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ABSTRACT OF THE DISSERTATION

A Generalized Hybrid Fuzzy-Bayesian Methodology for

Modeling Complex Uncertainty

by Ahmet Öztekin

Dissertation Director: Dr. James T. Luxhøj

Due to its well understood nature and its ability to model many phenomena in the

physical world extremely well, probability theory is the method of choice for dealing with

uncertainty in many science and engineering disciplines. However, as a tool for building

representative models of complex real world systems, probability theory has a rather recent

history which starts with the introduction of Bayesian Networks (BN).

Broadly construed, the BN model of a system is the compact representation of a joint

probability distribution of the variables comprising the system. Many complex real-world

systems are naturally represented by hybrid models which contain both discrete and con-

tinuous variables. However, when it comes to modeling uncertainty and to performing

probabilistic inferencing about hybrid systems, what BNs have to offer is quite limited.

Although exact inferencing in BNs composed only of discrete variables is well understood,

no exact inferencing algorithms exist for general hybrid BNs.

In this thesis we concentrate on the problem of inferencing in Hybrid Bayesian Networks

(HBNs). Our focus, hence our contributions are three-fold: theoretical, algorithmic and

practical. From a theoretical point of view, we provide a novel framework to implement a

hybrid methodology that complements probability theory with Fuzzy Sets to perform exact

inferencing with general Hybrid Bayesian Networks that is composed of both discrete and

ii



continuous variables with no graph-structural restrictions to model uncertainty in complex

systems. From an algorithmic perspective, we provide a suite of inferencing algorithms

for general Hybrid Bayesian Networks. The suite includes two new inferencing algorithms

for the two different types of Fuzzy-Bayesian Networks introduced in this study. Finally,

from a practical perspective, we apply our framework, methodology, and techniques to the

task of assessing system safety risk due to the introduction of emergent Unmanned Aircraft

Systems (UASs) into the National Airspace System (NAS).
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Chapter 1

Introduction

Modeling complex systems is a very broad area of research where, more often than not, a

multi-disciplinary approach is needed to achieve a meaningful representation of the subject

matter. The analytical methods employed along the process remain as much art as science,

especially, if the subject matter is safety and risk analysis of a complex system.

One aspect that particularly increases the complexity of modeling many real-world sys-

tems is the fact that they naturally include both discrete and continuous variables. We can

further argue that because of the hybrid nature of real-world systems, many of them can

best be modeled as hybrid stochastic processes, i.e., stochastic processes that contain both

discrete and continuous variables. Due to their hybrid nature, such stochastic processes

can be used in a wide variety of problem domains, such as fault diagnostics of complex ma-

chinery, pattern recognition, and risk analysis of complex systems. Although the problem

domains are different, the task asked of the model is to perform probabilistic inference, such

as to determine the probability of system failure given the malfunction of certain compo-

nents of the machinery, to calculate the probability that a certain word is pronounced given

the readings by the microphone, or to determine the likelihood that a mishap occurs given

a set of precursors.

Within this context, in order to perform these tasks, an intelligent agent should be able

to perform reasoning under uncertainty. As the most complex of intelligent agents, humans

certainly can perform a complex reasoning task given little or no information regarding the

situation they are in. The ultimate goal of a designer of an intelligent system is to mimic the

human reasoning process under uncertainty and enhance it with the help of the infallible

memory and unrivaled computational skills of computers.
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The method of choice by the engineering and academic communities to deal with un-

certainty in real-world applications is probability theory. Probability theory is a well-

established area of study with an extensive historical background of successfully under-

standing randomness in natural phenomena. However, its application as a tool to model

uncertainty in complex real-world systems is quite recent. In particular, its use as a model-

ing tool started with Bayesian Networks (BNs) in the late eighties following the introduction

of the concept by Pearl [1]. In a nutshell, Bayesian Networks are directed acyclic graphs

(DAGs) representing a probability distribution over this graphical structure. The DAG

of a Bayesian Network is composed of nodes representing the variables in the domain of

interest and directed links representing the conditional relations among the variables. Fur-

thermore, each node is denoted by a conditional probability distribution (CPD) imposed by

its parentage.

As popular tools for modeling uncertainty, Bayesian Networks are used in a variety of

complex problem domains, such as troubleshooting for MS Windows, junk-email filtering,

medical diagnosis, and safety risk assessment in aviation.

There are two aspects of using Bayesian Networks to model uncertainty in complex

systems. First is the representation of the problem domain and second is the inferencing

within the resulting graphical structure. As one might expect, the majority of the research

on Bayesian Networks focused on solving the inferencing problem. The research on the

inferencing aspect can be further divided into two sub-categories: inferencing in discrete

only Bayesian Networks and inferencing for Hybrid Bayesian Networks, which include both

discrete and continuous variables.

The problem of inferencing in discrete Bayesian Networks is fairly well understood and

the overwhelming majority of existing studies either are based solely or focus mainly on

discrete BNs. After the introduction of Bayesian Networks by Pearl, Lauritzen and Spiegel-

halter proposed an exact inferencing algorithm for discrete BNs [2]. By exact inferencing,

we mean that the inferencing algorithm results in exact answers to the probabilistic query

given the graphical structure and CPDs of the BN. By now we have a few exact inferencing

algorithms for discrete BNs and furthermore, we have a good understanding of the compu-

tational complexity of exact inferencing and how it relates to the graphical structure of the
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BN. Particularly, the existing exact inferencing algorithms can be very efficient for small

discrete BNs.

Notwithstanding the accumulated knowledge on exact inferencing and its wide accep-

tance on various problem domains, the discrete BNs are not always adequate, since many

real-world systems are not entirely composed of discrete variables. For example, consider

the complex problem of assessing the safety risk associated with operating unmanned air-

craft systems (UAS) in the airspace over a populated area. A Bayesian Network model of

the system may include flight-hours, altitude, speed, and fuel on board, as model variables,

none of which could easily be represented by discretization without sacrificing some of the

representative power of the network. However, when employing BNs, crude discretization

of continuous variables is commonly used to perform exact inferencing on the system model.

We understand the need for discretization of continuous variables especially in BNs

where the lack of hard data forces the analysts to resort to expert judgment to quantify the

model. It is quite hard, if not impossible to generate continuous conditional distributions

when the distributions are required to be constructed by subject matter expert input only.

However, we further argue that using simple discretization of a problem domain to be able

to perform exact inferencing is equivalent to approximate reasoning and in most cases, lead

to unreliable results. Consider the variable airspeed, which is inherently a continuous entity.

Now, for the sake of computational simplicity and exact inferencing, the analyst may choose

to treat it as a discrete variable with three mutually exclusive states: slow, medium, and

fast. Further assume that the crisp boundary between the states slow and medium is defined

by ≤ 80 knots and > 80 knots and we observe a reading from the sensors on board the

UAS that it is cruising at 85 knots. According to our predetermined mutually exclusive

three-state discretization scheme, we were observing a medium airspeed and perform the

exact inferencing accordingly. However, one could argue that even though, the states slow

and medium are different, the actual observation about the airspeed is so close to the crisp

boundary separating the two states that any inferencing using this discretization scheme is

fundamentally flawed to produce meaningful results.

Hybrid Bayesian Networks (HBNs), which include both continuous and discrete vari-

ables, are a generalization on discrete only Bayesian Nets. HBNs are inherently more
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suitable for modeling complex systems, such as visual target tracking where the variables

defining location of the target and its speed are inherently continuous and speech recogni-

tion where the the bits and pieces of processed audio signals are often continuous. In this

study we shall motivate our research using the problem domain of safety risk assessment in

complex systems such as Unmanned Aircraft Systems.

HBNs as the generalization of discrete BNs have their own shortcomings that arise when

we would like to perform exact inferencing on a general HBN. Exact inferencing on general

HBNs imposes restrictions on the network structure of the HBN. The state of the art exact

inferencing algorithm for HBNs, the Lauritzen algorithm, requires that the network satisfies

the constraint that no continuous variables have discrete children [4]. As one would expect,

this restriction places quite a burden on the generalization claim of the HBNs. We propose

an approach which, using Fuzzy Set theory, builds on the Lauritzen algorithm to generate

a hybrid exact inferencing algorithm for general HBNs.

Fuzzy Set theory, introduced by Zadeh in the late sixties [17], proposes a framework to

deal with a poorly defined concept in a coherent and structured way. Examples of poorly

defined concepts suitable for the application of Fuzzy logic are semantic variables, such

as heavy workload, inadequate training, fast, slow, tall, short, etc. Within the context of

our current research, Fuzzy Sets present two important application domains worthwhile for

further exploration: First, Fuzzy sets provide a complete set of tools to partition contin-

uous domains into overlapping membership regions, which result in a much more realistic

discretization of the continuous domain in question and second, uncertainty regarding any

empirical observation can be represented as a Fuzzy measure.

Previously, we stated that Bayesian Networks are tools to model uncertainty in the

form of a probability distribution imposed by a directed acyclic graph representing the

domain of interest. Hence, BNs only address the uncertainty in the form of randomness

about a problem domain. However, as we elaborate in Section 3.3, uncertainty in a typical

real-world application has three dimensions: vagueness, ambiguity, and randomness [29]

and BNs, being solidly anchored to probability theory, only address one of its dimensions,

namely randomness. For instance, consider that there is ambiguity regarding the observed

evidence associated with some variable in a given Bayesian Network. We believe that Fuzzy
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Set theory offers a comprehensive structure to introduce another dimension of uncertainty,

namely ambiguity, to the existing framework of the classical Bayesian Networks.

1.1 Research Objective

In this thesis, we study the problem of inferencing in general Hybrid Bayesian Networks,

within the context of uncertainty analysis in real-world complex systems. In particular,

considering the hybrid nature of real-world systems, which include continuous and discrete

variables and the lack of practical algorithmic solutions for general BNs to perform proba-

bilistic reasoning about hybrid systems, we concentrate on the problem of exact inferencing

in general HBNs with no conditional restrictions between continuous and discrete variables.

In this study, our focus, hence our contributions are three-fold: theoretical, algorithmic

and practical.

From a theoretical point of view, we provide a novel framework to implement a hy-

brid methodology that complements probability theory with Fuzzy Sets to perform exact

inferencing with general Hybrid Bayesian Networks that is composed of both discrete and

continuous variables with no graph-structural restrictions to model uncertainty in complex

systems.

From an algorithmic perspective, we provide a suite of inferencing algorithms for general

Hybrid Bayesian Networks. The suite includes two new inferencing algorithms for the two

different types of Fuzzy-Bayesian Networks introduced in this study.

Finally, from a practical perspective, we apply our framework, methodology, and tech-

niques to the task of assessing system safety risk due to the introduction of emergent

Unmanned Aircraft Systems (UASs) into the National Airspace System (NAS).

1.2 Outline

As a thesis dissertation this text is composed of five chapters: Introduction, Bayesian

Networks and Fuzzy Sets, Fuzzy-Bayesian Networks, Application of Research Methodology,

and Conclusion and Future Work.

Chapter 2 titled as Bayesian Networks and Fuzzy Sets could also be considered as a
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literature survey, where, following a brief background on basic concepts, we elaborate on

selected important advanced research papers and how they relate to our proposed frame-

work. In Chapter 3 we, first, develop a new formulation for Fuzzy probability followed by

a new Fuzzy-Bayes formula. Next, we introduce the concept of Fuzzy evidence and develop

a methodology to update probability distributions given Fuzzy evidence. Consequently, in

Chapter 3, we introduce Fuzzy-Bayesian networks (FBNs) and propose two different types

of conversions from a general Hybrid Bayesian Network to a FBN and present two different

inferencing algorithms for Type-I and Type-II FBNs. In Chapter 4, we introduce a com-

plex real-world problem domain: Unmanned Aircraft Systems (UAS). We discuss various

issues that arise when trying to model system safety risk associated with such a complex

problem domain as a Hybrid Bayesian Network. We present a novel methodology based on

a hazard-source taxonomy and a regulatory based framework to model the UAS domain

risk. We then apply the Fuzzy-Bayesian framework presented earlier in the thesis to assess

the system safety risk due to the introduction of UAS into the National Airspace System.

Finally, the last chapter contains concluding remarks including contributions to the field of

study and some open research questions.
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Chapter 2

Bayesian Networks and Fuzzy Sets

In this chapter, we present background material on Bayesian Networks and Fuzzy Sets to

the extent that closely relates to our current research interests to provide some foundation

for the subsequent advanced results presented in later chapters.

2.1 Bayesian Networks

This section contains background material on Bayesian Networks, which are, in simple

terms, a compact way of representing joint probability distributions imposed by a Directed

Acyclic Graph (DAG) network structure among a set of variables [1]. First we define

Bayesian Networks and then provide an overview of some fundamental inference algorithms.

We will introduce the Bayesian Networks using the discrete only case and then mainly focus

on Hybrid Bayesian Nets, which are composed on both discrete and continuous variables.

2.1.1 Notation

First, we need to define the notation to be used throughout this chapter. There are three

types of random variables that need to be identified to properly define a Fuzzy Bayesian

Networks (FBN). These are, namely, discrete random variables, continuous random vari-

ables, and Fuzzy random variables. Traditionally, literature on Bayesian probability denotes

discrete random variables by upper case letters from the beginning of the alphabet (e.g.,

A,B,Ai, Bij ,...) and the values that these random variables take are denoted by corre-

sponding lower case letters (e.g., a, b, ai, bij ,...). The sets of these variables along with the

frames that they are defined on are denoted by bold-face letters (e.g., A,Bi,ai,bij,...). The

notation used for continuous variables on the other hand, is similar with the only difference

being that the letters used are selected from the end of the alphabet (e.g., X,Yi,x,yij).
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While discussing Hybrid Bayesian Networks we denote the set of continuous variables

by ∆, whereas Γ refers to the set of discrete variables in the network.

Fuzzy random variables, on the other hand, are denoted by using a hat over the corre-

sponding random variable notation (e.g., X̂, Ŷ,...).

We will use the notation P (X) to denote the probability distribution for variable X. The

probability distribution P (·) refers to a mass function for a discrete variable and a density

function for a continuous variable.

2.1.2 Representation of a Bayesian Network

Very concisely, we can define a Bayesian Network as the compact representation of a joint

probability distribution given a set of variables V. A Bayesian Network is defined by the

following two components:

• A directed acyclic graph G connecting each variables Vi ∈ V into a network structure.

• A collection of conditional probability distributions (CPDs), where each node (i.e.,

variable) Vi in the graph G is denoted by a conditional distribution given its parent

nodes Par(Vi).

An important feature of Bayesian Networks, which makes inferencing possible, is the

fact that given its parents every node is conditionally independent of the nodes which are

not among its descendants. In other words, a Bayesian Network represents the joint proba-

bility distribution over its set of variables in terms of conditional independencies. Formally,

variable Vi only depends on its parents Par(Vi) and the CPD of variable Vi parametrizes

this dependency.

The local Markov property of the Bayesian Network provides a formal definition for the

joint probability distribution it represents. Via the Chain Rule we can define this joint

distribution for a Bayesian Network with n variables as follows:

P (V1, . . . , Vn) =

n∏

i=1

P (Vi | Par(Vi)) (2.1)

At this stage a brief note on the computational complexity in Bayesian Networks provides

some early insight on inferencing. In discrete Bayesian Networks the CPD of a variable Vi
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represents a multivariate discrete distribution that parametrizes all possible combinations

of the discrete states of Vi’s parents. In general, the number of terms we have to consider

might be exponential in the size of the network in question. We further elaborate on this

issue when we discuss inferencing in Bayesian Networks.

2.1.3 Exact Inferencing in Discrete BNs

By exact inferencing we mean that, given a query, an intelligent system produces exact

results. In the case of Bayesian Networks, given a set of query variables Q and some

evidence E = e, ∀E ⊆ V, an exact inferencing algorithm should produce exact numerical

results for the probability distribution P (Q|E = e). The good news is that there exist well

understood exact inferencing algorithms for discrete Bayesian Networks. However, the bad

news is that even for a moderate size Bayesian Network, the problem of exact inferencing

is NP-hard [31], [32]. Still, in many cases we can take advantage of the structure of the BN

to perform probabilistic inferencing efficiently. Next we briefly discuss two such methods.

Variable Elimination

At the crux of the probabilistic inferencing in a Bayesian Network lies the summing up of

the relevant terms, each of which can be computed using the chain rule in equation (2.1).

Consider the discrete Bayesian Network in Figure 2.1. As an example, we want to determine

the marginal distribution for variable E. That is,

P (E) =
∑

a,b,c,d

P (b, a, c, d, E)

=
∑

a,b,c,d

P (b)P (a)P (d|a, b)P (c|a)P (E|d, c)
(2.2)

We can think of equation (2.2) as composed of factors (i.e., functions) involving the

variables a, b, c, d, and the variable E. In this context we can write the factor f(E, d, c)
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Figure 2.1: Example discrete Bayesian Network with CPDs

representing the term P (E|d, c) as follows:

fE(E, d, c) =

E d c

e1 d1 c1 0.95

e1 d1 c2 0.95

e1 d2 c1 0.9

e1 d2 c2 0.7

e2 d1 c1 0.05

e2 d1 c2 0.05

e2 d2 c1 0.1

e2 d2 c2 0.3

(2.3)

Now, to compute the marginal probability P (E) of equation (2.2) one needs to compute

the following two operations:

• Multiplying the factors.

• Perform summations over the variables making up the factors.

The straightforward application of these two operations results in a factor over all the

variables in the Bayesian Network. Note that the size of such a factor would be exponential
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in the number of variables and in larger Bayesian Networks its use would be clearly infeasible

for all practical computational purposes.

However, if we reorganize the equation (2.2) by pushing the summations inside, such

that

P (E) =
∑

d,c

P (E|d, c)
∑

a

P (a)P (c|a)
∑

b

P (b)P (d|a, b) (2.4)

we obtain a much more tractable form which allows practical inferencing in moderate sized

Bayesian Networks.

To compute this new arrangement let us start with the terms of the innermost summa-

tion: P (b) and P (d|a, b). The corresponding factors are:

fb(b) =

b

b1 0.8

b2 0.2

, fd(d, a, b) =

d a b

d1 a1 b1 0.2

d1 a1 b2 0.7

d1 a2 b1 0.8

d1 a2 b2 0.95

d1 a3 b1 0.95

d1 a3 b2 0.99

d2 a1 b1 0.8

d2 a1 b2 0.3

d2 a2 b1 0.2

d2 a2 b2 0.05

d2 a3 b1 0.05

d2 a3 b2 0.01

(2.5)
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The multiplication of the factors in (2.5) results in the following factor

f1(d, a, b) =

d a b

d1 a1 b1 0.16

d1 a1 b2 0.14

d1 a2 b1 0.64

d1 a2 b2 0.19

d1 a3 b1 0.76

d1 a3 b2 0.198

d2 a1 b1 0.64

d2 a1 b2 0.06

d2 a2 b1 0.16

d2 a2 b2 0.01

d2 a3 b1 0.04

d2 a3 b2 0.002

(2.6)

Now we will evaluate the factor representing the summation
∑

b P (b)P (d|a, b) which is

equivalent to the summation
∑

b f1(d, a, b). The resulting factor is:

f2(d, a) =

d a

d1 a1 0.3

d1 a2 0.83

d1 a3 0.958

d2 a1 0.7

d2 a2 0.17

d2 a3 0.042

(2.7)

With the construction of factor f2(d, a) we can rewrite the equation (2.4) as follows:

P (E) =
∑

d,c

P (E|d, c)
∑

a

P (a)P (c|a)f2(d, a) (2.8)

The important observation is that we eliminated variable b, which will not appear in any of

our factors from now on. If we continue in this fashion first, we convert the terms P (a) and

P (c|a) into their respective factors and then multiply them together with the factor f2(d, a)
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to obtain the factor f3(c, d, a), which is now the only factor in the innermost summation:

P (E) =
∑

d,c

P (E|d, c)
∑

a

f3(c, d, a) (2.9)

When we perform the summation over variable a to obtain the factor f4(c, d), thereby

eliminating the variable a from our considerations:

P (E) =
∑

d,c

P (E|d, c)f4(c, d) (2.10)

The next step is to convert the CPD P (E|d, c) to its corresponding factor fE(E, d, c) and

multiply it with f4(c, d).

P (E) =
∑

d,c

fE(E, d, c)f4(c, d)

=
∑

d,c

f5(E, d, c)

(2.11)

Consecutively, we sum out the variables d, c from f5(E, d, c) to obtain the factor f6(E):

f6(E) =

E

e1 0.9103

e2 0.0897

(2.12)

Note that the individual terms in (2.12) sum up to unity which confirms that the resulting

factor is in fact a proper distribution representing the marginal probability distribution for

variable E.

In the steps above where we perform successive variable eliminations the largest factor

that we needed to deal with has only 3 variables and 12 entries as compared to the original

equation (2.2) (i.e., the chain rule for the example) and its factor which has 5 variables

and 48 entries. The efficiency of the variable elimination algorithm becomes more apparent

when the Bayesian Network in question becomes larger.

The size of the factors generated during the process determines the complexity of the

variable elimination algorithm. The key observation is that this depends on the order of

elimination we choose. For example, we could start with eliminating the variable d which

would lead to a factor of four variables with 24 entries, which is much larger than we had

to deal with in the example above. Intuitively, we can argue that a simple greedy heuristic
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would be enough to determine the right order of elimination. This certainly helps [6], [8].

However the problem of determining the optimal elimination order, which minimizes the

size of the maximum factor is NP-hard [9]. Additionally, in some moderate sized Bayesian

Networks even the optimum elimination order results in factors that are exponential in the

size of the networks. For such cases we cannot perform exact inferencing. Regardless of

this, the variable elimination algorithm and the junction tree algorithm based on it provide

the best known method for exact probabilistic inferencing in many non-trivial sized discrete

Bayesian Networks.

Variable elimination can easily be adopted to handle the inclusion of an observation

about one or more variables to update the inferencing results. In Bayesian Network jargon,

this type of observation is often referred to as evidence. Handling evidence can be performed

simply by representing the observed variables by indicator functions. More formally, con-

sider that the variable X is observed to be in state x1. We can represent this observation by

the indicator function Ix1
(X), which has the entry 1 for the observed state x1 and 0 for the

rest of the states that the variable X may take. Now consider, we observe that the variable

C in our example is in state c1. Then, for example, the corresponding marginal probability

distribution P (E) when C = c1 is observed can be computed by:

P (E,C = c1) =
∑

a,b,c,d

P (a, b, c, d, E) · Ic1(c)

=
∑

a,b,c,d

P (b)P (a)P (d|a, b)P (c|a)P (E|d, c) · Ic1(c)

(2.13)

where

Ic1(C) =





1 if C = c1

0 Otherwise

We thus eliminate all the terms in equation (2.13) that are not consistent with the evidence.

The actual factor representing the evidence that will be used in the variable elimination

algorithm is

fEvidence(C) =

C

c1 1

c2 0
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which at the end of the computations leads to the marginal distribution for the variable E:

f6(E) =

E

e1 0.216

e2 0.029

However note that the factor f6(E) is not a proper probability distribution since it does not

add up to unity but rather to 0.245. What it actually represents is the probability P (C =

c1). So, if we normalize f6(E) by dividing it by 0.245, we obtain the actual probability

distribution P (E,C = c1) that we would like to determine:

P (E,C = c1) =

E

e1 0.882

e2 0.118

Junction Trees

The Junction Tree algorithm [2, 7, 8] is basically a more structured way of performing

variable elimination on Bayesian Networks. The junction tree algorithm, also known as the

clique tree, the cluster tree, and the joint tree algorithm has two main advantages over basic

variable elimination:

• To compute more than one marginal distributions, the variable elimination algorithm

needs to be run multiple times. On the other hand, using the junction tree algo-

rithm, one can compute multiple marginals performing no more than twice as many

operations as needed by the variable elimination for computing only one marginal

[10].

• The clustering of variables in the junction tree algorithm leads to much efficient im-

plementation of the variable implementation.

A junction tree can be considered as a graphical structure imposed by the variable elimi-

nation algorithm. Each node in the junction tree represents an operation of multiplying the

factors together and is related to the variables comprising the factors. Each link connecting

adjacent cliques (i.e., the nodes) in the junction tree indicates the result of a summation
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over some variables (we call this resulting set of variables the separators). A separator is

composed of variables that two adjacent nodes share.

The junction tree induced by the variable elimination steps that we have taken in the

preceding example is provided in Figure 2.2.

),,(1 badf ),,(3 adcf ),,(5 cdEf
),(2 adf ),(4 dcf )(6 Ef

),,()( badfbf db ),()( acfaf ca ),,( cdEfE
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D,A,B C,D,A E,D,C
D,A C,D

C1
C2 C3

S1 S2

(b)

(a)

Figure 2.2: (a) The steps of the variable elimination algorithm applied to our example. (b)
The junction tree induced by the variable elimination

Now we can formally define a junction tree.

Definition 1 Consider the Bayesian Network GBN with the random variable set X. The

junction tree over the GBN is an undirected acyclic graph T composed of the vertex set V

and the edge set E. Each vertex (i.e. node) Ci ∈ V is associated with some set of random

variables Xi ⊆ X. This association generates a clustering of variables in each vertex Ci

and is called a clique. Each edge Si ∈ E is also associated with an nonempty set variables

Yi = Ci ∩ Ci+1 that two adjacent cliques Ci and Ci+1 share. The set of variables Yi is

called separators. We associate factors Φ(Ci) and Φ(Si) to each clique Ci and separator Si

respectively. These factors are called potentials. Two properties further define a junction

tree:

• For every CPD over variable set Z, ∀Z ⊆ X in GBN there exist a clique Ci such that
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Z ⊆ Xi.

• The running intersection property: Consider two cliques Ci and Cj, such that variable

X is in the set of variables they share, X ∈ Xi ∩ Xj. Then all cliques situated

topographically between Ci and Cj contain the variable X.

The following algorithm describes the process of constructing a junction tree from a

Bayesian Network.

The Junction Tree Clustering Algorithm:

1. Moralize: Replace all directed connections with undirected edges (i.e., remove the

arrows). Marry all parent nodes without a direct connection between them by an edge

(hence, the term moralization).

2. Triangulate: Add arcs to generate cycles so that no cycle is longer than three arcs.

3. Identify maximal cliques: Identify maximal cliques in the triangulated graph.

4. Form the tree structure: Connect the maximal cliques by undirected arcs to form

a tree graph (i.e. construct an undirected acyclic graph).

5. Identify the separators: For each arc on the tree identify the variables that are

shared by the two cliques connected by that particular arc.

Different triangulations as the result of step 2 lead to different clustering of variables, i.e.,

to different cliques. Although the problem of finding the optimal triangulation is NP-hard,

we can use a simple heuristic based on greedy elimination [6]. In step 3, while connecting the

cliques, we should do this in such a way that the running intersection property is preserved.

The maximal spanning tree algorithm can be used for this purpose [33].

Figure 2.3 illustrates the necessary steps to construct a junction tree for a sample discrete

Bayesian Network.

Lauritzen and Spiegelhalter introduced and refined the junction tree algorithm as an

exact probabilistic inferencing algorithm for a discrete Bayesian Network [2]. Their ap-

proach has been simply the most popular methodology used in software-based tools for BN

inferencing that relies on an message passing algorithm.
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Figure 2.3: (a) A discrete Bayesian Network. (b) The moralized graph. (c) A triangulated
graph. (d) A clique tree.

The message passing algorithm for a junction tree start with incorporating the CPDs

into the clique, thereby initializing their potentials. This is done first, by converting the

CPDs into factors as we demonstrated previously in our example for variable elimination.

Second, we choose, for each factor, a clique Ci that contains all the variables in the factor.

Next, for clique Ci we initiate its potential by multiplying together the factors that we

associated with Ci in the previous step. In the case where no factor is associated with

clique Ci we set all the terms in its potential to 1.

The variable elimination in junction trees is performed by passing messages along the

tree starting with the branches and moving toward the root clique (in our example of Figure

2.3.d, C2 is the root clique). In order for a clique to pass along a message to the next clique

on the way to the root, it first needs to collect the messages coming from the branches

traveling toward the root.

Table 2.1 shows the steps in the junction tree algorithm to compute the distribution for

clique C5 in Figure 2.3.d.
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Table 2.1: Message passing along the junction tree to calculate the marginal distribution
for clique C5.

Step From Clique To Clique Operation

0 Initialize The Potentials
1 C1 C2

∑
A Φ(C1)→ f12 ; f12 · Φ(C2)→ Φ(C2)

2 C4 C3
∑

GH Φ(C4)→ f43 ; f43 · Φ(C3)→ Φ(C3)
3 C3 C2

∑
E Φ(C3)→ f32 ; f32 · Φ(C2)→ Φ(C2)

4 C2 C5
∑

BC Φ(C2)→ f25 ; f25 · Φ(C5)→ Φ(C5)

The order of message passing indicated in Table 2.1 is one possible order. We could

have started with step 2 but we could not have started with step 3 since we had to wait for

the message coming from C4.

We can use the results of Table 2.1 to accelerate the process while calculating the

marginal distribution for other cliques. For example to calculate the distribution for clique

C2 we can reuse the information provided in steps 1, 2, and 3. However we cannot use the

information provided in step 4 as is, because it already is multiplied by factor f25. However,

the good news is that we can update the message at the end of the step 4 (i.e., the potential

Φ(C5)) by simply dividing it by f35 if only we have retained it along the process. We can

consider this as resending a message backwards along a path in the junction tree. To achieve

this we need to save the message sent toward the root clique C2. This is done by storing

the messages passed along the edges connecting adjacent cliques and the potentials of the

separators associated with each edge is the medium to store the messages during each run

of the message passing algorithm.

Finally we need to perform a calibration on the results for them to reflect marginal

probability distributions for individual cliques [10].

Handling evidence in junction trees is performed in a similar way as in variable elimina-

tion. The only difference is instead of using the indicator function we convert the indicator

function into a factor for the pertaining evidence variable and multiply it with the potentials

of the cliques containing the evidence variable.

When the size of the discrete Bayesian Network becomes larger the junction tree al-

gorithm becomes intractable and we need to resort to approximate methods to perform

probabilistic inferencing. Sampling techniques, such as importance sampling and Markov
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Chain, Monte Carlo, and Gibbs sampling are most popular approximate inferencing methods

for discrete Bayesian Networks. However, in our study, we do not include the approximate

reasoning in BNs.

2.1.4 General Bayesian Networks

So far our focus has been on Bayesian Networks composed of discrete random variables only

and we referred to such BNs simply as discrete Bayesian Networks. In this section we briefly

discuss some of the important literature on mixed (on sometimes referred to as general or

hybrid) Bayesian Networks that incorporate both continuous and discrete random variables.

In general Bayesian Networks, each node could either be discrete or continuous, a real-

valued scalar or vector. Exact inferencing algorithms exist when we represent the joint

probability distribution over all the nodes as Conditional Gaussian (CG) [3, 4], i.e., for a

given combination i for instantiated states of the discrete variables ∆, the distribution over

the continuous nodes Γ has the following form:

f(Γ|∆ = i) = N (Γ; µ(i), Σ(i)) (2.14)

where, N () represents a multivariate Gaussian distribution such as a multivariate Normal

density function, µ(i) a vector-valued entity, and Σ(i) a matrix-valued entity.

One should immediately note that the linear Gaussian model, i.e., the form in equation

(2.14), for which exact inferencing methodologies exist excludes the cases where discrete

nodes have a parent-set including continuous variables. This particular shortcoming pro-

vides the motivation for our proposed methodology that we introduce in Chapter 3.

[34] provides a good review on exact inference methodologies for the general Bayesian

Networks represented by this linear Gaussian Model. For the remainder of this section we

focus on the Lauritzen algorithm, which is the state-of-the-art algorithm for exact proba-

bilistic inferencing in Bayesian Networks with discrete and continuous variables.

A computational method for exact local computations of mean and variances in Bayesian

Networks modeled by Conditional Gaussian distributions has been developed by Lauritzen

[4]. The model behind the computations of the Lauritzen’s algorithm relies on the assump-

tion that the conditional distribution of a continuous variable given a discrete variable is a
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multivariate Gaussian (i.e., the form in equation (2.14)).

Quickly reviewing, in the univariate case the normal distribution is defined by two

variables the mean µ and the variance σ2. Then for random variable X the density function

has the form:

P (X) = N (X;µ, σ2) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)

For the multivariate case the normal distribution is defined by parameters the mean

vector and the covariance matrix. Formally, for a set of random variables X, the multivariate

Normal distribution is defined by

P (X) = N (X; µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(2.15)

Where, for a set of n random variables, µ is a vector of size n and Σ is a matrix of size

n× n and |Σ| is the cardinality of matrix Σ.

A Bayesian Network can be written in the form of a multivariate Gaussian. Consider a

joint normal distribution over {X,Y}, where X ∈ Rn and Y ∈ Rm, we can use the following

form to define it:

P (X,Y) = N




µX

µY


 ,


ΣXX ΣXY

ΣYX ΣYY




 (2.16)

where µX ∈ Rn and µY ∈ Rm and the matrices ΣXX, ΣXY, ΣYX, and ΣYY are of size

n × n, n ×m, n ×m, and m ×m, respectively. Next, we will use the following theorem

and its corollary [5, 35, 10, 34] without a formal introduction or further detail to define the

conditional distribution P (Y|X).

Theorem 2.1.1 Let the joint distribution of variables X and Y be given by equation (2.16).

Then, the conditional distribution P (Y|X) is a normal distribution

N (Y; µ,Σ)

where,

µ = µY + ΣYXΣ−1
XX(x− µY)

Σ = ΣYY − ΣYXΣ−1
XXΣXY
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Corollary 2.1.2 Consequently, when we let |Y| = 1 we can write the conditional distribu-

tion P (Y |X) as a normal distribution N (Y ;β0 + βTX, σ2), where

β0 = µY − ΣY XΣ−1
XXµX

β = ΣY XΣ−1
XX

σ2 = ΣY Y − ΣY XΣ−1
XXΣXY

Now we can use Theorem 2.1.1 and its corollary to convert a multivariate Gaussian

into a Bayesian Network. Consider an ordered series of n variables X1, X2, . . . , Xn. Then,

using Corollary 2.1.2 we can determine the conditional distribution of variable Xi given the

variables up until and including the (i− 1)th variable in the series, as follows:

P (Xi|X1, . . . , Xi−1) = N


Xi;βi,0 +

i−1∑

j=1

βi,jXj , σ
2
i


 (2.17)

Equation 2.17 represents the simple Bayesian Network in Figure 2.4, where, for every βi,j 6=

0, there exists a directed link from Xj to Xi such that 1 ≤ j < i.

1X 2X 1iX

iX

.   .   .

Figure 2.4: The Bayesian Network representing equation (2.17).

The conditional probability distribution (CPD) represented by equation (2.17) is called

a linear CPD. A Bayesian Network where all the CPDs are linear is called a linear Gaussian

[34]. Note that the above argument implies that every multivariate Gaussian can be written

as a linear Gaussian, vice-versa is true, too.

To perform probabilistic inferencing on linear Gaussians we can use the variable elimi-

nation algorithm and hence the junction tree algorithm. However, since we are performing

inferencing over continuous variables whose parents are a combination of discrete and con-

tinuous nodes we cannot simply represent the factors simply by tables as we did in sections
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(2.1.3) and (2.1.3) for discrete only Bayesian Networks. Since the linear CPDs are condi-

tional distributions and not Gaussians, we cannot represent the factors as Gaussians too.

Canonical characteristics (also know as Canonical forms) are introduced to deal with

this problem [4, 35]. Within the context of representing linear Gaussians, canonical char-

acteristics represent a function of the form eQ(x), where Q(x) is a quadratic function. We

can represent every Gaussian as canonical characteristics. Formally, we define

C(X;K,h, g) = exp

(
−1

2
XTKX + hTX + g

)
(2.18)

Then,

N (µ,Σ) = C(K,h, g) (2.19)

by rewriting and arranging equation (2.15) we get:

K = Σ−1

h = Σ−1µ

g = −1

2
µT Σ−1µ− log

(
(2π)n/2|Σ|1/2)

)

Being more general forms then Gaussians, we can perform algebraic operations on canon-

ical characteristics, such as multiplication and divisions, perform marginalization over vari-

ables and enter evidence. Hence we can use them to perform message passing in a junction

tree. The various operations on canonical characteristics are defined as follows:

• Initialization: A canonical form C(K,h, g) can be initializes by setting K = 0, h =

0, g = 0.

• Multiplication: Using equation (2.18) we get

C(K1,h1, g1) · C(K2,h2, g2) = C(K1 +K2,h1 + h2, g1 + g2) (2.20)

• Division: Division is analogous to multiplication

C(K1,h1, g1)

C(K2,h2, g2)
= C(K1 −K2,h1 − h2, g1 − g2) (2.21)

• Extension: Canonical forms can be extended by increasing the dimensions of K and

h and setting the extra entries to zeros.
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• Marginalization: Let C(X,Y;K,h, g) be a canonical form defined over continuous

variable sets {X,Y} such that,

K =


KXX KXY

KYX KYY


 ; h =


hX

hY


 (2.22)

The marginalization of the variables Y is defined as
∫
C(X,Y;K,h, g). Note that

the result is a function over X. This integral is finite iff KYY is positive definite, i.e.,

it is the inverse of a legal covariance matrix, in which case the result is a canonical

form C(X;K ′,h′, g′) given by [4] such that,

K ′ = KXX −KXYK
−1
YYKYX

h′ = hX −KXYK
−1
YYhY (2.23)

g′ = g +
1

2

(
|Y| log(2π)− log |KYY|+ hT

YKYYhY

)

• Evidence Instantiation: It is possible to enter evidence into a canonical form, i.e., set

the values of some of its variables. The result is a canonical form over the unobserved

variables. Consider the canonical form C(X,Y;K,h, g) given by equation (2.22), then

instantiating Y = y results in the canonical form C(X;K ′,h′, g′) given by [35], such

that

K ′ = KXX

h′ = hX −KXYy (2.24)

g′ = g + hT
y −

1

2
KYYy

Representing the distributions of cliques by canonical forms provide a powerful tool to

perform the basic operations needed for message passing algorithms on a junction tree.

