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Abstract of the Thesis 

Buoyancy Considerations in a Fluidized Bed of Ground Particles 

By Prakash R. Rao 

Dissertation Director:  

Dr. Michael R. Muller 

 

  The research conducted for this thesis determines and quantifies the forces acting 

on a large submerged object in a gas-solid fluidized bed of Geldart A ground particles at 

the onset of bubbling.  In particular, the additional load from the previously reported de-

fluidized region of particles found above submerged objects in fluidized beds is 

quantified. A force model was developed and comparisons between this and the 

experimental data yielded properties of the de-fluidized region, such as the shape and 

height of the hood, and the angle to which it rises. Drag is measured by comparing forces 

on objects of different geometries subject to the same conditions. Buoyancy was 

measured by summing the pressure force acting to push the submerged object out of the 

bed and the counteracting pressure force of the bed over the submerged object pushing it 

deeper into the bed.  The de-fluidized region is found to have a significant impact on the 

buoyancy of the object by creating an additional weight force above the object thus 

increasing the pressure in this region. Explanations for the hood shape and size are made 

through phenomenological results obtained through visual observations. Particle transport 

through voidage collapses at the surface, i.e. “bubbling”, create a secondary particle 

circulation within the bed adding particles to the top of the hood. The size of the bubbles 

appears to determine the extent of the hood. 
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Chapter 1 Introduction 
 

A fluidized bed is a quasi-fluid made up of particles suspended by an upward flow of gas. 

Fluidization deviates from percolation in that that fluid flow is sufficient enough to match 

the particles terminal velocity, whereas in percolation the bed remains unmoved and the 

air flows through interstitial space. Fluidized beds are created using cylindrical chambers 

that hold a granular medium with an air flow passing through a perforated sheet and 

rising through the medium. If there is an obstruction to the gas flow within the bed, such 

as heat exchanger tubes or bubbles, then there is a tendency for a stagnant, dead region of 

particles to form above these obstructions. This region can have a significant impact on 

heat transfer coefficients (in the case of heat exchanger tubes), bubble rise time (in the 

case of bubbles) and in general the apparent buoyancy of submerged objects. The goals 

of the thesis are to experimentally determine the weight, size and shape of the stagnant 

region, henceforth referred to as the “de-fluidized hood”. 

 

Fluidized beds are not a new technology but have been studied and used for coal 

combustion and particle drying since the 1940s. Fluidized beds represent a clean method 

of burning coal efficiently. The particles are small enough to be suspended, thus exposing 

more surface area than a lump of coal, but large enough such that they can be treated as a 

lumped mass. The particles effectively act as a thermal mass keeping the fluidized bed 

combustion chamber at a uniform temperature. This allows the operator to run the bed at 

lower temperatures than those seen in pulverized coal plants. Fluidized bed temperatures 

are on the order of 7000 C - 8000 C. This is below the temperature at which thermal NOx 

forms. Additionally, limestone can easily be added to the fluidized coal particles to 
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remove SOx gases from the exhaust. The result of combining the limestone with SOx is 

gypsum, which is a profitable by-product. 

 

Due to static electric forces within the bed, particles can be drawn together and form 

loose bonds [Mehrani 2004]. They can agglomerate thus reducing the particles capacity 

to act as a thermal mass, in addition to altering the conditions under which the bed will 

fluidize. The result is a fluidized bed operating under suboptimal conditions. A ‘mixer’ 

that could mechanically break up these agglomerations would reduce the negative effects 

of particle agglomeration. 

 

The agglomeration of particles is one manner in which a fluidized bed differs from a 

fluid. However, in many other ways, the bed will behave like a fluid. For example, if the 

bed is stirred with a pole, the pole will meet negligible resistance, akin to the resistance 

felt when stirring a pot of water. Similarly, if the bed is tilted, the surface will remain 

parallel to the floor and even. Likewise, an object denser than the fluid should sink, while 

an object less dense should sit at the surface.  

 

The last point, however, is a source of peculiarity. Some objects of a density slightly less 

than that of the bed, if placed at the bottom of the bed will remain at the bottom of the 

bed. If the same object is placed on the surface of the bed, it will stay at the surface. 

 

In an attempt to create an object that could break up agglomerates in a fluidized bed, it 

was hypothesized that an object of a density equivalent to that of the bed could be moved 



 3

up and down within the bed by changing the flow rate of gas to the bed thus altering the 

buoyant force on the object. A decrease in flow rate would increase the density of the 

bed, thus pushing the object towards the surface. Increasing the flow rate would do the 

opposite and decrease the density of the bed, thus pushing the object to the bottom of the 

bed. However, the hypothesis failed as objects that should float based on this idea did not 

float but rather sank. Thus, buoyancy was not the only force acting on the object. Upon 

further investigation, the role of the de-fluidized hood of settled particles accumulating 

above the object was found to be significant. It was altering the effect of buoyancy on 

submerged objects in fluidized beds by adding an additional mass to the object, and by 

changing the density of the fluid above the object. 

 

This thesis aims to identify the forces experienced by large objects within a fluidized bed 

of ground particles, with a particular focus on the de-fluidized hood. Not only will an 

understanding of these forces lead to the creation of a mixer that can break agglomerates 

within the bed, it can also be used to help understand the motion of bubbles in a fluidized 

bed and the decrease in heat transfer coefficients for regions above heat exchanger tubes 

within a fluidized bed. 

 

1.1 Definition of Terms 
  

This section will serve to provide a short understanding of the relevant basic terms used 

in this thesis when discussing fluidized beds. 
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Initially, the fluidized bed is filled with sand (in this case, alumina oxide) with the air 

supply to the bed turned off. The height to which the sand fills the bed is referred to as 

the ‘dead bed height’ – with the term dead bed used to refer to the fluidized bed with less 

flow than that required to fluidize the sand.  

 

As air is introduced to the bed, the bed of sand will slowly rise. It will first rise relatively 

calmly and the surface will remain flat. In order for the bed to fluidize, the flow rate must 

be sufficient enough to provide a pressure drop adequate to support the weight of the bed.  

This pressure can be expressed as (Howard 1989): 

 

g
A

Mp gp
p

b )( ρρ
ρ

−=Δ  

Equation 1 
 

Where pb is the pressure drop through the bed, M is the mass of the particles, ρp is the 

density of the particles, ρg is the density of the gas, and g is the acceleration due to 

gravity.  

 

The velocity at which the pressure drop condition is met is known as the ‘minimum 

fluidization velocity’. At this point, the particles ‘interstitial distance’, or the distance 

between each particle, will be at its final value. The term voidage, designated by the 

symbol ε, is used to describe the amount of gas within the total volume of the fluidized 

bed. The height to which the bed rises is referred to as the bed height. Any additionally 

flow will not increase the voidage or the bed height. Rather, increasing the flow beyond 

the minimum fluidization velocity will cause ‘bubbling’, or the escape of excess gas from 
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the bed through voids. At this point the bed surface will no longer behave calmly, but will 

resemble a pot of boiling water. If the flow rate is increased past that required for 

bubbling, the phenomenon of ‘slugging’ will occur, which is essentially large scale 

bubbling where the bubbles grow to have the same diameter as the bed. 

 

Increasing the flow rate further will spew sand particles out of the bed. Operating the bed 

under conditions beyond gentle bubbling is of no value in the present work as the bed is 

far too unsteady for any valuable measurements to be made.  

 

Upon collapsing at the surface, the bubbles release particles entrained in its wake. These 

particles are released towards the walls of the bed chamber. At the chamber walls, the gas 

velocity is zero due to the no-slip boundary condition at the wall. Therefore, particles at 

the wall, having no supporting force from the air, down-well to the bottom of the bed. At 

the bottom, they are re-entrained in the bubble path and travel back to the bed surface 

only to repeat their journey. This leads to a circulation of particles within a fluidized bed 

that is a key mechanism of particle mixing within a bed. 

 

As is evident, in order for fluidization to exist, the flow must be allowed to pass through 

the sand. Any obstruction to the flow that would bring the flow locally to a value less 

than the minimum fluidization velocity would create a region of de-fluidization. This de-

fluidized region will act as a packed bed, or dead bed. 

 



 6

Buoyancy, as it relates to an object in a static fluid, is calculated by integrating the 

pressure drop across the surface of the object. In a fluidized bed, the fluid is not static. 

There is still a pressure drop around a submerged object or particle. However, when the 

effect of the de-fluidized hood is included, the pressure drop around the object is no 

longer uniform. This must be taken into account when calculating the buoyancy of an 

object in a fluidized bed. 

 

There is a force which is essentially the drag on the submerged object or particle within 

the fluidized bed. This drag force will act in exactly the same manner as traditional drag 

and will be subdivided into two categories: form drag and skin drag. Form drag is 

associated with the flow hitting the submerged object and changing direction due to the 

geometric obstruction that the object presents. Skin drag will be the resistance to motion 

due to friction. Thus, the bed will have an apparent viscosity, which will predominantly 

be due to the collision of sand particles against the object and the flow of air around it 

(Davidson 1977).  

 

1.2 Motivation for Research 
 

The research conducted for this thesis aims to determine and quantify the forces acting on 

a large submerged object in a gas-solid fluidized bed of ground particles. The larger goal 

is to create a geometry that can move up and down in a fluidized bed by adjusting the 

flow rate and break up any agglomerations while also mixing the particles within the bed. 
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Many studies have been conducted concerning forces on objects within a fluidized bed. 

However, these works differ from the current work because they used perfectly spherical 

particles, they did not take into account the de-fluidized hood, they used a rectangular 

two dimensional bed, they operated the bed at higher flow rates, or they studied forces on 

particles of equal size as the fluidizing medium. 

