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ABSTRACT OF THE DISSERTATION

Adaptive Multimodal Integration of Speech and Gaze

By Chandra Sekhar Mantravadi

Dissertation Directors:
Prof. Joseph Wilder and Prof. Marilyn Tremaine

Speech has been used as the foundation for many human/machine inteyatgine £ convey
the user’s intent to the system. However, other input mechanisms, comrmalbedlyrosodalities,
such as gaze, touch, and hand gestures, have been explored as a means of pnootdingbaist
interaction in environments where speech alone is not adequate. By combinimgutedrom
multiple, complementary modalities, none of which is perfectly reliabletter understanding of
the user’s true intent can be imparted to the system. In thistdigserthe effectiveness of using
gaze (where someone is looking) to aid speech in providing the userstimthe machine is
explored. To create a speech and gaze integration model, two human factoreesxpesiere
conducted to collect data for building this model. The first experiment hagéheead a single
word displayed on a screen, and the second experiment required the user tesguisted
word from a menu of words. Speech onset time and the user’s gaze pattewsrdataptured
and analyzed to understand the timing relations between the two medalitiet of gaze/speech
features were extracted from the data and used to predict the loddtiennmrd that the user
read. The best features and the best model for predicting the locati@ntafget word were
found through an iterative trial and error process. A linear model watoghledict the gaze

location of the target as well as any of the non-linear models considéetnear system



representation was then used to create an adaptive model using the Row AgticiioRr(RAP)
technique. The RAP adaptation model was found to predict the usertswittehigher
probability for the majority subjects than the non-adaptive approathesfR AP model adapted
to the speech/gaze patterns of each individual user as well agigli®mnan a single user’s
interaction behavior over time. It was also found that the featutesedtfor successfully
identifying the target in Experiment 1, a simple isolated word task, iffasedt than that used in
Experiment 2, a more complex menu selection task, suggesting that task cgmydexin
important consideration in the design of a speech/gaze interface. Irasynims dissertation has
shown that an adaptive gaze and speech integration model is betterethem @pgaze

performance alone.
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1. Introduction

Human-to-human communication can take many foerg oy various hand gestures, speech,
gaze, and touch). When these mechanisms are used to provide input to a computethssst
are typically referred to as a communicatinadality When humans use more than one modality
to communicate to a computer, the computer system is called a multirgsigah sAfter keying
(keyboard typing) and mousing (mouse pointing), speech has proven to be the singlaatpst
used modality to communicate with computers ([2], [3], [4], and [5]). In speeduHisgstems,
users say what they want and get an appropriate response from the computerh/Altiematy
recognition systems [116] have been around a long time, these systemsaqnimarily in
controlled environments with a pre defined grammar. The dialogue betwegsettend the
computer (i.e., voice response system) isnabiiral human-to-human conversatidhis a code
language established between humans and computers to perform a series lottasisingly,
automatic speech recognition systems are being introduced into human/nsyskenes to
handle these routine interactions. Some of these speech-based systales mesolve acoustic
signal level ambiguities [17] and improve the conversation with théimaby converting user’s
speech input into queries. In less controlled environments, however, speedisysiems
perform less well due to a variety of interferences, such as high edskground noise, the
high variability in human speech patterns, and the difficulty users h#tvamvinterface that
requires them to use a specific command grammar or restricts tigsteo a limited number of
utterances. For such applications, the notion of augmenting speech witbrediditodalities (as
well as improving a machinekinguage understandincppabilities, a significant area of research
by itself) is postulated in this research to be likely to improve speeoigmition and, in the
process, the overall human/computer interaction.

Other modalities of human-to-human communication interaction, besidehspaeh as

gaze (where a person is looking), touch, gestetesare typically used to complement speech. In



some cases, these modalities can convey the meaning without speech (diigg, osomething
unusual may communicate as much as saying “look at that!” Recent adwaagegracking
have made it possible to use gaze as an additional input modality in maimyodal systems.
These speech and gaze systems are designed to solve specific prelgefos ¢ellular phones
[13], [67]) and to operate in highly controlled environments. Howeveg gad speech
combinations in a more natural user environment suffer from a variety ofddleat make it
difficult to interpret results. Visual variability in natural eroiments may affect a user’s gaze
patterns and variations in attending to other visual activities rsaycegate a high variability in
gaze behavior. For example, fatigue related changes in a user’s gamespater time, the type
of task the user is performing, the display size on which the user obserteskiban
significantly influence the interaction patterns in gaze and spekth [([9], [25], [48], [55],
[56], and [57]). Therefore, it is necessary to develop an integration motiehthaack user and
task variations and adapt to them over time [58].

There are a number of applications where a speech/gaze system migle preignificant
improvement over a speech-alone system, in particular where hands+rgeinication is
required to convey the user's intent. One example is in the operating room avguegeon,
while operating, wants to consult with a pathologist at a remote locatioa thlhisurgeon and
the pathologists are both looking at displays showing the same X-Ray. Ebeaitihe
surgeons gaze at a point on his display will be marked by a cursor onhblgist’s display,
while they discuss what needs to be done. There are also a number of examplesicte
navigation and peripheral function systems where hands-free inbeiaatie required in noisy
environments, e.g. in helicopters, trucks and cars. Research into inteansiiss gained
popularity in recent years,g, a menu search interface investigated in Italy [63]. A car
navigation system is a typical example of a human/computer interagsiesmswhich contains
all the parameters of interest for designing gaze/speech multisystains [43]. Adding gaze

input to an in-car system is not expected to impact driving safetusetiae plan is not to



require any conscious control of the gaze activity, that is, the meamtrefryaze will be
unobtrusive. A driver already performs many visual tasks in a car bésitasg at the road
(e.g, looking at side mirrors and the audio system controls) taking eyes offathéor a
considerable amount of time, up to 1.6 seconds ([130] Wierwille 1993). Gaze, whiedrysfast
modality compared to the other modalities, should actually reduce thédistuactions
produced by manual adjustment tasks such as controlling the audio system. The spee
application already controls peripheral functions in a car environment inlg-natural way.
However, using speech alone runs into issues because high levels af (e.g.,dueto a
number of occupants talking at once while the driver is attempting toassarmmand to the
Speech/Gaze system) cannot be filtered out even with microphoneamchgsise canceling
systems. Other issues affecting speech recognition performanceeitivduidrge and diverse
distribution of accents in today’s world and the high variability in the espakteractionsd.g.,a
tired user, a user with a catdc). In addition, a driver’s cognitive attention is likely to be
elsewhere so that speech commands may be forgotten, garbled. oAlsathany cognitive load
and conversation inaccuracies in a speech-only system could potentfeist the driver’s
performance.
In summary, the goals of this dissertation are to:
» discover the basic speech and gaze interrelationships forghask of reading a
single word from a computer screen
» discover the speech and gaze interrelationships for the task fading a word
from a menu displayed on a computer screen

» illustrate the effectiveness of using gaze to improve speeatognition

» develop an adaptive algorithm for fusing speech and gaze modalities

» demonstrate that the adaptive algorithm is more effective thasimpler models

or speech alone



» demonstrate that the adaptive algorithm can be used in a realrie, time-critical
multimodal system

To accomplish these goals, two human factors experiments are performedtin whi
speech/gaze data involved in human/computer interactions are collected lgnecargso,
prediction/adaptation models are developed leading to the design of anedigurithm for
these speech/gaze interactions.

The dissertation is organized as follows. Chapter 2 gives a review dethéure examining
the current multimodal systems and the algorithms currently developeahfibiréng different
modalities. Chapter 3 presents the experiment design, system setup antletdiancprocess
for Experiment 1, the task of reading a single word from a computer scregneiChdiscusses
the results obtained in Experiment 1 and postulates and defines théepiesgilres that can be
used to predict gaze/speech recognition for this relatively sitaghe In addition to
demonstrating the advantages of a Speech/Gaze system over speechealotanttis to
demonstrate that adaptive prediction is necessary and improves the pnegliglion accuracy in
ascertaining the user’s intent for a simple one-word task. Chaptesénts the experiment
design, system setup and data collection process for Experiment Zktloé taading a word
from a menu displayed on a computer screen. Chapter 6 discusses the resnéd obt
Experiment 2 and postulates and defines the possible features that can bepusdidtt
gaze/speech recognition for this more complex task. As with the siasjlen addition to
demonstrating the advantages of a Speech/Gaze system over speechelotenttis to
demonstrate that adaptive prediction in a Speech/Gaze system is ryeaedsmproves the
overall prediction accuracy in ascertaining the user’s intent fiocore@ complex menu selection
task. Chapter 7 examines the effectiveness of the adaptivepgedysnodel via comparison to
the other generated models. Chapter 8 lists the dissertation contrilzutéb@hapter 9 concludes

with proposed future work.



2. Multimodal Systems and Integration Techniques

2.1. Introduction

In this chapter, definitions of the basic terminology used in describingnnaaléil systems are
presented. This is followed by a review of how eye-tracking has beesumsessfully in
association with computer systems for such areas as alerting the compigier to the user’s
intent or providing user interaction information for the better desigompater systems. This is
followed by a review of other multimodal systems that combine a varietydélities, finally
looking at the current work that has been done in fusing gaze with speesie fas multimodal
input to a computer. Because the approach in this dissertation focustptneafusion, a
review of multimodal integration techniques is presented. It disslsgk their advantages and
potential disadvantages of each approach in light of the focus of thistditon. Finally, the
design requirements for a multimodal gaze/speech system are pilesEmse requirements are
based on various multimodal systems studied in this dissertation [seadkpp for a

comprehensive listing of these systems].

2.2. Multimodal Systems

The physical act of a human interacting with a machine is a complex phenomevitoh the
human can use a variety of muscle-controlled mechanisms to communicatieewiihchine and,
in turn, the machine can display its return communication by a variety of techmbigh can be
understood by the sensory systems of the human. If a human communicates witma o&obi
only one means of input,g, by typing information on a keyboard, the input system is then
referred to as a unimodal input system. If, however, a human communicateswithiae using

multiple means of inpug.g, by speaking and by typing on a keyboard, the input system is then



called a multimodal system. Typically, machine output is not referrednwlisnodal although a
machine can generate sounds, use visual displays and modify touched areas to Useronee t
human sensory system for communicating. Thus, a human-machine systémrégirto as
multimodal if the input from the human uses more than one computer input mechanisthalote
this definition of modality is different from that used for human modaliddsen a modality is
referred to in a human, it typically means a different sensing systenpftdre.g.,the hearing
modalityvs.the seeing (visual) modality. Because of the nature of machines havitiygjenul
mechanisms for input, each of these is considered a separate modalktyafpte, a mouse
input is one modality, but if a second mouse were used, making the system a twabihpatle
system, the machine system would be multimodal, having two inputs that aretyf the@same
form. In this dissertation, therefore, when the word “modality” is useahpiieés another input
channel to the machine, not a different operational behavior in the human, althoegndds in
this behavior will generally be the case. Also, note that because a hupnadusing the inputs
using the same cognitive systems for the multiple input productiongiat surprising that the
inputs are in some way interrelated. That is, a gesture by a humkaiyigdi be correlated with
the human’s speech. Thus, multimodal input systems needs to addresgaletantef the user
with the machine using various modalitiesyf, speech, gaze, gestureg;) and also the
interaction of the modalities in the human generation of the input.

The term “gaze” refers to where a person is looking. In terms of ititeragith a computer
system, this typically means “where” on the screen display the geatsl visual focus is
placed. With today's high resolution eye trackers, the x-y position ofaarzeefer to a single
pixel. This ability to measure gaze precisely means that it can besiaadrgput mechanism for
a computer system with some caveats. Since people use their ey@ste iaformation, the
eyes tend to jump around a computer screen extensively and often are not gtecmmcious
control of a user. Thus, although gaze can serve as a separate input nadalityrhputer, its

use can be noisy and error prone. Gaze is a human behavior that has besexdtmse/ely



([72], [97], and [99]). Many commercial eye/gaze trackers ardadkaifor use in conjunction
with computer systems. They are thus available for combining witlclsjpggut to create
multimodal systems. Gaze patterns have been used to predict thevecgaiie of the user [51],
as an input mechanisra.§.,gaze typing [125]) especially in cases where the user is severely
motor handicapped. Gaze patterns have also been used as a way of defenmiimtent of the
user, e.g., by knowing who is intending to speak next and turning the appropriatehoie on,
in studying how individuals search web pages ([84] and [85]), in errortidetét task
completion, as an aid to communicating intent in desktop video conferencingdigtélestion of
user attention in human/robot interaction [121], in supporting virtuabt@environments [81],
as a way of performing a meeting analysis [111], as a user attentibciqr¢[100], [101], and
[106]), a way of estimating the effect of different computer-based ewvewssious user tasks, to
assess the effect on user search in multi-resolution displays,andhesis of common behavioral
patterns [66], as a usability analysis tool, to analyze the effectadrs clutter, e.g., multiple
animated displays on the TV news, and in a variety of other applicationrgomgin and
Atkins [75] developed a real-time gaze selection interface whiclodstrates the feasibility of
using gaze as an input mechanism in real-time systems. There exisedyaofatata analysis
tools for processing gaze data and processing the set of pattetad bseaye movements. Monk
and Watts [91] even found that gaze is a more reliable data channgbéleah svhen video
quality is poor. Clearly, after speech, gaze is gaining in popularity axaptable input modality
and a variety of computer systems are now being built with the addition ofe@yeEment
measuring capabilities, suggesting that the use of gaze is feasikfgriae and easy to
implement.

Speech has been integrated with gaze and other modalities ([5], [10[LR]2]14], [28],
[33], [49], [71], and [87]) to design custom applications in several diffeqgpiication domains.
Although speech recognition performance is continuously improving over the Yaaet. al.

[44] found that speech alone is not effective as an input modality.[Fa8hdemonstrated that



speech recognizers are typically heavily biased towards theispaxiént of a speaker. Miniotas
et. al.,[62] used speech in combination with gaze to demonstrate that a pratédalce can be
built that performs similarly to current computer interfaces wittbkayd/mouse. Gaze has been
used in conjunction with speech for data entry systems, user attemtibetipn ([100], [101],

and [106]), spoken language processing, dialogue systems [96], discoursetadgmehe
understanding of ocular expressions, redundancy / complementarity mefadeand [110]),
pointing mechanisms [115], selection strategies [98], the investigdtimatwal conversational
dialogues, the support of collaborative/virtual environments ([94], [Ei®] [120]), and as a
reference resolution or disambiguation of speech ([76], [89], [95], [1D®]], [113], [114],

[119], and [131]). This supports the idea that the eye patterns generates inaga useful
information that can be used to disambiguate the speech modality.

Although many attempts have been undertaken to develop multimodal applications, only a
few systems have developed an integration model for combining the maitiplaities to
improve the overall recognition performance of user input. Only aglthiéw use an adaptive
integration model for fusing modalities. Since the beginning of multimgg&t® development
[15], many frameworks/systems emphasized the creation of a singleenatgtfor solving input
and output problems for two or more modalities. These frameworks/systegentrated on the
application development framework, with little or no emphasis on solvingltyige modality
fusion problem [58]. This dissertation treats this adaptive fusiaersal to human/machine
understanding. It focuses on being adaptive because of the high variabilihavidoecross
humans and the high variability of behavior in an individual over time. Tierfpart is
important because, as indicated earlier, humans do not typically peridtiplenmotor
movements in isolation from each other but in tandem. Thus, if one chémyegher
parameters being measured also change. A few studies ([5], [8], ahtd88]concentrated on
multimodal integration or fusion problems as central to human/machine wmaingt QuickSet

[33] emphasized the need for fusion architecture for multimodal atiegr Oviatt [58] has



pointed out the need for adaptive fusion to build an effective multimosdiray Several recently
developed multimodal architectures focus on one or more modalities in cocatmoiwith the
user [Appendix A]. These architectures support modalities like spee&h,tgaeh, pen, gestures,
etc. Many other multimodal systems have been built to address a wideofangdalities
employing different integration techniques, user perception policies,rhomaehine dialogue
management mechanisms ([21], [41], [108], and [109]), output representaitensiption
management [46], and life-like agents/robots [&6] Thus, the multimodal field is
acknowledging that fusion models are an appropriate way to handle multimmatalbut not
much research has been done on adaptive fusion systems. This dissdntaéfore focuses on

creating an adaptive fusion system for gaze and speech input.

2.3. Factors Influencing Information Fusion

Information fusionor simplyfusion can be defined as the process of combining information
from different multimodal inputs to create a meaningful decision whicheantérpreted by the
machine to carry out the task. It can also be cafiefimodal integrationinformation fusion (or
interchangeably multimodal integration) is a complex process whipdnde on several factors
like characteristics of the modalities involved in the process, ctesistic behavior patterns of
users, the interrelationships between the modalitesTypically, human-to-human interaction
involves a single modality for low complexity tasks (e.g., speech) and two ermuatalities for
higher complexity tasks (e.g., speech and pointing) ([19] and [25]). Howewee, Isw
complexity tasks may require more than one modality. In addition to task catypheodality
integration also depends on the task characteristics, the indivigaedenal dominant integration
pattern (i.e., the most frequently used modalities and the manner in wéychréhcombined in
communication) [48], the individual's capacity to assimilate inforomaénd act on the
surrounding environment [25], the history of information assimilated overskeitae, and the

information aging/decaying model employed. Considering these factors, inau@ijjration is
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not limited to a simple correlation of incoming sensory signals whichsaperses to make a

meaningful fused decision. Therefore, to develop an effective multimuddiace, the

information fusion architecture should consider (among several othersac

developing an integration pattern suitable to the individual use([48], [55], [56], and
[57])

For example in a map-based flood management system with 6 male and 9 femaié users
ages from 66 to 86, the users performed three tasks with low/medium/high coewmplexit
using speech and pen inputs. The experiment(s) showed that users have different
integration patterns. Some users used a single modality one at ediraesequential
integration patterrand some users used both modalities in prodwsighultaneous
integration patternSome users used batbquentiabndsimultaneousntegration

patterns in carrying out the tasks. This suggests that the fusioteetaté should be able
to integrate input modalities adaptively (sequentially or simultam@adspending on the
interaction pattern of each user/task.

accounting for the user’s ability to assimilate, retain, and retréve information ([55]
and [56])

The ability of a user in understanding a task can be related to themndaot among
several other factors. Seniors and Children differ in theiricratimes due to age
differences and exhibit different integration patterns in interagtittythe machine. The
reaction times also differ in carrying out tasks of different complexityin the same

age group.

accounting for all possible user’s integration patterng[12] and [48])

Oviattet. al suggests that only 20% of the human-machine interaction patterns are of a
point-and-speak nature and they depend on the individual. These faokiratdl the

necessity of a fusion architecture that allows for many differergriaien patterns.
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incorporating dynamic integration patterns for a single usern([48], [55], and [57])
Oviattet. al.demonstrated in a speech and pen multimodal system that not all the users
interact multimodally always. Users differ in their use of iniéign patterns due to
several factors like task complexity, fatigue etc. Users tylgidalvelop a few integration
patterns in interacting with the machine and they get fixed onto thosmpatiearrying
out their tasks. However, the usage of any pattern depends on the spiciction
constraints, and hence, the system should be able to identify the patterncaylgami
order to accurately predict the user’s intent.

differing integration patterns based on the characteristics of th input modalities

The ICARE system [9] provides a conceptual model of categorizing the itrexdaito
elementary componengmdcompositiorcomponentsElementary components include
low-level physical layer abstraction of the device correspondingetmbdality and the
interaction language components for logical level abstraction of thelitgoda
Composition components provide the fusion mechanism through the concepts of
Complementarityi.e., combining complementary data from two or more modalities close
in time), Redundancyji.e., redundant information from two or more modalities close in
time), AssignmentandEquivalencepropertiesAssignmenandEquivalenceare modeled
as linkages between components instead of any specific properties of iemdatime
modalities/components are completely sufficient in expressing ths urgent while
some other modalities require a complementary modality to complete tessirp of
the user. The fusion architecture should be able to handle the vangiragteristics of
the modalities in carrying out the user's task.

extracting correlations from multimodal inputs at the signal/feature level and
subsequent semantically higher level83]

Multimodal systems can be broadly classified as two types namely tlxbsesh

information at the signal level and those that fuse at the sentewdi. Different
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modalities can be combined at signal/feature or semantic level imgnakused
decision. Signal/feature based fusion architectures work bettdogalyccoupled
modalities like speech and lip movements while semantic fusioneatthiés scale well
and support a wide range of application domains. The fusion architecture should be
flexible enough to handle multimodal integration at all possible feand semantic
levels.

accounting for the task description and complexity19]

Not all the tasks require multimodal interactions and not all usérbeniising
multimodal interactions for the same task. In a speech/pen inteHeme different types
of tasks namelgeneral action tasks, selection tasksdspatial location taskexhibit
differences in user behavior in generating multimodal interactions. Sjpatiéibn tasks
require a high percentage of multimodal interactions while general aasikedo not
require high percentage of multimodal interactions. Selection tagk#re@ a moderate
percentage of multimodal interactions. Another speech/gesture multisysti@n found
that increase in task complexity and hence cognitive load, decreagedtindancy of
information contained in modalities requiring all modalities to be usacdhigh
complexity task.

accounting for the history of modality information during fusion [58]

Users typically exhibit different integration patterns depending dnribtural behavior,
task complexity and other ambience factors. However, they always seikichodal
interactions that they have used before and this behavior pattern fitther refined
and recalled often when the task is repeated. The multimodal system bbalile to
understand the distinct interaction patterns of a user based on the histaoy of p
interactions and be able to predict the current interaction adgurate

compensating for inadequate training data for individual modalifes[1]

A multimodal system is not guaranteed to have sufficient training daadl fondalities
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involved in the interaction always. For example, a user may not havadtthaeystem
enough for the best results with speech recognition or may not have edlitraigaze
for accurate gaze data. The system should be able to predict the uset'adotgately
even when there is not enough training data under these conditions.

managing the context and uncertainty of individual modalities and task[27]

Only few application domains exhibit special requirements on multimgdtaras.
Several multimodal integration mechanisms exist for map related afpqhis, while a
very few have concentrated on graphic design applications. In a graphic design
application DPD, cross-channel correlations between speech and gestmgpoyed to
build a fusion strategy based on parsing techniques. In particular the integratiegys
takes care of managing the context and uncertainty for graphic desigraapps.

User fatigue and other ambience factorfl9]

Users may exhibit different integration patterns depending on the prior kn@ndétiue
system and fatigue levels. So, adaptive fusion architectures needd¢mfomodeling

user fatigue and any ambience parameters of the application domain.

Thus, information fusion is a complex modality mixing process from an emgiggmint of

view. It is a highlycomplex adaptive cognitive processpendent on the user’s interaction, the

command being executed, and the modalities invoktedSo a dynamic rather than a simple

static modality integration process is required.

2.4. Review of Fusion Techniques

The following describes some of the fusion techniques currently used im negéimodal

systems [Appendix AJ:

Timing of fusion
Timing of fusion refers to the time when multiple modalities are combined by the

multimodal system to make a logical decision in understanding the ugeris iTwo
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techniques based on timing of fusion, namely early fusion (i.e., siemt@ifé level) and
late fusion (i.e., semantic level) are used to integrate modakiely. fusion means the
modalities are combined at a very low level without much meaning derivedhHeom
modality data. Late fusion implies that modalities are combined afteritheome
semantics incorporated into the modality data. For example, when processiagehe
data, raw eye coordinates or fixations (i.e., centroids of clusteasvafye coordinates)
on the screen can be processed. A limitation of these techniquestiethdb not allow
for the ability to change the timing of the fusion or provide fusion at all essmantic
levels. Any adaptive fusion technique should not really be concerned wigkdabe
timing of the fusion but instead it should automatically incorporate timirfigsodn into
the adaptation model. Moreover, a fixed timing may not suit all modalitias, use
behaviors, taskstc.

Decision level fusion

This technique employed in some systems [26] falls under the l&te Bisategy. While
a one second interval for fusing two modalities may be useful for speecacaald f
expressions, it is not a suitable strategy for general multimodal fusioex&mple, in
one second, gaze being a very fast modality can produce a large number of fixations
(semantic level). The one second granularity is too large for detagriimé correct
reference point of gaze on the screen. So an adaptive fusion model cannobsigydy
to fuse modalities at the decision level alone.

Unification-based fusion([12], [14], [90], [93], and [117])

This, more widely used, technique integrates individual modalityrfies{expressed in
Typed Feature Structures., hierarchical collection of typed attribute/value pairs) into a
single feature-set to be passed on to the next semantic layer. Mostioffitegion-
based methods use temporal constraints which is rather simple and limitcirggite a

fused decision. Different constraints like temporal proximity caarbployed to create
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an enriched semantic expression to a semantically higher layer. Rushitecture
should allow for thespecification of these constrairgsited for specific applications.
While these techniques express the data representation/communicatioiyfraintesel

to decision level, several adaptive aspeetg,(user, task adaptatiatc) central to the
fusion problem still need to explored to solve the generalized modalipnfusi

Fuzzy Logic Model of Perception (FLMP)([20], [59], and [60])

FLMP which is mathematically equivalent to Bayes’ theorem is baséldeoconcept that
some computations in the brain are analogous to Bayes’ theorem. Itdones@eural
network model which assumes that the modality integration occurs imppen) stages
(evaluation integrationanddecisior) with streaming data between any two stages. While
this is a feasible model for adaptive fusion, it is not clear whethecaniputationally
feasible. And a real-time implementation of an adaptive systenbmayore challenging.
So the fusion architecture should consider a computationally feasible epjooa real-
time adaptive integration model.

