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ABSTRACT OF THE THESIS 

Neural correlates of elbow joint kinematic variability 

By  Gautam Siddarth Natarajan 

 

Thesis Director: 

William Craelius, PhD 

 

 

A fundamental tenet of motor control is that point-to-point reaching motions 

follow an approximately straight line trajectory with a bell-shaped velocity profile.  

However, these abstractions are not universally observed.  Previous work in our lab 

revealed that most spatiotemporal elbow trajectories do not necessarily conform to a 

straight-line, which is believed to be ‘natural’ human motion.  Instead, spatiotemporal 

trajectories are best characterized by a small set of simple, analytic functions including 

both linear and non-linear waveforms.  Here, I suggest that the differences observed in 

elbow kinematics are a direct consequence of varying motor planning, which is 

represented by the electromyography (EMG).   

Fourteen healthy subjects were asked to perform several self-paced, untargeted 

elbow articulations that maximize smoothness within a comfortable range of motion; 

EMG of the biceps and kinematic traces were recorded simultaneously.  Kinematic traces 

were modeled by a set of simple, monotonic functions, while EMG traces were 

reconstructed by parabolic waveforms, via a parameterized curve-fitting method.  EMG 

traces (r-EMG) and their parabolic reconstructions (p-EMG) were used independently to 
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predict adherence to each of 3 kinematic types.  It was hypothesized that the p-EMG and 

r-EMG from the kinematic adherence group (r2 > 0.9979) would exhibit statistical and 

parametric differences from the departure group (r2 < 0.9951) of the same kinematic type. 

Both r-EMG and p-EMG were useful in predicting adherence to global kinematic 

morphology with high sensitivity and specificity across subjects.  Coupling the 

substantial predictive value and the similar information content (87.80% of the decisions 

were identical) of both EMG modalities implied that p-EMG can be used as a simple, 

informative approximant of r-EMG of the biceps during self-paced, untargeted elbow 

flexions.  The features selected for classification were robust across subjects along with 

the predictive value, suggesting there is degeneracy in the neural command.  Degeneracy 

in the neural command matches the widespread observation of highly stereotyped 

kinematics.  Elbow trajectories most commonly adhered to sigmoid morphology.  Future 

work should develop a comprehensive depiction of the neural control of voluntary 

movements.    
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Section 1. INTRODUCTION 

 Human motor control involves an intricate transduction of neural information into 

a muscular contraction.  The immense complexity of movement coordination is 

generalized by the degrees of freedom problem: how does the central nervous system 

(CNS) coordinate several components to produce highly stereotyped motions [Bernstein 

1967]?  Since the advent of the degrees of freedom problem, numerous studies 

investigating motor control have been published.  Nevertheless, there remains an 

abundance of ambiguities in our understanding of motor control, which the Defense 

Advanced Research Projects Agency (DARPA) has made a top priority by substantially 

increasing their budget aimed at completing our quest of understanding the 

biomechanical and bioelectric aspects of motor control [Ade 2009].  

Neural command of the musculature is routinely quantified by electromyography 

(EMG), which is an electric recording of action potentials spreading through the tissue.  

Typical surface EMG acquisition involves placing electrodes on the surface of the skin.  

The signal’s noninvasive acquisition makes it the primary modality of representing 

muscle activation.  Consequently, thorough comprehension of the EMG is crucial to 

resolving the robustness of the motor system.   

EMG has been used extensively as an input signal to muscle models, which aim 

to predict the force generated by a muscle [Camilleri & Hull 2005; Koo & Mak 2005; 

Raasch et al. 1997; Neptune & Hull 1998]. Due to its notoriously stochastic nature, 

investigators proceeded to use EMG models to approximate the raw signal by simple 

waveforms; sloped waveforms are more accurate representations of EMG and better 
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predictors of muscle force than rectangular waveforms [Camilleri & Hull 2006].  Thus 

far, EMG has been investigated by experimental protocols involving isometric 

contractions, ballistic motions, or tracked paradigms [Doheny et al. 2008; Gabriel 2007; 

Wrbaskic & Dowling 2006; Clancy & Hogan 1997].  Each of these motions involves the 

generation of an EMG signal that has a large departure from baseline voltage.  Therefore, 

the signal to noise ratio (SNR) is relatively high, and the signal is conducive to 

subsequent analyses.  EMG analyses have focused on the neural command of large 

tensile forces generated by specific muscle groups; there is a dearth of information on the 

EMG of self-paced elbow articulations.  Consequently, muscle models have yet to 

accurately predict kinematics during self-paced elbow flexions without resistance [Koo & 

Mak 2005].  Studying EMG during self-paced, untargeted motions is significant because 

neural recruitment and muscle activation is thought to be a function of the hand’s position 

in the extracorporeal space [Georgopoulos 1981; Morasso 1981; Abend et al. 1982], 

whereas typical experimental motions (isometric, ballistic, or tracked paradigms) may be 

governed by altered central signals [Suzuki & Yamazaki 2005].     