 

Unlike in past works, experimental results will directly be used to calculate aspects of the 

hood. These properties include the approximate position along the submerged object at 

which the hood begins, the weight of the hood, the shape and height of the hood, and the 

angle to which it rises.  

 

The present work will hopefully shed more light on the nature of the de-fluidized hood as 

there is limited available work on this topic. The current work hopes to enable future 

researchers to better grasp the interactions between the fluidized medium and large 

objects within the beds. 

 

1.3 Literature Review: 
 

Drag on particles in a fluidized bed has been well discussed in the literature. The most 

common treatment for beds under low Reynolds number flows has been to look at the 

well documented Stokes Drag on a sphere, where, for Re < 1, the drag coefficient, CD, 

can be estimated as: 
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Re
24

=DC
 

Equation 2 
 
 

However, experimental data from studies on drag coefficients shows that the above does 

not match well. In Crowe et al (1998) the data is summarized and compared to the 

standard drag curve. This has been reprinted in Figure 3. The lines resembling scratches 

are data points from previous researchers’ work. 

 

Figure 3: Comparison of Stokes Drag on a sphere to experimental results for drag on a sphere in a 
fluidized bed (Jackson 2000) 

 
 

A correction for drag coefficient, f, for a particle under steady state has been given: 

24
Re rDC

f =
 

Equation 3 
  

where Rer is the Reynolds number based on the relative velocity of the gas to the 

particles. 
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Clift and Gauvin (1970) give the following relation for f over the entire subcritical Re 

range: 

 
116.14687.0 )Re1025.41(Re0175.0Re15.01 −−×+++= rrrf  

Equation 4 
  

 

Other expressions for f  have been made by other researchers. For example, Mostoufi and 

Chaouki (1999) studied a liquid solid fluidized bed and assumed the following for f: 

 

mf −= ε
 

Equation 5 
 

The assumption here, which has been validated by others as will be described below, is 

that the drag will be heavily dependent on the bed voidage, where ε is the bed voidage. 

Through experimentation, an expression for the variable m was given: 

 

40.033.022.0 )(Re02.3
s

m

d
d

Arm −=
 

Equation 6 
  

 Where dm is the particle diameter and ds is the diameter of a particle with the same 

surface area as the actual particle. Here, they have expressed the drag coefficient as a 

function of both the particle Archimedes number and Reynolds number. 

 

When discussing drag in a fluidized bed, an understanding of viscosity within a fluidized 

bed is necessary. Liu et al (1960) stirred a paddle in a fluidized bed of glass beads in an 
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attempt to measure the apparent viscosity of a gas-solid fluidized system. His results 

showed that viscosity would decrease as the gas flow rate was increased. He attributes 

this to particle number density. With low flow rates, the paddle would have to stir 

through more particles than it would at higher flow rates since the bed is less fluidized. 

This result is intuitive; a dense fluid is harder to stir through compared to a less dense 

fluid. Batchelor (1988) states the same conclusion; that the apparent viscosity will change 

with flow rate. 

 

Davidson et al (1977) studied bubble rise in fluidized beds. The scenario is similar to the 

current study in that there is a large object – in the case of Davidson a void of air and in 

the present case a submerged sphere – experiencing forces from a fluidized bed. The 

chief difference is of course that the bubbles are in motion whereas the sphere is fixed. 

Davidson et al argued that traditional viscosity does not affect bubble rise in fluidized 

beds. However, he continues, data demonstrates the obvious existence of an apparent 

viscosity of a fluidized bed caused by particle collision from the dense phase on to other 

objects. He proposed that an average viscosity over all types of fluidizing mediums could 

be taken as being 1 kg/m-sec.  

 

Buoyancy within a fluidized bed has been discussed at length in the literature as well but 

with ambiguity, as discussed by Jackson in 2000. He defines a force f, which is the 

average value of the force on a fluid by a particle in the fluid. For a fluid at rest, this force 

is: 
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gf VpV fρ=∇=  
Equation 7 
  

Where V is the volume of the object immersed in the fluid, ∇ p is the pressure gradient, 

ρf is the density of the fluidized bed and g is the acceleration due to gravity. The right 

hand side of the above equation is a statement of Archimedes principle, where the 

buoyant force is equivalent to the weight of the displace fluid. The right hand side is also 

equal to the integral of the pressure over the surface of an object submerged in a liquid. 

 

Jackson continues modifying the conditions of the above equation and ultimately 

describes the situation found in a fluidized bed where there is a flow through a uniform 

bed of particles with voidage ε. The fluid is subject to an acceleration a, which is defined 

as du/dt where u is the fluid velocity. The accelerating fluid exerts a force on the 

immersed object. As Jackson explains, the ambiguity in defining buoyancy arises in the 

treatment of the force contribution by the accelerating fluid; it can either be lumped 

together with the buoyant force or it can be treated as a separate force onto itself.  

 

Furthermore, greater debate in the calculation of buoyancy arises concerning the density 

to be used in calculations. As Jackson explains, the bulk density, denoted here as the 

density of the fluidized bed, should be used rather than the fluid density if: 1) the weight 

of the particles is fully supported by the fluid flow and 2) the fluid is at rest or in uniform 

motion. The usage of the bulk density is not valid if either condition is not met.  Mostoufi 

and Chaouki (1999) also summarize these arguments and state that one side believes the 
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bulk density should be used for all cases while the other side believes that bulk density 

should only be used when the particles are much smaller than the submerged object. 

 

Batchelor (1988) clarifies the above. In developing the force balance for particles in a 

fluidized bed, he states that buoyancy is strictly the mean force exerted by particles on the 

fluid. However, for the sake of simplicity, he includes it in a term meant to represent the 

mean force on particles by gravity. Thus, he states the gravity force as: 

 

∫=
2

1

~
x

x

ndxgAMg  

Equation 8 
 

Where A is the cross sectional area of the bed, M is the mass of the particles, n is the 

particle number density and the limits of integration represent the positions of the upper 

and lower surfaces of the fluidized bed cylinder. The gravitational acceleration, g~  , is: 

 

p

gpgg
ρ
ρρ −

=~

 
Equation 9 

   

Where ρp is the density of the particles, ρg is the density of the gas and g is the standard 

gravitational acceleration. The correction to the acceleration is used to account for the 

buoyant force. 

 

Howard (1989) shows that the velocity at which particles will fluidize is based on the 

buoyant force. He rewrites the commonly used Ergun Equation, which provides a relation 
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for the pressure drop through a fluidized bed, in non-dimensional terms and solves for the 

Archimedes number, a non dimensional number that is essentially a balance between the 

buoyant forces to the viscous forces. The Ergun Equation is as follows: 

 

m

f

m

fb

d
U

d
U

L
p

ϕ
ρ

ε
ε

ϕ
μ

ε
ε 2

222

2 )1(75.1
)(

)1(150 −
+

−
=

Δ

 
Equation 10 

 

Where Δpb is the pressure drop through the bed, L is the bed height, ε is the bed voidage, 

μf is the fluid viscosity, U is the fluidization velocity, φ is the spherecity which is the 

ratio of the surface area of a sphere of the same volume as the particle to the surface area 

of the particle, ρf is the density of the fluidized bed and dm is the mean particle diameter. 

 

Howard non-dimensionalizes Equation 10 and rewrites it at the minimum fluidization 

velocity as  

 

2
332

Re75.1Re
)1(

150 mf
mf

mf
mf

mfAr
ϕεεϕ

ε
+

−
=

 
Equation 11 

  

Where Ar is the Archimedes number: 

 

2

3)(

f

mfpf gd
Ar

μ

ρρρ −
=

 
Equation 12 

  

And Remf is the Reynolds number at the minimum fluidization velocity: 
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f

mmff
mf

dU
μ

ρ
=Re

 
Equation 13 

 
With this, the Archimedes number, which is a measure of magnitude of the buoyant 

forces, is expressed in terms of the Remf. The velocity at which Equation 11 is met will 

fluidize the bed. Therefore, the minimum fluidization velocity is dependent on the 

buoyant force on the particles.  

 

The previous discussions on buoyancy dealt with it on theoretical terms. Many 

researchers have tried to experimentally measure the buoyant forces in a fluidized bed. 

Grace and Hosney in 1985 investigated the forces on horizontal tubes in a fluidized bed 

of spherical and non-spherical objects as bubbles passed by the tubes. The tubes were 

attached to the bed by two strain gauges at either end. The researchers were interested in 

discerning the effects of superficial gas velocity, static bed height, particle diameter, 

particle density, tube diameter and tube shape on the vertical forces on tubes. The 

conclusions reached are that the buoyant force at times when bubbles are not present is 

very nearly approximated by Archimedes Principle, but corrected by: 

 

gVF mfsB )1(7.0 ερ −=  
Equation 14 

  

Where FB is the buoyant force, ρs is the density of the dead bed, εmf is the voidage at the 

minimum fluidization velocity and V is the displaced volume. Grace and Hosney 

attribute the factor of 0.7 “to the tendency for a ‘stagnant cap’ of particles to form on top 

of an immersed tube”. The coefficient of 0.7 was developed experimentally. 
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Additional studies on the apparent buoyancy of large spheres at several locations in 

fluidized beds were carried out by Oshitani et al (2000). The fluidizing medium was 

spherical glass beads. Their goal was to measure local particle flow velocities by 

measuring the buoyancy of a submerged object at different locations. Their experimental 

set-up was very similar to that of the present work, as will be explained later.  However, 

they did not consider the effect of the de-fluidized region above the sphere, as mentioned 

by Grace and Hosney, and others (to be described forthcoming). Oshitani et al used the 

following relation to determine the buoyancy: 

 

Apparent Buoyant Force = |weight of sphere in atmosphere – weight of sphere in bed| / 

weight of sphere in atmosphere  

Equation 15 
 

Their results showed marked variation in apparent buoyancy and thus flow velocity as 

particle size, superficial gas velocity and bed height are increased. Therefore, it can be 

assumed that the apparent buoyancy is a function of the studied parameters.  

