MnO3, (Tb,Dy)Mn2O5, Ni3V2O8,

etc. [73–76].

4.1.2 Inversion symmetry breaking

Since polarization is a polar vector quantity, it is necessary to break the inversion symmetry in order

for the ferroelectric phase to appear. This can happen in collinear spin systems if the spin pattern

breaks inversion symmetry via exchange striction or related effects [77–82]. In such systems, the

crystal structure considered separately from the magnetic structure (e.g. in the paramagnetic phase)

may have inversion symmetry. If one then creates a certain spin pattern (which by itself also may

have inversion symmetry), the spins together with the lattice can break the inversion symmetry.

This can happen if the centers of the inversion symmetry of the lattice and spins do not coincide,

and may lead to a further polar distortion of the lattice. Therefore, these systems are improper

ferroelectrics, in which ferroelectricity is induced by the magnetic order. A simple example of

such a mechanism of inversion symmetry breaking is found in Ca3CoMnO6 [81], as schematically

illustrated in Fig. 4.1.

In this work, we shall be concerned with another class of systems in which a non-collinear

cycloidal spin structure induces an electric polarization via the spin-orbit (SO) interaction [83];

examples include Ni3V2O8 [76], CuFeO2 [84], and orthorhombic RMnO3 [73, 85, 86]. This mech-

anism is schematically illustrated in Fig. 4.2. Again, in these systems, the crystal structure in the

paramagnetic phase does have inversion symmetry. The spiral spin structure, however, breaks this

symmetry, because the spatial inversion operation changes the chirality of the spin spiral. The SO

coupling is essential in this mechanism in order to allow the broken symmetry to be communicated

from the magnetic to the charge and lattice degrees of freedom.
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(c)

(a)

(b)

Figure 4.1: Schematic illustration of inversion symmetry breaking by a collinear magnetic order
in Ca3CoMnO6. The circles represent Co and Mn ions. The lattice has inversion symmetry in a
paramagnetic phase (a). The onset of the up-up-down-down spin pattern shown by small arrows
above the circles in (b) breaks the inversion symmetry. This leads to a polar distortion of the lattice
(c). Large arrows show the direction of electric polarization.

Figure 4.2: Schematic illustration of inversion symmetry breaking by a non-collinear magnetic
order. Small arrows show the magnetic moments. Large arrow show the direction of electric polar-
ization.
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While such spiral spin structures and the resulting polarizations usually appear only at low tem-

perature, these systems are of special interest because the coupling between magnetic and electric

degrees of freedom is so profound.

4.1.3 Symmetric and antisymmetric exchange interaction

In the previous section we discussed how collinear and non-collinear magnetism can break the

inversion symmetry. However, the inversion symmetry breaking alone is not sufficient to induce

the electric polarization. The physical mechanisms of polarization induction by magnetic order are

often discussed in terms of exchange (or superexchange, if the interaction between magnetic ions is

mediated through a ligand) interaction between magnetic ions. Here, we will discuss this interaction

from a phenomenological point of view. For simplicity, we will focus on the two examples from the

previous section: Ca3CoMnO6 for a discussion of collinear magnetism, and TbMnO3 with the spin

spiral of the form depicted in Fig. 4.2 for a discussion of non-collinear magnetism (the circles in

the figure can be viewed as Mn ions in this example). Of course, these examples do not cover every

possible scenario of magnetically induced ferroelectricity in real materials, but they give a feeling

for the role played by the exchange interaction.

We start by writing a general expression for the term in the Hamiltonian describing the exchange

interaction between two magnetic ions,

Hex = ~S1 · ←→J · ~S2, (4.1)

where ~S1 and ~S2 are the spins on the two ions and
←→
J is the 3× 3 exchange tensor. This tensor can

be decomposed into a sum of the symmetric and antisymmetric parts,

←→
J =

←→
J S +

←→
J A. (4.2)
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Assuming isotropic exchange, the symmetric exchange tensor takes the simple form

←→
J S =




J 0 0

0 J 0

0 0 J




(4.3)

and the corresponding term in the Hamiltonian is just

HS
ex = J ~S1 · ~S2. (4.4)

If J < 0, then spins prefer to align in the same direction (ferromagnetic exchange), while if J > 0

then the spins prefer an antiparallel alignment (antiferromagnetic exchange). In both Ca3CoMnO6

and TbMnO3 considered above, the observed spin pattern is a result of the competition between

nearest-neighbor ferromagnetic exchange and next-nearest-neighbor antiferromagnetic exchange

interactions. (In TbMnO3 the situation is more complicated and will be discussed in Sec. 4.4.3

in more detail.) In Ca3CoMnO6 the magnetic moments are collinear because of strong magnetic

anisotropy, and the spins are aligned with the easy axis [81]. The polar distortion of the lattice shown

in Fig. 4.1(c) is also explained by the symmetric exchange interaction, since nearest-neighbor spins

want to move closer to each other in order to increase the exchange coupling and minimize the total

energy. This mechanism is called exchange striction.

In TbMnO3, the symmetric exchange cannot explain the appearance of electric polarization.

One can see this already from the fact that, unlike in the case of Ca3CoMnO6, the angle between

the magnetic moments of all nearest-neighbor Mn ions is the same (see Fig. 4.2). However, the

antisymmetric exchange can play an important role. The corresponding tensor may be written as

←→
J A =




0 Dz −Dy

−Dz 0 Dx

Dy −Dx 0



, (4.5)



44

e 12

O M2M1

Figure 4.3: The three ion cluster model. The oxygen (O) is located half between the two transition
metal ions (M1 and M2). The arrows on the metals indicate spins. The unit vector ê12 is directed
from M1 to M2.

where ~D is some constant vector. Using this notation, one can write the Hamiltonian term coming

from the antisymmetric exchange as

HA
ex = ~D · (~S1 × ~S2). (4.6)

This interaction was originally discussed by Dzyaloshinskii and Moriya [87, 88] to explain the

origin of weak ferromagnetism in α-Fe2O3 and other materials, in which the anisotropic superex-

change causes the canting of the antiferromagnetically aligned spins. This type of exchange is called

Dzyaloshinskii-Moriya (DM) interaction, and ~D is called the DM vector. In the case of TbMnO3,

the situation is the opposite: the spins are already non-collinear, and the DM interaction may be

responsible for the displacements of oxygen ions in the Mn–O–Mn bond. For this reason, this

interaction is often referred to as the inverse Dzyaloshinskii-Moriya interaction.

Let us demonstrate how this interaction may induce oxygen displacements. Consider a cluster

of three ions: two transition metal ions and oxygen between them exactly in the middle, as shown

in Fig. 4.3. The displacement of oxygen ion ~u from the center of the bond affects the strength of

the exchange interaction, which is manifested by the dependence of the vector ~D on ~u [89]. In this

case, to the first order in oxygen displacement ~u, one can write Di = cijuj (zero order term is not

interesting) to arrive at

HA
ex = cijuj(~S1 × ~S2)i, (4.7)
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where cij are some constants and summation over i and j is assumed. The energy is a scalar,

therefore it must be invariant under inversion symmetry and all mirror symmetries of the Mn–O–Mn

bond. Consider, for example, mirror symmetry Mx, which changes x to −x (where x̂ is some axis

perpendicular to the bond). In the cross product ~S1 × ~S2, the x-component is invariant, while other

components change their sign under this symmetry. As for the displacement ~u, only ux changes

sign. Therefore, cxx must also change sign, while cyx and czx must remain invariant. One can

check that cij = c εijkê12,k satisfies these conditions, where εijk is the fully antisymmetric tensor

and c is some constant (scalar). One can similarly verify that with the above expression for cij , the

term in the Hamiltonian HA
ex remains invariant under mirror symmetries My and Mz , as well as

inversion symmetry. Thus, we found that ~D = c (~u× ê12) and

HA
ex = c (~u× ê12) · (~S1 × ~S2) = c ~u · (ê12 × (~S1 × ~S2)). (4.8)

The oxygens will move in such a way as to minimize the interaction energy HA
ex, so that ~u must be

parallel or antiparallel (depending on the sign of c) to ê12 × (~S1 × ~S2). These displacements will

create local dipole moments along this direction. One can also see that for the spin spiral shown in

Fig. 4.2, the contributions from each pair of transition metals are the same in this model. Therefore,

one can write the general result

~P = γê12 × (~S1 × ~S2). (4.9)

This expression predicts the direction of polarization as shown in the figure. It can also be used to

predict the direction of polarization in other types of spin patterns, e.g. conical spirals, screw spirals

etc. [83]. Of course, when we say ‘direction’, we mean that it is parallel or antiparallel; the sign

cannot be determined from these general considerations.

It should be noted that the mechanism we just described for TbMnO3 is just one of the possible

mechanisms proposed in literature. Here we considered this scenario for the purpose of illustrating

how the electric polarization can be induced by a spiral magnetic order.

Note that we could predict the direction of the polarization induced by a cycloidal spin spiral
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(Fig. 4.2) using only symmetry analysis. However, the expression given by Eq. 4.9 gives more

information, e.g. how polarization depends on the wave vector of the spiral.