Hand pathways during 3-D reaching tasks are generally considered to traverse 

approximately straight line trajectories and are characterized by a highly stereotyped bell-

shaped velocity profile [Flash & Hogan 1985].  The overwhelming complexity of multi-

joint movements spawned the examination of single joint trajectories (SJTs), where 

movement is constrained to a specific joint.  Isolated elbow articulations have also been 

observed to conform to the bell-shaped velocity profile [Rohrer et al. 2002].  This 

generalization of linear spatiotemporal trajectories is approximately true on average, 
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however there is evidence suggesting individual repetitions may deviate significantly 

from this trajectory type and may exhibit stochastic variability. In the Rutgers University 

Rehabilitation Laboratory, it has been found that individuals doing multiple repetitions 

select from a set of 6 statistically independent archetypical waveforms, 5 of which are 

non-linear [Wininger et al. 2009].  Given this repertoire of kinematic types, the question 

arises as to what determines the morphology of elbow flexions.  Specifically, are they a 

result of musculoskeletal dynamics, or do they reflect variations in central motor 

planning? 

Morphological differences between kinematic traces should be rooted in the 

neural command.  However, this has never been verified because of the difficulty in 

interpreting EMG from self-paced elbow flexions.  Correlating the EMG to the kinematic 

morphology would greatly improve our current understanding of motor control.  Herein, I 

examine the early phase of EMG during self-paced elbow articulations in an attempt to… 

1.  Predict kinematic morphology from EMG. 

2. Examine the similarity of EMG waves and their parabolic reconstructions. 

3. Determine comparable motor characteristics across subjects. 
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Section 2. METHODS 

 
Figure 1:  Methods Overview – Research methods can be compartmentalized into 
four discrete sections, where the output of each compartment is the input for the 
subsequent compartment.  
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A. Data Acquisition 

 Fourteen right-hand dominant (RHD) healthy volunteers [9 male, 5 female] with 

no history of neural or orthopedic impairments were recruited to participate in this study.  

Subjects provided written informed consent, and the study was conducted within the 

parameters approved by the Rutgers University IRB. 

 Subjects were seated comfortably in the MAST, which isolates upper limb motion 

to elbow articulations in the horizontal plane.  The right elbow rested in the plane of the 

potentiometer to ensure accurate recording of anatomic flexion angle.  As a subject 

performed practice flexions, the biceps were probed for the most robust bioelectric signal.  

The electrode was firmly secured to the biceps with medical tape and a Velcro strap.  

Arm straps on the MAST were then secured.  Subjects performed several articulations at 

the elbow while kinematic and myoelectric data were recorded after receiving the 

following instructions: 

Move as smoothly as you can at a comfortable pace.  Flex and extend 

through you’re maximal range of motion without hyperextending at the 

elbow.   

  Exercises terminated before fatigue set in.   

 EMG and kinematic time-courses were sampled at 80 Hz and collected with a 

data acquisition board (USB 6008, National Instruments, Austin, TX).  A VI developed 

in LabVIEW (National Instruments, Austin, TX) collected the streaming data and wrote it 

to a common file that is readily opened in MATLAB (Mathworks, Natick, MA) and 
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Microsoft Excel.  Datasets were truncated by removing the first and last few repetitions 

to account for edge effects.   
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B. Signal Processing  

B.1.  Conditioning 

Kinematic data were low-pass filtered at a cut-off frequency of 5 Hz with a 

second order Butterworth filter [Feng & Mak 1997].  Raw EMGs were band-pass filtered 

between 7.5 and 15 Hz by a fourth-order Butterworth filter and full-wave rectified.  Full-

wave conditioning was complete after imposing a 7 point moving average on the EMG 

[Koo & Mak 2005].  Since ensuing analyses were to be performed on individual elbow 

flexions, the datasets had to be parsed into individual repetitions.  A single flexion is an 

elbow articulation that begins with the arm at full extension and finishing when the hand 

is closest to the subject’s chest.  The graphical analog of a flexion is marked by the time-

course between angular minima and maxima.  Flexion endpoints were determined by 

inputting a pre-defined angular threshold and perusing above and below the threshold 

until the minima and maxima were identified.   
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One-to-one time point correspondence was maintained between kinematic and EMG data 

by separating the bioelectric signal synchronously with the kinematic data.  Simultaneous 

examination of the time-course of EMG and kinematics revealed a sharp increase in 

biceps EMG voltage in the regional domain near full flexion.  This spatial dependence of 

EMG suggests there is increased biceps activity near full flexion.  For my purposes, 

investigating this rise in voltage was not of primary importance because the majority of 

the workspace was already traversed by the onset of this phenomenon.  The synergistic 

effects of this regional pattern of activation and electromechanical delay are evidence 

suggesting kinematic morphology is coded early in the flexion’s time course.  As to 

eliminate the effects of this increased voltage, EMG signals that occurred above 60% of 

Figure 2:  Kinematic Separation – Kinematic data are recorded as a single time 
series and subsequently separated into individual motions. 
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the range of motion were attenuated with a rectangular window.  The windowed EMG 

waveforms (r-EMG) were used in subsequent processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  EMG Processing – (a) The desired waveform occurs early in the EMG 
profile.  The spatial artifact is readily observed near full flexion. (b) Completion 
of EMG processing removes the artifact and leaves the desired waveform in-tact. 
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B.2.  Modeling 

 Previous work in our lab had shown that spatiotemporal morphology of a single 

joint trajectory conforms to an array of degenerate waveforms.  In this study, I chose to 

reconstruct global elbow kinematics by the best-fit line (a), sigmoid (b), and concave-

down (c) waveforms.   