However there are two major shortcomings of the canonical characteristics:

• Since the covariance matrix is not invertible, we cannot use them to represent deter-

ministic linear relations, such as A = B + 3C.

• They are computationally unstable resulting in numerical errors.
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Lauritzen, who originally proposed the canonical characteristics to perform exact in-

ference on mixed Bayesian Networks [4], improved on the original scheme, by introducing

conditional forms [5].

Definition 2 Consider the variable set V, such that V = X ∪Y and X ∩Y = ∅, where

|X| = n and |Y| = m. Then, the conditional distribution P (X|Y) can be represented by the

following form:

P (X|Y) = w · N (X; a+BY, C)

where a is a vector of size n and B and C are matrices of size n×m and n×n, respectively.

Conditional forms do not demonstrate the shortcomings of the canonical characteristics,

and since all operations to perform the junction tree algorithm can be performed utilizing

the conditional forms, we can adopt an improved version of it to perform exact inferencing

on mixed Bayesian Networks [5]. However, using conditional forms makes the operations

more complex, thereby increasing the complexity of the inferencing algorithm.

We defer the discussion on the details of the Lauritzen’s junction tree algorithm with

conditional forms for general Hybrid Bayesian Networks to Chapter 3 where we develop and

introduce our hybrid inferencing methodology for general HBNs. In particular, as part of

our proposed framework, in Section 3.4.3 we introduce a variant of Lauritzen’s algorithm

to perform inferencing on the Type-II Fuzzy-Bayesian transformation of general HBNs.

2.2 Fuzzy Sets

In this section, we do not provide a review of the rather extensive topic of Fuzzy Sets.

Instead, we focus on the particular research on Fuzzy Sets as they relate to Hybrid Bayesian

Networks. Within this context, we briefly review some important papers that provide

inspiration to our research. To facilitate the ensuing discussion we start with a concise

introduction of the ideas at the crux of Fuzzy Set theory.

In classic set theory a certain element can either belong to a set or not, such as in an

optimization problem a certain solution can either be feasible or not, which can be repre-

sented in mathematical terms by using an indicator function. The nature of membership to
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classical sets requires precision and precision assumes that the model parameters represent

exactly either our perception of the phenomenon modeled or the real features of the actual

system. More importantly, precision implies that our model of the real-world system does

not contain any ambiguities. Therefore, an observation about a certain model parameter

can only assume the 0-or-1 assignment of an indicator function over its defined domain to

determine whether or not it belongs to a collection of mutually exclusive states defining

the model parameter. This crisp, deterministic, and precise world view underlines a whole

body of work for formal modeling and reasoning about real-world systems.

A more realistic point of view would admit that the real world is more complex and

uncertain. Traditionally, uncertainty in the real world is addressed primarily by probability

theory. However, as we elaborate in more detail in section 3.3, randomness is only one

of the many sources of uncertainty in real world applications. Another major source of

uncertainty is ambiguity. The question of ambiguity is directly related to the notion of set

membership. However, this time the membership is represented by a continuous function

that can assume any real number on the closed interval [0,1] instead of 0 or 1 only. Fuzzy

Set theory proposed by Lotfi Zadeh [17] makes use of this more generally defined idea of

membership to formally model the ambiguity in real world systems. The new idea, here, is

that the notion of set membership is the key to decision making when faced with uncertainty

in general. In this respect, Fuzzy Set theory could be interpreted as a generalization of the

classic Set theory.

Our past research experience on modeling the safety risk in the civil aviation domain

indicates that the uncertainty that needs to be quantified originates from two major sources:

randomness associated with domain variables and ambiguity associated with their states.

Within this context, a Fuzzy-Bayesian hybrid approach provides the most appropriate tools

to tackle the problem of modeling the uncertainty associated with a real-world complex

system.

Although the question of Fuzzy-Bayesian inference has not been a recent one [36], the

majority of related research has been performed in the last decade [37, 38, 39, 40, 41, 42, 43].

We should underline the fact that almost all of these studies focus on the development of

a Bayesian calculus on Fuzzy data and none of them provides a study for inferencing with
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Bayesian Networks in a Fuzzy domain as we provide in this study.

A second generation of papers focus on a hybrid inferencing methodology that combines

the Fuzzy Set theory and Bayesian Networks, which is rather close to the heart of our

current research. In a 1998 conference paper, Pan and McMichael elaborate on the idea

of using Fuzzy transformation of continuous variables in a hybrid Bayesian Network at a

thought-experiment level without providing a formal methodology and much detail [16].

Then in 2000, as the follow-up of the original idea, Pan and Liu propose a general formal-

ism for inferencing with general Hybrid Bayesian Networks [30]. However, their proposed

methodology excludes any Fuzzy Set theoretic formalism and relies heavily on Conditional

Gaussian and Conditional Gaussian regression models to facilitate the inferencing in Hybrid

Bayesian Networks, which, in its core, is not that much different than the original Lauritzen

algorithm.

Another study, which is more true-to-the-idea, by Baldwin and DiTomaso emerges in

2003 [23]. They actually propose the fuzzification of continuous variables in a hybrid BN

to facilitate inferencing. Although the laid-out fuzzification scheme is well structured and

complete, the proposed inferencing algorithm relies heavily on minimum entropy criteria

which results in increased computational complexity and instability.

More recently Cobb et al. propose the mixture of truncated exponentials model as a gen-

eral solution to the problem of specifying conditional distributions for continuous variables

in BNs as an alternative to discretization [44]. Although the proposed methodology is not

necessarily an hybrid implementation of Fuzzy and BN concepts, it provides valuable insight

on alternative ways for modeling conditional distributions within the context of Bayesian

Networks. About the same time, Heng and Qin propose a general formalism for hybrid BNs

that utilizes partial least-squares along with Fuzzy sets [45]. In another important paper

published quite recently in 2008, DiTomaso and Baldwin [23], improving on their earlier

publication on the topic, introduce a more complete approach to theory development for

dealing with continuous variables in hybrid BNs using Fuzzy Sets [21]. Finally, in their

recent publication, Eleye-Datubo et al., implement a Fuzzy-Bayesian approach based on an

induced mass assignment paradigm to model the risk associated with marine and offshore

safety [46].
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The literature that we briefly reviewed above indicates that the emergence of the idea of

utilizing Fuzzy Sets to model conditional distributions of continuous variables to facilitate

inferencing in hybrid BNs as a prominent research topic is quite recent. Furthermore, the

clustering of some quality papers within the last couple of years underlines the fact that this

particular problem domain is currently gaining prominence within the scientific community.
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Chapter 3

Fuzzy-Bayesian Networks

In this text, Hybrid Bayesian Networks (HBN) refer to Bayesian Networks that include

both discrete and continuous random variables (RV) within the same network structure. A

Fuzzy-Bayesian Network (FBN) formalism is introduced to overcome the complexity and

tractability issues of the existing exact inferencing algorithms with an additional emphasis

on improving the representative power of general Bayesian Networks (BN) for real-world

systems. In this chapter, we focus on developing an analytical approach complete with its

inferencing formalism for a generic FBN.

3.1 Hybrid Bayesian Networks

In a very basic sense, general Bayesian Networks (BNs), also called Hybrid Bayesian Net-

works, are graphical structures, which enable us to model an uncertain domain and reason

about it. Formally, a BN is a directed acyclic graph representing the joint probability

distribution of a given set of random variables that include both discrete and continuous

variables.

Based on a well-established probability theory, the general formalism for Bayesian Net-

works was first introduced by Pearl [1]. Subsequently, Lauritzen and Spiegelhalter [2] de-

veloped a complete inferencing methodology for BNs with discrete random variable only.

Although the developed inferencing technique was exact, the modeling ability of discrete-

only BNs was quite limited for representing real-life complex systems which quite often

include continuous variables. Consequently, Lauritzen proposed an exact method for mixed

(i.e., hybrid) BNs by making use of Conditional Gaussians (CG). Today, CG based mod-

els represent the most popular class of hybrid models. However, they have two important
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restrictions. First, they can only model linear relations between continuous variables. Sec-

ond, they do not allow discrete nodes to have continuous parents. These issues and their

importance are discussed in the following sections.

Lauritzen’s approach [4, 5], from an algorithmic point of view, still represents the state of

art. It is based on the junction tree algorithm [2, 7, 8], originally developed for discrete-only

BNs. Contrary to the common perception that the extension of the junction tree algorithm

to the mixed networks is a straightforward implementation, it has been shown that in may

cases the Lauritzen algorithm is intractable even for simple network structures [10]. More

on this issue later.

On the other hand, various approximate algorithms were also introduced for HBNs.

The most commonly used framework is based on stochastic sampling. Although, stochastic

sampling applies to every class of HBNs (not only CGs), it may take a long time to converge

to a reliable answer, and therefore stochastic sampling based approximate algorithms are

not suitable for real-time applications.

Within this context, in the next section we provide a novel inference algorithm for HBNs.

This new framework takes a different view at the whole problem from the vantage point

of an analyst whose goal is to assess the safety risk associated with a complex system,

for which randomness is only one of the sources of uncertainty. The proposed framework

introduces vagueness to the problem in an attempt to bridge the gap between probability

and possibility, which enables the application of general HBNs practical for reasoning about

complex real-life systems.

3.2 Probability of a Fuzzy Event

A very heated debate has been underway since the introduction of Fuzzy logic and possi-

bility theory about their relevance within the scientific community dominated by a world

view which believes that probabilistic methods are necessary and sufficient to understand

uncertainty in real-world complex systems [11], [12].
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We believe that possibility theory based on Fuzzy logic and probability theory are com-

plementary rather than competitive [12]. They simply address different sources of uncer-

tainty. Probability deals with randomness, whereas Fuzzy Sets helps us to understand the

vagueness. In this section we introduce the concept of a Fuzzy random variable and pro-

pose a framework to define a conditional probability formulation for various combinations

of Fuzzy and crisp events.

Consider an event which is not crisply defined. Determining whether or not some ob-

served value of crisp variableX belongs to a certain partition defined by a Fuzzy partitioning

scheme along its frame X, ∀X ∈ X can be considered such an event. In other words, this

event is only defined by a possibility distribution (i.e., a Fuzzy Set). Now, let us further

assume that, although the event itself is not crisp, we want to determine the probability of

its occurrence. In a sense, what we are facing here is a pure stochastic problem, however,

with a major twist that the event itself is vaguely defined (i.e., defined by a Fuzzy Set).

There are two fundamentally different approaches one can adopt to address this question

[13]. The probability of a fuzzy event should be a scalar (i.e., a crisp number or measure)

[14] or it can be defined by a fuzzy set itself [15]. The latter point of view necessitates

the adoption of an inference mechanism based solely on Fuzzy logic, which from a purely

algorithmic point of view is considered suboptimal in the following three important aspects

[16]:

• The formalism for Fuzzy inferencing set forth so far cannot be considered as complete.

• It is yet to be shown that experimental evidence supports the core components of

Fuzzy inferencing (e.g., MIN and MAX operations).

• Fuzzy inferencing does not take into account any probabilistic information provided

about the problem, thereby resulting in a one dimensional analysis of uncertainty,

which is exactly what the probabilistic methods suffer from.

On the other hand, when the probability of a fuzzy event is assumed to be a scalar

measure, the inference mechanism employed could capitalize the well established inferencing

algorithms of probabilistic reasoning methods such as a Bayesian Network. Therefore, in

our pursuit to capture various types of uncertainty that exist in real-world situations when
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modeling complex systems, we adopt the former point of view to develop our proposed

framework.

Now we introduce the concept of a Fuzzy random variable. Let X be a continuous

variable defined on closed interval [a, b], i.e.,

X = {x : a ≤ x ≤ b} (3.1)

Consider the exhaustive collection of individual elements (singletons) x (i.e., the actual

value that variable X takes), which make up a universe of information (discourse) X. For

the purposes of Fuzzy information, the crisp value x represents the variable X, which is

defined on frame X.

Now consider the fuzzy set X̂ defined on X, to be

X̂ = {x, X̂(x)|x ∈ X} (3.2)

where X̂(x) is the membership function mapping the crisp x, x ∈ X on to the closed interval

[0, 1], which defines its membership to the Fuzzy Set X̂.

Now, let Û be the fuzzified counterpart of crisp variable X. Also, assume that Û can

only take discrete states from the set Û, which can also be considered as the frame of fuzzy

variable Û

Û = {X̂1, X̂2, . . . , X̂m} (3.3)

where subscript m is the number of Fuzzy states that Û can take and X̂i is one of these

Fuzzy states defined on X (i.e., frame of X), such that

X̂i = {x, X̂i(x)|x ∈ X} 0 ≤ X̂i(x) ≤ 1. (3.4)

X̂i(x) in equation (3.4) denotes the degree of membership of X belonging to the fuzzy

state X̂i. In Fuzzy literature, this function is called membership function and traditionally

denoted by µ(x). However, to facilitate a better understanding we adopted X̂i(x) to denote

the membership function defining the Fuzzy Set X̂i , which, when the traditional notation

is used, would be equivalent to

X̂i(x) = µX̂i
(x). (3.5)

Before moving to the next stage in developing an expression for the probability of a Fuzzy

event, let us review some key steps detailed above:
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• First, consider a continuous variable X, which is defined on frame X (see equation

(3.1)).

• Then, consider a Fuzzy Set X̂ identified by membership function X̂(x) and defined

on the same frame X (see equation (3.2)).

• Finally, define a discrete Fuzzy variable Û , which can only assume states X̂i from set

Û = {X̂1, X̂2, . . . , X̂m} where each fuzzy state X̂i is defined by membership function

X̂i(x) (see equation (3.4)).

Next, we will introduce a new and different interpretation of a Fuzzy membership function

which will in turn enable us to define the conditional probability of a fuzzy state X̂i given a

crisp value x of X. First, let us formally define a membership function in Fuzzy Set theory.

The representation of an object within a universe is key to any reasoning framework

about that universe. In Set theory (without making a distinction between crisp and fuzzy

sets), this representation is provided by the notion of membership to the sets defined on

the universe. In classical set theory (i.e., in crisp sets), on which probability theory, as a

whole, is founded, sets contain objects that satisfy precise properties of membership. In

other words, an object (or an event) could either be a member of a set or not. Such a

membership can be represented by an indicator function. Whereas, the membership to a

Fuzzy Set is approximate. Hence, in Fuzzy Set theory, sets may contain objects that satisfy

imprecise properties of membership.

This notion of approximate membership as compared to precise membership introduces

a much more refined representation of real-world complex systems, where much of the com-

plexity arises from nuanced interpretation of state spaces for their multitude of variables.

Identifying tall versus short people among a certain population is the classic example sup-

porting this point of view. Moving beyond the notion of binary membership makes it

possible to accommodate the idea of various degrees of membership.

This idea was first introduced by Zadeh [17]. He defined the membership of an object

to a set as a continuous function defined on the closed interval [0, 1] of Real numbers. Since

the end points 0 and 1 of the interval are included, this type of membership incorporates the

notion of no and full membership of classical set theory, thereby making it a more general
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representation of the membership idea.

Let X be a set of observations Xi whose individual values are denoted by xi. Now

consider an event A. Using the binary logic of membership in classic sets, the observations

could only be categorized as event A or not. The membership function XA(x) in equation

(3.6) formalizes this simple example.

XA(x) =





1 if x ∈ A

0 if x /∈ A
(3.6)

Now, consider another membership function µÂ(x) defined on the same set of obser-

vations X. However, this time for each observation, µi(x) returns a real number between

0 and 1 (including 0 and 1) as the degree of membership to event A, thereby generating

the Fuzzy Set Â. In classical set theory, sets (i.e., crisp sets) represent a collections of real

objects or events and can be represented by a unique binary membership function such as

the one in equation (3.6). However, in a set-theoretic sense, this unique binary membership

function is not equivalent to a collection of real objects or events. Hence, Fuzzy Sets are

not collections of objects or events. Fuzzy Sets are always and only functions, which map a

universe of objects on to the unit interval [0,1] and every continuous function that satisfies

this property is also a Fuzzy Set [18].

3.2.1 Fuzzy Bayes Formula

Within this context, we define the conditional probability of a fuzzy state X̂i defined by

equation (3.4) given a certain value x of the crisp variableX as the degree of the membership

of x to X̂i.

P (X̂i|X = x) = X̂i(x) ∀x ∈ X (3.7)

In order for the conditional probability in the equation (3.7) to be considered as a viable

probability an important constraint should also be introduced. We define the collection

of all fuzzy events (i.e., fuzzy states) describing fuzzy information as an orthogonal Fuzzy

information system Û = {X̂1, X̂2, . . . , X̂m} where by orthogonal we mean that the sum of

the membership values for each Fuzzy state X̂i, for every observed value x, ∀x ∈ X, equals
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unity [19]. That is,
m∑

i=1

X̂i(x) = 1 ∀x ∈ X (3.8)

hence,
m∑

i=1

P (X̂i|X = x) = 1 ∀x ∈ X (3.9)

Now, we can calculate the marginal probability of fuzzy state X̂i using basic probability

calculus. The joint probability distribution of fuzzy state and X̂i crisp variable X can be

written as

P (X̂i, X) = P (X̂i|X)× P (X) (3.10)

In order to obtain the marginal probability of X̂i we simply sum the joint distribution

over variable X. For a crisp discrete variable X, that is,

P (X̂i) =
∑

X∈X

P (X̂i|X)P (X)

=
∑

x∈X

X̂i(x)P (x)

(3.11)

For a crisp continuous variable X, the marginal probability becomes

P (X̂i) =

∫

X

X̂i(x)P (x) dx (3.12)

The results in equations (3.11) and (3.12) are equivalent to Zadeh’s derivations for

probability measures of Fuzzy events [20], thereby verifying the veracity of our approach

when determining the probability of a fuzzy event.

Note that these results require, along with the membership function, the knowledge of

the marginal distribution of the original crisp variable to determine the marginal distribution

of the fuzzy event defined on the frame of the original variable. Since our ultimate goal is to

generate a Fuzzy-Bayesian framework for reasoning about complex system, one can easily

foresee a potential issue here.

To elaborate, in a purely Bayesian Network, the inferencing is based on conditional

relations among the variables. Hence, it can only be performed when there exist a complete

information set about these conditional relations. Throughout the process, the marginal

distributions of individual variables are mostly unknown and in fact, one of the major
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objectives is to obtain marginal distributions for the variables when evidence is introduced to

the model. At the crux of our proposed framework lays the partial or complete mapping (i.e.,

transformation) of the probabilistic information of a given problem domain on to a Fuzzy

information universe, thereby introducing a more complete representation of uncertainty.

Consecutively, we perform the reasoning tasks using Bayesian probabilistic axioms to avoid

the shortcoming of a purely Fuzzy reasoning algorithm. Therefore, one may reach the

conclusion that, at the start of the process, all we obtain is, if at all, a set of conditional

probability distributions (CPDs) defining a typical crisp BN. Even though this may be

partially true, one should also bear in mind that in practice the overwhelming majority of

CPDs are determined not by data collection but through knowledge elicitation from subject

matter experts (SMEs). Hence, they are nothing more than approximations even though

the inferencing method may be exact. The same approach can be adopted when dealing

with marginals, that is, depending on the availability of data, they can be constructed

deterministically or approximated by SMEs.

We should also emphasize that our proposed framework does not require the existence

of a Bayesian Network as a prerequisite. Although, it provides a novel approach to exact

inferencing for general Bayesian Networks (i.e., general directed acyclic graph structure

including both continuous and discrete variable with no restrictions), it can be used as a

stand alone uncertainty modeling framework to reason about complex systems.

We will revisit this discussion on the usage of marginals in equations (3.11) and (3.12)

again in a later section where the proof of concept is demonstrated by a simple example.

Next, we build upon the results introduced so far to propose a Bayes rule which incorporates

Fuzzy information. This rule will then be employed to develop a novel inferencing algorithm

for general Hybrid Bayesian Networks.

Consider two Fuzzy variables X̂ and Ŷ defined on the frames X and Y of two crisp

variables X and Y , respectively. That is,

X = {x| x ∈ X}

X̂ = {x, X̂(x)| x ∈ X}
(3.13)
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and

Y = {y| y ∈ Y}

Ŷ = {y, Ŷ(y)| y ∈ Y}
(3.14)

Assume that, fuzzy variables X̂ and Ŷ are conditionally independent given X and Y .

Hence, their joint conditional probability can be determined as follows,

P (X̂, Ŷ|X = x, Y = y) = P (X̂|X = x, Y = y) · P (Ŷ|X = x, Y = y)

= P (X̂|X = x) · P (Ŷ|Y = y)

= P (X̂|x) · P (Ŷ|y)

= X̂(x) · Ŷ(y)

(3.15)

Assuming crisp variables X and Y are continuous and the joint probability P (x, y) is

integrable on their respective domains X an Y, the joint probability of X̂ and Ŷ is defined

by the following (see equation(3.12)),

P (X̂, Ŷ) =

∫

X

∫

Y

P (X̂, Ŷ|x, y) · P (x, y) dx dy

=

∫

X

∫

Y

X̂(x) · Ŷ(y) · P (x, y) dx dy

(3.16)

Using P (X̂, Ŷ) = P (X̂|Ŷ) ·P (Ŷ) along with the equation above we can now develop an

expression explicitly for the conditional probability of Fuzzy event X̂ given another Fuzzy

event Ŷ.

P (X̂|Ŷ) =

∫

X

∫

Y

X̂(x) · Ŷ(y) · P (x, y) dx dy

∫

Y

Ŷ(y) · P (y) dy

=

∫

X

∫

Y

X̂(x) · Ŷ(y) · P (x|y) · P (y) dx dy

∫

Y

Ŷ(y) · P (y) dy

(3.17)

If we were dealing with two Fuzzy variables defined on frames of two crisp discrete

variables then the equation (3.17) would be the following.

P (X̂|Ŷ) =

∑

X

∑

Y

X̂(x) · Ŷ(y) · P (x|y) · P (y)

∑

Y

Ŷ(y) · P (y)
(3.18)
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There are two more cases possible for a pair of Fuzzy variables. First, the conditional

probability of a Fuzzy variable X̂ whose frame is crisp continuous X given another Fuzzy

variable Ŷ with a crisp discrete frame Y. That is,

P (X̂|Ŷ) =

∫

X

∑

Y

X̂(x) · Ŷ(y) · P (x|y) · P (y) dx

∑

Y

Ŷ(y) · P (y)
(3.19)

Second, the conditional probability of a Fuzzy variable X̂ whose frame is crisp discrete X

given another Fuzzy variable Ŷ with a crisp continuous frame Y. That is,

P (X̂|Ŷ) =

∑

X

∫

Y

X̂(x) · Ŷ(y) · P (x|y) · P (y) dy

∫

Y

Ŷ(y) · P (y) dy

(3.20)

With the equations (3.17), (3.18), (3.19), and (3.20), we provide new explicit formula-

tions for all possible cases of the conditional probability P (X̂|Ŷ) of a Fuzzy event given

another Fuzzy event.

This Fuzzy / Fuzzy Bayes formulation can also be extended to Fuzzy / Crisp and Crisp

/ Fuzzy variable pairs and can be used as the basis of a inferencing framework about a

directed acyclic graphical (DAG) structure such as Bayesian Networks.

Throughout this text Bayesian Networks refer to crisp Bayesian Networks and un-

less identified specifically as Fuzzy, all variables, discrete and continuous, refer to crisp

events/objects.

For discrete Bayesian Networks, exact general inferencing algorithms exist and are widely

implemented to reason about complex systems. On the other hand, for general Hybrid

Bayesian Networks including both discrete and continuous variables, the exact inferencing

algorithm based on Lauritzen’s state-of-art junction tree algorithm require that discrete

nodes cannot have continuous parents. However, in our proposed framework we address this

restriction. Without going into much detail about the proposed algorithm prematurely, it

may be the right place to identify the main types of parent-child pair nodes (i.e., variables)

in Fuzzy-Bayesian Networks. These pairs of variables are illustrated in Figure 3.1.

Fuzzy discrete nodes in Figure 3.1 denote the Fuzzy counterpart of a continuous variable

discretized by Fuzzy transformation. In other words, Fuzzy discrete variables are based on
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a) Fuzzy Discrete Crisp Continuous

b) Fuzzy Discrete Fuzzy Discrete

c) Crisp Continuous Fuzzy Discrete

Figure 3.1: Fuzzy-Crisp variable pairs in Fuzzy-Bayesian Networks

the frames of crisp continuous variables. We will revisit these node pairs in the section 3.4

where we introduce the fuzzy transformation and graph restructuring ideas at the crux of

our proposed methodology. However at this stage it would suffice to mention that Bayes

formulas for these four pairs are basically variations of equation (3.17).

3.3 Fuzzy Evidence and Fuzzy Updating

There are two aspects of Bayesian Networks that are still subject to improvement and

therefore research: how to handle continuous variables and how to deal with uncertain

information as evidence? In the previous section we introduced a new Fuzzy Bayes formu-

lation which will be the basis for our Fuzzy-Bayesian framework to deal with continuous

variables in a general Hybrid Bayesian Network. In this section we introduce the idea of

Fuzzy evidence to address the second aspect, namely the issue of uncertain evidence in

Bayesian Networks.

Bayesian Networks are tools to represent a domain and its uncertainty. The representa-

tion is done by modeling the topology of the domain by an acyclic directed graph and the

interactions among the domain variables by conditional probability distributions. The un-

certainty modeled by a BN is represented basically by probability distributions, and hence
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is in the form of randomness. However, the uncertainty inherent in a real-world complex

system is not only comprised of randomness nor is it solely in that form.

There are three types of uncertainty:

• Vagueness.

• Ambiguity.

• Randomness.

Uncertainty, such as the uncertainty about the outcome of some experiment such as a

coin-toss, is in the form of randomness. Randomness is typically modeled using probability

theory.

Now, consider a parameter in a model of a real-world system. There may be cases for

which the nominal value of this parameter is known to lie within a given interval. There

is uncertainty (i.e., ambiguity) about any nominal value chosen from that interval for that

parameter.

Fuzzy Sets deal with the type of uncertainty that arises when the boundaries of a class of

objects are not sharply defined (i.e., vagueness). Consider being young or rich, membership

in such classes is a matter of degree.

By including novel concepts such as Fuzzy random variables, and probability of a Fuzzy

event, we intend to include another dimension to the definition of uncertainty (i.e., ran-

domness) that the BNs traditionally represent. This new approach to uncertainty analysis

complements classical Bayesian inferencing which only addresses one of the dimensions of

uncertainty, i.e., randomness, with a second aspect of uncertainty, vagueness. However, ap-

plying a Fuzzy transformation to select continuous variables in the network, which have been

described above in detail, is only one of the aspects of a multi-prong approach constituting

our proposed Fuzzy-Bayesian framework.

3.3.1 Fuzzy Evidence

We present the concept of Fuzzy evidence as the next stage in incorporating vague or

ambiguous information in to a Bayesian Network. Fuzzy evidence is a type of uncertain
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evidence that occurs when uncertainty is presented as a fuzzy set rather than a delta or

indicator function where the evidence (i.e., observation) could only indicate that the variable

(i.e, event) observed is in one of the predetermined states. Hence the fuzzy evidence maps

all states of the evidence to the closed continuous interval [0,1]. On the far side of the scale

lays the hard evidence, sometimes referred to as specific evidence where the state in which

the observation is definite and therefore an indicator function could be used to represent it.

Definition 3 Fuzzy evidence:

Consider variable X defined on the frame X. Fuzzy evidence ÊX is a function mapping the

frame X to the continuous real interval [0,1] such that,

∑

x∈X

ÊX(x) = 1, ∀x ∈ X, 0 ≤ ÊX(x) ≤ 1 (3.21)

Suppose that we identify a continuous variable flightcrew experience defined on the

continuous frame of the logged flight hours of the flightcrew. Furthermore, assume that we

created a Fuzzy variable as the counterpart of the continuous variable by using orthogonal

Fuzzy Sets low, medium, and high. For example, an observation could be interpreted as the

soft evidence E(low) = 0.6, E(medium) = 0.4, and E(high) = 0.

In classic Bayesian Network applications, a seemingly similar type of evidence, known as

virtual or likelihood evidence is used when the new information is in the form of a probability

distribution [21], [22]. We should emphasize the fact that likelihood evidence, being a

distribution as opposed to an indicator function shows similar characteristics as Fuzzy

evidence. However, besides the updating algorithm being different, there are fundamental

differences between the two concepts. Likelihood evidence represents a subjective statement

that can be improved by later observations. Therefore, a continuous finding cannot be

treated as likelihood evidence. Fuzzy evidence, due to its uncertain nature cannot be

improved with additional observations and is suitable to be used with continuous variables

since it is basically a generalization of specific or hard evidence. When instantiated, for

example, the Fuzzy evidence about a continuous variable whose domain is discretized into

three sates by fuzzification could assume the values 0.8, 0.2, and 0, whereas a crisp discrete

variable with the same states would have the values 1, 0, and 0 as hard evidence.
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Both concepts, Fuzzy and likelihood evidence have their own advantages and could be

used in conjunction to produce a more realistic treatment of evidence in Bayesian Networks.

3.3.2 Fuzzy Updating

In this section we present a new approximate solution for updating a joint probability

distribution when fuzzy evidence about the state of a variable is introduced. By Fuzzy

updating, what we mean is the process of updating the joint distribution of a given set of

variables when Fuzzy evidence is introduced.

The process of updating a joint distribution by introducing evidence can also be con-

sidered as updating a distribution given another distribution since the Fuzzy evidence we

introduce, in this case, is in the form of a distribution. In other words, the question is

updating a distribution when another is given as a constraint. However, the problem of

updating a distribution having another probability distribution as a constraint does not

have a closed form solution in classical probability theory. An approximate solution can be

proposed utilizing the relative entropy concept of the information theory [21, 23].

Consider a prior distribution p which is subjected to constraint set C. One can choose

to update the prior distribution p with a posterior distribution q satisfying the constraint

set C and corresponding to the least prejudiced one (i.e., with minimum relative entropy,

MRE) with respect to p [24].

Conceptually, relative entropy can be considered a measure of the difference between

two probability distributions. Also known as the Kullback-Leibler distance, it determines

the distance or divergence between a base or true probability distribution and a secondary

or updated distribution [25]. For a prior distribution P of a discrete variable X and a can-

didate posterior distribution q satisfying constraint C, the Kullback-Leibler (K-L) distance

is expressed as follows,

dKL(P,Q) =
∑

xi∈X

P (xi) log2

P (xi)

Q(xi)
(3.22)

where xi denotes a state of the discrete variable X and the logarithm takes the base value

2 when the information measured is in bits and e when meaured in nats (natural units).
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In a Bayes theoretic setup, the K-L distance between the prior and the estimated poste-

rior can be considered as the projection of the prior onto the set of all possible distributions

satisfying the data. Therefore, it can be used as a measure for the information gain caused

by the introduction of new information to the system.

Equation (3.22) is a convex function which is non-negative and equals to zero when

P (xi) = Q(xi). The MRE criteria is then to determine the posterior distribution Q′
j with

the minimum K-L distance to distribution P among the set of distributions Q,∀Qj ∈ Q

satisfying the constraint set C. That is,

dKL(P,Q′
j) = min

Qj∈C
dKL(P,Qj) (3.23)

A solution to equation (3.23) exists [26]. Furthermore, as mentioned earlier, since by

definition the K-L distance is a convex function the solution that exists is unique.

Consider a set of variables V = {V1, V2, . . . , Vm} and their joint probability distribution

P (V) and let P ′(V) be the updated joint distribution subject to some constraint set. Then,

we need to determine an updated joint distribution P ′(V), such that its K-L distance from

the prior joint distribution P (V) is minimized. That is,

min
P (V)

∑

Vi∈V

P ′(Vi) log2

P ′(Vi)

P (Vi)
(3.24)

Now, suppose that there has been a resent observation about one of the variables Vi of

set V and due to uncertainty associated with the observation we decided that it needs to be

introduced to the system as a Fuzzy evidence. In other words, we need to update the joint

probability P (V) given the a marginal probability distribution P (Vi) (recall that Fuzzy

evidence transforms an observation about a continuous variable by an orthogonal collection

of Fuzzy Sets and the resulting information is in the form of a distribution defined on

discrete states created by the fuzzification process). Within this context, minimizing the

K-L distance (i.e., relative entropy) between the updated joint distribution P ′(V) and the

prior distribution P (V) can be considered as equivalent to Jeffrey’s rule of conditioning.

Jeffrey’s rule of conditioning [27] is a generalized form of Bayesian conditionalization,

where a prior distribution is updated by an evidence in the form of a probability distribution
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and using the same notation as in minimum entropy criteria can be formulated as follows:

P ′(V) =
∑

j

P (V|Vi = vij)E(Vi = vij)

=
∑

j

P (V|vij)E(vij)

(3.25)

where j denotes the states of evidence variable Vi, hence vij is the jth state of ith variable

and the summation is performed on all the states of the evidence variable Vi.

Jeffrey’s rule of conditioning can also be understood as a special case of Dempster’s rule

of combination. It is shown that assuming additive belief functions, Jeffrey’s rule follows

from Dempster’s rule [28].

Since Jeffrey’s rule of conditioning accepts distributions as evidence, we can adopt it

to propose an approximate solution for updating a joint distribution given Fuzzy evidence.

Next, with an example we demonstrate the applicability of the proposed concept.

Let V = {A,B,C} be a set of discrete random variables, ,and as earlier, let P (V) and

P ′(V) denote the prior and posterior joint distributions. Then, P (V) = P (ABC). Now

suppose that there is new information about variable A, which can assume states from its

state set {a1, . . . , an}. Consider,

P ′(V) = P (ABC|A)

=
P (ABC)

P (A)

Then

P (ABC|A = ai) =





P (aiBC)
P (ai)

when A = ai

0 when A 6= ai

(3.26)

Suppose that the evidence about A bears some uncertainty and we decided to treat it

as Fuzzy evidence ÊA(ai) according to equation (3.21):

n∑

i=1

ÊA(ai) = 1, ∀ai ∈ A, 0 ≤ ÊA(ai) ≤ 1 (3.27)

Then, applying equation (3.25), Jeffrey’s rule of conditioning, the updated joint distribution

P ′(ABC) is

P ′(ABC) =
n∑

i

P (ABC|ai)ÊA(ai), i = 1, . . . , n. (3.28)
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Representing equation (3.28) as a vector would facilitate a better understanding with

regard to the composition of an updated distribution treated by a Fuzzy evidence. Note that

the variables A, B, and C are denoted as sets, i.e., A, B, and C. Whereas, set pairs such as

BC represent all possible pairwise combinations of the two variables’ states. Consequently,

each complete set of these combinations is multiplied by ai, the ith state of the evidence

variable A.

P ′(ABC)=




P (a1BC|a1)ÊA(a1)+ 0 + · · · +0

0 + P (a2BC|a2)ÊA(a2) + · · · +0

0 + 0
. . .

...

...
...

. . .
...

0 + 0 · · · +P (anBC|an)ÊA(an)




Now, suppose that all three variables are binary, i.e., A = {a1, a2}, B = {b1, b2}, and

C = {c1, c2}. Then,

P ′(ABC) = P (ABC|a1)E(a1) + P (ABC|a2)E(a2) (3.29)

The individual terms of the updated joint distribution, i.e., equation (3.29) can be written

as follows.

P ′(ABC) = P (ABC|a1)E(a1) + P (ABC|a1)E(a1)

a1b1c1 P (a1b1c1|a1)E(a1) + 0

a1b1c2 P (a1b1c2|a1)E(a1) + 0

a1b2c1 P (a1b2c1|a1)E(a1) + 0

a1b2c2 P (a1b2c2|a1)E(a1) + 0

a2b1c1 = 0 + P (a2b1c1|a1)E(a2)

a2b1c2 0 + P (a2b1c2|a1)E(a2)

a2b2c1 0 + P (a2b2c1|a1)E(a2)

a2b2c2 0 + P (a2b2c2|a1)E(a2)

(3.30)

Using P (a1bjck|a1) =
P (a1bjck)
P (ai)

, where j = 1, 2, and k = 1, 2, we obtain



46

P ′(ABC) = P (ABC|a1)E(a1) + P (ABC|a1)E(a1)

a1b1c1
P (a1b1c1)

P (a1)
E(a1) + 0

a1b1c2
P (a1b1c2)

P (a1)
E(a1) + 0

a1b2c1
P (a1b2c1)

P (a1)
E(a1) + 0

a1b2c2
P (a1b2c2)

P (a1)
E(a1) + 0

a2b1c1 = 0 + P (a2b1c1)
P (a1)

E(a2)

a2b1c2 0 + P (a2b1c2)
P (a1)

E(a2)

a2b2c1 0 + P (a2b2c1)
P (a1)

E(a2)

a2b2c2 0 + P (a2b2c2)
P (a1)

E(a2)

(3.31)

Next, we provide a numerical example to illustrate the fuzzy updating process for a prior

joint distribution P(ABC) given the Fuzzy evidence above.

Consider the joint probability distribution of Table (3.1).

Table 3.1: Prior joint distribution P (ABC)

P (ABC) b1c1 b1c2 b2c1 b2c2
a1 0.26 0.13 0.05 0.16
a2 0.15 0.18 0.01 0.06

Suppose the uncertainty about the observation with regard to binary variable A is

quantified as

ÊA(a1) = 0.3

ÊA(a2) = 0.7

Note that their summation equals to unity, thereby satisfying the orthogonality condition.

Given the Fuzzy evidence ÊA, the updated joint distribution as the result of the Fuzzy

updating scheme described by the equation set (3.31) is provided in Table (3.2). At this

Table 3.2: Updated joint distribution P ′(ABC) given ÊA

P ′(ABC) b1c1 b1c2 b2c1 b2c2
a1 0.130 0.065 0.025 0.080
a2 0.263 0.315 0.021 0.105

stage, we need to check the updated marginal distribution P ′(A) of variable A and verify
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that the updated marginal and the evidence are equal. Summing the joint distribution over

A provides the marginal for the variable A. That is,

P ′(A) =

2∑

i=1

P (aiBC)

P ′(A) =





0.3 if A = a1

0.7 if A = a2

Hence

P ′(A) = ÊA(A) (3.32)

This is indicative of the fact that the Fuzzy updating process given only one evidence

variable results in a reliable updated joint distribution. Next, we will review the results of

the updating process given multiple Fuzzy evidence.