4.1.4 Electronic and lattice mechanisms

Theoretically, the use of symmetry analysis and phenomenological modeling have clarified the cir-

cumstances under which a spiral spin structure can give rise to an electric polarization [90–92],

but these are are not well suited to identifying the dominant microscopic mechanisms. Two types

of mechanisms have been discussed. The first are purely electronic mechanisms in which the SO

interaction (SOI) modifies the hybridization of electronic orbitals in such a way as to shift the cen-

ter of charge [93–95]. The second are ‘lattice mechanisms’ involving magnetically-induced ionic

displacements, usually discussed in terms of inverse DM interactions [89, 92, 96]. However, it

is generally difficult to estimate the magnitudes (and even signs) of these two kinds of contribu-

tions from the models. Because experiments have not been sensitive enough to resolve the tiny

SO-induced atomic displacements, a central unanswered question is whether electronic or lattice

mechanisms are dominant. It is also unclear whether the pattern of displacements should follow the

predictions of a simple DM model, or whether more complicated interactions enter the picture.

4.2 Orthorhombic TbMnO3

First-principles calculations can play an invaluable role in resolving the questions posed in the

previous section. Density-functional theory (DFT) has already been used to make important contri-

butions to the understanding of improper magnetic ferroelectrics of the collinear-spin type [97–99]

and in the spiral magnetic materials like LiCu2O2 and LiCuVO4 [100]. The spiral magnetic materi-

als are less studied by such methods compared to collinear-spin systems. This is mainly because of

the computational difficulties associated with applying these methods to systems with non-collinear

magnetic order. In order to investigate the effects of magnetic spirals, one has to perform DFT

calculations that allow treatment of non-collinear spins, and often the LDA+U method is needed

for a proper treatment of d-electrons of transition metals. As was mentioned above, the spin-orbit
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coupling also must be taken into account. Since the effects of the spin-orbit interaction are usually

small, the calculations must be done with high-precision requirements for both the total energy in

the electronic structure calculations and the forces for the structural relaxation of the system. To

model the spin spiral itself, one has to use large supercells.

For our study [101, 4] we chose orthorhombic TbMnO3 as a paradigmatic system of the cy-

cloidal type. It also has a relatively small (20-atoms) structural unit cell, so that it is possible to use

a supercell approach in our calculations. Ferroelectricity in this material was discovered by Kimura

et al. [73]. At room temperature, TbMnO3 is an orthorhombically distorted perovskite (space group

Pbnm) with a 20-atom cell containing four formula units (see Fig. 4.4). It is paramagnetic at this

temperature. The magnetic properties at low temperatures come mostly from the Mn ions. The

Mn3+ ions form a collinear sinusoidal spin wave at temperatures between ∼27 K and ∼41 K, but

below ∼27 K a cycloidal spin wave forms with incommensurate wave vector ks = 0.28 along b,

and a polarization simultaneously appears along c [73, 83]. Here the wave vectors are expressed in

units of reciprocal lattice vectors. Note that the spin spiral (and any property related to the spiral)

is a periodic function of ks with a period ∆ks = 2, i.e., ks and ks + 2 correspond to the same spin

spiral. The period is 2 and not 1 because the unit structural cell has two Mn atoms in each a–b layer

(see Fig. 4.4). For example, ks = 0 corresponds to a ferromagnetic spin structure (in each layer),

while ks = 1 corresponds to an antiferromagnetic spin structure.

4.3 Computational details

In this work, electronic-structure calculations are carried out using a plane-wave pseudopotential

approach to DFT as implemented within the VASP code [45] using PAW potentials[38, 44]. (The

Tb potential does not have f electrons in the valence.) We use the local-density approximation

(Ceperley-Alder[102] with Vosko-Wilk-Nusair correlation[32]) with on-site Coulomb interactions

(LDA+U) in a rotationally invariant formulation [29]. We consider values of U up to 4 eV. Since

the periodic boundary conditions are required by our superlattice approach, we cannot model spin

spirals with arbitrary wave vector, but only spirals that are commensurate with the crystal lattice.
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Figure 4.4: Sketch of the a× 3b× c/2 orthorhombic cell of TbMnO3 (Pbnm space group) showing
MnO6 octahedral tilts (top) and the cycloidal magnetic structure on the Mn3+ sites (bottom) [4].

In this work, we use a 20-atom unit cell to model wave vectors ks = 0 and ks = 1, a 40-atom cell

(unit cell doubled in the b-direction) for ks = 1/2, a 60-atom cell for ks = 1/3 and ks = 2/3,

and an 80-atom cell for ks = 1/4 and ks = 3/4. Fig. 4.4 shows the spin spiral with ks = 1/3.

Note that, in general, using the primitive cell repeated n times in the b-direction, one can construct

spirals with wave vectors m/n, where 0 ≤ m ≤ n. A 3×1×2 k-point sampling is used for the

60-atom supercell, and equivalent k-point meshes are used for the 20- and 40-atom supercells. For

the 80-atom supercell we use the same 3×1×2 k-point mesh. The plane-wave energy cutoff is 500

eV, and the electric polarization is calculated using the Berry-phase approach [46].

4.4 Results

4.4.1 Crystal structure

A crystal structure optimization was performed for the 60-atom supercell (see Fig. 4.4) using U =

1 eV and U = 4 eV (see also Sec. 4.4.2 for the details regarding the choice of values of U ). These

calculations were carried out without SO interaction to obtain centrosymmetric reference structures,
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Table 4.1: Experimental (Ref. [2]) and theoretical (this work) structural parameters for orthorhom-
bic TbMnO3.

Exp. U = 1 eV U = 4 eV
Lattice vectors a (Å) 5.293 5.195 5.228

b (Å) 5.838 5.758 5.775
c (Å) 7.403 7.308 7.343

Tb 4c(x y 1/4) x 0.983 0.979 0.980
y 0.082 0.084 0.084

Mn 4b(1/2 0 0)
O1 4c(x y 1/4) x 0.104 0.107 0.111

y 0.467 0.469 0.465
O2 8d(x y z) x 0.704 0.699 0.700

y 0.326 0.320 0.323
z 0.051 0.052 0.053

Table 4.2: The Mn–O bond lengths (Å) in MnO6 octahedra as calculated from structural parameters
given in Tab. 4.1. The bonds are listed in the order of increasing their length.

Mn–O bond Exp. U = 1 eV U = 4 eV
1 1.905 1.912 1.912
2 1.940 1.919 1.936
3 2.220 2.148 2.174

with respect to which Berry phase polarization will be calculated in the subsequent analysis. The

lattice parameters and Wyckoff coordinates of the relaxed structures are given in Tab. 4.1. For both

values of U , the calculated structural parameters are very close to the experimental ones, with the

lattice vectors being in slightly better agreement with experiment for the case of U = 4 eV.

As one can see from the table, the crystal structure differs significantly from the ideal perovskite

structure. In the ideal perovskite system ABO3, the B sites together with their 6 neighboring oxy-

gens form ideal BO6 octahedra. Instead, the MnO6 octahedra in TbMnO3 are distorted (Jahn-Teller

distortion). The three pairs of Mn–O bonds have different bond lengths (see Tab. 4.2), with the

shortest and the longest bonds formed with the O2 oxygens (the bonds that almost lie in the a–b

plane), while the bond with the medium length is to O1 (sticking out of this plane). The Jahn-Teller

distortion in TbMnO3 plays an important role in its electronic structure, as will be described in

Sec. 4.4.2.
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Figure 4.5: The two initial configurations considered in the model of rigid MnO6 octahedra rota-
tions. The positive directions of rotations are shown with curved arrows. (a) corresponds to the case
1, and (b) corresponds to the case 2 (see text for details).

Orthorhombic perovskite materials are often described in terms of octahedral rotations. In

Pbnm symmetry, the rotations can be described as (a−a−b+) in Glazer’s notation [103], mean-

ing that the octahedra are rotated around [110] and [001] axes in the original Cartesian frame. In the

frame chosen as in Fig. 4.4, this corresponds to rotations around b̂ and ĉ axes correspondingly. A

plus (minus) sign indicates that the nearest octahedra connected along the axis of rotation rotate in

the same (opposite) direction.

In general, the different order of rotations leads to different final configurations, because ro-

tations do not commute. Therefore, when describing the TbMnO3 system in terms of MnO6 oc-

tahedral rotations, one should carefully specify the meaning of the rotations and their order. For

example, if we start with the ideal perovskite configuration and induce the Jahn-Teller distortion,

we can arrive at several possible initial configurations as shown in Fig. 4.5. If we apply (a−a−b+)

rotations to the configuration shown in Fig. 4.5(b), regardless of the order of rotations, the final

structure will not have Pbnm symmetry. However, applying rotation around b̂ followed by rotation

around ĉ to the configuration shown in Fig. 4.5(a), we will preserve the Pbnm symmetry.