Frame / slots based fusion approach

This approach [5] falls under semantic fusion mechanisms with dattusésisimilar to
Typed Feature Structures (TFSs), where the fusion manager atterdjgsover the
target actionandparameterf a particular task. These attributes (target, action, and
parameters) form the slots of a frame. The fusion manager tgaptiare these attributes
from a parse tree filled in by the context providers. The Context Prasidealogous to
a data acquisition module for a specific modality. It is the fusion manageh fill§dn

the slots of the frame by appropriately resolving the ambiguities anthgethe
attributes’ information using redundant modalities. Although this providagid
application development framework, it needs an adaptive model for managing the

multimodal integration.
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Multimodal chart parsing techniques[35]

Casting multimodal integration as a parsing problemliimodal chart parsing
techniquesave evolved to unify individual modalities to form an integrated decision. A
chart parsing technique can be summarized as a union of discrete and treendyl
input constituents using a rules-base. However, multimodal input streams ddhmet fi
criteria. So a variation of chart parsing techniqudticharthas been proposed. All these
chart parsing techniques are centralized around speech. Moreoves, lzaisdd system
may not be suitable to adapt to variations in user, task, and ambience cendition
Multi-chart parsing

A multi-chart parsing strategy at the semantic level [32] fugas imodalities (i.e.,
speech and gesture) based on rules and manages a pool of TFSs, where erts etem
be added to the pool and some can be removed. In integration iterationselerhalits
are always included. This kind of rules based multimodal system maasitt adapt to
variations in user, task, and ambience conditions.

Members Teams CommittegMTC)

A MTC technigue uses a statistical, symbolic/semantic fusion meshas in the
QuickSet ([29] and [33]) architecture. Witode conditional input feature density
functionsfor integrating input modalities, QuickSet uses temporal, statiiséind
semantic fusion strategies in that order. This technique unlike datickrdes many
aspects of a feasible adaptive model. But it is not clear wheitear provide a
computationally feasible and extensible adaptive model.

Hybrid approaches

Some hybrid approaches ([34] and [80]), which combine data driven and knowledge-
based methods with rule-based methods, are aimed at integrating specifitiesdika

speech and gestures. These methods are limiting for a real-time adaptiel because
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they are based on a static or dynamic rules-set. The rule itself doagm'the concept of
adaptation. The rules need to be exhaustive enough to account for all possitéeskser,
and ambience conditions which may not be possible.
Human-communicational-rhythm-based model

One interesting technigue, human-communicational-rhythm-based model [86],tfat
humans communicate in a rhythmic manner. It models the rhythm in human-to-human
communications to find the correlations between speech and gestural inpuds.dt‘trs
state rhythm model (swing-subside-wait)” to segment multimodal inm#ras and
correlate them before passing on to the next semantic layer of undergtaithough it
may be able to account for a majority of human-machine interactiondy iteaay not
be feasible to predict the user’s intent accurately when the exphygtethris missing in
the interaction. Moreover, the rhythm may be disturbed by several fakers li
distractions, fatigueetc

Context-based and semantics-based multimodal integratiofi38] and [64])

The PETE/COMIC system uses context-based multimodal integratior-basigd
integration approach, in which the user and machine hibaabturn contextontaining
the information of input modalities, history of modality events, and thHegiia state.
The fusion technique is not clearly separated from the semantics oftanderg i.e., it
only provides an integrated decision while dialogue management handtealthe
conversation state. Another contextual multimodal integration technigsesnropy
based technigues along with contextual information. Another semantics-baggdtion
technique using speech/gesture system found that the multiple modalibesch®ore
complementary than redundant as the cognitive load increases. Senfantiation is
explored in yet another fusion technique using subspace learning technigaesthier
rule-based techniques, these semantic techniques are also not suitabilelifty an

adaptive fusion model because the rules may not be sufficient to accuratielyath
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possible variation of user, task, and ambience conditions. And moreover, the semanti
information is highly task/application dependent.

Data-flow-based maximum entropy techniqud[42] and [57])

The data-flow-based maximum entropy technique, which uses a maximum entropy
framework, classifies the data from low-level signal to highllsgmantics into three
featuresdhag-of-words, contextual featuresydprepositional featurdéor multimodal
integration. Although it may be extensible to multiple sets of fegtthreslassification

of three kinds of features seems rather limiting. Also, it is not cleattitmese can handle
an adaptive model of human-machine interaction.

Layered HMM technique ([2] and [47])

A Layered HMM technique is a cascaded network, where each layepinséde for a
specific temporal granularity. Each layer tries to analyze foentation from input
modalities at different temporal granularities to resolve anyadzetd deictic references.
While this may be another feasible approach for solving the adaptive fustderpr it is
restricted to the temporal domain and doesn’t seem to account for tasionaria

Gestalt principles of grouping information [48]

Techniques based on Gestalt’s principles of grouping information have lEkttous
analyze the production and perception of multimodal integration patterns nidatapt

to the machines’ recognizers easily and quickly so that the systemtandersur
commands in contrast to machines understanding humans. For example, a user would
increase the duration of an utterance or pause carefully betweerutterdsices for the
speech recognizer to recognize them. Studies conducted in also descriit&ra sim
increase in utterance duration. These principles may guide the developraent of
adaptive integration model but empirical knowledge of human machine inderesct
necessary to build a comprehensive integration model. So, human factors exgeriment

need to be carried out for every modality which interacts with théaimacThese
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principles in conjunction with the empirical knowledge may form the lodisia adaptive
integration model. However, this dissertation employs a computationasipleanodel
with empirical knowledge instead of using these theoretical principles.

Finite State Model based methods

Finite state methods have been employed for multimodal input parsing, undagstand
and semantic feature extraction ([30] and [52]). Although these methods catigtigte
provide a basis for adaptive integration, it is not clear if theskads are
computationally feasible with ever increasing modalities. In order to bpitddaical
adaptive integration model, one has to choose a computationally lessvietend
simpler model.

Active Memory Model

An Active Memory Model vision system [53] learns and retains informationita
objects of a scene in a multimodal system. It aims to represent theskigewh the real-
world scene from different sources as a systematic set of meteongnts. These
memory elements are organized and maintained by a memory infrastréetcine
memory element for a real-world object contaigy/pothesisepresenting uncertainty,
reliability, created/updated timestangts The memory element’s hypothesis allows
creation of an information decaying model around the memory element. fivee ac
memory model vision system understands the real-world scene and ereatenory
infrastructure around it from a visual system point of view aldhé& model is complex
and may not lend itself easily to all modalities.

Customized modality integration techniqueg[14] and [27])

Customized modality integration techniqui&e spatial integration techniques, assume
the completion of multimodal activity before fusing modalities. Anotbennique tries
an optimal multimodal integration strategy specifically for graphsigietasks. Such

techniques while useful to integrate specific modalities (e.qg., sfsketch and
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speech/pen) effectively, are not useful for a wide variety of iatiegr patterns required

for the majority of multimodal applications.

2.5. Design Requirements Considered in this Researc h

Historically, the multimodal integration problem has been perceivadia#ication problem i.e.,
it merges the incoming information streams into a semantic infamsatieam using different
types of constraints. Lately, different approaches are being consitlteedihg it as a statistical
problem of integrating independent mode feature densities, casting it a&sng paoblem to
create a higher level decision etc. Based on the aforementionetfiniegtrategies it can be
inferred that different integration techniques are employed based ot#ities involved and
for specific applications. Some integration techniques are morélsuita some modalities
and/or applications than others. Even modality characteristics pitgl @le in the integration
techniques required for a multimodal interface. A general architefiir multimodal system
development should concentrate on developing a framework of fusion/imegraetchanisms
suitable for all modalities accounting for different charactessiitius, among several other
factors, a general adaptive fusion architecture should be able te:hand
» User-based, modality-based and task-based integration stragies

Integration patterns differ based on user behavioral patterns, diffeoelatities used in

the system, and different tasks the system has to perform. Any multilmetiahscannot

assume these to be static properties of the system because theseganvithaime. It

should learn the user behaviors quickly and adapt to the ever changing scdnarios o

interactions.

» Dynamic detection and planning of modalities’ usage
System errors and usage patterns of modalities can render one or mditamoda
unusable leaving the system to operate based on the available modéditesver, the

modalities and their characteristics are continuously/rapidly changguiring the
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multimodal systems to be flexible to incorporate them with easeinfdgration model
should account for the presence or absence of information from various resdaiiti
adapt to the availability of modalities dynamically.

Maintaining a modality, user, and task history for continuous adaptation

User behaviors are fairly predictable from a past history and thadtiter patterns
become more subtle when higher concentration levels are required. Pattéras
repeat from past history of interactions. Thus, maintaining a histongayaction
patterns will help quickly predict the new interactions.

Flexible data representation and information processing at diffegnt semantic levels
Information fusion is not a simple process of combining the informationinattiple
modalities at signal or semantic level for each interaction. Interactodeling involves
combining the information at various granularities at signal and sentewdic This
requires different data representations and different processitepats at various
decision levels. Fusion architectures should provide all possibleegatsentation and
information processing mechanisms to allow for fusing information asigmgal and
semantic level.

Ambience conditions

Apart from users, tasks, and modalities the environment also plays eoleige
multimodal system effectiveness. Ambience noise is a very signiffactor in rendering
some modalities unusable sometimes. For example, when there areenadltipbtic
sources near a multimodal system, the speech recognition may not acéotatehgt
the user’s speech commands. When ambient illumination changes signjfitentaze
data may not be recordable rendering the gaze modality unavailable. Timeouialt
system should be able to detect these ambient conditions through the nsoaaditie
intelligently decide not to use the modality that is affected in the deaisaking

process.
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Oviatt et. al., ([83] and [128]) emphasized the need for an adaptive infonnagion in
multimodal systems and demonstrated the strong need to have empirical kndwliediy:
practical models which can predict multimodal integration patterns. Theydesigned a system
to study user adaptation in a speech/pen interface instead of adaptiystehets the users’
behavioral patterns [129]. FAME [88] architecture proposed a caradpamework for building
adaptive multimodal interfaces but it is too general to account foogtlitive processes that
drive various multimodal interactions. Adaptive speech-only integ§92] are built to integrate
speech into any existing applications. Perakakis [134] studied ipdtiwes in multimodal
interactions and showed that users would use a modality that suits them flariemnt e
expression while exhibiting a bias towards speech. Matt and Pantic [6@jetkan adaptive
affective interface which contains many modalities including speeatiyaze but did not treat the
integration model separately. The interface adapts to the user’s doediaaimacro level rather
than understanding the low-level interaction models. Leah Findlater and Mea@Gnanere [74]
designed an adaptive interface for small screens but it is not anoéti system. Their
multimodal system adaptation criterion is entirely different from tgelee interface design and
similar principles may not be applied in speech/gaze systems. Gajo$83] designed an
adaptive toolbar interface to restructure the user interface basedrdyebavior but even it did
not look into the integration model of speech and gaze. Moreover, the expddskeiniolves
additional stimuli to the subject which could potentially change the ubavioe. Also, task
difficulty may influence the gaze behavior [124] and subsequently impagqi¢kelsgaze
adaptive model. Apart from the task complexity, an adaptive integration modébe able to
compensate for user head movements. Moreover the far field speeghitiea itself poses
several problems [135] in recognizing speech accurately and thus regoiadgitional
modality for interface effectiveness. Another category of intedaallechttentive interfaces

change the information present to the user dynamically but do not adapt to siasismtc
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A majority of the multimodal systems mentioned earlier in thisediaon addressed the
fusion problem as an integral part of the system development. A majbtite above fusion
techniques are custom created and do not hgeaeralized adaptive fusion modhelhind the
fusion of modalities. Even the self adaptive software systems [2d4]rw focused on adapting
the system frona speech/gaze cognitive procasandpoint. Thgeneralized adaptive fusion
modelis a vast research area in itself and requires empirical knowlealgeséveral disciplines
apart from theoretical models. Theoretical foundations from psychology gféra human
machine interaction behaviors [70], and empirical knowledge from vadisaplines concerning
each modality involved need to come together to create a generalizedatflagtia model.

Even the systems that included gaze are designed to suit partpplleaton domains.
Even the systems which included speech and gaze did not employ adaptivéidmedispeech
and gaze in a multimodal system. In order to fully understand the speech aitteyaztion one
has to explore the cognitive process in speech and gaze interactions ([39] anthiS4ksearch
aims to create an adaptive integration model for speech and gaze by explorahgespkgaze
interaction in general and as applied to real-world applications. ltansadaptive technique,
Row Action Projection (RAP, described later) [61] which is a computdljoieasible approach
coupled with the empirical knowledge derived from the human factors expesitoeouild a
cognitive model for speech and gaze interactions. In later sections, two hutoas fa
experiments are described along with the RAP-based adaptive fusion mottetitigghat the
addition of the gaze modality to a speech interface will enhance thel @fgretiveness of the

system.

2.6. Summary

Several multimodal systems and integration techniques discussedrthns éither custom
designed for the system at hand or have not treatetiive integratiorwith the empirical

knowledge factored into it. Speech, pen and gesture based multimodalssiyatenbeen built
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but do not use the information in a synchronous/adaptive manner. This dmseitat to gather
the empirical knowledge in speech and gaze integration to build an adapte hodel for
using speech and gaze simultaneously in a multimodal system. It also gtadiffect of display
parameters like font-size, spacing, and location of objects on scnemdtimodal interfaces that
include speech and gaze and looks for optimal values for these parametezsiéxt chapter the
research will be described by first presenting the methodology that hasrhpyed to gather

the empirical data needed to analyze the gaze and speech patterns.
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3. Experiment 1. One Word Task

3.1 Introduction

Speech recognition can itself pose an immense challenge to accurabelyize the user’s
spoken words because of numerous spoken languages, different accensstfialémnguage,
different pronunciations of a single word by different users, difficultgistinguishing the user’'s
voice from multiple acoustic sources in the environment, and complex arobretitions etc.
Gaze is even more intractable because of its highly unpredictable.raduin order to
understand the speech and gaze interrelationship, one has to first extvacy fbev level or
fundamental behavior of speech/gaze interaction. The task in Experimenbdehadesigned to
extract this low level behavior. The task avoids distraction (e.gs, obijects) on a display screen
when the subject is speaking a word. In this chapter the hypotheseanthgkocedure for

Experiment 1 are described.

3.2 Hypotheses

Experiment 1 is expected to provide the fundamental design parameters ¢dl o argating
predictive and adaptive models for speech and gaze interaction. Tdén®dnypotheses tested
in this experiment:
» Combining speech and gaze provides higher performance in human machine interaction
than a speech-only system.
» ltis possible to use gaze behavior around the onset of speech to predict'she user

attention on the screen

3.3 Task Description

In each trial of this experiment, a cross-hair “+” (or marker) ajgp@athe screen at a random
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location and when the subject looks at it, it disappears. Immedétehthe cross-hair
disappears, a word appears on the screen at another random location j&didaslibeen
instructed to read the word. The subject does not know what word will beyddplhe system
then recognizes the subject’s speech and registers the word as ratdgpoken correctly or as
if not spoken correctly. Cross-hairs and words are displayed randomfieagrdi locations on
the screen to insure that the subject will not be able to expect alfaartisplay pattern which
might potentially influence speech and gaze interaction. Eachdtiterawhere the cross-hair
and the word are displayed, constitutegad in the experiment. The experimental design
separates onteial from another by having the subject look at the cross-Hasts'{’) before
reading the word. Thus, eatfal in this experiment is independent of any ottnieit. A fixed
number oftrials constitute aun. Experiment 1 consists of a seriegurfis at least 6 with each
run containing 20 trials for a total of at least 120 trials. Subjectasied to perform morens

at the end of Bunson a screeif they are comfortable This additional data helps in analyzing
the fatigue levels in prolonged human machine interaction. Some subjeetableto participate
in more than 8unswhich resulted in a different number of trials for these subjects, At
everytrial in arunis useful in data analysis due to various errors e.g., missing respamsdahkédr
speech recognizer. This causes the number of trials for each doljjeatifferent in Experiment
1. However, only the first 100 trials of each subject are used in datsian&gctrun, of reading
words, takes about 1-2 minutes with the total numbeurdtakingat leastlO minutes. The
word font size is fixed at 36 and is known to be easily visible to the subjebis age range used
(i.e.,they all own drivers licenses and had acceptable vision correctetireatting correction)
without any strain on the eye. All the letters in the word@mer case There are a total of 531
words [Appendix B] in Experiment 1 chosen to contain 1 to 5 syllables tozandly effect of
the number of syllables on speech/gaze interaction patterns. Fidwe/d & single word trial as
it appears on a large 20" screen. Words are randomly chosen from the S&lfovatisplay in

this experiment.
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candidate

Figure 1 No Interference Word Display

Each trial is independent of other trials because the subject disrfisseross-hair
before performing the word reading task in each trial. The cross-hanesribat the subject’s
eye is coming to the word from an arbitrary location in each trial idstEhaving to come from
a previous word utterance. Both the display location of the cross-hainematd is completely
random. The screen space is used uniformly to display the cross-hair armtdhiestead of any
specific affinity to any area on the screen. The random display pattminatts the subject’s
predictability of cross/word location. Each word stays on the scre@nseronds within which
the subject is supposed to speak the word. If the word is not spoken orasowptized by the
recognition engine within 3 seconds, the word automatically disappeaifseacrdss-hair
appears, initiating the next trial. The 3 second limit is chosen beaftas& seconds the

subject’s eye is likely to be moving to another location on thesénealidating the trial.
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3.4 Experimental Procedure

3.4.1 Speech Training and Gaze Calibration

Each subject is debriefed about the speech/gaze experiments andhddasignsent form
before starting the experiments. The subject is seated about 2 fgdt@wahe screen in a chair
that is fixed in front of the machine. A microphone array located undecitbersis focused on
the user’'s mouth. Although the eye tracker can track two eyes of the sitbjphysical position
is fixed and it is focused manually to the left or right eye by operating thzamker’s controls.

After the subject is seated properly, the subject needs to traipethehsrecognition
system to their voice before performing the experiments because the sge®the voice model
developed during training to recognize the subject’s utterances duringneepesi The
experiment is carried out using a Via Voice speech recognition sysignect read text to the
speech machine to train the Via Voice system. This training sessiorifousiee following
experiment (Experiment 2) as well as for this one. The speech traincegpriakes about 10-30
minutes for each subject to read about 57 sentences and is identicahftirebexperiments.

After the speech training session, gaze calibration instructierdisplayed. Gaze needs
to be calibrated before tracking the eye movements in speechig@aeiions during

experiments. Figure 2 shows the calibration instructions screen in Bepérl.
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In this experiment, the next screen will show you five ovals

numbered 0, 1, 2, 3, and 4 as shown below.
—_—mamee

o L4

Vhen done wext screen will ippaar atlomatically

You are to look at a cross hair appearing on the ovals in numerical
order. Do not blink your eyes while looking at an oval.

If you have any questions please ask the experimenter at this point.

Click TEST when you are ready.

Figure 2 Gaze Calibration Instructions

The gaze calibration screen contains 5 points as shown in Figure 3 which leed thar
(center), 1(top-left), 2(top-right), 3(bottom-left), and 4(bottom-rightiréss-hair appears as
shown in Figure 3 on ‘0’ (in the center) and then moves from 0 through to 4 and backé& 0. T
subject needs to focus and follow the cross-hair as it moves throughaiinimse.

GAZE CALIBRATION

© ©

When done next screen will appear automatically

Figure 3 Gaze Calibration Panel
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After the gaze calibration is complete, the subject performstaatabn accuracy check.
Figure 4 shows the calibration accuracy verification screen in Experimé&he subject is
instructed to look at the 10 points and the points on the screen changeroatare to blue)
when they are looked at successfully (i.e., gaze falls close to thdqrgiet). The experimenter
verifies the calibration accuracy by noting whether all of the paimh blue. If this is the case,
the experimenter tells the subject to begin the experiment. Othervesaliject repeats the
calibration. The experimenter’s visual verification is deemeddaeifii to check the accuracy.
After the speech training, gaze calibration and calibration accurafigation, the subject
proceeds to perform the task of the experiment. See Appendix D for the systdiatios/setup

for running the experiments and Appendix E for a thorough treatment of theagaieecand

validation.
Look at each oval one at a time to check gaze calibration accuracy
@
@
@ L4
L 4
® @
L
® @

m calibration if necessary When done pmsm

Figure 4 Gaze Calibration Accuracy Panel

3.4.2 Subject Population

This experiment, and experiment 2 as well, is designed to be independentaifwbéamguage

of the subjects or anything related to their origin. These experimentesigned to extract the
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fundamental behavior of users when they interact with the machine using speéegzea. It is
hypothesized that the speech and gaze interaction relationship is indepe nide madi/e
language of the subjects. The speech recognizer’s performance usexckinergn to be biased
towards English speakers. Hence, the experiments are carriedtobotitnative and non-native
speakers to eliminate any bias in results. However, because therexysrare designed to
extract the fundamental relationship between speech and gaze, the snhjaa’'tanguage is not
a major concern. Table 1 describes the population of the 39 subjedtothpart in Experiment
1. The subject population is a mix of gender, age, and native/non-nativerspéiaikcludes

some subjects wearing glasses or contact lens and some subjduis thatataract operation.

Age Gender Hative Speaker
Male |Female |Yes Ho
18-20 2 3 5 1
20-30 10 2 2 10
30-40 17 1 0 18
40-50 1 1 0 2
BO0-70 1 1 2 1

Table 1 Experiment 1 Subject Population Characteristics

3.5 Summary

In this chapter, a speech/gaze experiment was described whose purposexivasttempirical
knowledge that contributes to the development to a speech/gaze iatenagtiel. The design of
the experiments, the procedures employed, and the subjects’ charastessé described. The
issues/limitations involved in carrying out the experiments wereeaded to ensure that the data
collected is valid. The next chapter analyzes the data to ebtphliameters that are important in

the development of a speech/gaze integration model.
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4. Experiment 1: Results

4.1 Introduction

In this chapter, the data collected from the first of two experimentslizaddo illustrate the
differences in gaze patterns across subjects and across timénigleassbject. Then, linear and
adaptive prediction models of subject’'s behavior are compared. The inteig wbrk is to
demonstrate that adaptive prediction is necessary and improves the pregtiglion accuracy of
the user’s intent. To do this, the typical approaches to predictioalatgated and compared to
an adaptive prediction approach. To this end, five different approachesattiagtthe user’s
intent (speech only, gaze only, linear prediction, adaptive prediction, wedbpeech and
adaptive prediction) are evaluated and compared.

Before beginning with the comparisons, it is necessary to lay out théndais being
analyzed and the analysis process that is taking place. In particislavotk uses what are
known as fixations and saccades, characteristic eye movements. Thblrakyased to
aggregate the eye movement data into fixations and the list of parfisaltions from which we
select those most relevant to this experiment are defined in Section 4&ctiom$.3, dominant
gaze features (fixations from the list developed in 4.2) are id=htifrurthermore, it is shown
that the dominant gaze features for a particular subject can varyroeer$iection 4.4 discusses
the need for adaptation. Section 4.5 introduces the Linear Prediction adaaleneans for
identifying the focus of a subject’s attention based on gaze behavior. Aivagaptliction
model of gaze behavior, based on the Row Action Projection algorithm, is intdoduSection
4.6 and its performance, in comparison with Linear Prediction is discussectionSe7 Section
4.8 compares the performance of all of the approaches to target detensatered and their
overall performance in interface applications. Section 4.9 summahnzessults of the first

experiment.
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4.2 Fixation Features

Each trial consists of a scanpath, i.e., a sequence of gaze sameplgazétsamples are then
separated into saccades and fixations, where the saccades agat®samples associated with
rapid eye movements across the display associated with the seartérfmtaand fixations are
clusters of close-by samples associated with attention and focus on a fgenhdstee [Appendix
E] for details).. There are a number of algorithms for extracting théoirsafrom a collection of
gaze samples [123]. Three widely used algorithms for detectirtgpfisa(a cluster of samples
given by their (X, Y) coordinates) use the following criteria:

Dispersion: (maxX — minX + maxyY — minY) < dispersion threshold (DT) and

cluster size > # of points (NP)
Velocity : v (i.e., the spacing between samples at a given sample rategityve
threshold (VT), and cluster size > # of points (NP)
Area : sum (i.e., the point to point distance) < area threshold (AT) and
cluster size > # of points (NP)

It is known that the choice of fixation algorithm affects the data aisdli36]. The dispersion-
based fixation algorithm is chosen in analyzing the gaze data in Expefiraadt2 because of its
robustness in calculating the fixations accurately [123]. Also, therdispebased fixation
algorithm’s complexity and computational requirements are low enough for ameadaptive
multimodal algorithm. In our experiments, we are concerned with the relatiwedn the
fixations occurring during visual search and the onset of speech. Wettlefiiodowing
parameters:

(xi,V:,t) = position on a display and time of occurrence of a gaze sample (sample rate for
our gaze tracker = 60/second)

S = speech onset time stamp

fst = fixation start time stamp, (the time of the first gamgpsain a fixation)
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fet = fixation end time (the time of the last gaze sample in tiofiya

T = §- (fst+fet)/2 (fixation offset time w.r.t. speech onset time)

DT = maximum permissible spread in the location of samples foiddfixation
NP = minimum number of samples for a valid fixation

The following equation defines the fixation computation for the dispersionitalgan our
application. For all gaze sampleg (&), such that [max(x- min(x)] + [max(y) - min(y)] < DT

and N > NP, the location and time (w.r.t. speech onset time) is given by:
NN
oy, 9= (& & )
N N

Prasowet. al[106] showed thdixation intensityi.e.,the number of gaze samples in a
fixation, is one of the important features in understanding the gargiatt on an object on a
screen. They found 1500ms is a sufficient time window around speech oresdbtiook for
fixations of importance to determine the user’s intent. Fixatiomsitieis also a measure of
fixation duration whose distribution has a positive skew [137]. In the cispeeich/gaze
experiments, each fixation in [-1500ms, 1500ms] is given an index w.r.t. to spesatitime.
Fixations that occubefore the speech onset time are denotedttly, the last fixation before
speech onset timgp2,the second to last fixation before a speech onset th8gthe third to last
and so on, (see Table 2), while the fixations occuaiitgy speech onset time are denoted by
fal, the first fixation after speech onset tirf@& the second fixation after speech onset time, and
SO on, (see Table 2). Additionally, each scanpath has one fixati@t has the largest number
of gaze samples in [-1500ms, 1500ms].

