
AUTOMATED DISCOVERY AND PROOF IN THREE

COMBINATORIAL PROBLEMS

BY PAUL RAFF

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Mathematics

Written under the direction of

Professor Doron Zeilberger

and approved by

New Brunswick, New Jersey

October, 2009

ABSTRACT OF THE DISSERTATION

Automated Discovery and Proof in Three Combinatorial

Problems

by Paul Raff

Dissertation Director: Professor Doron Zeilberger

In this Ph.D. disseration, I will go over advances I have made in three combinatorial

problems. The running theme throughout these three problems is the novel use of

computers to aid not only in the discovery of the theorems proved, but also in the

proofs themselves. The first problem concerns the quantity 𝑓Δ(𝑛), defined as the size

of the largest subset of [𝑛] avoiding differences in Δ. Originally motivated by the Tri-

angle Conjecture of Schützenberger and Perrin, we again define an enumeration scheme

that will find, and prove automatically, the sequence {𝑓Δ(𝑛)}∞𝑛=1 for any prescribed

Δ. Although the Triangle Conjecture has long been refuted, we present an asymptotic

version of it and prove it. The second problem involves the enumeration of spanning

trees in grid graphs – graphs of the form 𝐺 × 𝑃𝑛 (or 𝐶𝑛) for arbitrary 𝐺. An enu-

meration scheme is developed based on the partitions of [𝑛], yielding an algorithmic

method to completely solve the sequence for any 𝐺. These techniques yield a surpris-

ing consequence: sequences obtained in this manner are divisibility sequences. The

final problem is the firefighter problem, a dynamic graph theory problem modeling the

spread of diseases, information, etc. We will present the problem as it applies on the

two-dimensional grid and prove new upper and lower bounds, found mainly through

computer experimentation.

ii

Acknowledgements

First, I would like to thank the Department of Mathematics for supporting me through

the past five years, through good times and bad.

I would like to thank Professor Doron Zeilberger for taking me in as his seventh student,

even though his self-proclaimed limit is four. I am grateful to have him as an advisor

and confidante over the past two years. I was able to hit the ground running when I

started working with him, and I haven’t stopped (or wanted to) since.

I would like to thank the members of the committee for their service in my thesis

defense and their helpful comments and suggestions for modifications to the thesis.

Many thanks to Fred Roberts via DIMACS for support during graduate school and a

renewed vigor to spread discrete mathematics through all stages of mathematics educa-

tions. Additionally, thanks to Neil Sloane for his work with the Online Encyclopedia of

Integer sequences, without which this thesis would be fairly bland. Last but not least,

thanks to Vladimir Retakh for imparting an excellent analytical base through his Real

Analysis and Hypergeometric Functions course, and additionally looking the other way

for my poor translation from Russian to “Li Algebra”.

I would like to thank DIMACS for their support and their simple existence. Their

goal is a fantastic one, and a lot that I did during graduate school would not have been

possible without their assistance. I wish all the best for them and hope to be part of

their mission throughout my life.

I would like to thank Jeff Kahn and Ernest Schimmerling for their strong guidance

and their unrelenting ability to never relent, and the life lessons learned from them are

iii

worth to me as much as the mathematics lessons learned from them.

I would like to thank Jeremy Avigad, Eric Grotzinger, and all of my instructors at

Carnegie Mellon University for a job well done.

I would like to thank Helen Compton, Dan Teague, Dot Doyle, John Goebel, and

all of the people at NCSSM for opening my eyes.

Finally, I would like to thank all of the undergraduate (and a few graduate) students

that I have had the pleasure to teach during the last five years. I came to Rutgers

thinking I was a good mathematician and I leave Rutgers knowing that, no matter how

difficult things are, I always feel better after a session teaching and interacting with my

students than before it.

iv

Dedication

This thesis is dedicated to my family, and specifically to my wife Audria, who was just

my girlfriend when I started graduate school. The first three years apart were rough

and rocky, but my love for her grows with each passing day, and I look forward to

transferring a good portion of my time spent in grad school to time spent with her.

v

Table of Contents

Abstract . ii

Acknowledgements . iii

Dedication . v

List of Figures . viii

1. Introduction . 1

2. Avoiding Differences . 8

2.1. Motivation and History . 8

2.2. The counterexample to the Triangle Conjecture 13

2.3. Basic Properties of 𝑓Δ(𝐼;𝑆) . 17

2.4. The Fundamental Recurrences . 18

2.5. A Graph Theory Connection . 21

2.6. Behavior of 𝑓Δ(𝑛) as 𝑛→∞ . 25

2.7. The Cyclic Extension . 28

2.8. An application: the Triangle Conjecture, revisited 31

2.9. Towards an alternate proof of Szèmeredi’s Theorem 33

2.10. Results and Further Study . 35

3. Spanning Trees in Grid Graphs . 41

3.1. Introduction . 41

3.2. History and Outline . 42

3.3. Notation . 43

3.4. Grid Graphs: The Example For 𝑘 = 2. 45

3.5. The General Case For Grid Graphs. 47

vi

3.6. A sample of results . 50

3.7. Extending to Generalized Graphs of the Form 𝐺× 𝑃𝑛 52

3.8. Extending to Cylinder Graphs . 53

3.9. An Application: Divisibility Sequences 57

3.10. Conclusions and Conjectures . 66

4. The Firefighter Problem . 70

4.1. Introduction and terminology . 70

4.2. Several lemmas . 78

4.3. Proof of main result . 82

4.4. Lower bounds for convex containment certificates 91

4.5. Discussion and conclusion . 106

5. Conclusions and Further Work . 110

5.1. Avoiding Differences . 110

5.2. Spanning Trees in Grid Graphs . 112

5.3. The Firefighter Problem . 112

5.4. A Parting Statement . 113

References . 114

Vita . 118

vii

List of Figures

2.1. Representation of atoms 𝑥𝑖𝑦𝑥𝑗 as a triangle. Each point represents an

atom 𝑥𝑖𝑦𝑥𝑗, where the 𝑥-coordinate represents 𝑖 and the 𝑦-coordinate

represents 𝑗. 9

2.2. Graph 𝐶8,{1,3} . 21

2.3. Graph 𝑈8,{1,3} . 21

2.4. Enumeration scheme for computing the sequence {𝑓{3,5}(𝑛)}. 26

2.5. Taking 𝑈9,{2,3} and removing vertex 1. 29

2.6. Table giving values of 𝜇3,𝐷 for 1 ≤ 𝐷 ≤ 17. Cyclic set witnesses (see

Corollary 2.9.4) are also given for all values except 𝐷 = 12. 36

2.7. Values of 𝜇𝑘,𝐷. 37

2.8. A directed graph representing the enumeration scheme for calculating

𝑓{3, 5}(𝑛). 38

3.1. Vertex naming conventions for the grid graph. 43

3.2. Showing a spanning forest of 𝑃2 × 𝑃2 and its underlying graph. 44

3.3. An example of a spanning tree/forest of 𝑃2 × 𝑃𝑘 where we only care

about the right-hand side. 44

3.4. The three possible ways to extend a spanning tree of 𝑃2 × 𝑃𝑛−1 to a

spanning tree of 𝑃2 × 𝑃𝑛. 45

3.5. The only way to extend a special spanning forest of 𝑃2 × 𝑃𝑛−1 to a

spanning tree of 𝑃2 × 𝑃𝑛 . 46

3.6. A spanning forest of 𝐺4(4) where, from left to right, the edges transfer

as follows: 1/23/4 → 1234→ 12/34 → 12/3/4. 49

3.7. The transition matrix 𝐴𝑃3 . 49

3.8. The transition matrix 𝐴𝑃4 . 50

viii

3.9. Full sequence information for 𝐺2(𝑛), 𝐺3(𝑛), 𝐺4(𝑛), and 𝐺5(𝑛). 51

3.10. Full sequence information for 𝐺6(𝑛). 52

3.11. An example of a spanning forest of 𝐶3(3). The inclusion of either 𝑣1,1𝑣3,1

or 𝑣1,2𝑣3,2 admits a spanning tree. 53

3.12. The tree-counting vector 𝑑2 in detail. 55

3.13. The transition matrix for 𝐶2(𝑛). 56

3.14. Full sequence results for spanning trees of 𝐺× 𝐶𝑛 for certain 𝐺. 57

3.15. How a tree 𝑇 decomposes into lh(𝑇), mid(𝑇), and rh(𝑇). 60

3.16. An example of the three parts of appropriate sizes that cannot combine

to a spanning tree. 61

3.17. The situation in the proof of Lemma 3.9.3. 64

3.18. Case 1: The path from 𝑥′3 to 𝑥1 does not involve the edge 𝑣𝑖𝑣
′
𝑖. 64

3.19. Case 2: The path from 𝑣′𝑖 to 𝑥1 passes through 𝑣𝑖𝑣
′
𝑖. 65

3.20. How trees are added. 66

3.21. How to interpret 𝑇𝑛−2. 67

3.22. How to interpret 4𝑇𝑛−1. 67

3.23. How to decompose certain elements of 𝒯𝑛 into elements in 4𝒯𝑛−1. 68

3.24. How to decompose certain elements of 𝒯𝑛 into elements of 𝒯𝑛−2. 68

4.1. The six non-isomorphic minimal solutions to the firefighter problem with

𝑓(𝑡) = 2. It is left to the reader to determine where the fire started in

each scenario! . 72

4.2. An example of a concave scenario. The initial fire is the vertex that is

lighter than the others. 75

4.3. A global view of the containment certificate described in the proof of

Lemma 4.3.3. 84

4.4. A snapshot of a part of a containment scenario. 91

4.5. A legitimate modification made from Figure 4.4. 92

4.6. The first 64 of the 128 possible positions a group of four fighters could

be in. 93

ix

4.7. The second 64 of the 128 possible positions a group of four fighters could

be in. 94

4.8. The wall transformation mapping for cases 1 through 16. 96

4.9. The wall transformation mapping for cases 17 through 32. 97

4.10. The wall transformation mapping for cases 33 through 48. 98

4.11. The wall transformation mapping for cases 49 through 64. 99

4.12. The wall transformation mapping for cases 65 through 80. 100

4.13. The wall transformation mapping for cases 81 through 96. 101

4.14. The wall transformation mapping for cases 97 through 112. 102

4.15. The wall transformation mapping for cases 113 through 128. 103

4.16. How the generic situation looks for having a diamond containment cer-

tificate (already predetermined) contain a fire starting at a single point. 104

4.17. A not-so-nice containment certificate. 108

x

1

Chapter 1

Introduction

It is no coincidence that ENIAC, the first electronic computer built, was frequently

described as a “giant” or “electronic” brain [32]. The evolution of computers’ brains,

mathematically speaking, has followed that of humans, although the timeline has been

compressed considerably. In human evolution, mathematics has broadly evolved from

the concept of number to the concept of computation to the concept of mathematical

proof and rigor. Similarly, the evolution for the computer is the same, being that the

basic element for a computer is bit, or binary digit. All constructs that are used by

computers are built up from the bit, whether it be the unsigned int or float or

the array. Manipulation of these and other basic computer constructs were obtained

through the basic operations and extended through computer methods. Finally, in a

body of work that is only about 20 years old, these concepts have been abstracted inside

the computer to allow the ability to prove.

The abstraction away from number and computation in a computer has generally

been of two distinct forms. First, there is the notion of formal proof, which seeks to

harness the computational power of the computer to provide strict proofs of mathe-

matical statements, given in a predefined axiomatic system (usually ZFC or PA). The

motivation leading to formal proof is manyfold, but its usefulness is seen when one

considers that all proofs read in mathematical journals or explained on the board are

not actual proofs in the axiomatic framework, but digests of those that can be read,

and more importantly, understood by a human. However, Kempe’s flawed proof of the

Four-Color Theorem is one of numerous shortcomings of the informal proof method

that is widely employed today. This is one of the issues that Formal Proof seeks to

remedy. In the near future, according to the belief, mathematicians will be able to

2

include formalized proofs, with the assistance of computer programs like Isabelle or

HOL-Light, with their paper submissions to journals (see [26]).

For the time being, formal proof purveyors spend most of their time finding formal

proofs for popular and important theorems, such as the The Prime Number Theorem

(for which the author was a contributing member of – see [3]), the Quadratic Reciprocity

Theorem, and the Fundamental Theorems of Algebra and Arithmetic. It is a venture

the author deems worthwhile and productive for the long-term future of mathematics,

not least because he was a participant of the progress at one point, and hopes to be again

in the future. This pursuit is worthwhile because it is futile to believe that computers

can be separated from mathematics in and real form for any real benefit. One of the

main complaints that is given about proof assistants like Isabelle or HOL-Light is that

they are too hard to learn. This is valid, but one that should not scuttle the formal

proof debate. Rather, as we see in other areas where computers play a leading role,

the initial attempts are not so pleasing to the consumer, yet through refinements a

good product is made. For example, Apple’s iPod was not the first mp3 music player

that was developed; rather, it fixed the shortcomings of previous music players and its

success is well-deserved for that. Similarly, the superficially technical shortcomings of

formal proof will be fixed. For a good review of the current state of the art of formal

proof as of 2009, one only needs to look at the AMS Special Issue on Formal Proof,

consisting of [23], [20], [26], and [54].

The second form of abstraction away from pure computation is not an abandonment

of computation per se, but it is the notion that proofs are, no matter how they are

written, a computational notion in their purest form. This gives rise to the notion of

symbolic computation, which seeks to reduce proofs to statements that can be solved

computationally, instead of being proved verbally. A trivial example of the notion of

symbolic computation is given in the following example.

Example Prove that there is no quadratic function 𝑓(𝑥) satisfying 𝑓(1) = −1, 𝑓(2) =

12, 𝑓(3) = 31, and 𝑓(4) = 55.

The answer is as follows: a quadratic function 𝑓(𝑥) = 𝐴𝑥2+𝐵𝑥+𝐶 satisfying those

3

four conditions would imply that

𝐴 + 𝐵 + 𝐶 = −1

4𝐴 + 2𝐵 + 𝐶 = 12

9𝐴 + 3𝐵 + 𝐶 = 31

16𝐴 + 4𝐵 + 𝐶 = 55,

which is a system of four equations with three variables. Generally these overloaded

systems have no solutions, which is what happens in this case. This example, although

somewhat contrived, shows how a “proof” can be reduced down to mere computation,

and the fact that a contradiction appears in the computation immediately solves the

problem.

A more involved example, and a fundamental theory in the field of symbolic compu-

tation so far, is the Wilf-Zeilberger Theory [55] of hypergeometric functions and their

implication that every binomial identity can be verified or refuted through an effective

algorithm, which is, in its essence, a series of computations. Other examples abound

but the reader should realize that neither this author, nor any other respectable math-

ematician in this field, is trying to do away with theory or arguing that there will be a

point in the near future where theory is irrelevant and computers rule the world. On the

contrary, theory will always be the driving force. The theory we create is necessary to

justify the use of the computers to find out much more than can be found out without

computers at all. Behind all of the use of computers in this thesis, there is always an

invisible guiding hand behind it, carefully planned out by the author.

This thesis will not attempt to take a stance or argue about which style of math-

ematics is better, more useful, or most industrious. Mathematics, although universal

at its root, is still a human endeavor for the humans that use it and apply it. It will

still be shaped and influenced by the people in power, as it was during the Bourbaki

Revolution that led to our current period of formal, rigorous, proof-based mathematics.

This thesis attempts to straddle the divide between the two by using the computer for

what it’s best suited for at this stage in its development: pure computation and book-

keeping. Specifically, the main vehicle for intuition and discovery for two of the three

4

problems discussed in this thesis is the enumeration scheme which, at the basic level,

is a (large) system of interconnected recurrence relations.

The first problem relates to avoiding (or missing) differences. The main problem

concerns the number 𝑓Δ(𝑛), which is defined to be the size of the largest subset 𝑋 of

[𝑛] = {1, 2, . . . , 𝑛} such that ∀𝑥, 𝑦 ∈ 𝑋,𝑥 ∕= 𝑦 → ∣𝑥− 𝑦∣ ∕∈ Δ. A small amount of work

has been previously done, mainly concerning the computation of the number

𝜇(Δ) = lim
𝑛→∞ 𝑓Δ(𝑛),

which originated from a question posed by Motzkin [33]. In this thesis we will effectively

give a complete theory of the structure of the sequence {𝑓Δ(𝑛)}∞𝑛=0 using computational

means arising from a complicated enumeration scheme that arises with the considera-

tion of an extra parameter. Additionally, we will discuss three different, but equally

important, variations of the number 𝑓Δ(𝑛) that extend the definition of what it means

to avoid a difference while also considering a cyclic version of the number 𝑓Δ(𝑛). On

the way, we will answer new questions and pave new paths toward Szemerédi’s Theo-

rem, while also giving an asymptotic version of the long-refuted Triangle Conjecture of

Schützenberger and Perrin.

The second problem discussed is the counting of spanning trees of grid graphs.

A spanning tree is a minimally connected spanning subgraph, and a grid graph is a

graph of the form 𝐺 × 𝑃𝑛, where 𝑃𝑛 is the path graph on 𝑛 vertices. For any specific

graph 𝐺 and 𝑛, the number of spanning trees of 𝐺 × 𝑃𝑛 can be computed effectively

using the Matrix-Tree Theorem of Kirchhoff. However, what is desired, and given in

this thesis, is an effective way, given 𝐺, of computing the sequence of spanning trees

of 𝐺 × 𝑃𝑛 for 𝑛 from 1 to ∞. The algorithmic method that is developed in this

thesis is of the Wilf-Zeilberger flavor in that only a finite amount of computation is

needed to obtain all information possible about the complete sequence of integers. A

consequence of this method is that it obtains a 𝑂(𝑛) algorithm to compute the number of

spanning trees of 𝐺×𝑃𝑛; however, the “up-front” charge in this algorithm is potentially

astronomically high as to be absurd. Regardless, it is a 𝑂(𝑛) algorithm. While most of

the results obtained through the process developed in this thesis are not new, thanks

5

to conversations with Richard Guy [22] these methods easily and immediately admit a

combinatorial proof of a fascinating property: all of these sequences that are sequences

of spanning trees in grid graphs are divisibility sequences, meaning sequences {𝑎𝑛}∞𝑛=0

satisfying 𝑛∣𝑚→ 𝑎𝑛∣𝑎𝑚. Through these methods, we also discover many deep, related

relationships between sequences that have not been investigated in any proper manner.

These relationships that are given here, and others found by Guy, are “towards a

multiplicative theory of divisibility sequences,” as he (somewhat redundantly) puts it.

Until now, most enumeration schemes were created as a means to find the value of

one object by finding the values of many others. While that is done in this thesis,

this divisibility example shows that there are important things to be discovered when

analyzing the enumeration scheme as an object in its own right, for relationships like

the Split-Merge Lemma (Lemma 3.9.2) are consequences that come directly from the

enumeration scheme itself, and not any applications of it.

The final problem, although not as related unrelated to the first two, is the firefighter

problem. Although there are many variations which will be discussed later on, the

basic problem involves an underlying graph 𝐺 and a vertex which is initially on fire

at time 𝑡 = 0. Then, at each time step, 𝑡 is incremented, a certain number, 𝑓(𝑡), of

firefighters is placed on vertices of 𝐺 that are not on fire, and each vertex that is on

fire has its fire spread to adjacent vertices that are neither on fire nor protected by a

firefighter. This process continues indefinitely and necessarily stops for a finite graph

𝐺, where the main question is “what is the least number of vertices that necessarily

will catch on fire?” For the case of infinite 𝐺 the question is still the same, but the

more relaxed question to ask is whether or not the process itself will stop. The same

question that could be asked is whether or not the minimum number of vertices that

will catch on fire is finite or not. The firefighter problem is a good model to use in

discrete mathematics to answer questions relating to epidemiology, rumor spreading,

and the transmittal of “viral” information over the internet. In this thesis we go a

very long way to solving the firefighter problem in the specific case where 𝐺 = 𝕃2, the

two-dimensional infinite grid, and 𝑓(𝑡) is not constant, which was the norm previously.

It was well-known that 𝑓(𝑡) = 2 admitted a finite solution to the firefighter problem

6

whereas 𝑓(𝑡) = 1 did not. With my colleague Professor Kah Loon Ng [35], we found

that having 𝑓(𝑡) = 1.5+𝜀 (which will be carefully defined) firefighters per turn admits a

finite solution to the firefighter problem, and this author also discovered strong evidence

showing that having 3 firefighters every other turn (which would imply 𝑓(𝑡) = 1.5 in our

future definition) will not be sufficient for a finite solution of the firefighter problem.

Therefore, it strongly suggests that there is a clear dividing line of 1.5 in the two-

dimensional grid case, where any iteration of the problem with strictly greater than 1.5

firefighters assures the admittance of a finite solution, but no iteration involving 1.5 or

fewer firefighters allows the admittance of a finite solution.

While all three of the problems in this thesis rely heavily on computers, they do so

not in a haphazard way, but mainly as a tool to do a large amount of bookkeeping.

It is always necessary to have rigor in mathematics, and a lot of the debate that is

present with the use of computers can be centered around the fact that some see no

distinction between rigor and formality. Nowhere in this document is rigor absent; the

use of computers does not indicate otherwise. It is worthwhile to notice the parallels

between the work done in this thesis and the ground-breaking work done by the great

Allen Newell and Herb Simon on the Logic Theory Machine [34] where they in effect

take the following five rules,

𝑝 ∨ 𝑝→ 𝑝

𝑝→ 𝑞 ∨ 𝑝

𝑝 ∨ 𝑞 → 𝑞 ∨ 𝑝

𝑝 ∨ 𝑞 ∨ 𝑟 → 𝑞 ∨ 𝑝 ∨ 𝑟

(𝑝 ∨ 𝑞)→ (𝑝→ 𝑟 ∨ 𝑞),

which they assume as true, and then let the computer “get to work”. What resulted was

the ability of the computer to prove 38 of the first 52 theorems in Principia Mathematica.

In this thesis, the computer is also given things that are true (and proved rigorously in

this thesis), such as Theorem 2.6.1, stating that the sequences {𝑓Δ(𝑛)} are eventually

pseudoperiodic (see Section 2.6). With that information, this author has written a

computer program in the Java programming language that not only allows the user to

7

find the eventual behavior of the sequence {𝑓Δ(𝑛)}, but also prove that this is indeed

the correct behavior.

The principal message the author would like to impart to the reader is this: whatever

humans can do computers can do better, provided they have human assistance. A large

amount of mathematics has followed the following three-part structure:

1. A proves a mathematical theorem.

2. B finds a better way to prove the theorem, and in the process discovers further

concepts and theories that are worth pursuing.

3. B publishes a better proof, and later on Person B (perhaps with A as a collabo-

rator) publishes further papers on the advancements made.

A large part of this thesis follows this structure, with the author taking the role of

B. However, the author already has a main collaborator: the computer. It’s hard to

imagine much of the work in this thesis getting done without the raw power of the

computer. It’s not a power unrestrained, however – for as much as computers have

advanced and progressed recently, it is useful only when it has a guiding hand to lead

it, and this will certainly remain true for a long time.

Chapter 2 contains material which is written in [44]. Chapter 3 contains material

which is included in [45] and [43]. Chapter 4 contains material which is included in [35]

and [42].

8

Chapter 2

Avoiding Differences

2.1 Motivation and History

The motivation for this chapter is a result by Peter Shor from his graduate-school

days, where he gives a counterexample to the Triangle Conjecture (see [48]). Given

the alphabet Σ = {𝑥, 𝑦}, the Triangle Conjecture of Perrin and Schützenberger [36]

concerns codes which are subsets of the set

𝒜𝑚 = {𝑥𝑖𝑦𝑥𝑗 ∣ 𝑖 + 𝑗 < 𝑚}

where, of course, 𝑚 > 0. The individual components 𝑥𝑖𝑦𝑥𝑗 are called atoms, as they

will never be considered broken down any further. For the atom 𝑥𝑖𝑦𝑥𝑗, we call 𝑖 the

prefix and 𝑗 the suffix. The conjecture is so named because the elements of 𝒜𝑚 can be

arranged graphically as a triangle, as can be seen for 𝑚 = 10 in Figure 2.1.

Definition (Kleene Star [28]) Given a set 𝐴 of atoms, 𝐴★ is defined as the smallest

set satisfying the following conditions.

1. 𝜀 ∈ 𝐴★, where 𝜀 is the empty string.

2. 𝐴 ⊆ 𝐴★.

3. If 𝑣,𝑤 ∈ 𝐴★, then 𝑣 ⋅ 𝑤 ∈ 𝐴★, where ⋅ is the concatenation operation.

Definition Given a set 𝐴 of atoms, define 𝐴𝑛 to be the set of words that are obtained

as concatenations of exactly 𝑛 elements of 𝐴, or

𝐴𝑛 = {𝑤 ∈ 𝐴★ ∣ ∣𝑤∣ = 𝑛}.

9

Figure 2.1: Representation of atoms 𝑥𝑖𝑦𝑥𝑗 as a triangle. Each point represents an atom
𝑥𝑖𝑦𝑥𝑗, where the 𝑥-coordinate represents 𝑖 and the 𝑦-coordinate represents 𝑗.

Definition A subset 𝐴 ⊆ 𝒜𝑚 is a code if any word that can be formed by concatenation

of atoms of 𝐴 can be decomposed uniquely as a concatenation of atoms. Algebraically

speaking, 𝐴 is a code if the free monoid on 𝐴 exhibits unique factorization. Combina-

torially speaking, 𝐴 is a code if ∣𝐴𝑛∣ = ∣𝐴∣𝑛 for all 𝑛 ≥ 0.

Example The sets 𝐴𝑚 = {𝑦𝑥𝑖 ∣ 𝑖 < 𝑚} and 𝐵𝑚 = {𝑥𝑖𝑦𝑥𝑚−𝑖−1 ∣ 𝑖 < 𝑚} are codes for

all 𝑚 ≥ 0. Verification of these facts is left to the reader.

Example The set 𝐴 = {𝑥𝑦𝑥, 𝑥𝑦𝑥2, 𝑦𝑥} is not a code, for

𝑥𝑦𝑥2𝑦𝑥 = 𝑥𝑦𝑥 ⋅ 𝑥𝑦𝑥, 𝑎𝑛𝑑

𝑥𝑦𝑥2𝑦𝑥 = 𝑥𝑦𝑥2 ⋅ 𝑦𝑥.

The Triangle Conjecture states that if 𝐴 ⊆ 𝒜𝑚 is a code, then ∣𝐴∣ ≤ 𝑚. In the initial

paper where they introduced the Triangle Conjecture, Perrin and Schützenberger proved

the following theorem.

Theorem 2.1.1 (Perrin-Schützenberger [36]). If 𝑋 ⊆ 𝒜𝑚 is a code and the projections

of 𝑋 on each of the two coordinates are both equal to {0, 1, . . . , 𝑟} for some 𝑟, then

∣𝑋∣ ≤ 𝑚.

Additionally, Pin and Simon [37] proved the following special cases of the Triangle

Conjecture.

10

Theorem 2.1.2 (Pin-Simon [37]). Let 𝑋 ⊆ 𝒜𝑚 be a code such that either the set of

prefixes or the set of suffixes of 𝑋 has size at most two. Then ∣𝑋∣ ≤ 𝑚.

Theorem 2.1.3 (Pin-Simon [37]). Let 𝑋 ⊆ 𝒜𝑚 be a code such that one of the following

statements are satisfied.

1. There is exactly one prefix of 𝑋 that has two or more suffixes.

2. There is exactly one suffix of 𝑋 that has two or more prefixes.

Then ∣𝑋∣ ≤ 𝑚.

Shortly thereafter De Felice [11] proved the following theorem.

Theorem 2.1.4 (De Felice [11]). If 𝑋 ⊆ 𝒜𝑚 is a finite code that occupies at most three

rows 𝑖, 𝑗, 𝑘 satisfying 𝑖 < 𝑗 < 𝑘 and 𝑗 − 𝑖 = 𝑘 − 𝑗, then ∣𝑋∣ ≤ 𝑚.

Hansel [24] found an upper bound to the size of a code 𝑋 ⊆ 𝒜𝑚 by simply counting

the different possible words that can be created from all atoms in 𝒜𝑚. From this, he

was able to prove the following theorem.

Theorem 2.1.5 (Hansel [24]). The number of distinct words that can be constructed

from 𝑛 atoms from 𝒜𝑚 is at most((
1 +

1√
2

)
𝑚

)𝑛
.

Hence, if 𝑋 ⊆ 𝒜𝑚 is a code, then ∣𝑋∣ ≤
(
1 + 1√

2

)
𝑚.

An initial attempt can be made toward the Triangle Conjecture by considering what

happens if we restrict the range of prefixes that can occur in our code. It would be

symbolic suicide to consider just an arbitrary set of prefixes {𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑘} for a code

in 𝒜𝑚, so to start we will consider the case where the set of prefixes is {0, 1, . . . , 𝛼𝑚},
where 𝛼𝑚 is an integer. We will prove a slight strengthening of Theorem 2.1.5.

Theorem 2.1.6. If the set of prefixes of 𝑋 ⊆ 𝒜𝑚 is contained in {0, 1, . . . , 𝛼𝑚} for
some 0 ≤ 𝛼 ≤ 1, then the number of distinct words that can be constructed from 𝑛

atoms from 𝑋 is at most ((
𝛼 + 1

2
+

√
1 + 2𝛼− 𝛼2

2

)
𝑚

)𝑛
.