 

         [Wininger 2009] 

The model waveform, developed from Equation 1 and Equation 2, had to account for 

variable velocity and stalls observed in between flexions and extensions.  A model of a 

specific kinematic type was identified by iteratively increasing the temporal resolution of 

the waveform while time-shifting the model across the spatially normalized flexion.  

Successive comparisons between the normalized flexion data and the model were made 
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to maximize goodness of fit, as measured by correlation.  One-to-one time 

correspondence was maintained between the performed flexion and the model by 

adjusting the leading and trailing pads of model waveform.  

  

 

 

A similar modeling technique was used to reconstruct the processed EMG 

recordings; a best-fit parabolic trace was identified for each of the EMG recordings (p-

EMG).   In order to preserve the information content of the EMG amplitude, the 

waveforms were not normalized.  The model amplitude was iteratively adjusted after 

cycles of iteratively increasing temporal resolution and time-shifting.    

Figure 4:  Kinematic Modeling – Spatiotemporal trajectories are reconstructed by 
a set of three monotonic functions.  The optimal model is discerned by a pseudo-
convolution that seeks to maximize the correlation between the model waveform 
and the flexion. 
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Figure 5: Electromyography Modeling – The algorithm used to identify the best-
fit parabolic trace is illustrated.  (a) A parabolic waveform of specific temporal 
resolution and amplitude is compared to the EMG trace after each time-step in 
an effort to maximize correlation.  (b) The temporal resolution is iteratively 
increased after each cycle of temporal-shifting is completed.  (c) The amplitude of 
the waveform is adjusted after each nested cycle of resolution modulation and 
temporal-shifting.  (d) The nested curve matching algorithm reconstructs the 
EMG trace with the best-fit parabolic model (p-EMG). 
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C.  Kinematic Characterization 

 Our ultimate goal was to use r-EMG and p-EMG to independently predict 

kinematic morphology of self-paced, untargeted elbow flexions.  Specifically, I asked the 

question, do EMG features accurately predict the type of kinematic pattern?   

Criterion used to classify kinematic type was a threshold based on the correlation 

between the model and repetition.  This goodness of fit criterion was determined 

empirically by performing a preliminary examination of the data using a random cross 

validation and remained constant across kinematic types and subjects.  A fixed threshold 

of r2> 0.9979 was used to identify repetitions that adhered to a kinematic type, whereas 

departure from a kinematic type was defined as r2 < 0.9951.  Model-kinematic trace 

correlations that fall between 0.9951 and 0.9979 were omitted from classification. 
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Figure 6:  Targeted Kinematic Classification – A repetition that satisfies the 
adherence criterion (left) nearly coincides with the linear model.  Periods of 
discord between the reconstruction and the kinematic trace yield poor correlation 
(right).  The table depicts the definitions of adherence and departure.    
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D.  Machine Learning  

D.1.  Feature Extraction 

 Features, or waveform characteristics, were extracted from r-EMG and 

corresponding p-EMG.  Three broad categories of features were compiled: independent 

EMG parameters, temporal relationships, and spatial relationships.  Independent EMG 

parameters, including amplitude, mean, standard deviation, and energy (area under the 

curve (AUC)), were derived strictly from the voltage recorded during the flexion.  On the 

other hand, temporal relationships indicated when an EMG event took place in relation to 

the period of the flexion.  Temporal occurrence of peak EMG and duration of activation 

were normalized in the time-domain by the duration of the flexion.  Spatial relationships, 

produced by identifying the angular position that coincided with an EMG event, were 

correlated with specific kinematic landmarks.  Spatial relationships included flexion 

angle at peak EMG and the angular distance traversed while the biceps were activated.  

Muscle activation was defined as voltage greater than 10 % of the peak EMG amplitude 

of each repetition.      
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Figure 7:  Feature Extraction – Three possible features are extracted from a 
single event that occurs in the EMG record:  the magnitude of the event, the 
temporal occurrence, and the position in the workspace.  Collectively, these 
features from an assortment of events comprise the feature subspace. 

Table 1:  EMG Feature Set – Extracted features are listed along with the type of 
feature and its mathematical definition. 
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D.2.  Feature Reduction  

 The feature set extracted from the EMG recordings may contain uninformative or 

redundant features.  The presence of these latent features drastically increases the 

computational power needed to train a supervised learning classifier (each additional 

feature exponentially increases the volume of the feature hyperspace) [Burges 1998].  