The features to be used in speech/gaze integration model are selectealihsid o
ability to track the interaction in all possible conditidmes tasks, userstc. Speech/gaze based
features include speech attributesy( speech onset time) and gaze attributes, faw gaze

samples’ based features and fixations — clusters of gaze sampjpexe and time). Speech onset
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time categorizes the dispersion-based fixations, as shown in Tabid#ttier data analysis.

Feature Description
Nid First fixation before speech start time
B3 |Third last fixation before speech start tiine
fB2  |Second last fixation before speech start time
ABI  |Last fixation before speech start time
fre?  |First fixation after speech start time
Ju2  |Second fixation after speech start time
Jue5 | Third fixation after speech start time
fn Fixation closest in time to speech start time i.e., fn = fh or fa
Kl Fixation with largest number of gaze samples around speech start time
i.e., [-1500ms, 1500ms]
fiZ Fixation with second largest number of gaze samples around speech start
time i.e., [-1500ms, 15001m5]
fii Fixation with largest number of gaze samples around speech start time
1.e., [-1500ms, 1500ms] excluding fir?
Jd  |Fixation with largest mumber of gaze samples excluding the feahwes
already used in predictive/adaptive models and around speech start timne
ie., [-1500ms, 1500ms]
i1 Fixation with largest number of gaze samples in the entive scanpath

12 Fixation with second largest nummber of gaze samples in the entire
scanpath

Table 2 Fixation Features
Each of the above features has six paraméteyst, n, m, v) where(x, y) are the
feature’s locationt is the time difference w.r.t. speech onset times, the number gaze samples
in the fixation,m is the mean pupil diameter of the fixation, arid the variance of the pupil
diameter of the samples in the fixation. Note that out of the fixatatrfes outlined in Table 2,

only a few will be selected based on the modeling process.

4.3 Dominant Gaze Features

A dominant gaze feature is defined as the single fixation featureathaketect the target with the
highest probability. Each subject takes part in N trials (ianzaths) in each experiment. Each
trial produces several fixations and the fixations are analyzedtw itie speech onset time using

different search areas around the target [Appendix E.7]. The propalbitiits in a search region,
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P, i.e., target detection probability, is computed as shown below. Notelthaiddl parameters
(DT, NP, VD, W — VD and W defined in section 4.6) are optimized in computing et tar
detection probabilities.
P =SIN
Where

P = probability of detecting the target by a speech and/or gaze critier

S = number of trials in which a target was detected succes#lf by a speech and/or

gaze criteria

N = total number of trials by a subject
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Figure 5 Dominant Gaze Features for all Subjects in One Word Task
Figure 5 shows that the dominant gaze features for all subjects imile sine word
experiment. It illustrates that not all subjects have the same domgemmnfeature in their
speech/gaze interaction patterfizd. can be seen as the dominant gaze feature for majority of the
subjects. The featurdf fbl, fal, andfa2 are independent features and the featurgfs, andfii

are dependent features. Althouglandfn seem to be higher thdia, they are not selected as the
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second major feature because they are dependent fai tleature (i.e. many of the successful

trials included irfi andfn are also examples td1). Consequently, the two highly effective

independent featurdal andfii are selected in the data analysis for all subjects in Experiment 1.
Next, Figure 6 illustrates (for 5 subjects) that the dominant gazeddatua particular

user changes over time. Each subject performed 100 consecutive trialge dothinant feature

was found and plotted for each of 10 consecutive subsets of 10 trials. Thehpletthat, for

these 5 subjects, the dominant gaze feature was not constant @ver tiia result was observed

to be consistent with the behavior of many subjects.
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Figure 6 Dominant Gaze Variations Over Time

4.4 Need for Adaptation

Since it has been shown that the dominant gaze features are not constsntisers and also not
constant for a particular user over time, an adaptive integration madglised. What follows is
an analysis of results of experiment 1 using both non-adaptive and adapticéq@redodels. A

detailed analysis of the data for five subjects was conducted usingrsathdnd non-linear
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models and a number of different tuning constants. The analysis showetirtbat aystem
performed better than robust fit multi-linear regression model with 10 eliffeveighting

functions. Consequently, the linear system model was adopted for furthesisnaly

4.5 Linear Prediction Model

A linear, time varying system= Ax was constructed using the fixation-based features. Each of
these features has six parameters associated with it neémelyt, n, m, vwhere(x, y)is the
feature’s predicted location of gazes the time of the fixation relative to speech onset time (+ or
-, depending on whether the fixation occurred before or after speech ongeh fsrthe number

of gaze samples in the fixation measuring the intensity of the fixatior{ng v)are the mean

and variance of the pupil diameter of gaze samples in the fixation. Naamensgmples-based
features were used in constructing the linear system becauséetiieses were noisy and didn'’t
produce results comparable to those achieved with fixation-based featuresher’s distance
measure was applied to measure each feature’s effectivenessifyiclgshe scanpaths, i.e.,
whether they result in a hit (fall within the target region) orissr(do not fall within the target
region). Principal Component Analysis did not help in reducing the dimensjoofaite system
significantly to lower the computational complexity.

Based on the analysis of all features, individually, and in various conariaain
Experiment 1, the combination faf1/fii, the first fixation after speech onset time and the fixation
with the largest number of gaze samples within the time window [-15088ms] excluding
thefal, has proven to be the optimal features for the Experiment 1 prediction mbideiedture
combination forms a linear system of 6 variables by usingxthe t)feature parameters of the
two selected fixations. The influence of {lme m, v)parameters on the speech/gaze integration
model needs further research. The number of gaze samples in the fixadiant used for each
feature because the fixation with the largest number of gaze sastipdesharfal already

accounts for this information. The fixations (e.qg., fbl, fal, fa2, fii)radahe speech start time,
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S; are shown in Figure 7. The time window arougé$TM1, TM2]. More fixations, before

and after the speech onset time, can be included in the model depending ondbmdskity.

fii or %é‘zk

TARGET OBJECT

\’ L Q fal
fb1 T
i
-TM1 TSS ™2
Q Estimated Fixation True Fixation

Figure 7 Speech and Gaze Interaction Modegl=Speech start time, -TM1 and TM2 bound the
time window (+/- 1500msec) around S

The time window is not necessarily symmetric around the speech onsdidiraese the
nature of the task being performed can influence the time window linkés, these time
window limits TM1 andTM2 for searching the fixations around the speech start tiraeeS
random variables. Their relative magnitudes are also a functiorkafaa®glexity. For more
complex tasks involving searching/preprocessing, our experiments shawotteatime is
required before the speech command is utterediént] p [TM2] . Currently the model assumes
that the gaze will always be associated with the speech onselrtithis basic model, it is
assumed that the two variablB8l1 andTM2 are constant and model all tasks’ fixations to be
within these two time limits .For simple tagkd is not included in the model for computing the
predicted gaze location. Only for complex tasks which involve searidiiibgincluded in the
model along witHal/fii and any other pertinent features. In addition, the fixations are only an
estimation of theérue fixations because the gaze samples may suffer from equipment errors,

calibration errorsetc.



40

Although,fal/fii has proven to be the optimal feature set for Experiment 1 (Figure 5), the
models do not strictly depend on any specific feature combination and can be eéxteimg¢tude
any feature sets. It only indicates that a particular feature contrinatefficient for the task to
be used in prediction/adaptation models.

The distribution of fixations around speech onset time varies with thedagplexity
and hence the choice of fixations to be used in adaptive prediction (the gokithah introduced
in Section 4.6) depends significantly on the task complexity. However, gusasl that a
majority of the tasks can be captured with the use of a few fixations anpeechsonset time.

The linear prediction model for gaze is now described, in detalil.

Each interaction’s gaze attention location is predicted as:

X = [faty Wi + a1, Wy +fats Wind + [fii, Wiax + fil, Wiax + filt Wind
y= [fa1x Wx1y + fa1y Wy1y +fa1t Wt1y] + [fIIX Wxgy + flly Wygy + fllt VVtoJ

Where two features (fa1, fii) each having (x, y, t) parameters are used
fa1 - first fixation after speech start time
fii - fixation with maximum gaze samples excluding fa1
W:>»» — coefficient value
e.g., W, is the coefficient of first feature’s y in predicting x of gaze attention location

After the first interaction, the following equation describes theegys

|/V)<1x va1y
Wyix Wiy
VVt1x VVt1y
VVXZX va2y
Wyax Wyzy
_VVtZX VVtZL

(x y)1 = [fa1ifal,fal;fiiyfiiy fiid,

After collecting M interactions and rewriting the features more gdigethe following

equation describes the system.
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Wx1x Wx1y

X1 Y1 fi1 frz fi3 fra fr5 Fre| |Wox Wyry
X2 Y2 | _ |fo1 Fo2 fo3 Foq Fo5 foe Wirx Why
B Wx2x Wx2y
XM Ym fu1 fuz fus fua fus fue| | Woax Wizy
VVth VVtZy

The coefficients W can be obtained by solving for the inversheofdature matrix and

then the M+ interaction can be estimated using the following equations.

Xm+1 = [fme1,1 Wiax + fver,2 Wyax + fuer,s Wiax + fues,a Waiox + fuers Wyax + fvea,e Wiay
Ym1 = [fmer,1 Wiy + fvez,2 Wyay + fuer,z Wiy + fues,a Wioy + fuers Wyoy + fuese Wigy]

Each subject produces a sample set of about 100-200 trials/sanaplpaths in the one
word task. To compute each subject’s linear prediction model coefficarnkhalf of the
sample set is selected randomly to train the model and the othes tesifeid. This process is
repeated 500 times and an average coefficient matrix for each sshjeftilated. The results
based on the average subject specific coefficient matrix ar¢edeag Ph while the results
based on a universal coefficient matrix are denotédPasThe universal coefficient matrix for
each subject is the average of all other subjects’ coeffimatrices excluding that of the subject.
The universal coefficient matrix helps as the initial conditiomtox users of the system. Once
the system starts with initial conditidfu for that subjegtthe system can start adapting to the
user over the course of user interactions. The universal coeffio#rik is expected to converge
to the subject specific coefficient matrix through the adaptation ggobéoreover, the adaptive
algorithm requires an initial condition to converge to a solution quicklytasdRu has proven to
be a good initial condition for the adaptation instead of a zero initial ttamdh non-zero initial
condition also reduces the computational complexity of the adaptation faroces

Solving for the inverse may not be feasible due to inconsistencies iysteensof
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equations due to measurement noise. So an error term is added to the abovefsygtations

which then results in the following equation.

Wx1x Wx1y
X1 Y1 f11 fi2 f13 f14 F15 Fr6 W, 1x W1y €x1 ©y1
X2V2| | for for fo3 foq o5 f2s Wiy Wiy | + | &2 ©r2
Wi Wx2y
XM Ym i1 vz fus fua fus fus | | Woax W2y exm Eym
VVt2x VVtZy

The above equation can be written in a simpler form as below.

Minimize: e1® + e2® + e3°

yl = h11 X1 + h12 Xo + h13 X3+ el
Y2 = hp1 X1 + hgp X2 + hpg X3+ €2
y3 = hs1 X1 + h32 X2 + hgz X3+ €3

Solving for the least squares solution yields the following set of equations.

M 2
minimize el
i=1
subjecttoy = Hx + e
Least Squares Solution: x.s= [H'H] "H'y

For Speech/Gaze Experiments: w,s= [F'F] 'F'y

So, for Experiment 1, based on the two feattagandfii the following linear system is
constructed wherexy, y;, t;) are the parameters of the featumethe design matrix(t) is the

coefficient matrixH(t) is the design matrix of features, ay{t) is output matrix.

_ o __ |4y, ap
XL YVi X1, Yin tin X2, Vi, b2 | | Q21 A2
X2, Y2 | = | X210, Y21, bon, X22, Y22, 122 | | 431 32

ayy, dyg2
Xn Vn Xnls Vnl tn]: Xn2 Vn2 tn2 asi, ds2
- - | dép, as2

yo = H() X
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4.6 Adaptive Prediction Model

The linear prediction model described above may not be computationally fesmsRdv Action
Projection (RAP), a sample based iterative technique, is chosenddhl®lsystem of equations.
In this section the RAP technique will be covered before delving into the\adapeech/gaze
integration model. Refer to [61] for a thorough treatment of the RAP and deddeiehniques.

All physical processes are continuous time systems and the majdhsefare non-
linear in nature. However, to keep the modeling process simpler, alim®gitains start off with
modeling the physical process as a linear system. It may be a timaribea time varying
system depending on the nature of the underlying physical process governiysjaheas
equations. Consider the system of linear equagienklx whereH is the design matrix of the
systemx is the observed input entering the system,yaisdhe estimated output. The standard
least squares solution can be writtexas= [H'H]*H" y=H, sy whereH, s=[H'H]* H". The
linear system representation may sometimes yield a rank deficégrix giving ill conditioned
system matriH. Then the solutioil s is not possible to evaluate directly. The design matrix
needs to be expressed in diagonal form using singular value decomposiiena V T for
finding a pseudo-inverse solution.

The techniques described thus far are good for systems of deterministidagrif the
physical process is a random procesg,(speech/gaze integration model), then a statistical least
squares solution needs to be applied in place of the standard least squaoes $be following

set of equations describes the statistical least squares method.
y = Hx + e minimizing E[Y €7
whose solution is given as.s = E[HH] E[H" y]
The standard linear system discussed thus far requires a blodk ¢ ¢ciain the linear

system before estimating the next sampée, scanpath’s predicted gaze location). A real-time

implementation of the system will not always have a block of datea@il@ilEven after collecting
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a few samples when the block of data is available, the system doesy$ alee all the data to
predict the next samplé€., scanpath). In some cases, such block processing may not be
computationally feasible at times. Thus, a single sample of data togeelprocessed one at a
time for any real-time and adaptive data processing. Among several metapesgist for sample
based processing, row based data processing is better because each rovsigfrtimeadiex
corresponds to one data sample. Row action methods (e.g., ART algebraicuetionst
technique) are suitable for such sample-based processing and areegreécause of their ability
to work for rank deficient or ill conditioned systems. Any continuous tirstegay needs to be
represented as a discrete time system for sample based processing.r@atisitete time
system representation as shown below (Note that all the descriptié&PahRhis Section can be
found in Computational Methods of Signal Recovery by Mammone [61]).

Y1 = hyaXg + hyoXe + hygxs

Yo = hoiXq + hooXo + hipaXs

Ym = hvaXa + hyXo + hivaxs

The above equations can be generalized ysmgh; . x> and each equation is a
hyperplane in N dimensional space. Here there are M equations in argamal space.
Normally the value of M is always greater than N to ensure thay#tens is not ill conditioned.
Even if M<N (the number of equations is smaller than the number of varidideRAP
technique can still converge to a solution bounded by M hyperplanes, as described besawv
M hyperplanes given by M equations form a convex set in the hyperspace. Pheddiique
starts off assuming a solution or initial condition and iterates oveettw Byperplanes by
repeatedly projecting onto them. Given an initial solutiorgpproject it onto the first hyperplane
given by the first equation. This basically means that a new vwectall be calculated by
moving a distance af from x,. The direction of movement is given by tingit normalvector of

the hyperplane being projected. Similarly, projection onto a hyperplarmmes from a point,_;
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in hyperspace.
So at any stage
Xk = X1 + d (hy / |hy])
whered = (Xx - X.1) . (he / |hg|) after projecting - X1 along unit normal offi
= (X hi - Xah ) 7 |hy
= (Yi - Xi1hi) / [
=g/ |hy after generalizing the ;h, term
Then, Xy = X1 + (& / |h]) (i / |hy)
= X1 + (& / [wf) hi
Adding a convergence factor into the equation the main RAP equation &biviger

hyperplane projection becomes= x,.; + u (& / |hP) h.. Figure 8 illustrates how an initial

solutionx, will converge to the solution bounded by the hyperplanes in the hyperspace tgfined

N dimensions. The value gfwill determine how fast the solution will converged. Very small

values ofu will take a long time to converge to a solution but it will give a morerate

solution. However, a large value may or may not converge at times litiarsbecause it might

be skipping the convex set altogether and may be oscillating around the sotutiaderl to
ensure the solution convergence, the RAP needs to be terminatedladtethe solution
converges to within certain error or a maximum number of iteratienseached in trying to

converge to a solution.
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Figure 8 RAP Algorithm — Anx, converging to a solutioxy after 3 projections (1 iteration)
In order to build a real-time and/or an adaptive algorithm, singlelsaie., scanpaths

need to be processed, one at a time, siphiori information from the last few samples.,
scanpaths/interactions. The RAP technique is a sample-basedtectitdt doesn’t require a
block of data. If a block of datae., the past few interactions, is available, the algorithm
converges more rapidly, to the solution space for the sample beimatesti Like any other
adaptation techniques, the underlying process is assumed to be a slovtiopargtane. In
order to improve the prediction of the next sample/scanpath, a window pliesanom the past
is used to compute the adaptation coefficient values. The curreactite may not always
depend on too many past interaction samples as the user’s behavior israetdryrseveral
factors like training and fatigue. The moving window tracks the user’s loghvelile providing
adaptation. The initial condition required for computing the first scanpa&fares comes from

theLPu coefficients for the subject.
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while true
if =“walid sample to be trained on=

hi=hii,:):

¥i=widi.ci:

h#j = st {suamihj . *hji);
eli, ;) = v - hi*x;

o=x 4+ p*F (k) Feld, S hEJTREDS)
erd

if conwerged within error or exceeded MAKITER
break;
arid

if Zall system equations trained once=
iter=iter+l;
erd

ard

Figure 9 Pseudo code of RAP Algorithm

Figure 9 illustrates the pseudo code for the RAP algorithm in the adaptatdel. The
RAP technique uses the basic concepts of a linear system, but it is aoinlinature to converge
to the solution for a system of equations. Consider a linear systdtix wherey is the outputx
is the coefficient matrix of the linear system, &h& the design matrix constituted by the feature
space. For each scanpath, the RAP algorithm looks back in time for a windowptésatand
estimates the current sample. In the windowafamples, whether a sample is included in the
RAP algorithm or not depends on its proximity to the target object’s center podtiicted
location. It is determined byalid distance, VDWith largeVD values, noisy scanpaths would
also be included in the determination of the adaptive coefficientatf@ilgyielding estimation
errors for the next scanpath. If th® values are too small then it would throw away too many
scanpaths giving less data for the model parameters to convergin fliniswould yield large
estimation errors for the next scanpath. Thus, it is very criticdldose appropriate values for
WI/VD. Given appropriat®//VD, theDispersion Threshold DBndNumber of Points NRhe
RAP algorithm iterates over th¢ samples to calculate the adaptation coefficients of the linear
system for estimating the next scanpath. With 2000 iterations and s@p@i@15andLPuas
the initial conditionthe RAP algorithm converges to next scanpath’s estimated location wit
reasonable accuracy for a majority of subjects. The RAP equatidrecaritten as the following

equation:
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Yk - <Fp, w'>

Wi+1 =w i + Xk >
|Fl

F

Where
Fk = <faix, fatly, faftt, fiix, fily, fit> (Expt 1)

= <fb1x, fb1y, fb1t, fa1x, fatly, fatt, fa2x, fa2y, fa2t> (Expt 2)
A = relaxation parameter

4.7 Comparison of Linear and Adaptive Prediction

Figure 10 shows the comparison of target detection probability for lamebadaptive prediction
for all subjects. The difference between the linear and adaptive twadgmore clearly

depicted in the following section (4.8), where the interface perfornzoroparisons are

presented.
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Figure 10 Comparison of Linear and Adaptive Prediction



49

Figure 11 shows the L2 distance of predicted gaze location from the cetitertafget for
linear and adaptive prediction models for a subject. It can be seen thdaphtizeaprediction
model’s error is lower than that of the linear prediction model. The emdsecéurther
minimized through the use of projection operators onto convex sets. Usingpleeators, RAP
guarantees the convergence to a solution of the system of equationduanes the prediction
error. The modified RAP equation using the convex sets is shown below. Sewvestahints like
positivity, band limiting, time limiting, etc., can be used. But only the pdsitbonstraint is

employed in the Experiment 1 analysis.

W = P+ &y

Where
P.= P¢ P ...P defines the convex sets defined by constraints

k
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Linear Prediction (LF) Error
v Adaptive Prediction (RAP) Ermer
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Figure 11 L2 distance of predicted location from the target
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4.8 Performance Comparisons of Speech, Gaze, Adapti ve and

Non-Adaptive Approaches to Target Detection

4.8.1 Target Detection Approaches Compared

Five different methods of calculating target detection probalilibown in Table 3, are

compared to evaluate the performance of the interface.

# Criteria Description

1|P(Speech only) Probability of detecting target by spesch

2|P(Dominant Gaze) Probability of detecting target by dominant gaze feature

3|P(Linear Prediction) Probability of detecting target by linear prediction of gaze features
4|P(Adaptive Prediction or RAP) Probability of detecting target by adaptive/RAP prediction of gaze features
5|P{Combinedi.e., either Speech or RAP) |Frobability of detecting target by either speech or RAP

Table 3 Different Target Detection Probabilities

Figure 12 shows the target detection probabilities for all subjectsiaid by the five
criteria listed in Table 3. It should be noted that “Dominant Gaze”gthétrfor the best single
feature found for each subject is presented as a standard against wittlfettgaze approaches
are to be measured, but does not represent a practical system imptemdthe parameteBT,
NP, W,andVD are optimized for each subject givingaximum RAP probabilityBasically the
optimal algorithmic parameters that can maximize the RAP probaditextracted for each
subject and the maximum RAP probabilities are plotted. This is theneeRIP algorithm can
do given the optimal parameters for the algorithm. It can be seen tltatnihéned speech/gaze

system performs better than a speech-only and gaze-only system.



51

> Dominant Gaze > Adaptive Prediction Linear Prediction
R e Tt D 1:—.FT!7 = -
= paf 3 2o Sosl g ol Fok ! S0, T"'ﬂ,}*ﬁ'}
2 : dgf =H )08 W o Tigomy| o Qe anw
=3 i = 2 | & 5 d 5| & s 5 Iye
= 06 : :  Z1 4 =08t 2 *l . =06 . i ‘;.r
2 : E ||| 8 |2 h -2 1
= ] =t k=
204 v 204 204 :
s oy d
= = | =
T 02 o 02 = 9.2_«
o o o
= = =

0 J i} o
N 20 ™ o 20 s0™ o 20 40

Subject ID Subject D Subject D

2 SpeechOnly > Combined
< 0.an J R < 08|
= ¢« L ' =5
E 061 E 06|
= ; k=
204 204
=] ]
= =
202 - 0.2
= =
= =
— @ = 0

0 20 40 0 20 40

Subject ID SubjectID

Figure 12 Target Detection Probabilities in One Word Task

4.8.2 Statistical Analysis: Paired Samples t-Tests

There are different kinds of statistical tests one can perform on #néodattrapolate the results
observed with a finite number of subjects to deduce a general concluséostaliktical test of
choice depends on the nature of the variables governing the physical procdsm Hjipes of
statistical tests that can be employed differ in the assumption of witethenderlying variables
follow a normal distribution or noParametrictests assume that the underlying variables follow
a normal distribution while theon-parametridests do not make any assumption about the
distribution of the underlying variables.

Different methods of calculating target detection probabilities P@ninant Gazgl Pu,

RAP, SpeechandCombinedl are compared using the t-Tests. Baeplevalues for each of these
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detection criterions atarget detection probabilityalues. These probability values are obtained
after processing the fundamental variable values using different ping@sodules (e.gSpeech
RecognizerLPu, andRAP. Although these probability numbers are not direct variable
measurements, these probability numbers are demonstrated to be normrdlyteisusing Q-Q
plots. Table 4 shows the mean and standard deviation of target detectidrilpiesbaf all 39
subjects in Experiment 1 and Table 5 shows the mean and standard deviatiogt ofetaaiion
probabilities for 9 optimally performing native and non-native subjétitste are two columns of
results shown in these two tables, i.e., “fixed” and “optimal”. The “fixedirmn gives the
results when the parameters DT, NP, W, and VD are the same forjadtsubrhe “optimum”
gives the results when the parameters are optimized for each gubjedthat the window
parameter “W” is only in use when RAP is involved, i.e. in “RAP” and “combjnédom these
two tables, it can be inferred that that the adaptive madelRAP) works better than the non
adaptive modeli ., Universal LP) when the DT, NP, W, and VD parameters are optimized. It i
worth noting that, even in the “fixed” case, “Combined” still works signifilgabetter than
“Speech”, supporting the main contention of this dissertation that speech awdogking
together outperform speech alone. However, the strength of the relgtinsbt clear from the

means/standard deviations alone.

DT, NP, W, VD Parameters
all subjects)
Criteria fixed optimal
Dominant Gaze |0.85+0.14 085+014
0758+015 079+015
RAP 076+016 085+012
0.79+011 079+0.11
Combined 093 +005 0951004

Table 4 u/c of Target Detection Probabilities in Experiment 1 (all subjects)
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9 native /9 non-native subjects (optimal)

Criteria non-native native
Dominant Gaze 080+017 0.80 +0.16
075+0.16 071 +0.17
RAP 0.81+014 079 +0.15
075 +003 0892 +0.05
Combined 093 +£004 0.98 +0.03

Table 5 u/c of Target Detection Probabilities in Experiment 1 (only native subjects)
To investigate the significance of the results, the paired sairpéss is used and thpe

values are shown in Table 6 for all population categories. The valueatathe statistical
significance of the samples’ comparisons. A value less than 0.05, indiattésere is a
significant difference between the two samples being compared. Froralitee6l it can be seen
that the RAP adaptation is significantly better than non-adaptive salMarear prediction when
the parameters DT, NP, W, and VD are optimized for each subject. Theneahsipeech/gaze
system is significantly better than a speech-only system regawafi¢he population category and
whether the parameters are optimized or not. All values in the tabtelarded to 3 digits

precision. A value of 0.000 implies that thwalue is less than 0.0005.