 

In relating buoyant forces to gas velocity, as Oshitani does, it may be pertinent to review 

the work of Tee et al (2007). Here, it has been shown that velocity fluctuations can be 

observed throughout a fluidized bed and can be attributed to density differences within a 

bed. Tee et al hypothesize that this is due to polydispersity of the particles. As studied by 

many researchers (Qiaoqun et al (2004), Marzochella et al (2000), Huilin et al (2003), 

Gilbertson et al (2001), Asif (1997)), particles in a fluidized bed will segregate based on 

their density differences with the denser particles settling to the bottom and less dense 
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particles rising to the top. If the particles are all of the same density but of different sizes, 

then, based on the mass of the particles, the smaller particles will be located at the top of 

the bed and the larger ones at the bottom of the bed. In the work of Tee et al, the 

velocities of the interstitial flow vary because fluidization velocities will be dependent on 

the density of the particles. He argued that the velocity fluctuations arise due to the 

particles trying to regain the balance between buoyancy (which is density dependent) and 

drag (which is velocity dependent). Implicit in this argument is the idea that the only two 

forces acting on a particle are buoyancy and drag. 

 

The final force exerted on a submerged object by the fluidized bed will be that of the de-

fluidized region. As stated by Grace and Hosney, a “stagnant cap” of particles sat on top 

of their tubes within the fluidized bed. Many researchers had previously studied the flow 

patterns and forces on objects immersed in a gas-solid fluidized bed.  

 

Glass and Harrison (1964) studied the flow around solid obstacles in a fluidized bed. The 

fluidized bed was comprised of sand and the gas velocity was held to 2-3 times that of 

minimum fluidization. Their findings showed three regions of flow around the object: 1) 

an area of air immediately below the object 2) a seemingly de-fluidized region above the 

sphere and 3) chains of bubbles at the sides of the obstacle. They state that the de-

fluidized region would most likely disappear at high gas flow rates.  

 

Hager and Schrag (1975) studied the de-fluidized hood on fixed cylinders in a rectangular 

fluidized bed of uniform glass beads. The goal was to take photographs of the hood and 
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determine the particle motion within the hood. This was done by using tinted beads to 

initially form the cap and then tracking the tinted beads over time. The bed was fluidized 

under bubbling conditions. The resulting hood shape and growth with time is shown in 

Figure 4. 

 

As one can see, the work of Hager and Schrag indicates that the hood is similar in size to 

a cone with a wide and rounded top (image on left of Figure 4). Also visible is the motion 

of the top layer of the hood. Over time it erodes until it is all but gone. However, as is 

evident from the image on right of Figure 4, the initial cap is replaced and “overturns”, 

meaning that new particles replace the previous particles. This leads to a constant hood 

shape. Thus, they report a secondary flow pattern within the bed causing particles to 

move inward toward the center of the bed. This would appear to be the mechanism by 

which the hood is sustained. 

 

Figure 4: De-fluidized hood growth with time (left) and particle movement within (right). From 
Hager and Schrag (1975) 
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Hager and Schrag, based on their visual, found the ratio of the hood height to the object 

diameter to be 0.80. Other researchers reported values of 1 to 4, but these works did not 

have the benefit of tracking the hood. 

 

Kulkarni (1986) also reported the same de-fluidized region. He looked at tubes immersed 

in a rectangular fluidized bed of spherical glass beads with air as the fluidizing gas. His 

objective was to study time averaged characteristics of properties of the hood such as 

height and its relation to fluidizing gas velocities and particle size using long exposure 

still photography. His photographs confirmed the existence of the de-fluidized hood. He 

also confirms the gap of air, as reported by Glass and Harrison, below the object. From 

his estimations of the hood height, Kulkarni proposes that the height of the hood is 

related to the fluidizing velocity by: 

 

035.1)(489.0
mf

hood

U
U

d
H

=  

Equation 16 
  

With Hhood being the hood height, d being the diameter of the immersed object, U being 

the gas velocity and Umf being the minimum fluidization velocity. The height of the hood 

decreases with increasing minimum fluidization velocity.  

 

Additionally, A.C. Rees et al (2004) studied the rise of spheres in fluidized beds with air 

as the fluidizing medium. The bed was fluidized such that it was bubbling or slugging. 

Ress et al found that the spheres rose faster when subjected to higher gas velocities. 

Peculiarities were observed in that objects that were expected to rise based upon the 



 19

predicted density difference between the object and the fluidizing medium would sink. 

Furthermore, rise velocities were lower than the predicted rise velocities. These 

phenomena were attributed to the presence of the de-fluidized region above the spheres. 

Shapes and relations for the dimensions of the hood were derived assuming Stokes’ flow. 

Rees et al concludes that the rise of buoyant objects in a fluidized bed can be predicted 

using Stokes’s Law for a sphere moving in a viscous liquid. 

 

Rees et al assumed the shape of the de-fluidized hood was that of a cylinder with a 

rounded end. The height of the hood was correlated to be: 
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Equation 17 
 

where VHOOD is the volume of the hood and d is the diameter of the sphere. The volume 

of the hood was not directly calculated by Rees, but rather it was inferred from other 

calculations, such as relations he has given for the minimum fluidization velocity, total 

volume of the particle, shape factors proposed by Bowen and Masliyah (1973), and wall 

correction factors proposed by Perry and Green (1998). His relation for the minimum 

fluidization velocity is: 
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Where Volt is the total volume of the particle and hood, kw is the wall correction factor, 

and Δ is a shape correction factor for the total particle. Rees et al provide relations for all 

of the unknowns in Equation 18 except μf(mf), the viscosity at minimum fluidization, and 

the volume of the hood, which, along with the volume of the submerged object, make up 

Volt. By taking two sets of data points, Rees et al can solve for these two unknowns. He 

finds the viscosity to be 0.66 Pa-s, which is in good agreement with the value proposed 

by Davidson (1977) and he finds that the hood height can be scaled with the diameter of 

the immersed object, as proposed by Hager and Schrag. 

 

Rees, et al (2007) also took previous data from Daniels 1959 of falling spheres in a 

fluidized bed, introduced the concept of the de-fluidized hood and found good agreement 

between experimental data and theory for calculating apparent viscosities of a fluidized 

bed.  
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Chapter 2 Experimental Set-Up 
 

Experiments were run to determine the pressure drop across the fluidized bed, the bed 

height increase due to the submersion of the sphere into the bath, the forces exerted on 

the sphere by the fluidized medium at different vertical positions within the bed, and the 

forces exerted on a cylinder with a rounded end at different vertical positions within the 

bed.  

 

The basic experimental set-up consisted of a fluidized bed provided by the Techne 

Corporation. Air was fed using compressed air provided by Rutgers University. The 

volume flow rate of air and pressure were regulated through use of a rotameter and a 

pressure regulator respectively. Ground alumina oxide particles of Geldart A size were 

used as the fluidizing medium. Fluidization was maintained above the minimum 

fluidization velocity and at the onset of bubbling. This level was visually determined.  

 

The pressure drop across the bed was calculated by measuring the increase in pressure as 

more alumina oxide was added to the bed. The increase in bed height due to the 

submersion of the sphere in the fluidized bath was measured using a photodiode with a 

strong light source and outputted to Labview software. The forces exerted by the 

fluidized bath on the sphere were determined by weighing the sphere as it was slowly 

submerged into the bed using a measuring system constructed out of two scales and a 

support beam. The forces exerted by the fluidized bath on a cylinder with a rounded end 
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were measured using the same scale apparatus used for measuring the forces on the 

sphere. A detailed explanation of all the components of the experiments follows. 

 

2.1 General Set-up 
 

2.1.1 Fluidized Bed 
 

The fluidized bed, an FB-08 Fluidized Calibration Bath provided by the Techne 

Corporation, is made of stainless steel and has an inside diameter of 23 cm and height of 

43.2 cm. The bed was oriented vertically and open to the atmosphere at the top. Air was 

fed into a plenum chamber through a 1/8” inlet. The inlet was located at the wall and air 

was injected into the plenum in the radial direction. The plenum was approximately 3.5 

cm high. The plenum chamber buffered the air flow and dispersed it evenly through a 

perforated plate with holes less than 45 microns. Above the perforated plate was the 

fluidized medium. 

 

The compressed air was provided by Rutgers University and was set at 85 psi. A valve 

first dropped the pressure to around 1 psi. The compressed air was then further regulated 

by a rotameter. The rotameter is essentially a valve with a maximum volume flow rate of 

40 scfh. It could be set through the use of a dial that would open or close the valve. The 

instrument read out in percents of 40 scfh. A pressure gauge was located after the 

rotameter and before the air inlet to the fluidized bed. For the present experiments, the 

valve was opened one turn and air was turned on such that the rotameter read 100%. This 
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corresponded to a pressure of 0.79 psig and a flow rate of 40 scfh. Now the valve would 

be reduced to the desired flow rate. Setting the flow rate in this manner guaranteed that 

the pressure of the inlet air flow was kept constant from experiment to experiment. A 

schematic of the set-up can be seen in Figure 5. 

 

Figure 5: Schematic of basic fluidized bed set-up 
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A picture of the basic set-up can be seen inError! Reference source not found. Figure 
4. 
 