Fitting the angles of rotation to the relaxed structure (Tab. 4.1), we find the rotation angles

around b̂ and ĉ to be approximately 19.0◦ and 11.6◦ respectively.
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Figure 4.6: Density of states of TbMnO3 with the noncollinear cycloidal spin structure (ks = 1/3)
for U = 4 eV in the presence of SO interaction. Top of the valence band is at 0 eV. Upper figure
shows total density of states. Lower figure shows partial density of states projected onto Mn eg and
t2g levels, and onto O 2p levels.

4.4.2 Electronic structure

We find that the LDA predicts TbMnO3 to be metallic in the ground state. However, using the

LDA+U method, we find that already for small values of U a finite band gap appears, and the

system becomes insulating. The calculated density of states in the region around Fermi energy is

shown in Fig. 4.6 for U = 4 eV. Near the Fermi level, manganese 3d-orbitals and oxygen 2p-orbitals

contribute most strongly to the density of states.

It is known from crystal field theory that the five 3d orbitals of the transition metal ion in the

ideal octahedral environment form a triply degenerate t2g set of orbitals (dxy, dxz , and dyz) and a

doubly degenerate eg set (dx2−y2 and dz2). The density of states projected onto the Mn eg and t2g

orbitals is also shown in Fig. 4.6. The small overlap of the eg and t2g orbitals is artificial, because

the MnO6 octahedra are rotated with respect to the (â,b̂,ĉ) coordinate frame used in the calculation

of the density of states. The calculation done for TbMnO3 in the configuration shown in Fig. 4.5(a)

shows that there is no such overlap (see Fig. 4.7). As seen from Fig. 4.6, below ∼-1 eV the states

are composed of the three Mn t2g (spin majority) levels and O 2p levels. The majority t2g levels lie
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Figure 4.7: Density of states of TbMnO3 with the noncollinear cycloidal spin structure (ks = 1/3)
for the configuration shown in Fig. 4.5(a) for U = 4 eV in the presence of SO interaction. Top of
the valence band is at 0 eV. Upper figure shows total density of states. Lower figure shows partial
density of states projected onto Mn eg and t2g levels, and onto O 2p levels.

below the majority eg levels, one of which lies just below the Fermi energy, and another one lies

in the region from ∼1.5 eV to ∼2 eV. Minority t2g and eg levels lie above ∼2 eV. The Mn3+ ion

has 4 electrons in the d shell, which occupy 3 t2g levels and one of the eg levels. It is important

to emphasize that the Mn eg levels are split because of the Jahn-Teller distortion. If we do a DFT

calculation of TbMnO3 in the ideal perovskite structure, we get a metallic state (even in the LDA+U

method, see Fig. 4.8). When the Jahn-Teller distortion is taken into account, the LDA still fails to

reproduce the splitting of the eg levels, and LDA+U helps to restore the gap between these levels.

The dependence of the gap on U value can be seen from the density of states calculations shown in

Fig. 4.9.

We note that at U = 1 eV the band gap is close to the experimental value of ∼0.5 eV [104]. For

this reason, when comparing to experiments, we will mostly use numerical results obtained with

this choice of U . In general, a better strategy for choosing the U value would be to calculate the

exchange parameters and fit those, rather than the band gap, to the experimental data. In the present

case, however, such an approach leads to a similar choice [3] of parameters.
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Figure 4.8: Density of states of TbMnO3 with the noncollinear cycloidal spin structure (ks = 1/3)
in ideal perovskite configuration for U = 4 eV in the presence of SO interaction. Top of the valence
band is at 0 eV. Upper figure shows total density of states. Lower figure shows partial density of
states projected onto Mn eg and t2g levels, and onto O 2p levels. Figure illustrates that without
Jahn-Teller distortion, even in the LDA+U method, the system is metallic.

4.4.3 Spin structure

The appearance of the spiral spin structure in TbMnO3 indicates the presence of competing inter-

actions. However, the exact microscopic origin is a subject of much debate. It can be shown [105]

that in a string of Heisenberg spins with nearest-neighbor (NN) ferromagnetic (J1 < 0) or anti-

ferromagnetic (J1 > 0) interactions and next-nearest-neighbor (NNN) antiferromagnetic (J2 > 0)

interactions, the spin spiral can form with a wave vector q along the string satisfying

cos(qa) = − J1

4J2
. (4.10)

This condition can easily be derived by minimizing the Hamiltonian of the form

H(q) = J1 cos(qa) + J2 cos(2qa). (4.11)

Kimura et al. [106] suggested that in TbMnO3 the incommensurate phase is a result of compet-

ing NN ferromagnetic (FM) and NNN antiferromagnetic (AFM) spin interactions in the a–b plane.
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Figure 4.9: Density of states of TbMnO3 with the noncollinear cycloidal spin structure (ks = 1/3)
for various values of U in the presence of SO interaction. Top of the valence band is at 0 eV.
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Zhou and Goodenough [107] argued that the responsible competition is between FM eg–O–eg and

AF t2g–O–t2g interactions in the a–b plane. Xiang et al. [3] from their first-principles calculations

found that the NN spin interaction is antiferromagnetic rather than ferromagnetic as suggested by

Kimura et al. They also argued that the Jahn-Teller distortion leads to a large NNN spin superex-

change interaction. However, their calculated exchange couplings J1 and J2 were incompatible

with the experimentally observed wave vector (ks = 0.28) as argued by Dong et al. [108]. Dong

et al. considered an effective Hamiltonian model which, apart from the NN and NNN exchange

interactions, also included Jahn-Teller distortions, and using Monte-Carlo simulations they were

able to obtain a spin spiral with realistic wave vector. Sergienko and Dagotto [89] argued that

Dzyaloshinskii-Moriya (DM) interaction may be responsible for the stabilization of the spin spiral

in TbMnO3. Recently, Mochizuki and Furukawa [109] considered a model that included superex-

change interactions, single-ion anisotropy and DM interactions. They showed that the NN DM

interactions in the a–b plane and the single-ion anisotropies favor the a–b cycloidal spin state, while

the NN DM interactions along ĉ favors the b–c cycloidal spin state. This competition was shown to

be controlled by the NNN J2 superexchange enhanced by the GdFeO3-type distortion (movement

of oxygens in Mn–O–Mn perpendicular to the Mn–Mn bond). While the complete picture of the

origin of the cycloidal spin phase is not yet established, it is clear that it must have many ingredients.

In our work, we set the initial magnetic moments on Mn sites as shown in Fig. 4.4, and then allow

them to evolve during the self-consistent iterations in DFT calculation. We find that the directions

of the magnetic moments are stable, while their magnitude may change depending on the choice

of U in the LDA+U method. Our computed magnetic moments have magnitudes of approximately

3.4µB and 3.7µB for U = 1 eV and U = 4 eV respectively, and rotate in the b–c plane as one

scans along b, and this result hardly changes when SO is turned on. Experimentally, the magnetic

moments on the Mn3+ sites are found to form an elliptical spiral with amplitudes mb = 3.9µB and

mc = 2.8µB [85]. The origin of this ellipticity, which is apparently not captured by our calculation,

deserves further investigation.
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4.4.4 Contributions to the polarization

Our calculations confirmed that the Berry-phase polarization vanishes in the absence of SO. When

the SO is turned on, one expects the broken inversion symmetry in the spin sector to be com-

municated to the spatial (charge) degrees of freedom. And indeed, as will be shown shortly, our

calculations confirm this expectation.

To separate the effects of the purely electronic and lattice mechanisms discussed in Sec. 4.1.4,

we proceed in the following way. First, we turn on the SO but keep the lattice vectors and ionic

positions frozen. In this case, the polarization can appear only due to the change in the electronic

charge density. On the other hand, if we allow the relaxation of ionic positions when the SO is turned

on, we can calculate the total polarization (which includes both electronic and ionic contributions).

Focusing first on the purely electronic mechanism, we find P elec = 32µC/m2 and P elec =

−14µC/m2 for U = 1 eV and U = 4 eV respectively (with the direction of polarization parallel

to the c axis, as was expected from symmetry). In both cases, the magnitude is much smaller than

the observed value of ∼600µC/m2 [73]. This result suggests that the lattice mechanism must be

dominant, and that the electronic contribution to the polarization can be neglected for any reasonable

value of U .

We now turn our attention to the lattice contribution. As a first step, we computed the Hellmann-

Feynman forces appearing on the ions as the SO is turned on (with the structural coordinates still

clamped). Using the 20-atom cell of the Pbnm space group to label the forces, we found that: (i)

64.8% of the forces belong to the symmetry-preserving A1(Γ) irreducible representation (irrep); (ii)

28.7% of the forces belong to the B1u(Γ) irrep, i.e., zone-center infrared-active (IR-active) modes

with dynamical dipoles along c; and (iii) 6.5% correspond to forces at ky = ±2π/3b, i.e., those that

would be responsible for lowering the translational symmetry of the 20-atom cell. The remaining

contributions are found to vanish to numerical precision. Since the only forces that generate an

electric polarization in linear order are those of type (ii), we henceforth focus our attention on the

zone-center IR-active B1u modes.