11

Proof. We will follow the procedure in [24]. Mathematica [1] was used for all of the

symbolic manipulation in this section. Fix 𝑚 and let 𝑇 = {𝑥𝑖𝑦𝑥𝑗 ∣ 𝑖 + 𝑗 + 1 ≤ 𝛼𝑚}.
We are interested in counting the elements in the set

𝑇 𝑛𝑖𝑗 = {𝑎1𝑎2 . . . 𝑎𝑛 ∈ 𝑇𝑛 ∣ 𝑎1𝑎2 . . . 𝑎𝑛 = 𝑥𝑖𝑦 ⋅ ⋅ ⋅ 𝑦𝑥𝑗}.

Toward this end, we define the following numbers.

𝑡𝑛𝑖𝑗 = ∣𝑇 𝑛𝑖𝑗 ∣

𝑡𝑛 = ∣𝑇𝑛∣ =
𝛼𝑚∑
𝑖=0

𝛼𝑚∑
𝑗=0

𝑡𝑛𝑖𝑗

𝑢𝑛 =
𝛼𝑚∑
𝑖=0

𝑡𝑛𝑖0

Lemma 2.1.7. There is a bijection between the sets

𝑇 𝑛𝑖𝑗 ⇐⇒
𝛼𝑚−𝑗−1∪
𝑘=0

𝑇 𝑛−1𝑖0 × 𝑇 1
𝑘𝑗 ∪

𝛼𝑚−1∪
𝑘=1

𝑇 𝑛−1𝑖𝑘 × 𝑇 1
𝛼𝑚−𝑗−1,𝑗.

Proof. Given a word 𝑥𝑖𝑦𝑥𝑖2𝑦 ⋅ ⋅ ⋅ 𝑦𝑥𝑖𝑛𝑦𝑥𝑗 , we perform the bijection by peeling off the

right atom, where we make sure to remove as many 𝑥’s as possible from 𝑥𝑖𝑛 , while

always making sure that the atom we remove is an element of 𝒜. If we are able to

remove 𝑥𝑖𝑛𝑦𝑥𝑗, which is the most possible, then this is an element of 𝑇 1
𝑘𝑗 for some

0 ≤ 𝑘 ≤ 𝛼𝑚 − 𝑗 − 1, since we made sure that 𝑘 + 𝑗 + 1 ≤ 𝛼𝑚. What remains is an

element of 𝑇 𝑛−1𝑖0 . Otherwise, we peel off as much as possible, guaranteeing that the

atom removed is the largest size allowable, which means it is an element of 𝑇 1
𝑚−𝑗−1,𝑗.

Similarly, what remains is an element of 𝑇 𝑛−1𝑖𝑘 for some 1 ≤ 𝑘 ≤ 𝛼𝑚 − 1. Note that 𝑘

cannot be zero in this case, since we took care of that condition first.

Corollary 2.1.8.

𝑡𝑛𝑖𝑗 = (𝛼𝑚− 𝑗)𝑡𝑛−1𝑖0 +

𝛼𝑚−1∑
𝑘=1

𝑡𝑛−1𝑖𝑘 . (2.1)

Proof. Follows from Lemma 2.1.7 considering that
∣∣∣𝑇 1
𝑖𝑗

∣∣∣ = 1 for any specific value of 𝑘

and of 𝑗.

12

By summing (2.1) over all possible indices 𝑖 and 𝑗, we obtain

𝑡𝑛 = 𝑚𝑡𝑛−1 +

((
𝛼− 𝛼2

2

)
𝑚2 − 𝛼𝑚

2

)
𝑢𝑛−1.

Additionally, by letting 𝑗 = 0 and by summing equation (2.1) over all possible indices

𝑖, we obtain

𝑢𝑛 = 𝑡𝑛 + 𝛼𝑚𝑢𝑛−1.

At this point, we have all the necessary ingredients to compute 𝑡𝑛, as this is simply

an enumeration scheme with two quantities (𝑡 and 𝑢). We can express this enumeration

scheme in matrix form.

𝑀 =

⎡
⎢⎣𝑚

(
𝛼− 𝛼2

2

)
𝑚2 − 𝛼𝑚

2

1 𝛼𝑚

⎤
⎥⎦ .

This results in a characteristic polynomial of

𝜒𝑀 (𝑥) = 𝑥2 −𝑚(𝛼 + 1)𝑥 +
𝛼𝑚

2
(𝛼𝑚 + 1)

Yielding a recurrence of

𝑡𝑛 = 𝑚(𝛼 + 1)𝑡𝑛−1 − 𝛼𝑚

2
(𝛼𝑚 + 1)𝑡𝑛−2

With initial conditions 𝑡0 = 𝑎0 and 𝑡1 = 𝑎1 – for the reader to determine as it does not

affect our asymptotic analysis – we get a generating function of

𝑔𝑡(𝑥) =
𝑎0 − (𝑎0(𝛼 + 1)𝑚− 𝑎1)𝑥

1− (𝛼 + 1)𝑚 + 𝛼𝑚
2 (𝛼𝑚 + 1)𝑥2

If we let

Δ = [(𝛼 + 1)𝑚]2 − 2𝛼𝑚(𝛼𝑚 + 1)

by factoring the denominator and using partial fractions, we obtain

𝑔𝑡(𝑥) =
𝑎0 − (𝑎0(𝛼 + 1)𝑚− 𝑎1)𝑥

1− (𝛼 + 1)𝑚 + 𝛼𝑚
2 (𝛼𝑚 + 1)𝑥2

=
𝑎0 − (𝑎0(𝛼 + 1)𝑚− 𝑎1)𝑥(

1− 1
2

[
(𝛼 + 1)𝑚 +

√
Δ
]
𝑥
)(

1− 1
2

[
(𝛼 + 1)𝑚−√Δ

]
𝑥
)

=
1√
Δ

𝑎0
2

[
(𝛼 + 1)𝑚 +

√
Δ
]
− (𝑎0(𝛼 + 1)𝑚− 𝑎1)

1− 1
2

[
(𝛼 + 1)𝑚 +

√
Δ
]
𝑥

− 1√
Δ

𝑎0
2

[
(𝛼 + 1)𝑚−√Δ

]
− (𝑎0(𝛼 + 1)𝑚− 𝑎1)

1− 1
2

[
(𝛼 + 1)𝑚−√Δ

]
𝑥

13

This yields the final result.

𝑡𝑛 =
1√
Δ

(𝑎0
2

[
(𝛼 + 1)𝑚 +

√
Δ
]
− (𝑎0(𝛼 + 1)𝑚− 𝑎1)

)(1

2

[
(𝛼 + 1)𝑚 +

√
Δ
])𝑛

− 1√
Δ

(𝑎0
2

[
(𝛼 + 1)𝑚−

√
Δ
]
− (𝑎0(𝛼 + 1)𝑚− 𝑎1)

)(1

2

[
(𝛼 + 1)𝑚−

√
Δ
])𝑛

After quite a bit of analysis, we obtain the limit

𝑡𝑛 = 𝑂

(
𝛼 + 1

2
+

√
1 + 2𝛼− 𝛼2

2

)
.

Note that the result is consistent with that of Hansel, since

lim
𝛼→1

𝛼 + 1

2
+

√
1 + 2𝛼 − 𝛼2

2
= 1 +

1√
2
,

which corresponds to the case where 𝛼 = 1.

2.2 The counterexample to the Triangle Conjecture

One small definition is first needed before we present the counterexample and its proof,

for the literature varies on its meaning.

Definition Given sets 𝑋 and 𝑌 of integers, the difference set 𝑋 − 𝑌 is defined as

𝑋 − 𝑌 = {∣𝑥− 𝑦∣ ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑥 ∕= 𝑦}.

The counterexample to the Triangle Conjecture that Shor found is the following,

arranged intentionally.

𝑦𝑥14

𝑦𝑥13 𝑥3𝑦𝑥6 𝑥8𝑦𝑥6

𝑦𝑥7 𝑥3𝑦𝑥4 𝑥8𝑦𝑥4 𝑥11𝑦𝑥4

𝑦𝑥1 𝑥3𝑦𝑥2 𝑥8𝑦𝑥2 𝑥11𝑦𝑥2

𝑦 𝑥3𝑦 𝑥8𝑦 𝑥11𝑦

The proof of why the above is a code is the true motivation for this chapter: say for

example we have a word of the form 𝑥𝑖𝑦𝑥𝑗𝑦𝑥𝑘 which can be decomposed in two different

14

ways, as

𝑥𝑖𝑦𝑥𝑗𝑦𝑥𝑘 = 𝑥𝑖𝑦𝑥𝑗1 ⋅ 𝑥𝑗2𝑦𝑥𝑘, and

𝑥𝑖𝑦𝑥𝑗𝑦𝑥𝑘 = 𝑥𝑖𝑦𝑥𝑗3 ⋅ 𝑥𝑗4𝑦𝑥𝑘.

It is then required that 𝑗1 + 𝑗2 = 𝑗3 + 𝑗4, or 𝑗1 − 𝑗3 = 𝑗4 − 𝑗2. Therefore, it is sufficient

to show that the difference set of {0, 3, 8, 11}, which are the prefixes of all the atoms,

is disjoint from each of the difference sets of {0, 1, 7, 13, 14}, {0, 2, 4, 6}, and {0, 1, 2},
which are the suffixes of all the atoms of a given prefix. It is routine to check that these

difference sets are indeed disjoint, and as this argument can be extended to words of

any length, it is established that this is a counterexample to the Triangle Conjecture.

Remark The bounds in equation (2.2) are independent of 𝑚, for Shor also demon-

strated a construction to create more counterexamples from previously-existing codes.

Specifically, if 𝑋 ⊆ 𝒜𝑚 is a code, then by letting

𝑋↑
0 = {𝑥2𝑖𝑦𝑥2𝑗 ∣ 𝑥𝑖𝑦𝑥𝑗 ∈ 𝑋}

𝑋↑
1 = {𝑥2𝑖𝑦𝑥2𝑗+1 ∣ 𝑥𝑖𝑦𝑥𝑗 ∈ 𝑋},

then (𝑋↑
0 ∪𝑋↑

1) ⊆ 𝒜2𝑚 is also a code. Notice, however, that through this process

𝑋

𝑚
=

𝑋↑
0 ∪𝑋↑

1

2𝑚

so the lower bound ratio in equation (2.2) remains constant.

We can expand on the previous remark.

Definition Given a code 𝑋, we define the 𝑘-expansion of 𝑋, 𝑋↑𝑘, as

𝑋↑𝑘 =
𝑘−1∪
𝑎=0

𝑋↑𝑘
𝑎 ,

where

𝑋↑𝑘
𝑎 = {𝑥𝑘𝑖𝑦𝑥𝑘𝑗+𝑎 ∣ 𝑥𝑖𝑦𝑥𝑗 ∈ 𝑋}.

Lemma 2.2.1 (Code Expansion Lemma). If 𝑋 ⊆ 𝒜𝑚 is a code, then 𝑋↑𝑘 ⊆ 𝒜𝑘𝑚 is

also a code.

15

Proof. Let 𝑃1 be the set of prefixes of 𝑋 (which is equal to 𝑋↑1) and let {𝑆𝑖 ∣ 𝑖 ∈ 𝑃1}
be the set of suffixes for each prefix. Since 𝑋 is a code, then we know that 𝑃1 − 𝑃1

is disjoint from 𝑆𝑖 − 𝑆𝑖 for all 𝑖. Letting 𝑃𝑘 be the set of prefixes of 𝑋↑𝑘, we see that

𝑃𝑘 = 𝑘𝑃1. We can now define the family of suffixes as {𝑆′𝑖 ∣ 𝑖 ∈ 𝑃1} since there is

a one-to-one correspondence (multiplication by 𝑘) between the prefixes in 𝑃1 and the

prefixes in 𝑃𝑘. Note that the only multiples of 𝑘 that are in 𝑆′𝑖 − 𝑆′𝑖 are the ones that

are in 𝑆𝑖 − 𝑆𝑖, which completes the proof.

Only a small amount of work has been done since Shor’s counterexample. Since the

Triangle Conjecture is refuted, a possible recourse is to consider the quantity

𝛾 = lim
𝑛→∞

(
size of largest code in 𝒜𝑛

𝑛

)
.

Shor’s counterexample demonstrated that 𝛾 ≥ 16
15 , and Hansel’s counting argument that

was expounded on in Section 2.1 shows that

16

15
≤ 𝛾 ≤ 1 +

1√
2
. (2.2)

An interesting question would be to find the exact value of 𝛾, but (2.2) is the state of

the art.

Remark What Shor showed was the following: if a set 𝑃 of prefixes is given and a

family {𝑆𝑝 ∣ 𝑝 ∈ 𝑃} of suffixes is given such that the difference set of 𝑃 is disjoint from

the difference set of 𝑆𝑝 for all 𝑝 ∈ 𝑃 , then the family of atoms defined by

𝑋 =
∪
𝑝∈𝑃
{𝑥𝑝𝑦𝑥𝑗 ∣ 𝑗 ∈ 𝑆𝑝}

is a code. It is worth noting that the converse is not true; for example, the following is

a code but does not satisfy “Shor’s Property”.

{𝑥1𝑦𝑥1, 𝑥1𝑦𝑥2, 𝑥2𝑦𝑥8, 𝑥2𝑦𝑥9}.

Following the ideas from Shor’s counterexample, one way to find potential codes

would be as follows: we start with 𝑚 and prefixes prescribed by 𝑃 = {𝑝1, . . . , 𝑝𝑘}, each

less than 𝑚. Then we can find the largest code in 𝒜𝑚 with prefixes in 𝑃 by finding the

16

largest subset of [𝑚− 𝑝𝑖 − 1] avoiding 𝑃 − 𝑃 for each 𝑖, which would form the suffixes

for atoms starting with 𝑥𝑝𝑖𝑦. Indeed, going back to Shor’s example, {0, 1, 7, 13, 14}
is a subset of maximum size of [14] avoiding {0, 3, 8, 11} − {0, 3, 8, 11} = {3, 5, 8, 11},
{0, 2, 4, 6} is a subset of maximum size of [11] and [6] avoiding {3, 5, 8, 11}, and {0, 1, 2}
is a subset of maximum size of [3] avoiding {3, 5, 8, 11}.

This describes the importance of finding large subsets of [𝑛] that avoid prescribed

differences in a prescribed set Δ, which for the purposes of the Triangle Conjecture is

itself a difference set of integers. For now, we will only be considering the size of the

largest subset of [𝑛] avoiding Δ, which we will denote by 𝑓Δ(𝑛). We will study another

very similar quantity.

Definition 𝑓Δ(𝑛) is the size of the largest subset 𝑇 of [𝑛] such that 𝑇 avoids differences

in Δ. Generally speaking, 𝑓Δ(𝐼;𝑆) is the size of the largest subset 𝑇 of 𝐼 such that 𝑇

avoids differences in Δ and 𝑆 ∩𝑇 = ∅. We also define 𝑓Δ(𝐼) = 𝑓Δ(𝐼; ∅) and 𝑓Δ(𝑛;𝑆) =

𝑓Δ([𝑛];𝑆). We say that a set 𝐴 is a (Δ, 𝑆)-set if 𝐴 avoids elements in 𝑆 and differences

in Δ. If 𝑆 = ∅ then we will call 𝐴 a Δ-set. We also say that a set 𝐴 ⊆ 𝐼 is a candidate

for 𝑓Δ(𝐼;𝑆) if 𝐴 avoids elements in 𝑆 and differences in Δ, and ∣𝐴∣ = 𝑓Δ(𝐼;𝑆).

The first question relating to these quantities seemed to have been posed by Motzkin

(see [7]) , when he asked about the quantity

𝜇(Δ) = lim
𝑛→∞

𝑓Δ(𝑛)

𝑛
,

which is also equal to lim
𝑛→∞

𝑓Δ(𝑛;𝑆)

𝑛
for any finite 𝑆. Cantor and Gordon [7] determined

𝜇(Δ) for ∣Δ∣ ≤ 2 and proved that 𝜇(Δ) is always rational. Haralambis [25] extended

these results by determining 𝜇(Δ) for the following cases.

∙ Δ = {1, 𝑗, 𝑘} where 𝑗 is even and 𝑘 = 𝑛(𝑗 + 1) + 𝑘 for 0 ≤ 𝑘 ≤ 𝑗.

∙ Δ = {1, 𝑗, 𝑘} where 𝑗 is odd and either 𝑘 is odd or 𝑘 ≥ (𝑗2).
∙ Δ = {1, 2, 𝑗, 𝑘} except where 𝑗 ≡ 0 (mod 3) and 𝑘 ≡ 1 (mod 3).

∙ Δ = {1, 2, 3𝑛, 3𝑛 + 5} where 𝑛 ≥ 2.

17

∙ Δ = {1, 3, 4, 𝑘} where 𝑘 ≡ 2 (mod 7).

Gupta [21] gave more results, including the first results involving the determination of

𝜇(Δ) for an infinite family of Δ with ∣Δ∣ → ∞. A major shortcoming of the results

obtained so far is that they are mainly ad hoc and do not give any insight into the

underlying structure. This chapter will give major insight into the quantity 𝜇(Δ) by

considering the sequences {𝑓Δ(𝑛)}∞1 . Through this consideration we will be able to give

an algorithm that will compute 𝜇(Δ) for any given Δ and will hence allow for further

investigations into the exact values of, for example, 𝜇(Δ) = {2, 4, 𝑗, 𝑘} due to formal

parameter analysis and combinatorial methods. Additionally, a major lemma (Lemma

2.8.1) will be given that provides a useful upper bound on 𝜇(Δ), which, combined

with the lower bounds provided by Cantor, Gordon, Haralambis, and Gupta, provide

sharp or small double-sided bounds for 𝜇(Δ). Furthermore, the framework given in

this chapter for dealing with 𝜇(Δ) readily extends to generalized versions, which will

be discussed lightly in this chapter and have the real potential for future research.

2.3 Basic Properties of 𝑓Δ(𝐼;𝑆)

We now turn our focus on the discrete quantities 𝑓Δ(𝐼;𝑆) and 𝑓Δ(𝑛;𝑆). We start with

a few simple but important lemmas. If proofs are not provided, then they are left to

the reader and promise to be easy exercises.

Lemma 2.3.1. 𝑓Δ(1;𝑆) = 11∕∈𝑆 .

Lemma 2.3.2. If 𝐴 ⊆ 𝐼 is a (Δ, 𝑆)-set and 𝐵 is a candidate for 𝑓Δ(𝐼;𝑆), then

∣𝐴∣ ≤ ∣𝐵∣.

Lemma 2.3.3. The set

ℐΔ(𝑛, 𝑆) = {𝐴 ⊆ [𝑛] ∣ 𝐴 is a (Δ, 𝑆)-set}

is an independence system over [𝑛] (see [49]), satisfying

1. ∅ ∈ ℐΔ(𝑛, 𝑆), and

2. 𝐵 ∈ ℐΔ(𝑛, 𝑆), 𝐴 ⊆ 𝐵 ⇒ 𝐴 ∈ ℐΔ(𝑛, 𝑆).

18

Lemma 2.3.4. 𝑓Δ(𝐼;𝑆) ≥ 𝑓Δ(𝐼)− ∣𝑆∣.

Proof. If 𝐴 is a candidate for 𝑓Δ(𝐼), then 𝐴 ∖ 𝑆 is a (Δ, 𝑆)-set, so if 𝐴′ is a candidate

for 𝑓Δ(𝐼;𝑆), then ∣𝐴′∣ ≥ ∣𝐴 ∖ 𝑆∣ = 𝑓Δ(𝐼)− 𝑆.

Lemma 2.3.5. ∣𝑓Δ(𝐼;𝑆)− 𝑓Δ(𝐼;𝑆′)∣ ≤ max{∣𝑆∣, ∣𝑆′∣}.

Proof. We have the clear inequalities

𝑓Δ(𝐼;𝑆) ≤ 𝑓Δ(𝑛)

𝑓Δ(𝐼;𝑆′) ≤ 𝑓Δ(𝑛).

Likewise, from Lemma 2.3.4 we have that

−𝑓Δ(𝐼;𝑆) ≤ ∣𝑆∣ − 𝑓Δ(𝑛)

−𝑓Δ(𝐼;𝑆′) ≤ ∣𝑆′∣ − 𝑓Δ(𝑛).

Combining the previous two statements, we have

𝑓Δ(𝐼;𝑆) − 𝑓Δ(𝐼;𝑆′) ≤ ∣𝑆′∣

𝑓Δ(𝐼;𝑆′)− 𝑓Δ(𝐼;𝑆) ≤ ∣𝑆∣

which yields the result we seek.

Lemma 2.3.6. For any integer 𝑘, 𝑓Δ(𝐼;𝑆) = 𝑓Δ(𝐼 ± 𝑘;𝑆 ± 𝑘).

Proof. If 𝐴 ⊆ 𝐼 is a (Δ, 𝑆)-set, then 𝐴− 𝑘 is a subset of 𝐼 − 𝑘 and is a (Δ, 𝑆 − 𝑘)-set,

as differences are unaffected if all members of a set are shifted by the same amount.

Specifically, the map 𝐴 �→ 𝐴 − 𝑘 is a cardinality-preserving bijection from the subsets

of 𝐼 that are (Δ, 𝑆)-sets and the subsets of 𝐼 − 𝑘 that are (Δ, 𝑆 − 𝑘)-sets. ‘−’ can be

replaced by ‘+’ in the previous two sentences for the same effect.

2.4 The Fundamental Recurrences

We are mainly concerned with finding 𝑓Δ(𝑛), but we require the extra parameter 𝑆 as

it allows us to state and prove the following recurrence equation, of which there is no

similar equation without the extra parameter.

19

Theorem 2.4.1. If 1 ∈ 𝑆, then

𝑓Δ(𝑛;𝑆) = 𝑓Δ(𝑛− 1;𝑆 − 1).

If 1 ∕∈ 𝑆, then

𝑓Δ(𝑛;𝑆) = max{𝑓Δ(𝑛− 1;𝑆 − 1), 1 + 𝑓Δ(𝑛− 1;Δ ∪ (𝑆 − 1))}.

Proof. If 1 ∈ 𝑆, then 𝑓Δ(𝑛;𝑆) = 𝑓Δ({2, . . . , 𝑛};𝑆 ∖ 1) = 𝑓Δ(𝑛− 1;𝑆 − 1) from Lemma

2.3.6. If 1 ∕∈ 𝑆, let 𝐶 be a candidate for 𝑓Δ(𝑛;𝑆). We will condition on the event

that 1 ∈ 𝐶 or not. If 1 ∈ 𝐶, then 𝐶 ∖ {1} is a maximal subset of {2, . . . , 𝑛} avoiding

differences in Δ. However, 𝐶 ∖ {1} must also avoid elements in Δ + 1, for if 𝛿 ∈ 𝐶 and

𝛿 ∈ Δ + 1, then 𝛿 − 1 ∈ Δ and the fact now that 1 ∈ 𝐶 and 𝛿 ∈ 𝐶 contradicts the fact

that 𝐶 avoided differences in Δ. Therefore, ∣𝐶 ∖ {1}∣ = 𝑓Δ({2, . . . , 𝑛}; (Δ + 1) ∪ 𝑆) =

𝑓Δ(𝑛 − 1;Δ ∪ (𝑆 − 1)) so ∣𝐶∣ = 1 + 𝑓Δ(𝑛 − 1;Δ ∪ (𝑆 − 1)). If 1 ∕∈ 𝐶, then 𝐶 is a

set of size 𝑓Δ({2, . . . , 𝑛};𝑆) = 𝑓Δ(𝑛 − 1;𝑆 − 1). Since 𝐶 is to be the larger of the two

possibilities, we take the maximum.

This concept can be extended further by generalizing what it means to avoid a

difference and avoid a specific element. If we say that a set 𝐴 avoids a difference 𝑑,

then it implies that there is no 𝑥, 𝑦 ∈ 𝐴 such that 𝑦 − 𝑥 = 𝑑. Very slightly rephrased,

it means that there is no subset {𝑥, 𝑦} ⊆ 𝐴 with 𝑥+ 𝑑 = 𝑦. Viewed in this manner, the

following generalized definition is clear.

Definition Given a set 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑘} with 𝑑1 < 𝑑2 < ⋅ ⋅ ⋅ < 𝑑𝑘, we say that a

set 𝐴 avoids the generalized difference 𝐷 if

∀𝑥 ∈ 𝐴 {𝑥, 𝑥 + 𝑑1, 𝑥 + 𝑑2, . . . , 𝑥 + 𝑑𝑘} ∕⊆ 𝐴.

If 𝔇 is a family of sets, then we say that 𝐴 avoids differences in 𝔇 if 𝐴 avoids the

generalized difference 𝐷 for all 𝐷 ∈ 𝔇.

Similarly, if we say that 𝐴 avoids an element 𝑥 ∈ 𝑆, then it can be slightly rephrased

to say that {𝑥} ∕⊆ 𝐴. This yields the generalized definition.

Definition A set 𝐴 avoids 𝑋 = {𝑥1, . . . , 𝑥𝑘} if 𝑋 ∕⊆ 𝐴. If 𝔖 is a family of sets, then

we abuse notation and say that 𝐴 avoids (elements in) 𝔖 if 𝐴 avoids 𝑋 for all 𝑋 ∈ 𝔖.

20

With the generalized definitions, we can now define the generalized analogue to

𝑓Δ(𝐼;𝑆).

Definition If 𝔖 and 𝔇 are families of sets, then 𝑓𝔇(𝐼;𝔖) is the size of the largest subset

of 𝐼 that avoids differences in 𝔇 and elements in 𝔖. We also define 𝑓𝔇(𝑛;𝔖) = 𝑓𝔇([𝑛];𝔖)

and 𝑓𝔇(𝐼) = 𝑓𝔇(𝐼; ∅).

Definition If 𝔖 is a family of sets, then

𝔖− 1 = {𝑆 − 1 ∣ 𝑆 ∈ 𝔖}

(𝔖− 1)★ = {𝑆 − 1 ∣ 𝑆 ∈ 𝔖, 1 ∕∈ 𝑆}.

With this new definition, we now have the generalized version of the recursion above.

Theorem 2.4.2. If {1} ∈ 𝔖 then

𝑓𝔇(𝑛;𝔖) = 𝑓𝔇(𝑛− 1; (𝔖 − 1)★).

If {1} ∕∈ 𝔖, then

𝑓𝔇(𝑛;𝔖) = max {𝑓𝔇(𝑛− 1; (𝔖− 1)★), 1 + 𝑓𝔇(𝑛− 1;𝔖− 1)}.

Proof. Similar to the proof of Theorem 2.4.1, but it is worth explaining why (𝔖− 1)★

is in the recurrence instead of simply 𝔖 − 1. For the first part of the recurrence, we

assume that {1} ∈ 𝔖, so a candidate for 𝑓𝔇(𝑛;𝔖) vacuously avoids any other set 𝑋 ∈ 𝔖

that contains 1, so we may disregard those sets. With the previous sentence in mind,

the proof follows exactly in the same manner as Theorem 2.4.1.

We will mention now the cyclic variants, which will be expounded on later in the

chapter.

Definition 𝑓 𝑐Δ(𝑛;𝑆) is defined as the largest subset of ℤ𝑛 that avoids differences in

Δ and elements in 𝑆, where subtraction is done modulo 𝑛. Similarly, 𝑓 𝑐
𝔇
(𝑛;𝔖) is the

largest subset of ℤ𝑛 that avoids generalized differences in 𝔇 and generalized elements

in 𝔖, again where all operations are done modulo 𝑛.

21

1

2
3

4

5

6
7

8

Figure 2.2: Graph 𝐶8,{1,3}

1 2 3 4 5 6 7 8

Figure 2.3: Graph 𝑈8,{1,3}

2.5 A Graph Theory Connection

Astute readers may have noticed that this problem bears a strong resemblance to

the problem of finding the independence number of circulant and unhooked-circulant

graphs, defined as follows (following the terminology of [5]).

Definition Given a set 𝑆 of integers, the circulant graph 𝐶𝑛,𝑆 is the graph on vertex

set 𝑉 = ℤ𝑛 such that 𝑢 ∼ 𝑣 if and only if 𝑢 − 𝑣 ∈ 𝑆, where the arithmetic is done

modulo 𝑛.

Definition Given a set 𝑆 of integers, the unhooked-circulant graph 𝑈𝑛,𝑆 is the graph

on vertex set 𝑉 = [𝑛] such that 𝑢 ∼ 𝑣 if and only if ∣𝑢−𝑣∣ ∈ 𝑆, where normal arithmetic

is used.

As examples, we present 𝐶8,𝑆 and 𝑈8,𝑆 with 𝑆 = {1, 3} in Figures 2.2 and 2.3.

There is a direct relationship between finding 𝑓Δ(𝑛) and finding the independence

number of 𝑈𝑛,𝑆. As a consequence, we can give graph-theoretical arguments to answer

questions about 𝑓Δ(𝑛) by looking at 𝑈𝑛,𝑆, and similarly questions about 𝑓 𝑐Δ(𝑛) by

considering 𝐶𝑛,𝑆. In this example, we prove a theorem that extends the results of

Brown and Hoshino (see [5]). The main focus of their paper (which also gave a very

22

nice application to music, involving the number of different chords one could play) was

the following result involving independence polynomials.