Therefore, reducing the feature space to those which contain relevant information was of 

paramount importance.  Principal components analysis (PCA) is a linear transformation 

that rotates the data in order to elucidate variables, or principal components, that contain 

the most variation [Semmlow 2004].  Each feature was z-normalized before PCA was 

performed.  A scree analysis of the principal components, as shown in Figure 8, revealed 

that a vast majority of the variability (up to 95%) can be explained by 3 components.  The 

principal components are highly informative, but extremely difficult to interpret because 

they are an unknown combination of the variables in the original feature space 

[Semmlow 2004].  In essence, in order to operate in the original EMG feature space, I 

needed to identify the number of features that generate the information residing in the 

principal components.  Minimally, 3 features in the original feature space had to be 

identified; since 3 principal components, which were an unknown combination of an 

unknown number of original features, were required to explain the variability in the data I 

needed to identify at least 3 EMG features.  Ideal features minimize the within class 

variance and maximize the difference between classes; the feature space depict each class 

as a dense packet of data whose centroids are separated by a large distance.  Therefore, 

difference of means tests were used to assess the dimensionality of the data.  For each 
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kinematic type, a comprehensive search was performed that minimized the p-value 

(maximized difference of means) of every combination of subspaces in feature spaces of 

iteratively increasing dimensionality.  The difference of means tests did not increase in 

significance as the dimensionality exceeded 3 features (see Figure 9).  Instead, the p-

values began to increase as more features were included in the feature space.  Increased 

dimensionality would simply increase the training time required without improving the 

information content of the feature space.   Therefore, it was determined that a 3 feature 

subspace was required for classification.  

  

Figure 8:  Feature Reduction – Principal Components Analysis (PCA) shows 
the vast majority of the variability (up to 95%) in the data can be attributed to 
3 principal components.  The scree analysis depicted here is a sample from a 
single subject.   
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Figure 9:  The Effect of Dimensionality on Difference of Means – A 
multivariate difference of means test is used to probe all possible feature 
subspaces at each dimensionality.  The minimum p-values for the comparisons 
made within each kinematic type are shown for all dimensions.  P-values are 
minimized in a 3-dimensional feature space.  This indicates that increasing the 
dimensionality further includes redundant or uninformative features.  
Therefore, a 3 feature subspace was deemed appropriate.  
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D.3.  Feature Selection and Classification 

 Next, a 3 feature subspace containing the predictive value elucidated by Feature 

Reduction (Section 2.D.2) had to be identified.  My feature selection process can be 

separated into two distinct sub-processes: identification of potential optimal subspaces 

and selection of the singular optimal subspace.   

 Several subspace combinations can be assembled from the octal feature space 

from Table 1; it was necessary to generate a short list of potential optimal subspaces to 

make computing time manageable.  For each kinematic type, a comprehensive search was 

performed which discerned the 3 feature subspace that maximally separates the means 

between the EMG traces from the kinematic adherence group from the kinematic 

departure group (minimizing p-value).  A list of up to 3 potential subspaces was 

developed because tests of difference in means can be skewed by an EMG wave.  Despite 

thorough processing techniques, it wasn’t uncommon to encounter these “rogue” EMG 

waves that differ vastly from other EMGs that belong to the same group.  Consequently, 

minimal p-value did not necessarily correspond to maximal predictive value, yet I 

expected minimal p-value is highly correlated to predictive value.  One of my potential 

candidates should yield maximal predictive value as determined by the support vector 

machines (SVMs).   

 EMG’s capability to predict kinematic morphology was assessed by linear SVMs.  

Linear boundaries avoid over-fitting and are the preferred decision boundary for 

Gaussian data [Semmlow 2004].  Each of the subspace candidates were probed with 

SVMs in a leave-one-out cross validation.  This cross validation paradigm tests the 
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classifier with the only data sample that is excluded during training [Burges 1998].  The 

classifier was then re-trained while excluding a different point that was used to test the 

classifier.  This cycle continued until all of the data were tested.  SVMs were chosen the 

assess EMG’s predictive capabilities because decision boundaries are determined by 

examining the data located nearest the boundary [Burges 1998].  Consequently, “rogue” 

EMG waves will have a minimal effect on discerning the decision boundary because they 

will be located in the extremities of the feature space.  SVMs were not used in the 

preliminary stages of feature selection because of the long computing time required to 

train the classifiers.  Probing a comprehensive list of subspaces with SVMs would have 

taken an enormous amount of computing time, thereby requiring the multivariate 

regression discussed above.   
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Figure 10:  Feature Subspace Identification – The output of multivariate 
regression yields a potential subspace extracted from each kinematic 
comparison.  A single subspace is identified after examining the output 
of SVM classification for each subspace performed across kinematic 
types. 
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Section 3.  RESULTS 

 Fourteen subjects were recruited for this study, but only 12 met the selection 

criterion for classification; subjects must have performed at least 5 repetitions that were 

reconstructed well (r2> 0.9979) or poorly (r2 < 0.9951) by a corresponding kinematic 

type.  It was common to find subjects who did not meet the selection criterion for all of 

the kinematic types.  Consequently, classification was performed for the cases that 

contained sufficient repetitions.  From the Table 2, it can be seen that only 3 subjects met 

the kinematic selection criteria for all kinematic types, and the remaining subjects were 

omitted from at least one classification.                             