Eight Wyckoff coordinates contribute to the B1u irrep in the 20-atom Pbnm structure: three
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associated with Mn atoms in Wyckoff position 4b, one each for Tb and O1 atoms in Wyckoff

position 4c, and three for the O2 atoms in Wyckoff position 8d [110]. To find the polarization

induced by the SOI, we need to deduce the displacements resulting from these forces. To this

end we calculated the 8×8 force-constant matrix Φij = −∂fi/∂uj connecting the B1u forces and

displacements at linear order using finite-difference methods (i.e., we shift each Wyckoff coordinate

by ∼10−3 Å and calculate the resulting forces). For computational convenience, the determination

of Φij was done in the absence of SO. (A dependence of Φij on SOI would only give a dependence

of polarization at quadratic or higher order, and we are primarily concerned with linear effects.

Also, we note one could have used the 20-atom unit cell for this calculation, with ks = 0, since the

force-constant matrix depends only weakly on the wave vector.) Furthermore, we identify the linear

combination tj of the eight coordinates corresponding to a uniform shift of the crystal along the c

direction (acoustic mode) and make sure to project this combination out of the computed forces and

displacements. Thus, the displacements are predicted from

ui = −
8∑

j=1

Φ̃−1
ij fj , (4.12)

where Φ̃−1 is a pseudo-inverse [71] having the property that Φ̃−1Φu = u for any u orthogonal to t.

The computed forces and predicted atomic displacements in the IR-active B1u sector

for TbMnO3 are presented in the Tab. 4.3. We calculated the B1u(Γ) forces again in the presence

of the predicted displacements and found that 99% of these forces were eliminated, thus justifying

our approach. Of course, instead of computing the force-constant matrix, one could just relax the

coordinates in the presence of the SOI. However, we prefer the present approach both because it is

numerically more stable and because it facilitates the analysis of polarization contributions coming

from phonon modes, atomic spin-orbit interactions, etc.

The distorted crystal structure is now non-centrosymmetric (space group Pna21), and the cal-

culated Berry-phase polarization (including both electronic and ionic contributions) is P tot =

−467µC/m2 and P tot = −218µC/m2 for U = 1 eV and U = 4 eV respectively. In both cases,
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the total polarization is more than an order of magnitude larger than the corresponding values com-

puted from purely electronic mechanisms, and the U = 1 eV result is comparable in magnitude with

the experimental value of ∼-600µC/m2 [86]. Note that the sign of the total polarization is also in

agreement with experiment.

We thus arrive at one of the major conclusions of our work, namely, that in the case of b–c

spiral in TbMnO3, the lattice contributions dominate strongly and have approximately the right

magnitude to explain the experimentally observed polarization. Purely electronic mechanisms, e.g.

as described by the Katsura-Nagaosa-Balatsky (KNB) model[93] or related work [94, 95], are not

sufficient to describe the ferroelectricity in TbMnO3.

4.4.5 Mode decomposition of spin-orbit induced forces and ionic displacements

Knowing the ionic displacements, one can also find the contributions to the polarization from each

mode by calculating the effective charges of the modes. The results of such calculations for both

values of U are given together with the forces and displacements in Tab. 4.3.

Note that the values for the forces in the table represent the forces acting on the ‘modes’ rather

than ions themselves. Each mode is characterized by a unit vector in the (20×3)-dimensional space.

Therefore, to get the actual number for the force acting on a particular ion, one must multiply the

corresponding value from the table by an appropriate unit vector. This procedure will give absolute

values for the ionic forces that are two times smaller than the numbers in the table for the first five

modes, and 2
√

2 times smaller for the rest of the modes.

To understand which modes contribute most strongly and to test whether simple models (based,

e.g., on DM interactions) can predict the forces and displacements, we performed a further analysis

as follows. For each B1u Wyckoff coordinate, we computed the corresponding effective charge Z

(derivative of polarization with respect to the Wyckoff coordinate) by augmenting the same finite-

difference calculations used earlier with Berry-phase polarization calculations. We then multiplied

the effective charges by the displacements to get the contribution ∆P made by each Wyckoff coor-

dinate. These results are also given in the Tab. 4.3. For U = 1 eV, the total ionic polarization (sum



59

Table 4.3: Forces (meV/Å), displacements (mÅ), effective charges (e) and contributions to the
polarization (µC/m2) from IR-active modes. See text for the description of the conventions used to
describe the modes. The values for ∆P ∗ are calculated with the SO coupling turned off everywhere
except on Mn sites. In the last row, the values for ionic contributions to the polarization obtained
from a direct Berry-phase calculations are given for comparison.

Wyckoff U = 1 eV U = 4 eV
coordinate F ∆u Z ∆P ∆P ∗ F ∆u Z ∆P
1 (Tb 4c, z) 0.43 −0.17 7.47 −94 −73 0.47 −0.08 7.38 −42
2 (O1 4c, z) 2.26 −0.16 −6.82 81 69 1.46 −0.03 −6.34 15
3 (Mn 4b, x) −7.04 −0.32 0.57 −13 −14 −2.00 −0.07 0.56 −3
4 (Mn 4b, z) −8.93 −0.45 7.46 −248 −232 −3.86 −0.18 7.02 −94
5 (Mn 4b, y) −2.94 −0.01 0.55 0 −1 −1.06 0.04 0.65 2
6 (O2 8d, x) 5.06 0.54 0.08 3 2 2.00 0.26 0.09 2
7 (O2 8d, y) 3.57 0.93 0.23 16 9 1.59 0.41 0.19 6
8 (O2 8d, z) 4.41 0.56 −5.74 −234 −208 1.37 0.21 −5.71 −87∑

∆P −489 −448 −201
P ion −499 −204

of the fifth column) is −489µC/m2, in good agreement with the change of polarization in going

from the centrosymmetric to the distorted structure as reported earlier (−467−32 = −499µC/m2).

Similar results are found for U = 4 eV (see Tab. 4.3). Not surprisingly, the Z values are much larger

for the four Wyckoff coordinates involving displacements along z, and these give by far the largest

contributions to ∆P .

The results in Tab. 4.3 for U = 1 eV and U = 4 eV may seem different, but in fact they are

qualitatively similar. The forces for these two values of U may be viewed as vectors in an 8-

dimensional space, and one can calculate the angle θ between them to find cos θ = 0.98. Thus, the

direction of the forces is almost the same, although the magnitude is different. This means that the

underlying physical mechanism of the magnetically induced polarization does not depend strongly

on the choice of U , while the magnitude of the effect does change with U . Therefore, from now on

we will focus only on U = 1 eV.

In a simple DM model [79], one considers interactions involving nearest-neighbor triplets of

ions along Mn–O–Mn bonds. Such a picture leads to the expectation that a force γ ênn′ ×Sn×Sn′

should appear on the central O ion (where γ is a coupling, Sn and Sn′ are neighboring Mn spins, and
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Table 4.4: Forces, displacements, effective charges and contributions to ionic polarization from
modes corresponding to eigenvectors of the force-constant matrix.

Eigenvalue F ∆u Z∗ ∆P
(eV/Å2) (meV/Å) (mÅ) (e) (µC/m2)

34.86 6.349 0.182 −8.111 −108
31.37 −8.259 −0.263 4.565 −88
13.32 2.783 0.209 8.132 125
11.87 7.614 0.641 −2.127 −100
10.35 1.684 0.163 −3.406 −41
6.99 −2.784 −0.398 4.316 −126
3.85 4.032 1.047 −1.991 −153

ênn′ is the unit vector connecting them), with an equal and opposite force shared between the Mn

ions. The cycloidal spin structure of TbMnO3 is such that O1 ions should be unaffected, and O2 ions

should all feel the same force along c, with Mn ions feeling an opposite force. Thus, within such

a model one would expect only the 4th and 8th rows of Tab. 4.3 to give significant contributions.

Inspecting the table, we see that this is rather far from being the case; one does find substantial

oppositely-directed forces and displacements for the (Mn 4b, z) and (O2 8d, z) coordinates, but

the forces and displacements are comparable for some other coordinates. The contributions to ∆P

are more strongly dominated by these two coordinates, but only because the Z values are so much

larger for displacements along ẑ. Interestingly, the Tb displacements are responsible for ∼20%

of the lattice polarization, despite being uninvolved in the usual picture of Mn–O–Mn couplings.

Thus we conclude that the simple DM model, and indeed any model that considers only nearest-

neighbor Mn–Mn spin interactions, is unable to provide a detailed description of the ferroelectricity

in TbMnO3.

As an alternative way of analyzing the SO-induced B1u forces and displacements, we trans-

form into the basis of eigenvectors of the 8×8 force-constant matrix Φ. The results are presented

in Tab. 4.4. The displacements are largest for the softest mode, but other modes also show sub-

stantial displacements. Moreover, the mode dynamical charges are much larger for some of the

harder modes, so that many of these also give substantial contributions. This shows that the electric

polarization in TbMnO3 is not dominated by a single softest mode.
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4.4.6 Site-specific spin-orbit interactions

To better understand the role of the spin-orbit interaction, we studied how the behavior of the system

changes depending on the strength of the SO interaction and on the presence of SO on various

atomic sites. We performed calculations of the forces with the SO interaction turned off on all

sites other than Tb, then Mn, then O. Using the force-constant matrix, we estimated the lattice

contributions to the polarization and found them to be −11µC/m2, −447µC/m2 and −8µC/m2,

respectively. This result shows that the SO interaction on the Mn sites is responsible for almost all

of the lattice-mediated contribution to the polarization (see the column for ∆P ∗ in the Tab. 4.3).