Definition Given a graph 𝐺 on 𝑛 vertices, the independence polynomial 𝐼(𝐺,𝑥) is

defined as

𝐼(𝐺,𝑥) =

𝑛∑
𝑘=0

𝑖𝑘𝑥
𝑘,

where 𝑖𝑘 is the number of independent sets of 𝐺 with precisely 𝑘 vertices.

Theorem 2.5.1 (Brown-Hoshino [5]).

𝐼(𝐶𝑛,[𝑑], 𝑥) = 𝐼(𝐶𝑛−1,[𝑑], 𝑥) + 𝑥𝐼(𝐶𝑛−𝑑−1,[𝑑], 𝑥) for all 𝑛 ≥ 2𝑑 + 2.

Proof. See [5].

From Theorem 2.5.1, one can get a formula for the independence number of 𝐶𝑛,[𝑑]. We

go further, and prove the following theorem.

Theorem 2.5.2. Define [𝑘, 𝑙] = {𝑘, 𝑘 + 1, . . . , 𝑙} and given 𝑛, let 𝑛 = 𝑞(𝑘 + 𝑙) + 𝑟.

Then, the independence number of 𝑈𝑛,[𝑘,𝑙] is 𝑞𝑘 + min(𝑟, 𝑘). Equivalently, 𝑓[𝑘,𝑙](𝑛) =

𝑞𝑘 + min(𝑟, 𝑘).

Proof. We will first consider the initial case where 𝑛 ≤ 𝑘+ 𝑙. Clearly, if 1 ≤ 𝑛 ≤ 𝑘 then

𝑈𝑛,[𝑘,𝑙] has no edges so the independence number would be 𝑛. Now we will show that the

independence number is 𝑘 when 𝑛 = 𝑘 + 𝑙, which would imply that the independence

number is 𝑘 when 𝑘 < 𝑛 < 𝑘 + 𝑙.

Lemma 2.5.3. The largest subset of [𝑘 + 𝑙] avoiding differences in [𝑘, 𝑙] is of size 𝑘.

Proof. Clearly, the set {1, 2, . . . , 𝑘} is a candidate. What remains now is to show that

there is no bigger set. To this end, we will utilize Hall’s Theorem [4]. Let 𝐿 ⊆ [𝑘 + 𝑙]

be such that 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑟} with 𝑎1 < 𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑟 avoids differences in [𝑘, 𝑙].

Construct the bipartite graph 𝐺 = (𝐴,𝐵), where 𝐵 = {𝑏1, . . . , 𝑏𝑖}. For 𝑎𝑖 ∈ 𝐴 and

𝑏𝑗 ∈ 𝐵 we connect via the following rule.

𝑎𝑖 ∼ 𝑏𝑗 ⇐⇒ 𝑎𝑖 = 𝑗 or ∣𝑎𝑖 − 𝑗∣ ∈ [𝑘, 𝑙].

23

If we could match 𝐴, then we would be done, as it would imply that ∣𝐴∣ ≤ ∣𝐵∣ = 𝑘. We

must show that Hall’s Condition is satisfied. For a contradiction, let 𝑆 ⊆ 𝐴 be such

that ∣𝑁(𝑆)∣ < ∣𝑆∣ and assume 𝑆 is minimal.

Claim If 𝑎𝑖 ∈ 𝑆 then 𝑎𝑖 > 𝑘.

Proof of claim. If 𝑎𝑖 ≤ 𝑘, then of course 𝑎𝑖 ∼ 𝑏𝑎𝑖 . If there is no other vertex in 𝑆

adjacent to 𝑏𝑎𝑖 , then 𝑆 ∖ {𝑎𝑖} also fails Hall’s Condition, contradicting the minimality

of 𝑆. However, if there is another vertex 𝑎𝑖′ ∼ 𝑏𝑎𝑖 in 𝐺, then that would imply that

𝑎𝑖 − 𝑎𝑖′ ∈ [𝑘, 𝑙], which contradicts the condition that 𝐴 avoided differences in [𝑘, 𝑙].

From the claim, we may assume that for all 𝑎𝑖 ∈ 𝑆, 𝑘+1 ≤ 𝑎𝑖 ≤ 𝑘+ 𝑙. However, 𝑆 can

only contain one element out of the following sets, of which there are 𝑘.

{𝑘 + 1, 2𝑘 + 1}
{𝑘 + 2, 2𝑘 + 2}

...

{𝑙, 𝑘 + 𝑙}
{𝑙 + 1}
{𝑙 + 2}

...

{2𝑘}

Now we present an important extension to our lemma that says that the extremal

pattern repeats itself.

Lemma 2.5.4. For any positive integer 𝑛, the largest subset of [𝑛(𝑘 + 𝑙)] avoiding

differences in [𝑘, 𝑙] is of size 𝑛𝑘.

Proof. The proof of this lemma is very similar to the proof of the previous one, but

we present it in its entirely for completeness, while also trying to mimic the previous

24

proof. Fix 𝑛. A candidate for our set (arranged intentionally) is

𝐶𝑛 =

⎧⎨
⎩

1, 2, ⋅ ⋅ ⋅ 𝑘,

𝑘 + 𝑙 + 1, 𝑘 + 𝑙 + 2, ⋅ ⋅ ⋅ 2𝑘 + 𝑙,

...
...

...
...

(𝑛− 1)(𝑘 + 𝑙) + 1, (𝑛 − 1)(𝑘 + 𝑙) + 2, ⋅ ⋅ ⋅ (𝑛− 1)(𝑘 + 𝑙) + 𝑘

⎫⎬
⎭

.

Let 𝐶𝑛 = [𝑛(𝑘 + 𝑙)] ∖ 𝐶𝑛. Let 𝐴 ⊆ [𝑛(𝑘 + 𝑙)], with 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑟} and 𝑎1 <

𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑟 be such that 𝐴 avoids differences in [𝑘, 𝑙]. Construct the bipartite graph

𝐺 = (𝐴,𝐵), where 𝐵 = {𝑏𝑗 ∣ 𝑗 ∈ 𝐶𝑛}. For 𝑎𝑘 ∈ 𝐴 and 𝑏𝑗 ∈ 𝐵 we connect via the

following rule.

𝑎𝑖 ∼ 𝑏𝑗 ⇐⇒ 𝑎𝑖 = 𝑗 or ∣𝑎𝑖 − 𝑗∣ ∈ [𝑘, 𝑙].

If we could match 𝐴, then we would be done, as it would imply that ∣𝐴∣ ≤ ∣𝐵∣ = 𝑛𝑘.

We must show that Hall’s Condition is satisfied. For a contradiction, let 𝑆 ⊆ 𝐴 be such

that ∣𝑁(𝑆)∣ < ∣𝑆∣ and assume 𝑆 is minimal.

Claim If 𝑎𝑖 ∈ 𝑆 then 𝑎𝑖 ∈ 𝐶𝑛.

Proof of claim. If 𝑎𝑖 ∈ 𝐶𝑛, then of course 𝑎𝑖 ∼ 𝑏𝑎𝑖 . If there is no other vertex in 𝑆

adjacent to 𝑏𝑎𝑖 , then 𝑆 ∖ {𝑎𝑖} also fails Hall’s Condition, contradicting the minimality

of 𝑆. However, if there is another vertex 𝑎𝑖′ ∼ 𝑏𝑎𝑖 in 𝐺, then that would imply that

𝑎𝑖 − 𝑎𝑖′ ∈ [𝑘, 𝑙], which contradicts the condition that 𝐴 avoided differences in [𝑘, 𝑙].

From the claim, we may assume that for all 𝑎𝑖 ∈ 𝑆, 𝑞(𝑘 + 1) ≤ 𝑎𝑖 ≤ 𝑞(𝑘 + 𝑙) for some

1 ≤ 𝑞 ≤ 𝑛. However, 𝑆 can only contain one element out of the following sets for each

25

𝑞, 1 ≤ 𝑞 ≤ 𝑛, of which there are 𝑛𝑘.

{𝑞(𝑘 + 1), 𝑞(2𝑘 + 1)}
{𝑞(𝑘 + 2), 𝑞(2𝑘 + 2)}

...

{𝑞𝑙, 𝑞(𝑘 + 𝑙)}
{𝑞(𝑙 + 1)}
{𝑞(𝑙 + 2)}

...

{𝑞(2𝑘)}

We have now shown what we wanted for each multiple of 𝑘 + 𝑙.

Lemma 2.5.5 (Persistence Lemma). If 𝑓Δ(𝑘𝑛, 𝑆) = 𝑘𝑚 for infinitely many 𝑘, then

𝜇(Δ) = 𝑚
𝑛
.

Proof. Exercise.

With Lemma 2.5.5, we have completed the proof of Theorem 2.5.2.

2.6 Behavior of 𝑓Δ(𝑛) as 𝑛→∞

As mentioned before, in order to compute 𝑓Δ(𝑛) it is necessary to compute 𝑓Δ(𝑛;𝑆) for

other sets 𝑆 based on the recursion. For example, to compute 𝑓{3,5}(𝑛) = 𝑓{3,5}(𝑛, ∅) it

is necessary to consider the system of recurrences listed in Figure 2.4. Using these

recurrences, it is straightforward to compute the first 25 elements of the sequence

{𝑓{3,5}(𝑛)}.

1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13

There is obvious structure in this sequence past a certain point. The structure becomes

clear when we consider the difference sequence, defining 𝑓{3,5}(0) = 0.

1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

26

𝑓{3,5}(𝑛; ∅) = max{𝑓{3,5}(𝑛− 1; ∅), 𝑓{3,5}(𝑛− 1; {3, 5}) + 1}
𝑓{3,5}(𝑛; {1}) = 𝑓{3,5}(𝑛− 1, ∅)
𝑓{3,5}(𝑛; {2}) = max{𝑓{3,5}(𝑛− 1; {1}), 𝑓{3,5}(𝑛− 1; {1, 3, 5}) + 1}

𝑓{3,5}(𝑛; {1, 2}) = 𝑓{3,5}(𝑛− 1; {1})
𝑓{3,5}(𝑛; {1, 3}) = 𝑓{3,5}(𝑛− 1; {2})
𝑓{3,5}(𝑛; {2, 4}) = max{𝑓{3,5}(𝑛− 1; {1, 3}), 𝑓{3,5}(𝑛− 1; {1, 3, 5}) + 1}
𝑓{3,5}(𝑛; {3, 5}) = max{𝑓{3,5}(𝑛− 1; {2, 4}), 𝑓{3,5}(𝑛− 1; {2, 3, 4, 5}) + 1}

𝑓{3,5}(𝑛; {1, 2, 3}) = 𝑓{3,5}(𝑛− 1; {1, 2})
𝑓{3,5}(𝑛; {1, 3, 5}) = 𝑓{3,5}(𝑛− 1; {2, 4})

𝑓{3,5}(𝑛; {1, 2, 3, 4}) = 𝑓{3,5}(𝑛− 1; {1, 2, 3})
𝑓{3,5}(𝑛; {2, 3, 4, 5}) = max{𝑓{3,5}(𝑛− 1; {1, 2, 3, 4}), 𝑓{3,5}(𝑛− 1; {1, 2, 3, 4, 5}) + 1}

𝑓{3,5}(𝑛; {1, 2, 3, 4, 5}) = 𝑓{3,5}(𝑛− 1; {1, 2, 3, 4})

Figure 2.4: Enumeration scheme for computing the sequence {𝑓{3,5}(𝑛)}.

The difference sequence above is a periodic sequence with period 2 and offset 6. As it

turns out, this is true of all such sequences.

Definition A sequence is called pseudoperiodic if its difference sequence is periodic.

Definition Given sets Δ and 𝑆, the closure ℭΔ(𝑆) is the smallest family of sets satis-

fying the following conditions.

1. 𝑆 ∈ ℭΔ(𝑆), and

2. For all 𝑋 ∈ ℭΔ(𝑆), 𝑋 − 1 ∈ ℭΔ(𝑆) and Δ ∪ (𝑋 − 1) ∈ ℭΔ(𝑆).

Equivalently, ℭΔ(𝑆) can be built up recursively by defining ℭ
1
Δ(𝑆) = {𝑆} and

ℭ
𝑛
Δ(𝑆) = {𝑋 − 1 ∣ 𝑋 ∈ ℭ

𝑛−1
Δ (𝑆)} ∪ {Δ ∪ (𝑋 − 1) ∣ 𝑋 ∈ ℭ

𝑛−1
Δ (𝑆)}.

and letting ℭΔ(𝑆) = ℭ
𝑛★

Δ (𝑆) where 𝑛★ is the least 𝑛 satisfying ℭ
𝑛
Δ(𝑆) = ℭ

𝑛+1
Δ (𝑆).

Theorem 2.6.1. For any sets Δ and 𝑆, the sequence {𝑓Δ(𝑛;𝑆)}∞𝑛=1 is an eventually

pseudoperiodic sequence.

27

Lemma 2.6.2. Let 𝑘 = max(Δ∪(𝑆−1)). For all 𝑆′ ∈ ℭΔ(𝑆), ∣𝑓Δ(𝑛;𝑆)− 𝑓Δ(𝑛;𝑆′)∣ ≤
𝑘.

Proof. Follows from Lemma 2.3.4.

Proof of Theorem 2.6.1. Fix Δ and 𝑆, and let ℭΔ(𝑆) = {𝑆1, 𝑆2, . . . , 𝑆𝑘}. We may

assume that 𝑆1 = ∅ since it is always true that ∅ ∈ ℭΔ(𝑆). We define the state at 𝑛 to

be

𝑠𝑛 = (𝑎𝑛,1, 𝑎𝑛,2, . . . , 𝑎𝑛,𝑘),

where 𝑎𝑛,𝑖 = 𝑓Δ(𝑛;𝑋𝑖)− 𝑓Δ(𝑛;𝑋1) = 𝑓Δ(𝑛;𝑋𝑖)− 𝑓Δ(𝑛; ∅). Note that this implies that

𝑎𝑛,1 = 0 for all 𝑛. Tt follows from Lemma 2.6.2 that ∣𝑎𝑖∣ ≤ 𝑘 for all 𝑘. The main

recursion defines a function 𝐹 on the space of all possible states to itself. Since this

space is finite (it has size at most (2𝑘 + 1)𝑘−1) it implies that our sequences of states

𝑠1, 𝐹 (𝑠1), 𝐹
2(𝑠1), 𝐹

3(𝑠1), . . .

is eventually periodic, implying that the sequence 𝑓Δ(𝑛;𝑆) is eventually pseudoperiodic.

Remark As with most proofs of this sort, the bounds achieved on the offset or the

period of these eventually pseudoperiodic sequences are horrible. It is proved in [7]

that the period is at most 2maxΔ. However, experimental evidence (see Section 2.10)

indicates that a period on the order of the sum of the elements of Δ is possible.

What we will be more interested in, however, is the following corollary.

Corollary 2.6.3. For any set Δ, 𝜇(Δ) exists and is equal to 𝑝
𝑞
, where 𝑞 is the length

of the period of {𝑓Δ(𝑛)}∞𝑛=1 and 𝑝 is the increase in {𝑓Δ(𝑛)}∞𝑛=0 over its period.

Proof. Direct from Theorem 2.6.1, as to find 𝜇(Δ) = lim
𝑛→∞

𝑓Δ(𝑛)

𝑛
, it suffices to only

start considering the sequence {𝑓Δ(𝑛)} when it becomes purely pseudoperiodic.

28

2.7 The Cyclic Extension

In this section we will briefly investigate the cyclic version of 𝑓Δ(𝑛), which involves

avoiding differences modulo 𝑛. Therefore, we view the set as a subset of ℤ𝑛, and not

simply a subset of [𝑛]. To count 𝑓 𝑐Δ(𝑛), we must introduce another parameter based on

the following observation: if we want a similar recurrence as the non-cyclic case, then

we would consider the scenario when 1 is removed from the situation. Consider trying

to find 𝑓 𝑐{2,3}(9) and consider the situation when 1 is removed, as described in Figure

2.5.

29

1

2
34

5

6

7 8
9

⇒ 2

3
4

5

6

7
8

9

Figure 2.5: Taking 𝑈9,{2,3} and removing vertex 1.

The lighter edges in the lower graph above represent the edges that have been

affected by the removal of vertex 1. The removal of the lighter edges produces a graph

that is isomorphic to 𝑈𝐶{2,3}(8). With the lighter edges, the graph yielded is defined

as follows.

Definition Given sets Δ and Δ′, the two-sided circulant graph 𝐶Δ,Δ′(𝑛) on 𝑛 vertices

is the graph with vertex set [𝑛] and edges 𝐸(𝐺) = 𝐸1(𝐺) ∪ 𝐸2(𝐺) defined as follows.

𝐸1(𝐺) =
∪
𝑑∈Δ
{{𝑖, 𝑖 + 𝑑} ∣ 1 ≤ 𝑖 ≤ 𝑛− 𝑑}, 𝑎𝑛𝑑

𝐸2(𝐺) =
∪
𝑑′∈Δ′

{{𝑖, 𝑖 + 𝑑 (mod 𝑛)} ∣ 𝑛− 𝑑 < 𝑖 ≤ 𝑛}.

Just as before, we can generalize the definition and define 𝐶Δ,Δ′(𝐼), which is the graph

with vertex set 𝐼 and similarly-defined edges. The reader can convince him or herself

that 𝐶Δ,Δ′(𝐼) is subgraph of 𝐶Δ,Δ′(𝑛) induced by 𝐼, where 𝑛 = max 𝐼.

Note that 𝐶Δ(𝑛) = 𝐶Δ,Δ(𝑛). In the example above, we see that the removal of vertex

1 from 𝐶{2,3}(9) produced a graph isomorphic to 𝐶{2,3},{1,2}(8) (with the isomorphism

𝑖 �→ 𝑖− 1). It is not a coincidence that {1, 2} = {2, 3} − 1.

Lemma 2.7.1. The removal of any vertex from 𝐶Δ(𝑛) produces a graph isomorphic to

𝐶Δ,Δ−1(𝑛− 1). The removal of vertex 1 from 𝐶Δ,Δ′(𝑛) produces a graph isomorphic to

𝐶Δ,Δ′−1(𝑛− 1).

Proof. Exercise.

30

Since there is no global uniformity anymore with the two-sided circulant graph, we

must add an additional parameter Δ′ when dealing with its relationship to the original

quantity of interest, 𝑓 𝑐Δ(𝑛).

Definition 𝑓 𝑐Δ,Δ′(𝐼;𝑆) is the size of the largest independent set in 𝐶Δ,Δ′(𝐼). 𝑓 𝑐Δ,Δ′(𝐼) =

𝑓 𝑐Δ,Δ′(𝐼; ∅)and 𝑓 𝑐Δ,Δ′(𝑛;𝑆) = 𝑓 𝑐Δ,Δ′([𝑛];𝑆).

Remark The previous definition can be rephrased in terms of avoiding differences, but

it is cleaner to associate the quantity 𝑓Δ,Δ′(𝑛) with the two-sided circulant graphs.

With this operation in mind, along with the relationship between the circulant graphs

𝐶Δ(𝑛) and the quantity 𝑓Δ(𝑛), we have the following recurrence, similar in nature to

the fundamental one of Theorem 2.4.1.

Theorem 2.7.2. If 1 ∈ 𝑆 then

𝑓 𝑐Δ,Δ′(𝑛;𝑆) = 𝑓 𝑐Δ,Δ′−1(𝑛− 1;𝑆 − 1)

otherwise,

𝑓 𝑐Δ,Δ′(𝑛;𝑆) = max{𝑓 𝑐Δ,Δ′−1(𝑛 − 1;𝑆 − 1), 1 + 𝑓 𝑐Δ,Δ′−1(𝑛− 1;Δ ∪ (𝑛−Δ′) ∪ (𝑆 − 1))}.

Proof. Follows the proof of Theorem 2.4.1.

The problem with the theorem above, at first glance, is that there is no bound on

the number of parameters; 𝑆 grows without bound as it depends on 𝑛. Previously 𝑆

depended only on Δ so we could give a bound on how many different parameters we

would need to keep track of. This can be solved by having a different recurrence, with

a second 𝑆′ parameter whose function is similar to the Δ′ parameter.

Definition 𝑓 𝑐Δ,Δ′(𝑛;𝑆, 𝑆′) = 𝑓 𝑐Δ,Δ′(𝑛;𝑆 ∪ ([𝑛] ∖ 𝑆′)).

Theorem 2.7.3. If 1 ∈ 𝑆 and 𝑛 ∕∈ 𝑆′, then

𝑓 𝑐Δ,Δ′(𝑛;𝑆, 𝑆′) = 𝑓 𝑐Δ,Δ′−1(𝑛− 1;𝑆 − 1, 𝑆′)

otherwise,

𝑓 𝑐Δ,Δ′(𝑛;𝑆, 𝑆′) = max{𝑓 𝑐Δ,Δ′−1(𝑛− 1;𝑆− 1, 𝑆′), 1+ 𝑓 𝑐Δ,Δ′−1(𝑛− 1;Δ∪ (𝑆 − 1),Δ′ ∪𝑆′)}

31

Note that a small extra condition was included, which can be avoided by certifying

that max𝑆′ < 𝑛. Since 𝑆′ is solely affected by Δ′ in the recurrence, this is a sufficient

condition since we will usually start out with 𝑆′ = ∅. Therefore, the strategy for

computing the cyclic version of 𝑓Δ(𝑛) is

1. Compute 𝑓Δ,Δ′(𝑛;𝑆) for 1 ≤ 𝑛 ≤ maxΔ′ using Theorem 2.7.2.

2. Compute 𝑓Δ,Δ′(𝑛;𝑆, 𝑆′) for 𝑛 > maxΔ′ using Theorem 2.7.3.

We can link the two recurrences by noting that

𝑓Δ,Δ′(𝑛;𝑆, 𝑆′) = 𝑓Δ,Δ′(𝑛;𝑆 ∪ (𝑛− 𝑆′ + 1))

which gives us a complete overall strategy for computing any number of values of

𝑓Δ,Δ′(𝑛;𝑆) in total linear time. The drawback, as usual, is that there is a large

(but fixed) computation that needs to be done (in 𝑂(2maxΔ) time) and we will need

𝑂(2maxΔ) space to keep track of the current state.

2.8 An application: the Triangle Conjecture, revisited

The first counterexample was found by Shor to the Triangle Conjecture, and com-

puter programs can easily find further counterexamples. Additionally, as Lemma 2.2.1

demonstrated, any counterexample to the Triangle Conjecture can be extended to pro-

duce larger counterexamples via transformations such as

𝑥𝑖𝑦𝑥𝑗 → 𝑥2𝑖𝑦𝑥2𝑗 and 𝑥2𝑖𝑦𝑥2𝑗+1.

This larger counterexample has the same ratio relative to 𝑚 as the original example, but

the underlying set of prefixes has changed. Are there infinite families of counterexamples

with the same set of prefixes? This would be an asymptotic version of the Triangle

Conjecture and can be stated succinctly as follows with the terminology used in this

chapter.

Theorem 2.8.1 (Asymptotic Version of the Triangle Conjecture). For any set 𝑋,

𝜇(𝑋 −𝑋) ≤ 1

∣𝑋∣ .

32

Proof. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑘} and consider the infinite family of sets

{ 𝑥1 , 𝑥2 , ⋅ ⋅ ⋅ , 𝑥𝑛 }
{ 𝑥1 + 1 , 𝑥2 + 1 , ⋅ ⋅ ⋅ , 𝑥𝑛 + 1 }
{ 𝑥1 + 2 , 𝑥2 + 2 , ⋅ ⋅ ⋅ , 𝑥𝑛 + 2 }
{ 𝑥1 + 3 , 𝑥2 + 3 , ⋅ ⋅ ⋅ , 𝑥𝑛 + 3 }
{ ... ,

... ,
... ,

... }

Let 𝐴𝑖 = 𝑋 + 𝑖 and assume for a contradiction that for a fixed 𝜀 there is an arbitrarily

large 𝑁 also satisfying 𝑁 > 𝑎𝑘
𝜀

with a set 𝐵 ⊆ [𝑁] that avoids differences in 𝑋 − 𝑋

and that

∣𝐵∣ >
(

1

∣𝑋∣ + 𝜀

)
𝑁.

From the choice of 𝑁 , we have

∣𝐵∣ > 𝑁

∣𝑋∣ + 𝑎𝑘

and so

∣𝐵∣ − 𝑎𝑘 >
𝑁

∣𝑋∣ >
𝑁 − 𝑎𝑘 + 1

∣𝑋∣ .

Let 𝐵′ = {𝑏 ∈ 𝐵 ∣ 𝑏 > 𝑎𝑘} and consider the sets 𝒜 = 𝐴0, 𝐴1, 𝐴2, . . . , 𝐴𝑁−𝑎𝑘 . Note that

∣𝐵′∣ > 𝑁−𝑎𝑘. Each of the elements in 𝐵′ appear in ∣𝑋∣ different sets in 𝒜. However, no

two elements of 𝐵′ can appear in the same set in 𝒜. Therefore, we have a contradiction

by the Pigeonhole Principle.

With Theorem 2.8.1 in mind, it follows that you cannot a priori fix a set of prefixes

and then obtain arbitrarily large counterexamples to the Triangle Conjecture with those

prefixes. This strongly suggests that the true value of 𝛾 is 16
15 , the lower end of the range.

In fact, experimental evidence indicates that that counterexamples decrease in ratio as

𝑚 gets larger; this will be discussed further in the conclusion.

33

2.9 Towards an alternate proof of Szèmeredi’s Theorem

The famed theorem of Roth [46] states that given 𝛿, for large enough 𝑁 any subset of

[𝑁] = {1, . . . , 𝑁} with size at least 𝛿𝑁 must contain a three-term arithmetic progres-

sion, where 𝛿 → 0 as 𝑁 →∞. Roth’s original theorem required that

𝛿 ≫ 1

log log𝑁

and a considerable amount of effort has been put into improving the bound on 𝛿. Sze-

merédi’s Theorem [51] extended Roth’s Theorem for any length arithmetic progression,

and hence settled the weaker form of the Erdős-Turán conjecture. With Szemerédi’s

Theorem in the books, much research has been devoted to finding the quantities 𝑟𝑘(𝑛),

the largest subset of [𝑛] that is 𝑘-free, meaning it does not contain any 𝑘-term arith-

metic progression. There is a decent amount of motivation for finding these numbers,

as demonstrated with these examples dealing with 3-free sets.

Example Let 𝑞(𝑛) denote the minimum number of queens needed on the main diagonal

of a 𝑛× 𝑛 chessboard so that all squares are either occupied or under attack.

Theorem 2.9.1 (Cockayne-Hedetniemi 1986 [8]). 𝑞(𝑛) = 𝑛− 𝑟3(
𝑛
2).

Example Näıve multiplication of two 𝑛 × 𝑛 matrices requires 𝑂(𝑛3) multiplications,

but the best algorithm so far for matrix multiplications, developed by Coppersmith

and Winograd [10], requires 𝑂(𝑛2.376) multiplications, and it requires the use of “large”

3-free sets, as shown by the following theorem.

Theorem 2.9.2 (Salem-Spencer 1942 [47]). Given 𝜀 > 0, there exists 𝑀𝜀 such that for

any 𝑀 > 𝑀𝜀, there is a 3-free set 𝐵 ⊆ [𝑀2] such that ∣𝐵∣ > 𝑀1−𝜖.

The machinery in this chapter allows us to consider the quantity 𝑟𝑘,𝐷(𝑛), which is

defined as the size of the largest subset of [𝑛] that avoids 𝑘-term arithmetic progressions

with difference at most 𝐷. With the terminology introduced in this chapter we could

write

𝑟𝑘,𝐷(𝑛) = 𝑓{{1,2,...,𝑘−1},{2,4,...,2(𝑘−1)},...,{𝐷,2𝐷,...,𝐷(𝑘−1)}}(𝑛),

34

but we will use the more convenient notation 𝑟𝑘,𝐷(𝑛) instead. Note that 𝑟𝑘(𝑛) =

𝑟{𝑘,𝑛−1
𝑘−1

}(𝑛). We also define the quantity

𝜇𝑘,𝐷 = lim
𝑛→∞

𝑓𝑘,𝐷(𝑛)

𝑛
.

With Corollary 2.6.3 in mind, the relationship with Roth’s Theorem is then clear.

Theorem 2.9.3. The following are equivalent:

1. Szemerédi’s Theorem, and

2. For all 𝑘, 𝜇𝑘,𝐷 → 0 as 𝐷 →∞.

Proof. (→) If 𝜇𝑘,𝐷 → 𝜇 where 𝜇 > 0, then it implies the existence of a subset 𝑋 ⊆ ℕ

with positive density 𝜇 that avoids 𝑘-arithmetic progressions of difference 𝐷 for all 𝐷.

Hence it avoids all 𝑘-arithmetic progressions.

(←) Assume that 𝜇𝑘,𝐷 → 0 as 𝐷 →∞ and let 𝑋 ⊆ ℕ have positive upper density

𝛿. Let 𝐷★ be such that 𝜇𝑘,𝐷★ < 𝛿
4 . Using Corollary 2.6.3 (being a limit statement), let

𝑁 be given 𝜀 = 𝛿
4 , and let 𝑁 ′ > 𝑁 be such that ∣𝑋 ∩ [𝑁 ′]∣ > 𝛿

2 . From Corollary 2.6.3

it follows that ∣𝑋 ∩ [𝑁 ′]∣ contains a 𝑘-arithmetic progression of common difference at

most 𝐷, and hence 𝑋 must contain this same arithmetic progression.