(DT.NP.W. VD) Population RAP=LPu| Combined=5Speech
all subjects
. 3 native, 9 non-native
Fixed .
3 native only
H non-native only
all subjects 0.000 0.000
Optimal 9 nat?ve, 9 non-native 0.000 0.000
~pimnal 9 native only 0.008 0,002
8 nan-native anly 0.03k 0.000
Leqgend
hl\ln Significant Difference
Mo-Fill Significant Difference

Table 6 p-values of paired samples t-Test in Experiment 1
Summarizing the most significant t-Test results for Optimized Adaps. Non-
adaptive, Combined Speech/Optimized Adaptive vs. Speech alone, Combined Speech/Non

Optimized Adaptive vs. Speech alone
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All Subjects

Paired Samples t-Test using target detection probability
- Null Hypothesis HOul =p2
If t(df) > t.iical reject HO wherelf is degrees of freedom

- Optimized Adaptive (RAP) vs. Non-Adaptive (Linear Prediction)

Adaptive model i = 0.85,0 = 0.12)performed significantly better
than non-adaptive modal F 0.79,6 = 0.15, t(38) = 5.284p < 0.0005]

- Combined Speech/Optimized Adaptive (RAP) vs. Speech alone

Combined g = 0.95,6 = 0.04)performed significantly better than
Speech alongy=0.79,6 = 0.11, t(38) = 10.525 < 0.0005]

- Combined Speech/Non-Optimized Adaptive (RAP) vs. Speech alone

Combined g = 0.93,0 = 0.05)performed significantly better than
Speech alongi[= 0.79,6 = 0.11, t(38) = 9.636) < 0.0005]

Native Subjects
Paired Samples t-Test using target detection probability

- Optimized Adaptive (RAP) vs. Non-Adaptive (Linear Prediction)

Adaptive model|f = 0.79,6 = 0.15)performed significantly better
than non-adaptive modal E 0.71,6 = 0.17, (8) = 3.667p < 0.006]

- Combined Speech/Optimized Adaptive (RAP) vs. Speech alone

Combined g = 0.98,6 = 0.03)performed significantly better than
Speech alongi[= 0.92,6 = 0.05, t(8) = 4.609% < 0.002]

- Combined Speech/Non-Optimized Adaptive (RAP) vs. Speech alone
Combined g = 0.96,6 = 0.03)performed significantly better than

Speech alongy=0.92,c = 0.05, t(8) = 3.4967 < 0.008]

It should be pointed out that, for this analysis, the optimization of the éhfgmrameters
was carried out using a semi-automated process. This process usattitnratat computed
results for a range of values of DT, NP, W, and VD (W =5, 10, 20, 30; VD = 100, 150, 200; DT
=20, 30, 40, 50; NP = 8; for a total of 4 x 3 x 4 x 1 = 48 cases) for all subjects fasesland

automatically picked the optimal case (i.e., maximizing the RAP) for edojbcs. For a real-
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time application, the parameters need to be updated for each scargraittion foreach user.
Initial experiments and analyses for real-time adaptation of thesmgtara are under way and
preliminary results are being examined. The integration of theinealeptimization will be an

important aspect of future work.

4.8.3 Interface Usability Performance

Any human/machine interface with one or more modalities is normallytieten a well

controlled environment. The interface effectiveness is not a watledeferm and needs a more
rigorous definition to evaluate the performance of human machine int@sadvloreover, the
interface evaluation shouldn’t depend on the modalities or any other fadteriitdrface. It

should only reflect how well the system/interface was able to undersingdér’s intent. In this
dissertation|nterface performances defined to evaluate the performance of an interface during a
set of interactions in a session and also to evaluate the relialitlityvhich the results can be
reproducible by the system/interface.

An interaction is considered as a task within a session (or sitting)ebsis, a user can
issue N number of commands/interactions to the system/interface usiogrmpnee modalities.
Target detection probabilitypneasures the number of successful commands/interactions out of the
total number of commands issued. A single session provides the detection piyoloatiat
session alone. There is no guarantee that the same performancalelivelbed each time the
user uses the system. So the interface performance needs to beedvalaat series of sessions.
Thus,Interface performancdenotes the effectiveness in terms of the percentage of the times the
target detection probability is higher than an acceptable targatidet probability. All target
detection probabilities can be evaluated independently to evaluate thigismotedependently.

The calculation of interface performance is defined as follows.

N — Total number of interactions in a session/sitting

Ns— Total number of interactions where the speech and/or gaze successbaghized
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the target
P — Target detection probabilityNs/ N for a particular criteria e.g.., Speech Only,
Dominant Gaze, Linear prediction, Adaptive Prediction (RAP), Combined Sp@ec
Adaptive Prediction
S— Total number of sessions for all users who used the system. A sessgp@uads to
a single set of closely spaced (in time) interactions. Note that BExgraril has only one
session/subject, and 39 total sessions for 39 subjects (whereas Erp@ridescribed in
the next chapter has 26 subjects, 8 sessions/subject and a total of 26x8 al208 tot
sessions for 26 subjects). Sessions can be separated by long time spanseanywhe
between a few minutes to days. There is no specific minimum or maximens pizm
limit between two sessions.
Sp— Number of sessions whose probability P is higher than a given probability p
Interface Performance(IP) — Fora given AP =Sp/ S
Figure 13 shows the interface performance in the constraint-fexacgtion task, where
S=39and if, e.g., for a 60% speech recognition rage, Eession probability), the interface
performance is about 90% when speech is the only modality in the systerméktmet that for
P=0.60, about35 out 39subjects (i.eSp = 35 had a correct recognition rate of 60%a.other
words, 9 out of 10 times that the system; is used, the user can expect to seeeogdiion

rates with respect to speech alone.
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Figure 13Interface Performance for all 39 subjects in One Word Task

Next, the target detection probability for native and non-native speé&kcompared to
evaluate any differences in the speech/gaze interface perfaimanative and non-native
speakers. Although both the experiments in this dissertation are notezkfieshow any bias
towards native speakensth respect to speech/gaze interactibiis not entirely clear if a
speech/gaze interface has any bias towards the native speakeeadbizable to expect that the
speech recognition performance is higher for native speakers and \eitierarecognizer it will
be better for all users. But speech recognition performance is not hightatié¢hfer any user
regardless of the speech recognizer performance. There may bé feeters like ambient noise,
improper pronunciation, and different accents which can potentially inBuecspeech

recognition performance.
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Out of 39 subjects in Experiment 1, 9 are native speakers and 30 are non nakeesspe
Figure 14 shows results for an equal number of native and non-native syseddeted such that
all the subjects are closely spaced in time. When the optimables are chosen to extract the
maximum RAP performance for each subject, Figure 14 shows that the gaeh&AP and
speech narrows down. It indicates that RAP is on par with Speech peréerméh optimal
parameters for each subject. The combined speech/gaze performagbelighan either

modality acting alone.
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Figure 14 Interface Performance for (9 native and 9 non-native) Speakers in OdeNask

4.9 Summary

In this chapter, a speech/gaze experiment was conducted that collectedidgj@cts’ abilities

to identify isolated words on a monitor. The results were analyzed toatkithe differences in
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gaze patterns across subjects and across time for a single subjeet. and adaptive prediction
models of a subject’s behavior were compared and the results densshdtedtadaptive
prediction is necessary and improves the overall accuracy in discérainger’s intent. The
improvement with the adaptive prediction approach in speech/gaze-basadtians, for the
one-word task, is summarized below.
Target Detection Probability Results
- Combined Speech/Adaptive Gaze vs. Speech alone
0.9540.04 vs. 0.79+0.11 (all subjects)
0.98+0.03 vs. 0.92+0.05 (native subjects)
The result for native subjects (albeit for a small sample) iccplatly important because it

shows that when the speech recognition percentage is in the low 90'd, ¢fsicame of the
better speech recognizers under noisy conditions, the combination of spggazamaises the

percentage into the upper 90's, a region in where many practical systems apethte.
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5. Experiment 2: Menu Task

5.1 Introduction

Speech/gaze based menu systems have been studied to understand mentesysteens (
hierarchical menu systems [79]), but not with a focus on an adaptive spzecimtggration
model. This experiment is designed to extract the speech and gazdioniesden the screen
contains distractions to gaze. A simple word reading interaction may nopfallide all the
design parameters of a predictive/adaptive model for speech/gageatitn. As the task in the
human/machine interaction changes the speech/gaze interrelatioastepsmchange.
Experiment 2 is designed to understand the impact of task complexity on the sgpeech/g
interaction and the relevance of speech/gaze interaction in a real wortchtippl So, a menu
interaction task is selected in Experiment 2 where the subjectdtstevith a set of menu items

displayed as an array on the screen and the subject speaks a command fray.the a

5.2 Hypotheses

The second experiment is identical to the first experiment but the tagiecainis slightly
increased. It is not expected that the integration algorithm develofegeriment 1 will
perform as well because of the distraction of other elements on the. Sdneesubject may need
to carry out a more involved search causing the scanpath (i.e., a sequearms#rgples on the
screen) to be different, so that arrival time, location of the fixatoisspeech onset time may be
different. It is likely that the key parameters forming the model williferent for this more
complex task. The hypotheses to be tested in Experiment 2 include:

e combined speech/gaze systems performs better than a speech-onlg system

» increasing spacing improves the gaze prediction

» increasing the font-size will improve the gaze prediction



61

» screen location will affect behavior with less central locationeiging less accurate
predictions.
The values for the independent variables were chosen to represemiatds large

differences in speech/gaze interaction performance.

5.3 Task Description

The second experiment was designed to represent an individual giving spokemdsrimraa
menu-based system when there is distraction to the gaze from surroundingames. Another
design criterion for this experiment is to reflect a real-woplaliaation more closely than
Experiment 1. Each trial in experiment 2 consists of a letter displayvid by a 6x6 array of
buttons, each one containing a word. The subject is to find the word thatstarthe displayed
letter and speak the word. By experiment design, a trial is separated frdmardriat by
displaying a letter between the two. This helps in minimizing theledion between two
successive interactions in the experiment.

It is known that optimal letter spacing exists for best reading perfoar@mtbut how
object-spacing impacts gaze prediction in speech/gaze interactiorkisomat. In a typical user
interface, command buttons are arranged as a rectangular array of butthaménimal spacing
between them to save real estate space on the screen. It enablesethdesigners to present
more information to the user and provides a smaller set of workflow ey steps (i.e.,
number of application screens to navigate). When the buttons or objectssorettte are placed
very close together, the eye tracker can not accurately identifisénis desired object. On the
other hand, if the object spacing becomes very large, then the amouotmiition presentable
decreases which increases the number of workflow steps in performirkg @has, optimizing
performance requires a trade off between the two competing requirerhemtskitow
management and accuracy when designing multimodal interfaces that igaiederhe design

parameters for Experiment 2 include spacing, font-size, and array locé@tioeaeh session
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having different values for these parameters. Three spacings 10, 20 pindl3listances (edge-
to-edge) are used when displaying the command buttons/icons on the scsrealf, medium
and large spacings respectively. The spacing of the buttons icaéntihe horizontal and
vertical directions. Two font sizes 12dpi and 20dpi are used with buttanGz80 and 80x30
pixels respectively. In Sessions 1-6, the entire array of 6x6 buttons isecewetically and
horizontally. In session 7, 20 trials are positioned in UL (Upper Left), 10 &ialpositioned in
the center, and 20 trials are positioned in LR (Lower Right). In session &l&@&te positioned
in UR (Upper Right), 10 trials are positioned in the center, and 20dralgositioned in LL
(Lower Left). Sessions 1-8 are summarized in Table 7. Sessions 7 afer &alih the other
sessions because their goal is to measure the effectivenesindéittaee when buttons are in

screen corners.

Object Widih | Object Heighi| Font | Object Spacing | Fixed
Sezzion (pixels) (pixels) Size (pivels} Location
1 &l 30 Small (12) Small (100  Tes
2 &l 30 Small(12) Mednm (200 Tes
3 &l 30 Small (12) Large (300] Tes
4 20 30 Large (20] Small (107  Fes
5 20 30 Large (20) Meadnry 200 Tes
A =0 30 Large (20] Large (300| ¥es
7 20 30 Large (20] Mednam (200 Hao
2 =0 30 Large (20] Mednm (200 Ha

Table 7 Menu System Experiment Sessions
In each of the 8 sessions of Experiment 2, a subject performs 50 trials ofyresetiu
items from the display of an array of 6x6 menu items. The order of the sequeassions is
varied across subjects to eliminateler effectsin each trial, the subject looks at a letter as

shown in Figure 15, which disappears after the subject looks at it.
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Figure 15Menu Item Letter

The subject is instructed to look for the word beginning with that lettée array of
buttons and to speak that word. Although the display of menu items is an array oftéx6,lbe
word the subject speaks always appears in the internal 4x4 array (asran 1oy} thereby
eliminating the boundary conditions by maintaining 8-connectivity around e@eh teord.
Eliminating boundary conditions provides uniform treatment of all triadsranders the sample
size significant enough to deduce the subject’s behavior. The inner dy4sahighlighted in
Figure 16 only to indicate that this is the area in which the words thectibre asked to speak
are found. In the experiment screens, nothing in the 6x6 array is highlightedrimeaner and
all menu items appear uniform to the subject.

11 2 3|4 S| h
T|& (3 (10| 11|42
15|14 | 1% |16 | 1T | 15
fajan | 2122 |23 |24
25126 | 2T | 28 | 23 | 50
S G2 o5 | 34| 35 | 56

Figure 16Inner 4x4 Array (the inner array is NOT highlighted in the actual experisoeaén)
Each session uses its own set of 36 words to display in the 6x6 arraypfsredik C for

word lists of each session) and the word list of a session doesn’t dhamgeial to trail. In each
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of the 50 trials of any session, the subject reads only 5 out of 36 words/tapgetgedly. The
spacing, button width, and font-size do not change within a session for sessidriguré 17
and Figure 18). In sessions 7-8, the location of the word array changes and 3 pargticsed
for 20, 10, and 20 trials respectively as shown in Figure 19/Figure 20 (sesaiuth Figure
21/Figure 22 (session 8). The first letter of all words is capitalieddtee words are center
justified vertically/horizontally when displayed on the buttons. Sontkeofarget words end with
letter “z”. If the word ends with a ‘z’, then the subject is to utterdzmstead of the actual word
displayed on the screen. For example, if the word is displayed as *lth&rzhe subject is to

utter ‘zero’ instead of ‘lake’. This ensures that the subjectiigygaze when uttering the word.
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Figure 17 Small-Font Small-Spacing

Figure 18 Large-Font Large-Spacing
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[Eibow ) Lice J Tomd J Nun |\ Flask |
Yacht | Money | Anger | Ink | Keg | Fun

Figure 19 Upper-Left Screen

ity ) Pride | Chasm | Plank | { Blood J_ Crag
Panic J 1 Oats | Gist | Hope J Dirt ) Skl
Quest 1 Eloow ) Lice | Tomb }{ Nun J_ Fiask
Vacht ) Money | Anger | Ink 1 Keg ) Fun
Fate | (Woman) | Unit | River J Jury J_ Brute

Figure 20 Lower-Right Screen



Figure 21 Upper-Right Screen

Paper | Bloom | Fault |1 Soul | Plank
o Horse 1 Tool || Rock |\ Quest_
“dury 1 Wonk 1 Glory J1{ Angle J Fiesh
Unit | Woods | Kine J1{ Doll | Cell
Venom | Nymph | Event J1{ Lite .\ Pride

Figure 22 Lower-Left Screen
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5.4 Experimental Procedure

5.4.1 Gaze Calibration

In this experiment, the subject doesn’'t need to go through the speecigteain. Figure 23
shows the calibration instructions screen in Experiment 2. Functionally,lifv@itan instruction
screens in both experiments are identical. They differ only in the numbetafidat the bottom
because Experiment 1 contains only one session whereas Experiment 2 &s¢aisions. The
calibration instructions, i.escreen layoutare different in both experiments to better manage the

presentation of the experiment to the subject in a uniform manner.

In this experiment, the next screen will show you five ovals

numbered 0, 1, 2, 3, and 4 as shown below.
W

L] o

L O

Yrhen done wext screen vill appear aukematically

You are to look at a cross hair appearing on the ovals in numerical
order. If you have any questions please ask the experimenter
at this peint.

Click TEST or begin a session below when you are ready

Figure 23 Gaze Calibration Instructions
The gaze calibration screen contains 5 points as shown in Experimidigrthe gaze
calibration is complete, the subject performs a calibration accuhack cFigure 24 shows the
calibration accuracy verification screen in Experiment 2. The subjewtructed to look at the
16 points and the points on the screen change color (from red to blue) wheretlomkead at

successfully (i.e., gaze falls close to the point target). The expeter verifies the calibration



69

accuracy by noting whether all of the points turn blue. If this is the tasexperimenter tells the
subject to begin the experiment. Otherwise, the subject repeatditiration. The calibration
accuracy screen in Experiment 2 is different from the calibratiamracg screen in Experiment
1. In Experiment 1, randomly selected 10 point targets are chosen to cover theaseage
verify the calibration accuracy. In Experiment 2, 16 point targetsiealladefined layout are
used. The calibration accuracy doesn’t depend on the number of point targetsatiod tifc
point targets. So, the calibration accuracy screen differences in #pesarents can be safely
ignored. As the task in Experiment 2 is more complicated than the task inraspel, a well-
defined layout of a larger number of point targets helpséasuringcalibration accuracy. The
experimenter’s visual verification is deemed enough to check the accAfamthe speech
training, gaze calibration and calibration accuracy verificatihe subject proceeds to perform

the task of the experiment.

Look at each oval one at a time to check gaze calibration accuracy

m calibration if necessary ~ When done press m

Figure 24 Gaze Calibration Accuracy Panel
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5.4.2 Subject Population

Table 8 describes the attributes of the 26 the subjects partigip@Experiment 2. As in

Experiment 1, the subject population is a mix of gender, age, and native/non-petikers.

Age Gender Hative Speaker
Male |Female |Yes Ho
18-20 1 1 2 1]
20-30 4 1 1 4
30-40 14 1 ] 15
40-50 1 1 ] 2
E0-70 1 1 2 1]

Table 8 Experiment 2 Subject Population Characteristics
Note that a few subjects couldn’t perform the experiment (not included ingtiopu
characteristics) because the gaze calibration didn’t work for #settmey were wearing either eye

glasses or contact lenses for corrected vision.

5.5 Summary

In this chapter, a speech/gaze experiment was described whose purposevahmte
speech/gaze interactions in a menu selection task typical of manyitomauter applications.
The design of the experiment, the procedures employed, and the subjectsecisticacivere
described. The issues/limitations involved in carrying out the erpats were addressed to
ensure that the data collected is valid. The next chapter analyzéstadhe establish parameters

that are important to the development of practical human/computer intafpleations.
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6. Experiment 2: Results

6.1 Introduction

In this chapter, the data collected from the second of the two experimantdyized to illustrate
the differences in gaze patterns across subjects and across tarsrnfgle subject. Then, linear
and adaptive prediction models of the subject’s behavior are compaeethtént of this work is
to demonstrate that adaptive prediction is necessary and improves tHeamwegiracy in
assessing the user’s intent. To do this, the typical approaches toipneglietcalculated and
compared to an adaptive prediction approach. Toward this end, five differerdacipgs to
extracting the user’s intent (speech only, gaze only, linear p@dietilaptive prediction,

combined speech and adaptive prediction) are evaluated and compared.

6.2 Dominant Gaze Features in Menu Task

Figure 25 and Figure 26 indicate dominant gaze features for the menu taserpehere the
task is more complicated than in the one word task. Figure 25 shows tharzéhteaturefbl,
fal,andfa2 are the dominant gaze features among those computed. Although there are some
differences in dominant gaze patterns across different font sizes amysptwe fpol, fal, fa2
combination seems to be the dominant gaze feature combination for the meaaiigrteas can

be observed in the eight conditions illustrated in Figure 26 (notelthatigh Figure 26b, shows
significant values for fi, the fixation around speech start time WweHhargest number of samples,
it is not included since, as mentioned previously, it includes fixatioeady found infp1, fal,

fb2) and is therefore not an independent feature). Figure 25 and Figuso 2haw that the
dominant gaze features differ not only across users but also differ dependhmginteraction
task. In the simple one word tasil/fii was the dominant gaze feature combination whereas in

the more complex menu interaction taskl, fal, fb2>was shown to be the dominant



combination.

40 T T T

25

% of Sessions
S

10

Speech Start

fh2  fbl fal faz  fa3 fi fii
Dominant Gaze Feature

Figure 25Dominant Gaze Feature for All Subjects in Menu Task
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6.3 Adaptation Coefficients

In this section the adaptation coefficients are analyzed to observe hcenglfi RAP is able to
adapt to the changes in speech/gaze interactions. The adaptationerteffir a single user
from Experiment 2 are analyzed. The adaptation coefficients from Experlncentain only 2
features whereas from Experiment 2 they contain 3 features and hence Erp@rimselected to
show the coefficients.

In Experiment 2, RAP takes input feature (lel, fal, fa2)with the parameters, y, t)
for each feature and produces an output vector which is the predictedggtimn(x, y) based on
the most recent window of interactions. Theoordinate of the predicted gaze location depends
on the 9 parameters [3 parametgrsy, t;,) for each featurefrom (fbl, fal, fa2) described in
Table 9 and plotted for one subject, subject u2, in Figure 27. Each of fins glaows the
coefficient value during the adaptation process for all the scanpatitsraictions for the subject.
At each step of the adaptation process, a window of past interadtiisnshosen to calculate the
coefficient values to predict the next scanpath.

Name Description

®xT) |x-coordinate of the predicted gaze location as a function of x-coordinate of the feature fH1
®xE)  |s-coordinate of the predicted gaze location as a function of x-coordinate of the feature fat
x¥(x3)  |x-coordinate of the predicted gaze location as a function of x-coordinate of the feature fal
#yT)  |x-coordinate of the predicted gaze location as a function of y-coordinate of the feature b1
#(yZ) |x-coordinate of the predicted gaze location as a function of y-coordinate of the feature fad
#(y3)]  |x-coordinate of the predicted gaze location as a function of y-coordinate of the feature fal
1) |x-coordinate of the predicted gaze location as a function of t of the feature b1

¥t2)  |x-coordinate of the predicted gaze location as a function of t of the feature fad

¥t3)  |x-coordinate of the predicted gaze location as a function of t of the feature fa2

Table 9 Adaptation Coefficients
It can be seen from Figure 27 that for the useth&influence ofbl, falis less than the
influence offa2 in predicting the x-coordinate of the gaze location (Figure 27a, b, c). Also, the
coordinate of the predicted location depends only on the x coordinates of éhietitges and
has little relationship to the y-coordinate of the features (Figure 20dy@ecause the coefficient

values of the(y;) are much smaller comparedx(;). The very small coefficient values xft)
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indicate that the predicted gaze location has little or no dependency on tioe'Bxt@nestamp
(Figure 27g, h, i) with reference to speech onset time. This is leet@ime is already factored

into the fixations’ classification with reference to speech onset time
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Figure 27 RAP Coefficients for Predicting x coordinate of the gaze location (X, y)
Figure 28 shows the coefficient values of the y-coordiegain, it can be seen that the
y-coordinate of predicted gaze location depends only on the y-coordinates oéthie#iures

(Figure 28d, e, and f) and doesn’t depend a lot on the x-coordinates (Figure&&hch,The



time dependency can be attributed to noise similar to the x coordindietipre(Figure 28g, h,
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i). The RAP algorithm can be enhanced to converge to the solution sperebfavarious

techniques which are not explored as part of this dissertation and diog faftre studies.
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6.4 Experiment 2 Performance

6.4.1 Effect of font size and spacing on performance

Figure 29 and Figure 30 shdle Gaze/RAP prediction-based target detection probabftities|
sessions individually in Experiment 2 for both fixed (Figure 29) and optimigur@30)
parameters. Specific space/font settings are associated wlitlyiegh. Although the data are
noisy, they suggest that as the spacing increases the detection gxoinafibves, but there is
no significant difference in detection probability associated with clsingent size. A more
detailed statistical analysis presented in Section 6.4 below suppsesctrgentions. Note that
graphs (g) and (h) of Figure 29 and Figure 30 also show that detection ftieksatid not

deteriorate significantly in the corner sessions.
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Figure 30Session Performances (Gaze/RAP) in Menu Interaction (optimahptees)

6.4.2 Statistical Analysis: Paired Samples t-Tests

For Experiment 2, Table 10 and Table 11 show the means and standard deviatietargéth
detection probabilities for all subjects and native/non-native dshjespectively. As in
Experiment 1, the same set of internal parameters was used for editsuibjthe “fixed” case.

For the optimal case, the internal parameters were selected ssng-automated process. This
process used an algorithm that computed results for a range of values of DV, &tfel VD (W
=6,9,12, VD =200, DT = 20, 30, 40, NP = 8; for a total of 3 x 1 x 3 x 1 = 9 cases) for all
subjects for all cases and automatically picked the optimal casen@amizing the RAP) for

each subject.