Consider, now, in addition to the observations about variable A there has also been

some uncertain observation about the variable B defined by Fuzzy evidence:

ÊB(b1) = 0.85

ÊB(b2) = 0.15

By applying the Fuzzy updating process consecutively, so that first the Fuzzy evidence ÊA

and then the Fuzzy evidence ÊB is introduced to the joint distribution, we obtain the results

for the updated joint distribution provided in Table (3.3).

Table 3.3: Updated joint distribution P ′(ABC) given ÊA and ÊB

P ′(ABC) b1c1 b1c2 b2c1 b2c2
a1 0.143 0.072 0.016 0.052
a2 0.289 0.347 0.014 0.068

The resulting updated marginal distributions for variables A an B are:

P ′(A) =





0.28 if A = a1

0.72 if A = a2,

P ′(B) =





0.85 if B = b1

0.15 if B = b2

From which we see that the observation about variable B remains unchanged, as it

should be, after the Fuzzy updating process, whereas the updated marginal of variable A
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differs from the given evidence distribution. This discrepancy is the result of the consecutive

application of the multiple updating processes due to the introduction of multiple fuzzy

evidence variables. We can see this from the fact that the updated marginal P ′(B) reflects

the same distribution for fuzzy evidence variable B, since it is the last one that updates

the joint distribution. Therefore the impact of fuzzy evidence A has been affected and the

updated marginal P ′(A) could not be equal to the evidence. In an information theoretic

sense, this proposition indicates that, in the universe which also includes the updated joint

distribution of Table (3.3), there exists better candidates with less relative entropy, i.e., in

terms of the K-L distance, closer to the prior joint distribution, satisfying the constraint

set of two given fuzzy evidences. When multiple Fuzzy evidence exits, to reach a better

result, one can employ an iterative process by simply applying the same fuzzy updating

methodology, such that the last updated joint and marginal distributions now become the

original (i.e., prior) distributions and the same set Fuzzy evidence is applied until the

updated marginals converges to the given distributions of the evidence variables. A similar

approach has also been introduced independently by [21]. A single iteration of the Fuzzy

updating process to our example results in unchanged marginals for both evidence variables

A and B. The results of this single step iteration is provided in Table (3.4).

Table 3.4: Iterative updating of P ′(ABC) given ÊA and ÊB

Iteration 0

P ′(ABC) b1c1 b1c2 b2c1 b2c2 P ′(A) P ′(B)
a1 0.143 0.072 0.016 0.052 P ′(a1) = 0.28 P ′(b1) = 0.85
a2 0.289 0.347 0.014 0.068 P ′(a2) = 0.72 P ′(b2) = 0.15

Iteration 1

P ′(ABC) b1c1 b1c2 b2c1 b2c2 P ′(A) P ′(B)
a1 0.152 0.076 0.017 0.054 P ′(a1) = 0.3 P ′(b1) = 0.85
a2 0.283 0.339 0.013 0.066 P ′(a2) = 0.7 P ′(b2) = 0.15

Note that at the end of the first iteration we have already reached convergence. That

is,

P ′(A) = ÊA(A) and P ′(B) = ÊB(B)

The major issue with this iterative process is that it increases the complexity of the

inherently already NP-hard Bayesian inferencing algorithm.
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When applied as an inferencing method to update a joint probability distribution in the

light of evidence, the MRE criteria amounts to an iterative process. Due to the increased

complexity, the whole Fuzzy updating algorithm becomes too expensive for Bayesian Net-

works, when multiple evidence variable are introduced consecutively one at a time.

Within this context, we also present an alternative to the iterative updating, which

involves simultaneously updating the joint distribution when multiple uncertain evidence is

introduced.

Being a variant of the Fuzzy updating process, simultaneous Fuzzy updating uses the

same equation set (3.31) based on Jeffrey’s rule of conditioning. However, it relies on the as-

sumption that when multiple evidence of uncertain nature are introduced, their uncertainty

distributions are conditionally independent. Hence, we can introduce a joint distribution

of multiple Fuzzy evidence and define it by the product of individual marginal uncertainty

distributions of multiple evidence. That is, given the fuzzy evidence

ÊT
A = {ea1

, ea2
} and ÊT

B = {eb1 , eb2}

we obtain the joint fuzzy evidence

ÊT
AB = {(ea1

· eb1), (ea1
· eb2), ea2

· eb1), (ea2
· eb2)}. (3.33)

When equation (3.33) is applied to our numerical example the resulting joint Fuzzy

evidence is

ÊT
AB = {0.255, 0.045, 0.595, 0.105}. (3.34)

Using the joint evidence ÊT
AB we obtain the the following updated joint probability

distribution P ′(ABC):

Table 3.5: P ′(ABC)given the joint Fuzzy evidence ÊT
AB

P ′(ABC) b1c1 b1c2 b2c1 b2c2 P ′(A) P ′(B)

a1 0.170 0.085 0.011 0.034 P ′(a1) = 0.3 P ′(b1) = 0.85
a2 0.270 0.325 0.018 0.088 P ′(a2) = 0.7 P ′(b2) = 0.15

Table (3.5) shows that without having to resort to an iterative process, we obtain a

satisfactory result for the updated joint probability distribution P ′(ABC), which results in

the correct marginal distributions P ′(A) and P ′(B) for evidence variables.



50

We can, therefore, conclude that, when multiple uncertain evidence is present, simulta-

neous fuzzy updating should be preferred over consecutive fuzzy updating especially when

dealing with moderate to large sized Bayesian Networks for which the inherent complexity

is already known to be high.

3.4 Fuzzy-Bayesian Networks

Historically, uncertainty about real world systems has been modeled by probabilistic tools

which are crisp, deterministic and precise in character. However, as discussed in earlier

sections, different forms of uncertainty exist and probability theory only addresses the

randomness aspect of it. Fuzzy Set theory provides a means for representing uncertainty

due to vagueness such as the uncertainty in natural language.

However, uncertainty due to vagueness (i.e., fuzziness), in fact, exists not only in human

cognition and languages, but also in most systems modeled by Bayesian Networks. Consider

variables such as temperature, age or speed, which are inherently continuous but represented

as discrete when included in a Bayesian Network. For such variables an implicit mapping is

involved whenever an observation (i.e., evidence) about them needs to be introduced to the

model. Axioms of probability dictate that once such a mapping is performed on a continuous

variable the resulting discrete states must cover the whole domain of the original variable

and be mutually exclusive, so that every single observation falls into one and only one state

and no two states co-exist at the same space and time. For the purposes of approximation

and in cases without a pressing need for accuracy, such a quantification may be justifiable.

However, not every continuous variable behaves sensibly under discretization. Consider

temperature defined on the frame [0, 40]Co and we decided to use a three state discretization

scheme cold, warm, and hot corresponding to the intervals [0, 10)Co, [10, 25)Co, [25, 40]Co,

respectively. A reading of 24.9Co from the thermometer would fall under discrete state

cold. Whereas, 25C0 would be labeled as warm. We believe that there is no meaningful

way of determining a crisp boundary between these states. Hence, using classical sets with

crisp boundaries when discretizing a continuous domain may generate some unpredictable

results for Bayesian Networks
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Right at this point, the concept of fuzziness becomes very interesting. In fact, Fuzzy Set

theory and its implementation of degrees of membership idea to sets provides a structured

way to improve on classical discretization techniques. Nevertheless, the distinction between

Fuzzy Set theory and probability theory should be made clear. Fuzziness describes the

ambiguity of an event, whereas randomness describes the uncertainty in the occurrence of

the event [29]. Within this context, we see promise in combining the two concepts to

complement each other, so that various limitations of classical Bayesian Networks will be

overcome by the resulting hybrid methodology.

Let us now formally define general Hybrid Bayesian Networks already introduced in

Section (3.1) and provide some key notation used throughout the text, then we proceed to

define Fuzzy-Bayesian Networks and consequently present a proposed inferencing method-

ology for it.
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Definition 4 General Hybrid Bayesian Networks:

Hybrid Bayesian Networks (HBNs) are directed acyclic graphical structures that allow us

to represent a domain of interest in terms of a joint probability distribution over a set

of variables V, including a set of discrete variables ∆, such that ∆ ⊆ V, and a set of

continuous variables Γ, such that Γ ⊆ V. Hence, there are two key elements defining a

HBN

• A network structure in the form of a directed, acyclic graph G where

– each node corresponds to a variable ∆k ∈ ∆ or Γl ∈ Γ for k = {1, . . . ,m},

l = {1, . . . , n} and

– the directed vertices connecting the nodes are denoted by a set of links L.

• A set of conditional probability distributions P, one for each node (i.e., variable) in

the graph G.

Consequently, in a concise way, we can represent a general Hybrid Bayesian Network as

follows:

GHBN = [V,L,P]

= [∆,Γ,L,P]

(3.35)

The set of conditional probability distributions P in the above representation requires

further elaboration to identify the nuances of various different forms it entails in a general

HBN. Regardless of its descriptors, such as conditional, joint, or marginal, a probability

distribution of a random variable Vi is denoted by P (Vi). It refers to a mass function or a

density function for a discrete or a continuous variable, respectively. Within this context,

we can denote the set P by

P =
⋃

i

Pi, i = {1, . . . ,m+ n} (3.36)

Pi = P{Vi|∆Par(Vi), ΓPar(Vi)} (3.37)

Where Pi is the CPD for the ith variable Vi, and ∆Par(Vi), and ΓPar are the sets of discrete

and continuous parents of variable Vi respectively.
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X

Z

Y A

BC

Figure 3.2: A general Hybrid Bayesian Network

An abstraction for a general HBN in the form of a graphical structure is provided in

Figure (3.2).

Applying the notation introduced in Definition 4, we can identify the following sets of

discrete and continuous variables.

∆ = {A,B,C}

Γ = {X,Y, Z}

Additionally, note that, in Figure 3.2, discrete variables are depicted by square shaped

nodes, whereas continuous variables are depicted by circle or ellipse shaped nodes, which is

the convention commonly used in the literature to portray an HBN.

Recalling our earlier discussions on the Lauritzen’s algorithm, although it is the state

of art exact inferencing algorithm for mixed Bayesian Networks, it should be noted that it

can only be applied to a limited subset of HBNs where no discrete variable is allowed to

have continuous parent variables. Whereas, we should underline the fact that our definition

and the notation thereof do not exclude that possibility and therefore is labeled as general

HBNs.

Furthermore, we argue that the restricted usage of continuous variables in HBNs, in
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fact, diminishes their ability of modeling real-world complex systems in a much better and

accurate way. One can argue that compromises in representation are needed to accomplish

an exact reasoning about the problem domain. However, we strongly believe that, especially

when less-than-adequately defined applications, especially when risk analysis of complex

system are concerned, being able to build a representative model of the problem domain

without any algorithm-imposed structural limitations, outweighs the benefits of using an

exact algorithm on a model that represents the problem domain poorly. Nevertheless,

it should be also be noted that a general representation for the probability distribution

of a discrete variable given mixed parents (i.e., continuous and discrete) does not exist.

Therefore approximation is needed in this type of case.

Fuzzy-Bayesian Networks emerge as powerful tools that combine the representation

power of Fuzzy Set theory over poorly defined problem domains with the algorithmic

strength of Bayesian Networks. Next, we propose two types of Fuzzy-Bayesian Networks.

Each network represents a certain level of approximation of the problem domain of mixed

nature. Progressing from the first type to the second type FBN, in fact, corresponds to

an increase in accuracy toward exact inferencing, however, with the additional cost of lost

generality and higher computational complexity. As a prerequisite for these two types of

FBNs, parts of the network are required first to be transformed to Fuzzy domain from its

original crisp environment. Approximations of a similar structural nature for general HBNs

has been proposed by [30], however, without much detailed analysis and formal structure

for evidence updating (i.e., inferencing). As a major improvement we propose a prerequisite

step of Crisp to Fuzzy transformation, where selected parts of the network are converted to a

set of Fuzzy variables and a corresponding set of Fuzzy conditional probability distribution.

We also propose an exact inferencing methodology, which can treat uncertain observations

as Fuzzy evidences and incorporate them into the two proposed FBN inferencing algorithms

using a Fuzzy updating scheme.

Let us first start with the crisp to fuzzy transformation of a general HBN and the making

of a general FBN, then we introduce two types of FBNs as approximations of general HBNs

with varying degrees of accuracy and computational complexity.
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3.4.1 General Fuzzy-Bayesian Networks

Given a general HBN, a general Fuzzy-Bayesian Network can be constructed by transforming

all continuous variables and associated conditional probability distributions into the Fuzzy

Set domain. In order to perform such a transformation the Fuzzy Sets and corresponding

membership functions based on the frames of all continuous variables in the HBN need to

be given or constructed first.

Recall that the joint probability distribution induced by a Bayesian Network representing

n random variables V1, . . . , Vn is defined by the Chain Rule:

P (V1, . . . , Vn) =
n∏

i=1

P (Vi | Par(Vi)) (3.38)

Then, for a general HBN composed of n discrete variables ∆1, . . . ,∆n, ∀∆i ∈ ∆, i =

{1, . . . , n} and m continuous variables Γ1, . . . ,Γm, ∀Γj ∈ Γ, j = {1, . . . ,m} the joint

distribution induced by the GHBN is

P (∆1, . . . ,∆n,Γ1, . . . ,Γm) =
n∏

i=1

P (∆i | Par(∆i))
m∏

j=1

P (Γj | Par(Γj)) (3.39)

where Par(∆i) and Par(Γj) refer to the parents of discrete and continuous variables, re-

spectively.

Consider the general Hybrid Bayesian Network GHBN depicted in Figure 3.2. Then the

joint distribution induced by the network is

P (V) = P (A|X)P (B|A, Y )P (C|Y )P (X)P (Y |X)P (Z|A) (3.40)

where V = A,B,C,X, Y, Z. We can see from equation (3.40) that the joint probability

distribution is defined by six individual probability distribution, marginal and joint over

clusters of random variables making up the GHBN. We can identify five types of distributions

according to the the random variables comprising the following parent-child clusters:

i. Discrete given continuous: P (A|X) and P (C|Y )

ii. Discrete given continuous and discrete: P (B|A, Y )

iii. Continuous: P (X)
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iv. Continuous given continuous: P (Y |X)

v. Continuous given discrete: P (Z|A)

Throughout this chapter we introduced a succession of novel ideas dealing with the

transformation of the crisp domain of a classical Bayesian Net to the hybrid domain of a

Fuzzy-Bayesian Net. The concept of Fuzzy Bayes formula of section (3.2.1) is particularly

important and lies at the crux of the Fuzzy Bayes transformation.

We construct the Fuzzy counterparts of the probability distributions defining the joint

distribution of equation (3.40). The resulting fuzzy conditionals are variants of equations

(3.17), (3.18), (3.19), and (3.20), therefore the detailed derivations are not provided here.

Note that only continuous variables are subjected to the Fuzzy transformation. The discrete

variables A,B, and C do not require fuzzification. However, when uncertain observations

about them are used as evidence to update the joint distribution (i.e., inferencing) we

employ the fuzzy updating methodology of section (3.3).

Consider the fuzzy variables X̂, Ŷ, and Ẑ defined on the frames X, Y, and Z of the

crisp variables X, Y , and Z respectively. That is,

X̂ = {X̂1, . . . , X̂m}

Ŷ = {Ŷ1, . . . , Ŷn}

Ẑ = {Ẑ1, . . . , Ẑr}

(3.41)

where

X̂i = {x, X̂i(x)| x ∈ X}, i = {1, . . . ,m}

Ŷj = {y, Ŷj(y)| y ∈ Y}, j = {1, . . . , n}

Ẑk = {z, Ẑk(z)| z ∈ Z}, k = {1, . . . , r}

(3.42)

where x, y, and z are the actual values that variables X, Y , and Z take, respectively. Note

that the Fuzzy random variables above in equation (3.41) are defined by bold uppercase

letters contrary to our convention that random variables are denoted by uppercase letters

only. When a continuous variable is discretized by Fuzzy transformation, in effect, a set of

Fuzzy states is created. These Fuzzy states are themselves Fuzzy Sets defined individually

and separately on the frame of the original continuous variable. In order to satisfy the
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completeness axiom of probability theory for a given value of the original variable its degree

of membership to these Fuzzy Sets should add up to one (i.e., they have to be orthogonal).

For example, in equations (3.41), and (3.42) m, n and r denote the number of Fuzzy states

that the Fuzzy variables X̂, Ŷ, and Ẑ are consist of respectively.

Now, further assume that the discrete variables A, B, and C are composed of α, β, and

ω number of states, respectively. That is,

A = {a1, . . . , af}, f = {1, . . . , α}

B = {b1, . . . , bg}, g = {1, . . . , β}

C = {c1, . . . , ch}, h = {1, . . . , ω}

(3.43)

Then, using the factor f(. . . | . . . ) notation introduced in Chapter 2, the distributions repre-

senting the Fuzzy-Bayesian Net counterpart of the original HBN can be written as follows,

i. Crisp Discrete given Fuzzy Continuous: P (A|X) and P (C|Y )

For P (A|X)
fuzzify→ P (A|X̂):

f(A, X̂) =

A X̂

a1 X̂1 P (a1|X̂1)

a1 X̂2 P (a1|X̂2)

...
...

...

af X̂i P (af |X̂i)

...
...

...

aα−1 X̂m−1 P (aα|X̂m−1)

aα X̂m P (aα|X̂m)

where

P (af |X̂i) =

∫

X

X̂i(x)P (af |x)P (x) dx

∫

X

X̂i(x)P (x) dx

(3.44)

where X̂i stands for the ith Fuzzy state of the Fuzzy variable X̂ and af for the f th

state of the crisp discrete variable A; X̂i(x) denotes the fuzzy membership function
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for the Fuzzy state X̂i. Note also that P (x) is a probability density function, whereas

P (af |x) and P (af |X̂i) are probability mass functions.

For P (C|Y )
fuzzify→ P (C|Ŷ):

f(C, Ŷ) =

C Ŷ

c1 Ŷ1 P (c1|Ŷ1)

c1 Ŷ2 P (c1|Ŷ2)

...
...

...

ch Ŷj P (ch|Ŷj)

...
...

...

cω−1 Ŷn−1 P (cω|Ŷn−1)

cω Ŷn P (cω|Ŷn)

where

P (ch|Ŷj) =

∫

Y

Ŷj(y)P (ch|y)P (y) dy

∫

Y

Ŷj(y)P (y) dy

(3.45)

again, where Ŷj stands for the jth Fuzzy state of the Fuzzy variable Ŷ and ch for

the hth state of the crisp discrete variable C. Ŷj(y) denotes the Fuzzy membership

function for the Fuzzy state Ŷj .

ii. Discrete given continuous and discrete: P (B|A, Y )

For P (B|A, Y )
fuzzify→ P (B|A, Ŷ):

f(B,A, Ŷ) =

B A Ŷ

b1 a1 Ŷ1 P (b1|a1, Ŷ1)

b1 a1 Ŷ2 P (b1|a1, Ŷ2)

...
...

...
...

bg af Ŷj P (bg|af , Ŷj)

...
...

...
...

bβ−1 aα Ŷn−1 P (bβ |aα, Ŷn−1)

bβ aα Ŷn P (bβ |aα, Ŷn)
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where

P (bg|af , Ŷj) =

∫

Y

Ŷj(y)P (bg|af , x)P (y) dy

∫

Y

Ŷj(y)P (y) dy

(3.46)

where bg stands for the gth state of the crisp discrete variable B.

iii. Continuous: P (X)

For P (X)
fuzzify→ P (X̂):

f(X̂) =

X̂

X̂1 P (a1|X̂1)

...
...

X̂i P (af |X̂i)

...
...

X̂m P (aα|X̂m)

where

P (X̂i) =

∫

X

X̂i(x)P (x) dx (3.47)

iv. Continuous given continuous: P (Y |X)

For P (Y |X)
fuzzify→ P (Ŷ|X̂):

f(Ŷ, X̂) =

Ŷ1 X̂

Ŷ1 X̂1 P (Ŷ1|X̂1)

Ŷ2 X̂2 P (Ŷ2|X̂2)

...
...

...

Ŷj X̂i P (Ŷ2|X̂i)

...
...

...

Ŷn−1 X̂m−1 P (Ŷn−1|X̂m−1)

Ŷn X̂m P (Ŷn|X̂m)



60

where

P (Ŷj |X̂i) =

∫

Y

∫

X

Ŷj(y) X̂i(x)P (y|x)P (x) dy dx

∫

X

X̂i(x)P (x) dx

(3.48)

v. Continuous given discrete: P (Z|A)

For P (Z|A)
fuzzify→ P (Ẑ|A):

f(Ẑ|A) =

Ẑ A

Ẑ1 a1 P (Ẑ1|a1)

Ẑ1 a1 P (Ẑ1|a1)

...
...

...

Ẑk af P (Ẑk|af )

...
...

...

Ẑr−1 aα−1 P (Ẑr−1|aα−1)

Ẑr aα P (Ẑr|aα)

where

P (Ẑk|af ) =

∫

Z

Ẑk(z)P (z|af ) dz (3.49)

and Ẑk(z) is the fuzzy membership function for Fuzzy state Ẑk of Fuzzy variable Ẑ.

Now we can formally define Fuzzy-Bayesian Networks.

Definition 5 Fuzzy-Bayesian Networks:

Consider a general HBN defined by equation (3.35), such that

GHBN = [V,L,P]

= [∆,Γ,L,P]

where ∆ and Γ are the sets of discrete and continuous variables, respectively, L is the set of

directed vertices connecting the variables and making up the directed acyclic graph GHBN,

and finally P stands for the set of conditional distributions imposed by GHBN. Then, the

Fuzzy-Bayesian Net GFBN based on the hybrid Bayesian Net is defined by

GFBN = [∆, Γ̂,L, P̂] (3.50)
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where Γ̂ represents the set of Fuzzy counterparts of the continuous variables constituting

set Γ and P̂ stands for the set of conditional distributions imposed by the FBN, such that

P̂ = P̂∆ ∪ P̂
Γ̂

(3.51)

where

P̂∆ = P (∆|Par
∆̂

(∆),Par
Γ̂
(∆)), ∆ ∈∆

P̂
Γ̂

= P (Γ̂|Par
∆̂

(Γ̂),Par
Γ̂
(Γ̂)), Γ̂ ∈ Γ̂

(3.52)

where P̂∆ and P̂
Γ̂

represent the transformed conditional probability distributions of crisp

discrete and Fuzzy variables, respectively. Note that, regardless crisp discrete or Fuzzy

continuous, all parents in a general Fuzzy-Bayesian Network are actually discrete.

In our example, equations (3.44) through (3.49) constitute the set P̂. In fact, they

provide a means to transform the Hybrid Bayesian Net given in Figure 3.2 into a Fuzzy-

Bayesian Net. The graphical depiction of the resulting FBN, GFBN is provided in Figure

3.3.

The conditional distributions imposed by the GFBN are all now converted to multino-

mials. Hence, exact inferencing algorithms such as variable elimination or junction tree

algorithm can now be applied to these multinomials to determine the joint probability

distribution represented by the GFBN.

A

BC

Ŷ

X̂

Ẑ

Figure 3.3: The Fuzzy-Bayesian Network GFBN derived from the GHBN of Figure 3.2
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It is the complete transfer of all the crisp continuous variables to Fuzzy discrete variables

that makes exact inferencing in the resulting GFBN possible. However, two compromises were

made along the way. First, the Fuzzy membership functions partitioning each continuous

domain are usually build by subject matter expert input and therefore are only approx-

imations, in addition to that, we also need the marginal distributions of the continuous

variables undergoing fuzzy transformation. In most cases these marginals do not exit and

we can only start the analysis with some initial estimates. We believe it is worthwhile to

explore the applicability of an iterative algorithm to improve the accuracy of the initial

Fuzzy membership function and marginal distributions of the continuous variables subject

to fuzzification.

The resulting FBN is also suitable for Fuzzy updating introduced in section (3.3.2) when

uncertain evidence in introduced to the net. We develop an adaptation of the junction tree

algorithm for this purpose.

Next, we introduce two types of Fuzzy transformations. Each transformation uses the

Fuzzy transformation approach detailed above as its initialization step to build the basic

GFBN in their respective algorithms. After the basic GFBN is generated and its conditional

distributions are populated by their fuzzy counterparts, each type augments this initial

construct to achieve a better accuracy in representation.

Definition 6 Fuzzy-Bayesian Network Type-I:

Given a general Fuzzy-Bayesian net GFBN as defined by equation (3.50), we define the Type-I

Fuzzy-Bayesian net FBN as GFBNI , such that,

GFBNI = [∆,Γ, Γ̂,LI , P̂I ] (3.53)

Note that in Type-I Fuzzy-Bayesian Network, we include the original continuous vari-

ables Γ in the acyclic graphical structure of the FBN along with their fuzzified counterparts

Γ̂.

The directed link structure of Type-I FBN is denoted by LI . This new acyclic graphical

structure is different from the original such that, for each added original continuous variable

Γ, a directed link from the fuzzy counterpart Γ̂ to the original continuous variable Γ is added
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to the original link set L. That is,

LI = L ∪ LΓ̂→Γ (3.54)

The set of conditional probability distributions P̂I is defined by

P̂I = P̂∆ ∪ P̂
Γ̂
∪ P̂Γ (3.55)

where

P̂∆ = P (∆|Par∆(∆),Par
Γ̂
(∆)), ∆ ∈∆

P̂
Γ̂

= P (Γ̂|Par∆(Γ̂),Par
Γ̂
(Γ̂)), Γ̂ ∈ Γ̂

P̂Γ = P (Γ|Γ̂), Γ ∈ Γ

(3.56)

P̂∆ and P̂
Γ̂

are, as in equation set (3.52), multinomials and they represent the trans-

formed conditional probability distributions of crisp discrete and Fuzzy variables, respec-

tively. P̂Γ, on the other hand, denotes the conditional distribution of the original continuous

variable Γ given its counterpart fuzzy variable Γ̂ is approximated by a Conditional Gaussian

(CG) introduced in Section 2.1.4 and defined by equation (2.14).

When applied to the Γ̂→ Γ pair within the context of the Type-I FBN, the conditional

distribution of Γ given Γ̂, P̂Γ = P (Γ|Γ̂) in equation (3.56) is defined by

P (Γ = γ|Γ̂ = γ̂) =
1

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
(3.57)

where γ and γ̂ stands for the values of the variables Γ and Γ̂, respectively. Note that for

each fuzzy state γ̂ of Γ̂, there exist a pair of parameters {µγ̂ , σγ̂}.

With the introduction of equation (3.57), we are now able to define all the CPDs in

a Type-I FBN formally and properly, hence, we can argue that Type-I FBNs are suitable

approximations of general HBNs. The graphical depiction of the Type-I FBN GFBNI is

provided in Figure 3.4.

Definition 7 Fuzzy-Bayesian Network Type-II

The idea behind the Type-I FBN is to develop a methodology that converts all continuous

variables in a generic HBN to fuzzy discrete counterpart variables, so that an exact infer-

encing algorithm such as Lauritzen’s junction tree algorithm for Conditional Gaussians can

subsequently be applied to the resulting acyclic graphical structure.
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BC

X

Z

Y Ŷ

X̂

Ẑ

Figure 3.4: Type-I FBN GFBNI derived from the GHBN of Figure 3.2

However, one can deduce from the definition of CG (see equation (3.123)) that not all

the continuous variables in the HBN need to be fuzzified. We can also use an adopted

version of the Junction tree algorithm for CGs, by applying the transformation defined

for Type-I FBN only to those set of continuous variables whose set of descendants include

discrete variables.

Formally, given a general Fuzzy-Bayesian Net GFBN as defined by equation (3.50), we

define the Type-II Fuzzy-Bayesian net FBN as GFBNII , such that,

GFBNII = [∆, Ω̂,Ω,Ψ,LII , P̂II ] (3.58)

where Ω denotes the set of continuous variables whose set of descendant nodes include

discrete variables. Ψ is the set of the remaining continuous variables in the original set Γ,

such that Ψ = Γ/Ω. Whereas, Ω̂ denotes the set of Fuzzy counterparts of the continuous

variables in the set Ω. The set of directed links connecting the variables is denoted by LII ,

such that

LII = L ∪ LΩ̂→Ω (3.59)

where LΩ̂→Ω represents the set of directed links from a Fuzzy variable Ω̂ to its original
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continuous counterpart Ω. P̂II in the equation (3.58) denotes the set of CPD imposed by

the GFBNII , such that

P̂II = P̂∆ ∪ P̂
Ω̂
∪ P̂Ω ∪ P̂Ψ (3.60)

where

P̂∆ = P (∆|Par∆(∆),Par
Γ̂
(∆)), ∆ ∈∆

P̂
Ω̂

= P (Ω̂|Par∆(Ω̂),Par
Γ̂
(Ω̂)), Ω̂ ∈ Ω̂

P̂Ω = P (Ω|Ω̂), Ω ∈ Ω

P̂Ψ = P (Ψ|Par∆(Ψ),ParΓ(Ψ)) , Ψ ∈ Ψ

(3.61)

In the equation set above, P̂∆ and P̂
Ω̂

are multinomial (i.e., discrete) distributions.

Whereas P̂Ω, as in Type-I FBN, is defined by the following CLG:

P (Ω = ω|Ω̂ = ω̂) =
1

σω̂

√
2π

exp

(
−(ω − µω̂)2

2σ2
ω̂

)
(3.62)

The last conditional probability distribution in equation set (3.61) is represented by a

conditional Gaussian regression that has been used by Lauritzen to define the conditional

distribution of a continuous variable whose set of parent variables include both discrete and

continuous variables.

P (Ψ = ψ|Parδ(Ψ),Parγ(Ψ)) =
1

σδ

√
2π

exp

(
−(ψ − µδ − αδγ)2

2σ2
δ

)
(3.63)

where Parδ(Ψ) and Parγ(Ψ) represent two vectors of values for the discrete and continuous

parent variables of the continuous variable Ψ, respectively. The regression parameters σδ,

µδ, and αδγ are also vectors for a given combination of discrete and continuous parents of

continuous variable Ψ, δ for the discrete, γ for the continuous parents.

As compared to Type-I, Type-II FBNs brings about a much accurate approximation of

the original general HBN, however with the additional cost of increased complexity of the

exact inferencing algorithm. The Type-II FBN transformation of our example general HBN

are depicted in Figure 3.5.
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Y
Ŷ

X̂

Figure 3.5: Type-II FBN GFBNII derived from the GHBN of Figure 3.2

3.4.2 Exact inferencing in Type-I FBN

Inferencing in Bayesian Networks, in general, focuses on determining a joint probability

distribution of variables included in the network. After a closed form solution for the joint

distribution of variables is formulated, one can use it to determine the marginal probability

distributions for various combinations of query variables.

In this section we propose an new exact inferencing methodology for Type-I FBN for

hard evidence propagation.

For a Type-I FBN defined by Definition 6, let the joint distribution of its variables is

denoted by

P (∆,Γ, Γ̂) (3.64)

Using the Chain Rule introduced earlier in equations (3.38) and (3.39) we can define the

joint probability distribution P (∆,Γ, Γ̂) formally as,

P (∆,Γ, Γ̂) =
∏

∆∈∆

P (∆|Par∆(∆))
∏

Γ∈Γ

P (Γ|Γ̂)
∏

Γ̂∈Γ̂

P (Γ̂|Par
Γ̂
(Γ̂)) (3.65)

Note that the second and third terms in equation (3.65) are composed of discrete variables

even though they are of crisp and fuzzy nature, respectively. Therefore, if we group them

together we can create a net cluster within the original where all variables are discrete
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and hence the set of conditional distributions imposed by the cluster is multinomial. More

formally, let us define this cluster by

Θ = ∆ ∪ Γ̂ (3.66)

hence the joint probability distribution of this discrete cluster Θ is

P (Θ) = P (∆, Γ̂)

=
∏

Θ∈Θ

P (Θ|Par∆(Θ))

=
∏

∆∈∆

P (∆|Par∆(∆))
∏

Γ̂∈Γ̂

P (Γ̂|Par
Γ̂
(Γ̂))

(3.67)

Note that the variables in cluster Θ and their joint distribution constitute all by them-

selves a classical (i.e., discrete) Bayesian Network. Let us denote this sub-Bayesian net by

BNsub.

Now, consider the second term in equation (3.65), which basically denotes the condi-

tional distributions of original continuous variables given their fuzzified counterpart discrete

variable. That is,

P (Γ|Γ̂) =
∏

Γ∈Γ

P (Γ|Γ̂) (3.68)

Note that all original continuous variables Γ are terminal nodes in the acyclic graphical

structure GFBNI of the Type-I FBN. Furthermore, when considered in conjunction with

BNsub, a star like topological structure emerges. This topology is depicted in Figure 3.6.

Next, we adopt the junction tree algorithm that we discussed in Chapter 2 and demon-

strate its application to this topology. A junction tree of an acyclic graphical structure

is composed of cliques as its nodes and separators as the edges connecting them. We use

the classical notation introduced by Lauritzen to define the junction tree T , such that

T = (C,S) where C denote the sets of cliques,

C = {C1, . . . , Cn}, Ck ∈ Θ and k = {1, 2, . . . ,m} (3.69)

and S represents set of the separators, the set of variables separating two adjacent cliques

Ci and Cj such that

Sij = Ci ∩ Cj , ∀ Ci 6= Cj , Ci and Cj ∈ C (3.70)



68

ˆ
BN

sub

Figure 3.6: BNsub and the peripheral Fuzzy discrete to continuous node pairs

For a Type-I FBN, consider a pair of peripheral variables, the original continuous variable

Γ and its counterpart Fuzzy discrete variable Γ̂ as in Figure 3.6. We can say that in the

junction tree structure T composed of the clique set Θ, there exist at least one clique CΓ̂

that contains the Fuzzy discrete variable Γ̂. Now, suppose that we create a special clique

composed only from these two variables Γ̂ and Γ and denote it by ĈΓ̂ = {Γ̂,Γ}. Note that

the newly created clique ĈΓ̂ and clique CΓ̂ share a single variable between their respective

variable sets: the Fuzzy discrete variable Γ̂. Hence we can add a new separator, denoted by

ŜΓ̂, connecting/separating ĈΓ̂ and CΓ̂, such that

ŜΓ̂ = ĈΓ̂ ∩ CΓ̂

= {Γ̂}
(3.71)

thereby creating a improved version of the original junction tree structure T . We shall

denote this new tree structure by TFBN. Formally,

TFBN = [C, Ĉ,S, Ŝ] (3.72)

where the sets Ĉ and Ŝ denote the collections of cliques ĈΓ̂ and separators ŜΓ̂ for each Γ̂

in the Type-I FBN.

In Chapter 2, we have already seen that, the easiest and most straightforward way to

perform exact inferencing on Bayesian Networks is to use the chain rule and to sum up the
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relevant terms each of which can be computed using the chain rule. However, we also know

that in any Bayesian Network, the complexity of calculation due to the chain rule based

inferencing is exponential in the number of variables making up the network. The variable

elimination algorithm discussed earlier in Chapter 2 is a substantial improvement on this.

A junction tree can be viewed as a graph induced by the variable elimination algorithm. In

junction trees each clique C is associated with a factor Φ(C) and each separator S with a

factor Φ(S). These factors are called potentials.

Potentials are representations of joint probability distributions of variables making up

the cliques or separators. To initialize the junction tree algorithm, they are assigned to be a

product of the CPDs associated with them. During the inferencing process these potentials

are being kept updated by messages passed though the tree structure.

Junction trees, just like classical Bayes nets, represent a joint probability distribution,

which is the product of the potentials of cliques Φ(C) divided by the product of the potentials

of separators Φ(S). Formally, for a junction tree T = (V,E) representing the set of variables

X, the joint probability distribution P (X) is given by

P (X) =

∏
Ci∈V Φ(Ci)∏
Sj∈E Φ(Sj)

(3.73)

where V and E represent the set of nodes and the edges in T , respectively. Hence, we can

represent the joint probability distribution for the junction tree of a Type-I FBN by the

following expression:

Φ(C, Ĉ,S, Ŝ) ≡ Φ(∆,Γ, Γ̂) =

∏
C∈C Φ(C)∏
S∈S Φ(S)

×
∏

Ĉ
Γ̂
∈Ĉ

Φ(ĈΓ̂)
∏

Ŝ
Γ̂
∈Ŝ

Φ(ŜΓ̂)
(3.74)

Within this context we can use a message passing algorithm to perform exact inferencing

on a Type-I FBN. In a junction tree T , a message is passed form clique C1 to C2 via the

message passing algorithm depicted in Table 3.6.

However, we need to make a distinction between the message passing among the variables

within the BNsub and message passing between the peripheral pairs Γ and Γ̂. Recall that

BNsub of Figure 3.6 is composed of cliques which include only discrete variables, originally

discrete variables ∆ and Fuzzy variables Γ̂. Any message passing among these discrete only

cliques C can be performed by a standard junction tree algorithm. Whereas, the updating
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Table 3.6: Algorithm for message passing from C1 to C2 through separator S

Step Action Remarks

1 Let f1 =
∑

C1\S Φ(C1) Sum out the variables in C1\S over Φ(C1)

2 Let f2 = f1

Φ(C1)
Divide by the last message sent

3 Let Φ(S) = f1 Store the message
4 Let Φ(C2) = Φ(C2) · f1 Multiply the message by Φ(C2)

between the BNsub and its periphery, namely the updating between discrete clique CΓ̂ and

mixed clique ĈΓ̂ = {Γ, Γ̂} through separator ŜΓ̂ needs to be handled differently. This type

of updating has two aspects:

• First, message passing from CΓ̂ to ĈΓ̂.

• Second, message passing from ĈΓ̂ to CΓ̂.

Let us now introduce our proposed methodology for these two forms of message passing

by considering evidence propagation in both situations. Assume that an evidence E is

introduced to the junction tree of the Type-I FBN. Let Φ′(K) denotes the updated potential

Φ′(K) = Φ(K|E) of cluster K given evidence E. K may be a clique or separator.