                       

 

 

 

Table 2:  Repetitions Used in SVM Classification – The number of repetitions 
that were used in each binary classification are tabulated.  Repetitions that 
correlated well (r > 0.9979) and poorly (r < 0.9951) with a given kinematic type 
are tabulated for each subject.  If a subject did not perform at least 5 repetitions 
that both adhered to and departed from a kinematic type, data were omitted 
from classification (N/A).   
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 Relevant EMG features were those that could predict the adherence of a 

spatiotemporal trajectory to a kinematic type.  Feature reduction discussed in Section 

2.D.2 discerned that a 3 dimensional EMG feature subspace was required for making an 

adequate binary classification of kinematic type (see Figure 8 and Figure 9).  Following 

feature reduction, the most informative features had to be selected for predicting 

kinematic morphology.  Regression methods probed r-EMG and p-EMG features 

independently in search of a 3 feature subspace that best predicted kinematic 

morphology.  Thereby, it was possible to identify a unique feature subspace from both 

EMG modalities for each subject; none of the features were predisposed to selection in 

the optimal subspace.  I was able to conclude that the features were robust across 

subjects: spatial location of peak EMG1, temporal occurrence of peak EMG5, and EMG 

duration6 were identified during feature selection more often than the other features 

(Table 1).  Furthermore, there was concordance between the optimal features identified 

from p-EMG and r-EMG (r2 = 0.4514), as shown in Figure 11(below). 
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The EMG optimal feature subspace contained sufficient information to predict 

adherence to a kinematic type.  For all kinematic types, the mean sensitivity and 

specificity were observed to defeat chance.  Additionally, paired Student’s t-tests were 

Figure 11:  Prevalence of Features in the Optimized Feature Subspace – 
Duration, temporal occurrence of peak EMG, and spatial location of peak EMG 
occur in the optimal feature subspace more often than any other feature.  There 
is accordance between p-EMG and r-EMG.  Each incremental tally on the 
“Feature Count” axes represents the inclusion of a specific feature in the 
optimal feature subspace.  Therefore, each feature had a maximum likelihood of 
12 identifications (1 for each subject).    
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performed to compare the similarity between the performance of p-EMG and r-EMG in 

predicting kinematic morphology.  p-EMG and r-EMG are paired events because p-EMG 

is a best-fit parabolic trace, and therefore dependent on r-EMG.  The t-tests universally 

concluded there was no significant difference between the p-EMG and r-EMG. A 

Receiver Operating Characteristic (ROC) analysis, Figure 12, and confusion tables, 

Figure 13, clearly show EMG’s ability to predict kinematic morphology across subjects.   
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Figure 12:  Receiver Operation Characteristic (ROC) Analysis – Results from 
SVM classification of the p-EMG (left) and the r-EMG (right) for each 
kinematic type are presented for each subject.   
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Figure 13:  Confusion Analysis of r-EMG and p-EMG – The confusion tables 
include all of the decisions made during SVM classification for p-EMG (left 
column) and r-EMG(right column).   
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Table 3: Statistical Examination of p-EMG versus r-EMG Predictive Value – 
The sensitivity/specificity numbers presented here weight each subject equally, 
and are reflective of the ROC analysis (Figure 12).  Paired t-tests compared 
sensitivity and specificity from the model trace and EMG trace to determine 
whether the two modalities predict kinematic morphology similarly.  The null 
hypothesis stated the means of p-EMG and r-EMG were not significantly 
different (p≥0.05).  The alternate hypothesis stated the means of p-EMG and r-
EMG would yield significantly different predictive values (p<0.05).  In all cases, 
the predictive value were not significantly different. 
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Section 4.  DISCUSSION 
 

The results herein suggest that the initial neural command, measured by EMG, is 

predictive of certain kinematic morphology, which is characterized by a few statistically 

independent trajectory types.  Both EMG modalities, r-EMG and p-EMG, successfully 

predicted kinematic morphology with high sensitivity and specificity across kinematic 

types.  Confusion analysis revealed r-EMG predicted kinematic morphology with a 

sensitivity of 82.56% and specificity of 84.69%.  The predictive value of a parabolic 

envelope of r-EMG yielded similar with sensitivity of 82.85% and specificity of 86.57%.  

There was no statistical difference between the predictive value of p-EMG and r-EMG.  

Furthermore, the features most often selected for classification were robust across 

subjects and EMG modalities.    

The consistency in EMG predictions implies there was degeneracy in motor 

planning across subjects.  Strict adherence parameters in the kinematic domain only 

permitted repetitions that nearly coincided with the kinematic model to be used in 

subsequent analyses.  This selective group of repetitions had a highly invariant kinematic 

morphology.  Therefore, it is nearly impossible to associate a repetition with a subject; 

within subject and across subject variation is similar after imposing the adherence 

criterion.  
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As hypothesized, invariance in kinematic morphology was reflected in the bioelectric 

domain.  This was surprising because of EMG’s notoriously stochastic nature and the 

increased degrees of freedom in the nervous system.  Yet EMG’s predictive value 

persisted across subjects.  The relatively tight distribution of individual’s sensitivity and 

specificity about the mean echoed the invariance in the kinematic domain. Furthermore, 

the features selected in the optimal subspace were robust across subjects.  The repetitive 

identification of temporal occurrence of peak EMG, spatial location of peak EMG, and 

duration of EMG as optimal features implied there is parametric degeneracy in the EMG.  

