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ABSTRACT OF THE DISSERTATION
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by Marianna Maltseva

Dissertation Director: Piers Coleman

Tunneling studies of strongly correlated materials provide information about the nature of

electronic correlations, which is vital for investigation of emergent materials at the microscopic

level. In particular, scanning tunneling spectroscopy/microscopy (STS/STM) studies have made

major contributions to understanding cuprate superconductors (66), yet there is a sense that

huge STM data arrays contain much more precious information to be extracted and analyzed.

One of the most pressing questions in the field is how to improve the data analysis, so as to

extract more information from STM data. A dominant trend in STM data analysis has been to

interpret the data within a particular microscopic model, while using only basic data analysis

tools. To decrease the reliance of the STM data interpretation on particular microscopic models,

further advances in data analysis methods are necessary.

In Chapter 2 of this Thesis, we discuss how one can extract information about the phase

of the order parameter from STM data. We show that symmetrized and anti-symmetrized

correlators of local density of states give rise to observable coherence factor effects. In Chapter 3,

we apply this framework to analyze the recent scanning tunneling experiments on an underdoped

cuprate superconductor Ca2−xNaxCuO2Cl2 by T. Hanaguri et al. (60). In Chapter 4, we

propose a model for nodal quasiparticle scattering in a disordered vortex lattice.

Recently, scanning tunneling studies of a Kondo lattice material URu2Si2 became possible

(117). If it proves possible to apply scanning tunneling spectroscopy to Kondo lattice materials,

then remarkable new opportunities in the ongoing investigation may emerge.

In Chapter 5, we examine the effect of co-tunneling to develop a theory of tunneling into a

Kondo lattice. We find that the interference between the direct tunneling and the co-tunneling
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channels leads to a novel asymmetric lineshape, which has two peaks and a gap. The presence

of the peaks suggests that the interference is more dramatic in the case of Kondo lattice than in

the single impurity case, because of the coherence. These features should be observed in future

tunneling experiments on Kondo lattice materials.
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Chapter 1

Introduction

1.1 Tunneling as a probe of highly correlated electron states.

Nature continues to amaze us, as new materials with emergent macroscopic properties are

discovered. The origins of these new emergent properties often lie in the particular microscopic

electronic correlations. Successful investigation of the electronic correlations in the emergent

materials often requires sensitive experimental probes. In particular, since its invention in late

1950s, the ever-evolving technique of tunneling spectroscopy has propelled our understanding

of electronic correlations in solids, as origins of the emergent macroscopic properties of the

materials.

In this Introduction, we review applications of tunneling spectroscopy to studies of strongly

correlated electron systems, from its early application as a probe of BCS superconductors to its

modern applications to studies of copper oxide superconductors and Kondo lattice systems.

1.2 Tunneling experiments on BCS superconductors

In this section we discuss the birth of tunneling spectroscopy and the key role it played in

verifying the microscopic BCS theory of superconductivity.

1.2.1 BCS superconductors

Superconductivity was discovered in 1911, as Heike Kamerlingh Onnes (1) observed loss of

resistivity in mercury at a critical temperature Tc = 4.2 K, as shown in Figure 1.1(a). Soon the

same phenomenon was detected in several other elemental metals, such as aluminum and tin,

with superconducting transition temperatures Tc ranging up to 7.2 K in lead. In 1933 Walther

Meissner and Robert Ochsenfeld (2) cooled tin and lead samples in an external magnetic field

to find that below the superconducting transition temperature Tc, the samples cancelled all

magnetic field inside, effectively becoming perfect diamagnets, as illustrated in Figure 1.1(b).

Below the superconducting transition temperature Tc, superconductors are characterized by the
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(a) (b)

Figure 1.1: Basic properties of superconductors. Figure (a) displays resistivity loss at Tc = 4.2
K observed in mercury by K. Onnes in 1911 (1). Figure (b) displays the Meissner effect demon-
stration. Here a magnet is levitating above a high-temperature superconductor, cooled with
liquid nitrogen. Persistent electric current flows on the surface of the superconductor, acting to
exclude the magnetic field of the magnet. This current effectively forms an electromagnet that
repels the magnet. Source: wikipedia.
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following two macroscopic properties:

• loss of electrical resistance,

• the Meissner-Ochsenfeld effect (2), active expulsion of a magnetic flux from the sample as

it is cooled thorough Tc.

The phenomenon of superconductivity would take 46 years since its discovery to be un-

derstood at the microscopic level, when John Bardeen, Leon Cooper and Robert Schrieffer

advanced BCS theory (11) in 1957.

BCS theory did not appear in a vacuum. It was preceded by two decades of active phe-

nomenological development of the theory of superconductivity (77). In 1935 Fritz and Heinz

London (3) proposed that the electrodynamic properties of a superconductor could be described

by the following “acceleration” equation:

Js = −nse2

m
A,

where Js is the current density, A is the vector potential of the electromagnetic field, ns the

density of superconducting electrons with charge e and mass m. Londons’ equation accounts

for the Meissner effect. In 1935 Fritz London (4) proposed that the perfect diamagnetism was a

consequence of a rigidity of the many-body wavefunction. He even suggested that this rigidity

might derive from a gap in the excitation spectrum (10).

In 1950 Vitaly Ginzburg and Lev Landau (7) introduced Ψ = |Ψ|eiφ, a phenomenological

order parameter to describe superconducting electrons, as an order parameter of the supercon-

ducting transition. London’s rigidity hypothesis could now be linked to a “phase rigidity” of

the order parameter, the microscopic nature of Ψ was still unclear.

A non-local modification of the London theory was later introduced by Pippard (5; 6),

who suggested that the superconducting wavefunction had a characteristic lengthscale, the

“coherence” length ξ0, given by:

ξ0 = a
!vF

kTc
, (1.1)

where a is an empirical constant. In 1955 Bardeen (9) showed that Pippard’s version of the

electrodynamics naturally followed from an energy gap model, so that the origin of the phase

rigidity of the order parameter was the superconducting gap.

Finally, in 1957 BCS theory established the microscopic origin of the gap, ∆ ∼ Ψ, as the

order parameter. According to BCS theory, superconductivity is associated with condensation

of electrons in Cooper pairs and is characterized by the formation of a complex order parameter
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Figure 1.2: Comparison of s- and d-wave BCS superconductivity. (a)-(c): Isotropic s-wave
superconductor. (a): Isotropic s-wave wavefunction of a Cooper pair, which leads to a fully
gapped Fermi surface. (b): Tunneling density of states ρ(V ) in an s-wave BCS superconductor.
(c): Spectrum of dI/dV (V ), experimental data obtained with STM in an s-wave BCS super-
conductor Nb (circles), BCS fit with ∆ = 1.0 meV, after (28; 66). (d)-(f): A superconductor
with dx2−y2 order parameter symmetry. (d): A dx2−y2 wavefunction of a Cooper pair (shown
in red) leads to a partially gapped Fermi surface (shown in blue). The gap vanishes in the
nodal directions. (e): Tunneling density of states ρ(V ) in d2

x − y2 superconductor. (f): An
experimental STM spectrum of dI/dV (V ) obtained in an optimally doped high-temperature
copper oxide superconductor Bi-2212 (Tc = 92 K) at 4.8 K (solid line), BCS s-wave fit with
∆ = 27.5 meV (dot-dashed line), and d-wave BCS fit (dashed line), after (26; 66).

with sample-wide phase coherence, ∆ = 〈ψk↑ψ−k↓〉, where ψ†
k↑ is the creation operator for a

single electron with momentum k and spin ↑. The condensation of electrons in Cooper pairs

leads to a gap at the Fermi surface in the single particle excitation spectrum. The attractive

interaction necessary for Cooper pairing is provided by the coupling to the crystal lattice through

the phonon exchange mechanism.

BCS theory predicts that in an isotropic, s-wave superconductor, the electronic density of

states has a gap at the Fermi energy. Just above the gap, the electronic density of states exhibits

a square root singularity, a dramatic upturn due to electronic states piled up just above the
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gap, predicted by the microscopic BCS theory, shown in Figure 1.2(b):

ρBCS(E) = {
ρF

E√
E2−∆2 , |E| > ∆,

0, |E| < ∆,
(1.2)

where ρF is the density of states of the metal in the normal state at the Fermi energy.

The microscopic BCS theory has predicted certain phenomena, such as coherence factor

effects (13; 14; 15), which could not have been envisioned in the absence of the microscopic

theory. Coherence factor effects include anomalous temperature dependencies of the quasipar-

ticle scattering rates, observed with various experimental techniques, such as nuclear magnetic

resonance (13), acoustic attenuation (14) and infrared absorption (15).

Nowadays, high-temperature superconductivity presents some of the greatest mysteries in

condensed matter physics. In particular, the microscopic origin of the “pairing mechanism” in

high temperature copper oxide superconductors and the nature of their unusual normal state

remain unknown (32).

A parallel can be drawn between the 1950s and the present day. By all counts, research in

high-temperature superconductivity is in an intermediate stage. While much experimental data

have been collected already, and the phenomenological understanding is partially developed, a

microscopic theory for the mechanism of high temperature superconductivity and the nature of

the unusual normal state from which it is formed is absent.

The goal of this Thesis is largely phenomenological: namely, to provide interpretation of

experiments, using theory in a phenomenological capacity, to spur the development of a micro-

scopic theory of high-temperature superconductivity. Understanding of the high-temperature

superconductivity at the microscopic level will provide insights into methods to search for higher

temperature superconductors.

1.2.2 Tunneling in BCS superconductors

Some of the most direct microscopic confirmations of BCS theory derives from tunneling. In

particular, quasiparticle tunneling in a superconductor-insulator-normal metal (SIN) junction,

pioneered by Ivar Giaever (17), was used to determine the gap and the detailed form of the

tunneling density of states.

Tunneling is a purely quantum-mechanical process in which a particle can pass from one

clasically allowed region to another, through classically forbidden regions where the potential

energy exceeds the kinetic energy of the particle, as schematically shown in Figure 1.3. Us-

ing semi-classical WKB approximation, one can show that the tunneling probability decreases
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Figure 1.3: Cartoon diagram of quantum tunneling. Source: wikipedia.

exponentially as a function of the barrier width d:

|T |2 ∝ e−2κd,

where κ =
√

2m(V−E)
!2 , V is the barrier height, E is the energy of the particle, m is the mass of

the particle.

Early studies of tunneling of electrons between metals through thin oxide layers have culmi-

nated in the invention of the Esaki diode (16), the experimental demonstration of tunneling in

superconductors by Ivar Giaever (17), and the discovery of the Josephson effect (18). In 1960

Ivar Giaever (17) invented a method to directly obtain the value of the superconducting gap

and verify the specific form of the electronic density of states ρBCS(V ) (1.2) predicted by BCS

theory. He performed a tunneling measurement on a contact which consisted of a superconduc-

tor separated from a normal metal by a thin insulating layer, as shown in Figure 1.4(a). Giaever

surmised that provided there were a gap in the electronic density of states of a superconductor,

the tunneling current would not flow between the metals, until the bias voltage applied between

the metals reached the value of the superconducting gap. Indeed, as shown by John Bardeen

(19), at small bias voltages, the differential tunneling conductance provides a measure of the

tunneling density of states:

dI/dV (V ) ∝ ρBCS(V ).

The shape of the dI/dV (V ) curve obtained by Giaever has reproduced the prediction of BCS
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(a) (b)

Figure 1.4: Tunneling experiment by I. Giaever. (a): A schematic circuit diagram. Measured
are the current-voltage characteristics of a capacitor-like arrangement formed by two aluminum
films and an oxide. When the oxide thickness is less than 50 Å, an appreciable dc current flows
through the oxide. (b): Differential tunneling conductance dI/dV (V ), which reproduced the
BCS density of states. From I. Giaever’s Nobel lecture, 1973.
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theory (1.2) with a remarkable precision (compare Figures 1.4(b), 1.2(b)).

Following Giaever’s experiments, John Bardeen (19) introduced a simple theory of tunneling.

Using time-dependent perturbation theory, he showed that in a SIN junction the tunneling

current is given by

I =
4πe
! |M |2ρS(ES)ρN (ES)

Here ρS , ρN (ES) are the densities of states of the superconductor and the normal metal taken

at the Fermi energy, and M is the tunneling matrix element. The tunneling current decreases

exponentially as a function of barrier width d:

I ∝ e−2κd,

where κ =
√

2m(V−E)
!2 . This rapid fall-off of the tunneling probability leads to a remarkable

energy resolution. At small bias voltages of order the superconducting gap, V ∼ ∆, the barrier

height V far exceeds the energy of the particle, V + E ∼ ∆, so that the dependence of κ on

the bias voltage is weak. Thus, tunneling is a weak-coupling probe which can probe inherent

excitations of the material in a well-defined energy range.

1.3 Scanning Tunneling Spectroscopy

A new era in tunneling spectroscopy began in 1981, when Gerd Binnig and Heinrich Rohrer (21)

invented a scanning tunneling microscope (STM), which allowed spatially resolved tunneling

with sub-angstrom precision.

A scanning tunneling microscope involves a sharp metallic tip, which is brought to the

sample surface within angstroms and is moved along the surface with piezoelectric transducers,

as shown in Figure 1.5. A bias voltage, applied between the tip and the sample, induces a

tunneling current.

According to a simplified tunneling theory (19; 20; 22), scanning tunneling spectroscopy

probes the differential tunneling conductance at a location r and voltage V , which is proportional

to the tunneling density of states:

dI

dV
(r, V ) ∝ |M(r, V )|2ρ(r, V ),

where M(r, V ) is the tunneling matrix element. In the WKB approach the tunneling matrix

element is given by |M(r)|2 = e−2γ(r) with γ(r) =
∫ d(r)
0 dx

√
2mφ(x)

!2 , where d(r) is the barrier

width (tip-sample separation), φ(r) is the barrier height, which is a mixture of the work functions

of the tip and the sample, m is the electron mass (66; 69). Thus, the tunneling conductance is a
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(a) (b)

Figure 1.5: Scanning tunneling microscope. (a): Tunneling process between the tip and the
sample across a vacuum barrier of width d and height φ (for simplicity, the tip and the sample are
assumed to have the same workfunction φ). The electron wave functions Ψ decay exponentially
into vacuum with a small overlap, allowing electrons to tunnel from one electrode to the other.
With a positive bias voltage V applied to the sample, electrons tunnel preferentially from the
tip into unoccupied sample states. (b): Schematic view of the scanning tunneling microscope.
After Ø. Fischer et al. (66).

measure of the thermally smeared local density of states (LDOS) of the sample at the position

of the tip.

A most remarkable feature of STM is its unique resolution, achieved thanks to the exponen-

tial dependence of the tunneling current on the tip-sample separation d:

I ∝ e−2κd, κ =

√
2mφ

!2
= .5

√
φ(eV )Å−1

,

where φ is an average value of the barrier height. For a typical φ ∼ 5 eV, an angstrom increase

in the tip-sample separation corresponds to an order of magnitude drop in the current. Lateral

resolution is achieved using a sharp tip, which has well-localized atomic orbitals.

1.4 STM in copper oxide superconductors

A challenge to measure up to the potential of the new instrument soon presented itself, when

Karl Mueller and Johannes Bednorz discovered high-temperature copper oxide (cuprate) super-

conductors in 1986. Especially surprising was the fact that the superconductivity was observed

in ceramic materials, known as good insulators, never yet to be considered as possible hosts of

superconductivity. In their stoichiometric form, the parents of copper oxide superconductors are
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Figure 1.6: Structure of lanthanum copper oxide La2CuO4. The colors are as follows: O red,
Cu blue, La black.

antiferromagnetic Mott insulators with strong interactions between the localized electrons in 3d

shells. When doped with electrons or holes, these materials become superconductors. From the

start, it was clear that the superconductivity in cuprates was unconventional, and that STM

would play a major part in its investigation as one of the most direct probes of the electronic

structure. The discovery generated a flurry of research activity, and initiated a renaissance in

tunneling spectroscopy.