Message passing from CΓ̂ to ĈΓ̂: From CΓ̂ to ĈΓ̂ the evidence is carried by separator

ŜΓ̂, hence its potential Φ(ŜΓ̂) needs to be updated so that ŜΓ̂ can pass the message to the

peripheral clique ĈΓ̂. From equation (3.70) we know that ŜΓ̂ contains only Γ̂ and it updated

potential is

Φ′(ŜΓ̂) = Φ′(Γ̂) =
∑

C
Γ̂
\{Γ̂}

Φ′(CΓ̂) (3.75)

Then,

Let f1 = Φ′(Γ̂) (3.76)

The summation in equation (3.75) is performed over the variables in the clique CΓ̂ except

Γ̂ , in effect, marginalizing the Fuzzy variable Γ̂ out from the clique’s potential Φ(CΓ̂).

Equation (3.76) completes the first step in Table (3.6).

Next, we update Φ(ĈΓ̂):

Let f2 =
f1

Φ(ŜΓ̂)
=

Φ′(Γ̂)

Φ(ŜΓ̂)
=

Φ′(Γ̂)

Φ(Γ̂)
(3.77)
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since Φ(ŜΓ̂) = Φ(Γ̂) by similar reasoning as in equation (3.75). Now the message is repre-

sented by f2. Next, we multiply the current potential Φ(ĈΓ̂) of clique ĈΓ̂ = {Γ̂,Γ} by the

message to get the updated potential Φ′(ĈΓ̂) . That is,

Φ′(ĈΓ̂) = Φ(ĈΓ̂) · f2 = Φ(ĈΓ̂) · Φ
′(Γ̂)

Φ(Γ̂)
(3.78)

The term Φ(ĈΓ̂) in equation (3.78) is by definition a nonnegative entity proportional

to the probability representing the conditional relationship among the variables within the

clique ĈΓ̂. Since clique ĈΓ̂ consists of two variables continuous Γ and its counter part

Fuzzy discrete Γ̂ and since, in the network structure GFBNI of Type-I FBN, the conditional

relationship between these two is always P (Γ|Γ̂), the potential Φ(ĈΓ̂) is proportional to

P (Γ|Γ̂). Recall that, according to our methodology, we define P (Γ|Γ̂) by equation (3.57),

P (Γ = γ|Γ̂ = γ̂) =
1

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
(3.79)

Then, since Φ(ĈΓ̂) ∝ P (Γ|Γ̂), the potential Φ(ĈΓ̂) can correctly be represented by

Φ(ĈΓ̂) = Φ(Γ̂ = γ̂,Γ = γ) =
Φ(γ̂)

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
(3.80)

Using this representation of Φ(ĈΓ̂) along with the equation (3.78) gives us the updated

potential Φ′(ĈΓ̂). That is,

Φ′(ĈΓ̂) = Φ′(Γ̂ = γ̂,Γ = γ) =
Φ′(γ̂)

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
(3.81)

To compute the updated marginal potential Φ(Γ = γ) of the continuous variable Γ we

need to sum out its counter part fuzzy discrete Γ̂ over its discrete frame Γ̂ from equation

(3.81), such that

Φ′(Γ = γ) =
∑

γ∈Γ̂

Φ′(γ̂)

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
(3.82)

Message passing from ĈΓ̂ to CΓ̂: Using similar steps as above, the updated potential

Φ(CΓ̂) of clique CΓ̂ when a message passed form clique ĈΓ̂ to clique CΓ̂ through separator

ŜΓ̂, can be computed as follows. Again, summing out the current potential Φ(ĈΓ̂) over
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continuous variable Γ (note that ĈΓ̂\ŜΓ̂ = {Γ̂,Γ}\Γ̂ = {Γ}) we get the updated potential

Φ′(ŜΓ̂) for the separator:

Φ′(ŜΓ̂) =

∫

Γ

Φ(ĈΓ̂)dΓ

=

∫

Γ

Φ(Γ̂,Γ)dΓ
∀Γ = {γ|γ ∈ Γ} and

∀Γ̂ = {γ̂|γ̂ ∈ Γ̂}

=

∫

Γ

Φ(γ̂, γ)dγ

= Φ′(Γ̂ = γ̂)

(3.83)

hence

Φ′(ŜΓ̂) = Φ′(Γ̂ = γ̂) =

∫

γ∈Γ

Φ(γ̂)

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
dγ (3.84)

then dividing Φ′(ŜΓ̂) by the last message sent (i.e., Φ(ŜΓ̂) = Φ(Γ̂ = γ̂) = Φ(γ̂)) and

multiplying the message by the current potential Φ(CΓ̂) we get its updated potential:

Φ′(CΓ̂) =

∫

γ∈Γ

Φ(CΓ̂)

σγ̂

√
2π

exp

(
−(γ − µγ̂)2

2σ2
γ̂

)
dγ (3.85)

Numerical Example

Next, we demonstrate the message passing process with a numerical example. Consider the

Hybrid Bayesian Network in Figure 3.7

The conditional probability distributions (CPDs) associated with the individual nodes

(i.e., variables) are given as follows:

CPDs for the nodes A and B:

P (A) =





0.7 for A = a1

0.3 for A = a2

, P (B|A) =

B|A a1 a2

b1 0.2 0.45

b2 0.8 0.55
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Y

XB

A

C

Figure 3.7: The Hybrid Bayesian Network used in the numerical example

CPD for the node X:

P (X|A) =





1.75 for 0 ≤ x < 0.5

0.25 for 0.5 ≤ x ≤ 1

for A = a1

0.40 for 0 ≤ x < 0.5

1.60 for 0.5 ≤ x ≤ 1

for A = a2

Note that the CPDs of the nodes A and B are discrete distributions, whereas the CPD

of node X is a mixture of uniform distributions for each discrete state of variable A, hence

is a continuous distribution.

CPD for the node Y :

P (Y |X,B) =





N (Y ;X, 1) for B = b1

N (Y ; 1, 0.5) for B = b2
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CPD for the node C:

P (C|X) =





P (c1|X) =





0.353 for 0 ≤ x < 0.2

0.667 for 0.2 ≤ x < 0.8

0.5 for 0.8 ≤ x ≤ 1

P (c2|X) =





0.647 for 0 ≤ x < 0.2

0.333 for 0.2 ≤ x < 0.8

0.5 for 0.8 ≤ x ≤ 1

Note that the CPDs for the nodes Y and C are continuous distributions, too. In par-

ticular, the CPD of node Y is a Conditional Gaussian (CG) which, for each discrete state

of variable B, the conditional is defined by a normal distribution N (V ;µ, σ), where V ,

µ, and σ denote the random variable, mean, and standard deviation of the distribution,

respectively. On the other hand, the CPD of node C is a mixture of uniform distributions

for each state of variable C.

Given the topology in Figure 3.7 and the nature of the CPDs associated with its nodes

we conclude that the existing methodologies do not help us to perform exact inferencing on

this hybrid Bayesian Network. We can point out two reasons:

• Discrete node C has a continuous node (i.e., X) as its parent.

• The CPDs for nodes X and Y are defined by continuous distributions other than

Conditional Gaussians.

Once the inapplicability of the traditional inferencing methodologies for our example

network is established we can justify the use of our proposed methodology for general

HBNs. First, we convert the current topology of the net into a Type-I FBN. The result of

this conversion is provided in Figure 3.8.

As explained earlier in this section, to transform the given HBN into the Type-I FNB in

Figure 3.8.a, we replace the continuous nodesX and Y with their Fuzzy discrete counterpart

X̂ and Ŷ , and add the original nodes along with a directed link from the fuzzy to the
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Y

B

A

C

X

Ŷ

X̂

Y

B

A

C

X

Ŷ

X̂

BNsub

a) The Type-I FNB b) BNsub in the Type-I FNB

Figure 3.8: The Type-I FBN corresponding to the HBN of Figure 3.7

original continuous variable. Consequently, we are now able to identify a BNsub in Figure

3.8.b which is composed only of discrete variables, either crisp discrete or Fuzzy discrete.

Next, we build the junction tree associated with the BNsub. This is done first moralizing

(i.e., connecting every unconnected parent and removing the link directions) and second,

triangulating the BNsub. Consequently, the cliques are identified in the normalized and

triangulated net and laid out on a tree structure where each clique is connected via a

separator composed of shared variables between two neighboring cliques. This process and

the resulting junction tree (JT ) for the BNsub is provided in Figure 3.9.

B

A

CŶ

X̂B

A

CŶ

X̂

X̂B,A,

X̂C,X̂,ŶB,

X̂X̂B,

Clique1

Separator2 Separator1

Clique3 Clique2

a) The BNsub c) The JT for the BNsubb) The moralized and 

triangulated BNsub

Figure 3.9: Construction of the JT of the BNsub

We can now construct the junction tree of the Type-I FBN using the JT of the BNsub

in Figure 3.9.c as its core. This is accomplished by adding two cliques composed of the
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{X̂,X} and {Ŷ , Y } pairs with the corresponding separators. The resulting JT is depicted

in Figure 3.10 along with the notation we introduced during the formalization of the Type-I

FBN.

X̂B,A,

X̂C,X̂,ŶB,

X̂X̂B,

X,X̂ŶY, Ŷ X̂

1
C

2
ˆC

1
ˆC 1

ˆĈ
2
ˆĈ 2

S

1
S

2
ˆŜ

1
ˆŜ

BN
sub

Figure 3.10: The Junction Tree of the Type-I FBN in Figure 3.8.a

According to our proposed methodology, in order to perform the exact inferencing al-

gorithm on the JT of the Type-I FBN in Figure 3.10, we need to define the Fuzzy variables

{X̂, Ŷ } formally by introducing the Fuzzy membership functions that will be used to convert

their continuous frames into discrete states determined by the corresponding Fuzzy Sets.

Consequently, we fuzzify the given CPDs of the original HBN in Figure 3.7 that include the

Fuzzy variables {X̂, Ŷ }. These fuzzified CPDs along with the others in the original HBN

will, in turn, be used to determine the potentials Φ for each clique C and separator S of the

JT in Figure 3.10. These potentials are then employed to pass messages along the desired

branches of the junction tree to perform exact inferencing for our Type-I FBN.

We demonstrate the proposed inferencing methodology by passing a message from clique

C∆1
to the peripheral clique ĈΓ̂1

as shown in Figure 3.11.

First, we need to define the Fuzzy counterpart X̂ of continuous variables X. Let X̂ be

a binary Fuzzy variable whose states are defined on frame X by the Fuzzy Sets X̂1(x) and
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X̂ B, A,

X̂ C,

X̂

X ,X̂X̂

1
C

1
ˆC

1
ˆĈ

1
S

1
ˆŜ

message

Figure 3.11: A message is passed from C∆1
to ĈΓ̂1

X̂2(x). That is,

X̂1(x) =





1 for 0 ≤ x < 0.3

0.7− x
0.7− 0.3 for 0.3 ≤ x < 0.7

0 for 0.7 ≤ x < 1

X̂2(x) =





0 for 0 ≤ x < 0.3

x− 0.3
0.7− 0.3 for 0.3 ≤ x < 0.7

1 for 0.7 ≤ x < 1

(3.86)
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Figure 3.12: Membership functions for Fuzzy states X̂1 and X̂2

Now we need to determine the potentials for cliques C∆1
, CΓ̂1

, and ĈΓ̂1
. These potentials

are dependent on the following four factors: f(X̂, A), f(C, X̂), f(X, X̂), and f(A), which

in turn relies on the CPDs of the four node {A,C,X, X̂} in the Type-I FBN of Figure 3.8.a.
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Hence, we compute these four CPDs next, in the process making the necessary crisp to

fuzzy transformations according to the methodology we propose in Section (3.4.1).

P (X|A)
fuzzify→ P (X̂|A) :

f1(X̂, A) =

X̂ A

X̂1 a1 P (X̂1|a1)

X̂1 a2 P (X̂1|a2)

X̂2 a1 P (X̂2|a1)

X̂2 a2 P (X̂2|a2)

using equation (3.49) we can write the individual probabilities making up the factor f1(X̂, A)

as follows:

P (X̂i|aj) =

∫

X

X̂i(x)P (x|aj) dx; i = {1, 2}, j = {1, 2} (3.87)

where the frame X is defined on the closed interval [0, 1]. Hence by the equation (3.87) and

using the given CPD for P (X|A) and membership function X̂1(x):

P (X̂1|a1) =

1∫

0

X̂1(x)P (x|a1) dx

=

0.3∫

0

1× 1.75 dx+

0.5∫

0.3

(
0.7− x

0.7− 0.3

)
× 1.75 dx+

0.7∫

0.5

(
0.7− x

0.7− 0.3

)
× 0.25 dx

= 0.8

P (X̂2|a1) =

1∫

0

X̂2(x)P (x|a1) dx

=

0.5∫

0.3

(
x− 0.3

0.7− 0.3

)
× 1.75 dx+

0.7∫

0.5

(
x− 0.3

0.7− 0.3

)
× 0.25 dx+

1∫

0.7

1× 0.25 dx

= 0.2

P (X̂1|a2) =

1∫

0

X̂1(x)P (x|a2) dx

=

0.3∫

0

1× 0.4 dx+

0.5∫

0.3

(
0.7− x

0.7− 0.3

)
× 0.4 dx+

0.7∫

0.5

(
0.7− x

0.7− 0.3

)
× 1.6 dx

= 0.26
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P (X̂2|a2) =

1∫

0

X̂2(x)P (x|a2) dx

=

0.5∫

0.3

(
x− 0.3

0.7− 0.3

)
× 0.4 dx+

0.7∫

0.5

(
x− 0.3

0.7− 0.3

)
× 1.6 dx+

1∫

0.7

1× 1.6 dx

= 0.74

and the corresponding factor is:

f1(X̂, A) =

X̂ A

X̂1 a1 0.8

X̂1 a2 0.26

X̂2 a1 0.2

X̂2 a2 0.74

(3.88)

Second, we compute the factor f(C|X̂):

P (C|X)
fuzzify→ P (C|X̂) :

f2(C, X̂) =

C X̂

c1 X̂1 P (c1|X̂1)

c1 X̂2 P (c1|X̂2)

c2 X̂1 P (c2|X̂1)

c2 X̂2 P (c2|X̂2)

using equation (3.44) we can write the individual probabilities making up the factor f(C, X̂)

as follows:

P (ci|X̂j) =

∫

X

X̂j(x)P (ci|x)P (x) dx

∫

X

X̂j(x)P (x) dx

; i = {1, 2}, j = {1, 2} (3.89)

As before the discrete variable C is assumed to be binary. Hence by the equation (3.89)

and using the given CPD for P (C|X) and membership function X̂1(x), the individual
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components of the factor can be computed as follows:

P (c1|X̂1) =

∫ 0.2
0 1 · 0.353 · 1.7 dx+

∫ 0.3
0.2 1 · 0.667 · 0.9 dx+

∫ 0.7
0.3

(
0.7−x

0.7−0.3

)
· 0.667 · 0.9 dx

∫ 0.2
0 1 · 1.7 dx+

∫ 0.3
0.2 1 · 0.9 dx+

∫ 0.7
0.3

(
0.7−x

0.7−0.3

)
· 0.9 dx

= 0.49198

P (c2|X̂1) =

∫ 0.2
0 1 · 0.647 · 1.7 dx+

∫ 0.3
0.2 1 · 0.333 · 0.9 dx+

∫ 0.7
0.3

(
0.7−x

0.7−0.3

)
· 0.333 · 0.9 dx

∫ 0.2
0 1 · 1.7 dx+

∫ 0.3
0.2 1 · 0.9 dx+

∫ 0.7
0.3

(
0.7−x

0.7−0.3

)
· 0.9 dx

= 0.50802

P (c1|X̂2) =

∫ 0.7
0.3

(
x−0.3

0.7−0.3

)
· 0.667 · 0.9 dx+

∫ 0.8
0.7 1 · 0.667 · 0.9 dx+

∫ 1
0.8 1 · 0.5 · 0.6 dx

∫ 0.7
0.3

(
x−0.3

0.7−0.3

)
· 0.9 dx+

∫ 0.8
0.7 1 · 0.9 dx+

∫ 1
0.8 1 · 0.6 dx

= 0.61561

P (c2|X̂2) =

∫ 0.7
0.3

(
x−0.3

0.7−0.3

)
· 0.333 · 0.9 dx+

∫ 0.8
0.7 1 · 0.333 · 0.9 dx+

∫ 1
0.8 1 · 0.5 · 0.6 dx

∫ 0.7
0.3

(
x−0.3

0.7−0.3

)
· 0.9 dx+

∫ 0.8
0.7 1 · 0.9 dx+

∫ 1
0.8 1 · 0.6 dx

= 0.38439

Then the corresponding factor is;

f2(C, X̂) =

C X̂

c1 X̂1 0.49198

c1 X̂2 0.61561

c2 X̂1 0.50802

c2 X̂2 0.38439

(3.90)

Next, we define the factor f(X|X̂) using the equations (3.57) and (3.79). Consider;

P (X|X̂) =





P (x|X̂1) = 1
σ

X̂1

√
2π

(
−
(
x−µ

X̂1

)2

2σ2

X1

)
for X̂ = X̂1

P (x|X̂2) = 1
σ

X̂2

√
2π

(
−
(
x−µ

X̂2

)2

2σ2

X2

)
for X̂ = X̂2

µX̂ = {0.35, 0.65} and σX̂ = {0.07, 0.07}

Hence the factor for the clique ĈΓ̂1
in the JT of Type-I FBN is;

f3(X, X̂) =

X X̂

x
X̂1 P (x|X̂1) = N (X; 0.35, 0.07)

X̂2 P (x|X̂2) = N (X; 0.65, 0.07)

(3.91)
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Finally, for the factor f(A) we write f(A) = P (A), hence using the given distribution

for node A we have

f4(A) =

A

a1 0.7

a2 0.3

(3.92)

Summarizing, the initialization step involves incorporating the CPDs into the junction

tree of Type-I FBN. To accomplish this, first we transfered the crisp CPDs into fuzzy CPDs

for selected variables of the Type-I FBN to determine the factors (3.88), (3.90), (3.91), and

(3.92) needed to compute the potentials of the cliques and separators along the path in

Figure 3.11 that we have chosen to demonstrate our proposed methodology for message

passing in a Type-I FBN. Then, for each such factor we choose a clique that contains all

the variables in the factor. We then initialize the potential of each clique to be the product

of the CPDs associated with it.

Suppose a message is passed from clique C∆1
to clique ĈΓ̂1

along the path shown in

Figure 3.11. Next, we will initiate the potentials for cliques C∆1
, CΓ̂1

, and ĈΓ̂1
.

Potential Φ(C∆1
) of clique C∆1

= {A,B, X̂} is the product of factors f4(A), f5(B,A) and

f1(X̂, A). To multiply these factors we need to create a factor f6(A,B, X̂) over the union

variables of these three original factors. Now consider a table entry in f6 corresponding to

some assignment {ai, bj , X̂k}. In each of the original factors f4, f5, and f1 there is precisely

one entry consistent with {ai, bj , X̂k}. The table entry in f6 is defined as the product of the

three table entries in f4, f5, and f1. The resulting factor is the potential for clique C∆1

which is provided below:
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Φ(C∆1
) = f6(A,B, X̂) =

A B X̂

a1 b1 X̂1 0.7× 0.2× 0.8 = 0.112

a1 b1 X̂2 0.7× 0.2× 0.2 = 0.028

a1 b2 X̂1 0.7× 0.8× 0.8 = 0.448

a1 b2 X̂2 0.7× 0.8× 0.2 = 0.112

a2 b1 X̂1 0.3× 0.45× 0.26 = 0.0351

a2 b1 X̂2 0.3× 0.45× 0.74 = 0.0999

a2 b2 X̂1 0.3× 0.55× 0.26 = 0.0429

a2 b2 X̂2 0.3× 0.55× 0.74 = 0.1221

(3.93)

The potential Φ(CΓ̂1
) is composed only of factor f2(X̂, C), hence from (3.90) we get,

Φ(CΓ̂1
) = Φ(C, X̂) =

C X̂

c1 X̂1 0.49198

c1 X̂2 0.61561

c2 X̂1 0.50802

c2 X̂2 0.38439

(3.94)

Finally, he potential Φ(ĈΓ̂1
) equals to f3(X, X̂) of equation (3.91). That is,

Φ(ĈΓ̂1
) = Φ(X, X̂) =

X X̂

x
X̂1 N (X; 0.35, 0.07)

X̂2 N (X; 0.65, 0.07)

(3.95)

Now, since all the relevant information is in the particular section of the junction tree

that we are interested in we can proceed to passing a message from clique C∆1
to Φ(CΓ̂1

)

through separator S∆1
.

First, we update the potential of the separator S∆1
. Let Φ′(S∆1

) be that updated

potential. To calculate the updated potential we perform a summation over the variables

A,B which are the variables making up the clique C∆1
minus the variables in the separator

S∆1
. Hence,

Φ′(S∆1
) =

∑

C∆1
\S∆1

Φ(C∆1
) =

∑

A,B

f6(A,B, X̂) (3.96)



83

The resulting updated potential is

Φ′(S∆1
) =

X̂

X̂1 0.638

X̂2 0.362

(3.97)

Since this is the first time a message is passed through the separator S∆1
we do not

need to divide it by an earlier message stored in the S∆1
to normalize the message currently

being passed, hence we skip step 2 in Table 3.6. Nevertheless, we are going to store this

message by letting,

Φ(S∆1
)← Φ′(S∆1

)

Next we update the clique CΓ̂1
with the message carried by the separator S∆1

. That is,

Φ′(CΓ̂1
) = Φ′(S∆1

)× Φ(CΓ̂1
)

Multiplying potentials (3.94) and (3.97) according to the method outlined for the mul-

tiplication of factors we get the updated potential Φ′(CΓ̂1
) for clique CΓ̂1

.

Φ′(CΓ̂1
) =

C X̂

c1 X̂1 0.49198× 0.638 = 0.31388

c1 X̂2 0.61561× 0.362 = 0.22285

c2 X̂1 0.50802× 0.638 = 0.32412

c2 X̂2 0.38439× 0.362 = 0.13915

(3.98)

We assign the updated potential as the current potential for the clique CΓ̂1
to be used

for future message passing if needed:

Φ(CΓ̂1
)← Φ′(CΓ̂1

)

Now we are going to pass this evolving message through separator ŜΓ̂1
to the peripheral

clique ĈΓ̂1
. Again, we update the potential of ŜΓ̂1

, first:

Φ′(ŜΓ̂1
) =

∑

C
Γ̂1

\Ŝ
Γ̂1

Φ(CΓ̂1
) =

∑

C

f2(C, X̂) (3.99)
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Hence

Φ′(ŜΓ̂1
) =

X̂

X̂1 0.638

X̂2 0.362

(3.100)

Note that since the separator ŜΓ̂1
is composed of the same variable, i.e., X̂, as the

previous separator S∆1
that the message passed through and since this is the fist time that

a message is processed by ŜΓ̂1
, the potentials of both separator turned out to be equal.

Next we store the message for future use:

Φ(SΓ̂1
)← Φ′(SΓ̂1

)

and update the potential of clique ĈΓ̂1
:

Φ′(ĈΓ̂1
) = Φ′(ŜΓ̂1

)× Φ(ĈΓ̂1
)

The resulting updated potential for the peripheral clique ĈΓ̂1
= {X, X̂} is:

Φ′(ĈΓ̂1
) = Φ′(X, X̂) =

X X̂

x
X̂1 0.638 · N (X; 0.35, 0.07)

X̂2 0.362 · N (X; 0.65, 0.07)

(3.101)

and we store the updated potential for future messages:

Φ(ĈΓ̂1
)← Φ′(ĈΓ̂1

)

The updated potential Φ′(X, X̂) in (3.101) represents the updated joint distribution

P (X, X̂) after the message is absorbed by the clique ĈΓ̂1
= {X, X̂}. Hence we can sum out

the Fuzzy variable X̂ to get a marginal distribution of the original continuous variable X

which turns out to be a mixture of two Gaussians:

P (X) = 0.638 · N (X; 0.35, 0.07) + 0.362 · N (X; 0.65, 0.07).

The marginal distribution of the continuous variable X, which is a mixture of two

Gaussians as the result of this inferencing process is depicted in Fig 3.13.
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Figure 3.13: Marginal probability density function of continuous variable X

3.4.3 Exact inferencing in Type-II FBN

In this section we provide a formal methodology to perform inferencing about Type-II FNB

representation a HBN. As usual, we are interested in the problem of probabilistic inferencing

and once again we take the approach offered by the junction tree algorithm. We shall develop

a version of the junction tree algorithm which is suited for Type-II FBNs, proposed in [4]

and often called Lauritzen’s algorithm.

Consider an HBN defined by equation (3.35) representing the joint probability distribu-

tion P (∆, Γ). A Type-II FBN, GFBNII , can be constructed according to Definition 7, which

provides a general approximation for the HBN, if the conditional dependencies between ad-

jacent continuous variables can be represented by a Conditional Gaussian Regression (CGR)

model defined by equation (3.57), such that

P (∆, Γ) ≡ P (∆, Ω̂,Ω,Ψ) (3.102)

As it is the case for Type-I inferencing, it is trivial to show that the transformation to

the Type-II topography does not change the decomposability feature of the original HBN.

Thus, using the Chain Rule of equations (3.38) and (3.39) we can define the joint probability
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distribution representing the Type-II FBN, formally, as follows:

P (∆, Ω̂,Ω,Ψ) =
∏

∆∈∆

P (∆|Par∆(∆))×
∏

Ω̂∈Ω̂

P (Ω̂|Par
Ω̂

(Ω̂)×
∏

Ω∈Ω

P (Ω|Ω̂)

×
∏

Ψ∈Ψ

P (Ψ|Par∆(Ψ),ParΓ(Ψ))

= P (∆, Ω̂)P (Ω|Ω̂)P (Ψ|∆)

= P (∆, Ω̂, Ψ)P (Ω|Ω̂) (3.103)

Note that in equation (3.103) P (∆, Ω̂, Ψ) represents the joint probability distribution

for the discrete variable sets ∆, Ω̂ and the continuous variable set Ψ. Based on Definition

4, sets ∆, Ω̂, and Ψ constitute a Hybrid Bayesian Network, which is a subgraph within the

structure of the original HBN, GHBN , that the Type-II FBN is based on. We denote this

subgraph HBN as HBNsub. Then, given the Hybrid Bayesian Network HBNsub, the joint

probability distribution representing its topology is given by

P (∆, Ω̂, Ψ) =
∏

∆∈∆

P (∆|Par∆(∆)
∏

Ω̂∈Ω̂

P (Ω̂|Par
Ω̂

(Ω̂)
∏

Ψ∈Ψ

P (Ψ|Par∆(Ψ),ParΓ(Ψ))

= P (∆, Ω̂)P (Ψ|∆) (3.104)

Note also that the second term in equation (3.103), P (Ω|Ω̂) defined by a Fuzzy-discrete

and crisp-continuous variable pair represents a peripheral cluster of such variable pairs and

indicates a star-shaped tree structures whose rood node is HBNsub. In fact, the resulting

topology is simply

P (Ω|Ω̂) =
∏

Ω∈Ω

P (Ω|Ω̂) . (3.105)

The notion of HBNsub is illustrated in Figure 3.14b.

Consider that a Junction Tree is constructed based on HBNsub. Then, hybrid cliques

ĈΩ̂ = {Ω̂,Ω} can be used to attach original continuous variables Ω through discrete (i.e,

fuzzy-discrete) separators ŜΩ̂ = {Ω̂} to this Junction Tree. The evidence propagation

between a clique CΩ̂, that contains the fuzzy-discrete counterpart variable Ω̂ and a hybrid

clique ĈΩ̂ through a separator ŜΩ̂ can be performed using a similar mechanism developed

for Type-I FBNs and presented in Section 3.4.2. This observation, in fact, simplifies our job
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(a) A General HBN

X̂
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L TA

W Z

Y

X

Ŷ

HBNsub

(b) The Type-II FBN

Figure 3.14: The Type-II FBN as the result of transforming an example HBN with vari-
able sets ∆ = {A} and Γ = {K,L,M, T,X,W, Y, Z}. Note also that HBNsub notion is
illustrated in (b).

extensively. Therefore, we can only concentrate developing a message passing methodology

within the topology of HBNsub, composed of variables ∆, Ω̂,Ψ.

A junction tree THBNsub
can be constructed using the junction tree clustering algorithm

introduced in Section 2.1.3 based on the topology of HBNsub, such that

THBNsub
= [Cd,Ch,Cc,Sd,Sh,Sc] (3.106)

where Cd is a set of discrete cliques of purely discrete variables, Ch represents a set of

hybrid cliques of discrete and continuous variables, and Cc is a set of continuous cliques

of purely continuous variables. Similarly, Sd,Sh, and Sc are sets of discrete, hybrid, and

continuous separators, respectively. Recalling that the message passing in a junction tree

is performed along the separators that connect two adjacent cliques, let us take a closer

look to the connections within THBNsub
. Let C − S − C ′ denote such a connection where

adjacent cliques C and C ′ are connected through separator S. Then, we can represent all
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the connections in THBNsub
by the following seven classes:

Cd − Sd − C ′
d (3.107)

Cd − Sd − C ′
h (3.108)

Ch − Sd − C ′
h (3.109)

Ch − Sh − C ′
h (3.110)

Ch − Sc − C ′
h (3.111)

Ch − Sd − C ′
c (3.112)

Cc − Sc − C ′
c (3.113)

where Cd 6= C ′
d, Cd, C

′
d ∈ Cd, Ch 6= C ′

h, Ch, C
′
h ∈ Ch, Cc 6= C ′

c, Cc, C
′
c ∈ Cc, and Sd ∈ Sd,

Sh ∈ Sh, Sc ∈ Sc.

X̂
A M

Ŷ

X̂
A M K W

T K

A L
Z W

, M, AX̂

K
, KX̂K

W, K

A K

X̂

X

YŶ

Ŷ

X̂

X̂

THBNsub

Figure 3.15: The junction tree associated with Type-II FBN of Figure 3.14b. Note that
junction tree THBNsub

corresponding to HBNsub is also denoted here.

Considering the fact that these seven classes given by equations (3.107) to (3.113) are an

exhaustive list of connections in THBNsub
, we can make the following important observations

regarding the topology of a hybrid junction tree defined by equation (3.106):

• A discrete clique Cd and a continuous clique Cc are not adjacent and along the path
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that connect them there must be a hybrid clique Ch.

• Hence, in HBNsub, consistent with the topology of the Type-II FBN, in term of

ordering, discrete variables precede continuous variables, i.e., discrete variables do

not appear as descendants of continuous variables.

Using this ordering, A hybrid junction tree THBNsub
can be constructed such that,

i. A hybrid clique in the tree becomes the root of THBNsub
.

ii. If there a continuous cliques on any branch of THBNsub
, then these continuous cliques

must be farthest away from the root clique. Furthermore, there must be at least one

hybrid cluster separating these continuous cliques and the discrete cliques.

Lauritzen called such a root clique as a strong root [4]. Before providing a formal

definition of a strong root, let us elaborate on the how it relates to inferencing in junction

trees.

At the crux of exact inferencing in a Hybrid Bayesian Network, as in HBNsub, where

continuous variables do not have discrete variables among their descendants, lies the decom-

position of a suitable modified decomposable network into partly independent components

formed by the cliques of the HBN. Such a decomposition, however, also needs to take into

account the asymmetry of conditional dependencies between continuous and discrete vari-

ables as defined by Conditional Gaussians, in particular, by equations (3.57) and (3.63), for

Type-I and Type-II FBNs respectively. The reader may refer to Leimer [88] for a detailed

theoretical study as well as proofs. Here, we provide the formal definitions that will help us

state the fundamental theorem that ensures message passing within hybrid junction trees

representing Type-II FBNs, in general and within junction tree THBNsub
, in particular. We

start with the notion of decomposition:

Definition 8 Let G be an undirected hybrid graph with a vertex set V and A, B, and C

be three disjoint subsets of V. The triplet (A, B, C) is said to form a decomposition of G

if V = A ∪B ∪C and the following three conditions hold:

i. C seperates A form B.
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ii. C is a complete subset of V.

iii. C ⊆∆ ∨B ⊆ Γ

If the conditions outlined in Definiton 8 are satisfied then we say that G is decomposed

into GA∪C and GB∪C. If only the conditions (i) and (ii) are satisfied then we say that the

triplet (A, B, C) constitutes a weak decomposition. Figure 3.16 illustrates the concept of

strong and weak decomposition and the forbidden connection in a decomposable graph.

A

(a) (b) (c)

(d) (e)

C B A C B A C B

A C B

Figure 3.16: Illustration of Decomposability: For sets A,B,C, where discrete and continu-
ous nodes are depicted by squares and circles respectively, we have a strong decomposition
with C ⊆∆ in (a) and with B ⊂ Γ in (b). (c) illustrates a weak decomposition where none
of these two conditions are satisfied. (d) does not denote a decomposition since C is not
complete. Finally, in (e) we see a path that is not permissible in a decomposable graph.

A graph that can be successfully decomposed into its cliques is called a decomposable

graph. Definition 9 formalizes the concept.

Definition 9 An undirected, hybrid graph G is decomposable if it is complete of if there

exist a composition A, B, and C, such that A and B are nonempty sets, into subgraphs

GA∪C and GB∪C.

Being triangulated and not having any path of particular type are the two key feature of

decomposable graphs. Recalling our discussions on construction of junction trees, a junction

tree is formed based a triangulated graph. Therefore the cliques in a junction tree can be

arranged to constitute a decomposition of the hybrid graph it represents.

Now, we are ready to define the strong root formally and provide the fundamental

theorem which assures that message passing in Type-II FBNs tractable.
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Definition 10 A clique R in a clique tree T is a strong root if every two adjacent cliques

C1 and C2 such that C1 is closer to R than C2 satisfy

(C1 ∩ C2) ⊆∆ ∨ (C2 \ C1) ⊆ Γ (3.114)

If we consider the statement above in terms of decomposition, we see that the condition

stated in 3.114 is equivalent to a strong decomposition GC1∪C2
formed by the triplet (C1 \

C2, C2\C1, C1∩C2). In other words, as we stated in item ii while discussing the construction

of of a hybrid junction tree, if a separator between two adjacent cliques is not purely discrete

then the clique furthest away from the root has only continuous vertices. In the junction

tree illustrated in Figure 3.15 cliques {X̂,M,A, Ŷ } and {A,L} are possible strong roots.

The reason we use strongly rooted trees is that it ensures that message passing is not

only well defined, but also leads to the exact results. In general, this is not the case when

using trees that are not strongly rooted.

Theorem 3.4.1 Having a strong root is a sufficient, but not a necessary condition for the

operations of the message passing algorithm to be well defined in hybrid clique trees [88].

So far, we have motivated strongly rooted trees as a way to make sure that all the

operations required to perform message passing on THBNsub
are well defined. However, it is

possible to find clique trees which are not strongly rooted but in which message passing is

still possible [10].

Leimer [88] (Statement iii′ of Theorem 2′) ensures that the cliques of a decomposable

Type-II FBN can be organized in a junction tree with at least one strong root. Therefore,

in the following discussion, we assume that a hybrid junction tree THBNsub
representing

the Type-II FBN with at least one strong root has been already constructed. Figure 3.15

illustrates such a junction tree for a sample Type-II FBN.

Now, we can focus on message passing for the seven classes of possible connections

between neighboring cliques in a THBNsub
defined by equations (3.107) to (3.113). A closer

inspection of these connections shows that class (3.107) is a discrete-to-discrete connection

that is typical to junction trees of discrete only BNs and hence, associated message passing

can be perform by a standard junction tree algorithm such as Lauritzen’s JT algorithm
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[89]. In terms of directional symmetry, the connection classes (3.108), (3.110), (3.111),

and (3.113) demonstrate symmetrical connections, whereas classes (3.112) and (3.112) are

asymmetrical and therefore the associated bi-directional message passing should be treated

differently. However we can treat the connection class (3.110) with all hybrid elements as

a meta class which encompasses all other connection classes. Therefore, we only need to

demonstrate our message passing scheme for the connection class (3.110). Message passing

in all other classes is performed in a similar way, though to increase computational efficiency

it implementation may be handled differently.

Consider two neighboring hybrid cliques Ah and Bh connected by a hybrid separator

Sh, such that

Ah = ∆A ∪ ΓA (3.115)

Bh = ∆B ∪ ΓB (3.116)

Sh = (∆A ∩∆B) ∪ (ΓA ∩ ΓB) (3.117)

where ∆X and ΓX denote the sets of discrete and continuous variables in the clique X

respectively.

Consider a set of evidence E is introduced to the Type-II FBN and distributed along

the associated junction tree and let Φ′(Ah) indicates the updated potential of clique Ah

from it original potential Φ(Ah) due to the introduction of evidence E. Formally,

Φ′(Ah) = Φ(Ah|E) (3.118)

Next we propagate the updated evidence from clique Ah to clique Bh through separator

Sh . First step to perform this propagation is to update the potential of Sh as follows

Φ′(Sh) =

∞∫

−∞

. . .ΓAh

∞∫

−∞

(∑
. . .∆Ah

∑
Φ(∆Ah

,ΓAh
)
)∏

ΓAh

dΓAh
(3.119)

where ∆Ah
∈ ∆Ah

and ΓAh
∈ ΓAh

enumerate the elements of discrete and continuous

variables in clique Ah, respectively.

Then, the updated potential Φ′(Bh) of clique Bh is determined by

Φ′(Bh) = Φ(∆Bh
,ΓBh

)
Φ′(∆Sh

,ΓSh
)

Φ(∆Sh
,ΓSh

)
(3.120)
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Apparently, to develop a explicit tractable formalism for message passing as defined

in equations (3.119) and (3.120), we need to have a model to define the potentials of a

hybrid clique and separator. This model should also provide closed form solutions for basic

local operations in a hybrid junction tree including the instantiation, frame extensions,

marginalization, multiplication, and divisions of associated clique potentials.

The Conditional Gaussian Regression (CGR) model is the generalized form of the Con-

ditional Gaussian model that we introduced while defining the Type-I FBNs in Definition

6 and developing the associated inferencing algorithm in Section 3.4.2.