We also calculated the purely electronic contributions to the polarizations for these three cases.

Interestingly, the electronic contribution comes almost entirely from the spin-orbit effect on the Tb

sites. However, since the electronic contribution is small, the relative errors in the polarization may

become large, and one cannot draw definite conclusions on the role of Tb from these results. Several

calculations of the forces with modified SO strength confirmed that they depend linearly on the SO

strength.

4.4.7 Dependence on wave vector

Microscopic theoretical models involving the displacements of ions [89, 92, 96] show that the in-

verse Dzyaloshinskii-Moriya (DM) interaction can induce ferroelectric displacements of ions. Usu-

ally, only the spin interaction between the nearest-neighbor transition metals is considered in such

models. As a consequence, the polarization is expected to depend sinusoidally on the angle between

the spins of the nearest-neighbor Mn sites, P ∝ en,n′ × (Sn × Sn′) [83], and thus sinusoidally on

ks. To study the dependence of the lattice contribution to the electric polarization on ks, we have

carried calculations of the SO-induced forces for a 40-atom supercell (ks = 1/2) and an 80-atom

supercell (ks = 1/4 and ks = 3/4). Note also that the same 60-atom supercell can be used to set up

a spiral with the wave vector ks = 2/3. We also used the primitive 20-atom cell for the calculations

with ks = 0 and ks = 1. In all these calculations we kept the same structural coordinates as for the

60-atom structure to make sure that we only change one parameter (ks) in this study. We calculated
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the forces, and again filtered those that were IR-active. We find that the pattern of the IR forces

matches almost exactly that of the 60-atom cell, i.e., the directions of the eight-dimensional vectors

almost coincide in all cases. Using the force-constant matrix calculated on the 60-atom supercell

and the effective charges from Tab. 4.3, we can estimate the polarization for the new wave vectors.

The result is shown in Fig. 4.10. Actual calculations were performed only for non-negative values of

ks, as symmetry arguments show that the polarization must be an odd function of spin-spiral wave

vector. The values ks = 0 and ks = 1 correspond to a collinear spin arrangement. In these cases

the polarization was zero as expected. One can see that the dependence of the polarization on ks

deviates significantly from a simple sinusoidal form. Surprisingly, the polarization is almost linear

in ks up to ks = 1/2; such a linear dependence is expected in the long-wavelength limit, but that is a

rather stretched assumption for ks up to 1/2. This result indicates that nearest-neighbor DM models

oversimplify the mechanism of the polarization induction, and that taking the next-nearest-neighbor

interactions into account may be important.

The experimental ks lies in the range where we can assume a linear dependence. The extrapola-

tion to ks = 0.28 yields a value for the lattice contribution of the polarization of about−410µC/m2.

Fig. 4.10 also shows the dependence of the total energy per formula unit on the wave vector.

The parameters E1 and E2 essentially give us the exchange parameters in the effective Hamilto-

nian (4.11). Assuming that the interactions responsible for the appearance of the spin spiral are

intralayer NN (J1) and NNN (J2) superexchange interactions, from the parameters of the Fourier fit

we find J1 = −1.7 meV and J2 = 1.2 meV. Note that not all NNN interaction paths are equivalent,

and thus J2 is the average exchange parameter. We can use Eq. (4.10) to find the wave vector ks

minimizing the energy given by Eq. (4.11), keeping in mind that in our case qa = ksπ. Such a

calculation yields ks = 0.38, slightly overestimating the experimental value of ks. We remind that

in these calculations the structural parameters were kept fixed (and obtained by the full relaxation of

the structure with ks in the absence of the SOI), with only the directions of the magnetic moments

on the Mn sites being changed.

Although the purely electronic contribution to the polarization in b–c spiral TbMnO3 is rather
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Figure 4.10: Dependence of lattice contribution to the polarization (circles, scale at left) and total
energy (squares, scale at right) on the spiral wave vector ks. The triangle indicates the extrapolation
of the polarization to the experimental wave vector of ks = 0.28. The curves show the Fourier fits
to the data.

small, it is still worth analyzing its dependence on the spin spiral wave vector. The results of such

calculations are presented in Fig. 4.11. Again, the dependence is not sinusoidal. Since we know that

the polarization is an odd periodic function of ks (with a period ∆ks = 2), we can fit the calculated

points to the Fourier series

P = P1 sin(πks) + P2 sin(2πks) + . . . (4.13)

Similarly, the energy, being an even and periodic function of ks, can be expanded as

E = E0 +E1 cos(πks) + E2 cos(2πks) + . . . (4.14)

The result of such fitting is given in Tab. 4.5. One can see that the most important coefficients

of the Fourier expansion are those with indices ‘1’ and ‘2’. If the polarization has the DM form

(Eq. 4.9), then it is easy to see that terms with index ‘1’ come from nearest-neighbor (NN) interac-

tions, terms with index ‘2’ come from next-nearest-neighbor (NNN) interactions, and so on. The
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Figure 4.11: Dependence of electronic contribution to the polarization on the spiral wave vector ks

(circles). The curve shows the Fourier fit to the data.

Table 4.5: Parameters of the fits of the electronic and lattice contributions to the polarization, and
the total energy to the Fourier series.

n P elec
n P lat

n En

(µC/m2) (µC/m2) (meV/f.u.)
1 −23.3 −744.2 −13.4
2 51.5 166.3 9.4
3 0.6 −2.7 −0.8

result that we see is that NNN interactions play an important role in TbMnO3, and should be taken

into account in models describing the origin of the induced ferroelectricity. At the same time, it is

not necessary to go beyond NNN interactions, as higher-order terms in the Fourier expansions are

negligible.

4.5 Spin spiral in the a–b plane

In the previous section we showed that the electronic contribution to the polarization is much smaller

than the ionic contribution in TbMnO3 when the spin spiral is lying in the b–c plane. Now, one

can ask how general this result is. Picozzi et al. showed that in orthorhombic HoMnO3, which

is an improper ferroelectric with polarization induced by a collinear antiferromagnetic order, the
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electronic contribution to the polarization is of the same order as the ionic contribution. Although

the mechanism of polarization induction in HoMnO3 is different from that in TbMnO3, there is no

a priori reason why the electronic contribution should be negligible in TbMnO3. In this section,

we study the polarization induced by the spin spiral lying in the a–b plane and show that this case

differs a lot from the case of the b–c-plane spiral. In Sec. 4.6, we analyze the electronic contribution

in both cases in more detail by considering a structural model of rigid MnO6 octahedra.

It was shown experimentally [73] that when a magnetic field is applied to a TbMnO3 sample

along the b-direction, at some point the polarization changes its direction from c to a (this is a so-

called electric polarization flop). It was naturally suggested (and recently observed [111]) that the

polarization flop occurs due to the change of the spin spiral plane from b–c to a–b; the polarization

simply follows the spiral. We will refer to these two magnetic states as the ‘b–c spiral’ and ‘a–b

spiral’. Note also that in the a–b spiral state the wave vector of the spiral becomes commensurate

with the lattice (ks = 1/4). A first-principles study by Xiang et al. [3] suggests that in the a–b spiral

case the electronic contribution to the polarization is of the same order of magnitude as the ionic

contribution.

We performed calculations of the Berry phase polarization in the case of the a–b-spiral for a set

of U values from 1 eV to 4 eV. We note that in these calculations the reference crystal structures

were fully relaxed only for U = 1 eV and U = 4 eV (in the absence of SOI, see Tab. 4.1). The

values of the polarization for U = 2 eV were obtained by using the lattice and structural parameters

from the U = 1 eV column of Tab. 4.1. The results are presented in Tab. 4.6. For comparison,

in the fourth column of the table, we show the results of similar calculations by Xiang et al. [3],

who used U = 2 eV and also included Tb f electrons (with UTb = 6 eV) in their considerations.

In the b–c spiral case, as we mentioned before, the results do not depend strongly on the choice of

U . Comparing in this case the results of Xiang et al. with our results for U = 1 eV, we find an

agreement in that the purely electronic contribution is negligible, and the total polarization values

agree with each other within 10%. However, as seen from the Tab. 4.6, in the a–b spiral case the

polarization is extremely sensitive to the value of U . The value of the electronic contribution at
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Table 4.6: Purely electronic and total polarizations for the b–c and a–b spirals. Values in the column
marked with one asterisk (*) were obtained using the reference crystal structures relaxed with U =
1 eV. Values in the column marked with two asterisks (**) are taken from Ref. [3] for comparison.
The polarization values are given in µC/m2.

U U = 1 eV U = 2 eV∗ U = 2 eV∗∗ U = 4 eV
b–c P elec

c 32 1 1 −14
spiral P tot

c −467 −424 −218
a–b P elec

a 1530 691 331 174
spiral P tot

a 740 −131 −23

U = 2 eV differs by a factor of two from the result of Xiang et al. This difference is not surprising,

since the structural relaxation was performed with U = 1 eV in our work, and U = 2 eV in theirs

(also the polarization in this case is very sensitive to the choice of exchange-correlation potential).