 

 
Figure 6: Picture of fluidized bed set-up 
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2.1.2 Ground Particles 
 

Ground alumina oxide (ranging in diameters from 45 to 125 microns) with a density of 

963.1 kg/m3 was used as the fluidizing medium. The particles were thus of Geldart size 

A. The bed was filled with enough alumina oxide such that the aspect ratio (ratio of 

height of the fluidized bed at incipient fluidization to the diameter of the bed) was kept at 

1. This corresponded to 7.98 kg of sand. Ground particles rather than perfectly round 

ones were used in order to simulate the shape of particles commonly used in fluidized 

beds in industry. One difference between ground and round particles is the manner in 

which they settle or pack. Round particles will eventually settle in a uniform fashion with 

each particle touching four other particles at one contact point per adjacent particle. 

Ground particles will settle in an unpredictable fashion. This will make the interstitial 

distances between particles different locally, whereas the distance between adjacent 

spherical particles will be the same for all particles. Figure 5 has been provided to clarify 

this point: 

 

 

 

 

 

 

 

Figure 7: Packing and settling of rounded spheres (left) and ground particles 
(right) 
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Another difference between ground and round particles is the manner in which the flow 

moves around the particles. Ideally, the flow around each round particle should be the 

same whereas with ground particles, since no two particles are alike, the flow around 

each will be different.  

 

Additionally, particles of different sizes were used. This allows for stratification of 

particles, as is commonly seen in industrial applications. Big particles will reside at the 

bottom of the bed while small particles will reside at the top. Although not studied in the 

present work and as previously stated, it has been hypothesized that stratification leads to 

variations in flow rate along the vertical axis of the bed and thus variations in bed density 

(Tee et al 2007). Density has a large roll in the forces exerted on submerged objects in 

fluidized beds. Using particles of varying sizes and shapes will better mimic real 

fluidized bed operating conditions.  

 

2.1.3 Large Submerged Objects 
 

A hard, hollow plastic sphere of radius RSPHERE = 4.775 cm with negligible wall thickness 

was used as the large object submerged in the bed. The sphere had an approximately 

1/16” hole made during its manufacturing. The hole was used to stake the sphere and 

attach it to various instruments that would move the sphere a measurable distance 

vertically. The sphere weighed 36 grams. 
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For experiments that were intended to eliminate the de-fluidized hood, the same sphere 

was used however a hollow cylinder made out of aluminum flashing was attached to the 

sphere. This is the “cylinder with rounded end” referred to in this thesis. The tube 

attached at the hemisphere, R = RSPHERE, and the length was designed such that the whole 

apparatus would never be completely submerged. The outer radius of the cylinder was 

4.775 cm, which is the same as the radius of the sphere. The weight of the sphere plus a 

cylinder of height 0.279 m was 0.129 kg. 

 

Figure 8 shows the large objects. 

 

 

Figure 8: Large objects submerged in bed. Cylinder with rounded end (left) and sphere (right) 
 

2.2 Determination of the pressure drop through the bed 
 

The pressure drop through the bed was determined by incrementally adding more 

alumina oxide and measuring the drop from the regulator to the atmosphere. The pressure 

drop associated with the alumina oxide was of interest as opposed to the pressure drop 
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associated with the plenum and perforated sheet. In order to determine the pressure drop 

through the sand, dP/dz, the pressure drop was measured first while there was no sand in 

the bed with the flow rate set to 24 scfh. This provided the pressure drop associated with 

the plenum and the perforated plate. Next, the flow was shut off and a volume of sand 

was added. The flow was turned back on to the same flow rate as before and the pressure 

drop was measured again. This was repeated until several measurements were recorded. 

By subtracting out the pressure drop associated with the plenum and the perforated plate 

from the total pressure, the pressure drop through the sand could be determined. Taking 

this value and dividing by the bed height yielded dP/dz. The pressure drop through the 

sand was used to calculate the upwards component of the buoyant force exerted on the 

sphere.  

2.3 Bed height rise associated with submersion of sphere 
 

For the experiments measuring the bed height, the sphere was attached to a Unislide 

above the bed. The Unislide is an off the shelf product sold by Velmex Inc. It is made of 

a fixed block marked with a ruler and sliding block. The fixed block has a threaded rod 

that spans the block’s length. Attached to this rod is the sliding block. The threaded rod is 

attached to a knob that when turned moves the sliding block along the fixed block (refer 

to Figure 9 for clarity). The displacement of the sliding block can be measured against the 

ruler marks on the fixed block. In order to tailor the Unislide for the purposes of the 

present work, another block was added to the sliding block on the Unislide. The attached 

block had a hole with a set screw. One end of a stake was inserted into the sphere 

opening and the other end was placed through the hole on the block and tightened with 
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the set screw, thus fixing it to the Unislide. The Unislide was attached to the fluidized bed 

by bolting it onto the outer rim of the bed, such that the slide would move vertically up 

and down into and out of the bed. It was positioned such that the sphere aligned with the 

center of the bed. Thus, the sphere could be moved along the vertical axis of the bed by 

turning a knob. The ruler on the Unislide was subdivided into increments of 0.0254 cm. 

The slide was moved slowly so that the sphere could be held in place at different vertical 

positions along the bed.  

 

 

Figure 9: Unslide assembly 
 

Sphere 

Unislide 

Knob for moving 
unislide 
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A photodiode connected to a PC and analyzed through Labview was used to measure the 

bed height. The sensor was installed in a plexiglass case measuring 13.5 cm x 4.5 cm x 

2.5 cm and connected to a long aluminum threaded rod that could screw into the top of 

the bed. The diode was placed such that it was partially submerged in the fluidized bath 

and slightly offset from the wall radially. Voltage potentials could be measured at each 

end of the diode and a voltage drop could be measured across the diode and outputted in 

Labview. Figure 10 provides a schematic of the set-up. 

 

The diode was divided into two regions – the top half and the bottom half. Shadows on 

one end would reduce the potential observed on that same end. A 250 W light bulb was 

used as a strong light source to increase the amplitudes of the observed voltage drops. 

The light was installed on a fixture that could also be screwed onto the top of the bed. As 

the sphere was submerged with the flow rate held constant, the bed would rise in height. 

The diode was positioned such that the bottom half was always completely submerged 

and as the bed height rose, the top half would become increasingly covered.  

 

 

 

 

 

 

 

 

 

Unislide with screw 
on top to move the 
sphere up and down 

Sphere attached to 
unislide 

Photodiode 

Fluidized bed 

Photodiode leads 
connected to 
Labview program 

Figure 10: Schematic of set-up for bed height measurement 
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The diode was essentially a photovoltaic and therefore a decrease in exposed light would 

decrease the potential on the side that was being covered.  

 

Thus, as more of the diode was covered up, the voltage difference between the two ends 

would change. Pictures of the set-up can be seen in figures 9 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Picture of bed height measurement assembly 
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Figure 120: Top-down view of bed height measurement assembly 

 
 

In order to convert the voltage difference into a height reading, the diode was calibrated 

by measuring the bed height with a ruler and comparing it to the voltage difference 

outputted by Labview. In order for the calibration to be accurate for all measurements, 

the number of lights on in the laboratory was kept constant, the experiment was kept 

away from windows and the 250 W light source was located in the same position relative 

to the diode for all experiments. It was determined that the voltage difference is linearly 

proportional to an increase in bed height. The results of the calibration are show in Figure 

13. For all bed height experiments, the flow rate was kept at 24 scfh. 

Unislide 
assembly Light source 

Photodiode 



 33

Calibration of Photodiode

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

0.55 0.552 0.554 0.556 0.558 0.56 0.562 0.564 0.566 0.568

Voltage difference

B
ed

 H
ei

gh
t (

in
)

 

Figure 13: Data for calibration of photodiode 
 

2.4 Forces on Submerged Objects in a Fluidized Bed 
 

For the experiments measuring the forces on the sphere, the sphere was held above the 

bed by a support beam with two legs. The support essentially straddled the fluidized bed. 

Either leg of the support was anchored to a base of sand which in turn stood on a 

weighing scale. The sphere was attached to the support by a threaded rod (size 8-32) 

staked through the top of the sphere. The other end of the rod was threaded through the 

support so that when turned, the sphere would move in and out of the bed. The support 

was placed such that the sphere would be located at the center of the bed. Initially, the 

sphere was held above the level of the fluidized bed and the scales were zeroed. The 

sphere was turned 0.4 cm into the bed and the mass as measured on the scales was 
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recorded. As the sphere was submerged, it would be subjected to the forces within the 

bed. An increase in the magnitude of the force measured by the scales indicated an 

increase in the net force on the sphere. Similarly, a decrease in the force on the scale 

indicated a reduction in the net force. This was repeated and readings were taken until the 

change in force on the sphere was unchanged with increased penetration. Experiments 

were run at two flow rates: 40% and 60% of scfh of 40 scfh. This corresponds to 1.26 x 

10-4 m3/sec and 1.89 x 10-4 m3/sec respectively. In terms of velocity, this corresponds to 

3.5 x 10-3 m/sec and 5.28 x 10-3 m/sec respectively. At 40%, the bed was close to the 

minimum fluidization velocity and therefore this velocity will be referred to as UMF. At 

60%, the bed was at the onset of bubbling and will be referred to as 1.5 UMF (as it is 1.5 

times the minimum fluidization velocity). The stage of fluidization at the flow rates was 

determined through visual observation.  

 

The same set up was used to measure the forces on the cylinder with a rounded end. 

However, experiments for the cylinder were only run at 1.5 UMF. 