We shall implement a Conditional Gaussian Regression model to define the conditional

distribution of continuous variable W given a hybrid set of parents inside the HBNsub.

In particular, the conditional distribution ofW given continuous parent set Z an discrete

parent set I is given by

P (W |I = i,Z = z) = N (α(i) + β(i)z, γ(i)) (3.121)

Note that for each instantiation of continuous and discrete parents i an z respectively,

γ(i) is a nonnegative real number, α(i) is a real number, and β(i) is a vector of the same size

as the the cardinality of Z. In case γ(i) = 0, this distribution indicates a linear deterministic

dependence between W and Z.

Formally, Conditional Gaussian Regression (CGR), also know as Conditional Linear

Gaussian (CLG) [5], is a Hybrid Bayesian Network, where

• Discrete nodes cannot have continuous parents, hence their CPDs are discrete and,

• CPD of any continuous variable is a linear CPD given any combinations of its dis-

crete parents. Such that, if a continuous variable W has the following discrete and

continuous sets of parents

∆Par(W ) = {∆1, . . . ,∆k}, ∆Par(W ) ∈∆

ΓPar(W ) = {Γ1, . . . ,Γl}, ΓPar(W ) ∈ Γ

(3.122)

The CPD of W is defined by

P (W |δ, γ) = N
(
W : βδ,0 +

l∑

i=1

βδ,iγi, σ
2
δ

)
(3.123)
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Note that in equation (3.123) for every assigned value set δ; δ ∈∆Par(W ), we have

a set {βδ,0, . . . , βδ,k} and σ2
δ .

Note that if all the discrete variables are given, then the CPDs of the continuous variables

are all linear CPDs (see equation equation (2.17)). Thus given any assignment of the discrete

variables a CGR model is reduced to a LG and therefore represents a normal distribution. It

follows that the joint distribution represented by a CGR is a mixture of Normal distribution

where every mixture component corresponds to an instantiation of the discrete variables.

The key decision in adapting the clique tree algorithm into CGR model that we want

to use is how to represent the clique potentials and the separators and in particular how to

represent the functions over continuous variables.

We already showed that the joint probability distribution represented by CGR is a

mixture of Gaussians, thus the potential representing the joint distribution of a hybrid

clique Ch is also a mixture of Normal distributions. Consider a hybrid clique (or separator)

with the set of continuous variables Γh and the set of discrete variables ∆h. Then, the

marginal distribution over a subset of variables {∆h,Γh} can be represented as a mixture

of Gaussians over Γh for every assignment of ∆h. The probability P (∆h = δh) is determined

by adding the probabilities of the individual Gaussians in the mixture for an instantiation of

∆h = δh. If ∆h represents all the discrete variables then for every instantiation of ∆h = δh

we get a single Gaussian rather than a mixture. For the purposes of message passing to and

from a hybrid clique, this leads to a natural way of representing an intermediate function

or potential over {∆h,Γh} as a table with one entry for every possible assignment to ∆.

Each entry contains a mixture of Gaussians over the continuous variables.

It becomes clearer that in order to perform basic operations of message passing about the

junction tree THBNsub
of the Type-II FBN by using CGR models to represent the potentials

of hybrid cliques we need to deal with a mixture of Gaussians. Therefore, a more detailed

look at a mixture of Gaussians is in order.

A mixture of Gaussians over the a set of variables X can be represented as a set of pairs

{wi,N (X; µi,Σi)} where wi is the weight of the ith mixture component. If Σiwi = 1 we say

that the mixture is normalized then it represents a probability density: with probability wi
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X has the normal distribution N (X; µi,Σi). Alternatively, we can also represent a mixture

using canonical forms as defined by equation (2.18). In this case the weight wi becomes a

part of the canonical form by incorporating it into the parameter gi we add logwi to gi.

However, the use of mixtures of Gaussians within the context of message passing in

Type-II FBNs has two serious problems:

• The size of the functions representing cliques in a Type-II junction tree is not fixed, For

example, a function over one continuous variable can be as simple as one weight and

univariate Gaussian and as complex as a mixture with as many as domain variables.

• Some of the operations used in the clique tree algorithm are not defined. In particular,

dividing two mixtures of Gaussians does not result in a mixture of Gaussians and does

not have a closed form. Furthermore, marginalization is not defined for mixtures of

functions of cliques.

We now present an alternative approach to the mixture representation which can suc-

cessfully be used to perform basic operations of message passing such as marginalization.

In this alternative representation we still represent a potential or function over {∆h,Γh}

as a table, which has one entry for every assignment of ∆h = δh, however, now every entry

contains just one canonical form rather than a mixture. Let us refer this new data table

or structure as canonical factors to facilitate the narrative. We just stated in previous

paragraphs that the marginal distribution over continuous variables can be a mixture of

Gaussians. However, it is obvious that the newly defined conditional factors do not except

mixtures except for the case where all the relevant discrete variables are included in their

domain and thus the mixture is represented by one Gaussian. To overcome this obstacle

we shall approximate the mixtures that cannot be represented just one Gaussian. This ap-

proximation is performed by collapsing the original Gaussians of the mixture to obtain just

one Gaussian as the representation of the actual mixture density. The notion of collapsing

is illustrated for an example mixture of two Gaussians in Figure 3.17.

Now the question is how to perform the collapsing operation. Recall that the mean

vector µ an the covariance matrix Σ are the two parameters that define Gaussians. Then

our objective while approximating a mixture should be is to come up with a Gaussian which
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Figure 3.17: Collapsing a mixture of two Gaussians

has the same µ and Σ as the original mixture. The following theorem [81] formalizes the

notion of collapsing a mixture of Gaussians.

Theorem 3.4.2 Let Q be the density function of a normalized mixture of n Gaussians

(ωi,N (X; µi,Σi)). Let P = N (X; µ,Σ) be a normal distribution defined as:

µ =
∑

i

ωiµi

Σ =
∑

i

ωiΣi +
∑

i

ωi(µi − µ)(µi − µ)T

Then P has the same first two moments (i.e., means and covariances) of Q. Further-

more, P minimizes the KL-divergence between Q and any other normal distribution, i.e. for

any other normal distribution P ′ = N (µ′,Σ′) we have dKL(P,Q) ≤ dKL(P ′, Q), where the

equality holds iff P ≡ P ′.

Having chosen a representation for the potentials and separators we need to verify that

we can perform the various operations required by message passing algorithms. With the

important exception of marginalization which we shall soon discuss all these operations are

a natural generalization of the operations defined on discrete factors introduced in Section

2.1.3 and the operations defined for canonical form outlined in Section 2.1.4:
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• Extension: We can extend the domain of the canonical factor by adding discrete

variables (just like in discrete factors) and by adding continuous variables to every

canonical form (as defined in Section 2.1.4).

• Multiplication and Division: We multiply / divide canonical factors by multiplying /

dividing the relevant entries (just like in discrete factors) as defined in Equation 2.20

and Equation 2.21.

• Instantiation: We instantiate a discrete set of observation d by setting the entries

which are not consistent with d to zero. We instantiate a set of continuous observations

x by simply instantiating every canonical form with d.

Regarding the marginalization operation, we treat the continuous and discrete cases

differently. We can marginalize continuous variables by marginalizing each of the asso-

ciated canonical forms. Marginalization discrete variables are slightly more complicated

and requires combining multiple canonical forms into one. In particular, assume that we

have a canonical factor representing the potential of clique {X,A,B}, where A,B ⊆ ∆

and X ⊆ Γ,and we want to marginalize the canonical factor over X,A. To perform the

marginalization, for every value of A = a we need to identify entries that are consistent

with a and combine them into one. The operation of combining a few canonical forms is

equivalent to the collapsing operation. However, the collapsing operation was defined for

a mixture of Gaussians and not for a mixture of general canonical forms. Indeed, com-

bining canonical forms into one is well defined if the canonical forms can be represented

as Gaussians. Recalling the fact that collapsing operation is essentially an approximation,

marginalization that involves collapsing Gaussians is called weak marginalization as op-

posed to strong marginalization that does not involve any approximations. The following

definition and theorem formalizes this discussion.

Definition 11 Marginalization of canonical factors can be weak or strong. Weak marginal-

ization involves approximation such as collapsing of mixtures. Whereas, strong marginaliza-

tion does not involve approximation. Strong marginalization can be applied to the following

cases:
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• Only continuous variables are to be marginalized.

• The canonical factor in question is defined over discrete variables only.

• All the canonical forms are identical.

If none of these conditions hold then the marginalization is weak.

It is clear that, considering the composition of a hybrid clique, we can conclude that

the marginalization operation over a hybrid clique is a weak marginalization. Thus, the

collapsing approach is required to perform the marginalization.

Theorem 3.4.3 The weak marginalization results in a closed form solution and hence is

well defined iff all the canonical forms of the potential can be represented by Gaussians. The

weak marginalization operation is performed using Theorem 3.4.2. Weak marginalization

involves collapsing and the resulting marginals are an approximation of the true marginal

distribution, preserving the mean and the variances (i.e., the first two moments).

Not being able to combine general canonical forms imposes restriction while determining

elimination order during message passing in a junction tree. In Theorem 3.4.1, we already

indicated that such an ordering that ensures message passing exist in a junction tree with a

strong root (see Definition 10). In a junction tree with strong roots, it is possible to find a

clique CR among the strong roots such that when a message is send towards CR there will

be no need for weak marginalization. Not having to perform weak marginalization means

that when sending a message towards the root CR either there are no continuous variables

on the separators or there was no need to sum out any discrete variables along the path.

When the junction tree THBNsub
is strongly rooted it is possible to calibrate it using

message passing. First we send a message towards the root. As indicated above, this run

is possible since it does not involve any weak marginalization. Then, we send a message

originating from the root clique CR along the branches of the tree. This second run requires

us to perform weak marginalization, but it will be always possible. The reason is that in

this second run we always send messages from cliques that already received and processed

all their messages and represent a probability function. Therefore, the canonical forms for
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each clique represented by Gaussians and can be collapsed. After running the calibration

algorithm each potential in the tree contains the correct joint distribution over its variables,

which can be used to determine marginals distributions for the individual variables making

up the clique.

Calibration of a Hybrid Junction Tree with Strong Roots

1. Pick a strong root C
R

2. Initialize canonical factors in the potentials

3. Multiply potentials by the CPDs

4. Enter evidence

5. Discrete: in any potential

6. Continuous: in all potentials; remove observed 

variables from the junction tree

7. Send messages towards root clique C
R
using the 

algorithm on Table 3.6

8. Send message from the root towards the branches using 

the algorithm on Table 3.6 

Figure 3.18: Calibration Algorithm for Strongly Rooted Hybrid Junction Trees

As in purely discrete junction trees, it is possible to introduce evidence into hybrid junc-

tion trees such as THBNsub
. Discrete evidence can be introduced in THBNsub

by multiplying

one of the potentials by the relevant indicator function (as in the case of discrete junction

trees such as Type-I case). Continuous evidence can be introduced by instantiating every

relevant potential. This process of calibration is presented as a calibration algorithm which

also includes evidence instantiation is shown in Figure 3.18. Note that evidence can also be

introduced after calibrating the junction tree, in which case the continuous evidence also

needs to be instantiated in the separators.

This concludes our discussion on exact inferencing for Type-II FBNs. Starting the next

chapter, we shall develop a real-world application of the Fuzzy-Bayesian hybrid methodology

outlined here as well as present the results of the Type-I and Type-II inferencing to the

HBN representing the domain model of the application.
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Chapter 4

Application of Research Methodology

In this chapter we focus on the application of the hybrid Fuzzy-Bayesian framework intro-

duced in the preceding chapters of this thesis. In particular, our application concentrates

on a real-world problem domain that would immensely benefit from the inclusion of various

complex variables of a hybrid nature to the domain model while performing uncertainty

analysis about the system. Unmanned Aircraft Systems (UASs) are selected as our domain

of interest. In the succeeding sections, first we provide background information on the UAS

as an emerging technology, how it relates to our research, and the objectives of our appli-

cation. Then, we introduce a novel methodology for hazard taxonomy development with

particular emphasis on aviation related hazard-source identification and present the Hazard

Classification and Analysis System (HCAS) for the UAS. Consequently, we present a new

regulation based framework for modeling domain safety risk in complex aviation systems

as a hybrid Bayesian Network and apply it to the UAS domain. Finally, on the resulting

hybrid BN we apply our hybrid Fuzzy-Bayesian methodology introduced in the preceding

chapters and conclude with presenting and analyzing the results.

4.1 Application Domain: Unmanned Aircraft Systems - A System Safety

Analysis

Concisely, an unmanned aircraft (UA) is an aircraft that does not have a human pilot on

board. The Unmanned Aircraft Program Office (UAPO) of the Federal Aviation Authority

(FAA) formally defines a UAS as follows.

“A UAS is the UA and all of the associated support equipment, control station,
data links, telemetry, communications and navigation equipment, etc., necessary to
operate the unmanned aircraft.
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The UA is the flying portion of the system, flown by a pilot via a ground control
system, or autonomously through use of an on-board computer, communication links
and any additional equipment that is necessary for the UA to operate safely. The
FAA issues an experimental airworthiness certificate for the entire system, not just
the flying portion of the system.” [47]

Other commonly used terms for UA and UAS are Drones, Unmanned Aerial Vehicle (UAV),

Remotely Operated Aircraft (ROA), and Remotely Piloted Vehicles (RPV).

As a most cutting edge field, military acquisitions constitute the bulk of the UAS research

and implementations. Since WWII, the UAS concept has been periodically visited only to

be abandoned until the next technological advance brings it a new shot of life. This situation

changed in 1991 during the Gulf war with the effective use of a low-tech, short-range UAS

called Pioneer [48].

Figure 4.1: A Pioneer UAV is catapulted from a launching rail set up atop an M-814 5-ton
cargo truck during a test in support of Operation Desert Shield in 1991 [49].

After the first Gulf war, UASs have steadily gained acceptance by militaries around the

world as well as in US. Most of the world’s major aerospace companies, numerous research

institutes and universities, hundreds of component manufacturers and small companies in-

volved heavily in competing for this rapidly expending market are moving ahead at different
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rates on designing and building a broad range of UAS types. However, there are major reg-

ulatory and technological barriers to overcome for wider acceptance. Particularly, the issue

of how UASs will be integrated in the National Airspace System (NAS) is considered by

regulatory agencies and industry alike as one such major obstacle [50].

At the crux of the integration issue lies the safety concerns, which require an analytical

look at the NAS, as a whole, which is increasingly becoming a complex array of military,

commercial, and private aircraft. This increased system complexity necessitates the applica-

tion of systematic safety risk analysis methods to understand and eliminate where possible,

reduce, and mitigate risk factors, especially when a new technology or mode of operation

such as UAS is introduced to the system.

As the NAS becomes increasingly more complex and constrained, the associated hazard

and safety risk modeling must also mature in sophistication. Thus, there is a need for

advanced studies focusing on risk-based system safety analysis of emergent UAS operations.

This chapter presents a novel regulatory-based integrated approach to system safety and

risk analysis of the UAS operations and their interaction with the current NAS and the

future Next Generation (NextGen) Airspace.

However, before introducing the components of our methodology for the application, it

is beneficial to briefly discuss the concept of system safety analysis and elaborate on the

need for such an analysis within the context of emerging UAS operations.

System safety analysis emerged as a separate and unique discipline in the early 1960s

with the advent of NASA’s Apollo missions and the development of the U.S. Air Force

Ballistic Missiles [51]. The essential generalized approach of systems analysis is depicted in

Fig 4.2.

The step-by-step approach typically involves describing or characterizing the system

under study, establishing boundary conditions, and delving into analysis to support some

type of modeling. Models may take a variety of forms, such as mathematical programs,

simulations, probability or fuzzy set applications, event trees, fault trees, etc. Emerging

from the analysis and modeling phases may be a synthesis of ideas or issues. Frequently,

the next step after modeling involves prototype development followed by verification and

validation of any proposed action plans.
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Figure 4.2: A Generalized Systems Approach [52].

Consistent with the basic systems analysis approach, a generalized system safety ap-

proach may be developed as shown in Fig 4.3. In this sense, we now have an application

of the generalized systems approach focused on the issue of safety. The realization of the

systems approach to system safety involves some additional steps, such as clearly defining

objectives and system metrics, hazard identification, classification and analysis, safety risk

modeling and analysis, and safety risk assessment and prioritization. To these prioritized

risks, mitigations are developed and applied to reduce the likelihood or severity of the iden-

tified hazards. Once action plans are developed and then applied, validation of their effect

is needed to assess their effectiveness in controlling or managing the risk. Feedback from

the validation step may necessitate that the system or process be modified which in turn

leads back to a new hazard identification, analysis and classification step.

Safe integration of UASs into the NAS presents significant challenges to all stakeholders

in the aviation community. Although the main thrust of this emerging technology orig-

inates from entrepreneurs, both civilian and military, the burden of the safe integration

arguably lies on the shoulders of regulatory agencies such as FAA. The question of safety

associated with this integration arises principally due to the unknowns of potential hazards
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Figure 4.3: A Generalized System Safety Approach [52].

and associated risks while operating in the NAS and interacting with existing NAS users.

It should also be noted that UAS operation, which represents a new class are governed by

the existing aviation regulations [54].

In the past, when incidents or accidents occurred, a forensic approach was undertaken

in the hazard analysis phase of the system safety approach. Heinrich suggested the domino

theory of accidents [55]. Five dominoes- social environment and ancestry, undesirable traits

(e.g., recklessness, violent temper, lack of knowledge, etc.), unsafe acts or behaviors, ac-

cident, and injury- formed the basis of the domino effect techniques. His idea was that

accidents are a sequence of events in a predetermined proceed/follow relationship, like a

row of falling dominoes. This view changes the focus of accident investigations toward the

events involved, rather than the conditions surrounding the accident environment. The ob-

jective is for analysts and investigators to understand the accident phenomenon on the basis

of the chain of events that had occurred. His theory was that if a set of unsafe conditions

set up a row of vulnerable dominoes, an unsafe act would start them toppling. However,

should a domino in the sequence be removed, no injury or loss will be incurred. Under

this concept, the investigator looks for information that will help reconstruct the chain of
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events that constituted the accident. The National Transportation Safety Board (NTSB)

uses a variant of the sequence of events approach in their analysis of aircraft accidents.

While such a forensic approach has merit and has been important and useful to system

safety analysts in the past, it is very scenario driven and quite dependent on the contextual

factors involved in the specific incident or accident. As such, the safety recommendations

emerging from such a forensic analysis may be quite aircraft type or airport specific. As

shown in Fig 4.3, the system safety approach involves an identify-analyze-control method

of safety as opposed to a fly-fix-fly approach [51]. One key hypothesis of our application is

that the system safety approach is better suited to safety analysis of new classes of aircraft

where data is sparse and operations are limited. In particular, UAS represent a new class

of aircraft that is emerging in the current NAS and that will most likely be an integral

component of the U.S. Next Generation (NextGen) Air Transport System and the Single

European Sky (SESAR) [56].

A second hypothesis of our application is that safety hazards may be derived top-down

as opposed to bottom-up. Rather than collecting hazard information from a case-by-case

or scenario approach, especially for novel aircraft systems where such data is usually not

available, the conjecture is that the Title 14 Code of Federal Regulations or CFRs may

be used to derive hazards as well as their underlying causal factors by utilizing a systems

analysis approach.

Thus, our application on the UAS integration into the NAS proposes a regulatory-

based integrated approach to system safety and risk analysis of the UAS operations and

their interaction with the current NAS and the future NextGen Airspace. Three distinct

yet closely related areas of analysis comprise the main thrust of the proposed approach:

taxonomy development, causal factor identification, and modeling complex uncertainty.

The next sections describe the elements of our approach in more detail.
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4.2 Development of a System-level Taxonomy for Categorization of UAS

Hazards

UAS having being successfully employed in the last decade by various military applications

are, inevitably, making their way into the civilian world. This new frontier in civil aviation

adds another dimension to the ever-increasing complexity of the current NAS in the United

States. The future inclusion of private and commercial operations of the UAS into the NAS,

unavoidably, raises safety concerns. As the NAS becomes increasingly more complex and

constrained, the associated hazard and safety risk modeling must also mature in sophis-

tication. Thus, there is a need for advanced studies focusing on risk-based system safety

analysis of emergent UAS operations.

One of the first steps in the proposed UAS system safety analysis is hazard identifica-

tion and analysis. To that end, a new hazard taxonomy was developed. This taxonomy,

termed the Hazard Classification and Analysis System (HCAS) identifies four main hazard

system sources: Airmen, UAS, Operations, and Environment. The basic framework of the

proposed taxonomy is based on the FAA regulatory perspective (i.e., Title 14, Code of

Federal Regulations (14 CFR) chapters on Aircraft, Airmen, Certification/Airworthiness,

Flight Operations, etc.). Such an approach uniquely distinguishes the HCAS taxonomy

from all other UAS hazard analyses being performed by the Department of Defense (DoD),

the RTCA-Special Committee (SC) 203 [5,6], etc.

Safety analysis has a fundamental role to play in the identification of hazard source

potentials, the understanding of the underlying causal factors, the likelihood assessment of

these factors, the severity evaluation of the potential consequence(s) of mishaps, and the

prioritization of mitigations.

A sound system-level safety analysis relies heavily on properly identifying the key com-

ponents of the area of interest. In particular, the identification of potential hazard sources

and sub-sources within the systemic structure of the problem domain should be considered

as a fundamentally important step in system safety analysis. Furthermore, since semantics

play a crucial role while defining the domain variables, a systematic taxonomy that balances

fidelity and generalization provides a solid foundation for a meaningful and relevant system
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safety analysis. Within this context, we present the HCAS taxonomy specifically designed

and developed to identify and categorize individual system-level hazard sources for the UAS

operations.

4.2.1 Hazard Classification and Analysis System (HCAS)

HCAS categorizes the UAS hazards consistent with the 14 CFR Sub-chapters, thereby es-

tablishing the taxonomy on the FAA regulatory framework. The advantage of the proposed

approach is to allow direct association of hazards identified with regulatory requirements or

vice versa. The system not only provides the FAA as well as the UAS community the tools

to determine safety and regulatory implications of UAS operating in the NAS, but also falls

in directly under the FAA Safety Management System (SMS) Doctrine. Particularly, as

described in [58], the taxonomy was uniquely developed but was inspired by the research of

Hayhurst et al. [59] and the RTCA Special Committee 203 [50].

A set of hypothesized UAS mishap scenarios provided by the FAA are employed to verify

and test the robustness of the taxonomy. These hypothesized scenarios were not detailed or

specific operational scenarios but were rather more akin to thought experiments of possible

UAS mishaps due to their inclusion in the NAS. In that sense, these hypothesized scenarios

are generated scenarios representing possible hazardous situations in UAS domain. Raheja

and Allocco [57] term them “scenario themes” and propose a semi-formal methodology for

the development and categorization of such scenarios. Broadly construed, scenario develop-

ment and characterization include the following: scenario description, initial contributors,

subsequent contributors, life-cycle phase, possible effect, system state and exposure, and

recommendations, precautions and controls. In a conversation or dialogue with subject

matter experts, knowledge about accidents or possible accidents is elicited using scenario

themes that are short, concise statements that describe the primary and main contributory

hazards. In the case of the scenario development for the UAS, 208 hazard scenario themes

were identified in multiple sessions with experts [57]. Such representative scenario themes

are presented in Table 4.1. Scenario statements typically provide text as to how or why

potential accidents may occur. The accident life-cycle from design, certification, flight stan-

dards, operations, maintenance and training, etc. should be considered. [58, 61, 62, 63],
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Table 4.1: Representative UAS Scenario Themes [60].

List of Hazard Scenarios

Seq.# Hazard Scenario/ Description/ Discussion

1 The transitional planning for UAS NAS integration is Less Than Adequate
(LTA) and the planning does not allow for system design, development
time, and maturity. Situation results in increased accident risks.

2 Assumptions concerning system reliability and availability maturity are
LTA. There are transitional risks associated with UAS design, develop-
ment time, system reliability, reliability growth, availability and matu-
rity. Current situation results in vehicle not meeting expected NAS-level
availability and reliability requirements associated with Catastrophic and
Hazardous risks, consequently there may be increased accident risk.

3 Current DoD and contractor system safety and system reliability analyses
and related data are not accessible to the FAA. As a result there are
inappropriate assumptions made concerning knowledge of system safety
and system reliability that may be increased risk.

4 Due to physical design limitations vehicles may not meet NAS-level avail-
ability and reliability requirements associated with Catastrophic and Haz-
ardous risks, consequently there may be increased accident risk.

and [64] also use induction from scenarios to develop risk models of commercial aircraft

accidents for the assessment of a portfolio of new aeronautical products. In the situation of

emergent aeronautical operations where actual accident or incident data is sparse, inductive

reasoning from hypothesized scenarios is a plausible alternative.

De Jong et al. [53] present an approach to pushing the boundary between imaginable

and unimaginable hazards that keeps the performance of the hazard identification process

separate from the hazard analysis and hazard mitigation processes, so the idea of developing

UAS scenario themes is consistent with the de Jong method for hazard identification. These

hypothesized UAS scenarios supported analytic generalization and were primarily used to

develop concise terminology of system and sub-system hazard sources. The semantics of

the hazards were aligned in a general way with the wording of the main CFR chapters and

also vetted with industry subject matter experts.

At the crux of the HCAS taxonomy lie two closely related yet distinct concepts: hazards

and hazard sources. Based on Leveson’s definition of hazard [65] we adopted our own

definitions for both concepts within the context of this application:

Hazard: A hazard is a state or set of conditions of a system that, together with other
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conditions in the environment of the system, may lead to an accident (loss event).

Hazard Source: Hazard source are primarily components of the UAS domain; hence a

state or set of conditions of these components may lead to hazardous potential for

the domain itself. Each hazard source category corresponds to a key component of

the domain of interest. Thus, these components do not represent neither individual

hazards nor categories of hazards of the UAS domain.

HCAS is a continuously evolving taxonomy. The current version of the taxonomy has

been developed in multiple phases as the product of numerous knowledge elicitation sessions

with subject matter experts spanning a time period of two years. The succeeding sections

illustrate this evolutionary development process.

HCAS version 1.0

The idea behind the HCAS development effort is to provide a structured framework to iden-

tify and classify both system and sub-system hazard sources for UAS operations. Based

on the above hazard and hazard source definitions, in this early version of HCAS, three

systems-level hazard sources are identified as Aircraft, Control Station, and UAS-NAS Inter-

connectivity. These system-level hazard sources form the three main HCAS cubes depicted

in Fig 4.4.

It is acknowledged that these three primary hazard sources are operative in a context,

so “Environment” is included as the backdrop. Formally we can define these three system

level hazard sources as follows;

UAS System Level Hazard Sources:

Aircraft: Design and Human Factors Issues associated with the UA and technology (in-

cludes hardware & software) onboard.

Control Station: Design and Human Factors Issues associated with the facilities, func-

tions, equipment, and staff necessary to control and maintain the UA.

UAS: Design and Human Factors Issues associated with the NAS interconnectivity for the

UA operations.
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Figure 4.4: Three system-level hazard sources for UAS operations.

For each of the system-level hazard sources, subsystem elements are also identified. For

example, for the system hazard source of “Aircraft”, the subsystem hazard sources of aerody-

namics, airframe, payload, propulsion, avionics hardware and software, sensors/antennas,

control and communication link, onboard emergency recovery, verification and validation,

and human factors are included. The resulting HCAS version 1.0 is presented in Fig 4.5.

Note also that the interactions among the three system hazard sources are depicted in Fig

4.5. The notion of a “hazard source” is consistent with “hazardous element” of Ericsons

“hazard triangle” [66] and also recognizes that a hazard needs a trigger or initiator to move

it from a dormant to an active state, thus focusing on the hazards potential to do harm.

HCAS version 1.0 presented in [67, 60] was verified from an analysis of 208 hypothesized

UAS scenarios discussed above as well as some real UAS mishaps. Once possible hazards

for a given scenario set are categorized, an implicit prioritization of the hazards may be

obtained by recomputing frequency counts as percentages. Such an approach provides a

possible structured means to systematically weigh the hazards [60].
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UAS Hazard Classification and Analysis System (HCAS) – version 1.0
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Figure 4.5: System and subsystem level hazard sources in HCAS version 1.0

HCAS version 2.0

In subsequent discussions with the FAA’s UAS Program Office, there was a recommenda-

tion that the proposed Rutgers UAS hazard framework needs to consider, to some extent,

alignment with the FAAs regulatory perspective dealing with Title 14, Code of Federal

Regulations (14 CFR) chapters on Aircraft, Airmen, Certification / Airworthiness, Flight

Operations, etc.. To incorporate the input of subject matter experts, an attempt to move

HCAS version 1.0 closer to alignment with the current FAA aviation regulations was de-

veloped and is presented in Fig 4.6. This alignment is also consistent, to some extent, with

the FAA UAS operations guidance document [54].

Note that in HCAS version 2.0, the system source of Control Station is now subsumed

by a system hazard source termed as UAS. Also, the system source of Aircraft from HCAS
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UAS Hazard Classification and Analysis System (HCAS) – version 2.0
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Figure 4.6: System and subsystem level hazard sources in HCAS version 2.0

version 1.0 is subsumed under UAS in version 2.0. Airmen is extracted out from version

1.0 into a separate system hazard source in version 2.0. A new system hazard source

termed Operations and NAS Interconnectivity is created in version 2.0. The Environment

still serves as a backdrop in HCAS version 2.0. Elements of human factors now appear

in the three main HCAS system hazard sources. An excellent overview of UAS human

factors issues is presented in [69]. The HCAS version 2.0 cube model is more aligned,

to some extent, with the FAAs 14 CFR chapters. [59] provides excellent reflections on

the potential hazards of the integration of UAS into the NAS and the implications for

regulations. [70, 71, 72, 73, 74, 75], and [76] provide additional insights on safety issues

associated with UAS operations.
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Figure 4.7: Four UAS Systems as the foundation of the current HCAS taxonomy

HCAS version 3.5

Subsequent reviews and critiques of the HCAS version 2.0 by industry subject matter ex-

perts indicated a need to incorporate further changes to have the version 2.0 become more

aligned with FAA regulations and UAS guidance material.

Fundamentally different than the earlier versions that are built on three main system-

level UAS components (see Figure 4.4), the most current version of the HCAS taxonomy

is founded on four UAS system. This new foundation is illustrated in Figure 4.7. In

particular, HCAS version 3.5 now identifies four primary hazard sources, namely UAS,

Airmen, Operations, and Environment. Some of the significant changes include embedding

the Control Station system source under the original Aircraft system source renamed as

UAS. A fourth cube termed as Environment was added to the revised version and numerous

sub-system hazard sources added. A detailed review of the HCAS taxonomy by industry

subject matter experts improved the taxonomy by moving it to be more closely aligned with

the existing FAA 14 CFR chapters. The expertise of the subject matter experts proved quite
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Figure 4.8: System and subsystem level UAS hazard sources - HCAS version 3.5

valuable in providing additional detail for the Environment hazard system source. Summary

papers on HCAS versions 1, 2 and 3 are presented in [60] and in [68]. HCAS version 3.5

depicted in Figure 4.8 and a numbered outline form of the HCAS version 3.5 is also provided

in Figure 4.9.

There is one particular aspect of our approach to taxonomy development that needs to be

underlined. Our approach, while originally scenario-based, evolved into a more regulatory-

based perspective during the course of the development. In a sense, this focus shift was

natural considering the fact that, right from the start, our goal was to develop a generalized

taxonomy for system-level UAS hazards that would have applicability across a broad spec-

trum of FAA regulations. This aspect of our approach uniquely distinguishes the HCAS

taxonomy from all other UAS hazard analyses being performed by the Department of De-

fense (DoD), the RTCA-Special Committee (SC) 203, etc.
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1. UAS (Systems Level)

1.1. Aircraft (Subsystems Level)

1.1.1. Aerodynamics

1.1.2. Airframe

1.1.3. Payload

1.1.4. Propulsion

1.1.5. Avionics Hardware and Software

1.1.6. Sensors / Antennas 

1.1.7. Communication Link

1.1.8. Onboard Emergency Recovery
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1.2. Control Station
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1.2.1.3. Multiple 

1.2.1.4. Combinations

1.2.2. Hardware and Software
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ground support personnel, see and avoid, right of way-conflict
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3.1.4.1. Line of Sight / Beyond Line of Sight 
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3.1.5. Operational Control
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3.2. Continued Airworthiness
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Figure 4.9: HCAS version 3.5 - Outline

The HCAS taxonomy may also be used to construct influence/causal factor diagrams

representing hypothetical or notional UAS safety risk scenarios. The use of modifiers placed

on the HCAS taxonomy elements, such as “inappropriate”, “inadequate”, etc. may be used

to create such an influence diagram. These influence diagrams may then be used to study

the interactions among various causal factors associated with the hazards. Conceptually,

HCAS represents a hierarchical structure for UAS hazard sources. In particular, at the

very top, there are system-level hazard sources, which, in lower levels, are decomposed into

their subsystem-level hazard sources. Since civil UAS operations are relatively new and
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emergent, databases of mishaps are not readily available. This idea is further explored in

the next section to develop a methodology for modeling safety risk of the UAS domain as

a hybrid Bayesian Network.

4.3 A Regulatory-Based Safety Risk Modeling Approach

The HCAS taxonomy provides a systematic approach to identify hazards associated with

UAS operations in the NAS. However, hazards are not causal factors, which are the essential

building blocks of influence diagrams (i.e., Bayesian Nets) representing various risk scenarios

of the UAS operations. Thus, the decomposition of hazards into their constituent causal

factors is another important step in the development of a comprehensive scheme for UAS

safety risk modeling. Underlying causes of the hazards, such as failure modes, operator and

software errors, design flaws, etc., need to be identified in order to eventually determine

the mishap risk and the hazard mitigations. However, HCAS is not a taxonomy of causal

factors. Although the resulting taxonomy for the UAS hazard sources is intended to be

generic and inclusive, it represents an inductive reasoning approach with particular emphasis

on a given set of UAS hazard scenarios. Hence, to determine a taxonomy of UAS causal

factors, which are, strictly speaking, hierarchically at a lower level than hazard sources, we

chose to employ deductive reasoning and based our analysis on the current FAA regulations

for commercial civil aviation. Knowledge elicitation sessions with subject matter experts

are heavily utilized throughout this process. Subsequently, individual causal factors are

mapped to the taxonomy of UAS hazard sources resulting in a seamless analysis that is

generic enough to cover most possible UAS operational scenarios yet provides the necessary

level of fidelity to map their prominent features into a database.

At the crux of our regulatory-based approach lie the following assumptions:

• UAS integration will impact the entire NAS because of the wide-ranges of UAS size,

weight, performance characteristics, airspace access, and unique operation issues.

• There are no sufficient data and proven methods to perform UAS safety analysis with

the traditional event-driven approach.

• The regulations provide the essential safety net for the NAS safety.
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• There exist a set of causal factors, which can be identified, associated with each

relevant regulatory section.

• With proper descriptions of causal factors, the interdependencies (linkages) among

themselves can be demonstrated.

• These linkages form the basis to analyze UAS safety risk by applying probabilistic

reasoning methodologies such as BNs through the Hazard Classification and Analysis

System (HCAS) model.

Within the context of these assumption, we derive the individual causal factors from

existing regulations governing all current aviation-related operations in the NAS. The role of

the HCAS taxonomy introduced in the prior section is to provide structure to this regulatory

based casual factor identification process.

The current structure of the Federal Aviation Regulations (FARs) in the US represents

a hierarchy. The FARs as part of Title 14 of the Code of Federal Regulations (CFR)

are organized into Subchapters. Each subchapter is then organized into Parts. Each part

deals with a specific type of aviation activity. For example, 14 CFR Part 121 contains

rules and requirements for Domestic, Flag, and Supplemental Operations of US registered

aircraft. Individual FAR Parts are further divided sequentially into Subparts, Section, and

Subsections. The derivation process for the causal factors closely mimics this hierarchical

structure. In particular, causal factors are extracted from within the context of a FAR Part

keeping possible applicability for UAS operations into consideration. Consequently, each

causal factor is categorized under a subsystem level hazard source defined by the HCAS

taxonomy, thereby establishing a viable connection between regulations and hazard sources.

Figure 4.10 is a notional diagram depicting the connection between regulations and hazard

sources (i.e., HCAS element) through causal factors.

This regulatory-based process has two main objectives; first, for each FAR part, to iden-

tify, describe, and define the causal factors; second, to determine interactions and connec-

tions among these causal factors. These connections constitute the foundation upon which

the Bayesian Networks representing causal dependencies within the context of a UAS risk

or hazard source will be constructed.
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Part 91
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Figure 4.10: Causal Factors are the Link between FARs and HCAS Taxonomy

Since individual causal factors are identified and defined solely based on FARs, their

derivation, as a creative process relies heavily on knowledge elicitation sessions with subject

matter experts and will need some vetting within the aviation community.

4.3.1 Regulatory-based Causal Factor Framework (RCFF)

Based on the ideas outlined in the preceding section, we introduce a Regulatory-based

Causal Factor Framework (RCFF) to study the potential safety impacts of introducing

emerging UAS operations into the well-established National Airspace System (NAS). For-

mally, RCFF is a systematic process for the creation of causal factors that are derived from

the regulations to functions to hazards to causal factors [67, 90]. It provides a qualitative

means of identifying and assessing hazards controlled by existing regulations. The RCFF

is a novel system safety process for analyzing hazards and associated causal factors due

to introducing new technology into NAS. Introducing these new technologies to the NAS

not only has the potential of impacting the entire system (NAS), but also leads to greater

uncertainties of their safety impacts due to the very limited knowledge with no actual op-

erational data in the NAS. Safety risk analyses, essentially events-driven and largely built

upon past experience, and vast amount of actual operational data, may not provide ade-

quate technical information for risk controls. The proposed RCFF approach is attempting

to overcome some of these uncertainties by utilizing the existing regulations, which provide
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the minimum safety standards, as a measure to assess whether all potential risk areas are

addressed while using the event-driven approach.
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Figure 4.11: A sample conceptual RCFF hierarchy for 14 CFR Subchapter C-Aircraft (CFs:
Causal Factors).