DT, NP, W. VD Parameters

{all subjects}
Criteria fixed optimal
Dominant Gaze |0.77 £0.21 07701
0.71+023 070+023
RAP 0724019 0.79+017
067 +0.20 067 +£0.20
Combined 088 +£011 081009
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Table 10 u/c of Target Detection Probabilities in Experiment 2 (all subjects)

3 native /5 non-native subjects {optimal}

Criteria non-native native
Dominant Gaze 074 +0.21 083+0.18
069 +023 074+022
RAP 074 +020 0.79+0.16
063 +0.18 091 +007
Combined 082 +009 095 +£004

Table 11 u/o of Target Detection Probabilities in Experiment 2 (non-native vsuenatibjects)

RAP=LPu| Combhined=Speech

(DT.NP.W. VL)) Population
all subjects
. o native, 5 non-native
Fixed .
A native anly
5 nan-native anly
all subjects
Optimal 5 nat?ve, 5 non-native
=PBRE 1o otive only
5 non-native only

Legend
h Mo Significant Difference

Mo-Fill aignificant Difference

Table 12 p-values of paired samples t-Test in Experiment 2

0.000

0.000
0.003
0.00z
0.005

Table 12 shows the-values for various population categories in Experiment 2, where a

value less than 0.05, indicates that there is a significant diffeetsateveen the two samples being

comparedFixed and optimal parameters are considered for each population categalytbes

the significance of the comparison of detection techniques. The table gfaitse combined

speech/gaze system is significantly better than the speech-otdyngpsall conditions for all

population categories. However, although a significant improvement by thetaaptadel

(RAP) was shown over the non-adaptation model (LPu) when looking acresbjeltts, using
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optimal parameters, no significant improvement of RAP over LPu was@efixefl parameters
and for the sub-populations for optimum parameters, particularly faages of high-performing
native-only speakers. The very small subject samples in the sub-popsilakike drawing
conclusions from these results difficult. Further testing with lgpgeulations is required.
Summarizing the main t-Test results for Optimized Adaptive vs. Non{adapt
Combined Speech/Optimized Adaptive Gaze vs. Speech alone, Combined Speech/Non-

Optimized Adaptive vs. Speech alone:

All Subjects

Paired Samples t-Test using target detection probability
Null Hypothesis HOul =u2
If t(df) > tiicar reject HO wherelf is degrees of freedom

Optimized Adaptive (RAP) vs. Non-Adaptive (Linear Prediction)

Adaptive model{ = 0.79,0 = 0.17)performed significantly better
than non-adaptive modal E 0.70,6 = 0.23, t(25) = 4.067p < 0.0005]

Combined Speech/Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.91,6 = 0.09)performed significantly better than
Speech alonay= 0.67,6 = 0.20, t(25) = 10.27% < 0.0005]

Combined Speech/Non-Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.88,6 = 0.11)performed significantly better than
Speech alongy=0..67,6 = 0.20, t(25) = 9.74f < 0.0005]

Native Subjects
Paired Samples t-Test using target detection probability

- Optimized Adaptive (RAP) vs. Non-Adaptive (Linear Prediction)

Adaptive modelf = 0.79,6 = 0.16)did not perform significantly
better than non-adaptive model E 0.74,6 = 0.22, t(4) = 0.894,
p <0.422]

- Combined Speech/Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.96,6 = 0.04)performed significantly better than
Speech alongi[= 0.91,6 = 0.07, t(4) = 7.193 < 0.002]
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- Combined Speech/Non-Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.95,6 = 0.04)performed significantly better than
Speech alongi[= 0.91,6 = 0.07, t(4) = 7.013 < 0.002]

6.4.3 Interface Usability Performance

The,Interface usability performandeescribed previously in Chapter 4) denotes the
effectiveness of an interface in terms of the percentage of the tiva target detection
probability is higher than an acceptable target detection probability. nféréace performance
for the menu task for all subjects is shown in Figure 31 (fixed paeashend Figure 32
(optimum parameters). Now the menu task had 26 subjects, 8 sessionsqumtrasubi total of
26x8 = 208 total sessions for those 26 subjects. The interface perforrahreéoy any given
target detection probability P is the ratio of the number of session$ thiet 208 that had a
probability of successful target detection greater than P. These corvelsorate the findings of
the paired sample t-test. Note that the RAP performance tracks thetfBunmance for fixed
parameters, but for optimum parameters exceeds LPu and closeltheaddsal Dominant Gaze
performance. At the same time, the “Combined” performance exceeds thattloéa
techniques. Note that the interface performance for this more Hiffiemu task is not as high as
that of the simple, one-word task (Figure 13). It is important to keep in minthéhéeatures
used in the one-word task are not the same as those used in the menu task, r@mirtber that

task complexity does have a strong influence on the design of a speech/gazti@mpl
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Out of 26 subjects in Experiment 2, 5 are native speakers and 21 are non-reatkezrsp
Figure 33 lists the main performance probabilitiseech Only, Dominant Gaze, Adaptive
Prediction (RAP), Linear PredictioandCombined Speech/Gazddr the same collection of
native and non-native speakers drawn from the 26 subjects for diffessitrss. It shows equal
numbers of native and non-native speakers selected such that all tietssarigielosely spaced in
time in terms of when they ran the experiment. Figure 33 (fixed paramater§jgure 34
(optimum parameters) show the interface performance for thesemigned sub-populations.
Note that the plots bear the same basic relations to each othesafothie full population,

only with much smaller numbers.
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6.4.4 Kruskal-Wallis Test for Spacing and Font Size Effects

In the Experiment 2, spacing and font-size are the primary variablesiotdtface design which
govern the target detection probability, apart from other factorsfikech recognition and eye
tracking performance. In analyzing the data, the Kruskal-Wallisttati test, a non-parametric
test, is employed with independent variables spacing and font-size. Although aoepar, this
test is chosen primarily to rank order the spacing and font-size valilesegpect to a specific
target detection probability. The dependent variable chosen is Hiensiesget detection
probability. The test involves rank ordering, into a single list all of/¢thees of detection
probability for all groups being compared (e.g. three spacings, two fog} aize then re-
grouping those rankings within the individual groups. A significance t&stiscarried out on
the mean rankings for each group. The asymptotic significance is given hig PtCvalue’) =
p-value and p-values less than 0.005 are considered significant, rankheder differences

between groups are considered significant.
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The session target detection probability was analyzed for four differetide

techniques (speech only doesn’t enter into this) and 3 different sp&tthd@ and 30 pixels).

Table 13 shows the mean ranks for different samples, each with ormetlfel spacings, for

optimal parameterslf indicates the degrees of freedom and N indicates the number of values in

the sample. Thp-valuesignificance of the mean ranks for each of the spacings showed

significant improvement in target detection probability as spdnicrgased for Dominant Gaze,

Linear Prediction and Combined speech/gaze (adaptive prediction justiisdd).

Fanks

spacing | M [Mean
Rank
Dominant Gaze 10 52|57 .66
20 52(81.70
30 52[596.13

Total 156
Linear Prediction |10 S22 59,25
20 52(80.79
a0 02 95,45

Total 156
Adaptive Prediction |10 52| B3.36
20 52[81.43
30 52190.71

Total 156
Combined 10 52(56.08
20 52181.31
a0 029812

Total 156

Test Statistics a,b

Dominant Gaze |Linear Prediction |Adaptive Prediction |Combined
Chi-Sguare 19.258 16.909 9865 22890
df 2 2 2 2
Asyrmp. Sig. 0.000 0.000 0.007 0.000

a. Kruskal Wallis Test

b. Grouping Yariable: spacing

Table 13 Spacing (in pixels) effect on target detection probability in Experient

Table 14 shows the mean ranks for different samples each with aliffent-size (12

point, 20 point) for optimal parameters. Font-size did not show significgamovement in target
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detection probability regardless of the detection technigue (p-valugs gneater than 0.005)
Thus, it clearly indicates that the spacing has a very significkatt @f the interface performance

while the font-size has strong influence on the performance but not cignifi

Fanks

font M| hean
Rank
Dominant Gaze 12 78| 76.53
20 78(80.47

Total 150
Linear Prediction 12 78|77 6
20 78(79.84

Total 156
Adaptive Prediction |12 78|80.38
20 78|76.62

Total 156
Combined 12 78(82.54
20 78|74.45

Total 156

Test Statistics a,b

Dominant Gaze [Linear Prediction |Adaptive Prediction |Cambined
Chi-Sguare 0.296 0.137 0.272 1.251
df 1 1 1 1
Asymp. Sig. 0.566 07N 0.502 0.263
a. kruskal Wallis Test

b. Grouping Yariable: font

Table 14 Font-size (in points) effect on target detection probability in Expetirae

6.4 Summary

This chapter illustrated that a linear, time varyingteiysis adequate to represent an adaptive
speech/gaze integration model using a RAP technique.

The main hypotheses under test in Experiment 2, the menu—based task werestitht fotask:

» acombined speech/gaze system performs better than a speech-only system
* increasing spacing improves the gaze target detection probability

» increasing the font-size improves the gaze target detection pitbabil
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» screen location affects behavior with less central locations gemngleds accurate target
detection probability.
The results of the t-test confirms thiest hypothesis, i.e., that. a combined speech/gaze system
performs better than a speech-only system.
Summarizing the main t-test results for (Optimized Adaptive) vs. {@dtaptive), (Combined
Speech/Optimized Adaptive Gaze) vs. (Speech alone), (Combined SpeeCQptiaired
Adaptive) vs. (Speech alone):

All Subjects
Paired Samples t-Test using target detection probability
- Null Hypothesis HOpl =p2
If t(df) > teiicar reject HO wherelf is degrees of freedom

- Optimized Adaptive (RAP) vs. Non-Adaptive (Linear Prediction)

Adaptive model{ = 0.79,6 = 0.17)performed significantly better than
non-adaptive modeli[= 0.70,6 = 0.23, t(25) = 4.067p < 0.0005]

- Combined Speech/Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.91,6 = 0.09)performed significantly better than Speech
alone L = 0.67,6 = 0.20, t(25) = 10.27% < 0.0005]

- Combined Speech/Non-Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.88,6c = 0.11)performed significantly better than Speech
alone L =0..67,0 = 0.20, t(25) = 9.74% < 0.0005]

Native Subjects
Paired Samples t-Test using target detection probability

- Optimized Adaptive (RAP) vs. Non-Adaptive (Linear Prediction)

Adaptive model{ = 0.79,6 = 0.16)did not perform significantly better
than non-adaptive modeal F 0.74,6 = 0.22, t(4) = 0.894) < 0.422]

- Combined Speech/Optimized Adaptive (RAP) vs. Speech alone

Combined ¢ = 0.96,6 = 0.04)performed significantly better than Speech
alone L =0.91,6 = 0.07, t(4) = 7.193 < 0.002]

- Combined Speech/Non-Optimized Adaptive (RAP) vs. Speech alone

Combined g = 0.95,6 = 0.04)performed significantly better than Speech
alone L1 =0.91,6 = 0.07, t(4) = 7.013 < 0.002]
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The results of the Kruskal-Wallis test confirms thatsbeondhypothesis, i.e. that
increasing spacing improves the gaze target detection probability, ifernmence improved
significantly with increasing spacing [Asymptotic significances§ue) <0.005] for Combined
Speech/Optimized Adaptive (RAP).

The results of the Kruskal-Wallis test aidt confirm thethird hypothesis, i.e., that
increasing the font-size improves the gaze target detection piighablhere was no evidence
that either increasing or decreasing the font size improved the datgetion probability, i.e. p-
value much greater than 0.005 for all detection techniques.

Analysis of the target detection probability plots for icon arraythé corners of the
displays didhot confirm thefourth hypothesis, i.e., that screen location affects behavior with less
central locations generating less accurate target detection pityb&thilts (g) and (h) of Figure
29 and Figure 30 did not show a deterioration in performance in the corner session

Other important findings from the Experiment 2 results were:

« The dominant gaze features for the menu task, experiment 2, were diffieretiidse
found for the simpler one-word task, experiment 1. Although there were some
differences in dominant gaze patterns across different fonts/spanthgésplay
locations across the subject pool, the feature combinatiddn fal, fa2>provided the
highest percentage of correct target detection. (the best perfararmgination for the
one-word task in experiment 1 wam¥/fii>).

- The adaptation coefficients were analyzed to understand the efficigiin which the
RAP coefficients predict the x and y coordinates of the gaze locatighif adapting to
the changes in speech/gaze interactions.

» Performance curves showed that while the improvements of the spaBctdihbination
over speech alone were very large when the speech performance was peore(gxt
high noise situations), the improvements were still valuable when the spefecinpace

was reasonably good. When the speech-alone recognition performance wagn Bétwee
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and 95% (native speakers), the combined speech/RAP performance waniaSvead
100%, thereby raising the performance in some practical applicat@nsrarginal to
acceptable.

It was shown that a linear, time varying system is adequate to provatagative

speech/gaze integration system using a RAP technique.
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7. Task Modeling

7.1. Introduction

As described in Chapter 4, Prasaival ([100] and [106]) showed thfikation intensityi.e.,the
duration of a fixation as expressed by the number of gaze samples in a fixatioimportant
feature contributing to the relationship between gaze and attemt@onabject on a display.
However, it was shown, during the two experiments described in this disseraat there are
other fixations that make more significant contributions to the preriof the users attention in
a speech/gaze system. In this section, the relationship beiywbenfixation with the longest
duration in the neighborhood of the onset of speech, and the other fixationsnieigiiorhood

is examined.

7.2 ‘fi’ — better task modeler than attention predi  ctor?

Thefi fixation can occur anywhere around speech onset time and its time of oceusrant
predictable. Eacfi fixation in a scanpath has an index associated with it indicating wher¥ it
occurred with respect to speech onset time, e.g. for an indexfiof 2a2. Figure 35 shows thie
index for all subjects for different dispersion thresholds in Experithefstmost allfi fixations
occur around speech onset time and have indices in the range of [-10 10]. Vérfydaons
occur with indices out of this range. All fixations with indices out of thhge are summed at the
boundary indices -10 and 10. Figure 35 also shows that the dispersion threshold Hage aot
significant effect on th& index. Since thé fixation can cover any of the fixatiofis2, fb1, fal,
andfa2, another featuréi is also considered in experiments 1 and 2 which is simifabta
excludedal, sincefal was shown to make a significant contribution to successful target

detection andi’s contribution would be redundant.
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Figure 35Fixation Intensity Profiles in Experiment 1 (Simple Task) with different
dispersion thresholds (DT)

Figure 35 shows clearly that tFel andfa2 are the dominant fixations and for a large DT
fi coincides withfal more than with any other fixation. As the task complexity incieasg,
simple word reading to more complex word reading in a display wéhyndistractions, the
fixation intensity appears to spread more around the speech oreetRigure 36 illustrates, for
both a simple (experiment 1) and a complex (experiment 2) task,dbehility distribution of
longest-duration fixations around speech onset time. Notice #haligtribution offi samples is
more widely and asymmetrically spread for the more comgsek.t This makes sense, since
more searchingrior to target detection is required when the scene is more complicated.

In addition to task complexity, there are other reasons fivhyay not be a consistent

indicator of the user’s focus on the target to be detected. frirsgasures the number of gaze
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samples in a fixation which depends, significantly, on the fixatitgorithm. Second, an
application may not choose the correct object of attention simglyulse the user concentrated
on an object long enough to give the maximum number of gaze emamipthird reason, related
to the second, is that as the user becomes familiar (i.medjawith the system, it is not

guaranteed thdt indicates the user’s attention on the object of interest.
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Figure 36fi as a Task Complexity modeler instead of attention predictor

7.3 Summary

In summaryfi may not be a very good indicator of the user’s attention to objects ksnon a
display. The results of experiments 1 and 2 suggest that there are machbriest However,
Figure 36 did show that a complex task had a different distribution (wider @amdasymmetric)

than a simple one. This leads to a suggestion that the distribufiaelative to speech onset
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time may be useful for modeling task complexity and could provide a useful tool to aid in

interface design. Further research is needed to establish that result



94

8. Summary of Contributions

8.1. Introduction

The main objective of this research was to explore the interactionedrespeech and gaze and
to determine whether speech and gaze, acting together, can convey theigseris a
computer-based system more effectively than either modality acting.alf'wo experiments
were carried out for this exploration. The first experiment involvedtisg words on a computer
display to be spoken by a subject and recognized by a speech recognition systgrarpdse
was to shed light on some of the fundamental relations involved in speecinigaactions. The
second experiment involved a menu selection task, with multiple buttonsnogitaords, one
of which was to be selected, spoken and recognized by a speech recognition Blyiste
experiment represents the typical menu-selection usage that wouddmtesl to occur in the
envisioned speech-gaze system and was used to gather data on speédkfgaion. In both
experiments, the ability of a speech/gaze system to adapt to diffiemid requirements and to
adapt to individual user’s changes in behavior over time was explored. aiinémdings are

summarized below.

8.2. Contributions

* When a user finds an object (e.g. word) on a display and identifies dllyethe gaze
fixations around the onset of speech are related to the user’'sositentine object
named. The particular fixations most pertinent to the user’s atteratigmith the
complexity of the task. For the simple task of finding and speaking an isolatéd w
(Experiment 1), the combination of two independent featfméghe first fixation after
the onset of speech, afid the longest fixation around speech onset (speech start time

+/- 1500msec)excluding fal, had the greatest ability to predict of the user’s attention
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correctly across a wide variety of subjects. On the other hand, foiotteecomplex
menu selection task (Experiment 2), the combination of three independentddafiyre
the last fixation before the onset of spedalh, andfa2, the second fixation after the
onset of speeclnad the greatest ability to predict of the user’s attention corraotbss a
wide variety of subjects.

Since the experiments have shown that gaze behavior differs frono wsertand can
vary for an individual user over time, an adaptive technique has beeopVébr
adjusting gaze tracking parameters to provide individualized anceeffigaze
performance. The algorithm employs an iterative technique called RtanA
Projection (RAP), which has improved target detection performancenomeaidaptive
techniques.

Five techniques for conveying the user’s intent to a computer systegisasne
combination of speech and gaze were analyzed. They were:

- Speech Alone

- Dominant Gaze Fixation the particular fixation that best predicts the user's
attention to a target on a display. This feature was showaryadrom subject to
subject and vary for a particular subject over time. Although it cannot beéoyse
itself in a practical system, it provides a spectrum afuiees from which a useful
subset can be extracted.

- Linear Prediction (LPu), use of a standard linear prediction algorithm on gaze
data to assess the user’s intent. The analysis showedltheara time-varying
system,LPu, performed better than a robust fit multi-linear regression mode
with 10 different weighting functions. Consequently, the lineatesy model
was adopted for further analysis.

- Adaptive Prediction (RAP), use of an adaptive linear prediction algorithm on

gaze data to assess the user’s intent. The RAP technigsi¢hesbasic concepts
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of a linear system, but it is nonlinear in nature in that it eoges to the solution
for a system of equations.

- Combined Speech and/or RAPuse of speech and adaptive gaze data to assess
the user’s intent.

In both experiments, using target detection probability as a measure ofssucces
performance oELPu, RAP, andCombined Speech/RARprobabilities were computed under
two conditions; internal gaze and RAP parameters fixed across alttsudnjel those same
parameters optimized for each subject, individually. The variohsitpees were compared
using several different measures. Among them, a paired sample t-test shatyat both
fixed and individually optimized conditions, t@®mbined Speech/RARechnique was
significantly better than speech alone for both experiments. This result held tthe fotire
populations of subjects and for various combinations of subsets of native andtiven
speakers. As a secondary resRAP wassignificantly better thar.Pu for individually
optimized parameters in experiment 1 aighificantly better tharPu for individually
optimized parameters for all subjects in experiment 2, but not for tleasaub-populations,
which had very small populations. Further testing with larger populdsarguired here.

» Among the other approaches developed for comparing techniques, interfadéyusabil
curves (the percentage of time the target detection probabilighiertthan an
acceptable threshold) were plotted for the five techniques eatedeabove. These are
somewhat like Receiver Operating Characteristic (ROC) curvesselcurves
corroborated the t-test results, and, more importantly, illustrated twotampoesults of
those tests. First, under extremely noisy conditions when speech recognit@mpade
is unacceptablé;ombined Speech/RAP provides very large improvements in
performance. Second, when target detection probability is border-line acceptable, e.g.

90-95% (achieved with native-only speakers in our experimeébsppined
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Speech/RAP improved performance to the 95-100% rangel his can make a
significant difference in some applications.

* The effect of spacing and font size on target detection probability in the seéection
experiment was evaluated using the Kruskal-Wallis test, a non-pai@test that rank-
orders the variables under test. The test showed that for the thezerdithirget
spacings tested in Experiment 2 (10, 20 & 30 pixels, edge-to-edge), there was a
significant improvement in performance with increased spacig. On the other hand,
for the two font sizes tested in Experiment 2 (12 point, 20 peiat¥jgnificant
relationship between font size and performance was found.

Although there is research in the literature stating that the duraticfixafian on a target is

a powerful indicator of a user’s attention to that target, our experinvelnitsh were, admittedly,
quite different from the experiments leading to that conclusion showethéahere are other
fixations that make more significant contributions to the prediction of #es astention in a
speech/gaze system, i.e., those occurring in the immediate neighborhood ettitestprt time.
What was found, however, was that the distribution of the time of occeradrihe longest
duration fixations, relative to speech start time was much broader footieecomplex menu
selection task than the simple, isolated word task, especialiytpepeech start time. This

suggests thdixation duration might provide useful information about task complexity.
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9. Conclusions and Future Work

This dissertation’s key purpose was to investigate the imegrefficiency of using speech and
gaze together to predict a user's menu selection fronga t#rscreen displayed options. It was
found that the combination was better than either modality adting.a It was also found that to
be successful, the system has to be adaptive from user tangsever time for each individual
user. It was also found that the best improvement occurred in higg @évironments and with
individuals having heavily accented speech, but even in neaffigcpe@nvironments with high
speech recognition performance, gaze provided a performance imgveirhe differences in
predictive parameters derived from the two experiments @swustrated that task complexity
has to be involved in the design of a speech/gaze interface.

As with any research, more questions end up unanswered at its @mncllikis dissertation
thus suggests a set of future studies that are needed tdigatedurther the feasibility of
building a speech/gaze system. These are:

» The system built was not run in real time. There is a significant arobaatculation
being done to perform the running adaptation. A higher powered computer and a real
time system needs to be set up.

» The study involved only five native English speakers which is too small. feus,
conclusion of a significant effect from adding gaze to improve systemmrpenice is
suspect. Thus, more subjects in the categories of native and non-nativerspeed to
be run.

* The study used an earlier generation speech recognition system. Beti@issyis
available which have higher recognition rates and also adapt to masiatispeech

better. This work, thus, needs to be redone with a better speech recognition engine
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Each experiment with a subject involved only one session. It is not clear what wil
happen over time. Perhaps user’s will memorize the menu items and not loex atrt
perhaps they will change their gaze patterns. In addition, other distragti@ismight
have affected gaze patterns were kept to a minimum. Thus, these studiesheepziin
in a more natural environment.

To use the particular eye tracker involved in the experiments, it wassaag to spend a
few seconds to calibrate the eye tracker both before and at periodiclinthreaghout
the experiment. This is not a natural situation for a user. What needs toebs then
development of an automatic calibration mechanism that adapts to the user.
Although the RAP algorithm worked relatively well, it was clear tivexplained
situations could readily throw off its prediction. These situatiors te be explored
further.

Although the RAP algorithm worked relatively well, it is suggestetttiedevelopment
of this algorithm be explored further leading to possible further improwesnire
performance.

Currently the adaptation model requires the task based feaiureddd manually to the
model. This needs to be enhanced to automatically select the approarateature
combination required, based on the task complexity

Font-size has not been shown to have a significant impact on the speech/gaz
interactions. Further experiments need to be carried out to fully igaesany font-size
effect since other literature suggests its existence.

Only font size, spacing, and location are studied for the analysis of thégpeec
integration model for tasks with constrainte ( multiple targets). Several other factors
could also be explored to enhance the integration model, e.g., size of wordyl&ratst

It is not clear how the fixation algorithm affects the speech/gazgratien model. Only
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a dispersion-based fixation algorithm has been used in the analysis.ittien f
algorithms like velocity and area fixation algorithms are left fanristudy
Although the above suggestions for future work will enhance the work afifisisrtation, it
stands alone as a foundation for developing adaptive speech/gazdionesystems. As gaze
tracking technology improves, this work suggests that its inclusion in fisaedgaze/speech

interfaces is a definite possibility.



Appendix A. Review of Multimodal Systems

Helmet

System/Modality Approach Speech| Gaze | Touch | Pen | Mouse | Keyboard | Gestures| Sketch | Tactile Stick | Visor Applications Fusion
) - Simple
Spatial Data . . ; Speech As
Management System F”Zt Mll;clgi?gr?al Y N N N Y Y Y N N N N 82{,?;;56;’: Clutching
(SDMS) [15] pp Map Mechanism [27]
MID, MEMO, CARE
ICARE [9] Component Based Y N N N Y Y N N Y Y Y FACET Properties
. Smart Phone
Multimodal Cell Phone . . Data Manager
Architecture [13] Server Side Y N N Y Y Y N N N N N Son)l/:gggsson Synchronization
Command
L Frame
Disciple Framework [5] Framework Based Y Y Y Y Y Y N N N N N Flatscape c .
onstruction
from Parse Tree
VR Ul Framework Framework Based v N N N N N v N v N N I_mme;rsn_/e tATN Temporal
[138] Visualization Search
: I Spoken o
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1-Syllables
farm corpse length car piole truth hloom
zlave noose lake lordd chag steam board
gem fate death kire hirit pact wine
hrute takle fox woods zhire lark zeat
dell grass green street oats haund geese
truce jail harp gueen shame fault Imp
cord fun wench plank haur truck hreeze
thiarn home shoes Sauce ked pl=in code
stub stone church foam hozs clall cost
cat storm mest bar rymph vacht dress
grief it coast chair shock rod zlush
dove sphree fork heast hope irk fact
wearld mule TCience sguare suds toast joke
greed toal pipe ol health lime style
rminc skull vest hook Crime door harze
clock care tree toy clann: mazt string
niil wehest girl gist bl speech earth
wartmth jucge chin sEd lirmka zerf gore
dust bronze cell child price hicle hlood
deedd shriek zkin peach Camgp pel star

Table 15 One syllable words

2-Svllables
painter pleasure arrowy array demon garret fartune
elboay hostage daybreak forehesd ocdaur riLstrmesy onzlaught
warkhouze  |vizion outcome pignizt thicket prison abyzz
context cLisine angle captive hlos=om hatel theory
hurdle irony WYEERON tuvilight frantage nephesy product
helfry NonNsense ahode circuit conguest amour henchman
namesake vezzel apple figment trauble Wi am hanker
mather guardhouse  |gadfly basom cellar zatire leaflet
trumpet safety miaicden jury surtax harness flovweer
insect reflex picture patent builder glary water
sugEr rosin glutton tweezers franchize goddess zkillet
zhirit hearing murder sunburm labryrinth foikle contract
coffes poetry hattle sulphur maker engine circle
market machine gingham artist kerchief moisture building
daylight college dallar hazement present whalehone  [body
haoulder fireplace nectar sultan tovver pattal dizeaze
encore manarch rokbber leopard goblet honour charter
ankle harmlet harrel panic traction steerage doctar
aszaul invoice zadness leader shadow: bandit portrait
landzcape  |piano blandness SESSI0n belief aLthor savant

Table 16 Two syllable words
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3-Svllables
voloano heroizm jeopardy vanity mastery pollution disaster
vocstion thiztledown |happiness exertion socislizt inducement  [management
prizoner homicide affection committes gratitude vehicle ritual
increment episode MEmory helongings hutterfly dynazty permizsion
galaxy anecdote hiztory diztraction speakeasy  |[hospital umbrells
athletics gaiety caravan ambulance edifice clemency opinion
EMmporium hankering restaurant exhaustion gentleman  [furniture competence
fizherman origin intellect nursery barnacle incustry ohsession
resaction vigilance magnitude letterhiead likar ey advantage  |=corpion
expression  |intimate MICrOSCOpeE comfarter strawherry  |edition afterlife
inzolence formation retailer amazement rhapsody blzsphetny  |attribute
phy=ician substitute incidert musician deduction attitude comecdy
zonata replacement  |hurricanes tendency citation zimile vestibule
revalver lovalty combustion infection dalliance hereavement |derelict
hlunderbuss |arbiter property hetrayal domicile semester devation
comradeship |professor ignorance dizclozure recital appliance rakbery
gravity owvnership salary uncerorid distinction  |grandmother |copyvhook
peacemaker (candidate agreement illusion hravery heverage medallion
admiral miracle epistle policeman guality factory gymnastics
firmament lubricant procession wholesaler pErjury colany dizcretion
Table 17 Three syllable words

4-Syllables S-Syllables
rheumatizm  |inclemency acdversity centennial capacity eccentricity
imanity ioviality evangelist infirmary mathematics university
ahility ingratituce hacteria aberration alimory elaboration
unkeliever  |causality dizposition salutation festivity opportunity
prozperity development  |panarama ahdication supplication determination
decoration  |obedience inebriety refrigerator majority multiplication
automokile  |impatency proprietar loguacity habitation unification
avalanche |comparizon  |violation agility accordion examination
Ceremany malaria competition gradustion theologian originatar
explanation  [democracy atrocity velocity detonation animosity
hanality flexikility predicament  |hypothesis delirium impropriety
imtnunity recognition brutality situation inkbabit ant unreslity
encephalon  |vaccination mizconception |armadilla amplifier extermination
alligator dizconnection |criterion heredity dizparity investigation
ambazzador |material metropalis temerity vegetable emancipation
prosecutor  |contribution [macaroni embezzlement cooperation
functionary  |hostility emergency husyhody
anxiety periodical discovery caterpillar
EConomy allegory zobriety osculation
antitoxin necessiy legizlation exactitude

Table 18 Four and Five syllable words
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Appendix C. Word List in Experiment 2

The following list shows all the words used in all sessions in Experimenlis?s lbut the
commands that are in inner 4x4 array in bold. The non-bold words are in the edgéxéf the
array.