 

A schematic of the set up is shown in Figure 14. Pictures of the assembly can be seen in 

Figures 13 and 14. 
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Figure 14: Set-up for experiments measuring forces on submerged objects 
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Figure 15: Picture of assembly for measuring forces on submerged objects shown outside of bed 
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Figure 16: Picture of assembly for measuring forces on submerged objects shown inside bed 
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Chapter 3: Results 
 

The following section will present the results of the experiments. 

 

3.1 Determination of Pressure Drop through the Bed 
 

Using the aforementioned methodology, the pressure drop through the bed was 

determined. Figure 17 shows the data from the experiments. 
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Figure 17: Pressure across bed vs. fluidized bed height 
 

As is clear, the pressure increases linearly as more alumina oxide is added. The equation 

of the pressure increase with increased bed height obtained from the data is: 
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2669.00296.0 += hPb  

Equation 19 
  

Here Pb is the pressure in psig and h is the bed height in inches. The y-intercept of 0.2669 

psig corresponds to the pressure drop through the plenum and perforated sheet. The slope 

of 0.0269 psig/in is the pressure drop associated with the alumina oxide, dP/dz. This 

value is used in later calculations of buoyancy. 

 

In Howard 1989, it is suggested the drop through the distributor (the plenum and the 

perforated sheet) should be at least 10% of the total pressure drop across the bed for 

optimal design of a fluidized bed. In the present case, at the fluidized bed height of 10 

inches (which is approximately the bed height used in the following experiments), the 

drop through the distributor is 47% of the total drop across the bed. Therefore, we can 

verify that the fluidized bed is functioning properly and our pressure drop calculations are 

reasonable. 

 

3.2 Bed height rise associated with submersion of sphere 

 

Figure 18 shows the measured bed height increase as the sphere was slowly lowered into 

the bed. The horizontal axis has been scaled to one radius of the sphere, RSPHERE.  
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Figure 18: Bed height rise as a sphere is submerged into the bed 
 
 

The predicted values in Figure 18 were created using a model with the simple assumption 

that the bed would rise proportionally to the volume displaced by inserting the sphere.  

 

Height Bed dUndisturbeSphereSunken Partially  of VolumeHeight  Bed Predicted 2 +=
FBRπ

 

Equation 20 
 

Where, 

)3()
3

(  SphereSunken Partially  of Volume 32 hhRSPHERE −×=
π  

Equation 21 
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In the above, RFB is the radius of the fluidized bed, while RSPHERE is the radius of the 

sphere and h is the depth that the sphere has sunk. The impact of the de-fluidized hood on 

the bed height has not been included in the model. 

 

For all bed height experiments, the flow rate was kept constant and at the onset of 

bubbling (determined by visual observation). The data matches fairly well until the 

sphere sinks to around a height of 1.75 RSPHERE. At this point, the model continues to 

grow, while the data starts to flatten. The de-fluidized region has sufficiently developed 

such that there is a portion of the bed now dead. This can be visually observed because a 

dead region on the surface of the fluidized bed above the sphere is apparent. This dead 

bed portion leads to a less than predicted bed height. For times when the sphere is 

submerged less than h = 1.75 RSPHERE, the bed height is slightly greater than the predicted 

bed height. However, this under prediction is less than 1% of the total bed height on 

average. From this, the conclusion can be made that the de-fluidized hood does not begin 

at a penetration depth greater than h = 1.75 RSPHERE. Physically, it cannot begin before h 

= RSPHERE. 

 

 Hysteresis occurs as the sphere is pulled out of the fluidized bed. At every point, the bed 

height is higher – indicating higher levels of fluidization – while the sphere is being 

pulled out than it is while being pushed in. However, this difference is very small. Even 

still, hysteresis can be seen when fluidizing and de-fluidizing the bed. The case with the 

sphere entering the bed can be considered de-fluidization because a portion of the bed is 

being deadened whereas the bed is fluidized as the sphere is removed from the bed 
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because the deadened region created by the sphere is now being re-fluidized. Figure 19 

taken from data presented by Jackson (2000) shows hysteresis when a bed is fluidized 

and then de-fluidized. Arrows show the direction of bed height increase. As can be seen, 

the bed height is higher when de-fluidizing than it is when fluidizing. 

 

Figure 19: Bed height change during fluidization (right pointing arrows) and de-fluidization (left 
pointing arrows) 

 
 
 
 
Visual observation of the sphere entering into the bed shows that once the sphere was 

submerged half way, bubbles would form around the circumference of the sphere. Once 

the sphere was submerged deeper than RSPHERE, the bubbles would still appear at the 

surface of the bed. They would form a ring at the surface whose radius would grow as the 

sphere was lowered deeper. The bubbles would also grow in size as the sphere was 

lowered.  
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Figure 18 is a top view drawing of the bubbling ring around the sphere: 

 

 

 

 

 

 

 

 

 

 
 

 
 

These bubbles are the result of the flow having to accelerate around the sphere at the 

hemisphere in order to maintain a mass balance for air. Since the bed is already fluidized, 

air in excess of that needed for fluidization would escape as bubbles. This caused the 

formation of the ring of bubbles around the hemisphere. The bubbles also visually verify 

another key phenomenon. If the flow did not separate from the sphere, as it would under 

Stokes Flow, then the ring of bubbles would not have been observed. However, the 

presence of bubbles indicates that the flow separates from the sphere at the hemisphere. 

Therefore, the region above the sphere will have no flow, and this region would be de-

fluidized. Consequently, using Stokes’s Law for any predictive calculation concerning 

the de-fluidized hood should be broached with caution. Rees et al (2004) calculated the 

Reynolds number for their experiment and found it to be less than 1. Thus, the usage of 

Sphere 
submerged to 

the hemisphere 
at h ≥ RSPHERE 

Bubbles forming 
around the 
hemisphere 

Fluidized 
bed 

Figure 20: Bubble formation around hemisphere of half submerged sphere 
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Stokes’s Law was said to be appropriate. However, visual observations of the sphere 

sinking would seem to indicate that while the sphere may obey Stokes’s Law 

mathematically, it reality, it may not obey it physically. 

 

3.3 Forces on an object submerged in a fluidized bed: 
 

Figure 19 compares the forces on a sphere in a fluidized bed at two different flow rates 

with the forces on a cylinder sticking out of the fluidized bed with a rounded leading 

edge. The submerged sphere is subject to form drag, skin drag, buoyancy and the weight 

of the de-fluidized region, while the submerged cylinder is only subject to form drag, skin 

drag and buoyancy. A cylinder sticking out of the fluidized bed cannot develop a de-

fluidized region. Experiments with spheres at different flow rates were used in an attempt 

to alter the drag on the sphere. 

 

For h = 0 to h = RSPHERE, the cylinder and the sphere at 1.5 Umf should be in agreement 

because the geometries and operating conditions are essentially the same. Thus the drag 

and the buoyant forces should be the same for the two objects.  

 

From h = RSPHERE  to h = 2RSPHERE, the sphere experiences less growth in total forces than 

the cylinder. This should be expected as the cylinder has more exposed surface area 

beyond h = RSPHERE than the sphere and thus will have a larger drag force.  
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Figure 21: Force on sphere and cylinder in fluidized bed 
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Once the cylindrical section starts to submerge at h = RSPHERE, the pressure force acting 

normal and upwards on the body increases linearly with penetration depth. Therefore, the 

buoyant force should grow at a constant rate with increased penetration. The linearity of 

the forces on the cylinder beyond h = RSPHERE indicates that no additional forces, such as 

a de-fluidized region, are created. 

 

The total forces on the sphere begin to reduce at h = 1.8RSPHERE. This can be attributed to 

the creation of the de-fluidized hood. This assertion is made because a sphere without a 

de-fluidized section would experience no additional forces after it was completely 

submerged (i.e. the forces for the sphere in Figure 21 would flatten out past h = 2 

RSPHERE). In the current case, the force on the sphere begins to decrease once the sphere is 

nearly submerged. Therefore, an additional downward force is now observed. After a 

certain point (h = 4.41RSPHERE for 1.5 Umf flow and h = 4RSPHERE for Umf flow) the forces 

in Figure 21 flatten out. At this point, it is hypothesized that the de-fluidized region is at 

its maximum size. 

 

A comparison between the sphere under Umf flow and 1.5Umf flow for h between 0 and 

2RSPHERE yields the result that the sphere under Umf flow is subjected to larger forces. 

Although the flow rate is lower, the density is higher. The increase in density is due to the 

decrease in fluidization caused by the lower flow rate. The denser phase leads to more 

collisions between the particle and the sphere. This would lead to an increase in viscosity. 

The increase in viscosity with lower flow rates has been reported in the literature (Liu 
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1960, Davidson 1977). The buoyant force for the UMF case will also be increased since 

the density increase will yield a greater pressure drop through the sand.  
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Chapter 4 Theoretical Model 
 

An attempt to derive the force balance on the sphere can now be made and its accuracy 

can be verified using the data. A model was developed for comparison to the data of the 

sphere at 1.5 UMF. 

 

The forces on the sphere are as follows, with h being the depth to which the sphere has 

penetrated the bed surface: 
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4.1 Determination of Form Drag 
 

Visual observation indicated that form drag would not be a major contributor to the force 

on the sphere. In an empty bed, at the flow rate used in the aforementioned experiments, 

the sphere would not move at all, thus indicating a small form drag force. 