Conceptually, our proposed approach to identify causal factors based on existing regula-

tory structure represents a hierarchical framework. At the very top, covering the whole NAS,

Federal Aviation Regulations (FARs) provide the minimum requirement for safe operations.

Within the context of FAR Subchapters, functional models provide fidelity to conceptual-

ize the risk associated with the proposed UAS operations. Consequently, groups of causal

factors are identified to outline the underpinnings of each UAS related risk. However, un-

like conventional hierarchical methodologies such as Fault Trees, the proposed framework,

illustrated in Figure 4.11, also emphasizes the interactions and connectivity among various

components and compartments comprising the whole domain.
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4.4 UAS Domain Safety Risk Model (DSRM)

In particular, the process of building a UAS domain safety risk model using the RCFF

methodology starts with one of the 14 CFR Subchapters and related FAR parts (i.e., regu-

lations). For each FAR part, generic functions of operational activities are identified. These

functions provide context to identify safety risk related to UAS operations and create a do-

main where the subsequent causal modeling effort becomes conceptually relevant to current

UAS safety concerns. The idea of operational functions are successfully employed by [77]

and [78] to develop system engineering models for 14 CFR Part 121 air carrier operational

and Part 137 oversight activities, respectively.

In particular, the Air Carrier Operations System Model (ACOSM) of [77] concentrates

on the following key air carrier operations processes:

• Operational management.

• Air transportation.

• Aircraft maintenance.

• Personnel training.

• Operational resource provisions.

For example, the ACOSM identifies “perform air carrier operations” as the main context

activity (function), which describes the system itself. Here, “perform air carrier operations”

is understood as a set of activities directly related to the movement of aircraft with pas-

sengers and/or cargo from the departing airport to the destination airport, conducted by

air carriers operated under 14 CFR Part 121. The context activity, “perform air carrier

operations”, is then decomposed into the following five subactivities:

• Manage air carrier operations.

• Perform air transportation.

• Perform aircraft maintenance.

• Perform personnel training.
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• Provide air carrier operation resources.

Note that the subactivities follow a simple pattern that utilizes three fundamental functions,

namely, manage, perform and provide resources. This triad is used in the following sections

to provide context for our UAS domain safety risk model.

Determining operational functions is a relatively simple process compared to identifying

individual causal factors and determining their interactions. The latter, which is essentially

a creative process, requires a fairly good understanding of regulations, hence a detailed

study of FARs. Thus, heavy involvement of subject matter experts is necessary to identify

causal factor and their connections.

Continuing with the development of the methodology, at this stage of the model develop-

ment, we identify a set of causal factors, for each functional domain and determine possible

connections among these causal factors. These connections are undirected, i.e., the causal

factor pairs are not ordered since the interactions do not imply any causality at this point.

Nevertheless, the resulting structure exhibits the fundamental attributes of a graph, where

causal factors are nodes or vertices and the connections/interactions are edges. Figure 4.12

illustrates this concept.

In order to construct a Directed Acyclic Graph (DAG), we need to determine a direction

of causality for each connected causal factor pair. Consequently, the resulting directed

graph needs to be revised to identify and eliminate the connections causing cycling. While

eliminating these connections, as a rule of thumb, the disruption of the main causal path

originating from the most latent organizational factors and leading to the more pronounced

individual factors should be avoided. Note also that there may be more than one such

causal paths depending on the context of the functional domain. Again, throughout this

process subject matter experts are extensively utilized.

The next step in building the UAS domain risk model is to identify the risks associated

with each operational function governed by the particular FAR part that we focus on at that

time and determine the nodes (i.e, causal factors) in the DAG with most immediate and

strongest casual impact on these risks. In this sense, the risk nodes serve as the terminating

node or sink of the DAG.



122

CF
1

CF
6

CF
2

CF
5

CF
4

CF
3

CF
7

CF
8

CF
1

CF
6

CF
2

CF
5

CF
4

CF
3

CF
7

CF
8

a) A group of causal factors of two 

risks and their interactions within 

the context of a functional domain 

Risk
1

Risk
2

Function

A1

CF
1

CF
6

CF
2

CF
5

CF
4

CF
3

CF
7

CF
8

c) An undirected graph

CF
1

CF
6

CF
2

CF
5

CF
4

CF
3

CF
7

CF
8

b) A group of causal factors connected 

through undirected links

d) A directed acyclic graph

Figure 4.12: Transitional steps from a functional domain of the RCFF to a directed acyclic
graph.

We restricted our preceding discussions mainly to hazards and hazard sources rather

than risks. Furthermore, we introduced the HCAS taxonomy in section 4.2.1, which repre-

sents a systematic approach to identification and categorization of UAS hazard sources, but

not UAS risks. However, conceptually, the distinction between hazard and risk is smaller

than one might think. Broadly construed, risk is a concept that denotes the precise proba-

bility of specific eventualities. Qualitatively, risk is proportional to both the expected losses

which may be caused by an event and to the probability of this event, i.e.;

Risk = (Probability of event occurring)× (Impact of event occurring) (4.1)

A hazard, on the other hand, is a situation which poses a level of threat to life, health,

property or environment. Most hazards are dormant or potential, with only a theoretical

risk of harm. Thus, we can reformulate equation (4.1) as equation (4.2) below to achieve a

representation of risk as a function of hazard, i.e.;

Risk =


Likelihood of the hazard

turning into an incident


×


Severity of the incident

if it were to occur


 (4.2)
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Equation (4.2) indicates a relationship between risk and hazard, where the potential hazard

is transformed into a kinetic situation (i.e., risk) via a likelihood and a severity. Therefore,

in situation where severity is assumed to be constant, we can safely argue that risk is

proportional to the probability of the hazard potential. This reasoning is further extended

by dropping the probability and stating that “risk is proportional to hazard”. For the

purposes of the UAS domain safety risk modeling methodology we replace risk with hazard

and identify hazards using the HCAS taxonomy.

A conceptual illustration of the UAS domain safety risk model based on the RCFF

methodology outlined above is provided in Fig 4.13.
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Figure 4.13: A conceptual illustration of the UAS domain safety risk model

4.4.1 14 CFR Part 91 UAS Domain Safety Risk Model

In this section we apply the the regulatory-based causal factor framework (RCFF) method-

ology to 14 CFR Part 91 “General Operating and Flight Rules” to develop a UAS Domain

Safety Risk Model (DSRM) introduced in the preceding sections.
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14 CFR Part 91 of Subchapter F-Air Traffic and General Operating Rules is organized

into 12 Subpart, listed in Table 4.2. Broadly construed, Part 91 is a set of regulations that

define the operation of small non-commercial aircraft within the US, however, many other

countries defer to these rules. These rules set conditions, such as weather, under which

the aircraft may operate, flight operations, equipment, maintenance and alterations, among

others.

Table 4.2: List of 14 CFR Part 91 Subparts

Subpart # Subpart Title

A General
B Flight Rules
C Equipment, Instrument, and Certificate Requirements
D Special Flight Operations
E Maintenance, Preventive Maintenance, and Alterations
F Large and Turbine-Powered Multiengine Airplanes and Fractional

Ownership Program Aircraft
G Additional Equipment and Operating Requirements for Large and

Transport Category Aircraft
H Foreign Aircraft Operations and Operations of U.S.-Registered Civil

Aircraft Outside of the US; and Rules Governing Persons On Board
Such Aircraft

I Operating Noise Limits
J Waivers
K Fractional Ownership Operations
L Continued Airworthiness and Safety Improvements

Although Part 91 covers a large spectrum, subparts B and C constitute its core by

outlining fundamental requirements for flight operations, equipment and certification. Thus,

as suggested by subject matter experts, our application focuses on these two subparts and

individual causal factors are identified accordingly.

The modeling process start with the identification of individual causal factors of the

hazards that Part 91 controls. As an essentially creative process, subject matter experts,

during focused sessions under our moderation, derive individual causal factors based on

their understanding of the regulatory text and on their expertise on the problem domain.

The causal factors for subparts B and C as the result of such knowledge elicitation sessions

are given in Tables 4.3 and 4.4, respectively.

Note that the set of causal factors identified in Tables 4.3 and 4.4 demonstrates a high
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level of resolution in terms of the detail that can be achieved using FAR regulations as the

sole data source according to the RCFF methodology. For the purposes of the application

presented here, we only concentrated to a functional domain representing Part 91 operations,

however for a larger functional domain spanning on multiple FAR Parts, this level of detail

will result in oversized hybrid Bayesian Networks that are unpractical to populate and

propagate. Therefore, it is suggested that when larger domains are concerned the level of

Table 4.3: Causal Factors associated with Part 91 Subpart B - Flight Rules

Causal Factor HCAS Element#

1 Inadequate Preflight Planning 3.1.1, 3.1.2, 3.1.5
2 Inadequate Preflight Information 3.1.1, 3.1.2, 3.1.5
3 Crewmember Not at Station 2.1.1, 3.1.2, 3.3
4 Occupants Not Secured 2.1.1
5 Occupants Not Informed of Use of Restraining Systems 2.1.1
6 Proximity to Other Aircraft 1.1.9, 2.1.1, 4.8
7 Right of Way Rules Not Followed 2.1.1, 1.1.9, 4.8
8 Failure to See and Avoid 2.1.1, 4.8
9 Failure to Comply with Airspace Speed Limits 2.1.1, 3.3, 3.4

10 Failure to Comply with Minimum Safe Altitudes in Con-
gested and Non-Congested Areas

4.1, 4.7

11 Inaccurate Altimeter Setting 2.1.1, 1.1.10, 1.1.6
12 Failure to Comply with ATC Clearances and Instructions 2.1.1, 3.3
13 Failure to Comply with ATC Light Signals 2.1.1, 3.3.3
14 Failure to Follow Requirements in Designated Airspace 2.1.1
15 Not Following Flight Restrictions 2.1.1
16 Not Complying with Fuel Requirements 3.1.1, 3.1.2, 3.1.4.2
17 Incomplete VFR Flight Plan Information 2.1.1, 3.1.2
18 Not Complying with VFR or Special VFR Weather Mini-

mums
2.1.1, 3.1.1, 3.1.2,
3.1.4.2, 4.3

21 Not Complying With VFR/IFR Cruising Altitude Require-
ments

2.1.1, 3.1.1, 3.1.2,
3.1.4.2

22 Not Complying with Minimum IFR Altitude Requirements 2.1.1, 3.1.6, 3.1.4,
3.1.1

23 Flying with VOR Equipment that Does Not Meet the Check
Requirements for IFR Operations

2.1.1

24 Operating IFR Without an ATC Clearance and Flight Plan
in Controlled Airspace

2.1.1, 3.1.4.

25 Failure to Use Published Instrument Approach Procedures 2.1.1, 3.1.1, 3.1.4.2
26 Pilot Conducts Cat II or Cat III Operations Without Com-

plying With Proper Training, Authorization or Procedure
Requirements (manual)

2.1.1, 3.1.4.2,
2.2.2.2

27 Failure to Follow Procedure for Transitioning From the In-
strument to the Visual Portion of an Instrument Approach
Using Normal Maneuvers

2.1.1, 3.1.1, 3.1.4.2

28 Not Complying with IFR Takeoff Procedures or Minimums 2.1.1, 3.1.4.2, 4.3,
3.1.6

29 Flying in RVSM Airspace Without Complying to RVSM Re-
quirements

2.1.1, 1.1.5, 1.1.10,
1.4.3.2, 2.2.1.1,
2.2.2.2, 3.6.2.2

30 Not Complying with IFR Course Requirements 2.1.1
31 Failure to Maintain Communications with ATC While Fly-

ing Under IFR
2.1.1

32 Failure to Comply with Loss of Communication Procedures 2.1.1, 3.1.3, 1.1.5
33 Failure of an Aircraft Flying IFR to Notify ATC of Malfunc-

tion of Certain Required Equipment
2.1.1, 3.1.4.2, 1.1.5,
1.1.6, 1.1.10, 3.2.1
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detail employed for the causal factors identification process should be kept under control to

achieve safety risk models that are practically and computationally viable given the resource

available.

Table 4.4: Causal Factors associated with Part 91 Subpart C - Equipment, Instrument, and
Certificate Requirements

Causal Factor HCAS Element#

1 Fuel tank installed not in accordance per FAA regulatory
requirements

1.1.2, 1.1.10

2 Lack of required FAA aircraft certifications 3.2.1, 3.6.2.1
3 Inoperative or missing equipment required for the type of

operation
1.1, 3.1.4, 3.2

4 Inoperative or missing emergency locator transmitter(ELT) 1.1.5, 1.1.6
5 Position or anti-collision lights inoperative or not turned on 1.1.10, 1.1.9, 4.8
6 Passengers not provided with sufficient supplemental oxygen 1.1.10, 3.1.1, 3.1.2,

3.1.3
7 Lack of accurate altitude information 1.1.5, 1.1.6, 3.2.1,

3.3.2
8 Lack of or inoperative altitude alert system 1.1.10, 1.2.2
9 Lack of approved Traffic alert and Collision Avoidance Sys-

tem (TCAS)
1.1.10, 1.1.9, 3.2.1,
4.8

10 Inoperative or missing Terrain Awareness and Warning Sys-
tem (TAWS)

1.1.10, 1.1.9, 3.2.1,
4.1, 4.7

The HCAS element# columns in Tables 4.3 and 4.4 indicate the set of specific HCAS

taxonomy items related to each causal factor.

The functional activities controlled by Subparts B and C is given in Table 4.5. These

functions provide the contextual domain where the UAS domain safety risk model is devel-

oped.

Table 4.5: Functional Activities of Part 91 Subpart B and C

Regulation Functional Activity

Subpart B - Flight Rules
A1.1 Perform Flight Operations
A1.2 Perform Visual Flight Operations
A1.3 Perform Instrument Flight Operations

Subpart C - Equipment,
Instrument, and Certifi-
cate Requirements

A2.1 Manage Equipment, Instrument, and Certificate Re-
quirements

Consequently, for each functional domain identified in Table 4.5 we determine a set of

hazard sources that constitute the sink nodes in the Bayesian Network we are about to
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construct. HCAS taxonomy provides structure during this step of the process and the in-

formation in the HCAS element # columns of Tables 4.3 and 4.4 determine the set of hazard

sources pertinent to each functional activity. Then, we connect each causal factor to the set

of hazard sources identified in the HCAS element column with an undirected edge. For ex-

ample, in Table 4.3, HCAS elements 2.1.1 and 3.1.2 are identified as the hazard sources for

causal factor # 17 “Incomplete VFR Flight Plan Information”. While identifying hazards

we choose to stay at the subsystem level according to the HCAS taxonomy and identify

elements “2.1. Individual Human Factor Hazard (Airmen)” and “3.1. Flight Operational

Hazard” as the hazards associated with causal factor # 17 “Incomplete VFR Flight Plan

Information”. This step is illustrated in Figure 4.14 for functional activity “Perform Visual

Flight Operations” which is comprised of four causal factors: CF# 16, CF#17, CF#18,

and CF#19.

Not Complying with Fuel

Requirements

FAR define minimum fuel requirements for

various flight operations. Failure to comply

fuel requirements VFR/IFR

3.1.1, 3.1.2,

3.1.4.2

Incomplete VFR Flight Plan

Information

VFR flight plans are optional method for

pilots to facilitate search and rescue efforts.
2.1.1, 3.1.2

Not Complying with VFR or

Special VFR Weather Minimums

FARs establish what VFR means in different

airspace categories for visibility and

distance from cloud requirements.

2.1.1, 3.1.1, 3.1.2,

3.1.4.2, 4.3,

Not Complying With VFR/IFR

Cruising Altitude Requirements.

FARs establish VFR/IFR cruising altitudes

based on magnetic courses to separate

traffic.

2.1.1, 3.1.1, 3.1.2,

3.1.4.2,

CF16

CF17

CF18

CF19

2.1. Individual Human

Factor Hazard (Airmen)

3.1. Flight Operational

Hazard

4.3. Weather Hazard

Causal Factor Definition HCAS #

Figure 4.14: Causal Factors and Hazards for the Functional Activity “Perform Visual Flight
Operations”

We repeat this process for each casual factor under each functional domain. Next, for

all causal factors, we determine their interactions including those that connect the causal

factors of different functional domains. Consequently, we arrive at an undirected graph

structure where on one side of the structure hazard sources accept connections from causal

factors and on the other side causal factors are connected among themselves.

This undirected graphical structure is called the initial domain safety risk model (DSRM).

The initial DSRM based on the 14 CFR Part 91 Subparts B and C constructed accord-

ing the the regulatory-based causal factor framework is provided in Fig 4.15 and Fig 4.16.

Note that even though the DSRM for Part B and Part C are presented in separate figures,

there are links or edges that connect both DSRMs, thereby creating a larger more complex

domain model.
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Regulations: Functions:  Hazards: Causal Factor: HCAS Element #: Linkages:

Inadequate Preflight Planning 3.1.1, 3.1.2, 3.1.5 

Inadequate Preflight Information 3.1.1, 3.1.2, 3.1.5 

Crewmember Not at Station 2.1.1, 3.1.2, 3.3, 

Occupants Not Secured 2.1.1, 

Occupants Not Informed of Use of  Restraining 

Systems
2.1.1

Proximity to Other Aircraft 1.1.9, 2.1.1, 4.8, 

Right of Way Rules Not Followed 2.1.1, 1.1.9, 4.8, 

Failure to See and Avoid 2.1.1, 4.8, 

Failure to Comply with Airspace Speed Limits 2.1.1, 3.3, 3.4, 

Failure to Comply with Minimum Safe Altitudes in 

Congested and Non-Congested Areas.
4.1, 4.7, 

Inaccurate Altimeter Setting 2.1.1, 1.1.10, 1.1.6

Failure to Comply with ATC Clearances and 

Instructions.
2.1.1, 3.3

Failure to Comply with ATC Light Signals 2.1.1, 3.3.3

Failure to Follow Requirements in Designated 

Airspace
2.1.1,

Not Following Flight Restrictions Based on 

Exceptionally High Altimeter Settings
2.1.1,

Not Complying with Fuel Requirements 3.1.1, 3.1.2, 3.1.4.2

Incomplete VFR Flight Plan Information 2.1.1, 3.1.2

Not Complying with VFR or Special VFR Weather 

Minimums

2.1.1, 3.1.1, 3.1.2, 

3.1.4.2, 4.3,

Not Complying With VFR/IFR Cruising Altitude 

Requirements.

2.1.1, 3.1.1, 3.1.2, 

3.1.4.2,

Not Complying with Minimum IFR Altitude 

Requirements.

2.1.1, 3.1.6, 3.1.4, 

3.1.1,

Flying with VOR Equipment that Does Not Meet 

the Check Requirements for IFR Operations
2.1.1,

Operating IFR Without an ATC Clearance and 

Flight Plan in Controlled Airspace.
2.1.1,  3.1.4. 2

Failure to Use Published Instrument Approach 

Procedures
2.1.1, 3.1.1, 3.1.4.2, 

Pilot Conducts Cat II or Cat III Operations 

Without Complying With Proper Training, 

Authorization or Procedure Requirements

2.1.1, 3.1.4.2, 

2.2.2.2,

Failure to Follow Procedure for Transitioning 

From the Instrument to the Visual Portion of an 

Instrument Approach Using Normal Maneuvers. 

2.1.1, 3.1.1, 3.1.4.2, 

Not Complying with IFR Takeoff Procedures or 

Minimums.

2.1.1, 3.1.4.2, 4.3, 

3.1.6,

Flying in RVSM Airspace Without Complying to 

RVSM Requirements.

2.1.1, 1.1.5, 1.1.10, 

1.4.3.2, 2.2.1.1, 

2.2.2.2, 3.6.2.2, 

Not Complying with IFR Course Requirements. 2.1.1, 

Failure to Maintain Communications with ATC 

While Flying Under IFR.
2.1.1,

Failure to Comply with Loss of Communication 

Procedures.
2.1.1, 3.1.3, 1.1.5, 

Failure of an Aircraft Flying IFR to Notify ATC of 

Malfunction of Certain Required Equipment.

2.1.1, 3.1.4.2, 1.1.5, 

1.1.6, 1.1.10, 3.2.1, 

CF1

CF2

CF3

CF4

CF5

CF6

CF7

CF8

CF9

CF10

CF11

CF12

CF16

CF13

CF14

CF15

CF17

CF18

CF24

CF19

CF23

CF20

CF21

CF22

CF25

CF31

CF26

CF27

CF28

CF29

CF30

3.1. Flight Operational 

Hazard

2.1. Individual Human Factor 

Hazard (Airmen)

1.1. Aircraft Hazard

CF1

CF2

CF3

CF4

CF5

CF6

CF7

CF8

CF9

CF10

CF11

CF12

4.8. Other Traffic Hazard

3.3. ATC Communication 

Hazard

3.4. Airspace Hazard

CF16

CF13

CF14

CF15

CF17

CF18

CF19

CF23

CF20

CF21

CF22

CF24

CF25

CF31

CF26

CF27

CF28

CF29

CF304.3. Weather Hazard

3.2. Continued Airworthiness 

Hazard

2.2. Organizations Human 

Factor Hazard (Airmen)

3.6. Organizations Human 

Factor Hazard (Operations)

1.1. Aircraft Hazard

2.1. Individual Human Factor 

Hazard (Airmen)

2.1. Individual Human Factor 

Hazard (Airmen)

3.1. Flight Operational 

Hazard

3.1. Flight Operational 

Hazard

4.3. Weather Hazard

Perform Flight 

Operations

Perform Visual 

Flight Operations

Perform Instrument 

Flight Operations

Subpart B - 

Flight Rules

Figure 4.15: The initial DSRM (14 CFR Part 91 Subparts B)

In the initial domain safety risk model in Figures 4.15 and 4.16, there are four distinct

functional domains, 11 hazards and 40 causal factors. The causal factors, also listed in

Table 4.3 are derived based on the regulation sections that constitute the subparts with

the help of subject matter experts. For example, Causal Factor #1 Inadequate Preflight

Planning based on Section 91.103 “Preflight Action” is described by SMEs as follows;

“Pilot fails to follow all necessary steps or makes errors (e.g. calculations, de-

cisions, etc) during preflight planning based on the available preflight informa-

tion.”

For the same causal factor, SMEs also identified possible associations to HCAS elements

3.1.1 “Flight Planning”, 3.1.2 “Phases of Flight”, and 3.1.5 “Operational Control”. Hence
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fuel tank installed not in accordance per FAA 

regulatory requirements
1.1.2, 1.1.10, 

lack of required FAA aircraft certifications 3.2.1, 3.6.2.1,

inoperative or missing equipment required for the 

type of operation.
1.1, 3.1.4, 3.2,

inoperative or missing emergency locator 

transmitter (ELT)
1.1.5, 1.1.6

position or anti-collision lights inoperative or not 

turned on
1.1.10, 1.1.9, 4.8

lack of accurate altitude information
1.1.5, 1.1.6, 3.2.1, 

3.3.2

lack of or inoperative altitude alert system 1.1.10, 1.2.2,

lack of approved Traffic alert and Collision 

Avoidance System (TCAS)

1.1.10, 1.1.9, 3.2.1, 

4.8

inoperative or missing Terrain Awareness and 

Warning System (TAWS)

1.1.10, 1.1.9, 3.2.1, 

4.1, 4.7, 

CF34

CF39

CF35

CF40

CF36

CF33

CF37

CF38

CF41

CF34

CF33

CF39

CF35

CF40

CF36

CF37

CF38

CF41

1.2. Control Station Hazard

4.1. Terrain Hazard

4.7. Obstacle Hazard

4.8. Other Traffic Hazard

3.3. ATC Communication 

Hazard

3.6. Organizations Human 

Factor Hazard (Operations)

3.2. Continued Airworthiness 

Hazard

1.1. Aircraft Hazard

3.1. Flight Operational 

HazardManage

Equipment,

Instrument, and 

Certificate

Requirements

Subpart C - 

Equipment,

Instrument, and 

Certificate

Requirements

Figure 4.16: Part of the initial DSRM (14 CFR Part 91 Subparts C)

Causal Factor #1 is linked to 3.1 “Flight Operational Hazard” which represents a higher

level grouping of these three HCAS elements.

Finally, taking the context of functional domains into consideration, SMEs identify a

set of preliminary links between causal factors. At this stage of the process, these links

do not imply any causality. The causality of the connections is established as part of the

next step where this undirected graph is transfered to a general hybrid Bayesian Network

representing the UAS domain safety risk model. This transformation is the subject of the

next section.

The process of constructing an initial undirected DSRM can be summarized as follows;

• Identify functional activities, i.e., functional domains, based on the regulatory frame-

work around which the model is to be constructed;

• Identify and describe Causal Factors using the regulatory text;

• Determine associated hazard sources, i.e., HCAS elements for each causal factor;

• Determine hazard groups based on the HCAS elements for each functional domain;

• Connect each causal factor to its hazard group by undirected edges;

• Determine possible prominent interactions between causal factors and depict these

interactions by undirected edges.

Starting from the next section, we develop a Hybrid Bayesian Network representing

the UAS DSRM and apply our Fuzzy-Bayesian methodology introduced in Chapter 3 to

perform probabilistic inferencing about the resulting Fuzzy Bayesian Network (FBN).
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Figure 4.17: The flowchart representing the progression of concepts and ideas introduced
so far within the context of this application.

Figure 4.17 provides a flowchart that outlines this rather lengthy process, which start

with the identification of causal factors and hazards according to the RCCF and ends with

the computation of hazard likelihood as the modeling results of the Type-I and Type-II

FBNs using the algorithms developed in Sections 3.4.2 and 3.4.3.

4.4.2 The Hybrid Bayesian Network

In this section we focus on constructing and refining the network structure of the UAS

domain safety risk model (DSRM) introduced in the preceding section.
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The raw model presented in two parts in Figures 4.15 and 4.16 includes 50 nodes com-

prised of 37 causal factors and 13 hazard elements. Even, without taking the linkages

between the pairs of nodes into consideration, this preliminary topography of the model

constitutes a relatively large network as a BN. However, as discussed above, in order for

us to apply our Fuzzy-Bayesian methodology outlined in Chapter 3 to the UAS DSRM,

we need to process this preliminary model so that it ultimately becomes a proper Hybrid

Bayesian Network about which probabilistic/possibilistic reasoning can be performed.

The process of construction and refinement of the raw model starts with the identifying

the the causal interactions between the pairs of causal factors and the linkages between the

causal factors and hazard elements. In fact, the actual topology of the UAS DSRM is con-

structed by these linkages provided that the linkages indicate a casual direction underlying

causal dependencies as a Bayesian Network. As outlined in section 4.4.1 these links are

identified by using the definitions of the causal factors as determined by the subject matter

experts based on their interpretation of FAR Part 91. However, to bring structure to this

process and facilitate the repeatability of the methodology, we employed a pattern matching

approach for the identification of the links between two causal factors. In particular, along

with a definition for each causal factor we also identified a set of keywords/phrases to com-

plement the definition. These sets of keywords/phrases provide context to the definitions

and emphasize prominent attributes of the causal factors.

CF16

CF17

CF18

CF19

Causal Factor Definition HCAS #

Not Complying with Fuel 

Requirements

FAR define minimum fuel requirements 

for various flight operations. Failure to 

comply fuel requirements VFR/IFR

Fuel requirements, VFR, IFR, 

day, night, Fuel reserve

3.1.1, 3.1.2, 

3.1.4.2

Incomplete VFR Flight Plan 

Information

VFR flight plans are optional method for 

pilots to facilitate search and rescue 

efforts.

VFR flight plan, 2.1.1, 3.1.2

Not Complying with VFR or 

Special VFR Weather Minimums

FARs establish what VFR means in 

different airspace categories for visibility 

and distance from cloud requirements.  

VFR weather minimums, 

airspace, distance from clouds, 

visibility, (class B, C, D E, G), 

special VFR minimums

2.1.1, 3.1.1, 3.1.2, 

3.1.4.2, 4.3,  

Not Complying With VFR/IFR 

Cruising Altitude Requirements.

FARs establish VFR/IFR cruising altitudes 

based on magnetic courses to separate 

traffic.

VFR cruising altitude, IFR 

cruising altitude, 

2.1.1, 3.1.1, 3.1.2, 

3.1.4.2,

Keywords

Figure 4.18: Definitions and Keywords/phrases for the causal factors comprising the Func-
tional Activity “Perform Visual Flight Operations”

A sample set of keywords/phrases are provided in Figure 4.18 for the causal factors

comprising the functional activity “Perform Visual Flight Operations” of Figure 4.14.
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We implement a two step approach while identifying the causal dependencies between

two causal factors. The initial step of this approach involves the identification of pos-

sible connections among the causal factors. At this stage these connections only imply

interactions, thus the undirected edge contains no information regarding the conditional

dependency between the two causal factors it connects. Nonetheless, these undirected

edges provide the foundation upon which the causal structure of the hybrid Bayesian Net-

work is to be constructed. In order to determine an initial set of undirected edges we use

the set of keywords identified by SME for each causal factor. Employing the concepts of

pattern matching and classification for text mining, for each causal factor we simply look

for the keywords/phrases shared with other causal factors. If we identify one or more key-

words/phrases shared by two causal factors we connect them by an undirected edge. During

this process, to determine meaningful matches between causal factors, the priority is given

to searching common or similar phrases. If for a causal factor we fail to identify a keyphrase

shared with any other causal factor, individual key words become the common patterns to

look for to establish a preliminary connection between two causal factors. Practice shows

that these initial set of undirected edges need to be reviewed by subject matter experts

to identify and remove the connections that cannot be justified within the context of their

definitions. At this stage, the SMEs also look for connections that might be overlooked by

the pattern matching process.

Casual Factors Definitions Keywords/Phrases HCAS #

Not Complying With VFR/IFR 

Cruising Altitude Requirements.

FARs establish VFR/IFR cruising altitudes 

based on magnetic courses to separate 

traffic.

VFR cruising altitude, IFR cruising 

altitude,

2.1.1, 3.1.1, 

3.1.2, 3.1.4.2,

Failure to Comply with Minimum 

Safe Altitudes in Congested and 

Non-Congested Areas.

To avoid a collision with obstacles, 

people, vessels, on the ground and on the 

water, Minimum safe altitudes are 

established for congested and non-

congested areas.

congested, obstacles, altitude,

persons, vessels, distance, non-

congested, hazards to person or 

property on the ground, 

4.1, 4.7, 

Not Complying with Minimum IFR 

Altitude Requirements.

Regulations specify additional minimum 

altitudes for IFR operations except for 

takeoff and landing. These relate to 

charted minimum altitudes and radio 

navigational aid reception ranges.

IFR altitude minimum, minimum 

obstruction clearance altitude 

(MOCA), minimum en route altitude 

(MEA), minimum crossing 

altitude(MCA), minimum reception 

altitude (MRA),  

2.1.1, 3.1.6, 

3.1.4, 3.1.1, 

lack of accurate altitude 

information

Lack of data correspondence between 

automatically reported pressure altitude 

data and the pilot's altitude reference.

altitude information, transponder, 

altitude encoding, calibration, altimeter

1.1.5, 1.1.6, 

3.2.1, 3.3.2

CF19

CF10

CF20

CF38

Figure 4.19: CF19 is connected to CF10, CF20 and CF38

As an example of application of this process to the UAS domain safety risk model, the

undirected edges that connects the Causal Factor # 19 “Not Complying With VFR/IFR
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Cruising Altitude Requirements” (CF19) to three other causal factors, namely CF10, CF20,

and C38 are provided in Figure 4.19.

Note that although the keyword “altitude” is common in all four causal factors depicted

in Figure 4.19 the undirected edges connecting them are ultimately verified and determined

by SMEs especially taking the context of their definitions into consideration.

The undirected network as the outcome of the first stage of the process to identify the

causal dependencies among the causal factors of the UAS DSRM is provided in Figure 4.20.

Note that Figure 4.20 does not include the nodes representing the hazard elements.
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Figure 4.20: The casual factors of the UAS Domain Risk Model connected through undi-
rected links

Note also that in Figure 4.20, the raw network consisted of a set of causal factors

and connections that do not imply any causality is in the same form as in Figure 4.12.b.

Recalling our discussion in Section 4.4 about the process of the transformation from a

functional domain of the RCFF to a directed acyclic graph, our next step is to rearrange

these causal factors into a proper graph topology where we can proceed with the second step

of our approach. An undirected graph as the result of such an rearrangement is provided

in Figure 4.21.

The second step of our approach in the process of constructing the hybrid Bayesian

Network representing the UAS domain safety risk model (DSRM) is to identify the con-

ditional dependencies among the causal factors. In a Bayesian Network these conditional

dependencies are depicted by directed links between causal factors.

We utilize the undirected graph of Figure 4.21 when identifying causal/conditional in-

teractions within the network structure of the UAS DSRM model.

Throughout this process, once again, subject matter experts determine the direction of

the edges. This direction not only depicts a conditional probability distribution over two
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Figure 4.21: An undirected graph of the casual factors of the UAS Domain Risk Model

random variables but also illustrates a causal interaction between two factors contributing

to various functional domain hazards. To identify such a dependency SMEs mainly utilize

the definitions of causal factors and the context that the four functional activities listed in

Table 4.5 provide to the overall model domain.

Note that the graph in Figure 4.21 is not fully connected due to the fact that the causal

factor pairs “CF33-CF16” and “CF23-CF24” are not connected to the rest of the graph.

As an immediate consequence of this, unless new edges are added to make the graph fully

connected we cannot construct a Bayesian Net by simply converting the undirected edges

to directed ones. However, note also that Figure 4.21 does not include the hazard nodes

without which our model is not complete. With the inclusion of the hazard nodes we see

that the graph becomes connected.

Once the hazard nodes are included to the undirected graph and new edges between

the hazards and causal factors are added to the network structure, we determine the pos-

sible directions for each edge, specifically, taking the “acyclicity” requirement of BNs into

consideration.
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The Figure 4.22 provides the final directed acyclic graph (DAG) depicting the UAS

DSRM.

There are a few features in the final DAG of the UAS model that need further discussion.

While determining the direction of conditional dependencies among the variables of the

model, we eliminated some linkages identified during the keyword/phrase matching process

outlined above. There are two reasons to perform such a “clean up” in the model. First,

the final graph needs to be acyclic. Second, whenever there is a direct connection between

two casual factors any secondary conditional dependency through other causal factors only

complicates the topology and ultimately the propagation over the final BN.
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Figure 4.22: A DAG of the UAS Domain Risk Model
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In Figure 4.22, the connections leading to the Hazard nodes are shown as dashed lines

whereas the edges between two causal factors are drawn as solid lines. Although these

two connections are depicted differently, strictly speaking, they are the same in nature

and represent a conditional dependency between two nodes/variables that they link in the

resulting BN. Also note that the causal factors and hazards are depicted by ellipse and

rectangle shaped nodes, respectively. We have chosen to use different styles when depicting

the edges and nodes only to enhance the legibility of the network topology and to assist

readers understanding of the conditional interactions in a rather crowded model.

Finally, Figure 4.22 divides the model into four distinct functional domains as outlined

in Table 4.5 and the causal factors and hazards are arranged in the model topology accord-

ingly. Within this context, some hazard nodes that are conditionally dependent of (i.e.,

connected to) the causal factors from multiple functional domains are repeated in these

domains. However, the important observation here is that although the boundaries of the

functional domains are emphasized by the illustration of the model, there are edges crossing

over these boundaries and connecting the four distinct domains into one coherent model

representing the system safety risk about one larger domain. This representation of the sys-

tem safety risk is in line with the thinking and philosophy of the Regulatory-based Causal

Factor Framework (RCFF) and Domain Safety Risk Modeling (DSRM) approach outlined

in Sections 4.3 and 4.4, respectively.

Model Variables

In this section we review the types of variables included in the UAS DSRM depicted in

Figure 4.22. In particular we focus on continuous variable in the model.

A closer look to the variables -both causal factors and hazards of the UAS DRSRM

reveals that the model contains variables that can be quantitatively expressed through

observations. Consider the causal factor “proximity to other aircraft” (CF6), which can

be observed and measured in feet on a continuous scale, thus it should be represented by

a continuous variable to capture a better approximation within the context of a Bayesian

Network model such as our UAS DSRM.
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Recognizing the continuous nature of the causal factor CF6 may be rather straightfor-

ward as compared to some other casual factors, such as causal factor “failure to comply

with airspace speed limits” (CF9), among others. A closer inspection of the causal factor,

however, reveals that the speed of the aircraft is the variable underlying the causal factor

“failure to comply with airspace speed limits” (CF9). Hence “airspeed” as the continuous

variable replaces CF6 in the final Hybrid Bayesian Network (HBN) representation of the

UAS DSRM. This replacement takes place only in the name and definition of the causal

factor and we continue to denote it by “CF6”.

Analogously, the causal factor “Not complying with fuel requirements” CF16 is closely

related to the “fuel on board” of the aircraft and therefore a quantitative variable provides

a better approximation of the real word variable that CF6 represents.

A review of the UAS DSRM is conducted to identify possible quantifiable variables

underlying the descriptions/definitions of the causal factors constituting the model. The

quantifiable causal factors identified through this process are then replaced by associated

continuous variables in the final model.

The set of continuous variables representing the causal factors that are quantifiable in

the final hybrid Bayesian Network of the UAS Domain Safety Risk Model is listed in Table

4.6.

Additionally, we consider the hazards identified in the UAS DSRM as continuous vari-

ables. In fact, by defining the hazard nodes as continuous entities we are able to asses

them quantitatively on a predetermined continuous scale. We believe that the quantitative

depiction of individual hazards as the model outcome is a substantial improvement on the

qualitative depiction of hazards that the aviation community is accustomed to.