More importantly, in all calculations the electronic contribution is comparable or even larger than

the lattice contribution. This leads us to conclude that the domination of the lattice contribution in

the case of b–c spiral is not a general phenomenon but was special to that case.

The high sensitivity of the polarization to the choice of U in the a–b spiral case means that

(unlike in the case of b–c spiral) any prediction of the polarization made with LDA+U calculations

in this case will have a large uncertainty. Even the use of the method itself becomes questionable,

and perhaps other methods (such as, e.g., GW quasiparticle approaches [112]) should be exploited

in this case.

Note that the magnitude of the electronic contribution in the a–b spiral case falls rapidly with

increasing U . We know that the band gap increases almost linearly with U (see Fig. 4.9). Fig. 4.12

shows the electronic contributions to the polarization for both a–b and b–c spirals plotted versus

the average direct band gap. One can see from the plot that, roughly, the polarization is inversely-

proportional to the gap (up to a constant). This behavior can perhaps be understood as follows.

Consider electric polarization as a function of ionic displacements. This function at zero ionic dis-

placements is the purely electronic contribution (what we show in Fig. 4.12). The derivatives of

the polarization with respect to ionic displacements (Born effective charges) within the density-

functional perturbation theory can be written as sums of terms that are inversely proportional to the
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Figure 4.12: Dependence of electronic contribution to the polarization on the average direct band
gap in the b–c spiral (circles, scale at left) and a–b spiral (squares, scale at right) cases when varying
U .

differences of the eigenenergies of the unoccupied and occupied states [113]. The largest contribu-

tions are expected to come from the terms inversely proportional to the difference of the eigenen-

ergies of the lowest unoccupied and highest occupied states, leading to an inverse dependence on

direct band gap. If the derivatives of P with respect to displacements have this behavior, it is not

very surprising to find that the polarization itself has a similar behavior.

4.6 Phenomenological model for the electronic contribution

4.6.1 Model with rigid MnO6 octahedra rotations

To further understand the mechanism of the electronic contribution to the polarization, we decided

to consider a simplified model crystal structure in which the Tb ions are placed in the high-symmetry

positions (Wyckoff coordinate (0,0,1/4)), and the Mn atoms together with their 6 neighboring oxy-

gens form rigid octahedra. We then rotated the MnO6 octahedra and studied how the polarization

depends on the rotation angles. All calculations within this model were done withU = 1 eV. As was

discussed above, in the a–b spiral case the values of polarization are perhaps not realistic. However,

at this point we are interested in understanding the origins and behavior of the polarization, rather
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than making comparisons to real experiments. Also, we would like to compare the results with

previous calculations, most of which were done with U = 1 eV.

Actually, before we even apply the rotations, we first need to apply a Jahn-Teller (JT) distortion,

since we will get a metallic state otherwise (see Sec. 4.4.2). In our model, we take the JT distortion

into account by constraining the ratios of the longest bond length to the shortest bond length, λ1 =

1.124, and of the medium bond length to the shortest bond length, λ2 = 1.004. The values of λ1

and λ2 are extracted from the bond lengths given in Tab. 4.2 for U = 1 eV.

We then apply rotations to the octahedra, starting from the configuration shown in Fig. 4.5(a) as

discussed at the end of Sec. 4.4.1. In the fully relaxed structure the rotational angles around b̂ and

ĉ are approximately 19.0◦ and 11.6◦ respectively. We constrain the ratio between these two angles

(1.64), and calculate the polarization for the a–b and b–c spirals for a range of rotation angles θ

around b̂ from −15◦ to 20◦. We also made several calculations for the initial configuration shown

in Fig. 4.5(b), where the octahedra were rotated only around ĉ. To distinguish between the two

sets of calculations, we will refer to the first one as ‘case 1’, and to the second one as ‘case 2’.

The results of the calculations are presented in Fig. 4.13 and Fig. 4.14. We remind that all structures

considered here have inversion symmetry, and the Berry-phase calculations give us purely electronic

contribution to the polarization induced by the SOI.

These calculations reveal that even in the case of the b–c spiral the electronic contribution to the

polarization spans a wide range of values (∼300µC/m2) depending on the octahedral rotations. This

is another indication that this contribution is negligible in the relaxed structure only by coincidence.

4.6.2 Phenomenological model

To find out whether the observed dependence of the polarization on octahedra rotations can be

explained within some relatively simple model, we decided to analyze the possible contributions

coming from each pair of Mn–Mn ions. As was shown in Sec. 4.4.7, the most important contribu-

tions come from the NN and NNN interactions. We start our analysis with the Mn–O–Mn triplet

(see Fig. 4.3). Let us introduce the notations that will be used in this analysis. We will use â, b̂, and
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Figure 4.13: Dependence of electronic contribution to the polarization in the b–c spiral case on the
MnO6 octahedral rotation angle θ, which specifies the angle of rotation around b̂ (ĉ) in the case 1
(case 2). In the case 1, the angle of rotation around ĉ is approximately equal to θ/1.64. See text for
details.
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Figure 4.14: Dependence of electronic contribution to the polarization in the a–b spiral case on the
MnO6 octahedral rotation angle θ, which specifies the angle of rotation around b̂ (ĉ) in the case 1
(case 2). In the case 1, the angle of rotation around ĉ is approximately equal to θ/1.64. See text for
details.
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Figure 4.15: The local (x̂,ŷ, ẑ) and global (â,b̂,ĉ) coordinate frames.

ĉ for the unit vectors in the Cartesian directions as shown in Fig. 4.4. Other Cartesian frames will be

used for each Mn–O–Mn triplet. For these we will reserve ẑ = ê12 (see Fig. 4.3), while x̂ and ŷ are

chosen so that x̂, ŷ, and ẑ form a right-handed system of coordinates with x̂ lying in the a–b plane.

The origin of this frame is put in the middle of the Mn–Mn bond. The angle between the bond and

the direction of the spin spiral wave vector (b̂) is denoted by α, i.e., cosα = ẑ · b̂ (Fig. 4.15). For the

vertical bonds (i.e. bonds parallel to ĉ) the local and global Cartesian frames coincide and α = π/2.

Now we classify the products of components of magnetic moments ~S1 and ~S2 using the sym-

metry properties of the products with respect to rotation around ẑ and inversion symmetry. Namely,

we will consider objects that are even or odd under inversion symmetry, and that are invariant (A1),

transform like a vector (x, y) (E1), and transform like a vector (x2 − y2, 2xy) (E2) under rotation

around ẑ. The result of such classification is shown in Tab. 4.7.

We then consider terms in the Hamiltonian that contain these spin products. Before proceeding

further, we note that one can make a significant simplification. In the end we are interested in

finding the expression for polarization in terms of the above spin products, and for this we need

to sum the dipole moments from all Mn–Mn bonds and divide by the volume of the cell. This

procedure leads to averaging of the objects from Tab. 4.7 over the spin spiral period. Therefore,

it is better to calculate these averages in advance. We will denote such averages by 〈. . . 〉ab and
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Table 4.7: Classification of the products of components of magnetic moments ~S1 and ~S2 by sym-
metry properties with respect to rotation around ẑ and inversion symmetry.

ẑ
Inversion symmetry

Even Odd

A1 A1g:
f0 = S1zS2z

f ′0 = S1xS2x + S1yS2y
A1u: g0 = S1xS2y − S1yS2x

E1 E1g:
(
fx = S1xS2z + S1zS2x

fy = S1yS2z + S1zS2y

)
E1u:

(
gx = S1xS2z − S1zS2x

gy = S1yS2z − S1zS2y

)

E2 E2g:
(
fs = S1xS2x − S1yS2y

ft = S1xS2y + S1yS2x

)

〈. . . 〉bc for the a–b and b–c spirals respectively. Consider the case of the b–c spiral first. For a given

Mn1–O–Mn2 bond, the (normalized) magnetic moments on Mn1 and Mn2 are

S1a = 0 S2a = 0

S1b = − sin θ S2b = − sin(θ + φ)

S1c = cos θ S2c = cos(θ + φ),

(4.15)

where θ will be averaged over and φ is the angle between spins on the two neighboring Mn atoms.

For the horizontal bonds shown in Fig. 4.15, φ = πks, while for vertical bonds φ = π. Let us define

the average over the period of the spiral as

γb–c
αβ (φ) = 〈S1αS2β〉bc =

1
2π

∫ 2π

0
dθ S1α(θ, φ)S2β(θ, φ), (4.16)

where α and β can be a, b or c. A straightforward calculation yields

γb–c
αβ =

1
2




0 0 0

0 cosφ sinφ

0 − sinφ cosφ



. (4.17)
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Table 4.8: Relation between the spin components in the local (x̂,ŷ, ẑ) and global (â,b̂,ĉ) frames.
Angle α is the angle between ẑ and b̂ as shown in Fig. 4.15.

b–c spiral a–b spiral
Sx = Sb sinα Sx = Sa cosα+ Sb sinα
Sy = −Sc Sy = 0
Sz = Sb cosα Sz = −Sa sinα+ Sb cosα

By analogy, for the a–b spiral case (the a and c components of the magnetic moments in Eq. 4.15

are interchanged), one can find

γa–b
αβ =

1
2




cosφ − sinφ 0

sinφ cosφ 0

0 0 0



. (4.18)

We recall that objects in Tab. 4.7 are defined via the spin components in the local frame for a given

Mn–Mn bond, while γb–c
αβ and γa–b

αβ are defined via Sa, Sb and Sc. The relation between the spin

components in different frames is shown in Tab. 4.8.