 

The form drag was determined through a momentum balance around the sphere. The 

velocity around the sphere penetrating a distance h into the bed was determined using 

Equation 22. 
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Equation 23 
                        

Here, U is the fluidization velocity, V& is the volumetric flow rate as measured on the 

rotameter and A is the cross sectional area of the bed. RFB is the radius of the bed, A1 is 

the area of bed around the sphere at a particular penetration height, h, measured as being 

the depth at which the bottom of the sphere has been submerged into the bed, Dwetted is 

the wetted diameter of the sphere at the penetration height, measured as being the chord 

length across the sphere at this penetration. ε is the bed voidage, or percent of the bed that 

is air, and hpred is the predicted bed height. 
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In order to calculate the momentum difference around the sphere, the bed density, ρf, 

needs to be determined. Equation 24 was used for this purpose 

 

bed

sand
f V

M
=ρ  

Equation 24 
     

Msand is the mass of alumina oxide in the bed and Vbed is the volume of the fluidized bed 

using the predicted bed height. 

 

By calculating the momentum deficit at a position along the sphere up to RSPHERE, we can 

find the form drag along the sphere. 

 

)(Drag Form 1
2

1
2 AUAUf −= ρ  

Equation 25 
 

For the experiments, the form drag was on the order of 10-2 N or 0.06 times the weight of 

the sphere. 

 

Figure 22 shows the form drag variation with penetration depth: 
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Figure 22: Form drag on a submerged sphere 
 
 
Past h = RSPHERE, the form drag remains constant since the air flow is no longer impacting 

the sphere. 

 

4.2 Determination of Buoyant Force 
 

In a static fluid, the buoyant force is calculated using Archimedes Principle: 

 

g
dz
dP

fρ=  

Equation 26 
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The buoyant force is an effect of the pressure difference above and below the immersed 

object. By integrating the pressure over the surface of the immersed object, the buoyant 

force is attained for a submerged object in a static fluid. 

 

From Equation 19, dP/dz, the pressure drop associated with the alumina oxide, is: 

 

Pa/m7926     

psi/in 0296.0

=

=
dz
dP

 

 

Now, calculating dP/dz through Archimedes Principle, using the density calculated in 

Equation 24 of 843.4551 kg/m3, gives 8265.86 Pa/m (Equation 26). These two solutions 

are within 4% of each other. The similarity in the two results gives confidence that 

pressure drop observed is accurate. 

 

Integrating dP/dz over the sphere yields the buoyant force on a sphere without a de-

fluidized hood: 

 

dθ dφ dz )(sin  R )( 2
sphere0

0

2

0
θ

dz
dPForce

h

buoyant ∫∫∫
Π

Π
=  

Equation 27 
   

Where 

Pa/m 7926== g
dz
dP

fρ   
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The pressure force will act normal to the surface of the object. Only the vertical 

component (along the axis of the bed) of the force is of interest as the hood will act 

purely vertically and the forces measured were all vertical.  In order to obtain the vertical 

component of the pressure force, Equation 27 is multiplied by cos(θ), where θ is the angle 

swept from the bottom of the sphere to the bed surface. This can be expressed as: 

)2(tan 1

hR

d wetted

−
= −θ  

Equation 28 
 
In the case of an object with a de-fluidized hood, the pressure force acting downward for 

h > Rsphere is difficult to attain through integration around the surface for a variety of 

reasons. One such reason is that once the hood forms, the pressure drop felt by the top of 

the sphere will be different than that felt by the bottom of the sphere because the region 

above the sphere is not fluidized. Therefore, the dP/dz measured for the fluidized bed is 

no longer valid for the upper half of the sphere. A similar argument would be that 

Archimedes Principle assumes that the density of the fluid is uniform all around the 

submerged object. In the case of objects with de-fluidized hoods, the density around the 

object is different at the top and the bottom. The earliest the hood could begin is at h = 

RSPHERE. Therefore, since the object under investigation has a de-fluidized hood, the 

integration to calculate pressure force shown in Equation 27 was only calculated for 0 ≤ h 

≤ RSPHERE. The result is the pressure force acting up on the bottom half of a submerged 

object. As the object gets submerged deeper, this force increases because the pressure 

increases with depth. The results are shown in Figure 23. The downward component of 
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the pressure force on the sphere will be determined by calculating the de-fluidized hood 

weight in section 4.4. 
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Figure 23: Pressure Force Pushing Submerged Object Up and Out of Bed 
 

Figure 23 also predicts the buoyant force on the cylinder since the cylinder is never fully 

submerged and does not have a de-fluidized hood. In the case of the sphere, Figure 23 

only predicts the upward component of the buoyant force.  

4.3 Skin Friction Determination 
 

Although the apparent viscosity has been estimated to be approximately 1 kg/m-sec by 

previous researchers, calculating the skin friction on the sphere was still not obvious. Past 

researchers have determined that the flow within fluidized beds can be modeled as 

Stokes’ Flow and thus Stokes’ drag is applicable. However, in the present case, through 



 55

visual observation, it is clear that the flow separates from the sphere and is thus not 

typical Stokes’ flow. The visual observations that led to this conclusion include: 

 

1) The existence of the hood requires that there is no flow above the sphere, thus 

allowing de-fluidization. 

2) Bubbles around the hemisphere of the sphere are observed, thus indicating a flow 

separation 

 

In the present work, use of an alternate method of determining skin friction was 

necessary.  

 

The forces in the case of the cylinder are as follows: 

 

⎩
⎨
⎧

>+
<<++

SPHERE

SPHERE

R h                                                      Force,Buoyant   DragSkin 
Rh0                            Force,Buoyant  DragSkin   Drag Form

 

 

With the buoyant force on the cylinder determined, the experimental forces on the 

cylinder can be used to determine a drag coefficient. This coefficient can then be applied 

to the case of the sphere. 

 

The common equation for drag force where it is related to the momentum of the flow is 

used: 
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Equation 30 
 

Since the buoyant force and form drag on the cylinder have been determined, these can 

be subtracted out from the experimental data of the forces on the cylinder. Doing so 

would reduce the data to the skin drag along the cylinder.  

 

Before applying Equation 29, an adjustment is made to the velocity around the cylinder. 

The only velocity of interest when calculating the skin drag is the velocity tangential to 

the object. Thus, to find the velocity of interest, UT, the following is employed with U1 

and θ from before: 

 

)]
2

cos[(1 θπ
−=UUT  

Equation 31 
  

This now gives the velocity tangential to the surface of the submerged objects, and thus 

the velocity associated with skin drag. Using Equation 29 in Equation 29Equation 31 and 

comparing to the data will give a value for the drag coefficient.  
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The experimental force less the buoyant force and the form drag for the cylinder is 

graphed in Figure 24 (shown as “experimental skin friction”). The experimental data 

shows variation. However, the variation is negligible when compared to the total forces 

on the cylinder.  
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Figure 24: Skin friction on cylinder compared to theoretical skin friction with Cd = 20 in equation 29 
 

 

Using a drag coefficient of 20 in Equation 29, the data and the model for the cylinder are 

compared in Figure 22. There is good agreement between the two. Figure 25 shows the 

total experimental force on the cylinder compared to the model. The model is the sum of 

the predicted form drag, buoyant force and skin drag 
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Figure 25: Predicted force on cylinder compared to experimental force 
 

Now, assuming the drag coefficient for the sphere and cylinder are the same, the skin 

drag on the sphere is readily attainable through use of Equation 29. For regions past h = 

RSPHERE, the flow is considered to have separated from the sphere. Therefore, the skin 

drag will no longer grow. 

 

Using the velocity in Equation 31 in Equation 29, Figure 26 for the skin friction on the 

sphere is obtained. 
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Figure 26: Prediction of skin friction on sphere at 1.5Umf flow 
 

In order to compare to the relations proposed by Crowe et al (Equation 12 and Equation 

13) it is necessary to determine f (the friction factor) and the Reynolds number, Re. The 

Reynolds number can be calculated using Equation 32 where ρf is the density of the 

fluidized bed (calculated from Equation 24), U1 is the velocity around the sphere 

(Equation 31), dsphere is the diameter of the sphere and μbed is the viscosity of the fluidized 

bed (taken to be 1 kg/m-sec as recommended by Davidson 1977). 

 

bed

spheref dU
μ

ρ 1Re =  

Equation 32 
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With the calculated values of Re, obtained by making the assumption that the particle 

motion with respect to the interstitial gas velocity is negligible, the friction factor is 

determined using Error! Reference source not found.. This will determine the drag 

coefficient according to Equation 12. Using the velocity corresponding to when the 

sphere is submerged up to the hemisphere, an Re of 4.26 and a drag coefficient of 7.9 is 

obtained. Our drag coefficient of 20 based on the data from the cylinder is ~2.5 times the 

value predicted by the literature. However, the value used in the literature is based on an 

order of magnitude estimate of the viscosity being 1 kg/m-sec. 

 

4.4 Determination of De-fluidized Hood Weight and Shape 
 

The final force on the sphere is that created by the de-fluidized hood. From Figure 18, it 

is apparent that this region begins no later than at h = 1.75RSPHERE. Also, intuitively, it 

can occur no earlier than at h = RSPHERE. For regions at h < RSPHERE, the hood has no place 

to grow. 

 

In order to obtain a hood weight and shape, the experimental data over several runs was 

averaged and a 10th degree polynomial curve was fit to the data. Using a trend line rather 

than directly using the experimental data smoothed out any variations in the data caused 

by voids or by the act of lowering the sphere deeper into the bed. Both of these would 

disturb the hood, knocking it down and lowering its size for a short while until the hood 

is rebuilt. Using the DataFit software, the following trend line was fit to the sphere at 1.5 

UMF: 
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Equation 33 
 
Figure 27 shows the average data compared to the trend line for the sphere at 1.5 UMF. 
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Figure 27: 10th degree polynomial trend line fit to average data for 1.5 Umf sphere 
 

 

The pressure force, the skin drag and the form drag were all assumed to be applicable up 

until h = RSPHERE. Beyond this point, the overall shape of the submerged object (the 

sphere plus the hood) is undeterminable since the hood may begin to grow as early as h = 

RSPHERE. It will be assumed that the only additional force acting on the upper half of the 
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sphere is that of the pressure force exerted by the dead bed region above the sphere. With 

this assumption, the following relation can be developed: 

 

DRAGFORMSKINDRAGALEXPERIMENThoodhoodABOVE FFFFgVF −−−== UPPRESSUREρ  

Equation 34 
 

Essentially, the hood force is the remaining force after the upwards pressure force, skin 

drag, and form drag are subtracted out from the experimental data. 