Now, more than twenty years after the discovery, remarkable progress has been made in

understanding the cuprate superconductivity. For example, we know that the cuprate super-

conductivity is associated with condensation of Cooper pairs of electrons, as confirmed with flux

quantization (23) and Josephson effect measurements (25). The spin state of pairs is known to

be a singlet with an anisotropic orbital wavefunction with dx2−y2 symmetry, as shown by flux

quantization measurements in a tri-crystal YBCO junction (24). The superconducting coher-

ence length ξ0, which is a measure of the size of a Cooper pair, is of order 10-30 Å. Yet some

key questions remain open, notably those concerning the pairing mechanism and the nature of

the pseudogapped normal state, which we discuss in detail in the introduction to Chapter 2.

Cuprate superconductors have a layered structure of copper oxygen CuO2 planes inter-

changed with planes of various oxides and rare earths. Figure 1.6 shows the structure of lan-

thanum copper oxide La2CuO4. The superconductivity is thought to be associated primarily

with the copper oxygen planes.

In most copper oxide superconductors, STM and angular resolved photoemission (ARPES)
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have found a large and doping-dependent gap, which fails to scale with Tc (66; 71; 42). The lack

of univeral scaling suggests that the superconducting transition temperature Tc is not the only

energy scale relevant to the superconductivity in cuprates, and that unlike in conventional BCS

superconductors, the emergence of Cooper pairs does not simultaneously entail the formation

of a macroscopic superconducting condensate with sample-wide phase coherence.

In copper oxide superconductors, a Cooper pair of two electrons has an orbital wavefunction

with dx2−y2 symmetry, so that the superconducting order parameter is given by:

∆(k) =
∆0

2
(cos kx − cos ky).

As a result of the dx2−y2 symmetry, the gap vanishes along the directions of kx = ±ky, where

the Cooper pair wavefunction changes sign, as shown in Fig 1.2(d). Tunneling density of

states ρ(V ) has contributions from quasiparticles with all the possible momenta. In the nodal

directions, there are gapless low-energy quasiparticles. These gapless quasiparticles cause the

tunneling density of states ρ(V ) to remain finite at finite bias voltages, as shown in Figure

1.2(e). Because the gap switches sign between different parts of the Brillouin zone, as shown in

Figure 1.2(d), d-wave superconductivity is extremely fragile to disorder. Variations in the gap

induced by disorder allow to probe the underlying nodal excitations with STM.

In cuprates, the superconducting transition temperature Tc changes as the carrier concen-

tration x, e.g. the number of holes, is changed, as shown in Figure 1.7. As a function of doping,

the superconducting transition temperature Tc follows a dome. Above the dome, in spite of

the loss of the superconductivity, the single particle excitation spectrum retains a partial gap

near the Fermi energy (31), known as the “pseudogap” (32). The key issues of the origin of

the pseudogap and its relationship with the superconductivity currently remain under active

investigation (36; 34).

As we discuss in more detail in the introduction to Chapter 2, STM studies have made

major contributions to understanding cuprate superconductors, yet there is a sense that huge

STM data arrays contain much more information to be extracted and analyzed. One of the

most pressing questions in the field is how to improve the data analysis, so as to extract more

information from STM data. A dominant trend in STM data analysis has been to interpret

the data within a particular microscopic model, while using only basic data analysis tools. To

decrease the reliance of the STM data interpretation on particular microscopic models, further

advances in data analysis methods are necessary. In the context of current studies of cuprates,

the key questions are:

• Is it possible to extract model-independent information from STM?
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Figure 1.7: Schematic phase diagram of hole-doped copper oxide superconductors (temperature
T vs. doping x). The parent compounds are antiferromagnetic Mott insulators. Hole doping
transforms the materials into high-temperature superconductors. T ∗ denotes a temperature
scale where the pseudogap forms.

• Is it possible to extract phase information from STM?

In Chapter 2 of this Thesis, we discuss how one can extract information about the phase of the

order parameter from STM data. We show that symmetrized and anti-symmetrized correlators

of local density of states give rise to observable coherence factor effects. In Chapter 3, we apply

this framework to analyze the recent scanning tunneling experiments on an underdoped cuprate

superconductor Ca2−xNaxCuO2Cl2 by T. Hanaguri et al. (60). In Chapter 4, we propose a

model for nodal quasiparticle scattering in a disordered vortex lattice.

1.5 Tunneling in Kondo lattice systems

Nowadays, some of the most exciting new applications of scanning tunneling spectroscopy in-

volve studies of Kondo lattice materials.

When a magnetic impurity is immersed in a sea of conduction electrons, it participates in

virtual charge fluctuations, in which an electron briefly tunnels into the impurity or out of the

impurity into the conduction sea (50; 52). The effect of these virtual charge fluctuations on the

effective low-energy physics is to induce an antiferromagnetic interaction between the magnetic

impurity and the conduction electrons. If the net coupling J between the magnetic impurity and
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(a) (b)

Figure 1.8: A diagrammatic representation of the spin-flip scattering in which a down-spin
conduction electron (thick line) is scattered by the impurity (dotted line) into an intermediate
spin-up state, after (52).

the conduction electrons is antiferromagnetic, the interaction scales to strong coupling at low

temperatures of order TK , the Kondo temperature, forming a Kondo resonance. The process

driving this renormalization is spin-flip scattering, diagrammatically illustrated in Figure 1.8.

The Kondo resonance scatters conduction electrons, enhancing the electrical resistivity at low

temperatures, as shown in Figure 1.9(a). This phenomenon is known as the Kondo effect (47).

Immersed in a metal, a magnetic impurity produces Friedel oscillations in the spin density.

As a result, in an alloy containing magnetic impurities in every unit cell, magnetic impurities

are coupled with the so-called RKKY interaction (29):

HRKKY = JRKKY (x − x′)S(x) · S(x′),

where JRKKY (x − x′) ≡ −J2χ(x − x′) is the RKKY coupling, J is the Kondo coupling, x,

x′ denote impurity positions. The characteristic scale of the RKKY interaction is given by

ERKKY ∼ J2ρ. If the Kondo temperature exceeds the RKKY interaction, TK + ERKKY , a

dense Kondo ground state is formed (30), in which the impurity resonances scatter electrons

in a coherent fashion and do not enhance the electrical resistivity, as shown in Figures 1.9(b),

1.10. Instead, the resonances work together to form strongly correlated metals with heavy

quasiparticles. Such metals are known as Kondo lattice materials, examples of which include

CeCu6, CeCoIn5, Y bRh2Si2 and URu2Si2.

The Kondo effect involves the emergence of a composite heavy fermion formed by binding

electrons on logarithmically large energy scales out to the band-width. These new electronic

states are injected into the conduction electron sea near the Fermi energy. For a single impurity,

this leads to a single isolated resonance. In a lattice, the presence of a new multiplet of fermionic

states at each site leads to the formation of a coherent heavy electron band with an expanded

Fermi surface, as illustrated in Figure 1.10.
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(a) (b)

Figure 1.9: Comparison of single impurity Kondo effect (a) and Kondo effect in a lattice en-
vironment (b). (a): Single impurity Kondo effect. Shown is the development of the resistivity
minimuma for Fe in a series of Mo − Nb alloys, after Sarachick et al., 1964 (49; 50). (b):
Kondo effect in a lattice environment. Shown is the resistivity vs. temperature in select heavy
fermion metals, after Fisk et al., 1986 (51). The origin of the resistivity maximum is the onset of
coherence at TK . At low temperatures, the resistivity reverts to a typical Fermi liquid behavior
ρ ∝ T 2, as shown in the inset.

1.5.1 STM studies of the single impurity Kondo problem

Tunneling studies of materials with magnetic impurities date back to early 1960’s, when zero-

bias voltage anomalies were observed in semiconductor p-n junctions and in tunnel junctions

of normal metals separated by thin oxide films (111; 112). The explanation of the anomalies

advanced by Appelbaum (121) and Anderson (122) invoked the Kondo effect, involving localized

paramagnetic states in the oxide, due to transition metal impurities or interstital atoms of the

transition metal near the metal-oxide interface.

In 1998 direct observation of the Kondo phenomenon with STM was achieved (55; 56).

Madhavan et al. (55) studied individual cobalt (Co) atoms deposited in a gold host, at T = 4 K,

well below TK = 19 K. At impurity sites, the shape of the resonance was found to be asymmetric

Fano-like, reflecting quantum interference between tunneling directly into the Kondo impurity

state screened by the conduction electrons and tunneling into conduction electron states. Similar

effects were later observed in quantum dots (57).
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(a)

(b)

Figure 1.10: Comparison of single impurity Kondo effect and Kondo effect in a lattice environ-
ment, after P. Coleman, 2002 (52). (a): Single impurity Kondo effect builds a single fermionic
level into the conduction sea, which gives rise to a resonance in the conduction electron density
of states. (b): Lattice Kondo effect builds a fermionic resonance into the conduction sea in
each unit cell. The elastic scattering off this lattice of resonances leads to formation of a heavy
electron band, of width TK .

1.5.2 Scanning tunneling spectroscopy as a probe of Kondo lattice

materials

Kondo lattice materials contain localized electrons in 4f- or 5f-shells interacting with conduction

electrons. At room temperatures, the f-electrons form local moments which lead to Curie

susceptibility. As the material is cooled, the local moments get screened by the conduction

electrons, and the local spins hybridized with the conduction electrons form heavy quasiparticles,

which develop masses hundreds and even thousands times the bare electron mass (50; 52; 54). In

the heavy electron state, elastic scattering at different sites of the Kondo lattice is coherent, so

that the electrical resistance of the material drops (53). The advent of coherence is characterized

by the formation of a large Fermi surface, which now includes both spins and conduction

electrons, confirmed by de Haas - van Alphen measurements (54). Major open questions in the

physics of Kondo lattice materials involve microscopic origins of the superconductivity and of

the non-Fermi liquid behavior in the vicinity of quantum critical points (52). Superconductivity

in Kondo lattice materials is most likely driven by the antiferromagnetic coupling (132).

To date, most of the experimental techniques applied to Kondo lattice materials have been

bulk probes. Aside from point contact spectroscopy and de Haas - van Alphen studies, few
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Figure 1.11: Observation of Fano resonance in STM experiments on Co:Au by Madhavan et al.,
1998 (55). A pair of dI/dV (V ) spectra taken from the STM tip held over a single Co atom and
over the nearby bare Au surface (a constant slope has been subtracted from both curves, and
they have been shifted vertically). The feature identified as a Kondo resonance appears over
the Co atom. Dashed curve shows a fit to the data with a modified Fano theory.

experimental techniques have probed Kondo lattice materials at the microscopic level.

Recently, scanning tunneling studies of a Kondo lattice material URu2Si2 became possible

(117). If it proves possible to apply scanning tunneling spectroscopy to Kondo lattice materials,

then remarkable new opportunities in the ongoing investigation may emerge.

Tunneling into a lattice of spins calls for a special discussion. Whilst STM is probing low-

energy excitations, a spin represents a high-energy state. Yet it does participate in tunneling,

via a virtual co-tunneling mechanism (123). In a virtual co-tunneling mechanism, a low-energy

electron from the tip tunnels into a conduction electron state in the metal, which participates

in spin-flip scattering off a magnetic impurity. During the spin-flip scattering off the magnetic

impurity, the conduction electron tunnels into a high-energy f-electron state of the impurity,

while the f-electron tunnels out of the impurity into the conduction sea. Thus, in a Kondo

lattice, a tip electron has two tunneling routes: direct tunneling route into the conduction

band, and the co-tunneling route, which involves a magnetic impurity of the Kondo lattice, as

shown in Figure 1.12. The coexistence of the two tunneling routes in Kondo lattices causes

interference effects, observed in the tunneling current I(eV ):

dI

dV
(eV ) ∝ |Ψ1(E) + Ψ2(E)|2|E=eV ,
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Figure 1.12: Comparison of (a): Tunneling in cuprates, where a single tunneling route is avail-
able, and (b): Tunneling in Kondo lattices, where direct tunneling into the conduction band
coexists with co-tunneling. (b): Tunneling of an electron from a tip into a heavy-fermion
material involves two types of processes. The first one corresponds to the tunneling with an
amplitude tc into conduction sites. The second one consists of tunneling with an amplitude
tf into the composite states between the conduction electrons and local magnetic f -moments.
These composite states represent the fabric of the coherent heavy-fermion state of the Kondo
lattice formed below coherence temperature TK . The inset shows the typical differential con-
ductance curve as a function of voltage at temperatures well below TK .

where Ψ1(E) is the amplitude for direct tunneling into the conduction band, and Ψ2(E) = [spin-

flip] × Ψ1(E) is the co-tunneling amplitude. A comparison of tunneling in cuprates, where a

single tunneling route into the electronic band is available, and tunneling in Kondo lattices,

where direct tunneling into the conduction band coexists with co-tunneling, is given in Figure

1.12.

In Chapter 5, we examine the effect of co-tunneling to develop a theory of tunneling into a

Kondo lattice. We find that the interference between the direct tunneling and the co-tunneling

channels leads to a novel asymmetric lineshape, which has two peaks and a gap. The presence

of the peaks suggests that the interference is more dramatic in the case of Kondo lattice than in

the single impurity case, because of the coherence. These features should be observed in future

tunneling experiments on Kondo lattice materials.
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Chapter 2

Coherence factors in STM measurement

2.1 Introduction

In the superconducting state, strongly correlated materials, such as copper oxide superconduc-

tors, tend to retain a partially gapped Fermi surface, with nodes, which form to help escape

strong Coulomb interaction. In the case of underdoped cuprates, even the normal state re-

tains a gap in the single-particle excitation spectrum, the so-called “pseudogap” (see Figure

1.7). Originally observed in nuclear magnetic resonance studies (33) as a rapid suppression of

low-frequency spectral weight setting in at T ∗ + Tc, far above the superconducting transition

temperature Tc, the pseudogap manifests itself in both charge and spin dynamics (32; 36).

No consensus has been reached on the origin of the pseudogap and its relation to the super-

conductivity. There are two broad classes of theories for the origin of the pseudogap:

• “alternative order” theories (37; 38; 39; 40; 41), suggesting that the pseudogap is associ-

ated with another type of order, different from Cooper pairing, and

• “superconductivity precursor” theories (35; 36).

Examples of the “alternative orders” proposed in the pseudogap region include charge density

wave, spin density wave, d-density wave (39), circulating currents (40), staggered fluctuating

currents (37) and stripes. The “superconductivity precursor” theories argue that in the pseu-

dogap state, the material is a phase-fluctuating superconductor, which superconducts at short

length scales, but fails to superconduct at long length scales because of lack of phase coherence

(35; 36). It has been suggested that Cooper pairs form at T ∗ + Tc, a temperature scale related

to the pseudogap, and condense at the superconducting transition temperature Tc (42; 43; 44).

Recent STM experiments support the phase-fluctuating superconductor scenario (42).

2.2 STM as a probe of nodal quasiparticles

A number of studies have employed STM to help sort out the pseudogap origin controversy.

In particular, Fourier Transform Scanning Tunneling Spectroscopy (FT-STS) has been used to
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Figure 2.1: T dependences of the DOS measured by STM. (a): Junction between a gold sample
and a niobium tip with Tc ≈ 9 K, ∆p = 1.5 meV. Adapted from Pan et al. (28). (b): Junction
between an iridium tip and underdoped Bi2212 with Tc ≈ 83 K, ∆p = 44 meV, and T ∗ near
room temperature. Adapted from Renner et al. (27), after Ø. Fischer et al. (66).

search for possible alternative orders. In such experiments, the STM tip is scanned over a large

field of view of order 600 Å× 600 Å, collecting the map of dI/dV (r, V ), which is then Fourier

transformed and examined for possible patterns. In cuprates, the resulting dI/dV (q, V ) maps

are dominated by a small set of q-vectors.