Consider now, for example, the object 〈f0〉bc. Using Tab. 4.8 we can write it as

〈f0〉bc = 〈S1zS2z〉bc = 〈S1bS2b〉bc cos2 α = γb–c
bb cos2 α =

1
2

cosφ cos2 α. (4.19)

Similarly, one calculate the averages of all other objects in Tab. 4.7. The result is shown in Tab. 4.9.

Using the above analysis we want to find dipole moments for each Mn–O–Mn bond allowed by

symmetry. Zero field dipoles can only be obtained from the energy terms linear in electric field,

since ~d = −~∇EU . At the same time, the energy U must be invariant under inversion symmetry.

For a moment, let us ignore oxygen displacements. Since the electric field ~E is odd under inversion

symmetry, it can only couple to the terms in Tab. 4.7 that are also odd under inversion symmetry. In

addition, the requirement that the energy must be invariant under the mirror symmetry that changes

x to −x leads to a conclusion that the A1u term in Tab. 4.7 can only couple to an object with A1u

symmetry, the E1u term can couple only to E1u, etc. From the components of the vector of electric
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Table 4.9: Averages over the spin spiral period of the objects in Tab. 4.7.

spiral
Inversion symmetry

Even Odd

b–c

〈f0〉bc = 1
2 cosφ cos2 α

〈f ′0〉bc = 1
2 cosφ(1 + sin2 α)

〈fx〉bc = 1
2 cosφ sin 2α

〈fy〉bc = 0

〈fs〉bc = −1
2 cosφ cos2 α

〈ft〉bc = 0

〈g0〉bc = − sinφ sinα

〈gx〉bc = 0

〈gy〉bc = sinφ cosα

a–b

〈f0〉ab = 1
2 cosφ

〈f ′0〉ab = 1
2 cosφ

〈fx〉ab = 0

〈fy〉ab = 0

〈fs〉ab = 1
2 cosφ

〈ft〉ab = 0

〈g0〉ab = 0

〈gx〉ab = − sinφ

〈gy〉ab = 0
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field one can only form an E1u object, (Ex, Ey), which can couple to (gx, gy). This means that the

energy term (zeroth order in oxygen displacement) must have the form

U0 = −a(Exgx + Eygy), (4.20)

where a is some constant. The dipole moment is then given by

~d0 = a(gx, gy, 0), (4.21)

or, after averaging over the spin spiral period,

~d0 = a(〈gx〉, 〈gy〉, 0). (4.22)

Since φ = π for vertical bonds, 〈gx〉 = 〈gy〉 = 0 for both the b–c and a–b spirals. Therefore,

there is no contribution to the polarization coming from the vertical bonds (this is a general result,

regardless of whether we consider oxygen displacements or not). However, horizontal bonds can

have nonzero dipole moments. In the case of the b–c spiral, only 〈gy〉bc 6= 0. Since in this case

ŷ = −ĉ, the polarization is parallel to ĉ. In the case of a–b spiral, only 〈gx〉ab 6= 0. Taking into

account dipole moments from all the bonds in the unit cell (see Fig. 4.15), one can see that the

polarization is parallel to â. Thus, we have shown from the symmetry analysis that in the b–c (a–b)

spiral case the direction of polarization should be along ĉ (â) and proportional to sinφ (or ~S1× ~S2),

which is already familiar to us from Eq. 4.9. It also follows that within the current model (in which

we ignore oxygen displacements) the magnitude of the polarization is the same for both spirals.

It may seem that we chose a tedious way to arrive at a simple result that is already known.

However, this method allows us to go further, and take into account the displacements of oxygen

ions from their ideal-perovskite positions. Suppose that for a given Mn–O–Mn bond the oxygen is

displaced by ~u from the origin. Let us classify the terms linear in electric field ~E and displacement

u in the same manner as we did for the spin products (see Tab. 4.10). Note that these objects are
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Table 4.10: Symmetry classification of the products of components of electric field ~E and oxygen
displacement vector ~u.

A1g
v0 = uzEz

~∇Ev0 = (0, 0, uz)
v′0 = uxEx + uyEy

~∇Ev
′
0 = (ux, uy, 0)

A2g v̄0 = uxEy − uyEx
~∇E v̄0 = (−uy, ux, 0)

E1g
(vx, vy) = (ux, uy)Ez

(v′x, v′y) = uz(Ex, Ey)
~∇Evx = (0, 0, ux), ~∇Evy = (0, 0, uy)
~∇Ev

′
x = (uz, 0, 0), ~∇Ev

′
y = (0, uz, 0)

E2g (vs, vt) = (uxEx − uyEy, uxEy + uyEx) ~∇Evs = (ux,−uy, 0), ~∇Evt = (uy, ux, 0)

even under inversion symmetry, and can only couple to f -terms in Tab. 4.7.

The corresponding energy term is

−U1 = b11v0f0+b12v0f
′
0+b21v

′
0f0+b22v

′
0f
′
0+c(fxvx+fyvy)+c′(fxv

′
x+fyv

′
y)+d(fsvs+ftvt).

(4.23)

Let us focus on the a–b spiral case, in which only 〈f0〉ab, 〈f ′0〉ab and 〈fs〉ab are non-zero, and all

of them are equal to 1/2 cosφ. In this case the energy takes a simpler form

−Ua–b
1 =

1
2

cosφ
[
v0(b11 + b12) + v′0(b21 + b22) + dvs

]
. (4.24)

The dipole moment (for a given bond) is then

~da–b
1 =

1
2

cosφ (ux[b21 + b22 + d], uy[b21 + b22 − d], uz[b11 + b12]) , (4.25)

which can be rewritten as

~da–b
1 = (bxux, byuy, bzuz) cosφ, (4.26)
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Table 4.11: Symmetry classification of the products of components of electric field ~E and oxygen
displacement vector ~u to second order in oxygen displacements.

A1u h̄0 = (uxEy − uyEx)uz
~∇E h̄0 = (−uyuz, uxuz, 0)

E1u

(h1x, h1y) = u2
z(Ex, Ey)

~∇Eh1x = (u2
z, 0, 0)

~∇Eh1y = (0, u2
z, 0)

(h2x, h2y) = [u2
x + u2

y](Ex, Ey)
~∇Eh2x = (u2

x + u2
y, 0, 0)

~∇Eh2y = (0, u2
x + u2

y, 0)

(h3x, h3y) = uz(ux, uy)Ez

~∇Eh3x = (0, 0, uxuz)
~∇Eh3y = (0, 0, uyuz)

(h4x, h4y) = [uxEx + uyEy](ux, uy)
~∇Eh4x = (u2

x, uxuy, 0)
~∇Eh4y = (uxuy, u

2
y, 0)

where new constants bx, by and bz were defined. Consider a projection of this dipole moment on

a-axis,

da–b
1,a = (bxux cosα− bzuz sinα) cosφ. (4.27)

To find the polarization along â, we need to sum over such contributions coming from all bonds in

the unit (20-atom) crystallographic cell (we already made an average over the spin spiral period, so

there is no need to consider larger supercells). Consider, for example, bonds Mn1–Mn2 and Mn3–

Mn4 as shown in Fig. 4.15. These two bonds make angle α with the b-axis. They also have the

same phase difference φ. However, from Pbnm symmetry it follows that ux has opposite signs for

these two bonds. This means that the contribution from the first term in Eq. 4.27 cancels out. If we

consider now bond Mn1–Mn2, and the bond just above this (not shown in figure), we will find from

symmetry that for these two bonds uz has different sign. Therefore, the second term in Eq. 4.27

also cancels out.
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Table 4.12: Parameters of the phenomenological model of the polarization extracted from the fits to
Berry-phase calculations (a is given in µC/m2, and the rest is in µC/m2/Å2).

a A B1 B2 B3 B4

b–c spiral −290 −1 1638 90 1772
a–b spiral 80 −3484 −131 −2005 38452

Proceeding in this way, one can show that there is no electric polarization coming from the first

order in oxygen displacements. In the second order, however, the situation is different. We will not

discuss the derivation in full detail here, because it is essentially the same as for the first order. We

will just give the final result. The relevant products of the components of electric field and oxygen

displacements to second order in the latter are listed in Tab. 4.11. In the case of the b–c spiral the

polarization is along the c axis and is given by

Pbc,c = sinφ
{
a+Auxuz +B1u

2
z +B2u

2
x +B3u

2
y

}
, (4.28)

and in the case of a–b spiral the polarization is along the a axis:

Pab,a = sinφ
{
a+B4uxuz +B1u

2
z +B3u

2
x +B2u

2
y

}
. (4.29)

The fits (obtained separately for each of the two spin spirals) with these parameters are also shown

in Fig. 4.13 and Fig. 4.14, and the calculated values for the parameters are given in Tab. 4.12.