 

FABOVE from Equation 34 is graphed in Figure 28 
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Figure 28: Force from above on sphere 
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As can be seen, FABOVE is negative, indicating that the de-fluidized hood force acts to 

push the sphere deeper into the bed. 

 

In order to determine the shape of the hood, it can be assumed that the hood is comprised 

of small cylinders with height dh stacked upon each other. The radius of each cylinder 

would be dependent on the incremental increase in hood weight over a height, dh. 

Applying this to Equation 34, the following equation is obtained: 

 

)()( UPPRESSURE
2

DRAGFORMSKINDRAGALEXPERIMENTcylinderhoodABOVE FFFFddhrgdF −−−== πρ  

Equation 35 
 

The density of the hood was taken to be that of the alumina oxide. In taking this to be the 

density, it has been assumed that hood consists of completely un-fluidized alumina oxide. 

By using Equation 35, the radius of each cylindrical element can be determined. With the 

dimensions of each cylindrical section now known, the de-fluidized hood shape can be 

determined. The results for the hood shape are shown in Figure 29. The hood has been 

superimposed over the submerged sphere. The dashed line indicates the portion of the 

sphere covered by the de-fluidized hood. For the most part, the hood resembles a cylinder 

with a short and rounded top.  
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Figure 29: Hood Shape Extracted from Hood Weight Data 
 

The maximum hood height was also studied. Experimentally, the data shows that the 

hood ceases to grow at h = 4.41RSPHERE for the 1.5UMF case, or a hood height of 

3.41RSPHERE (calculated from the center of the sphere). This hood height is 1.71 times the 

diameter of the submerged sphere.  
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4.5 Summation of Model Forces 
 

The summation of the models for form drag, buoyancy, skin drag and the hood weight 

are shown in comparison to the experimental results for the sphere at 1.5 Umf in Figure 

30. 
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Figure 30: Comparison of model to data for 1.5 Umf flow sphere case 
 
 

The model fits the data well. While the model shows the force as being slightly higher 

than the data values, the variation is at most 7% (occurring at 1.8RSPHERE). 
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Chapter 5 Conclusions 
 

The goal of this study is to eventually create a geometry that could move up and down 

within a fluidized bed, breaking up agglomerations, through the manipulation of the inlet 

flow rate. Complications arose when objects that should sink based on densities did not 

do so due to the development of a de-fluidized region of particles above the submerged 

object. It was necessary to determine the properties of the de-fluidized region as to 

minimize its effect. In this step, the forces acting on a sphere in a fluidized bed have been 

predicted and verified. In doing so, the weight of the previously reported de-fluidized 

hood has been directly measured. From these direct measurements a prediction of the 

hood shape was extracted. The findings will now be compared to the results presented by 

past researchers, most notably Grace and Hosney, Hager and Schrag, Kulkarni, and Rees. 

Discussions on the causes and the meaning of the hood shape will follow. 

 

5.1 Comparison to Past Work 
 

Figure 31 compares this work’s hood shape with those used by Rees and Hager and 

Schrag. The hood shown currently does vary from what has been previously observed. 

The method by which the hood size and shape was attained here is quite different from 

previous researchers’ work. By determining the hood weight first and back calculating 

the associated volume, the current hood has been estimated through direct experimental 

results. In all previously found cases, the hood size and shape were determined through 

visual observation. Darkened fluidizing medium was placed on top of the bed such that 
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the hood top could be outlined. Pictures were then taken of the hood and estimates of the 

hood size and shape were made. The direct measurement technique, rather than visual 

observation, used in the current study could be a reason for the difference in hood shapes. 

 

 

Figure 31: Comparison of hood shapes 
 
Additionally, the differences between the hood shape presented here and those presented 

by Hager and Schrag could lie in the fact that they used perfectly spherical glass beads. 

Compared to the ground particles used in the current study, the beads will exhibit 

different packing characteristics as well as reduced friction between adjacent beads thus 

allowing for beads to roll off the hood. This would lead to a lower sloped hood as well as 

a shorter hood. Additionally, Hager and Schrag used a rectangular bed in their studies. 

This could lead to asymmetric flow structures within the bed which may impact the shape 
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of the hood. The hood presented here is qualitatively in agreement with that proposed by 

Rees. The difference in height could be attributed to the flow rates used. In Rees’ work, 

bubbling to slugging flow rates were used, which are much higher than those used in the 

present work. 

 

The hood height reported here is 3.41RSPHERE above the centerline of the sphere or 1.7 

times the diameter. This is within the range of reported hood heights in the literature. 

Hager and Schrag reported 0.8 times the diameter of the sphere whereas Glass and 

Harrison reported that it could be up to 4 times the diameter of the sphere. With a hood 

height of 3.41RSPHERE, the angle to which the hood rises is approximately 74.250. This 

angle, referred to as the incidence angle by Rees, is the angle occupied by the outer edge 

of the submerged sphere at the equator to the center-top of the hood. Table 1 compares 

the hood heights and incidence angles. 

 

 

 Hood Height  Incident 
Angle 

Current Work 3.41R 74.250 
Rees (2005) 2.89R 70.690 

Kulkarni 
(1987) 1.14R 62.120 

Hager and 
Schrag (1976) 2.56R 68.660 

Table 1: Comparison of hood heights and incidence angles
 

The differences between the current work and Hager and Schrag and Rees have already 

been discussed. Kulkarni’s work differs from the current finding in that he uses a 

rectangular bed with spherical beads. Also, the values taken from Kulkarni’s work were 
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measured off of pictures of the hood. As Kulkarni himself explains, determining the 

boundary between the fluidized and de-fluidized regions in these pictures is very tough. 

 

For the case of 40% flow, the hood ceased to grow at 4R. This made the hood height 

2.25R. With a base diameter of 1.5R, this made the incidence angle 720. Thus, the hood 

size reduced with reduced velocity. While increasing the flow rate past bubbling would 

seem to reduce the hood size because it would agitate the hood, thus knocking it down, 

decreasing the flow rate to the minimum fluidization velocity would also seem to 

decrease the hood size because it would not allow for the bubbles to transport particles to 

the top of the hood. As will be discussed in section 5.2, the flow pattern created by the 

bubbles may be the method by which the hood grows. 

 

Finally, with the hood weight now determined, we can verify Equation 14 as proposed by 

Grace and Hosney. This equation was meant to alter the buoyant force to account for the 

de-fluidized hood. The comparison is shown in Figure 32.  
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Figure 32: Comparison of model to Grace and Hosney for 1.5 Umf case 
 

The final forces agree between the two models. However, there is discrepancy in the 

manner in which the hood is shown to grow with increased penetration. However, 

Grace and Hosney were studying the forces on a stationary object already submerged 

in a fluidized bed. Therefore, the force of interest was the final force rather than the 

growth of forces as the hood grows. 

 

5.2 Discussion on Hood Shape 
 
 

The hood shape extracted from the data shows a relatively abrupt change from de-

fluidized to fluidized. Before beginning the investigation into the hood shape, it was 

anticipated that the hood would more closely resemble a cone, with the de-fluidized 
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hood tailing off as the flow around the sphere moves downstream of the sphere and 

re-stabilizes. It was initially thought that the angle of repose of alumina oxide would 

represent the highest incidence angle. Once the hood was built to this angle, any 

additional alumina oxide accumulation would slide off of the hood. However, the 

angle of repose was found to be 440. This is in agreement with the findings of Jaeger 

(1989) who reported an angle of repose of 390 for alumina oxide. As stated, the angle 

of incidence of the hood was found to be 74.250, much greater than the angle of 

repose. The steep slope of the hood led to the question of why the hood would stop 

abruptly and is it believable for this discontinuity in the flow past the sphere to exist. 

An attempt to verify the latter was made through visual observations of the hood and 

its growth as the sphere was lowered. Figure 33 shows a view of the top of the bed at 

different sphere depths for the 1.5Umf case. The deadened de-fluidized area can 

clearly be seen in the h = RSPHERE picture. The bubbles form a ring that encircles the 

submerged sphere. The edge of the de-fluidized hood is outlined as the darkened 

circle inside the bubble ring. Within this de-fluidized region, hills and valleys of 

alumina oxide can be seen. As the submerged sphere is lowered, the darkened line 

becomes fainter, the hills and valleys become flatter, and the bubbles become larger.  

By the last picture, at 4.61 RSPHERE , the deadened area resembles the rest of the bed 

and can be assumed to be fluidized. 

 

 However, the ring of bubbles that form around the sphere is evident throughout the 

series of pictures.  



 72

 

Figure 33: From top left to Bottom Right: Hood at 1R, 2R, 2.94R, 3.34R, 3.61R, 4.16R. The 
bubbles form a ring that encircles the submerged sphere. The edge of the de-fluidized hood can 
be seen as the darkened circle inside the bubble ring. As the submerged sphere is lowered, the 
darkened line becomes fainter and the bubbles become larger.  
 