The Final HBN

All other nodes except the causal factors identified as quantifiable in Table 4.6 and the haz-

ards are considered as qualitative, thus as discrete variables. Using the notation introduced

in Chapter 3 and in Figure 3.2, namely depicting the continuous variables with ellipses and

the discrete variables with rectangles, the Figure 4.23 illustrates the final Hybrid Bayesian

Network of the UAS Domain Safety Risk Model. On this HBN we apply in the following
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Table 4.6: The Set of Continuous Variables Representing the Causal Factors in the HBN of
the UAS DSRM

# Causal Factor Continuous Variable

6 Proximity to Other Aircraft Proximity to Other Aircraft

9 Failure to Comply with Airspace Speed Limits Airspeed

10
Failure to Comply with Minimum Safe Altitudes in 

Congested and Non-Congested Areas.
Altitude

12
Failure to Comply with ATC Clearances and 

Instructions.
Proximity to Obstacle

16 Not Complying with Fuel Requirements Fuel on Board

18
Not Complying with VFR or Special VFR Weather 

Minimums
Visibility (VFR-Cruse)

19
Not Complying With VFR/IFR Cruising Altitude 

Requirements.
Crusing Altitude

20
Not Complying with Minimum IFR Altitude 

Requirements.
Minimum IFR Altitude

26
Not Complying with IFR Takeoff Procedures or 

Minimums.
Visibility (IFR-Takeoff)

27
Flying in RVSM Airspace Without Complying to RVSM 

Requirements.
Vertical Seperation

28 Not Complying with IFR Course Requirements. Diversion from IFR course

CF6

CF9

CF10

CF12

CF16

CF18

CF19

CF20

CF26

CF27

CF28

section the Fuzzy-Bayesian methodology and the algorithms introduced and outlined in

detail in Chapter 3.

In Figure 4.23, “CFXX” stands for “Causal Factor XX” and HX.X stands for Hazard

Element X.X from within the HCAS Taxonomy. Note also that the Hybrid Bayesian Net-

work depicted above preserves the original domain model of Figures 4.15 and 4.16 which

identify four functional models, namely “A1.1 Perform Flight Operations”, “A1.2 Perform

Visual Flight Operations”, “A1.3 Perform Instrumental Flight Operations”, and “A2.1 Man-

age Equipment, Instrument, and Certificate Requirement” to cover the aviation operations

governed by 14 CFR Part 91 Subparts B and C.
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CF6

CF9

CF10

CF12

CF16 CF18

CF19

CF20

CF26CF27

CF39 H1.2

H4.1

H3.3

H3.2

CF36 CF41 CF38

H4.7

H3.1

H4.8

CF37 CF35

CF33 CF40

H3.1 H3.2 H1.1 H3.6 H2.1 H4.3

H3.1

H1.1

H4.8

H2.2

H2.1

H4.3

H3.1

H3.4

H3.3 H2.1

CF21 CF22
CF30 CF23

CF31 CF25 CF29 CF24

CF17

CF11 CF14 CF3 CF2

CF15
CF13 CF5

CF7

CF8

CF4

CF1

CF28

H1.1 A2.1

A1.3

A1.2

A1.1

Figure 4.23: The Final Hybrid Bayesian Network Representing the UAS Domain Risk
Model.

Populating the Final HBN

A Bayesian Network can only be considered complete when the conditional distributions

of variables - conditional probability tables (CPTs) for discrete variables and conditional

probability distributions (CPDs) for continuous variables - imposed by the network topology

is defined and the BN is fully populated.

During the process of populating the model one can utilize multiple sources depending

on the domain of interest and the availability of data to define and construct the CPTs and

the CPDs representing the conditional dependencies between a variable and its parents.
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Clemens [79] describes a process that outlines a hierarchy of data sources and their usability.

This process depicted in Figure 4.24 indicates an order of preference of data sources for

performing risk analysis about complex engineering systems.
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Figure 4.24: Data Sources for Performing Risk Analysis (Adapted from Clemens [79])

According to this hierarchy, if the data required to perform risk analysis is provided by

preexisting data for the same identical items or components of the system, this preexisting

data should be used. Such a perfect case is rarely encountered in real world situations,

especially in new technology applications. The next best thing is the preexisting data,

however, this time for similar items or components of the systems. If neither of these

scenarios is available, published data on similar systems can be used. Finally, if neither

preexisting nor published data does not exist, expert knowledge provides a valuable data

source to perform the required analysis.

Although we can define an order of preference among various data sources, a practical

approach with broader applicability would be to combine different data sources depending

their availability and the requirements dictated by the risk analysis methodology employed.

For example, Bayesian Networks can combine both subjective and objective information

with successful result to perform risk analysis of complex systems [80]. In fact, the HBN in

Figure 4.23 representing the UAS DSRM would be a good fit for such an hybrid approach

which utilizes quantitative and qualitative data about the UAS domain. In particular,
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the continuous variables of the model would benefit form hard data as the result of ac-

tual observations of the system. Whereas, conditional probability tables of the discrete

variables can be successfully populated by qualitative judgments of the subject matter ex-

perts during knowledge elicitation sessions. Ayyub [80] provides an extensive discussion on

expert-opinion elicitation.

However, as we discussed in detail in section 4.1, the cutting-edge nature of our domain

of interest, makes it quite difficult to find preexisting hard data applicable to our problem

domain. Furthermore, recalling the systems level approach that we took while developing

our modeling methodology and ultimately building the final UAS DSRM, due to the unique

nature of the model variables derived from the aviation regulations, the data requirements

of our UAS domain safety risk model are best supported by subjective knowledge based

on the experience of the SMEs on the problem domain. Consider the discrete variables

CF1 “Inadequate Preflight Planning”, even for the conventional operations of commercial

aviation, quantifying the conditional probability table of CF1 given other causal factors

using preexisting hard data presents quite a difficult challenge. The lack of a common

taxonomy for the existing accident/incident databases is arguable the major source for

this challenge. [64] provides an extensive discussion on existing aviation accident/incident

databases. Considering the shortcomings of the existing aviation databases, for a safety risk

model of the emergent UAS operations, the knowledge elicited form SMEs provides a viable

data source. Thus, in addition to the restrictions imposed by the UAS problem domain,

as the natural extension of our system safety risk modeling methodology, expert-opinion

emerges as the main data source while populating the UAS DSRM in Figure 4.23.

However, the application presented here within the context of this thesis is mainly for

the purposes of illustrating the applicability of our research methodology, namely a set of

new propagation algorithms for Type I and Type II Fuzzy-Bayesian Networks, to a real-

world problem domain. Therefore, the final application model is populated using synthetic

data and the algorithms are propagated and results are generated accordingly.

The data used to populate the UAS DSRM are in the form of unique conditional prob-

ability distributions for each discrete and continuous variables making up the HBN. Next,

we present the conditional probability distributions for selected model variables.
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A closer look to the HBN of Figure 4.23 indicates that the final UAS Domain Safety

Risk Model includes the following six types of conditional interactions between the child

and parent variables constituting the network.

i. Discrete given discrete, such as CF1← (CF3, CF17)

ii. Discrete given continuous, such as CF7← CF6

iii. Discrete given discrete and continuous, such as CF22← (CF29, CF12)

iv. Continuous given discrete, such as CF26← CF1

v. Continuous given continuous, such as CF18← CF10

vi. Continuous given continuous and discrete, such as CF6← (CF10, CF8)

There are 63 nodes in the HBN model of the UAS DSRM in Figure 4.23. Due to the

relatively larger size of the network, it is not feasible to list all the synthetic data used to

populate the HBN here in this thesis. Instead, for each of the six conditional dependencies

that repeats throughout the hybrid network, a representative parent-child combination is

identified. A conditional probability distribution associated with the child-node defines

each parent-child combination. Next, we provide the synthetic data used to populate the

conditional probability distributions (CPDs) of these six representative nodes from within

the UAS DSRM.

i. Discrete Given Discrete: CPD of node CF1 “Inadequate Preflight Planing”=

P (CF1|CF3, CF17).

CF3 : Crewmember Not At Station

CF17 : Incomplete VFR Flight Plan Information

CF1, CF3, CF17 ∈∆

Unless otherwise indicated, all discrete causal factors are binary variables, which can
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only assume “true” or “false”.

P (CF1|CF3, CF17)=

CF3, CF17

true,false true,false true,false true,false

CF1
true 0.85 0.70 0.65 0.15

false 0.15 0.30 0.35 0.85

ii. Discrete Given Continuous: CPD of node CF7 “Right of way rules are not

followed”= P (CF7|CF6):

CF6 : Proximity to other aircraft

CF7 ∈∆, CF6 ∈ Γ

CF6 proximity to other aircraft denoted by “d” is measured in feet, such that CF6 :

D = {d : 0 ≤ d ≤ 10000 ft}; then the CPD of CF7 is given by

P (CF7|CF6)=





P (CF7=true|CF6)=





0.0025× e−.005d for 0 ≤ d < 10000ft

0 otherwise

P (CF7=false|CF6)=





0.0025× e−.005(2000−d) for 0 ≤ d < 10000ft

0 otherwise

iii. Discrete Given Discrete and Continuous: CPD of node CF22 “Operating

IFR without an ATC clearance and flight plan in controlled airspace”

= P (CF22|CF29, CF12):

CF29 : Failure to maintain communications with ATC while flying under IFR

CF12 : Proximity to obstacle (see Table 4.6)

CF22, CF29 ∈∆, CF12 ∈ Γ

CF12 proximity to obstacle denoted by “h” is measured in feet, such that
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CF12 : H = {h : 0 ≤ h ≤ 2000 ft}; then the CFD of CF22 is given by

P (CF22|CF29,CF12)=





P (true|true, CF12)=





0.005
4 · e−.005h for 0≤h≤2000ft

0 otherwise

P (false|false, CF12)=





0.005
8 · e−.005(2000−h) for 0≤h≤2000ft

0 otherwise

P (true|false, CF12)=





0.005
8 · e−.005h for 0≤h≤2000ft

0 otherwise

P (false|false, CF12)=





0.005
4 · e−.005(2000−h) for 0≤h≤2000ft

0 otherwise

iv. Continuous Given Discrete: CPD of node CF26 “Not Complying with IFR

Takeoff Procedures or Minimums”= P (CF26|CF1).

Causal factor CF26 is defined by visibility (IFR-Takeoff) as a continuous variable (see

Table 4.6), which is measured in feet, such that

CF26 : W = {w : w ∈ R+}; and

CF26 ∈ Γ, CF1 ∈∆.

Then the CFP for node CF26 is defined by the following expression:

P (CF26|CF1) =





0.005 · e−.005·w for CF1 = true

N (W ; 2000, 5002) for CF1 = false

(4.3)

v. Continuous Given Continuous: CPD of node CF18 “Not complying with VFR

or Special VFR Weather Minimums”= P (CF18|CF10).

CF10 : Failure to comply with Minimum Safety Altitude in congested and non-

congested areas
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Causal factors CF18 and CF10 are represented by the continuous variables “Visibility

(VFR-Cruse)” and “Altitude”, respectable (see Table 4.6). The continuous variables

“Altitude” and “Visibility” denoted by “l” and “v are measured in feet, such that

CF10 : L = {l : 0 ≤ l}

CF18 : V = {v : 0 ≤ v} and

CF10, CF18 ∈ Γ.

Then, the conditional probability distribution P (CF18|CF10) as follows:

P (CF18|CF10) = N (V ;L− 5000, 5002) (4.4)

Equation (4.4), which is essentially a bivariate Normal distribution, indicates a linear

CPD outlined in Section 2.1.4 and, particularly, in equation (2.17).

vi. Continuous Given Discrete and Continuous: CPD of node CF6 “Proximity

to Other Aircraft”= P (CF6|CF10, CF8).

CF8: Failure to See and Avoid, which is a binary discrete variable, which can only

assume “true” or “false” as its value.

CF6, CF10 ∈ Γ, CF8 ∈∆.

Then the CPD of the node CF6 is given by the following expression:

P (CF6|CF10, CF8) =





N (D;L, 10002) for CF8 = true

N (D; 4000, 10002) for CF8 = false

(4.5)

where,

CF6 : D = {d : 0 ≤ d ≤ 10000 ft}

CF10 : L = {l : 0 ≤ l}

The CPD data provided here in this section is used to populate the six unique types of

conditional dependencies between the six selected child nodes and their parent variables.

The CPDs of the remaining 44 nodes are populated by the data that, in terms of type and

form, fits in one of the types listed above and are not provided here to preserve the focus

of this Chapter’s narrative.
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4.5 Application of the Fuzzy Bayesian Methodology to the UAS DSRM

The types and forms of the data that populates the final HBN of the UAS DSRM are

introduced in the preceding section. Given the existing topology of the hybrid Bayesian Net

of Figure 4.23, a review of this data concludes that current popular propagation algorithms

could not be used to perform exact inferencing about the UAS DSRM because of the

following two reasons:

• The network includes discrete variables, which have continuous parents.

• The conditional dependencies between some continuous variables and their parents

are defined by distributions other than Conditional Gaussians.

Hence, we can justify the use of the Fuzzy Bayesian Methodology developed in this thesis

to perform probabilistic reasoning on the UAS DSRM and calculate marginal distributions

of various hazard identified as the result of the modeling process.

Within this context, using the propagation algorithms developed and introduced in

Chapter 3, we first provide the results of the Type I and Type II FBN Fuzzy-Bayesian

transformation and then present the marginal probability distributions of the hazards nodes,

which are calculated as the outcome of the UAS Domain Safety Risk Model.

4.5.1 The Type I FBN and Modeling Results

As introduced in Section 3.4.1 and discussed in detail in Definition 6, the directed acyclic

graph (DAG) of a Hybrid Bayesian Network GHBN defined by equation (3.35), is transformed

into a Type I Fuzzy Bayesian Network GFBNI , first, by replacing all its continuous variables Γ

with their Fuzzy counterparts Γ̂ and then, by adding the original crisp-continuous variables

to the network along with a directed link originating from the Fuzzy counterparts to the

original continuous variables. All original continuous variables are thereby conditionally

dependent to only their Fuzzy counterparts. The resulting network which is also a DAG is

defined by equation (3.53).
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Figure 4.25: Type-I FBN GFBNI of the UAS Domain Risk Model as the result of the
transformation.

Accordingly, the conditional variables of the UAS DSRM identified in Table (4.6) con-

stitute the Set Γ,

Γ = {CF6, CF9, CF10, CF12, CF16, CF18, CF19, CF20, CF26, CF27, CF28}.

The corresponding Fuzzy-discrete counterparts are given by set Γ̂,

Γ̂ = {ĈF6, ĈF9, ĈF10, ĈF12, ĈF16, ĈF18, ĈF19, ĈF20, ĈF26, ĈF27, ĈF28}.

The Type-I FBN, GFBNI , as the result of this transformation is depicted in Figure 4.25.

Note that in Figure 4.25, as the result of transforming UAS DSRM of Figure 4.23 to a

Type-I Fuzzy Bayesian Network, ĈFxx and Ĥx.x represent the counterpart Fuzzy-discrete

variables of the original continuous variables CFxx and Hx.x, respectively.
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Furthermore, the new Fuzzy-discrete variables are depicted by rectangle nodes in accor-

dance with the convention used throughout this thesis. The node cluster which is comprised

of a crisp continuous node and its Fuzzy-discrete counterpart is illustrated in Figure 4.26.

CFXX CFXX

Figure 4.26: Sample cluster of continuous variable CFxx and its Fuzzy counterpart ĈFxx

Additionally, the Fuzzy variable ĈFxx replaces original continuous variable CFxx and

acquires all its original connections as parent or child variable in the Type-I FBN transfor-

mation of the UAS DSRM.

In order to perform the inferencing algorithm about the UAS DSRM in Figure 4.25 as

outlined in Section 3.4.2, we need to complete the transformation of the crisp domain of the

original model into the Fuzzy domain of the Type-I FBN. To complete the transformation

we need two types of additional information regarding the newly created Fuzzy variables and

their conditional dependency towards their original continuous counterparts. In particular

we need to define the following:

• The fuzzy states, which the continuous variables will be fuzzified into and associated

membership functions.

• The conditional probability distributions for each continuous variable given their

newly created fuzzy counterparts.

These two information are required to finalize populating the Type-I FBN in Figure

4.25 and to perform the propagation algorithm developed in Section 3.4.2 and illustrated

by Numerical Example 3.4.2.

For the purposes of this application, Fuzzy-discrete counterparts of all continuous vari-

ables included in the UAS DSRM are defined using the following generic formulation: Con-

sider continuous variable CFi, such that

CFi : X = {x : xL ≤ x ≤ xU}, x ∈ R+ (4.6)

for i = {6, 9, 10, 12, 16, 18, 19, 20, 26, 27, 28},
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where xL, xU are lower and upper bounds of the domain upon which the continuous variable

CFi : X is defined, respectively. Then, based on the continuous frame of CFi the Fuzzy-

discrete counterpart variable ĈFi is defined as having three Fuzzy states, such that

ĈFi = {ĈFi1 , ĈFi2 , ĈFi3} (4.7)

along with the following associated membership functions:

ĈFi1(x) =





1

x2 − x
x2 − x1

0

0

0

ĈFi2(x) =





0

x− x1

x2 − x1

1

x4 − x
x4 − x3

0

ĈFi3(x) =





0 xL ≤ x < x1

0 x1 ≤ x < x2

0 x2 ≤ x < x3

x− x3

x4 − x3
x3 ≤ x < x4

1 x4 ≤ x < xU

where xL, x1, x2, x3, x4, xU ∈ R+ are considered as the characteristics that define

the transition regions between adjacent Fuzzy states and the shape of their membership

functions. Note also that while defining the Fuzzy states we use a generic trapezoidal

membership function.

Table 4.7: The Fuzzy States and associated membership function characteristics for the
Continuous Variables of Type-I FBN

CFi ĈFi = {ĈFi1 , ĈFi2 , ĈFi3} xL x1 x2 x3 x4 xU (unit)

CF6 ĈF6 = {near, moderate, far} 0 2000 3000 5000 6000 10000ft

CF9 ĈF9 = {slow, medium, fast} 0 40 60 120 140 ∞ kts

CF10 ĈF10 = {low, medium, high} 0 1500 2500 4500 5500 0ft

CF12 ĈF12 = {near, moderate, far} 0 250 500 1000 1500 2000ft

CF16 ĈF16 = {low, medium, full} 0 3 6 15 20 30lt

CF18 ĈF18 = {poor, moderate, clear} 0 250 750 1500 2000 ∞ ft

CF19 ĈF19 = {low, medium, high} 0 1500 2500 7500 10000 20000ft

CF20 ĈF20 = {low, medium, high} 0 1000 1250 2500 3000 ∞ ft

CF26 ĈF26 = {poor, moderate, clear} 0 100 300 500 750 1000ft

CF27 ĈF27 = {narrow, moderate, wide} 0 500 750 1500 2000 ∞ ft

CF28 ĈF28 = {small, medium, large} 0 1500 3000 5000 7500 ∞ ft
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For all continuous variables identified during the structuring process of the UAS DSRM

and consequently listed in Table 4.6, the counterpart Fuzzy-discrete variables along with the

associated Fuzzy states and the characteristics of their membership functions are provided

in Table 4.7.

On the other hand, the conditional probability distribution for the original continuous

variable CFi given its Fuzzy-discrete counterpart ĈFi, defined by equations (4.6) and (4.7),

respective, is given by equation (4.8).

P (CFi|ĈFi) =

CFi ĈFi

x

ĈF i1 N (X;µi1 , σi1)

ĈF i2 N (X;µi2 , σi2)

ĈF i3 N (X;µi3 , σi3)

(4.8)

for i = {6, 9, 10, 12, 16, 18, 19, 20, 26, 27, 28},

where, N (X;µij , σij ) denotes a Normal distribution with mean µij and variance σij for

j = {1, 2, 3} over the continuous variable CFi : X. Note also that x represents any value

that CFi : X may assume on its continuous frame.

Table 4.8: Mean µij and Variance σij Values for P (CFi|ĈF i) defined by equation (4.8)

(CFi|ĈFi) (µi1 , σi1) (µi2 , σi2) (µi3 , σi3)

(CF6|ĈF6) (2000, 1000) (800, 100) (5000, 1000)

(CF9|ĈF9) (50, 10) (120, 15) (200, 15)

(CF10|ĈF10) (1250, 150) (2500, 200) (500, 75)

(CF12|ĈF12) (150, 30) (750, 100) (1500, 225)

(CF16|ĈF16) (5, 1.2) (12, 2) (2, 0.75)

(CF18|ĈF18) (300, 75) (750, 60) (1000, 100)

(CF19|ĈF19) (1300, 225) (5000, 300) (500, 65)

(CF20|ĈF20) (275, 50) (850, 65) (2500, 125)

(CF26|ĈF26) (250, 15) (500, 30) (900, 45)

(CF27|ĈF27) (875, 90) (55, 10) (600, 85)

(CF28|ĈF28) (1000, 250) (1500, 300) (3000, 425)

The actual mean and variance values of the Normal distributions that are used to define

the conditional distributions of the continuous variables identified in Table 4.6 given their
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Fuzzy counterparts are provided in Table 4.8.

Using the information in Tables 4.7 and 4.8 along with the formulations introduced

above, we can extract the actual data used to populate the continuous Causal Factor nodes

of UAS DSRM.

As an example, the data for the continuous node CF6 is provided below. For all the

Causal Factors in Table 4.6, the required data to perform the Type-I FBN exact inferencing

algorithm can be written in a similar fashion.

CF6: Proximity to Other Aircraft, defined by

CF6 : D = {d : 0 ≤ d ≤ 10000 ft}

Fuzzy Counterpart Variable: ĈF6, with Fuzzy states ĈF61
:“near”, ĈF62

:“moderate”, and

ĈF63
:“far”, such that ĈF6 = {ĈF61

, ĈF62
, ĈF63

} with membership functions

ĈF61
(d) =





1

3000 − d
1000

0

0

0

ĈF62
(d) =





0

d − 2000
1000

1

6000 − d
1000

0

ĈF63
(d) =





0 0 ≤ d < 2000

0 2000 ≤ d < 3000

0 3000 ≤ d < 5000

d − 5000
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Figure 4.27: Membership functions for Fuzzy states ĈF 61
, ĈF 62

, and ĈF 63
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And the conditional dependency between the continuous variable and its fuzzy counter-

part is given by the CPD depicted in equation (4.9).

P (CF6|ĈF 6) =

CF6 ĈF6

d

ĈF 61
N (D;µ61

, σi1)

ĈF 62
N (D;µi2 , σi2)

ĈF 63
N (D;µi3 , σi3)

(4.9)

At this stage, the only remaining information needed to perform our exact inferencing

methodology about the Type-I FBN of the UAS DSRM is the data associated with the

Hazard nodes.

As can be seen in Figure 4.25, we had already identified the Hazard nodes in our model

as continuous variables. In particular, we define all Hazard nodes on the same continuous

fame and use the same Fuzzy states and membership functions to identify their Fuzzy-

discrete counterpart. Furthermore, the conditional dependency between the Hazard and

its Fuzzy counterpart is represented by the same CPD. This approach not only helps to

control the complexity of the FBN, but also provides a consistent way to quantify hazard

associated with the model.

Formally, the continuous hazard nodes are populated according to the following formu-

lation. Consider continuous variables Hi.j , such that

Hi.j : H = {h : 0 ≤ h ≤ 10}, h ∈ R+ (4.10)

for (i.j) = {(1.1), (1.2), (2.1), (2.2), (3.1), (3.2), (3.3), (3.4), (3.6), (4.1), (4.3), (4.7), (4.8)},

Then, based on the continuous frame of Hi.j the Fuzzy-discrete counterpart variable Ĥi.j is

defined as having three Fuzzy states, “Ĥi.j1
: low”, “Ĥi.j2

: moderate”, and “Ĥi.j3
: high”,

such that

Ĥi.j = {Ĥi.j1
, Ĥi.j2

, Ĥi.j3
} (4.11)

along with the following corresponding membership functions:
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Ĥi.j
1
(h) =





1

4− h
2

0

0

0

Ĥi.j
2
(h) =





0

h− 2
2

1

8− h
2

0

Ĥi.j
3
(h) =





0 0 ≤ h < 2

0 2 ≤ h < 4

0 4 ≤ h < 6

h− 6
2 6 ≤ h < 8

1 8 ≤ h < 10

Finally, the conditional probability distribution of the continuous Hazard nodeHi.j given

its Fuzzy counterpart Ĥi.j is given by equation (4.12).

P (Hi.j |Ĥi.j) =

Hi.j Ĥi.j

h

Ĥi.j1
N (H;µi1 , σi1)

Ĥi.j2
N (H;µi2 , σi2)

Ĥi.j3
N (H;µi3 , σi3)

(4.12)

So far we provided the information required to populate the Type-I FBN transformation

of the UAS DSRM and to perform the probabilistic reasoning about the network applying

the inferencing algorithm developed in Section 3.4.2 .

Next, we present the results of our exact inferencing algorithm for Type-I FBN applied on

the UAS DSRM. Reiterating the concept illustrated in Figure 4.17, the marginal probability

distributions of the 13 hazards identified in the final HBN of the UAS DSRM of Figure 4.23

are the outcome of the application of our research methodology. Therefore, we concentrate

solely on hazard nodes while determining the results of applying the Type-I inferencing

algorithm to the FBN in Figure 4.25. As the results of Type-I FBN application, we present

two sets of marginal distributions for the Hazard nodes:

• The marginal distributions after the junction three associated with the network is

initiated, i.e., a message is passed, for the first time, through the JT. This set of

marginal distributions determine a baseline probability distribution for the hazard

variables.

• The marginal distributions of hazards when evidence is introduced to the model.

These marginals could then be compared to the baseline distributions of the same
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hazards to reveal the impact of the evidence as an increase or decrease in the hazard

likelihoods.

In the latter case, a set observations regarding some selected continuous and discrete

variables constitutes evidence, thereby outlining a scenario about the problem domain mod-

eled by the Bayesian Network. Therefore, For the purposes of this application, a scenario is

simply a collection of variables with known values. Within the same context, the scenario

depicted in Table 4.9 is used as evidence to generate associated marginals.

Table 4.9: The Set Causal Factors and their values used as the Synthetic Scenario

CFi Definition Value

CF1 Inadequate Preflight Training ⇐ True

CF9 Airspeed ⇐ 150 kts

CF10 Altitude ⇐ 3000ft

CF14 Failure to Follow Requirements in Desig-
nated Airspace

⇐ True

CF16 Remaining Fuel On Board ⇐ 40%

CF17 Incomplete VFR Flight Plan Information ⇐ True

CF30 Failure to Comply with Loss of Commu-
nication Procedures

⇐ True

For the Type-I UAS DSRM, the baseline distributions and the distributions after the

evidence is introduced are provided in Figure 4.29 and 4.30.

Matlab is extensively used while performing inferencing about the UAS DSRM and

generating the results presented in Figures 4.28 and 4.29 and it is quite infeasible to repeat

the calculations that we already outlined in detail with a numerical example in Section

3.4.2. Therefore, the construction of the Junction Tree associated with the Type-I FBN of

the UAS DSRM, and the steps of the application of the Type-I inferencing algorithm are

not presented here.

The results of the Type-I inferencing on UAS DSRM are presented in Figures 4.29 and

4.30. To elaborate on the information that these plots provide, the results for Hazard H1.1

given in Figure 4.28 are discussed next as an example.

In Figure 4.28 the dotted line represents the baseline marginal distribution for Hazard
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H1.1 “Aircraft Design Related Hazards”, whereas the solid line represents the marginal prob-

ability distribution of the hazard after the evidence associated with the scenario outlined

in Table 4.9 is introduced to the model.
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Figure 4.28: Marginal Probability Density Functions of Hazard H1.1 “Aircraft Design Re-
lated Hazards” when the model is initiated with the initial CPDs (i.e., Baseline Case) and
when the evidence as a scenario is introduced to the model (i.e., Scenario Case).

Juxtaposing the baseline and scenario plots of the marginal distributions make it possible

to visualize the relative change in the likelihood of individual hazards. For example, in

Figure 4.28, one can observe a shift towards a higher hazard value in the probability density

after the evidence is introduced to the network as compared to the baseline density for the

same hazard. Thus, we can deduce that the scenario outlined in Table has a negative impact

on likelihood of occurrence of the individual hazard element H1.1 Aircraft Design Related

Hazards.

Furthermore, one can also apply fuzzy transformation on these continuous probability

density functions to determine the membership values associated with the states of Fuzzy-

discrete counterpart hazards. For example, using the membership functions of equation
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(4.11) we determine the Fuzzy hazard Ĥ1.1 for the baseline and scenario cases as follows:

Ĥ1.1Baseline
= {Low = 0.51, Moderate = 0.32, High = 0.17}

Ĥ1.1Scenario
= {Low = 0.23, Moderate = 0.34, High = 0.43}.

These Fuzzy hazard values also verify the shift towards a higher value as the result of

the scenario introduced to the model.
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(a) Marginal p.d.f of H1.2 Control Station
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(b) H2.1: Individual HF
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(c) H2.2: Operational HF
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(d) H3.1: Flight Operations
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(e) H3.2:Continued Airworthiness
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(f) H3.3: ATC Communications

Figure 4.29: Marginal Probability Density Functions (p.d.f ) of Type-I UAS DSRM Hazards
- Part 1. (Note that the vertical axes are not on different scale)
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(a) H3.4: Airspace
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(b) H3.6: Organizational HF
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(c) H4.1: Terrain
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(d) H4.3: Weather
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(e) H4.7: Obstacles
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(f) H4.8: Other Traffic

Figure 4.30: Marginal Probability Density Functions (p.d.f ) of Type-I UAS DSRM Hazards
- Part 2. (Note that the vertical axes are not on different scale)
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4.5.2 The Type-II FBN and Modeling Results

Recalling the Fuzzy-Bayesian framework outlined in Chapter 3, we introduced two different

forms of transformation of a general HBN into a FBN, namely Type-I and Type-II FBNs,

and developed two exact inferencing algorithms to perform reasoning about the resulting

hybrid networks.

In this section, we focus on the Type-II FBN transformation of the UAS DSRM depicted

in Figure 4.23 and present the results of the Type-II inferencing in a similar fashion as in

the preceding section.

CF16
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H3.3
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Figure 4.31: Type-II FBN GFBNII of the UAS Domain Risk Model as the result of the
transformation.
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As outlined in Definition 7, a Hybrid Bayesian Network GHBN defined by equation (3.35),

is transformed into a Type-II FBN GFBNII , by applying the fuzzification transformation as

defined for Type-I transformation, but only to those continuous variables whose descendants

in the original HBN include discrete variables. The Type-II FBN GFBNII as the results of

Type-II transformation of the UAS DSRM is provided in Figure 4.31.

Note that in the original HBN of Figure 4.23, the continuous variables whose descendants

include discrete nodes constitute Set Γ2, Γ2 ⊂ Γ, such that

Γ2 = {CF6, CF9, CF10, CF12, CF18, CF27, CF28}.

Additionally, since all hazard nodes are terminating nodes, i.e., sinks, they have parents,

but no descendants. Therefore, the Fuzzification transformation is only applied to the

continuous variables in Γ2 to obtain the counterpart Fuzzy variables which constitute Set

Γ̂2, such that

Γ̂2 = {ĈF 6, ĈF 9, ĈF 10, ĈF 12, ĈF 18, ĈF 27, ĈF 28}.

Although the topology of Type-I and Type-II FBNs are quite different, the conditional

dependencies between child and parent nodes demonstrate identical attributes. In partic-

ular, the Fuzzy counterpart variables in Set Γ2 are generated by equation (4.7) using the

same Fuzzy states and membership functions identified in Table 4.7 for the Type-I UAS

DSRM. Furthermore, the CPD of continuous variable CFj given Fuzzy variable ĈF j , where

CFj ∈ Γ2 and ĈF j ∈ Γ̂2, is identified by equation (4.8) using the same mean and variance

values in Figure 4.8 identified for the Type-I FBN.

Finally, the CPDs for the remaining nodes including the Fuzzy variables in Set Γ̂2 and

continuous Hazard nodes, needed to finalize populating the Type-II FBN in Figure 4.31,

follow one of the same six types of conditional dependencies identified while populating

the original HBN in Section 4.4.2. Therefore, essentially, the same set of data with minor

modifications is used to populate the Type-II FBN of the UAS DSRM and we are not going

to provide this data here. However, the reader may refer to Sections 4.4.2 and 4.5.1 for the

details of specific types and forms of the data used.

Similar to the Type-I case, as the outcome of the Type-II UAS DSRM, we concentrate

on the marginal densities of individual hazards elements identified in the original risk model.
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These marginal densities, determined by applying the Type-II inferencing algorithm to the

Type-II FBN are provided in Figures 4.32, 4.33, and 4.34.

The details of the Type-II propagation are not provided here due to the same reasoning

as for the Type-I case, however, the reader may refer to Section 3.4.3 for a detailed discussion

on and application of the exact inferencing algorithm for Type-II FBNs.

The results for the Type-II UAS DSRM entails two marginal densities presented in a

similar fashion as for the Type-I FBN: a marginal density for the hazard associated with

the Baseline Type-II model and a marginal density determined after evidence is introduced

to the network. The scenario outlined in Table 4.9 is used as the evidence.

Figure 4.32 illustrates the marginal densities for hazard H1.1 “Aircraft Design Related

Hazards” computed by the Type-II propagation for the baseline case and for the scenario.

Note that there is an increase in the medium hazard value as well as in the variance of

hazard density after the evidence is introduced to the model.
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Figure 4.32: Marginal Probability Density Functions of Hazard H1.1 “Aircraft Design Re-
lated Hazards” of the Type-II FBN when the model is initiated with the initial CPDs (i.e.,
Baseline Case) and when the evidence as a scenario is introduced to the model (i.e., Scenario
Case).
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(a) Marginal p.d.f of H1.2 Control Station
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(b) H2.1: Individual HF
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(c) H2.2: Operational HF
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(d) H3.1: Flight Operations
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(e) H3.2:Continued Airworthiness
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(f) H3.3: ATC Communications

Figure 4.33: Marginal Probability Density Functions (p.d.f ) of Type-II UAS DSRM Hazards
- Part 1. (Note that the vertical axes are not on different scale)
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(a) H3.4: Airspace
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(b) H3.6: Organizational HF
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(c) H4.1: Terrain
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(d) H4.3: Weather
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(e) H4.7: Obstacles
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(f) H4.8: Other Traffic

Figure 4.34: Marginal Probability Density Functions (p.d.f ) of Type-II UAS DSRM Hazards
- Part 2. (Note that the vertical axes are not on different scale)
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4.5.3 A Discussion on the Results

Even a cursory look to compare the results of Type-II propagation depicted in Figures

4.32, 4.33, and 4.34 and the results of the Type-I propagation provided in Figures 4.28,

4.29, and 4.30 indicates a fundamental difference between the marginal densities of the

hazards. Particularly, the marginal densities of individual hazards elements emerge as

ordinary Gaussians (i.e., Normal distributions) in the Type-II UAS DSRM, whereas, the

marginals for the Type-I model are a mixture of three Gaussians.

When performing inferencing on the Type-I UAS DSRM, the original continuous vari-

ables hazard Hi.j ∈ Γ and causal factor CFi ∈ Γ defined by equations (4.11) and (4.6),

respectively, occur only in special cliques ĈΓ̂ = {Γ̂,Γ}, where the original continuous vari-

ables are paired with their Fuzzy-Discrete counterparts Ĥi.j ∈ Γ̂ and Ĉi ∈ Γ̂, such that

Ĉ
Ĥi.j

= {Ĥi.j , Hi.j} and Ĉ
ĈF i

= {ĈF i, CFi}. (4.13)

As discussed in detail in Section 3.4.2, these special cliques in the Junction Tree of a

Type-I FBN emerge due the location of the original continuous variables at the periphery

of the network after the Type-I transformation. In particular, the topography of a Type-I

FBN can be rearranged into a star shape such that all discrete variables, including the

newly created Fuzzy-discrete ones, constitute the core of the star, whereas the continuous

variables are located only at the tip of its arms (see Figure 3.6).

Once data is entered into the Type-I FBN and the associated junction tree is initiated

by passing a message back and forth, for each clique, including the ones in equation (4.13),

a probability distribution representing the joint distribution of the variables that the clique

is composed of appears. The marginal distributions of the individual variables making up

the clique are determined using this joint distribution.

According to the Conditional Gaussian (CG) model at the crux of our Type-I inferencing

algorithm, the CPD of a continuous variable is a linear CPD given any combination of

discrete parents (see equation (3.123)) and if all the discrete variables are given then the

CPDs of the continuous variables are all linear CPDs. Thus, given any assignment of the

discrete variables a CG is reduced to a Linear Gaussian (LG) and therefore represents a

Normal distribution. It follows that the CPD of a continuous variable given an instantiation
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of its Fuzzy counter part (i.e., given one of its Fuzzy states) is a Normal distribution defined

by equation (3.123). According to the Type-I algorithm, this CPD of the continuous variable

dictates the form of the final joint distribution of the continuous variable and its Fuzzy-

counterpart in the special peripheral cliques, defined by equation (4.13), after the junction

tree is initiated or evidence is introduced. Thus, the marginal distribution of the continuous

variable X is calculated by summing out the Fuzzy-discrete counterpart X̂ over the joint

CLG as indicated by equation (3.101) in the numerical example in Section 3.4.2.

As illustrated in Figure 3.13, this marginal density is in the form of a mixture of Gaus-

sians and the number of Normal distributions in the mixture is dictated by the number of

Fuzzy states used to fuzzify the original continuous variable X and to create its counterpart

Fuzzy-discrete variable X̂.

Likewise, the marginal distribution for a hazard node Hi.j defined by equation (4.10) is

calculated by summing out the Fuzzy-discrete counterpart variable Ĥi.j given by equation

(4.11) over the joint distribution f(Ĉ
Ĥi.j

) of clique Ĉ
Ĥi.j

after the network is initiated or

evidence is entered, such that

f(Ĉ
Ĥi.j

) = f(Hi.j , Ĥi.j) =

Hi.j , Ĥi.j

h, Ĥi.j1
w1 · N (H;µi1 , σi1)

h, Ĥi.j2
w2 · N (H;µi2 , σi2)

h, Ĥi.j3
w3 · N (H;µi3 , σi3)

(4.14)

and

f(Hi.j) =
∑

Ĥi.j

f(Ĉ
Ĥi.j

)

= w1 · N (H;µi1 , σi1) + w2 · N (H;µi2 , σi2) + w3 · N (H;µi3 , σi3) (4.15)

Since, the same three Fuzzy states given by equation (4.11) are used to create the Fuzzy-

discrete counterparts of the original hazard variables, their marginals, defined by equation

(4.15) illustrated by Figures 4.28, 4.29, and 4.30 are mixtures of three Gaussians. This is

the only place throughout the Type-I propagation where we have to deal with a mixture

of Gaussians. Thus we do not have to perform basic operations of message-passing such as

extension, multiplication or marginalization with mixtures of Gaussians.
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On the other hand, this is not the case for the Type-II transformation. The junction

tree of the FBN after the Type-II transformation can also be arranged into a star-shape,

where, similar to the Type-I case, we use a CG model to represent the hybrid cliques which

appear at the tip of the arms of the star (see Figures 3.14b and 3.15). However, the core

of the star denoted by HBNsub in Figure 3.14b, contrary to the Type-I case, is itself a

Hybrid Bayesian Network, where continuous variables do not have discrete descendants.