Modulations of local density of states (LDOS) were first reported by C. Howald et al. (68)

in a magnetic field. Using FT-STM, J.E. Hoffman et al. (70) have found zero-field LDOS

modulations, which dispersed with bias voltage. A further study by K. McElroy et al. (71)

has identified eight dispersive peaks in dI/dV (q, V ) maps, which dominated the patterns in

momentum space, as shown in Figure 2.2(a). Q.-H. Wang and D.-H. Lee (73) have proposed

that the origin of the dispersive LDOS modulations was quasiparticle interference.

A well-known phenomenon in metals, quasiparticle interference (QPI), involves scattering of

low-frequency excitations off certain perturbations, such as disorder and crystal defects. When

a wave with momentum ki scatters into a wave with momentum kf , a modulation of q = kf −ki

is observed in the interference landscape. Indeed, in conventional metals and semiconductors,

QPI has been widely used to determine the surface band structures (81; 82; 83).
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(a) (b)

Figure 2.2: Quasiparticle interference (QPI) patterns in a high-Tc cuprate analyzed in terms
of “octet” model. (a): QPI patterns observed in Ca2−xNaxCuO2Cl2 (60). (b): Schematic
representation of k-space electronic states in a high-Tc cuprate. Normal-state Fermi surface
(red curves) and contours of constant energy for Bogoliubov quasiparticles (blue curves) in the
1st Brillouin zone. White and shaded areas represent k-space regions with opposite signs of
d-wave superconducting gap. Arrows denote scattering q-vectors responsible for QPI patterns.

In an STM experiment the differential tunneling conductance is obtained, which is propor-

tional to local density of states (22):

dI

dV
(r, eV ) ∝ ρ(r, eV ).

Quenched disorder produces fluctuations in the local density of states ρ(r, eV ):

δρ(r, eV ) = ρ(r, eV ) − ρ(r, eV ).

The quantity of greatest interest is the fluctuation in the Fourier transformed local density of

states in response to the impurity potential, δρ(q, eV ). According to the quasiparticle interfer-

ence interpretation of the experiment, these fluctuctuations are proportional to the scattering

rates of the low-energy (Bogoliubov) quasiparticles:

δρ(q, eV ) ∝ Σkwk→k+q(eV ).

In cuprates, low-energy quasiparticles have a dispersion

E(k) =
√
ε(k)2 + ∆(k)2,

where ε(k) and ∆(k) are dispersion relations of normal-state band and superconducting gap,

respectively (78; 79). In high-Tc cuprates, the superconducting gap has dx2−y2-wave symmetry
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Figure 2.3: Fridel oscillations around incorporated SiGa dopants in GaAs observed with STM.
(a): STM image of the (110)-cleaved, 2× 1018 cm−3 Si-doped GaAs surface. Scan size 220 Å×
150 Å. The relative tip height is given by a grey scale, from 0 to 1.3 Å. Set-point current is 40
pA, sample voltage -2.5 V. Two dopant-induced features are displayed. Each feature consists of
a bright spot in the middle, surrounded by a black ring and another white ring. The outermost
ring is more pronounced in (b). (b): Cross section through the middle of the left feature along
line A. The atomic lattice is filtered out. Clearly the two maxima of the outermost ring and
the minima of the dark ring can be seen. After M.C.M.M. van der Wielen et al. (67).
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(84) and vanishes along the (±π,±π) directions (diagonals of the unit cell). The dispersion

E(k) gives rise to four “banana-shaped” contours of constant energy, as shown in Figure 2.2(a).

As we have mentioned above, QPI patterns in high-Tc cuprates are dominated by a small

set of peaks, which have been analyzed with the so-called “octet” model (71; 73). The “octet”

model suggests that the positions of the peaks in quasiparticle interference patterns dI/dV (q, V )

are given by the q-vectors connecting points on the constant-energy contours with the largest

density of states. According to the “octet” model, the amplitudes of the standing waves become

large if the momentum transfer q connects the ends of the “bananas”, where the joint DOS is

the largest. This determines the locations of seven distinct scattering vectors (qi (i = 1 − 7)

in q space. The quasiparticle states located at the ends of the bananas lie on the normal state

Fermi surface (red curves in Figure 2.2(a)), where ε(k) = 0, and the energy E(k) = |∆(k)| at

these points corresponds to the magnitude of superconducting gap.

The “octet” model is based on Fermi’s golden rule (69). For elastic scattering in a metal,

the scattering amplitude is given by

w(i → f) ∝ 2π
! ni(ki, E)nf (kf , E)|V (q)|2,

where V (q) is the scattering potential, q = kf − ki is the momentum transfer, ni(ki, E) and

nf (kf , E) are the occupation numbers for the initial and the final states,

n(k, E) ∝ 1
|∇k(E)| .

The scattering amplitude is maximal, when the joint density of states,

JDOS(ki,kf ) ≡ ni(ki, E)nf (kf , E),

is maximal, which happens, when the gradients |∇k(E)| for k = ki,kf are minimized. According

to the “octet” model, these points are located at the ends of the “banana”-shaped contours.

2.3 Coherence factor effects in superconductors

Fundamental studies of unconventional superconductors are currently hindered by the scarcity

of direct methods to determine the structure of the superconducting order parameter. Apart

from Josephson junction experiments, few spectroscopic probes provide the valuable information

about the phase of the order parameter. In this Chapter, we discuss how phase sensitive

coherence effects can be studied using scanning tunneling spectroscopy/microscopy (STS/STM).

The key idea is that the evolution of the phase of the order parameter in momentum space

can be determined from the Fourier transformed fluctuations in the tunneling density of states.
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The sensitivity of these fluctuations to the scattering rates of superconducting quasiparticles

manifests itself through coherence factor effects. Quasiparticles in a superconductor are a

coherent superposition of excitations of electrons and holes. Coherence factors characterize

how the scattering rate of a superconducting quasiparticle off a given scatterer differs from the

scattering rate of a bare electron off the same scatterer (77). Coherence factors are determined

by combinations of the Bogoliubov coefficients uk and vk, which give proportions of the particle

and hole components that constitute a superconducting quasiparticle,

ck↑ = ukak↑ + vka†
−k↓, (2.1)

ck↓ = −vka†
k↓ + uka−k↑. (2.2)

The momentum-dependent order parameter ∆k = |∆k|eiφ(k) has the same sign as the Bogoli-

ubov coefficient vk, so that studies of scattering rates of quasiparticles with different momenta

can delineate how the phase of the order parameter φ(k) changes in momentum space.

In isotropic s-wave superconductors, coherence factor effects were originally observed as

anomalies in temperature dependencies of various measurable quantities, which involve scatter-

ing rates of superconducting quasiparticles. For example, in s-wave superconductors, nuclear

spin relaxation rate (13) and infrared absorption rate (15), quantities associated with interac-

tion of the quasiparticles with an electromagnetic field, exhibit an enhancement just below the

superconducting transition temperature Tc, known as the Hebel-Slichter peak. By contrast,

ultrasonic attenuation rate, associated with scattering of superconducting quasiparticles off a

scalar potential, is depressed just below the superconducting transition temperature Tc (14),

relative to that of a normal metal.

In d-wave superconductors, coherence factor effects are typically suppressed by a strong

anisotropy of the superconducting gap ∆(k) (80). However, scanning tunneling spectroscpy

does provide an opportunity to observe coherence factor effects in a d-wave superconductor, as

we discuss next.

In studies of unconventional superconductors with spatially varying order parameter, scan-

ning tunneling spectroscopy provides a spectroscopic probe with a real space resolution at the

atomic level. In the past, observation of phase sensitive coherence effects with STM has been

thwarted by the problem of controlling the scatterers (69). An ingenious solution of this problem

has been found in the application of a magnetic field, which introduces vortices as controllable

scatterers in a given system (60).

In this Chapter, we develop a framework for observation of coherence factor effects with

Fourier Transform Scanning Tunneling Spectroscopy (FT-STS).
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2.4 LDOS correlators Reven and Rodd have well-defined coherence fac-

tors

We describe the electron field inside a superconductor by a Balian-Werthammer spinor (74)

Ψ(r, τ) =





ψ↑(r, τ)

ψ↓(r, τ)

ψ†
↓(r, τ)

−ψ†
↑(r, τ)




,

where r denotes real space coordinates and τ is imaginary time. The Nambu Green’s function

is defined as the ordered average

Ĝαβ(r′, r; τ) = −〈TτΨα(r′, τ)Ψ†
β(r, 0)〉. (2.3)

Tunneling measurements determine local density of states, which is given by

ρ(r,ω) =
1
π

Im Tr
1 + τ3

2
[G(r, r;ω − iδ)] , (2.4)

where G(r′, r; z) is the analytic continuation G(r′, r; iωn) → G(r′, r; z) of the Matsubara Green’s

function

G(r′, r; iωn) =
∫ β

0
G(r′, r; τ)eiωnτdτ, (2.5)

with ωn = (2n+1)πT . The appearance of the combination 1+τ3
2 in (2.4) projects out the normal

component of the Nambu Green’s function

Tr
1 + τ3

2
G(r′, r; τ) = −

∑

σ

〈Tτψσ(r′, τ)ψ†
σ(r, 0)〉. (2.6)

The mixture of the unit and the τ3 matrices in this expression prevents the local density of

states from developing a well-defined coherence factor. We now show that the components of

the local density of states that have been symmetrized or antisymmetrized in the bias voltage

have a well-defined coherence factor. The key result here is that

ρ(r,ω) ± ρ(r,−ω) =
1
π

Im Tr









1

τ3




G(r, r;ω − iδ)



 . (2.7)

In particular, this implies that the antisymmetrized density of states has the same coherence

factor as the charge density operator τ3.

To show these results, we introduce the “conjugation matrix” C = σ2τ2, whose action on

the Nambu spinor is to conjugate the fields,

CΨ = (Ψ†)T ≡ Ψ∗, (2.8)
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effectively taking the Hermitian conjugate of each component of the Nambu spinor. This also

implies that Ψ†C = ΨT . Here τi are Pauli matrices acting in particle-hole space, for example,

τ3 =



 1 0

0 −1



 ,

and σi are Pauli matrices acting in spin space,

σi =



 σi 0

0 σi



 .

Using (2.8), it follows that

[CG(r′, r; τ)C]αβ = −〈TτCΨ(r′, τ)Ψ†(r, 0)C〉αβ

= −〈TτΨ∗
α(r′, τ)ΨT

β (r, 0)〉

= 〈TτΨβ(r, 0)Ψ†
α(r′, τ)〉

= −Gβα(r, r′,−τ), (2.9)

or, in the matrix notation,

CG(r, r′; τ)C = −GT (r′, r;−τ), (2.10)

which in turn implies for the Matsubara Green’s function (2.5)

CG(r, r′; iωn)C = −GT (r′, r;−iωn). (2.11)

For the advanced Green’s function, which is related to the Matsubara Green’s function via

analytic continuation, G(r, r′, iωn) → G(r, r′, z), we obtain

CG(r, r′;ω − iδ)C = −GT (r′, r;−ω + iδ). (2.12)

Using this result and the commutation relations of Pauli matrices, we obtain

ρ(r,−ω) = − 1
π

Im Tr
1 + τ3

2
G(r, r;−ω + iδ) =

=
1
π

Im Tr
1 + τ3

2
C GT (r, r;ω − iδ) C =

=
1
π

Im Tr
1 − τ3

2
G(r, r;ω − iδ). (2.13)

Finally, we obtain

ρ(r,ω) ± ρ(r,−ω) =
1
π

Im Tr
[
1 + τ3

2
G(r, r;ω − iδ) ± 1 − τ3

2
G(r, r;ω − iδ)

]
=

=
1
π

Im Tr









1

τ3




G(r, r;ω − iδ)



 . (2.14)
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2.5 Coherence factors in a BCS superconductor, T-matrix approxi-

mation

Next, applying this result to a BCS superconductor, we show that in the t-matrix approximation,

coherence factors that arise in the conductance ratio Z(q, V ) are given by a product of the

coherence factors associated with the charge operator and the scattering potential.

T-matrix approximation (75; 76) allows to compute the Green’s function in the presence

of multiple scattering off impurities. In terms of the bare Green’s function G(k,ω) and the

impurity t-matrix t̂(k,k′), the full Green’s function is given by

G̃(k,k′,ω) = G(k,ω) + G(k,ω)t̂(k,k′)G(k′,ω) = G(k,ω) + δG(k,k′,ω). (2.15)

Using this expression, we obtain for the Fourier transformed odd fluctuations in the tunneling

density of states

δρodd(q,ω) =
1
2π

Im
∫

k
Tr
[
τ3δGk+,k−(ω − iδ)

]
=

=
1
2π

Im
∫

k
Tr
[
τ3Gk−(ω − iδ)t̂(q,k)Gk+(ω − iδ)

]
. (2.16)

The Fourier transformed even fluctuations in the tunneling density of states

δρeven(q,ω) =
1
2π

Im
∫

k
Tr
[
δGk+,k−(ω − iδ)

]
=

=
1
2π

Im
∫

k
Tr
[
Gk−(ω − iδ)t̂(q,k)Gk+(ω − iδ)

]
. (2.17)

For scattering off a single impurity with a scattering potential Û(k,k′), the t-matrix t̂(k,k′)

denotes the infinite sum

t̂(k,k′) = Û(k,k′) +
∑

k′′

Û(k,k′′)G(k′′,ω)Û(k′′,k′) + ... =

= Û(k,k′) +
∑

k′′

Û(k,k′′)G(k′′,ω)t̂(k′′,k′). (2.18)

Working in the Born approximation, which is equivalent to taking only the first term in the

series (2.18), we derive the expressions for the coherence factors associated with some common

scattering processes that arise in the even and odd density-density correlators Reven(q, V ) and

Rodd(q, V ) in a BCS superconductor (see Table 2.1). We use the following expression for the

BCS Green’s function for an electron with normal state dispersion εk and gap function ∆k:

Gk(ω) = [ω − εkτ3 −∆kτ1]−1, (2.19)

t̂(q,k) is the scattering t-matrix of the impurity potential, and k± = k± q/2. If the scattering

potential has the t-matrix given by t̂(q,k) = T3(q) τ3, corresponding to a weak scalar (charge)
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scatterer, the change in the odd part of the Fourier transformed tunneling density of states

becomes δρodd
scalar(q,ω) = T3(q) Λodd

scalar(q,ω) with

Λodd
scalar(q,ω) =

1
2π

Im
∫

k

[z2 + εk+εk− −∆k+∆k−

(z2 − E2
k+

)(z2 − E2
k−

)

]

z=ω−iδ
, (2.20)

where Ek = [ε2k + ∆2
k] 1

2 is the quasiparticle energy. Expressed in terms of the Bogoliubov

coefficients uk and vk, given by

u2
k(v2

k) =
1
2
(1 ± εk/Ek)

, the expression under the integral in (2.20) is proportional to (u+u− − v+v−)2.

Fluctuations in the even part of the Fourier transformed tunneling density of states due to

scattering off a scalar impurity are substantially smaller, Reven
scalar(q,ω) . Rodd

scalar(q,ω), where

Reven(odd)
scalar (q,ω) is defined by (2.32), δρeven

scalar(q,ω) = T3(q) Λeven
scalar(q,ω) with

Λeven
scalar(q,ω) =

1
2π

Im
∫

k

[ z(εk+ + εk−)
(z2 − E2

k+
)(z2 − E2

k−
)

]

z=ω−iδ
. (2.21)

Expressed in terms of the Bogoliubov coefficients uk and vk, the expression under the integral

in (2.21) is proportional to (u+u− + v+v−)(u+u− − v+v−), and is, therefore, small for the

nodal quasiparticles involved, |Λeven
scalar(q,ω)| . |Λodd

scalar(q,ω)|. Thus, scattering off a weak

scalar impurity contributes predominantly to odd-parity fluctuations in the density of states,

Rodd(q, V ).