Degenerate information in the EMG would fit perfectly with the central dogma of 

trajectory analysis; single joint trajectories have routinely been reported to approach a 

linear path with a bell-shaped velocity profile [Flash& Hogan 1985; Rohrer et al. 2002].   

The similarity of goodness of fit across kinematic types confined predictions to 

adherence to a single morphology.  Predictions can’t be made across kinematic types 

because adherence to waveform morphology was not mutually exclusive; repetitions 

Figure 14: Similarity of Inter-subject Kinematics – Sample flexions adhering to 
sigmoid morphology from three different subjects.  The repetitions nearly 
coincide and it is difficult to discern that the flexions were performed by 
different subjects.  
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could be reconstructed well by multiple kinematic models.  Totally, there were 486 

repetitions matched to at least a single trajectory type (r2>0.9979), and 159 of these 

repetitions were reconstructed well by multiple kinematic types.   

 

 

The differences in correlation between the kinematic model and actual subject motion 

were considered to be negligible above r2=0.9979.  Any differences in modeling accuracy 

that occur above the correlation threshold were attributed to local motor phenomena 

and/or physiological noise instead of varying global morphology.  It would be futile to 

attempt predicting kinematics across trajectory types because of the propensity of 

encountering repetitions that are well fit by multiple models.  The similarity of goodness 

of fit across kinematic types created ambiguity to the assignment of a repetition to a 

single kinematic type.  Which kinematic type would a repetition depicted in Figure 15 

belong to?  A between-kinematic types comparison requires repetitions that were 

Figure 15:  Kinematic Morphology Not Mutually Exclusive – A sample flexion 
is adequately reconstructed by all kinematic types.  This is not an isolated 
repetition.  Several repetitions are modeled well by multiple kinematic types. 



33 

 

 

 

reconstructed well by a single kinematic type and poorly modeled by all other 

morphologies; only 38 of these repetitions exist in all of the recorded data.     

Global arm flexion kinematic morphology was successfully predicted from the 

EMG that occurs early in the development of the motion.  EMG records were windowed 

to the time-course that occurred within the first 60% of the angular distance traversed.  

Thus, EMG records were modeled by one parabola instead of a biphasic model.  Despite 

subsequent predictions of kinematic morphology relying entirely on the truncated EMG 

waveform, trajectory type was predicted with high sensitivity and specificity.  The 

substantial predictive value concentrated in the windowed domain of the EMG signal can 

be partially explained by electromechanical delay and accelerative patterns observed in 

the kinematics.  Electromechanical delay is predicated on the notion that muscle 

contractions lag behind the neural command.  So far, the time delay has been poorly 

quantified, and seems to be dependent on the velocity of contraction [Sarre & Lepers 

2007].  An EMG trace truncated at 60% of the range of motion contained information 

about the kinematics occurring beyond the spatial window.  Electromechanical delay 

coupled with typical kinematic events resulted in classification of high sensitivity and 

specificity.  Each flexion is marked by a period of acceleration at the onset of the motion 

near full extension followed by a period of relatively constant velocity and terminating 

with a stopping period of deceleration.  The period of constant velocity occupies the vast 

majority of flexions time trace, which implies adherence to a kinematic type is largely 

affected by the accelerations experienced at the tails of each flexion.  EMG segments 

corresponding to these accelerative events are thereby extremely valuable in proper 



34 

 

 

 

classification.  My EMG processing didn’t include the data that correspond to the 

deccelerative pattern near full flexion, so I relied heavily on the flexion’s initial 

acceleration.  The absence of this information did not impact predictions to linear or 

sigmoid patterns because of the symmetric periods of acceleration in the kinematic trace.  

The noticeable drop-off in predicting concave down trajectories was possibly due to 

inadequate information in the EMG.  I had no way of accounting for the trace’s constant 

deceleration; this is due to an exclusion of either triceps data or the removal of the EMG 

traces that correspond to the last 40% of the motion.  Triceps EMG were recorded, 

however due to poor SNR, a robust depiction of muscle activation could not be 

generated.  