The voidages pull material along with them as they rise. When these voidages reach 

the surface, they “burst” and release the entrained material, “spewing” it over the bed 

surface. The explosion of each bubble has a radius which is directly proportional to 

the radius of the bubble. A larger bubble will lead to a larger explosion radius which 

will spew particles further away from the explosion site. 
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In the current case, the sphere causes voidages by accelerating the flow of interstitial 

gas around the sphere. These bubbles, upon collapsing at the surface would transport 

particles in all directions. Since the bubbles were aligned in a ring, the region within 

the ring would receive a high concentration of particles from the bubble explosions. 

This region was dead and the particles transported here would remain still. This 

transport would continue, adding more and more particles to the de-fluidized region, 

until the bubbles reached a large enough size, such that upon collapse, the particles 

were transported across the dead region. At this point, particle motion was created in 

the de-fluidized region. 

 

In the region between this bubble ring and the bed walls, particles would move up 

with the bubbles, burst and then move out towards the bed wall. Upon hitting the 

walls, particles would get pulled down back into the bed. Eventually, the particles 

would be re-entrained in the bubbles and reappear in a bubble explosion. This 

circulation is common for a bubbling fluidized bed. However, juxtaposed to the 

inward circulation of particles on to the hood, a bed with two counteracting patterns 

of particle circulation is created. An illustration of this phenomenon is provided in 

Figure 34. 
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Figure 34: Diagram of the secondary circulation leading the de-fluidized hood growth. Voids 
travel from the hemisphere to the surface of the bed. Upon collapsing at the surface, particles 
entrained in the voids travel towards the walls and center of the bed. Arrows indicate the 
direction of particle flow 

 
A gap in the horizontal direction between the bubble explosion site and the sphere 

edge could be observed. This indicated that the bubbles will surface at a distance 
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away from the sphere circumference laterally. This could either mean that the bubbles 

shoot out at an angle away from the sphere or that they exhibit preferential growth on 

the side of the bubbles adjacent to the fluidized section of the bed. Assuming the 

latter since there is no justification for the former, the bubbles would transport 

particles from the fluidized section of the bed, rather than from the de-fluidized 

section. This may be the means by which the hood grows: by bubbles created due to 

the flow acceleration imposed by the submerged objects carrying particles from the 

fluidized section to the top of the hood. This same pattern was observed by Hager and 

Schrag as well (Figure 4). Furthermore, the hood ceases to grow once the bubbles are 

large enough such that their explosion radius is sufficient to carry particles across the 

dead hood. At this point, when REXPLOSION > RSPHERE, the hood will stop growing as 

particles can be transported across the hood, thus giving motion to the top of the de-

fluidized region. This seems to explain the abrupt end in the hood growth – the hood 

will stop growing once the bubbles caused by the submerged sphere are large enough 

to re-fluidize the de-fluidized hood.  
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Nomenclature 
 

Greek Symbols: 

 

ε   the bed voidage 

ρp   the density of the particles 

ρg   the density of the gas 

ρf   the density of the fluidized bed  

ρs   the density of the dead bed 

μf   the fluid viscosity 

φ  the spherecity which is the ratio of the surface area of a sphere of the same 

volume as the particle to the surface area of the particle 

Δ   shape correction factor for the total particle 

 

English Symbols: 

 

A   the cross sectional area of the bed 

A(z)   the submerged surface area of the sphere at the penetration depth z 

Ar   the Archimedes number 

CD   the drag coefficient 

d   the diameter of the immersed object 

dm   the mean particle diameter 

ds   the diameter of a particle with the same surface area as the actual particle 

Dwetted   the wetted diameter of the sphere at the penetration height, h 
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f    drag coefficient correction 

FB   the buoyant force 

g   the acceleration due to gravity 

g~   gravitational acceleration when buoyancy is considered 

h   the penetration depth of the submerged objects into the fluidized bed 

Hhood  the height of the de-fluidized hood 

kw   the wall correction factor 

L   the bed height 

M   the mass of the particles 

n   the particle number density 

∇ p   the pressure gradient around the object 

pb   the pressure drop through the bed 

RFB   the radius of the fluidized bed 

RSPHERE  the radius of the sphere 

Re   the Reynolds number 

U   the fluidization velocity 

Umf  the minimum fluidization velocity 

UT   the velocity tangential to sphere 

U1  the velocity of the interstitial gas at an object penetration of h 

V   the volume of the object immersed in the fluid 

Vbed   the volume of the bed using the predicted bed height 

VHOOD   the volume of the hood 

Volt   the total volume of the particle and hood 



 78

References 
 

Asif, M. (1998), “Segregation velocity model for fluidized suspension of binary 
mixture of particles,” Chemical Engineering and Processing, 37, pp. 279 – 2876. 
 
Batchelor, G.K. (1988), “A new theory of the instability of a uniform fluidized bed,” 
Journal of Fluid Mechanics, 193, pp. 75 – 110. 
 
Bowen, B.D. and Masliyah, J.H. (1973), “Drag force on axisymmetric particles in 
Stokes’ flow,” The Canadian Journal of Chemical Engineering, 51, pp. 8-15. 
 
Clift, R. and Gauvin, W.H. (1970), “The motion of particles in turbulent gas streams,” 
Proc. Chemeca, 1, pp. 14. 
 
Crowe, C., Sommerfield, M. and Tsuji, Y. (1998), Multiphase Flows with Droplets 
and Particles, CRC Press, New York.  
 
Davidson, J.F., Harrison, D. and Guedes de Carvalho, J.R.F. (1977), “On the 
Liquidlike Behavior of Fluidized Beds,” Annual Review of Fluid Mechanics, 9, pp. 
55 – 86. 
 
Liu, F. and Orr, C. (1960), “Apparent Viscosity of Gas-Solid Fluidized Systems,” 
Journal of Chemical and Engineering Data, 5, pp. 430 – 432. 
 
Gilberson, M.A. and Eames, I. (2001), “Segregation patterns in gas-fluidized 
systems,” Journal of Fluid Mechanics, 433, pp.347 – 356. 
 
Glass, D.H., and Harrison, D. (1964), “Flow patterns near a solid obstacle in a 
fluidized bed,” Chemical Engineering Science, 19, pp. 1001 – 1002. 
 
Grace, J.R. and Hosney, N. (1985), “Forces on horizontal tubes in gas fluidised beds,” 
Chem. Eng. Res. Des., 63, pp. 191 – 198. 
 
Hager, W.R., and Schrag, S.D. (1976), “Particle circulation downstream from a tube 
immersed in a fluidized bed,” Chemical Engineering Science, 31, pp. 657 – 659. 
 
Howard, JR (1989), Fluidized Bed Technology: Principles and Applications, Adam 
Hilger, New York. 
 
Huilin, L., Yurong, H., Gidaspow, D., Lidan, Y. and Yukun, Q. (2003), “Size 
segregation of binary mixture of solids in bubbling fluidized beds,” Powder 
Technology, 134, pp. 86 – 97. 
 



 79

Jackson, Roy (2000), The Dynamics of Fluidized Particles, Cambridge University 
Press, New York. 
 
Jaeger, H.M., Liu C. and Nagel S.R. (1989), “Relaxation at the angle of repose,” 
Physical Review Letters, 62, pp. 40-43. 
 
Kulkarni, A. (1987), “Defluidized zone over a horizontally immersed tube in a 
fluidized bed,” Chemical Engineering Science, 42, pp. 1245 – 1247. 
 
Marzocchella, A., Salatino, P., Di Pastena, V. and Lirer, L. (2000), “Transient 
fluidization and segregation of binary mixtures of particles,” AIChe Journal, 46, 2175 
– 2182. 
 
Mehrani, P. and Hsiaotao, T.B., Grace, J. (2005), “Electrostatic charge generation in 
gas-solid fluidized beds,” Journal of Electrostatics, 63, pp.165 – 173. 
 
Mostoufi ,N. and Chaouki, J. (1999), “Prediction of effective drag coefficient in 
fluidized beds,” Chemical Engineering Science, 54, pp. 851 – 858. 
 
Oshitani, J., Trisakti, B. and Tanaka, Z. (2001), “Evaluation of fluidized particle flow 
by measurement of apparent buoyancy,” Advanced Powder Technology, 12, pp. 95 – 
104. 
 
Perry, R.H. and Green, D.W. (1998), Perry’s Chemical Engineers’ Handbook, 
McGraw-Hill, New York. 
 
Qiaoqun, S., Huilin, L., Wentie, L., Yurong, H., Lidan, Y. and Gidaspow, D., (2005), 
“Simulation and experiment of segregating/mixing of rice husk-sand mixture in a 
bubbling fluidized bed,” Fuel, 84, pp. 1739 – 1748. 
 
Rees, A.C., Davidson, J.F., Dennis, J.S. and Hayhurst, A.N. (2005), “The rise of a 
buoyant sphere in a gas-fluidized bed,” Chemical Engineering Science, 60, pp. 1143 – 
1153. 
 
Rees, A.C., Davidson, J.F., Dennis, J.S. and Hayhurst, A.N. (2007), “The apparent 
viscosity of the particulate phase of the bubbling gas-fluidized beds: A comparison of 
the falling or rising sphere technique with other methods,” Chemical Engineering 
Research and Design, 85, pp.1341 – 1347. 
 
Tee, S., Mucha, P.J., Brenner, M.P. and Weitz, D.A. (2008), “Velocity fluctuations in 
a low Reynolds-number fluidized bed,” Journal of Fluid Mechanics, 596, pp. 467 – 
475. 
 

 


	Masters Thesis Signatures
	Prakash Rao Masters thesis part 1attempt 2
	Prakash Rao Masters thesis part 2 attempt 2