In a second example, consider scattering off a pair-breaking “Andreev” scatterer with the

t-matrix given by t̂(q,k) = T1(q,k) τ1. Here the change in the even and odd parts of the

Fourier transformed tunneling density of states are δρeven(odd)
A (q,ω) = Λeven(odd)

A (q,ω) with

Λeven
A (q,ω) =

1
2π

Im
∫

k
T1(q,k)

[ z(∆k+ + ∆k−)
(z2 − E2

k+
)(z2 − E2

k−
)

]

z=ω−iδ
, (2.22)

Λodd
A (q,ω) =

1
2π

Im
∫

k
T1(q,k)

[ εk+∆k− + εk−∆k+

(z2 − E2
k+

)(z2 − E2
k−

)

]

z=ω−iδ
. (2.23)

In terms of uk and vk, the expressions in square brackets in Λeven
A (q,ω) and Λodd

A (q,ω) are

proportional to (u+u−+v+v−)(u+v− +v+u−) and (u+u−−v+v−)(u+v−+v+u−), respectively.

For the nodal quasiparticles involved, the latter expression is substantially smaller than the

former, |Λodd
A (q,ω)| .| Λeven

A (q,ω)|. Thus, scattering off an Andreev scatterer gives rise to

mainly even parity fluctuations in the density of states, Reven(q, V ).

We summarize the coherence factors arising in Reven(q, V ) and Rodd(q, V ) for some common

scatterers in Table 2.1. The dominant contribution for a particular type of scatterer is given in

bold.
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From Table 2.1, we see that the odd correlator Rodd(q, V ) is determined by a product of coher-

ence factors associated with the charge operator and the scattering potential, while the even

correlator Reven(q, V ) is determined by a product of the coherence factors associated with the

unit operator and the scattering potential.

2.6 Conductance ratio - measure of LDOS

An STM experiment measures the differential tunneling conductance dI
dV (r, V ) at a location r

and voltage V (66). In a simplified model of the tunneling,

dI

dV
(r, V ) ∝

∫ 0

−eV
dω[−f ′(ω − eV )]

∫
dr1dr2M(r1, r)M∗(r2, r)A(r2, r1,ω), (2.24)

where A(r2, r1,ω) = 1
π Im G(r2, r1,ω − iδ) is the single electron spectral function and f(ω) is

the Fermi function. Here r1, r2 and r are the two-dimensional coordinates of the incoming and

outgoing electrons, and the position of the tip, respectively. M(r1, r) is the spatially dependent

tunneling matrix element, which includes contributions of the sample wave function around the

tip.

Assuming that the tunneling matrix element is local, we write M(r1, r) = M(r)δ(2)(r1 − r),

where M(r) is a smooth function of position r. In the low-temperature limit, when T → 0,

the derivative of the Fermi function is replaced by a delta-function, −f ′(ω − eV ) = δ(ω − eV ).

With these simplifications, we obtain

dI

dV
(r, V ) ∝ |M(r)|2ρ(r, V ), (2.25)

where ρ(r, V ) = A(r, r, V ) is the single-particle density of states. In the WKB approach

the tunneling matrix element is given by |M(r)|2 = e−2γ(r) with γ(r) =
∫ s(r)
0 dx

√
2mφ(r)

!2 =
s(r)

!
√

2mφ(r), where s(r) is the barrier width (tip-sample separation), φ(r) is the barrier height,

which is a mixture of the work functions of the tip and the sample, m is the electron mass

(66; 69). Thus, the tunneling conductance is a measure of the thermally smeared local density

of states (LDOS) of the sample at the position of the tip.

Table 2.1: Coherence factors C(q) in Reven(odd)(q, V ) for some common scatterers.

T-matrix Scatterer C(q) in Reven(q, V ) C(q) in Rodd(q, V ) Enhanced qi

τ3 Weak Scalar (uu′ + vv′)(uu′ − vv′) (uu′ − vv′)2 2,3,6,7
σ ·m Weak Mag. 0 0 None
i sgn ω 1̂ Resonant (uu′ + vv′)2 (uu′ + vv′)(uu′ − vv′) 1,4,5
τ1 Andreev (uu′ + vv′)(uv′ + vu′) (uu′ − vv′)(uv′ + vu′) 1,4,5
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To filter out the spatial variations in the tunneling matrix elements M(r), originating from

local variations in the barrier height φ and the tip-sample separation s, the conductance ratio

is taken:

Z(r, V ) =
dI
dV (r, +V )
dI
dV (r,−V )

=
ρ(r, +V )
ρ(r,−V )

=
ρ0(+V ) + δρ(r, +V )
ρ0(−V ) + δρ(r,−V )

. (2.26)

For small fluctuations of the local density of states, δρ(r,±V ) . ρ0(±V ), Z(r, V ) is given by

a linear combination of positive and negative energy components of the tunneling density of

states,

Z(r, V ) / Z0(V )
[
1 +

δρ(r, +V )
ρ0(+V )

− δρ(r,−V )
ρ0(−V )

]
(2.27)

with Z0(V ) ≡ ρ0(+V )
ρ0(−V ) . The Fourier transform of this quantity contains a single delta function

term at q = 0 plus a diffuse background,

Z(q, V ) = Z0(V )(2π)2δ2(q) + Z0(V )
[δρ(q, +V )
ρ0(+V )

− δρ(q,−V )
ρ0(−V )

]
. (2.28)

Interference patterns produced by quasiparticle scattering off impurities are observed in the

diffuse background described by the second term.

Clearly, linear response theory is only valid when the fluctuations in the local density of

states are small compared with its average value, δρ(r,±V )2 . ρ0(±V )2. In the clean limit,

this condition is satisfied at finite and sufficiently large bias voltages |V | > 0. At zero bias

voltage V → 0, however, the fluctuations in the local density of states become larger than the

vanishing density of states in the clean limit, |δρ(r,±V )| > ρ0(±V ), and linear response theory

can no longer be applied.

At finite bias voltages, |V | > 0, fluctuations in the conductance ratio Z(q, V ) are given by

a sum of two terms, even and odd in the bias voltage:

Z(q, V )|q (=0 = Z0(V )
[
δρeven(q, V )(

1
ρ0(+V )

− 1
ρ0(−V )

) + δρodd(q, V )(
1

ρ0(+V )
+

1
ρ0(−V )

)
]
,

(2.29)

where δρeven(odd)(q, V ) ≡ (δρ(q, +V ) ± δρ(q,−V ))/2.

Depending on the particle-hole symmetry properties of the sample-averaged tunneling den-

sity of states ρ0(V ), one of these terms can dominate. For example, if, at the bias voltages used,

the sample-averaged tunneling density of states ρ0(V ) is approximately particle-hole symmetric,

ρ0(−V ) ≈ ρ0(+V ) = ρ0(V ), then Z(q, V ) is dominated by the part of LDOS fluctuations that

is odd in the bias voltage V ,

Z(q, V )|q (=0 / Z0(V )
2

ρ0(V )
δρodd(q, V ). (2.30)

In general, when we average over the impurity positions, the Fourier transformed fluctuations

in the tunneling density of states, δρ(q, V ), vanish. However, the variance in the density of states
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fluctuations is non-zero and is given by the correlator

R(q, V ) = δρ(q, V )δρ∗(−q, V ). (2.31)

Defining

Reven(odd)(q, V ) = δρeven(odd)(q, V )δρ∗even(odd)(−q, V ), (2.32)

we obtain that for q &= 0

|Z(q, V )|2 =
4|Z0(V )|2
ρ20(V )

Rodd(q, V ). (2.33)

2.7 Observation of coherence factor effects in QPI: coherence factors

and the octet model

In high-Tc cuprates the quasiparticle interference (QPI) patterns, observed in the Fourier trans-

formed tunneling conductance dI(q, V )/dV ∝ ρ(q, V ), are dominated by a small set of wavevec-

tors q1−7, connecting the ends of the banana-shaped constant energy contours (70; 68; 73).

This observation has been explained by the so-called “octet” model, which suggests that the

interference patterns are produced by elastic scattering off random disorder between the regions

of the Brillouin zone with the largest density of states, so that the scattering between the ends

of the banana-shaped constant energy contours, where the joint density of states is sharply

peaked, gives the dominant contribution to the quasiparticle interference patterns.

In essence, the octet model assumes that the fluctuations in the Fourier transformed tun-

neling density of states are given by the following convolution:

δρ(q, V ) ∝
∫

k
ρ(k+,ω)ρ(k−,ω).

While this assumption allows for a qualitative description, it is technically incorrect (98; 96),

for the correct expression for change in the density of states involves the imaginary part of

a product of Green’s functions, rather than a product of the imaginary parts of the Green’s

function, as written above. In this section, we show that the fluctuations in the conductance

ratio at wavevector q, given by Z(q, V ), are, nevertheless, related to the joint density of states

via a Kramers-Kronig transformation, so that the spectra of the conductance ratio Z(q, V ) can

still be analyzed using the octet model.

As we have discussed, fluctuations in the density of states δρ(q, V ) are determined by scatter-

ing off impurity potentials and have the basic form (2.16). This quantity involves the imaginary

part of a product of two Green’s functions, and as it stands, it is not proportional to the joint
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density of states. However, we can relate the two quantities by a Kramers-Kronig transforma-

tion, as we now show.

We write the Green’s function as

Gk(E − iδ) =
∫

dω

π

1
E − ω − iδ

G′′
k(ω − iδ), (2.34)

where G′′
k(ω − iδ) = 1

2i (Gk(ω − iδ) − Gk(ω + iδ)). Substituting this form in (2.16), we obtain

δρodd(q, E) =
1

2π2

∫

k
Tr
[
τ3

∫
dE′ [ 1

E − E′

∑

k

G′′
k−(E)t̂(q,k)G′′

k+(E′) − [E ↔ E′]
]]

.

As we introduce the joint density of states,

J(q, E, E′) = 1
π2

∑
k Tr[τ3G′′

k−(E)t̂(q,k)G′′
k+(E′)], (2.35)

(2.35) becomes

δρodd(q,ω) =
1
2

∫
dE′ 1

E − E′ [J(q, E, E′) + J(q, E′, E)]. (2.36)

The Fourier transformed conductance ratio Z(q, E) given by (2.30) now becomes (for q &= 0)

Z(q, E) = 1
ρ0(E)

∫
dE′ 1

E−E′ [J(q, E, E′) + J(q, E′, E)]. (2.37)

Substituting the expression for the BCS Green’s function (2.19) in (2.35), we obtain

J(q, E, E′) = 1
4

∑
k

1
Ek+Ek−

Tr[τ3(E + εk−τ3 + ∆k−τ1)t̂(q,k)(E′ + εk+τ3 + ∆k+τ1)] ·

· [δ(E − Ek−) − δ(E + Ek−)][δ(E′ − Ek+) − δ(E′ + Ek+)] · sgnE · sgnE′,

where Ek± ≡
√
ε2k±

+ ∆2
k±

. Provided both the energies are positive, E, E′ > 0, we obtain

J(q, E, E′) =
∑

k1,k2
C(k1,k2)δ(E − Ek1)δ(E′ − Ek2)δ(2)(k1 − k2 − q), (2.38)

where the coherence factor is

C(k1,k2) ≡
1
4

1
Ek1Ek2

Tr[τ3(E + εk1τ3 + ∆k1τ1)t̂(k1,k2)(E′ + εk2τ3 + ∆k2τ1)]. (2.39)

Now the fluctuations in the conductance ratio at wavevector q are given by:

Z(q, E)|q (=0 ∝
∫

dE′

E − E′

∫
dk1dk2C(k1,k2)δ(E − Ek1)δ(E

′ − βEk2)δ
(2)(k1 − k2 − q).

Thus, the fluctuations in the conductance ratio Z(q, E) are determined by a Kramers-Kronig

transform of the joint density of states with a well-defined coherence factor.

Conventionally, coherence factors appear in dissipative responses, such as (2.38). The ap-

pearance of a Kramers-Kronig transform reflects the fact that tunneling conductance is deter-

mined by the non-dissipative component of the scattering. The validity of the octet model
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depends on the presence of sharp peaks in the joint density of states. We now argue that

if the joint density of states contains sharp peaks at well-defined points in momentum space,

then these peaks survive through the Kramers-Kronig procedure, so that they still appear in

the conductance ratio Z(q, E) with a non-Lorentzian profile, but precisely the same coherence

factors. We can illustrate this point both numerically and analytically. Figure 1 contrasts joint

density of states with the Fourier transformed conductance ratio Z(q, E) for scattering off a

weak scalar impurity, showing the appearance of the “octet” scattering wavevectors in both

plots. Similar comparisons have been made by earlier authors (96; 98).

Let us now repeat this analysis analytically. Suppose J(q, E1, E2) (2.38) has a sharp peak

at an octet q vector, q = qi (i = 1 − 7), defined by the delta function J(q, E1 = E, E2 = E) =

Ciδ(2)(q − qi), where Ci is the energy-dependent coherence factor for the ith octet scattering

process. When we vary the energy E2 away from E, the position of the characteristic octet

vector will drift according to

qi(E1, E2) = qi(E) −∇E1qi(E1 − E) + ∇E2qi(E2 − E), (2.40)

where ∇E1qi = 1
v∆

n̂1(i) and ∇E2qi = 1
v∆

n̂2(i) are directed along the initial and final quasipar-

ticle velocities, and v∆ is the quasiparticle group velocity. Carrying out the integral over E′ in

(2.40) we now obtain

Z(q, E) ∝
∫

dE′ Ci

E − E′

[
δ(q − qi(E) − n̂2

v∆
(E′ − E)) + δ(q − qi(E) +

n̂1

v∆
(E′ − E))

]

= Ci

[ 1
(q − qi)‖1

δ
(
(q − qi)⊥1

)
− 1

(q − qi)‖2
δ
(
(q − qi)⊥2

)]
, (2.41)

where

(q − qi)‖1,2 = (q − qi) · n̂1,2(i)

denotes the component of (q − qi) parallel to the initial/final quasiparticle velocity and

(q − qi)⊥1,2 = (q − qi) · [ẑ × n̂1,2(i)]

denotes the component of (q−qi) perpendicular to the initial/final quasiparticle velocity, where

ẑ is the normal to the plane. Thus, a single sharp peak in the joint density of states produces

an enhanced dipolar distribution in the conductance ratio Z(q, E), with the axes of the dipoles

aligned along the directions of the initial and final quasiparticle velocities. The above analysis

can be further refined by considering the Lorentzian distribution of the quasiparticle interference

peaks, with the same qualitative conclusions.

To summarize, the conductance ratio Z(q, E) is a spectral probe for fluctuations in the

quasiparticle charge density in response to disorder. Z(q, E) is characterized by the joint
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(a) (b)

Figure 2.4: (Color online) Observation of coherence factor effects in the squared joint density
of states |J(q, V, V )|2 and in the squared Fourier transformed conductance ratio |Z(q, V )|2.
Figure (a) shows the squared joint density of states |J(q, V, V )|2 at the bias voltage V = ∆0/2,
Figure (b) shows the squared Fourier transformed conductance ratio |Z(q, V )|2 produced by a
weak scalar scattering potential t̂(q) = τ̂3. Red lines label the positions of the sign-reversing
q-vectors q = q2,3,6,7, where weak scalar scattering is peaked. Blue lines label the positions of
the sign-preserving q-vectors q = q1,4,5, where weak scalar scattering is minimal.

coherence factors of charge (τ3) and the scattering potential. Provided the original joint density

of states is sharply peaked at the octet vectors qi, i = 1 − 7, the conductance ratio Z(q, E) is

also peaked at the octet vectors qi, i = 1 − 7.
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Chapter 3

Observation of coherence factor effects in a high-Tc

cuprate using STM

In this chapter, we offer a qualitative interpretation of the recent scanning tunneling experi-

ments by Hanaguri et al. (60) performed on an underdoped cuprate superconductor, calcium

sodium oxychloride, Ca2−xNaxCuO2Cl2 (Na-CCOC), which have successfully observed coher-

ence factor effects with Fourier Transform Scanning Tunneling Spectroscopy (FT-STS) in a

magnetic field.