We can use our machinery – the recursion from Theorem 2.7.2 – to find 𝑟𝑘,𝐷(𝑛) and

the resulting sequences can be analyzed. Full accompanying Mathematica and Java

code can be found in [38]. As an introductory example, the first 25 terms of 𝑟3,1(𝑛) –

which is equal to 𝑓{{1,2}}(𝑛) in the notation of Theorem 2.7.2 – is

1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, . . .

The pattern here is not hard to spot, and can be seen more clearly by looking at the

sequence of successive differences.

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . .

This suggests that some of the candidates of 𝑟3,1(𝑛) are the ones that contain all el-

ements not congruent to 0 modulo 3, which turns out to be true. Therefore, we can

conclude so far that 𝜇3,1 ≥ 2
3 , and it can easily be verified that 𝜇3,1 = 2

3 .

35

From Theorem 2.7.2, we know that 𝜇𝑘,𝐷 exists for all positive 𝑘 and 𝐷.

Corollary 2.9.4. If {𝑟𝑘,𝐷(𝑛)} = {𝑓𝔇(𝑛;𝔖)} is pseudoperiodic with period 𝑝 and 𝜇𝑘,𝐷𝜇

is given from Theorem 2.6.3, then the following statements hold.

1. There is a set 𝐴 ⊆ ℤ𝑝 that avoids differences (modulo 𝑝) in 𝔇 and elements

(modulo 𝑝) in 𝔖.

2. There is no set 𝐵 ⊆ ℤ𝑝′ that avoids differences (modulo 𝑝′) in 𝔇 and elements

(modulo 𝑝′) in 𝔖 such that ∣𝐵∣
𝑝′

> 𝜇.

Below is a table of the results obtained in the specific case of avoiding three-term

arithmetic progressions using experimental means. Cyclic set witnesses – the sets de-

scribed in Corollary 2.9.4 – were also searched for and given, except in the case 𝑘 = 12.

An automated theorem-prover has been implemented in this case (see [38]), and proofs

have been given confirming the exact values of 𝛼𝑘 for 𝑘 ≤ 9.

Additionally, conjectured values of 𝜇𝑘,𝐷 have been found for various other values of

𝑘 and 𝐷.

2.10 Results and Further Study

This chapter linked the Triangle Conjecture and Shor’s Counterexample to the more

general problem of determining 𝑓Δ(𝑛), defined as the size of the largest subset of [𝑛] that

avoids differences in Δ. The quantity 𝑓Δ(𝑛) was investigated fully, as was its counter-

part 𝑓𝔇(𝑛). Additionally, cyclic variants of these two quantities were also investigated,

although not as fully.

This chapter exhibited the fact that the sequence {𝑓Δ(𝑛)}∣∞1 is a pseudoperiodic

sequence but no bound on the period was given, apart from the large bound given for

free from the proof of Theorem 2.6.1. We can compute (and prove – see [41]) the values

𝜇(Δ) for the sequences {𝑓Δ(𝑛)}∣∞1 for small values of 𝜇(Δ). Theorem 2.5.2 solves the

problem for all singleton Δ.

Corollary 2.10.1 (Corollary to Theorem 2.5.2).

𝜇({𝑑}) =
𝑑

2𝑑
for any 𝑑.

36

𝑘 𝜇𝑘 Cyclic set witness

1 2
3 {1, 2} in ℤ3

2 2
3 {1, 2} in ℤ3

3 4
8 {1, 2, 6, 7} in ℤ8

4 4
9 {1, 2, 4, 5} in ℤ9

5 4
9 {1, 2, 4, 5} in ℤ9

6 4
9 {1, 2, 4, 5} in ℤ9

7 4
9 {1, 2, 4, 5} in ℤ9

8 4
9 {1, 2, 4, 5} in ℤ9

9 4
10 {1, 2, 4, 5} in ℤ10

10 4
11 {1, 2, 4, 9} in ℤ11

11 8
24 {1, 2, 4, 5, 13, 16, 19, 20} in ℤ24

12 56
177 ★

13 6
19 {1, 2, 4, 13, 15, 16} in ℤ19

14 6
19 {1, 2, 4, 13, 15, 16} in ℤ19

15 6
19 {1, 2, 4, 13, 15, 16} in ℤ19

16 6
19 {1, 2, 4, 13, 15, 16} in ℤ19

17 6
19 {1, 2, 4, 13, 15, 16} in ℤ19

Figure 2.6: Table giving values of 𝜇3,𝐷 for 1 ≤ 𝐷 ≤ 17. Cyclic set witnesses (see
Corollary 2.9.4) are also given for all values except 𝐷 = 12.

Additionally, the following lemma, although stated here, has certainly been known

for a while.

Lemma 2.10.2. As exhibited by the set of odd numbers, if Δ contains only odd num-

bers, then 𝜇(Δ) = 1/2.

Besides the above lemma and the results stated in Section 2.2, not much else is

known about the value 𝜇(Δ) for other various families Δ. Additionally, while finding

the value of 𝑓 𝑐Δ(𝑛) is NP-Complete (see [9]), it is unknown whether the same is true

in the non-circular case, although this author claims it to be true. Nevertheless, it

does not automatically imply that the problem of finding 𝜇(Δ) is also NP-Complete

37

𝑘

3 4 5 6 7 8 9 10 11 12 13 14

1 2
3

3
4

4
5

5
6

6
7

7
8

8
9

9
10

10
11

11
12

12
13

13
14

2 2
3

2
3

4
5

4
5

6
7

6
7

8
9

8
9

10
11

10
11

12
13

12
13

3 4
8

8
12

4
5

4
5

6
7

6
7

6
7

20
23

10
11

10
11

12
13

12
13

4 4
9

3
5

4
5

4
5

6
7

6
7

6
7

26
30

10
11

10
11

12
13

12
13

5 4
9

4
7

16
24

22
30

6
7

6 4
9

4
7

7 4
9

6
11

8 4
9

6
11

𝐷 9 4
10

10 4
11

11 8
24

12 56
177

13 8
19

14 8
19

15 8
19

16 8
19

17 8
19

Figure 2.7: Values of 𝜇𝑘,𝐷.

38

{1, 3, 5}

{2, 4}

{2}

{1, 3}

{3, 5}{}

{1}

{1, 2, 3}

{1, 2}

{1, 2, 3, 4, 5}

{1, 2, 3, 4} {2, 3, 4, 5}

Figure 2.8: A directed graph representing the enumeration scheme for calculating
𝑓{3, 5}(𝑛).

or NP-Hard. To this end, it certainly seems reasonable that symbolic methods could

be used initially to find 𝜇(Δ) for three-member sets {𝑖, 𝑗, 𝑘}, and from there finding a

formula for 𝜇(Δ) depending solely on the elements of Δ.

Additionally, toward the goal of reducing the upper bound on the pseudoperiod

of the sequences (𝑓Δ(𝑛))∣∞1 , it may be worthwhile to consider the digraphs that are

obtained by considering each parameter 𝑆 as a vertex in the graph and connecting

𝑆 → 𝑆′ if 𝑆 is used in the recurrence equation involving 𝑆′. For example, the graph

obtained by considering the enumeration scheme for calculating 𝑓{3, 5}(𝑛) is shown in

Figure 2.8. Insights into the structure of this graph and how it could be utilized while

the recurrence is “in motion” (a pebbling problem of sorts – see [30]) would be very

helpful in lowering the bound on the pseudoperiod. From experimental results obtained

so far on a wide variety of values Δ, the author wishes to conjecture the following.

39

Conjecture 1. The pseudoperiod of {𝑓Δ(𝑛)} is bounded from above by
∑

Δ.

Finally, there is the question of the Triangle Conjecture itself, which now has to be

modified to ask what 𝛾 is. Equation 2.2 gives the current known bounds, and so the

author wishes to formally conjecture the true bound.

Conjecture 2. 𝛾 = 16
15 .

Specifically, the author thinks more is true that lends credence to the fact that

counterexamples of the Triangle Conjecture are simply hiccups of sorts in creation that

correct themselves as 𝑚→∞ (as justified by Theorem 2.8.1). To this end, we see that

through Shor’s construction of multiplying the size of a code, we make the following

definition.

Definition Let

ℭ = {𝑋 ⊆ ℕ ∣ 𝑋 is a counterexample to the Triangle Conjecture}.

The Triangle Conjecture Counterexample partially-ordered set (TCC poset) is the

partially-ordered set on ℭ where 𝑋 ≺ 𝑌 if and only if 𝑌 is obtained from 𝑋 by Shor’s

multiplication method.

Remark Officially a counterexample 𝑋 to the Triangle Conjecture requires the pa-

rameter 𝑚, which specifies the set 𝒜𝑚 that 𝑋 is a subset of. However, given a set 𝑋

the 𝑚 can be found easily; 𝑚 = max{𝑖 + 𝑗 + 1 ∣ 𝑥𝑖𝑦𝑥𝑗 ∈ 𝑋}.

Conjecture 3. All minimal elements 𝑋 of the TCC poset satisfy ∣𝑋∣ = 𝑚 + 1.

This would imply that 𝛾 = 16
15 assuming that Shor’s counterexample is indeed the

minimal counterexample with respect to 𝑚, which at this point should be possible to

accomplish on today’s computers.

Additionally, there is a large graph-theoretic aspect of the Triangle Conjecture that

has not been discussed much in this chapter, or elsewhere for that matter. Defining a

right isosceles triangle in ℤ
2 as a triple of points (𝑖1, 𝑗1), (𝑖1, 𝑗2), and (𝑖2, 𝑗1) as three

points that determine a right isosceles triangle, we have the following lemma.

40

Lemma 2.10.3. If 𝑋 ⊆ 𝒜𝑚 is a code, then interpreting 𝑋 as points in ℤ
2, 𝑋 does

not contain any right isosceles triangle.

Therefore, it would be interesting to find the size of the largest subset of 𝒜𝑚 that

avoids all isosceles right triangles. Toward this end, it would help to compute the

number of isosceles triangles in 𝒜𝑚, which produces this conjecture.

Conjecture 4. There are 𝑓(𝑚) isosceles triangles in 𝒜𝑚, where

𝑓(𝑚) =

⎧⎨
⎩

15
36𝑚

3 + 7
8𝑚

2 + 1
12𝑚− 3

8 if 𝑚 is odd

15
36𝑚

3 + 7
8𝑚

2 + 1
12𝑚 if 𝑚 is even

.

It can be verified that 𝑓(𝑚) will always be an integer for positive 𝑚. Using the

deletion method (see [2]), one can they attempt to get upper bounds on the number of

isosceles triangle-free subsets of 𝒜𝑚, and hence new upper bounds.

41

Chapter 3

Spanning Trees in Grid Graphs

3.1 Introduction

The Matrix Tree Theorem of Kirchhoff, a generalization of Cayley’s Theorem from

complete graphs to arbitrary graphs [49], gives the number of spanning trees on a

labeled graph as a determinant of a specific matrix. If 𝐴 = (𝑎𝑖𝑗) is the adjacency

matrix of a graph 𝐺, then the number of spanning trees can be found by computing

any cofactor of the Laplacian matrix of 𝐺, or specific to the (𝑛, 𝑛)-cofactor.

Number of spanning trees of 𝐺 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

𝑎12 + . . . + 𝑎1𝑛 −𝑎12 ⋅ ⋅ ⋅ −𝑎1,𝑛−1

−𝑎21 𝑎21 + ⋅ ⋅ ⋅ + 𝑎2𝑛 −𝑎2,𝑛−1

...
. . .

...

−𝑎𝑛−1,1 −𝑎𝑛−1,2 ⋅ ⋅ ⋅ 𝑎𝑛−1,1 + ⋅ ⋅ ⋅+ 𝑎𝑛−1,𝑛

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since determinants are easy to compute, then the Matrix Tree Theorem allows for

the computation for the first few numbers in the sequence of spanning trees for families

of graphs dependent on one or more parameters. However, the downside of the Matrix

Tree Theorem is that it can only produce a sequence of numbers, and cannot a priori

assist in finding out the recurrence involved with said sequence, or even determine if

such a recurrence exists. In this chapter, the initial motivation is the following families

of graphs, which will be defined in the next section.

1. 𝑘 × 𝑛 grid graphs, with 𝑛→∞.

2. 𝑘 × 𝑛 cylinder graphs, with 𝑛→∞.

42

3. 𝑘 × 𝑛 torus graphs, with 𝑛→∞.

All of the families of graphs mentioned above belong to the more general class of

graphs of the form 𝐺×𝑃𝑛 or 𝐺×𝐶𝑛, where 𝑃𝑛 and 𝐶𝑛 denote the path and cycle graph

on 𝑛 vertices, respectively. For each of these classes, a general method is obtained for

finding recurrences for all of the above families of graphs, and explicit recurrences are

found for many cases. The only drawback, as it stands, is the amount of computational

power needed to obtain these recurrences, as the recurrences are obtained through

characteristic polynomials of large matrices. The result is at least 50 new sequences

of numbers with complete information, meaning recurrences and generating functions,

plus improvements on the best-known recurrences known for other sequences.

3.2 History and Outline

The main source of the historical results is a paper [16] and website [15] by Faase, where

the main motivation is to count the number of hamiltonian cycles in certain classes of

graphs. Later, in 2000, Desjarlais and Molina [12] discuss the number of spanning trees

in 2 × 𝑛 and 3 × 𝑛 grid graphs. In 2004, Golin and Leung [19] discuss a technique

called unhooking which will be used in this chapter to reduce the problem of counting

spanning trees in cylinder graphs to the problem of counting spanning trees in grid

graphs.

In the first two papers and this chapter, the general idea is the same: our goal is

to find the number of spanning trees, but the method we use requires us to also count

certain related objects. The paper by Faase appeals to the Transfer-Matrix Method,

used widely in statistical mechanics (for more about the Transfer-Matrix Method, see

[49]). The main difference between this chapter and [12] is the direct application of the

Cayley-Hamilton Theorem [29] to obtain recurrences for the sequences. Overall, the

results from this chapter yield sequences for the number of spanning trees in the graphs

𝐺 × 𝑃𝑛 and 𝐺 × 𝐶𝑛 for any graph 𝐺. Along with these sequences, our methods find

the minimal recurrence, generating function, and closed-form formulae for all of these

sequences. As a consequence, we also find the sequences and recurrences for many other

43

v11

v12

v1,n−1

v1,n

Figure 3.1: Vertex naming conventions for the grid graph.

types of subgraphs.

The bulk of the chapter focuses on the steps involved in finding the transition matrix

for a given graph. In doing so, we will have to count other, related spanning forests

with special properties.

3.3 Notation

All of the graphs we will be dealing with depend on two parameters, which we will call

𝑘 and 𝑛. In all cases, we will think of 𝑘 as fixed and 𝑛→∞.

Definition The 𝑘 × 𝑛 grid graph 𝐺𝑘(𝑛) is the simple graph with vertex and edge sets

defined as

𝑉 (𝐺𝑘(𝑛)) = {𝑣𝑖,𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑛}

𝐸 (𝐺𝑘(𝑛)) = {𝑣𝑖,𝑗𝑣𝑖′,𝑗′ ∣ ∣𝑖− 𝑖′∣+ ∣𝑗 − 𝑗′∣ = 1}

In order to keep the diagrams clean, Figure 3.1 shows the vertex naming conventions

we will use.

When showing examples, usually of spanning trees or spanning forests, we will

always show the underlying graph in one form or another. A concrete example is given

in Figure 3.2: we will use black edges for edges in the subgraph exemplified; all unused

edges will show up in light grey.

When dealing with grids of arbitrary size, we will mainly be interested in the very

right-most end of the grid, so we will represent the rest of the graph we do not care

about by a gray box, as shown in Figure 3.3.

44

Figure 3.2: Showing a spanning forest of 𝑃2 × 𝑃2 and its underlying graph.

Figure 3.3: An example of a spanning tree/forest of 𝑃2 × 𝑃𝑘 where we only care about
the right-hand side.

Definition The 𝑘 × 𝑛 cylinder graph 𝐶𝑘(𝑛) can be obtained by “wrapping” the grid

graph around, specifically by adding the edges

𝐸 (𝐶𝑘(𝑛)) = 𝐸 (𝐺𝑘(𝑛))
∪
{{𝑣1,𝑖, 𝑣𝑛,𝑖} ∣ 1 ≤ 𝑖 ≤ 𝑘}.

Remark Note that 𝐶𝑘(𝑛) = 𝑃𝑘 × 𝐶𝑛.

Definition The 𝑘 × 𝑛 torus graph 𝑇𝑘(𝑛) can be obtained by “wrapping” the cylinder

graph around the other way, specifically by adding the edges

𝐸 (𝑇𝑘(𝑛)) = 𝐸 (𝐶𝑘(𝑛))
∪
{{𝑣𝑖,1, 𝑣𝑖,𝑘} ∣ 1 ≤ 𝑖 ≤ 𝑛}

Remark Note that 𝑇𝑘(𝑛) = 𝐶𝑘 × 𝐶𝑛.

Throughout this paper, we will be dealing with partitions of the set [𝑘] = {1, 2, . . . , 𝑘}.
We denote by ℬ𝑘 the set of all such partitions, and 𝐵𝑘 = ∣ℬ𝑘∣ are the Bell numbers.

We will impose an ordering on ℬ𝑘, which we will call the lexicographic ordering on ℬ𝑘.

Definition Given two partitions 𝑃1 and 𝑃2 of [𝑘], for 𝑖 ∈ [𝑘], let 𝑋𝑖 be the block of 𝑃1

containing 𝑖, and likewise 𝑌𝑖 the block of 𝑃2 containing 𝑖. Let 𝑗 be the minimum value

of 𝑖 such that 𝑋𝑖 ∕= 𝑌𝑖. Then 𝑃1 < 𝑃2 iff

45

1. ∣𝑃1∣ < ∣𝑃2∣ or

2. ∣𝑃1∣ = ∣𝑃2∣ and 𝑋𝑗 ≺ 𝑌𝑗, where ≺ denotes normal lexicographic ordering on sets

of integers.

For example, ℬ3 in order is

ℬ3 = {{{1, 2, 3}}, {{1}, {2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2}, {3}}}

However, we will use shorthand notation for set partitions, for example

ℬ3 = {123, 1/23, 12/3, 13/2, 1/2/3}.

Since our examples will only deal with 𝑘 < 10, we will not have to worry about double-

digit numbers on our shorthand notation.

We will find many recurrences in this paper, all pertaining to the number of spanning

trees of the graphs mentioned above. Since we will be dealing with each type of graph

separately, we will always denote by 𝑇𝑛 the number of spanning trees of whatever graph

we are dealing with at the moment, which will be unambiguous.

3.4 Grid Graphs: The Example For 𝑘 = 2.

What follows is mainly from [12] and is the inspiration for the other results on grid

graphs. We would like to find a recurrence for 𝑇𝑛, which for now will represent the

number of spanning trees in 𝐺2(𝑛). If we started out with a spanning tree on 𝐺2(𝑛−1),

then Figure 3.4 shows the three different ways to add the additional two vertices to still

make a spanning tree on 𝐺2(𝑛).

Figure 3.4: The three possible ways to extend a spanning tree of 𝑃2×𝑃𝑛−1 to a spanning
tree of 𝑃2 × 𝑃𝑛.

However, there is also a way to create a spanning tree on the 2 × 𝑛 grid from

something that isn’t a spanning tree on 𝐺2(𝑛 − 1). Let 𝑥 = 𝑣𝑛−1,1 and 𝑦 = 𝑣𝑛−1,2 be

46

Figure 3.5: The only way to extend a special spanning forest of 𝑃2×𝑃𝑛−1 to a spanning
tree of 𝑃2 × 𝑃𝑛

the end vertices on 𝐺𝑘(𝑛 − 1). If we have a spanning forest on 𝐺2(𝑛 − 1) with the

property that there are two trees in the forest and 𝑥 and 𝑦 are in distinct trees, then

Figure 3.5 shows the only way to append edges to create a spanning tree in 𝐺2(𝑛).

Therefore, in counting 𝑇𝑛 it is useful to also count 𝐹𝑛, which we define as the number

of spanning forests in 𝐺2(𝑛) consisting of two trees with the additional property that

the end vertices 𝑣𝑛,1 and 𝑣𝑛,2 are in distinct components. From the preceding two

paragraphs we can now obtain the recurrence

𝑇𝑛 = 3𝑇𝑛−1 + 𝐹𝑛−1

and through similar reasoning we can also find the recurrence

𝐹𝑛 = 2𝑇𝑛−1 + 𝐹𝑛−1

At this point, let us note that we have enough information to find 𝑇𝑛 (or 𝐹𝑛) in time

linear in 𝑛. However, our goal is to provide explicit recurrences for 𝑇𝑛 alone. If we let

𝑣𝑛 denote the column vector

𝑣𝑛 =

⎡
⎣ 𝑇𝑛

𝐹𝑛

⎤
⎦ ,

and if we define the matrix 𝐴 by

𝐴 =

⎡
⎣ 3 1

2 1

⎤
⎦ ,

then we satisfy

𝐴𝑣𝑛−1 = 𝑣𝑛.

With the starting conditions

𝑣1 =

⎡
⎣ 1

1

⎤
⎦ .

47

The characteristic polynomial of 𝐴 is

𝜒𝜆(𝐴) = 𝜆2 − 4𝜆 + 1

so by the Cayley-Hamilton Theorem, we satisfy

𝐴2 − 4𝐴 + 1 = 0.

This can be re-written as

𝐴2 = 4𝐴− 1

and if we multiply by the vector 𝑣𝑛 on the right we obtain⎡
⎣ 𝑇𝑛+2

𝐹𝑛+2

⎤
⎦ = 4

⎡
⎣ 𝑇𝑛+1

𝐹𝑛+1

⎤
⎦−

⎡
⎣ 𝑇𝑛

𝐹𝑛

⎤
⎦ .

Hence, we now see that 𝑇𝑛 and 𝐹𝑛 satisfy the same recurrence.

𝑇𝑛+2 = 4𝑇𝑛+1 − 𝑇𝑛

𝐹𝑛+2 = 4𝐹𝑛+1 − 𝐹𝑛

with starting conditions

𝑇1 = 1 𝑇2 = 4

𝐹1 = 1 𝐹2 = 3
.

We now have all the information we need to obtain more information, such as the

generating function and, finally, a closed-form formula for 𝑇𝑛. All of these items can

be found in [12].

3.5 The General Case For Grid Graphs.

We want to use the same ideas for general 𝑘, but it requires a bit more bookkeeping.

To extend the idea of 𝐹𝑛 in the previous section, we need to consider partitions of

[𝑘] = {1, 2, . . . , 𝑘} and the forests that come from these partitions.

Definition Given a spanning forest ℱ of 𝐺𝑘(𝑛), the partition induced by ℱ is obtained

from the equivalence relation

𝑖 ∼ 𝑗 ⇐⇒ 𝑣𝑛,𝑖, 𝑣𝑛,𝑗 are in the same component of ℱ .

48

For example, the partition induced by a spanning tree of 𝐺𝑘(𝑛) is 123 ⋅ ⋅ ⋅ 𝑛 and the

partition induced by the forest with no edges is 1/2/3/ ⋅ ⋅ ⋅ /𝑛− 1/𝑛.

Definition Given a spanning forest ℱ of 𝐺𝑘(𝑛) and a partition 𝑃 of [𝑘], we say that

ℱ is consistent with 𝑃 if

1. The number of components in ℱ is precisely ∣𝑃 ∣.

2. 𝑃 is the partition induced by ℱ .

Definition Given a graph 𝐺 on 𝑘 vertices and a partition 𝑃 of [𝑘], let 𝜏𝐺(𝑛;𝑃) be the

number of spanning trees of the graph 𝐺 × 𝑃𝑛 consistent with 𝑃 . We will often omit

𝐺 when it is clear from the context, or irrelevant. Recall that we have an ordering of

partitions, so we will define 𝜏𝐺(𝑛; 𝑖) = 𝜏𝐺(𝑛;𝑃𝑖). 𝜏𝐺(𝑛) = 𝜏𝐺(𝑛; {[𝑛]}), the number of

spanning trees of 𝐺× 𝑃𝑛.

In the previous section, since 𝐵2 = 2, we were counting two things: 𝑇2 , which cor-

responds to 𝜏𝑃2(𝑛), and 𝐹𝑛, which corresponds to 𝜏𝑃2(𝑛; 1/2). Therefore, for arbitrary

𝑘 we are now tasked with counting 𝐵𝑘 different objects at once, so we are to find the

𝐵𝑘×𝐵𝑘 matrix that represents the 𝐵𝑘 simultaneous recurrences between these objects.

Definition Define by 𝐸𝑛 the set of edges

𝐸𝑛 = 𝐸(𝐺𝑘(𝑛)) ∖ 𝐸(𝐺𝑘(𝑛− 1))

Note that ∣𝐸𝑛∣ = 2𝑘 − 1 edges.

Given some forest ℱ of 𝐺𝑘(𝑛−1) and some subset 𝑋 ⊆ 𝐸𝑛, we can combine the two

to make a forest of 𝐺𝑘(𝑛). If we are only interested in the number of components in the

new forest and its induced partition, then we only need to know the same information

from ℱ , and this is all independent of 𝑛.

Definition Given two partitions 𝑃1 and 𝑃2 in ℬ𝑘, a subset 𝑋 ⊆ 𝐸𝑛 transfers from

𝑃1 to 𝑃2 if a forest consistent with 𝑃1 becomes a forest consistent with 𝑃2 after the

addition of 𝑋.

49

Figure 3.6: A spanning forest of 𝐺4(4) where, from left to right, the edges transfer as
follows: 1/23/4 → 1234 → 12/34 → 12/3/4.

Example Figure 3.6 shows a spanning forest of 𝐺4(4) where, from left to right, the

edges transfer from 1/23/4 to 1234, from 1234 to 12/34, and from 12/34 to 1/2/34.

Therefore, for a graph 𝐺 with ∣𝐺∣ = 𝑘, we can define the 𝐵𝑘 ×𝐵𝑘 matrix 𝐴𝐺 by

𝐴𝐺(𝑖, 𝑗) = ∣{𝑋 ⊆ 𝐸𝑛+1 ∣ 𝑋 transfers from 𝑃𝑗 to 𝑃𝑖}∣.

The 2×2 matrix in the previous section is 𝐴𝑃2 . Brute-force search with straightforward

Mathematica code [40] can produce more matrices, such as the transition matrix for

𝑃3 × 𝑃𝑛 shown in Figure 3.7 and 𝑃4 × 𝑃𝑛 in Figure 3.8.⎡
⎢⎢⎢⎢⎣
8 3 3 4 1
4 3 2 2 1
4 2 3 2 1
1 0 0 1 0
3 2 2 2 1

⎤
⎥⎥⎥⎥⎦

Figure 3.7: The transition matrix 𝐴𝑃3 .

𝐴5, 𝐴6, and 𝐴7 have also been found; they are shown in [40]. Once these matrices

are known, then everything about the sequence of spanning trees can be found. The fol-

lowing table shows some results obtained for grid graphs; results obtained for arbitrary

graphs of the form 𝐺 × 𝑃𝑛 for all graphs 𝐺 with at most five vertices are in [40], and

results are continuously being computed for larger graphs with results posted as they

arrive. The website will be continually updated as the author computes these matrices

for larger graphs.

50

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 8 9 11 8 14 11 15 3 3 4 3 4 5 1
9 8 6 4 4 6 5 8 3 3 4 2 2 2 1
6 4 9 4 4 4 4 4 3 2 2 3 2 2 1
3 0 0 3 1 2 1 2 0 0 0 0 1 1 0
9 4 6 5 8 6 4 8 2 3 2 3 4 2 1
1 0 0 1 0 3 1 0 0 0 0 0 0 1 0
3 1 0 1 0 2 3 2 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
5 4 6 4 3 4 3 4 3 2 2 2 2 2 1
5 4 4 3 4 6 3 4 2 3 2 2 2 2 1
1 1 0 0 0 0 1 2 0 0 1 0 0 0 0
5 3 6 3 4 4 4 4 2 2 2 3 2 2 1
1 0 0 1 1 0 0 2 0 0 0 0 1 0 0
1 0 0 1 0 2 1 0 0 0 0 0 0 1 0
4 3 4 3 3 4 3 4 2 2 2 2 2 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 3.8: The transition matrix 𝐴𝑃4 .