 A primary objective of this study was to examine the similarity of the information 

content of r-EMG and p-EMG.  The two signals, which were extracted from the same 

raw EMG, corroborated well in predicting global arm function kinematics rendered from 

the same features.  Duration, spatial location of peak EMG, and temporal occurrence of 

peak EMG were the most frequently used features in the optimal subspace.  These 

features resulted in a strikingly similar pattern of predictive value.  There was no 

statistical difference between the sensitivity or specificity (p = .05) in the traces’ ability to 

predict the selected kinematic types.  In fact, p-EMG performed marginally better than r-

EMG during classification.  Further dissection of the accordance between the traces 

revealed that they yielded the same prediction 87.80% of the time.  The synergy between 

the similar optimal feature subspaces and predictive values is convincing evidence that p-

EMG replicates the r-EMG’s ability to predict global morphology, as depicted in the 
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Figure 16 (below).  However, this does not indicate that p-EMG reconstructs r-EMG.  p-

EMG represents a smooth, low-pass filtered model of r-EMG.  r-EMG may contain 

layers of information in the high-frequency domain that I did not considered.  A bulk of 

this information may reside in the residual waveform that was masked out in this study.  

This residual waveform is derived by subtracting p-EMG from r-EMG.  This residual 

waveform may correlate to short periods of accelerations observed throughout a flexion.  

Further investigation is necessary to discern the relevance of the remainder of the EMG 

waveform.    
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Frequently identified optimal features limit EMG models to sloped waveforms.  

Historically, EMG had been modeled by both rectangular waves and impulse functions 

[Raasch et al. 1997; Neptune & Hull 1998].  All of the optimal features can’t be extracted 

from these waveforms.  Impulse functions are zero everywhere except the time point that 

coincides with peak EMG amplitude.  In other words, the instantaneous nature of the 

Figure 16:  Global Versus Local Motor Phenomena – Distinction between 
global and local effects is depicted.  The panels in the left hand column display 
the parametric reconstruction superimposed over the performed motion, the 
global flexion morphology, and the aspect of kinematics that were not 
accounted for (top to bottom).  The EMG correlates of each of these is 
displayed in the right hand column.  This study focused entirely on the global 
flexion motor phenomenon.  Future studies should investigate the 
characteristics present in the Residual EMG that correlate to Transient 
Kinematics (bottom row).    
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wave is that it does not have duration.  By contrast, square waves have a non-zero rise to 

peak voltage enduring the period of activation.  In this case, peak EMG is not a single 

point measurement as in the parabolic model.  Therefore, temporal occurrence and spatial 

location of peak EMG can’t be discerned accurately.  Although a comprehensive feature 

set can be extracted from any sloped waveform, comprehensive feature sets from sloped 

waveforms do not correspond to similar informative content.  A model waveform that 

poorly reconstructs EMG can have a plethora of features extracted from it, but the 

classification will not concur with the predictions made by EMG.  In a similar sense, 

parabolic reconstructions are relatively accurate representations of EMG; my predictions 

of kinematic morphology from p-EMGs yielded good results.       

Early phase of EMG in relation to the angular position in the workspace seems to 

have a deterministic effect on the spatiotemporal trajectory.  Inclusion of spatial location 

of peak EMG in the optimal feature subspace may reflect proprioceptive feedback.  

Proprioception is the ability to sense the relative position and orientation of body parts in 

the extracorporeal space via neural feedback [Widmaier et al. 2006].  Reflexive real-time 

tuning of arm position using proprioceptive trajectory formation may explain subjects’ 

subscription to select degenerate morphologies [Wininger et al. 2009].  Each individual 

may have unique intrinsic motor functional characteristics where a specific flexion 

angle/trajectory is obtained as a result of their unique neural signal transduction.  Factors 

that may govern unique neural transduction patterns may include the musculature’s 

ability to recruit afferent and efferent neurons and individual’s musculoskeltal 

morphology (i.e. age, gender, functional mass of a specific limb under investigation, 
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etc.).  Specifically, my findings demonstrated maximal activation of the biceps at a 

specific flexion angle predisposed a flexion’s adherence to a certain kinematic type or 

types.  Since proprioception/kinesthesia is an acquired ability, the degree of varying 

effects from feedback on a repetition-to-repetition basis should be relatively small with 

respect to a parametric analysis.  However, variability in the execution of highly 

practiced tasks has been shown to be substantial [Bernstein 1967].  The fact that each 

individual’s arm movements adheres to a small set of degenerate trajectories was 

consistent with previous findings which showed similar results where a few kinematic 

phenotypes were capable of describing a large number of healthy subjects’ functional 

patterns at the elbow [Wininger et al. 2009].    
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Section 5.  SUGGESTIONS FOR IMPROVEMENT 

 The fidelity of our EMG signal can be improved significantly by recording 

multiple channels of data from the biceps.  Features extracted from some traces were 

several standard deviations away from the group mean.  Anomalous EMG traces reflect 

either increased bioelectric activity or spurious noise.  These erroneous EMG recordings 

may be due to numerous reasons that affect the affinity of the EMG electrode to the skin 

including, but not limited to, temporary shifting of the electrode, increased surface 

moisture which affects the impedance of the conductor pads, or shifting of the skin itself.  

Probing the muscle with several electrodes and analyzing the signals in parallel or 

averaging them would attenuate erroneous measurements from any single channel.  