3.1 Introduction

3.1.1 Superconductors in a magnetic field

In compliance with the Meissner effect, illustrated in Figure 1.1(b), a weak magnetic field only

penetrates a superconductor within a short distance, called the penetration depth λ (77). A

rather strong external magnetic field can, however, destroy the superconductivity by driving a

phase transition into the normal state. Next we discuss how this phase transition takes place.

Macroscopic properties of superconductors were explained by a phenomenological Ginzburg-

Landau theory (7), in 1950. Ginzburg-Landau theory suggested that the transition from the

normal to the superconducting state involves a second order phase transition, and is associated

with a formation of an order parameter ∆. Ginzburg-Landau theory introduces two character-

istic length scales: the superconducting coherence length ξ, and a penetration depth λ.

Abrikosov (8), building on the Ginzburg-Landau theory, predicted the existence of two types

of superconductors: type I and type II, classified according to their behavior in an external

magnetic field. At low magnetic fields, both types exhibit the Meissner effect, expelling magnetic

flux from the sample. As the magnetic field grows, type I superconductors lose superconductivity

abruptly in a first order phase transition at a critical field Hc, while type II superconductors

start to accomodate magnetic field, which enters the sample in the form of flux lines when

the magnetic field exceeds the first critical field H > Hc1, as shown in Figure 3.1(a). Once



35

(a)

(b) (c)

Figure 3.1: Two types of superconductors, classified by their behavior in a strong external
magnetic field. Figure (a) displays the magnetization of type I and type II superconductors as
a function of an external magnetic field H . Figure (b) displays the phase diagram of a type
I superconductor, which transforms into a normal metal via a first-order phase transition in
an external magnetic field. Figure (c) displays the phase diagram of a type II superconductor,
which gets gradually penetrated by a magnetic field exceeding Hc1, and transforms into a
normal metal via a second-order phase transition once the magnetic field reaches Hc2. Source:
wikipedia.
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the magnetic field reaches the second critical field Hc2 + Hc1, it completely destroys the

superconductivity in type II superconductors via a second order phase transition. The resulting

phase diagrams are displayed in Figures 3.1(b), 3.1(c).

In terms of Ginzburg-Landau parameter κ = λ
ξ , type I superconductors have a large coher-

ence length, exceeding the penetration depth, κ < 1/
√

2, whereas type II superconductors have

κ > 1/
√

2. Elemental metals, such as aluminum and tin, are type I superconductors, with large

coherence length of order 100-1000 nm, ξ ∼ 100− 1000 nm. Copper oxide superconductors, by

contrast, are extreme type II superconductors with a short coherence length of order 1-10 nm,

ξ ∼ 1 − 10 nm.

At intermediate magnetic fields, for Hc1 < B < Hc2, a type II superconductor contains flux

lines, known as vortices. The radius of a vortex is given by the coherence length ξ = vF /∆.

Because inside a vortex, an s-wave BCS superconductor is in the normal state, the entire material

is said to be in the mixed state.

3.1.2 Coherence factors in a high-Tc cuprate probed by quasiparticle

scattering off vortices

Coherence factors are a hallmark of superconductivity as a pair-condensation phenomenon.

When electrons pair, quasiparticles develop an acute sensitivity to different types of scatter-

ing potential, described by the appearance of coherence factors in the scattering amplitudes.

While the effects of coherence factors are well established in isotropic superconductors, they

are much harder to detect in their anisotropic counterparts, such as high-Tc cuprates. A

new approach by Hanaguri et al. (60) highlights the momentum-dependent coherence factors in

Ca2−xNaxCuO2Cl2. Using Fourier-transform scanning tunnelling spectroscopy to detect quasi-

particle interference effects, the experiments reveal a magnetic field dependence in quasiparticle

scattering with a sensitivity to the sign of the anisotropic gap. This result can be understood in

terms of d-wave coherence factors and it exposes the role of vortices as quasiparticle-scattering

centers. A magnetic field gives rise to an enlarged gapless region around the gap nodes.

Superconductivity is characterized by macroscopic phase coherence, as exemplified by the

development of a complex order parameter. In this respect, superconductors are similar to

bosonic superfluids, such as He-4 and many phenomenological features are common to both,

such as vortex quantization and the Josephson effect (78). However, superconductors are micro-

scopically distinct from bosonic superfluids, for whereas bosons individually condense, electrons

condense as Cooper pairs. The internal structure of the condensed pairs strongly influences the
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properties of quasiparticle excitations, enforcing coherence between two quasiparticle scattering

processes, ki → kf and −kf → −ki. (ki and kf denote initial and final state momenta, respec-

tively.) This manifests itself as a coherence factor C(ki,kf ) in the scattering matrix element,

which reflects the anisotropy of the superconducting gap and the time-reversal symmetry of the

scattering potential (79). Studies of coherence factors should therefore provide insight into the

nature of electron pairing and quasiparticle scattering processes in unconventional supercon-

ductors.

In s-wave superconductors, the effect of coherence factors is manifested in the temperature

dependence of various measurable quantities associated with quasiparticle scattering. For ex-

ample, the nuclear-spin relaxation rate exhibits an enhancement just below the superconducting

transition temperature Tc, called the Hebel-Slichter peak (13), which is a consequence of co-

herence factors. In unconventional superconductors, however, the effect of coherence factors is

suppressed by the strong momentum k dependence of the anisotropic gap (80).

Hanaguri et al. (60) have proposed a new technique to highlight the k-dependent coher-

ence factors in anisotropic superconductors by introducing vortices as controllable scatterers.

The vortices induced by magnetic field B will generate extra quasiparticle scatterings around

them in which coherence factor effects can be detected. Quasiparticle scattering can be ex-

amined through the Fourier analysis of quasiparticle interference (QPI) patterns imaged by

spectroscopic-imaging scanning tunneling microscopy (SI-STM) (61; 70; 71). Hanaguri et al.

have performed a B-dependent QPI study in a high-Tc cuprate Ca2−xNaxCuO2Cl2. The

B-dependence and spatial variation of QPI intensities can be naturally understood as a man-

ifestation of the d-wave coherence factor and establishes vortices as scattering centers with a

particular momentum selectivity. A B-induced change in the superconducting gap dispersion,

which results an enlarged gapless region near the superconducting gap node, is also revealed by

the measurements.

3.2 Quasiparticle interference in high-Tc cuprates

First we review the QPI effect. In general, QPI is produced by elastic scattering which mixes the

quasiparticle states along the contour of constant energy in momentum k space. This gives rise to

standing waves of particular scattering wavevectors q = kf −ki. To image these standing waves

Hanaguri et al. have used SI-STM to map the tunneling conductance g(r, E) = dI/dV (r, E),

where I and V are the tunneling current and bias voltage, respectively. g(r, E) is a measure

of the local density of states (DOS) at location r and energy E. The amplitude and q of the
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standing wave can be accurately determined from the Fourier transform of g(r, E), g(q, E).

g(q, E) is proportional to the scattering probability (63), given by Fermi’s “golden rule”,

g(q, E) ∝
∫ ∫

V (ki,kf )2J(ki,kf )δ(q − (kf − ki))δ(E(q) − E(ki))δ(E(q) − E(kf )) dki dkf ,

where V (ki,kf ) is a k-dependent scattering matrix element and J(ki,kf , E) denotes a joint

DOS. The dispersion of quasiparticles in k space, E(k), can be experimentally determined from

the E dependence of q. Indeed, in conventional metals and semiconductors, QPI has been

widely used to determine the surface band structures (81; 82; 83).

QPI patterns in the high-Tc cuprates are dominated by a small set of q’s given by the

“octet” model (71). The low-energy excitations in the superconducting states are Bogoliubov

quasiparticles with a dispersion E(k) =
√
ε(k)2 + ∆(k)2, where ε(k) and ∆(k) are dispersion

relations of normal-state band and superconducting gap, respectively (78; 79). In high-Tc

cuprates, the superconducting gap has dx2−y2 -wave symmetry (84) and vanishes along the

(±π,±π) directions (diagonals of the unit cell). The dispersion E(k) gives rise to four “banana-

shaped” contours of constant energy, as shown in Figure 3.2(a). The amplitudes of the standing

waves become large if the momentum transfer q connects the ends of the “bananas”, where the

joint DOS is the largest. This determines the locations of seven distinct scattering vectors (qi

(i = 1 − 7) in Figure 3.2(a)) in q space. The quasiparticle states located at the ends of the

bananas lie on the normal state Fermi surface (red curves in Figure 3.2(a)), where ε(k) = 0,

and the energy E(k) = |∆(k)| at these points corresponds to the magnitude of superconducting

gap.

3.3 Coherence factor effects in quasiparticle interference

In the superconducting state, the coherence of quasiparticle scattering induced by pair forma-

tion causes the scattering probability to acquire an additional k dependence determined by the

coherence factor C(ki,kf ) (79). C(ki,kf ) is given by a combination of Bogoliubov coefficients

uk = sgn(∆(k))
√

(1 + ε(k)/E(k))/2 and vk =
√

1 − u2
k. The detailed form of C(ki,kf ) de-

pends on the nature of the scatterer as summarized in Table 2.1 (69; 73; 79; 99; 100; 101).

For a scalar potential, which is even under time reversal C(ki,kf ) = (ukiukf − vkivkf )2, for a

magnetic scattering potential, which is odd under time reversal C(ki,kf ) = (ukiukf +vkivkf )2.

Scattering off inhomogeneities in the superconducting gap amplitude, which is a kind of inhomo-

geneous Andreev reflection process that converts electrons into holes as they are scattered, gives

rise to the coherence factor C(ki,kf ) = (ukivkf + vkiukf )(ukiukf + vkivkf ) ∝ ∆(ki) + ∆(kf ).

As shown in Figures 3.2(b) and 3.2(c), uk changes its sign in the same way as ∆(k) while
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(a)

(b)

(c)

Figure 3.2: Schematic representation of k-space electronic states in a high-Tc cuprate. (a):
Normal-state Fermi surface (red curves) and contours of constant energy for Bogoliubov quasi-
particles (blue curves) in the 1st Brillouin zone. White and shaded areas represent k-space
regions with opposite signs of d-wave superconducting gap. Arrows denote scattering q vectors
responsible for QPI patterns. They are classified into sign-preserving and sign-reversing vectors
indicated by solid and broken arrows, respectively, according to the relative signs of supercon-
ducting gap between initial and final states. These two kinds of vectors are associated with
different coherence factors as summarized in Table 2.1. (b) and (c): Bogoliubov coefficients
uk (b) and vk (c) are mapped in k space. Note that uk changes its sign according to that of
superconducting gap, while vk is always positive.
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vk is always positive. This leads to a systematic “extinction rule” for qi’s which depends on

the nature of the scatterer. In the case of weak scalar potential scattering, C(ki,kf ) ∼ 0 for

those qi which preserve the sign of superconducting gap ∆(k), namely q1, q4 and q5. By

contrast, for scattering off magnetic impurities or gap inhomogeneities, C(ki,kf ) ∼ 0 for those

qi which reverse the sign of ∆(k). Thus, depending on the type of disorder, sign-reversing,

or sign-preserving scatterings will dominate (69; 99; 100; 101; 73). In this way, QPI patterns

can shed light onto the underlying nature of the quasiparticle scattering processes. However,

in experiments carried out to date (61; 70; 71), each of the qi’s has featured with comparable

intensity, which indicates that more than one kind of scatterers is present in the samples, hiding

the underlying effects of C(ki,kf ).

Introduction of vortices by applying a magnetic field B provides system with scatterers with

definite q selectivity. The phase of the superconducting gap precesses by 2π about each vortex,

where the amplitude of the gap vanishes at its core. Both the phase gradient, proportional to the

superfluid velocity, and the inhomogeneity in the superconducting gap amplitude, induced by the

vortex core, can scatter quasiparticles. The inhomogeneous superflow about a vortex produces

Doppler-shift scattering (85) which is odd under time reversal with C(ki,kf ) = (uiuf + vivf )2

like magnetic impurities. The spatial inhomogeneity in the superconducting gap amplitude

causes inhomogeneous Andreev scattering with C(ki,kf ) = (uivf + viuf)(uiuf + vivf ). It

should be noted that both of these scatterers selectively activate the sign-preserving q points.

Therefore, the effect of C(ki,kf ) and the nature of quasiparticle scattering off vortices can be

revealed through the q-dependence of the B-induced change of QPI.

3.4 Phase-sensitivity of quasiparticle interference in a magnetic field

Hanaguri et al. performed SI-STM measurements in a magnetic field on nearly optimally-doped

Ca2−xNaxCuO2Cl2 (x ∼ 0.14, Tc ∼ 28 K) single crystals (61; 63) using a low-temperature

ultrahigh-vacuum scanning tunneling microscope (86; 87). Samples were cleaved in situ at 77 K

and transferred to the microscope maintained at a temperature below 10 K. In order to make the

vortex distribution inside the sample uniform, magnetic field up to 11 T was applied along the

c axis at 5 K, where magnetization measurements confirmed that vortex pinning was negligibly

small. Then, the samples were field-cooled down to 1.6 K where all the data were collected. At

1.6 K, pinned vortices can be observed as shown in Figures 3.3(a), 3.3(b), and 3.3(c). All the

spectroscopic data were taken in the same field of view simultaneously with atomic-resolution

topographic images.



41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Imaging vortices and QPI patterns in Ca2−xNaxCuO2Cl2 (x ∼ 0.14, Tc 28 K)
at different magnetic fields. All the data were collected with a set-up condition of sample bias
voltage Vs = −100 mV and tunneling current It = 100 pA. (a)-(c): Vortices imaged by mapping
a function at E = 4.4 meV. If there is a gap in the spectrum g(r, E), the function s(r, E) below
the gap energy takes larger value as gap structure becomes deeper, while it is almost zero if
g(r, E) is structureless. Vortices are imaged as shallower-gap regions (smaller s(r, E)) shown in
brighter color. Broken circles are guides to the eye. (d)-(f): Real-space QPI patterns at E = 4.4
meV imaged by mapping the conductance-ratio Z(r, E). (g)-(i) |Z(q, E)| obtained by Fourier
transforming Z(r, E) shown in (d)-(f). To enhance the signal-to-noise ratio, each |Z(q, E)| map
is averaged by folding it so as to superpose all the crystallographically equivalent q positions.
Arrows in (g) correspond to those in Figure 3.2(a).
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In Ca2−xNaxCuO2Cl2, the raw g(r, E) data are dominated by “checkerboard” modulations

(87) which mask the underlying QPI signal. As reported earlier (61), the QPI signal is enhanced

by taking the ratio Z(r, E), Z(r, E) ≡ g(r, E)/g(r,−E). This procedure almost completely

suppresses the checkerboard signal. It has an additional advantage of eliminating extrinsic

effects associated with the scanning feedback loop and thus Z(r, E) faithfully represents the

local-DOS ratio (61; 62). Figures 3.3(d) and 3.3(g) show the zero-field Z(r, E = 4.4 meV )

and its Fourier transform —Z(q, E = 4.4 meV )|, displaying the full set of discrete q-points

expected in the octet model. These discrete q-points disperse with E in a fashion consistent

with a d-wave superconducting gap up to E ∼ 15 meV, which marks an upper limit for the

detection of well-defined Bogoliubov quasiparticles (61) (see Figure 3.6).