Session 1: fabode", "dawn" , "earth" , "geese", "hall" , "keg" , "lad" , "maker" ,

"queen”, "table" , "water" , "ink" , "nail* ,"jail" ,"oats", "venom", "river", "yacht", "cabin",

nn "o non non non nn

"salad", "pact", "fact", "baby", "charm", "skin", "plank", "folly" , "book", "code", "spree’, "flag",

"cigar", "bird", "power", "snake "pelt"}

Session 2: fabyss", "death" , "ego”, "gem", "harp" , "kine" , "lake" , "mast" , "quest",

1] || n nOOSG", n non "o non non

"tank" , "wench", jelly" ,"ocean", "vest", "river", "yacht", "camp", "sauce’

"panic”, "fate”, "bar", "chasmy, "skull", "plank”, "fork", "bosom’, "coin", "stain", "flask”, "city",

non non

"blood", "pride", "soil",

pep’}
Session 3: fadage", "deed", "elbow" , "ghost", "hide" , "king" , "lark" , "meat" ,

"river" | "thief" | "whale" , "iron" ,"nun" , “joke" ,"odour" , "unit" , "quest’, "yacht",

non nn

"candy", "sea; "paper’, "fault", "bard", "chief", "sky", "plank", "form", "boss', "cord", "star",

"flesh”, "claw", "bloom", "pride", "soul", "piano'}

non

Session 4: Jfagony", "dell" , "event", "gift" , "hint" , "kiss" , "law" , "mercy" , "rock"

"thorn" , "wheat" , "irony" , "nymph" , “joy" , "opium" , "unit" , "quest’, "yacht", "cane,

"o non non non non non non

"seat’, "party", "fiord", "baron", "child", "slave", "plank", "fowl", "bowl", "core", "steam,

non non non non

"flood", "clock”, "board", "pride", "spire", "pipe"}

Session 5: fair" ,"demon”, "idea" , "gilt" , "home", "nail" , "lawn" , "metal" , "rod" ,

"time" , "wife" , "earth" , "keg" , "judge" , "oven", "unit" , "quest’, "yacht", "car", "serf",

"peach "fire", "beast; "chin", "slush", "plank”, "fox", "boy", "corn", "stone’, "foam", "coast’,

non non

"body", "pride", "spray", "plain"}
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Session 6: famour" , "devil" , "idiom" , "girl" , "hoof" , "noose",

non

lemon" , "mind" ,

"rosin" , "toast" , "wine" , "ego", "keg" , "jury" , "owner" ,"unit" , "quest’; "yacht", "cash’,

nn non non nn "o non

"shame] "pelt", "flag", "bird", "cigar", "snake', "plank", "frog", "brain

, "cost", "storm", "fact",

non non non non

"charm", "pole", "pride", "skin", "pact'}

Session 7: fanger” , "dirt" ,"ink" ,"gist" , "hope", "nun" , "lice" , "money", "unit" ,

non "o

"tomb" , "woman" , "elbow" , "keg" , "jury" , "river" ,"oats", "quest’,

yacht", "cat", "ship",

"pep", "flask", "blood", "city", "soil", "plank”, "fun”, "brute", "crag", "stub", "fate", "chasm,
"pole", "pride", "skull", "panic"}

Session 8: fangle", "doll" , "inn" , "glory" , "horse", "nymph" , "life" , "monk" ,
"venom", "tool" , "woods", "event", "kine" , "jury" ,"rock" ,"unit" ,"quest’ "yacht", "cell",

"shock’, "piana", "flesh", "bloom", "claw", "soul", "plank”, "fur", "brute", "crime", "style",

"faU|t", "Chief", "p0|e", "pride", "Sky", npaperr}
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Appendix D. System Description

To understand the speech/gaze integration mode empirically, the expatisedmp in Figure 37

is (i.e., speech/gaze interface) installed on two computers, oneefmtspnd the other for gaze.
The experimental setupd., hardware and software) is exactly identical in both the experiments.
An IBM ViaVoice speech recognizer version 8.1 and an ISCAN eye trackeisad for the

human factors experiments. User sits in front of the Speech Machine &ordgdhe

experiment. The system uses the Java Speech API (JSAPI) to connedBid WiaVoice
recognizer / synthesizer. The ISCAN interface (Figure 38) contethe eye tracker and

provides gaze input to the experimental application over a serial port. Sppetisirecognized

by therecognizerand thesynthesizeproduces the speech output for the speech/gaze interface.
Note that the experiments do not use the synthesizer and loud speakgeldailable for use

in specific applications where synthesized speech response is retfjhigexpeech/gaze interface
issues commands via a serial port to the gaze machine to invoke autpematicalibration. The

eye tracker, upon receiving the commands from the speech machine oveiatipodeperforms
gaze calibration for the subject automatically. Subsequently, the gerenm provides theoint

of regard(POR) output, i.e., the location on the display where the eye is focuskdolthe

speech machine over the serial port. The serial port is used for duplex coationrbetween

the two machines to process gaze commands from speech machine to gaze mddbiserad

gaze output from gaze machine to speech machine. The gaze machine pradycds tuples

to the speech machine whére y) represent the gaze location of the subject’s eye on the speech
machine display andis the pupil diameter. The speech machine sends commands to the gaze
machine to control the eye tracker for calibration, start/stog gaording, and to control the

camera movements.
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~Loud ™ - camera pantil control

‘. Speakers .~ - other gaze tracker controls Eye
Ed Tracker
5 amera
O
o
(S
D!
[} ! i
J’fs‘j,

Figure 37 System Installation for Speech/Gaze Interaction Experiments

Figure 38 shows the interface of the ISCAN eye tracker which con$isisious
graphical resources to control the operation of the eye tracker. ddmdsels handleye tracking,
POR / Calibration, Camera MovementidScene/Eye Monitoilheeye tracking controlhandle
the display of cross-hairs, corneal/pupil reflection thresholds and igzgédi.e., the white
rectangular border in the “EYE MONITOR — EXPANDED VIEW”). TROR / Calibration
controlsmanage the point of regard and calibration proceduresPANe/ TILT controlsnmanage
the physical camera movements. The two small rectangular areas mtis&de of the screen
show the scene and eye video streams. These streams can be viewed in ad expdads
shown in the center of the screen as illustrated by the “EYE MONITOR -ANRED VIEW".
Also, there is an “options” control below “EYE MONITOR — EXPANDED WE which
manages the gaze data recording. The eye tracker is active whemaitie A€tive” is checked
(above PAN/TILT controls) and continuously provides the eye coordinate iafiomon the
object plane. The eye tracker is configured to provide the <x, y, d> togles speech machine

over a serial port.
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Figure 38 ISCAN Interface

The speech/gaze experiments are programmed in Java and run on the spbigxh mac
Several design choices have to be made in light of carrying out the exsrimeollect the data
consistently. The system setup is installed on two machines because bo#etterspognition
and eye tracking are computationally intensive tasks which may cefigpehe system resources
simultaneously. Installing the experimental setup on two machines ebstinasodalities
running freely on independent machines providing their output. The IBM VigeMfecognizer is
less expensive and serves the purpose of simulating problems with real{veantth s
understanding. The ISCAN eye tracker is chosen because it samples theveyeents at field
ratesi.e., 60Hz which is representative of an eye tracker that can be used iticapraal-time
application. The eye tracker chosen does not include any head mounted devicaiascameal
natural human machine interaction.

The current system on two computers often poses challenges in synciy ciozks
between them. Monitoring and correcting for the differences betweerotties ¢ crucial to the

data analysis. Section E.5 describes how the data is validated spiéittr¢o clock timing
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differences across two machines.

Apart from system limitations, there are several factors darting to the complexity of
speech and gaze human machine interactions. Although speech recognizers aasitégidgd
in recent years, recognizers are still having problems in real-worlid@jyms, and often require
extensive training information to be able to accurately recognize altasi@af various accents.
Gaze naturally is highly unpredictable in its nature and is very difficutack accurately.
Moreover, the calibration may not hold long and start producing errors in geledran
addition to the system and modality limitations, the speech/gazadtita patterns are highly
unpredictable and often yield dynamic and random interaction patterns. Alkeffdwtors are
carefully considered and appropriate precautionary measures areédatdidate the data capture

process which is explained in great detail later in this chapter.
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Appendix E. Data Capture and Validation

In this section, the data capture and the validation process is describeldata recorded on
the speech and gaze machines. It illustrates an example of the raw gdite datarded on the
gaze machine and how the same data is obtained on the speech machirsedaepart
connection. It also validates that the two machines’ setup is not impactidgtthanalysis in any
manner and provides the measures taken to ensure the validity of tbeptate process. This
section also describes the post processing involved in preparing the datalitale to be used
by predictive / adaptive models. First, the data collection procegsdsibed here because it is
complex and so connected to the differences for each of the experimemtsthEhdata

capture/validation relevant to each experiment is described.

E.1. Raw Gaze Data

Recording scanpaths properly is an important task in obtaining the dazsdaistently. The
eye tracker used in both the experiments obtains the data as a sequeples<f,x,y,d>(in a
file <subject.tday, wheren is the gaze sample number recorded by the eye trdgkgjis the
point of regard and is the pupil diameter. A header section followed by the summary
information is captured for each run of the experiment. The agkdr records the raw gaze
samples’ start date and time and tags them with a sample nuenperThis gaze data captured
on the gaze machine is identical in both experiments.

Figure 39 shows the raw gaze data recorded by the ISCAN eye tracketains three
sectiondHeader, SummargndRaw Gaze TupleJhe first 4 lines of théleadersection contain
the ISCAN'’s logo information. After that, it shows the number of runs and tHentotder of
gaze samples recorded. Eah is a recording session in the ISCAN syst&uninformation
includes theRun#,Date, StartTime SamplesSamples/Se&®RunSecdmageFile andDescription

TheRunSecss the total time span of the recording sesdimageFileandDescriptionare not
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used. The&summarysection shows the statistics of the gaze data for the three pasaiR@R

H1A (i.e.,x-coordinate) POR V1A(i.e., y-coordinate), an®upil D1(i.e., pupil diameter d). The

gaze data in sectidRaw Gaze Tuplds preprocessed to create tuples <seqgno, timestamp, X, y, d>

where thesegnais a 0 based index of the gaze sample as generated by the eye trackegrbhe

and start time itHeaderare used to compute tlimestamppf each gaze sample in the gaze data.

The(x, y, d)indicate x-coordinate, y-coordinate, and pupil diameter.

| ESCAN Tab-Delimited RSCII Data File

Version 4. 00 H-E'E'I{IEI."
ISCAN Data Becording
BEuns Becorded: 1
Samps Reoornded : 49575
ETH ITHFOBRMATION TABLE
Bun # Date Start Time Samples  Samps/Sec Bun Secs Image File Desoription
1 2007 /12725 20:33: 51 4957H (1] B26. 25 defanlt. igr Hewr Diata Bun
DATA SUHMARY TARRLE Sllmn‘lﬂl‘\’
Baw EL ) -
Fun # P aram e am StdDew
1
POR HLA 230, %0 142 4464
POR. V1A 237. 649 145.735%
Pupil D1 3443 T.71T70
DATA INFO - .
Raw Gaze Tuples
Ean 1: POR H1A POE V1A Pupil D1
Sample # (Raw) {Baw} {Baw}
0 0.ao 0. F6 .
1 0.00n 0. i 37,00
2 o._oo 0. 37 .
a3 0. a0 a. 7. O
d 0.00 0. 00 37.00
49570 000 0. 00 278, 0D
19571 0.00 0. 00 280, 00
49572 o_oo . o0 282 .00
49573 000 0. i 2RE. 00
19574 0. 00 0. 00 285 .00

Figure 39 Raw Gaze Data

E.2. Speech Machine Data

An important factor to be considered in a multimodal (speech/gazegdtita is the speech

recognition accuracy. Regardless of the performance of the speeghiret, speech recognition

can be error prone due to ambient conditions and variations in user proounftat time to

time. A word uttered by the subject may not always be recognized properlynyRatterance,
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the current IBM Via Voice speech recognizer issusgegech-start, speech-erahdspeech-
accept/speech-rejeetvents in that order. It either issuespaech-accepir speech-rejecévent

but not both. These three events indicate whether an utterance sspobbg the recognizer
correctly or not. Speedicceptandrejectevents are indicated ByandR in Table 19. An accept
event means that the audio signal corresponds to and finds a word from ameetgotheords in
the grammar with maximum probability. When the recognizer issues a regett ivnay still
produce a word for the audio signal but it only means that the confidence lekielward is
below the threshold level set in the recognizer configuration. Aféeratognizer produces a
word corresponding to the audio signal, the word doesn’'t necessarily haviehowvhat is
displayed on the screen. If the word shown on the screen is same as the werdghizer

thinks the audio signal corresponds to, then it is indicatéd iye., a match). If it is a mismatch
then it is indicated byn. Since there is a timeout in the experiments (3 seconds in Experiment 1
and 15 seconds in Experiment 2) for each trial, the recognition results ofrdiet ¢xial can

come after the next trial starts. This can happen because the sudjegppeak the word just
about when the timeout happens. Hence, the result from the recognizerdededuring the

next trial. Note that the timeout depends on the task complexityn’As added t& or R
indicating that it is during the next trial when the result isiobth Table 19 illustrates various
scenarios that exist in the speech/gaze correlation experimehssrdficbgnizer produces accept
or reject event, then the audio signal is considered to be finalizew @onsidered to be un-
finalized from the recognizer point of view. Few trials egjected because the information is not
sufficient in those trials to determine whether they fall into any btieecacceptable categories
defined below. These categories are used in analyzing the dateddpbon Experiment 1 and 2

in the next couple of sections.
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Type Description
rejected | -1 |Inzufficient information and cannot process it
ne AR Ofunfinalized i.e., no Accept/Reject in 3 seconds
AM 1|Accepted § Matched
M 2 |Rejected M Matched ie., falze rejection
An/M J|Accepted late f Matched
REn/ 4 [Rejected late ! Matched i.e., falze rejection
Rim 5 |Rejected § Unmatched
Am G|Accepted ! Unmatched i e false acceptance
Fn/m 7 |Rejected late ! Unmatched
Anim g (Accepted lste f Unmatched ie., falze acceptance

Table 19 Speech Recognition Categories

The speech machine records the data (in a§iléject.txty from both the eye tracker
and the speech recognizer as a set of events when subjects are takinthpaexperiment. This
data recording on the speech machine is exactly identical in both expriach<subject.txt>
file contains all trials of the experiment for that subject. Eaahitrithe data sequence (in
<subject.txt obtained on the speech machine can be illustrated as 4 event seiyiaekes:
Display / DismissabegmentWord Display / Speech Sta¢gmentSpeech Start / Stagegment,
andRecognizer Finalizatiosegment. Conceptually, these data segments are applicable to both
experiments. Each trial in Experiment 1 or Experiment 2 collects all ta¢gesegments. Each
row in these data segments representsvant recordEach event record consists of 10 columns
as described in Table 20. Examples of event records are illustrateid [asdrle 23 through

Table 26 for Experiment 1and in Table 29 through Table 32 for Experiment 2.

Hame Description
el event time az noted by the experimentfapplication
s w-coordingte of the gaze onthe speech machine zcreen
Ve y-coordinate of the gaze on the speech machine screen
¥y rawy x-coordinate of the gaze as recorded by the eye tracker
'y rawy y-coordinate of the Qaze as recorded by the eye tracker
] pupil diameter of the gaze as recorded by the eve tracker
= speech start time of the word as recorded by the speech recognizer
se zheech end time of the word as recorded by the speech recognizer
EventMame |type of event
Conte:xt additionial takens far the evernt

Table 20 Speech Machine Event Tuple

TheeTvalues are timestamps in milliseconds for events recorded by thérspaekine.
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These values are all consistently positive and monotonically incraéasivery trial in both
experiments. For all events of the typazeCaptured(Xg, Yg is the gaze location in eye
tracker’s reference plane (512x512) which is converteXg¥'§ onto speech machine’s display
coordinate system. Sometime&y( Yg is recorded as (0, 0) because the eye tracker may not be
able to track the subject’s eye due to subject's movements, blinkXs Y9 will be recorded as
(0, 0) wheneverXg, Yg is (0, 0). Whenever the event is @dzeCapturedthe s Y9 and g,

Yg are identical in all data tables. For exam@azelnindicates an internal experiment event
denoting that the gaze is inside the target objecGamFireindicates that the application event
has been generated. The values in column D indicate the pupil diameter and whémitheala
recordable or applicable it is recorded as -999 (only to indicate itg good recorded value).
TheSsandSecolumns are present to extract the speech recognizer’s start anthestdiips of
utterances. However, these can be recorded only when the recognigsttissutterance
recognition results. Most of the time, these values are recorded radiedting invalid values and
can’t be interpreted. However, in Experiment 1 and 2 these columns are owttimaeeord
additional data for keeping the data structures consistent. Thesevaral event types that are
tracked in both the experimen@orrelationMarkerShows an event indicating that the marker is
being displayed an@orrelationAppOnCommanicidicates that the experiment has taken an
action on the event generated by the system. Several events like @mVétatShow,
CorrelationWordCenter, SpeechStarted, SpeechStopped, SpeechTag] Skagch
SpeechAdjustedToken, SpeechAccepted, SpeechRegctade recorded by both experiments.
TheContextcolumn contains additional information recorded by experiments which can be used
in data pre-processing. For example, if the contetasfelationWordShovand context of
CorrelationAppOnCommandre equal, then it means that that word uttered by the subject has
been recognized accurately by the speech recognizer. All these meamtshe same and their
processing is identical in both the experiments. In the next two sedtiorssanpaths, one for

each experiment, are described in detail to illustrate the data segreetirient to the respective
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experiments. The data segments of each trial in either Experiment lustrate the detailed
nature of the user behavior in terms of the events happening in the iotefactespective tasks.
This helps in understanding the integration model parameters involvesl spéech/gaze

interaction process.

E.3. Experiment 1 Data Capture

Each subject runs the experiment to produce N number of scanpaths/intesantjges. The
subject runs the experiment for as long as there is no discomfort andtesaenples collected
varied among the subjects in the constraint-free experiment. Expefirdatd can be used to
illustrate the fatigue levels that can be tolerated by various peopdéng the interface. But there
is no clear relation that can be established between the number of $scaplesths and the user
fatigue levels. However, not all the samples can be utilized in thesesbbcause not all

samples/scanpaths are usable.
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speech recognition perfornmance
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Figure 40 Scanpath classification using Recognition Categories in Constram{Fask
Figure 40 illustrates the proportions of samples with various @@ésgluring the

Experiment 1. Only the first 100 samples of all subjects’ usable samplased for the analysis.
The recognizer speech start/end events indicate approximatedtiaiitige audio signal start/end
from the recognizer. When the utterance is finalized with aceggttrevent, the recognizer
adjuststhe start/end timestamps which reflect more accurate timestantpe &tart/end of
speech (described later in this chapter). The adaptive/predintidels can use the start/end
events’ timestamps when the finalized start/end timestamps areailabe instead of rejecting
the scanpaths. Notice also that there is considerable false rejextialse acceptance of subject

utterances due to either user pronunciation errors or speech recogmdisn er
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unfinalized finalized
A @ 1 2 3 4 5 | 6 T ]

id shown | valid |rejected junprocessed |processed [native no AR AM |BRM [AnM |BEnM | Bim | A/m |[Bn/m [ Anim

1 M3 M3 0 113 1000 n & 75 7 a 0 B 7 0 a

2 207 204 3 104 100) n 11 28 ] 2 0 g 10 1 1}

3 132] 132 1] 32 100) n 11 H 16 1} ol 16] 16 0 1}

4 126) 125 1 25 100 n 13 43| 18 2 1 8] 13 1 1}

5 133] 13 2 ) 100) n 9 5] ] 1} 0 B 9 0 1}

E 171 171 1] kil 100) n 12 78 4 1} 0 2 4 0 1}

7 144 144 1] 44 100 n 7 g2 2 1} 1 5 3 0 1}

=] 188) 188 0 a5 1000 n 7 33 3 a 0 2 5 0 a

] 188 188 1] a8 100)] v 7 a7 0 1} 0 0 5 0 1}

10 163] 163 1] B3 100)] v 1} 93 1 3 0 1 2 0 1}

11 187 185 2 a5 100) vy 0 29 0 0 0 1 0 0 0

12 115] 113 2 13 100) v 2 77 2 10 0 1 7 0 1

13 147 146 1 45 100) n g 70 5 1} 0 7l 10 0 1}

14 135] 134 1 34 100 n 4 7E 3 7 2 1 7 0 1}

15 185] 182 3 a2 1000 n 13 g2 4 3 0 3| 15 0 a

16 133] 133 1] 33 100) n 11 3 7o 1} o] 15 1 0 1}

17 165] 165 1] B3 100) n 5 g3 3 1} 0 2 5 0 1}

18 138) 136 2 36 100 n 7 g6 B 5 0 ] K 2 0

19 137 M5 22 15 100) n 18 & 1 14 B a2l 15 E 5

20 114] 111 ] 11 100) n 10 ] 4 10 0 E g 0 3

M 145] 145 1] 45 100 n = 77 E 1} 0 B 7 0 1}

22 132] 126 B 26 1000 n 2 g1 4 14 0 E| 13 0 a

23 18] 118 1 18 100) n 4 il 0 4 0 8] 13 0 1}

24 125] 124 1 24 100) n 7 g3 5] 2 2 21 13 0 1}

25 125) 122 3 22 100 n 5 a0 4 0 0 3 g 0 0

26 118] 118 1] 18 100) n 5 a7 1 5 1 7|22 0 1

27 146) 146 1] 45 100) n 14 g0 g 1 1 g 7 1 1}

28 132] 129 ] 29 100 n 2 =] 3 12 0 4] 10 0 1}

29 148] 147 1 47 1000 n 4 33 0 2 0 2 ] 0 a

30 148] 149 1] 44 100) n 12 72 3 1} 0 5] 7 0 1}

H 128] 128 1] 28 100) n 5 53 g 1} ol 121 12 0 1}

32 123] 121 2 21 100) n 7 a8 3 4 1 E| 15 2 1

33 122) 122 1] 22 100) n 7 g2 0 2 0 4 5 0 1}

34 125] 124 1 24 100) n 5 71 B 1} 0 M 0 1}

35 119] 115 4 15 100) v 1 a3 1 = 0 1 g 0 1

36 125] 124 1 24 100 v 1 a7 0 a 0 1 1 0 a

v 124] 124 1] 24 100)] v 7 g6 1 1} 0 1 5 0 1}

35 123] 123 1] 23 100)] v 3 =] 0 4 0 1 4 0 1}

39 1421 141 1 H 100)] v 7 g5 0 2 0 3 3 0 1}

category 5591 5525 G 1625 3900 2B6| 2744| 2200 114 14| 1587 330 13 12

total 5591 5591 5591 5591 3900| 3900) 3900 3900) 3900)3900(3300| 3900{ 3900
% of shown 9582 1.18 2906 E9.75

% of processed 682 70.36| 564 292 0.36] 479] §46| 033 031

Table 21 Scanpath Recognition Analysis in One Word Task

From Table 21, it can be seen that there is a considerable perdqgmetags£32%) of total
data that did not receive accept/reject events or unfinalized.thidtenly theejected samples
as defined in Table 19 cannot be processed because these samples doSdeh@tart /
SpeechStopvents in addition to missing recognizer finalization events. If a spestiewnt is
received then that sample can be processed though it may not be the aceueatecustart
timestamp.