3.6 A sample of results

51

𝐺2(𝑛) : ([12])

𝑇𝑛 = 4𝑇𝑛−1 − 𝑇𝑛−2

Sequence: {1, 4, 15, 56, 209, . . .} (OEIS A001353)

Generating Function: 𝑥
1−4𝑥+𝑥2

𝐺3(𝑛) : ([15])

𝑇𝑛 = 15𝑇𝑛−1 − 32𝑇𝑛−2 + 15𝑇𝑛−3 − 𝑇𝑛−4

Sequence: {1, 15, 192, 2415, 30305, . . .} (OEIS A006238)

Generating Function: 3𝑥(1+49𝑥+1152𝑥2)
1+24𝑥−24𝑥2+𝑥3

𝐺4(𝑛) : ([15])

𝑇𝑛 = 56𝑇𝑛−1 − 672𝑇𝑛−2 + 2632𝑇𝑛−3 − 4094𝑇𝑛−4 + 2632𝑇𝑛−5 − 672𝑇𝑛−6 + 56𝑇𝑛−7 − 𝑇𝑛−8

Sequence: {1, 56, 2415, 100352, 4140081, . . .} (OEIS A003696)

Generating Function: 𝑥(𝑥6−49𝑥4+112𝑥3−49𝑥2+1)
𝑥8−56𝑥7+672𝑥6−2632𝑥5+4094𝑥4−2632𝑥3+672𝑥2−56𝑥+1

𝐺5(𝑛) : ([15], with improvements from this paper)

𝑇𝑛 = 209𝑇𝑛−1 − 11936𝑇𝑛−2 + 274208𝑇𝑛−3 − 3112032𝑇𝑛−4 + 19456019𝑇𝑛−5

−70651107𝑇𝑛−6 + 152325888𝑇𝑛−7 − 196664896𝑇𝑛−8 + 152325888𝑇𝑛−9

−70651107𝑇𝑛−10 + 19456019𝑇𝑛−11 − 3112032𝑇𝑛−12 + 274208𝑇𝑛−13

−11936𝑇𝑛−14 + 209𝑇𝑛−15 − 𝑇𝑛−16

Sequence: {1, 209, 30305, 4140081, 557568000, . . .} (OEIS A003779)

Generating Function: See [40]

Figure 3.9: Full sequence information for 𝐺2(𝑛), 𝐺3(𝑛), 𝐺4(𝑛), and 𝐺5(𝑛).

52

𝐺6(𝑛) : (new)

𝑇𝑛 = 780𝑇𝑛−1 − 194881𝑇𝑛−2 + 22377420𝑇𝑛−3 − 1419219792𝑇𝑛−4

+55284715980𝑇𝑛−5 − 1410775106597𝑇𝑛−6 + 24574215822780𝑇𝑛−7

−300429297446885𝑇𝑛−8 + 2629946465331120𝑇𝑛−9 − 16741727755133760𝑇𝑛−10

+78475174345180080𝑇𝑛−11 − 273689714665707178𝑇𝑛−12 + 716370537293731320𝑇𝑛−13

−1417056251105102122𝑇𝑛−14 + 2129255507292156360𝑇𝑛−15 − 2437932520099475424𝑇𝑛−16

+2129255507292156360𝑇𝑛−17 − 1417056251105102122𝑇𝑛−18 + 716370537293731320𝑇𝑛−19

−273689714665707178𝑇𝑛−20 + 78475174345180080𝑇𝑛−21 − 16741727755133760𝑇𝑛−22

+2629946465331120𝑇𝑛−23 − 300429297446885𝑇𝑛−24 + 24574215822780𝑇𝑛−25

−1410775106597𝑇𝑛−26 + 55284715980𝑇𝑛−27 − 1419219792𝑇𝑛−28 + 22377420𝑇𝑛−29

−194881𝑇𝑛−30 + 780𝑇𝑛−31 − 𝑇𝑛−32

Sequence: {1, 780, 380160, 170537640, 74795194705, . . .} (OEIS A139400)

Generating Function: See [40]

Figure 3.10: Full sequence information for 𝐺6(𝑛).

3.7 Extending to Generalized Graphs of the Form 𝐺× 𝑃𝑛

For the results above, it was not necessary that the graph we were dealing with was a

grid. We could have repeated the same process as above for any sequences of graphs

𝐺𝑛 defined by

𝐺𝑛 = 𝐺× 𝑃𝑛

for some predefined graph 𝐺. In fact, the Mathematica code in [40] handles any such

general case. Therefore, it leads to the following theorem.

Theorem 3.7.1. Let a graph 𝐺 be given with 𝑘 vertices, and define the sequence of

graphs {𝐺𝑛} by 𝐺𝑛 = 𝐺×𝑃𝑛. Then there is a 𝐵𝑘 ×𝐵𝑘 matrix 𝑀 and a vector 𝑣, both

taking on integer values, such that

𝑇𝑛 = 𝑀𝑛𝑣[1]

where 𝑇𝑛 is the number of spanning trees in 𝐺𝑛. Furthermore, 𝑀
𝑛𝑣[𝑖] lists the number

of spanning forests consistent with 𝑃𝑖 in 𝐺𝑛.

53

Figure 3.11: An example of a spanning forest of 𝐶3(3). The inclusion of either 𝑣1,1𝑣3,1
or 𝑣1,2𝑣3,2 admits a spanning tree.

Corollary 3.7.2. Let a graph 𝐺 be given with 𝑘 vertices, and consider the sequence

{𝑇𝑛}. Then 𝑇𝑛 satisfies a linear recurrence of order 𝐵𝑘.

3.8 Extending to Cylinder Graphs

In this section we will discuss the changes necessary to extend the above arguments

to find recurrences for cylinder graphs and generalized cylinder graphs. We shall take

advantage of the “unhooking” technique covered in [19]. The technique is a reduction

from a cylinder graph to a grid graph. Recall that the vertex sets of 𝐶𝑘(𝑛) and 𝐺𝑘(𝑛)

are the same.

Definition For a given 𝑘, we define ℰ𝑘 by

ℰ𝑘 = 𝐸(𝐶𝑘(𝑛)) ∖𝐸(𝐺𝑘(𝑛))

If we unhook (i.e. remove) the edges in ℰ𝑘 then what we have left is precisely 𝐺𝑘(𝑛).

Now we have to consider what structures in 𝐺𝑘(𝑛) yield a spanning tree in 𝐶𝑘(𝑛) by

the addition of some subset of edges from ℰ𝑘. Since we are going to add edges that

go from one end of the grid to another, we must look at both ends of the grid now,

as opposed to only looking at one end. For example, Figure 3.11 shows a spanning

forest of 𝐺3(3) that will never yield a spanning tree of 𝐺3(𝑛) for any 𝑛 > 3 through the

method described in the previous sections, but this spanning forest would create two

different spanning trees of 𝐶3(3) through the addition of either edge 𝑣1,1𝑣3,1 or 𝑣1,2𝑣3,2.

Therefore, we can keep the same basic idea used with grid graphs, with some mod-

ifications. We must now keep track of how our spanning forest affects the vertices at

each end.

54

Definition Given a spanning forest ℱ of 𝐺𝑘(𝑛), the partition 𝑃 of [2𝑘] induced by ℱ
is obtained from the equivalence relation

𝑖 ∼ 𝑗 ⇐⇒ 𝑣𝑖, 𝑣𝑗 are in the same component of ℱ

where we identify the vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 with 𝑣1,1, 𝑣1,2, . . . , 𝑣1,𝑘, respectively, and the

vertices 𝑣𝑘+1, 𝑣𝑘+2, . . . , 𝑣2𝑘 with 𝑣𝑛,1, 𝑣𝑛,2, . . . , 𝑣𝑛,𝑘, respectively.

Definition Given a spanning forest ℱ of 𝐺𝑘(𝑛) and a partition 𝑃 of [2𝑘], we say that

ℱ is cylindrically consistent with 𝑃 if

1. The number of trees in ℱ is precisely ∣𝑃 ∣.

2. 𝑃 is the partition induced by ℱ .

For example, the forest shown in Figure 3.11 is cylindrically consistent with the par-

tition 12/3456. It’s important to know what partition a certain forest of 𝐺𝑘(𝑛) is

cylindrically consistent with, as that determines how many different ways edges can

be added to achieve a spanning tree of 𝐶𝑘(𝑛). Since each spanning tree of 𝐶𝑘(𝑛) is

uniquely determined by the underlying spanning forest of 𝐺𝑘(𝑛) and the extra edges

from ℰ𝑘, we have all the information we need to count the number of spanning trees of

𝐶𝑘(𝑛).

Definition For a given 𝑘, the tree-counting vector 𝑑𝑘 is the vector, indexed by the

partitions of [2𝑘], such that 𝑑𝑘(𝑖) is the number of ways that edges from 𝐸(𝐶𝑘(𝑛)) ∖
𝐸(𝐺𝑘(𝑛)) can be added to get from a forest cylindrically consistent with partition 𝑖 to

a spanning tree of 𝐶𝑘(𝑛). Notice that this is independent of 𝑛.

For example, it can be verified that 𝑑2 is given in Figure 3.12.

To count the number of spanning trees for 𝐶𝑘(𝑛) we can produce the 𝐵2𝑘 × 𝐵2𝑘

matrix in the same way as we did for the grid graphs, and using this matrix we can find

the number of spanning forests of 𝐺𝑘(𝑛) consistent with each of the partitions of ℬ2𝑘,

which can be expressed as a vector of length 𝐵2𝑘. Then, when we take the dot product

of this vector with 𝑑𝑘, we obtain the number of spanning trees of 𝐶𝑘(𝑛). For example,

55

1234 1

1/234 1

12/34 2

134/2 1

123/4 1

14/23 2

124/3 1

13/24 0

1/2/34 1

1/23/4 1

1/24/3 0

12/3/4 1

13/2/4 0

14/2/3 1

1/2/3/4 0

𝑑2 = (1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0)

Figure 3.12: The tree-counting vector 𝑑2 in detail.

it can be verified that Figure 3.13 is the transition matrix for 𝐶2(𝑛). The initial vector

is

𝑣 = (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

We then obtain

(𝐴𝑣) ⋅ 𝑑2 = 12

(𝐴2𝑣) ⋅ 𝑑2 = 75

(𝐴3𝑣) ⋅ 𝑑2 = 384

...

which yields the sequence of the number of spanning trees on 𝐶2(𝑛).

Similar to the process with grids, there is nothing specific here to the simple cylinder

graph – these methods can be used to obtain sequences for graph families of the form

56

⎡
⎢⎢⎣

3 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 3 0 0 0 1 0 1 0 1 1 0 0 0 0

1 0 3 0 1 0 1 0 0 0 0 1 0 0 0

0 0 0 3 0 1 0 1 0 0 0 0 1 1 0

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 3 1 1 0 1 1 1

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 1 0 0 0 0

1 0 2 0 1 0 1 0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 1 0

0 1 0 1 0 1 0 1 2 1 1 0 1 1 1

⎤
⎥⎥⎦

Figure 3.13: The transition matrix for 𝐶2(𝑛).

𝐺×𝐶𝑛 for arbitrary 𝐺. However, due to the rapid growth of 𝐵2𝑘, the ability to find the

appropriate matrices becomes somewhat difficult starting at graphs with five vertices.

Nevertheless, we still have the following theorem.

Theorem 3.8.1. For a given graph 𝐺 on 𝑘 vertices, there is a 𝐵2𝑘 × 𝐵2𝑘 matrix 𝑀

and a vector 𝑣 of length 𝐵2𝑘 such that

(𝑀𝑛𝑣) ⋅ 𝑑𝑘

is the number of spanning trees of the graph 𝐺× 𝐶𝑛.

Corollary 3.8.2. For a given graph 𝐺 on 𝑘 vertices, the number of spanning trees {𝑇𝑛}
of 𝐺×𝐶𝑛 satisfies a linear recurrence of order at most 𝐵2𝑘.

Although the sequence for 𝐶2(𝑛) is already known, these methods used were able

to obtain new sequences for 𝐶3(𝑛) and 𝐾3 × 𝐶𝑛, which is stated in Figure 3.14.

57

𝐶2(𝑛) : ([15], with improvements)

𝑇𝑛 = 10𝑇𝑛−1 − 35𝑇𝑛−2 + 52𝑇𝑛−3 − 35𝑇𝑛−4 + 10𝑇𝑛−5 − 𝑇𝑛−6

Sequence: {1, 12, 75, 384, 1805, . . .} (OEIS A006235)

Generating Function: 𝑥(𝑥4+2𝑥3−10𝑥2+2𝑥+1)
(𝑥3−5𝑥2+5𝑥−1)2

𝐶3(𝑛) : (new)

𝑇𝑛 = 48𝑇𝑛−1 − 960𝑇𝑛−2 + 10622𝑇𝑛−3 − 73248𝑇𝑛−4 + 335952𝑇𝑛−5 − 1065855𝑇𝑛−6

+2396928𝑇𝑛−7 − 3877536𝑇𝑛−8 + 4548100𝑇𝑛−9 − 3877536𝑇𝑛−10 + 2396928𝑇𝑛−11

−1065855𝑇𝑛−12 + 335952𝑇𝑛−13 − 73248𝑇𝑛−14 + 10622𝑇𝑛−15

−960𝑇𝑛−16 + 48𝑇𝑛−17 − 𝑇𝑛−18

Sequence: {1, 70, 1728, 31500, 508805, . . .} (OEIS to be submitted)

Generating Function: See [40]

𝐾3 × 𝐶𝑛 : (new)

𝑇𝑛 = 58𝑇𝑛−1 − 1131𝑇𝑛−2 + 8700𝑇𝑛−3 − 29493𝑇𝑛−4 + 43734𝑇𝑛−5

−29493𝑇𝑛−6 + 8700𝑇𝑛−7 − 1131𝑇𝑛−8 + 58𝑇𝑛−9 − 𝑇𝑛−10

Sequence: {3, 318, 12960, 410700, 11870715, . . .} (OEIS to be submitted)

Generating Function: 3𝑥(1+48𝑥−697𝑥2−2474𝑥3+9918𝑥4+62𝑥5−2045𝑥6+96𝑥7+5𝑥8)
(−1+29𝑥−145𝑥2+145𝑥3−29𝑥4+𝑥5)2

Figure 3.14: Full sequence results for spanning trees of 𝐺× 𝐶𝑛 for certain 𝐺.

3.9 An Application: Divisibility Sequences

This section exhibits an application of the methods described so far in this chapter: all

sequences produced by counting spanning trees of grid graphs are divisibility sequences.

It was not a thought in this author’s mind to think of divisibility sequences, but once it

was proposed by Richard Guy [22], a complete combinatorial proof revealed itself fairly

easily. This section is devoted to this combinatorial proof.

Intuitively, the grid graph 𝐺×𝑃𝑛 is created by placing 𝑛 copies of 𝐺 side-by-side and

then connecting corresponding vertices in each copy by a path. A spanning forest is an

acyclic subgraph of 𝐺. A spanning tree of a graph 𝐺 is an acyclic connected subgraph

of 𝐺. If 𝐺 is disconnected, then 𝐺 contains no spanning trees and the same can be said

for 𝐺× 𝑃𝑛 for any 𝑛. Recall that we let 𝜏𝐺(𝑛) denote the number of spanning trees of

58

𝐺×𝑃𝑛, and often we will omit the subscript 𝐺 when there is no ambiguity. We will be

interested in special types of spanning forests.

Definition A right-justified spanning forest of 𝐺 × 𝑃𝑛 is a spanning forest with the

property that every component of the spanning forest contains at least one vertex of

{𝑣𝑛,𝑖 ∣ 1 ≤ 𝑖 ≤ 𝜈}. Similarly, we can define a left-justified spanning forest of 𝐺×𝑃𝑛 as a

spanning forest with the property that every component of the spanning forest contains

at least one vertex of {𝑣1,𝑖 ∣ 1 ≤ 𝑖 ≤ 𝜈}

If 𝐹 is a right-justified (resp. left-justified) spanning forest of 𝐺×𝑃𝑛, then the partition

induced by 𝐹 is a partition of [𝜈] defined by the equivalence relation

𝑖 ∼ 𝑗 ⇐⇒ 𝑣𝑛,𝑖 and 𝑣𝑛,𝑗 (resp. 𝑣1,𝑖 and 𝑣1,𝑗) belong to the same component of 𝐹.

(3.1)

We will abuse notation and say that 𝑣𝑖 and 𝑣𝑗 are in the same block of a partition,

when officially we mean that 𝑖 and 𝑗 are in the same block.

We will also be interested in counting 𝜏𝐺(𝑛;𝑃), which is the number of right-justified

spanning forests of 𝐺 × 𝑃𝑛 which induce the partition 𝑃 . Note that the number of

spanning trees is 𝜏𝐺(𝑛; {[𝑛]}). Again, the subscript 𝐺 will usually be omitted. In

Section 3.5, we established a general method for counting 𝜏𝐺(𝑛) by counting 𝜏𝐺(𝑛;𝑃)

for all possible values of 𝑃 . The ideas behind this enumeration scheme will be extremely

helpful for the main result of this section.

We will often be dealing with spanning trees of 𝐺 × 𝑃2𝑛, where 𝐺 has 𝜈 vertices.

Note that we can split up a spanning tree 𝑇 of 𝐺 × 𝑃2𝑛 into three separate parts,

specifically

1. The left half, lh(𝑇), which is the subgraph induced by the vertices

{𝑣𝑖,𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝜈}.

Note that this is a right-justified spanning forest of 𝐺× 𝑃𝑛.

2. The right half, rh(𝑇), which is the subgraph induced by the vertices

{𝑣𝑖,𝑗 ∣ 𝑛 < 𝑖 ≤ 2𝑛, 1 ≤ 𝑗 ≤ 𝜈}.

59

Note that this can be viewed as a left-justified spanning forest of 𝐺×𝑃𝑛 through

the vertex map 𝑣𝑖,𝑗 �→ 𝑣𝑖−𝑛,𝑗.

3. The middle edges, mid(𝑇), which is defined by

𝐸(𝐺× 𝑃2𝑛) ∩ {𝑣𝑛,𝑗𝑣𝑛+1,𝑗 ∣ 1 ≤ 𝑗 ≤ 𝜈}.

Note that we can view mid(𝑇) as a subset of [𝜈], and will do so frequently.

As an example, Figure 3.15 demonstrates the breakdown of a spanning tree of 𝑃4 × 𝑃4

into the left half, the right half, and the middle edges.

When dealing with such a spanning tree 𝑇 , we will use prime (′) notation to refer

to vertices that are on the “other side” of 𝑇 . Specifically, if 𝑇 is a spanning tree of

𝐺×𝑃2𝑛, then 𝑣′𝑖,𝑗 = 𝑣2𝑛−𝑖,𝑗. Note that 𝑣′′ = 𝑣. We will also extend the prime notation

to edges, so if 𝑒 = 𝑥𝑦, then 𝑒′ = 𝑥′𝑦′.

Given a spanning tree 𝑇 we will define 𝑃𝐿 = 𝑃𝐿(𝑇) as the partition induced by

the left half of 𝑇 , viewing it as a right-justified spanning tree. Similarly, we will define

𝑃𝑅 = 𝑃𝑅(𝑇) as the partition induced by the right half of 𝑇 , viewing it as a left-justified

spanning tree. We hope the reader will not be confused by the fact that 𝑃𝐿(𝑇) is

obtained by looking at the right-hand side of lh(𝑇) and vice-versa. In Figure 3.15,

𝑃𝐿 = {{1, 2, 3}, {4}}, mid(𝑇) = {2, 4}, and 𝑃𝑅 = {{1, 2, 3, 4}}.
Additionally, 𝒫𝑛 denotes the family of set partitions of [𝑛], and 𝐵(𝑛) = ∣𝒫𝑛∣ is the

𝑛𝑡ℎ Bell Number. 𝒫𝑛(𝑘) denotes the family of set partitions of [𝑛] with exactly 𝑘 blocks.

Definition A sequence {𝑏𝑛}∣∞1 is a divisibility sequence if

𝑛∣𝑚→ 𝑏𝑛∣𝑏𝑚 for all 𝑛,𝑚. (3.2)

Additionally, the sequence is a strong divisibility sequence if

𝑔𝑐𝑑(𝑏𝑛, 𝑏𝑚) = 𝑏𝑔𝑐𝑑(𝑛,𝑚) for all 𝑛,𝑚. (3.3)

For now we will consider the case where 𝑚 = 2𝑛; the methods that are used to show that

𝑎𝑛∣𝑎2𝑛 can be expanded to cover any other multiple. If we take an arbitrary spanning

tree of 𝐺 × 𝑃𝑛 then it can be decomposed uniquely into lh(𝑇), rh(𝑇), and mid(𝑇).

60

Figure 3.15: How a tree 𝑇 decomposes into lh(𝑇), mid(𝑇), and rh(𝑇).

61

Figure 3.16: An example of the three parts of appropriate sizes that cannot combine
to a spanning tree.

Additionally, if 𝑃𝐿 has 𝑝𝑙 blocks and ∣mid(𝑇)∣ = 𝑚, then it follows that 𝑃𝑅 must have

𝑝𝑟 = 𝑚− 𝑝𝑙 + 1 blocks. Note also that the partition 𝑃𝑅 cannot be any partition with

𝑚−𝑝𝑙+1 blocks; for example, Figure 3.16 shows a left tree, right tree, and set of middle

edges that cannot be combined to make a spanning tree, even though the relationship

𝑝𝑟 = 𝑚− 𝑝𝑙 + 1 still holds.

To this end we make the following definition.

Definition Given a partition 𝑃 and a set of edges mid (which is viewed as a subset of

[𝜈]), we call a partition 𝑃 ′ compatible with 𝑃 and mid if

1. ∣𝑃 ′∣ = ∣mid∣ − ∣𝑃 ∣+ 1, and

2. For any two 𝑎, 𝑏 ∈ mid, if 𝑎 and 𝑏 are in the same block of 𝑃 , then 𝑎 and 𝑏 are in

separate blocks of 𝑃 ′.

We denote by comp(𝑃,mid) the set of partitions compatible with 𝑃 and mid.

The second condition is necessary because if there were two edges in mid that were

both in the same block in each of the two partitions, then the combined graph would

have a loop, and hence not be a tree. This is exemplified in Figure 3.16.

By conditioning on the size of the partition on the left-hand side and the number

of middle edges, we can obtain a formula that relates 𝜏𝐺(𝑛) and 𝜏𝐺(2𝑛).

62

Lemma 3.9.1 (Counting the Number of Spanning Trees).

𝜏𝐺(2𝑛) =

𝜈∑
𝑝=1

∑
𝑃∈𝒫𝜈(𝑝)

𝜈∑
𝑘=1

∑
mid∈([𝜈]

𝑘)

𝜏𝐺(𝑛;𝑃)
∑

𝑃 ′∈comp(𝑃,mid)

𝜏𝐺(𝑛;𝑃 ′). (3.4)

The fact that the above quantity on the right-hand side is divisible by 𝑎𝑛 is imme-

diate from the following lemma, which is the cornerstone of this section.

Lemma 3.9.2 (Split-Merge Lemma). Fix 𝑘, the number of edges, and 𝑝, the number

of parts in the partition on the left-hand side. Then

∑
mid∈([𝜈]

𝑘)

∑
𝑃∈𝒫𝜈(𝑝)

𝜏𝐺(𝑛;𝑃)
∑

𝑃 ′∈comp(P,mid)

𝜏𝐺(𝑛;𝑃 ′) =

(
𝑘 − 1

𝑝− 1

)
𝜏𝐺(𝑛)

∑
𝑃∈𝒫(𝑒)

(
∏

𝑃)𝜏𝐺(𝑛;𝑃),

(3.5)

where
∏

𝑃 ′ is the product of all of the sizes of the parts in 𝑃 ′.

We shall give a bijective proof of Lemma 3.9.2. Toward the bijection, we define the

following special sequence of edges.

Definition With 𝑇 = 𝑇0, suppose (𝑖, 𝑗) is lexicographically least so that

1. 𝑣𝑖 and 𝑣𝑗 are both incident to middle edges,

2. 𝑖 and 𝑗 are in the same block of 𝑃𝐿, and

3. On the path from 𝑣𝑖 to 𝑣𝑗 there is an edge 𝑒 such that 𝑇 ′ = 𝑇 − 𝑒 + 𝑒′ is still a

tree.

Let 𝑥1𝑥2 be the first such edge satisfying the above condition (3) on the path from 𝑣𝑖

to 𝑣𝑗. Defining 𝑇1 = 𝑇0 − 𝑥1𝑥2 + 𝑥′1𝑥
′
2, we can repeat the process to obtain a sequence

of trees 𝑇1, 𝑇2, . . . and edges 𝑒1, 𝑒2,

Remark Assuming that 𝑃𝐿 is not the finest partition, such edges can always be found.

This can be done by an inductive argument on ∣𝑃𝐿∣, for example.

Remark Every time an edge 𝑥1𝑥2 is selected through the definition above, the block of

𝑃𝐿 containing 𝑖 and 𝑗 will be split into two different blocks, and hence as a consequence

two blocks of 𝑃𝑅 will be merged into one block. We can then define the following finite

sequences.

63

Definition (Continued) From the remarks, we see that the sequence of trees 𝑇1, 𝑇2, . . .

and edges 𝑒1, 𝑒2, . . . is finite, and specifically ends at 𝑇𝑝𝑟−1, 𝑒𝑝𝑟−1. Given a tree 𝑇 , we de-

note by l→r(𝑇) the sequence of edges 𝑒1, 𝑒2, . . . , 𝑒𝑝𝑟−1. Being in a symmetric situation

with respect to 𝑃𝐿 and 𝑃𝑅, we can similarly define the set r→l(𝑇).

The following lemma is crucial to our bijection.

Lemma 3.9.3. Letting 𝑇 ′ = 𝑇𝑝𝑟−1, every edge of l→r(𝑇) is in r→l(𝑇 ′).

Proof. Fix 𝑇 . Without loss of generality, it suffices to show that 𝑒′1 ∈r→l(𝑇 ′). Suppose

that 𝑒1 was on the path between vertices 𝑣𝑖 and 𝑣𝑗 (𝑖 < 𝑗) and consider the block of

the partition in 𝑃𝑅(𝑇 ′) that contains 𝑣′𝑖. If 𝑖 is the smallest element in this block, then

it is certain that 𝑒′1 ∈r→l(𝑇 ′). In the case that there is a smaller element 𝑎 in that

block, consider the point during the process where we are about to remove 𝑒1 and add

𝑒′1. Part of the graph is shown in Figure 3.17, where solid lines indicate edges, dashed

lines indicate edges that potentially may be there, and dotted lines indicate edges that

aren’t there.

With the figure in mind, we can now finish up our proof by considering, being that

this is still a tree, how 𝑥′3 is connected to 𝑥1. Specifically, the unique path from 𝑥′3 to

𝑥1 either utilizes the edge 𝑥3𝑥4 or does not. If 𝑥3𝑥4 is not used, then the path can be

viewed in this manner, as shown in Figure 3.18.

In this case, we have a contradiction as we cannot move 𝑒1 to the right side, as this

would cause a cycle. Similarly, if 𝑥3𝑥4 was used in the path, then again there would be

a contradiction for 𝑒1 would not have been the lexicographically-least edge available to

move to the right, as shown in Figure 3.19.

From the Lemma 3.9.2, we can now prove the divisibility property.

Proof. We associate with the left-hand side the set of spanning trees 𝑇 of 𝐺×𝑃2𝑛 with

𝑘 middle edges and 𝑝 parts in 𝑃𝐿(𝑇). We associate with the right-hand side a spanning

tree of 𝐺 × 𝑃𝑛 (taking care of the 𝜏𝐺(𝑛) term) and a right-justified spanning forest 𝐹

inducing a partition 𝑃 ∈ 𝒫(𝑒) with the following two added conditions.

64

vj v′

j

vi v′

i

x3 x′
3

x4 x′
4

va v′

a

x1

x2

x′
1

x′
2

lh(T) rh(T)mid(T)

Figure 3.17: The situation in the proof of Lemma 3.9.3.

vj v′

j

vi v′

i

x3 x′
3

x4 x′
4

va v′

a

x1

x2

x′
1

x′
2

lh(T) rh(T)mid(T)

Figure 3.18: Case 1: The path from 𝑥′3 to 𝑥1 does not involve the edge 𝑣𝑖𝑣
′
𝑖.

65

vj v′

j

vi v′

i

x3 x′
3

x4 x′
4

va v′

a

x1

x2

x′
1

x′
2

lh(T) rh(T)mid(T)

Figure 3.19: Case 2: The path from 𝑣′𝑖 to 𝑥1 passes through 𝑣𝑖𝑣
′
𝑖.

1. In each block of 𝑃 , one specific vertex is marked. This takes care of the
∏

𝑃

term.

2. A global identifier 𝑁 between 1 and
(
𝑘−1
𝑝−1
)

is assigned. This takes care of the(
𝑘−1
𝑝−1
)

term.

The bijection is then as follows: starting with a spanning tree 𝑇 from the collection

representing the left-hand side of the equation, move all of the edges in l→r(𝑇), which

consists of 𝑝 − 1 edges, over to the right-hand side of 𝑇 to create 𝑇 ′. We can view

the left half of 𝑇 ′ as our spanning forest 𝐹 and our right half as a spanning tree.

Additionally, due to the way the edges were moved, each block of the partition induced

by the spanning forest is incident to exactly one middle edge, so mark each vertex that

is incident with a middle edge.

66

+ =

Figure 3.20: How trees are added.

3.10 Conclusions and Conjectures

From investigations, we have a few conjectures.

Conjecture 5. For the matrix 𝑀 given in Theorem 3.7.1, the characteristic polynomial

𝜒𝜆(𝑀) factors over the integers into monomials whose degree is always a power of 2.

Conjecture 6. For any graph 𝐺, all recurrences for {𝜏𝐺(𝑛)}∞𝑛=1 satisfies a linear re-

currence whose coefficients alternate in sign.

Conjecture 7. The recurrence of minimum order for the grid graph 𝐺𝑘(𝑛) has order

2𝑘−1.

Conjecture 8. The recurrence of minimum order for the graph 𝐾𝑘 × 𝑃𝑛 has order 𝑘.