When Hanaguri et al. repeated the measurements at B = 5 T and 11 T, they observed a

remarkable B dependence in the intensities of the QPI patterns. The B dependence of Z(r, E)

is shown in Figures 3.3(d), 3.3(e) and 3.3(f). The corresponding Fourier transformed data,

displayed in Figures 3.3(g), 3.3(h) and 3.3(i), show that magnetic field does not induce additional

q vectors and the positions of the peaks in |Z(q, E)| are only weakly B dependent. By contrast,

there is a significant B dependence in the intensities of the peaks. Depending on qi, intensity

of peak is either enhanced or suppressed.

To explore the details of the B-induced intensity variations, Hanaguri et al. subtracted

the zero-field data |Z(q, E, B = 0)| from |Z(q, E, B)|. The corresponding difference maps are

shown in Figure 3.4(a) for B = 11 T. It is clear that we can classify the q-points into two

groups: for q1, q4, and q5 the intensity is field-enhanced, while for q2, q3, q6, and q7 the

intensity is depressed. These two groups are nothing but the sign-preserving and sign-reversing

q-points discussed earlier, and their selective enhancement and suppression imply the activation

of coherence factors C(ki,kf ) induced by vortices.

The spatial resolution of SI-STM allows to spatially resolve the location of the momentum-

selective enhancement and suppression of the QPI signal to examine its relationship with the

location of the vortices. For this purpose, Hanaguri et al. restricted the field of view to the

vicinity of vortices (as indicated by the “vortex region” inside the blue lines in Figure 3.4(b)) or

to regions far from vortices (as indicated by the “matrix region” inside the red lines in Figure

3.4(b)), and performed Fourier analyses separately for each region (see Figure 3.7). As shown

in Figure 3.4(c) and 3.4(d), the enhanced sign-preserving QPI signals are concentrated in the

“vortex region”, indicating that this signal is associated with coherent scattering effects induced

by vortices. By contrast, the suppressed sign-reversing QPI signals is distributed throughout the

“matrix region” far from the vortices, and must be associated with the superflow surrounding
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(a) (b)

(c) (d)

Figure 3.4: Magnetic-field-induced weight transfer in |Z(q, E)| at E = 4.4 meV. (a): The differ-
ence maps |Z(q, E, B)|− |Z(q, E, B = 0)| for B = 11 T, namely, the difference between Figure
3.3(i) and Figure 3.3(g). Intensities of sign-preserving q-points are field-enhanced while those
of sign-reversing ones are field-suppressed. (b): Vortex image reproduced from Figure 3.3(c)
showing the restricted field of views. Blue and Red lines surround vortex and matrix regions,
respectively (see Figure 3.7). Magnetic-field-induced weight transfers are deduced separately for
vortex and matrix regions as shown in (c) and (d), respectively. Intensities are normalized ac-
cording to the area. Enhancement of sign-preserving scatterings at q1, q4, and q5 is remarkable
near the vortices while it is weak in the matrix region.
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the vortices.

We note as an aside that the enhanced sign-preserving q points q1 and q5 are very close

to those wavevectors which characterize the “checkerboard” electronic modulation observed in

the vicinity of vortices in Bi2Sr2CaCu2Oy (88; 89). Various charge and spin density wave

scenarios have been advanced to account for the vortex “checkerboard” modulation (88; 89). In

such scenarios, the characteristic wavevector of the scattering is not expected to disperse with

energy. However, in our data the field-enhanced QPI intensities at these q-points do disperse

with energy (see Figure 3.6), so the electronic-order scenario does not appear to apply, at least

in its simplest form. Further studies of the relation between QPI and the vortex “checkerboard”

are needed to elucidate the electronic structure of vortices in high-Tc cuprates.

The reduction of the scattering at the sign-reversing vectors q2, q3, q6, and q7 in the matrix

region can be accounted for in terms of the Doppler shift of quasiparticle energies induced by

the superflow around vortices (85). The Doppler shift in the quasiparticle energies deforms

the banana-shaped contours of constant energy by an amount proportional to the superfluid

velocity. This has the effect of smearing the quasiparticle interference signals in momentum

space, reducing their peak amplitude. The coherence factors of the Doppler shift suppression

are those of the underlying scattering centers. Thus the reduction of sign-reversing scattering

intensity can be accounted for in terms of a smearing of scattering off a dominant background

of scalar scattering centers.

Finally, one can examine the B dependence of Fermi surface topology and superconducting

gap dispersion ∆(k) by analyzing the E dependence of |Z(q, E, B)|. As shown in Figure 3.5(a),

the Fermi surface displays no measurable B dependence up to 11 T as expected, since the

corresponding Zeeman energy to B is negligibly small (< 1 meV), compared with the hopping

amplitude (∼ 0.1 eV). On the other hand, ∆(k) shows a small but distinct field dependence

as shown in Figure 3.5(b). At B = 0 T, a linear extrapolation of ∆(k) from high E does not

intercept the node at θk = 45 ◦, where θk is a Fermi surface angle around (π,π), and there is an

apparent “gapless” region around the node. This may mean that ∆(k) includes a higher order

harmonic such as cos(6θk) (91) or alternatively, that ∆(k) actually vanishes in a finite region

around the node due to inelastic scattering (92). This “gapless” region expands in B, indicating

that zero-energy quasiparticles are generated by introducing vortices. In accord with this, the

DOS at the Fermi energy EF , given by the average value of g(r, E = 0) increases as shown in

Figure 3.5(c). The averaged g(r, EF ) well follow the B log B behavior (90) expected in a dirty

d-wave superconductor (Figure 3.5(d)). These results provide a spectroscopic basis for the field-

induced DOS observed by specific heat (93) and nuclear magnetic resonance (94) measurements
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(a) (b)

(c) (d)

Figure 3.5: Magnetic field B effects on the electronic states of in Ca2−xNaxCuO2Cl2 (x ∼ 0.14,
Tc ∼ 28 K). (a): Loci of octet ends of contour of constant energy at different B representing the
underlying Fermi surface. Four independent q4(E) = (±2kx(E), 2ky(E)), (2ky(E),±2kx(E))
were used for analysis. No measurable field-induced change is found in th e Fermi surface.
(b): B-induced renormalization of the d-wave superconducting gap dispersion. B enlarges the
apparent gapless region around the gap node, while dispersion at higher energy is relatively
insensitive to B. (c): Tunneling spectra averaged over the field of view. Gap-like feature below
about 10 meV gets shallower and DOS at EF increases with increasing B. Spectrum at 2 T
was averaged in the slightly different field of view for other fields. (d): The B dependence of
spatially averaged g(r, EF ). Thin blue line denotes B log B behavior expected in a dirty d-wave
superconductor.
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Figure 3.6: Energy dependence of QPI intensities obtained by taking linecuts from from
|Z(q, E)| at various E along specific q directions. Color scale is set to the same range for
Figures 3.3(g)-3.3(i). (a) and (b): Linecuts along (0, 0)− (0, 2π/a0) and (0, 0)− (2π/a0, 2π/a0),
respectively, at B = 0 T. Dispersing q-vectors are seen below about 15 meV. Although intense
q1 peak still exists above this energy, the peak stops dispersing. Other q peaks diminish. (c)
and (d): Same linecuts at B = 11 T. It is clear that intensities of q1 and q5 peaks are enhanced
while those of q3 and q7 peaks are suppressed. Note that B-enhanced signals show clear energy
dispersion.
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Figure 3.7: Procedure of the restricted-field-of-view |Z(q, E)| analysis at B = 11 T. In order to
separate vortex and matrix regions, original vortex image (right panel of (a), reproduced from
Figure 3.3(c)) is Fourier filtered as shown in the left panel of (a). A circular region around the
origin in q space with a diameter of 0.008× 2π/a0 was used for filtering. Taking contours from
the filtered image, a series of masks shown in the left panels of (b) to (f) can be generated.
White and black regions denote vortex and matrix regions according to different criteria. In
these regions, |Z(q, E, B)| − |Z(q, E, B = 0)| are calculated as shown in central and right
panels. Intensities are normalized according to the areas of the masks. As indicated in the
central column, enhancement of sign-preserving scatterings at q1, q4, and q5 gradually grow
as the field of view is restricted to the vortex centers. When the field of view is restricted in
the region away from vortices (right panel of (f)), enhancement of sign-preserving scatterings
almost disappears. Figures 3.4(c) and 3.4(d) correspond to the central panel of (c) and right
panel of (e), respectively.
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and are consistent with the Volovik effect (85) which predicts field-induced gapless excitations

around the superconducting gap nodes in k space and outside the vortex core in real space.

3.5 Discussion

To summarize, Hanaguri et al. have clearly detected the d-wave coherence factor of a high-Tc

cuprate using vortices as controllable quasiparticle scattering centers. Their results establish

that vortices selectively activate the quasiparticle scattering channels that preserve the sign of

the superconducting gap in k space. Future measurements using this technique may offer the

opportunity to probe the nature of the anomalous electronic matter inside the vortex core using

quasiparticle vortex scattering, and the method may also be applied to superconductors with

other forms of anisotropic gap, such as p-wave and extended s-wave superconductors. Another

variant on this method is to examine the coherence factors for scattering off conventional im-

purities at temperatures above Tc (97): this approach may provide a viable way to probe the

nature of the order that develops in the pseudogap normal state (32). Finally, we note that

Fourier-transform SI-STM is currently the only method to study the evolution of k-dependent

electronic states as a function of magnetic field and in this respect, offers a useful tool for the

study of a wide range of field-induced quantum phenomena (95).
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Chapter 4

Model for nodal quasiparticle scattering in a disordered

vortex lattice

As we discussed in the previous Chapter, recent scanning tunneling experiments on a high-

temperature copper oxide superconductor Ca2−xNaxCuO2Cl2 by Hanaguri et al. (60) observe

field-dependent quasiparticle interference effects which are sensitive to the sign of the d-wave

order parameter. The analysis of spatial fluctuations in the local density of states shows that

there is a selective enhancement of quasiparticle scattering events that preserve the gap sign,

and a selective depression of the quasiparticle scattering events that reverse the gap sign.

In this Chapter, we introduce a model which accounts for this phenomenon as a consequence

of vortex pinning to impurities. Each pinned vortex embeds several impurities in its core.

The observations of recent experiments can be accounted for by assuming that the scattering

potentials of the impurities inside the vortex cores acquire an additional resonant or Andreev

scattering component, both of which induce gap sign preserving scattering events.

Let us first summarize the main observations:

• A selective enhancement of sign-preserving; depression of sign-reversing scat-

tering events. In a field, Hanaguri et al. (60) observe a selective enhancement of the

scattering events between parts of the Brillouin zone with the same gap sign, and a selec-

tive depression of the scattering events between parts of the Brillouin zone with opposite

gap signs, so that the sign-preserving q-vectors q1,4,5 are enhanced, and the sign-reversing

q-vectors q2,3,6,7 are depressed.

• Large vortex cores with a core size ξ ∼ 10a of order ten lattice constants. Experi-

mentally, vortex cores are imaged as regions of shallow gap (60). The figure ξ ∼ 10a

is consistent with magnetization and angular resolved photoemission (ARPES) measure-

ments (106).

• High momentum transfer scattering involving momentum transfer over a large frac-

tion of the Brillouin zone size at q4,5 ∼ kF . A paradoxical feature of the observations is

the enhancement of high momentum transfer q ∼ π/a scattering by objects that are of
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order ten lattice spacings in diameter. The enhanced high momentum scattering clearly

reflects sub-structure on length scales much smaller than the vortex cores.

• Core-sensitivity. Fourier mask analysis reveals that the scattering outside the vortex

core regions differs qualitatively from scattering inside the vortex core regions. In particu-

lar, the enhancement of the sign-preserving scattering events is associated with the signal

inside the “vortex cores”, whereas the depression of the sign-reversing scattering events is

mainly located outside the vortex regions.

Recently, T. Pereg-Barnea and M. Franz (101) have proposed an initial interpretation of

these observations in terms of quasiparticle scattering off vortex cores. Their model explains

the enhancement of the sign preserving scattering in the magnetic field in terms of scattering off

vortex cores, provided vortex cores are small with ξ ∼ a, as in high temperature superconductor

Bi2Sr2CaCu2O8+δ (Bi2212). However, the large vortex core size of Ca2−xNaxCuO2Cl2 is

unable to account for the field-driven enhancement in the high momentum scattering.

Motivated by this observation, we have developed an alternative phenomenological model to

interprete the high-momentum scattering. In our model, vortices bind to individual impurities,

incorporating them into their cores and modifying their scattering potentials. This process

replaces random potential scattering off the original impurities with gap-sign-preserving An-

dreev reflections off order parameter modulations in the vicinity of the pinned vortices. The

high-momentum transfer scattering, involved in the selective enhancement and suppression,

originates from the impurities whose scattering potentials are modified by the presence of the

vortex lattice. Rather than attempt a detailed microscopic model for the pseudo-gap state in-

side the vortex cores and impurities bound therein, our approach attempts to characterize the

scattering in terms of phenomenological form factors that can be measured and extracted from

the data.

4.1 Construction of the model

In the absence of a field, random fluctuations in the tunneling density of states are produced by

the original impurities. We assume that scattering off the impurities is mutually independent

permitting us to write the change in density of states as a sum of contributions from each

impurity

δρ(r, V, B = 0) =
∑

j

δρi(r − rj , V ), (4.1)
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where rj denote the positions of the impurities. If

ni = original concentration of impurities in the absence of magnetic field,

then we obtain

R(q, V, B = 0) = ni δρi(q, V )δρ∗i (−q, V ). (4.2)

Next we consider how the quasiparticle scattering changes in the presence of a magnetic

field. Pinned vortices arising in the magnetic field act as new scatterers. In the experiment

(60), vortices are pinned to the preexisting disorder, so that in the presence of a magnetic field,

there are essentially three types of scatterers:

• bare impurities,

• vortices,

• vortex-decorated impurities.

Vortex-decorated impurities are impurities lying within a coherence length of the center of

a vortex core. We assume that these three types of scattering centers act as independent

scatterers, so that the random variations in the tunneling density of states are given by the sum

of the independent contributions, from each type of scattering center:

δρ(r, V, B) =
∑

j

δρV (r − rj , V ) +
∑

l

δρDI(r − r′l, V ) +
∑

m

δρI(r − r′′m, V ), (4.3)

where rj , r′l, r
′′
m denote the positions of vortices, decorated impurities and bare impurities, re-

spectively. In a magnetic field, the concentration of vortices is given by

nV = concentration of vortices =
2eB

h
,

In each vortex core, there will be ncore = niπ(ξ2/4) impurities, where π(ξ2)/4 is the area of a

vortex and ni is the original concentration of bare scattering centers in the absence of a field.

The concentration of vortex-decorated impurities is then given by

nDI = concentration of vortex-decorated impurities = ncorenV =
2eB

h
niπ(ξ/2)2.

Finally, the residual concentration of “bare” scattering centers is given by

nI = ni − nDI = concentration of residual “bare” impurities. (4.4)

Treating the three types of scatterers as independent, we write

R(q, V ) = nV δρV (q, V )δρ∗V (−q, V ) + nDI δρDI(q, V )δρ∗DI(−q, V )

+ (ni − nDI) δρI(q, V )δρ∗I(−q, V ). (4.5)
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The first term in (4.5) accounts for the quasiparticle scattering off the vortices, the second term

accounts for the quasiparticle scattering off the vortex-decorated impurities and the third term

accounts for the quasiparticle scattering off the residual bare impurities in the presence of the

superflow. It follows that

|Z(q, V, B)|2 =
2eB

h
|ZV (q, V, B)|2 +

2eB

h
ncore|ZDI(q, V, B)|2 + (ni −

2eB

h
ncore) |ZI(q, V, B)|2,

(4.6)

where Z(q, V, B) is given by (2.30), averaged over the vortex configurations. ZV (q, V, B),

ZDI(q, V, B) and ZI(q, V, B) are Fourier images of the Friedel oscillations in the tunneling

density of states induced by vortices, vortex-decorated impurities and bare impurities in the

presence of the superflow. Our goal here is to model the quasiparticle scattering phenomenolog-

ically, without a recourse to a specific microscopic model of the scattering in the vortex interior.