As one can see from the figures, this model can give a fairly good description of the dependence

of the polarization on oxygen displacements. However, it has serious shortcomings, as we shall

discuss shortly. Nevertheless, already in this simple model, the b–c and a–b spirals have parameters

unique to each case, which can explain why the polarization in the case of the b–c spiral can differ

from that of the a–b spiral. We also note that a calculation of the polarization for the relaxed

structure using the parameters from Tab. 4.12 yields Pc = 1549µC/m2 and Pa = 8µC/m2 for the

b–c and a–b spirals respectively, in good agreement with the Berry-phase calculations.

The most serious shortcoming of the above model is that the parameters that appear in common
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b

a

Figure 4.16: Orbital ordering in TbMnO3. The d3x2−r2/d3y2−r2 orbitals are aligned along the
longest Mn–O bonds. Orbital order is uniform along the c axis.

(a, B1, B2, and B3) in the two fits have quite different values. Another serious problem is that it

predicts certain polarization values (parameters a in Tab. 4.12) when there are no oxygen displace-

ments from the centers of Mn–O–Mn bonds (~u = 0). However, when ~u = 0 there is no Jahn-Teller

distortion and the system should be metallic as we discussed in Sec. 4.4.2. It is not surprising that

a simple symmetry analysis cannot distinguish between metallic and insulating states. However,

one should keep in mind that there are limitation on the applicability of the model. Suppose we

restrict ourselves to those displacements ~u that correspond to the insulating states only. For all such

displacements, the Mn–O–Mn bonds do not have inversion symmetry. The question is then whether

we are allowed to use this symmetry in the analysis in the first place. Moreover, the occupied eg

orbitals (d3x2−r2/d3y2−r2) align along the longest Mn–O bonds [114] as shown in Fig. 4.16. With

such orbital ordering, the Mn–O–Mn bonds lying in the a–b plane do not have inversion symmetry

even when ~u = 0. We do not have to worry about the vertical Mn–O–Mn bonds because they have

inversion symmetry.

Consider the configuration shown in Fig. 4.5(b). The Mn–O–Mn bonds have two mirror sym-

metries Mx and My. We may classify the products of spin components by their behavior under
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Table 4.13: Classification of the products of the spin components of two neighboring spins ~S1 and
~S2, components of the polarization vector ~P , and components of the oxygen displacement vector ~u,
by their behavior under the mirror symmetries Mx and My.

Mx My

+1 +1 S1xS2x, S1yS2y, S1zS2z uz u2
x, u2

y, u2
z Pz

+1 −1 S1yS2z , S1zS2y uy uyuz Py

−1 +1 S1xS2z , S1zS2x ux uxuz Px

−1 −1 S1xS2y, S1yS2x uxuy

these two symmetries (see Tab. 4.13). Using the same notations as before for the local and global

coordinate frames we can, for example, write a general expression for Px as

Px = (A(0)
xz S1xS2z +A(0)

zx S1zS2x) + (A(1)
xxS1xS2x +A(1)

yy S1yS2y +A(1)
zz S1zS2z)ux

+ (A(1)
xy S1xS2y +A(1)

yx S1yS2x)uy + (A(1)
xz S1xS2z +A(1)

zx S1zS2x)uz + . . . (4.30)

In the above expression we only show terms that are zero and first order in ~u because the expression

would be too long, but our analysis takes into account contributions coming from the second order

as well. Similar expressions can be written for Py and Pz . Projecting these contributions on the a,

b, and c axes and averaging over the spin spiral period and all Mn-Mn bonds in the unit cell, we

arrive at

Pbc,c = sinφ
{
C0 + Cxux + Czuz + Cxxu

2
x + Cyyu

2
y + Czzu

2
z + Cxzuxuz

}
(4.31)

for the polarization in the case of the b–c spiral, and

Pab,a = sinφ
{
A0 +Axux +Azuz +Axxu

2
x +Ayyu

2
y +Azzu

2
z +Axzuxuz

}
(4.32)

in the case of a–b spiral. Note that there are no common parameters in the two expressions. Also,

linear terms in oxygen displacements appear. The results of the new fits are shown in Fig. 4.17
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Table 4.14: Parameters Ci and Ai of the improved phenomenological model of the polarization
extracted from the fits to Berry-phase calculations (C0 and A0 are expressed in µC/m2, Cx, Cy, Cz ,
Ax, Ay, and Az are in µC/m2/Å, and the rest is in µC/m2/Å2).

i 0 x z xx yy zz xz

b–c spiral −285 −3466 211 1297 1143 3263 −30576
a–b spiral 92 −8245 529 555 −1403 361 −33707

and Fig. 4.18. Thus, this ‘improved’ model, though similar to the previous one, shows that in

general there is no connection between the polarization in the b–c and a–b spirals. A calculation of

the polarization for the relaxed structure using the parameters of the new fit (see Tab. 4.14) yields

Pc = 1600µC/m2 and Pa = 31µC/m2 for the b–c and a–b spirals respectively.

4.7 Summary and discussion

We have used first-principles methods to compute the electronic and lattice contributions to the spin-

orbit induced electric polarization in the cycloidal-spin compound TbMnO3 with the spin spiral in

the b–c plane, and find the lattice contribution to be strongly dominant. We provide a detailed

analysis of the lattice contributions coming from individual sites and individual modes. Our result

for the polarization agrees in sign and compares fairly well in magnitude with the experimentally

measured value of ∼-600µC/m2 [86]. We also compare the results for two values of U (1 and 4

eV), and find that the mechanism of magnetoelectric coupling is quite independent of U . We find

that ionic displacements depend linearly on the spin-orbit coupling, and that spin-orbit interaction

on Mn sites plays the most important role in the lattice-mediated polarization.

The dependence of the polarization on the spin-spiral wave period is studied in detail. We find

that it deviates significantly from the sinusoidal dependence expected from simple models. The

polarization is almost linear in wave vector for absolute values of ks up to 0.5.

The electronic contribution to the polarization is studied in detail for spin spirals lying in both

the b–c and a–b planes. We find that in the latter case, the electronic contribution is of the same order
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Figure 4.17: Dependence of electronic contribution to the polarization in the b–c spiral case on the
MnO6 octahedral rotation angle θ, which specifies the angle of rotation around b̂ (ĉ) in the case 1
(case 2). In the case 1, the angle of rotation around ĉ is approximately equal to θ/1.64. See text for
details. The result of the fit to the phenomenological model is also shown.
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Figure 4.18: Dependence of electronic contribution to the polarization in the a–b spiral case on the
MnO6 octahedral rotation angle θ, which specifies the angle of rotation around b̂ (ĉ) in the case 1
(case 2). In the case 1, the angle of rotation around ĉ is approximately equal to θ/1.64. See text for
details. The result of the fit to the phenomenological model is also shown.
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of magnitude as the lattice contribution. We also consider a structural model with rigid MnO6 oc-

tahedral rotations, and show that electronic contribution to the polarization can significantly change

with rotation angle even in the case of the b–c spiral, thus demonstrating that the fact that we could

neglect this contribution for the relaxed structure was not a general result. We provide a phenomeno-

logical model describing the electronic contribution to the polarization which can explain how it can

depend on oxygen displacements (to second order), and also demonstrates that the polarization in

the b–c-spiral case can differ from that in the a–b-spiral case.

We found several indications that next-nearest-neighbor spin interactions are important in cre-

ating polarization in TbMnO3. A construction of a microscopic model that takes these interactions

into account would be of a great interest. This can be a subject for a further research.

Our work demonstrates that first-principles calculations can play an important role in under-

standing the mechanisms of electric polarization induction by cycloidal magnetic order. They can

also give some insights in the search for materials with stronger magnetoelectric effects. In particu-

lar, to increase the effects of spin-orbit interaction, the use of heavier magnetic ions might be a good

idea. Doping on the A site of AMnO3 perovskites with ions having different radii can change the

MnO6 octahedral tilts, possibly leading to an increase in polarization.

The supercell approach used in this work can in principle be used for studies of other spiral mag-

nets such as perovskite rare-earth manganates, Ni3V2O8, LiCu2O2, etc. Since the effects studied

are usually small, such calculations require high tolerances on the accuracy of the total energy and

forces, and the number of unit cells one can model is limited by the computer power and memory.

However these limitations will become less of an issue as technology advances.

Our calculations were mostly concerned with the ground state properties, and therefore tempera-

ture effects were not taken into account. Such effects can be studied with the help of time-dependent

density functional theory calculations, Monte-Carlo simulations, or similar techniques. For exam-

ple, Monte-Carlo simulations on a microscopic spin model were recently used to analyze the phase

diagram of rare-earth manganites [109].

The work shows yet again the power of first-principles methods to answer important questions
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in the theory of materials. Our results may be of use to experimentalists searching for materials with

enhanced properties and to theorists trying to develop accurate microscopic models of the physical

processes inside the materials.
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