Apart from this kind of recognition categorization, Table 22 evaluagesettognizer’'s

performance during good and bad recognitions. This is required to understandafiples need
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to be treated any different if the recognition is delayed. It can be saehdlrecognizer is
84.20% effective when processing the utterances which it can recogrokly géiiso, its

performance is almost identical at 83.01% when the recognizer delayed rempgimézutterance.

Recognizer Performance
AM |BEM [AnM [Bn/M | Em | A/m [Bnim | An/m Total
a Current Sample 27ad| 220 187 330 3481
= Total| 3481 | 3481 3481 | 3481
5
= %[ 78.83] 6.532 5.37| 945 100,00
o
E Good Recognition | 7883 5.37 4.2
Bad Recognition E.32 948 1580
Hext Sample 114 14 13 12 153
= Total 153 153 153 133
=
5 % 7451 915 550 T84 100.00
=
Good Recognition T4 51 a.50 831
Bad Recognition 915 7e4116.99
Unfinalized 266
Total 3900

Table 22 Performance of the Speech Recognizer in One Word Task

TheMarker Display / Dismissaegment for Experiment 1 consists of events from the
time the marker is shown to the point when the subject looks at thermEniecan be seen in
Table 23 where thEventNamén the first line indicates the marker display event and the
EventNamén the last line denotes that the subject has dismissed therrhgdomking at it. The
marker (i.e., + or cross-hair in Experiment 1) is shown as a refebbefme the word is looked at.
When the subject looks at the marker it is registered as an digplieaent
CorrelationAppOnCommandLine 7 (apart from header row) indicates that some of the gaze
samples are skipped in displaying the data segment. Also, line 8 indiwtdse gaze data is not

recordable during that time possibly due to user movements.
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Line# el Xs |¥s |Xag |¥a| D Ss Se Eventlame Context
1]1215577731951 [ 101 | 545[ 101 | 545 909 -1 -1 |CorrelationtarkerShaw marker
21 1215877731961 | 545) 475 351 | 404] 36 -1 -1 [GazeCaptured gaze
I 1215877731951 | 575 472 365|403 33 -1 -1 [GazeCaptured gaze
411215677731991 | 931|501 | 340 425] 34 -1 -1 [GazeCaptured Ggaze
S1M1215877732011 | 515512 330|437 33 -1 -1 [GazeCaptured gaze
G| 1215577732052 | 495 520|319 444] 34 -1 -1 [GazeCaptured gaze
G| 1215877752392 ol o] o o] 35 -1 -1 |GazeCaptured gare
1215677732412 117|594 7a|a07| 31 -1 -1 [GazeCaptured Ggaze
10| 1215877732422\ 120( 575 77491 33 -1 -1 [GazeCaptured gaze
11| 1215877732422 120 575|120 575] -999 -1 -1 [Gazeln gaze
12| 1218877732422 120| 575|120 575] -999 -1 -1 [GazeFire gaze
13| 1215577732422 ol o] o 0] -9499 -1 -1 |CorrelationAppOncCommand |+

Table 23 Raw Speech Machine Data — Marker Display / Dismissal in Experiinent
TheWord Display / Speech Statata segment (Table 24) captures the data from the
point when the subject looks at the marker to the point when the subjteisgteaking. Gaze is
captured continuously all the time in all the data segments. d&a segment is analyzed further

to compute the accurate timestamps of all events in the datastsgm

Line# el is |¥s |Xg Yo | D Ss Se Eventlame Context
T 1215877732422 o o) o 0] -9499 -1 -1 | CorrelationAppOncCommand |+
211215877732432| 553|514 553|514 -999 -1 -1 |CorrelatiorordShow elaboration
3| 1215877732432 | 624|552 | 624 | 532( -999 -1 -1 |CorrelatiornordCerter elaboration
411215877732442 | 307 | 457|197 | 390 32 -1 -1 |GazeCaptured gaze
S| 1215877732462 gl o) o ol 33 -1 -1 | GazeCaptured gaze
Gl 1215877732472 o o) o ol -1 -1 |GazeCaptured gaze
T 1215877732492 54|540] 35461 32 -1 -1 |GazeCaptured gaze
5| 1215877732512 100|537 64453 32 -1 -1 |GazeCaptured gaze
Q125877732522 o o) o o -1 -1 |GazeCaptured gaze
10| 1215577732542 gl o) o ol 32 -1 -1 |GazeCaptured gazre
11| 1215677732562 o o) o ol -1 -1 |GazeCaptured gaze
12[1215877732582 128592 82|506] 34 -1 -1 |GazeCaptured gaze
13| 1215577732592 ol o] o o] 32 -1 -1 |GazeCaptured gare
14 1215877732612 o o) o o] 33 -1 -1 |GazeCaptured Gaze
15| 1215577732632 gl o) o ol 32 -1 -1 |GazeCaptured gazre
16| 1215877732642 o o) o o] a2 -1 -1 |GazeCaptured gaze
17 (1215877732662 | YOG | 389 | 452332 34 -1 -1 |GazeCaptured gaze
19[1215877733574 | 604 [ 529|604 [ 529] -999 -1 -1 |Gazeln gaze
20(1215877733594 | 609|526 (390|449 30 -1 -1 |GazeCaptured gaze
21 (1215677733594 | 609|526 | 609 | 526] -999 -1 -1 |Gazeln gaze
22| 12M5577733614 gl o) o ol 33 -1 -1 | GazeCaptured gaze
23| 1215677733624 o o) o o] 32 -1 -1 |GazeCaptured gaze
24 (1215877733654 | GO3 | 494 [ 386 422 33 -1 -1 |GazeCaptured gaze
25(1215877733654| 0 o 0f 0]-9939 0 0| SpeechStarted SpeechStart

Table 24 Raw Speech Machine Data — Word Display / Speech Start in Experiment 1
TheSpeech Start / Statata segment (Table 25) captures the data from the point when
the subject starts speaking to the point when the subject stops speakifigst Hmel last lines

indicate these speech start/stop events. These events corresporgpeettierecognizer’s
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application programming interface (API) events.

LineZ el s |¥s | Xa Yo | D Ss Se Eventllame Context
111215877733654| 0| 0] 0] 0f-999 0 0| SpeechStarted SpeechStart
2|1215877733664 | 610|508 391 | 434 32 -1 -1 |GazeCaptured gaze
3| 1215877733674 | 598|523 383 | 447 33 -1 -1 |GazeCaptured gaze
411215877733674 | 593|523 5958| 523( -099 -1 -1 |Gazeln gaze
S| 1215877733694 o o) o o] 33 -1 -1 |GazeCaptured gaze
G| 1215877733714 | 792| 385|507 | 329 35 -1 -1 |GazeCaptured gaze
T 1215877733724 | 715| 440] 460 376 35 -1 -1 |GazeCaptured gaze
9)1215877734976| 561 | 493|372 | 42| 33 -1 -1 |GazeCaptured gaze
10[1215577734996 | 579 [ 500|371 [ 427 33 -1 -1 |GazeCaptured gaze
11| 1215577735006 ol o] o 0] -9499 ] 0| Speech=topped SpeechStap

Table 25 Raw Speech Machine Data — Speech Start / Stop in Experiment 1
TheRecognizer Finalizatiodata segment (Table 26) captures the data from the point
when the subject stops speaking to the point when the subject startsttti@hdx this segment,
the recognizer’s finalized events are received which gives theafitbhccurate timestamps of
the word utterance. Note the Ss and Se columns now contain the finalizedmesiitnps from
the recognizer. Also, the <Xs, Ys, Xg, Yg> columns are all 0 because thdajade not
applicable during these events’ collection. The value of D is s@8fbwhen it is not applicable

to the event.

Line# el is |¥s |Xg Yo | D Ss Se Eventlame Context
1 1215877735006 o o) o 0] -9499 o] 0| Speech=topped Speechstop
201215877735006| 0| 0] 0] 0f-999 0 0| Speechiccepted Resultdcoept
3| 1215877735006 ol o] o 0] -9499 ] 0|SpeechTag elaboration
411215877735006| 0] 0O 0] 0]-999)12155877733196] 1215877734104 |SpeechTaken elabaration
S|M1215877735006| 0| 0O 0] 0]-999|12155877733196| 1215877734104 | SpeechidjustedToken elaboration
G|1215877735006| 0| 0] 0] 0f-999 -1 -1 |Correlation&ppOnCommand |elaboration

Table 26 Raw Speech Machine Data — Recognizer Finalization in Experiment 1

In the IBM Via Voice speech recognizer, it is observed that the timpstéor the API
events forSpeechStadndSpeechStodo not match with the finalized timestamps of word
utterance. The finalized timestamps are the accurate timestampthe recognizer. Sometimes
the recognition engine may not be able to recognize the speech due to ambieatchoishose
cases the API evenBpeechStandSpeechStopan help analyze the interaction. In Table 27,
the SpeechStartedvent (line 1) timestamp is greater than finalized speech istadtamp

(column Ss in line 14) from the recognizer. Similarly 8peechStoppesirent (line 11)
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timestamp is greater than the finalized speech stop-timpgtotumn Se in line 14) from the
recognizer. This is because the subject’s speech utterarisebstfare the recognizer can issue an
API speech-start-event and similarly the subject’s speech uttestops before the recognizer

can issue an API| speech-stop-event.

LineZ el s |¥s | Xa Yo | D Ss Se Eventllame Context
1121587 7733654| 0| 0O 0] 0]-999 0 0|SpeechStarted SpeechStart
2|1215877733664 | 610|505 391|434 32 -1 -1 [GazeCaptured gaze
J|1215877VI3674| 595 525 353 | 447 33 -1 -1 [GazeCaptured gaze
411215877733674 | 595|525 595 | 523] -9949 -1 -1 [Gazeln gaze
S| 1215877733694 o o) o o] 33 -1 -1 |GazeCaptured gaze
G 1215877733714| 792 385( 507 | 329 35 -1 -1 [GazeCaptured gaze
T 1215877733724 | 715 440| 460|376 33 -1 -1 [GazeCaptured gaze
Q1215877734976 | 581 | 495 372|421 33 -1 -1 [GazeCaptured gaze
10 1215877734996 | 579 500|371 | 427 33 -1 -1 [GazeCaptured gaze
11| 1215577735006 gl o) o 0] -999 ] 0| Speech=tapped SpeechStop
12| 1215877735006 o o) o 0] -9499 o] 0|Speechiccepted Resultdccept
13|12155877735006| 0O 0| 0| 0]-999 0 0|SpeechTagy elaharation
14| 12135577733006) 0O 0 0] 0O]-999 1215877733196 | 1215877734104 | SpeechToken elaboration
15| 1218877735006 0O 0 0] 0]-999] 1215577733196 12155777341 04 | SpeechAdjustedTaken elabaration
16| 1215577735006 ol o] o 0] -9499 -1 -1 | CorrelationsppOncCommand |elaboration

Table 27 Raw Speech Machine Data — Recognizer API events / Finalization in Eeperl

E.4. Experiment 2 Data Capture

In Experiment 2, the subjects speak only 5 words in each session. One might expeeititiat
repeatedly pronounced should make the recognition of the word consistent. Howdle28
shows recognition performance for different users (i.e., 20 from the tothdlemwhsubjects in
Experiment 2) and for different words by a single user. Column 1 in Table 28mumds to the
session number in Experiment 2. Column 2 is the target word location in the &x6Golumn 3
(starting with ul) to 28 indicate the number of times a word is successatignized out of the
total number of times the word is uttered, for each subject. Each rowpmordssto a single word
recognition performance by different users. It can be seen that a word d¢snraobgnized all
the time for a single user. Also, a single word cannot be recognized when spaketijble
users. This poses a challenge in speech interfaces as to which word shtwseneas the

command in the interface. It has never been a problem in non-multimoda¢ybeakd and
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mouse) systems because the user always clicks the command requinetheVidvent of
multimodal systems, the different pronunciations of the command require aaldition

disambiguation like gaze.
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Table 28 Recognition Performance in Menu System for a subset of users in Experiment 2
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Linez el s |¥s |Xg Yo | D Ss Se Eventllame Context
1[1228186561006| 7| 35| 28| & 5 30 20| Correlation=etSession Triallnto
2[1228186561006 | 453|164 290|140 37 -1 -1 |GazeCaptured gaze
3 1228186561016 | 452 195) 452|195 -999 28 -1 |CorrelationtdarkerShow J
4[1228186561026 | 455 164) 290|140 33 -1 -1 |GazeCaptured gaze
S[1228186561046 | 451 | 161 ) 289138 35 -1 -1 |GazeCaptured EzE
G| 1228186561056 | 450 1329) 288|136 34 -1 -1 |GazeCaptured EzE
8[1228186561357 | 460 185) 295|158 35 -1 -1 |GazeCaptured gaze
Q1228186561377 | 464|195 297|167 35 -1 -1 |GazeCaptured gaze
10| 1228186561377 | 464 [ 195] 464|195 -999 -1 -1 |Gazeln gaze
11| 1228186561377 | 464 [ 195] 464|195 -999 -1 -1 |GazeFire gaze
12| 1228186561377 ol o] o 0] -9499 -1 -1 |CorrelationAppOncCommand |j

Experiment 2. Although experiments 1 and 2 are identical in that the subjeks spgaa single

Table 29 Raw Speech Machine Data — Marker Display / Dismissal in Experiment 2

Table 29 through Table 32 indicates all the four data segmentsrjia sial in

word in a trial, there are several differences in the task compleith respect to gaze. The

subject looks at a cross-hair ‘+’ in Experiment 1 (Table 23) whereasbiextslooks at a letter in

Experiment 2 (Table 29).

There is more gaze activity due to interference (i.e., surroundingtg)je Experiment 2

than in Experiment 1(Table 30 and Table 24). The subject need not have tderraagihing

after looking at the cross-hair in Experiment 1 whereas the subjels teeeemember the letter

until the subject speaks the word in Experiment 2. Experiment 1 displays onkooh&hereas

Experiment 2 displays 36 words.
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Line# el Xs |¥s | Xa |¥a | D Ss Se EventlHame Context
1]1225186961377| 0| 0| 0| 0]-993 -1 -1 [CorrelstionAppOnCommand |
2|1228186561377| 0| 0| BO| 20]-999 -1 -1 [CorrelationyordShowPivat  [jury
I 122006561367 0) 0] 0] 0]-999 a 0 [CorrelstioniviordShow City
4[1225186561367 | 40| 15| 40| 15| 20 1] 0 |CorrelstionvordCerter City
5[1228186561387] 0] 1]100| 0]-999 100 0 |Correlstionyordshow Pride
6| 1220106561307 | 140 15]140] 15| 20 100 0 [CorrelstionivordCenter Pricle
7T[1225186561367| 0] 2|200| 0]-999 200 0 |CorrelstionyordShow Chasm
5[1228186561387 | 240 15|240] 15| 20 200 0 |CorrelstionyvordCenter Chasm
9|12281865613587| 0] 3/300) 0]-999 300 0 [CorrelstionivviordShow Plaink
10[ 1225186561357 | 540 15|340| 15| 20 300 0 |CorrelstionyordCenter Plank
11[1225186561397| 0| 4/400| 0]-9939 400 0 |CorrelstionivordShow Blood
12| 1228196561397 | 440| 15 440( 15] 20 400 0 [CorrelstionvordCenter Blood
13| 1226106561397 0| 5)500( 0)-999 500 0 [CorrelstioniviordShow Crag
14[1225186561397 | 540| 15|540| 15| 20 o0 0 |CorrelstionivordCenter Crag
15 1228186561397 1 0| 0] s0|-999 a 50 |Correkstionivvord=haw Fanic
16[1226106561397) 40| 65) 40) 65 20 a S0 [CorrelstioriordCenter Panic
A7 [ 1225186561407 | 1 1]100| S00-999 100 50 |Correlationt™ordShow Cats
18[ 1228186561407 | 140 B5|140| BS| 20 100 S0 [Correlatiori™ordCerter Oats
19 1228196561407 | 1| 2)200( 50)-999 200 50 |CorrelstiontordShow Gist
20( 1225186561407 | 240| B5|240| 65| 20 200 50 |Correlationt™ordCenter Gist
21 (1225186561407 | 1 3| 300| S0|-999 300 S0 [CorrelatiomordShow Hope
22| 1228196561407 | 340| B5)340( 65) 20 300 50 |CorrelstiontordCenter Hope
23| 1226106561417 | 1] 4)400( 50)-999 400 50 | Correlationt™ordShow Diirt
24|1225186561417 | 440| B5|440| BS| 20 400 S0 [CorrelatiorordCerter Ditt
25[1228186561417 | 1 5|500| S0|-999 o0 S0 [ CorrelatioriordShow Skull
26 1226106361417 | 540| B5)540( 65) 20 500 50 |CorrelationtordCernter Skull
27 (1225186561417 2| 0] 0(100]-999 a 100 | Correlationt™ordShow Guest
28[1228186561417 | 40(115] 40(115]| 20 o 100 | Correlatiori™ordCerter Guest
20]|1228196561427 | 2| 1)100{100]-999 100 100 [CorrekstionivviordShow Elboray
0] 1228186361427 | 140115 140({115] 20 100 100 [CorrelstionyordCenter Elbormy
31 [1225186561427 | 2| 2200|100 -999 200 100 | CorrelatioriiordShow Lice
32| 1228196561427 | 240115 240(115] 20 200 100 [CorrelstionvordCenter Lice
33| 1226106561427 2| 3)300({100)-999 300 100 [CorrelastioniviordShow Tomk
34| 1225186561427 | 340115 | 340|115 20 300 100 | CarrelatioriviordCentear Tamb
35[1228186561437 | 2| 41300(100]-999 400 100 | Correlatiorivordshow Mun
36| 1228196561437 | 440|115 440(115] 20 400 100 [CorrelstionvordCenter Mun
57 [1225186561457| 2| 5|500(100|-999 S00 100 | Correlationt™ordShow Flask
38| 1228186561437 | 540 | 115 540 115] 20 so0 100 | Correlatiori™ordCerter Flask
39| 1228196561437 | 3| 0] 0[150]-999 a 150 [CorrelstionivviordShow acht
40] 1226106361437 | 40[165) 40({165] 20 a 150 [CorrelstionivordCenter Yacht
41 (1225186561447 | 3| 1/100|150|-999 100 150 | CorrelatioriiordShow hloney
42| 1228196561447 | 140[ 165 140({165] 20 100 150 [CorrelstionvyordCenter Money
43| 1226106361447 | 3| 2)200{150)-999 200 150 [CorrelationiviordShow Anger
44 1225186561447 | 240 | 165 | 240|165 20 200 150 | Correlationi™ordCenter Anger
45(1228186561447 | 3| 3|300(150(-999 300 150 | Correlatiorivordshow Ink
46| 1228196561447 | 340|165 340(165] 20 300 150 [CorrelstionvordCenter Ink:
47 (1225186561457 | 3| 4|400(150|-999 400 150 | Correlationt™ordShow Keng
45| 1225186561457 | 440 | 165 | 440(165| 20 400 150 | CorrelatioriiordCeriter Keg
49| 1228196561457 | 3| 5)500({150)-999 500 150 [CorrelstionivviordShow Fun
50| 1226106361457 | 540|165 540(165] 20 500 150 [CorrelstionivordCenter Fun
S51[1225186561457| 4| 0] 0]200|-999 1] 200 | CorrelatioriiordShow Fate
52| 1228186561457 | 40| 215| 40| 215 20 o 200 | CorrelstiorivvordCerter Fate
53| 1226106361467 | 4| 1)100({200)-999 100 200 [CorrelstioniviordShow [WWoman
54| 1225186561467 | 140 | 215140 215| 20 100 200 |Correlationt™ordCenter [WWoman
55| 1228186561467 | 4| 2]200|200]-999 200 200 | CorrelatiorivvordShow LInit
56| 1228196561467 | 240|215 240(215] 20 200 200 [CorrelstionvordCenter Unit
57 1225186561467 | 4| 3| 500|200|-999 300 200 | Correlationt™ordShow Fiver
58| 1225186561467 | 340 | 215|340 215| 20 300 200 | CorrelatioriviordCeriter Fiver
59| 1228196561477 4| 4)400({200)-999 400 200 [CorrekstionivviordShow Jury
60| 1226106361477 | 440|215 440(215] 20 400 200 [CorrelstionivordCenter Jury
61 (1225186561477 4| 5|500|200|-999 o0 200 | CorrelatioriviordShow Brute
B2 | 1228186561477 | 540 | 215 | 540|215 20 o0 200 | CorrelstiorivvordCerter Brute
63 1226106561477 5| 0] 0[250)-999 a 250 [CorrelationiviordShow Ship
G4 1225186561477 | 40| 265| 40| 265 20 a 250 | Correlationt™ordCenter Ship
B5[1228186561487| 5| 1/100|250|-999 100 250 | CorrelatiorivvordShow Stk
66| 1228196561487 | 140|265 140(265) 20 100 280 [CorrelstionvordCenter Stub
67| 1228186361467 | 5| 2)200({250)-999 200 250 [CorrelationtvordShow Cat
65| 1225186561457 | 240 | 265 | 240| 265| 20 200 250 | CorrelatiorivordCerter Cat
69| 1228196561487 | 5| 3)300({250)-999 300 2580 [CorrelstionivviordShow Soil
70| 1226106361467 | 340|265 340({265) 20 300 250 [CorrelstionivordCenter Sioil
71 (1225186561497 | 5| 4|400|250|-999 400 250 | CarrelatioriviordShaow Palz
72| 1228186561497 | 440 | 265 | 440 265| 20 400 280 | CorrelatiorivvordCerter Palz
T3 1226106561497 | 5| 5)500(250)-999 500 250 [CorrelationiviordShow Fep
74| 1225186561497 | 540 | 265 | 540 265| 20 S00 250 | Correlationt™ordCenter Pep
75[ 1228186561497 | 467 | 203 | 209(174| 34 -1 -1 |GazeCaptured gaze
V6| 1228196561497 | 467 | 203 | 467 (203)-999 -1 -1 [Gazeln aze
75|1225186963049| 0| 0| 0] 0] 23 -1 -1 [GazeCaptured gaze
7O[1228186563059] 0] 0] 0] 0] B -1 -1 |GazeCapturad aze
G0) 1226106363079 | 396 [ 171 254 (146] 44 -1 -1 [GazeCaptured gaze
G1 [ 1225186563099 | 414 | 255 | 265 221| 38 -1 -1 |GazeCaptured jaze
52| 1228186563099 | 414 | 258 | 414 | 258|999 -1 -1 |zazeln gaze
83 1228196563100 | 421|282 270(241] 44 -1 -1 [GazeCaptured aze
G§4|1225186565119] 0| 0] 0| 0]-999 a 0 |Speechtarted SpeechStart

Table 30 Raw Speech Machine Data — Word Display / Speech Start in Experiment 2
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Linez el ¥s (¥s |Xa |Ya| D Ss Se EventHame Context
1[1228186563419] 0] 0] 0] 0f-999 0 0|Speechstarted SpeechStart
2[1228186563129 | 425 264 | 272|226 40 -1 -1 |GazeCaptured gaze
3[1228186563129 | 425] 264 | 425 264 [ -999 -1 -1 |Gazeln gaze
4122818656349 | 423|249 271|213 42 -1 -1 |GazeCaptured gaze
6[12281865635650 | 445 254 | 285 | 217 37 -1 -1 |GazeCaptured gaze
7 12281865635880 | 445] 254 | 445|254 [ -999 -1 -1 |Gazeln gaze
8[1228186563900 | 442 254 | 283|217 36 -1 -1 |GazeCaptured gaze
9| 1225156563900 | 442 254 | 442 254 | -999 -1 -1 |Gazeln gaze
10| 1228186563910 | 445| 233|283 | 216 33 -1 -1 |GazeCaptured EzE
11| 1228186563910 | 445| 2335|445 253 -999 -1 -1 |Gazeln EzE
12(12281865639200 0 o oOf 0]-999 0 0| SpeechStopped SpeechStop

Table 31 Raw Speech Machine Data —Speech Start / Stop in Experiment 2

Table 25 and Table 31 are identical 8peechStart / SpeechStwpents. Similarly Table

26 and Table 32 are identical for recognizer finalization events ofigthe

Linez el ¥s (¥s |Xa |Ya| D Ss Se EventHame Context
111228186563920) 0| 0] 0] 0f-999 0 0| SpeechStopped SpeechStop
2|1228186563920) 0| 0] 0] 0f-999 0 0| Speechiccepted Resultdcoept
3[12281865630200 0O 0O 0] 0f-999 1] 0|SpeechTay jury
4(12281865639200 0| 0] 0] 0f-999(1228156562588 | 1228186563047 [SpeechTaken iUy
S12281865639200 0 0] 0] 0f-999|1228156562588 | 1228186563047 | Speechidusted Token iUy
G| 1228186563920 u] u} u] of-999 -1 -1 |CorrelationAppOncCommand  |jury

Table 32 Raw Speech Machine Data — Recognizer Finalization in Experiment 2

Linez el s |¥s |Xg Yo | D Ss Se Eventllame Context
1122818656311 0| 0| 0| 0f-999 0 0|Speechstarted SpeechStart
2[1228186563129| 425 264 | 272|226 40 -1 -1 |GazeCaptured gaze
3 1228186563129 | 425] 264 | 425 264 | -999 -1 -1 |Gazeln gaze
4[1225186563149 | 425]249) 271|213 42 -1 -1 |GazeCaptured gaze
G| 1228186563550 | 445 254 ) 285|297 37 -1 -1 |GazeCaptured gaze
7 12281865673550 | 445] 254 | 445 254 -999 -1 -1 |Gazeln gaze
8[12281865630900 | 442|254 283|217 36 -1 -1 |GazeCaptured gaze
9[12281865630900 | 442 254 | 442 254 [ -999 -1 -1 |Gazeln gaze
10] 1228186563910 | 445|253 285 | 216 35 -1 -1 |GazeCaptured gaze
11| 1228186563910 | 445 253 445] 253 -999 -1 -1 |Gazeln gaze
12| 1228186563920 ol o] o 0] -9499 ] 0| Speech=topped SpeechStap
13| 1228186563920 ol o] o 0] -9499 ] 0|Speechiccepted Resultdccept
14|1228166563920) 0 O] 0] 0f-999 0 0|SpeechTag jury
1512281865639200 0 0| 0] 0f-999] 1228186562588 | 1228186365047 | SpeechToken jury
16| 1228186563920 0O 0| 0] 0]-999]1225186362585 | 1228156563047 | SpeechAdiustedToken jury
17 (1228186563920 0O o oOf 0]-999 -1 -1 |Correlation&pponCommand |jury

Table 33 Raw Speech Machine Data — Recognizer API events / Finalization in Eepei2

Table 33 shows how the recognizer’s finalized timestamps differ frolRhevents

from the recognizer, similar to Table 27.
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E.5. Gaze/Speech Data Preprocessing

Each subject performs a set of trials of an experiment. Each triditatessof a set of speech
events and gaze samples collectively calledampathThe data collected for each scanpath
needs to be verified and preprocessed before the data can be used as input to the
predictive/adaptive models. Figure 41 illustrates the pre-priocestere the two event datasets,
the raw gaze data generated by the gaze mashiutgect>.tdaand the raw speech machine data
<subject>.txt,are processed to generate a set of internal data structurésaZdiereProcessor
(Figure 41) creates a gaze datadilgas sent by the gaze machine. Bventindexeand
SpeechMachineDataPreProcessneate another gaze data flg,which is the gaze data as
received by the speech machine. The two gaze datgfijesds.gare aligned to verify that the
data sent by the gaze machine is the same as the gaze data recdieespbkgth machine. The
EventAnalyzecreates additional internal data structures required by the predictiotafiala

models.