Improving signal fidelity by invasive EMG, which uses subdermal or subcutaneous 

needles, accompanied by near infrared spectroscopy would facilitate a higher resolution 

prediction of kinematics.  The data acquisition modality implemented in this study had 

good features such as portability, slim form-factor, convenient connectivity, compatibility 

to various analytic tools, and low cost.  However, the experimental infrastructure resided 

in the moderate end of the power range in terms of signal acquisition specifications.  

Therefore, more robust signal processing coupled with improved hardware may permit 

loosening of the stringent goodness of fit parameters, thereby passing more repetitions 

into the machine learning process.  Furthermore, future studies could consider different 

modalities of acquiring kinematic data, such as an accelerometer, motion capture system, 

etc. 
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 Reciprocal muscle actions should be included in further analyses.  This study 

operated under the presumption that the biceps were the major contributor to the 

development of a flexion.  However, periods of triceps activity or inactivity is also 

important to controlling kinematic morphology.  The characteristic deceleration in a 

concave-down trace may be attributed to increased triceps activity rather than biceps 

activity.  Our diminished ability to predict conformity to a concave-down model versus 

the other kinematic types may be corrected by the inclusion of triceps activity.   

 The observed drop-off in predicting adherence to a concave-down model may 

also be remedied by improving processing and modeling techniques.  EMG traces were 

windowed because of the large increase in voltage near full flexion.  The inclusion of the 

EMG time-course removed by windowing may shed light on the accelerations occurring 

near full flexion.  Bisecting flexions, both in the kinematic and bioelectric domains, 

according to a spatial parameter would enable the large voltages near full flexion to be 

included in further analyses without attenuating informative content in the low-voltage 

time course that occurs near full extension.  In essence, both arm kinematics and EMG 

would be parsed into a time-matched ‘near extension’ and ‘near flexion’ phases, which 

are distinguished by a spatial parameter.  Such data processing would enable analyses 

that examine the entire EMG trace as two distinct segments without any information loss.    

 Subsequent investigations should correlate the EMG to the short periods of 

acceleration that occur throughout a motion.  This study determined that a parabolic 

reconstruction of EMG contains sufficient information to predict the global kinematic 

morphology of elbow flexions.  However, no attempt was made to qualify the slight 
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departures of a kinematic trace from the kinematic model.  As discussed earlier, EMG 

and kinematic residual waveforms can be generated by subtracting the reconstruction 

from the trace.  If the residual EMG wave can predict residual kinematics, then a 

comprehensive reconstruction of a kinematic trace would be developed from the EMG.   

 Findings from this study could be applied to rehabilitation engineering if a real-

time classification algorithm is developed to implement a similar kinematic predictor in a 

myoelectric prosthetic device.  Current prosthetic devices detect the initial onset of user 

volition and develop monotone movements that may not reflect the desired kinematics.  

The premise of this study was to examine the EMG during self-paced, untargeted 

reaching tasks, which are the most typical, natural elbow articulations.  A post-hoc 

prediction of kinematic morphology was made here; in its current form, adoption of this 

software in a myoelectric device would result in a large lag time between the user’s 

volition and the actuation of the prosthetic motors.  Training time can be reduced 

significantly if the device learns in real-time with each successive repetition.  After 

sufficient training, device operation would mimic a fully functional, life-like, elbow, 

which is the ultimate goal in the prosthetic assistive device industry.         
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Section 6.  CONCLUSIONS 

 This study is the first successful application of EMG to a self-paced, untargeted, 

autonomous reaching task.  Until now, EMG investigations of the upper limb have been 

restricted to isometric contractions, ballistics motions, and tracked motions.  These 

exercises are conducive to EMG analysis because of a characteristically large rise in 

muscle activation, which is beneficial to SNR quality.  However, these exercises do not 

reflect life-like kinematics exhibited during self-paced reaching tasks.  Our understanding 

of motor control will be greatly enhanced when a comprehensive depiction of typical 

kinematics can be resolved from EMG.   

I successfully predicted the global morphology of a self-paced flexion from 

parabolic reconstructions and EMG traces.  Correlating EMG to resulting kinematics 

instead of individual muscle forces that generate kinematics is a departure from the 

conventional strategy of predicting muscle force from EMG.  Elbow kinematics is a well 

studied phenomenon, and I relied heavily on the degeneracy of kinematic traces in a 

theoretical parametric space.  Both p-EMG and r-EMG were able to predict adherence to 

a kinematic morphology similarly.  Moreover, the two modalities incorporated similar 

optimal feature subspaces.  These similarities signified the parabolic traces contain the 

information used by the EMG to code for kinematic morphology.  Furthermore, the EMG 

coding was robust across subjects.  Robust optimal features coupled with the similar 

prediction accuracy across subjects indicated there is some degeneracy in the motor plan.  

This work can be substantially improved to better elucidate EMG characteristics in an 

attempt to improve our understanding of human motor control.  In this study, a 
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pioneering notion has been proposed that EMG correlates to kinematics during a typical 

upper arm retrieval task.  However, I have certainly not explored the vastness of this 

unique point of view.  This is the beginning of a fresh outlook of EMG and its 

applications, which is a suggestion as to a new methodology of investigating untouched 

aspects of human motor control. 
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