To represent the conditional distributions of these continuous variables given their hybrid

parents in the Type-II FBN we use a CGR model. As we showed in Section 3.4.3 while

developing the Type-II inferencing algorithm, the joint probability distribution represented

by CGR is a mixture of Gaussians, thus the potential representing the joint distribution

of a hybrid clique in the junction tree THBNsub
is also a mixture of Normal distributions.

However, the use of mixtures for message passing in THBNsub
of the Type-II FBN is prob-

lematic and as presented in Section 3.4.3, we use an alternative approach to the mixture

representation. Our approach involves collapsing the original Gaussians of the mixture to

obtain just one Gaussian as the representation of the actual mixture density. Consequently,

for these continuous variables whose conditional distributions are modeled by a CGR model,

the Type-II inferencing outlined in Section 3.4.3 results in univariate Normal distributions

as their marginal densities. Since, according to the Type-II transformation scheme, none

of the hazard nodes do require a Fuzzy transformation, their conditional distributions as

continuous variables given hybrid parentage are modeled by CGR. Thus, the hazard nodes

appear inside the core junction tree THBNsub
and the joint distributions of the hybrid cliques

within which they appear are given by mixtures of Gaussians. In order to perform inferenc-

ing in the Type-II FBN of the UAS DSRM, we approximate these mixtures by collapsing

them into a single Normal distribution. Thus, Type-II propagation on the UAS DSRM give

rise to a set of univariate Gaussians as the hazard marginal probability density functions

provided in Figures 4.32, 4.33, and 4.34 as the results of the Type-II UAS DSRM.

Above, we provide an explanation for the basic form difference between the marginal

densities of the results for the Type-I and Type-II inferencing about the UAS DSRM. Next,

we elaborate on how to compare their results quantitatively.

An intuitive way of comparing multiple probability distributions is to compare associated
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mean and variances, however, provided that the distributions are of the same kind. Thus,

the results of the Type-I and Type-II inferencing of the UAS DSRM give rise to densities that

need some further manipulation for an easy quantitative comparison. This manipulation

entails collapsing the mixture of Gaussians to obtain a single univariate Normal distribution

representing the original mixture. Before going into detail, however, let us elaborate on

mixtures on Gaussians.

As we have already outlined in Section 3.4.3 while developing the Type-II inferencing

mechanism, a mixture of Gaussians over the variables X can be represented formally as

a set of pairs (ωi,N (X; µi,Σi)) where ωi is the weight of the i-th mixture component. If
∑

i ωi = 1 we say that the mixture is normalized in which case it represents a probability

density function: with probability ωi, X has the normal distribution N (X; µi,Σi).

We approximate a mixture with a Gaussian which has the same mean vector and covari-

ance matrix as the entire mixture. The Theorem 3.4.2 provided in Section 3.4.3 presents

a formalism for collapsing a mixture of Gaussians. If applied to the results of the Type-I

inferencing, Theorem 3.4.2 provides a tool to collapse the marginal densities presented in

Table 4.10: Mean and variance values for the marginal probability densities of the individual
hazard nodes Hi.j of the UAS DSRM as the result of the Type-I and Type-II propagation.

µ σ
Baseline Scenario Baseline Scenario

Type-I Type-II Type-I Type-II Type-I Type-II Type-I Type-II

H1.1 3.92 3.25 5.51 4.62 0.62 0.75 0.70 1.35

H1.2 3.24 2.45 4.36 5.62 0.64 0.81 0.85 .35

H2.1 4.33 5.52 5.66 6.25 0.62 0.91 0.64 0.67

H2.2 3.50 3.95 5.83 6.20 0.41 0.27 0.93 0.72

H3.1 4.43 2.21 5.32 5.22 0.42 0.72 0.35 0.93

H3.2 2.54 1.70 4.79 2.23 0.28 0.30 0.51 0.42

H3.3 5.16 5.69 6.30 7.22 0.57 0.21 0.68 0.52

H3.4 3.77 4.39 4.90 6.21 0.51 0.41 0.53 0.61

H3.6 3.34 3.16 4.93 5.20 0.28 0.58 0.30 1.25

H4.1 3.25 3.34 3.41 4.32 1.03 1.11 0.59 1.37

H4.3 4.84 4.21 5.94 5.47 0.86 0.82 1.47 0.75

H4.7 4.63 3.81 5.59 5.43 0.99 0.93 0.33 0.32

H4.8 4.23 3.76 4.53 4.21 0.48 0.32 0.55 0.57
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Figures 4.28, 4.29, and 4.30 to compute mean and variance values representing each mixture.

In Table 4.10, the mean and variance values after collapsing the marginal probability

density functions of the hazard nodes are provided for both Type-I and Type-II FBNs of

the UAS DSRM for the purposes of comparison.

4.6 A Discussion on Validation

This section provide a discussion regarding the question of validation within the context of

our methodology for UAS safety risk modeling outlined throughout this Chapter.

Broadly speaking, any attempt to model a complex system or a real phenomenon results

in an approximation of reality with varying degrees of veracity. Thus, a study to compare

and contrast the results of the model and the reality is generally considered as important as-

pect of the modeling methodology. UAS DSRM, for which inferencing results are presented

in the preceding Sections is the product of the Regulatory-based Causal Factor Framework

(RCFF) developed to model safety risk associated with aviation operations.

In essence, the RCFF and the UAS DSRM are decision support tools and, as a general

practice, decision support tools are validated by comparing the results of test runs against

preexisting data or expert judgment. Although the role and importance of validating de-

cision support systems are well documented, in the early literature on decision support

systems [82, 83], there does not exist a definition shared by the majority for their valida-

tion, verification, and evaluation. In a review paper on decision support systems validation,

Balci and Sargent indicates that over 16 terms are used somewhat interchangeably [84]. A

more recent attempt by Gonzales and Barr [85] tries to clarify the meaning of the terms

validation and verification and provides an extensive review on their implementation in the

field of contemporary decision support system development.

Based on their experiences of developing decision support systems and using validation

methods in computer-based modeling, O’Keefe et al. mention the following major questions

concerning validation [86]: what to validate, what to validate against, and what to validate

with.

Regarding to what to validate, one can validate any intermediate results, the final result
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(often called conclusion), the reasoning of the system, or any combination of the three [83].

Having said that, it may be difficult, even impossible, to classify the results of a decision

support system as ”right” or ”wrong”. For such situations, we can use the experts to classify

the level of accuracy of the solution presented by the system into several categories [87].

Decision support systems can be validated against known results as well as against expert

knowledge [64]. The best case scenario would be the existence of many documented previous

cases or scenarios, covering the whole spectrum of the problem domain. However, typically,

only a limited number of test cases are available. The concept of validation should not be

considered as a binary variable in which decision support systems are absolutely valid or

absolutely invalid. Since the decision support systems are representations or abstractions

of reality pertinent to a problem domain, we cannot expect perfect performance. The

performance level acceptable to the users of the system is called acceptable performance

range and can be determined during the phases of model development [86].

Every decision support system is designed for a specific purpose or application and its

veracity should only be assessed in terms of that purpose with regard to a predetermined

problem domain. In other words, an decision support system can be valid for one input

domain and completely irrelevant for another.

The literature on decision support systems defines two types of validation: qualitative

and quantitative validation. O’Keefe mentions seven widely accepted quantitative valida-

tion techniques: face validation, predictive validation, Turing tests, field tests, subsystem

validation, sensitivity analysis, and visual interaction [86]. For example, as a popular tech-

nique, in face validation, system developers, intended users of the system, and experts

on the problem domain subjectively compare systems performance against human expert

performance.

On the other hand, qualitative validation entails subjective comparisons of performance.

This does not imply that such approaches are informal, we can find highly formal qualitative

validation methods [87] in literature. For an introductory example of qualitative validation

on a CBR system for modeling aviation accidents, the reader may refer to [64], where the

performance of the CBR system is subjectively evaluated by human experts.

If the results of the decision support system can be quantified, then we can employ
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quantitative (i.e., statistical) validation techniques. Where appropriate, qualitative and

quantitative methods can also be combined.

Within the framework of these general concepts about validating decision support sys-

tems as outlined above, we can now elaborate on the question of validation on the UAS

DSRM and, particularly, on the RCFF.

In Sections 4.1 and 4.2 we discuss the emergent nature of UAS and mention that, as

far as the information on UAS related causal factors and hazards are concerned, data

on UAS operations is practically nonexistent. Coupled with our usage of synthetic data to

populate the UAS DSRM, this lack of historical data renders the applicability of quantitative

validation techniques such as face validation impossible. What about qualitative techniques?

Provided that the data used is not synthetic, a semi-formal qualitative validation approach

could have been applied where the results of the UAS DRSM are evaluated subjectively

by experts, who has not involved with the development of the model. However the results

of this application are based pure on synthetic data and developed solely for the purposes

of demonstrating the applicability of our Fuzzy-Bayesian hybrid inferencing methodology

to a real-world problem domain. Therefore unless populated by real data, including both

actuarial data and expert judgments, any further discussion on validation is premature.

However, we can present a concise argument on the repeatability of the regulatory-based

modeling results presented as the UAS DSRM. A closer look to the backgrounds of the

SMEs whose knowledge has been primarily utilized to construct the UAS domain safety

risk model indicates a rather wide coverage in terms of expertise in and understanding

of the problem domain. We believe this diversity of experience resulted in a UAS DSRM

model with sufficient representative power so that the modeling results should be considered

repeatable provided that a similarly diverse group of SMEs is tasked with the developed

modeling framework. The background summaries for the SMEs whom we have worked with

in this thesis are provided in Appendix A without exposing their actual identities.

From our experience with much smaller discrete only BN models of aviation accidents

[58, 61, 62, 63, 64], we can foresee that populating the UAS DSRM with real data will

require numerous knowledge elicitation sessions as well as an extensive effort to collect field

data on UAS accidents/incidents. Such a study, which requires time, resources, and most
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importantly access to UAS operations, is considered as a possible avenue of future work to

improve upon this study.

We conclude our discussion on validation by mentioning the fact that the HCAS taxon-

omy and the RCFF presented in Sections 4.2 and 4.3 have been vetted by aviation experts

with system safety research backgrounds as well as by the larger academic community

through various FAA program review meetings and conference proceedings [68, 67, 60, 52,

91, 90].
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Chapter 5

Conclusions and Future Work

5.1 Summary

Discrete Bayesian Networks provide a formal framework for representing a joint probability

distribution given a set of discrete random variables. Exact inferencing solutions for discrete

Bayesian Networks, such as the well-known junction tree algorithm by Lauritzen, exist and

are well understood. Contrary to the discrete-only case, a general solution for exact infer-

encing about general Hybrid Bayesian Networks, where continuous and discrete variables

may appear anywhere within the network topology, has yet to be developed. Unfortunately,

the general HBNs, as the generalization of the BN concept, provide a better modeling rep-

resentation for the vast majority of real-world applications. Thus, there exist a real demand

among the practitioners of uncertainty analysis and modeling of real-world applications for

a general operational solution for the representation of and inferencing about general HBNs.

In this thesis, we focus on the larger problem of inferencing in general Hybrid Bayesian

Networks. In particular, we have tried to achieve two main objectives:

• Develop a complete formal theoretical framework for exact inferencing on general

HBNs using a Fuzzy-Bayesian approach and,

• Demonstrate applicability of the resulting hybrid methodology to perform uncertainty

analysis for a real-world complex system.

In Chapter 2, we started our discussions with presenting an overview of discrete Bayesian

Networks and providing a detailed review of exact inferencing schemes such as variable

elimination and junction tree algorithms as they apply to discrete-only networks. Dis-

crete Bayesian Networks, as a fully-developed and well-understood research area, provide a

practical, yet powerful approximation for modeling conditional dependencies among system
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variables and for performing uncertainty analysis of real-world systems. However, their

discrete-only structure constitute a major limitation to how close the final network can ap-

proximate the conditional interactions related to the often-continuous nature of real-world

phenomenon by using a discrete only representation. General Hybrid Bayesian Networks as

a generalization of the discrete-only networks provide a solution to overcome this limitation

of representation. We extended our discussions in Chapter 2 by reviewing a constrained form

of general Hybrid Bayesian Networks as well as by providing an overview of the theoretical

foundation which enables inferencing about this constrained form possible. We showed that

a multivariate Gaussian can be converted to a Bayesian Network and a constrained form of

general Hybrid Bayesian Networks can be represented by linear Gaussians if all conditional

dependencies are modeled by linear CPDs. Some of the insights for discrete Bayesian Net-

works can also be used for these hybrid networks but there are some important differences,

which dictate a particular ordering inside their network topology. In particular, we saw that

the junction tree algorithm can be extended for exact inferencing about HBNs, provided

that the joint distribution of the continuous variables given an instantiation of the discrete

variables is assumed to be multivariate Gaussian. Within this context, we outlined the

Lauritzen algorithm for these constrained hybrid networks, where conditional distribution

of continuous variables given a set of discrete parents is modeled by a CG distribution. Due

to this modeling assumption of the Lauritzen algorithm, which is the current state of the art

probabilistic inferencing scheme for the HBNs, there is a strict topological limitation such

that continuous variables cannot be parents of discrete variables. This asymmetry between

continuous and discrete variables limits the applicability of HBNs in general practice and

motivates our research.

We concluded Chapter 2 with a general discussion on Fuzzy Sets as they relate to our

research objectives. We elaborated on our past experience on risk analysis of commercial

civil aviation operations and on modeling aviation accident scenarios using discrete Bayesian

Networks and argued that the uncertainty associated with complex systems has two main

sources: randomness associated with domain variables and ambiguity associated with their

observed states. Thus, we suggested that a hybrid approach which complements Bayesian

probability theory with Fuzzy Sets, which are, in essence, a generalization of the classical
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Set theory, provides a more complete and realistic representation for modeling complex

uncertainty related to real-world applications.

We started Chapter 3 by laying down the theoretical foundations of a novel formal

methodology for exact inferencing in general Hybrid Bayesian Networks. Our methodology

takes a hybrid approach to the problem of inferencing and utilizes Fuzzy sets to represent the

continuous variables and related conditional interactions dictated by the hybrid network.

Within this context, we presented the notion of probability of a Fuzzy event and introduced

the concept of a Fuzzy random variable. In particular, the probability of a Fuzzy event

is a purely stochastic problem where the event itself is vaguely defined i.e., represented by

Fuzzy sets. There are two possible approaches one can adopt: The probability of a Fuzzy

event is a scalar (i.e., a crisp real number or a measure) or it can be represented by a Fuzzy

set. We saw that the latter option necessitates the adoption of an inferencing mechanism

based solely on Fuzzy logic, which from an algorithmic point of view is considered to be

suboptimal. Whereas, if the probability of a Fuzzy event is assumed to be a scalar measure

then the inferencing mechanism could capitalize the well established algorithms developed

for probabilistic reasoning methods such as Bayesian Networks. Based on this analysis,

we introduced a novel Fuzzy Bayes formulation and outlined a formalism to determine the

conditional probability due to the interactions of Fuzzy and crisp variables.

There are two aspects of Bayesian Networks that are still subject to improvement and

therefore research: how to represent continuous variables in a general HBN setting and how

to deal with uncertain information as evidence? Our Fuzzy Bayes formulation provides a

mechanism to represent continuous variables and associated conditional dependencies in a

general HBN setting. In Chapter 3 we also presented a formalism for handling uncertain

evidence. In particular, we introduced the notion of Fuzzy evidence to incorporate vague or

ambiguous information into a Bayesian Network. We defined Fuzzy evidence as a type of

uncertain evidence, where observations are presented as Fuzzy sets rather than delta or in-

dicator functions, which place the observed variable in one of the mutually exclusive states.

Thus, Fuzzy evidence maps the observation to a set of predetermined Fuzzy states defined

on the closed interval [0, 1]. We discussed alternative representations of uncertain evidence

in current practiced and showed that, as opposed to virtual or likelihood evidence, where
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uncertainty is presented as a probability distribution, Fuzzy evidence is suitable to be used

in conjunction with continuous variables. Consequently, we presented a formal methodol-

ogy, a new approximate solution, for updating joint probability distributions when Fuzzy

evidence about the distribution variables is introduced. We utilized the relative entropy

concept of the information theory when formalizing our Fuzzy updating methodology. In

particular, we outlined an updating scheme for the prior distribution, where the posterior

(or updated) distribution satisfying a constraint set (i.e., Fuzzy evidence) has the minimum

relative entropy with respect to the prior distribution. We demonstrated the applicability

of our solution for updating with single and multiple uncertain evidences with a detailed

numerical example and concluded that, when multiple uncertain evidence is present, simul-

taneous updating should be preferred over consecutive updating especially when dealing

with moderate to large size Bayesian Networks for which the inherent complexity is already

known to be high.

After developing the necessary Fuzzy-Bayesian theoretical background, for the remain-

der of Chapter 3, we focused on formalizing our hybrid methodology for inferencing in gen-

eral HBNs. We started with introducing general Fuzzy-Bayesian Networks, which, given a

general HBN, can be constructed by transforming all continuous variables and associated

conditional probability distributions into the Fuzzy domain. We provided explicit formu-

lations to perform these transformations, which require the Fuzzy sets and corresponding

membership functions defined on the frames of all continuous variables in the HBN to be

given or constructed first. In the resulting FBN, all originally continuous variables are now

replaced by their counterpart Fuzzy-discrete variables whose states correspond to the Fuzzy

states identified for the original continuous variable for the purposes of this transformation.

Furthermore, after the transformation, all conditional distributions in the FBN can be rep-

resented by discrete multinomial distributions. It follows that exact inferencing algorithms

such as variable elimination or junction tree algorithm for discrete BNs can be applied to

perform probabilistic reasoning about general FBNs.

Although, with general FBNs we achieved practical exact inferencing for general HBNs,

since only the Fuzzy-discrete transformations, not the original continuous variables, are
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present in general FBNs, there is still room for improvement to reach a better approxi-

mation of the original hybrid network. Therefore, we introduced two new forms of Fuzzy

transformation for general HBNs, namely Type-I and Type-II FBNs, with increased so-

phistication in their representation of the original HBN and complexity in inferencing. a

Type-I FBN is created in two consecutive steps. First steps involve, as in a general FBN

transformation, the replacement of all continuous variables in the original general HBN with

their Fuzzy-discrete counterparts. In the second step, the original continuous variables are

added and connected to the network with a directed link originating from their respective

Fuzzy-discrete counterpart. The resulting form represents an HBN where continuous vari-

ables have only discrete parents, for which we showed that exact inferencing solutions exist.

We used a CG model to represent the conditional distributions of the original continuous

variables given their Fuzzy-discrete counterparts. We showed that, while building a junc-

tion tree from Type-I FBNs, this pair of variables, namely, the original continuous variables

and their Fuzzy-discrete transformations, forms a hybrid clique. We demonstrated that the

junction tree can be manipulated so that these hybrid cliques are placed at the periphery of

the tree, thereby giving rise to a star-shaped formation. At the core of this formation lies

a junction tree comprised solely of discrete variables. The message passing in this sub-tree

can be performed using existing algorithms. For the message passing between the discrete-

only core and the peripheral hybrid cliques, we developed a formal propagation mechanism

and demonstrated its application with a numerical example.

As the second form of transformation for general HBNs, we introduced Type-II FBNs

which involve a finer approximation when representing the original hybrid network as com-

pared to the Type-I transformation and hence, present a greater computational challenge.

To construct a Type-II FBN, the same fuzzy-transformation, as defined for the Type-I case,

is applied however this time only to those continuous variables whose descendants in the

original HBN include discrete variables. For the transformed part of the resulting hybrid

network, similar to Type-I FBNs, we use a CG to model the conditional distributions of

the original continuous variables given their Fuzzy-discrete counterparts. Whereas, for the

conditional distribution of the remaining continuous variables in the Type-II FNB we use a

CGR model. We showed that the junction tree of a Type-II FBN can also be rearranged into
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a star-shaped form, where the hybrid cliques composed only of original continuous variables

and their Fuzzy counterparts appear at the periphery of a hybrid core. Furthermore, the

continuous variables inside this hybrid core now, do not have discrete descendants.

Message passing between the hybrid core and peripheral hybrid cliques can be handled

with the propagation mechanism similar to the one that we developed for Type-I FBNs.

Whereas the message passing within the hybrid core should be treated separately. We

presented a detailed analysis of the types of cliques and their connections making up the

core. We saw that the joint probability distribution represented by CGR are a mixture of

Gaussians, thus the potential representing the joint distribution of a hybrid clique inside the

core is also a mixture of Normal distributions. However the use of mixtures of Gaussians

within the context message passing in Type-II FBNs is problematic because first, the size of

the functions representing cliques in a Type-II junction tree is not fixed and second, some

operations used in the clique tree algorithm are not defined for mixtures. Therefore we

presented an alternative approach to the mixture representation which involves approxima-

tion of the mixture by just one Gaussian. The approximation is performed by a collapsing

operation. We demonstrated that the collapsed mixture can successfully be used to perform

basic operations of message passing. We showed that an exact inferencing solution exits

for the hybrid core if associated variables are arranged into cliques to form a junction tree

with strong roots. We outlined the decomposability of graphs and strong root concepts

and presented a framework to perform message passing in Type-II FBNs and concluded

Chapter 3 by presenting a calibration algorithm for strongly rooted hybrid junction trees.

A comparative analysis of Type-I and Type-II FBNs are presented in Table 5.1.

In Chapter 4, we applied the research methodology developed in Chapter 3 to a real-

world problem domain. Risk analysis of unmanned aircraft systems is the problem domain

that we have chosen for the application of our research methodology. As mentioned in Chap-

ter 4, the application component of this research is funded by the UAS research program

of the FAA Research and Technology Development Office. Ultimately, our goal with this

application was to demonstrate that general HBNs provide a suitable modeling tool-set to

perform risk and uncertainty analysis of real-world systems, in general and of emergent UAS

operations, in particular. In Chapter 4 we presented the components of a novel approach to
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Table 5.1: Comparison of inferencing algorithms for Type-I and Type-II FBNs

Type-I FBNs Type-II FBNs

Representation

of general HBNs

• All continuous variables are fuzzified to 

create Fuzzy-discrete counterparts.

• CPDs of continuous variables given 

Fuzzy-discrete counterparts are assumed 

to be CG.

• A better approximation of a general HBN. 

• Only the continuous variables with discrete 

descendants are fuzzified.

• CPDs of continuous variables given Fuzzy-

discrete counterpart are assumed to be CG.

• CPDs of the remaining continuous variables 

including the ones with hybrid parentage are 

modeled by a CGR model.

• The joint distributions of the hybrid cliques 

presented by CGRs are mixtures of Gaussians.

• To perform message passing in the Type-II

junction tree mixtures are approximated by 

single Gaussians.

Inferencing • Exact • Approximate

Computational

Complexity

• Comparable to discrete BNs • High compared to Type-I FBNs

system safety analysis for emerging aviation systems/operations, for which current analysis

techniques that rely heavily on preexisting data are shown to be inappropriate. As the

first component of our approach, we introduced a novel methodology for hazard taxonomy

development with particular emphasis on aviation related hazard-source identification and

presented the Hazard Classification and Analysis System (HCAS) for the UAS. As the sec-

ond component, for the identification of causal factors and their possible interactions leading

to hazard sources, we presented a new regulation based framework, which employs deduc-

tive reasoning and relies on detailed analysis of the current FAA regulations for commercial

civil aviation. The third and final component involves the construction of a general HBN

representing a preliminary safety risk model for UAS operations limited to the regulatory

domain that the regulations selected for this application cover. These components are the

result of a multi-year development effort and throughout this long and arduous process,

the inputs of a diverse panel of subject matter experts with extensive aviation background

are heavily utilized not only for model construction but also for concept development. The

meeting and knowledge elicitation sessions conducted as part of this intensive development

effort are listed in Table 5.2.

After the UAS Domain Safety Risk Model is constructed as a general HBN, we applied
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Table 5.2: The schedule of meetings that have been performed within the context of UAS
system safety research.

Schedule of Meetings

Date Place # of SMEs Hours

6/25/09 Telecon 5 1
5/7 - 5/8/09 Rutgers 6 11

2 days
5/12/09 Telecon 5 2
5/30/09 IERC Approx. 30 Conference Session
4/7/09 Telecon 5 2
3/9/09 Telecon 7 2

2/3 - 2/4/09 Rutgers 10 11
2 days

2/9/09 FAATC 2 2
2/19/09 Telecon 5 2
1/28/09 Telecon 5 2

11/18 - 11/19/09 Colorado Approx. 40 UAS Program Review
10/7 - 10/8/08 FAATC 5 11

2 days
10/29/08 Telecon 5 2
9/5/08 FAATC 3 1 day
9/17/08 ICAS2008, Alaska Approx. 40 Conference Session
7/23/08 Rutgers 5 1 day
6/10/08 AUVSI UAS Workshop Approx. 80 1 day

10/23 - 10/25/07 FAATC Approx. 50 UAS Program Review
9/19 - 9/07 FAATC 3 11

2 days
8/15/07 ISSC, Baltimore Approx. 60 Conference Session
8/27/07 FAA HQ 5 1

2 day

the Fuzzy-Bayesian framework developed in Chapter 3 to perform inferencing on the UAS

DSRM. We used synthetic date to populate the Type-I and Type-II FBN transformations

of the UAS DSRM. As the results of applying respective inferencing algorithms, for Type-I

and Type-II of UAS DSRM, we presented the marginal probability distribution of hazard

elements for the baseline case and for a scenario where a collection of synthetic evidence

is introduced to the model. Finally, we concluded Chapter 4 with a discussion on the

validation of the UAS DSRM model.

5.2 Contributions

In this thesis we concentrate on the problem of inferencing in general Hybrid Bayesian

Networks. In particular, we try to understand and tackle the issues that exact inferencing

in general HBNs faces. In this context, our contributions to the larger research domain of
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representation and inferencing in general HBNs are three-fold: theoretical, algorithmic and

practical. Specifically, our major contributions can be outlined as follows:

• From a theoretical point of view, we complement classical probability theory with

Fuzzy set theory to develop a hybrid formalism to understand and model complex un-

certainty associated with real-world systems. To that end, we provide a novel frame-

work to implement a hybrid Fuzzy-Bayesian methodology to perform exact inferencing

in general HBNs where continuous and discrete variables may appear anywhere within

the network topology.

• From an algorithmic perspective, we provide a suite of inferencing algorithms for

general Hybrid Bayesian Networks. In particular, we introduce two transformations

for general HBNs to create Type-I and Type-II Fuzzy-Bayesian Networks and present

formal representation techniques and separate inferencing mechanisms for Type-I and

Type-II FBNs.

• Finally, from a practical perspective, we apply our framework, methodology, and tech-

niques to the task of assessing system safety risk due to the introduction of emergent

Unmanned Aircraft Systems (UASs) into the National Airspace System (NAS).

We also believe that, as a major contribution to the research domain of system safety

analysis, the HCAS taxonomy and the regulatory-based framework developed to identify

hazards and causal factors and to model their interactions as a general HBN provides a

novel methodology and a valuable tool-set for practitioners to understand, analyze and

model system safety risk associated with emerging aviation technologies and operations,

such as UASs.

Supporting the major contributions, we can list the following as our minor contributions

to research field of complex uncertainty analysis:

• Fuzzy-Bayes Formula: We introduce a new Fuzzy-Bayes formulation to define the

conditional probability of a Fuzzy event given another Fuzzy event, which can also be

extended to Fuzzy/Crisp and Crisp/Fuzzy variable pairs.
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• Fuzzy updating: We present a new approximate solution for updating a joint proba-

bility distribution of a set of variables when fuzzy evidence about the state of one or

more variable is introduced.

5.3 Limitations and Future Directions

It is our hope that this thesis provides useful tools to overcome the challenges that infer-

encing with general HBNs present and demonstrates the power of Fuzzy Bayesian Networks

while modeling complex uncertainty in real-world applications. Even though our discussions

throughout this thesis addressed important questions that arise with FBNs, obviously there

is still room for improvement. Here, we discuss the limitations of the developed FBN for-

malism and review some exiting research directions that build on top of the work presented

in this thesis.

In this thesis, while developing our Fuzzy-Bayesian formalism and presenting the fuzzifi-

cations needed for HBN-to-FBN transformations, the inferencing algorithms and the results

of message propagation, we based our analysis exclusively on Fuzzy sets defined by trape-

zoidal membership functions. The extension of the Fuzzy-Bayesian framework outlined in

this thesis by using Fuzzy sets with general memberships functions will surely prove to be

computationally challenging, yet it presents an interesting area for future research.

It is the complete transfer of selected crisp continuous variables to Fuzzy discrete vari-

ables that makes exact inferencing in Type-I and Type-II FBNs possible. However, two

compromises were made along the way. First, the Fuzzy membership functions partition-

ing continuous domains are usually build by using subject matter expert knowledge and

therefore are only approximations. Additionally, we also need the marginal distributions

for continuous variables undergoing fuzzy transformation. In most cases these marginals

do not exits and we can only start the analysis with some initial estimates. We believe

it is worthwhile to explore the applicability of an iterative algorithm to improve the accu-

racy of the initial Fuzzy membership functions and marginal distributions of the continuous

variables subject to fuzzification.

Our inferencing mechanism for FBNs relies on two fundamentally important assumptions
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about the conditional distributions of continuous variables given their parents. In particular

we assume that the conditional distributions of continuous variables given discrete parents

are modeled by Conditional Gaussians, whereas the conditional distribution of a continuous

variable given a hybrid parentage is modeled by a CG regression model. However, in some

case, depending on the nature of system domain, these models may not be appropriate to

capture and represent the conditional dependencies between system variables.

The application component of this thesis involves the development of the UAS domain

safety risk model as a general HBN, the transformation of the resulting hybrid network

to Type-I and Type-II FBNs and ultimately, the application of the developed inferencing

algorithms. Throughout this process, as we outlined in Chapter 4, we used synthetic data

to populated the Type-I and Type-II FBN transformations of the UAS DSRM. Although

populating a complex hybrid network such as UAS DSRM will obviously require substan-

tial resources as well as special access to operational data, we believe that it present an

interesting future research effort to improve on the work in this thesis.

Finally, we presented a discussion on validation, but did not provide a validation study

on the UAS DSRM, because of the reasons outlined in Section 4.6. Therefore, once real data

is collected for the hybrid model, the development of a formal methodology to validating

the UAS DSRM presents an interesting future research direction, which, we believe, will

greatly contribute the larger domain of safety and risk modeling of aviation systems.

5.4 Conclusions

It is our hope that this thesis presents a convincing formal argument on the usefulness of

Fuzzy Bayesian Networks in understanding and modeling complex uncertainty associated

with real-world applications. FBNs provide a more realistic explicit representation of uncer-

tainty by complementing randomness with ambiguity and combine it with enough expressive

power to model discrete as well as continuous phenomena in real-world applications. Al-

though we concentrate on the system safety and risk modeling of complex systems as the

application of FBNs, there are various problem domains, such as fault diagnosis, pattern

matching and recognition, and decision support tools among others, for which FBNs should
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be considered as perfect fit. In particular, we believe that HBN-based efforts dealing with

uncertainty modeling of complex systems that inherently involve conditional dependencies

among a hybrid set of domain variables will greatly benefit from the implementation of the

Fuzzy-Bayesian framework presented in this thesis.

In this thesis we have answered some fundamental questions on inferencing in HBNs

using a hybrid Fuzzy-Bayesian approach. Perhaps even more importantly, we provided a

practical application of the hybrid approach by performing uncertainty analysis of a real-

world complex system. In particular, we presented a preliminary system safety risk model

for emerging UAS operations. We believe that this is a strong indication of FBNs practical

relevance going beyond intellectual exercise. We hope that this will serve as motivation

for other researchers to further explore the potential of FBNs as well as general HBNs in

various other real-world applications.
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Appendix A

SME Backgrounds

SME - 1:

SME-1 has over 40 years of aviation experience in a career heavily involved in regula-

tory control and oversight. He has been involved with and served as the Senior Executive

responsible for the oversight of Federal Aviation Regulation implementation and certifica-

tion of several major airlines, repair facilities, and airmen. He served as advisor to the

Associate Administrator for Certification and Regulations pertaining to all areas of aircraft

maintenance. SME-1 also served as a Manager in the Aircraft Maintenance Division of

the FAA responsible for developing international and domestic airworthiness, rulemaking,

and regulatory control. Additional, he was the Assistant Division Manager of Flight Stan-

dards, responsible for fourteen Flight Standards District Offices and the regional Operations

Branch Manager.

SME - 2:

SME-2 has over 40 years of aviation experience. He served in a variety of aviation safety

positions while employed with Federal Aviation Administration for over 25 years. These

positions include principal maintenance inspector for a major US Airline at the district of-

fice level and assignments with the Safety Analysis and Management Branch in the regional

office. SME-2 also served as team leader on special projects such as the initial approval of

ETOPS operations. Most recently, SME-2, as Manager of the Air Transportation Branch,

was selected for a variety of management positions at the FAA Washington Headquarters.

He provided the leadership during the development, implementation, and evaluation of the

National Aviation Safety Inspection Program (NASIP). He coordinated inspection activi-

ties with the DOD Air Carrier Analysis and Survey Office. He was team leader of many
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internal regional Flight Standards evaluations. Working in partnership with the aviation

industry, he published a wide variety of national policy materials, which included modified

regulatory requirements for public use aircraft. He participated with the Air Transportation

Association Maintenance Operations Committee and served as the FAA Alternate Execu-

tive Director for the Aviation Rulemaking Advisory Committee (ARAC) Air Carrier and

General Aviation Maintenance Issues Group.

SME - 3:

SME-3 has over 32 years of aviation experience in a career heavily involved in regulatory

control, management and oversight. His most recent assignment was Manager of the Flight

Standards Service International Program Staff. During this assignment he was responsible

for the management of the International Aviation Safety Assessment program, international

harmonization and the newly implemented air carrier code international code-share review

program. While in this position SME-3 had program oversight and conducted numerous

International Aviation Safety Assessments (IASA) of the civil aviation authorities and rep-

resented the FAA in consultations to foreign authorities. He also served as the Assistant

Manager of the National Field Office for which he provided management oversight of the

National Aviation Safety Inspection Program, FAA inspector training, and safety analysis

of daily air carrier operations. He has supported FAA research as a subject matter expert

in the development of the FAA Air Carrier Operations Systems Model, and safety risk and

hazard assessment programs.

SME - 4:

SME-4 has been a member on numerous FAA regulatory or guidance development teams

and has performed numerous safety audits of foreign and domestic airlines and repair sta-

tions. He has provided remote and on-site compliance audits and technical support to

numerous Federal Aviation Regulations (FAR) Part 145 foreign repair stations in Japan

and Taiwan regarding Federal Aviation Administration (FAA) certification requirements.

He has assistance for a transfer of several Lockheed L-1011 aircraft from a foreign airline to

a domestic airline, including on-site records inspections. SME-4 drafted a rule and related
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advisory material for the FAA on aging airplane safety. He has developed a generic flight

operations manual for use by foreign operators and developed an Advisory Circular (AC)

on flight in icing conditions (AC 91-74). He has also worked on FAA research projects in

the areas of Continuing Analysis and Surveillance System (CASS) and the accomplished

background studies in support of research and advisory circular development for FAA repair

station Approved Training Programs.

SME - 5:

SME-5 has 50 years of aviation experience in a career heavily involved in regulatory

control and oversight and industry operational experience. His most recent assignment was

Vice President of Safety for for a major US airline where he served as the senior executive

responsible for the safety management and quality assurance of a scheduled 14 CFR part

121 airline until his retirement in 2004. Prior to his industry position SME-3 retired from

the Federal Aviation Administration (FAA)in 1996 where he held a variety of positions

with increasing responsibilities, He was a principal operations safety inspector, regional

operation specialist and Flight Standards District Office manager in Baton Rough, LA and

Dallas TX. He has served as a FAA Principal Operations Inspector for a variety of Part

121 and 135 carriers and supplemental air cargo operators during his career in the FAA

and has been team leader and/or participated on numerous regional and national safety

evaluation teams. These positions pertained to all areas of FAA’s oversight, certification

and surveillance of the air transportation system. Prior to joining the Federal Aviation

Administration SME-5 retired from the US Army as a Warrant Officer flying a variety of

military fixed and rotary wing aircraft.

SME - 6:

SME-6 has a managerial position in the Unmanned Aircraft Systems (UAS) Research

program at the United States Federal Aviation Administration (FAA). He has managed FAA

research initiatives in a broad range of technical areas including airport pavement technol-

ogy, airport planning & design, airframe structures, flight control systems, and currently

unmanned aircraft systems. He served as the program manager for the FAA Airworthi-

ness Assurance Center of Excellence program, a consortium of 28 universities across the
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United States of America with numerous industry partners. In addition, SME-6 had the

opportunities to be detailed at Engineering Division of FAA Aircraft Certification Services,

FAA International Aviation Office, and the National Transportation Safety Board (NTSB).

SME-6 also initiated and managed several FAA joint research projects with international

entities including the Chinese Civil Aviation Authority (CAA), the Netherlands CAA, and

International Air Transport Association (IATA). He holds a Ph.D. in engineering from

Columbia University and worked as a post-doctor research fellow at Princeton University.

Thereafter, he worked as a senior research engineer in an engineering consulting firm to pro-

vide Systems Engineering and Technical Assistance (SETA) to the United State Air Force

Research Laboratories (AFRL) before joining the FAA.
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