To achieve this goal, we introduce ZV I(q, V, B), a joint conductance ratio of the vortex-impurity

composite, which encompasses the scattering off a vortex core and the impurities decorated by

the vortex core,

|ZV I |2 = |ZV |2 + ncore|ZDI |2, (4.7)

so that we obtain

|Z(q, V, B)|2 =
2eB

h
|ZV I(q, V, B)|2 + (ni −

2eB

h
ncore)|ZI(q, V )|2. (4.8)

This expression describes quasiparticle scattering in a clean superconductor in low magnetic

fields in a model-agnostic way, namely, it is valid regardless of the choice of the detailed model

of quasiparticle scattering in the vortex region. ZV I(q, V, B) here describes the scattering off

the vortex-impurity composites, which we now proceed to discuss.

4.2 Impurities inside the vortex core: calculating ZV I

As observed in the conductance ratio Z(q, V, B), the intensity of scattering between parts of

the Brillouin zone with the same sign of the gap grows in the magnetic field, which implies that

the scattering potential of a vortex-impurity composite has a predominantly sign-preserving

coherence factor.

We now turn to a discussion of the scattering mechanisms that can enhance sign-preserving

scattering inside the vortex cores. Table 2.1 shows a list of scattering potentials and their

corresponding coherence factor effects. Weak potential scattering is immediately excluded.

Weak scattering off magnetic impurities can also be excluded, since the change in the density
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of states of the up and down electrons cancels. This leaves two remaining contenders: Andreev

scattering off a fluctuation in the gap function, and multiple scattering, which generates a

t-matrix proportional to the unit matrix.

We can, in fact, envisage both scattering mechanisms being active in the vortex core. Take

first the case of a resonant scattering center. In the bulk superconductor, the effects of a resonant

scatterer are severely modified by the presence of the superconducting gap (75). When the same

scattering center is located inside the vortex core where the superconducting order parameter

is depressed, we envisage that the resonant scattering will now be enhanced.

On the other hand, we can not rule out Andreev scattering. A scalar impurity in a d-wave

superconductor scatters the gapless quasiparticles, giving rise to Friedel oscillations in the order

parameter that act as Andreev scattering centers (100; 98; 101). Without a detailed model for

the nature of the vortex scattering region, we can not say whether this type of scattering is

enhanced by embedding the impurity inside the vortex. For example, if, as some authors have

suggested (108), the competing pseudo-gap phase is a Wigner supersolid, then the presence of

an impurity may lead to enhanced oscillations in the superconducting order parameter inside

the vortex core.

With these considerations in mind, we consider both sources of scattering as follows

t̂(q,k, iωn) = tA(q,k, iωn) + tR(q,k, iωn) (4.9)

where

t̂A(q,k, iωn) =
1
2
∆0fA(q)(χk+ + χk−)τ̂ 1, (Andreev scattering)

describes the Andreev scattering. Here χk = cx − cy is the d-wave function with cx,y ≡ cos kx,y.

The resonant scattering is described by

t̂R(q,k, iωn) = i∆0sgn(ωn) fR(q)1. (Resonant scattering)

Using the T-matrix approximation, we obtain for the even and odd components of Fourier

transformed fluctuations in the local density of states due to the scattering off the supercon-

ducting order parameter amplitude modulation,

δρeven
V I (q,ω) = 1

2π Im
∫

k
Tr
[
Gk−(ω − iδ) t̂(q,k,ω − iδ) Gk+(ω − iδ)

]
, (4.10)

δρodd
V I (q,ω) = 1

2π Im
∫

k
Tr
[
τ3Gk−(ω − iδ) t̂(q,k,ω − iδ) Gk+(ω − iδ)

]
, (4.11)

where k± = k±q/2, Gk(ω) = [ω−εkτ3−∆kτ1]−1 is the Nambu Green’s function for an electron

with normal state dispersion εk and gap function ∆k. We now obtain

δρeven(odd)
V (q,ω) = fA(q)Λeven(odd)

A (q,ω) + fR(q)Λeven(odd)
R (q,ω)
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with

Λeven
A (q,ω) =

∆0

4π
Im

∫

k
(χk+ + χk−)

[ z(∆k+ + ∆k−)
(z2 − E2

k+
)(z2 − E2

k−
)

]

z=ω−iδ
, (4.12)

Λeven
R (q,ω) =

∆0

2π
Im

∫

k

[−i(z2 + εk+εk− + ∆k+∆k−)
(z2 − E2

k+
)(z2 − E2

k−
)

]

z=ω−iδ
. (4.13)

The substantially smaller odd components are:

Λodd
A (q,ω) =

∆0

4π
Im

∫

k
(χk+ + χk−)

[ εk+∆k− + εk−∆k+

(z2 − E2
k+

)(z2 − E2
k−

)

]

z=ω−iδ
, (4.14)

Λodd
R (q,ω) =

∆0

2π
Im

∫

k

[ −i z(εk+ + εk−)
(z2 − E2

k+
)(z2 − E2

k−
)

]

z=ω−iδ
. (4.15)

where Ek = [ε2k + ∆2
k] 1

2 is the quasiparticle energy. The vortex contribution to the Fourier

transformed conductance ratio (4.8) is then

ZV I(q, V, B) = nV (ZA(q, V, B) + ZR(q, V, B)), (4.16)

where

ZA(q, V, B) = fA(q)
[
(

1
ρ0(V )

− 1
ρ0(−V )

)Λeven
A (q, V ) + (

1
ρ0(V )

+
1

ρ0(−V )
)Λodd

A (q, V )
]

(4.17)

and

ZR(q, V, B) = fR(q)
[
(

1
ρ0(V )

− 1
ρ0(−V )

)Λeven
R (q, V ) + (

1
ρ0(V )

+
1

ρ0(−V )
)Λodd

R (q, V )
]
.(4.18)

4.3 Numerical simulation

In this section we compare the results of our phenomenological model with the experimental

data by numerically computing ZV I(q, V, B) (4.16) for Andreev (4.17) and resonant (4.18)

scattering.

In these calculations we took a BCS superconductor with a d-wave gap ∆k = ∆0/2(coskx −

cos ky) with ∆0 = 0.2t and a dispersion which has been introduced to fit the Fermi surface of

an underdoped Ca2−xNaxCuO2Cl2 sample with x = 0.12 (105):

εk = −2t(coskx + cos ky) − 4t′ cos kx cos ky − 2t′′(cos 2kx + cos 2ky) + µ,

where t = 1, t′ = −0.227, t′′ = 0.168, µ = 0.486.

4.4 Evaluation of ZV I

In the absence of a microscopic model for the interior of the vortex core, we model the Andreev

and the resonant scattering in the vortex region by constants fA(q, iωn) = fA and fR(q, iωn) =

fR. Figure 4.1 shows the results of calculations using these assumptions.
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(a) (b)

Figure 4.1: Quasiparticle interference produced by the Andreev and the resonant scattering
potentials, the primary candidates for producing the experimentally observed enhancement of
sign-preserving scattering. Figure (a) displays a density plot of the squared Fourier transformed
conductance ratio |ZA(q, V )|2 predicted by (4.17) at a bias voltage V = ∆0/2 produced by pure
Andreev scattering (fA &= 0, fR = 0). Figure (b) displays a density plot of the squared Fourier
transformed conductance ratio |ZR(q, V )|2 predicted by (4.18) at a bias voltage V = ∆0/2
produced by resonant scattering (fR &= 0, fA = 0). Blue lines label the positions of the sign-
preserving q-vectors q = q1,4,5, where both Andreev and resonant scattering is peaked. Red
lines label the positions of the sign-reversing q-vectors q = q2,3,6,7, where both Andreev and
resonant scattering is minimal.

Our simple model reproduces the enhancement of sign-preserving q-vectors q1,4,5 as a result

of Andreev and resonant scattering off vortex-impurity composites. Some care is required in

interpreting Figure 4.1, because the squared conductance ratio |Z(q, V )|2 contains weighted

contributions from both even and odd fluctuations in the density of states, with the weighting

factor favoring odd fluctuations, especially near V = 0. Both Andreev and resonant scattering

contribute predominantly to the even fluctuations of the density of states (see Table 2.1), and

give rise to the signals at q1,4,5. In the case of resonant scattering, we observe an additional

peak at q3. From Table 2.1, we see that the Andreev and the resonant scattering potentials also

produce a signal in the odd channel which experiences no coherence factor effect, contributing

to all the octet q-vectors, which, however, enters the conductance ratio Z(q, V ) given by (2.29)

with a substantial weighting factor. This is the origin of the peak at q3 in Figure 4.1(b).

4.5 Comparison with experimental data

The results of the calculation of the full squared conductance ratio |Z(q, V, B)|2 are obtained

by combining the scattering off the impurities inside the vortex core ZV I with the contribution
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from scattering off impurities outside the vortex core ZI , according to equation (4.8), reproduced

here:

|Z(q, V, B)|2 =
2eB

h
|ZV I(q, V, B)|2 + (ni −

2eB

h
ncore) |ZI(q, V, B)|2. (4.19)

where ncore = niπ(ξ/2)2 is the number of impurities per vortex core. Figure 4.2 displays

a histogram of the computed field-induced change in the conductance ratio |Z(qi, V, B)|2 −

|Z(qi, V )|2 at the octet q-vectors. In these calculations, we took an equal strength of Andreev

and resonant scattering fR = fA, with a weak scalar scattering outside the vortex core of

strength fI = fR = fA. In all our calculations, we find that Andreev and resonant scattering

are equally effective in qualitatively modelling the observations. The main effect governing

the depression of sign-preserving wavevectors q1,4,5 derives from the change in the impurity

scattering potential that results from embedding the impurity inside the vortex core.

We estimated the percentage of the impurities decorated by the vortices from the fraction of

sample area covered by the vortices. The concentration of vortices is nV (B) = 2eB/h = B/Φ0,

where Φ0 = h/(2e) = 2.07 × 10−15 weber is the superconducting magnetic flux quantum. The

area of a vortex region is estimated as AV = π(ξ0/2)2 with the superconducting coherence

length ξ0 = 44 Å(102), so that the percentage of the original impurities that are decorated

by vortices in the presence of the magnetic field is α(B) = nV (B) AV . Using these values,

we obtain for the magnetic field of B = 5 T α(B = 5 T ) ≈ 3.7%, and for B = 11 T α(B =

11 T ) ≈ 8.1%. For simplicity, we assume that a vortex core is pinned to a single impurity,

ncore = niπ(ξ/2)2 = 1, so that the ratio of the concentrations of the impurities and vortices is

ni/nV (B) = ncore/AV /(2eB/h), which becomes for B = 5 T ni/ nV (B = 5T ) ≈ 27, and for

B = 11 T ni/nV (B = 11T ) ≈ 12.

In Figure 4.2 we have modelled the scattering provided the origin of the selective enhance-

ment is the Andreev (Figure (a)) or the resonant (Figure (b)) scattering in the vortex core

region. Both the Andreev and the resonant scattering are equally effective in qualitatively

modelling the observations. Thus our model has qualitatively reproduced the experimentally

observed enhancement of the sign-preserving scattering and the depression of the sign-reversing

scattering.

4.6 Discussion

In this work, we have shown how scanning tunneling spectroscopy can serve as a phase-sensitive

probe of the superconducting order parameter. In particular, we find that the even and odd
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(a) (b)

(c)

Figure 4.2: Comparison between the results of the model calculations and the experimental
data. Figs. (a)-(b) show the change in the squared Fourier transformed conductance ratio
δZ2 ≡ |Z(q, V, B)|2 − |Z(q, V, B = 0)|2 at q = q1−7, computed for a magnetic field of B =5
T (grey bars) and 11 T (red bars) at a bias voltage V = ∆0/2, provided the origin of the
selective enhancement is the Andreev (Figure (a)) or the resonant (Figure (b)) scattering in the
vortex core region. Here a vortex, pinned to a scalar impurity, transforms its original scattering
potential with enhanced scattering at q = q2,3,6,7 into an Andreev (Figure (a)) or into a resonant
(Figure (b)) scattering potential with enhanced scattering at q = q1,4,5 (see Table 2.1). Figure
(c) shows the experimentally observed change in the squared Fourier transformed conductance
ratio δZ2 ≡ |Z(q, V, B)|2 − |Z(q, V, B = 0)|2 at q = q1−7, in a magnetic field of B =5 T (grey
bars) and 11 T (red bars) at a bias voltage V = 4.4 meV.
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components of the density of states fluctuations can be associated with a well-defined coher-

ence factor. The measured Fourier transformed conductance ratio Z(q, V ) = dI/dV (q,+V )
dI/dV (q,−V ) is a

weighted combination of these two terms, and in the limit of particle-hole symmetry it is dom-

inated by the odd component of the density of states. Observation of coherence factor effects

with scanning tunneling spectroscopy requires the presence of controllable scatterers. In the

study by Hanaguri et al. (60) these controllable scatterers are vortices.

Our phenomenological model of quasiparticle scattering in the presence of vortices is able

to qualitatively reproduce the observed coherence factor effects under the assumption that

impurity scattering centers inside the vortex cores acquire an additional Andreev or resonant

scattering component.

This study raises several questions for future work. In particular, can a detailed model of

a d-wave vortex core provide a microscopic justification for the modification of the impurity

scattering potential? One of the issues that can not be resolved from the current analysis, is

whether the enhanced Andreev scattering originates in the core of the pure vortex, (|ZV |2), or

from the decoration of impurities that are swallowed by the vortex core (ncore|ZDI |2). This is

an issue that may require a combination of more detailed experimental analysis and detailed

modelling of vortex-impurity composites using the Bogoliubov de Gennes equations. Another

open question concerns whether it is possible to discriminate between the Andreev and resonant

scattering that appear to be equally effective in accounting for the coherence factor effects.

There are several aspects to the experimental observations that lie beyond our current work.

For example, experimentally, it is possible to spatially mask the Fourier transform data, spatially

resolving the origin of the scattering. These masked data provide a wealth of new information. In

particular, most of the enhancement of the sign preserving scattering is restricted to the vortex

core region, as we might expect from our theory. However, to extend our phenomenology to

encompass the masked data, requires that we compute the fluctuations of the density of states

as a function of distance from the vortex core,

R(r, r′; rV , V ) = 〈δρ(r − rV , V )δρ(r′ − rV , V )〉, (4.20)

a task which requires a microscopic model of the vortex core.

In our theory we have used the bulk quasiparticle Green’s functions to compute the scat-

tering off the vortex-decorated impurities. Experiment does indeed show that the quasiparticle

scattering off impurities inside the vortex cores is governed by the quasiparticle dispersion of the

bulk: can this be given a more microscopic understanding? The penetration of superconducting
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quasiparticles into the vortex core is a feature that does not occur in conventional s-wave su-

perconductors. It is not clear at present to what extent this phenomenon can be accounted for

in terms of a conservative d-wave superconductor model, or whether it requires a more radical

interpretation. One possibility here, is that the quasiparticle fluid in both the pseudo-gap phase

and inside the vortex cores is described in terms of a “nodal liquid” (107).

Beyond the cuprates, scanning tunneling spectroscopy in a magnetic field appears to provide

a promising phase-sensitive probe of the symmetry of the order parameter in unconventional

superconductors. One opportunity that this raises, is the possibility of using STM in a field

to probe the gap phase of the newly discovered iron-based high-temperature superconductors.