<subject>.tda <subject>.txt

Y
GazePreProcessor Eventindexer EventAnalyzer

SpeechMachine
© Data PreProcessor

@
Q

Y A
Prediction/Adaptation Models

Figure 41 Preprocessing of Event Data
The two gaze data files collected on gaze and speech maghjreesls.g (Figure 41) are

compared for <x, y, d> tuples to ensure there is no synchronization prabldats transmission
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between the two machines. Figure 42 indicates the alignment algooithenify the data
transmission between the two machines. B and E mark the beginning and endesgtionghof
zeros which are used to calculate the maximum length of the sequence of [Th@)isaximum
length sequence ensures that the data is aligned between the maohingsfie point of time.
Data alignment verification ensures data integrity and datantission order between speech
and gaze machines. It is only a validation mechanism and does not have anypmpact

experimental results.

H(¥g,YaDay (g, ¥a) location of gaze and Digis pupil diameter as obzerved
ot gazetmachine

Load gg=[Xg ¥g Dg];

s YsDey (e ¥ s location of gaze and Disis pupil diameter as observed on
speech machine

Load sg=[¥s, Ys, D g,

gl =length of gaze data in g g,

gl =length of gaze datain s.g;

tnatch = 00

shift =1,

while chift <= gl
commpute the difference vector D= sum of rows of sg ~ g
nz = find number of zeros in D
ifnz = tmatch

tnatch =n=;
W5 = shift;
WD =D,
efud
chift=chift+ 1;

et

cotnpute E and B such that E-B 15 the masimum string of zeros;

Figure 42 Data Alignment Algorithm
A gaze samplg(x, y, d)obtained on gaze machine at titiiés received by the speech
machine at timé2>t1. Ideally speaking2-t1 should be zero or close to zero. In reality, there are
several factors contributing to a non-zero time delay. There is slavéigite non-zero delay in
transmitting the gaze sample data from gaze machine to speech machiasenalrport. Also,
the clocks on the two machines could be different attributing to a fixedltag term regardless

of careful clock setting on both machines. Two time dedggisal andlocal are computed to
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ensure the time delay of gaze data collected from the two machines ideutedkih the results
in any manner. Thglobal time delays the difference of the gaze sample timestamp on the
speech machine and the corresponding gaze sample’s timestamp on gaze. Maeluoal time
delayof a gaze sample is calculated with reference to the scanpattitgystine using the 60Hz
sampling rate of the eye tracker. The timestamp of gaze samplehisoampath are calculated
as multiples of 16 (with a fixed offset from scanpath’s startinggiamep) and then compared
with the actual event timestamp. Both the local (Figure 43) and glabar¢r44) time delays are
periodic in nature. The amplitude of the global or local time delay is afrther of 10ms
indicating that the error in gaze sample’s timestamp due to experirsetutplis of the order of
10ms. Note that this correction is not applied in the data processing aftdasflgure studies.
The fixed offset of global time delay compared to local delay is due tdatle settings on both
machines and can safely be ignored. One can also observe an occasionaldargdegspe 43
and Figure 44) in the time delay which can be attributed to serialgrarhanication delay due
to buffering. Even if both speech recognition and eye tracking were to be raméngingle
machine system, they can compete for system resources and potentizdiydattimestamp
errors. It may not be even possible to compute these timestamp erwetelgdecause the
operating system or the device driver’s log information would be neededlyza them. And
logging such low level information would potentially invalidate the whekults because of
additional delay in writing such low level information. So, an experimeatapson two
machines for this kind of high computational task is reasonable providedaheagéure process

is validated.
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Figure 44 Gaze Sample Global Timestamp Differences

E.6. Scanpath Analysis

A scanpathcan be informally defined as a set of gaze samples a subjectésatremigh on the
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screen in an interaction which contains bidthtionsandsaccadegi.e., sudden displacements of
the eye from one location in space to another or between two fixations). Bhohtoth the
experiments is treated as a scanpath. The scanpath contains e typd) where(x, y) is the
gaze location as computed by the eye tracker that is interpabatteel target screen adds the
pupil diameter. Factors like user movements and blinks cauge, thel) tuples to contain (0, 0)
values for location coordinates. To avoid the effect of these marfigsations, the scanpath’s
gaze data is interpolated to fill these zero-sequences. Table Bdsdedirious categories in the
gaze data and illustrates whether these categories are intedpmiatot. For each scanpaitie ( a
trial in either Experiment 1 or 2), meam@nd standard deviatiors df pupil diameter for all
gaze samples is computed and for each sequence of (0, 0) in the gaze datagaenvaie of
pupil diameter Dzis calculated. A sequence of (0, 0) values is considered for iragguoif
Dnz > dm — dotherwise it is not considered for interpolatian.{ a potential blink).

Data has been analyzed with and without interpolating blinks but no significpact
has been found on speech/gaze integration. The results are shown withouiaitiner foe blinks
in order to align closely with the underlying physical process. Howevengfurtsearch is

necessary to understand the full impact of interpolation on integration model.

Cateqgory Description Interpolated
1 one (0, 01 sample with good pupil diameter fes
2 two (0, 01 samples with good pupil diameter fes
3 long sequence of 3 or mare of (0, O)s with very good pupil diameter fes
4 potential blink with {0, 0Ys having close to zero pupil diameter Mo
5 (0, Ms in the BEGINNING of a potential blink with good pupil diameter values Yes
CE 0, Ms in the ENDING of a potential blink with good pupil diameter values Yes
c7 good (¥, yis with bad pupil diameter values Mo
8 amall sequence of [0, 05 with bad pupil diameter values Mo

Table 34 Gaze Categories
Figure 45 shows the raw coordina(is, Ys) of all gaze samples of a single scan path of
a subject (a, c) and the same data after the interpolation (b, d). tasgkishe interpolation
doesn’t have any affect on the raw gaze data other than a smoothing effieet tiNg the blink

i.e.,long sequence of (0, 0) values is not interpolated.
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Figure 45 Good Scanpath Gaze Interpolation
Figure 45(e, f, and h) shows the pupil diameter while the Figure 45g shopaith&o
point distance. As can be observed from Figure 45e, all the pupil diaraktes are very well
distributed within a small range of values. It indicates that the eyelésapien (except in blink)
during the entire scanpath consistently and the eye tracker has beentedgk the eye

efficiently.
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Figure 46 Bad Scanpath Gaze Interpolation
Figure 46 (a, c) shows that many (0, 0) coordinates received for egeirements during
this scanpath. The filtered result in Figure 46 (b, d) shows theie#fieess of filtering the
scanpath to eliminate the (0, 0) values. This large number of (0, Oy \@nde attributed to
either the subject movements or equipment errors where the esgr isanot able to measure the
eye position accurately. The (0, 0) values in the raw data have beenlatgfpo avoid an

impact on fixation computations. Figure 46 shows the pupil diameter statisted, and h)



135

while the point to point distance (Figure 46g) indicates the point to pdidistance.

Figure 47 and Figure 48 show similar curves for another bad scanpath wheretidatga
is interpolated during blinks. Notice that the filtered curves in Figufie, 4)J do not include any
(0, 0) values in the (x, y) coordinates. The last dip in the Figure dAfehich corresponds to the

blink (as can be verified from Figure 47a) has also been interpolated.

(a5
-
-

#1 - ¥-coordinate
=
=
=

[ 3]
-
]

ufy - filtered Xg
P =
= =
] =

200
a 0
a 200 400 BO0 0 200 400 BOO
(H]' gaze sample index {I}} gaze sample index
o B00 = 500
T >
S 400 1 E 400
g 2
< 200 { = 300
ol =
= = 200 : :
0 200 400  BOO 0 200 400 GO0

() paze sample index

() gaze sample index

Figure 47Bad Scanpath Gaze Interpolation (blink interpolated)
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Figure 48 Bad Scanpath Parameters (blink interpolated)
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Figure 47 and Figure 48 are illustrated to indicate how interpolatientafblinks if
blinks were to be interpolated. But the data analysis is performeduittierpolating blinks to
model the underlying physical process as accurately as possible.

A good scanpath.€., small number of <0, 0> gaze samples) or bad scanipattvéry
large number of <0, 0> gaze samples) after interpolation becomes usdbiatimn
computations. Each scanpath consists of various events as illustratgdrin49. The events
file, <subject>.txt,generated by the experiments is analyzeBy®ntAnalyzeto create scanpath
samples. Each scanpath contains 4 data segméaitkef Display / DismissategmentWord(s)
Display / Speech StasegmentSpeech Start / Stegegment, anBecognizer Finalization
segment) and each subject’'s scanpath samples are analyzed to produsentarital data

structures.
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E.7. Search Discriminants

Target objects can be different in size and location in an applicatiofaggemstead of the
target object properties, a search region on the screen issstdtih determine if the gaze is in
that search region. There are 6 different search regions or discrisndedimed in the data
analysis namely: small rectangle, big rectangle, small circle,itoig,csmall ellipse, and big
ellipse. Small rectangle is the tightest rectangle fitting tigeetaobject while the big rectangle is
bigger by 100% in height and 50% in width. Small circle is chosen to have 50rgidtieis while
big circle is double that of small circle. The small ellipse bounei$aitget object from outside.
The big ellipse leaves some gap around the target object. Big edsgebhdounding the target
object from outside) ellipse has been the most widely used discrintimanghout the data
analysis. For each of the scanpathksy) of the gaze feature and predicted location of gaze are
tested to check if it falls inside the search region defined by thesgntinants. If the point is
inside the search region it is considered to be a hit otherwisgsaFoir each subject, a
probability of prediction is calculated using the number of scanpaths ihsidearch region out
of the total number of scanpaths. Figure 50, Figure 51, and Figure 52ti#lusiva the big ellipse
circumscribes the small, medium, and large words respectively. Femtdeword it has a little
more room for fixations to fall within the search region than for theslargyd. However, the big
ellipse is big enough to capture the fixation falling in the search regiail target objects
because it accounts for the object dimensions. It provides aéghth region without
overlapping on the nearby objects, thus helping build effective user ierdihout wasting
much of the screen space. Table 35 and Table 36 show the detailedidesonithe

discriminants and the parameters involved.
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Variables Description
Ot Distance maximum
5, 1 Top left corner of wword bounding rectangle
i, WNTY) Center location of the wward
*1=0Wx, temporary variable
W=y temporary variable
dx=ix-x1; temporary variable
dy=oy-y; temporary variable
w 2=l + 2% temporary variable
y 2=yl 25y, temporary variable

3=l -dxf2 or x1-zpacings2;

temporary variable

wd=x24dx)2 or ¥2+spacingl2;

temporary variable

wa=yl-dy or vl -zpacings2,

temporary variable

wad=y2ady oF Y2+spacings2,

temporary variable

Table 35 Search Region Discriminants’ Variables

140



141

Discriminants

Search Region Equation
samill circle Dt
hig circle 1.5 *Dm
zmall rectangle ¥l a=px && px == 32 B& vyl == py && py == v2
hig rectangle ¥is=px &8 px = xd ARy a=py E& py == yvd
aimall exscribed elliipse a=cl+dy; b=y
hig exscribed elipse a=dx+2*dy; b=dy+dy,
small inzcribed ellipse a=dx; b=dy;
kig inscribed elipse a=1.5%1x, b=2*dy;
hig exzcribed elipse (spacing-based) |[a=dx+spacing, b=dy+spacing,

Table 36 Search Region Discriminants

E.8. Interaction Scanpaths

Fixations, instead of raw gaze samples, are a better estimate oétlsegaze when analyzing
scanpaths. Moreover, using raw gaze samples is error prone due to eqpimiblems and
calibration inaccuracies. So each scanpath produces a set of fixatiicis are indexed based on
speech onset time, which are plotted as shown in Figure 53 through Figuree5&afions
obtained depend on the fixation algorithm and these figures show dispersidriiketiens
along with the raw gaze data in each plot. Each scanpath is analyzed basadwrgtme data
(Figure 53, Figure 54, and Figure 55) or interpolated gaze data (BiguFégure 57, and Figure
58) for calculating fixations. The gaze data of a scanpath is split il® $lections: gaze data
before the word/menu is displayed (Figure 53 and Figure 56), gaze dathafterd is
displayed and before the speech starts (Figure 54 and Figure 57), andtgadtedthe speech
started (Figure 55 and Figure 58). Similarly, Figure 59 through Figuitku$iates a sample
scanpath in the menu interaction task in Experiment 2. Note that Figure 68vesal gaze

samples interpolated when compared to Figure 60.
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scanpath-B raw gaze reaching cursor
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Figure 53 Scanpath of Word Reading Experiment — raw gaze reaching cursor

scanpath-6 raw gaze before speech start
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200 -
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Figure 54 Scanpath of Word Reading Experiment — raw gaze before speech start



143

scanpath-B raw gaze after speech start
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Figure 55 Scanpath of Word Reading Experiment — raw gaze after speech start

scanpath-6 interpolated gaze reaching cursor
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Figure 56 Scanpath of Word Reading Experiment — interpolated gaze reaching cursor
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scanpath-B interpolated gaze before speech start
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Figure 57 Scanpath of Word Reading Experiment — interpolated gaze before speech sta

scanpath-B interpolated gaze after speech start
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Figure 58 Scanpath of Word Reading Experiment — interpolated gaze after spaéch st
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scanpath-35 raw gaze reaching cursor
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Figure 59 Scanpath of Menu System Interaction — raw gaze reaching cursor
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Figure 60 Scanpath of Menu System Interaction — raw gaze before speech start
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scanpath-35 raw gaze after speech start
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Figure 61 Scanpath of Menu System Interaction — raw gaze after speech start
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Figure 62 Scanpath of Menu System Interaction — interpolated gaze reaching cursor
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scanpath-35 interpolated gaze before speech start
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Figure 63 Scanpath of Menu System Interaction — interpolated gaze before spréch st
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Figure 64 Scanpath of Menu System Interaction — interpolated gaze after spach st
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E.9. Experiment Limitations/Design Choices

In this section, some of the main limitations and design choices pertirtbetdpeech/gaze
integration model will be described. These are applicable equally to botlnesupts:. First, the
words selected for both the experiments are analyzed for their chigtexsteSecond, the effect
of speech training on recognition accuracy is discussed. Third, gazatali impact on eye
tracking is discussed. Finally, the importance of obtaining the accurastémps from the
speech recognizer is emphasized.

Choosing words for the subjects to utter, is an important criteridreiageech/gaze
interaction behavior. If the word is familiar to the subject, theraif be possible for the subject
to use peripheral vision to read the word quickly. When the word is not known, the siser ha
look at the word before reading it. The time to read the word depends on thexigngdlthe
word being displayed. It is hypothesized that the more complex and unfaamilad is, the
longer the gaze span is around the word. But only the speech onset tima alioinégerest, which
reflects gaze location around the word. It is not clear how the onggeistiffected depending on
the word though. So a mix of multi-syllable words was chosen in the experimentefor

distribution of the interaction onset times.

Variahle lahel Mean | Standard deviation | Maininum | Maximmoum
K-F Word frequency | 31 879 339 0 100
Imagery 4 D85 1391 1863 5.9
Concretenass 4 953 1.275 1.12 T
Meaningfulness 5891 1.102 132 922
Number of s¥yllables | 2278 0.994 1 5
Mumber of letters | 5211 2.131 3 14

Table 37 Words Statistics
Table 37 shows the word statistics for words chosen for Experinjéppndix B].
These words are generated using a word list generator K-32Frequencyrefers to the word
frequency as defined irComputational Analysis of Present-Day American Englstblished in

1967 by Henry Kucera and Nelson Francis. They analyzed and compiled sevistiisstat
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about a million words collected from various souréasrectnessefers to whether the word has

any semantic meaning associated witlniagerymeasures the extent of associating a word to

any image in cognitive memorlleaningfulnessneasures the ease with which a word can be

learned.

The length of words (chosen in this dissertation) in pixels and the numberatteins

are illustrated in Figure 65. Note that the word list for ExperimenaXighset of Experiment 1.

Figure 65(a, c) shows the length of words in pixels and number of charactaifsikers

individually. Figure 65(b, d) shows the average length of words in pixelsaumber of

characters of all users.
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{d) word length {chars)

Figure 65Word Length Statistics in Constraint-Free Interaction
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E.9.1. Effect of Speech Training/Recognition

In current speech and gaze experiments, the speech recognizer issuekivatsonfsevents
indicating the state changes inside the recognizer. These events liekttiapp determine how
to process the information coming from the recognizer. For example, ekerpéechStarted
SpeechStoppedndSpeechAcceptette very critical in data processing. The following illustrate
different scenarios that exist in the current speech/gaze expesim

- Displayed word and the word recognized by the recognizer are the same. This is a
perfectly valid interaction. Gaze and speech can reinforce eactfatineore
effectiveness of the interface. Note that there is ho guarantegaitets really
looking at the word being spoken, but it can help reinforce a valid intaracta
noisy environment.

- Recognizer recognizes the acoustic signal as a valid word in the gréminitais not
the current word shown on the screen i.e., the displayed word is “run” and recogniz
heard it as “trumpet” from the signal processing. This is an “AccepteckeSsful
Recognition” from the recognizer point of view but it is not the word ors¢heen.
Gaze in this case can help verify what's on the screen and whethsaiihé as
what’s heard. Thusgaze aids speech”

- Recognizer totally doesn’t understand the word or it rejects the acagsat f®r not
being able to process. Then the only information available is gazengoattine
command button. Thus, gaze aids speech.

- Recognizer couldn’t give any conclusive answer other than saying whei speec
started and ended. These kinds of scanpaths can also be used becausehtktagpeec
and end event times are still available from API events (but thes®taccurate
because the recognizer didn't finalize them with an Accept/Befgat in this case

these times are not going to be accurate because they are not treimsess
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perceived by the recognizer. However, they can be used for an approximakien of t
start/end times of speech to make the interface more robust. Thusjdmgpeech.
The recognizer issues events to the application when speech starts aniflee an

event like this is received, it is only an approximation from the engirtedbevent. When the
engine finalizes the acceptance/reject of the utterance as @walid/ word, it ‘corrects’,
internally, the timestamps and provides more accurate timestamps. Sestinengine can be
simply quiet and may not issue the speech start/end events. It doesn’tvevidregccept/reject
finalization events. Basically the recognizer doesn't give any infoioméar that
interaction/scanpath sample. Then there is no way of knowing anything about that
utterance/interaction. It can happen because of the recognizpksmentation. Even with a
better recognizer these kinds of thimgaypotentially happen. These scanpaths cannot be used in
the data analysis at all because it is insufficient informatioonstouct a scanpath as the
corresponding speech start time is not available to analyze the fixaliomently these are being
filtered out.

In the current speech/gaze experiments, each subject speaks around 1004850 wor
Experiment 1 [Appendix B] and 400 words in Experiment 2 [Appendix C]. Not all the wongds ma
be successfully recognized by the speech recognizer. Although recogtararto be very
efficient in recognizing the user’s speech, the successful reangdipends on several factors
like pronunciation, accents, ambient conditietcs Some recognizers claim zero training time
while others claim minimal training time. However, IBM Via Vejt¢he recognizer that is used in
the speech/gaze interaction experiments, has given reasonable resagnitlts among all the
recognizers that have been tried (Via Voice, SpeechWorks, MSISp&d). Dragon’s naturally
speaking, HTK/ATK and Sphinx are among other recognizers which need to beeexplthe
future to understand the speech recognizer’s influence on the speeahigiation. Even
though Via Voice claimed to be recognizing with the least training,t@rperience has shown

that for best results, it requires a minimum of 30 mins to about 3 houesrifg time.
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Sometimes it's not even the time spent in training that determinesabgnition accuracy. It is
mostly to do with the quality of training and the distribution of words in #igitrg text. Each
subject is trained with the same text from the recognizer before rumemxperiments. The
following factors need to be considered when a recognition error occurs.

» Should the experiment make a second recognition attempt?

* How many recognition retry attempts should be used? What will be th¢ efftbese

retries in speech/gaze interaction?

»  Will the fixation formation and speech/gaze interaction be afkby the recognition

errors?

If the word is recognized successfully, the word disappears from trensoimediately
starting the next interaction. However, when a word is not recognizedhdt a failed
interaction. Speech onset time captured in a failed (i.e., not-recognizaeksfully by the speech
recognizer) interaction is enough to understand the speech/gaze intebattavior. The
problem in further attempts to recognize the word is that it may not giveeade interaction
behavior. Moreover, it is not necessary that the gaze is arounettefter the first attempt
because the user is familiar with the word after the fitetait. Only during the first attempt is
the cognitive processing triggered which captures the speechiaraeiion accurately. During
subsequent attempts, gaze may be jumping off to a different location giséngade before
coming back to the word. Capturing the speech onset time during the firgitadissuarately
reflects speech/gaze interaction regardless of the speegmnitean success/failure. Currently a
word appearing on the screen disappears if the recognition is succe#stloé avord it timed
out. The timeout depends on the task being performed. For simple tasks like rimErpé
timeout is 3 seconds and for complex tasks like in Experiment 2 the timdduseconds. The
system’s dependency on speech onset time instead of speech recognitiacyaeduices the
need for higher accuracy of speech recognition and also allows for tha sgdie usable under

less constrained environments.
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E.9.2. Effect of Gaze Calibration

The speech/gaze interaction behavior depends more heavily on the gdmsirdptccurate than
on the speech because of the high sensitivity of gaze over speech. 2dsis, gaich faster than
speech and is difficult to track. In order to obtain the gaze data talgugmaze needs to be
calibrated carefully and accurately. Even after careful calibratame gan drift over the time due
to data acquisition problems with the equipment. Also, the users may begnioeir head
position when interacting with the machine which can offset the gaze. Intonatigate gaze
errors and to calculate error in gaze data, each subject looksmaseafttered points on the
screen after completing the gaze calibration. The user looks at thdeérme points on the
screen and the system calculates the gaze accuracy. Althougatdae established that the
user is really looking at the predefined point, it can at least contpitgare calibration and
tracking errors.

Gaze can drift over time due to several factors like equipmergation, user
movementsetc Its accuracy may decrease as the experiment runs for longealstén order to
mitigate the effect of gaze degradation, each session is run indepgradébthting gaze every
time (Note that there is an ongoing development effort among ey@trsuppliers to simplify
and improve the calibration process). Each session is allowed to run a masirh0sh5
minutes. The session length depends on the recognition accuracy andetessaitility to
complete the task. The break between sessions also provides enotmktheestibject reducing

any fatigue.

E.9.3. Effect of Word Timestamps on Fixation Identi  fication

Typically, speech recognizers use pauses between user utterancesctaesdgnition results.
The current IBM Via Voice recognizer issues events to applicaitioihe beginning of the
utterance and at the end of utterance (Figure 66a). In addition to tleete, @vissues other

recognition events (e.gspeechAccepteihdicating the recognition results. The lead-time for
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gaze with respect to ttgpeechStartedvent is relatively consistent for a given user, and it also
varies from user to user [19]. For example, for commands like “pwri¢’tlivhich contain
multiple words, Figure 66a shows the gaze fixations and recognizer.eMeatword timestamps
from the recognizer and fixations corresponding to the words are reteéteethe end of the
complete utterance. By searching the closest fixation before the mmstamp, fixations 3, 6,
and 8 could be retrieved for words “put”, “it", and “there” respectivelywhlver, fixations 3 and
8 are not completely formed at the beginning ofviloed utteranceas shown in the Figure 66b. A
simple search back in time at the end of the complete utterance chimga@tect fixations, as

compared to more accurate fixations 2, 5, and 7 shown in Figure 66b.

fixations fixations

0383884866660 | A0A8668080a0

e et

A. utterance events IJ+ word events

Figure 66 Recognizer Word Timestamp Analysis

Moreover, fixations closely spaced in time don't necessarily mean thaath located
closely in space. Any error in fixation identification can yield an @rrascertaining the user's
intent. The modality integration process may not think that gaze and speedigaed and will
prompt the user for a clarification. In commands like “put it there” whactiain deictic
references, the word timestamps for “it” and “there” are highly impbttaextract the referential
information pointed to by gaze. Thus, word timestamps retrieved from thehseegnizer have
very high influence on the fixations associated with the words. Both Expesithamid 2 use
only single words for targets and multi-word commands need to be explohefiriure to

resolve ambiguities between total utterance timestamps and indiwdtchtimestamps.
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