For the time being, we will only prove the special case of Conjecture 7 for the

grid graphs 𝐺2(𝑛). We will give a combinatorial proof that we hope can be adjusted

accordingly to the higher cases. To aid in the proof, we will introduce the concept of

grid addition, which is simply a shorthand way of creating the union of two grids.

Definition If 𝐺1 is a subgraph of 𝑃𝑘 × 𝑃𝑛1 and 𝐺2 is a subgraph of 𝑃𝑘 × 𝑃𝑛2 , then

𝐺1 + 𝐺2 is a subgraph of 𝑃𝑘 × 𝑃𝑛1+𝑛2 defined as the graph obtained by identifying

the right-most vertices of 𝐺1 with the left-most vertices of 𝐺2. Any overlapping edges

remain as one.

Example Figure 3.20 shows the addition of a tree on 𝐺2(3) with a tree on 𝐺2(2) to

obtain a subgraph of 𝐺2(4).

Theorem 3.10.1. The number of spanning trees of the graphs 𝐺2(𝑛) satisfies the linear

recurrence 𝑇𝑛 = 4𝑇𝑛−1 − 𝑇𝑛−2 with the initial conditions 𝑇1 = 1, 𝑇2 = 4.

67

Figure 3.21: How to interpret 𝑇𝑛−2.

+ +

+ +

Figure 3.22: How to interpret 4𝑇𝑛−1.

Proof. Showing the initial conditions is a minor exercise. We will prove this recurrence

in the equivalent form 𝑇𝑛 + 𝑇𝑛−2 = 4𝑇𝑛−1. Let 𝒯𝑘 denote the set of spanning trees of

the graph 𝐺2(𝑘). We will associate 𝑇𝑛−2 with the set 𝒯𝑛−2 with an addition at the end,

as shown by Figure 3.21.

In this way, we can think of 𝒯𝑛−2 as being trees of 𝐺2(𝑛). Similarly, as Figure 3.22

shows, we will associate 4𝑇𝑛−1 with the set of trees from 𝒯𝑛−1 with each of the four

trees of 𝐺2(2) added at the end.

If we have a tree from 𝒯𝑛, then we can decompose it depending on what the end-

ing of the tree looks like. Figure 3.23 shows all of the possibilities, along with their

decompositions. Note that the decompositions are of the same form as we dictated for

4𝑇𝑛−1.

Similarly, if we have a tree from 𝒯𝑛−2 modified as explained above, then Figure 3.24

shows the decomposition. Again, note that the decompositions are of the same form as

we dictated for 4𝑇𝑛−1.

The reader can verify that the map described is invertible, yielding the desired

bijection.

Overall, this chapter demonstrated a concrete method for finding the recurrence and

full information for the sequence {𝜏𝐺(𝑛)}∞𝑛=1 that counts the number of spanning trees

68

→ +

→ +

→ +

→ +

→ +

→ +

→ +

Figure 3.23: How to decompose certain elements of 𝒯𝑛 into elements in 4𝒯𝑛−1.

→ +

Figure 3.24: How to decompose certain elements of 𝒯𝑛 into elements of 𝒯𝑛−2.

69

of the grid graph 𝐺 × 𝑃𝑛. Similar methods have been demonstrated for graphs of the

form 𝐺×𝐶𝑛 and

70

Chapter 4

The Firefighter Problem

4.1 Introduction and terminology

The firefighter problem is a dynamic problem introduced by Hartnell [27], that can be

described as follows: given a connected graph 𝐺, a vertex 𝑟 is initially set on fire. At

the beginning of each discrete time period 𝑡 ≥ 1, a number of firefighters are available

to be positioned at different vertices in 𝐺 that are currently not on fire nor already have

a firefighter positioned. For this paper, we shall represent the number of firefighters

available at each time 𝑡 ≥ 1 by a function 𝑓(𝑡). These firefighters remain on their

assigned vertices and thus prevent the fire from spreading to that vertex. At the end

of each time period, all vertices that are not defended and are adjacent to at least one

vertex on fire will catch the fire and become burned. Once the vertex is burned or

defended, it remains that way permanently.

If 𝐺 is a finite graph, the process ends when one of the following occurs.

(i) The fire is contained, meaning the fire is unable to spread, and there are still

vertices in 𝐺 that are neither burned nor defended.

(ii) The fire spreads until every vertex in 𝐺 is either burned or defended.

If 𝐺 is infinite, then (i) could still happen but (ii) is replaced by

(ii′) The fire cannot be contained, meaning the fire spreads indefinitely.

The firefighter problem was considered on a variety of graphs, including finite grids

(MacGillivray and Wang [31], Wang and Moeller [53]), infinite grids (Develin and Hartke

[13], Wang and Moeller [53], Fogarty [18]) and trees (MacGillivray et.al. [17], Hartnell

[27]). Other related publications [1,3,4,6-8] are listed in the reference section.

71

The firefighter problem can be viewed in a more general context as a monotonic

irreversible 𝑘-threshold with vaccinations (see [14]) process for 𝑘 = 1 and many ques-

tions still remain for these generalizations. In these types of processes, the vertices

on the underlying graph can take on either of the two values 0 or 1, corresponding to

unburnt and burnt, and the value of these vertices can change over time. This process

is monotonic because the set of vertices on fire (having value 1) at time 𝑡 is a subset of

the vertices on fire at time 𝑡 + 1. It is irreversible because once a vertex catches fire,

it is on fire permanently. It is a 1-threshold process because an undefended vertex only

needs to have one of its neighbors to be on fire at time 𝑡 for it to catch on fire at time

𝑡+1. This is understandable in a firefighting setting, where adjacency to fire is all that

is usually need to catch on fire shortly. Increasing the threshold factor 𝑘 is more useful

in an epidemiological setting, where association to a sick person is often not enough for

an individual to contract a disease, yet being around enough people who are sick would

be enough to contract the disease. Additionally, this process is with vaccination since

there are firefighters (or vaccinations in the public-health setting) that can be placed

on unburnt vertices and allow that vertex to remain unburnt permanently.

In this chapter, we will consider the two-dimensional infinite grid graph 𝐺 = 𝕃2

defined by

𝑉 (𝐺) = ℤ× ℤ,

𝐸(𝐺) = {{(𝑚,𝑛), (𝑚′, 𝑛′)} ∣ ∣𝑚−𝑚′∣+ ∣𝑛− 𝑛′∣ = 1}.

Suppose we are given a function 𝑓(𝑡) representing the number of firefighters available

for deployment at each time period 𝑡, our goal is to determine if it is possible to position

the firefighters on the vertices of 𝕃2 such that at some finite time 𝑡′, the fire is unable

to spread any further. For our purposes, we shall only consider functions 𝑓(𝑡) that are

periodic in 𝑡. Thus, we can state our problem formally as

CONTAINMENT

INSTANCE: A rooted graph (𝕃2, 𝑟) and a periodic function 𝑓(𝑡).

QUESTION: Is there a finite 𝑡′ such that by positioning 𝑓(𝑡) firefighters at each

time period 𝑡, the fire can be contained after 𝑡′ time periods.

72

Figure 4.1: The six non-isomorphic minimal solutions to the firefighter problem with
𝑓(𝑡) = 2. It is left to the reader to determine where the fire started in each scenario!

Most of the existing literature considers 𝑓(𝑡) to be a constant function (usually

𝑓(𝑡) = 1) independent of 𝑡. Specifically, Wang and Moeller [53] showed that one

firefighter per time period (𝑓(𝑡) = 1 ∀𝑡) is insufficient to prevent the fire from spreading

indefinitely while 𝑓(𝑡) = 2 for all 𝑡 suffices, in which case a minimum of 8 time periods

are required to succesfully contain the fire. An alternative proof (using a computer

program) to the minimum number of time periods required when 𝑓(𝑡) = 2 for all 𝑡 was

provided by Develin and Hartke [13], who also established that a minimum of 18 vertices

in 𝕃2 would be burnt before containment can be achieved. The six non-isomorphic

minimal solutions taking 8 turns and burning 18 vertices are shown as follows, found

using Mathematica software that can be found at [39].

One way to generalize the firefighter problem introduced by Hartnell is to allow the

fire to start initially at a finite number of vertices in 𝕃2 rather than a single root 𝑟. This

was considered by Fogarty [18] when it was shown that 𝑓(𝑡) = 2 for all 𝑡 is sufficient to

contain a fire that starts at any finite number of vertices in 𝕃2. For the remainder of

73

this paper, we shall consider the firefighter problem where the fire could start initially

at either a single vertex or a finite collection of vertices in 𝕃2.

The results by Wang and Moeller [53], Develin and Hartke [13] and Fogarty [18]

described above provide the motivation. We would like to know if 𝑓(𝑡) is not a con-

stant function, and the average (whose notion will be made precise below) number of

firefighters available per time period is a number between 1 and 2, is there a finite 𝑡′

such that by positioning 𝑓(𝑡) firefighters at each time period 𝑡, the fire can be contained

after 𝑡′ time periods?

To make the notion of the average number of firefighters per time period precise,

let 𝑓 : ℕ→ ℕ ∪ {0} be a periodic function with period 𝑝𝑓 . Define

𝑁𝑓 =

𝑝𝑓∑
𝑡=1

𝑓(𝑡) and 𝑅𝑓 =
𝑁𝑓

𝑝𝑓
.

Thus, if the number of firefighters available for deployment at each time period is given

by 𝑓 , then 𝑅𝑓 tells us the average number of firefighters available for deployment at each

time period. We will frequently identify 𝑓 with a sequence of its period. For example,

we write 𝑓 = [2, 1, 2, 2] to correspond to the function defined as

𝑓(𝑡) =

⎧⎨
⎩

2 if 𝑡 ≡ 1 mod 4,

1 if 𝑡 ≡ 2 mod 4,

2 if 𝑡 ≡ 3 mod 4,

2 if 𝑡 ≡ 0 mod 4.

Observe that 𝑅𝑓 = 1.75 in this example.

Definition For any function 𝑓 : ℕ→ ℕ ∪ {0}, define 𝑓−1 : ℕ→ ℕ by

𝑓−1(𝑛) = min

{
𝑗 ∈ ℕ ∣

𝑗∑
𝑡=1

𝑓(𝑡) ≥ 𝑛

}
.

In other words, 𝑓−1(𝑛) can be thought of as the time 𝑡 when the 𝑛th firefighter becomes

available for deployment.

Note that 𝑓−1(𝑛) is a nondecreasing function of 𝑛.

74

Definition For a finite set 𝑆 ⊂ ℤ× ℤ and some (𝑥, 𝑦) ∈ ℤ× ℤ, define

𝑑(𝑆, (𝑥, 𝑦)) = min{∣𝑥′ − 𝑥∣+ ∣𝑦′ − 𝑦∣ ∣ (𝑥′, 𝑦′) ∈ 𝑆}.

Definition For any periodic function 𝑓 and 𝑆 ⊂ ℤ × ℤ, we say that there is a con-

tainment certificate of 𝑓 for 𝑆 if and only if there exists a set 𝐶𝑆(𝑓) ⊂ ℤ× ℤ×ℕ that

satisfies the following conditions.

1. For all 𝑡 ∈ ℕ, 𝑓(𝑡) ≥ ∣{(𝑥, 𝑦, 𝑗) ∈ 𝐶𝑆(𝑓) ∣ 𝑗 = 𝑡}∣;

2. For all (𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓), 𝑑(𝑆, (𝑥, 𝑦)) ≥ 𝑡;

3. The number of vertices that have at least one path in 𝕃2 to a vertex in 𝑆 without

passing through any vertex (𝑥, 𝑦) where (𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓) for some 𝑡 ∈ ℕ is finite.

We extend the definition slightly and call a containment certificate convex if it satisfies

a fourth condition.

4. For every (𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓), there is a path from a vertex in 𝑆 to (𝑥, 𝑦) of length

𝐷(𝑆, (𝑥, 𝑦)).

Hopefully the use of the word convex will not frustrate the reader. A containment

certificate can be extended readily to a closed curve in ℝ
2 (this will be expounded on

later in the chapter) and the notion of convexity only partially derives from this curve.

While there are convex containment certificates that yield concave curves, it is true

that any non-convex containment certificate produces a concave curve in ℝ
2.

Suppose that the set of vertices in 𝑆 are initially set on fire and 𝑓(𝑡) represents

the number of firefighters available for deployment at time 𝑡. A containment certificate

of 𝑓 for 𝑆, if it exists, contains all the information on where and when each available

firefighter is deployed such that the spread of the fire can eventually be contained at

some finite time 𝑡′. For example if (8, 9, 4) ∈ 𝐶𝑆(𝑓), then we would place a firefighter

on (8, 9) at time 𝑡 = 4. Condition 1 of the containment certificate ensures that there

are at most 𝑓(𝑡) firefighters deployed at time 𝑡. Condition 2 ensures that (𝑥, 𝑦) is not

already on fire when a firefighter is deployed there at time 𝑡. Condition 3 gurantees

75

1

1

2

2 3

3 4

4

5

6

8

10

12

13

131211

11109

9

8

7

7

6

5

Figure 4.2: An example of a concave scenario. The initial fire is the vertex that is
lighter than the others.

76

that there exists some 𝑡′ ≥ max{𝑡 ∣ (𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓)} such that the number of vertices

on fire at times 𝑡 ≥ 𝑡′ is a constant, meaning that the fire is indeed contained.

Suppose 𝐶𝑆(𝑓) is a containment certificate of 𝑓 for 𝑆. For each 𝑛 ∈ ℕ, define

𝐶>𝑛
𝑆 (𝑓) = {(𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓) ∣ 𝑡 > 𝑛};

𝐶=𝑛
𝑆 (𝑓) = {(𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓) ∣ 𝑡 = 𝑛};

𝐶<𝑛
𝑆 (𝑓) = {(𝑥, 𝑦, 𝑡) ∈ 𝐶𝑆(𝑓) ∣ 𝑡 < 𝑛}.

We will consider two partial orders associated with periodic functions.

Definition

𝑓 ⪯ 𝑔 ⇐⇒
𝑘∑

𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

𝑔(𝑡) ∀𝑘 ∈ ℕ.

Additionally, we say that 𝑔 dominates 𝑓 if 𝑓 ⪯ 𝑔.

Definition

𝑓 ⪯∗ 𝑔 ⇐⇒ ∃𝑛 ∈ ℕ such that

𝑘∑
𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

𝑔(𝑡) ∀𝑘 ≥ 𝑛.

Additionally, we say that 𝑔 eventually dominates 𝑓 if 𝑓 ⪯∗ 𝑔.

Observe the fact that 𝑔 dominates 𝑓 implies 𝑔 eventually dominates 𝑓 . It is useful to

note that to establish 𝑓 ⪯ 𝑔 for periodic 𝑓 and 𝑔, it suffices to show that

𝑘∑
𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

𝑔(𝑡) for all 1 ≤ 𝑘 ≤ 𝑙𝑐𝑚(𝑝𝑓 , 𝑝𝑔).

Several specific periodic functions will be used frequently in this paper. Their defi-

nitions and notations are introduced below.

Definition For any 𝑛, 𝑘 ∈ ℤ
+, 𝑔𝑛,𝑘 is the periodic function with period 𝑛 defined by

𝑔𝑛,𝑘(𝑡) =

⎧⎨
⎩

0 if 𝑡 ∕≡ 0 mod 𝑛,

𝑘 if 𝑡 ≡ 0 mod 𝑛.

In other words, 𝑔𝑛,𝑘 = [

𝑛−1︷ ︸︸ ︷
0, 0, ..., 0, 𝑘].

77

Definition For any integer 𝑛 ≥ 2, 𝑍𝑛 = 𝑔𝑛,𝑧𝑛 where

𝑧𝑛 =

⎧⎨
⎩

3𝑛
2 + 1 if 𝑛 is even,

1
2(3𝑛 + 1) if 𝑛 is odd.

Note that for each 𝑛, 𝑧𝑛 is defined to be the smallest positive integer such that 𝑅𝑍𝑛 >

1.5.

Definition For any integer 𝑛 ≥ 1,

𝐹𝑛(𝑡) =

⎧⎨
⎩

1 if 𝑡 ≡ 𝑘 mod 2𝑛 + 1, where 𝑘 ∈ {1, 2, ..., 𝑛}

2 if 𝑡 ≡ 𝑘 mod 2𝑛 + 1, where 𝑘 ∈ {0, 𝑛 + 1, 𝑛 + 2, ..., 2𝑛}.

In other words, 𝐹𝑛 = [

𝑛︷ ︸︸ ︷
1, 1, ..., 1,

𝑛+1︷ ︸︸ ︷
2, 2, ..., 2]. Note that 𝑝𝐹𝑛 = 2𝑛 + 1 and 𝑅𝐹𝑛 > 1.5 for

all 𝑛 ≥ 1.

Definition If 𝑓 is a periodic function and 𝑖 is any non-negative integer, 𝑓+𝑖 is the

𝑖-translate of 𝑓 , defined by

𝑓+𝑖(𝑡) = 𝑓(𝑡 + 𝑖) for all 𝑡 ≥ 1.

Note that 𝑓+0 = 𝑓 . We are now ready to state the main result of this chapter.

Theorem 4.1.1. Suppose a finite set 𝑆 ⊂ ℤ× ℤ of vertices are initially set on fire. If

the number of firefighters available for deployment per time period is given by a periodic

function 𝑓 such that 𝑅𝑓 > 1.5, then there exists a containment certificate of 𝑓 for 𝑆.

Remark The above theorem gives no conclusion about containment of the fire if the

function 𝑓 is such that 𝑅𝑓 ≤ 1.5. We will discuss this briefly at the end of the chapter.

In Section 4.2, we will prove several lemmas regarding some of the periodic functions

defined above. The main result is proven in Section 4.3 and the chapter concludes in

Section 4.5 with a brief discussion on possible future work. Most of the results through

Section 4.3 come from [35]. Results after Section 4.3 come from [42].

78

4.2 Several lemmas

We first show that the relation ⪯∗ is transitive.

Lemma 4.2.1. If 𝑓 , 𝑔 and ℎ are periodic functions such that 𝑓 ⪯∗ 𝑔 and 𝑔 ⪯∗ ℎ, then

𝑓 ⪯∗ ℎ.

Proof. Let 𝑛1, 𝑛2 ∈ ℕ be such that

𝑘∑
𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

𝑔(𝑡) ∀𝑘 ≥ 𝑛1 and
𝑘∑

𝑡=1

𝑔(𝑡) ≤
𝑘∑

𝑡=1

ℎ(𝑡) ∀𝑘 ≥ 𝑛2.

Let 𝑛 = max{𝑛1, 𝑛2}. We have

𝑘∑
𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

ℎ(𝑡) ∀𝑘 ≥ 𝑛

and thus 𝑓 ⪯∗ ℎ.

Lemma 4.2.2. For any periodic function 𝑓 , we have 𝑔𝑝𝑓 ,𝑁𝑓
⪯ 𝑓 .

Proof. Note that 𝑔𝑝𝑓 ,𝑁𝑓
and 𝑓 have the same period. If 𝑘 < 𝑝𝑓 then we have

0 =

𝑘∑
𝑡=1

𝑔𝑝𝑓 ,𝑁𝑓
(𝑡) ≤

𝑘∑
𝑡=1

𝑓(𝑡)

since 𝑓 must take on non-negative values. If 𝑘 = 𝑝𝑓 then

𝑝𝑓∑
𝑡=1

𝑔𝑝𝑓 ,𝑁𝑓
(𝑡) =

𝑝𝑓∑
𝑡=1

𝑓(𝑡)

and so by definition we have 𝑔𝑝𝑓 ,𝑁𝑓
⪯ 𝑓 .

Lemma 4.2.3. If 𝑓 is a periodic function that is non-decreasing on its period, then

𝑓 ⪯ 𝑓+𝑖 for all 𝑖 ∈ ℤ
+.

Proof. Let 𝑖 ∈ ℤ
+. Since 𝑓 and 𝑓+𝑖 have the same period, it suffices to show

𝑛∑
𝑡=1

𝑓(𝑡) ≤
𝑛∑

𝑡=1

𝑓+𝑖(𝑡) for all 𝑛 ≤ 𝑝𝑓 .

Case 1: Suppose 𝑛+𝑖 ≤ 𝑝𝑓 . In this case, as 𝑓 is non-decreasing, we have 𝑓(𝑡) ≤ 𝑓(𝑡+𝑖)

for all 𝑡 = 1, 2, ..., 𝑛, implying

𝑛∑
𝑡=1

𝑓(𝑡) ≤
𝑛∑

𝑡=1

𝑓(𝑡 + 𝑖)

79

and thus 𝑓 ⪯ 𝑓+𝑖.

Case 2: Suppose 𝑛 + 𝑖 > 𝑝𝑓 . Note that

𝑛∑
𝑡=1

𝑓(𝑡 + 𝑖) =

𝑛+𝑖∑
𝑡=𝑖+1

𝑓(𝑡) =

𝑝𝑓∑
𝑡=𝑖+1

𝑓(𝑡) +

𝑛+𝑖∑
𝑡=𝑝𝑓+1

𝑓(𝑡)

=

𝑝𝑓∑
𝑡=𝑖+1

𝑓(𝑡) +

𝑛+𝑖−𝑝𝑓∑
𝑡=1

𝑓(𝑡).

Thus,

𝑛∑
𝑡=1

𝑓(𝑡) =

𝑛+𝑖−𝑝𝑓∑
𝑡=1

𝑓(𝑡) +

𝑛∑
𝑡=𝑛+𝑖−𝑝𝑓+1

𝑓(𝑡)

≤
𝑛+𝑖−𝑝𝑓∑

𝑡=1

𝑓(𝑡) +

𝑝𝑓∑
𝑡=𝑖+1

𝑓(𝑡) (since 𝑓 is non-decreasing)

=
𝑛+𝑖∑

𝑡=𝑖+1

𝑓(𝑡) =
𝑛∑

𝑡=1

𝑓+𝑖(𝑡)

and we are done.

Lemma 4.2.4. If 𝑓 is a periodic function such that 𝑝𝑓 ≥ 2 and 𝑅𝑓 > 1.5, then 𝑍𝑛 ⪯ 𝑓

for some 𝑛 ≥ 2.

Proof. Take 𝑛 = 𝑝𝑓 .

If we want to compare two periodic functions 𝑓 and 𝑔, then as stated before we

would have to compare 𝑓 and 𝑔 up to 𝑙𝑐𝑚(𝑝𝑓 , 𝑝𝑔), which could be as large as 𝑝𝑓𝑝𝑔. The

following lemma adds a hypothesis but the end result allows us to simply compare the

two functions up to one specific value.

Lemma 4.2.5. Let 𝑔 be a periodic function that is non-decreasing on its period and 𝑓

be a periodic function such that 𝑝𝑓 ≥ 𝑝𝑔 and

𝑝𝑓∑
𝑡=1

𝑓(𝑡) <

𝑝𝑓∑
𝑡=1

𝑔(𝑡).

Then 𝑓 ⪯∗ 𝑔, meaning there exists 𝑛 ∈ ℕ such that

𝑘∑
𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

𝑔(𝑡) for all 𝑘 ≥ 𝑛.

80

Proof. We first prove the following claim.

Claim: For each 𝑘 = 1, 2, 3, ...,

(𝑘+1)𝑝𝑓∑
𝑡=𝑘𝑝𝑓+1

𝑓(𝑡) <

(𝑘+1)𝑝𝑓∑
𝑡=𝑘𝑝𝑓+1

𝑔(𝑡).

Proof of Claim: Let 𝑘𝑝𝑓 + 1 = 𝑘′𝑝𝑔 + 𝑟, with 0 < 𝑟 ≤ 𝑝𝑔. Then we have

(𝑘+1)𝑝𝑓∑
𝑡=𝑘𝑝𝑓+1

𝑔(𝑡) =

𝑟+𝑝𝑓−1∑
𝑡=𝑟

𝑔(𝑡)

=

𝑝𝑓∑
𝑡=1

𝑔+(𝑟−1)(𝑡)

≥
𝑝𝑓∑
𝑡=1

𝑔(𝑡) by Lemma 4.2.3

>

𝑝𝑓∑
𝑡=1

𝑓(𝑡) =

(𝑘+1)𝑝𝑓∑
𝑡=𝑘𝑝𝑓+1

𝑓(𝑡).

So from the above claim, the following function

ℎ(𝑘) =

𝑘𝑝𝑓∑
𝑡=1

𝑔(𝑡) −
𝑘𝑝𝑓∑
𝑡=1

𝑓(𝑡)

is a strictly increasing function in 𝑘. Define 𝑘∗ by

𝑘∗ = min{𝑘 ∈ ℕ ∣ ℎ(𝑘) > 𝑁𝑓}.

Now let 𝑛 = 𝑘∗𝑝𝑓 . This is the 𝑛 that we require in order to prove the lemma. To see

this, suppose 𝑘 ≥ 𝑛 and 𝑘 = 𝑎𝑘𝑝𝑓 + 𝑏𝑘, where 0 ≤ 𝑏𝑘 < 𝑝𝑓 . Then

𝑘∑
𝑡=1

𝑓(𝑡) =

𝑎𝑘𝑝𝑓+𝑏𝑘∑
𝑡=1

𝑓(𝑡)

≤
𝑎𝑘𝑝𝑓+𝑝𝑓∑

𝑡=1

𝑓(𝑡)

=

(𝑎𝑘+1)𝑝𝑓∑
𝑡=1

𝑓(𝑡)

=

𝑎𝑘𝑝𝑓∑
𝑡=1

𝑓(𝑡) +

(𝑎𝑘+1)𝑝𝑓∑
𝑡=𝑎𝑘𝑝𝑓+1

𝑓(𝑡)

81

=

𝑎𝑘𝑝𝑓∑
𝑡=1

𝑓(𝑡) +

𝑝𝑓∑
𝑡=1

𝑓(𝑡)

=

(𝑎𝑘𝑝𝑓∑
𝑡=1

𝑔(𝑡)− ℎ(𝑎𝑘)

)
+

𝑝𝑓∑
𝑡=1

𝑓(𝑡)

≤
(𝑎𝑘𝑝𝑓∑

𝑡=1

𝑔(𝑡)− ℎ(𝑘∗)

)
+

𝑝𝑓∑
𝑡=1

𝑓(𝑡) (since 𝑎𝑘 ≥ 𝑘∗)

<

(𝑎𝑘𝑝𝑓∑
𝑡=1

𝑔(𝑡)−
𝑝𝑓∑
𝑡=1

𝑓(𝑡)

)
+

𝑝𝑓∑
𝑡=1

𝑓(𝑡)

=

𝑎𝑘𝑝𝑓∑
𝑡=1

𝑔(𝑡) ≤
𝑎𝑘𝑝𝑓+𝑏𝑘∑

𝑡=1

𝑔(𝑡) =

𝑘∑
𝑡=1

𝑔(𝑡).

The proof of the lemma is thus complete.

Using Lemma 4.2.5 we can prove the next lemma easily.

Lemma 4.2.6. For each 𝑛 ≥ 2, 𝐹𝑛2 ⪯∗ 𝑍𝑛.

Proof. Note that 𝐹𝑛2 is periodic, 𝑝𝐹
𝑛2 = 2𝑛2 + 1 ≥ 𝑛 = 𝑝𝑍𝑛 and

2𝑛2+1∑
𝑡=1

𝐹𝑛2(𝑡) = 𝑛2 + 2(𝑛2 + 1) = 3𝑛2 + 2.

If 𝑛 is even, then
2𝑛2+1∑
𝑡=1

𝑍𝑛(𝑡) = 2𝑛

(
3𝑛

2
+ 1

)
= 3𝑛2 + 2𝑛.

On the other hand, if 𝑛 is odd, then

2𝑛2+1∑
𝑡=1

𝑍𝑛(𝑡) = 2𝑛

(
3𝑛 + 1

2

)
= 3𝑛2 + 𝑛.

In either case, we have
2𝑛2+1∑
𝑡=1

𝐹𝑛2(𝑡) <

2𝑛2+1∑
𝑡=1

𝑍𝑛(𝑡)

and thus by Lemma 4.2.5, 𝐹𝑛2 ⪯∗ 𝑍𝑛.

Lemma 4.2.7. Given any periodic function 𝑓 such that 𝑝𝑓 ≥ 2 and 𝑅𝑓 > 1.5, there

exists some 𝑛 ≥ 2 such that 𝐹𝑛2 ⪯∗ 𝑓 .

82

Proof. Suppose 𝑓 is periodic, 𝑝𝑓 ≥ 2 and 𝑅𝑓 > 1.5. By Lemma 4.2.2, 𝑔𝑝𝑓 ,𝑁𝑓
⪯∗ 𝑓 .

Note that 𝑅𝑔𝑝𝑓 ,𝑁𝑓
= 𝑅𝑓 > 1.5, so by Lemmas 4.2.4 and 4.2.6, for some 𝑛 ≥ 2,

𝐹𝑛2 ⪯∗ 𝑍𝑛 ⪯∗ 𝑔𝑝𝑓 ,𝑁𝑓
.

Applying Lemma 4.2.1 to

𝐹𝑛2 ⪯∗ 𝑍𝑛 ⪯∗ 𝑔𝑝𝑓 ,𝑁𝑓
⪯∗ 𝑓

completes the proof.

4.3 Proof of main result

We first state two lemmas without proof.

Lemma 4.3.1. Suppose 𝑋1 and 𝑋2 are both finite subsets of ℤ×ℤ such that 𝑋1 ⊆ 𝑋2.