According to one point of view (110), the iron-based pnictide superconductors possess an s±

order parameter symmetry in which the order parameter has opposite signs on the hole pockets

around Γ and the electron pockets around M. If this is, indeed, the case, then in a magnetic

field quasiparticle scattering between parts of Fermi surface with same gap signs should exhibit

an enhancement, while scattering between parts of Fermi surface with opposite gap signs will

be suppressed. This is a point awaiting future theoretical and experimental investigation.
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Chapter 5

Theory of tunneling into a Kondo lattice

In this Chapter, motivated by recent experimental interest in tunneling into heavy electron

materials, we present a theory for electron tunneling into a Kondo lattice. By incorporating

the effect of a tunneling tip on the Kondo spin-exchange processes, we show that the tunnel-

ing Hamiltonian develops an additional co-tunneling component, in which the passage of an

electron into the Kondo lattice is accompanied by a simultaneous spin flip of the localized mo-

ments. Using a large-N approximation, we develop a simple phenomenological description of

these tunneling processes in the heavy Fermi liquid state of a Kondo lattice, showing that the

conventional Fano line-shape of single-impurity tunneling develops an additional double-peaked

structure with a hybridization gap.

5.1 Introduction

Major developments in scanning tunneling spectroscopy (STM) over the last decade, particularly

as a probe of cuprate superconductors (70; 113; 114), suggest that this tool will find increasing

utility as an atomic-scale probe of many-body phenomena in many new classes of materials.

One area of particular promise lies in the application of STM to heavy fermion materials.

Heavy fermion materials contain a dense lattice of localized magnetic moments interacting

with a sea of conduction electrons to form a “Kondo lattice” (115; 116). These materials present

dramatic manifestations of collective many-body electronic phenomena, such as anisotropic

superconductivity, non-Fermi liquid behavior, and quantum criticality. Motivated by recent

tunneling experiments on f -electron materials (117; 118; 119), in this Chapter we develop a

theory for the tunneling response of a coherent heavy-fermion material.

The physics of tunneling into a metal containing a dilute concentration of local moments has

a long history dating back more than forty years (120; 121; 122). Since direct tunneling into a

localized magnetic orbital is blocked by Coulomb interactions, the naive expectation is that the

effects of local moments on tunneling only manifest themselves through their indirect influence

on the surrounding conduction sea. Yet this is not the case: in 1960s Anderson and Appelbaum
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(121; 122) recognized that magnetic ions actively participate in the tunneling process via a

“co-tunneling” mechanism (123; 124) in which the passage of an electron into the conduction

sea occurs co-operatively with a spin-flip of localized moments. In this Chapter we examine the

effect of these processes on tunneling into a coherent band of excitations of a Kondo lattice. We

show that these co-tunneling processes open up a direct tunneling channel between the tip and

the composite quasiparticle states of the Kondo lattice. Once coherence develops, co-tunneling

and direct tunneling processes interfere with each other, giving rise to a distinctive three-peak

structure in the tunneling spectra.

t tcf

-30 -15 0 15 30
eV/TK

0.2

0.3

0.4
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0.6

dI/dV

Figure 5.1: Tunneling of an electron from a tip into a heavy-fermion material involves two
types of processes. The first one corresponds to the tunneling with an amplitude tc into con-
duction sites. The second one consists of tunneling with an amplitude tf into the composite
states between the conduction electrons and local magnetic f -moments. These composite states
represent the fabric of the coherent heavy-fermion state of the Kondo lattice formed below coher-
ence temperature TK . The inset shows the typical differential conductance curve as a function
of voltage at temperatures well below TK .

5.2 Tunneling Hamiltonian

We begin by writing down the Kondo lattice Hamiltonian in the presence of a tunneling probe,

which takes the form Ĥ = ĤKL + Ĥtip + ĤT , where

ĤKL =
∑

k,σ

εkc†kσckσ + J
∑

j

3Sf (j) · (c†jα3σαβcjβ) (5.1)

is the unperturbed Kondo lattice Hamiltonian, c†jσ = 1√
V

∑
k c†kσe

ik·Rj creates a conduction

electron and 3Sf (j) is the spin operator of a localized f -electron at site j, respectively. The

term Ĥtip =
∑

kσ εkp̂†kσp̂kσ describes the electrons in the tip. When the tunneling tip is in the

vicinity of site 0, the tunneling Hamiltonian is

ĤT = p̂†0αψ0α + H.c.,
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ψ0α = tcĉ0α + t̃f
(
3σαβ · 3Sf (0)

)
ĉ0β . (5.2)

It contains a direct tunneling term of amplitude tc and a “co-tunneling” term of amplitude t̃f , in

which the passage of an electron from the lattice into the tip is accompanied by a spin-flip of the

local moment. This Hamiltonian is a simple generalization of the Anderson-Appelbaum tunnel-

ing Hamiltonian (121; 122), introduced to explain zero-bias anomalies associated with tunneling

between two metallic leads via a single localized moment. Similar models have subsequently

been used to describe tunneling through a quantum dot (124).

The co-tunneling component of HT can be understood as a result of the hybridization of

the states of the tunneling tip with the localized orbitals of the Kondo lattice. This modifies

the Wannier states that hybridize with the localized moments. A derivation of the co-tunneling

terms can be made by carrying out a Schrieffer-Wolff transformation on an Anderson model

describing the lattice and tip (122; 124; 135). In an Anderson model, the localized f -electrons

hybridize with the conduction electrons. When a tunneling probe is located at site 0 of the

lattice, tunneling between the f -state and the probe electrons modifies the hybridization at site

0 according to

Hh → (V c†0σ + tfp†0σ)f0σ + H.c,

where tf is the amplitude to tunnel directly from an f -state to the probe. From this consid-

eration, we see that the effect of the tip at site is to modify the orbital hybridizing with the

f -state:

c0σ → c0σ +
tf
V

p0σ

at site 0. After a Schrieffer-Wolff transformation is made, reducing the Anderson model to

a Kondo model, this same replacement must be made to the Kondo interaction at site 0 in

the unperturbed Kondo lattice model. To the leading linear order in tf/V , the result of this

procedure is the quoted result in Equation (5.2), where t̃f = Jtf/V .

To compute the tunneling current for tunneling into a Kondo lattice, we use linear response

theory (125). We consider the tunneling as a small perturbation applied adiabatically, and use

the Kubo formula to find

I(eV ) =
2πe
!

∫
dε ρtip(ε+ eV )ρψ(ε)(f(ε) − f(ε+ eV )), (5.3)

where f(ε) is the Fermi function, ρtip(ε) is the local density of states of the tip, ρψ(ε) is the

local density of states of the sample given by

ρψ(ε) ≡ 1
π

Im Gψ(ε− iδ), (5.4)
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where

Gψ(ε) =
1
2

∑

α

∫ ∞

−∞
dt
〈
ψ0α(t),ψ†

0α(0)
〉

eiεt. (5.5)

To illustrate the tunneling into the Kondo lattice, we now solve for the tunneling behavior

in the large-N limit (126; 127) of the Kondo lattice, where N = 2j +1 is the spin degeneracy of

the localized f -state. In this approach, the spin operator is represented as a bilinear of fermions

(128), 3Sf (j) = f̂jα
3Sαβ f̂jβ , where 3Sαβ are the generators of the SU(N) symmetry group. The

mean-field theory provides a representation of the composite fermion
(
3σαβ · 3Sf (j)

)
ĉjβ in (5.2)

in terms of a product of a single pseudo-fermion f̂jα and the average −〈f̂ †
jβ ĉjβ〉 = V

NJ , so that

∑

β

(
3σαβ · 3Sf (j)

)
ĉjβ → V

J
f̂jα. (5.6)

In this way, the large-N mean field theory captures the formation of a composite heavy f -

electron.

In terms of pseudo-fermions, we can write Equation (5.2) as

ψ̂jα = tcĉjα + t̃f f̂jβ , (5.7)

where the complex amplitude for tunneling into the composite fermion state is t̃f = V
J tf .

The requirement that the number of pseudo-fermions at any given site should be equal to

N/2 introduces a constraint λ, to be determined self-consistently together with the hybridization

amplitude V . The resulting mean-field Hamiltonian can be then diagonalized by means of the

Bogoliubov transformation ĉkσ = vkâkσ + ukb̂kσ, and f̂kσ = ukâkσ − vkb̂kσ, where uk and vk

are the Kondo lattice coherence factors given by u2
k = [Rk + (εk − λ)]/2Rk, v2

k = 1 − u2
k with

Rk =
√

(εk − λ)2 + 4V2. The Hamiltonian (5.1) in the mean-field approximation then becomes

H(mf)
KL =

∑
kα(ω−kâ†

kαâkα + ω+kb̂†kαb̂kα), where ω±k = (εk + λ ± Rk)/2 is the quasiparticle

dispersion in the newly developed heavy Fermi liquid. The tunneling Hamiltonian acquires a

particularly simple form

Ĥ(mf)
T =

1
N

∑

jα

p̂†jα

[
tcĉjα + tf f̂jα

]
+ h.c. (5.8)

where we have absorbed V into the tunneling amplitude tf for brevity, tf → V
J tf . Although our

mean-field Hamiltonian has the form of the Anderson lattice model with U = 0, the states on

which it operates have a different physical meaning. These states are composite states formed

with local spins hybridized with conduction electrons. Thus our Hamiltonian Equation (5.8)

describes tunneling into the conduction band together with the co-tunneling processes involving

local moments.
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5.3 Tunneling conductance

For our subsequent discussion, it is instructive to compare our results for the tunneling conduc-

tance in a Kondo lattice with those obtained in the case of a single Kondo impurity. In both

cases, we employ the same large-N mean-field theory.

Using the tunneling Hamiltonian Equation (5.8), we compute Gψ(ω) Equation (5.5). In the

case of a single Kondo impurity, we obtain

Gimp
ψ (ω) =

(tciπρV + tf )2

ω − λ− i∆
+ t2ciπρ, (5.9)

where ρ is the density of states of the conduction electrons, ∆ = πρV2 / TK is the width of the

Kondo resonance. The differential tunneling conductance dI
dV (eV ) ≡ g(eV ) is

gimp(eV ) =
2πe2

! t2c ρtip ρF (ε′)
|q + ε′|2
1 + ε′2

. (5.10)

Here q = A/B is the ratio of complex tunneling amplitudes, A(eV ) = tf+tcVP ( 1
eV −εk ) describes

the coupling of the STM tip to the atomic orbital, the first term in A describes direct coupling

of the STM tip to the atomic orbital, whereas the second term in A describes indirect coupling

of the STM tip to the atomic orbital via virtual transitions involving band electrons, B = tcVπρ

describes coupling of the tip to the local density of states of the metal (129). ε′ = (eV − λ)/∆,

ρtip is the density of states at the Fermi level of electrons in the tip, and ρF is the density of

states of the sample. The half-width of the resonance is controlled by ∆ ∼ TK .

Now we turn to the case of the Kondo lattice. Within the large-N mean-field theory, we

obtain

GKL
ψ (ω) =

∑

k

(tc + tf
V
ω−λ)2

ω − εk − V2

ω−λ
, (5.11)

where εk is the dispersion of the conduction band. We obtain the following expression for the

differential tunneling conductance,

gKL(eV ) =
2πe2

! t2c ρtip

∑

s=±,k

|q + Esk|2

1 + E2
sk

δ(eV − ωsk), (5.12)

where Esk = (ωsk − λ)/∆. The prefactor of the delta-function has a characteristic Fano func-

tional form (130). This form introduces an asymmetry in the resulting voltage dependence of the

tunneling conductance gKL(eV ). The momentum summation in GKL
ψ (ω) (5.11) and gKL(eV )

(5.12) can be carried out analytically assuming parabolic dispersion of the conduction electrons,

εk = k2/2m − µ, where µ is the chemical potential, the conduction band involves energies in

the range of [−D, D]. We obtain

GKL
ψ (ω) =

(
tc + tf

V
ω − λ

)2

log
[ ω + µ − V2

ω−λ

ω − D − V2

ω−λ

]
+ t2f

µ + D

ω − λ . (5.13)
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Figure 5.2: Differential tunneling conductance g(V ) for a single Kondo impurity case (double
dash-dotted line) given by (5.10), a Kondo lattice (dash-dotted line) given by (5.14). A typical
Fano shape in the single Kondo impurity case gets replaced with a double-peaked resonance
line in the Kondo lattice case. The solid curve and dotted lines illustrate the effect of disorder,
which removes the coherence, closes the gap in DOS, and smoothes the dI/dV (eV ) curve. Here
tf/tc = .2, q = tf/tcVπρ = 4.9, λ = .3, µ = 75, D = 100, V = 7.74, ∆ = πρV2 = 1.

Now the tunneling conductance is given by

gKL(eV ) =
2πe2

! ρtip ρKL(eV ) |tc|2
|q + ε′|2

1 + ε′2
, (5.14)

where ρKL(eV ) is the density of states of the Kondo lattice. Within our mean-field theory, it is

given by ρKL(eV ) = ρ(1 + ε′−2) log
[

(eV +µ)πρε′−1
(eV −D)πρε′−1

]
+ ρ(µ +D) q2(1+ε′2)

ε′(q+ε′)2 with ρ being the density

of states of the conduction electrons. We assumed that µ + λ, D − λ + V . From Equation

(5.14) we observe that the differential tunneling conductance has two well-pronounced peaks at

eV ∼ λ separated by a narrow gap of order V2((µ + λ)−1 + (D − λ)−1). The appearance of the

gap in the tunneling conductance is not surprising. Indeed, the onset of the coherence in the

Kondo lattice can be viewed as the band structure reconstruction leading to the opening of the

hybridization gap ∆g ∼ 2V2/D in the single particle spectrum. This feature is reflected in the

tunneling conductance (5.14).

While a detailed treatment of the effects of disorder in the Kondo lattice is beyond the

current treatment (131), a phenomenological quasiparticle elastic relaxation rate Γ may be

simply introduced into the theory by replacing ω → ω + iΓ in Equation (5.11). The results of

this procedure are shown in Figure 2. As we see, strong disorder removes the coherence that

had provided the peaks in the tunneling conductance gKL(V ) (5.14). The resulting lineshape

of the tunneling conductance dI/dV (eV ) is an asymmetric smooth curve.
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5.4 Discussion

Our results provide a simple framework for the interpretation of scanning tunneling measure-

ments on a Kondo lattice. The current work can be extended in a number of interesting

directions. One important aspect, is to examine the effects of co-tunneling on the fluctuations

in the density of states probed in Fourier transform STM experiments. In one-band systems,

the Fourier transform of these fluctuations is phase sensitive to quasiparticle scattering and

is expected to be an important probe of both quasiparticle dispersion and the phase of the

co-tunneling matrix elements. The interplay of co-tunneling with these processes is expected to

play an important role in the interpretation of Fourier transformed STM.

Another fascinating aspect of the co-tunneling warranting investigation, is its interplay with

various forms of heavy fermion order, such as heavy fermion superconductivity. A recent work

has proposed that heavy electron superconductivity may involve composite pairing between

local moments and electron pairs (132). In such models, the co-tunneling Hamiltonian between

the tip and f -electron may develop pairing components that result in Andreev reflection, even

in the limit of weak tunneling. The detailed analysis of the differential conductance line shape

in this case is a subject of our ongoing research.

In conclusion, we have studied tunneling into a Kondo lattice at temperatures well below the

coherence temperature. The nontrivial contribution to the differential tunneling conductance

originates from the composite states of the heavy Fermi liquid. These composite states are

described by the nonzero average of the product of the conduction electron spin and local f -

moments within the large-N mean field theory. In a clean system the differential tunneling

conductance will display two peaks separated by the hybridization gap. Addition of disorder

leads to the smearing of the gap and produces a Fano-like smooth asymmetric lineshape in the

tunneling conductance.
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