For any function 𝑓 , if 𝐶𝑋2(𝑓) is a containment certificate of 𝑓 for 𝑋2, then 𝐶𝑋2(𝑓) is

also a containment certificate of 𝑓 for 𝑋1.

Definition For any 𝑑 ∈ ℕ ∪ {0}, define

𝑆𝑑 = {(𝑥, 𝑦) ∈ ℤ× ℤ ∣ ∣𝑥∣+ ∣𝑦∣ ≤ 𝑑}.

Lemma 4.3.2. For any (𝑥, 𝑦) ∈ ℤ× ℤ such that (𝑥, 𝑦) /∈ 𝑆𝑑,

𝑑(𝑆𝑑, (𝑥, 𝑦)) = ∣𝑥∣+ ∣𝑦∣ − 𝑑.

Now for any 𝑛 ∈ ℕ, recall that 𝐹𝑛 = [

𝑛︷ ︸︸ ︷
1, 1, ..., 1,

𝑛+1︷ ︸︸ ︷
2, 2, ..., 2] is a periodic function with

period 2𝑛 + 1. Let

𝐹 2
𝑛 = [

𝑛︷ ︸︸ ︷
1, 1, ..., 1,

𝑛+1︷ ︸︸ ︷
2, 2, ..., 2,

𝑛︷ ︸︸ ︷
1, 1, ..., 1,

𝑛+1︷ ︸︸ ︷
2, 2, ..., 2].

Note that 𝐹 2
𝑛 is periodic with period 2(2𝑛 + 1) and 𝐹 2

𝑛 ⪯ 𝐹𝑛. Let 𝑝 = 2(2𝑛 + 1) and

define the function 𝐺𝑝 of period 𝑝 by

𝐺𝑝 = [

𝑝−1︷ ︸︸ ︷
1, 0, 1, 0, ..., 1, 𝑝 + 1].

It is easy to see that 𝐺𝑝 ⪯ 𝐹 2
𝑛 .

83

Lemma 4.3.3. For any 𝑛, 𝑑 ∈ ℕ, let 𝑝 = 2(2𝑛 + 1). There exists a containment

certificate of 𝐺𝑝 for 𝑆𝑑.

Proof. Consider the following eight sets.

𝐴0 =

2(𝑝+1)3(𝑑+𝑝)−1∪
𝑖=1, 𝑖 odd

{(
𝑖− 1

2
,−
(
𝑑 + 𝑝 +

𝑖− 1

2

)
, 𝑖

)}
,

𝐴1 =

𝑑+𝑝∪
𝑖=1

𝑝∪
𝑘=1

{(−(𝑖− 1)𝑝 − 𝑘,−(𝑑 + 𝑝), 𝑖𝑝)} ,

𝐴2 =

𝑑+𝑝∪
𝑖=1

{(−𝑝(𝑑 + 𝑝)− 𝑖,−(𝑑 + 𝑝) + 𝑖, 𝑖𝑝)} ,

𝐴3 =

(𝑝+1)(𝑑+𝑝)∪
𝑖=1

𝑝∪
𝑘=1

{(−(𝑝 + 1)(𝑑 + 𝑝), (𝑖− 1)𝑝 + 𝑘, (𝑑 + 𝑝 + 𝑖)𝑝)} ,

𝐴4 =

(𝑝+1)(𝑑+𝑝)∪
𝑖=1

{(−(𝑝 + 1)(𝑑 + 𝑝) + 𝑖, 𝑝(𝑝 + 1)(𝑑 + 𝑝) + 𝑖, (𝑑 + 𝑝 + 𝑖)𝑝)} ,

𝐴5 =

(𝑝+1)2(𝑑+𝑝)∪
𝑖=1

𝑝∪
𝑘=1

{
((𝑖− 1)𝑝 + 𝑘, (𝑝 + 1)2(𝑑 + 𝑝), ((𝑝 + 2)(𝑑 + 𝑝) + 𝑖)𝑝)

}
,

𝐴6 =

(𝑝+1)2(𝑑+𝑝)∪
𝑖=1

{
(𝑝(𝑝 + 1)2(𝑑 + 𝑝) + 𝑖, (𝑝 + 1)2(𝑑 + 𝑝)− 𝑖, ((𝑝 + 2)(𝑑 + 𝑝) + 𝑖)𝑝)

}
,

𝐴7 =
𝑁∪
𝑖=1

⎧⎨
⎩

((𝑝 + 1)3(𝑑 + 𝑝),−(𝑖− 1)𝑝− 𝑘, ((𝑑 + 𝑝)(𝑝 + 2 + (𝑝 + 1)2) + 𝑖)𝑝) ∣

1 ≤ 𝑘 ≤ 𝑝 and (𝑖− 1)𝑝 + 𝑘 ≤ ((𝑝 + 1)3 + 1)(𝑑 + 𝑝) + 2

⎫⎬
⎭

,

where

𝑁 =

⌈
((𝑝 + 1)3 + 1)(𝑑 + 𝑝) + 2

𝑝

⌉
.

We claim that 𝐴 =
∪7

𝑖=0 𝐴𝑖 is a containment certificate of 𝐺𝑝 for 𝑆𝑑.

Figure 1 illustrates the positions corresponding to the set 𝐴 =
∪7

𝑖=0 𝐴𝑖.

Recall that an element (𝑥, 𝑦, 𝑡) in a containment certificate can be thought of as the

time 𝑡 where a firefighter is positioned at (𝑥, 𝑦). To show that the first condition in the

definition of a containment certificate is satisfied, it is easier to describe the elements of

the eight sets in terms on their positions on ℤ× ℤ and when these positions are taken

84

������

��
(−p(d + p),−(d + p))

��
A1

(0,−(d+p))

�
�

�
�

�

�

��
(−(p + 1)(d + p), 0)

A2

�

�
�
�
�
�

�

��

(−(p+1)(d+p), p(p+1)(d+p))

��

��
A3

�

�

�
�
�
�
�
�
�

�

(0, (p + 1)2(d + p))

��
�

�
�
�

A4

� �� � � � � � �
��

(p(p + 1)2(d + p), (p + 1)2(d + p))

�
�

�
�A5

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�

�

((p + 1)3(d + p), 0)

�
�
�
�
��

��
��

��
A6

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�

�

�

�

�

((p + 1)3(d + p),−((p + 1)3 + 1)(d + p) + 2)

	
	
	
	
	
	
	
	

A7

�

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�
�

�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

A0

�
Sd

Figure 4.3: A global view of the containment certificate described in the proof of Lemma
4.3.3.

85

up by the firefighters. Note that 𝐺𝑝(𝑡) = 1 for all odd 𝑡, 𝐺𝑝(𝑡) = 𝑝 + 1 if 𝑡 = 𝑘𝑝 for

some 𝑘 ∈ ℕ and 𝐺𝑝(𝑡) = 0 otherwise.

1. At each odd 𝑡 = 1, 3, ..., 2(𝑝+1)3(𝑑+𝑝)−1, a firefighter is positioned at (𝑡−12 ,−(𝑑+

𝑝 + 𝑡−1
2)). This corresponds to the set 𝐴0.

2. At each 𝑡 = 𝑖𝑝, 𝑖 = 1, 2, ..., 𝑑 + 𝑝, we have 𝑝 + 1 firefighters available, 𝑝 of which

have positions given by 𝐴1 (forming a horizontal line) and the remaining one has

position given by 𝐴2 (forming a diagonal line).

3. At each 𝑡 = (𝑑 + 𝑝 + 𝑖)𝑝, 𝑖 = 1, ..., (𝑝 + 1)(𝑑 + 𝑝)𝑝, we have 𝑝 + 1 firefighters

available, 𝑝 of which have positions given by 𝐴3 (forming a vertical line) and the

remaining one has position given by 𝐴4 (forming a diagonal line).

4. At each 𝑡 = ((𝑝+2)(𝑑+𝑝)+ 𝑖)𝑝, 𝑖 = 1, ..., (𝑝+1)2(𝑑+𝑝), we have 𝑝+1 firefighters

available, 𝑝 of which have positions given by 𝐴5 (forming a horizontal line) and

the remaining one has position given by 𝐴6 (forming a diagonal line).

5. At each 𝑡 = ((𝑑 + 𝑝)(𝑝 + 2 + (𝑝 + 1)2) + 𝑖)𝑝, 𝑖 = 1, ..., 𝑁 , we place 𝑝 firefighters

at positions given by 𝐴7. This forms a vertical line and the positioning ends

when this vertical line meets with the diagonal line formed by firefighters whose

positions corresponds to the set 𝐴0.

We next check the second condition in the definition of a containment certificate.

Case 1: Suppose (𝑖−12 ,−(𝑑 + 𝑝 + 𝑖−1
2), 𝑖) ∈ 𝐴0 for some 𝑖 ∈ {1, 3, ..., 2(𝑝 + 1)3(𝑑 +

𝑝)− 1}. By Lemma 4.3.2,

𝑑

(
𝑆𝑑,

(
𝑖− 1

2
,−
(
𝑑 + 𝑝 +

𝑖− 1

2

)))
=

∣∣∣∣ 𝑖− 1

2

∣∣∣∣+
∣∣∣∣−
(
𝑑 + 𝑝 +

𝑖− 1

2

)∣∣∣∣− 𝑑

=
𝑖− 1

2
+

(
𝑑 + 𝑝 +

𝑖− 1

2

)
− 𝑑

= 𝑝 + 𝑖− 1 ≥ 𝑖 (since 𝑝 ≥ 6).

Case 2: Suppose (−(𝑖− 1)𝑝− 𝑘,−(𝑑+ 𝑝), 𝑖𝑝) ∈ 𝐴1 for some 𝑖 ∈ {1, 2, ..., 𝑑+ 𝑝} and

86

some 𝑘 ∈ {1, ..., 𝑝}. By Lemma 4.3.2,

𝑑(𝑆𝑑, (−(𝑖− 1)𝑝 − 𝑘,−(𝑑 + 𝑝))) = ∣ − (𝑖− 1)𝑝 − 𝑘∣+ ∣ − (𝑑 + 𝑝)∣ − 𝑑

= (𝑖− 1)𝑝 + 𝑘 + (𝑑 + 𝑝)− 𝑑

= 𝑖𝑝 + 𝑘 ≥ 𝑖𝑝.

Case 3: Suppose (−𝑝(𝑑+ 𝑝)− 𝑖,−(𝑑+ 𝑝)+ 𝑖, 𝑖𝑝) ∈ 𝐴2 for some 𝑖 ∈ {1, 2, ..., 𝑑 + 𝑝}.
By Lemma 4.3.2,

𝑑(𝑆𝑑, (−𝑝(𝑑 + 𝑝)− 𝑖,−(𝑑 + 𝑝) + 𝑖)) = ∣ − 𝑝(𝑑 + 𝑝)− 𝑖∣+ ∣ − (𝑑 + 𝑝) + 𝑖∣ − 𝑑

= 𝑝(𝑑 + 𝑝) + 𝑖 + (𝑑 + 𝑝)− 𝑖− 𝑑

= 𝑝(𝑑 + 𝑝 + 1) ≥ 𝑖𝑝.

Case 4: Suppose (−(𝑝 + 1)(𝑑 + 𝑝), (𝑖 − 1)𝑝 + 𝑘, (𝑑 + 𝑝 + 𝑖)𝑝) ∈ 𝐴3 for some 𝑖 ∈
{1, 2, ..., (𝑝 + 1)(𝑑 + 𝑝)} and 𝑘 ∈ {1, ..., 𝑝}. By Lemma 4.3.2,

𝑑(𝑆𝑑, (−(𝑝 + 1)(𝑑 + 𝑝), (𝑖− 1)𝑝 + 𝑘)) = ∣ − (𝑝 + 1)(𝑑 + 𝑝)∣+ ∣(𝑖− 1)𝑝 + 𝑘∣ − 𝑑

= (𝑝 + 1)(𝑑 + 𝑝) + (𝑖− 1)𝑝 + 𝑘 − 𝑑

= 𝑝𝑑 + 𝑝2 + 𝑑 + 𝑝 + 𝑖𝑝− 𝑝 + 𝑘 − 𝑑

= 𝑝𝑑 + 𝑝2 + 𝑖𝑝 + 𝑘 ≥ (𝑑 + 𝑝 + 𝑖)𝑝.

Case 5: Suppose (−(𝑝+1)(𝑑+𝑝)+ 𝑖, 𝑝(𝑝+1)(𝑑+𝑝)+ 𝑖, (𝑑+𝑝+ 𝑖)𝑝) ∈ 𝐴4 for some

𝑖 ∈ {1, 2, ..., (𝑝 + 1)(𝑑 + 𝑝)}. By Lemma 4.3.2,

𝑑(𝑆𝑑, (−(𝑝 + 1)(𝑑 + 𝑝) + 𝑖, 𝑝(𝑝 + 1)(𝑑 + 𝑝) + 𝑖))

= ∣ − (𝑝 + 1)(𝑑 + 𝑝) + 𝑖∣+ ∣𝑝(𝑝 + 1)(𝑑 + 𝑝) + 𝑖∣ − 𝑑

= (𝑝 + 1)(𝑑 + 𝑝)− 𝑖 + 𝑝(𝑝 + 1)(𝑑 + 𝑝) + 𝑖− 𝑑

= (𝑝 + 1)2(𝑑 + 𝑝)− 𝑑

= 𝑝2𝑑 + 𝑝3 + 2𝑝𝑑 + 2𝑝2 + 𝑝

≥ 𝑝2𝑑 + 𝑝3 + 2𝑝𝑑 + 2𝑝2

= (𝑝 + 2)(𝑑 + 𝑝)𝑝

= (𝑑 + 𝑝 + (𝑝 + 1)(𝑑 + 𝑝))𝑝

≥ (𝑑 + 𝑝 + 𝑖)𝑝.

87

Case 6: Suppose ((𝑖− 1)𝑝 + 𝑘, (𝑝 + 1)2(𝑑+ 𝑝), ((𝑝 + 2)(𝑑 + 𝑝) + 𝑖)𝑝) ∈ 𝐴5 for some

𝑖 ∈ {1, ..., (𝑝 + 1)2(𝑑 + 𝑝)} and 𝑘 ∈ {1, ..., 𝑝}. By Lemma 4.3.2,

𝑑(𝑆𝑑, ((𝑖 − 1)𝑝 + 𝑘, (𝑝 + 1)2(𝑑 + 𝑝)) = ∣(𝑖− 1)𝑝 + 𝑘∣+ ∣(𝑝 + 1)2(𝑑 + 𝑝)∣ − 𝑑

= 𝑖𝑝− 𝑝 + 𝑘 + (𝑝2 + 2𝑝 + 1)(𝑑 + 𝑝)− 𝑑

= 𝑖𝑝 + 𝑘 + 𝑝2𝑑 + 𝑝3 + 2𝑝𝑑 + 2𝑝2

≥ 𝑖𝑝 + 𝑝(𝑝𝑑 + 𝑝2 + 2𝑑 + 2𝑝)

= ((𝑝 + 2)(𝑑 + 𝑝) + 𝑖)𝑝.

Case 7: Suppose (𝑝(𝑝+1)2(𝑑+ 𝑝)+ 𝑖, (𝑝+1)2(𝑑+ 𝑝)− 𝑖, ((𝑝+2)(𝑑+ 𝑝)+ 𝑖)𝑝) ∈ 𝐴6

for some 𝑖 ∈ {1, ..., (𝑝 + 1)2(𝑑 + 𝑝)}. By Lemma 4.3.2,

𝑑(𝑆𝑑, (𝑝(𝑝 + 1)2(𝑑 + 𝑝) + 𝑖, (𝑝 + 1)2(𝑑 + 𝑝)− 𝑖))

= ∣𝑝(𝑝 + 1)2(𝑑 + 𝑝) + 𝑖∣+ ∣(𝑝 + 1)2(𝑑 + 𝑝)− 𝑖∣ − 𝑑

= (𝑝 + 1)3(𝑑 + 𝑝)− 𝑑

= 𝑝3𝑑 + 𝑝4 + 3𝑝2𝑑 + 3𝑝3 + 3𝑝𝑑 + 3𝑝2 + 𝑝

≥ 𝑝3𝑑 + 𝑝4 + 3𝑝2𝑑 + 3𝑝3 + 3𝑝𝑑 + 3𝑝2

= (𝑝2𝑑 + 𝑝3 + 3𝑝𝑑 + 3𝑝2 + 3𝑑 + 3𝑝)𝑝

= ((𝑝 + 1)2 + 𝑝 + 2)(𝑑 + 𝑝)𝑝

= ((𝑝 + 2)(𝑑 + 𝑝) + (𝑝 + 1)2(𝑑 + 𝑝))𝑝

≥ ((𝑝 + 2)(𝑑 + 𝑝) + 𝑖)𝑝.

Case 8: Suppose ((𝑝+1)3(𝑑+𝑝),−((𝑖−1)𝑝+𝑘), ((𝑑+𝑝)(𝑝+2+(𝑝+1)2)+𝑖)𝑝) ∈ 𝐴7

for some 𝑖 ∈ {1,, 𝑁} and 𝑘 ∈ {1, ..., 𝑝}. By Lemma 4.3.2,

𝑑(𝑆𝑑, ((𝑝 + 1)3(𝑑 + 𝑝),−((𝑖 − 1)𝑝 + 𝑘)))

= ∣(𝑝 + 1)3(𝑑 + 𝑝)∣+ ∣ − ((𝑖− 1)𝑝 + 𝑘)∣ − 𝑑

= (𝑝 + 1)3(𝑑 + 𝑝) + (𝑖− 1)𝑝 + 𝑘 − 𝑑

≥ (𝑝3 + 3𝑝2 + 3𝑝 + 1)(𝑑 + 𝑝)− 𝑝− 𝑑 + 𝑖𝑝

= (𝑝 + 𝑑)(𝑝3 + 3𝑝2 + 3𝑝) + 𝑖𝑝

= (𝑝 + 𝑑)𝑝(𝑝 + 2 + (𝑝 + 1)2) + 𝑖𝑝

88

= ((𝑑 + 𝑝)(𝑝 + 2 + (𝑝 + 1)2) + 𝑖)𝑝.

Thus, the second condition in the definition of a containment certificate is satisfied.

To see that 𝐴 satisfies the third condition, let us consider the closed curve (in ℝ
2)

determined by 𝐴 by “connecting the dots”, meaning we draw a line segment between

two adjacent points (𝑥, 𝑦, 𝑡) and (𝑥′, 𝑦′, 𝑡′) ∈ 𝐴 that satisfy

max{∣𝑥− 𝑥′∣, ∣𝑦 − 𝑦′∣} = 1.

Note that this produces a polygon 𝑃 with nine sides. 𝑃 separates ℝ
2 into an interior

and an exterior. Since the interior has finite area as a subset of ℝ2, there are only a

finite number of lattice points in the interior. Also, note that 𝑆𝑑 is a subset of the

interior, thus any point on the exterior must cross 𝑃 in order to reach any point is 𝑆𝑑.

This implies that the only vertices that have at least one path to a vertex in 𝑆𝑑 without

passing through any vertex in 𝐴 are precisely the lattice points in the interior of 𝑃 ,

which is finite.

Lemma 4.3.4. Suppose 𝑓 and 𝑔 are two periodic functions such that 𝑓 ⪯∗ 𝑔. If there

is a containment certificate of 𝑓 for 𝑆𝑑 for all 𝑑 ≥ 0, then there is a containment

certificate of 𝑔 for 𝑆𝑑 for all 𝑑 ≥ 0.

Proof. Since 𝑓 ⪯∗ 𝑔, there exists 𝑛 ∈ ℕ such that

𝑘∑
𝑡=1

𝑓(𝑡) ≤
𝑘∑

𝑡=1

𝑔(𝑡)

for all 𝑘 ≥ 𝑛. Since there is a containment certificate of 𝑓 for 𝑆𝑑 for all 𝑑 ≥ 0, let

𝐶𝑆𝑛+𝑑+1
(𝑓) be a containment certificate of 𝑓 for 𝑆𝑛+𝑑+1. We will use 𝐶𝑆𝑛+𝑑+1

(𝑓) to

construct a containment certificate of 𝑔 for 𝑆𝑑. We order the elements in 𝐶𝑆𝑛+𝑑+1
(𝑓)

on the third coordinate such that

𝐶𝑆𝑛+𝑑+1
(𝑓) = {(𝑥1, 𝑦1, 𝑡1), (𝑥2, 𝑦2, 𝑡2), ..., (𝑥𝑟 , 𝑦𝑟, 𝑡𝑟)},

where 𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡𝑟. It is now easy to see that for all 𝑗 ≥ 1,

𝑡𝑗∑
𝑡=1

𝑓(𝑡) ≥ 𝑗.

89

Now define 𝐶𝑆𝑑
(𝑔) to be

𝐶𝑆𝑑
(𝑔) = {(𝑥𝑗 , 𝑦𝑗, 𝑔

−1(𝑗)) ∣ 1 ≤ 𝑗 ≤ 𝑟}.

Note that elements in 𝐶𝑆𝑛+𝑑+1
(𝑓) and 𝐶𝑆𝑑

(𝑔) differ only the third coordinate. To prove

that 𝐶𝑆𝑑
(𝑔) is indeed a containment certificate of 𝑔 for 𝑆𝑑, we check the three conditions

in the definition of a containment certificate.

Condition 1: Note that

∣{𝑗 ∈ ℕ ∣ 𝑔−1(𝑗) = 𝑖}∣ = number of 𝑗 such that min{𝑘 ∣∑𝑘
𝑡=1 𝑔(𝑡) ≥ 𝑗} = 𝑖

= 𝑔(𝑖).

Thus 𝐶𝑆𝑑
(𝑔) satisfies the first condition since there are exactly 𝑔(𝑖) elements in 𝐶𝑆𝑑

(𝑔)

where that the third coordinate is 𝑖.

Condition 2: For the second condition, first consider the case where (𝑥𝑗 , 𝑦𝑗, 𝑡𝑗) ∈
𝐶≤𝑛𝑆𝑛+𝑑+1

(𝑓). This implies 𝑡𝑗 ≤ 𝑛. We want to show that 𝑑(𝑆𝑑, (𝑥𝑗 , 𝑦𝑗)) ≥ 𝑔−1(𝑗). We

claim that 𝑔−1(𝑗) ≤ 𝑛. Suppose, for a contradiction that 𝑔−1(𝑗) > 𝑛. By the definition

of 𝑔−1, this implies that
𝑛∑

𝑡=1

𝑔(𝑡) < 𝑗.

However,
𝑛∑

𝑡=1

𝑓(𝑡) ≥
𝑡𝑗∑
𝑡=1

𝑓(𝑡) ≥ 𝑗 ⇒
𝑛∑

𝑡=1

𝑔(𝑡) < 𝑗 ≤
𝑛∑

𝑡=1

𝑓(𝑡),

which contradicts 𝑓 ⪯∗ 𝑔. So 𝑔−1(𝑗) ≤ 𝑛. Since (𝑥𝑗, 𝑦𝑗 , 𝑡𝑗) ∈ 𝐶𝑆𝑛+𝑑+1
(𝑓),

𝑑(𝑆𝑛+𝑑+1, (𝑥𝑗 , 𝑦𝑗)) ≥ 1⇒ 𝑑(𝑆𝑑, (𝑥𝑗 , 𝑦𝑗)) > 𝑛 ≥ 𝑔−1(𝑗)

and we are done. Next consider the case where (𝑥𝑗, 𝑦𝑗 , 𝑡𝑗) ∈ 𝐶>𝑛
𝑆𝑛+𝑑+1

(𝑓). We claim that

𝑔−1(𝑗) ≤ 𝑡𝑗. Suppose, for a contradiction that 𝑔−1(𝑗) > 𝑡𝑗. By the definition of 𝑔−1,

this implies that
𝑡𝑗∑
𝑡=1

𝑔(𝑡) < 𝑗.

However,
𝑡𝑗∑
𝑡=1

𝑓(𝑡) ≥ 𝑗 ⇒
𝑡𝑗∑
𝑡=1

𝑔(𝑡) < 𝑗 ≤
𝑡𝑗∑
𝑡=1

𝑓(𝑡),

90

which contradicts 𝑓 ⪯∗ 𝑔 since 𝑡𝑗 > 𝑛. So 𝑔−1(𝑗) ≤ 𝑡𝑗 . Since (𝑥𝑗, 𝑦𝑗 , 𝑡𝑗) ∈ 𝐶𝑆𝑛+𝑑+1
(𝑓),

𝑑(𝑆𝑑, (𝑥𝑗 , 𝑦𝑗)) > 𝑑(𝑆𝑛+𝑑+1, (𝑥𝑗 , 𝑦𝑗)) ≥ 𝑡𝑗 ⇒ 𝑑(𝑆𝑑, (𝑥𝑗 , 𝑦𝑗)) > 𝑔−1(𝑗)

and we are done. Thus 𝐶𝑆𝑑
(𝑔) satisfies the second condition in the definition of a

containment certificate.

Condition 3: The third condition follows naturally because 𝐶𝑆𝑛+𝑑−1
(𝑓) is a

containment certificate and the positions (𝑥𝑗 , 𝑦𝑗) determined by 𝐶𝑆𝑑
(𝑔) and those de-

termined by 𝐶𝑆𝑛+𝑑+1
(𝑓) are exactly identical.

We are now ready to prove our main result.

Theorem 4.3.5. Suppose a finite set 𝑆 ⊂ ℤ× ℤ of vertices are initially set on fire. If

the number of firefighters available for deployment per time period is given by a periodic

function 𝑓 such that 𝑅𝑓 > 1.5, then there exists a containment certificate of 𝑓 for 𝑆.

Proof. Suppose 𝑓 is a periodic function such that 𝑅𝑓 > 1.5. If 𝑝𝑓 = 1, this means that

𝑓(𝑡) ≥ 2 for all 𝑡. Fogarty [18] has shown that this is sufficient to contain the fire that

starts at any finite set 𝑆. Suppose 𝑝𝑓 ≥ 2. By Lemma 4.2.7, there exists some 𝑛 ≥ 2

such that 𝐹𝑛2 ⪯∗ 𝑓 . Since 𝐹 2
𝑛2 ⪯∗ 𝐹𝑛2 and 𝐺𝑝 ⪯∗ 𝐹 2

𝑛2 where 𝑝 = 2(2𝑛2 + 1), we have

𝐺𝑝 ⪯∗ 𝑓 .

Now let

𝑑 = max{∣𝑥∣+ ∣𝑦∣ ∣ (𝑥, 𝑦) ∈ 𝑆}.

By Lemma 4.3.3, there exists a containment certificate of 𝐺𝑝 for 𝑆𝑑. By Lemma 4.3.4,

since 𝐺𝑝 ⪯∗ 𝑓 , there also exists a containment certificate of 𝑓 for 𝑆𝑑, 𝐶𝑆𝑑
(𝑓). Since

𝑆 ⊆ 𝑆𝑑, by Lemma 3.1, 𝐶𝑆𝑑
(𝑓) is also a containment certificate of 𝑓 for 𝑆.

From this, we have a simple corollary that extends the space of functions for which

there are containment certificates.

Corollary 4.3.6. If

lim inf
𝑛→∞ 𝑅𝑓 (𝑛) > 1.5,

then there is a containment certificate of 𝑓 for any finite 𝑆.

91

Figure 4.4: A snapshot of a part of a containment scenario.

Proof. Let 𝑙 = lim inf
𝑛→∞ 𝑅𝑓 (𝑛) and let 𝑟 be a rational number satisfying 1.5 < 𝑟 < 𝑙.

Additionally, let 𝑁 be so that 𝑅𝑓 (𝑛) > 𝑟 for all 𝑛 > 𝑁 . Let 𝐹 be any periodic function

with ratio equal to 𝑟 and consider the following function 𝑔, defined as

𝑔(𝑡) =

⎧⎨
⎩

0 for 0 < 𝑡 < 𝑁

𝑓(𝑡−𝑁) otherwise

Note that there exists a containment certificate for 𝑔 for it is equivalent to having a

containment certificate for 𝐹 . Additionally, note that 𝑔 ⪯ 𝑓 . Therefore, by Lemma

4.3.4, there is a containment certificate for 𝑓 .

4.4 Lower bounds for convex containment certificates

The general containment certificate shown in Figure 4.3 admittedly looks a little bizarre,

but it comes as an artifact from the intention to place the firefighters as close to the

fire as possible. However, it isn’t necessary to always place the firefighters adjacent to

the fire to have the same effect. For example, consider Figure 4.4, a close-up of the

following simplistic situation that is the start of a firefighting scenario.

In Figure 4.4, five fighters are placed, all below the single fire. Due to the structure

of the infinite grid ℤ
2, we can shift the middle firefighter down one step without any

change in the possibility of full containment, as exemplified in Figure 4.5.

Being unconcerned about minimizing the total number of vertices that are burned,

the fighters can allow the fire to spread one step below, but that is as far as it can go

92

Figure 4.5: A legitimate modification made from Figure 4.4.

in that direction. The way the fire spreads otherwise is exactly the same as it was in

the initial placement.

Indeed, we can go further and start with a containment certificate – i.e. a situation

where the fire has already been contained – and then try to “expand” the containment

wall as much as possible. This can be done easily with the help of a computer, but we

first would like to enumerate all of the ways pieces of wall could form. We can do so

easily with the help of a mathematical computer assistant such as Mathematica (code

is given at [39]), which was used in this case to find, using brute force, the following

list of 128 different ways a four-firefighter length of wall can be positioned relative to

the fire.

We can take advantage of this fact and extend this idea over all possible situations

that are seen in a containment certificate. Assume that we are dealing with a convex

containment certificate. The important part of the containment scenario is then a wall

around the set of fires; there may be firefighters completely “consumed” by the fire on

the inside of the outer wall, but those are irrelevant here. If we start at one fighter on

the outer wall and travel around the fire clockwise, we can view the next four fighters in

this wall and these four fighters will be in one of the 128 scenarios that were enumerated

using Mathematica. These 128 scenarios are shown in Figure 4.6 and Figure 4.7 and

follow the “right hand rule” in that we think of following the wall starting at the middle

of each example, and we view the fire as being to the right as we are going along the

wall.

93

Figure 4.6: The first 64 of the 128 possible positions a group of four fighters could be
in.

94

Figure 4.7: The second 64 of the 128 possible positions a group of four fighters could
be in.

95

Using the simple idea from the beginning of this section, we are able to modify some

of these 128 scenarios to take care of this fact and “push” the wall out as far as possible

while still containing the fire. This mapping is shown in Figures 4.8, 4.9, 4.10, 4.11,

4.12, 4.13, 4.14, and 4.15.

Notice that in each of the transformations, only the middle two pieces out of the four

are relocated, ensuring that the wall will still be contiguous after each stage. Hence, we

can repeat this process throughout, and given that the mapping of local transformations

is idempotent, this process will eventually converge. It turns out we always converge

into a well-behaved structure.

Definition A diamond containment certificate with corners (𝑥𝑆 , 𝑦𝑆) and (𝑥𝑁 , 𝑦𝑁) is

a containment certificate whose firefighters are the points (𝑥, 𝑦) ∈ 𝑍2 satisfying one of

the following two conditions.

∙
∣∣∣𝑥−𝑥𝑆

𝑦−𝑦𝑆

∣∣∣ = 1 and
∣∣∣𝑥−𝑥𝑁

𝑦−𝑦𝑁

∣∣∣ ≥ 1, or

∙
∣∣∣𝑥−𝑥𝑆

𝑦−𝑦𝑆

∣∣∣ ≥ 1 and
∣∣∣𝑥−𝑥𝑁

𝑦−𝑦𝑁

∣∣∣ = 1.

Remark Although it was not specified in the definition, the set of firefighters in a

diamond containment certificate will only be nonempty if 2𝑥𝑆 , 2𝑦𝑆 , 2𝑥𝑁 , and 2𝑦𝑁 are

all integers. However, for the rest of this chapter, we will assume that 𝑥𝑆 , 𝑦𝑆, 𝑥𝑁 , and

𝑦𝑁 are all integers, as all arguments will hold in the other cases.

Theorem 4.4.1. Any convex containment certificate 𝒞 can be mapped to a diamond
containment certificate 𝒞′ that works for the same initial configuration and the same

number of turns.

Proof. To obtain the diamond, all one needs to do is start at some section of the

containment certificate and apply the mapping to the consecutive parts of the “slid-

ing window” around the containment certificate, until there are no more non-identity

transformations left (see [39] for a demonstration). The only configurations that map

to themselves are the ones that precisely are part of some diamond containment cer-

tificate. What is obtained at the end of the process, considering that we started with a

96

Figure 4.8: The wall transformation mapping for cases 1 through 16.

97

Figure 4.9: The wall transformation mapping for cases 17 through 32.

98

Figure 4.10: The wall transformation mapping for cases 33 through 48.

99

Figure 4.11: The wall transformation mapping for cases 49 through 64.

100

Figure 4.12: The wall transformation mapping for cases 65 through 80.

101

Figure 4.13: The wall transformation mapping for cases 81 through 96.

102

Figure 4.14: The wall transformation mapping for cases 97 through 112.

103

Figure 4.15: The wall transformation mapping for cases 113 through 128.

104

Figure 4.16: How the generic situation looks for having a diamond containment certifi-
cate (already predetermined) contain a fire starting at a single point.

fully-contained wall and the wall’s integrity never changes during a transformation, is

a diamond containment certificate.

If the initial containment certificate is convex, then any application of the map-

ping that transforms part of the containment certificate still upholds the rules of the

containment certificate, so is still a solution to the initial configuration.

From Theorem 4.4.1, we can now show that there are functions 𝑓 with 𝑅𝑓 = 1.5 that

can not produce a convex containment certificate by showing that it can not produce

a diamond containment certificate. We will show this specifically with the function

𝑓 = [3, 0].

Corollary 4.4.2. There is no diamond containment certificate for 𝑓 = [3, 0]. As a

consequence, there is no convex containment certificate for 𝑓 , also.

Proof. We will assume that the fire starts at one point, (𝑥, 𝑦), and a diamond with

corners (𝑥𝑆 , 𝑦𝑆) and (𝑥𝑁 , 𝑦𝑁) is a diamond containment certificate. Additionally, we

may also assume without loss of generality that the corner (𝑥𝑆 , 𝑦𝑆) is the first corner

that the fire will approach, and we may also assume that 𝑥 ≥ 𝑥𝑆 . Hence, part of our

situation looks like Figure 4.16, where the containment certificate is shown.

With this scenario, we will have a need for a total of 2(𝑦 − 𝑦𝑆) + 1 + (𝑥 − 𝑥𝑆)

105

firefighters by turn (𝑥−𝑥𝑆)+(𝑦−𝑦𝑆), where the 2(𝑦−𝑦𝑆)+1 firefighters are needed at

positions (𝑥1, 𝑦), (𝑥1+1, 𝑦−1), . . . , (𝑥𝑆 , 𝑦𝑆), (𝑥𝑆 +1, 𝑦𝑆 +1), . . . , (𝑥2, 𝑦) and the (𝑥−𝑥𝑆)

firefighters are needed at positions (𝑥2+1, 𝑦+1), . . . , (𝑥2+𝑥−𝑥𝑆 , 𝑦+𝑥−𝑥𝑆). However,

notice at this point that we will also need (𝑥−𝑥𝑆)+ (𝑦− 𝑦𝑆) firefighters to protect the

upper-left wall, as for each two turns past (𝑥 − 𝑥𝑆) + (𝑦 − 𝑦𝑆), two more firefighters

are needed, one on the lower-left and one on the lower-right wall, and the upper-left

firewall, which needs to be protected, also increases in length by one. Therefore, it is

necessary that

3

⌈
(𝑥− 𝑥𝑆) + (𝑦 − 𝑦𝑆)

2

⌉
− (2(𝑦 − 𝑦𝑆) + 1 + (𝑥− 𝑥𝑆)) ≤ (𝑥− 𝑥𝑆) + (𝑦 − 𝑦𝑆),

or equivalently,

3

⌈
(𝑥− 𝑥𝑆) + (𝑦 − 𝑦𝑆)

2

⌉
≤ 3(𝑦 − 𝑦𝑆) + 2(𝑥− 𝑥𝑆) + 1. (4.1)

We can check (4.1) by considering the following three cases.

∙ 𝑥 = 2𝑙, 𝑦 = 2𝑘: We have

2

⌈
2𝑘 + 2𝑙

2

⌉
≤ 6𝑘 + 4𝑙 + 1

3(𝑘 + 𝑙) ≤ 6𝑘 + 4𝑙 + 1

0 ≤ 3𝑘 + 𝑙 + 1

which is true, for it must be that ∣𝑦∣ > ∣𝑥∣ and so ∣𝑘∣ > ∣𝑙∣.

∙ 𝑥 = 2𝑙, 𝑦 = 2𝑘 + 1: We have

2

⌈
2𝑘 + 2𝑙 + 2

2

⌉
≤ 6𝑘 + 3 + 4𝑙 + 1

3(𝑘 + 𝑙 + 1) ≤ 6𝑘 + 4𝑙 + 4

0 ≤ 3𝑘 + 𝑙 + 1

which is still true, for even though ∣𝑦∣ > ∣𝑥∣, it still implies here that ∣𝑘∣ ≥ ∣𝑙∣.

106

∙ 𝑥 = 2𝑙 + 1, 𝑦 = 2𝑘: We have

2

⌈
2𝑘 + 2𝑙 + 2

2

⌉
≤ 6𝑘 + 4𝑙 + 2 + 1

3(𝑘 + 𝑙 + 1) ≤ 6𝑘 + 4𝑙 + 3

0 ≤ 3𝑘 + 𝑙

which is true for the same reasons as above.

From the calculations above we see that even though we might be able to have enough

firefighters at turn (𝑥−𝑥𝑆)+(𝑦−𝑦𝑆), we will not be able to protect the upper-left part

of the diamond in the future, when the whole upper-left section of the firewall hits it at

once. The calculations show that no matter what, we will not have enough firefighters

in total to protect all of the areas that need protected at that time, and hence there

are no diamond containment certificates, and so no convex containment certificates, for

[3, 0].

4.5 Discussion and conclusion

For a given periodic function 𝑓 and set 𝑆 ⊂ ℤ × ℤ, if a containment certificate of 𝑓

for 𝑆 exists, it is not necessarily unique. In fact, our initial efforts to prove Theorem

4.3.5 resulted in the construction of a containment certificate of the function 𝐹𝑛 =

[

𝑛︷ ︸︸ ︷
1, 1, ..., 1,

𝑛+1︷ ︸︸ ︷
2, 2, ..., 2] for the set 𝑆𝑑, for every 𝑛 ≥ 1 and 𝑑 ≥ 0. Of course, with Lemmas

4.2.7 and 4.3.4, we are still able to arrive at Theorem 4.3.5. The containment certificate

of 𝐹𝑛 differs significantly from the containment certificate of 𝐺𝑝 for 𝑆𝑑 presented in

Lemma 4.3.3. Our decision to present the containment certificate of 𝐺𝑝 for 𝑆𝑑 in this

chapter is based on its relative simpler form and ease of checking the three conditions

of a containment certificate.

In this chapter, we have established that if 𝑓 is a periodic function with 𝑅𝑓 > 1.5,

then for any 𝑑 ≥ 0, there always exists a containment certificate of 𝑓 for 𝑆𝑑. But what

about periodic functions 𝑓 with 𝑅𝑓 ≤ 1.5? Attempts have been made, for example,

with the function 𝑓 = [2, 1] but with no success. Even in the simplest case when the

fire breaks out at just a single vertex of 𝕃2, we were unable to determine if there is a

107

containment certificate of 𝑓 = [2, 1] for 𝑆0. Through our many attempts, however, we

believe that such a containment certificate does not exist.

Conjecture 9. There is no containment certificate of 𝑓 = [2, 1] for 𝑆0.

In this light, if we define the number 𝑅 as

𝑅 := inf{𝑘 ∈ ℝ ∣ ∀𝑓 with 𝑅𝑓 = 𝑘 there exists a 𝐶𝑆(𝑓) for any finite 𝑆}

then the research mentioned in Section 1 showed that 1 ≤ 𝑅 ≤ 2, and this chapter has

shown that 1 ≤ 𝑅 ≤ 1.5. So, it leads to the following question.

Question 1: What is 𝑅, exactly?

Note that if Conjecture 1 holds, then it would answer Question 1, and the answer

would be 1.5. It is clear, however, that new machinery beyond what is covered in this

chapter will be necessary to answer this question.

We wish to note, however, that containment certificates exist for “periodic” func-

tions with ratios less than 1.5. The reason for the quotation marks will become clear

soon. Consider first the function

𝑔 = [4, 0, 0, 0, 0, 0, 0, 0].

Clearly there is a containment certificate of 𝑔 for 𝑆0. However, by the way we defined

𝑔 we would have 𝑅𝑔 = 0.5, which is much less than 1.5. We can extend this example

further to obtain ratios as close to 0 as possible where containment certificates still

exist.

For a more subtle second example, consider the function

𝑓 = [2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2].

This function has a containment certificate for 𝑆0, as shown in Figure 4.17.

With the above example, we have reached a point at turn 8 where we were able

to just hold off the fire indefinitely. Hence we could place one fighter per turn at

this stage indefinitely without increasing the number of “exposed” vertices that could

108

�1
�1
�2
�2

�3
�3 �4

�4

�5
�5

�6
�6

�7
�7

�8
�10
�12
�14
�16
�18
�20

�9
�11
�13
�15
�17
�19
�21
�21

�
★ ���
�����
���
����
� ��

��
��
��
��
��
�★ Initial fire

�Burnt vertices

�𝑖 Firefighter placed on turn 𝑖

Figure 4.17: A not-so-nice containment certificate.

catch on fire the next turn. Although the two examples above are valid examples in the

context of the chapter, they don’t contain the spirit of our chapter. Rather than finding

functions with a certain ratio where containment certificates exist, we are interested in

the question of whether all functions with a given ratio admit containment certificates.

One final thing to notice is that the restriction on the periodicity of the function

can probably be relaxed. For any arbitrary function 𝑓 : ℕ→ ℕ, it will still be true that

there exists a containment certificate of 𝑓 for any finite 𝑆 if 𝑓 eventually dominates a

𝐹𝑛 for some 𝑛. Given 𝑓 : ℕ→ ℕ and 𝑛 ∈ ℕ, we define the running ratio of 𝑓 at 𝑛 to be

𝑅𝑓 (𝑛) :=

∑𝑛
𝑡=1 𝑓(𝑡)

𝑛
.

The author believes that the following conjecture is true.

Conjecture 10. If 𝑅𝑓 (𝑛) > 1.5 for all 𝑛 and

lim inf
𝑛→∞ 𝑅𝑓 (𝑛) > 1.5,

then there is a containment certificate of 𝑓 for any finite 𝑆.

Finally, the author wishes to note that this chapter stemmed from questions arising

from epidemiology and that many extensions to this problem can be thought of by

109

thinking of the problem in this manner. In this simplified model of disease spread, the

vertices of the graph represent individuals in the population, and the edges represent

relations that may allow for disease spread. Therefore, the results in this chapter could

be translated into disease control for a population whose social structure is a grid and

for a disease that strikes neighbors the next time period after a person is infected.

While this is a very simplistic and unlikely setting for population structure and disease

spread, we invite readers to extend these results to more general types of graphs and

more interesting fire/disease behaviors that are more realistic. For example, the first

modification that could be made to this problem is to add a probability parameter 𝑝 to

the scenario, which would be the probability that an unprotected vertex would catch

fire given that a neighbor is on fire. Another possible modification would be to modify

the graph as 𝑡 increases, presumably to represent the changes in inter-person behavior

as a day goes by: one is rarely likely to catch a disease from a co-worker at four in the

morning!

110

Chapter 5

Conclusions and Further Work

In sum, this thesis detailed examples of situations where the use of the computer can

be of crucial use and importance in solving certain combinatorial problems. Behind

all of the work that the computer has done, it is important to remember the need for

a well-crafted plan to be formulated, typically in the form of an enumeration scheme.

Traditionally most of this work falls under the banner of Experimental Mathematics,

and it should not be forgotten that just like in experiments in the other physical and

social sciences, the design and planning takes up 90% of the time and effort. The con-

jectures stated in the concluding subsections of the previous chapters will be presented

here again, along with potential research plans that are suitable even for interested

undergraduates.

5.1 Avoiding Differences

Research Plan 1. This research plan would focus solely on the algorithm devised for

finding and proving the behavior of {𝑓Δ(𝑛)} and the value of 𝜇(Δ) for a given value

of Δ. The algorithm described in this thesis is decidedly inefficient at dealing with

large sets Δ. Related to this route is the question of what the pseudoperiod of {𝑓Δ(𝑛)}
really is, as bounds for the pseudoperiod (and even the offset) would go long ways to

determining how far out in the sequence we need to look at to find the pseudoperiod.

Conjecture 1. The pseudoperiod of {𝑓Δ(𝑛)} is bounded from above by
∑

Δ.

Boris Bukh [6] recently claimed that a paper on tilings, which are finite sets 𝑋 such

that there admits a set 𝑇 such that {𝑋 + 𝑡 ∣ 𝑡 ∈ 𝑇} is a partition of ℕ (see [52] and

[50]), disproves this conjecture. However, this author believes this not to be the case, as

111

these cyclic set witnesses aren’t necessary tilings nor derived from them. Nevertheless,

the author still wishes to state the conjecture, even though it may already be refuted.

Research Plan 2. One can use the computer programs in [41] to find more coun-

terexamples, beyond Shor’s, to the Triangle Conjecture. Is there anything in common

with all of these counterexamples? To the author, with Theorem 2.8.1 in mind, it

seems that such counterexamples are simply “growing pains” of sorts. Since the initial

growing pains are the worst, it suggests the following conjecture.

Conjecture 2. 𝛾 = 16
15 .

To this end, analyzing the TCC Poset would be fruitful.

Conjecture 3. All minimal elements 𝑋 of the TCC poset satisfy ∣𝑋∣ = 𝑚 + 1.

Research Plan 3. Most of the analysis was focused on {𝑓Δ(𝑛)}, but similar analysis

on the other quantities {𝑓 𝑐
Δ(𝑛)}, {𝑓𝔇(𝑛)}, and {𝑓 𝑐

𝔇
(𝑛)} can be helpful if there is different

behavior. More broadly, an analysis should be done on enumeration schemes {𝑓1, 𝑓2, . . .}
where all recurrences are of the form

𝑓𝑖(𝑛) = max{𝑓𝑗(𝑛− 1), 1 + 𝑓𝑘(𝑛− 1)}.

It is clear that the pseudoperiodicity of these sequences {𝑓𝑖} follow from this structure,

but is there a characterization looming?

Research Plan 4. Recall that the simplest example of a set of atoms that was not a

code was represented as an isosceles triangle in the plane. Similarly, a characterization

of the simplest example (or examples) involving four atoms can be made, and for larger

sets. It is then an interesting extremal graph theory problem to find the largest size of

a set of atoms that avoids these structures. The following is obviously true and should

not be difficult to prove.

Conjecture 4. There are 𝑓(𝑚) isosceles triangles in 𝒜𝑚, where

𝑓(𝑚) =

⎧⎨
⎩

15
36𝑚

3 + 7
8𝑚

2 + 1
12𝑚− 3

8 if 𝑚 is odd

15
36𝑚

3 + 7
8𝑚

2 + 1
12𝑚 if 𝑚 is even

.

112

5.2 Spanning Trees in Grid Graphs

Research Plan 5. There is certainly plenty of consistent behavior with the charac-

teristic polynomials of these matrices that are created, and it may be worthwhile to

analyze the structure of the matrices themselves.

Conjecture 5. For the matrix 𝑀 given in Theorem 3.7.1, the characteristic polynomial

𝜒𝜆(𝑀) factors over the integers into monomials whose degree is always a power of 2.

Conjecture 6. For any graph 𝐺, the recurrence {𝜏𝐺(𝑛)} satisfies a linear recurrence
whose coefficients alternate in sign.

Towards analyzing specific matrices, it would be useful to restrict attention to spe-

cific classes of grid graphs, such as mentioned in the following conjectures.

Conjecture 7. The recurrence for the grid graph 𝐺𝑘(𝑛) has order 2𝑘−1.

Conjecture 8. The recurrence for the graph 𝐾𝑘 × 𝑃𝑛 has order 𝑘.

5.3 The Firefighter Problem

Research Plan 6. This thesis came close to completely solving the basic firefighter

problem in the two-dimensional grid, and it would be great to solve it completely.

Conjecture 9. There is no containment certificate of 𝑓 = [2, 1] for 𝑆0.

Conjecture 10. If 𝑅𝑓 (𝑛) > 1.5 for all 𝑛 and

lim inf
𝑛→∞ 𝑅𝑓 (𝑛) > 1.5,

then there is a containment certificate of 𝑓 for any finite 𝑆.

The reason the first conjecture of these two is still here is because we still cannot be

certain that a non-convex containment certificate does not exist.

Research Plan 7. This thesis introduced the novel idea of modifying the containment

certificates to obtain lower bounds. Are there similar modifications that can be done

113

in other scenarios? The list of 128 transformations was specifically designed to take

advantage of the idea that having the firefighters on the diagonal is the most efficient

way to deal with the two-dimensional grid. This can be thought of a “dual” notion,

but how to formulate it precisely? Additionally, what other examples are there of this

duality?

5.4 A Parting Statement

To whoever reads this: no matter what stage of life you are in, make sure that whatever

you do, you can say the following two things about it.

1. “I’m good at it.”

2. “I love it.”

114

References

[1] Mathematica software package, Wolfram Inc.

[2] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken,
NJ, third edition, 2008. With an appendix on the life and work of Paul Erdős.

[3] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A formally verified
proof of the prime number theorem. ACM Trans. Comput. Log., 9(1):Art. 2, 23,
2008.

[4] Gregory F. Bachelis. A short proof of Hall’s theorem on SDRs. Amer. Math.
Monthly, 109(5):473–474, 2002.

[5] J. Brown and R. Hoshino. Independence polynomials of circulants with an appli-
cation to music. 309(8):2292–2304, 2009.

[6] Boris Bukh. Personal communication.

[7] D. Cantor and B. Gordon. Sequences of integers with missing differences. Journal
of Combinatorial Theory, Series A, 14:281–287, 1973.

[8] E. J. Cockayne and S. T. Hedetniemi. On the diagonal queens domination problem.
J. Combin. Theory Ser. A, 42(1):137–139, 1986.

[9] Bruno Codenotti, Ivan Gerace, and Sebastiano Vigna. Hardness results and spec-
tral techniques for combinatorial problems on circulant graphs. Linear Algebra
Appl., 285(1-3):123–142, 1998.

[10] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. J. Symbolic Comput., 9(3):251–280, 1990.

[11] Clelia De Felice. On the triangle conjecture. Inform. Process. Lett., 14(5):197–200,
1982.

[12] M. Desjarlais and R. Molina. Counting spanning trees in grid graphs. Congressus
Numerantium, 145:177–185, 2000.

[13] M. Develin and S.G. Hartke. Fire containment in grids of dimension three and
higher. Discrete Applied Mathematics, 155(17):2257–2268, 2007.

[14] Paul A. Dreyer, Jr. and Fred S. Roberts. Irreversible 𝑘-threshold processes: graph-
theoretical threshold models of the spread of disease and of opinion. Discrete Appl.
Math., 157(7):1615–1627, 2009.

[15] F. J. Faase. Counting hamilton cycles in product graphs:
http://www.iwriteiam.nl/counting.html.

115

[16] F. J. Faase. On the number of specific spanning subgraphs of the graphs 𝐺× 𝑃𝑛.
Ars Combinatoria, 49:129–154, 1998.

[17] Stephen Finbow, Andrew King, Gary MacGillivray, and Romeo Rizzi. The
firefighter problem for graphs of maximum degree three. Discrete Math.,
307(16):2094–2105, 2007.

[18] P. Fogarty. Catching the fire on grids. Master’s thesis, University of Vermont,
2003.

[19] M.J. Golin and Y. C. Leung. Unhooking circulant graphs: A combinatorial method
for counting spanning trees and other parameters. Lecture Notes in Computer
Science, 3353:296–307, 2004.

[20] Georges Gonthier. Formal proof—the four-color theorem. Notices Amer. Math.
Soc., 55(11):1382–1393, 2008.

[21] S. Gupta. Sets of integers with missing differences. Journal of Combinatorial
Theory, Series A, 89:55–69, 2000.

[22] Richard Guy. Personal communication.

[23] Thomas C. Hales. Formal proof. Notices Amer. Math. Soc., 55(11):1370–1380,
2008.

[24] G. Hansel. Bäıonnettes et cardinaux. Discrete Math., 39:331–335, 1982.

[25] N. Haralambis. Sets of integers with missing differences. Journal of Combinatorial
Theory, Series A, 23:22–33, 1977.

[26] John Harrison. Formal proof—theory and practice. Notices Amer. Math. Soc.,
55(11):1395–1406, 2008.

[27] B.L. Hartnell. Firefighter! an application of domination. In 24th Manitoba Con-
ference on Combinatorial Mathematics and Computing. University of Manitoba in
Winnipeg, Canada, 1995.

[28] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation. Addison-Wesley Publishing Co., Reading, Mass., 1979.
Addison-Wesley Series in Computer Science.

[29] Thomas W. Hungerford. Algebra. Holt, Rinehart and Winston, Inc., New York,
1974.

[30] Glenn H. Hurlbert. A survey of graph pebbling. In Proceedings of the Thirti-
eth Southeastern International Conference on Combinatorics, Graph Theory, and
Computing (Boca Raton, FL, 1999), volume 139, pages 41–64, 1999.

[31] G. MacGillivray and P. Wang. On the firefighter problem. Journal of Combinato-
rial Mathematics and Combinatorial Computing, (47):83–96, 2003.

[32] C. Dianne Martin. ENIAC: The press conference that shook the world. IEEE
Technology and Society Magazine, 1995.

116

[33] T.S. Motzkin. Unpublished problem collection.

[34] A. Newell and H.A. Simon. The logic theory machine: A complex information
processing system. Technical report, Rand Corporation, 1956.

[35] K. L. Ng and P. Raff. A generalization of the firefighter problem on ℤ×ℤ. Discrete
Appl. Math., 156:730–745, 2008.

[36] D. Perrin and M. P. Schützenberger. A conjecture on sets of differences of integer
pairs. J. Combin. Theory, Ser. B, 30:91–93, 1981.

[37] Jean-Eric Pin and Imre Simon. A note on the triangle conjecture. J. Combin.
Theory Ser. A, 32(1):106–109, 1982.

[38] P. Raff. Avoiding differences: Results webpage and accompanying mathematica
and java code: http://www.myraff.com/projects/avoiding-differences.

[39] P. Raff. The firefighter problem: Results webpage and accompanying mathematica
code: http://www.myraff.com/projects/the-firefighter-problem.

[40] P. Raff. Results on the number of spanning trees of the graphs 𝐺 × 𝑃𝑛:
http://www.math.rutgers.edu/˜praff/span/.

[41] P. Raff and D. Zeilberger. Finite versions of Szemerédi’s theorem. Submitted to
Integers.

[42] Paul Raff. Lower bounds on the firefighter problem in ℤ× ℤ. In Preparation.

[43] Paul Raff. Spanning tree sequences are divisibility sequences. In Preparation.

[44] Paul Raff. The triangle conjecture and avoiding differences. In Preparation.

[45] Paul Raff. Spanning trees in grid graphs. Accepted to Advances in Applied Math-
ematics, 2009.

[46] K. F. Roth. On certain sets of integers. J. London Math. Soc., 28:104–109, 1953.

[47] R. Salem and D. C. Spencer. On sets of integers which contain no three terms in
arithmetical progression. Proc. Nat. Acad. Sci. U. S. A., 28:561–563, 1942.

[48] P. Shor. A counterexample to the triangle conjecture. J. Combin. Theory, Ser. A,
38:110–112, 1985.

[49] Richard P. Stanley. Enumerative combinatorics. Vol. 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

[50] J. Steinberger. Tilings of the integers can have superpolynomial periods. To
Appear, 2008.

[51] E. Szemerédi. On sets of integers containing no 𝑘 elements in arithmetic pro-
gression. Acta Arith., 27:199–245, 1975. Collection of articles in memory of Jurĭı
Vladimirovič Linnik.

117

[52] R. Tijdeman. Periodicity and almost-periodicity. In More sets, graphs and num-
bers, volume 15 of Bolyai Soc. Math. Stud., pages 381–405. Springer, Berlin, 2006.

[53] Ping Wang and Stephanie A. Moeller. Fire control on graphs. J. Combin. Math.
Combin. Comput., 41:19–34, 2002.

[54] Freek Wiedijk. Formal proof—getting started. Notices Amer. Math. Soc.,
55(11):1408–1417, 2008.

[55] Herbert S. Wilf and Doron Zeilberger. Towards computerized proofs of identities.
Bull. Amer. Math. Soc. (N.S.), 23(1):77–83, 1990.

118

Vita

Paul Raff

Colleges
Attended Rutgers University New Brunswick, NJ

∙ Ph.D. in Mathematics, October 2009

Carnegie Mellon University Pittsburgh, PA
∙ M.S. in Mathematics, May 2005
∙ B.S. in Mathematics, May 2004
∙ B.S. in Computer Science, May 2004

Principal
Occupations ∙ Intelligence Community (IC) Postdoctoral Research Fellow,

Rutgers University School of Communication and Information, New
Brunswick, NJ.

∙ Researcher, Monitoring Message Streams, DIMACS, Piscat-
away, NJ.

∙ Consultant, Educational Testing Services, Princeton, NJ.

Papers,
Publications ∙ Lower Bounds on the Firefighter Problem in ℤ× ℤ, in progress.

∙ The Triangle Conjecture and Avoiding Differences, in progress.

∙ Spanning Tree Sequences are Divisibility Sequences, in progress.

∙ Finite Analogs of Szemerédi’s Theorem, submitted to Integers.
http://arxiv.org/abs/0907.2831.

∙ Spanning Trees in Grid Graphs, accepted to Advances in Applied
Mathematics. http://arxiv.org/abs/0809.2551.

∙ A Generalization of the Firefighter Problem in ℤ × ℤ, with
K.L. Ng, Discrete Applied Mathematics 156 (2008), 730-745.
http://arxiv.org/abs/0809.2551

∙ A Formally Verified Proof of the Prime Number Theorem, with J. Avi-
gad, K. Donnelly, and D. Gray, ACM Transactions on Computational
Logic 9(1:2) (2007), 1-23. http://arxiv.org/abs/cs/0509025

